Science.gov

Sample records for intermediate-age massive star

  1. Young and intermediate-age massive star clusters.

    PubMed

    Larsen, Søren S

    2010-02-28

    An overview of our current understanding of the formation and evolution of star clusters is given, with the main emphasis on high-mass clusters. Clusters form deeply embedded within dense clouds of molecular gas. Left-over gas is cleared within a few million years and, depending on the efficiency of star formation, the clusters may disperse almost immediately or remain gravitationally bound. Current evidence suggests that a small percentage of star formation occurs in clusters that remain bound, although it is not yet clear whether this fraction is truly universal. Internal two-body relaxation and external shocks will lead to further, gradual dissolution on time scales of up to a few hundred million years for low-mass open clusters in the Milky Way, while the most massive clusters (>10(5) M(o)) have lifetimes comparable to or exceeding the age of the Universe. The low-mass end of the initial cluster mass function is well approximated by a power-law distribution, dN/dM proportional to M(-2), but there is mounting evidence that quiescent spiral discs form relatively few clusters with masses M > 2 x 10(5) M(o). In starburst galaxies and old globular cluster systems, this limit appears to be higher, at least several x10(6) M(o). The difference is likely related to the higher gas densities and pressures in starburst galaxies, which allow denser, more massive giant molecular clouds to form. Low-mass clusters may thus trace star formation quite universally, while the more long-lived, massive clusters appear to form preferentially in the context of violent star formation.

  2. THE EFFECTS OF ROTATION ON THE MAIN-SEQUENCE TURNOFF OF INTERMEDIATE-AGE MASSIVE STAR CLUSTERS

    SciTech Connect

    Yang, Wuming; Bi, Shaolan; Liu, Zhie; Meng, Xiangcun E-mail: yangwuming@ynao.ac.cn

    2013-10-20

    The double or extended main-sequence turnoffs (MSTOs) in the color-magnitude diagram (CMD) of intermediate-age massive star clusters in the Large Magellanic Cloud are generally interpreted as age spreads of a few hundred Myr. However, such age spreads do not exist in younger clusters (i.e., 40-300 Myr), which challenges this interpretation. The effects of rotation on the MSTOs of star clusters have been studied in previous works, but the results obtained are conflicting. Compared with previous works, we consider the effects of rotation on the main-sequence lifetime of stars. Our calculations show that rotating models have a fainter and redder MSTO with respect to non-rotating counterparts with ages between about 0.8 and 2.2 Gyr, but have a brighter and bluer MSTO when age is larger than 2.4 Gyr. The spread of the MSTO caused by a typical rotation rate is equivalent to the effect of an age spread of about 200 Myr. Rotation could lead to the double or extended MSTOs in the CMD of the star clusters with ages between about 0.8 and 2.2 Gyr. However, the extension is not significant, and it does not even exist in younger clusters. If the efficiency of the mixing were high enough, the effects of the mixing would counteract the effect of the centrifugal support in the late stage of evolution, and the rotationally induced extension would disappear in the old intermediate-age star clusters, but younger clusters would have an extended MSTO. Moreover, the effects of rotation might aid in understanding the formation of some 'multiple populations' in globular clusters.

  3. Star Clusters in Intermediate-Age Galaxy Merger Remnants

    NASA Astrophysics Data System (ADS)

    Miller, Bryan W.; Trancho, G.; Schweizer, F.

    2011-01-01

    Studies of globular cluster systems play a critical role in our understanding of galaxy formation. Star clusters are useful tracers of major star-formation events in galaxies since they are compact, relatively easy to detect, and have properties well described by simple-stellar-population models. Imaging with the Hubble Space Telescope has revealed that young compact star clusters are formed copiously during galaxy mergers, strengthening theories in which giant elliptical galaxies are formed through mergers of spirals. However, the formation and evolution of globular cluster systems is still not well understood. We should be able to observe how cluster systems evolve from the very young systems with power-law luminosity functions to old systems with log-normal luminosity functions like those observed in old elliptical galaxies. Finding intermediate-age cluster systems would constrain theories of cluster formation and destruction (evaporation, shocking, dynamical friction) as well as show the significance of merger events in the histories of galaxies. We present results of combining HST optical photometry with ground-based K-band photometry from NIRI and Flamingos-I on Gemini to study the star cluster systems of five intermediate-age merger remnants. The galaxies were chosen based on blue colors and fine structure such as shells and ripples that are indicative of past interactions. We find evidence for star clusters with ages consistent with the estimated merger ages. The properties of the star clusters systems and implications for galaxy and star cluster formation will be discussed. Based on observations obtained at the Gemini Observatory, which is operated by the Association of Universities for Research in Astronomy, Inc., under a cooperative agreement with the NSF on behalf of the Gemini partnership: the National Science Foundation (United States), the Particle Physics and Astronomy Research Council (United Kingdom), the National Research Council (Canada

  4. EXTENDED STAR FORMATION IN THE INTERMEDIATE-AGE LARGE MAGELLANIC CLOUD STAR CLUSTER NGC 2209

    SciTech Connect

    Keller, Stefan C.; Mackey, A. Dougal; Da Costa, Gary S.

    2012-12-10

    We present observations of the 1 Gyr old star cluster NGC 2209 in the Large Magellanic Cloud made with the GMOS imager on the Gemini South Telescope. These observations show that the cluster exhibits a main-sequence turnoff that spans a broader range in luminosity than can be explained by a single-aged stellar population. This places NGC 2209 amongst a growing list of intermediate-age (1-3 Gyr) clusters that show evidence for extended or multiple epochs of star formation of between 50 and 460 Myr in extent. The extended main-sequence turnoff observed in NGC 2209 is a confirmation of the prediction in Keller et al. made on the basis of the cluster's large core radius. We propose that secondary star formation is a defining feature of the evolution of massive star clusters. Dissolution of lower mass clusters through evaporation results in only clusters that have experienced secondary star formation surviving for a Hubble time, thus providing a natural connection between the extended main-sequence turnoff phenomenon and the ubiquitous light-element abundance ranges seen in the ancient Galactic globular clusters.

  5. Structural Parameters of Seven Small Magellanic Cloud Intermediate-Age and Old Star Clusters

    NASA Astrophysics Data System (ADS)

    Glatt, Katharina; Grebel, Eva K.; Gallagher, John S., III; Nota, Antonella; Sabbi, Elena; Sirianni, Marco; Clementini, Gisella; Da Costa, Gary; Tosi, Monica; Harbeck, Daniel; Koch, Andreas; Kayser, Andrea

    2009-11-01

    We present structural parameters for the seven intermediate-age and old star clusters NGC 121, Lindsay 1, Kron 3, NGC 339, NGC 416, Lindsay 38, and NGC 419 in the Small Magellanic Cloud (SMC). We fit King profiles and Elson, Fall, and Freeman profiles to both surface-brightness and star-count data taken with the Advanced Camera for Surveys aboard the Hubble Space Telescope. Clusters older than ~1 Gyr show a spread in cluster core radii that increases with age, while the youngest clusters have relatively compact cores. No evidence for post-core-collapse clusters was found. We find no correlation between core radius and distance from the SMC center, although consistent with other studies of dwarf galaxies, some relatively old and massive clusters have low densities. The oldest SMC star cluster, the only globular NGC121, is the most elliptical object of the studied clusters. No correlation is seen between ellipticity and distance from the SMC center. The structures of these massive intermediate-age (1-8 Gyr) SMC star clusters thus appear to primarily result from internal evolutionary processes. Based on observations made with the NASA/ESA Hubble Space Telescope, obtained at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS 5-26555. These observations are associated with program GO-10396.

  6. Massive Stars

    NASA Astrophysics Data System (ADS)

    Livio, Mario; Villaver, Eva

    2009-11-01

    Participants; Preface Mario Livio and Eva Villaver; 1. High-mass star formation by gravitational collapse of massive cores M. R. Krumholz; 2. Observations of massive star formation N. A. Patel; 3. Massive star formation in the Galactic center D. F. Figer; 4. An X-ray tour of massive star-forming regions with Chandra L. K. Townsley; 5. Massive stars: feedback effects in the local universe M. S. Oey and C. J. Clarke; 6. The initial mass function in clusters B. G. Elmegreen; 7. Massive stars and star clusters in the Antennae galaxies B. C. Whitmore; 8. On the binarity of Eta Carinae T. R. Gull; 9. Parameters and winds of hot massive stars R. P. Kudritzki and M. A. Urbaneja; 10. Unraveling the Galaxy to find the first stars J. Tumlinson; 11. Optically observable zero-age main-sequence O stars N. R. Walborn; 12. Metallicity-dependent Wolf-Raynet winds P. A. Crowther; 13. Eruptive mass loss in very massive stars and Population III stars N. Smith; 14. From progenitor to afterlife R. A. Chevalier; 15. Pair-production supernovae: theory and observation E. Scannapieco; 16. Cosmic infrared background and Population III: an overview A. Kashlinsky.

  7. Ages of intermediate-age Magellanic Cloud star clusters

    NASA Technical Reports Server (NTRS)

    Flower, P. J.

    1984-01-01

    Ages of intermediate-age Large Magellanic Cloud star clusters have been estimated without locating the faint, unevolved portion of cluster main sequences. Six clusters with established color-magnitude diagrams were selected for study: SL 868, NGC 1783, NGC 1868, NGC 2121, NGC 2209, and NGC 2231. Since red giant photometry is more accurate than the necessarily fainter main-sequence photometry, the distributions of red giants on the cluster color-magnitude diagrams were compared to a grid of 33 stellar evolutionary tracks, evolved from the main sequence through core-helium exhaustion, spanning the expected mass and metallicity range for Magellanic Cloud cluster red giants. The time-dependent behavior of the luminosity of the model red giants was used to estimate cluster ages from the observed cluster red giant luminosities. Except for the possibility of SL 868 being an old globular cluster, all clusters studied were found to have ages less than 10 to the 9th yr. It is concluded that there is currently no substantial evidence for a major cluster population of large, populous clusters greater than 10 to the 9th yr old in the Large Magellanic Cloud.

  8. Spectroscopically identified intermediate age stars at 0.5-3 pc distance from Sagittarius A*

    NASA Astrophysics Data System (ADS)

    Nishiyama, Shogo; Schödel, Rainer; Yoshikawa, Tatsuhito; Nagata, Tetsuya; Minowa, Yosuke; Tamura, Motohide

    2016-04-01

    Context. Nuclear star clusters (NSCs) at the dynamical center of galaxies appear to have a complex star formation history. This suggests repeated star formation, even in the influence of the strong tidal field from supermassive black holes. Although the central region of our Galaxy is an ideal target for studies of the star formation history in the NSCs, most studies in the past have concentrated on a projected distance of RSgr A ∗ ~ 0.5 pc from the supermassive black hole Sgr A*. Aims: In our previous study, we detected 31 so far unknown early-type star candidates throughout the Galactic NSC (at RSgr A ∗ = 0.5-3 pc). They were found via near-infrared (NIR) imaging observations with narrow-band filters which are sensitive to CO absorption lines at ~2.3 μm, a prominent feature for old, late-type stars. The aim of this study is to confirm the spectral type for the early-type star candidates. Methods: We have carried out NIR spectroscopic observations of the early-type star candidates using Subaru/IRCS/AO188 and the laser guide star system. K-band spectra for 20 out of the 31 candidates and reference late-type stars were obtained. By determining an equivalent width, EW(CO), of the 12CO absorption feature at ≈2.294 μm, we have derived an effective temperature and a bolometric magnitude for each candidate and late-type star, and then constructed an HR diagram. Results: No young (~Myr) massive stars are included in the 20 candidates we observed; however, 13 candidates are most likely intermediate-age giants (50-500 Myr). Two other sources have ages of ~1 Gyr and the remaining five sources are old (>1 Gyr), late-type giants. Conclusions: Although none of the early-type star candidates from our previous narrow-band imaging observations can be confirmed as a young star, we find that the photometric technique can distinguish old, late-type giants from young and intermediate-age populations. From the 20 spectroscopically observed candidates, 65% of them are confirmed

  9. INTERMEDIATE-AGE CLUSTERS IN A FIELD CONTAINING M31 AND M32 STARS

    SciTech Connect

    Rudenko, Pavlo; Worthey, Guy; Mateo, Mario E-mail: gworthey@wsu.edu

    2009-12-15

    Hubble Space Telescope/Advanced Camera for Surveys fields toward M31 and M32 were examined for the presence of possible star clusters. On the basis of stellar photometry, two intermediate-age clusters were found in the field that contains both M31 and M32 stars. One is approximately 200 Myr of age with a mass {approx}400 M {sub sun}, and the other is 1 Gyr old with mass {approx}8 x 10{sup 4} M {sub sun}. Several other cluster candidates are identified, but their stellar populations are more similar to the field: old and slightly metal-poor.

  10. A VLT/FLAMES STUDY OF THE PECULIAR INTERMEDIATE-AGE LARGE MAGELLANIC CLOUD STAR CLUSTER NGC 1846. I. KINEMATICS

    SciTech Connect

    Mackey, A. D.; Da Costa, G. S.; Yong, D.; Ferguson, A. M. N.

    2013-01-01

    In this paper we present high-resolution VLT/FLAMES observations of red giant stars in the massive intermediate-age Large Magellanic Cloud star cluster NGC 1846, which, on the basis of its extended main-sequence turnoff (EMSTO), possesses an internal age spread of Almost-Equal-To 300 Myr. We describe in detail our target selection and data reduction procedures, and construct a sample of 21 stars possessing radial velocities indicating their membership of NGC 1846 at high confidence. We consider high-resolution spectra of the planetary nebula Mo-17, and conclude that this object is also a member of the cluster. Our measured radial velocities allow us to conduct a detailed investigation of the internal kinematics of NGC 1846, the first time this has been done for an EMSTO system. The key result of this work is that the cluster exhibits a significant degree of systemic rotation, of a magnitude comparable to the mean velocity dispersion. Using an extensive suite of Monte Carlo models we demonstrate that, despite our relatively small sample size and the substantial fraction of unresolved binary stars in the cluster, the rotation signal we detect is very likely to be genuine. Our observations are in qualitative agreement with the predictions of simulations modeling the formation of multiple populations of stars in globular clusters, where a dynamically cold, rapidly rotating second generation is a common feature. NGC 1846 is less than one relaxation time old, so any dynamical signatures encoded during its formation ought to remain present.

  11. Conservation of Angular Momentum Confirmed: Rotational Deceleration in an Intermediate-Age Star Cluster

    NASA Astrophysics Data System (ADS)

    de Grijs, Richard; Wu, Xiaohan; Li, Chengyuan; Deng, Licai

    2017-01-01

    The subgiant branch (SGB) of the extended main-sequence turn-off (eMSTO) Small Magellanic Cloud cluster NGC 419 is significantly broader at bluer than at redder colors. If we would assume that the widths of the features in color--magnitude space were entirely owing to a range in stellar ages, the star-formation histories of the eMSTO stars and the blue SGB region would be significantly more prolonged than that of the red part of the SGB. This cannot be explained by assuming an internal age spread, a popular scenario to explain eMSTOs at intermediate ages (1--2 Gyr). We show that rotational deceleration of a population of rapidly rotating stars naturally explains the observed trend along the SGB. Our analysis shows that a "converging" SGB could be produced if the cluster is mostly composed of rapidly rotating stars that slow down over time owing to the conservation of angular momentum during their evolutionary expansion from main-sequence turn-off stars to red giants.

  12. Age Determination of Six Intermediate-Age Small Magellanic Cloud Star Clusters with HST/ACS

    NASA Astrophysics Data System (ADS)

    Glatt, Katharina; Grebel, Eva K.; Sabbi, Elena; Gallagher, John S., III; Nota, Antonella; Sirianni, Marco; Clementini, Gisella; Tosi, Monica; Harbeck, Daniel; Koch, Andreas; Kayser, Andrea; Da Costa, Gary

    2008-10-01

    We present a photometric analysis of the star clusters Lindsay 1, Kron 3, NGC 339, NGC 416, Lindsay 38, and NGC 419 in the Small Magellanic Cloud (SMC), observed with the Hubble Space Telescope Advanced Camera for Surveys (ACS) in the F555W and F814W filters. Our color-magnitude diagrams (CMDs) extend ~3.5 mag deeper than the main-sequence turnoff points, deeper than any previous data. Cluster ages were derived using three different isochrone models: Padova, Teramo, and Dartmouth, which are all available in the ACS photometric system. Fitting observed ridgelines for each cluster, we provide a homogeneous and unique set of low-metallicity, single-age fiducial isochrones. The cluster CMDs are best approximated by the Dartmouth isochrones for all clusters, except for NGC 419 where the Padova isochrones provided the best fit. Using Dartmouth isochrones we derive ages of 7.5 ± 0.5 Gyr (Lindsay 1), 6.5 ± 0.5 Gyr (Kron 3), 6 ± 0.5 Gyr (NGC 339), 6 ± 0.5 Gyr (NGC 416), and 6.5 ± 0.5 Gyr (Lindsay 38). The CMD of NGC 419 shows several main-sequence turnoffs, which belong to the cluster and to the SMC field. We thus derive an age range of 1.2-1.6 Gyr for NGC 419. We confirm that the SMC contains several intermediate-age populous star clusters with ages unlike those of the Large Magellanic Cloud and the Milky Way. Interestingly, our intermediate-age star clusters have a metallicity spread of ~0.6 dex, which demonstrates that the SMC does not have a smooth, monotonic age-metallicity relation. We find an indication for centrally-concentrated blue straggler star candidates in NGC 416, while these are not present for the other clusters. Using the red clump magnitudes, we find that the closest cluster, NGC 419 (~50 kpc), and the farthest cluster, Lindsay 38 (~67 kpc), have a relative distance of ~17 kpc, which confirms the large depth of the SMC. The three oldest SMC clusters (NGC 121, Lindsay 1, and Kron 3) lie in the northwestern part of the SMC, while the youngest (NGC 419

  13. Extended main sequence turnoffs in intermediate-age star clusters: a correlation between turnoff width and early escape velocity

    SciTech Connect

    Goudfrooij, Paul; Kozhurina-Platais, Vera; Kalirai, Jason S.; Correnti, Matteo E-mail: verap@stsci.edu E-mail: correnti@stsci.edu; and others

    2014-12-10

    We present a color-magnitude diagram analysis of deep Hubble Space Telescope imaging of a mass-limited sample of 18 intermediate-age (1-2 Gyr old) star clusters in the Magellanic Clouds, including eight clusters for which new data were obtained. We find that all star clusters in our sample feature extended main-sequence turnoff (eMSTO) regions that are wider than can be accounted for by a simple stellar population (including unresolved binary stars). FWHM widths of the MSTOs indicate age spreads of 200-550 Myr. We evaluate the dynamical evolution of clusters with and without initial mass segregation. Our main results are (1) the fraction of red clump (RC) stars in secondary RCs in eMSTO clusters scales with the fraction of MSTO stars having pseudo-ages of ≲1.35 Gyr; (2) the width of the pseudo-age distributions of eMSTO clusters is correlated with their central escape velocity v {sub esc}, both currently and at an age of 10 Myr. We find that these two results are unlikely to be reproduced by the effects of interactive binary stars or a range of stellar rotation velocities. We therefore argue that the eMSTO phenomenon is mainly caused by extended star formation within the clusters; and (3) we find that v {sub esc} ≥ 15 km s{sup –1} out to ages of at least 100 Myr for all clusters featuring eMSTOs, and v {sub esc} ≤ 12 km s{sup –1} at all ages for two lower-mass clusters in the same age range that do not show eMSTOs. We argue that eMSTOs only occur for clusters whose early escape velocities are higher than the wind velocities of stars that provide material from which second-generation stars can form. The threshold of 12-15 km s{sup –1} is consistent with wind velocities of intermediate-mass asymptotic giant branch stars and massive binary stars in the literature.

  14. COMBINED EFFECTS OF BINARIES AND STELLAR ROTATION ON THE COLOR-MAGNITUDE DIAGRAMS OF INTERMEDIATE-AGE STAR CLUSTERS

    SciTech Connect

    Li Zhongmu; Mao Caiyan; Chen Li; Zhang Qian

    2012-12-20

    About 70% of intermediate-age star clusters in the Large Magellanic Clouds have been confirmed to have broad main sequence, multiple or extended turnoffs, and dual red giant clumps. The observed result seems to be at odds with the classical idea that such clusters are simple stellar populations. Although many models have been used to explain the results via factors such as prolonged star formation history, metallicity spread, differential reddening, selection effect, observational uncertainty, stellar rotation, and binary interaction, the reason for the special color-magnitude diagrams is still uncertain. We revisit this question via the combination of stellar rotation and binary effects. As a result, it shows 'golf club' color-magnitude diagrams with broad or multiple turnoffs, dual red clumps, blue stragglers, red stragglers, and extended main sequences. Because both binaries and massive rotators are common, our result suggests that most color-magnitude diagrams, including extended turnoff or multiple turnoffs, can be explained using simple stellar populations including both binary and stellar rotation effects, or composite populations with two components.

  15. Combined Effects of Binaries and Stellar Rotation on the Color-Magnitude Diagrams of Intermediate-age Star Clusters

    NASA Astrophysics Data System (ADS)

    Li, Zhongmu; Mao, Caiyan; Chen, Li; Zhang, Qian

    2012-12-01

    About 70% of intermediate-age star clusters in the Large Magellanic Clouds have been confirmed to have broad main sequence, multiple or extended turnoffs, and dual red giant clumps. The observed result seems to be at odds with the classical idea that such clusters are simple stellar populations. Although many models have been used to explain the results via factors such as prolonged star formation history, metallicity spread, differential reddening, selection effect, observational uncertainty, stellar rotation, and binary interaction, the reason for the special color-magnitude diagrams is still uncertain. We revisit this question via the combination of stellar rotation and binary effects. As a result, it shows "golf club" color-magnitude diagrams with broad or multiple turnoffs, dual red clumps, blue stragglers, red stragglers, and extended main sequences. Because both binaries and massive rotators are common, our result suggests that most color-magnitude diagrams, including extended turnoff or multiple turnoffs, can be explained using simple stellar populations including both binary and stellar rotation effects, or composite populations with two components.

  16. Age determination of 15 old to intermediate-age small Magellanic cloud star clusters

    SciTech Connect

    Parisi, M. C.; Clariá, J. J.; Piatti, A. E.; Geisler, D.; Leiton, R.; Carraro, G.; Costa, E.; Grocholski, A. J.; Sarajedini, A. E-mail: claria@oac.uncor.edu E-mail: dgeisler@astro-udec.cl E-mail: gcarraro@eso.org E-mail: grocholski@phys.lsu.edu

    2014-04-01

    We present color-magnitude diagrams in the V and I bands for 15 star clusters in the Small Magellanic Cloud (SMC) based on data taken with the Very Large Telescope (VLT, Chile). We selected these clusters from our previous work, wherein we derived cluster radial velocities and metallicities from calcium II infrared triplet (CaT) spectra also taken with the VLT. We discovered that the ages of six of our clusters have been appreciably underestimated by previous studies, which used comparatively small telescopes, graphically illustrating the need for large apertures to obtain reliable ages of old and intermediate-age SMC star clusters. In particular, three of these clusters, L4, L6, and L110, turn out to be among the oldest SMC clusters known, with ages of 7.9 ± 1.1, 8.7 ± 1.2, and 7.6 ± 1.0 Gyr, respectively, helping to fill a possible 'SMC cluster age gap'. Using the current ages and metallicities from Parisi et al., we analyze the age distribution, age gradient, and age-metallicity relation (AMR) of a sample of SMC clusters measured homogeneously. There is a suggestion of bimodality in the age distribution but it does not show a constant slope for the first 4 Gyr, and we find no evidence for an age gradient. Due to the improved ages of our cluster sample, we find that our AMR is now better represented in the intermediate/old period than we had derived in Parisi et al., where we simply took ages available in the literature. Additionally, clusters younger than ∼4 Gyr now show better agreement with the bursting model of Pagel and Tautvaišienė, but we confirm that this model is not a good representation of the AMR during the intermediate/old period. A more complicated model is needed to explain the SMC chemical evolution in that period.

  17. THE INSIDIOUS BOOSTING OF THERMALLY PULSING ASYMPTOTIC GIANT BRANCH STARS IN INTERMEDIATE-AGE MAGELLANIC CLOUD CLUSTERS

    SciTech Connect

    Girardi, Léo; Marigo, Paola; Bressan, Alessandro; Rosenfield, Philip

    2013-11-10

    this critical age range cannot be accurately derived by approximations such as the fuel consumption theorem, which ignore, by construction, the above evolutionary effect. Third, a careful revision of AGB star populations in intermediate-age MC clusters is urgently demanded, promisingly with the aid of detailed sets of stellar isochrones.

  18. Massive soliton stars

    NASA Astrophysics Data System (ADS)

    Chiu, Hong-Yee

    1990-05-01

    The structure of nontopological solutions of Einstein field equations as proposed by Friedberg, Lee, and Pang (1987) is examined. This analysis incorporates finite temperature effects and pair creation. Quarks are assumed to be the only species that exist in interior of soliton stars. The possibility of primordial creation of soliton stars in the incomplete decay of the degenerate vacuum in early universe is explored. Because of dominance of pair creation inside soliton stars, the luminosity of soliton stars is not determined by its radiative transfer characteristics, and the surface temperature of soliton stars can be the same as its interior temperature. It is possible that soliton stars are intense X-ray radiators at large distances. Soliton stars are nearly 100 percent efficient energy converters, converting the rest energy of baryons entering the interior into radiation. It is possible that a sizable number of baryons may also be trapped inside soliton stars during early epochs of the universe. In addition, if soliton stars exist they could assume the role played by massive black holes in galactic centers.

  19. Massive soliton stars

    NASA Technical Reports Server (NTRS)

    Chiu, Hong-Yee

    1990-01-01

    The structure of nontopological solutions of Einstein field equations as proposed by Friedberg, Lee, and Pang (1987) is examined. This analysis incorporates finite temperature effects and pair creation. Quarks are assumed to be the only species that exist in interior of soliton stars. The possibility of primordial creation of soliton stars in the incomplete decay of the degenerate vacuum in early universe is explored. Because of dominance of pair creation inside soliton stars, the luminosity of soliton stars is not determined by its radiative transfer characteristics, and the surface temperature of soliton stars can be the same as its interior temperature. It is possible that soliton stars are intense X-ray radiators at large distances. Soliton stars are nearly 100 percent efficient energy converters, converting the rest energy of baryons entering the interior into radiation. It is possible that a sizable number of baryons may also be trapped inside soliton stars during early epochs of the universe. In addition, if soliton stars exist they could assume the role played by massive black holes in galactic centers.

  20. The evolution of massive stars

    NASA Technical Reports Server (NTRS)

    1982-01-01

    The hypotheses underlying theoretical studies of the evolution of massive model stars with and without mass loss are summarized. The evolutionary tracks followed by the models across theoretical Hertzsprung-Russell (HR) diagrams are compared with the observed distribution of B stars in an HR diagram. The pulsational properties of models of massive star are also described.

  1. Fragmentation in massive star formation.

    PubMed

    Beuther, Henrik; Schilke, Peter

    2004-02-20

    Studies of evolved massive stars indicate that they form in a clustered mode. During the earliest evolutionary stages, these regions are embedded within their natal cores. Here we present high-spatial-resolution interferometric dust continuum observations disentangling the cluster-like structure of a young massive star-forming region. The derived protocluster mass distribution is consistent with the stellar initial mass function. Thus, fragmentation of the initial massive cores may determine the initial mass function and the masses of the final stars. This implies that stars of all masses can form via accretion processes, and coalescence of intermediate-mass protostars appears not to be necessary.

  2. The Destructive Birth of Massive Stars and Massive Star Clusters

    NASA Astrophysics Data System (ADS)

    Rosen, Anna; Krumholz, Mark; McKee, Christopher F.; Klein, Richard I.; Ramirez-Ruiz, Enrico

    2017-01-01

    Massive stars play an essential role in the Universe. They are rare, yet the energy and momentum they inject into the interstellar medium with their intense radiation fields dwarfs the contribution by their vastly more numerous low-mass cousins. Previous theoretical and observational studies have concluded that the feedback associated with massive stars' radiation fields is the dominant mechanism regulating massive star and massive star cluster (MSC) formation. Therefore detailed simulation of the formation of massive stars and MSCs, which host hundreds to thousands of massive stars, requires an accurate treatment of radiation. For this purpose, we have developed a new, highly accurate hybrid radiation algorithm that properly treats the absorption of the direct radiation field from stars and the re-emission and processing by interstellar dust. We use our new tool to perform a suite of three-dimensional radiation-hydrodynamic simulations of the formation of massive stars and MSCs. For individual massive stellar systems, we simulate the collapse of massive pre-stellar cores with laminar and turbulent initial conditions and properly resolve regions where we expect instabilities to grow. We find that mass is channeled to the massive stellar system via gravitational and Rayleigh-Taylor (RT) instabilities. For laminar initial conditions, proper treatment of the direct radiation field produces later onset of RT instability, but does not suppress it entirely provided the edges of the radiation-dominated bubbles are adequately resolved. RT instabilities arise immediately for turbulent pre-stellar cores because the initial turbulence seeds the instabilities. To model MSC formation, we simulate the collapse of a dense, turbulent, magnetized Mcl = 106 M⊙ molecular cloud. We find that the influence of the magnetic pressure and radiative feedback slows down star formation. Furthermore, we find that star formation is suppressed along dense filaments where the magnetic field is

  3. The Effects of the Overshooting of the Convective Core on Main-sequence Turnoffs of Young- and Intermediate-age Star Clusters

    NASA Astrophysics Data System (ADS)

    Yang, Wuming; Tian, Zhijia

    2017-02-01

    Recent investigations have shown that the extended main-sequence turnoffs (eMSTOs) are a common feature of intermediate-age star clusters in the Magellanic Clouds. The eMSTOs are also found in the color–magnitude diagram of young-age star clusters. The origin of the eMSTOs is still an open question. Moreover, asteroseismology shows that the value of the overshooting parameter {δ }{ov} of the convective core is not fixed for the stars with an approximatelly equal mass. Thus the MSTO of star clusters may be affected by the overshooting of the convective core (OVCC). We calculated the effects of the OVCC with different δ ov on the MSTO of young- and intermediate-age star clusters. If δ ov varies between stars in a cluster, the observed eMSTOs of young- and intermediate-age star clusters can be explained well by the effects. The equivalent age spreads of MSTO caused by the OVCC are related to the age of star clusters and are in good agreement with observed results of many clusters. Moreover, the observed eMSTOs of NGC 1856 are reproduced by the coeval populations with different δ ov. The eMSTOs of star clusters may be relevant to the effects of the OVCC. The effects of the OVCC are similar to that of rotation in some respects. However, the effects cannot result in a significant split of the main sequence of young star clusters at {m}U≲ 21. The presence of a rapid rotation can make the split of the main sequence of young star clusters more significant.

  4. Massive star clusters in galaxies.

    PubMed

    Harris, William E

    2010-02-28

    The ensemble of all star clusters in a galaxy constitutes its star cluster system. In this review, the focus of the discussion is on the ability of star clusters, particularly the systems of old massive globular clusters (GCs), to mark the early evolutionary history of galaxies. I review current themes and key findings in GC research, and highlight some of the outstanding questions that are emerging from recent work.

  5. PRESENT-DAY MASS FUNCTION OF SIX SMALL MAGELLANIC CLOUD INTERMEDIATE-AGE AND OLD STAR CLUSTERS

    SciTech Connect

    Glatt, Katharina; Grebel, Eva K.; Jordi, Katrin; Gallagher, John S. III; Harbeck, Daniel; Da Costa, Gary; Clementini, Gisella; Tosi, Monica; Nota, Antonella; Sabbi, Elena; Sirianni, Marco

    2011-08-15

    We determined the present-day mass functions (PDMFs) of the five intermediate-age star clusters Lindsay 1, Kron 3, NGC 339, NGC 416, and Lindsay 38 and the old star cluster NGC 121 in the Small Magellanic Cloud (SMC) based on observations with the Hubble Space Telescope Advanced Camera for Surveys. The global PDMFs are well matched by Salpeter-like power laws from their main-sequence turnoffs to {approx}0.6 M{sub sun} with a power-law exponent {alpha} ranging from 1.51 {+-} 0.11 (Lindsay 1) to 2.29 {+-} 0.15 (NGC 339). We derive total stellar masses of {approx}10{sup 5} M{sub sun}, except for Lindsay 38, whose mass is of the order of {approx}10{sup 4} M{sub sun}. Differences between the PDMFs most likely reflect the varying stages of dynamical evolution of the clusters. These SMC clusters do not follow the {alpha} versus concentration parameter c correlation as found for Galactic globular clusters of similar mass. This might be an age effect or due to their location in a galaxy where bulge and disk crossings do not play a role. No correlation is found between {alpha} and the cluster core and tidal radii (r{sub c} and r{sub t} , respectively), the half-light radii r{sub h} , age, central surface brightness, metallicity, and galactocentric radius r{sub gc}. All six clusters mass-segregated to different degrees. The two clusters Lindsay 1 and Kron 3 barely show signs for mass segregation, but have low-mass star deficient global PDMFs and might be the remnants of star clusters whose outer parts were stripped. A trend exists between the degree of mass segregation and the ratio age/relaxation time t{sub r,h}, which indicates the stage of dynamical evolution for a cluster. Our data thus suggest that the SMC clusters in the present sample had a range of initial densities and presumably different amounts of mass loss that led to different rates of dynamical evolution. The clusters' positions in the r{sub h,m}/r{sub t} versus r{sub 0}/r{sub h,m} plane imply that all of the

  6. Present-day Mass Function of Six Small Magellanic Cloud Intermediate-age and Old Star Clusters

    NASA Astrophysics Data System (ADS)

    Glatt, Katharina; Grebel, Eva K.; Jordi, Katrin; Gallagher, John S., III; Da Costa, Gary; Clementini, Gisella; Tosi, Monica; Harbeck, Daniel; Nota, Antonella; Sabbi, Elena; Sirianni, Marco

    2011-08-01

    We determined the present-day mass functions (PDMFs) of the five intermediate-age star clusters Lindsay 1, Kron 3, NGC 339, NGC 416, and Lindsay 38 and the old star cluster NGC 121 in the Small Magellanic Cloud (SMC) based on observations with the Hubble Space Telescope Advanced Camera for Surveys. The global PDMFs are well matched by Salpeter-like power laws from their main-sequence turnoffs to ~0.6 M sun with a power-law exponent α ranging from 1.51 ± 0.11 (Lindsay 1) to 2.29 ± 0.15 (NGC 339). We derive total stellar masses of ~105 M sun, except for Lindsay 38, whose mass is of the order of ~104 M sun. Differences between the PDMFs most likely reflect the varying stages of dynamical evolution of the clusters. These SMC clusters do not follow the α versus concentration parameter c correlation as found for Galactic globular clusters of similar mass. This might be an age effect or due to their location in a galaxy where bulge and disk crossings do not play a role. No correlation is found between α and the cluster core and tidal radii (rc and rt , respectively), the half-light radii rh , age, central surface brightness, metallicity, and galactocentric radius r gc. All six clusters mass-segregated to different degrees. The two clusters Lindsay 1 and Kron 3 barely show signs for mass segregation, but have low-mass star deficient global PDMFs and might be the remnants of star clusters whose outer parts were stripped. A trend exists between the degree of mass segregation and the ratio age/relaxation time t r, h , which indicates the stage of dynamical evolution for a cluster. Our data thus suggest that the SMC clusters in the present sample had a range of initial densities and presumably different amounts of mass loss that led to different rates of dynamical evolution. The clusters' positions in the r h, m /rt versus r 0/r h, m plane imply that all of the clusters are tidally filled. Our SMC clusters with projected distances larger than 3 kpc from the SMC center

  7. Theoretical Considerations of Massive Star Formation

    NASA Technical Reports Server (NTRS)

    Yorke, Harold W.

    2006-01-01

    This viewgraph presentation reviews the formation of massive stars. The formation of massive stars is different in many ways from the formation of other stars. The presentation shows the math, and the mechanisms that must be possible for a massive star to form.

  8. Massive binary stars as a probe of massive star formation

    NASA Astrophysics Data System (ADS)

    Kiminki, Daniel C.

    2010-10-01

    Massive stars are among the largest and most influential objects we know of on a sub-galactic scale. Binary systems, composed of at least one of these stars, may be responsible for several types of phenomena, including type Ib/c supernovae, short and long gamma ray bursts, high-velocity runaway O and B-type stars, and the density of the parent star clusters. Our understanding of these stars has met with limited success, especially in the area of their formation. Current formation theories rely on the accumulated statistics of massive binary systems that are limited because of their sample size or the inhomogeneous environments from which the statistics are collected. The purpose of this work is to provide a higher-level analysis of close massive binary characteristics using the radial velocity information of 113 massive stars (B3 and earlier) and binary orbital properties for the 19 known close massive binaries in the Cygnus OB2 Association. This work provides an analysis using the largest amount of massive star and binary information ever compiled for an O-star rich cluster like Cygnus OB2, and compliments other O-star binary studies such as NGC 6231, NGC 2244, and NGC 6611. I first report the discovery of 73 new O or B-type stars and 13 new massive binaries by this survey. This work involved the use of 75 successful nights of spectroscopic observation at the Wyoming Infrared Observatory in addition to observations obtained using the Hydra multi-object spectrograph at WIYN, the HIRES echelle spectrograph at KECK, and the Hamilton spectrograph at LICK. I use these data to estimate the spectrophotometric distance to the cluster and to measure the mean systemic velocity and the one-sided velocity dispersion of the cluster. Finally, I compare these data to a series of Monte Carlo models, the results of which indicate that the binary fraction of the cluster is 57 +/- 5% and that the indices for the power law distributions, describing the log of the periods, mass

  9. Massive Compact Stars as Quark Stars

    NASA Astrophysics Data System (ADS)

    Rodrigues, Hilário; Barbosa Duarte, Sérgio; de Oliveira, José Carlos T.

    2011-03-01

    High-mass compact stars have been reported recently in the literature, providing strong constraints on the properties of the ultra dense matter beyond the saturation nuclear density. In view of these results, the calculations of quark star or hybrid star equilibrium structure must be compatible with the provided observational data. But since the equations of state used in describing quark matter are in general too soft in comparison with the equation of states used to describe the hadronic or nuclear matter, the calculated quark star models presented in the literature are in general not suitable to explain the stability of highly-compact massive objects. In this work, we present the calculations of a spherically symmetric quark star structure by using an equation of state that takes into account the superconducting color-flavor locked phase of the strange quark matter. In addition, some fundamental aspects of QCD (asymptotic freedom and confinement) are considered by means of a phenomenological description of the deconfined quark phase, the density-dependent quark mass model. The quark matter behavior introduced by this model stiffens the corresponding equation of state. We thus investigate the influence of this model on the mass-radius diagram of quark stars. We obtain massive quark stars due to the stiffness of the equation of state, when a reasonable parameterization of the color superconducting gap is used. Models of quark stars enveloped by a nucleonic crust composed of a nuclear lattice embedded in an electron gas, with nuclei close to neutron drip line, are also discussed.

  10. Massive Stars in Interactive Binaries

    NASA Astrophysics Data System (ADS)

    St.-Louis, Nicole; Moffat, Anthony F. J.

    Massive stars start their lives above a mass of ~8 time solar, finally exploding after a few million years as core-collapse or pair-production supernovae. Above ~15 solar masses, they also spend most of their lives driving especially strong, hot winds due to their extreme luminosities. All of these aspects dominate the ecology of the Universe, from element enrichment to stirring up and ionizing the interstellar medium. But when they occur in close pairs or groups separated by less than a parsec, the interaction of massive stars can lead to various exotic phenomena which would not be seen if there were no binaries. These depend on the actual separation, and going from wie to close including colliding winds (with non-thermal radio emission and Wolf-Rayet dust spirals), cluster dynamics, X-ray binaries, Roche-lobe overflow (with inverse mass-ratios and rapid spin up), collisions, merging, rejuventation and massive blue stragglers, black-hole formation, runaways and gamma-ray bursts. Also, one wonders whether the fact that a massive star is in a binary affects its parameters compared to its isolated equivalent. These proceedings deal with all of these phenomena, plus binary statistics and determination of general physical properties of massive stars, that would not be possible with their single cousins. The 77 articles published in these proceedings, all based on oral talks, vary from broad revies to the lates developments in the field. About a third of the time was spent in open discussion of all participants, both for ~5 minutes after each talk and 8 half-hour long general dialogues, all audio-recorded, transcribed and only moderately edited to yield a real flavour of the meeting. The candid information in these discussions is sometimes more revealing than the article(s) that preceded them and also provide entertaining reading. The book is suitable for researchers and graduate students interested in stellar astrophysics and in various physical processes involved when

  11. PRISM Polarimetry of Massive Stars

    NASA Astrophysics Data System (ADS)

    Kerkstra, Brennan; Lomax, Jamie R.; Bjorkman, Karen S.; Bjorkman, Jon Eric; Skiff, Brian; Covey, Kevin R.; Wisniewski, John P.

    2016-01-01

    We present the early results from our long-term, multi-epoch filter polarization survey of massive stars in and around young Galactic clusters. These BVRI polarization data were obtained using the PRISM instrument mounted on the 1.8m Perkins Telescope at Lowell Observatory. We first detail the creation of our new semi-automated polarization data reduction pipeline that we developed to process these data. Next, we present our analysis of the instrumental polarization properties of the PRISM instrument, via observations of polarized and unpolarized standard stars. Finally, we present early results on the total and intrinsic polarization behavior of several isolated, previously suggested classical Be stars, and discuss these results in the context of the larger project.BK acknowledges support from a NSF/REU at the University of Oklahoma. This program was also supported by NSF-AST 11411563, 1412110, and 1412135.

  12. Formation of Massive Stars: Theoretical Considerations

    NASA Technical Reports Server (NTRS)

    Yorke, Harold W.

    2008-01-01

    This slide presentation reviews theoretical considerations of the formation of massive stars. It addresses the questions that assuming a gravitationally unstable massive clump, how does enough material become concentrated into a sufficiently small volume within a sufficiently short time? and how does the forming massive star influence its immediate surroundings to limit its mass?

  13. Massive Star Burps, Then Explodes

    NASA Astrophysics Data System (ADS)

    2007-04-01

    Berkeley -- In a galaxy far, far away, a massive star suffered a nasty double whammy. On Oct. 20, 2004, Japanese amateur astronomer Koichi Itagaki saw the star let loose an outburst so bright that it was initially mistaken for a supernova. The star survived, but for only two years. On Oct. 11, 2006, professional and amateur astronomers witnessed the star actually blowing itself to smithereens as Supernova 2006jc. Swift UVOT Image Swift UVOT Image (Credit: NASA / Swift / S.Immler) "We have never observed a stellar outburst and then later seen the star explode," says University of California, Berkeley, astronomer Ryan Foley. His group studied the event with ground-based telescopes, including the 10-meter (32.8-foot) W. M. Keck telescopes in Hawaii. Narrow helium spectral lines showed that the supernova's blast wave ran into a slow-moving shell of material, presumably the progenitor's outer layers ejected just two years earlier. If the spectral lines had been caused by the supernova's fast-moving blast wave, the lines would have been much broader. artistic rendering This artistic rendering depicts two years in the life of a massive blue supergiant star, which burped and spewed a shell of gas, then, two years later, exploded. When the supernova slammed into the shell of gas, X-rays were produced. (Credit: NASA/Sonoma State Univ./A.Simonnet) Another group, led by Stefan Immler of NASA's Goddard Space Flight Center, Greenbelt, Md., monitored SN 2006jc with NASA's Swift satellite and Chandra X-ray Observatory. By observing how the supernova brightened in X-rays, a result of the blast wave slamming into the outburst ejecta, they could measure the amount of gas blown off in the 2004 outburst: about 0.01 solar mass, the equivalent of about 10 Jupiters. "The beautiful aspect of our SN 2006jc observations is that although they were obtained in different parts of the electromagnetic spectrum, in the optical and in X-rays, they lead to the same conclusions," says Immler. "This

  14. Recovery From Giant Eruptions in Massive Stars

    NASA Astrophysics Data System (ADS)

    Kashi, A.; Davidson, K.; Humphreys, R. M.

    2015-12-01

    We perform radiation hydrodynamic simulations to study how very massive stars recover from giant eruptions. The post eruption star experience strong mass loss due to strong winds, driven by radial pulsations in the star*s interior, that operate by the κ-mechanism. The mass loss history obtained in our simulations resembles η Car*s history.

  15. Physics of Mass Loss in Massive Stars

    NASA Astrophysics Data System (ADS)

    Puls, Joachim; Sundqvist, Jon O.; Markova, Nevena

    2015-01-01

    We review potential mass-loss mechanisms in the various evolutionary stages of massive stars, from the well-known line-driven winds of O-stars and BA-supergiants to the less-understood winds of Red Supergiants. We discuss optically thick winds from Wolf-Rayet stars and Very Massive Stars, and the hypothesis of porosity-moderated, continuum-driven mass loss from stars formally exceeding the Eddington limit, which might explain the giant outbursts from Luminous Blue Variables. We finish this review with a glance on the impact of rapid rotation, magnetic fields and small-scale inhomogeneities in line-driven winds.

  16. New clues to the cause of extended main-sequence turnoffs in intermediate-age star clusters in the Magellanic Clouds

    SciTech Connect

    Correnti, Matteo; Goudfrooij, Paul; Kalirai, Jason S.; Girardi, Leo; Puzia, Thomas H.; Kerber, Leandro E-mail: goudfroo@stsci.edu E-mail: leo.girardi@oapd.inaf.it E-mail: lkerber@gmail.com

    2014-10-01

    We use the Wide Field Camera 3 on board the Hubble Space Telescope (HST) to obtain deep, high-resolution images of two intermediate-age star clusters in the Large Magellanic Cloud of relatively low mass (≈10{sup 4} M {sub ☉}) and significantly different core radii, namely NGC 2209 and NGC 2249. For comparison purposes, we also reanalyzed archival HST images of NGC 1795 and IC 2146, two other relatively low-mass star clusters. From the comparison of the observed color-magnitude diagrams with Monte Carlo simulations, we find that the main-sequence turnoff (MSTO) regions in NGC 2209 and NGC 2249 are significantly wider than that derived from simulations of simple stellar populations, while those in NGC 1795 and IC 2146 are not. We determine the evolution of the clusters' masses and escape velocities from an age of 10 Myr to the present age. We find that differences among these clusters can be explained by dynamical evolution arguments if the currently extended clusters (NGC 2209 and IC 2146) experienced stronger levels of initial mass segregation than the currently compact ones (NGC 2249 and NGC 1795). Under this assumption, we find that NGC 2209 and NGC 2249 have estimated escape velocities, V {sub esc} ≳ 15 km s{sup –1} at an age of 10 Myr, large enough to retain material ejected by slow winds of first-generation stars, while the two clusters that do not feature extended MSTOs have V {sub esc} ≲ 12 km s{sup –1} at that age. These results suggest that the extended MSTO phenomenon can be better explained by a range of stellar ages rather than a range of stellar rotation velocities or interacting binaries.

  17. Evolution of Massive Stars at Low Metallicity

    NASA Astrophysics Data System (ADS)

    Meynet, Georges; Walborn, Nolan R.; Hunter, Ian; Martayan, Christophe; van Marle, Allard Jan; Marchenko, Sergey; Vink, Jorick S.; Limongi, Marco; Levesque, Emily M.; Modjaz, Maryam

    2008-06-01

    This paper reports the contributions made on the occasion of the Special Session entitled “Evolution of Massive Stars at Low Metallicity” which was held on Sunday, December 9, 2007 in Kauai (USA).

  18. Chromospheric Activity at Intermediate Ages

    NASA Astrophysics Data System (ADS)

    Giampapa, Mark; Stauffer, John; Deliyannis, Constantine; Sherry, William

    2005-08-01

    The calibration of the empirical relation between Ca II chromospheric strength and stellar age between 0.6 Gyr (Hyades) and 4.0 - 5 Gyr (M67 and the Sun) relies on the uncertain determination of ages for individual field stars in the solar neighborhood. We therefore propose to obtain WIYN/Hydra spectra of ~ 100 solar-type dwarf stars in the 1.8 Gyr old open cluster, NGC 752. This cluster contains a sample of solar-type dwarfs that is homogeneous in age and chemical composition. Furthermore, NGC 752 is the nearest-and hence brightest- cluster at an age ~ 2 Gyr. The results will yield an improved calibration of the age-activity relation at intermediate ages. In addition, we will determine if the chromospheric Ca II strengths for the solar-type stars in NGC 752 lie in the so-called "Vaughan-Preston Gap''- an apparent discontinuity in the Ca II H& K strength-(B-V) diagram found for field stars in the solar neighborhood. Our data will yield insight on the two proposed origins for the gap, namely, that it is a result of two different modes of dynamo action or that it is actually an artifact of a discontinuity in the local star formation rate. This is a resubmission of a previously approved proposal that was allocated two nights in 2004 November. The time was lost to instrument problems (Hydra gripper malfunctions) and weather. No usable data were obtained.

  19. Not-so-simple stellar populations in the intermediate-age Large Magellanic Cloud star clusters NGC 1831 and NGC 1868

    SciTech Connect

    Li, Chengyuan; De Grijs, Richard; Deng, Licai E-mail: grijs@pku.edu.cn

    2014-04-01

    Using a combination of high-resolution Hubble Space Telescope/Wide-Field and Planetary Camera-2 observations, we explore the physical properties of the stellar populations in two intermediate-age star clusters, NGC 1831 and NGC 1868, in the Large Magellanic Cloud based on their color-magnitude diagrams. We show that both clusters exhibit extended main-sequence turn offs. To explain the observations, we consider variations in helium abundance, binarity, age dispersions, and the fast rotation of the clusters' member stars. The observed narrow main sequence excludes significant variations in helium abundance in both clusters. We first establish the clusters' main-sequence binary fractions using the bulk of the clusters' main-sequence stellar populations ≳ 1 mag below their turn-offs. The extent of the turn-off regions in color-magnitude space, corrected for the effects of binarity, implies that age spreads of order 300 Myr may be inferred for both clusters if the stellar distributions in color-magnitude space were entirely due to the presence of multiple populations characterized by an age range. Invoking rapid rotation of the population of cluster members characterized by a single age also allows us to match the observed data in detail. However, when taking into account the extent of the red clump in color-magnitude space, we encounter an apparent conflict for NGC 1831 between the age dispersion derived from that based on the extent of the main-sequence turn off and that implied by the compact red clump. We therefore conclude that, for this cluster, variations in stellar rotation rate are preferred over an age dispersion. For NGC 1868, both models perform equally well.

  20. Stellar Dynamical Processes in Massive Star and Star Cluster Formation

    NASA Astrophysics Data System (ADS)

    Tan, Jonathan; Eyer, L.

    2009-01-01

    We study how high precision astrometric measurements by SIM and GAIA of stars involved in dynamical ejection events from star clusters can constrain theories of massive star and star cluster formation. We focus on the Orion Nebula Cluster (ONC). First, we investigate the scientific potential associated with an accurate measurement of the distance and proper motion of Theta 1 Ori C, which is the most massive star in the cluster and was recently involved (about 4000 years ago) in the ejection of a B star: the Becklin-Neugebauer (BN) star. The motion of the BN star has taken it close to a massive protostar, known as source I, where it appears to have influenced the accretion and outflow activity, most likely by a tidal interaction with the accretion disk. An accurate proper motion measurement of Theta 1 Ori C will constrain BN's initial motion, allowing us to search for deflections caused by the gravitational potential of the massive protostar. Second, we search the Hipparcos catalog for candidate runaway stars, i.e. that have been dynamically ejected from the cluster over the course of the last several Myr. SIM and GAIA observations of these stars will be needed to confirm their origin from the ONC. The results of this study will constrain the star cluster formation timescale and the statistics of the population of ejected stars. JCT acknowledges support from from NSF CAREER grant AST-0645412 and a grant from NASA for SIM Science Studies.

  1. How Massive Single Stars End Their Life

    NASA Technical Reports Server (NTRS)

    Heger, A.; Fryer, C. L.; Woosley, S. E.; Langer, N.; Hartmann, D. H.

    2003-01-01

    How massive stars die-what sort of explosion and remnant each produces-depends chiefly on the masses of their helium cores and hydrogen envelopes at death. For single stars, stellar winds are the only means of mass loss, and these are a function of the metallicity of the star. We discuss how metallicity, and a simplified prescription for its effect on mass loss, affects the evolution and final fate of massive stars. We map, as a function of mass and metallicity, where black holes and neutron stars are likely to form and where different types of supernovae are produced. Integrating over an initial mass function, we derive the relative populations as a function of metallicity. Provided that single stars rotate rapidly enough at death, we speculate on stellar populations that might produce gamma-ray bursts and jet-driven supernovae.

  2. Olivier Chesneau's Work on Massive Stars

    NASA Astrophysics Data System (ADS)

    Millour, F.

    2015-12-01

    Olivier Chesneau challenged several fields of observational stellar astrophysics with bright ideas and an impressive amount of work to make them real in the span of his career, from his first paper on P Cygni in 2000, up to his last one on V838 Mon in 2014. He was using all the so-called high-angular resolution techniques since it helped his science to be made, namely study in details the inner structure of the environments around stars, be it small mass (AGBs), more massive (supergiant stars), or explosives (Novae). I will focus here on his work on massive stars.

  3. The Rb problem in massive AGB stars.

    NASA Astrophysics Data System (ADS)

    Pérez-Mesa, V.; García-Hernández, D. A.; Zamora, O.; Plez, B.; Manchado, A.; Karakas, A. I.; Lugaro, M.

    2017-03-01

    The asymptotic giant branch (AGB) is formed by low- and intermediate-mass stars (0.8 M_{⊙} < M < 8 M_{⊙}) in their last nuclear-burning phase, when they develop thermal pulses (TP) and suffer extreme mass loss. AGB stars are the main contributor to the enrichment of the interstellar medium (ISM) and thus to the chemical evolution of galaxies. In particular, the more massive AGB stars (M > 4 M_{⊙}) are expected to produce light (e.g., Li, N) and heavy neutron-rich s-process elements (such as Rb, Zr, Ba, Y, etc.), which are not formed in lower mass AGB stars and Supernova explosions. Classical chemical analyses using hydrostatic atmospheres revealed strong Rb overabundances and high [Rb/Zr] ratios in massive AGB stars of our Galaxy and the Magellanic Clouds (MC), confirming for the first time that the ^{22}Ne neutron source dominates the production of s-process elements in these stars. The extremely high Rb abundances and [Rb/Zr] ratios observed in the most massive stars (specially in the low-metallicity MC stars) uncovered a Rb problem; such extreme Rb and [Rb/Zr] values are not predicted by the s-process AGB models, suggesting fundamental problems in our present understanding of their atmospheres. We present more realistic dynamical model atmospheres that consider a gaseous circumstellar envelope with a radial wind and we re-derive the Rb (and Zr) abundances in massive Galactic AGB stars. The new Rb abundances and [Rb/Zr] ratios derived with these dynamical models significantly resolve the problem of the mismatch between the observations and the theoretical predictions of the more massive AGB stars.

  4. Heavy element abundances and massive star formation

    NASA Technical Reports Server (NTRS)

    Wang, Boqi; Silk, Joseph

    1993-01-01

    The determination of the stellar initial mass function (IMF) remains a great challenge in astronomy. In the solar neighborhood, the IMF is reasonable well determined for stellar masses from about 0.1 to 60 solar mass. However, outside the solar neighborhood, the IMF is poorly known. Among those frequently discussed arguments favoring a different IMF outside the solar neighborhood are the estimated time to consume the remaining gas in spiral galaxies, and the high rate of forming massive stars in starburst galaxies. An interesting question then is whether there may be an independent way of testing possible variations in the IMF. Indeed, the heavy elements in the interstellar medium are mostly synthesized in massive stars, so increasing, or decreasing, the fraction of massive stars naturally leads to a variation in the heavy element yield, and thus, the metallicity. The observed abundance should severely constrain any deviations of the IMF from the locally determined IMF. We focus on element oxygen, which is the most abundant heavy element in the interstellar medium. Oxygen is ejected only by massive stars that can become Type 1 supernovae, and the oxygen abundance is, therefore, a sensitive function of the fraction of massive stars in the IMF. Adopting oxygen enables us to avoid uncertainties in Type 1 supernovae. We use the nucleosynthesis results to calculate the oxygen yield for given IMF. We then calculate the oxygen abundance in the interstellar medium assuming instantaneous recycling of oxygen.

  5. Modeling populations of rotationally mixed massive stars

    NASA Astrophysics Data System (ADS)

    Brott, I.

    2011-02-01

    Massive stars can be considered as cosmic engines. With their high luminosities, strong stellar winds and violent deaths they drive the evolution of galaxies through-out the history of the universe. Despite the importance of massive stars, their evolution is still poorly understood. Two major issues have plagued evolutionary models of massive stars until today: mixing and mass loss On the main sequence, the effects of mass loss remain limited in the considered mass and metallicity range, this thesis concentrates on the role of mixing in massive stars. This thesis approaches this problem just on the cross road between observations and simulations. The main question: Do evolutionary models of single stars, accounting for the effects of rotation, reproduce the observed properties of real stars. In particular we are interested if the evolutionary models can reproduce the surface abundance changes during the main-sequence phase. To constrain our models we build a population synthesis model for the sample of the VLT-FLAMES Survey of Massive stars, for which star-formation history and rotational velocity distribution are well constrained. We consider the four main regions of the Hunter diagram. Nitrogen un-enriched slow rotators and nitrogen enriched fast rotators that are predicted by theory. Nitrogen enriched slow rotators and nitrogen unenriched fast rotators that are not predicted by our model. We conclude that currently these comparisons are not sufficient to verify the theory of rotational mixing. Physical processes in addition to rotational mixing appear necessary to explain the stars in the later two regions. The chapters of this Thesis have been published in the following Journals: Ch. 2: ``Rotating Massive Main-Sequence Stars I: Grids of Evolutionary Models and Isochrones'', I. Brott, S. E. de Mink, M. Cantiello, N. Langer, A. de Koter, C. J. Evans, I. Hunter, C. Trundle, J.S. Vink submitted to Astronomy & Astrop hysics Ch. 3: ``The VLT-FLAMES Survey of Massive

  6. Evolutionary tracks of massive stars during formation

    NASA Astrophysics Data System (ADS)

    Smith, Michael D.

    2014-02-01

    A model for massive stars is constructed by piecing together evolutionary algorithms for the protostellar structure, the environment, the inflow and the radiation feedback. We investigate specified accretion histories of constant, decelerating and accelerating forms and consider both hot and cold accretion, identified with spherical free-fall and disc accretion, respectively. Diagnostic tools for the interpretation of the phases of massive star formation and testing the evolutionary models are then developed. Evolutionary tracks able to fit Herschel Space Telescope data require the generated stars to be three to four times less massive than in previous interpretations, thus being consistent with clump star formation efficiencies of 10-15 per cent. However, for these cold Herschel clumps, the bolometric temperature is not a good diagnostic to differentiate between accretion models. We also find that neither spherical nor disc accretion can explain the high radio luminosities of many protostars. Nevertheless, we discover a solution in which the extreme ultraviolet flux needed to explain the radio emission is produced if the accretion flow is via free-fall on to hotspots covering less than 10 per cent of the surface area. Moreover, the protostar must be compact, and so has formed through cold accretion. We show that these conclusions are independent of the imposed accretion history. This suggests that massive stars form via gas accretion through discs which, in the phase before the star bloats, download their mass via magnetic flux tubes on to the protostar.

  7. Spatial Disrtribution and Evolution of Massive Stars

    NASA Astrophysics Data System (ADS)

    Aghakhanlootakanloo, Mojgan; Murphy, Jeremiah W.

    2017-01-01

    Observations show that luminous blue variables (LBVs) are far more dispersed than other massive stars, and Smith & Tombleson (2015) suggested that these large separations are inconsistent with the standard single-star evolution model of LBVs. Instead, they suggest that the large distances are most consistent with some sort of binary evolution. To test these suggestions, we modeled young stellar clusters and their passive dissolution, and we find that, indeed, the single-star evolution model is inconsistent with observations. Most importantly, we find two binary scenario models that are consistent. Our crude models suggest that LBVs are either the result of mergers and are rejuvenated stars, or they are mass gainers and received a kick when the primary star exploded. In the merger scenario, LBVs have more time to disperse because they are the merger of two lesser mass, in which the primary has a mass of about 19 solar masses. In the mass gainer and kick scenario, we find that LBV isolation is consistent with an average kick of 200 km/s. In either scenario, binarity plays a major role in the isolation of LBVs. In addition to constraining the evolution of LBVs, we suggest that careful scrutiny of the spatial distribution of massive stars in general will lead to a greater understanding for the evolution of massive stars.

  8. Are All Magnetic White Dwarf Stars Massive?

    NASA Astrophysics Data System (ADS)

    Nitta, A.; Kepler, S. O.; Kulebi, B.; Koester, D.; Kleinman, S. J.; Winget, D. E.; Castanheira, B. G.; Corsico, A. H.

    2017-03-01

    We obtained follow-up spectra on 25 white dwarf stars identified in our white dwarf catalog of Sloan Digital Sky Survey (SDSS) as massive or magnetic. We identified over 300 magnetic white dwarf stars from SDSS with some uncertainties due to the low S/N of the spectra. With much higher S/N Gemini data, our sample should be able to help us confirm accuracy of our determinations. We present here our results so far from the follow up observations.

  9. Theoretical Developments in Understanding Massive Star Formation

    NASA Technical Reports Server (NTRS)

    Yorke, Harold W.; Bodenheimer, Peter

    2007-01-01

    Except under special circumstances massive stars in galactic disks will form through accretion. The gravitational collapse of a molecular cloud core will initially produce one or more low mass quasi-hydrostatic objects of a few Jupiter masses. Through subsequent accretion the masses of these cores grow as they simultaneously evolve toward hydrogen burning central densities and temperatures. We review the evolution of accreting (proto-)stars, including new results calculated with a publicly available stellar evolution code written by the authors.

  10. Massive stars. A chemical signature of first-generation very massive stars.

    PubMed

    Aoki, W; Tominaga, N; Beers, T C; Honda, S; Lee, Y S

    2014-08-22

    Numerical simulations of structure formation in the early universe predict the formation of some fraction of stars with several hundred solar masses. No clear evidence of supernovae from such very massive stars has, however, yet been found in the chemical compositions of Milky Way stars. We report on an analysis of a very metal-poor star SDSS J001820.5-093939.2, which possesses elemental-abundance ratios that differ significantly from any previously known star. This star exhibits low [α-element Fe] ratios and large contrasts between the abundances of odd and even element pairs, such as scandium/titanium and cobalt/nickel. Such features have been predicted by nucleosynthesis models for supernovae of stars more than 140 times as massive as the Sun, suggesting that the mass distribution of first-generation stars might extend to 100 solar masses or larger.

  11. Towards Realistic Modeling of Massive Star Clusters

    NASA Astrophysics Data System (ADS)

    Gnedin, O.; Li, H.

    2016-06-01

    Cosmological simulations of galaxy formation are rapidly advancing towards smaller scales. Current models can now resolve giant molecular clouds in galaxies and predict basic properties of star clusters forming within them. I will describe new theoretical simulations of the formation of the Milky Way throughout cosmic time, with the adaptive mesh refinement code ART. However, many challenges - physical and numerical - still remain. I will discuss how observations of massive star clusters and star forming regions can help us overcome some of them. Video of the talk is available at https://goo.gl/ZoZOfX

  12. Probing Massive Star Cluster Formation with ALMA

    NASA Astrophysics Data System (ADS)

    Johnson, Kelsey

    2015-08-01

    Observationally constraining the physical conditions that give rise to massive star clusters has been a long-standing challenge. Now with the ALMA Observatory coming on-line, we can finally begin to probe the birth environments of massive clusters in a variety of galaxies with sufficient angular resolution. In this talk I will give an overview of ALMA observations of galaxies in which candidate proto-super star cluster molecular clouds have been identified. These new data probe the physical conditions that give rise to super star clusters, providing information on their densities, pressures, and temperatures. In particular, the observations indicate that these clouds may be subject to external pressures of P/k > 108 K cm-3, which is consistent with the prevalence of optically observed adolescent super star clusters in interacting galaxy systems and other high pressure environments. ALMA observations also enable an assessement of the molecular cloud chemical abundances in the regions surrounding super star clusters. Molecular clouds associated with existing super star clusters are strongly correlated with HCO+ emission, but appear to have relatively low ratio of CO/HCO+ emission compared to other clouds, indicating that the super star clusters are impacting the molecular abundances in their vicinity.

  13. Massive-Star Nucleosynthesis: Lessons from INTEGRAL

    NASA Astrophysics Data System (ADS)

    Diehl, Roland; Lang, Michael; Kretschmer, Karsten; Martin, Pierrick; Ohlendorf, Henrike; Voss, Rasmus

    2010-08-01

    Gamma-ray line observations with INTEGRAL measure decay of unstable isotopes which are ejected from sites of nucleosynthesis. Massive stars are believed to be producers of gamma-ray emitting isotopes 44Ti, 26Al, 60Fe. Measurements with the Ge spectrometer have shown that (1) inner core-collapse supernova ejecta from the Cas A supernova remnant appear to still travel at velocities beyond a few hundred km/sec (2) 26Al synthesis occurs throughout the Galaxy corresponds to a supernova rate from core collapses of about one every 50 years; (3) 60Fe synthesis expected from massive stars is above the constraints from gamma-ray observations; 26Al synthesis in the Cygnus region appears on the high side of predictions from models; 26Al emission from the nearby Sco-Cen group of stars has been identified demonstrates massive-star activity close to the Sun. 26Al gamma-rays have been used to determine a longitude-velocity distribution of the presumably hot tenuous ISM which carries 26Al, which can be compared to molecular-gas star motions to help understand the Galaxy's bar spiral-arm structure. Implications of the above nucleosynthesis constraints suggest that INTEGRAL's observed positron annihilation gamma-rays need a contribution from another source located in the central regions of our Galaxy, and/or positrons may propagate kpc-distances away from their sources before annihilating.

  14. Massive star formation at high spatial resolution

    NASA Astrophysics Data System (ADS)

    Pascucci, Ilaria

    2004-05-01

    This thesis studies the early phases of massive stars and their impact on the surrounding. The capabilities of continuum radiative transfer (RT) codes to interpret the observations are also investigated. The main results of this work are: 1) Two massive star-forming regions are observed in the infrared. The thermal emission from the ultra-compact H II regions is resolved and the spectral type of the ionizing stars is estimated. The hot cores are not detected thus implying line-of-sight extinction larger than 200 visual magnitude. 2) The first mid-infrared interferometric measurements towards a young massive star resolve thermal emission on scales of 30-50 AU probing the size of the predicted disk. The visibility curve differs from those of intermediate-mass stars. 3) The close vicinity of Θ1C Ori are imaged using the NACO adaptive optics system. The binary proplyd Orion 168-326 and its interaction with the wind from Θ1C Ori are resolved. A proplyd uniquely seen face-on is also identified. 4) Five RT codes are compared in a disk configuration. The solutions provide the first 2D benchmark and serve to test the reliability of other RT codes. The images/visibilities from two RT codes are compared for a distorted disk. The parameter range in which such a distortion is detectable with MIDI is explored.

  15. Mass Lost from the Most Massive Stars

    NASA Astrophysics Data System (ADS)

    Weis, Kerstin

    2004-02-01

    The structure and evolution of galaxies is noticeably influenced by the energy input of very massive stars. They are not only the supply of heavier elements, they also influence the distribution and structure of the interstellar medium through their strong stellar winds and supernova explosions. Losing more than 50% of their ZAMS-mass during their life, stars more massive than ~ 50 M⊙ substantially contribute to the mass and energy input which can drive large scale outflows from galaxies. In this presentation I will mainly concentrate on a short but violent phase of mass loss of the most massive stars, known as Luminous Blue Variables. In only a few thousand years a large amount of mass is released (in some cases several solar masses), forming a nebula around the LBV. Besides of a general overview of the LBVs special concern will be given to the nebula around eta Carinae for which new results from CHANDRA observations show the shocks emitting in the X-ray band. Finally I will briefly address the question of the role of LBV type stars in the early phase of galaxy formation and in connection with the first stars formed.

  16. Formation and Assembly of Massive Star Clusters

    NASA Astrophysics Data System (ADS)

    McMillan, Stephen

    The formation of stars and star clusters is a major unresolved problem in astrophysics. It is central to modeling stellar populations and understanding galaxy luminosity distributions in cosmological models. Young massive clusters are major components of starburst galaxies, while globular clusters are cornerstones of the cosmic distance scale and represent vital laboratories for studies of stellar dynamics and stellar evolution. Yet how these clusters form and how rapidly and efficiently they expel their natal gas remain unclear, as do the consequences of this gas expulsion for cluster structure and survival. Also unclear is how the properties of low-mass clusters, which form from small-scale instabilities in galactic disks and inform much of our understanding of cluster formation and star-formation efficiency, differ from those of more massive clusters, which probably formed in starburst events driven by fast accretion at high redshift, or colliding gas flows in merging galaxies. Modeling cluster formation requires simulating many simultaneous physical processes, placing stringent demands on both software and hardware. Simulations of galaxies evolving in cosmological contexts usually lack the numerical resolution to simulate star formation in detail. They do not include detailed treatments of important physical effects such as magnetic fields, radiation pressure, ionization, and supernova feedback. Simulations of smaller clusters include these effects, but fall far short of the mass of even single young globular clusters. With major advances in computing power and software, we can now directly address this problem. We propose to model the formation of massive star clusters by integrating the FLASH adaptive mesh refinement magnetohydrodynamics (MHD) code into the Astrophysical Multi-purpose Software Environment (AMUSE) framework, to work with existing stellar-dynamical and stellar evolution modules in AMUSE. All software will be freely distributed on-line, allowing

  17. Evolution and Nucleosynthesis of Very Massive Stars

    NASA Astrophysics Data System (ADS)

    Hirschi, Raphael

    In this chapter, after a brief introduction and overview of stellar evolution, we discuss the evolution and nucleosynthesis of very massive stars (VMS: M > 100 M_{odot } ) in the context of recent stellar evolution model calculations. This chapter covers the following aspects: general properties, evolution of surface properties, late central evolution, and nucleosynthesis including their dependence on metallicity, mass loss and rotation. Since very massive stars have very large convective cores during the main-sequence phase, their evolution is not so much affected by rotational mixing, but more by mass loss through stellar winds. Their evolution is never far from a homogeneous evolution even without rotational mixing. All VMS at metallicities close to solar end their life as WC(-WO) type Wolf-Rayet stars. Due to very important mass loss through stellar winds, these stars may have luminosities during the advanced phases of their evolution similar to stars with initial masses between 60 and 120 M_{odot } . A distinctive feature which may be used to disentangle Wolf-Rayet stars originating from VMS from those originating from lower initial masses is the enhanced abundances of neon and magnesium at the surface of WC stars. At solar metallicity, mass loss is so strong that even if a star is born with several hundred solar masses, it will end its life with less than 50 M_{odot } (using current mass loss prescriptions). At the metallicity of the LMC and lower, on the other hand, mass loss is weaker and might enable stars to undergo pair-instability supernovae.

  18. MASSIVE STAR FORMATION IN NGC 2074

    SciTech Connect

    Fleener, Christine E.; Chu, Y.-H.; Gruendl, Robert A.; Payne, James T.; Chen, C.-H. Rosie

    2010-01-15

    Spitzer observations of the Large Magellanic Cloud (LMC) have revealed a large population of young stellar objects (YSOs), but complementary high-resolution images in the optical or near-IR wavelengths are still needed to resolve the multiplicity and immediate environments of the YSOs. The Hubble Space Telescope imaged the star-forming region NGC 2074 in the LMC during its 100,000th orbit, providing an opportunity to more closely examine the YSOs and their environments in this region. We have studied the 10 YSO candidates identified from Spitzer observations, confirming their nature and determining their physical parameters by modeling their spectral energy distributions. The majority of the YSOs and central stars of ultracompact H II regions in NGC 2074 have masses consistent with spectral types of early B to late O. The co-existence of massive early-type O stars and the less massive YSOs indicates that their formation may have started at a similar time, a few 10{sup 5} yr ago. NGC 2074 provides an opportunity to study the evolution of massive stars at their infancy.

  19. On the Formation of Massive Stars

    NASA Astrophysics Data System (ADS)

    Kaper, L.; Ellerbroek, L.; Ochsendorf, B.; Bik, A.

    2012-12-01

    The birth process and (early) evolution of massive stars is still poorly understood. Heavy extinction hides their birthplaces from view and the short formation timescale limits the sample of objects to be studied. So far, our physical knowledge of massive YSOs has been derived from near-IR imaging and spectroscopy, revealing populations of young OB-type stars, some still surrounded by a disk, others apparently ‘normal’ main sequence stars powering H II regions. The most important spectral features of OB-type stars are, however, located in the UV and optical range. With the new optical/near-infrared spectrograph X-shooter on the ESO Very Large Telescope it is possible to extend the spectral coverage of these massive YSOs into the optical range. Our first results are very promising: the discovery of a jet demonstrates that one of our mYSOs is still actively accreting. Furthermore, the first firm spectral classification of another mYSO results in the precise location on a pre-main-sequence track.

  20. Observational constraints on massive-star evolution

    NASA Astrophysics Data System (ADS)

    Schulte-Ladbeck, Regina

    1997-07-01

    Massive stars are important constitutents of galaxies and are increasingly used as probes of galaxy evolution out to high redshifts. Yet, a very basic problem remains in understanding the distribution of massive stars across the Hertzsprung- Russell Diagram. This is known as the problem of the blue-to- red supergiant ratios in galaxies of different metallicities, a very sensitive indicator of the evolutionary paths that massive stars in different chemical environments appear to follow. Observations suggest a trend that the numbers of red supergiants increase with decreasing metallicity, but stellar- evolution models predict the opposite. We discuss various limitations of ground-based observations which have so far restricted accurate star counts to a few, nearby galaxies. We then argue that the HST archive contains a perfect set of photometric data to determine number counts of red supergiants in galaxies out to 5 Mpc. We propose to analyze WFPC2 observations in F555W {V} and F814W {I} filters to derive color-magnitude diagrams and complete luminosity functions of the red supergiant populations in 6 galaxies spanning a factor of 60 in metallicity. This systematic approach will put the functional form of the blue-to-red supergiant ratio with metallicity on firm observational footing.

  1. MASSIVE INFANT STARS ROCK THEIR CRADLE

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Extremely intense radiation from newly born, ultra-bright stars has blown a glowing spherical bubble in the nebula N83B, also known as NGC 1748. A new NASA Hubble Space Telescope image has helped to decipher the complex interplay of gas and radiation of a star-forming region in a nearby galaxy. The image graphically illustrates just how these massive stars sculpt their environment by generating powerful winds that alter the shape of the parent gaseous nebula. These processes are also seen in our Milky Way in regions like the Orion Nebula. The Hubble telescope is famous for its contribution to our knowledge about star formation in very distant galaxies. Although most of the stars in the Universe were born several billions of years ago, when the Universe was young, star formation still continues today. This new Hubble image shows a very compact star-forming region in a small part of one of our neighboring galaxies - the Large Magellanic Cloud. This galaxy lies only 165,000 light-years from our Milky Way and can easily be seen with the naked eye from the Southern Hemisphere. Young, massive, ultra-bright stars are seen here just as they are born and emerge from the shelter of their pre-natal molecular cloud. Catching these hefty stars at their birthplace is not as easy as it may seem. Their high mass means that the young stars evolve very rapidly and are hard to find at this critical stage. Furthermore, they spend a good fraction of their youth hidden from view, shrouded by large quantities of dust in a molecular cloud. The only chance is to observe them just as they start to emerge from their cocoon - and then only with very high-resolution telescopes. Astronomers from France, the U.S., and Germany have used Hubble to study the fascinating interplay between gas, dust, and radiation from the newly born stars in this nebula. Its peculiar and turbulent structure has been revealed for the first time. This high-resolution study has also uncovered several individual stars

  2. The Evolution and Stability of Massive Stars

    NASA Astrophysics Data System (ADS)

    Shiode, Joshua Hajime

    Massive stars are the ultimate source for nearly all the elements necessary for life. The first stars forge these elements from the sparse set of ingredients supplied by the Big Bang, and distribute enriched ashes throughout their galactic homes via their winds and explosive deaths. Subsequent generations follow suit, assembling from the enriched ashes of their predecessors. Over the last several decades, the astrophysics community has developed a sophisticated theoretical picture of the evolution of these stars, but it remains an incomplete accounting of the rich set of observations. Using state of the art models of massive stars, I have investigated the internal processes taking place throughout the life-cycles of stars spanning those from the first generation ("Population III") to the present-day ("Population I"). I will argue that early-generation stars were not highly unstable to perturbations, contrary to a host of past investigations, if a correct accounting is made for the viscous effect of convection. For later generations, those with near solar metallicity, I find that this very same convection may excite gravity-mode oscillations that produce observable brightness variations at the stellar surface when the stars are near the main sequence. If confirmed with modern high-precision monitoring experiments, like Kepler and CoRoT, the properties of observed gravity modes in massive stars could provide a direct probe of the poorly constrained physics of gravity mode excitation by convection. Finally, jumping forward in stellar evolutionary time, I propose and explore an entirely new mechanism to explain the giant eruptions observed and inferred to occur during the final phases of massive stellar evolution. This mechanism taps into the vast nuclear fusion luminosity, and accompanying convective luminosity, in the stellar core to excite waves capable of carrying a super-Eddington luminosity out to the stellar envelope. This energy transfer from the core to the

  3. Study of Stellar Clusters Containing Massive Stars

    NASA Astrophysics Data System (ADS)

    Costado, Teresa; Alfaro, E. J.; Delgado, A. J.; Djupvik, A. A.; Maíz Apellániz, J.

    2013-06-01

    Most stars form in clusters, but the percentage of stars born in dense stellar systems is currently matter of controversy and depends very much on the own definition of cluster. The cluster definition and hence the morphologies of individual clusters appear to vary significantly from region to region, as well as with age, which suggests that either, star formation in clusters is not universal and may depend on the local environment, or that all clusters form with the same morphology but early dynamical evolution quickly modifies the structure of the phase space distribution. In addition, young populated clusters containing massive stars are excellent labs for the study of the formation of the massive stellar component of the Galactic disk. Three main scenarios have been proposed for the formation of high-mass stars (M > 7-8 M_{⊙}): a) monolithic collapse of proto-stellar nuclei; b) competitive accretion inside the proto-cluster molecular cloud; and c) coalescence of proto-stellar nuclei and low-mass stars in very dense atmospheres. Both scientific questions: a) cluster formation and b) formation of high mass stars in clusters are intimately connected via the structural description of the phase space distribution of cluster stars and their Mass Function (MF). Models of static clusters with different initial spatial and kinematic distributions show how the spatial distribution dynamically evolves with time, allowing a characterization of their dynamical state from snapshots of their spatial distribution. Four are the main variables (and their distribution with mass and position) needed for a reliable characterization of the cluster dynamical state: a) Mass segregation parameter; b) Mapping of surface density for different ranges of masses; c) Q morphological parameter based on the minimum spanning tree graph and its variation with mass and cluster age, and d) MF of the cluster members. Two years ago, the Stellar System Group of IAA has begun an observational

  4. Instability considerations for massive star eruptions

    SciTech Connect

    Guzik, J. A.

    2004-01-01

    We propose a mechanism to explain the observed properties of the giant eruptions of 'supernova imposters' such as {eta} Car and P Cyg. This mechanism must be episodic, generate a large amount of energy, and be very deep-seated, in order to lift about 10 solar masses out of the deep gravitational potential well of these massive evolved stars. We suggest that nonradial gravity mode oscillations capable of existing in the core grow slowly to sufficient amplitude to cause an episode of mixing. This mixing generates a burst of nuclear energy deep in the star that is responsible for the observed large mass ejection and bolometric magnitude increase.

  5. Speckle Interferometry of Massive and Cluster Stars

    NASA Astrophysics Data System (ADS)

    Mason, Brian; Hartkopf, William I.; Gies, Douglas R.; Henry, Todd J.; Tokovinin, Andrei A.

    2006-02-01

    Conducted on NOAO 4-m telescopes in 1994, the first speckle survey of O stars (Mason et al. 1998) had success far in excess of our expectations. In addition to the frequently cited multiplicity analysis, many of the new systems which were first resolved in this paper are of significant astrophysical importance. Now, some ten years after the original survey, we propose to re-investigate all systems analyzed before (N=195). Improvements in detector technology will allow for the detection of companions missed before as well as systems which may have been closer than the resolution limit in 1994. We will also make a first high-resolution inspection of the additional O stars (N=108) in the recent Galactic O Star Catalog of Maiz- Apellaniz & Walborn (2004). Further, we propose to investigate several additional samples of interesting objects, including 15 accessible Galactic WR stars from the speckle survey of Hartkopf et al. (1999), 16 massive, hot stars with separations which would indicate their applicability for mass determinations (for fully detached O stars masses are presently known for only twelve pairs), and 56 multiple stars for a study of their co- planarity statistics.

  6. Speckle Interferometry of Massive and Cluster Stars

    NASA Astrophysics Data System (ADS)

    Mason, Brian; Hartkopf, William I.; Gies, Douglas R.; Henry, Todd J.; Torres, Guillermo

    2005-08-01

    Conducted on NOAO 4-m telescopes in 1994, the first speckle survey of O stars (Mason et al. 1998) had success far in excess of our expectations. In addition to the frequently cited multiplicity analysis, many of the new systems which were first resolved in this paper are of significant astrophysical importance. To date, this paper has resulted in 86 citations in the refereed literature. Now, some ten years after the original survey, we propose to re-investigate all systems analyzed before (N=98) as well as make a first high-resolution inspection of the additional O stars (N=62) in the recent Galactic O Star Catalog of Maiz-Apellaniz & Walborn (2004). In addition, we propose to investigate several additional samples of interesting objects, including 10 accessible Galactic WR stars from the speckle survey of Hartkopf et al. (1999), 16 massive, hot stars with separations which would indicate their applicability for mass determinations (for fully detached O stars, we have only twelve mass determinations), 92 members of the Hyades and Pleiades clusters to complement RV studies of these clusters, and 197 Hyades & Pleiades stars, reobserved from the 1991 lists (Mason et al. 1993a,b).

  7. The Massive Star Population in M101

    NASA Astrophysics Data System (ADS)

    Grammer, Skyler H.

    An increasing number of non-terminal giant eruptions are being observed by modern supernova and transient surveys. Very little is known about the origin of these giant eruptions and their progenitors which are presumably very-massive, evolved stars such as luminous blue variables, hypergiants, and supergiants. Motivated by the small number of progenitors positively associated with these giant eruptions, we have begun a survey of the luminous and evolved massive star populations in several nearby galaxies. We aim to identify the likely progenitors of the giant eruptions, study the spatial variations in the stellar populations, and examine the relationship between massive star populations and their environment. The work presented here is focused on stellar populations in the relatively nearby, giant, spiral galaxy M101 from sixteen archival BVI HST/ACS images. We create a catalog of stars in the direction to M101 with photometric errors < 10% for V < 24.5 and 50% completeness down to V ˜ 26.5 even in regions of high stellar crowding. Using color and magnitude criteria we have identified candidate luminous OB type stars and blue supergiants, yellow supergiants, and red supergiants for future observation. We examine their spatial distributions across the face of M101 and find that the ratio of blue to red supergiants decreases by two orders of magnitude over the radial extent. From our catalog, we derive the star formation history (SFH) for the stellar populations in five 2' wide annuli by fitting the color-magnitude diagrams. Binning the SFH into time frames corresponding to populations traced by Halpha, far ultraviolet (FUV), and near ultraviolet (NUV) emission, we show that the fraction of stellar populations young enough to contribute in Halpha is 15% " 35% in the inner regions, compared to less than 5% in the outer regions. This provides a sufficient explanation for the lack of Halpha emission at large radii. We also model the blue to red supergiant ratio in our

  8. Magnetic fields and massive star formation

    SciTech Connect

    Zhang, Qizhou; Keto, Eric; Ho, Paul T. P.; Ching, Tao-Chung; Chen, How-Huan; Qiu, Keping; Girart, Josep M.; Juárez, Carmen; Liu, Hauyu; Tang, Ya-Wen; Koch, Patrick M.; Rao, Ramprasad; Lai, Shih-Ping; Li, Zhi-Yun; Frau, Pau; Li, Hua-Bai; Padovani, Marco; Bontemps, Sylvain

    2014-09-10

    Massive stars (M > 8 M {sub ☉}) typically form in parsec-scale molecular clumps that collapse and fragment, leading to the birth of a cluster of stellar objects. We investigate the role of magnetic fields in this process through dust polarization at 870 μm obtained with the Submillimeter Array (SMA). The SMA observations reveal polarization at scales of ≲0.1 pc. The polarization pattern in these objects ranges from ordered hour-glass configurations to more chaotic distributions. By comparing the SMA data with the single dish data at parsec scales, we found that magnetic fields at dense core scales are either aligned within 40° of or perpendicular to the parsec-scale magnetic fields. This finding indicates that magnetic fields play an important role during the collapse and fragmentation of massive molecular clumps and the formation of dense cores. We further compare magnetic fields in dense cores with the major axis of molecular outflows. Despite a limited number of outflows, we found that the outflow axis appears to be randomly oriented with respect to the magnetic field in the core. This result suggests that at the scale of accretion disks (≲ 10{sup 3} AU), angular momentum and dynamic interactions possibly due to close binary or multiple systems dominate over magnetic fields. With this unprecedentedly large sample of massive clumps, we argue on a statistical basis that magnetic fields play an important role during the formation of dense cores at spatial scales of 0.01-0.1 pc in the context of massive star and cluster star formation.

  9. Molecular Outflows in Massive Star Forming Regions

    NASA Astrophysics Data System (ADS)

    Cunningham, Nichol

    2015-11-01

    This thesis presents millimetre continuum and molecular line observations exploring the properties of molecular outflows towards massive star forming regions. Massive stars produce some of the most energetic phenomena in the Galaxy, yet we still do not have a comprehensive understanding of how they actually form. Outflows are known to play a key role in this formation process and their properties, particularly how they change depending on the mass, luminosity and evolution of the driving source can shed light on how massive stars actually form. This thesis presents observations at both high (SMA 3 arcsecond) and low (JCMT 15 arcsecond) spatial resolution of the known jet/outflow tracers, SiO and 12CO, towards a sample massive star forming region drawn from the RMS survey. Furthermore, the presence of infall signatures is explored through observations of HCO+ and H13CO+, and the hot core nature of the regions is probed using tracers such as CH3CN, HC3N and CH3OH. SiO is detected towards approximately 50% of the massive young stellar objects and HII regions in the JCMT sample. The detection of SiO appears to be linked to the age of the RMS source, with the likely younger sources showing a stronger dependence with SiO. The presence of SiO also appears to be linked to the CO velocity, with SiO more efficiently tracing sources with higher velocity dispersions. In the MOPRA observations towards a sample of 33 RMS sources, CH3CN is detected towards 66% of the sources, with the redder likely younger sources having the largest rotational temperatures. This thesis presents the first interferometric SiO (5-4) and 12CO (2-1) observations, taken with the SMA, towards the massive star forming region G203.3166/NGC 2264-C. In this intermediate/massive star forming cluster, SiO is again tracing the youngest sources. Both the SiO and 12CO emission trace two bipolar, high velocity outflows towards the mm brightest, IR-dark, likely youngest sources in this reg! ion. In contrast the IR

  10. Radiative ablation of disks around massive stars

    NASA Astrophysics Data System (ADS)

    Kee, Nathaniel Dylan

    Hot, massive stars (spectral types O and B) have extreme luminosities (10. 4 -10. 6 L?) that drive strong stellar winds through UV line-scattering.Some massive stars also have disks, formed by either decretion from the star (as in the rapidly rotating "Classical Be stars"), or accretion during the star's formation. This dissertation examines the role of stellar radiation in driving (ablating) material away from these circumstellar disks. A key result is that the observed month to year decay of Classical Be disks can be explained by line-driven ablation without, as previously done, appealing to anomalously strong viscous diffusion. Moreover, the higher luminosity of O stars leads to ablation of optically thin disks on dynamical timescales of order a day, providing a natural explanation for the lack of observed Oe stars. In addition to the destruction of Be disks, this dissertation also introduces a model for their formation by coupling observationally inferred non-radial pulsation modes and rapid stellar rotation to launch material into orbiting Keplerian disks of Be-like densities. In contrast to such Be decretion disks, star-forming accretion disks are much denser and so are generally optically thick to continuum processes. To circumvent the computational challenges associated with radiation hydrodynamics through optically thick media, we develop an approximate method for treating continuum absorption in the limit of geometrically thin disks. The comparison of ablation with and without continuum absorption shows that accounting for disk optical thickness leads to less than a 50% reduction in ablation rate, implying that ablation rate depends mainly on stellar properties like luminosity. Finally, we discuss the role of "thin-shell mixing" in reducing X-rays from colliding wind binaries. Laminar, adiabatic shocks produce well understood X-ray emission, but the emission from radiatively cooled shocks is more complex due to thin-shell instabilities. The parameter

  11. The exclusion of a significant range of ages in a massive star cluster.

    PubMed

    Li, Chengyuan; de Grijs, Richard; Deng, Licai

    2014-12-18

    Stars spend most of their lifetimes on the main sequence in the Hertzsprung-Russell diagram. The extended main-sequence turn-off regions--containing stars leaving the main sequence after having spent all of the hydrogen in their cores--found in massive (more than a few tens of thousands of solar masses), intermediate-age (about one to three billion years old) star clusters are usually interpreted as evidence of internal age spreads of more than 300 million years, although young clusters are thought to quickly lose any remaining star-forming fuel following a period of rapid gas expulsion on timescales of order 10(7) years. Here we report, on the basis of a combination of high-resolution imaging observations and theoretical modelling, that the stars beyond the main sequence in the two-billion-year-old cluster NGC 1651, characterized by a mass of about 1.7 × 10(5) solar masses, can be explained only by a single-age stellar population, even though the cluster has a clearly extended main-sequence turn-off region. The most plausible explanation for the existence of such extended regions invokes a population of rapidly rotating stars, although the secondary effects of the prolonged stellar lifetimes associated with such a stellar population mixture are as yet poorly understood. From preliminary analysis of previously obtained data, we find that similar morphologies are apparent in the Hertzsprung-Russell diagrams of at least five additional intermediate-age star clusters, suggesting that an extended main-sequence turn-off region does not necessarily imply the presence of a significant internal age dispersion.

  12. Hot, Massive Stars in I Zw 18

    NASA Technical Reports Server (NTRS)

    Heap, Sara R.; Lindler, D.; Malumuth, E.

    2011-01-01

    I Zw 18 is one of the most primitive blue, compact dwarf galaxies. The ionized gas in I Zw 18 has a low oxygen abundance (O approx.1/30 Osun) and nitrogen abundance (N-1/100 Nsun) (Pequignot 2008). We have obtained a far-UV spectrum of the northwest massive star cluster of I Zw 18 using Hubble's Cosmic Origins Spectrograph (COS). The spectrum is compatible with continuous star-formation over the past approx.10 Myr, and a very low metallicity, log Z/Zsun 1.7, although the stellar surface may be enhanced in carbon. Stellar wind lines are very weak, and the edge velocity of wind lines is very low (approx.250 km/s).

  13. Energetic Supernovae of Very Massive Primordial Stars

    NASA Astrophysics Data System (ADS)

    Chen, Ke-Jung; Woosley, Stan

    2015-08-01

    Current models of the formation of the first stars in the universe suggest that these stars were very massive, having a typical mass scale of hundreds of solar masses. Some of them would die as pair instability supernovae (PSNe) which might be the biggest explosions of the universe. We present the results from multidimensional numerical studies of PSNe with a new radiation-hydrodynamics code, CASTRO and with realistic nuclear reaction networks. We simulate the fluid instabilities that occur in multiple spatial dimensions and discuss how the resulting mixing affects the explosion, mixing, and nucleosynthesis of these supernovae. Our simulations provide useful predictions for the observational signatures of PSNe, which might soon be examined by the James Webb Space Telescope.

  14. Neutrinos and the Deaths of Massive Stars

    NASA Astrophysics Data System (ADS)

    Hix, W. R.; Mezzacappa, A.; Messer, O. E. B.

    2005-06-01

    Observationally categorized as Type II or Ib/c supernovae, core collapse supernovae mark the end of the life of a massive star and the formation of a neutron star or black hole. These explosions are among the most energetic events in the universe, emitting 1046 J of energy, primarily in the form of neutrinos. They play a preeminent role in the cosmic origin of the elements and serve as a principal heating mechanism for the interstellar medium. Numerical simulations of the textbook neutrino-reheating mechanism for core collapse supernovae frequently fail to match the most fundamental observable property: an explosion with roughly 1044 J of kinetic energy. We review recent improvements in the modeling of core collapse supernovae, including improved tracking of the neutrino distribution and better accounting for the multi-dimensional nature of the hydrodynamic flows. We also discuss how continued improvements in the treatment of microscopic nuclear and neutrino physics has important macroscopic consequences.

  15. Binary interaction dominates the evolution of massive stars.

    PubMed

    Sana, H; de Mink, S E; de Koter, A; Langer, N; Evans, C J; Gieles, M; Gosset, E; Izzard, R G; Le Bouquin, J-B; Schneider, F R N

    2012-07-27

    The presence of a nearby companion alters the evolution of massive stars in binary systems, leading to phenomena such as stellar mergers, x-ray binaries, and gamma-ray bursts. Unambiguous constraints on the fraction of massive stars affected by binary interaction were lacking. We simultaneously measured all relevant binary characteristics in a sample of Galactic massive O stars and quantified the frequency and nature of binary interactions. More than 70% of all massive stars will exchange mass with a companion, leading to a binary merger in one-third of the cases. These numbers greatly exceed previous estimates and imply that binary interaction dominates the evolution of massive stars, with implications for populations of massive stars and their supernovae.

  16. Limiting Accretion onto Massive Stars by Fragmentation-Induced Starvation

    SciTech Connect

    Peters, Thomas; Klessen, Ralf S.; Mac Low, Mordecai-Mark; Banerjee, Robi; /ZAH, Heidelberg

    2010-08-25

    Massive stars influence their surroundings through radiation, winds, and supernova explosions far out of proportion to their small numbers. However, the physical processes that initiate and govern the birth of massive stars remain poorly understood. Two widely discussed models are monolithic collapse of molecular cloud cores and competitive accretion. To learn more about massive star formation, we perform simulations of the collapse of rotating, massive, cloud cores including radiative heating by both non-ionizing and ionizing radiation using the FLASH adaptive mesh refinement code. These simulations show fragmentation from gravitational instability in the enormously dense accretion flows required to build up massive stars. Secondary stars form rapidly in these flows and accrete mass that would have otherwise been consumed by the massive star in the center, in a process that we term fragmentation-induced starvation. This explains why massive stars are usually found as members of high-order stellar systems that themselves belong to large clusters containing stars of all masses. The radiative heating does not prevent fragmentation, but does lead to a higher Jeans mass, resulting in fewer and more massive stars than would form without the heating. This mechanism reproduces the observed relation between the total stellar mass in the cluster and the mass of the largest star. It predicts strong clumping and filamentary structure in the center of collapsing cores, as has recently been observed. We speculate that a similar mechanism will act during primordial star formation.

  17. LIMITING ACCRETION ONTO MASSIVE STARS BY FRAGMENTATION-INDUCED STARVATION

    SciTech Connect

    Peters, Thomas; Klessen, Ralf S.; Banerjee, Robi; Low, Mordecai-Mark Mac

    2010-12-10

    Massive stars influence their surroundings through radiation, winds, and supernova explosions far out of proportion to their small numbers. However, the physical processes that initiate and govern the birth of massive stars remain poorly understood. Two widely discussed models are monolithic collapse of molecular cloud cores and competitive accretion. To learn more about massive star formation, we perform and analyze simulations of the collapse of rotating, massive, cloud cores including radiative heating by both non-ionizing and ionizing radiation using the FLASH adaptive-mesh refinement code. These simulations show fragmentation from gravitational instability in the enormously dense accretion flows required to build up massive stars. Secondary stars form rapidly in these flows and accrete mass that would have otherwise been consumed by the massive star in the center, in a process that we term fragmentation-induced starvation. This explains why massive stars are usually found as members of high-order stellar systems that themselves belong to large clusters containing stars of all masses. The radiative heating does not prevent fragmentation, but does lead to a higher Jeans mass, resulting in fewer and more massive stars than would form without the heating. This mechanism reproduces the observed relation between the total stellar mass in the cluster and the mass of the largest star. It predicts strong clumping and filamentary structure in the center of collapsing cores, as has recently been observed. We speculate that a similar mechanism will act during primordial star formation.

  18. Massive stars in their death throes.

    PubMed

    Eldridge, John J

    2008-12-13

    The study of the stars that explode as supernovae used to be a forensic study, working backwards from the remnants of the star. This changed in 1987 when the first progenitor star was identified in pre-explosion images. Currently, there are eight detected progenitors with another 21 non-detections, for which only a limit on the pre-explosion luminosity can be placed. This new avenue of supernova research has led to many interesting conclusions, most importantly that the progenitors of the most common supernovae, type IIP, are red supergiants, as theory has long predicted. However, no progenitors have been detected thus far for the hydrogen-free type Ib/c supernovae, which, given the expected progenitors, is an unlikely result. Also, observations have begun to show evidence that luminous blue variables, which are among the most massive stars, may directly explode as supernovae. These results contradict the current stellar evolution theory. This suggests that we may need to update our understanding.

  19. First Circumstellar Disk around a Massive Star

    NASA Astrophysics Data System (ADS)

    1998-06-01

    Observations with an infrared-sensitive instrument at the ESO 3.6-m telescope at La Silla have for the first time shown the presence of a disk around a hot and massive star, known as G339.88-1.26 . Until now, disks have only been found around less massive stars. Planets are formed in such disks. The new discovery may thus have important implications for our understanding of the formation of planetary systems around stars. TIMMI observations Observations at mid-infrared wavelengths were carried out in July 1997 by Bringfried Stecklum (Landessternwarte Thüringen, Tautenburg, Germany) and Hans-Ulrich Käufl (ESO), using the TIMMI instrument at the ESO 3.6-m telescope. Additional measurements were carried out in March 1998. TIMMI ( T hermal I nfrared M ulti M ode I nstrument) is a general-purpose camera spectrometer operating at a wavelength of 10 µm. To reach sufficient sensitivity, the camera must be cooled to approx. -260 o C, i.e. a few degrees above the absolute minimum, by use of liquid Helium. Astronomical objects whose temperatures are between -120 o C and 300 o C radiate most of their energy at this wavelength. In addition, dust and haze that are absolutely impenetrable for light visible to the human eye, are often found to be nearly transparent at this wavelength. This is why fire-fighters now use similar equipment to look through smoke. G339.88-1.26: A very special object ESO PR Photo 22a/98 ESO PR Photo 22a/98 [JPEG, 800k] This image is a true-color composite of near-infrared observations of the sky region around the radio source G339.88-1.26 with the ESO/MPI 2.2-m telescope at La Silla. In this image, the visible colors red, green and blue have been used to represent the infrared filters J, H and K (at 1.25, 1.63 and 2.2 µm wavelength, respectively). No object is visible at the position of the radio source, even at these near-infrared wavelengths. A dark band of absorbing dust is clearly visible, exactly at the position of the object (indicated by an

  20. Evolutionary Connections Between RSGs and Other Massive Stars

    NASA Astrophysics Data System (ADS)

    Smith, Nathan

    2015-08-01

    Red supergiants are an important mass-loss phase near the end of a massive star's life, but there are many other evolved mass-losing stars that populate the HR Diagram, and not all massive stars will pass through a red supergiant phase. This talk will provide an overview of other types of massive stars and how they relate to red supergiants. Mass loss by red supergiant winds will be weighed against the mass loss of other massive stars in terms of their contribution to pre-supernova evolution, focussing on trends with initial mass and metallicity. Moreover, some other evolved massive stars have already been RSG or will be in the future, and circumstellar material is an important clue in this regard. Last, the diversity of different supernova explosions, their circumstellar material, and statistics of SN types provide important constraints on the role of RSGs in the latest phases of evolution and mass loss.

  1. Limits on Planets Orbiting Massive Stars from Radio Pulsar Timing

    NASA Technical Reports Server (NTRS)

    Thorsett, S. E.; Dewey, R. J.

    1993-01-01

    When a massive star collapses to a neutron star, rapidly losing over half its mass in a symmetric supernova explosiosn, any planets orbiting the star will be unbound. However, to explain the observed space velocity and binary fraction of radio pulsars, an asymmetric kick must be given to the neutron star of birth.

  2. The nuclear path of the CNO cycles in massive stars

    NASA Astrophysics Data System (ADS)

    Przybilla, N.; Nieva, M. F.; Maeder, A.; Meynet, G.

    We discuss how the nuclear path of the CNO cycles in massive stars can be employed as a quality indicator for model atmosphere analyses and for the derivation of tight observational constraints for developing a better understanding of the evolution of rotating massive stars.

  3. The nuclear path of the CNO cycles in massive stars

    NASA Astrophysics Data System (ADS)

    Przybilla, Norbert; Nieva, Maria-Fernanda; Maeder, André; Meynet, Georges

    2015-08-01

    We discuss how the nuclear path of the CNO cycles in massive stars can be employed as a quality indicator for model atmosphere analyses and for the derivation of tight observational constraints for developing a better understanding of the evolution of rotating massive stars.

  4. Molecular Outflows from Newly Formed Massive Stars

    NASA Astrophysics Data System (ADS)

    Kim, Kee-Tae; Kim, Won-Ju; Kim, Chang-Hee

    2015-12-01

    We map 6 massive young stellar objects (YSOs) in the CO J=2-1 line and survey 18 massive YSOs, including the six, in the hcopj, sioj, water 6_{16}-5_{23} maser, and methanol 7_{0}-6_{1} A^{+} maser lines. We detect CO bipolar outflows in all the six mapped sources. Four of them are newly discovered (ifive, ieight, inine, iten), while itwo is mapped in the CO J=2-1 line for the first time. The detected outflows are much more massive and energetic than outflows from low-mass YSOs with masses >20 M_⊙ and momenta >300 M_⊙ km/s. They have mass outflow rates (3-6)×10^{-4} M_⊙ yr^{-1}, which are at least one order of magnitude greater than those observed in low-mass YSOs. We detect hcop and SiO line emission in 18 (100%) and 4 (22%) sources, respectively. The hcop spectra show high-velocity wings in 11 (61%) sources. We detect water maser emission in 13 (72%) sources and 44 GHz methanol maser emission in 8 (44%) sources. Of the detected sources, 5 water and 6 methanol maser sources are new discoveries. iseven shows high-velocity (>30 kms) water maser lines. We find good correlations of the bolometric luminosity of the central (proto)star with the mechanical force, mechanical luminosity, and mass outflow rate of molecular outflow %L_{bol} with F_{m}, L_{m}, and dot{M}_{out} in the bolometric luminosity range of 10^{-1}-10^6 lsol, and identified 3 intermediate- or high-mass counterparts of Class O objects.

  5. WHAT SETS THE INITIAL ROTATION RATES OF MASSIVE STARS?

    SciTech Connect

    Rosen, Anna L.; Krumholz, Mark R.; Ramirez-Ruiz, Enrico

    2012-04-01

    The physical mechanisms that set the initial rotation rates in massive stars are a crucial unknown in current star formation theory. Observations of young, massive stars provide evidence that they form in a similar fashion to their low-mass counterparts. The magnetic coupling between a star and its accretion disk may be sufficient to spin down low-mass pre-main-sequence (PMS) stars to well below breakup at the end stage of their formation when the accretion rate is low. However, we show that these magnetic torques are insufficient to spin down massive PMS stars due to their short formation times and high accretion rates. We develop a model for the angular momentum evolution of stars over a wide range in mass, considering both magnetic and gravitational torques. We find that magnetic torques are unable to spin down either low-mass or high-mass stars during the main accretion phase, and that massive stars cannot be spun down significantly by magnetic torques during the end stage of their formation either. Spin-down occurs only if massive stars' disk lifetimes are substantially longer or their magnetic fields are much stronger than current observations suggest.

  6. MiMes and Magnetic Fields in Massive Stars

    NASA Astrophysics Data System (ADS)

    Petit, Veronique

    2013-06-01

    Massive star magnetism is often considered an astronomical ``wildcard'', as it is hard to predict in which stars it may occur. This reflects our fundamental ignorance of the origin of massive star magnetism, and compels us to better understand the scope of its influence on massive stars individually, and also as a population. In the last decade, our understanding of this phenomenon has made a giant leap forward thanks to a new generation of powerful spectropolarimeters capable of measuring the Zeeman effect in the spectra of these stars. Over the past 5 years, ambitious projects such as the Magnetism in Massive Stars (MiMeS) Collaboration have been seeking out magnetic massive stars in the Galaxy, to better understand their origins, physical properties, and how they influence observable stellar characteristics. In this talk, we review the general properties of OB star magnetism in the Galaxy, using recent MiMeS discoveries as examples. It is now clear that the magnetic properties of massive stars are established early in their evolution. This raises interesting and fundamental questions about the physics of stellar formation and connections with stellar magnetism, as MiMeS observations have established that about 1 in 15 Galactic OB stars hosts a magnetic field that is sufficiently strong to significantly influence its atmospheric and wind structure. Could your own mysterious and perplexing OB target be a magnetic massive star? To aid in answering this question, we review many of the outstanding or exotic properties exhibited by known magnetic OB stars that relate directly to their magnetic nature.

  7. Mass loss from very young massive stars

    NASA Astrophysics Data System (ADS)

    Henning, Th.

    The physics of mass loss from very young massive stars is reviewed, and mass-loss rates are determined for several objects on the basis of published observational data. The observational evidence for mass loss of 0.0001-0.001 solar mass/yr with velocity 10-60 km/s, dynamical timescale 1000-100,000 yr, and kinetic energy (1-100) x 10 to the 38th W from these objects is chracterized; techniques for estimating mass-loss rates from H recombination lines, CO line profiles maser data, and IR-continuum observations are described; rates for molecular outflows and ionized winds are presented in tabels; and theoretical models developed to explain the mechanism driving bipolar mass loss are examined critically. It is found that neither radiation pressure on dust grins nor the ionized winds can drive the molecular outflow. The models considered most probable are those involving production of holes by original spherical stellar winds (Canto, 1980, rotationally driven magnetic pressure (Draine, 1983), and infall from an accretion disk (Torbett, 1984).

  8. Gravitational Collapse and Neutrino Emission of Population III Massive Stars

    NASA Astrophysics Data System (ADS)

    Nakazato, Ken'ichiro; Sumiyoshi, Kohsuke; Yamada, Shoichi

    2006-07-01

    Population III (Pop III) stars are the first stars in the universe. They do not contain metals, and their formation and evolution may be different from that of stars of later generations. In fact, according to the theory of star formation, Pop III stars might have very massive components (~100-10000 Msolar). In this paper, we compute the spherically symmetric gravitational collapse of these Pop III massive stars. We solve the general relativistic hydrodynamics and neutrino transfer equations simultaneously, treating neutrino reactions in detail. Unlike supermassive stars (>~105 Msolar), the stars of concern in this paper become opaque to neutrinos. The collapse is simulated until after an apparent horizon is formed. We confirm that the neutrino transfer plays a crucial role in the dynamics of gravitational collapse and find also that the β-equilibration leads to a somewhat unfamiliar evolution of electron fraction. Contrary to the naive expectation, the neutrino spectrum does not become harder for more massive stars. This is mainly because the neutrino cooling is more efficient and the outer core is more massive as the stellar mass increases. Here the outer core is the outer part of the iron core falling supersonically. We also evaluate the flux of relic neutrinos from Pop III massive stars. As expected, the detection of these neutrinos is difficult for the currently operating detectors. However, if ever observed, the spectrum will enable us to obtain information on the formation history of Pop III stars. We investigate 18 models covering the mass range of 300-104 Msolar, making this study the most detailed numerical exploration of spherically symmetric gravitational collapse of Pop III massive stars. This will also serve as an important foundation for multidimensional investigations.

  9. Proper Motions of Isolated Massive Stars Near the Galactic Center

    NASA Astrophysics Data System (ADS)

    Lennon, Daniel

    2012-10-01

    The Galactic Center is one of the most perplexing and unusual regions of the Galaxy. Not only is it home to the central massive black hole but it contains three very massive young star clusters within the central 30 pc; the Arches, Quintuplet and Central clusters. Furthermore, emission-line surveys have revealed the presence of what appears to be a diaspora of 40 very massive isolated Wolf-Rayet-like stars scattered throughout the region, outside of these massive clusters. Their origin is currently unkown but the suspected causes include such diverse and exotic mechanisms as ejection by dynamical interaction within the massive clusters, ejection by supernovae events within those clusters old enough to have SN, ejection by interaction with the central black hole, stellar mergers in the field, and in situ star formation of isolated massive stars. These processes however should all leave clear and distinct dynamical signatures on their products.We propose using WFC3/IR to conduct a survey of 150 square arcminutes the Galactic Center region to measure relative proper motions to an accuracy of 10 km/s for stars with masses as low as a few solar masses {late B-type}. Our objectives include determining which of the known isolated massive stars are runaways, estimating their probable places of origin, discovering less luminous runaways that are invisible to emission line surveys, characterizing the dynamical properties of runaway stars in all luminosty ranges, and searching for signs of tidally disrupted massive clusters. The survey will have lasting legacy value to those trying to unravel the physics of galactic centers and the environments around massive black holes.

  10. Proper Motions of Isolated Massive Stars Near the Galactic Center

    NASA Astrophysics Data System (ADS)

    Lennon, Daniel

    2014-10-01

    The Galactic Center is one of the most perplexing and unusual regions of the Galaxy. Not only is it home to the central massive black hole but it contains three very massive young star clusters within the central 30 pc; the Arches, Quintuplet and Central clusters. Furthermore, emission-line surveys have revealed the presence of what appears to be a diaspora of ~40 very massive isolated Wolf-Rayet-like stars scattered throughout the region, outside of these massive clusters. Their origin is currently unkown but the suspected causes include such diverse and exotic mechanisms as ejection by dynamical interaction within the massive clusters, ejection by supernovae events within those clusters old enough to have SN, ejection by interaction with the central black hole, stellar mergers in the field, and in situ star formation of isolated massive stars. These processes however should all leave clear and distinct dynamical signatures on their products.We propose using WFC3/IR to conduct a survey of ~150 square arcminutes the Galactic Center region to measure relative proper motions to an accuracy of 10 km/s for stars with masses as low as a few solar masses (late B-type). Our objectives include determining which of the known isolated massive stars are runaways, estimating their probable places of origin, discovering less luminous runaways that are invisible to emission line surveys, characterizing the dynamical properties of runaway stars in all luminosty ranges, and searching for signs of tidally disrupted massive clusters. The survey will have lasting legacy value to those trying to unravel the physics of galactic centers and the environments around massive black holes.

  11. ATLASGAL - towards a complete sample of massive star forming clumps

    NASA Astrophysics Data System (ADS)

    Urquhart, J. S.; Moore, T. J. T.; Csengeri, T.; Wyrowski, F.; Schuller, F.; Hoare, M. G.; Lumsden, S. L.; Mottram, J. C.; Thompson, M. A.; Menten, K. M.; Walmsley, C. M.; Bronfman, L.; Pfalzner, S.; König, C.; Wienen, M.

    2014-09-01

    By matching infrared-selected, massive young stellar objects (MYSOs) and compact H II regions in the Red MSX Source survey to massive clumps found in the submillimetre ATLASGAL (APEX Telescope Large Area Survey of the Galaxy) survey, we have identified ˜1000 embedded young massive stars between 280° < ℓ < 350° and 10° < ℓ < 60° with | b | < 1.5°. Combined with an existing sample of radio-selected methanol masers and compact H II regions, the result is a catalogue of ˜1700 massive stars embedded within ˜1300 clumps located across the inner Galaxy, containing three observationally distinct subsamples, methanol-maser, MYSO and H II-region associations, covering the most important tracers of massive star formation, thought to represent key stages of evolution. We find that massive star formation is strongly correlated with the regions of highest column density in spherical, centrally condensed clumps. We find no significant differences between the three samples in clump structure or the relative location of the embedded stars, which suggests that the structure of a clump is set before the onset of star formation, and changes little as the embedded object evolves towards the main sequence. There is a strong linear correlation between clump mass and bolometric luminosity, with the most massive stars forming in the most massive clumps. We find that the MYSO and H II-region subsamples are likely to cover a similar range of evolutionary stages and that the majority are near the end of their main accretion phase. We find few infrared-bright MYSOs associated with the most massive clumps, probably due to very short pre-main-sequence lifetimes in the most luminous sources.

  12. On stars, galaxies and black holes in massive bigravity

    SciTech Connect

    Enander, Jonas; Mörtsell, Edvard E-mail: edvard@fysik.su.se

    2015-11-01

    In this paper we study the phenomenology of stars and galaxies in massive bigravity. We give parameter conditions for the existence of viable star solutions when the radius of the star is much smaller than the Compton wavelength of the graviton. If these parameter conditions are not met, we constrain the ratio between the coupling constants of the two metrics, in order to give viable conditions for e.g. neutron stars. For galaxies, we put constraints on both the Compton wavelength of the graviton and the conformal factor and coupling constants of the two metrics. The relationship between black holes and stars, and whether the former can be formed from the latter, is discussed. We argue that the different asymptotic structure of stars and black holes makes it unlikely that black holes form from the gravitational collapse of stars in massive bigravity.

  13. The Prevalence and Impact of Wolf-Rayet Stars in Emerging Massive Star Clusters

    NASA Astrophysics Data System (ADS)

    Sokal, Kimberly R.; Johnson, Kelsey E.; Indebetouw, Rémy; Massey, Philip

    2016-08-01

    We investigate Wolf-Rayet (WR) stars as a source of feedback contributing to the removal of natal material in the early evolution of massive star clusters. Despite previous work suggesting that massive star clusters clear out their natal material before the massive stars evolve into the WR phase, WR stars have been detected in several emerging massive star clusters. These detections suggest that the timescale for clusters to emerge can be at least as long as the time required to produce WR stars (a few million years), and could also indicate that WR stars may be providing the tipping point in the combined feedback processes that drive a massive star cluster to emerge. We explore the potential overlap between the emerging phase and the WR phase with an observational survey to search for WR stars in emerging massive star clusters hosting WR stars. We select candidate emerging massive star clusters from known radio continuum sources with thermal emission and obtain optical spectra with the 4 m Mayall Telescope at Kitt Peak National Observatory and the 6.5 m MMT.4 We identify 21 sources with significantly detected WR signatures, which we term “emerging WR clusters.” WR features are detected in ˜50% of the radio-selected sample, and thus we find that WR stars are commonly present in currently emerging massive star clusters. The observed extinctions and ages suggest that clusters without WR detections remain embedded for longer periods of time, and may indicate that WR stars can aid, and therefore accelerate, the emergence process.

  14. The massive star population of Cygnus OB2

    NASA Astrophysics Data System (ADS)

    Wright, Nicholas J.; Drew, Janet E.; Mohr-Smith, Michael

    2015-05-01

    We have compiled a significantly updated and comprehensive census of massive stars in the nearby Cygnus OB2 association by gathering and homogenizing data from across the literature. The census contains 169 primary OB stars, including 52 O-type stars and 3 Wolf-Rayet stars. Spectral types and photometry are used to place the stars in a Hertzsprung-Russell diagram, which is compared to both non-rotating and rotating stellar evolution models, from which stellar masses and ages are calculated. The star formation history and mass function of the association are assessed, and both are found to be heavily influenced by the evolution of the most massive stars to their end states. We find that the mass function of the most massive stars is consistent with a `universal' power-law slope of Γ = 1.3. The age distribution inferred from stellar evolutionary models with rotation and the mass function suggest the majority of star formation occurred more or less continuously between 1 and 7 Myr ago, in agreement with studies of low- and intermediate-mass stars in the association. We identify a nearby young pulsar and runaway O-type star that may have originated in Cyg OB2 and suggest that the association has already seen its first supernova. Finally we use the census and mass function to calculate the total mass of the association of 16 500^{+3800}_{-2800} M⊙, at the low end, but consistent with, previous estimates of the total mass of Cyg OB2. Despite this Cyg OB2 is still one of the most massive groups of young stars known in our Galaxy making it a prime target for studies of star formation on the largest scales.

  15. Discovery of five new massive pulsating white dwarf stars

    NASA Astrophysics Data System (ADS)

    Castanheira, B. G.; Kepler, S. O.; Kleinman, S. J.; Nitta, A.; Fraga, L.

    2013-03-01

    Using the SOuthern Astrophysical Research telescope (SOAR) Optical Imager at the SOAR 4.1 m telescope, we report on the discovery of five new massive pulsating white dwarf stars. Our results represent an increase of about 20 per cent in the number of massive pulsators. We have detected both short and long periods, low and high amplitude pulsation modes, covering the whole range of the ZZ Ceti instability strip. In this paper, we present a first seismological study of the new massive pulsators based on the few frequencies detected. Our analysis indicates that these stars have masses higher than average, in agreement with the spectroscopic determinations. In addition, we study for the first time the ensemble properties of the pulsating white dwarf stars with masses above 0.8 M⊙. We found a bimodal distribution of the main pulsation period with the effective temperature for the massive DAVs, which indicates mode selection mechanisms.

  16. Combined stellar evolution and spectroscopic modeling of massive stars

    NASA Astrophysics Data System (ADS)

    Groh, Jose H.

    The morphological appearance of massive stars during their evolution and at the pre-SN stage is very uncertain, both from theoretical and observational perspectives. We recently developed coupled stellar evolution and atmospheric modeling of stars done with the Geneva and CMFGEN codes, for initial masses between 9 and 120 M ⊙. We are able to predict the observables such as the high-resolution spectrum and broadband photometry. Here I discuss how the spectrum of a massive star changes across its evolution and before death. Our models allow, for the first time, direct comparison between predictions from stellar evolution models and observations of SN progenitors.

  17. The evolutionary tracks of young massive star clusters

    SciTech Connect

    Pfalzner, S.; Steinhausen, M.; Vincke, K.; Menten, K.; Parmentier, G.

    2014-10-20

    Stars mostly form in groups consisting of a few dozen to several ten thousand members. For 30 years, theoretical models have provided a basic concept of how such star clusters form and develop: they originate from the gas and dust of collapsing molecular clouds. The conversion from gas to stars being incomplete, the leftover gas is expelled, leading to cluster expansion and stars becoming unbound. Observationally, a direct confirmation of this process has proved elusive, which is attributed to the diversity of the properties of forming clusters. Here we take into account that the true cluster masses and sizes are masked, initially by the surface density of the background and later by the still present unbound stars. Based on the recent observational finding that in a given star-forming region the star formation efficiency depends on the local density of the gas, we use an analytical approach combined with N-body simulations to reveal evolutionary tracks for young massive clusters covering the first 10 Myr. Just like the Hertzsprung-Russell diagram is a measure for the evolution of stars, these tracks provide equivalent information for clusters. Like stars, massive clusters form and develop faster than their lower-mass counterparts, explaining why so few massive cluster progenitors are found.

  18. The Evolution and Properties of Rotating Massive Star Populations

    NASA Astrophysics Data System (ADS)

    Choi, Jieun; Conroy, Charlie; Byler, Nell

    2017-04-01

    We investigate the integrated properties of massive (> 10 {M}ȯ ) rotating single-star stellar populations for a variety of initial rotation rates (v/{v}{crit}=0.0, 0.2, 0.4, 0.5, and 0.6). We couple the new MESA Isochrone and Stellar Tracks (MIST) models to the Flexible Stellar Population Synthesis (FSPS) package, extending the stellar population synthesis models to include the contributions from very massive stars (> 100 {M}ȯ ), which can be significant in the first ∼4 Myr after a starburst. These models predict ionizing luminosities that are consistent with recent observations of young nuclear star clusters. We also construct composite stellar populations assuming a distribution of initial rotation rates. Even in low-metallicity environments where rotation has a significant effect on the evolution of massive stars, we find that stellar population models require a significant contribution from fast-rotating (v/{v}{crit}> 0.4) stars in order to sustain the production of ionizing photons beyond a few Myr following a starburst. These results have potentially important implications for cosmic reionization by massive stars and the interpretation of nebular emission lines in high-redshift star-forming galaxies.

  19. Discovery of X-ray pulsations from a massive star.

    PubMed

    Oskinova, Lidia M; Nazé, Yael; Todt, Helge; Huenemoerder, David P; Ignace, Richard; Hubrig, Swetlana; Hamann, Wolf-Rainer

    2014-06-03

    X-ray emission from stars much more massive than the Sun was discovered only 35 years ago. Such stars drive fast stellar winds where shocks can develop, and it is commonly assumed that the X-rays emerge from the shock-heated plasma. Many massive stars additionally pulsate. However, hitherto it was neither theoretically predicted nor observed that these pulsations would affect their X-ray emission. All X-ray pulsars known so far are associated with degenerate objects, either neutron stars or white dwarfs. Here we report the discovery of pulsating X-rays from a non-degenerate object, the massive B-type star ξ(1) CMa. This star is a variable of β Cep-type and has a strong magnetic field. Our observations with the X-ray Multi-Mirror (XMM-Newton) telescope reveal X-ray pulsations with the same period as the fundamental stellar oscillations. This discovery challenges our understanding of stellar winds from massive stars, their X-ray emission and their magnetism.

  20. The Deaths of Very Massive Stars

    NASA Astrophysics Data System (ADS)

    Woosley, Stan. E.; Heger, Alexander

    The theory underlying the evolution and death of stars heavier than 10 M⊙ on the main sequence is reviewed with an emphasis upon stars much heavier than 30 M⊙. These are stars that, in the absence of substantial mass loss, are expected to either produce black holes when they die, or, for helium cores heavier than about 35 M⊙, encounter the pair instability. A wide variety of outcomes is possible depending upon the initial composition of the star, its rotation rate, and the physics used to model its evolution. These stars can produce some of the brightest supernovae in the universe, but also some of the faintest. They can make gamma-ray bursts or collapse without a whimper. Their nucleosynthesis can range from just CNO to a broad range of elements up to the iron group. Though rare nowadays, they probably played a disproportionate role in shaping the evolution of the universe following the formation of its first stars.

  1. INTERNAL GRAVITY WAVES IN MASSIVE STARS: ANGULAR MOMENTUM TRANSPORT

    SciTech Connect

    Rogers, T. M.; Lin, D. N. C.; McElwaine, J. N.; Lau, H. H. B. E-mail: lin@ucolick.org E-mail: hblau@astro.uni-bonn.de

    2013-07-20

    We present numerical simulations of internal gravity waves (IGW) in a star with a convective core and extended radiative envelope. We report on amplitudes, spectra, dissipation, and consequent angular momentum transport by such waves. We find that these waves are generated efficiently and transport angular momentum on short timescales over large distances. We show that, as in Earth's atmosphere, IGW drive equatorial flows which change magnitude and direction on short timescales. These results have profound consequences for the observational inferences of massive stars, as well as their long term angular momentum evolution. We suggest IGW angular momentum transport may explain many observational mysteries, such as: the misalignment of hot Jupiters around hot stars, the Be class of stars, Ni enrichment anomalies in massive stars, and the non-synchronous orbits of interacting binaries.

  2. New Frontiers in Stellar Astrophysics: Massive Stars as Cosmological Tools

    NASA Astrophysics Data System (ADS)

    Levesque, Emily M.

    2015-01-01

    Massive stars are crucial building blocks in the study of star-forming galaxies, stellar evolution, and transient events, and their applications as fundamental astrophysical tools span a broad range of subfields. Unfortunately, many key traits of massive stars - from their physical properties and ionizing radiation to their evolution and core-collapse deaths - remain poorly understood. I will discuss several current research programs focused on developing a comprehensive picture of massive stars across the cosmos. These include observational surveys and population synthesis models of star-forming galaxies; progenitor and host environment studies of transient phenomena such as supernovae and gamma-ray bursts; and the remarkable reach of extragalactic stellar observations, which recently led to the discovery of the first Thorne-Zytkow object candidate. With cutting-edge theoretical models and the capabilities of current ground-based and orbital observatories, we are ideally poised to make substantial progress in our understanding of massive stars over the coming decade. This in turn will equip us with the tools we need to take full advantage of the frontiers opened up by new observational facilities such as JWST, the ELTs, and LSST, allowing us to immediately begin probing the new corners of the universe that they reveal.

  3. Remnant massive neutron stars of binary neutron star mergers: Evolution process and gravitational waveform

    NASA Astrophysics Data System (ADS)

    Hotokezaka, Kenta; Kiuchi, Kenta; Kyutoku, Koutarou; Muranushi, Takayuki; Sekiguchi, Yu-ichiro; Shibata, Masaru; Taniguchi, Keisuke

    2013-08-01

    Massive (hypermassive and supramassive) neutron stars are likely to be often formed after the merger of binary neutron stars. We explore the evolution process of the remnant massive neutron stars and gravitational waves emitted by them, based on numerical-relativity simulations for binary neutron star mergers employing a variety of equations of state and choosing a plausible range of the neutron star mass of binaries. We show that the lifetime of remnant hypermassive neutron stars depends strongly on the total binary mass and also on the equations of state. Gravitational waves emitted by the remnant massive neutron stars universally have a quasiperiodic nature of an approximately constant frequency although the frequency varies with time. We also show that the frequency and time-variation feature of gravitational waves depend strongly on the equations of state. We derive a fitting formula for the quasiperiodic gravitational waveforms, which may be used for the data analysis of a gravitational-wave signal.

  4. Massive star-formation regions in the Magellanic Clouds

    SciTech Connect

    Hutchings, J.B.; Thompson, I.B.

    1988-08-01

    Optical and UV spectroscopy of stars from six compact, luminous groups or clusters in the SMC and LMC is presented. The groups are characterized by high concentrations of nebulosity or starlight confined to areas smaller than 30 arcsec on a side, in which some stars can be resolved. The spectra and fluxes are used to derive luminosities and effective temperatures for the stars. Spectroscopic and stellar wind properties are also noted. It is found that the stars are all of O and B-type, with low extinction. The stars generally have little or no sign of stellar winds, and often have spectral peculiarities, such as weak lines or mixed spectral indicators. Most spectra have strong, broad Ly-alpha absorption, and some have broad Ca II absorption. The stars are placed on the H-R diagram, and it is argued that some of them are massive stars in pre-main-sequence stages of their evolution. 8 references.

  5. RCW 108: Massive Young Stars Trigger Stellar Birth

    NASA Technical Reports Server (NTRS)

    2008-01-01

    RCW 108 is a region where stars are actively forming within the Milky Way galaxy about 4,000 light years from Earth. This is a complicated region that contains young star clusters, including one that is deeply embedded in a cloud of molecular hydrogen. By using data from different telescopes, astronomers determined that star birth in this region is being triggered by the effect of nearby, massive young stars.

    This image is a composite of X-ray data from NASA's Chandra X-ray Observatory (blue) and infrared emission detected by NASA's Spitzer Space Telescope (red and orange). More than 400 X-ray sources were identified in Chandra's observations of RCW 108. About 90 percent of these X-ray sources are thought to be part of the cluster and not stars that lie in the field-of-view either behind or in front of it. Many of the stars in RCW 108 are experiencing the violent flaring seen in other young star-forming regions such as the Orion nebula. Gas and dust blocks much of the X-rays from the juvenile stars located in the center of the image, explaining the relative dearth of Chandra sources in this part of the image.

    The Spitzer data show the location of the embedded star cluster, which appears as the bright knot of red and orange just to the left of the center of the image. Some stars from a larger cluster, known as NGC 6193, are also visible on the left side of the image. Astronomers think that the dense clouds within RCW 108 are in the process of being destroyed by intense radiation emanating from hot and massive stars in NGC 6193.

    Taken together, the Chandra and Spitzer data indicate that there are more massive star candidates than expected in several areas of this image. This suggests that pockets within RCW 108 underwent localized episodes of star formation. Scientists predict that this type of star formation is triggered by the effects of radiation from bright, massive stars such as those in NGC 6193. This radiation may cause the interior of gas

  6. Role of Massive Stars in the Evolution of Primitive Galaxies

    NASA Technical Reports Server (NTRS)

    Heap, Sara

    2012-01-01

    An important factor controlling galaxy evolution is feedback from massive stars. It is believed that the nature and intensity of stellar feedback changes as a function of galaxy mass and metallicity. At low mass and metallicity, feedback from massive stars is mainly in the form of photoionizing radiation. At higher mass and metallicity, it is in stellar winds. IZw 18 is a local blue, compact dwarf galaxy that meets the requirements for a primitive galaxy: low halo mass greater than 10(exp 9)Msun, strong photoionizing radiation, no galactic outflow, and very low metallicity,log(O/H)+12=7.2. We will describe the properties of massive stars and their role in the evolution of IZw 18, based on analysis of ultraviolet images and spectra obtained with HST.

  7. Light element production by low energy nuclei from massive stars

    NASA Technical Reports Server (NTRS)

    Vangioni-Flam, E.; Casse, M.; Ramaty, R.

    1997-01-01

    The Orion complex is a source of gamma rays attributed to the de-excitation of fast carbon and oxygen nuclei excited through interactions with ambient hydrogen and helium. This has consequences for the production and evolution of light isotopes in the Galaxy, as massive stars appear as prolific sources of C-O rich low energy nuclei. The different stages of massive star evolution are considered in relation to the acceleration of nuclei to moderate energies. It is concluded that the low energy nuclear component originating from massive stars plays a larger role than the usual Galactic cosmic rays in shaping the evolution of Li-6, Be-9, B-10 and B-11, especially in the early Galactic evolution. The enhancement of the B-11/B-10 ratio observed in meteorites and in the interstellar medium is attributed to the interaction of low energy carbon nuclei with ambient H and to a lesser degree, to neutrino spallation.

  8. The Formation Of Massive Stars And The Effects Of Rotation On Star Formation

    NASA Astrophysics Data System (ADS)

    Maeder, A.

    2011-11-01

    We first review the current debates about massive star formation over the last decade. Then we concentrate on the accretion scenario, emphasizing the evidences in favor of it. We study the basic properties of the accretion scenario in the spherical case. In the case of massive stars, the free-fall time is longer than the Kelvin-Helmholtz timescale, so that the massive stars in formation reach thermal equilibrium before the accretion is completed. This is why the history of the accretion rates for massive stars is so critical. We derive analytically the typical accretion rates, their upper and lower limits, showing the importance of dust properties. We examine the basic properties of the disk, their luminosity and temperature in the stationary approximation, as well as their various components. The results of some recent numerical models are discussed with a particular attention to the effects that favor accretion on the central body relatively to the case of spherical accretion. These effects strongly influence the final stellar mass resulting from a collapsing clump in a cloud. We also show some properties of the pre-main sequence tracks of massive stars in the Hertzsprung-Russell diagram. During the first part of their evolution up to a mass of about 3M⊙ the forming stars are overluminous, then they are strongly underluminous (with respect to the zero age main sequence) up to a mass of about 10M⊙ until they adjust after a slight overluminosity to the main sequence values. We consider some rotational properties related to star formation. The angular momentum has to be reduced by a factor of about 106 during star formation. Some effects contributing to this reduction have been studied particularly in the case of low- and intermediate-mass stars: disk locking and magnetic braking. We also discuss the case of massive stars and emphasize the effects of the gravity darkening of rotating stars that may favor the accretion from the disk of massive stars in formation.

  9. Massive Star Studies with the CHARA Array

    NASA Astrophysics Data System (ADS)

    Gies, D.; Boyajian, T.; Farrington, C.; McAlister, H.; O'Brien, D.; Richardson, N.; Raghavan, D.; Schaefer, G.; ten Brummelaar, T.; Touhami, Y.; Turner, N.

    2010-02-01

    Georgia State University operates the Center for High Angular Resolution Astronomy (CHARA) Array at the Mount Wilson Observatory in southern California. This optical/IR interferometer consists of six 1 m telescopes in a Y-shaped configuration. The Array uses three IR and two visible wavelength beam combiners that are optimized in different ways for visibility, spectral resolution, and number of telescope pairs. We describe observational programs underway on OB-stars, Be stars, and binary/multiple systems.

  10. Massive Stars in the W33 Giant Molecular Complex

    NASA Astrophysics Data System (ADS)

    Messineo, Maria; Clark, J. Simon; Figer, Donald F.; Kudritzki, Rolf-Peter; Najarro, Francisco; Rich, R. Michael; Menten, Karl M.; Ivanov, Valentin D.; Valenti, Elena; Trombley, Christine; Chen, C.-H. Rosie; Davies, Ben

    2015-06-01

    Rich in H ii regions, giant molecular clouds are natural laboratories to study massive stars and sequential star formation. The Galactic star-forming complex W33 is located at l=˜ 12\\buildrel{\\circ}\\over{.} 8 and at a distance of 2.4 kpc and has a size of ≈ 10 pc and a total mass of ≈ (0.8-8.0) × {{10}5} M ⊙ . The integrated radio and IR luminosity of W33—when combined with the direct detection of methanol masers, the protostellar object W33A, and the protocluster embedded within the radio source W33 main—mark the region as a site of vigorous ongoing star formation. In order to assess the long-term star formation history, we performed an infrared spectroscopic search for massive stars, detecting for the first time 14 early-type stars, including one WN6 star and four O4-7 stars. The distribution of spectral types suggests that this population formed during the past ˜2-4 Myr, while the absence of red supergiants precludes extensive star formation at ages 6-30 Myr. This activity appears distributed throughout the region and does not appear to have yielded the dense stellar clusters that characterize other star-forming complexes such as Carina and G305. Instead, we anticipate that W33 will eventually evolve into a loose stellar aggregate, with Cyg OB2 serving as a useful, albeit richer and more massive, comparator. Given recent distance estimates, and despite a remarkably similar stellar population, the rich cluster Cl 1813-178 located on the northwest edge of W33 does not appear to be physically associated with W33.

  11. Massive-Star Magnetospheres: Now in 3-D!

    NASA Astrophysics Data System (ADS)

    Townsend, Richard

    Magnetic fields are unexpected in massive stars, due to the absence of a dynamo convection zone beneath their surface layers. Nevertheless, kilogauss-strength, ordered fields were detected in a small subset of these stars over three decades ago, and the intervening years have witnessed the steady expansion of this subset. A distinctive feature of magnetic massive stars is that they harbor magnetospheres --- circumstellar environments where the magnetic field interacts strongly with the star's radiation-driven wind, confining it and channelling it into energetic shocks. A wide range of observational signatures are associated with these magnetospheres, in diagnostics ranging from X-rays all the way through to radio emission. Moreover, these magnetospheres can play an important role in massive-star evolution, by amplifying angular momentum loss in the wind. Recent progress in understanding massive-star magnetospheres has largely been driven by magnetohydrodynamical (MHD) simulations. However, these have been restricted to two- dimensional axisymmetric configurations, with three-dimensional configurations possible only in certain special cases. These restrictions are limiting further progress; we therefore propose to develop completely general three-dimensional models for the magnetospheres of massive stars, on the one hand to understand their observational properties and exploit them as plasma-physics laboratories, and on the other to gain a comprehensive understanding of how they influence the evolution of their host star. For weak- and intermediate-field stars, the models will be based on 3-D MHD simulations using a modified version of the ZEUS-MP code. For strong-field stars, we will extend our existing Rigid Field Hydrodynamics (RFHD) code to handle completely arbitrary field topologies. To explore a putative 'photoionization-moderated mass loss' mechanism for massive-star magnetospheres, we will also further develop a photoionization code we have recently

  12. X-ray emission from massive stars with magnetic fields

    NASA Astrophysics Data System (ADS)

    Oskinova, L. M.; Hamann, W.-R.; Cassinelli, J. P.; Brown, J. C.; Todt, H.

    2011-12-01

    We investigate the connections between the magnetic fields and the X-ray emission from massive stars. Our study shows that the X-ray properties of known strongly magnetic stars are diverse: while some comply to the predictions of the magnetically confined wind model, others do not. We conclude that strong, hard, and variable X-ray emission may be a sufficient attribute of magnetic massive stars, but it is not a necessary one. We address the general properties of X-ray emission from ``normal'' massive stars, especially the long standing mystery about the correlations between the parameters of X-ray emission and fundamental stellar properties. The recent development in stellar structure modeling shows that small-scale surface magnetic fields may be common. We suggest a ``hybrid'' scenario which could explain the X-ray emission from massive stars by a combination of magnetic mechanisms on the surface and shocks in the stellar wind. The magnetic mechanisms and the wind shocks are triggered by convective motions in sub-photospheric layers. This scenario opens the door for a natural explanation of the well established correlation between bolometric and X-ray luminosities. Based on observations obtained with \\xmm and \\cxo.

  13. OBSERVATIONAL SIGNATURES OF CONVECTIVELY DRIVEN WAVES IN MASSIVE STARS

    SciTech Connect

    Aerts, C.; Rogers, T. M.

    2015-06-20

    We demonstrate observational evidence for the occurrence of convectively driven internal gravity waves (IGWs) in young massive O-type stars observed with high-precision CoRoT space photometry. This evidence results from a comparison between velocity spectra based on two-dimensional hydrodynamical simulations of IGWs in a differentially rotating massive star and the observed spectra. We also show that the velocity spectra caused by IGWs may lead to detectable line-profile variability and explain the occurrence of macroturbulence in the observed line profiles of OB stars. Our findings provide predictions that can readily be tested by including a sample of bright, slowly and rapidly rotating OB-type stars in the scientific program of the K2 mission accompanied by high-precision spectroscopy and their confrontation with multi-dimensional hydrodynamic simulations of IGWs for various masses and ages.

  14. MASSIVE STARS IN THE LOCAL GROUP: Implications for Stellar Evolution and Star Formation

    NASA Astrophysics Data System (ADS)

    Massey, Philip

    The galaxies of the Local Group serve as important laboratories for understanding the physics of massive stars. Here I discuss what is involved in identifying various kinds of massive stars in nearby galaxies: the hydrogen-burning O-type stars and their evolved He-burning evolutionary descendants, the luminous blue variables, red supergiants, and Wolf-Rayet stars. Primarily I review what our knowledge of the massive star population in nearby galaxies has taught us about stellar evolution and star formation. I show that the current generation of stellar evolutionary models do well at matching some of the observed features and provide a look at the sort of new observational data that will provide a benchmark against which new models can be evaluated.

  15. On the massive star-forming capacity of molecular clouds

    NASA Technical Reports Server (NTRS)

    Franco, Jose; Shore, Steven N.; Tenorio-Tagle, Guillermo

    1994-01-01

    Assuming that photoionization is the self-limiting process for continued star formation, we estimate the maximum number of massive (OB) stars that can form within a molecular cloud. The most efficient cloud destruction mechanism in the early stages of H II region evolution is the evaporation of the cloud by stars located near the cloud boundary. The maximum number of OB stars is of order 1 per 10(exp 4) solar mass of average molecular gas, or 10 per 10(exp 4) solar mass of dense molecular gas. The resulting star-forming efficiencies within cloud complexes range from 2% to 16% depending on both the location of the stars in the cloud and the details of the initial mass function, with an overall value of about 5% for average molecular gas.

  16. Massive Star Formation: Characterising Infall and Outflow in dense cores.

    NASA Astrophysics Data System (ADS)

    Akhter, Shaila; Cunningham, Maria; Harvey-Smith, Lisa; Jones, Paul Andrew; Purcell, Cormac; Walsh, Andrew John

    2015-08-01

    Massive stars are some of the most important objects in the Universe, shaping the evolution of galaxies, creating chemical elements, and hence shaping the evolution of the Universe. However, the processes by which they form, and how they shape their environment during their birth processes, are not well understood. We are using NH3 data from the "The H2O Southern Galactic Plane Survey" (HOPS) to define the positions of dense cores/clumps of gas in the southern Galactic plane that are likely to form stars. Due to its effective critical density, NH3 can detect massive star forming regions effectively compared to other tracers. We did a comparative study with different methods for finding clumps and found Fellwalker as the best. We found ~ 10% of the star forming clumps with multiple components and ~ 90% clumps with single component along the line of sight. Then, using data from the "The Millimetre Astronomy Legacy Team 90 GHz" (MALT90) survey, we search for the presence of infall and outflow associated with these cores. We will subsequently use the "3D Molecular Line Radiative Transfer Code" (MOLLIE) to constrain properties of the infall and outflow, such as velocity and mass flow. The aim of the project is to determine how common infall and outflow are in star forming cores, hence providing valuable constraints on the timescales and physical process involved in massive star formation.

  17. NoMaDS: The Northern Massive Dim Stars Survey

    NASA Astrophysics Data System (ADS)

    Pellerin, Anne; Maíz Apellániz, J.; Simón-Díaz, S.; Barbá, R. H.

    2012-01-01

    We present the Northern Massive Dim Stars Survey (NoMaDS), a high-resolution spectroscopic campaign at the 9.2m Hobby-Eberly Telescope. The project aims at building the most complete and homogeneous spectroscopic database of hot, massive Galactic OB stars. NoMaDS is part of an international collaboration that combines observations from Chilean, Spanish, and Texan facilities. The contribution of NoMaDS is to complement the other sister surveys by providing high signal-to-noise echelle spectra (R=30000) of Galactic OB stars that are too faint for smaller ground-based telescopes. NoMaDS will provide a sample of about 200 stars, many of which have never been observed before at such a high resolution. Here we present the details of the survey, as well as echelle spectra obtained with the High Resolution Spectrograph since May 2011. This includes spectra of standard OB stars, Wolf-Rayet stars, binary systems, and oblique magnetic rotators. This survey will provide unprecedented spectroscopic database for a more accurate spectral classification, a quantitative analysis using atmosphere modeling, the detection and follow up of the orbits of massive spectroscopic binaries as well as the study of diffuse interstellar bands.

  18. Massive Star Clusters in Dwarf Galaxies

    NASA Astrophysics Data System (ADS)

    Larsen, Søren S.

    2017-03-01

    Dwarf galaxies can have very high globular cluster specific frequencies, and the GCs are in general significantly more metal-poor than the bulk of the field stars. In some dwarfs, such as Fornax, WLM, and IKN, the fraction of metal-poor stars that belong to GCs can be as high as 20%-25%, an order of magnitude higher than the 1%-2% typical of GCs in halos of larger galaxies. Given that chemical abundance anomalies appear to be present also in GCs in dwarf galaxies, this implies severe difficulties for self-enrichment scenarios that require GCs to have lost a large fraction of their initial masses. More generally, the number of metal-poor field stars in these galaxies is today less than what would originally have been present in the form of low-mass clusters if the initial cluster mass function was a power-law extending down to low masses. This may imply that the initial GC mass function in these dwarf galaxies was significantly more top-heavy than typically observed in present-day star forming environments.

  19. Metallicity dependence of envelope inflation in massive stars

    NASA Astrophysics Data System (ADS)

    Sanyal, D.; Langer, N.; Szécsi, D.; -C Yoon, S.; Grassitelli, L.

    2017-01-01

    Context. Recently it has been found that models of massive stars reach the Eddington limit in their interior, which leads to dilute extended envelopes. Aims: We perform a comparative study of the envelope properties of massive stars at different metallicities, with the aim to establish the impact of the stellar metallicity on the effect of envelope inflation. Methods: We analysed published grids of core-hydrogen burning massive star models computed with metallicities appropriate for massive stars in the Milky Way, the Large Magellanic Cloud, and the Small Magellanic Cloud, the very metal poor dwarf galaxy I Zwicky 18, and for metal-free chemical composition. Results: Stellar models of all the investigated metallicities reach and exceed the Eddington limit in their interior, aided by the opacity peaks of iron, helium, and hydrogen, and consequently develop inflated envelopes. Envelope inflation leads to a redward bending of the zero-age main sequence and a broadening of the main-sequence band in the upper part of the Hertzsprung-Russell diagram. We derive the limiting L/M-values as a function of the stellar surface temperature above which inflation occurs, and find them to be higher for lower metallicity. While Galactic models show inflation above 29 M⊙, the corresponding mass limit for Population III stars is 150 M⊙. While the masses of the inflated envelopes are generally low, we find that they can reach 1-100 M⊙ in models with effective temperatures below 8000 K, with higher masses reached by models of lower metallicity. Conclusions: Envelope inflation is expected to occur in sufficiently massive stars at all metallicities, and is expected to lead to rapidly growing pulsations, high macroturbulent velocities, and might well be related to the unexplained variability observed in luminous blue variables such as S Doradus and η Carina.

  20. Astronomers Discover Rotating Disk Around Young, Massive Star

    NASA Astrophysics Data System (ADS)

    1999-01-01

    Astronomers using radio telescopes in New Mexico and California have discovered a giant, rotating disk of material around a young, massive star, indicating that very massive stars as well as those closer to the size of the Sun may be circled by disks from which planets are thought to form. This is the most massive young star for which such a disk has yet been found. Debra Shepherd of the California Institute of Technology (Caltech) and Stan Kurtz of the National Autonomous University of Mexico, used the National Science Foundation's Very Large Array (VLA) radio telescope and telescopes of Caltech's Owens Valley Radio Observatory (OVRO) to make a detailed study of an object called G192.16-3.82, in the constellation Orion. They announced their findings at the American Astronomical Society's meeting in Austin, TX, today. What astronomers call Young Stellar Objects (YSOs) -- stars still in the process of formation -- are enigmatic objects, both drawing in material from their surroundings and expelling material outward at the same time. "The details of the interaction between these two processes are poorly understood," Shepherd said. "In addition, most theories are based on observing low-mass stars, and we don't know if things work the same way with higher-mass stars." "We now have the first unambiguous evidence for a rotating disk around a high-mass star that also is powering an outflow," Shepherd said. "We need to make more observations to confirm the finding, but this information will help test theories of how such young stellar objects operate." It has been difficult to study massive star formation, because massive stars are rarer than smaller ones, they tend to form in clusters, making observations more difficult, and there are few of them forming relatively nearby. The object that Shepherd and Kurtz chose is reasonably isolated. "We think it provides us with a good laboratory for studying the process," Kurtz said. The young star at the core of G192.16-3.82 is

  1. The influence of feedback from massive stars on the formation and emergence of massive clusters

    NASA Astrophysics Data System (ADS)

    Dale, James E.

    2017-03-01

    Massive star clusters are of fundamental importance both observationally, since they are visible at such great distances, and theoretically, because of their influence on the large-scale ISM. Understanding stellar feedback is a prerequisite for making sense of their formation and early evolution, since feedback influences cluster structure, star formation efficiency, and sets the timescales on which clusters emerge from their parent clouds to become optically visible. I review the progress made in understanding these issues from a numerical perspective.

  2. An unstable truth: how massive stars get their mass

    NASA Astrophysics Data System (ADS)

    Rosen, Anna L.; Krumholz, Mark R.; McKee, Christopher F.; Klein, Richard I.

    2016-12-01

    The pressure exerted by massive stars' radiation fields is an important mechanism regulating their formation. Detailed simulation of massive star formation therefore requires an accurate treatment of radiation. However, all published simulations have either used a diffusion approximation of limited validity; have only been able to simulate a single star fixed in space, thereby suppressing potentially important instabilities; or did not provide adequate resolution at locations where instabilities may develop. To remedy this, we have developed a new, highly accurate radiation algorithm that properly treats the absorption of the direct radiation field from stars and the re-emission and processing by interstellar dust. We use our new tool to perform 3D radiation-hydrodynamic simulations of the collapse of massive pre-stellar cores with laminar and turbulent initial conditions and properly resolve regions where we expect instabilities to grow. We find that mass is channelled to the stellar system via gravitational and Rayleigh-Taylor (RT) instabilities, in agreement with previous results using stars capable of moving, but in disagreement with methods where the star is held fixed or with simulations that do not adequately resolve the development of RT instabilities. For laminar initial conditions, proper treatment of the direct radiation field produces later onset of instability, but does not suppress it entirely provided the edges of radiation-dominated bubbles are adequately resolved. Instabilities arise immediately for turbulent pre-stellar cores because the initial turbulence seeds the instabilities. Our results suggest that RT features should be present around accreting massive stars throughout their formation.

  3. On the evolution and explosion of massive stars

    SciTech Connect

    Limongi, Marco; Chieffi, Alessandro

    2008-05-21

    We review our recent progresses on the presupernova evolution of massive stars in the range 11-120 M{sub {center_dot}} of solar metallicity. Special attention will be devoted to the effect of the mass loss rate during the Wolf-Rayet stages in determining the structure and the physical properties of the star prior the supernova explosion. We also discuss the explosive yields and the initial mass-remnant mass relation in the framework of the kinetic bomb induced explosion and hence the contribution of these stars to the global chemical enrichment of the interstellar medium.

  4. The High Angular Resolution Multiplicity of Massive Stars

    DTIC Science & Technology

    2009-02-01

    were probably ejected from clusters. The ejection process may have involved close gravitational encounters of binaries and/or supernovae explosions in...1990) while the latter are the result of a supernova explosion in a binary, so both processes must contribute to the ejection of massive stars from

  5. Observational studies of regions of massive star formation

    NASA Astrophysics Data System (ADS)

    Cooper, Heather Danielle Blythe

    2013-03-01

    Massive stars have a profound influence on their surroundings. However, relatively little is known about their formation. The study of massive star formation is hindered by a lack of observational evidence, primarily due to difficulties observing massive stars at early stages in their development. The Red MSX Source survey (RMS survey) is a valuable tool with which to address these issues. Near-infrared H- and K-band spectra were taken for 247 candidate massive young stellar objects (MYSOs), selected from the RMS survey. 195 (∼80%) of the targets are YSOs, of which 131 are massive YSOs (LBOL>5E3L⊙, M>8 M⊙). This is the largest spectroscopic study of massive YSOs to date. This study covers minimally obscured objects right through to very red, dusty sources. Almost all YSOs show some evidence for emission lines, though there is a wide variety of observed properties, with HI, H2 Fe II, and CO among the most commonly observed lines. Evidence for disks and outflows was frequently seen. Comparisons of Brγ and H2 emission with low mass YSOs suggest that the emission mechanism for these lines is the same for low-, intermediate-, and high-mass YSOs, i.e. high-mass YSOs appear to resemble scaled-up versions of low-mass YSOs. It was found that the YSOs form an evolutionary sequence, based on their spectra, consistent with the existing theoretical models. Type I YSOs have strong H2 emission, no ionized lines, and are redder than the other two subtypes. As such, these are considered to be the youngest sources. The Type III sources are bluest, and therefore considered to be the oldest subtype. They have strong H I lines and fluorescent Fe II 1.6878 μm emission. They may also have weak H2 emission. Type III sources may even be beginning to form a mini-H II region. XSHOOTER data from 10 Herbig Be stars were analysed. The evidence suggests that winds and disks are common among Herbig stars, as they are among their main sequence classical Be star counterparts. Line

  6. Massive Stars in Colliding Wind Systems: the GLAST Perspective

    SciTech Connect

    Reimer, Anita; Reimer, Olaf; /Stanford U., HEPL /KIPAC, Menlo Park

    2011-11-29

    Colliding winds of massive stars in binary systems are considered as candidate sites of high-energy non-thermal photon emission. They are already among the suggested counterparts for a few individual unidentified EGRET sources, but may constitute a detectable source population for the GLAST observatory. The present work investigates such population study of massive colliding wind systems at high-energy gamma-rays. Based on the recent detailed model (Reimer et al. 2006) for non-thermal photon production in prime candidate systems, we unveil the expected characteristics of this source class in the observables accessible at LAT energies. Combining the broadband emission model with the presently cataloged distribution of such systems and their individual parameters allows us to conclude on the expected maximum number of LAT-detections among massive stars in colliding wind binary systems.

  7. The High Angular Resolution Multiplicity of Massive Stars

    NASA Astrophysics Data System (ADS)

    Mason, Brian D.; Hartkopf, William I.; Gies, Douglas R.; Henry, Todd J.; Helsel, John W.

    2009-02-01

    We present the results of a speckle interferometric survey of Galactic massive stars that complements and expands upon a similar survey made over a decade ago. The speckle observations were made with the Kitt Peak National Observatory and Cerro Tololo Inter-American Observatory 4 m telescopes and USNO speckle camera, and they are sensitive to the detection of binaries in the angular separation regime between 0farcs03 and 5'' with relatively bright companions (ΔV < 3). We report on the discovery of companions to 14 OB stars. In total we resolved companions of 41 of 385 O-stars (11%), 4 of 37 Wolf-Rayet stars (11%), and 89 of 139 B-stars (64%; an enriched visual binary sample that we selected for future orbital determinations). We made a statistical analysis of the binary frequency among the subsample that are listed in the Galactic O Star Catalog by compiling published data on other visual companions detected through adaptive optics studies and/or noted in the Washington Double Star Catalog and by collecting published information on radial velocities and spectroscopic binaries. We find that the binary frequency is much higher among O-stars in clusters and associations compared to the numbers for field and runaway O-stars, consistent with predictions for the ejection processes for runaway stars. We present a first orbit for the O-star δ Orionis; a linear solution of the close, apparently optical, companion of the O-star ι Orionis; and an improved orbit of the Be star δ Scorpii. Finally, we list astrometric data for another 249 resolved and 221 unresolved targets that are lower mass stars that we observed for various other science programs.

  8. Wolf-Rayet stars as starting points or as endpoints of the evolution of massive stars?

    NASA Technical Reports Server (NTRS)

    Lamers, H. J. G. L. M.; Maeder, A.; Schmutz, W.; Cassinelli, J. P.

    1991-01-01

    The paper investigates the evidence for the two interpretations of Wolf-Rayet stars suggested in the literature: (1) massive premain-sequence stars with disks and (2) massive stars which have lost most of their H-rich layers in a stellar wind is investigated. The abundance determinations which are done in two different ways and which lead to different conclusions are discussed. The composition is solar, which would suggest interpretation (1), or the CNO abundances are strongly anomalous, which would suggest interpretation (2). Results from evolutionary calculations, stellar statistics, the existence of Ofpe/WN9 transition stars and W-R stars with evolved companions show overwhelming evidence that W-R stars are not premain-sequence stars but that they are in a late stage of evolution. Moreover, the fact that W-R stars are usually in clear regions of space, whereas massive premain-sequence stars are embedded in ultracompact H II regions also shows that W-R stars are not young premain-sequence stars.

  9. Eta Carinae in the Context of the Most Massive Stars

    NASA Technical Reports Server (NTRS)

    Gull, Theodore R.; Damineli, Augusto

    2009-01-01

    Eta Car, with its historical outbursts, visible ejecta and massive, variable winds, continues to challenge both observers and modelers. In just the past five years over 100 papers have been published on this fascinating object. We now know it to be a massive binary system with a 5.54-year period. In January 2009, Car underwent one of its periodic low-states, associated with periastron passage of the two massive stars. This event was monitored by an intensive multi-wavelength campaign ranging from -rays to radio. A large amount of data was collected to test a number of evolving models including 3-D models of the massive interacting winds. August 2009 was an excellent time for observers and theorists to come together and review the accumulated studies, as have occurred in four meetings since 1998 devoted to Eta Car. Indeed, Car behaved both predictably and unpredictably during this most recent periastron, spurring timely discussions. Coincidently, WR140 also passed through periastron in early 2009. It, too, is a intensively studied massive interacting binary. Comparison of its properties, as well as the properties of other massive stars, with those of Eta Car is very instructive. These well-known examples of evolved massive binary systems provide many clues as to the fate of the most massive stars. What are the effects of the interacting winds, of individual stellar rotation, and of the circumstellar material on what we see as hypernovae/supernovae? We hope to learn. Topics discussed in this 1.5 day Joint Discussion were: Car: the 2009.0 event: Monitoring campaigns in X-rays, optical, radio, interferometry WR140 and HD5980: similarities and differences to Car LBVs and Eta Carinae: What is the relationship? Massive binary systems, wind interactions and 3-D modeling Shapes of the Homunculus & Little Homunculus: what do we learn about mass ejection? Massive stars: the connection to supernovae, hypernovae and gamma ray bursters Where do we go from here? (future

  10. High Resolution Studies of Mass Loss from Massive Binary Stars

    NASA Astrophysics Data System (ADS)

    Corcoran, Michael F.; Gull, Theodore R.; Hamaguchi, Kenji; Richardson, Noel; Madura, Thomas; Post Russell, Christopher Michael; Teodoro, Mairan; Nichols, Joy S.; Moffat, Anthony F. J.; Shenar, Tomer; Pablo, Herbert

    2017-01-01

    Mass loss from hot luminous single and binary stars has a significant, perhaps decisive, effect on their evolution. The combination of X-ray observations of hot shocked gas embedded in the stellar winds and high-resolution optical/UV spectra of the cooler mass in the outflow provides unique ways to study the unstable process by which massive stars lose mass both through continuous stellar winds and rare, impulsive, large-scale mass ejections. The ability to obtain coordinated observations with the Hubble Space Telescope Imaging Spectrograph (HST/STIS) and the Chandra High-Energy Transmission Grating Spectrometer (HETGS) and other X-ray observatories has allowed, for the first time, studies of resolved line emisssion over the temperature range of 104- 108K, and has provided observations to confront numerical dynamical models in three dimensions. Such observations advance our knowledge of mass-loss asymmetries, spatial and temporal variabilities, and the fundamental underlying physics of the hot shocked outflow, providing more realistic constraints on the amount of mass lost by different luminous stars in a variety of evolutionary stages. We discuss the impact that these joint observational studies have had on our understanding of dynamical mass outflows from massive stars, with particular emphasis on two important massive binaries, Delta Ori Aa, a linchpin of the mass luminosity relation for upper HRD main sequence stars, and the supermassive colliding wind binary Eta Carinae.

  11. The Role of Rotation in the Evolution of Massive Stars

    NASA Technical Reports Server (NTRS)

    Heap, Sara R.; Lanz, Thierry M.

    2003-01-01

    Recent evolutionary models of massive stars predict important effects of rotation including: increasing the rate of mass loss; lowering the effective gravity; altering the evolutionary track on the Hertzsprung-Russel Diagram (HRD); extending the main-sequence phase (both on the HR diagram and in time); and mixing of CNO-processed elements up to the stellar surface. Observations suggest that rotation is a more important factor at lower metallicities because of higher initial rotational velocities and weaker winds. This makes the Small Magellanic Cloud (SMC), a low-metallicity galaxy (Z=0.2 solar Z), an excellent environment for discerning the role of rotation in massive stars. We report on a FUSE+STIS+optical spectral analysis of 17 O-type stars in the SMC, where we found an enormous range in N abundances. Three stars in the sample have the same (low) CN abundances as the nebular material out of which they formed, namely C=0.085 solar C and N=0.034 solar N. However, more than half show N approx. solar N, an enrichment factor of 30X! Such unexpectedly high levels of N have ramifications for the evolution of massive stars including precursors to supernovae. They also raise questions about the sources of nitrogen in the early universe. This study was supported in part by grants from NASA's ADP, HST GO-7437, and FUSE B134.

  12. The Role of Rotation in the Evolution of Massive Stars

    NASA Technical Reports Server (NTRS)

    Heap, Sara R.; Lanz, Thierry M.

    2002-01-01

    Recent evolutionary models of massive stars predict important effects of rotation including: increasing the rate of mass-loss; lowering the effective gravity; altering the evolutionary track on the HRD; extending the main-sequence phase (both on the HR diagram and in time); and mixing of CNO-processed elements up to the stellar surface. Observations suggest that rotation is a more important factor at lower metallicities because of higher initial rotational velocities and weaker winds. This makes the SMC, a low-metallicity galaxy (Z= 0.2 solar Z), an excellent environment for discerning the role of rotation in massive stars. We report on a FUSE + STIS + optical spectral analysis of 17 O-type stars in the SMC, where we found an enormous range in N abundances. Three stars in the sample have the same (low) CN abundances as the nebular material out of which they formed, namely C = 0.085 solar C and N = 0.034 solar N. However, more than half show N approx. solar N, an enrichment factor of 30X! Such unexpectedly high levels of N have ramifications for the evolution of massive stars including precursors to supernovae. They also raise questions about the sources of nitrogen in the early universe.

  13. Late stages of massive star evolution and nucleosynthesis

    SciTech Connect

    Nomoto, Ken'ichi; Hashimoto, Masa-aki

    1986-01-01

    The evolution of massive stars in the mass range of 8 to 25 M solar mass is reviewed. The effect of electron degeneracy on the gravothermal nature of stars is discussed. Depending on the stellar mass, the stars form three types of cores, namely, non-degenerate, semi-degenerate, and strongly degenerate cores. The evolution for these cases is quite distinct from each other and leads to the three different types of final fate. It is suggested that our helium star model, which is equivalent to a 25 M solar mass star, will form a relatively small mass iron core despite the faster /sup 12/C(..cap alpha..,..gamma..)/sup 16/O reaction. 50 refs., 21 figs.

  14. Interferometric Radio Observations of the Interactive Winds of Massive Stars

    NASA Astrophysics Data System (ADS)

    Brookes, Diane Patricia

    2016-06-01

    Massive stars have very strong stellar winds which interact with their environment. This work has involved the study of these interactive winds at radio and other wavelengths. Radio observations have been made of the massive runaway star BD+43 3654 and its bow shock which is interacting with the inter-stellar medium. These observations, together with archive data at other wavelengths, have revealed stratified dust and turbulent gas in this interaction zone. Further radio studies have been undertaken of the interaction zones of the colliding winds of massive binary systems. Observations of the colliding wind binary WR 147 at 5GHz have revealed a curved collision zone, suggestive of simple interactive models. Measurements of the flux from the Wolf-Rayet component of this massive binary system has allowed a mass-loss rate to be derived and though the companion O-star is not detected, an upper flux limit has allowed upper limits on the mass-loss rate and limits on the terminal velocity to be inferred. Also revealed is a curious ’bridge’ feature previously observed in WR 147 which occurs between the two binary components. One mechanism is suggested to explain this anomalous feature, the ionising flux of one binary component, the O-star, may be ionising the wind of the other, the WR component. Modelling of the ionisation structure of the stellar winds has been undertaken to verify that this may be occurring. Radio observations of massive stars made at low-frequency have produced detections of WR 147 and the brighter colliding wind binary, WR 146. These detections have allowed modelling of the non-thermal emission in order to deduce where the non-thermal absorption turn-over occurs in these systems. The resultant modelling has illustrated that these colliding wind regions are complex, with multiple absorption regions best describing their nature.

  15. Spectroscopic evolution of massive stars from unified stellar models

    NASA Astrophysics Data System (ADS)

    Groh, Jose

    2015-08-01

    Our understanding of different classes of massive stars is often built by comparing evolutionary models and observations. However, this comparison is far from trivial, in particular when the effects of mass loss are significant. To tackle this problem, we recently combined stellar evolution calculations using the Geneva code with atmospheric/wind CMFGEN model. This allowed us to determine the interior and spectroscopic evolution of massive stars from the zero-age main sequence (ZAMS) to the pre-supernova (SN) stage. In this talk, I will discuss the spectroscopic evolution stars at solar metallicity, the lifetimes of the different spectroscopic phases (O-type, LBV, WR), how they are related to evolutionary phases (H-core burning, H-shell burning, He-core burning), and their ionizing output. I will also discuss how this is affected by mass loss at different stages of the evolution.

  16. Synthetic clusters of massive stars to test stellar evolution models

    NASA Astrophysics Data System (ADS)

    Georgy, Cyril; Ekström, Sylvia; Granada, Anahi; Meynet, Georges; Bastian, Nate; Charbonnel, Corinne

    2015-08-01

    During the recent years, the Geneva stellar evolution group has published several sets of grids of stellar models, including the effect of rotation and with up to date input physics. These sets cover a wide range of initial masses, initial rotation rates and metallicities. In addition to these grids, we have also developed a toolbox (the SYCLIST code), allowing for the study of stellar populations as a function of time, and to build synthetic clusters of a given age.In this talk, I will present the SYCLIST code and the various effects that it is able to account for: initial distributions of rotation velocities, effect of the angle of view on the look of fast rotating stars (gravity darkening). I will show how the account for a rotation velocities distribution affects the HRD and CMD of clusters at different ages.Eventually, I will discuss how comparing our synthetic clusters with observed ones can help in understanding stellar physics. For example, I will show how the effects of rotation and of gravity darkening affects the region of the turn-off of young clusters. Rotation has also an impact on the look of the Hertzsprung gap of intermediate age clusters, by broadening the sequence of stars that lie in this region of the HRD.

  17. Evidence for multiple populations in the intermediate-age cluster Lindsay 1 in the SMC

    NASA Astrophysics Data System (ADS)

    Hollyhead, K.; Kacharov, N.; Lardo, C.; Bastian, N.; Hilker, M.; Rejkuba, M.; Koch, A.; Grebel, E. K.; Georgiev, I.

    2017-02-01

    Lindsay 1 is an intermediate-age (≈8 Gyr) massive cluster in the Small Magellanic Cloud. Using VLT FORS2 spectra of 16 probable cluster members on the lower red giant branch of the cluster, we measure CN and CH band strengths (at ≃ 3883 and 4300 Å, respectively), along with carbon and nitrogen abundances and find that a sub-population of stars has significant nitrogen enrichment. A lack of spread in carbon abundances excludes evolutionary mixing as the source of this enrichment, so we conclude that this is evidence of multiple populations. Therefore, Lindsay 1 is the youngest cluster to show such variations, implying that the process triggering the onset of multiple populations must operate until at least redshift ˜1.

  18. Tidal capture of stars by a massive black hole

    NASA Technical Reports Server (NTRS)

    Novikov, I. D.; Pethick, C. J.; Polnarev, A. G.

    1992-01-01

    The processes leading to tidal capture of stars by a massive black hole and the consequences of these processes in a dense stellar cluster are discussed in detail. When the amplitude of a tide and the subsequent oscillations are sufficiently large, the energy deposited in a star after periastron passage and formation of a bound orbit cannot be estimated directly using the linear theory of oscillations of a spherical star, but rather numerical estimates must be used. The evolution of a star after tidal capture is discussed. The maximum ratio R of the cross-section for tidal capture to that for tidal disruption is about 3 for real systems. For the case of a stellar system with an empty capture loss cone, even in the case when the impact parameter for tidal capture only slightly exceeds the impact parameter for direct tidal disruption, tidal capture would be much more important than tidal disruption.

  19. Galactic kinematics from a sample of young massive stars

    NASA Astrophysics Data System (ADS)

    Bobylev, V. V.; Bajkova, A. T.

    2013-08-01

    Based on published sources, we have created a kinematic database on 220 massive (> 10 M ⊙) young Galactic star systems located within ≤3 kpc of the Sun. Out of them, ≈100 objects are spectroscopic binary and multiple star systems whose components are massive OB stars; the remaining objects are massive Hipparcos B stars with parallax errors of no more than 10%. Based on the entire sample, we have constructed the Galactic rotation curve, determined the circular rotation velocity of the solar neighborhood around the Galactic center at R 0 = 8kpc, V 0 = 259±16 km s-1, and obtained the following spiral density wave parameters: the amplitudes of the radial and azimuthal velocity perturbations f R = -10.8 ± 1.2 km s-1 and f θ = 7.9 ± 1.3 km s-1, respectively; the pitch angle for a two-armed spiral pattern i = -6.0° ± 0.4°, with the wavelength of the spiral density wave near the Sun being λ = 2.6 ± 0.2 kpc; and the radial phase of the Sun in χ ⊙ = -120° ± 4°. We show that such peculiarities of the Gould Belt as the local expansion of the system, the velocity ellipsoid vertex deviation, and the significant additional rotation can be explained in terms of the density wave theory. All these effects decrease noticeably once the influence of the spiral density wave on the velocities of nearby stars has been taken into account. The influence of Gould Belt stars on the Galactic parameter estimates has also been revealed. Eliminating them from the kinematic equations has led to the following new values of the spiral density wave parameters: f θ = 2.9 ± 2.1 km s-1 and χ ⊙ = -104° ± 6°.

  20. The Formation and Early Evolution of Embedded Massive Star Clusters

    NASA Astrophysics Data System (ADS)

    Barnes, Peter

    We propose to combine Spitzer, WISE, Herschel, and other archival spacecraft data with an existing ground- and space-based mm-wave to near-IR survey of molecular clouds over a large portion of the Milky Way, in order to systematically study the formation and early evolution of massive stars and star clusters, and provide new observational calibrations for a theoretical paradigm of this key astrophysical problem. Central Objectives: The Galactic Census of High- and Medium-mass Protostars (CHaMP) is a large, unbiased, uniform, and panchromatic survey of massive star and cluster formation and early evolution, covering 20°x6° of the Galactic Plane. Its uniqueness lies in the comprehensive molecular spectroscopy of 303 massive dense clumps, which have also been included in several archival spacecraft surveys. Our objective is a systematic demographic analysis of massive star and cluster formation, one which has not been possible without knowledge of our CHaMP cloud sample, including all clouds with embedded clusters as well as those that have not yet formed massive stars. For proto-clusters deeply embedded within dense molecular clouds, analysis of these space-based data will: 1. Yield a complete census of Young Stellar Objects in each cluster. 2. Allow systematic measurements of embedded cluster properties: spectral energy distributions, luminosity functions, protostellar and disk fractions, and how these vary with cluster mass, age, and density. Combined with other, similarly complete and unbiased infrared and mm data, CHaMP's goals include: 3. A detailed comparison of the embedded stellar populations with their natal dense gas to derive extinction maps, star formation efficiencies and feedback effects, and the kinematics, physics, and chemistry of the gas in and around the clusters. 4. Tying the demographics, age spreads, and timescales of the clusters, based on pre-Main Sequence evolution, to that of the dense gas clumps and Giant Molecular Clouds. 5. A

  1. Ionizing feedback from massive stars in massive clusters - II. Disruption of bound clusters by photoionization

    NASA Astrophysics Data System (ADS)

    Dale, J. E.; Ercolano, B.; Bonnell, I. A.

    2012-07-01

    We present a smoothed particle hydrodynamics parameter study of the dynamical effect of photoionization from O-type stars on star-forming clouds of a range of masses and sizes during the time window before supernovae explode. Our model clouds all have the same degree of turbulent support initially, the ratio of turbulent kinetic energy to gravitational potential energy being set to Ekin/|Epot|= 0.7. We allow the clouds to form stars and study the dynamical effects of the ionizing radiation from the massive stars or clusters born within them. We find that dense filamentary structures and accretion flows limit the quantities of gas that can be ionized, particularly in the higher density clusters. More importantly, the higher escape velocities in our more massive (106 M⊙) clouds prevent the H II regions from sweeping up and expelling significant quantities of gas, so that the most massive clouds are largely dynamically unaffected by ionizing feedback. However, feedback has a profound effect on the lower density 104 and 105 M⊙ clouds in our study, creating vast evacuated bubbles and expelling tens of per cent of the neutral gas in the 3-Myr time-scale before the first supernovae are expected to detonate, resulting in clouds highly porous to both photons and supernova ejecta.

  2. Photometrically-derived properties of massive-star clusters obtained with different massive-star evolution tracks and deterministic models

    NASA Astrophysics Data System (ADS)

    Wofford, Aida; Charlot, Stéphane; Eldridge, John

    2015-08-01

    We compute libraries of stellar + nebular spectra of populations of coeval stars with ages of <100 Myr and metallicities of Z=0.001 to 0.040, using different sets of massive-star evolution tracks, i.e., new Padova tracks for single non-rotating stars, the Geneva tracks for single non-rotating and rotating stars, and the Auckland tracks for single non-rotating and binary stars. For the stellar component, we use population synthesis codes galaxev, starburst99, and BPASS, depending on the set of tracks. For the nebular component we use photoionization code cloudy. From these spectra, we obtain magnitudes in filters F275W, F336W, F438W, F547M, F555W, F657N, and F814W of the Hubble Space Telescope (HST) Wide Field Camera Three. We use i) our computed magnitudes, ii) new multi-band photometry of massive-star clusters in nearby (<11 Mpc) galaxies spanning the metallicity range 12+log(O/H)=7.2-9.2, observed as part of HST programs 13364 (PI Calzetti) and 13773 (PI Chandar), and iii) Bayesian inference to a) establish how well the different models are able to constrain the metallicities, extinctions, ages, and masses of the star clusters, b) quantify differences in the cluster properties obtained with the different models, and c) assess how properties of lower-mass clusters are affected by the stochastic sampling of the IMF. In our models, the stellar evolution tracks, stellar atmospheres, and nebulae have similar chemical compositions. Different metallicities are available with different sets of tracks and we compare results from models of similar metallicities. Our results have implications for studies of the formation and evolution of star clusters, the cluster age and mass functions, and the star formation histories of galaxies.

  3. Simulating the Birth of Massive Star Clusters: Is Destruction Inevitable?

    NASA Astrophysics Data System (ADS)

    Rosen, Anna

    2013-10-01

    Very early in its operation, the Hubble Space Telescope {HST} opened an entirely new frontier: study of the demographics and properties of star clusters far beyond the Milky Way. However, interpretation of HST's observations has proven difficult, and has led to the development of two conflicting models. One view is that most massive star clusters are disrupted during their infancy by feedback from newly formed stars {i.e., "infant mortality"}, independent of cluster mass or environment. The other model is that most star clusters survive their infancy and are disrupted later by mass-dependent dynamical processes. Since observations at present have failed to discriminate between these views, we propose a theoretical investigation to provide new insight. We will perform radiation-hydrodynamic simulations of the formation of massive star clusters, including for the first time a realistic treatment of the most important stellar feedback processes. These simulations will elucidate the physics of stellar feedback, and allow us to determine whether cluster disruption is mass-dependent or -independent. We will also use our simulations to search for observational diagnostics that can distinguish bound from unbound clusters, and to predict how cluster disruption affects the cluster luminosity function in a variety of galactic environments.

  4. Induced massive star formation in the trifid nebula?

    PubMed

    Cernicharo; Lefloch; Cox; Cesarsky; Esteban; Yusef-Zadeh; Mendez; Acosta-Pulido; Garcia Lopez RJ; Heras

    1998-10-16

    The Trifid nebula is a young (10(5) years) galactic HII region where several protostellar sources have been detected with the infrared space observatory. The sources are massive (17 to 60 solar masses) and are associated with molecular gas condensations at the edges or inside the nebula. They appear to be in an early evolutionary stage and may represent the most recent generation of stars in the Trifid. These sources range from dense, apparently still inactive cores to more evolved sources, undergoing violent mass ejection episodes, including a source that powers an optical jet. These observations suggest that the protostellar sources may have evolved by induced star formation in the Trifid nebula.

  5. Hyperspectral Imagers for the Study of Massive Star Nebulae

    NASA Astrophysics Data System (ADS)

    Drissen, L.; Alarie, A.; Martin, T.; Spiomm/Sitelle Team

    2012-12-01

    We present two wide-field imaging Fourier transform spectrometers built by our team to study the interstellar medium around massive stars in the Milky Way and nearby galaxies. SpIOMM, attached to the Mont Mégantic 1.6-m telescope, is capable of obtaining the visible spectrum of every source of light in a 12 arcminute field of view, with a spectral resolution ranging from R = 1 (wide-band image) to R = 25 000, resulting in about a million spectra with a spatial resolution of one arcsecond. SITELLE will be a similar instrument attached to the Canada-France-Hawaii telescope, and will be in operation in early 2013. We illustrate SpIOMM's capabilities to study the interactions between massive stars and their environment.

  6. Star formation at low rates - the impact of lacking massive stars on stellar feedback

    NASA Astrophysics Data System (ADS)

    Hensler, Gerhard; Steyrleithner, Patrick; Recchi, Simone

    2017-03-01

    Due to their low masses dwarf galaxies experience low star-formation rates resulting in stellar cluster masses insufficient to fill the initial mass function (IMF) to the uppermost mass. Numerical simulations usually do not account for the completeness of the IMF, but treat a filed IMF by numbers, masses, and stellar feedback by fractions. To ensure that only entire stars are formed, we consider an IMF filled from the lower-mass regime and truncated where at least one entire massive star is formed. By 3D simulations we investigate the effects of two possible IMFs on the evolution of dwarf galaxies: filled vs. truncated IMF. For the truncated IMF the star-formation self-regulation is suppressed, while the energy release by typeII supernovae is larger, both compared to the filled IMF. Moreover, the abundance ratios of particular elements yielded from massive and intermediate-mass stars differ significantly between the two IMF distributions.

  7. Photometric investigation of the totally eclipsing contact binary V12 in the intermediate-age open cluster NGC 7789

    SciTech Connect

    Qian, S.-B.; Wang, J.-J.; Liu, L.; Zhou, X.; Essam, A.; Ali, G. B.; Haroon, A.-A.

    2015-02-01

    NGC 7789 is an intermediate-age open cluster with an age similar to the mean age of contact binary stars. V12 is a bright W UMa-type binary star with an orbital period of 0.3917 days. The first complete light curves of V12 in the V, R, and I bands are presented and analyzed with the Wilson–Devinney (W-D) method. The results show that V12 is an intermediate-contact binary (f=43.0(±2.2)%) with a mass ratio of 3.848, and it is a W-type contact binary where the less massive component is slightly hotter than the more massive one. The asymmetry of the light curves is explained by the presence of a dark spot on the more massive component. The derived orbital inclination (i=83{sub .}{sup ∘}6) indicates that it is a totally eclipsing binary, which suggests that the determined parameters are reliable. The orbital period may show a long-term increase at a rate of P-dot =+2.48(±0.17)×10{sup −6} days yr{sup −1} that reveals a rapid mass transfer from the less massive component to the more massive one. However, more observations are needed to confirm this conclusion. The presence of an intermediate-contact binary in an intermediate-age open cluster may suggest that some contact binaries have a very short pre-contact timescale. The presence of a third body and/or stellar collision may help to shorten the pre-contact evolution.

  8. THE ROLE OF THE MAGNETOROTATIONAL INSTABILITY IN MASSIVE STARS

    SciTech Connect

    Wheeler, J. Craig; Kagan, Daniel; Chatzopoulos, Emmanouil

    2015-01-20

    The magnetorotational instability (MRI) is key to physics in accretion disks and is widely considered to play some role in massive star core collapse. Models of rotating massive stars naturally develop very strong shear at composition boundaries, a necessary condition for MRI instability, and the MRI is subject to triply diffusive destabilizing effects in radiative regions. We have used the MESA stellar evolution code to compute magnetic effects due to the Spruit-Tayler (ST) mechanism and the MRI, separately and together, in a sample of massive star models. We find that the MRI can be active in the later stages of massive star evolution, leading to mixing effects that are not captured in models that neglect the MRI. The MRI and related magnetorotational effects can move models of given zero-age main sequence mass across ''boundaries'' from degenerate CO cores to degenerate O/Ne/Mg cores and from degenerate O/Ne/Mg cores to iron cores, thus affecting the final evolution and the physics of core collapse. The MRI acting alone can slow the rotation of the inner core in general agreement with the observed ''initial'' rotation rates of pulsars. The MRI analysis suggests that localized fields ∼10{sup 12} G may exist at the boundary of the iron core. With both the ST and MRI mechanisms active in the 20 M {sub ☉} model, we find that the helium shell mixes entirely out into the envelope. Enhanced mixing could yield a population of yellow or even blue supergiant supernova progenitors that would not be standard SN IIP.

  9. Unveiling Hidden Massive Stars: Star Formation and the IMF in Carina

    NASA Astrophysics Data System (ADS)

    Alexander, Michael; Povich, Matthew; McSwain, M. Virginia

    2014-02-01

    We propose two nights of observations with the OSIRIS IR spectrograph on SOAR to obtain spectra for a large sample of massive star candidates within the Carina Nebula. Target stars have been identified as OB candidates through the use of combined X-ray emission and IR SED fitting and are too extincted to be readily observed at optical wavelengths. We will obtain K-band spectroscopy of 56 highly extincted stars in order to identify their spectral type and luminosity class. The proposed observations will confirm or reject individual stars as massive members of the Carina nebula star forming complex. The placement of these stars around the nebula will address questions on the process of triggered star formation, and the wide distribution of targets may shed light on the idea that OB stars can form in isolation. Additionally, any new OB stars will bolster the high-mass end of the stellar IMF and lead to a more accurate determine of the total stellar mass and a better understanding of the recent star formation history within the region.

  10. A comparison of evolutionary tracks for single Galactic massive stars

    NASA Astrophysics Data System (ADS)

    Martins, F.; Palacios, A.

    2013-12-01

    Context. The evolution of massive stars is not fully understood. The relation between different types of evolved massive stars is not clear, and the role of factors such as binarity, rotation or magnetism needs to be quantified. Aims: Several groups make available the results of 1D single stellar evolution calculations in the form of evolutionary tracks and isochrones. They use different stellar evolution codes for which the input physics and its implementation varies. In this paper, we aim at comparing the currently available evolutionary tracks for massive stars. We focus on calculations aiming at reproducing the evolution of Galactic stars. Our main goal is to highlight the uncertainties on the predicted evolutionary paths. Methods: We compute stellar evolution models with the codes MESA and STAREVOL. We compare our results with those of four published grids of massive stellar evolution models (Geneva, STERN, Padova and FRANEC codes). We first investigate the effects of overshooting, mass loss, metallicity, chemical composition. We subsequently focus on rotation. Finally, we compare the predictions of published evolutionary models with the observed properties of a large sample of Galactic stars. Results: We find that all models agree well for the main sequence evolution. Large differences in luminosity and temperatures appear for the post main sequence evolution, especially in the cool part of the Hertzsprung-Russell (HR) diagram. Depending on the physical ingredients, tracks of different initial masses can overlap, rendering any mass estimate doubtful. For masses between 7 and 20 M⊙, we find that the main sequence width is slightly too narrow in the Geneva models including rotation. It is (much) too wide for the (STERN) FRANEC models. This conclusion is reached from the investigation of the HR diagram and from the evolution of the surface velocity as a function of surface gravity. An overshooting parameter α between 0.1 and 0.2 in models with rotation is

  11. Massive Stars and the Ionization of the Diffuse Medium

    NASA Astrophysics Data System (ADS)

    Kahre, Lauren E.; Walterbos, Rene A. M.

    2015-08-01

    Diffuse ionized Gas (DIG, sometimes called the warm ionized medium or WIM) has been recognized as a major component of the interstellar medium (ISM) in disk galaxies. A general understanding of the characteristics of the DIG is emerging, but several questions remain unanswered. One of these is the ionization mechanism for this gas, believed to be connected to OB stars and HII regions. Using 5-band (NUV (2750 A), U, V, B, and I) photometric imaging data from the Hubble Space Telescope (HST) Legacy Extragalactic Ultraviolet Survey (LEGUS) and ground-based Halpha data from the Local Volume Legacy (LVL) survey and HST Halpha data from LEGUS, we will investigate the photoionization of HII regions and DIG in nearly 50 galaxies. The 5-band photometry will enable us to determine properties of the most massive stars and reddening corrections for specific regions within a galaxy. Luminosities and ages for groups and clusters will be obtained from SED-fitting of photometric data. For individual stars ages will be determined from isochrone-fitting using reddening-corrected color-magnitude diagrams. We can then obtain estimates of the ionizing luminosities by matching these photometric properties for massive stars and clusters to various stellar atmosphere models. We will compare these predictions to the inferred Lyman continuum production rates from reddening-corrected ground- and HST-based Halpha data for HII regions and DIG. This particular presentation will demonstrate the above process for a set of selected regions in galaxies within the LEGUS sample. It will subsequently be expanded to cover the full LEGUS sample, with the overall goals of obtaining a better understanding of the radiative energy feedback from massive stars on the ISM, particularly their ability to ionize the surrounding ISM over a wide range of spatial scales and SFR surface densities, and to connect the ionization of the ISM to HII region morphologies.

  12. Fallback and Black Hole Production in Massive Stars

    SciTech Connect

    Zhang, Wei-Qun; Woosley, S.E.; Heger, A.; /UC, Santa Cruz /Los Alamos

    2007-01-08

    The compact remnants of core collapse supernovae--neutron stars and black holes--have properties that reflect both the structure of their stellar progenitors and the physics of the explosion. In particular, the masses of these remnants are sensitive to the density structure of the presupernova star and to the explosion energy. To a considerable extent, the final mass is determined by the ''fallback'', during the explosion, of matter that initially moves outwards, yet ultimately fails to escape. We consider here the simulated explosion of a large number of massive stars (10 to 100 M{sub {circle_dot}}) of Population I (solar metallicity) and III (zero metallicity), and find systematic differences in the remnant mass distributions. As pointed out by Chevalier (1989), supernovae in more compact progenitor stars have stronger reverse shocks and experience more fallback. For Population III stars above about 25 M{sub {circle_dot}} and explosion energies less than 1.5 x 10{sup 51} erg, black holes are a common outcome, with masses that increase monotonically with increasing main sequence mass up to a maximum hole mass of about 35 M{sub {circle_dot}}. If such stars produce primary nitrogen, however, their black holes are systematically smaller. For modern supernovae with nearly solar metallicity, black hole production is much less frequent and the typical masses, which depend sensitively on explosion energy, are smaller. We explore the neutron star initial mass function for both populations and, for reasonable assumptions about the initial mass cut of the explosion, find good agreement with the average of observed masses of neutron stars in binaries. We also find evidence for a bimodal distribution of neutron star masses with a spike around 1.2 M{sub {circle_dot}} (gravitational mass) and a broader distribution peaked around 1.4 M{sub {circle_dot}}.

  13. NEARBY MASSIVE STAR CLUSTER YIELDS INSIGHTS INTO EARLY UNIVERSE

    NASA Technical Reports Server (NTRS)

    2002-01-01

    A NASA Hubble Space Telescope 'family portrait' of young, ultra-bright stars nested in their embryonic cloud of glowing gases. The celestial maternity ward, called N81, is located 200,000 light-years away in the Small Magellanic Cloud (SMC), a small irregular satellite galaxy of our Milky Way. Hubble's exquisite resolution allows astronomers to pinpoint 50 separate stars tightly packed in the nebula's core within a 10 light-year diameter - slightly more than twice the distance between earth and the nearest star to our sun. The closest pair of stars is only 1/3 of a light-year apart (0.3 arcseconds in the sky). This furious rate of mass loss from these super-hot stars is evident in the Hubble picture that reveals dramatic shapes sculpted in the nebula's wall of glowing gases by violent stellar winds and shock waves. A pair of bright stars in the center of the nebula is pouring out most of the ultraviolet radiation to make the nebula glow. Just above them, a small dark knot is all that's left of the cold cloud of molecular hydrogen and dust the stars were born from. Dark absorption lanes of residual dust trisect the nebula. The nebula offers a unique opportunity for a close-up glimpse at the 'firestorm' accompanying the birth of extremely massive stars, each blazing with the brilliance of 300,000 of our suns. Such galactic fireworks were much more common billions of years ago in the early universe, when most star formation took place. The 'natural-color' view was assembled from separate images taken with the Wide Field and Planetary Camera 2, in ultraviolet light and two narrow emission lines of ionized Hydrogen (H-alpha, H-beta). The picture was taken on September 4, 1997. Credit: Mohammad Heydari-Malayeri (Paris Observatory, France), NASA/ESA

  14. Nucleosynthesis of Short-lived Radioactivities in Massive Stars

    NASA Technical Reports Server (NTRS)

    Meyer, B. S.

    2004-01-01

    A leading model for the source of many of the short-lived radioactivities in the early solar nebula is direct incorporation from a massive star [1]. A recent and promising incarnation of this model includes an injection mass cut, which is a boundary between the stellar ejecta that become incorporated into the solar cloud and those ejecta that do not [2-4]. This model also includes a delay time between ejection from the star and incorporation into early solar system solid bodies. While largely successful, this model requires further validation and comparison against data. Such evaluation becomes easier if we have a better sense of the nature of the synthesis of the various radioactivities in the star. That is the goal of this brief abstract.

  15. H II REGIONS: WITNESSES TO MASSIVE STAR FORMATION

    SciTech Connect

    Peters, Thomas; Banerjee, Robi; Klessen, Ralf S.; Low, Mordecai-Mark Mac; Galvan-Madrid, Roberto; Keto, Eric R.

    2010-03-10

    We describe the first three-dimensional simulation of the gravitational collapse of a massive, rotating molecular cloud that includes heating by both non-ionizing and ionizing radiation. These models were performed with the FLASH code, incorporating a hybrid, long characteristic, ray-tracing technique. We find that as the first protostars gain sufficient mass to ionize the accretion flow, their H II regions are initially gravitationally trapped, but soon begin to rapidly fluctuate between trapped and extended states, in agreement with observations. Over time, the same ultracompact H II region can expand anisotropically, contract again, and take on any of the observed morphological classes. In their extended phases, expanding H II regions drive bipolar neutral outflows characteristic of high-mass star formation. The total lifetime of H II regions is given by the global accretion timescale, rather than their short internal sound-crossing time. This explains the observed number statistics. The pressure of the hot, ionized gas does not terminate accretion. Instead, the final stellar mass is set by fragmentation-induced starvation. Local gravitational instabilities in the accretion flow lead to the build-up of a small cluster of stars, all with relatively high masses due to heating from accretion radiation. These companions subsequently compete with the initial high-mass star for the same common gas reservoir and limit its mass growth. This is in contrast to the classical competitive accretion model, where the massive stars are never hindered in growth by the low-mass stars in the cluster. Our findings show that the most significant differences between the formation of low-mass and high-mass stars are all explained as the result of rapid accretion within a dense, gravitationally unstable, ionized flow.

  16. Massive star formation by accretion. I. Disc accretion

    NASA Astrophysics Data System (ADS)

    Haemmerlé, L.; Eggenberger, P.; Meynet, G.; Maeder, A.; Charbonnel, C.

    2016-01-01

    Context. Massive stars likely form by accretion and the evolutionary track of an accreting forming star corresponds to what is called the birthline in the Hertzsprung-Russell (HR) diagram. The shape of this birthline is quite sensitive to the evolution of the entropy in the accreting star. Aims: We first study the reasons why some birthlines published in past years present different behaviours for a given accretion rate. We then revisit the question of the accretion rate, which allows us to understand the distribution of the observed pre-main-sequence (pre-MS) stars in the HR diagram. Finally, we identify the conditions needed to obtain a large inflation of the star along its pre-MS evolution that may push the birthline towards the Hayashi line in the upper part of the HR diagram. Methods: We present new pre-MS models including accretion at various rates and for different initial structures of the accreting core. We compare them with previously published equivalent models. From the observed upper envelope of pre-MS stars in the HR diagram, we deduce the accretion law that best matches the accretion history of most of the intermediate-mass stars. Results: In the numerical computation of the time derivative of the entropy, some treatment leads to an artificial loss of entropy and thus reduces the inflation that the accreting star undergoes along the birthline. In the case of cold disc accretion, the existence of a significant swelling during the accretion phase, which leads to radii ≳ 100 R⊙ and brings the star back to the red part of the HR diagram, depends sensitively on the initial conditions. For an accretion rate of 10-3M⊙ yr-1, only models starting from a core with a significant radiative region evolve back to the red part of the HR diagram. We also obtain that, in order to reproduce the observed upper envelope of pre-MS stars in the HR diagram with an accretion law deduced from the observed mass outflows in ultra-compact HII regions, the fraction of the

  17. FRAGMENTATION AT THE EARLIEST PHASE OF MASSIVE STAR FORMATION

    SciTech Connect

    Zhang Qizhou; Wang Yang; Pillai, Thushara; Rathborne, Jill

    2009-05-01

    We present 1.3 mm continuum and spectral line images of two massive molecular clumps P1 and P2 in the G28.34+0.06 region with the Submillimeter Array (SMA). While the two clumps contain masses of 1000 and 880 M {sub sun}, respectively, P1 has a luminosity OF <10{sup 2} L {sub sun}, and a lower gas temperature and smaller line width than P2. Thus, P1 appears to be at a much earlier stage of massive star formation than P2. The high-resolution SMA observations reveal two distinctive cores in P2 with masses of 97 and 49 M {sub sun}, respectively. The 4 GHz spectral bandpass captures line emission from CO isotopologues, SO, CH{sub 3}OH, and CH{sub 3}CN, similar to hot molecular cores harboring massive young stars. The P1 clump, on the other hand, is resolved into five cores along the filament with masses from 22 to 64 M {sub sun} and an average projected separation of 0.19 pc. Except {sup 12}CO, no molecular line emission is detected toward the P1 cores at a 1{sigma} rms of 0.1 K. Since strong {sup 12}CO and C{sup 18}O emissions are seen with the single-dish telescope at a resolution of 11'', the nondetection of these lines with the SMA indicates a depletion factor up to 10{sup 3}. While the spatial resolution of the SMA is better than the expected Jeans length, the masses in P1 cores are much larger than the thermal Jeans mass, indicating the importance of turbulence and/or magnetic fields in cloud fragmentation. The hierarchical structures in the P1 region provide a glimpse of the initial phase of massive star and cluster formation.

  18. Ongoing Massive Star Formation in the Bulge of M51

    NASA Astrophysics Data System (ADS)

    Lamers, H. J. G. L. M.; Panagia, N.; Scuderi, S.; Romaniello, M.; Spaans, M.; de Wit, W. J.; Kirshner, R.

    2002-02-01

    We present a study of Hubble Space Telescope Wide Field Planetary Camera 2 observations of the inner kiloparsec of the interacting galaxy M51 in six bands from 2550 to 8140 Å. The images show an oval-shaped area (which we call the ``bulge'') of about 11''×16'', or 450×650 pc, around the nucleus that is dominated by a smooth ``yellow/reddish'' background population with overimposed dust lanes. These dust lanes are the inner extensions of the spiral arms. The extinction properties, derived in four fields in and outside dust lanes, are similar to the Galactic extinction law. The reddish stellar population has an intrinsic color of (B-V)0~=1.0, suggesting an age in excess of 5 Gyr. We found 30 bright pointlike sources in the bulge of M51, i.e., within 110-350 pc from the nucleus. The point sources have 21.4stars. There are three reasons to conclude that most of these point sources are isolated massive stars (or very small groups of a few isolated massive stars) rather than clusters:1. The energy distributions of most objects are best fitted with models of single stars of MV between -6.1 and -9.1, temperatures between 4000 and 50,000 K, and with 4.2massive stars.3. The distribution of the sources in the Hertzsprung-Russel diagram shows a gap in the range of 20,000Kstars, but not of clusters.We have derived upper limits to the total mass of lower mass stars (M*<10 Msolar) that could be

  19. Two Intermediate Age Open Clusters - NGC752 and NGC3680

    NASA Astrophysics Data System (ADS)

    Carraro, G.; Bertelli, G.; Bressan, A.; Chiosi, C.

    1993-10-01

    In this paper, with the aid of synthetic color-magnitude diagram (CMD) technique we study two scarcely populated and slightly metal-poor intermediate age open clusters, namely NGC 752 and NGC 3680. The analysis is made using both standard and overshoot models calculated by the Padova group (Fagotto 1990; Alongi et al. 1991, 1993). The advantage with the synthetic CMD technique is that it allows for quantitative predictions for the star counts and luminosity functions. Adopting the metallicity indicated for each cluster by current determinations, we seek to determine the color excess, distance modulus, and age at the same time. Looking at the fit of the whole CMD, the behaviour of the main sequence stars LF, and two suitable ratios of star counts we try to discriminate between the two evolutionary schemes. We suggest that models with convective overshoot ought to be preferred to the classical ones.

  20. VLA 7-mm Observations of Massive Star-forming Regions

    NASA Astrophysics Data System (ADS)

    Linz, Hendrik; Hofner, Peter; Araya, Esteban; Stecklum, Bringfried

    2003-07-01

    The early stages during the formation of massive stars are deeply enshrouded due to the presence of dense and dusty natal material. This prevents observations in the optical and often also in the near-infrared. The emission of the star-forming regions peaks in the far-infrared and sub-mm regime, but at these wavelengths, single-dish observations are restricted in spatial resolution and can give only upper limits on the energetics of the objects of interest. Interferometry at mm wavelengths is one appropriate technique to overcome these limitations. We have started an extensive programme to observe pre-selected massive star-forming regions. Our tool is the VLA and its 7-mm receiver system. The VLA can be operated in several antenna configurations delivering resolutions from 1.5 arcsec down to 0.05 arcsec, which is superior to other current mm-interferometers. Sub-arcsec resolution is strongly needed to disentangle the often crowded regions of high-mass star formation and to clearly separate our objects of interest from the adjacent ultracompact HII regions. At 7 mm we are on the save ground of the Rayleigh-Jeans limit even for emission of cold dust (a fact that is not always true for observations at smaller wavelengths). Almost all circumstellar density configurations are optically thin at 7 mm, thus, the observations will trace the total dust content. However, at 7 mm also the free-free emission from ionised gas (caused by the UV emission of the young massive stars) can contribute to the observed signal. Therefore, we have to identify and remove these "parasitic" constituents by extrapolating interferometric data obtained at cm-wavelengths. The targets are either taken from the list of Molinari (Molinari et al. 2000, A&A, 355, 617) or are well-known massive star-forming complexes, for which we have already acquired additional data at other wavelengths. We have started with observations at lower and medium resolution (1.5 - 0.5 arcsec) to distinguish candidates for

  1. Nucleosynthesis above the iron group in massive stars

    SciTech Connect

    Hoffman, R D; Woosley, S E; Weaver, T A

    2000-10-11

    The production of nuclei up to and including the light s-process component at A {approx} 60-90 is calculated for all stages of stable and explosive nuclear burning in stars of 15 and 25 M{sub {circle_dot}}. An extended nuclear reaction network of 480 isotopes is employed along with approximately two dozen recent revisions to key nuclear reaction rates. As noted previously, the new rates suggest a greatly diminished production of {sup 17}O and {sup 18}O in massive stars. {sup 22}Ne is also moderately enhanced. We find that a combination of pre-explosive s-process, {gamma}-process, and (mild) r-processes in massive stars give a consistently solar production of almost all isotopes from mass 64 through 90. However, even after the late stages of evolution are complete and the explosion is over, this same group of elements is overproduced compared to what is needed for the sun, especially in the 25 M{sub {circle_dot}} model.

  2. Core Collapse and Then? The Route to Massive Star Explosions

    NASA Astrophysics Data System (ADS)

    Janka, Hans-Thomas; Buras, Robert; Kifonidis, Konstantinos; Plewa, Tomek; Rampp, Markus

    The rapidly growing base of observational data for supernova explosions of massive stars demands theoretical explanations. Central to these is a self-consistent model for the physical mechanism that provides the energy to start and drive the disruption of the star. We give arguments why the delayed neutrino-heating mechanism should still be regarded as the standard paradigm to explain most explosions of massive stars and show how large-scale and even global asymmetries can result as a natural consequence of convective overturn in the neutrino-heating region behind the supernova shock. Since the explosion is a threshold phenomenon and depends sensitively on the efficiency of the energy transfer by neutrinos, even relatively minor differences in numerical simulations can matter on the secular timescale of the delayed mechanism. To enhance this point, we present some results of recent one- and two-dimensional computations, which we have performed with a Boltzmann solver for the neutrino transport and a state-of-the-art description of neutrino-matter interactions. Although our most complete models fail to explode, the simulations demonstrate that one is encouragingly close to the critical threshold because a modest variation of the neutrino transport in combination with postshock convection leads to a weak neutrino-driven explosion with properties that fulfill important requirements from observations.

  3. The Multiplicity of Massive Stars: A High Angular Resolution Survey With The HST Fine Guidance Sensor

    DTIC Science & Technology

    2015-01-01

    THE MULTIPLICITY OF MASSIVE STARS : A HIGH ANGULAR RESOLUTION SURVEY WITH THE HST FINE GUIDANCE SENSOR* E. J. Aldoretta1,2, S. M. Caballero-Nieves3, D...all-sky survey made with the Fine Guidance Sensor on the Hubble Space Telescope to search for angularly resolved binary systems among massive stars . The...sample of 224 stars is comprised mainly of Galactic O- and B-type stars and luminous blue variables, plus a few luminous stars in the Large

  4. Hunting for missing (massive) stars in the Galaxy

    NASA Astrophysics Data System (ADS)

    Flagey, Nicolas

    2015-08-01

    We discovered over 400 compact (<1’) “bubbles” from visual inspection of the Spitzer/MIPSGAL 24 μm images of the Galactic plane (Carey et al. 2009; Mizuno et al. 2010). At the time of their discovery, only 15% of these MIPSGAL bubbles (MBs) existed in available catalogs, and most of these previously known MB were planetary nebulae. Over the past three years an important observational effort has been made to characterize the nature of more MBs (e.g. Wachter et al. 2010; Gvaramadze et al. 2010; Flagey et al. 2011, 2014; Nowak et al. 2014). The number of identified MBs has now doubled (30% of the 428), and massive stars represent almost half of the known objects. Most of the new identifications have been obtained via optical and near-IR spectroscopic observations of the source detected at the center of the MBs.I will first present the catalog of the MB and the general properties, in terms of morphology, size, and broadband fluxes, of the circumstellar shells. In particular, I will show that far-IR observations from the Herschel Galactic Plane Survey (Molinari et al. 2010) provide a direct measurement of the dust mass ejected by theMB. Then, I will detail some of the follow-up spectroscopic observations obtained to identify the origin of the mid-IR emission and the nature of the unknown objects. In particular, I will focus on: (1) unique Spitzer/IRS observations of 15 MBs that lead to the discovery of several dust poor planetary nebulae with very hot white dwarf, and the characterization of several WR and LBV candidates; (2) ground based (Palomar, IRTF, VLT) near-IR observations of central sources in MB, that revealed a large number of new massive stars, both cool and hot. I will summarize the results of these investigations and others in terms of newly discovered massive stars in our Galaxy.

  5. Effects of Ionization Feedback in Massive Star Formation

    NASA Astrophysics Data System (ADS)

    Peters, Thomas; Banerjee, R.; Klessen, R. S.; Mac Low, M.

    2009-01-01

    We present 3D high-resolution radiation-hydrodynamical simulations of massive star formation. We model the collapse of a massive molecular cloud core forming a high-mass star in its center. We use a version of the FLASH code that has been extended by including sink particles which are a source of both ionizing and non-ionizing radiation. The sink particles evolve according to a prestellar model which determines the stellar and accretion luminosities. Radiation transfer is done using the hybrid characteristics raytracing approach on the adaptive mesh developed by Rijkhorst et al. (2006). The radiative transfer module has been augmented to allow simulations with arbitrarily high resolution. Our highest resolution models resolve the disk scale height by at least 16 zones. Opacities for non-ionizing radiation have been added to account for the accretion heating, which is expected to be strong at the initial stage of star formation and believed to prevent fragmentation. Studies of collapsing massive cores show the formation of a gravitationally highly unstable disk. The accretion heating is not strong enough to suppress this instability. The ionizing radiation builds up an H II region around the protostar, which destroys the accretion disk close to it. We describe preliminary results, with a focus on how long the H II region remains confined by the accretion flow, and whether it can ever cut off accretion entirely. Thomas Peters acknowledges support from a Kade Fellowship for his visit to the American Museum of Natural History. He is a fellow of the International Max Planck Research School for Astronomy and Cosmic Physics at the University of Heidelberg and the Heidelberg Graduate School of Fundamental Physics. We also thank the DFG for support via the Emmy Noether Grant BA 3607/1 and the individual grant KL1358/5.

  6. Highly Variable Young Massive Stars in ATLASGAL Clumps

    NASA Astrophysics Data System (ADS)

    Kumar, M. S. N.; Contreras Peña, C.; Lucas, P. W.; Thompson, M. A.

    2016-12-01

    High-amplitude variability in young stellar objects (YSOs) is usually associated with episodic accretion events. It has not been observed so far in massive YSOs. Here, the high-amplitude variable star sample of Contreras Peña et al. has been used to search for highly variable (ΔK ≥ 1 mag) sources coinciding with dense clumps mapped using the 850 μm continuum emission by the ATLASGAL survey. A total of 18 variable sources are centered on the submillimeter clump peaks and coincide (<1″) with a 24 μm point or compact (<10″) source. Of these 18 sources, 13 can be fit by YSO models. The 13 variable YSOs (VYSOs) have luminosities of ∼103 L ⊙, an average mass of 8 M ⊙, and a range of ages up to 106 yr. A total of 11 of these 13 VYSOs are located in the midst of infrared dark clouds. Nine of the 13 sources have ΔK > 2 mag, significantly higher compared to the mean variability of the entire VVV sample. The light curves of these objects sampled between 2010 and 2015 display rising, declining, or quasi-periodic behavior but no clear periodicity. Light-curve analysis using the Plavchan method shows that the most prominent phased signals have periods of a few hundred days. The nature and timescale of variations found in 6.7 Ghz methanol maser emission in massive stars are similar to that of the VYSO light curves. We argue that the origin of the observed variability is episodic accretion. We suggest that the timescale of a few hundred days may represent the frequency at which a spiraling disk feeds dense gas to the young massive star.

  7. Combined stellar evolution and atmospheric modeling of massive stars: implications for how stars evolve and die

    NASA Astrophysics Data System (ADS)

    Groh, Jose

    2015-08-01

    Our big picture of stellar evolution and the links between the different classes of massive stars is often built by comparing evolutionary models and observations. However, this comparison is far from trivial, in particular when the effects of mass loss are significant. To tackle this problem, we recently combined stellar evolution calculations using the Geneva code with atmospheric/wind CMFGEN modeling. For the first time, we determined the interior and spectroscopic evolution of massive stars from the zero-age main sequence to the pre-supernova stage. In this talk, I will discuss the spectroscopic evolution of massive stars at solar metallicity, the lifetimes of the different spectroscopic phases (e.g. O-type, RSG, BSG, LBV, WR), and how they are related to evolutionary phases (H-core burning, H-shell burning, He-core burning). I will also show how this is affected by mass loss at different stages of the evolution and the implications for our understanding of massive star evolution and death.

  8. Ionizing feedback from massive stars in massive clusters - III. Disruption of partially unbound clouds

    NASA Astrophysics Data System (ADS)

    Dale, J. E.; Ercolano, B.; Bonnell, I. A.

    2013-03-01

    We extend our previous smoothed particle hydrodynamics parameter study of the effects of photoionization from O-stars on star-forming clouds to include initially unbound clouds. We generate a set of model clouds in the mass range 104-106 M⊙ with initial virial ratios Ekin/Epot = 2.3, allow them to form stars and study the impact of the photoionizing radiation produced by the massive stars. We find that, on the 3 Myr time-scale before supernovae are expected to begin detonating, the fraction of mass expelled by ionizing feedback is a very strong function of the cloud escape velocities. High-mass clouds are largely unaffected dynamically, while low-mass clouds have large fractions of their gas reserves expelled on this time-scale. However, the fractions of stellar mass unbound are modest and significant portions of the unbound stars are so only because the clouds themselves are initially partially unbound. We find that ionization is much more able to create well-cleared bubbles in the unbound clouds, owing to their intrinsic expansion, but that the presence of such bubbles does not necessarily indicate that a given cloud has been strongly influenced by feedback. We also find, in common with the bound clouds from our earlier work, that many of the systems simulated here are highly porous to photons and supernova ejecta, and that most of them will likely survive their first supernova explosions.

  9. X-rays From Centrifugal Magnetospheres in Massive Stars

    NASA Astrophysics Data System (ADS)

    Bard, Christopher; Townsend, Richard

    2015-01-01

    In the subset of massive OB stars with strong global magnetic fields, X-rays arise from magnetically confined wind shocks (Babel & Montmerle 1997). However, it is not yet clear what the effect of stellar rotation and mass-loss rate is on these wind shocks and resulting X-rays. Here, we present results from a grid of Arbitrary Rigid-Field Hydrodynamic simulations (ARFHD) of a B-star centrifugal magnetosphere with an eye towards quantifying the effect of stellar rotation and mass-loss rate on the level of X-ray emission. The results are also compared to a generalized XADM model for X-rays in dynamical magnetospheres (ud-Doula et al. 2014).

  10. LIMB-DARKENED RADIATION-DRIVEN WINDS FROM MASSIVE STARS

    SciTech Connect

    Cure, M.; Cidale, L.

    2012-10-01

    We calculated the influence of the limb-darkened finite-disk correction factor in the theory of radiation-driven winds from massive stars. We solved the one-dimensional m-CAK hydrodynamical equation of rotating radiation-driven winds for all three known solutions, i.e., fast, {Omega}-slow, and {delta}-slow. We found that for the fast solution, the mass-loss rate is increased by a factor of {approx}10%, while the terminal velocity is reduced about 10%, when compared with the solution using a finite-disk correction factor from a uniformly bright star. For the other two slow solutions, the changes are almost negligible. Although we found that the limb darkening has no effects on the wind-momentum-luminosity relationship, it would affect the calculation of synthetic line profiles and the derivation of accurate wind parameters.

  11. How Very Massive Metal Free Stars Start Cosmological Reionization

    SciTech Connect

    Wise, John H.; Abel, Tom

    2007-11-07

    The initial conditions and relevant physics for the formation of the earliest galaxies are well specified in the concordance cosmology. Using ab initio cosmological Eulerian adaptive mesh refinement radiation hydrodynamical calculations, we discuss how very massive stars start the process of cosmological reionization. The models include non-equilibrium primordial gas chemistry and cooling processes and accurate radiation transport in the Case B approximation using adaptively ray traced photon packages, retaining the time derivative in the transport equation. Supernova feedback is modeled by thermal explosions triggered at parsec scales. All calculations resolve the local Jeans length by at least 16 grid cells at all times and as such cover a spatial dynamic range of {approx}10{sup 6}. These first sources of reionization are highly intermittent and anisotropic and first photoionize the small scales voids surrounding the halos they form in, rather than the dense filaments they are! embedded in. As the merging objects form larger, dwarf sized galaxies, the escape fraction of UV radiation decreases and the H II regions only break out on some sides of the galaxies making them even more anisotropic. In three cases, SN blast waves induce star formation in overdense regions that were formed earlier from ionization front instabilities. These stars form tens of parsecs away from the center of their parent DM halo. Approximately 5 ionizing photons are needed per sustained ionization when star formation in 10{sup 6} M{sub {circle_dot}} halos are dominant in the calculation. As the halos become larger than {approx}10{sup 7} M{sub {circle_dot}}, the ionizing photon escape fraction decreases, which in turn increases the number of photons per ionization to 15--50, in calculations with stellar feedback only. Supernova feedback in these more massive halos creates a more diffuse medium, allowing the stellar radiation to escape more easily and maintaining the ratio of 5 ionizing

  12. The relation between the most-massive star and its parental star cluster mass

    NASA Astrophysics Data System (ADS)

    Weidner, C.; Kroupa, P.; Bonnell, I. A. D.

    2010-01-01

    We present a thorough literature study of the most-massive star, mmax, in several young star clusters in order to assess whether or not star clusters are populated from the stellar initial mass function (IMF) by random sampling over the mass range 0.01 <= m <= 150Msolar without being constrained by the cluster mass, Mecl. The data reveal a partition of the sample into lowest mass objects (Mecl <= 102Msolar), moderate mass clusters (102Msolar < Mecl <= 103Msolar) and rich clusters above 103Msolar. Additionally, there is a plateau of a constant maximal star mass (mmax ~ 25Msolar) for clusters with masses between 103Msolar and 4 × 103Msolar. Statistical tests of this data set reveal that the hypothesis of random sampling from the IMF between 0.01 and 150Msolar is highly unlikely for star clusters more massive than 102Msolar with a probability of p ~ 2 × 10-7 for the objects with Mecl between 102 and 103Msolar and p ~ 3 × 10-9 for the more massive star clusters. Also, the spread of mmax values at a given Mecl is smaller than expected from random sampling. We suggest that the basic physical process able to explain this dependence of stellar inventory of a star cluster on its mass may be the interplay between stellar feedback and the binding energy of the cluster-forming molecular cloud core. Given these results, it would follow that an integrated galactic IMF (IGIMF) sampled from such clusters would automatically be steeper in comparison to the IMF within individual star clusters.

  13. Pair instability supernovae of very massive population III stars

    SciTech Connect

    Chen, Ke-Jung; Woosley, Stan; Heger, Alexander; Almgren, Ann; Whalen, Daniel J.

    2014-09-01

    Numerical studies of primordial star formation suggest that the first stars in the universe may have been very massive. Stellar models indicate that non-rotating Population III stars with initial masses of 140-260 M {sub ☉} die as highly energetic pair-instability supernovae. We present new two-dimensional simulations of primordial pair-instability supernovae done with the CASTRO code. Our simulations begin at earlier times than previous multidimensional models, at the onset of core contraction, to capture any dynamical instabilities that may be seeded by core contraction and explosive burning. Such instabilities could enhance explosive yields by mixing hot ash with fuel, thereby accelerating nuclear burning, and affect the spectra of the supernova by dredging up heavy elements from greater depths in the star at early times. Our grid of models includes both blue supergiants and red supergiants over the range in progenitor mass expected for these events. We find that fluid instabilities driven by oxygen and helium burning arise at the upper and lower boundaries of the oxygen shell ∼20-100 s after core bounce. Instabilities driven by burning freeze out after the SN shock exits the helium core. As the shock later propagates through the hydrogen envelope, a strong reverse shock forms that drives the growth of Rayleigh-Taylor instabilities. In red supergiant progenitors, the amplitudes of these instabilities are sufficient to mix the supernova ejecta.

  14. PROTOSTELLAR OUTFLOWS AND RADIATIVE FEEDBACK FROM MASSIVE STARS

    SciTech Connect

    Kuiper, Rolf; Yorke, Harold W.; Turner, Neal J. E-mail: Harold.W.Yorke@jpl.nasa.gov

    2015-02-20

    We carry out radiation hydrodynamical simulations of the formation of massive stars in the super-Eddington regime including both their radiative feedback and protostellar outflows. The calculations start from a prestellar core of dusty gas and continue until the star stops growing. The accretion ends when the remnants of the core are ejected, mostly by the force of the direct stellar radiation in the polar direction and elsewhere by the reradiated thermal infrared radiation. How long the accretion persists depends on whether the protostellar outflows are present. We set the mass outflow rate to 1% of the stellar sink particle's accretion rate. The outflows open a bipolar cavity extending to the core's outer edge, through which the thermal radiation readily escapes. The radiative flux is funneled into the polar directions while the core's collapse proceeds near the equator. The outflow thus extends the ''flashlight effect'', or anisotropic radiation field, found in previous studies from the few hundred AU scale of the circumstellar disk up to the 0.1 parsec scale of the core. The core's flashlight effect allows core gas to accrete on the disk for longer, in the same way that the disk's flashlight effect allows disk gas to accrete on the star for longer. Thus although the protostellar outflows remove material near the core's poles, causing slower stellar growth over the first few free-fall times, they also enable accretion to go on longer in our calculations. The outflows ultimately lead to stars of somewhat higher mass.

  15. Pair Instability Supernovae of Very Massive Population III Stars

    NASA Astrophysics Data System (ADS)

    Chen, Ke-Jung; Heger, Alexander; Woosley, Stan; Almgren, Ann; Whalen, Daniel J.

    2014-09-01

    Numerical studies of primordial star formation suggest that the first stars in the universe may have been very massive. Stellar models indicate that non-rotating Population III stars with initial masses of 140-260 M ⊙ die as highly energetic pair-instability supernovae. We present new two-dimensional simulations of primordial pair-instability supernovae done with the CASTRO code. Our simulations begin at earlier times than previous multidimensional models, at the onset of core contraction, to capture any dynamical instabilities that may be seeded by core contraction and explosive burning. Such instabilities could enhance explosive yields by mixing hot ash with fuel, thereby accelerating nuclear burning, and affect the spectra of the supernova by dredging up heavy elements from greater depths in the star at early times. Our grid of models includes both blue supergiants and red supergiants over the range in progenitor mass expected for these events. We find that fluid instabilities driven by oxygen and helium burning arise at the upper and lower boundaries of the oxygen shell ~20-100 s after core bounce. Instabilities driven by burning freeze out after the SN shock exits the helium core. As the shock later propagates through the hydrogen envelope, a strong reverse shock forms that drives the growth of Rayleigh-Taylor instabilities. In red supergiant progenitors, the amplitudes of these instabilities are sufficient to mix the supernova ejecta.

  16. Spectroscopic evolution of massive stars on the main sequence

    NASA Astrophysics Data System (ADS)

    Martins, F.; Palacios, A.

    2017-02-01

    Context. The evolution of massive stars depends on several parameters, and the relation between different morphological types is not fully constrained. Aims: We aim to provide an observational view of evolutionary models in the Hertzsprung-Russell diagram, on the main sequence. This view should help compare observations and model predictions. Methods: We first computed evolutionary models with the code STAREVOL for initial masses between 15 and 100 M⊙. We subsequently calculated atmosphere models at specific points along the evolutionary tracks, using the code CMFGEN. Synthetic spectra obtained in this way were classified as if they were observational data: we assigned them a spectral type and a luminosity class. We tested our spectral classification by comparison to observed spectra of various stars with different spectral types. We also compared our results with empirical data of a large number of OB stars. Results: We obtain spectroscopic sequences along evolutionary tracks. In our computations, the earliest O stars (O2-3.5) appear only above 50 M⊙. For later spectral types, a similar mass limit exists, but is lower. A luminosity class V does not correspond to the entire main sequence. This only holds for the 15 M⊙ track. As mass increases, a larger portion of the main sequence is spent in luminosity class III. Above 50 M⊙, supergiants appear before the end of core-hydrogen burning. Dwarf stars (luminosity class V) do not occur on the zero-age main sequence above 80 M⊙. Consequently, the distribution of luminosity class V in the HR diagram is not a diagnostic of the length of the main sequence (above 15 M⊙) and cannot be used to constrain the size of the convective core. The distribution of dwarfs and giants in the HR diagram that results from our calculations agrees well with the location of stars analyzed by means of quantitative spectroscopy. For supergiants, there is a slight discrepancy in the sense that luminosity class I is observed slightly

  17. A minimum column density of 1 g cm(-2) for massive star formation.

    PubMed

    Krumholz, Mark R; McKee, Christopher F

    2008-02-28

    Massive stars are very rare, but their extreme luminosities make them both the only type of young star we can observe in distant galaxies and the dominant energy sources in the Universe today. They form rarely because efficient radiative cooling keeps most star--forming gas clouds close to isothermal as they collapse, and this favours fragmentation into stars of one solar mass or lower. Heating of a cloud by accreting low-mass stars within it can prevent fragmentation and allow formation of massive stars, but the necessary properties for a cloud to form massive stars-and therefore where massive stars form in a galaxy--have not yet been determined. Here we show that only clouds with column densities of at least 1 g cm(-2) can avoid fragmentation and form massive stars. This threshold, and the environmental variation of the stellar initial mass function that it implies, naturally explain the characteristic column densities associated with massive star clusters and the difference between the radial profiles of Halpha and ultraviolet emission in galactic disks. The existence of a threshold also implies that the initial mass function should show detectable variation with environment within the Galaxy, that the characteristic column densities of clusters containing massive stars should vary between galaxies, and that star formation rates in some galactic environments may have been systematically underestimated.

  18. Dynamic Star Formation in the Massive DR21 Filament

    SciTech Connect

    Schneider, N.; Csengeri, T.; Bontemps, S.; Motte, F.; Simon, R.; Hennebelle, P.; Federrath, C.; Klessen, R.; /ZAH, Heidelberg /KIPAC, Menlo Park

    2010-08-25

    The formation of massive stars is a highly complex process in which it is unclear whether the star-forming gas is in global gravitational collapse or an equilibrium state supported by turbulence and/or magnetic fields. By studying one of the most massive and dense star-forming regions in the Galaxy at a distance of less than 3 kpc, i.e. the filament containing the well-known sources DR21 and DR21(OH), we attempt to obtain observational evidence to help us to discriminate between these two views. We use molecular line data from our {sup 13}CO 1 {yields} 0, CS 2 {yields} 1, and N{sub 2}H{sup +} 1 {yields} 0 survey of the Cygnus X region obtained with the FCRAO and CO, CS, HCO{sup +}, N{sub 2}H{sup +}, and H{sub 2}CO data obtained with the IRAM 30m telescope. We observe a complex velocity field and velocity dispersion in the DR21 filament in which regions of the highest column-density, i.e., dense cores, have a lower velocity dispersion than the surrounding gas and velocity gradients that are not (only) due to rotation. Infall signatures in optically thick line profiles of HCO{sup +} and {sup 12}CO are observed along and across the whole DR21 filament. By modelling the observed spectra, we obtain a typical infall speed of {approx}0.6 km s{sup -1} and mass accretion rates of the order of a few 10{sup -3} M{sub {circle_dot}} yr{sup -1} for the two main clumps constituting the filament. These massive clumps (4900 and 3300 M{sub {circle_dot}} at densities of around 10{sup 5} cm{sup -3} within 1 pc diameter) are both gravitationally contracting. The more massive of the clumps, DR21(OH), is connected to a sub-filament, apparently 'falling' onto the clump. This filament runs parallel to the magnetic field. Conclusions. All observed kinematic features in the DR21 filament (velocity field, velocity dispersion, and infall), its filamentary morphology, and the existence of (a) sub-filament(s) can be explained if the DR21 filament was formed by the convergence of flows on large

  19. Mass Loss and Pre-SN Evolution of Massive Stars

    NASA Astrophysics Data System (ADS)

    Smith, N.

    2010-06-01

    I review the role that mass loss plays in the pre-SN evolution of massive stars in a variety of different scenarios, and what observable effect it may have on the resulting SN. The amount of mass lost, its speed, and how soon before core collapse the material is removed can have a dramatic effect on the resulting SN light curve and spectrum. Massive stars trek across the HR diagram as they evolve, and the SN can look very different depending on where along this path core collapse occurs; it may not depend solely on initial mass. The most extreme pre-SN mass ejections in massive luminous blue variables (LBVs) have recently (and surprisingly) been linked to the very luminous Type IIn supernovae with circumstellar interaction that dominates the spectrum and enhances the visual luminosity. In some cases these objects require strong LBV-like shell ejections in the decades immediately before a SN. Strong winds or episodic mass loss of luminous red supergiants (RSGs) and yellow hypergiants may also lead to less extreme Type IIn events. Post-RSG blue supergiants like SN 1987A's progenitor and lower-luminosity LBVs like HD 168625 are also candidates for Type II SNe with visible circumstellar material. Finally, progenitors that successfully shed their H envelopes (either through LBV eruptions, strong winds, or binary mass transfer) die as Type Ib or Ic supernovae, and some of these also show evidence for immediate pre-SN shell ejections. Many of the potential progenitors of Types Ib, Ic, IIn, IIb, and II-L overlap in their range of probable initial mass, and I will point to some open questions about how they fit together in the context of stellar evolution, and the roles of mass loss and initial mass in determining their relative rates.

  20. Discovering Massive Runaway Stars with Infrared Bow Shock Nebulae: Four OB Stars Found in WISE

    NASA Astrophysics Data System (ADS)

    Wernke, Heather N.; Kobulnicky, Henry A.; Dale, Daniel A.; Povich, Matthew S.; Andrews, Julian E.; Chick, William T.; Munari, Stephan; Olivier, Grace M.; Schurhammer, Danielle; Sorber, Rebecca L.

    2016-01-01

    Supernovae, pulsars, and gamma-ray bursts are examples of the result of the death of massive (late-O and early-B type) stars. Determining stellar mass loss rates can help us predict the type of death the star will endure. We focus on stars that are located at the center of an infrared bow shock nebula, indicating that the star was flung from its birthplace at supersonic speed. Observing these massive, high-velocity, runaway stars with bow shock nebulae to determine their spectral type will help in the measurements of their stellar mass loss rates. The spectra of four OB stars driving bow shock candidates are presented. These four candidates were found by searching through the Wide-field Infrared Survey Explorer (WISE) All-Sky Data Release and were the most visible in the WISE 21µm band. The spectrum for each star was obtained with the Longslit Spectrograph at the Wyoming Infrared Observatory (WIRO). The spectral types of G077.3617+01.16 (HD 229159), G079.8219+00.096 ([CPR2002]A10), G092.7265+00.18, and G076.0752-02.2044 (TYC 2697-1046-1) were found to be B1.0I, O9.0V, B0.0V, and B0.0V respectively. As predicted, the candidates are all either late-O or early-B type stars. Now that the spectral types of these stars are known, further analysis can be done to determine the velocities, temperatures, masses, and stellar mass loss rates.This work is supported by the National Science Foundation under grants AST-1063146 (REU), AST-1411851 (RUI), and AST-1412845.

  1. JET FORMATION FROM MASSIVE YOUNG STARS: MAGNETOHYDRODYNAMICS VERSUS RADIATION PRESSURE

    SciTech Connect

    Vaidya, Bhargav; Porth, Oliver; Fendt, Christian; Beuther, Henrik E-mail: fendt@mpia.de

    2011-11-20

    Observations indicate that outflows from massive young stars are more collimated during their early evolution compared to later stages. Our paper investigates various physical processes that impact the outflow dynamics, i.e., its acceleration and collimation. We perform axisymmetric magnetohydrodynamic (MHD) simulations particularly considering the radiation pressure exerted by the star and the disk. We have modified the PLUTO code to include radiative forces in the line-driving approximation. We launch the outflow from the innermost disk region (r < 50 AU) by magnetocentrifugal acceleration. In order to disentangle MHD effects from radiative forces, we start the simulation in pure MHD and later switch on the radiation force. We perform a parameter study considering different stellar masses (thus luminosity), magnetic flux, and line-force strength. For our reference simulation-assuming a 30 M{sub Sun} star-we find substantial de-collimation of 35% due to radiation forces. The opening angle increases from 20 Degree-Sign to 32 Degree-Sign for stellar masses from 20 M{sub Sun} to 60 M{sub Sun }. A small change in the line-force parameter {alpha} from 0.60 to 0.55 changes the opening angle by {approx}8 Degree-Sign . We find that it is mainly the stellar radiation that affects the jet dynamics. Unless the disk extends very close to the star, its force is too small to have much impact. Essentially, our parameter runs with different stellar masses can be understood as a proxy for the time evolution of the star-outflow system. Thus, we have shown that when the stellar mass (thus luminosity) increases with age, the outflows become less collimated.

  2. The origin of massive clusters: from hyper-massive clouds to mini-bursts of star formation

    NASA Astrophysics Data System (ADS)

    Motte, Frederique; Louvet, Fabien; Nguyen Luong, Quang

    2015-08-01

    Herschel revealed high-density cloud filaments of several pc^3, which are forming clusters of OB-type stars. Counting Herschel protostars gives a direct measure of the mass of stars forming in a period of ~10^5 yrs, the ``instantaneous'' star formation activity. Given their activity, these so-called mini-starburst cloud ridges could be seen as "miniature and instant models" of starburst galaxies. Their characteristics could shed light on the origin of massive clusters.

  3. Massive-star supernovae as major dust factories.

    PubMed

    Sugerman, Ben E K; Ercolano, Barbara; Barlow, M J; Tielens, A G G M; Clayton, Geoffrey C; Zijlstra, Albert A; Meixner, Margaret; Speck, Angela; Gledhill, Tim M; Panagia, Nino; Cohen, Martin; Gordon, Karl D; Meyer, Martin; Fabbri, Joanna; Bowey, Janet E; Welch, Douglas L; Regan, Michael W; Kennicutt, Robert C

    2006-07-14

    We present late-time optical and mid-infrared observations of the Type II supernova 2003gd in the galaxy NGC 628. Mid-infrared excesses consistent with cooling dust in the ejecta are observed 499 to 678 days after outburst and are accompanied by increasing optical extinction and growing asymmetries in the emission-line profiles. Radiative-transfer models show that up to 0.02 solar masses of dust has formed within the ejecta, beginning as early as 250 days after outburst. These observations show that dust formation in supernova ejecta can be efficient and that massive-star supernovae could have been major dust producers throughout the history of the universe.

  4. Modeling and analysing massive star spectra: recent advances

    NASA Astrophysics Data System (ADS)

    Hamann, Wolf-Rainer; Todt, Helge; Sander, Andreas; Hainich, Rainer; Shenar, Tomer; Oskinova, Lidia

    2013-06-01

    Depending on their mass-loss rate, the spectra of massive stars are more or less formed in the expanding parts of their atmosphere, i.e. in the stellar wind. Over decades we have developed a sophisticated non-LTE code for modeling such spectra adequately. Originally, the "Potsdam WR PoWR" code aimed at Wolf-Rayet stars with their emission-line dominated spectra. Meanwhile we have added a more detailed treatment of the lower, nearly static parts of the atmosphere, including pressure broadening of lines. This extends the applicability of the models to spectra showing both, photospheric absorption lines and stellar wind features, e.g. from O and B-type stars. The ionizing effect of X-rays, which are intrinsically produced in stellar winds, can be taken into account. Instead of a one-temperature plasma, a power-law distribution of the X-ray emission measure can be chosen and gives the best fit of the EUV spectral energy distribution. The effect of rotation on the emergent spectrum can be simulated under suitable assumptions on the angular motions in the wind. When clumping is accounted for in the approximation of optically thin structures, this leads to a reduction of empirical mass-loss rates when determined from recombination lines. A more general, but not fully consistent formalism has been incorporated to account for the effect of "macroclumping" on resonance lines. PoWR calculations were also combined with a 3-D Monte Carlo code for resonance line scattering in a structured stellar wind. A formalism has been developed to establish the hydrodynamically consistent solution for radiation-driven winds, including all multiple-scattering effects that are essential e.g. for WR stars, but this branch of the code is not ready yet for routinely use. PoWR models have been used extensively for analyzing WR stars in the Galaxy and the Magellanic Clouds, and for a couple of OB-type stars and LBVs. An increasing number of models is made available via internet.

  5. Unravelling the Mystery of Massive Star Birth - All Stars are Born the Same Way

    NASA Astrophysics Data System (ADS)

    2010-07-01

    Astronomers have obtained the first image of a dusty disc closely encircling a massive baby star, providing direct evidence that massive stars form in the same way as their smaller brethren. This discovery, made thanks to a combination of ESO's telescopes, is described in an article in this week's issue of Nature. "Our observations show a disc surrounding an embryonic young, massive star, which is now fully formed," says Stefan Kraus, who led the study. "One can say that the baby is about to hatch!" The team of astronomers looked at an object known by the cryptic name of IRAS 13481-6124. About twenty times the mass of our Sun and five times its radius, the young central star, which is still surrounded by its pre-natal cocoon, is located in the constellation of Centaurus, about 10 000 light-years away. From archival images obtained by the NASA Spitzer Space Telescope as well as from observations done with the APEX 12-metre submillimetre telescope, astronomers discovered the presence of a jet. "Such jets are commonly observed around young low-mass stars and generally indicate the presence of a disc," says Kraus. Circumstellar discs are an essential ingredient in the formation process of low-mass stars such as our Sun. However, it is not known whether such discs are also present during the formation of stars more massive than about ten solar masses, where the strong light emitted might prevent mass falling onto the star. For instance, it has been proposed that massive stars might form when smaller stars merge. In order to discover and understand the properties of this disc, astronomers employed ESO's Very Large Telescope Interferometer (VLTI). By combining light from three of the VLTI's 1.8-metre Auxiliary Telescopes with the AMBER instrument, this facility allows astronomers to see details equivalent to those a telescope with a mirror of 85 metres in diameter would see. The resulting resolution is about 2.4 milliarcseconds, which is equivalent to picking out the head

  6. Modeling Broadband X-Ray Absorption of Massive Star Winds

    NASA Technical Reports Server (NTRS)

    Leutenegger, Maurice A.; Cohen,David H.; Zsargo, Janos; Martell, Erin M.; MacArthur, James P.; Owocki, Stanley P.; Gagne, Marc; Hillier, D. John

    2010-01-01

    We present a method for computing the net transition of X-rays emitted by shock-heated plasma distributed throughout a partially optically thick stellar wind from a massive star. We find the transmission by an exact integration of the formal solution, assuming the emitting plasma and absorbing plasma are mixed at a constant mass ratio above some minimum radius, below which there is assumed to be no emission. This model is more realistic than either the slab absorption associated with a corona at the base of the wind or the exospheric approximation that assumes all observed X-rays are emitted without attenuation from above the radius of optical depth unity. Our model is implemented in XSPEC as a pre-calculated table that can be coupled to a user-defined table of the wavelength dependent wind opacity. We provide a default wind opacity model that is more representative of real wind opacities than the commonly used neutral ISM tabulation. Preliminary modeling of Chandra grating data indicates that the X-ray hardness trend of OB stars with spectral subtype cars largely be understood as a wind absorption effect.

  7. Radioactive 26Al from massive stars in the Galaxy.

    PubMed

    Diehl, Roland; Halloin, Hubert; Kretschmer, Karsten; Lichti, Giselher G; Schönfelder, Volker; Strong, Andrew W; von Kienlin, Andreas; Wang, Wei; Jean, Pierre; Knödlseder, Jürgen; Roques, Jean-Pierre; Weidenspointner, Georg; Schanne, Stephane; Hartmann, Dieter H; Winkler, Christoph; Wunderer, Cornelia

    2006-01-05

    Gamma-rays from radioactive 26Al (half-life approximately 7.2 x 10(5) years) provide a 'snapshot' view of continuing nucleosynthesis in the Galaxy. The Galaxy is relatively transparent to such gamma-rays, and emission has been found concentrated along its plane. This led to the conclusion that massive stars throughout the Galaxy dominate the production of 26Al. On the other hand, meteoritic data show evidence for locally produced 26Al, perhaps from spallation reactions in the protosolar disk. Furthermore, prominent gamma-ray emission from the Cygnus region suggests that a substantial fraction of Galactic 26Al could originate in localized star-forming regions. Here we report high spectral resolution measurements of 26Al emission at 1808.65 keV, which demonstrate that the 26Al source regions corotate with the Galaxy, supporting its Galaxy-wide origin. We determine a present-day equilibrium mass of 2.8 (+/- 0.8) solar masses of 26Al. We use this to determine that the frequency of core collapse (that is, type Ib/c and type II) supernovae is 1.9 (+/- 1.1) events per century.

  8. Pre-explosion dynamo in the cores of massive stars

    NASA Astrophysics Data System (ADS)

    Soker, Noam; Gilkis, Avishai

    2017-01-01

    We propose a speculative scenario where dynamo amplification of magnetic fields in the core convective shells of massive stars, tens of years to hours before they explode, leads to envelope expansion and enhanced mass-loss rate, resulting in pre-explosion outbursts (PEOs). The convective luminosity in the burning shells of carbon, neon, oxygen, and then silicon, are very high. Based on the behaviour of active main-sequence stars, we speculate that the convective shells can trigger magnetic activity with a power of about 0.001 times the convective luminosity. Magnetic flux tubes might buoy outward and deposit their energy in the outer parts of the envelope. This in turn might lead to the expansion of the envelope and to an enhanced mass-loss rate. If a close binary companion is present, mass transfer might take place and lead to an energetic outburst. The magnetic activity requires minimum core rotation and that the stochastic magnetic activity be on its high phase. Only in rare cases these conditions are met, accounting for that only the minority of core collapse supernovae experience PEO. Such a pre-explosion magnetic activity might have implications for the explosion mechanism itself.

  9. Characterizing the convective velocity fields in massive stars

    SciTech Connect

    Chatzopoulos, Emmanouil; Graziani, Carlo; Couch, Sean M.

    2014-11-01

    We apply the mathematical formalism of vector spherical harmonics decomposition to convective stellar velocity fields from multidimensional hydrodynamics simulations and show that the resulting power spectra furnish a robust and stable statistical description of stellar convective turbulence. Analysis of the power spectra helps identify key physical parameters of the convective process such as the dominant scale of the turbulent motions that influence the structure of massive evolved pre-supernova stars. We introduce the numerical method that can be used to calculate vector spherical harmonics power spectra from two-dimensional (2D) and three-dimensional (3D) convective shell simulation data. Using this method we study the properties of oxygen shell burning and convection for a 15 M {sub ☉} star simulated by the hydrodynamics code FLASH in 2D and 3D. We discuss the importance of realistic initial conditions to achieving successful core-collapse supernova explosions in multidimensional simulations. We show that the calculated power spectra can be used to generate realizations of the velocity fields of presupernova convective shells. We find that the slope of the solenoidal mode power spectrum remains mostly constant throughout the evolution of convection in the oxygen shell in both 2D and 3D simulations. We also find that the characteristic radial scales of the convective elements are smaller in 3D than in 2D, while the angular scales are larger in 3D.

  10. MODELING BROADBAND X-RAY ABSORPTION OF MASSIVE STAR WINDS

    SciTech Connect

    Leutenegger, Maurice A.; Zsargo, Janos; Martell, Erin M.; Owocki, Stanley P.; Gagne, Marc; Hillier, D. John

    2010-08-20

    We present a method for computing the net transmission of X-rays emitted by shock-heated plasma distributed throughout a partially optically thick stellar wind from a massive star. We find the transmission by an exact integration of the formal solution, assuming that the emitting plasma and absorbing plasma are mixed at a constant mass ratio above some minimum radius, below which there is assumed to be no emission. This model is more realistic than either the slab absorption associated with a corona at the base of the wind or the exospheric approximation that assumes that all observed X-rays are emitted without attenuation from above the radius of optical depth unity. Our model is implemented in XSPEC as a pre-calculated table that can be coupled to a user-defined table of the wavelength-dependent wind opacity. We provide a default wind opacity model that is more representative of real wind opacities than the commonly used neutral interstellar medium (ISM) tabulation. Preliminary modeling of Chandra grating data indicates that the X-ray hardness trend of OB stars with spectral subtype can largely be understood as a wind absorption effect.

  11. Studying the nature of runaway stars using Andromeda's massive stellar population

    NASA Astrophysics Data System (ADS)

    Bulkley, Jordan; Seth, Anil; Johnson, Cliff; Dalcanton, Julianne; Guhathakurta, Raja; Dorman, Claire; Hamren, Katie; Caldwell, Nelson; Williams, Ben

    2016-03-01

    Theory of the formation of massive stars remains incomplete, the question of the environments required have yet to be answered. An agreement on whether all massive stars must form in cluster type environments, or if isolated formation is viable has yet to be reached. This is further complicated by the presence of runaway stars, stellar objects which have been ejected from their host cluster. Studying the nature of these isolated runaway stars becomes paramount in the larger goal of developing a more comprehensive massive star formation theory. Creating a survey of runaway star candidates is possible thanks to Panchromatic Hubble Andromeda Treasury's UV and optical photometry, and the identified clusters from the Andromeda Project. A first glimpse into the data suggests large body of massive stars are 50 parsecs or more from the closest cluster and roughly half of the entire massive stellar population is found outside of defined cluster boundaries. Additional analysts shows a stark difference between the velocity dispersion of massive stars and appropriately young clusters, the stars exhibiting a inflated dispersion. Using this result in conjunction with artificial clusters and star populations, constrains on the percentage of expected runaway objects can be made.

  12. Nature of massive emission-line stars of the LMC NGC 1850 star-formation region

    NASA Astrophysics Data System (ADS)

    Garrido, H.; Aguayo, G.; Martayan, C.; Baade, D.

    2013-06-01

    Based on an analysis of slitless spectroscopic data we obtained with the ESO Wide Field Imager, we present the identification and nature of 96 massive emission-line stars (ELS) located in and around the LMC clusters NGC 1850, NGC 1855, and NGC 1858. Most of the ELS are concentrated around the young double cluster NGC 1850 and its vicinity. Combined to the photometry and lightcurves, these observations suggest that the NGC 1850 star-formation history has followed different episodes due to the dynamical interaction between clusters, photo-ionization and compression of the associated H II region, leading to other recent star formation burst. The actual ELS localization also seems to indicate a possible mass and spatial segregation with the evolution/age of the clusters.

  13. Stellar neutron sources and s-process in massive stars

    NASA Astrophysics Data System (ADS)

    Talwar, Rashi

    The s-process or the slow neutron capture process is a nucleosynthesis process taking place at relatively low neutron densities in stars. It runs along the valley of beta stability since the neutron capture rate is much slower compared to the beta decay rate. The s-process occurs mainly during core helium burning and shell carbon burning phase in massive stars and during thermally pulsing helium burning phase in asymptotic giant-branch stars. The potential stellar neutron source for the s-process is associated with alpha-capture reactions on light nuclei. The capture-reaction rates provide the reaction flow for the build-up of22Ne neutron source during the heliumburning phase in these stars. The low energy 26Mg resonances at stellar energies below 800 keV are predicted to have a critical influence on the alpha-capture rates on 22Ne. Some of these resonances may also correspond to pronounced alpha cluster structure near the alpha-threshold. However, these resonances have remained elusive during direct alpha capture measurements owing to the high Coulomb barrier and background from cosmic rays and beam induced reactions. Hence, in the present work, alpha-inelastic scattering and alpha- transfer measurements have been performed to probe the level structure of 26Mg nucleus in order to determine the 22Ne+alpha-capture rates. Both experiments have been performed using the high-resolution Grand Raiden Spectrometer at the Research Center for Nuclear Physics (RCNP), Osaka, Japan. For the alpha-inelastic scattering measurement, a self-supporting solid 26Mg target was used and for the alpha-transfer study via the (6Li,d) reaction, 22Ne gas enclosed in a gas cell with Aramid windows was used. The reaction products were momentum analysed by the spectrometer and detected at the focal plane equipped with two multi-wire drift chambers and two plastic-scintillation detectors. The focal plane detection system provided information on the position, the angle, the time of flight and

  14. Recent results on the connection between massive stars and supernovae

    NASA Astrophysics Data System (ADS)

    Hillier, D. John

    2015-08-01

    With the dramatic increase in observational data on supernovae (SNe), SN studies are undergoing a renaissance. It is known that Type II SN IIP arise from the explosion of a red supergiant (RSG). In several cases the RSG is seen in pre-explosion images, but it is absent in post-SN images — unambiguous proof that the RSG has exploded. Surprisingly, all RSG progenitors identified have a mass less than approximately 20 M⊙. To date, there has been no direct detection of the progenitor of a Type Ib or Ic SN. Because their ejecta masses are generally low (3 to 5 M⊙), these SNe are believed to arise from a relatively low mass star in a binary system. Such systems dominate the statistics due to the initial mass function. The broad-lined Ic SNe tend to have higher mass, and some of these may be associated with classic Wolf-Rayet (W-R) stars. Type IIn SNe are a heterogeneous class of SN — they arise when the SN ejecta interacts with preexisting circumstellar material. Their spectra often exhibit narrow emission lines, and they can be particularly luminous due to the efficient conversion of kinetic energy into radiation. The origin of Type IIn SN and their connection to stellar evolution is the subject of fierce debate and controversy. The final class to be discussed are the pair-instability supernovae (PISNe) which arise from a nuclear detonation. PISNe have a distinct chemical signature, and the observational evidence for the existence of this class of SN is ambiguous and controversial. While much progress has been made, it is still difficult to get models of core-collapse SNe to explode from first principles. The problem is inherently 3D and numerous questions remain unanswered. How much material falls back onto the core? What is the nature and extent of mixing in the ejecta? What are the chemical yields? Do all massive stars end their life as a luminous SN?

  15. Outflow Feedback Regulated Massive Star Formation in Parsec-Scale Cluster Forming Clumps

    SciTech Connect

    Wang, Peng; Li, Zhi-Yun; Abel, Tom; Nakamura, Fumitaka; /Niigata U.

    2010-02-15

    We investigate massive star formation in turbulent, magnetized, parsec-scale clumps of molecular clouds including protostellar outflow feedback using three dimensional numerical simulations of effective resolution 2048{sup 3}. The calculations are carried out using a block structured adaptive mesh refinement code that solves the ideal MHD equations including self-gravity and implements accreting sink particles. We find that, in the absence of regulation by magnetic fields and outflow feedback, massive stars form readily in a turbulent, moderately condensed clump of {approx} 1,600 M{sub {circle_dot}} (containing {approx} 10{sup 2} initial Jeans masses), along with a cluster of hundreds of lower mass stars. The massive stars are fed at high rates by (1) transient dense filaments produced by large-scale turbulent compression at early times, and (2) by the clump-wide global collapse resulting from turbulence decay at late times. In both cases, the bulk of the massive star's mass is supplied from outside a 0.1 pc-sized 'core' that surrounds the star. In our simulation, the massive star is clump-fed rather than core-fed. The need for large-scale feeding makes the massive star formation prone to regulation by outflow feedback, which directly opposes the feeding processes. The outflows reduce the mass accretion rates onto the massive stars by breaking up the dense filaments that feed the massive star formation at early times, and by collectively slowing down the global collapse that fuel the massive star formation at late times. The latter is aided by a moderate magnetic field of strength in the observed range (corresponding to a dimensionless clump mass-to-flux ratio {lambda} {approx} a few); the field allows the outflow momenta to be deposited more efficiently inside the clump. We conclude that the massive star formation in our simulated turbulent, magnetized, parsec-scale clump is outflow-regulated and clump-fed (ORCF for short). An important implication is that the

  16. The Evolution of Massive Stars: a Selection of Facts and Questions

    NASA Astrophysics Data System (ADS)

    Vanbeveren, D.

    In the present paper we discuss a selection of facts and questions related to observations and evolutionary calculations of massive single stars and massive stars in interacting binaries. We focus on the surface chemical abundances, the role of stellar winds, the early Be-stars, the high mass X-ray binaries and the effects of rotation on stellar evolution. Finally, we present an unconventionally formed object scenario (UFO-scenario) of WR binaries in dense stellar environments.

  17. The location, clustering, and propagation of massive star formation in giant molecular clouds

    NASA Astrophysics Data System (ADS)

    Ochsendorf, Bram; Meixner, Margaret; Chastenet, Jeremy; Tielens, A. G. G. M.; Roman-Duval, Julia

    2017-01-01

    Massive stars are key players in the evolution of galaxies, yet their formation pathway remains unclear. In this talk, I will highlight results from a project utilizing data from several galaxy-wide surveys to build an unbiased dataset of ~700 massive young stellar objects (MYSOs), ~200 giant molecular clouds (GMCs), and ~100 young (< 10 Myr) optical stellar clusters (SCs) in the Large Magellanic Cloud. We have employed this data to quantitatively study the location and clustering of massive star formation and its relation to the internal structure of GMCs. The main results are as follows: (1) Massive stars do not typically form at the highest column densities nor centers of their parent GMCs. (2) Massive star formation clusters over multiple generations and on size scales much smaller than the size of the parent GMC. (3) The rate of massive star formation is significantly boosted in clouds near SCs. Yet, comparison of molecular clouds associated with SCs with those that are not reveals no significant difference in their global properties. These results reveal a connection between different generations of massive stars on timescales up to 10 Myr. I will compare our findings with Galactic studies and discuss this in terms of GMC collapse, triggered star formation, and a potential dichotomy between low- and high-mass star formation.

  18. The Location, Clustering, and Propagation of Massive Star Formation in Giant Molecular Clouds

    NASA Astrophysics Data System (ADS)

    Ochsendorf, Bram B.; Meixner, Margaret; Chastenet, Jérémy; Tielens, Alexander G. G. M.; Roman-Duval, Julia

    2016-11-01

    Massive stars are key players in the evolution of galaxies, yet their formation pathway remains unclear. In this work, we use data from several galaxy-wide surveys to build an unbiased data set of ∼600 massive young stellar objects, ∼200 giant molecular clouds (GMCs), and ∼100 young (<10 Myr) optical stellar clusters (SCs) in the Large Magellanic Cloud. We employ this data to quantitatively study the location and clustering of massive star formation and its relation to the internal structure of GMCs. We reveal that massive stars do not typically form at the highest column densities nor centers of their parent GMCs at the ∼6 pc resolution of our observations. Massive star formation clusters over multiple generations and on size scales much smaller than the size of the parent GMC. We find that massive star formation is significantly boosted in clouds near SCs. However, whether a cloud is associated with an SC does not depend on either the cloud’s mass or global surface density. These results reveal a connection between different generations of massive stars on timescales up to 10 Myr. We compare our work with Galactic studies and discuss our findings in terms of GMC collapse, triggered star formation, and a potential dichotomy between low- and high-mass star formation.

  19. A Study of Massive Stars Evolving toward the Wolf-Rayet Stage

    NASA Astrophysics Data System (ADS)

    Maryeva, O. V.; Klochkova, V. G.; Chentsov, E. L.; Polcaro, V. F.; Rossi, C.; Viotti, R. F.

    2017-02-01

    We present the results of our study of two massive stars, V1302 Aql (IRC+10420) and GR 290 (M33/V532, Romano's Star), with different initial masses but now approaching the region of Wolf-Rayet stars on the Hertzsprung-Russell diagram, one from the yellow hypergiants side and the other from the Luminous Blue Variables side.

  20. An Extraordinary Cluster of Massive Young Stars in the Milky Way's Nucleus

    NASA Technical Reports Server (NTRS)

    Serabyn, E.; Shupe, D.; Figer, D. F.

    1998-01-01

    The mass distribution of newborn stars is key to the evolution of galaxies, as it determines whether a galaxy's interstellar medium is funneled predominantly into dim, long-lived, low-mass stars, as is the case in normal galactic disks, or into bright, short-lived, massive stars, as is perhaps the case in starburst nuclei.

  1. Intermediate-Mass Star-Forming Regions: What are the Most Massive Stars Formed?

    NASA Astrophysics Data System (ADS)

    Kobulnicky, Chip; Vargas, Carlos; Kerton, Charles; Arvidsson, Kim

    2010-08-01

    High-mass star formation cannot be viewed as simply a scaled-up version of the paradigm for low-mass star formation. The high-mass regime (M> 10 Msun) appears to require significant differences in cloud fragmentation, accretion, radiation, turbulence, and overall molecular density compared to the low-mass regime. We have identified a sample of intermediate-mass star-forming regions (IM SFRs) hosting embedded clusters that straddle the boundary of these two regimes and can be used to understand the factors that govern the transition between these extremes. Most notable among these factors is the possibility of a critical cloud mass column density that appears to divide high-mass SFRs from IM SFRs. Yet, the very nature of IM SFRs and their stellar content are almost completely unknown, primarily because of the previous difficulty in identifying such objects. We propose HK band spectroscopy of the brightest stellar sources near nine IM SFRs to identify probable members, confirm the IM nature of the most massive stars, and characterize their evolutionary state. Three nights with FLAMINGOS on the 4 m (or equivalent IR spectrograph) will suffice to obtain classification spectra and several spectral diagnostics sensitive to accretion for at least 8-10 stars per object.

  2. Highly dynamically evolved intermediate-age open clusters

    NASA Astrophysics Data System (ADS)

    Piatti, Andrés E.; Dias, Wilton S.; Sampedro, Laura M.

    2017-04-01

    We present a comprehensive UBVRI and Washington CT1T2 photometric analysis of seven catalogued open clusters, namely: Ruprecht 3, 9, 37, 74, 150, ESO 324-15 and 436-2. The multiband photometric data sets in combination with 2MASS photometry and Gaia astrometry for the brighter stars were used to estimate their structural parameters and fundamental astrophysical properties. We found that Ruprecht 3 and ESO 436-2 do not show self-consistent evidence of being physical systems. The remained studied objects are open clusters of intermediate age (9.0 ≤ log(t yr-1) ≤ 9.6), of relatively small size (rcls ∼ 0.4-1.3 pc) and placed between 0.6 and 2.9 kpc from the Sun. We analysed the relationships between core, half-mass, tidal and Jacoby radii as well as half-mass relaxation times to conclude that the studied clusters are in an evolved dynamical stage. The total cluster masses obtained by summing those of the observed cluster stars resulted to be ∼10-15 per cent of the masses of open clusters of similar age located closer than 2 kpc from the Sun. We found that cluster stars occupy volumes as large as those for tidally filled clusters.

  3. RECOVERY FROM GIANT ERUPTIONS IN VERY MASSIVE STARS

    SciTech Connect

    Kashi, Amit; Davidson, Kris; Humphreys, Roberta M.

    2016-01-20

    We use a hydro-and-radiative-transfer code to explore the behavior of a very massive star (VMS) after a giant eruption—i.e., following a supernova impostor event. Beginning with reasonable models for evolved VMSs with masses of 80 M{sub ⊙} and 120 M{sub ⊙}, we simulate the change of state caused by a giant eruption via two methods that explicitly conserve total energy. (1) Synthetically removing outer layers of mass of a few M{sub ⊙} while reducing the energy of the inner layers. (2) Synthetically transferring energy from the core to the outer layers, an operation that automatically causes mass ejection. Our focus is on the aftermath, not the poorly understood eruption itself. Then, using a radiation-hydrodynamic code in 1D with realistic opacities and convection, the interior disequilibrium state is followed for about 200 years. Typically the star develops a ∼400 km s{sup −1} wind with a mass loss rate that begins around 0.1 M{sub ⊙} yr{sup −1} and gradually decreases. This outflow is driven by κ-mechanism radial pulsations. The 1D models have regular pulsations but 3D models will probably be more chaotic. In some cases a plateau in the mass-loss rate may persist about 200 years, while other cases are more like η Car which lost >10 M{sub ⊙} and then had an abnormal mass loss rate for more than a century after its eruption. In our model, the post-eruption outflow carried more mass than the initial eruption. These simulations constitute a useful preliminary reconnaissance for 3D models which will be far more difficult.

  4. Recovery from Giant Eruptions in Very Massive Stars

    NASA Astrophysics Data System (ADS)

    Kashi, Amit; Davidson, Kris; Humphreys, Roberta M.

    2016-01-01

    We use a hydro-and-radiative-transfer code to explore the behavior of a very massive star (VMS) after a giant eruption—i.e., following a supernova impostor event. Beginning with reasonable models for evolved VMSs with masses of 80 M⊙ and 120 M⊙, we simulate the change of state caused by a giant eruption via two methods that explicitly conserve total energy. (1) Synthetically removing outer layers of mass of a few M⊙ while reducing the energy of the inner layers. (2) Synthetically transferring energy from the core to the outer layers, an operation that automatically causes mass ejection. Our focus is on the aftermath, not the poorly understood eruption itself. Then, using a radiation-hydrodynamic code in 1D with realistic opacities and convection, the interior disequilibrium state is followed for about 200 years. Typically the star develops a ˜400 km s-1 wind with a mass loss rate that begins around 0.1 M⊙ yr-1 and gradually decreases. This outflow is driven by κ-mechanism radial pulsations. The 1D models have regular pulsations but 3D models will probably be more chaotic. In some cases a plateau in the mass-loss rate may persist about 200 years, while other cases are more like η Car which lost >10 M⊙ and then had an abnormal mass loss rate for more than a century after its eruption. In our model, the post-eruption outflow carried more mass than the initial eruption. These simulations constitute a useful preliminary reconnaissance for 3D models which will be far more difficult.

  5. Massive Star Formation in the Cygnus-X DR15 Complex

    NASA Astrophysics Data System (ADS)

    Laws, Anna; Hora, Joseph L.; Zhang, Qizhou

    2017-01-01

    To unravel the mysteries of massive star formation it is necessary to observe Young Stellar Objects (YSOs) in a variety of environments and evolutionary stages. The Cygnus-X region, at a distance of 1.4kpc, is one of the closest massive star-forming complexes and so offers an excellent view of the earliest stages of massive stars and clusters. A key area in this complex is DR15, a cluster population with many intriguing objects including a molecular pillar and InfraRed Dark Cloud (IRDC) that is likely to host newly forming massive stars. Previous infrared studies incorporating data from Spitzer and Herschel have built catalogs of YSOs in the DR15 region, revealing its abundance of massive star formation. To improve on these catalogs and to probe the earliest stages of star formation, we have observed the region at high spatial resolution using the Submillimeter Array (SMA). The SMA data are more sensitive to objects in earlier evolutionary phases and provide additional constraints when modeling the Spectral Energy Distribution (SED) of each star, resulting in more accurate values for each star’s mass and accretion rate. The SMA data allow us to trace the particular YSOs that are actively accreting and drive molecular outflows, which influence the ISM and chemical trends across the region. DR15 offers an exciting chance to expand our understanding of the processes behind massive star formation.

  6. UV-selected Young Massive Star Cluster Populations in Nearby Star-forming Galaxies

    NASA Astrophysics Data System (ADS)

    Smith, Linda J.

    2015-08-01

    The Legacy ExtraGalactic UV Survey (LEGUS) is an HST Treasury program aimed at the investigation of star-formation and its relationship to environment in nearby galaxies. The results of a UV-selected study of young massive star clusters in a sample of nearby galaxies (< 10 Mpc) using detections based on the WFC3/UVIS F275W filter will be presented. Previous studies have used V or I-band detections and tend to ignore clusters younger than 10 Myr old. This very young population, which represents the most recent cluster-forming event in the LEGUS galaxies will be discussed.This poster is presented on behalf of the LEGUS team (PI Daniela Calzetti).

  7. Magnetic fields during the early phase of massive star formation

    NASA Astrophysics Data System (ADS)

    Seifried, Daniel Jürgen

    2013-01-01

    The goal of this work is to improve our current understanding of the formation process of massive stars in the presence of magnetic fields by means of numerical simulations. In particular, I focus on protostellar accretion rates, the evolution and the properties of protostellar discs and their associated outflows, and the interplay of turbulence and magnetic fields and its impact on protostellar disc formation. In a systematic parameter study I show that the accretion rates are remarkably constant over a wide range of initial conditions. Furthermore, I show that in the absence of turbulence for strong initial magnetic fields only sub-Keplerian discs can form which is attributed to the strong magnetic braking effect. This result seems to be in contrast to observational results. The morphology of the outflows, which shows a strong dependence on the initial conditions, can ultimately be linked to the structure of the underlying disc. Well-collimated outflows with high outflows velocities only develop if a Keplerian protostellar disc is present, otherwise slowly expanding, sphere-like outflows develop. Furthermore, I analyse the driving mechanism of outflows with an analytical criterion derived in the course of this work. When including supersonic, turbulent motions in the simulations, Keplerian protostellar discs form in contrast to the non-turbulent simulations. This result is in agreement with observations of early-type protostellar objects.

  8. Infrared absorption of H_2_O toward massive young stars.

    NASA Astrophysics Data System (ADS)

    van Dishoeck, E. F.; Helmich, F. P.

    1996-11-01

    We present ISO-SWS observations of absorption lines of gas-phase water within its bending vibrational mode at 6μm toward four massive young stars, which cover a range in physical parameters. Hot water with an excitation temperature >200K is detected toward GL 2136 and GL 4176, in addition to GL 2591 discussed by Helmich et al. (1996A&A...315L.173H). The abundance of water with respect to H_2_ is high in these regions, ~(2-3)x10^-5^, and comparable to the solid H_2_O abundance. In contrast, no gas-phase water absorption lines are seen toward NGC 7538 IRS9. The amount of gas-phase water is correlated with the column density of warm gas along the line of sight. Infrared observations of a larger variety of sources may provide insight into the relative importance of evaporation of grain mantles vs. high temperature gas-phase chemistry in producing the observed high abundance of H_2_O.

  9. SUPERSONIC LINE BROADENING WITHIN YOUNG AND MASSIVE SUPER STAR CLUSTERS

    SciTech Connect

    Tenorio-Tagle, Guillermo; Silich, Sergiy; Wuensch, Richard; Munoz-Tunon, Casiana; Palous, Jan E-mail: richard@wunsch.c E-mail: cmt@ll.iac.e

    2010-01-10

    The origin of supersonic infrared and radio recombination nebular lines often detected in young and massive superstar clusters is discussed. We suggest that these arise from a collection of repressurizing shocks (RSs), acting effectively to re-establish pressure balance within the cluster volume and from the cluster wind which leads to an even broader although much weaker component. The supersonic lines here are shown to occur in clusters that undergo a bimodal hydrodynamic solution, that is within clusters that are above the threshold line in the mechanical luminosity or cluster mass versus the size of the cluster plane. A plethora of RSs is due to frequent and recurrent thermal instabilities that take place within the matter reinserted by stellar winds and supernovae. We show that the maximum speed of the RSs and of the cluster wind are both functions of the temperature reached at the stagnation radius. This temperature depends only on the cluster heating efficiency (eta). Based on our two-dimensional simulations we calculate the line profiles that result from several models and confirm our analytical predictions. From a comparison between the predicted and observed values of the half-width zero intensity of the two line components, we conclude that the thermalization efficiency in young super star clusters above the threshold line must be lower than 20%.

  10. Nucleosynthesis in Asymmetric, Core-Collapse Supernovae of Massive Stars

    NASA Astrophysics Data System (ADS)

    Fujimoto, Shin-ichiro; Ono, Masaomi; Hashimoto, Masa-aki; Kotake, Kei

    We investigate nucleosynthesis in core-collapse supernovae (SNe) of massive stars of 10.8-40M ȯ , based on 2D hydrodynamic simulations of the SN explosion. We follow long-term evolution of the explosion over 1 s after the core bounce, adopting a neutrino-core model, with which we evaluate the evolution of neutrino luminosities and temperatures. We adopt two sets of parameters for the core model; one results in early explosion of 0.2-0.4 s after the bounce and the other later explosion of 0.4-0.6 s. We then calculate abundance evolution of the SN ejecta through post-processing calculation using a large nuclear reaction network. We find that for both the early and later explosion cases, the explosion energy, Eexp, and ejected masses of 56Ni, 57Ni, and 44Ti strongly correlate with the compactness parameter at 2.5M ȯ . Only for the early explosion case, we well reproduce a correlation of the mass of 56Ni to Eexp observed in Type II-Plateau SNe and find two progenitors (˜ 20 and 25M ȯ ) whose Eexp, and the masses of 56Ni and 57Ni are comparable to those in SN1987A.

  11. Atomic Physics of Shocked Plasma in Winds of Massive Stars

    NASA Technical Reports Server (NTRS)

    Leutenegger, Maurice A.; Cohen, David H.; Owocki, Stanley P.

    2012-01-01

    High resolution diffraction grating spectra of X-ray emission from massive stars obtained with Chandra and XMM-Newton have revolutionized our understanding of their powerful, radiation-driven winds. Emission line shapes and line ratios provide diagnostics on a number of key wind parameters. Modeling of resolved emission line velocity profiles allows us to derive independent constraints on stellar mass-loss rates, leading to downward revisions of a factor of a few from previous measurements. Line ratios in He-like ions strongly constrain the spatial distribution of Xray emitting plasma, confirming the expectations of radiation hydrodynamic simulations that X-ray emission begins moderately close to the stellar surface and extends throughout the wind. Some outstanding questions remain, including the possibility of large optical depths in resonance lines, which is hinted at by differences in line shapes of resonance and intercombination lines from the same ion. Resonance scattering leads to nontrivial radiative transfer effects, and modeling it allows us to place constraints on shock size, density, and velocity structure

  12. Atomic physics of shocked plasma in winds of massive stars

    SciTech Connect

    Leutenegger, Maurice A.; Cohen, David H.; Owocki, Stanley P.

    2012-05-25

    High resolution diffraction grating spectra of X-ray emission from massive stars obtained with Chandra and XMM-Newton have revolutionized our understanding of their powerful, radiation-driven winds. Emission line shapes and line ratios provide diagnostics on a number of key wind parameters. Modeling of resolved emission line velocity profiles allows us to derive independent constraints on stellar mass-loss rates, leading to downward revisions of a factor of a few from previous measurements. Line ratios in He-like ions strongly constrain the spatial distribution of Xray emitting plasma, confirming the expectations of radiation hydrodynamic simulations that X-ray emission begins moderately close to the stellar surface and extends throughout the wind. Some outstanding questions remain, including the possibility of large optical depths in resonance lines, which is hinted at by differences in line shapes of resonance and intercombination lines from the same ion. Resonance scattering leads to nontrivial radiative transfer effects, and modeling it allows us to place constraints on shock size, density, and velocity structure.

  13. Discovering Massive Runaway Stars with Infrared Bowshock Nebulae: Identifying Twelve New Early-Type Stars using SMOG

    NASA Astrophysics Data System (ADS)

    Chick, William T.; Andrews, Julian E.; Kobulnicky, Henry A.; Povich, Matthew S.; Dale, Daniel A.; Munari, Stephan; Olivier, Grace M.; Schurhammer, Danielle; Sorber, Rebecca L.; Wernke, Heather N.

    2016-01-01

    Massive O and B type stars are crucial to the evolution of the interstellar medium, dominating the production of ionizing radiation, mechanical energy, and heavy elements. However, due to their short lives and relative scarcity, these stars are some of the least well understood and are difficult to locate outside of large star forming regions. A small but significant fraction of these massive stars have been observed to be high-velocity runaway stars moving rapidly away from their origin. When these stars encounter nebular gas they create characteristic arc-shaped bowshocks of heated compressed dust and gas. Using the distinct infrared emission morphology of the hot dust, these bowshock nebulae are predicted to give the location of the massive early type stars.Visual inspection of 24-micron band images from the Spitzer Mapping of the Outer Galaxy (SMOG) revealed 12 new bowshock nebula candidates. Follow up optical spectroscopy from the Wyoming Infrared Observatory confirmed that all 12 of the associated stellar sources are early-type stars. Combined with related results from visual searches for bowshock nebulae using WISE and Spitzer surveys in the inner Galaxy, we have identified over 85 new early type bowshock supporting stellar sources, a 95% success rate. We conclude that morphological selection of arc-shared infrared nebulae with a symmetrically placed star is an efficient way to discover early type stars.This work is supported by the National Science Foundation under grants AST-1063146 (REU), AST-1411851 (RUI), and AST-1412845.

  14. Massive stars and the energy balance of the ISM: I. The imapct of an isolated 60 M star

    NASA Technical Reports Server (NTRS)

    Yorke, H. W.; Freyer, T.; Hensler, G.

    2002-01-01

    We present results of numerical simulations carried out with a 2D radiation hydrodynamics code in order to study the impact of massive stars on their surrounding interstellar medium. This first paper deals with the evolution of the circumstellar gas around an isolated 60 M star.

  15. Imprints of fast-rotating massive stars in the Galactic Bulge.

    PubMed

    Chiappini, Cristina; Frischknecht, Urs; Meynet, Georges; Hirschi, Raphael; Barbuy, Beatriz; Pignatari, Marco; Decressin, Thibaut; Maeder, André

    2011-04-28

    The first stars that formed after the Big Bang were probably massive, and they provided the Universe with the first elements heavier than helium ('metals'), which were incorporated into low-mass stars that have survived to the present. Eight stars in the oldest globular cluster in the Galaxy, NGC 6522, were found to have surface abundances consistent with the gas from which they formed being enriched by massive stars (that is, with higher α-element/Fe and Eu/Fe ratios than those of the Sun). However, the same stars have anomalously high abundances of Ba and La with respect to Fe, which usually arises through nucleosynthesis in low-mass stars (via the slow-neutron-capture process, or s-process). Recent theory suggests that metal-poor fast-rotating massive stars are able to boost the s-process yields by up to four orders of magnitude, which might provide a solution to this contradiction. Here we report a reanalysis of the earlier spectra, which reveals that Y and Sr are also overabundant with respect to Fe, showing a large scatter similar to that observed in extremely metal-poor stars, whereas C abundances are not enhanced. This pattern is best explained as originating in metal-poor fast-rotating massive stars, which might point to a common property of the first stellar generations and even of the 'first stars'.

  16. Effects of a new 3-alpha reaction on the s-process in massive stars

    SciTech Connect

    Kikuch, Yukihiro; Ono, Masaomi; Matsuo, Yasuhide; Hashimoto, Masa-aki; Fujimoto, Shin-ichiro

    2012-11-12

    Effect of a new 3-alpha reaction rate on the s-process during the evolution of a massive star of 25 solar mass is investigated for the first time, because the s-process in massive stars have been believed to be established with only minor change. We find that the s-process with use of the new rate during the core helium burning is very inefficient compared to the case with the previous 3-alpha rate. However, the difference of the overproduction is found to be largely compensated by the subsequent carbon burning. Since the s-process in massive stars has been attributed so far to the neutron irradiation during core helium burning, our finding reveals for the first time the importance of the carbon burning for the s-process during the evolution of massive stars.

  17. NGC 346: Looking in the Cradle of a Massive Star Cluster

    NASA Astrophysics Data System (ADS)

    Gouliermis, Dimitrios A.; Hony, Sacha

    2017-03-01

    How does a star cluster of more than few 10,000 solar masses form? We present the case of the cluster NGC 346 in the Small Magellanic Cloud, still embedded in its natal star-forming region N66, and we propose a scenario for its formation, based on observations of the rich stellar populations in the region. Young massive clusters host a high fraction of early-type stars, indicating an extremely high star formation efficiency. The Milky Way galaxy hosts several young massive clusters that fill the gap between young low-mass open clusters and old massive globular clusters. Only a handful, though, are young enough to study their formation. Moreover, the investigation of their gaseous natal environments suffers from contamination by the Galactic disk. Young massive clusters are very abundant in distant starburst and interacting galaxies, but the distance of their hosting galaxies do not also allow a detailed analysis of their formation. The Magellanic Clouds, on the other hand, host young massive clusters in a wide range of ages with the youngest being still embedded in their giant HII regions. Hubble Space Telescope imaging of such star-forming complexes provide a stellar sampling with a high dynamic range in stellar masses, allowing the detailed study of star formation at scales typical for molecular clouds. Our cluster analysis on the distribution of newly-born stars in N66 shows that star formation in the region proceeds in a clumpy hierarchical fashion, leading to the formation of both a dominant young massive cluster, hosting about half of the observed pre-main-sequence population, and a self-similar dispersed distribution of the remaining stars. We investigate the correlation between stellar surface density (and star formation rate derived from star-counts) and molecular gas surface density (derived from dust column density) in order to unravel the physical conditions that gave birth to NGC 346. A power law fit to the data yields a steep correlation between these

  18. Hot, Massive Stars in the Extremely Metal-Poor Galaxy, I Zw 18

    NASA Technical Reports Server (NTRS)

    Heap, Sara R.; Malumuth, Eliot M.

    2010-01-01

    The extremely metal-poor galaxy I Zw 18, is the Rosetta Stone for understanding z=7-8 galaxies now being discovered by Hubb|e's Wide Field Camera 3 (HST/WFC3). Using HST/STIS images and recently obtained HST/COS ultraviolet spectra, we derive information about the hot, massive stars in this galaxy including stellar abundances, constraints on the stellar IMF and mass distribution of young clusters containing hot, massive stars.

  19. SELF-REGULATED SHOCKS IN MASSIVE STAR BINARY SYSTEMS

    SciTech Connect

    Parkin, E. R.; Sim, S. A. E-mail: s.sim@qub.ac.uk

    2013-04-20

    In an early-type, massive star binary system, X-ray bright shocks result from the powerful collision of stellar winds driven by radiation pressure on spectral line transitions. We examine the influence of the X-rays from the wind-wind collision shocks on the radiative driving of the stellar winds using steady-state models that include a parameterized line force with X-ray ionization dependence. Our primary result is that X-ray radiation from the shocks inhibits wind acceleration and can lead to a lower pre-shock velocity, and a correspondingly lower shocked plasma temperature, yet the intrinsic X-ray luminosity of the shocks, L{sub X}, remains largely unaltered, with the exception of a modest increase at small binary separations. Due to the feedback loop between the ionizing X-rays from the shocks and the wind driving, we term this scenario as self-regulated shocks. This effect is found to greatly increase the range of binary separations at which a wind-photosphere collision is likely to occur in systems where the momenta of the two winds are significantly different. Furthermore, the excessive levels of X-ray ionization close to the shocks completely suppress the line force, and we suggest that this may render radiative braking less effective. Comparisons of model results against observations reveal reasonable agreement in terms of log (L{sub X}/L{sub bol}). The inclusion of self-regulated shocks improves the match for kT values in roughly equal wind momenta systems, but there is a systematic offset for systems with unequal wind momenta (if considered to be a wind-photosphere collision).

  20. The incidence of stellar mergers and mass gainers among massive stars

    SciTech Connect

    De Mink, S. E.; Sana, H.; Langer, N.; Izzard, R. G.; Schneider, F. R. N.

    2014-02-10

    Because the majority of massive stars are born as members of close binary systems, populations of massive main-sequence stars contain stellar mergers and products of binary mass transfer. We simulate populations of massive stars accounting for all major binary evolution effects based on the most recent binary parameter statistics and extensively evaluate the effect of model uncertainties. Assuming constant star formation, we find that 8{sub −4}{sup +9}% of a sample of early-type stars are the products of a merger resulting from a close binary system. In total we find that 30{sub −15}{sup +10}% of massive main-sequence stars are the products of binary interaction. We show that the commonly adopted approach to minimize the effects of binaries on an observed sample by excluding systems detected as binaries through radial velocity campaigns can be counterproductive. Systems with significant radial velocity variations are mostly pre-interaction systems. Excluding them substantially enhances the relative incidence of mergers and binary products in the non-radial velocity variable sample. This poses a challenge for testing single stellar evolutionary models. It also raises the question of whether certain peculiar classes of stars, such as magnetic O stars, are the result of binary interaction and it emphasizes the need to further study the effect of binarity on the diagnostics that are used to derive the fundamental properties (star-formation history, initial mass function, mass-to-light ratio) of stellar populations nearby and at high redshift.

  1. Wolf-Rayet, Yellow and Red Supergiant in the single massive stars perspective

    NASA Astrophysics Data System (ADS)

    Georgy, Cyril; Hirschi, R.; Ekstrom, S.; Meynet, G.

    2013-06-01

    Rotation and mass loss are the key ingredients determining the fate of single massive stars. In recent years, a large effort has been made to compute whole grids of stellar models at different metallicities, including or not the effects of rotation, with the Geneva evolution code. In this talk, I will focus on the evolved stages of massive star evolution (red and yellow supergiants, Wolf-Rayet stars), in the framework of these new grids of models. I will highlight the effects of rotation and mass loss on the post-main sequence evolution of massive stars at solar and lower metallicity. In particular, I will discuss their impact on the maximum mass for a star to end its life as a RSG (leading to a type IIP supernova), on the possibility for a star to finish as a YSG, and on the initial mass ranges leading to various WR star subtypes. I will then compare the results predicted by our code with observed populations of evolved massive stars, bringing constraints on our computations, as well as some indications on the binary star fraction needed to reproduce them.

  2. OT2_fwyrowsk_3: A Water survey of massive star forming clumps in the inner Galaxy

    NASA Astrophysics Data System (ADS)

    Wyrowski, F.

    2011-09-01

    Water, as a dominant form of oxygen, the most abundant element in the universe after H and He, controls the chemistry of many other species. It is a unique diagnostic of warm gas and energetic processes taking place during star formation. We therefore propose to exploit the unique opportunity of Herschel to study water in large, statistically significant, flux limited samples of massive star forming regions detected in the recently completed ATLASGAL submm dust continuum survey of the inner Galactic plane. In the last years, our view of massive star forming regions has dramatically changed by Galactic plane surveys covering cm to IR wavelengths. These surveys enable us for the first time to study ALL evolutionary stages of massive star formation (MSF) in an unbiased way. Water, acting as a natural filter for warm, dense gas, allows to probe the chemical and physical conditions in all of these stages close to where the massive stars are forming or just have been formed. ATLASGAL observed submm dust continuum emission as best tracer of the earliest phases of MSF since it is directly probing the material from which the stars form. As a large unbiased survey it provide the statistical base to study the scarce and short-living protoclusters as the origin of the massive stars and the richest clusters in the Galaxy and supplies us with a legacy value sample of MSF regions for the water follow ups. Water is typically seen with strongly increased abundances in broad line wings, providing a new, sensitive probe of shocked outflowing gas. In addition, the envelope is probed in a combination of absorption and emission with a clear jump in abundance in the warm inner regions close to the forming massive stars. Only Herschel can provide a water survey of a large sample of ATLASGAL selected sources to study water through the evolution of massive star forming regions with a statistically significant sample size.

  3. Luminous Infrared Sources in the Local Group: Identifying the Missing Links in Massive Star Evolution

    NASA Astrophysics Data System (ADS)

    Britavskiy, N.; Bonanos, A. Z.; Mehner, A.

    2015-01-01

    We present the first systematic survey of dusty massive stars (RSGs, LBVs, sgB[e]) in nearby galaxies, with the goal of understanding their importance in massive star evolution. Using the fact that these stars are bright in mid-infrared colors due to dust, we provide a technique for selecting and identifying dusty evolved stars based on the results of Bonanos et al. (2009, 2010), Britavskiy et al. (2014), and archival Spitzer/IRAC photometry. We present the results of our spectroscopic follow-up of luminous infrared sources in the Local Group dwarf irregular galaxies: Pegasus, Phoenix, Sextans A and WLM. The survey aims to complete the census of dusty massive stars in the Local Group.

  4. A populous intermediate-age open cluster and evidence of an embedded cluster among the FSR globular cluster candidates

    NASA Astrophysics Data System (ADS)

    Bica, E.; Bonatto, C.

    2008-03-01

    We study the nature of the globular cluster (GC) candidates FSR 1603 and FSR1755 selected from the catalogue of Froebrich, Scholz & Raftery. Their properties are investigated with Two-Micron All-Sky Survey field-star decontaminated photometry, which is used to build colour-magnitude diagrams (CMDs) and stellar radial density profiles. FSR1603 has the open cluster Ruprecht 101 as optical counterpart, and we show it to be a massive intermediate-age cluster. Relevant parameters of FSR1603 are the age ~1Gyr, distance from the Sun dsolar ~ 2.7kpc, Galactocentric distance RGC ~ 6.4kpc, core radius RC ~ 1.1pc, mass function slope χ ~ 1.8, observed stellar mass (for stars with mass in the range 1.27 <= m <= 2.03Msolar) Mobs ~ 500Msolar and a total (extrapolated to m = 0.08Msolar) stellar mass Mtot ~ 2300Msolar. FSR1755, on the other hand, is not a populous cluster. It may be a sparse young cluster embedded in the HII region Sh2-3, subject to an absorption AV ~ 4.1, located at dsolar ~ 1.3kpc. Important field-star contamination, spatially variable heavy dust obscuration, even in Ks, and gas emission characterize its field. A nearly vertical, sparse blue stellar sequence shows up in the CMDs.

  5. Low Mach Number Simulation of Core Convection in Massive Stars

    NASA Astrophysics Data System (ADS)

    Gilet, Candace Elise

    This work presents three-dimensional simulations of core convection in a 15 solar mass star halfway through its main sequence lifetime. We examine the effects of two common modeling choices on the resulting convective flow: using a reduced domain size and using a monatomic, or single species, approximation. We compare a multi-species simulation on a full sphere (360 degree) domain with a multi-species simulation on an octant domain and also with a single species simulation on a full sphere domain. To perform the long-time calculations, we use the new low Mach number code MAESTRO. The first part of this work deals with numerical aspects of using MAESTRO for the core convection system, a new application for MAESTRO. We extend MAESTRO to include two new models, a single species model and a simplified two-dimensional planar model, to aid in the exploration of using MAESTRO for core convection in massive stars. We discuss using MAESTRO with a novel spherical geometry domain configuration, namely, with the outer boundary located in the interior of the star, and show how this can create spurious velocities that must be numerically damped using a sponging layer. We describe the preparation of the initial model for the simulation. We find that assuring neutral stratification in the convective core and reasonable resolution of the gravity waves in the stable layer are key factors in generating suitable initial conditions for the simulation. Further, we examine a numerical aspect of the velocity constraint that is part of the low Mach number formulation of the Euler equations. In particular, we investigate the numerical procedure for computing beta0, the density-like variable that captures background stratification in the velocity constraint, and find that the original method of computation remains a good choice. The three-dimensional simulation results show that using a single species model actually increases the computational cost of the simulation because the single

  6. A Rapidly Evolving Region in the Galactic Center: Why S-stars Thermalize and More Massive Stars are Missing

    NASA Astrophysics Data System (ADS)

    Chen, Xian; Amaro-Seoane, Pau

    2014-05-01

    The existence of "S-stars" within a distance of 1'' from Sgr A* contradicts our understanding of star formation, due to Sgr A* 's forbiddingly violent environment. A suggested possibility is that they form far away and were brought in by some fast dynamical process, since they are young. Nonetheless, all conjectured mechanisms either fail to reproduce their eccentricities—without violating their young age—or cannot explain the problem of "inverse mass segregation": the fact that lighter stars (the S-stars) are closer to Sgr A* and more massive ones, Wolf-Rayet (WR) and O-stars, are farther out. In this Letter we propose that the mechanism responsible for both the distribution of the eccentricities and the paucity of massive stars is the Kozai-Lidov-like resonance induced by a sub-parsec disk recently discovered in the Galactic center. Considering that the disk probably extended to a smaller radius in the past, we show that in as short as (a few) 106 yr, the stars populating the innermost 1'' region would redistribute in angular-momentum space and recover the observed "super-thermal" distribution. Meanwhile, WR and O-stars in the same region intermittently attain ample eccentricities that will lead to their tidal disruptions by the central massive black hole. Our results provide new evidences that Sgr A* was powered several millions years ago by an accretion disk as well as by tidal stellar disruptions.

  7. Star Formation at Low Rates: How a Lack of Massive Stars Impacts the Evolution of Dwarf Galaxies

    NASA Astrophysics Data System (ADS)

    Hensler, Gerhard

    2017-01-01

    In recent years dedicated observations have uncovered star formation at extremely low rates in dwarf galaxies, tidal tails, ram-pressure stripped gas clouds, and the outskirts of galactic disks. At the same time, numerical simulations of galaxy evolution have advanced to higher spatial and mass resolutions, but have yet to account for the underfilling of the uppermost mass bins of stellar initial mass function (IMF) at low star-formation rates. In such situations, simulations may simply scale down the IMF, without realizing that this unrealistically results infractions of massive stars, along with fractions of massive star feedback energy (e.g., radiation and SNII explosions). Not properlyaccounting for such parameters has consequences for the self-regulation of star formation, the energetics of galaxies, as well as for the evolution of chemical abundances.Here we present numerical simulations of dwarf galaxies with low star-formation rates allowing for two extreme cases of the IMF: a "filled" case with fractional massive stars vs. a truncated IMF, at which the IMF is built bottom-up until the gas reservoir allows the formation of a last single star at an uppermost mass. The aim of the study is to demonstrate the different effects on galaxy evolution with respect to self-regulation, feedback, and chemistry. The case of a stochastic sampled IMF is situated somewhere in between these extremes.

  8. A RAPIDLY EVOLVING REGION IN THE GALACTIC CENTER: WHY S-STARS THERMALIZE AND MORE MASSIVE STARS ARE MISSING

    SciTech Connect

    Chen, Xian; Amaro-Seoane, Pau E-mail: Pau.Amaro-Seoane@aei.mpg.de

    2014-05-10

    The existence of ''S-stars'' within a distance of 1'' from Sgr A* contradicts our understanding of star formation, due to Sgr A* 's forbiddingly violent environment. A suggested possibility is that they form far away and were brought in by some fast dynamical process, since they are young. Nonetheless, all conjectured mechanisms either fail to reproduce their eccentricities—without violating their young age—or cannot explain the problem of {sup i}nverse mass segregation{sup :} the fact that lighter stars (the S-stars) are closer to Sgr A* and more massive ones, Wolf-Rayet (WR) and O-stars, are farther out. In this Letter we propose that the mechanism responsible for both the distribution of the eccentricities and the paucity of massive stars is the Kozai-Lidov-like resonance induced by a sub-parsec disk recently discovered in the Galactic center. Considering that the disk probably extended to a smaller radius in the past, we show that in as short as (a few) 10{sup 6} yr, the stars populating the innermost 1'' region would redistribute in angular-momentum space and recover the observed ''super-thermal'' distribution. Meanwhile, WR and O-stars in the same region intermittently attain ample eccentricities that will lead to their tidal disruptions by the central massive black hole. Our results provide new evidences that Sgr A* was powered several millions years ago by an accretion disk as well as by tidal stellar disruptions.

  9. GT1_cdedes_1: Heating and cooling mechanics in massive star formation

    NASA Astrophysics Data System (ADS)

    Dedes, C.

    2010-03-01

    Massive stars are important constituents of the interstellar medium (ISM) in our Galaxy and beyond. Their strong feedback processes influence the dynamics, energetics and chemistry of the surrounding interstellar medium both locally and on large scales. An important question to be answered is the one of cooling and heating mechanisms in regions of massive star formation. In the vicinity of massive stars, heating is provided mostly by far-UV (FUV) and infra-red radiation. Cooling is mostly provided by emission in the fine structure lines of CII. There are however other atomic and molecular lines such as OI, CO, OH and H_2O which can become significant coolants in the dense, embedded regions of massive star formation. This early phase when the forming massive star is still deeply embedded in its natal envelope, yet already interacting with, and potentially destroying, its environment through copious amounts of UV radiation, massive outflows and ultra compact HII (UCHII) regions, is an important phase in the star formation process. To understand the heating and cooling balance in this phase, one has to consider the contributions of various radiative and dynamical processes such as the FUV radiation from the young star itself, shocks created by strong stellar winds and the photon dominated regions (PDRs) where the radiation impinges on the molecular material. The tracers of these processes can be observed in the far-infrared, a wavelength range that is now accessible at unprecedented high spectral and spatial resolution with the Herschel Space Observatory. We propose to observe the aformentioned tracers of cooling and heating in the massive star forming region IRAS 12326-6245 to obtain a complete picture of the different processes, the regions they originate from and how they interact. This proposal is for time granted to the HIFI hardware team (PI: Frank Helmich) and to be accounted as part of the Swiss guaranteed time (Lead-Co-I: Arnold O. Benz).

  10. Discovering Massive Runaway Stars with Infrared Bow Shock Nebulae: Four New OB Runaway Candidate Stars Found in WISE Atlas Images

    NASA Astrophysics Data System (ADS)

    Olivier, Grace M.; Kobulnicky, Henry A.; Povich, Matthew S.; Chick, William T.; Dale, Daniel A.; Andrews, Julian E.; Munari, Stephan; Schurhammer, Danielle; Sorber, Rebecca; Wernke, Heather N.

    2016-01-01

    Determining the mass loss rates of massive stars is an important unsolved problem in astronomy because mass loss dictates the evolutionary track of the star and its fate. One way to measure mass loss rates is through studying the infrared bow shocks from massive O and B type stars. These stars form bow shocks because they have been expelled from their birth regions and are moving at high velocities through the ISM. The stars we studied in this project were discovered by searching the Wide-Field Infrared Survey Explorer (WISE) 22 μm atlas. Using the Longslit Spectrograph at the Wyoming Infrared Observatory (WIRO) we observed each star to obtain a spectrum. Spectral types were then fit to these stars, the stars: G073.6200+1.8522 (B0V), G074.3117+1.0041 (O9V), G059.9225-1.9671 (B3V), and G063.1263+0.3327 (B5V). The spectral types of these stars agree with the predicted range of late-O to early-B type stars. These spectral types will be used to determine temperature, stellar wind velocities, space velocities, and other fundamental quantities that can be used to study stellar mass loss. This work is supported by the National Science Foundation under grants AST-1063146 (REU), AST-1411851 (RUI), and AST-1412845.

  11. The High-mass Truncation of the Star Cluster Mass Function: Limits on Massive Cluster Formation

    NASA Astrophysics Data System (ADS)

    Johnson, L. C.; PHAT Team

    2017-01-01

    Long-lived star clusters serve as useful tracers of star formation, and massive clusters in particular are often associated with vigorous star formation activity. We examine how massive cluster formation varies as a function of star formation surface density (ΣSFR) by comparing cluster populations from galaxies that span a wide range of characteristic ΣSFR values. The Panchromatic Hubble Andromeda Treasury (PHAT) survey yielded an unparalleled census of young star clusters in M31 and allows us to examine massive cluster formation in a low intensity star formation environment. We measure the cluster mass function for a sample of 840 young star clusters with ages between 10-300 Myr. The data show clear evidence of a high-mass truncation: only 15 clusters more massive than 104 M⊙ are observed, compared to ~100 expected for a canonical M-2 power-law mass function with the same total number of clusters above the catalog completeness limit. Adopting a Schechter function parameterization, we fit a characteristic truncation mass (Mc) of 8.5×103 M⊙ — the lowest truncation mass ever reported. When combined with previous mass function results, we find that the cluster mass function truncation correlates strongly with the star formation rate surface density, where Mc ∝ ΣSFR1.3. We also find evidence that suggests the observed Mc-ΣSFR relation also holds for globular clusters, linking the two populations via a common formation pathway.

  12. WIDE-FIELD INFRARED SURVEY EXPLORER OBSERVATIONS OF THE EVOLUTION OF MASSIVE STAR-FORMING REGIONS

    SciTech Connect

    Koenig, X. P.; Leisawitz, D. T.; Benford, D. J.; Padgett, D. L.; Rebull, L. M.

    2012-01-10

    We present the results of a mid-infrared survey of 11 outer Galaxy massive star-forming regions and 3 open clusters with data from the Wide-field Infrared Survey Explorer (WISE). Using a newly developed photometric scheme to identify young stellar objects and exclude extragalactic contamination, we have studied the distribution of young stars within each region. These data tend to support the hypothesis that latter generations may be triggered by the interaction of winds and radiation from the first burst of massive star formation with the molecular cloud material leftover from that earlier generation of stars. We dub this process the 'fireworks hypothesis' since star formation by this mechanism would proceed rapidly and resemble a burst of fireworks. We have also analyzed small cutout WISE images of the structures around the edges of these massive star-forming regions. We observe large (1-3 pc size) pillar and trunk-like structures of diffuse emission nebulosity tracing excited polycyclic aromatic hydrocarbon molecules and small dust grains at the perimeter of the massive star-forming regions. These structures contain small clusters of emerging Class I and Class II sources, but some are forming only a single to a few new stars.

  13. Wide-Field Infrared Survey Explorer Observations of the Evolution of Massive Star-Forming Regions

    NASA Technical Reports Server (NTRS)

    Koenig, X. P.; Leisawitz, D. T.; Benford, D. J.; Rebull, L. M.; Padgett, D. L.; Asslef, R. J.

    2012-01-01

    We present the results of a mid-infrared survey of II outer Galaxy massive star-forming regions and 3 open clusters with data from the Wide-field Infrared Survey Explorer (WISE). Using a newly developed photometric scheme to identify young stellar objects and exclude extragalactic contamination, we have studied the distribution of young stars within each region. These data tend to support the hypothesis that latter generations may be triggered by the interaction of winds and radiation from the first burst of massive star formation with the molecular cloud material leftover from that earlier generation of stars. We dub this process the "fireworks hypothesis" since star formation by this mechanism would proceed rapidly and resemble a burst of fireworks. We have also analyzed small cutout WISE images of the structures around the edges of these massive star-forming regions. We observe large (1-3 pc size) pillar and trunk-like structures of diffuse emission nebulosity tracing excited polycyclic aromatic hydrocarbon molecules and small dust grains at the perimeter of the massive star-forming regions. These structures contain small clusters of emerging Class I and Class II sources, but some are forming only a single to a few new stars.

  14. Wide-Field Infrared Survey Explorer Observations of the Evolution of Massive Star-Forming Regions

    NASA Technical Reports Server (NTRS)

    Koenig, X. P.; Leisawitz, D. T.; Benford, D. J.; Rebull, L. M.; Padgett, D. L.; Assef, R. J.

    2011-01-01

    We present the results of a mid-infrared survey of 11 outer Galaxy massive star-forming regions and 3 open clusters with data from the Wide-field Infrared Survey Explorer (WISE). Using a newly developed photometric scheme to identify young stellar objects and exclude extragalactic contamination, we have studied the distribution of young stars within each region. These data tend to support the hypothesis that latter generations may be triggered by the interaction of winds and radiation from the first burst of massive star formation with the molecular cloud material leftover from that earlier generation of stars.We dub this process the "fireworks hypothesis" since star formation by this mechanism would proceed rapidly and resemble a burst of fireworks.We have also analyzed small cutout WISE images of the structures around the edges of these massive star-forming regions. We observe large (1-3 pc size) pillar and trunk-like structures of diffuse emission nebulosity tracing excited polycyclic aromatic hydrocarbon molecules and small dust grains at the perimeter of the massive star-forming regions. These structures contain small clusters of emerging Class I and Class II sources, but some are forming only a single to a few new stars.

  15. Influence of Entropy on Composition and Structure of Massive Protoneutron Stars

    NASA Astrophysics Data System (ADS)

    Hong, Bin; Jia, Huan-Yu; Mu, Xue-Ling; Zhou, Xia

    2016-08-01

    Adjusting the suitable coupling constants in relativistic mean Geld (RMF) theory and focusing on thermal effect of an entropy per baryon (S) from 0 to 3, we investigate the composition and structure of massive protoneutron stars corresponding PSR J1614-2230 and PSR J0348+0432. It is found that massive protoneutron stars (PNSs) have more hyperons than cold neutron stars. The entropy per baryon will stiffen the equation of state, and the influence on the pressure is more obvious at low density than high density, while the influence on the energy density is more obvious at high density than low density. It is found that higher entropy will give higher maximum mass, higher central temperature and lower central density. The entropy per baryon changes from 0 to 3, the radius of a PNS corresponding PSR J0348+0432 will increase from 12.86 km to 19.31 km and PSR J1612-2230 will increase from 13.03 km to 19.93 km. The entropy per baryon will raise the central temperature of massive PNSs in higher entropy per baryon, but the central temperature of massive PNSs maybe keep unchanged in lower entropy per baryon. The entropy per baryon will increase the moment of inertia of a massive protoneutron star, while decrease gravitational redshift of a massive neutron star. Supported by National Natural Science Foundation of China under Grant No. 11175147

  16. THE MILKY WAY PROJECT: A STATISTICAL STUDY OF MASSIVE STAR FORMATION ASSOCIATED WITH INFRARED BUBBLES

    SciTech Connect

    Kendrew, S.; Robitaille, T. P.; Simpson, R.; Lintott, C. J.; Bressert, E.; Povich, M. S.; Sherman, R.; Schawinski, K.; Wolf-Chase, G.

    2012-08-10

    The Milky Way Project citizen science initiative recently increased the number of known infrared bubbles in the inner Galactic plane by an order of magnitude compared to previous studies. We present a detailed statistical analysis of this data set with the Red MSX Source (RMS) catalog of massive young stellar sources to investigate the association of these bubbles with massive star formation. We particularly address the question of massive triggered star formation near infrared bubbles. We find a strong positional correlation of massive young stellar objects (MYSOs) and H II regions with Milky Way Project bubbles at separations of <2 bubble radii. As bubble sizes increase, a statistically significant overdensity of massive young sources emerges in the region of the bubble rims, possibly indicating the occurrence of triggered star formation. Based on numbers of bubble-associated RMS sources, we find that 67% {+-} 3% of MYSOs and (ultra-)compact H II regions appear to be associated with a bubble. We estimate that approximately 22% {+-} 2% of massive young stars may have formed as a result of feedback from expanding H II regions. Using MYSO-bubble correlations, we serendipitously recovered the location of the recently discovered massive cluster Mercer 81, suggesting the potential of such analyses for discovery of heavily extincted distant clusters.

  17. The rotation rates of massive stars. How slow are the slow ones?

    NASA Astrophysics Data System (ADS)

    Sundqvist, J. O.; Simón-Díaz, S.; Puls, J.; Markova, N.

    2013-11-01

    Context. Rotation plays a key role in the life cycles of stars with masses above ~8 M⊙. Hence, accurate knowledge of the rotation rates of such massive stars is critical for understanding their properties and for constraining models of their evolution. Aims: This paper investigates the reliability of current methods used to derive projected rotation speeds vsini from line-broadening signatures in the photospheric spectra of massive stars, focusing on stars that are not rapidly rotating. Methods: We use slowly rotating magnetic O-stars with well-determined rotation periods to test the Fourier transform (FT) and goodness-of-fit (GOF) methods typically used to infer projected rotation rates of massive stars. Results: For our two magnetic test stars with measured rotation periods longer than one year, i.e., with vsini ≲ 1 km s-1, we derive vsini ≈ 40-50 km s-1 from both the FT and GOF methods. These severe overestimates are most likely caused by an insufficient treatment of the competing broadening mechanisms referred to as microturbulence and macroturbulence. Conclusions: These findings warn us not to rely uncritically on results from current standard techniques to derive projected rotation speeds of massive stars in the presence of significant additional line broadening, at least when vsini ≲ 50 km s-1. This may, for example, be crucial for i) determining the statistical distribution of observed rotation rates of massive stars; ii) interpreting the evolutionary status and spin-down histories of rotationally braked B-supergiants; and iii) explaining the deficiency of observed O-stars with spectroscopically inferred vsini ≈ 0 km s-1. Further investigations of potential shortcomings of the above techniques are presently under way. Final reduced spectra are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/559/L10

  18. Study of Intermediate Age (~10-30 Myr) Open Clusters

    NASA Astrophysics Data System (ADS)

    Olguin, Lorenzo; Michel, Raul; Contreras, Maria; Hernandez, Jesus; Schuster, William; Chavarria-Kleinhenn, Carlos

    2013-07-01

    We present the study of a sample of intermediate age open clusters (age ~ 10-30 Myr) using optical (UBVRI) and infrared photometric data. Optical photometry was obtained as part of the San Pedro Martir Open Clusters Project (SPM-OCP, Schuster et al. 2007; Michel et al. 2013). Infrared photometry was retrieved from 2MASS public data archive and WISE database. Open clusters included in the SPM-OCP were selected from catalogues presented by Dias et al. (2002) and Froebrich, Scholz & Raftery (2007). One of the main goals of the SPM-OCP is to compile a self-consistent and homogeneous set of cluster fundamental parameters such as reddening, distance, age, and metallicity whenever possible. In this work, we have analyzed a set of 25 clusters from the SPM-OCP with estimated ages between 10 and 30 Myr. Derived fundamental parameters for each cluster in the sample as well as an example of typical color-color and color-magnitude diagrams are presented. Kinematic membership was established by using proper motion data taken from the literature. Based on infrared photometry, we have searched for candidate stars to posses a circumstellar disk within each clusters. For those selected candidates a follow-up spectroscpic study is being carried out. This work was partially supported by UNAM-PAPIIT grant IN-109311.

  19. Connecting the Dots: MUSE Unveils the Destructive Effect of Massive Stars

    NASA Astrophysics Data System (ADS)

    McLeod, A. F.; Ginsburg, A.; Klaassen, P.; Mottram, J.; Ramsay, S.; Testi, L.

    2016-09-01

    Throughout their entire lives, massive stars have a substantial impact on their surroundings, such as via protostellar outflows, stellar winds, ionising radiation and supernovae. Conceptually this is well understood, but the exact role of feedback mechanisms on the global star formation process and the stellar environment, as well as their dependence on the properties of the star-forming regions, are yet to be understood in detail. Observational quantification of the various feedback mechanisms is needed to precisely understand how high mass stars interact with and shape their environment, and which feedback mechanisms dominate under given conditions. We analysed the photo-evaporative effect of ionising radiation from massive stars on their surrounding molecular clouds using MUSE integral field data. This allowed us to determine the mass-loss rate of pillar-like structures (due to photo-evaporation) in different environments, and relate it to the ionising power of nearby massive stars. The resulting correlation is the first observational quantification of the destructive effect of ionising radiation from massive stars.

  20. High molecular gas fractions in normal massive star-forming galaxies in the young Universe.

    PubMed

    Tacconi, L J; Genzel, R; Neri, R; Cox, P; Cooper, M C; Shapiro, K; Bolatto, A; Bouché, N; Bournaud, F; Burkert, A; Combes, F; Comerford, J; Davis, M; Schreiber, N M Förster; Garcia-Burillo, S; Gracia-Carpio, J; Lutz, D; Naab, T; Omont, A; Shapley, A; Sternberg, A; Weiner, B

    2010-02-11

    Stars form from cold molecular interstellar gas. As this is relatively rare in the local Universe, galaxies like the Milky Way form only a few new stars per year. Typical massive galaxies in the distant Universe formed stars an order of magnitude more rapidly. Unless star formation was significantly more efficient, this difference suggests that young galaxies were much more molecular-gas rich. Molecular gas observations in the distant Universe have so far largely been restricted to very luminous, rare objects, including mergers and quasars, and accordingly we do not yet have a clear idea about the gas content of more normal (albeit massive) galaxies. Here we report the results of a survey of molecular gas in samples of typical massive-star-forming galaxies at mean redshifts of about 1.2 and 2.3, when the Universe was respectively 40% and 24% of its current age. Our measurements reveal that distant star forming galaxies were indeed gas rich, and that the star formation efficiency is not strongly dependent on cosmic epoch. The average fraction of cold gas relative to total galaxy baryonic mass at z = 2.3 and z = 1.2 is respectively about 44% and 34%, three to ten times higher than in today's massive spiral galaxies. The slow decrease between z approximately 2 and z approximately 1 probably requires a mechanism of semi-continuous replenishment of fresh gas to the young galaxies.

  1. A Catalog of New Spectroscopically Confirmed Massive OB Stars in Carina

    NASA Astrophysics Data System (ADS)

    Alexander, Michael J.; Hanes, Richard J.; Povich, Matthew S.; McSwain, M. Virginia

    2016-12-01

    The Carina star-forming region is one of the largest in the Galaxy, and its massive star population is still being unveiled. The large number of stars combined with high, and highly variable, interstellar extinction makes it inherently difficult to find OB stars in this type of young region. We present the results of a spectroscopic campaign to study the massive star population of the Carina Nebula, with the primary goal to confirm or reject previously identified Carina OB star candidates. A total of 141 known O- and B-type stars and 94 candidates were observed, of which 73 candidates had high enough signal-to-noise ratio to classify. We find 23 new OB stars within the Carina Nebula, a 32% confirmation rate. One of the new OB stars has blended spectra and is suspected to be a double-lined spectroscopic binary (SB2). We also reclassify the spectral types of the known OB stars and discover nine new SB2s among this population. Finally, we discuss the spatial distribution of these new OB stars relative to known structures in the Carina Nebula.

  2. Massive runaway stars in the Small Magellanic Cloud

    NASA Astrophysics Data System (ADS)

    Gvaramadze, V. V.; Pflamm-Altenburg, J.; Kroupa, P.

    2011-01-01

    Using archival Spitzer Space Telescope data, we identified for the first time a dozen runaway OB stars in the Small Magellanic Cloud (SMC) through the detection of their bow shocks. The geometry of detected bow shocks allows us to infer the direction of motion of the associated stars and to determine their possible parent clusters and associations. One of the identified runaway stars, AzV 471, was already known as a high-velocity star on the basis of its high peculiar radial velocity, which is offset by ≃ 40 km s-1 from the local systemic velocity. We discuss implications of our findings for the problem of the origin of field OB stars. Several of the bow shock-producing stars are found in the confines of associations, suggesting that these may be “alien” stars contributing to the age spread observed for some young stellar systems. We also report the discovery of a kidney-shaped nebula attached to the early WN-type star SMC-WR3 (AzV 60a). We interpreted this nebula as an interstellar structure created owing to the interaction between the stellar wind and the ambient interstellar medium.

  3. Massive Stars and their Siblings: the Extreme End of the Companion Mass Function

    NASA Astrophysics Data System (ADS)

    de Mink, Selma

    2014-10-01

    The gold-rush for detecting exoplanets has lead to an exponential improvement of optimization algorithms for high-contrast imaging optimized for HST. We propose to exploit these to probe the virtually unexplored population of low mass stars in the very close vicinity of young massive stars in order to I. progress our understanding of how low-mass stars form and survive under the influence of the ionizing radiation of their massive host and II. provide urgently needed constraints on competing theories of massive star formation by measuring their multiplicity. The high spatial and temporal stability of HST's point spread function is essential for the detection of very faint companions down to sub-arcsecond separations even in crowded regions at contrast up to delta-mag ~ 10, i.e. flux ratios up to 10,000. Furthermore the characterization of the low mass companions calls for wavelength bands largely affected by absorption by H2O in the earth's atmosphere. To achieve this goal we propose to use WFC3/IR to observe two adjacent fields in the center of the very young, nearby star cluster Trumpler 14, which harbors a rich population of massive stars.

  4. Massive Stars and their Siblings: the Extreme End of the Companion Mass Function

    NASA Astrophysics Data System (ADS)

    de Mink, Selma

    2013-10-01

    The gold-rush for detecting exoplanets has lead to an exponential improvement of optimization algorithms for high-contrast imaging optimized for HST. We propose to exploit these to probe the virtually unexplored population of low mass stars in the very close vicinity of young massive stars in order to I. progress our understanding of how low-mass stars form and survive under the influence of the ionizing radiation of their massive host and II. provide urgently needed constraints on competing theories of massive star formation by measuring their multiplicity. The high spatial and temporal stability of HST's point spread function is essential for the detection of very faint companions down to sub-arcsecond separations even in crowded regions at contrast up to delta-mag ~ 10, i.e. flux ratios up to 10,000. Furthermore the characterization of the low mass companions calls for wavelength bands largely affected by absorption by H2O in the earth's atmosphere. To achieve this goal we propose to use WFC3/IR to observe two adjacent fields in the center of the very young, nearby star cluster Trumpler 14, which harbors a rich population of massive stars.

  5. Low-metallicity massive single stars with rotation. Evolutionary models applicable to I Zwicky 18

    NASA Astrophysics Data System (ADS)

    Szécsi, Dorottya; Langer, Norbert; Yoon, Sung-Chul; Sanyal, Debashis; de Mink, Selma; Evans, Christopher J.; Dermine, Tyl

    2015-09-01

    Context. Low-metallicity environments such as the early Universe and compact star-forming dwarf galaxies contain many massive stars. These stars influence their surroundings through intense UV radiation, strong winds and explosive deaths. A good understanding of low-metallicity environments requires a detailed theoretical comprehension of the evolution of their massive stars. Aims: We aim to investigate the role of metallicity and rotation in shaping the evolutionary paths of massive stars and to provide theoretical predictions that can be tested by observations of metal-poor environments. Methods: Massive rotating single stars with an initial metal composition appropriate for the dwarf galaxy I Zw 18 ([Fe/H] = -1.7) are modelled during hydrogen burning for initial masses of 9-300 M⊙ and rotational velocities of 0-900 km s-1. Internal mixing processes in these models were calibrated based on an observed sample of OB-type stars in the Magellanic Clouds. Results: Even moderately fast rotators, which may be abundant at this metallicity, are found to undergo efficient mixing induced by rotation resulting in quasi chemically-homogeneous evolution. These homogeneously-evolving models reach effective temperatures of up to 90 kK during core hydrogen burning. This, together with their moderate mass-loss rates, make them transparent wind ultraviolet intense stars (TWUIN star), and their expected numbers might explain the observed He II ionising photon flux in I Zw 18 and other low-metallicity He II galaxies. Our slowly rotating stars above ~80 M⊙ evolve into late B- to M-type supergiants during core hydrogen burning, with visual magnitudes up to 19m at the distance of I Zw 18. Both types of stars, TWUIN stars and luminous late-type supergiants, are only predicted at low metallicity. Conclusions: Massive star evolution at low metallicity is shown to differ qualitatively from that in metal-rich environments. Our grid can be used to interpret observations of local star

  6. Theoretical Near-IR Spectra for Surface Abundance Studies of Massive Stars

    NASA Technical Reports Server (NTRS)

    Sonneborn, George; Bouret, J.

    2011-01-01

    We present initial results of a study of abundance and mass loss properties of O-type stars based on theoretical near-IR spectra computed with state-of-the-art stellar atmosphere models. The James Webb Space Telescope (JWST) will be a powerful tool to obtain high signal-to-noise ratio near-IR (1-5 micron) spectra of massive stars in different environments of local galaxies. Our goal is to analyze model near-IR spectra corresponding to those expected from NIRspec on JWST in order to map the wind properties and surface composition across the parameter range of 0 stars and to determine projected rotational velocities. As a massive star evolves, internal coupling, related mixing, and mass loss impact its intrinsic rotation rate. These three parameters form an intricate loop, where enhanced rotation leads to more mixing which in turn changes the mass loss rate, the latter thus affecting the rotation rate. Since the effects of rotation are expected to be much more pronounced at low metallicity, we pay special attention to models for massive stars in the the Small Magellanic Cloud. This galaxy provides a unique opportunity to probe stellar evolution, and the feedback of massive stars on galactic evol.ution in conditions similar to the epoch of maximal star formation. Plain-Language Abstract: We present initial results of a study of abundance and mass loss properties of massive stars based on theoretical near-infrared (1-5 micron) spectra computed with state-of-the-art stellar atmosphere models. This study is to prepare for observations by the James Webb Space Telescope.

  7. Evolved massive stars in W33 and in GMC 23.3-0.3

    NASA Astrophysics Data System (ADS)

    Messineo, Maria; Clark, J. Simon; Figer, Donald F.; Menten, Karl M.; Kudritzki, Rolf-Peter; Najarro, Francisco; Rich, Michael; Ivanov, Valentin D.; Valenti, Elena; Trombley, Christine; Chen, Rosie; Davies, Ben; MacKenty, John W.

    2015-08-01

    We have conducted an infrared spectroscopic survey for massive evolved stars and/or clusters in the Galactic giant molecular clouds G23.3-0.3 and W33. A large number of extraordinary sub-clumps/clusters of massive stars were detected. The spatial and temporal distribution of these massive stars yields information on the star formation history of the clouds.In G23.3-0.3, we discovered a dozen massive O-type stars, one candidate luminous blue variable, and several red supergiants. The O-type stars have masses from 25 to 50 Msun and ages of 5-8 Myr, while the RSGs belong to a burst that occurred 20-30 Myr ago. Therefore, GMC G23.3-0.3 has had one of the longest known histories of star formation (20-30 Myr). GMC G23.3-0.3 is rich in HII regions and supernova remnants; we detected massive stars in the cores of SNR W41 and of SNR G22.7-0.2.In W33, we detected a few evolved O-type stars and one Wolf-Rayet star, but none of the late-type objects has the luminosity of a red supergiant. W33 is characterized by discrete sources and has had at least 3-5 Myr of star formation history, which is now propagating from west to east. While our detections of massive evolved stars in W33 are made on the west side of the cloud, several dense molecular cores that may harbor proto clusters have recently been detected on the east side of the cloud by Immer et al. (2014).Messineo, Maria; Menten, Karl M.; Figer, Donald F.; Davies, Ben; Clark, J. Simon; Ivanov, Valentin D.Kudritzki, Rolf-Peter; Rich, R. Michael; MacKenty, John W.; Trombley, Christine 2014A&A...569A..20MMessineo, Maria; Clark, J. Simon; Figer, Donald F.; Kudritzki, Rolf-Peter; Francisco, Najarro; Rich, R. Michael; Menten, Karl M.; Ivanov, Valentin D.; Valenti, Elena; Trombley, Christine; Chen, C.H. Rosie; Davies, Ben; submitted to ApJ.

  8. The Milky Way's nuclear star cluster and massive black hole

    NASA Astrophysics Data System (ADS)

    Schödel, Rainer

    2016-02-01

    Because of its nearness to Earth, the centre of the Milky Way is the only galaxy nucleus in which we can study the characteristics, distribution, kinematics, and dynamics of the stars on milli-parsec scales. We have accurate and precise measurements of the Galactic centre's central black hole, Sagittarius A*, and can study its interaction with the surrounding nuclear star cluster in detail. This contribution aims at providing a concise overview of our current knowledge about the Milky Way's central black hole and nuclear star cluster, at highlighting the observational challenges and limitations, and at discussing some of the current key areas of investigation.

  9. On the onset of secondary stellar generations in giant star-forming regions and massive star clusters

    SciTech Connect

    Palouš, J.; Wünsch, R.; Tenorio-Tagle, G.

    2014-09-10

    Here we consider the strong evolution experienced by the matter reinserted by massive stars, both in giant star-forming regions driven by a constant star formation rate and in massive and coeval superstar clusters. In both cases we take into consideration the changes induced by stellar evolution on the number of massive stars, the number of ionizing photons, and the integrated mechanical luminosity of the star-forming regions. The latter is at all times compared with the critical luminosity that defines, for a given size, the lower mechanical luminosity limit above which the matter reinserted via strong winds and supernova explosions suffers frequent and recurrent thermal instabilities that reduce its temperature and pressure and inhibit its exit as part of a global wind. Instead, the unstable reinserted matter is compressed by the pervasive hot gas, and photoionization maintains its temperature at T ∼ 10{sup 4} K. As the evolution proceeds, more unstable matter accumulates and the unstable clumps grow in size. Here we evaluate the possible self-shielding of thermally unstable clumps against the UV radiation field. Self-shielding allows for a further compression of the reinserted matter, which rapidly develops a high-density neutral core able to absorb in its outer skin the incoming UV radiation. Under such conditions the cold (T ∼ 10 K) neutral cores soon surpass the Jeans limit and become gravitationally unstable, creating a new stellar generation with the matter reinserted by former massive stars. We present the results of several calculations of this positive star formation feedback scenario promoted by strong radiative cooling and mass loading.

  10. On the Onset of Secondary Stellar Generations in Giant Star-forming Regions and Massive Star Clusters

    NASA Astrophysics Data System (ADS)

    Palouš, J.; Wünsch, R.; Tenorio-Tagle, G.

    2014-09-01

    Here we consider the strong evolution experienced by the matter reinserted by massive stars, both in giant star-forming regions driven by a constant star formation rate and in massive and coeval superstar clusters. In both cases we take into consideration the changes induced by stellar evolution on the number of massive stars, the number of ionizing photons, and the integrated mechanical luminosity of the star-forming regions. The latter is at all times compared with the critical luminosity that defines, for a given size, the lower mechanical luminosity limit above which the matter reinserted via strong winds and supernova explosions suffers frequent and recurrent thermal instabilities that reduce its temperature and pressure and inhibit its exit as part of a global wind. Instead, the unstable reinserted matter is compressed by the pervasive hot gas, and photoionization maintains its temperature at T ~ 104 K. As the evolution proceeds, more unstable matter accumulates and the unstable clumps grow in size. Here we evaluate the possible self-shielding of thermally unstable clumps against the UV radiation field. Self-shielding allows for a further compression of the reinserted matter, which rapidly develops a high-density neutral core able to absorb in its outer skin the incoming UV radiation. Under such conditions the cold (T ~ 10 K) neutral cores soon surpass the Jeans limit and become gravitationally unstable, creating a new stellar generation with the matter reinserted by former massive stars. We present the results of several calculations of this positive star formation feedback scenario promoted by strong radiative cooling and mass loading.

  11. SOAR Optical and Near-infrared Spectroscopic Survey of Newly Discovered Massive Stars in the Periphery of Galactic Massive Star Clusters I-NGC 3603

    NASA Astrophysics Data System (ADS)

    Roman-Lopes, A.; Franco, G. A. P.; Sanmartim, D.

    2016-06-01

    In this work, we present the results of a spectroscopic study of very massive stars (VMSs) found outside the center of the massive stellar cluster NGC 3603. From the analysis of the associated Southern Astrophysical Research (SOAR) Telescope spectroscopic data and related optical-near-IR (NIR) photometry, we confirm the existence of several VMSs in the periphery of NGC 3603. The first group of objects (MTT58, WR42e, and RF7) is composed of three new Galactic exemplars of the OIf*/WN type, all of them with probable initial masses well above 100 {M}⊙ and estimated ages of about 1 Myr. Based on our Goodman blue-optical spectrum of another source in our sample (MTT68), we can confirm the previous finding in the NIR of the only other Galactic exemplar (besides HD 93129A) of the O2If* type known to date. Based on its position relative to a set of theoretical isochrones in a Hertzprung-Russel (H-R) diagram, we concluded that the new O2If* star could be one of the most massive (150 {M}⊙ ) and luminous (M V = -7.3) O-stars in the Galaxy. Also, another remarkable result is the discovery of a new O2v star (MTT31), which is the first exemplar of that class so far identified in the Milk Way. From its position in the H-R diagram it is found that this new star probably had an initial mass of 80 {M}⊙ , as well as an absolute magnitude of M V = -6.0, corresponding to a luminosity similar to other known O2v stars in the Large Magellanic Cloud. Finally, we also communicate the discovery of a new Galactic O3.5If* star (RFS8) that is quite an intriguing case. Indeed, it is located far to the south of the NGC 3603 center, in apparent isolation at a large radial projected linear distance of ˜62 pc. Its derived luminosity is similar to that of the other O3.5If* (Sh18) found in NGC 3603's innermost region, and the fact that a such high mass star is observed so isolated in the field led us to speculate that perhaps it could have been expelled from the innermost parts of the complex

  12. Crystallization of silicates in massive young star cluster Westerlund 1: a nearby starburst analog

    NASA Astrophysics Data System (ADS)

    Kemper, Francisca

    2014-10-01

    We propose to observe dust forming stars in massive young cluster Westerlund 1 with the FORCASTgrism modes. The objective of this proposal is to determine the crystalline fraction of the silicates formed by the brightest mid-infrared point sources in this cluster, by disentangling the crystalline and amorphous silicate contributions to the infrared spectroscopy. This research is motivated by the discovery of large amounts of crystalline silicate dust in starburst galaxies (Spoon et al. 2006), while the silicates in the interstellar medium of our own galaxies are completely amorphous (Kemper et al. 2004). Spoon et al. explain the high crystallinity by the production by massive stars, although models show this may not be sufficient (Kemper et al. 2011). With these observations we hope to accurately pin down the crystalline silicate production by massive stars in a starburst environment.

  13. ON THE DIFFERENTIAL ROTATION OF MASSIVE MAIN-SEQUENCE STARS

    SciTech Connect

    Rogers, T. M.

    2015-12-20

    To date, asteroseismology has provided core-to-surface differential rotation measurements in eight main-sequence stars. These stars, ranging in mass from ∼1.5–9 M{sub ⊙}, show rotation profiles ranging from uniform to counter-rotation. Although they have a variety of masses, these stars all have convective cores and overlying radiative regions, conducive to angular momentum transport by internal gravity waves (IGWs). Using two-dimensional numerical simulations, we show that angular momentum transport by IGWs can explain all of these rotation profiles. We further predict that, should high mass, faster rotating stars be observed, the core-to-envelope differential rotation will be positive, but less than one.

  14. A young massive planet in a star-disk system.

    PubMed

    Setiawan, J; Henning, Th; Launhardt, R; Müller, A; Weise, P; Kürster, M

    2008-01-03

    There is a general consensus that planets form within disks of dust and gas around newly born stars. Details of their formation process, however, are still a matter of ongoing debate. The timescale of planet formation remains unclear, so the detection of planets around young stars with protoplanetary disks is potentially of great interest. Hitherto, no such planet has been found. Here we report the detection of a planet of mass (9.8+/-3.3)M(Jupiter) around TW Hydrae (TW Hya), a nearby young star with an age of only 8-10 Myr that is surrounded by a well-studied circumstellar disk. It orbits the star with a period of 3.56 days at 0.04 au, inside the inner rim of the disk. This demonstrates that planets can form within 10 Myr, before the disk has been dissipated by stellar winds and radiation.

  15. The dynamical importance of binary systems in young massive star clusters

    NASA Astrophysics Data System (ADS)

    de Grijs, Richard; Li, Chengyuan; Geller, Aaron M.

    2017-03-01

    Characterization of the binary fractions in star clusters is of fundamental importance for many fields in astrophysics. Observations indicate that the majority of stars are found in binary systems, while most stars with masses greater than 0.5M ⊙ are formed in star clusters. In addition, since binaries are on average more massive than single stars, in resolved star clusters these systems are thought to be good tracers of (dynamical) mass segregation. Over time, dynamical evolution through two-body relaxation will cause the most massive objects to migrate to the cluster center, while the relatively lower-mass objects remain in or migrate to orbits at greater radii. This process will globally dominate a cluster's stellar distribution. However, close encounters involving binary systems may disrupt `soft' binaries. This process will occur more frequently in a cluster's central, dense region than in its periphery, which may mask the effects of mass segregation. Using high resolution Hubble Space Telescope observations, combined with sophisticated N-body simulations, we investigate the radial distributions of the main-sequence binary fractions in massive young Large Magellanic Cloud star clusters. We show that binary disruption may play an important role on very short timescales, depending on the environmental conditions in the cluster cores. This may lead to radial binary fractions that initially decline in the cluster centers, which is contrary to the effects expected from dynamical mass segregation.

  16. VLT/X-shooter spectroscopy of massive pre-main-sequence stars in M17

    NASA Astrophysics Data System (ADS)

    Ramirez-Tannus, Maria Claudia; Kaper, Lex

    2015-08-01

    The formation process of massive stars is still poorly understood. Formation timescales are short, the corresponding accretion rates very high, and the forming stars are hidden from view due to vast amounts of interstellar extinction. On top of that, massive stars are rare, are located at relatively large distances, and play a major role in shaping the interstellar medium due to their strong UV radiation fields and stellar winds. Although massive stars show most spectral features in the UV and optical range, so far only for a handful of massive Young Stellar Objects (mYSOs) optical and near-infrared spectra have been obtained. For some of these their pre-main-sequence (PMS) nature has now been firmly established (e.g. Ochsendorf et al. 2011, Ellerbroek et al. 2013). The objective of our project is to determine the physical properties of mYSOs, to search for signatures remnant of their formation process and to better understand the feedback on their environment.To this aim the optical to near-infrared (300-2500 nm) spectra of six candidate mYSOs (Hanson et al. 1997), deeply embedded in the massive star forming region M17, have been obtained with X-Shooter on the ESO Very Large Telescope. These mYSO candidates have been identified based on their infrared excess and spectral features (double-peaked emission lines, CO band-head emission) indicating the presence of a disk. In most cases, we detect a photospheric spectrum allowing us to measure the physical properties of the mYSO and to confirm its PMS nature. We also uncover many emission features, including forbidden lines, providing information on the (active) formation process of these young (massive) stars.

  17. Gas Content and Star Formation Efficiency of Massive Main Sequence Galaxies at z~3-4

    NASA Astrophysics Data System (ADS)

    Schinnerer, Eva; Groves, Brent; Karim, Alexander; Sargent, Mark T.; Oesch, Pascal; Le Fevre, Olivier; Tasca, Lidia; Magnelli, Benjamin; Cassata, Paolo; Smolcic, Vernesa

    2016-01-01

    Recent observations have shown that the neutral gas content and star formation efficiency of massive (with log(stellar masses) > 10), normal star forming galaxies, i.e. they reside on the main sequence of star forming galaxies, are steadily decreasing from the peak of star formation activity (at redshifts of z~2) till today. This decrease is coincident with the observed decline in the cosmic star formation rate density over this time range. However, only few observations have probed the evolution of the gas content and star formation efficiency beyond this peak epoch when the cosmic star formation rate density has been increasing, i.e. at redshifts of z~3-4.We will present new ALMA rest-frame 250um continuum detections of 45 massive, normal star forming galaxies in this critical redshift interval selected in the COSMOS deep field. Using the sub-mm continnum as proxy for the cold neutral gas content, we find gas mass fractions and depletions similar to those reported during the peak epoch of star formation. We will discuss our findings in the context of results from lower redshift observations and model expectations.

  18. The multiplicity of massive stars: A high angular resolution survey with the HST fine guidance sensor

    SciTech Connect

    Aldoretta, E. J.; Gies, D. R.; Henry, T. J.; Jao, W.-C.; Norris, R. P. E-mail: gies@chara.gsu.edu E-mail: jao@chara.gsu.edu; and others

    2015-01-01

    We present the results of an all-sky survey made with the Fine Guidance Sensor on the Hubble Space Telescope to search for angularly resolved binary systems among massive stars. The sample of 224 stars is comprised mainly of Galactic O- and B-type stars and luminous blue variables, plus a few luminous stars in the Large Magellanic Cloud. The FGS TRANS mode observations are sensitive to the detection of companions with an angular separation between 0.″01 and 1.″0 and brighter than △m=5. The FGS observations resolved 52 binary and 6 triple star systems and detected partially resolved binaries in 7 additional targets (43 of these are new detections). These numbers yield a companion detection frequency of 29% for the FGS survey. We also gathered literature results on the numbers of close spectroscopic binaries and wider astrometric binaries among the sample, and we present estimates of the frequency of multiple systems and the companion frequency for subsets of stars residing in clusters and associations, field stars, and runaway stars. These results confirm the high multiplicity fraction, especially among massive stars in clusters and associations. We show that the period distribution is approximately flat in increments of logP. We identify a number of systems of potential interest for long-term orbital determinations, and we note the importance of some of these companions for the interpretation of the radial velocities and light curves of close binaries that have third companions.

  19. Exploring the origin of magnetic fields in massive stars. II. New magnetic field measurements in cluster and field stars

    NASA Astrophysics Data System (ADS)

    Hubrig, S.; Schöller, M.; Ilyin, I.; Kharchenko, N. V.; Oskinova, L. M.; Langer, N.; González, J. F.; Kholtygin, A. F.; Briquet, M.; Magori Collaboration

    2013-03-01

    Context. Theories on the origin of magnetic fields in massive stars remain poorly developed, because the properties of their magnetic field as function of stellar parameters could not yet be investigated. Additional observations are of utmost importance to constrain the conditions that are conducive to magnetic fields and to determine first trends about their occurrence rate and field strength distribution. Aims: To investigate whether magnetic fields in massive stars are ubiquitous or appear only in stars with a specific spectral classification, certain ages, or in a special environment, we acquired 67 new spectropolarimetric observations for 30 massive stars. Among the observed sample, roughly one third of the stars are probable members of clusters at different ages, whereas the remaining stars are field stars not known to belong to any cluster or association. Methods: Spectropolarimetric observations were obtained during four different nights using the low-resolution spectropolarimetric mode of FOcal Reducer low dispersion Spectrograph (FORS 2) mounted on the 8-m Antu telescope of the VLT. Furthermore, we present a number of follow-up observations carried out with the high-resolution spectropolarimeters SOFIN mounted at the Nordic Optical Telescope (NOT) and HARPS mounted at the ESO 3.6 m between 2008 and 2011. To assess the membership in open clusters and associations, we used astrometric catalogues with the highest quality kinematic and photometric data currently available. Results: The presence of a magnetic field is confirmed in nine stars previously observed with FORS 1/2: HD 36879, HD 47839, CPD-28 2561, CPD-47 2963, HD 93843, HD 148937, HD 149757, HD 328856, and HD 164794. New magnetic field detections at a significance level of at least 3σ were achieved in five stars: HD 92206c, HD 93521, HD 93632, CPD-46 8221, and HD 157857. Among the stars with a detected magnetic field, five stars belong to open clusters with high membership probability. According to

  20. The massive binary companion star to the progenitor of supernova 1993J.

    PubMed

    Maund, Justyn R; Smartt, Stephen J; Kudritzki, Rolf P; Podsiadlowski, Philipp; Gilmore, Gerard F

    2004-01-08

    The massive star that underwent a collapse of its core to produce supernova (SN)1993J was subsequently identified as a non-variable red supergiant star in images of the galaxy M81 taken before explosion. It showed an excess in ultraviolet and B-band colours, suggesting either the presence of a hot, massive companion star or that it was embedded in an unresolved young stellar association. The spectra of SN1993J underwent a remarkable transformation from the signature of a hydrogen-rich type II supernova to one of a helium-rich (hydrogen-deficient) type Ib. The spectral and photometric peculiarities were best explained by models in which the 13-20 solar mass supergiant had lost almost its entire hydrogen envelope to a close binary companion, producing a 'type IIb' supernova, but the hypothetical massive companion stars for this class of supernovae have so far eluded discovery. Here we report photometric and spectroscopic observations of SN1993J ten years after the explosion. At the position of the fading supernova we detect the unambiguous signature of a massive star: the binary companion to the progenitor.

  1. NUCLEOSYNTHESIS AND EVOLUTION OF MASSIVE METAL-FREE STARS

    SciTech Connect

    Heger, Alexander; Woosley, S. E. E-mail: woosley@ucolick.or

    2010-11-20

    The evolution and explosion of metal-free stars with masses 10-100 M{sub sun} are followed, and their nucleosynthetic yields, light curves, and remnant masses determined. Such stars would have been the first to form after the big bang and may have left a distinctive imprint on the composition of the early universe. When the supernova yields are integrated over a Salpeter initial mass function (IMF), the resulting elemental abundance pattern is qualitatively solar, but with marked deficiencies of odd-Z elements with 7 {<=} Z {<=} 13. Neglecting the contribution of the neutrino wind from the neutron stars that they form, no appreciable abundances are made for elements heavier than germanium. The computed pattern compares favorably with what has been observed in metal-deficient stars with [Z] {approx}< -3. The amount of ionizing radiation from this generation of stars is {approx}2.16 MeV per baryon (4.15 B per M{sub sun}; where 1 B = 1 Bethe = 10{sup 51} erg) for a Salpeter IMF, and may have played a role in reionizing the universe. Neglecting rotation, most of the stars end their lives as blue supergiants and form supernovae with distinctive light curves resembling SN 1987A, but some produce primary nitrogen due to dredge-up and become red supergiants. These make brighter supernovae like typical Type IIp's. For the lower mass supernovae considered, the distribution of remnant masses clusters around typical modern neutron star masses, but above 20-30 M{sub sun}, with the value depending on explosion energy, black holes are copiously formed by fallback, with a maximum hole mass of {approx}40 M{sub sun}. A novel automated fitting algorithm is developed for determining optimal combinations of explosion energy, mixing, and IMF in the large model database to agree with specified data sets. The model is applied to the low-metallicity sample of Cayrel et al. and the two ultra-iron-poor stars HE0107-5240 and HE1327-2326. Best agreement with these very low metallicity stars is

  2. Stellar Variability in the Intermediate Age Cluster NGC 1846

    NASA Astrophysics Data System (ADS)

    Pajkos, Michael A.; Salinas, Ricardo; Vivas, Anna Katherina; Strader, Jay; Contreras, Rodrigo

    2017-01-01

    The existence of multiple stellar populations in Galactic globular clusters is considered a widespread phenomenon, with only a few possible exceptions. In the LMC intermediate-age globular clusters, the presence of extended main sequence turn off points (MSTOs), initially interpreted as evidence for multiple stellar populations, is now under scrutiny and stellar rotation has emerged as an alternative explanation. Here we propose yet another ingredient to this puzzle: the fact that the MSTO of these clusters passes through the instability strip making stellar variability a new alternative to explain this phenomenon. We report the first in-depth characterization of the variability, at the MSTO level, in any LMC cluster, and assess the role of variability masquerading as multiple stellar populations. We used the Gemini-S/GMOS to obtain time series photometry of NGC 1846. Using differencing image analysis, we identified 90 variables in the r-band, 68 of which were also found in the g-band. Of these 68, 57 were δ-scuti—with 35 having full phase coverage and 22 without. The average full period (Pfull) was 1.93 ± 0.79 hours. Furthermore, two eclipsing binaries and two RR Lyrae identified by OGLE were recovered. We conclude that not enough variables were found to provide a statistically significant impact on the extended MSTO, nor to explain the bifurcation of MSTO in NGC 1846. But the effect of variable stars could still be a viable explanation on clusters where only a hint of a MS extension is seen.

  3. B fields in OB stars (BOB): Low-resolution FORS2 spectropolarimetry of the first sample of 50 massive stars

    NASA Astrophysics Data System (ADS)

    Fossati, L.; Castro, N.; Schöller, M.; Hubrig, S.; Langer, N.; Morel, T.; Briquet, M.; Herrero, A.; Przybilla, N.; Sana, H.; Schneider, F. R. N.; de Koter, A.; BOB Collaboration

    2015-10-01

    Within the context of the collaboration "B fields in OB stars" (BOB), we used the FORS2 low-resolution spectropolarimeter to search for a magnetic field in 50 massive stars, including two reference magnetic massive stars. Because of the many controversies of magnetic field detections obtained with the FORS instruments, we derived the magnetic field values with two completely independent reduction and analysis pipelines. We compare and discuss the results obtained from the two pipelines. We obtained a general good agreement, indicating that most of the discrepancies on magnetic field detections reported in the literature are caused by the interpretation of the significance of the results (i.e., 3-4σ detections considered as genuine, or not), instead of by significant differences in the derived magnetic field values. By combining our results with past FORS1 measurements of HD 46328, we improve the estimate of the stellar rotation period, obtaining P = 2.17950 ± 0.00009 days. For HD 125823, our FORS2 measurements do not fit the available magnetic field model, based on magnetic field values obtained 30 years ago. We repeatedly detect a magnetic field for the O9.7V star HD 54879, the HD 164492C massive binary, and the He-rich star CPD -57 3509. We obtain a magnetic field detection rate of 6 ± 4%, while by considering only the apparently slow rotators we derive a detection rate of 8 ± 5%, both comparable with what was previously reported by other similar surveys. We are left with the intriguing result that, although the large majority of magnetic massive stars is rotating slowly, our detection rate is not a strong function of the stellar rotational velocity. Based on observations made with ESO Telescopes at the La Silla Paranal Observatory under programme ID 191.D-0255(A, C).

  4. Massive Star Clusters and the high-mass population in the Galactic center

    NASA Astrophysics Data System (ADS)

    Stolte, A.

    2013-06-01

    With a star formation rate of 10% of the SFR in the Milky Way disc, the Galactic center is the most active star-forming environment in the Milky Way today. The small volume of the central molecular zone (CMZ), spanning a diameter of merely 400 pc, appears to foster especially the formation of high-mass stars. The CMZ is host to three of the most massive, young star clusters and a quarter of the known Wolf-Rayet population in the Galaxy. In this review, I will present the census of high-mass star formation that emerged from the recent Galactic center surveys, and will summarise the properties of the starburst clusters as the most productive sites of high-mass star formation.

  5. The MiMeS survey of magnetism in massive stars: CNO surface abundances of Galactic O stars

    NASA Astrophysics Data System (ADS)

    Martins, F.; Hervé, A.; Bouret, J.-C.; Marcolino, W.; Wade, G. A.; Neiner, C.; Alecian, E.; Grunhut, J.; Petit, V.

    2015-03-01

    Context. The evolution of massive stars is still partly unconstrained. Mass, metallicity, mass loss, and rotation are the main drivers of stellar evolution. Binarity and the magnetic field may also significantly affect the fate of massive stars. Aims: Our goal is to investigate the evolution of single O stars in the Galaxy. Methods: For that, we used a sample of 74 objects comprising all luminosity classes and spectral types from O4 to O9.7. We relied on optical spectroscopy obtained in the context of the MiMeS survey of massive stars. We performed spectral modelling with the code CMFGEN. We determined the surface properties of the sample stars, with special emphasis on abundances of carbon, nitrogen, and oxygen. Results: Most of our sample stars have initial masses in the range of 20 to 50 M⊙. We show that nitrogen is more enriched and carbon and oxygen are more depleted in supergiants than in dwarfs, with giants showing intermediate degrees of mixing. CNO abundances are observed in the range of values predicted by nucleosynthesis through the CNO cycle. More massive stars, within a given luminosity class, appear to be more chemically enriched than lower mass stars. We compare our results with predictions of three types of evolutionary models and show that for two sets of models, 80% of our sample can be explained by stellar evolution including rotation. The effect of magnetism on surface abundances is unconstrained. Conclusions: Our study indicates that in the 20-50 M⊙ mass range, the surface chemical abundances of most single O stars in the Galaxy are fairly well accounted for by stellar evolution of rotating stars. Based on observations obtained at 1) the Telescope Bernard Lyot (USR5026) operated by the Observatoire Midi-Pyrénées, Université de Toulouse (Paul Sabatier), Centre National de la Recherche Scientifique of France; 2) at the Canada-France-Hawaii Telescope (CFHT) which is operated by the National Research Council (NRC) of Canada, the Institut

  6. Formation of new stellar populations from gas accreted by massive young star clusters.

    PubMed

    Li, Chengyuan; de Grijs, Richard; Deng, Licai; Geller, Aaron M; Xin, Yu; Hu, Yi; Faucher-Giguère, Claude-André

    2016-01-28

    Stars in clusters are thought to form in a single burst from a common progenitor cloud of molecular gas. However, massive, old 'globular' clusters--those with ages greater than ten billion years and masses several hundred thousand times that of the Sun--often harbour multiple stellar populations, indicating that more than one star-forming event occurred during their lifetimes. Colliding stellar winds from late-stage, asymptotic-giant-branch stars are often suggested to be triggers of second-generation star formation. For this to occur, the initial cluster masses need to be greater than a few million solar masses. Here we report observations of three massive relatively young star clusters (1-2 billion years old) in the Magellanic Clouds that show clear evidence of burst-like star formation that occurred a few hundred million years after their initial formation era. We show that such clusters could have accreted sufficient gas to form new stars if they had orbited in their host galaxies' gaseous disks throughout the period between their initial formation and the more recent bursts of star formation. This process may eventually give rise to the ubiquitous multiple stellar populations in globular clusters.

  7. Linking 1D evolutionary to 3D hydrodynamical simulations of massive stars

    NASA Astrophysics Data System (ADS)

    Cristini, A.; Meakin, C.; Hirschi, R.; Arnett, D.; Georgy, C.; Viallet, M.

    2016-03-01

    Stellar evolution models of massive stars are important for many areas of astrophysics, for example nucleosynthesis yields, supernova progenitor models and understanding physics under extreme conditions. Turbulence occurs in stars primarily due to nuclear burning at different mass coordinates within the star. The understanding and correct treatment of turbulence and turbulent mixing at convective boundaries in stellar models has been studied for decades but still lacks a definitive solution. This paper presents initial results of a study on convective boundary mixing (CBM) in massive stars. The ‘stiffness’ of a convective boundary can be quantified using the bulk Richardson number ({{Ri}}{{B}}), the ratio of the potential energy for restoration of the boundary to the kinetic energy of turbulent eddies. A ‘stiff’ boundary ({{Ri}}{{B}}˜ {10}4) will suppress CBM, whereas in the opposite case a ‘soft’ boundary ({{Ri}}{{B}}˜ 10) will be more susceptible to CBM. One of the key results obtained so far is that lower convective boundaries (closer to the centre) of nuclear burning shells are ‘stiffer’ than the corresponding upper boundaries, implying limited CBM at lower shell boundaries. This is in agreement with 3D hydrodynamic simulations carried out by Meakin and Arnett (2007 Astrophys. J. 667 448-75). This result also has implications for new CBM prescriptions in massive stars as well as for nuclear burning flame front propagation in super-asymptotic giant branch stars and also the onset of novae.

  8. THE MASSIVE STAR POPULATION IN M101. I. THE IDENTIFICATION AND SPATIAL DISTRIBUTION OF THE VISUALLY LUMINOUS STARS

    SciTech Connect

    Grammer, Skyler; Humphreys, Roberta M. E-mail: roberta@umn.edu

    2013-11-01

    An increasing number of non-terminal giant eruptions are being observed by modern supernova and transient surveys. But very little is known about the origin of these giant eruptions and their progenitors, many of which are presumably very massive, evolved stars. Motivated by the small number of progenitors positively associated with these giant eruptions, we have begun a survey of the evolved massive star populations in nearby galaxies. The nearby, nearly face-on, giant spiral M101 is an excellent laboratory for studying a large population of very massive stars. In this paper, we present BVI photometry obtained from archival HST/ACS Wide Field Camera images of M101. We have produced a catalog of luminous stars with photometric errors <10% for V < 24.5 and 50% completeness down to V ∼ 26.5 even in regions of high stellar crowding. Using color and luminosity criteria, we have identified candidate luminous OB-type stars and blue supergiants, yellow supergiants, and red supergiants for future observation. We examine their spatial distributions across the face of M101 and find that the ratio of blue to red supergiants decreases by two orders of magnitude over the radial extent of M101 corresponding to 0.5 dex in metallicity. We discuss the resolved stellar content in the giant star-forming complexes NGC 5458, 5453, 5461, 5451, 5462, and 5449 and discuss their color-magnitude diagrams in conjunction with the spatial distribution of the stars to determine their spatio-temporal formation histories.

  9. Southern Massive Stars at High Angular Resolution: Observational Campaign and Companion Detection

    NASA Astrophysics Data System (ADS)

    Sana, H.; Le Bouquin, J.-B.; Lacour, S.; Berger, J.-P.; Duvert, G.; Gauchet, L.; Norris, B.; Olofsson, J.; Pickel, D.; Zins, G.; Absil, O.; de Koter, A.; Kratter, K.; Schnurr, O.; Zinnecker, H.

    2014-11-01

    Multiplicity is one of the most fundamental observable properties of massive O-type stars and offers a promising way to discriminate between massive star formation theories. Nevertheless, companions at separations between 1 and 100 milliarcsec (mas) remain mostly unknown due to intrinsic observational limitations. At a typical distance of 2 kpc, this corresponds to projected physical separations of 2-200 AU. The Southern MAssive Stars at High angular resolution survey (SMaSH+) was designed to fill this gap by providing the first systematic interferometric survey of Galactic massive stars. We observed 117 O-type stars with VLTI/PIONIER and 162 O-type stars with NACO/Sparse Aperture Masking (SAM), probing the separation ranges 1-45 and 30-250 mas and brightness contrasts of ΔH < 4 and ΔH < 5, respectively. Taking advantage of NACO's field of view, we further uniformly searched for visual companions in an 8'' radius down to ΔH = 8. This paper describes observations and data analysis, reports the discovery of almost 200 new companions in the separation range from 1 mas to 8'' and presents a catalog of detections, including the first resolved measurements of over a dozen known long-period spectroscopic binaries. Excluding known runaway stars for which no companions are detected, 96 objects in our main sample (δ < 0° H < 7.5) were observed both with PIONIER and NACO/SAM. The fraction of these stars with at least one resolved companion within 200 mas is 0.53. Accounting for known but unresolved spectroscopic or eclipsing companions, the multiplicity fraction at separation ρ < 8'' increases to f m = 0.91 ± 0.03. The fraction of luminosity class V stars that have a bound companion reaches 100% at 30 mas while their average number of physically connected companions within 8'' is f c = 2.2 ± 0.3. This demonstrates that massive stars form nearly exclusively in multiple systems. The nine non-thermal radio emitters observed by SMaSH+ are all resolved, including the newly

  10. SOUTHERN MASSIVE STARS AT HIGH ANGULAR RESOLUTION: OBSERVATIONAL CAMPAIGN AND COMPANION DETECTION

    SciTech Connect

    Sana, H.; Lacour, S.; Gauchet, L.; Pickel, D.; Berger, J.-P.; Norris, B.; Olofsson, J.; Absil, O.; De Koter, A.; Kratter, K.; Schnurr, O.; Zinnecker, H.

    2014-11-01

    Multiplicity is one of the most fundamental observable properties of massive O-type stars and offers a promising way to discriminate between massive star formation theories. Nevertheless, companions at separations between 1 and 100 milliarcsec (mas) remain mostly unknown due to intrinsic observational limitations. At a typical distance of 2 kpc, this corresponds to projected physical separations of 2-200 AU. The Southern MAssive Stars at High angular resolution survey (SMaSH+) was designed to fill this gap by providing the first systematic interferometric survey of Galactic massive stars. We observed 117 O-type stars with VLTI/PIONIER and 162 O-type stars with NACO/Sparse Aperture Masking (SAM), probing the separation ranges 1-45 and 30-250 mas and brightness contrasts of ΔH < 4 and ΔH < 5, respectively. Taking advantage of NACO's field of view, we further uniformly searched for visual companions in an 8'' radius down to ΔH = 8. This paper describes observations and data analysis, reports the discovery of almost 200 new companions in the separation range from 1 mas to 8'' and presents a catalog of detections, including the first resolved measurements of over a dozen known long-period spectroscopic binaries. Excluding known runaway stars for which no companions are detected, 96 objects in our main sample (δ < 0°; H < 7.5) were observed both with PIONIER and NACO/SAM. The fraction of these stars with at least one resolved companion within 200 mas is 0.53. Accounting for known but unresolved spectroscopic or eclipsing companions, the multiplicity fraction at separation ρ < 8'' increases to f {sub m} = 0.91 ± 0.03. The fraction of luminosity class V stars that have a bound companion reaches 100% at 30 mas while their average number of physically connected companions within 8'' is f {sub c} = 2.2 ± 0.3. This demonstrates that massive stars form nearly exclusively in multiple systems. The nine non-thermal radio emitters observed by SMaSH+ are all resolved

  11. Very massive neutron stars in Ni's theory of gravity

    NASA Technical Reports Server (NTRS)

    Mikkelsen, D. R.

    1977-01-01

    It is shown that in Ni's theory of gravity, which is identical to general relativity in the post-Newtonian limit, neutron stars of arbitrarily large mass are possible. This result is independent, within reasonable bounds, of the equation of state of matter at supernuclear densities.

  12. Evolution of Intermediate Mass and Massive Binary Stars: Physics, Mass Loss, and Rotation

    NASA Astrophysics Data System (ADS)

    Vanbeveren, D.; Mennekens, N.

    2017-02-01

    In the present review we discuss the past and present status of the interacting OB-type binary frequency. We critically examine the popular idea that Be-stars and supergiant sgB[e] stars are binary evolutionary products. The effects of rotation on stellar evolution in general, stellar population studies in particular, and the link with binaries will be evaluated. Finally a discussion is presented of massive double compact star binary mergers as possible major sites of chemical enrichment of r-process elements and as the origin of recent aLIGO GW events.

  13. Variability Survey of Massive Stars in OB-Associations: Preliminary Results on the Cygnus Region

    NASA Astrophysics Data System (ADS)

    Laur, J.; Tuvikene, T.; Eenmäe, T.; Kolka, I.; Leedjärv, L.

    We present V- and I-passband photometry of massive stars in the Cyg OB1 and Cyg OB2 associations, based on about 80 observing nights spanning 300 days in the 2011 season. The variability of 22 supergiants and 48 OB-stars with luminosity classes III--V is analyzed. We report two new variable OB stars and 15 variable supergiants of which four are new discoveries. The light variations of Schulte 12 are interpreted as microvariability. We also present light curves of the red supergiants BC Cyg and BI Cyg which exhibit brightness drop of more than 0.4 mag during the season.

  14. Magnetic Models of Circumstellar Clouds around Massive Stars

    NASA Astrophysics Data System (ADS)

    Owocki, S.; Townsend, R.; Ud-Doula, A.

    2008-08-01

    This talk reviewed recent efforts to develop dynamical models for the effects of a surface dipole field on radiatively driven wind outflows. One particular project applies magnetohydrodynamic (MHD) simulations of a Magnetically Confined Wind Shock (MCWS) model (originally developed by Babel & Montmerle 1997) to explain X-ray emission observed by Rosat (Gagné et al. 1997) from the magnetic O7V star θ^{1 Ori C.

  15. Star formation in the massive cluster merger Abell 2744

    NASA Astrophysics Data System (ADS)

    Rawle, T. D.; Altieri, B.; Egami, E.; Pérez-González, P. G.; Richard, J.; Santos, J. S.; Valtchanov, I.; Walth, G.; Bouy, H.; Haines, C. P.; Okabe, N.

    2014-07-01

    We present a comprehensive study of star-forming (SF) galaxies in the Hubble Space Telescope (HST) Frontier Field recent cluster merger A2744 (z = 0.308). Wide-field, ultraviolet-infrared (UV-IR) imaging enables a direct constraint of the total star formation rate (SFR) for 53 cluster galaxies, with SFRUV+IR = 343 ± 10 M⊙ yr-1. Within the central 4 arcmin (1.1 Mpc) radius, the integrated SFR is complete, yielding a total SFRUV+IR = 201 ± 9 M⊙ yr-1. Focusing on obscured star formation, this core region exhibits a total SFRIR = 138 ± 8 M⊙ yr-1, a mass-normalized SFRIR of ΣSFR = 11.2 ± 0.7 M⊙ yr-1 per 1014 M⊙ and a fraction of IR-detected SF galaxies f_SF = 0.080^{+0.010}_{-0.037}. Overall, the cluster population at z ˜ 0.3 exhibits significant intrinsic scatter in IR properties (total SFRIR, Tdust distribution) apparently unrelated to the dynamical state: A2744 is noticeably different to the merging Bullet cluster, but similar to several relaxed clusters. However, in A2744 we identify a trail of SF sources including jellyfish galaxies with substantial unobscured SF due to extreme stripping (SFRUV/SFRIR up to 3.3). The orientation of the trail, and of material stripped from constituent galaxies, indicates that the passing shock front of the cluster merger was the trigger. Constraints on star formation from both IR and UV are crucial for understanding galaxy evolution within the densest environments.

  16. Chemical abundances of massive stars in Local Group galaxies

    NASA Astrophysics Data System (ADS)

    Venn, Kim A.; Kaufer, Andreas; Tolstoy, Eline; Kudritzki, Rolf-Peter; Przybilla, Norbert; Smartt, Stephen J.; Lennon, Daniel J.

    The relative abundances of elements in galaxies can provide valuable information on the stellar and chemical evolution of a galaxy. While nebulae can provide abundances for a variety of light elements, stars are the only way to directly determine the abundances of iron-group and s-process and r-process elements in a galaxy. The new 8m and 10m class telescopes and high-efficiency spectrographs now make high-quality spectral observations of bright supergiants possible in dwarf galaxies in the Local Group. We have been concentrating on elemental abundances in the metal-poor dwarf irregular galaxies, NGC 6822, WLM, Sextants A, and GR 8. Comparing abundance ratios to those predicted from their star formation histories, determined from color-magnitude diagrams, and comparing those ratios between these galaxies can give us new insights into the evolution of these dwarf irregular galaxies. Iron-group abundances also allow us to examine the metallicities of the stars in these galaxies directly, which affects their inferred mass loss rates and predicted stellar evolution properties.

  17. The mass-radius relationship of massive compact stars

    SciTech Connect

    Chowdhury, Partha Roy

    2015-02-24

    The properties of pure hadronic and hybrid compact stars are reviewed using nuclear equation of state (EoS) for β-equilibrated neutron star (NS) matter obtained using a density-dependent M3Y (DDM3Y) effective nucleon-nucleon interaction. Depending on the model, the energy density of quark matter can be lower than that of this nuclear EoS at higher densities, implying the possibility of transition to quark matter inside the core and the transition density depends on the particular quark matter model used. The recent observations of the binary millisecond pulsar J1614–2230 by P.B. Demorest et al. [1] and PSR J0348+0432 by J. Antoniadis et al. [2] suggest that the masses lie within 1.97 ± 0.04 M{sub ⊙} and 2.01 ± 0.04 M{sub ⊙}, respectively, where M{sub ⊙} is the solar mass. In conformity with recent observations, a pure nucleonic EoS determines that the maximum mass of NS rotating with frequency ν∼ 667 Hz below r-mode instability is ∼ 1.95 M{sub ⊙} with radius ∼ 10 km. Compact stars with quark cores rotating with same frequency have the maximum mass of ∼ 1.72 M{sub ⊙} turns out to be lower than the observed masses.

  18. Asteroseismological study of massive ZZ Ceti stars with fully evolutionary models

    SciTech Connect

    Romero, A. D.; Kepler, S. O.; Córsico, A. H.; Althaus, L. G.

    2013-12-10

    We present the first asteroseismological study for 42 massive ZZ Ceti stars based on a large set of fully evolutionary carbon-oxygen core DA white dwarf models characterized by a detailed and consistent chemical inner profile for the core and the envelope. Our sample comprises all of the ZZ Ceti stars with spectroscopic stellar masses between 0.72 and 1.05 M {sub ☉} known to date. The asteroseismological analysis of a set of 42 stars enables study of the ensemble properties of the massive, pulsating white dwarf stars with carbon-oxygen cores, in particular the thickness of the hydrogen envelope and the stellar mass. A significant fraction of stars in our sample have stellar mass that is high enough to crystallize at the effective temperatures of the ZZ Ceti instability strip, which enables us to study the effects of crystallization on the pulsation properties of these stars. Our results show that the phase diagram presented in Horowitz et al. seems to be a good representation of the crystallization process inside white dwarf stars, in agreement with the results from white dwarf luminosity function in globular clusters.

  19. Asteroseismological Study of Massive ZZ Ceti Stars with Fully Evolutionary Models

    NASA Astrophysics Data System (ADS)

    Romero, A. D.; Kepler, S. O.; Córsico, A. H.; Althaus, L. G.; Fraga, L.

    2013-12-01

    We present the first asteroseismological study for 42 massive ZZ Ceti stars based on a large set of fully evolutionary carbon-oxygen core DA white dwarf models characterized by a detailed and consistent chemical inner profile for the core and the envelope. Our sample comprises all of the ZZ Ceti stars with spectroscopic stellar masses between 0.72 and 1.05 M ⊙ known to date. The asteroseismological analysis of a set of 42 stars enables study of the ensemble properties of the massive, pulsating white dwarf stars with carbon-oxygen cores, in particular the thickness of the hydrogen envelope and the stellar mass. A significant fraction of stars in our sample have stellar mass that is high enough to crystallize at the effective temperatures of the ZZ Ceti instability strip, which enables us to study the effects of crystallization on the pulsation properties of these stars. Our results show that the phase diagram presented in Horowitz et al. seems to be a good representation of the crystallization process inside white dwarf stars, in agreement with the results from white dwarf luminosity function in globular clusters.

  20. A giant outburst two years before the core-collapse of a massive star.

    PubMed

    Pastorello, A; Smartt, S J; Mattila, S; Eldridge, J J; Young, D; Itagaki, K; Yamaoka, H; Navasardyan, H; Valenti, S; Patat, F; Agnoletto, I; Augusteijn, T; Benetti, S; Cappellaro, E; Boles, T; Bonnet-Bidaud, J-M; Botticella, M T; Bufano, F; Cao, C; Deng, J; Dennefeld, M; Elias-Rosa, N; Harutyunyan, A; Keenan, F P; Iijima, T; Lorenzi, V; Mazzali, P A; Meng, X; Nakano, S; Nielsen, T B; Smoker, J V; Stanishev, V; Turatto, M; Xu, D; Zampieri, L

    2007-06-14

    The death of massive stars produces a variety of supernovae, which are linked to the structure of the exploding stars. The detection of several precursor stars of type II supernovae has been reported (see, for example, ref. 3), but we do not yet have direct information on the progenitors of the hydrogen-deficient type Ib and Ic supernovae. Here we report that the peculiar type Ib supernova SN 2006jc is spatially coincident with a bright optical transient that occurred in 2004. Spectroscopic and photometric monitoring of the supernova leads us to suggest that the progenitor was a carbon-oxygen Wolf-Rayet star embedded within a helium-rich circumstellar medium. There are different possible explanations for this pre-explosion transient. It appears similar to the giant outbursts of luminous blue variable stars (LBVs) of 60-100 solar masses, but the progenitor of SN 2006jc was helium- and hydrogen-deficient (unlike LBVs). An LBV-like outburst of a Wolf-Rayet star could be invoked, but this would be the first observational evidence of such a phenomenon. Alternatively, a massive binary system composed of an LBV that erupted in 2004, and a Wolf-Rayet star exploding as SN 2006jc, could explain the observations.

  1. SPITZER SAGE-SMC INFRARED PHOTOMETRY OF MASSIVE STARS IN THE SMALL MAGELLANIC CLOUD

    SciTech Connect

    Bonanos, A. Z.; Lennon, D. J.; Massa, D. L. E-mail: lennon@stsci.ed

    2010-08-15

    We present a catalog of 5324 massive stars in the Small Magellanic Cloud (SMC), with accurate spectral types compiled from the literature, and a photometric catalog for a subset of 3654 of these stars, with the goal of exploring their infrared properties. The photometric catalog consists of stars with infrared counterparts in the Spitzer SAGE-SMC survey database, for which we present uniform photometry from 0.3to24 {mu}m in the UBVIJHK{sub s} +IRAC+MIPS24 bands. We compare the color-magnitude diagrams and color-color diagrams to those of stars in the Large Magellanic Cloud (LMC), finding that the brightest infrared sources in the SMC are also the red supergiants, supergiant B[e] (sgB[e]) stars, luminous blue variables, and Wolf-Rayet stars, with the latter exhibiting less infrared excess, the red supergiants being less dusty and the sgB[e] stars being on average less luminous. Among the objects detected at 24 {mu}m in the SMC are a few very luminous hypergiants, four B-type stars with peculiar, flat spectral energy distributions, and all three known luminous blue variables. We detect a distinct Be star sequence, displaced to the red, and suggest a novel method of confirming Be star candidates photometrically. We find a higher fraction of Oe and Be stars among O and early-B stars in our SMC catalog, respectively, when compared to the LMC catalog, and that the SMC Be stars occur at higher luminosities. We estimate mass-loss rates for the red supergiants, confirming the correlation with luminosity even at the metallicity of the SMC. Finally, we confirm the new class of stars displaying composite A and F type spectra, the sgB[e] nature of 2dFS1804 and find the F0 supergiant 2dFS3528 to be a candidate luminous blue variable with cold dust.

  2. Isoscalar-vector interaction and hybrid quark core in massive neutron stars

    NASA Astrophysics Data System (ADS)

    Shao, G. Y.; Colonna, M.; Di Toro, M.; Liu, Y. X.; Liu, B.

    2013-05-01

    The hadron-quark phase transition in the core of massive neutron stars is studied with a newly constructed two-phase model. For nuclear matter, a nonlinear Walecka type model with general nucleon-meson and meson-meson couplings, recently calibrated by Steiner, Hemper and Fischer, is taken. For quark matter, a modified Polyakov-Nambu—Jona-Lasinio model, which gives consistent results with lattice QCD data, is used. Most importantly, we introduce an isoscalar-vector interaction in the description of quark matter, and we study its influence on the hadron-quark phase transition in the interior of massive neutron stars. With the constraints of neutron star observations, our calculation shows that the isoscalar-vector interaction between quarks is indispensable if massive hybrids star exist in the universe, and its strength determines the onset density of quark matter, as well as the mass-radius relations of hybrid stars. Furthermore, as a connection with heavy-ion-collision experiments we give some discussions about the strength of isoscalar-vector interaction and its effect on the signals of hadron-quark phase transition in heavy-ion collisions, in the energy range of the NICA at JINR-Dubna and FAIR at GSI-Darmstadt facilities.

  3. Early-stage Massive Star Formation near the Galactic Center: Sgr C

    NASA Astrophysics Data System (ADS)

    Kendrew, S.; Ginsburg, A.; Johnston, K.; Beuther, H.; Bally, J.; Cyganowski, C. J.; Battersby, C.

    2013-10-01

    We present near-infrared spectroscopy and 1 mm line and continuum observations of a recently identified site of high mass star formation likely to be located in the Central Molecular Zone (CMZ) near Sgr C. Located on the outskirts of the massive evolved H II region associated with Sgr C, the area is characterized by an Extended Green Object (EGO) measuring ~10'' in size (0.4 pc), whose observational characteristics suggest the presence of an embedded massive protostar driving an outflow. Our data confirm that early-stage star formation is taking place on the periphery of the Sgr C H II region, with detections of two protostellar cores and several knots of H2 and Brackett γ emission alongside a previously detected compact radio source. We calculate the cores' joint mass to be ~103 M ⊙, with column densities of 1-2 × 1024 cm-2. We show the host molecular cloud to hold ~105 M ⊙ of gas and dust with temperatures and column densities favorable for massive star formation to occur, however, there is no evidence of star formation outside of the EGO, indicating that the cloud is predominantly quiescent. Given its mass, density, and temperature, the cloud is comparable to other remarkable non-star-forming clouds such as G0.253 in the eastern CMZ.

  4. Can Very Massive Population III Stars Produce a Super-Collapsar?

    NASA Astrophysics Data System (ADS)

    Yoon, Sung-Chul; Kang, Jisu; Kozyreva, Alexandra

    2015-03-01

    A fraction of the first generation of stars in the early universe may be very massive (≳ 300 {{M}⊙ }) as they form in metal-free environments. Formation of black holes from these stars can be accompanied by supermassive collapsars to produce long gamma-ray bursts of a unique type having a very high total energy (˜ {{10}54} erg) as recently suggested by several authors. We present new stellar evolution models of very massive Population III stars including the effect of rotation to provide theoretical constraints on super-collapsar progenitors. We find that the angular momentum condition for a super-collapsar can be fulfilled if magnetic torques are ignored, in which case Eddington-Sweet circulations play the dominant role for the transport of angular momentum. We further find that the initial mass range for super-collapsar progenitors would be limited to 300 {{M}⊙ }≲ M≲ 700 {{M}⊙ }. However, all of our very massive star models of this mass range end their lives as red supergiants rather than blue supergiants, in good agreement with most of the previous studies. The predicted final fate of these stars is either a jet-powered type IIP supernova or an ultra-long, relatively faint gamma-ray transient, depending on the initial amount of angular momentum.

  5. Gravitational waves from the collision of tidally disrupted stars with massive black holes

    SciTech Connect

    East, William E.

    2014-11-10

    We use simulations of hydrodynamics coupled with full general relativity to investigate the gravitational waves produced by a star colliding with a massive black hole when the star's tidal disruption radius lies far outside of the black hole horizon. We consider both main-sequence and white-dwarf compaction stars, and nonspinning black holes, as well as those with near-extremal spin. We study the regime in between where the star can be accurately modeled by a point particle, and where tidal effects completely suppress the gravitational wave signal. We find that nonnegligible gravitational waves can be produced even when the star is strongly affected by tidal forces, as well as when it collides with large angular momentum. We discuss the implications that these results have for the potential observation of gravitational waves from these sources with future detectors.

  6. Identifying Massive Runaway Stars by Detecting Infrared Bowshock Nebula: Four OB Stars and a New Massive Early-B Binary System

    NASA Astrophysics Data System (ADS)

    Sorber, Rebecca L.; Rebecca L. Sorber, Henry A. Kobulnicky, Daniel A. Dale, Matthew S. Povich, William T. Chick, Heather N. Wernke, Julian E. Andrews, Stephan Munari, Grace M. Olivier, Danielle Schurhammer

    2016-01-01

    Though the main sequence evolution of OB type stars is relatively well known, the mass loss rates for these stars are still highly uncertain. Some OB stars are gravitationally ejected from their birth sites, traveling at speeds of 30 km/s or more which results in a prominent bowshock nebulae. We identified OB bowshock candidates at low Galactic latitudes by visual inspection of the Wide-field Infrared Survey Explorer (WISE) 22-micron images. Each candidate was observed using the Longslit Spectrograph at the Wyoming Infrared Observatory (WIRO) 2.3 meter telescope. We present here the results from observing four such candidates, and all four are confirmed as early type stars: GO92.3191+0.0591 (B1V) (aka ALS11826), GO86.551014-1.0873935 (B2V; a probable short-period binary), G076.6921-2.4071 (B5V), and G075.5711-0.2558 (B0V) (aka HD 194303). These results enlarge the sample of candidate runaway massive stars hosting bowshocks and provide a promising sample of such objects for studying stellar mass loss. This work is supported by the National Science Foundation Grants AST-1063146 (REU), AST-1411851 (RUI), and AST-1412845.

  7. THE MAGELLANIC INTER-CLOUD PROJECT (MAGIC). I. EVIDENCE FOR INTERMEDIATE-AGE STELLAR POPULATIONS IN BETWEEN THE MAGELLANIC CLOUDS

    SciTech Connect

    Noeel, N. E. D.; Read, J. I.; Conn, B. C.; Rix, H.-W.; Carrera, R.

    2013-05-10

    The origin of the gas in between the Magellanic Clouds (MCs)-known as the ''Magellanic Bridge'' (MB)-is puzzling. Numerical simulations suggest that the MB formed from tidally stripped gas and stars in a recent interaction between the MCs. However, the apparent lack of stripped intermediate- or old-age stars associated with the MB is at odds with this picture. In this paper, we present the first results from the MAGellanic Inter-Cloud program (MAGIC) aimed at probing the stellar populations in the inter-Cloud region. We present observations of the stellar populations in two large fields located in between the Large and Small Magellanic Clouds (LMC/SMC), secured using the WFI camera on the 2.2 m telescope in La Silla. Using a synthetic color-magnitude diagram technique, we present the first quantitative evidence for the presence of intermediate-age and old stars in the inter-Cloud region. The intermediate-age stars-which make up {approx}28% of all stars in the region-are not present in fields at a similar distance from the SMC in a direction pointing away from the LMC. This provides potential evidence that these intermediate-age stars could have been tidally stripped from the SMC. However, spectroscopic studies will be needed to confirm or rule out the tidal origin for the inter-Cloud gas and stars.

  8. ALMA Reveals Potential Localized Dust Enrichment from Massive Star Clusters in II Zw 40

    NASA Astrophysics Data System (ADS)

    Consiglio, S. Michelle; Turner, Jean L.; Beck, Sara; Meier, David S.

    2016-12-01

    We present subarcsecond images of submillimeter CO and continuum emission from a local galaxy forming massive star clusters: the blue compact dwarf galaxy II Zw 40. At ˜0.″4 resolution (20 pc), the CO(3-2), CO(1-0), 3 mm, and 870 μm continuum maps illustrate star formation on the scales of individual molecular clouds. Dust contributes about one-third of the 870 μm continuum emission, with free-free accounting for the rest. On these scales, there is not a good correspondence between gas, dust, and free-free emission. Dust continuum is enhanced toward the star-forming region as compared to the CO emission. We suggest that an unexpectedly low and spatially variable gas-to-dust ratio is the result of rapid and localized dust enrichment of clouds by the massive clusters of the starburst.

  9. A THIRD MASSIVE STAR COMPONENT IN THE {sigma} ORIONIS AB SYSTEM

    SciTech Connect

    Simon-Diaz, S.; Caballero, J. A.; Lorenzo, J.

    2011-11-20

    We report on the detection of a third massive star component in the {sigma} Orionis AB system, traditionally considered as a binary system. The system has been monitored by the IACOB Spectroscopic Survey of Northern Massive Stars program, obtaining 23 high-resolution FIES-NOT spectra with a time span of {approx}2.5 years. The analysis of the radial velocity curves of the two spectroscopic components observed in the spectra has allowed us to obtain the orbital parameters of the system, resulting in a high eccentric orbit (e {approx} 0.78) with an orbital period of 143.5 {+-} 0.5 days. This result implies the actual presence of three stars in the {sigma} Orionis AB system when combined with previous results obtained from the study of the astrometric orbit (with an estimated period of {approx}157 years).

  10. Young and old massive star clusters: Theoretical challenges for the next decade

    NASA Astrophysics Data System (ADS)

    Charbonnel, Corinne

    2015-08-01

    Breakthrough results of high resolution observations both with HST and from the ground have revolutionized our view and our understanding of massive star clusters, young and old, in the Galaxy, in the Local Group, as well as in merging and interacting galaxies. This drastic paradigm shift has revealed the complexity of these systems and has raised a number of fundamental questions on the physical processes that drive the formation and evolution of massive star clusters in different environments, on the star cluster initial mass function, and on the contribution of these objects to the general galactic field stellar population. In this talk we review some of the main theoretical challenges that have to be faced in the field at the very same moment when we enter a golden age for observations and numerical multi-dimensional simulations.

  11. M31AGES: Studying the intermediate-aged populations in the satellites, smooth halo, and substructure of Andromeda

    NASA Astrophysics Data System (ADS)

    Hamren, Katherine; Beaton, Rachael; Guhathakurta, Puragra; Majewski, Steven R.; M31AGES Survey Team

    2016-01-01

    Recent large-scale surveys of M31 have enabled the study of its satellites, smooth halo, and substructure in exquisite detail. In particular, the Spectroscopic Landscape of Andromeda's Stellar Halo (SPLASH) survey has obtained moderate resolution optical spectra with the DEIMOS spectrograph on the Keck II/10-m telescope, and optical photometry from various ground-based telescopes. These data have been used to map the kinematics and metallicity distributions in the dSphs and dEs, detect and characterize substructure, and study the large-scale radial surface brightness and metallicity profiles of the "smooth" halo. Notwithstanding this progress [or] In spite of these advances, there are a number of outstanding questions that cannot be answered with these data alone, including the fraction of the halo that was formed in situ vs by accretion, and the degeneracy between massive early accretion events and less massiverecent accretion events. The M31 Asymptotic Giant Extended Survey (M31AGES) aims to address these questions by using NIR photometry to identify intermediate-age AGB stars in the satellites, streams, and smoothhalo of M31. We present the details of the observations (now completed), the plan for public release of data products, and preliminary results.

  12. X-ray spectral diagnostics of activity in massive stars

    NASA Astrophysics Data System (ADS)

    Cohen, David H.; Wollman, Emma E.; Leutenegger, Maurice A.

    2011-07-01

    X-rays give direct evidence of instabilities, time-variable structure, and shock heating in the winds of O stars. The observed broad X-ray emission lines provide information about the kinematics of shock-heated wind plasma, enabling us to test wind-shock models. And their shapes provide information about wind absorption, and thus about the wind mass-loss rates. Mass-loss rates determined from X-ray line profiles are not sensitive to density-squared clumping effects, and indicate mass-loss rate reductions of factors of 3 to 6 over traditional diagnostics that suffer from density-squared effects. Broad-band X-ray spectral energy distributions also provide mass-loss rate information via soft X-ray absorption signatures. In some cases, the degree of wind absorption is so high, that the hardening of the X-ray SED can be quite significant. We discuss these results as applied to the early O stars ζ Pup (O4 If), 9 Sgr (O4 V((f))), and HD 93129A (O2 If*).

  13. First detections of FS Canis Majoris stars in clusters. Evolutionary state as constrained by coeval massive stars

    NASA Astrophysics Data System (ADS)

    de la Fuente, D.; Najarro, F.; Trombley, C.; Davies, B.; Figer, D. F.

    2015-03-01

    Context. FS CMa stars are low-luminosity objects showing the B[e] phenomenon whose evolutionary state remains a puzzle. These stars are surrounded by compact disks of warm dust of unknown origin. Hitherto, membership of FS CMa stars to coeval populations has never been confirmed. Aims: The discovery of low-luminosity line emitters in the young massive clusters Mercer 20 and Mercer 70 prompts us to investigate the nature of such objects. We intend to confirm membership to coeval populations in order to characterize these emission-line stars through the cluster properties. Methods: Based on ISAAC/VLT medium-resolution spectroscopy and NICMOS/HST photometry of massive cluster members, new characterizations of Mercer 20 and Mercer 70 are performed. Coevality of each cluster and membership of the newly-discovered B[e] objects are investigated using our observations as well as literature data of the surroundings. Infrared excess and narrow-band photometric properties of the B[e] stars are also studied. Results: We confirm and classify 22 new cluster members, including Wolf-Rayet stars and blue hypergiants. Spectral types (O9-B1.5 V) and radial velocities of B[e] objects are compatible with the remaining cluster members, while emission features of Mg ii, Fe ii], and [Fe ii] are identified in their spectra. The ages of these stars are 4.5 and 6 Myr, and they show mild infrared excesses. Conclusions: We confirm the presence of FS CMa stars in the coeval populations of Mercer 20 and Mercer 70. We discuss the nature and evolutionary state of FS CMa stars, discarding a post-AGB nature and introducing a new hypothesis about mergers. A new search method for FS CMa candidates in young massive clusters based on narrow-band Paschen-α photometry is proposed and tested in photometric data of other clusters, yielding three new candidates. Based on observations collected at the European Organisation for Astronomical Research in the Southern Hemisphere, Chile, under program IDs 083.D

  14. Super massive black hole in galactic nuclei with tidal disruption of stars

    SciTech Connect

    Zhong, Shiyan; Berczik, Peter; Spurzem, Rainer

    2014-09-10

    Tidal disruption of stars by super massive central black holes from dense star clusters is modeled by high-accuracy direct N-body simulation. The time evolution of the stellar tidal disruption rate, the effect of tidal disruption on the stellar density profile, and, for the first time, the detailed origin of tidally disrupted stars are carefully examined and compared with classic papers in the field. Up to 128k particles are used in simulation to model the star cluster around a super massive black hole, and we use the particle number and the tidal radius of the black hole as free parameters for a scaling analysis. The transition from full to empty loss-cone is analyzed in our data, and the tidal disruption rate scales with the particle number, N, in the expected way for both cases. For the first time in numerical simulations (under certain conditions) we can support the concept of a critical radius of Frank and Rees, which claims that most stars are tidally accreted on highly eccentric orbits originating from regions far outside the tidal radius. Due to the consumption of stars moving on radial orbits, a velocity anisotropy is found inside the cluster. Finally we estimate the real galactic center based on our simulation results and the scaling analysis.

  15. A massive hypergiant star as the progenitor of the supernova SN 2005gl.

    PubMed

    Gal-Yam, A; Leonard, D C

    2009-04-16

    Our understanding of the evolution of massive stars before their final explosions as supernovae is incomplete, from both an observational and a theoretical standpoint. A key missing piece in the supernova puzzle is the difficulty of identifying and studying progenitor stars. In only a single case-that of supernova SN 1987A in the Large Magellanic Cloud-has a star been detected at the supernova location before the explosion, and been subsequently shown to have vanished after the supernova event. The progenitor of SN 1987A was a blue supergiant, which required a rethink of stellar evolution models. The progenitor of supernova SN 2005gl was proposed to be an extremely luminous object, but the association was not robustly established (it was not even clear that the putative progenitor was a single luminous star). Here we report that the previously proposed object was indeed the progenitor star of SN 2005gl. This very massive star was likely a luminous blue variable that standard stellar evolution predicts should not have exploded in that state.

  16. A Spectroscopic Survey of Massive Stars in M31 and M33

    NASA Astrophysics Data System (ADS)

    Massey, Philip; Neugent, Kathryn F.; Smart, Brianna M.

    2016-09-01

    We describe our spectroscopic follow-up to the Local Group Galaxy Survey (LGGS) photometry of M31 and M33. We have obtained new spectroscopy of 1895 stars, allowing us to classify 1496 of them for the first time. Our study has identified many foreground stars, and established membership for hundreds of early- and mid-type supergiants. We have also found nine new candidate luminous blue variables and a previously unrecognized Wolf-Rayet star. We republish the LGGS M31 and M33 catalogs with improved coordinates, and including spectroscopy from the literature and our new results. The spectroscopy in this paper is responsible for the vast majority of the stellar classifications in these two nearby spiral neighbors. The most luminous (and hence massive) of the stars in our sample are early-type B supergiants, as expected; the more massive O stars are more rare and fainter visually, and thus mostly remain unobserved so far. The majority of the unevolved stars in our sample are in the 20-40 M ⊙ range. The spectroscopic observations reported here were obtained at the MMT Observatory, a joint facility of the University of Arizona and the Smithsonian Institution. MMT telescope time was granted by NOAO, through the Telescope System Instrumentation Program (TSIP). TSIP is funded by the National Science Foundation. This paper uses data products produced by the OIR Telescope Data Center, supported by the Smithsonian Astrophysical Observatory.

  17. YOUNG STELLAR OBJECTS IN THE MASSIVE STAR-FORMING REGION W49

    SciTech Connect

    Saral, G.; Hora, J. L.; Willis, S. E.; Koenig, X. P.; Gutermuth, R. A.; Saygac, A. T.

    2015-11-01

    We present the initial results of our investigation of the star-forming complex W49, one of the youngest and most luminous massive star-forming regions in our Galaxy. We used Spitzer/Infrared Array Camera (IRAC) data to investigate massive star formation with the primary objective of locating a representative set of protostars and the clusters of young stars that are forming around them. We present our source catalog with the mosaics from the IRAC data. In this study we used a combination of IRAC, MIPS, Two Micron All Sky Survey, and UKIRT Deep Infrared Sky Survey (UKIDSS) data to identify and classify the young stellar objects (YSOs). We identified 232 Class 0/I YSOs, 907 Class II YSOs, and 74 transition disk candidate objects using color–color and color–magnitude diagrams. In addition, to understand the evolution of star formation in W49, we analyzed the distribution of YSOs in the region to identify clusters using a minimal spanning tree method. The fraction of YSOs that belong to clusters with ≥7 members is found to be 52% for a cutoff distance of 96″, and the ratio of Class II/I objects is 2.1. We compared the W49 region to the G305 and G333 star-forming regions and concluded that W49 has the richest population, with seven subclusters of YSOs.

  18. THE COSMIC CORE-COLLAPSE SUPERNOVA RATE DOES NOT MATCH THE MASSIVE-STAR FORMATION RATE

    SciTech Connect

    Horiuchi, Shunsaku; Beacom, John F.; Kochanek, Christopher S.; Stanek, K. Z.; Thompson, Todd A.; Prieto, Jose L.

    2011-09-10

    We identify a 'supernova rate problem': the measured cosmic core-collapse supernova rate is a factor of {approx}2 smaller (with significance {approx}2{sigma}) than that predicted from the measured cosmic massive-star formation rate. The comparison is critical for topics from galaxy evolution and enrichment to the abundance of neutron stars and black holes. We systematically explore possible resolutions. The accuracy and precision of the star formation rate data and conversion to the supernova rate are well supported, and proposed changes would have far-reaching consequences. The dominant effect is likely that many supernovae are missed because they are either optically dim (low-luminosity) or dark, whether intrinsically or due to obscuration. We investigate supernovae too dim to have been discovered in cosmic surveys by a detailed study of all supernova discoveries in the local volume. If possible supernova impostors are included, then dim supernovae are common enough by fraction to solve the supernova rate problem. If they are not included, then the rate of dark core collapses is likely substantial. Other alternatives are that there are surprising changes in our understanding of star formation or supernova rates, including that supernovae form differently in small galaxies than in normal galaxies. These possibilities can be distinguished by upcoming supernova surveys, star formation measurements, searches for disappearing massive stars, and measurements of supernova neutrinos.

  19. Massive stars dying alone: Extremely remote environments of SN2009ip and SN2010jp

    NASA Astrophysics Data System (ADS)

    Smith, Nathan

    2014-10-01

    We propose an imaging study of the astonishingly remote environments of two recent supernovae (SNe): SN2009ip and SN2010jp. Both were unusual Type IIn explosions that crashed into dense circumstellar material (CSM) ejected by the star shortly before explosion. The favored progenitors of these SNe are very massive luminous blue variable (LBV) stars. In fact, SN2009ip presents an extraordinay case where the LBV-like progenitor was actually detected directly in archival HST data, and where we obtained spectra and photometry for numerous pre-SN eruptions. No other SN has this treasure trove of detailed information about the progenitor (not even SN1987A). SN2010jp represents a possible collapsar-powered event, since it showed evidence of a fast bipolar jet in spectra and a low 56Ni mass; this would be an analog of the black-hole forming explosions that cause gamma ray bursts, but where the relativistic jet is damped by a residual H envelope on the star. In both cases, the only viable models for these SNe involve extremely massive (initial masses of 40-100 Msun) progenitor stars. This seems at odds with their extremely remote environments in the far outskirts of their host galaxies, with no detected evidence for an underlying massive star population in ground-based data (nor in the single shallow WFPC2/F606W image of SN2009ip). Here we propose deep UV HST images to search for any mid/late O-type stars nearby, deep red images to detect any red supergiants, and an H-alpha image to search for any evidence of ongoing star formation in the vicinity. These observations will place important and demanding constraints on the initial masses and ages of these progenitors.

  20. OGLE-2008-BLG-355Lb: A massive planet around a late-type star

    SciTech Connect

    Koshimoto, N.; Sumi, T.; Fukagawa, M.; Shibai, H.; Udalski, A.; Bennett, D. P.; Bond, I. A.; Ling, C. H.; Rattenbury, N.; Botzler, C. S.; Freeman, M.; Abe, F.; Furusawa, K.; Itow, Y.; Masuda, K.; Matsubara, Y.; Fukui, A.; Muraki, Y.; Ohnishi, K.; Saito, To.; Collaboration: MOA Collaboration; OGLE Collaboration; and others

    2014-06-20

    We report the discovery of a massive planet, OGLE-2008-BLG-355Lb. The light curve analysis indicates a planet:host mass ratio of q = 0.0118 ± 0.0006 at a separation of 0.877 ± 0.010 Einstein radii. We do not measure a significant microlensing parallax signal and do not have high angular resolution images that could detect the planetary host star. Therefore, we do not have a direct measurement of the host star mass. A Bayesian analysis, assuming that all host stars have equal probability to host a planet with the measured mass ratio, implies a host star mass of M{sub h}=0.37{sub −0.17}{sup +0.30} M{sub ⊙} and a companion of mass M{sub P}=4.6{sub −2.2}{sup +3.7}M{sub J}, at a projected separation of r{sub ⊥}=1.70{sub −0.30}{sup +0.29} AU. The implied distance to the planetary system is D {sub L} = 6.8 ± 1.1 kpc. A planetary system with the properties preferred by the Bayesian analysis may be a challenge to the core accretion model of planet formation, as the core accretion model predicts that massive planets are far more likely to form around more massive host stars. This core accretion model prediction is not consistent with our Bayesian prior of an equal probability of host stars of all masses to host a planet with the measured mass ratio. Thus, if the core accretion model prediction is right, we should expect that follow-up high angular resolution observations will detect a host star with a mass in the upper part of the range allowed by the Bayesian analysis. That is, the host would probably be a K or G dwarf.

  1. The life of massive stars seen through optical/infrared interferometry

    NASA Astrophysics Data System (ADS)

    Sanchez-Bermudez, J.; Alberdi, A.; Schödel, R.

    2015-05-01

    During the last decade, optical/infrared interferometry has become an essential tool to contribute to the understanding of stellar astrophysics. We present our results in the study of different aspects in the life of massive stars using optical interferometry. Particularly, we focused the discussion in our findings about multiplicity, interactions of the massive stars with the interstellar medium, and the early stages of high-mass stars. Our near-infrared observations comprise both: (i) long-baseline interferometry making use of AMBER/VLTI, and (ii) sparse aperture masking with VLT/NACO/SAM. These data have been obtained by our research group in the previous years, and the results have been published in several peer-reviewed papers. The principles of the optical/near-infrared interferometry are briefly presented. Particularly, we describe how to get the calibrated Interferometric observables. Henceforth, we present our results of two massive systems (HD150136 and Herschel 36) for which we discovered their triple nature using AMBER/VLTI. Finally, we will present the recently found evidence of a disk and a binary system in a very massive young stellar object known as IRS 9A in the NGC 3603 region.

  2. Main sequence models for massive zero-metal stars

    NASA Technical Reports Server (NTRS)

    Cary, N.

    1974-01-01

    Zero-age main-sequence models for stars of 20, 10, 5, and 2 solar masses with no heavy elements are constructed for three different possible primordial helium abundances: Y=0.00, Y=0.23, and Y=0.30. The latter two values of Y bracket the range of primordial helium abundances cited by Wagoner. With the exceptions of the two 20 solar mass models that contain helium, these models are found to be self-consistent in the sense that the formation of carbon through the triple-alpha process during premain sequence contraction is not sufficient to bring the CN cycle into competition with the proton-proton chain on the ZAMS. The zero-metal models of the present study have higher surface and central temperatures, higher central densities, smaller radii, and smaller convective cores than do the population I models with the same masses.

  3. DIRECT DIAGNOSTICS OF FORMING MASSIVE STARS: STELLAR PULSATION AND PERIODIC VARIABILITY OF MASER SOURCES

    SciTech Connect

    Inayoshi, Kohei; Tanaka, Kei E. I.; Sugiyama, Koichiro; Hosokawa, Takashi; Motogi, Kazuhito E-mail: koichiro@yamaguchi-u.ac.jp

    2013-06-01

    The 6.7 GHz methanol maser emission, a tracer of forming massive stars, sometimes shows enigmatic periodic flux variations over several 10-100 days. In this Letter, we propose that these periodic variations could be explained by the pulsation of massive protostars growing under rapid mass accretion with rates of M-dot{sub *}{approx}>10{sup -3} M{sub Sun} yr{sup -1}. Our stellar evolution calculations predict that the massive protostars have very large radii exceeding 100 R{sub Sun} at maximum, and here we study the pulsational stability of such bloated protostars by way of the linear stability analysis. We show that the protostar becomes pulsationally unstable with various periods of several 10-100 days depending on different accretion rates. With the fact that the stellar luminosity when the star is pulsationally unstable also depends on the accretion rate, we derive the period-luminosity relation log (L/ L{sub Sun }) = 4.62 + 0.98log (P/100 days), which is testable with future observations. Our models further show that the radius and mass of the pulsating massive protostar should also depend on the period. It would be possible to infer such protostellar properties and the accretion rate with the observed period. Measuring the maser periods enables a direct diagnosis of the structure of accreting massive protostars, which are deeply embedded in dense gas and are inaccessible with other observations.

  4. Effects of the Core-collapse Supernova Ejecta Impact on a Rapidly Rotating Massive Companion Star

    NASA Astrophysics Data System (ADS)

    Zhu, Chunhua; Lü, Guoliang; Wang, Zhaojun

    2017-02-01

    We investigate the effects of the core-collapse supernova (CCSN) ejecta on a rapidly rotating and massive companion star. We show that the stripped mass is twice as high as that of a massive but nonrotating companion star. In close binaries with orbital periods of about 1 day, the stripped masses reach up to ∼ 1 {M}ȯ . By simulating the evolutions of the rotational velocities of the massive companion stars based on different stripped masses, we find that the rotational velocity decreases greatly for a stripped mass higher than about 1 {M}ȯ . Of all the known high-mass X-ray binaries (HMXBs), Cygnus X-3 and 1WGA J0648.024418 have the shortest orbital periods, 0.2 and 1.55 days, respectively. The optical counterpart of the former is a Wolf-Rayet star, whereas it is a hot subdwarf for the latter. Applying our model to the two HMXBs, we suggest that the hydrogen-rich envelopes of their optical counterparts may have been stripped by CCSN ejecta.

  5. An Apparent Precessing Helical Outflow from a Massive Evolved Star: Evidence for Binary Interaction

    NASA Astrophysics Data System (ADS)

    Lau, R. M.; Hankins, M. J.; Herter, T. L.; Morris, M. R.; Mills, E. A. C.; Ressler, M. E.

    2016-02-01

    Massive, evolved stars play a crucial role in the metal enrichment, dust budget, and energetics of the interstellar medium; however, the details of their evolution are uncertain because of their rarity and short lifetimes before exploding as supernovae. Discrepancies between theoretical predictions from single-star evolutionary models and observations of massive stars have evoked a shifting paradigm that implicates the importance of binary interaction. We present mid- to far-infrared observations from the Stratospheric Observatory for Infrared Astronomy of a conical “helix” of warm dust (˜180 K) that appears to extend from the Wolf-Rayet star WR102c. Our interpretation of the helix is a precessing, collimated outflow that emerged from WR102c during a previous evolutionary phase as a rapidly rotating luminous blue variable. We attribute the precession of WR102c to gravitational interactions with an unseen compact binary companion whose orbital period can be constrained to 800 days < P < 1400 days from the inferred precession period, τp ˜ 1.4 × 104 yr, and limits imposed on the stellar and orbital parameters of the system. Our results concur with the range of orbital periods (P ≲ 1500 days) where spin-up via mass exchange is expected to occur for massive binary systems.

  6. AN APPARENT PRECESSING HELICAL OUTFLOW FROM A MASSIVE EVOLVED STAR: EVIDENCE FOR BINARY INTERACTION

    SciTech Connect

    Lau, R. M.; Hankins, M. J.; Herter, T. L.; Morris, M. R.; Mills, E. A. C.; Ressler, M. E.

    2016-02-20

    Massive, evolved stars play a crucial role in the metal enrichment, dust budget, and energetics of the interstellar medium; however, the details of their evolution are uncertain because of their rarity and short lifetimes before exploding as supernovae. Discrepancies between theoretical predictions from single-star evolutionary models and observations of massive stars have evoked a shifting paradigm that implicates the importance of binary interaction. We present mid- to far-infrared observations from the Stratospheric Observatory for Infrared Astronomy of a conical “helix” of warm dust (∼180 K) that appears to extend from the Wolf–Rayet star WR102c. Our interpretation of the helix is a precessing, collimated outflow that emerged from WR102c during a previous evolutionary phase as a rapidly rotating luminous blue variable. We attribute the precession of WR102c to gravitational interactions with an unseen compact binary companion whose orbital period can be constrained to 800 days < P < 1400 days from the inferred precession period, τ{sub p} ∼ 1.4 × 10{sup 4} yr, and limits imposed on the stellar and orbital parameters of the system. Our results concur with the range of orbital periods (P ≲ 1500 days) where spin-up via mass exchange is expected to occur for massive binary systems.

  7. Globular Cluster Formation at High Density: A Model for Elemental Enrichment with Fast Recycling of Massive-star Debris

    NASA Astrophysics Data System (ADS)

    Elmegreen, Bruce G.

    2017-02-01

    The self-enrichment of massive star clusters by p-processed elements is shown to increase significantly with increasing gas density as a result of enhanced star formation rates and stellar scatterings compared to the lifetime of a massive star. Considering the type of cloud core where a globular cluster (GC) might have formed, we follow the evolution and enrichment of the gas and the time dependence of stellar mass. A key assumption is that interactions between massive stars are important at high density, including interactions between massive stars and massive-star binaries that can shred stellar envelopes. Massive-star interactions should also scatter low-mass stars out of the cluster. Reasonable agreement with the observations is obtained for a cloud-core mass of ∼4 × 106 M ⊙ and a density of ∼2 × 106 cm‑3. The results depend primarily on a few dimensionless parameters, including, most importantly, the ratio of the gas consumption time to the lifetime of a massive star, which has to be low, ∼10%, and the efficiency of scattering low-mass stars per unit dynamical time, which has to be relatively large, such as a few percent. Also for these conditions, the velocity dispersions of embedded GCs should be comparable to the high gas dispersions of galaxies at that time, so that stellar ejection by multistar interactions could cause low-mass stars to leave a dwarf galaxy host altogether. This could solve the problem of missing first-generation stars in the halos of Fornax and WLM.

  8. Narrow-band Imaging of Massive Star-Forming Regions: Tracing Outflows and the Rate of Star-Formation

    NASA Astrophysics Data System (ADS)

    Hall, Kendall; Willis, Sarah; Hora, Joseph L.

    2016-01-01

    Narrowband images targeting ionized hydrogen (Brackett gamma, 2.17 microns) and molecular hydrogen (2.12 microns) were obtained for six massive star-forming regions within the Milky Way, NGC 6334, G305, G3333, G3264, G3266, and G351. These regions are within 1-4 kpc from our solar system. The narrowband flux in Brackett gamma was used as a star-formation tracer to calculate a star-formation rate for each region. This is compared with other star-formation rates found using other methods such as the count of young stars and YSOs, and rates calculated from using other tracers (e.g. 70 micron monochromatic luminosity). The molecular hydrogen narrowband images were manually searched to locate outflows from young stars. Once these outflows are identified, it may help to get a better survey of the young stellar population. A better understanding of the stellar population distribution can lead to more accurate star-formation rates to compare to those calculated from star-formation tracers. We found the regions NGC 6334 and G3266 to have the highest levels of ongoing star formation activity as indicated by the number of molecular hydrogen objects (MHOs) detected. There are a total of 279 cataloged MHOs in 181 categorized systems for the six regions. There are a total of 150 identified potential driving sources.This work was supported in part by the NSF REU and DoD ASSURE programs under NSF grant no. 1262851 and by the Smithsonian Institution.

  9. Magnetic massive stars as progenitors of `heavy' stellar-mass black holes

    NASA Astrophysics Data System (ADS)

    Petit, V.; Keszthelyi, Z.; MacInnis, R.; Cohen, D. H.; Townsend, R. H. D.; Wade, G. A.; Thomas, S. L.; Owocki, S. P.; Puls, J.; ud-Doula, A.

    2017-04-01

    The groundbreaking detection of gravitational waves produced by the inspiralling and coalescence of the black hole (BH) binary GW150914 confirms the existence of 'heavy' stellar-mass BHs with masses >25 M⊙. Initial characterization of the system by Abbott et al. supposes that the formation of BHs with such large masses from the evolution of single massive stars is only feasible if the wind mass-loss rates of the progenitors were greatly reduced relative to the mass-loss rates of massive stars in the Galaxy, concluding that heavy BHs must form in low-metallicity (Z ≲ 0.25-0.5 Z⊙) environments. However, strong surface magnetic fields also provide a powerful mechanism for modifying mass-loss and rotation of massive stars, independent of environmental metallicity. In this paper, we explore the hypothesis that some heavy BHs, with masses >25 M⊙ such as those inferred to compose GW150914, could be the natural end-point of evolution of magnetic massive stars in a solar-metallicity environment. Using the MESA code, we developed a new grid of single, non-rotating, solar-metallicity evolutionary models for initial zero-age main sequence masses from 40 to 80 M⊙ that include, for the first time, the quenching of the mass-loss due to a realistic dipolar surface magnetic field. The new models predict terminal-age main-sequence (TAMS) masses that are significantly greater than those from equivalent non-magnetic models, reducing the total mass lost by a strongly magnetized 80 M⊙ star during its main-sequence evolution by 20 M⊙. This corresponds approximately to the mass-loss reduction expected from an environment with metallicity Z = 1/30 Z⊙.

  10. Small-scale hero: Massive-star enrichment in the Hercules dwarf spheroidal

    NASA Astrophysics Data System (ADS)

    Koch, Andreas; Matteucci, Francesca; Feltzing, Sofia

    2012-09-01

    Dwarf spheroidal galaxies are often conjectured to be the sites of the first stars. The best current contenders for finding the chemical imprints from the enrichment by those massive objects are the ``ultrafaint dwarfs'' (UFDs). Here we present evidence for remarkably low heavy element abundances in the metal poor Hercules UFD. Combined with other peculiar abundance patterns this indicates that Hercules was likely only influenced by very few, massive explosive events - thus bearing the traces of an early, localized chemical enrichment with only very little other contributions from other sources at later times.

  11. Massive Stars and the Energy Balance of the Interstellar Medium. 1; The Impact of an Isolated 60 M. Star

    NASA Technical Reports Server (NTRS)

    Freyer, Tim; Hensler, Gerhard; Yorke, Harold W.

    2003-01-01

    We present results of numerical simulations carried out with a two-dimensional radiation hydrodynamics code in order to study the impact of massive stars on their surrounding interstellar medium. This first paper deals with the evolution of the circumstellar gas around an isolated 60 M. star. The interaction of the photo- ionized H II region with the stellar wind bubble forms a variety of interesting structures like shells, clouds, fingers, and spokes. These results demonstrate that complex structures found in H II regions are not necessarily relics from the time before the gas became ionized but may result from dynamical processes during the course of the H II region evolution. We have also analyzed the transfer and deposit of the stellar wind and radiation energy into the circumstellar medium until the star explodes as a supernova. Although the total mechanical wind energy supplied by the star is negligible compared to the accumulated energy of the Lyman continuum photons, the kinetic energy imparted to the circumstellar gas over the star s lifetime is 4 times higher than for a comparable windless simulation. Furthermore, the thermal energy of warm photoionized gas is lower by some 55%). Our results document the necessity to consider both ionizing radiation and stellar winds for an appropriate description of the interaction of OB stars with their circumstellar environment.

  12. Star formation in massive Milky Way molecular clouds: Building a bridge to distant galaxies

    NASA Astrophysics Data System (ADS)

    Willis, Sarah Elizabeth

    The Kennicutt-Schmidt relation is an empirical power-law linking the surface density of the star formation rate (SigmaSFR) to the surface density of gas (Sigmagas ) averaged over the observed face of a starforming galaxy Kennicutt (1998). The original presentation used observations of CO to measure gas density and H alpha emission to measure the population of hot, massive young stars (and infer the star formation rate). Observations of Sigma SFR from a census of young stellar objects in nearby molecular clouds in our Galaxy are up to 17 times higher than the extragalactic relation would predict given their Sigmagas. These clouds primarily form low-mass stars that are essentially invisible to star formation rate tracers. A sample of six giant molecular cloud (GMC) complexes with signposts of massive star formation was identified in our galaxy. The regions selected have a range of total luminosity and morphology. Deep ground-based observations in the near-infrared with NEWFIRM and IRAC observations with the Spitzer Space Telescope were used to conduct a census of the young stellar content associated with each of these clouds. The star formation rates from the stellar census in each of these regions was compared with the star formation rates measured by extragalactic star formation rate tracers based on monochromatic mid-infrared luminosities. Far-infrared Herschel observations from 160 through 500 mum were used to determine the column density and temperature in each region. The region NGC 6334 served as a test case to compare the Herschel column density measurements with the measurements for near-infrared extinction. The combination of the column density maps and the stellar census lets us examine SigmaSFR vs. Sigma gas for the massive GMCs. These regions are consistent with the results for the low-mass molecular clouds, indicating Sigma SFR levels that are higher than predicted based on Sigma gas. The overall Sigmagas levels are higher for the massive star forming

  13. LOW MACH NUMBER MODELING OF CORE CONVECTION IN MASSIVE STARS

    SciTech Connect

    Gilet, C.; Almgren, A. S.; Bell, J. B.; Nonaka, A.; Woosley, S. E.; Zingale, M.

    2013-08-20

    This work presents three-dimensional simulations of core convection in a 15 M{sub Sun} star halfway through its main sequence lifetime. To perform the necessary long-time calculations, we use the low Mach number code MAESTRO, with initial conditions taken from a one-dimensional stellar model. We first identify several key factors that the one-dimensional initial model must satisfy to ensure efficient simulation of the convection process. We then use the three-dimensional simulations to examine the effects of two common modeling choices on the resulting convective flow: using a fixed composition approximation and using a reduced domain size. We find that using a fixed composition model actually increases the computational cost relative to using the full multi-species model because the fixed composition system takes longer to reach convection that is in a quasi-static state. Using a reduced (octant rather than full sphere) simulation domain yields flow with statistical properties that are within a factor of two of the full sphere simulation values. Both the octant and full sphere simulations show similar mixing across the convection zone boundary that is consistent with the turbulent entrainment model. However, the global character of the flow is distinctly different in the octant simulation, showing more rapid changes in the large-scale structure of the flow and thus a more isotropic flow on average.

  14. Low Mach Number Modeling of Core Convection in Massive Stars

    NASA Astrophysics Data System (ADS)

    Gilet, C.; Almgren, A. S.; Bell, J. B.; Nonaka, A.; Woosley, S. E.; Zingale, M.

    2013-08-01

    This work presents three-dimensional simulations of core convection in a 15 M ⊙ star halfway through its main sequence lifetime. To perform the necessary long-time calculations, we use the low Mach number code MAESTRO, with initial conditions taken from a one-dimensional stellar model. We first identify several key factors that the one-dimensional initial model must satisfy to ensure efficient simulation of the convection process. We then use the three-dimensional simulations to examine the effects of two common modeling choices on the resulting convective flow: using a fixed composition approximation and using a reduced domain size. We find that using a fixed composition model actually increases the computational cost relative to using the full multi-species model because the fixed composition system takes longer to reach convection that is in a quasi-static state. Using a reduced (octant rather than full sphere) simulation domain yields flow with statistical properties that are within a factor of two of the full sphere simulation values. Both the octant and full sphere simulations show similar mixing across the convection zone boundary that is consistent with the turbulent entrainment model. However, the global character of the flow is distinctly different in the octant simulation, showing more rapid changes in the large-scale structure of the flow and thus a more isotropic flow on average.

  15. The rate and latency of star formation in dense, massive clumps in the Milky Way

    NASA Astrophysics Data System (ADS)

    Heyer, M.; Gutermuth, R.; Urquhart, J. S.; Csengeri, T.; Wienen, M.; Leurini, S.; Menten, K.; Wyrowski, F.

    2016-04-01

    Context. Newborn stars form within the localized, high density regions of molecular clouds. The sequence and rate at which stars form in dense clumps and the dependence on local and global environments are key factors in developing descriptions of stellar production in galaxies. Aims: We seek to observationally constrain the rate and latency of star formation in dense massive clumps that are distributed throughout the Galaxy and to compare these results to proposed prescriptions for stellar production. Methods: A sample of 24 μm-based Class I protostars are linked to dust clumps that are embedded within molecular clouds selected from the APEX Telescope Large Area Survey of the Galaxy. We determine the fraction of star-forming clumps, f∗, that imposes a constraint on the latency of star formation in units of a clump's lifetime. Protostellar masses are estimated from models of circumstellar environments of young stellar objects from which star formation rates are derived. Physical properties of the clumps are calculated from 870 μm dust continuum emission and NH3 line emission. Results: Linear correlations are identified between the star formation rate surface density, ΣSFR, and the quantities ΣH2/τff and ΣH2/τcross, suggesting that star formation is regulated at the local scales of molecular clouds. The measured fraction of star forming clumps is 23%. Accounting for star formation within clumps that are excluded from our sample due to 24 μm saturation, this fraction can be as high as 31%, which is similar to previous results. Dense, massive clumps form primarily low mass (<1-2 M⊙) stars with emergent 24 μm fluxes below our sensitivity limit or are incapable of forming any stars for the initial 70% of their lifetimes. The low fraction of star forming clumps in the Galactic center relative to those located in the disk of the Milky Way is verified. Full Tables 2-4 are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130

  16. Formation of Massive Primordial Stars: Intermittent UV Feedback with Episodic Mass Accretion

    NASA Astrophysics Data System (ADS)

    Hosokawa, Takashi; Hirano, Shingo; Kuiper, Rolf; Yorke, Harold W.; Omukai, Kazuyuki; Yoshida, Naoki

    2016-06-01

    We present coupled stellar evolution (SE) and 3D radiation-hydrodynamic (RHD) simulations of the evolution of primordial protostars, their immediate environment, and the dynamic accretion history under the influence of stellar ionizing and dissociating UV feedback. Our coupled SE RHD calculations result in a wide diversity of final stellar masses covering 10 {M}⊙ ≲ M * ≲ 103 {M}⊙ . The formation of very massive (≳250 {M}⊙ ) stars is possible under weak UV feedback, whereas ordinary massive (a few ×10 {M}⊙ ) stars form when UV feedback can efficiently halt the accretion. This may explain the peculiar abundance pattern of a Galactic metal-poor star recently reported by Aoki et al., possibly the observational signature of very massive precursor primordial stars. Weak UV feedback occurs in cases of variable accretion, in particular when repeated short accretion bursts temporarily exceed 0.01 {M}⊙ {{{yr}}}-1, causing the protostar to inflate. In the bloated state, the protostar has low surface temperature and UV feedback is suppressed until the star eventually contracts, on a thermal adjustment timescale, to create an H ii region. If the delay time between successive accretion bursts is sufficiently short, the protostar remains bloated for extended periods, initiating at most only short periods of UV feedback. Disk fragmentation does not necessarily reduce the final stellar mass. Quite the contrary, we find that disk fragmentation enhances episodic accretion as many fragments migrate inward and are accreted onto the star, thus allowing continued stellar mass growth under conditions of intermittent UV feedback. This trend becomes more prominent as we improve the resolution of our simulations. We argue that simulations with significantly higher resolution than reported previously are needed to derive accurate gas mass accretion rates onto primordial protostars.

  17. The MiMeS survey of magnetism in massive stars: introduction and overview

    NASA Astrophysics Data System (ADS)

    Wade, G. A.; Neiner, C.; Alecian, E.; Grunhut, J. H.; Petit, V.; Batz, B. de; Bohlender, D. A.; Cohen, D. H.; Henrichs, H. F.; Kochukhov, O.; Landstreet, J. D.; Manset, N.; Martins, F.; Mathis, S.; Oksala, M. E.; Owocki, S. P.; Rivinius, Th.; Shultz, M. E.; Sundqvist, J. O.; Townsend, R. H. D.; ud-Doula, A.; Bouret, J.-C.; Braithwaite, J.; Briquet, M.; Carciofi, A. C.; David-Uraz, A.; Folsom, C. P.; Fullerton, A. W.; Leroy, B.; Marcolino, W. L. F.; Moffat, A. F. J.; Nazé, Y.; Louis, N. St; Aurière, M.; Bagnulo, S.; Bailey, J. D.; Barbá, R. H.; Blazère, A.; Böhm, T.; Catala, C.; Donati, J.-F.; Ferrario, L.; Harrington, D.; Howarth, I. D.; Ignace, R.; Kaper, L.; Lüftinger, T.; Prinja, R.; Vink, J. S.; Weiss, W. W.; Yakunin, I.

    2016-02-01

    The MiMeS (Magnetism in Massive Stars) project is a large-scale, high-resolution, sensitive spectropolarimetric investigation of the magnetic properties of O- and early B-type stars. Initiated in 2008 and completed in 2013, the project was supported by three Large Program allocations, as well as various programmes initiated by independent principal investigators, and archival resources. Ultimately, over 4800 circularly polarized spectra of 560 O and B stars were collected with the instruments ESPaDOnS (Echelle SpectroPolarimetric Device for the Observation of Stars) at the Canada-France-Hawaii Telescope, Narval at the Télescope Bernard Lyot and HARPSpol at the European Southern Observatory La Silla 3.6 m telescope, making MiMeS by far the largest systematic investigation of massive star magnetism ever undertaken. In this paper, the first in a series reporting the general results of the survey, we introduce the scientific motivation and goals, describe the sample of targets, review the instrumentation and observational techniques used, explain the exposure time calculation designed to provide sensitivity to surface dipole fields above approximately 100 G, discuss the polarimetric performance, stability and uncertainty of the instrumentation, and summarize the previous and forthcoming publications.

  18. Global and radial variations in the efficiency of massive star formation among galaxies

    NASA Technical Reports Server (NTRS)

    Allen, Lori E.; Young, Judith S.

    1990-01-01

    In order to determine the regions within galaxies which give rise to the most efficient star formation and to test the hypothesis that galaxies with high infrared luminosities per unit molecular mass are efficiently producing high mass stars, researchers have undertaken an H alpha imaging survey in galaxies whose CO distributions have been measured as part of the Five College Radio Astronomy Observatory (FCRAO) Extragalactic CO Survey. From these images researchers have derived global H alpha fluxes and distributions for comparison with far infrared radiation (FIR) fluxes and CO fluxes and distributions. Here, researchers present results on the global massive star formation efficiency (SFE = L sub H sub alpha/M(H2)) as a function of morphological type and environment, and on the radial distribution of the SFE within both peculiar and isolated galaxies. On the basis of comparison of the global L sub H sub alpha/M(H2) and L sub FIR/M(H2) for 111 galaxies, researchers conclude that environment rather than morphological type has the strongest effect on the global efficiency of massive star formation. Based on their study of a small sample, they find that the largest radial gradients are observed in the interacting/peculiar galaxies, indicating that environment affects the star formation efficiency within galaxies as well.

  19. Formation of massive black holes through runaway collisions in dense young star clusters.

    PubMed

    Zwart, Simon F Portegies; Baumgardt, Holger; Hut, Piet; Makino, Junichiro; McMillan, Stephen L W

    2004-04-15

    A luminous X-ray source is associated with MGG 11--a cluster of young stars approximately 200 pc from the centre of the starburst galaxy M 82 (refs 1, 2). The properties of this source are best explained by invoking a black hole with a mass of at least 350 solar masses (350 M(o)), which is intermediate between stellar-mass and supermassive black holes. A nearby but somewhat more massive cluster (MGG 9) shows no evidence of such an intermediate-mass black hole, raising the issue of just what physical characteristics of the clusters can account for this difference. Here we report numerical simulations of the evolution and motion of stars within the clusters, where stars are allowed to merge with each other. We find that for MGG 11 dynamical friction leads to the massive stars sinking rapidly to the centre of the cluster, where they participate in a runaway collision. This produces a star of 800-3,000 M(o) which ultimately collapses to a black hole of intermediate mass. No such runaway occurs in the cluster MGG 9, because the larger cluster radius leads to a mass segregation timescale a factor of five longer than for MGG 11.

  20. Hyperon puzzle, hadron-quark crossover and massive neutron stars

    NASA Astrophysics Data System (ADS)

    Masuda, Kota; Hatsuda, Tetsuo; Takatsuka, Tatsuyuki

    2016-03-01

    Bulk properties of cold and hot neutron stars are studied on the basis of the hadron-quark crossover picture where a smooth transition from the hadronic phase to the quark phase takes place at finite baryon density. By using a phenomenological equation of state (EOS) "CRover", which interpolates the two phases at around 3 times the nuclear matter density (ρ0, it is found that the cold NSs with the gravitational mass larger than 2M_{odot} can be sustained. This is in sharp contrast to the case of the first-order hadron-quark transition. The radii of the cold NSs with the CRover EOS are in the narrow range (12.5 ± 0.5) km which is insensitive to the NS masses. Due to the stiffening of the EOS induced by the hadron-quark crossover, the central density of the NSs is at most 4 ρ0 and the hyperon-mixing barely occurs inside the NS core. This constitutes a solution of the long-standing hyperon puzzle. The effect of color superconductivity (CSC) on the NS structures is also examined with the hadron-quark crossover. For the typical strength of the diquark attraction, a slight softening of the EOS due to two-flavor CSC (2SC) takes place and the maximum mass is reduced by about 0.2M_{odot}. The CRover EOS is generalized to the supernova matter at finite temperature to describe the hot NSs at birth. The hadron-quark crossover is found to decrease the central temperature of the hot NSs under isentropic condition. The gravitational energy release and the spin-up rate during the contraction from the hot NS to the cold NS are also estimated.

  1. Variable Polarization from Co-Rotating Interaction Regions in Massive Star Winds

    NASA Astrophysics Data System (ADS)

    Ignace, Richard; St. Louis, Nicole; Tremblay, Patrick; Proulx-Giraldeau, Felix

    2017-01-01

    Co-rotating Interaction Regions (CIRs) are a well-known phenomenon in the solar wind, and is a favored culprit for certain cyclical behavior observed in the spectra of some massive stars. A prime example are the discrete absorption components (DACs) seen in the UV wind lines of many O stars. Here we report on modeling for the variable continuum polarization that could arise from the presence of CIR structures. Considerations are limited to optically thin scattering. Using a core-halo approach for winds that are thick to electron scattering, an application to observed variable polarization of WR6 (EZ CMa; HD 50896) is presented.

  2. HST Fine Guidance Sensors Survey for Binaries Among the Massive Stars

    DTIC Science & Technology

    2013-01-01

    solid and dotted lines show the predicted detection limits for resolved and blended companions, respectively, from Caballero- Nieves (2012). The OB...and Cyg OB2 (Caballero- Nieves 2012). We used the FGS1r to make TRANS mode scans in two orthogonal directions across each star. The scan shapes are...frequency is close to one, i.e., almost all massive stars have a companion. References Caballero- Nieves , S.M., 2012, Ph.D. dissertation, Georgia State University Nelan, E.P., Walborn, N.R., Wallace, D.J., et al., 2004, AJ, 128, 323

  3. Hot, Massive Stars in the Extremely Metal-Poor Galaxy, I Zw 18

    NASA Technical Reports Server (NTRS)

    Heap, Sara R.; Malumuth, Eliot M.

    2010-01-01

    The carbon-enhanced metal-poor galaxy, I Zw 18, is the Rosetta Stone for understanding galaxies in the early universe by providing constraints on the IMF of massive stars, the role of galaxies in reionization of the universe, mixing of newly synthesized material in the ISM, and gamma-ray bursts at low metallicity, and on the earliest generations of stars producing the observed abundance pattern. We describe these constraints as derived from analyses of HST/COS spectra of I Zw 18 including stellar atmosphere analysis and photo-ionization modeling of both the emission and absorption spectra of the nebular material and interstellar medium.

  4. Clumping in Massive Star Winds and Its Possible Connection to the B[e] Phenomenon

    NASA Astrophysics Data System (ADS)

    Kubátová, B.; Kubát, J.; Hamann, W.-R.; Oskinova, L.

    2017-02-01

    It has been observationally established that winds of hot massive stars have highly variable characteristics. The variability evident in the winds is believed to be caused by structures on a broad range of spatial scales. Small-scale structures (clumping) in stellar winds of hot stars are possible consequence of an instability appearing in their radiation hydrodynamics. To understand how clumping may influence calculation of theoretical spectra, different clumping properties and their 3D nature have to be taken into account. Properties of clumping have been examined using our 3D radiative transfer calculations. Effects of clumping for the case of the B[e] phenomenon are discussed.

  5. Massive open star clusters using the VVV survey. IV. WR 62-2, a new very massive star in the core of the VVV CL041 cluster

    NASA Astrophysics Data System (ADS)

    Chené, A.-N.; Ramírez Alegría, S.; Borissova, J.; O'Leary, E.; Martins, F.; Hervé, A.; Kuhn, M.; Kurtev, R.; Consuelo Amigo Fuentes, P.; Bonatto, C.; Minniti, D.

    2015-12-01

    Context. The ESO Public Survey VISTA Variables in the Vía Láctea (VVV) provides deep multi-epoch infrared observations for an unprecedented 562 sq. deg of the Galactic bulge and adjacent regions of the disk. Nearly 150 new open clusters and cluster candidates have been discovered in this survey. Aims: We present the fourth article in a series of papers focussed on young and massive clusters discovered in the VVV survey. This article is dedicated to the cluster VVV CL041, which contains a new very massive star candidate, WR 62-2. Methods: Following the methodology presented in the first paper of the series, wide-field, deep JHKs VVV observations, combined with new infrared spectroscopy, are employed to constrain fundamental parameters (distance, reddening, mass, age) of VVV CL041. Results: We confirm that the cluster VVV CL041 is a young (less than 4 Myr) and massive (3 ± 2 × 103 M⊙) cluster, and not a simple asterism. It is located at a distance of 4.2 ± 0.9 kpc, and its reddening is AV = 8.0 ± 0.2 mag, which is slightly lower than the average for the young clusters towards the centre of the Galaxy. Spectral analysis shows that the most luminous star of the cluster, of the WN8h spectral type, is a candidate to have an initial mass larger than 100 M⊙. Based on observations taken within the ESO VISTA Public Survey VVV, Programme ID 179.B-2002, and on observations with VLT/ISAAC at ESO (programme 087.D.0341A) and Flamingos-2 at Gemini (programme GS-2014A-Q-72).The photometric catalogue is only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/584/A31

  6. Stellar feedback from a massive Super Star Cluster in the Antennae merger

    NASA Astrophysics Data System (ADS)

    Herrera, Cinthya N.; Boulanger, Francois

    2017-03-01

    Stellar feedback from massive stars can unbind and disperse large amount of molecular gas, affecting the star formation efficiency. Based on ALMA and VLT observations in the Antennae galaxies we study a massive (~ 107 M⊙) and young (~ 3 Myr) SSC, B1, associated with compact molecular and ionized emission, which suggests that it is embedded in its parent cloud. However, we found contradictories and puzzling results on the structure and dynamics of the matter around the cluster, indicating that SSC B1 is not embedded in its parent cloud after all. We propose that radiation pressure was highly enhanced at the early stages of the SSC formation, disrupting the parent cloud in < 3 Myr. We show evidences of outflowing gas from the parent cloud in the more extended CO gas. Higher angular resolution observations are needed to validate this interpretation and to understand the origin and fate of the component seen to be associated with SSC B1.

  7. Variability of Formaldehyde Masers in the Context of Massive Star Formation

    NASA Astrophysics Data System (ADS)

    Araya, Esteban; Hofner, P.; Goss, W. M.

    2007-12-01

    In the last few years significant progress has been made in the study of formaldehyde (H2CO) 6cm masers. We have discovered four new H2CO maser regions in the Galaxy resulting in a total of seven massive star forming regions where H2CO masers have been detected. In this contribution we discuss one of the aspects of our ongoing research, i.e., variability of H2CO masers and its relation with young regions of massive star formation. In particular, we report the discovery of possible periodic H2CO and CH3OH maser flares in IRAS 18566+0408. E.A. is supported by a NRAO predoctoral fellowship, and P.H. acknowledges partial support by NSF grant AST-0454665.

  8. NGC346: Looking in the Cradle of a Massive Star Cluster

    NASA Astrophysics Data System (ADS)

    Gouliermis, Dimitrios; Hony, Sacha; Dib, Sami; Galliano, Frederic; Cormier, Diane; Ralf, Klessen

    2015-08-01

    How a star cluster of more than few 10,000 solar masses forms? We present the case of the cluster NGC 346 in the Small Magellanic Cloud, still embedded in its natal star-forming region N66, and we propose a scenario for its formation, based on the rich resolved stellar populations found in the region. Young massive clusters (YMCs) host a significant amount of early-type stars, indicating an extremely high star formation efficiency. The Milky Way galaxy hosts several YMCs that fill the gap between young low-mass open clusters and old massive globular clusters. Only a handful, though, is relatively close to their formation, and the investigation of their gaseous natal environments suffers from contamination by the Galactic disk. YMCs are very abundant in distant starburst and interacting galaxies, but the distance of their hosting galaxies do not also allow a detailed analysis of their formation. The Magellanic Clouds, on the other hand, host YMCs in a wide range of ages with the youngest being still embedded in their giant HII regions. Hubble Space Telescope (HST) imaging of such star-forming complexes provide a complete stellar sampling with a high dynamic range in stellar masses, allowing the detailed study of star formation at scales typical for molecular clouds. The distribution of newly-born stars in N66 shows that star formation in the region proceeds in a clumpy hierarchical fashion, leading to the formation of both a dominant YMC, hosting about half of the observed pre--main-sequence (PMS) stars, and a self-similar dispersed distribution of the remaining PMS population. We investigate the correlation between stellar surface density (and star formation rate derived from star-counts) and molecular gas surface density (derived from dust column density) in an attempt to disentangle the physical conditions that gave birth to NGC 346. We discuss our findings in terms of stellar clustering, its relation to the turbulent interstellar medium, and the observed

  9. HST/STIS ULTRAVIOLET SPECTROSCOPY OF THE COMPONENTS OF THE MASSIVE TRIPLE STAR δ ORI A

    SciTech Connect

    Richardson, Noel D.; Moffat, Anthony F. J.; Gull, Theodore R.; Lindler, Don J.; Gies, Douglas R.; Corcoran, Michael F.

    2015-07-20

    The multiple star system of δ Orionis is one of the closest examples of a system containing a luminous O-type, bright giant star (component Aa1). It is often used as a spectral-type standard and has the highest observed X-ray flux of any hot-star binary. The main component Aa1 is orbited by two lower mass stars, faint Aa2 in a 5.7 day eclipsing binary, and Ab, an astrometric companion with an estimated period of 346 years. Generally the flux from all three stars is recorded in ground-based spectroscopy, and the spectral decomposition of the components has proved difficult. Here we present Hubble Space Telescope/Space Telescope Imaging Spectrograph ultraviolet spectroscopy of δ Ori A that provides us with spatially separated spectra of Aa and Ab for the first time. We measured radial velocities for Aa1 and Ab in two observations made near the velocity extrema of Aa1. We show tentative evidence for the detection of the Aa2 component in cross-correlation functions of the observed and model spectra. We discuss the appearance of the UV spectra of Aa1 and Ab with reference to model spectra. Both stars have similar effective temperatures, but Ab is fainter and is a rapid rotator. The results will help in the interpretation of ground-based spectroscopy and in understanding the physical and evolutionary parameters of these massive stars.

  10. Magnetic fields during the early stages of massive star formation - I. Accretion and disc evolution

    NASA Astrophysics Data System (ADS)

    Seifried, D.; Banerjee, R.; Klessen, R. S.; Duffin, D.; Pudritz, R. E.

    2011-10-01

    We present simulations of collapsing 100 M⊙ mass cores in the context of massive star formation. The effect of variable initial rotational and magnetic energies on the formation of massive stars is studied in detail. We focus on accretion rates and on the question under which conditions massive Keplerian discs can form in the very early evolutionary stage of massive protostars. For this purpose, we perform 12 simulations with different initial conditions extending over a wide range in parameter space. The equations of magnetohydrodynamics (MHD) are solved under the assumption of ideal MHD. We find that the formation of Keplerian discs in the very early stages is suppressed for a mass-to-flux ratio normalized to the critical value μ below 10, in agreement with a series of low-mass star formation simulations. This is caused by very efficient magnetic braking resulting in a nearly instantaneous removal of angular momentum from the disc. For weak magnetic fields, corresponding to μ≳ 10, large-scale, centrifugally supported discs build up with radii exceeding 100 au. A stability analysis reveals that the discs are supported against gravitationally induced perturbations by the magnetic field and tend to form single stars rather than multiple objects. We find protostellar accretion rates of the order of a few 10-4 M⊙ yr-1 which, considering the large range covered by the initial conditions, vary only by a factor of ˜ 3 between the different simulations. We attribute this fact to two competing effects of magnetic fields. On the one hand, magnetic braking enhances accretion by removing angular momentum from the disc thus lowering the centrifugal support against gravity. On the other hand, the combined effect of magnetic pressure and magnetic tension counteracts gravity by exerting an outward directed force on the gas in the disc thus reducing the accretion on to the protostars.

  11. MASSIVE: A Bayesian analysis of giant planet populations around low-mass stars

    NASA Astrophysics Data System (ADS)

    Lannier, J.; Delorme, P.; Lagrange, A. M.; Borgniet, S.; Rameau, J.; Schlieder, J. E.; Gagné, J.; Bonavita, M. A.; Malo, L.; Chauvin, G.; Bonnefoy, M.; Girard, J. H.

    2016-12-01

    Context. Direct imaging has led to the discovery of several giant planet and brown dwarf companions. These imaged companions populate a mass, separation and age domain (mass >1 MJup, orbits > 5 AU, age < 1 Gyr) quite distinct from the one occupied by exoplanets discovered by the radial velocity or transit methods. This distinction could indicate that different formation mechanisms are at play. Aims: We aim at investigating correlations between the host star's mass and the presence of wide-orbit giant planets, and at providing new observational constraints on planetary formation models. Methods: We observed 58 young and nearby M-type dwarfs in L'-band with the VLT/NaCo instrument and used angular differential imaging algorithms to optimize the sensitivity to planetary-mass companions and to derive the best detection limits. We estimate the probability of detecting a planet as a function of its mass and physical separation around each target. We conduct a Bayesian analysis to determine the frequency of substellar companions orbiting low-mass stars, using a homogenous sub-sample of 54 stars. Results: We derive a frequency of for companions with masses in the range of 2-80 MJup, and % for planetary mass companions (2-14 MJup), at physical separations of 8 to 400 AU for both cases. Comparing our results with a previous survey targeting more massive stars, we find evidence that substellar companions more massive than 1 MJup with a low mass ratio Q with respect to their host star (Q < 1%), are less frequent around low-mass stars. This may represent observational evidence that the frequency of imaged wide-orbit substellar companions is correlated with stellar mass, corroborating theoretical expectations. Contrarily, we show statistical evidence that intermediate-mass ratio (1% < Q < 5%) companion with masses >2 MJup might be independent from the mass of the host star.

  12. SPITZER SAGE INFRARED PHOTOMETRY OF MASSIVE STARS IN THE LARGE MAGELLANIC CLOUD

    SciTech Connect

    Bonanos, A. Z.; Massa, D. L.; Sewilo, M. E-mail: massa@stsci.edu

    2009-10-15

    We present a catalog of 1750 massive stars in the Large Magellanic Cloud (LMC), with accurate spectral types compiled from the literature, and a photometric catalog for a subset of 1268 of these stars, with the goal of exploring their infrared properties. The photometric catalog consists of stars with infrared counterparts in the Spitzer SAGE survey database, for which we present uniform photometry from 0.3 to 24 {mu}m in the UBVIJHK{sub s} +IRAC+MIPS24 bands. The resulting infrared color-magnitude diagrams illustrate that the supergiant B[e], red supergiant, and luminous blue variable (LBV) stars are among the brightest infrared point sources in the LMC, due to their intrinsic brightness, and at longer wavelengths, due to dust. We detect infrared excesses due to free-free emission among {approx}900 OB stars, which correlate with luminosity class. We confirm the presence of dust around 10 supergiant B[e] stars, finding the shape of their spectral energy distributions (SEDs) to be very similar, in contrast to the variety of SED shapes among the spectrally variable LBVs. The similar luminosities of B[e] supergiants (log L/L {sub sun} {>=} 4) and the rare, dusty progenitors of the new class of optical transients (e.g., SN 2008S and NGC 300 OT), plus the fact that dust is present in both types of objects, suggests a common origin for them. We find the infrared colors for Wolf-Rayet stars to be independent of spectral type and their SEDs to be flatter than what models predict. The results of this study provide the first comprehensive roadmap for interpreting luminous, massive, resolved stellar populations in nearby galaxies at infrared wavelengths.

  13. A BUTTERFLY-SHAPED 'PAPILLON' NEBULA YIELDS SECRETS OF MASSIVE STAR BIRTH

    NASA Technical Reports Server (NTRS)

    2002-01-01

    A NASA Hubble Space Telescope view of a turbulent cauldron of starbirth, called N159, taking place 170,000 light-years away in our satellite galaxy, the Large Magellanic Cloud (LMC). Torrential stellar winds from hot newborn massive stars within the nebula sculpt ridges, arcs, and filaments in the vast cloud, which is over 150 light-years across. A rare type of compact ionized 'blob' is resolved for the first time to be a butterfly-shaped or 'Papillon' (French for 'butterfly') nebula, buried in the center of the maelstrom of glowing gases and dark dust. The unprecedented details of the structure of the Papillon, itself less than 2 light-years in size (about 2 arcseconds in the sky), are seen in the inset. A possible explanation of this bipolar shape is the outflow of gas from massive stars (over 10 times the mass of our sun) hidden in the central absorption zone. Such stars are so hot that their radiation pressure halts the infall of gas and directs it away from the stars in two opposite directions. Presumably, a dense equatorial disk formed by matter still trying to fall in onto the stars focuses the outstreaming matter into the bipolar directions. This observation is part of a search for young massive stars in the LMC. Rare are the cases where we can see massive stars so early after their birth. The red in this true-color image is from the emission of hydrogen and the yellow from high excitation ionized oxygen. The picture was taken on September 5, 1998 with the Wide Field Planetary Camera 2. The Hubble observations of the Papillon nebula were conducted by the European astronomers Mohammad Heydari-Malayeri (Paris Observatory, France) and co-investigators Michael Rosa (Space Telescope-European Coordinating Facility, European Southern Observatory, Germany), Vassilis Charmandaris (Paris Observatory), Lise Deharveng (Marseille Observatory, France), and Hans Zinnecker (Astrophysical Institute, Potsdam, Germany). Their work is submitted for publication in the European

  14. Steady-State Models of X-ray Emission from Massive-Star Magnetospheres

    NASA Astrophysics Data System (ADS)

    Bard, Christopher; Townsend, Richard D.

    2016-01-01

    In the subset of OB stars with large-scale, organized magnetic fields, the stellar wind is forced to flow along magnetic field lines and is trapped within a magnetosphere corotating with its host star. As the wind turns on itself, shocks heat the plasma to millions of degrees and produce X-ray emission. Such magnetospheres are typically classified with the "wind magnetic confinement parameter", a simplified ratio between the magnetic energy density and the wind kinetic energy density. This parameter is often used to estimate magnetosphere properties, such as size, mass-loss rate, and spin-down time. Unfortunately, the strong magnetic fields in magnetospheres (polar strength: 100 G - 10 kG) and resulting Alfven velocities make magnetohydrodynamics simulations computationally difficult due to very small timesteps. To get around this issue, we approximate a massive-star magnetosphere as a series of one-dimensional flows along magnetic dipole field lines and develop a steady-state model from the resulting hydrodynamic equations. With this model, we derive scaling relations for the stellar mass-loss rate as a function of surface colatitude and find agreement with previous scaling results derived from simulations. These relations are further extended to include the effects of rigid-body rotation within the magnetosphere. Additionally, we develop an X-ray emission model from this steady-state analysis and compare it against both the "XADM" model for X-ray emission from massive star magnetospheres and observations of massive magnetic stars. Finally, we discuss improvements to the traditional wind magnetic confinement parameter to take into account the effect of a magnetic field on the wind kinetic energy density.

  15. Double core evolution. 7: The infall of a neutron star through the envelope of its massive star companion

    NASA Technical Reports Server (NTRS)

    Terman, James L.; Taam, Ronald E.; Hernquist, Lars

    1995-01-01

    Binary systems with properties similar to those of high-mass X-ray binaries are evolved through the common envelope phase. Three-dimensional simulations show that the timescale of the infall phase of the neutron star depends upon the evolutionary state of its massive companion. We find that tidal torques more effectively accelerate common envelope evolution for companions in their late core helium-burning stage and that the infall phase is rapid (approximately several initial orbital periods). For less evolved companions the decay of the orbit is longer; however, once the neutron star is deeply embedded within the companion's envelope the timescale for orbital decay decreases rapidly. As the neutron star encounters the high-density region surrounding the helium core of its massive companion, the rate of energy loss from the orbit increases dramatically leading to either partial or nearly total envelope ejection. The outcome of the common envelope phase depends upon the structure of the evolved companion. In particular, it is found that the entire common envelope can be ejected by the interaction of the neutron star with a red supergiant companion in binaries with orbital periods similar to those of long-period Be X-ray binaries. For orbital periods greater than or approximately equal to 0.8-2 yr (for companions of mass 12-24 solar mass) it is likely that a binary will survive the common envelope phase. For these systems, the structure of the progenitor star is characterized by a steep density gradient above the helium core, and the common envelope phase ends with a spin up of the envelope to within 50%-60% of corotation and with a slow mass outflow. The efficiency of mass ejection is found to be approximately 30%-40%. For less evolved companions, there is insufficient energy in the orbit to unbind the common envelope and only a fraction of it is ejected. Since the timescale for orbital decay is always shorter than the mass-loss timescale from the common envelope

  16. The MiMeS survey of Magnetism in Massive Stars: magnetic analysis of the O-type stars

    NASA Astrophysics Data System (ADS)

    Grunhut, J. H.; Wade, G. A.; Neiner, C.; Oksala, M. E.; Petit, V.; Alecian, E.; Bohlender, D. A.; Bouret, J.-C.; Henrichs, H. F.; Hussain, G. A. J.; Kochukhov, O.; MiMeS Collaboration

    2017-02-01

    We present the analysis performed on spectropolarimetric data of 97 O-type targets included in the framework of the Magnetism in Massive Stars (MiMeS) Survey. Mean least-squares deconvolved Stokes I and V line profiles were extracted for each observation, from which we measured the radial velocity, rotational and non-rotational broadening velocities, and longitudinal magnetic field Bℓ. The investigation of the Stokes I profiles led to the discovery of two new multiline spectroscopic systems (HD 46106, HD 204827) and confirmed the presence of a suspected companion in HD 37041. We present a modified strategy of the least-squares deconvolution technique aimed at optimizing the detection of magnetic signatures while minimizing the detection of spurious signatures in Stokes V. Using this analysis, we confirm the detection of a magnetic field in six targets previously reported as magnetic by the MiMeS collaboration (HD 108, HD 47129A2, HD 57682, HD 148937, CPD-28 2561, and NGC 1624-2), as well as report the presence of signal in Stokes V in three new magnetic candidates (HD 36486, HD 162978, and HD 199579). Overall, we find a magnetic incidence rate of 7 ± 3 per cent, for 108 individual O stars (including all O-type components part of multiline systems), with a median uncertainty of the Bℓ measurements of about 50 G. An inspection of the data reveals no obvious biases affecting the incidence rate or the preference for detecting magnetic signatures in the magnetic stars. Similar to A- and B-type stars, we find no link between the stars' physical properties (e.g. Teff, mass, and age) and the presence of a magnetic field. However, the Of?p stars represent a distinct class of magnetic O-type stars.

  17. THE ROTATION RATES OF MASSIVE STARS: THE ROLE OF BINARY INTERACTION THROUGH TIDES, MASS TRANSFER, AND MERGERS

    SciTech Connect

    De Mink, S. E.; Langer, N.; Izzard, R. G.; Sana, H.; De Koter, A.

    2013-02-20

    Rotation is thought to be a major factor in the evolution of massive stars-especially at low metallicity-with consequences for their chemical yields, ionizing flux, and final fate. Deriving the birth spin distribution is of high priority given its importance as a constraint on theories of massive star formation and as input for models of stellar populations in the local universe and at high redshift. Recently, it has become clear that the majority of massive stars interact with a binary companion before they die. We investigate how this affects the distribution of rotation rates, through stellar winds, expansion, tides, mass transfer, and mergers. For this purpose, we simulate a massive binary-star population typical for our Galaxy assuming continuous star formation. We find that, because of binary interaction, 20{sup +5} {sub -10}% of all massive main-sequence stars have projected rotational velocities in excess of 200 km s{sup -1}. We evaluate the effect of uncertain input distributions and physical processes and conclude that the main uncertainties are the mass transfer efficiency and the possible effect of magnetic braking, especially if magnetic fields are generated or amplified during mass accretion and stellar mergers. The fraction of rapid rotators we derive is similar to that observed. If indeed mass transfer and mergers are the main cause for rapid rotation in massive stars, little room remains for rapidly rotating stars that are born single. This implies that spin-down during star formation is even more efficient than previously thought. In addition, this raises questions about the interpretation of the surface abundances of rapidly rotating stars as evidence for rotational mixing. Furthermore, our results allow for the possibility that all early-type Be stars result from binary interactions and suggest that evidence for rotation in explosions, such as long gamma-ray bursts, points to a binary origin.

  18. A dearth of short-period massive binaries in the young massive star forming region M 17. Evidence for a large orbital separation at birth?

    NASA Astrophysics Data System (ADS)

    Sana, H.; Ramírez-Tannus, M. C.; de Koter, A.; Kaper, L.; Tramper, F.; Bik, A.

    2017-03-01

    Aims: The formation of massive stars remains poorly understood and little is known about their birth multiplicity properties. Here, we aim to quantitatively investigate the strikingly low radial-velocity dispersion measured for a sample of 11 massive pre- and near-main-sequence stars (σ1D= 5.6 ± 0.2 km s-1) in the very young massive star forming region M 17, in order to obtain first constraints on the multiplicity properties of young massive stellar objects. Methods: We compute the radial-velocity dispersion of synthetic populations of massive stars for various multiplicity properties and we compare the obtained σ1D distributions to the observed value. We specifically investigate two scenarios: a low binary fraction and a dearth of short-period binary systems. Results: Simulated populations with low binary fractions () or with truncated period distributions (Pcutoff > 9 months) are able to reproduce the low σ1D observed within their 68%-confidence intervals. Furthermore, parent populations with fbin > 0.42 or Pcutoff < 47 d can be rejected at the 5%-significance level. Both constraints are in stark contrast with the high binary fraction and plethora of short-period systems in few Myr-old, well characterized OB-type populations. To explain the difference in the context of the first scenario would require a variation of the outcome of the massive star formation process. In the context of the second scenario, compact binaries must form later on, and the cut-off period may be related to physical length-scales representative of the bloated pre-main-sequence stellar radii or of their accretion disks. Conclusions: If the obtained constraints for the M 17's massive-star population are representative of the multiplicity properties of massive young stellar objects, our results may provide support to a massive star formation process in which binaries are initially formed at larger separations, then harden or migrate to produce the typical (untruncated) power-law period

  19. Atmospheric parameter determination for massive stars via non-LTE spectrum analysis

    NASA Astrophysics Data System (ADS)

    Nieva, M.-F.; Przybilla, N.

    2010-11-01

    We describe a self-consistent spectrum analysis technique employing non-LTE line formation, which allows precise atmospheric parameters of massive stars to be derived: 1σ-uncertainties as low as ~1% in effective temperature and ~0.05-0.10 dex in surface gravity can be achieved. Special emphasis is given to the minimisation of the main sources of systematic errors in the atmospheric model computation, the observed spectra and the quantitative spectral analysis. Examples of applications are discussed for OB-type stars near the main sequence and their evolved progeny, the BA-type supergiants, covering masses of ~8 to 25 M⊙ and a range in effective temperature from ~8000 to 35000 K. Relaxing the assumption of local thermodynamic equilibrium in stellar spectral synthesis has been shown to be decisive for improving the accuracy of quantitative analyses. Despite the present examples, which concentrate on hot, massive stars, the same philosophy can be applied to line-formation calculations for all types of stars, including cooler objects like the Sun, once the underlying stellar atmospheric physics is reproduced consistently.

  20. Signatures of multiple stellar populations in unresolved extragalactic globular/young massive star clusters

    SciTech Connect

    Peacock, Mark B.; Zepf, Stephen E.; Finzell, Thomas

    2013-06-01

    We present an investigation of potential signatures of the formation of multiple stellar populations in recently formed extragalactic star clusters. All of the Galactic globular clusters for which good samples of individual stellar abundances are available show evidence for multiple populations. This appears to require that multiple episodes of star formation and light element enrichment are the norm in the history of a globular cluster. We show that there are detectable observational signatures of multiple formation events in the unresolved spectra of massive, young extragalactic star clusters. We present the results of a pilot program to search for one of the cleanest signatures that we identify—the combined presence of emission lines from a very recently formed population and absorption lines from a somewhat older population. A possible example of such a system is identified in the Antennae galaxies. This source's spectrum shows evidence of two stellar populations with ages of 8 Myr and 80 Myr. Further investigation shows that these populations are in fact physically separated, but only by a projected distance of 59 pc. We show that the clusters are consistent with being bound and discuss the possibility that their coalescence could result in a single globular cluster hosting multiple stellar populations. While not the prototypical system proposed by most theories of the formation of multiple populations in clusters, the detection of this system in a small sample is both encouraging and interesting. Our investigation suggests that expanded surveys of massive young star clusters should detect more clusters with such signatures.

  1. THE FRAGMENTATION OF MAGNETIZED, MASSIVE STAR-FORMING CORES WITH RADIATIVE FEEDBACK

    SciTech Connect

    Myers, Andrew T.; McKee, Christopher F.; Cunningham, Andrew J.; Klein, Richard I.; Krumholz, Mark R.

    2013-04-01

    We present a set of three-dimensional, radiation-magnetohydrodynamic calculations of the gravitational collapse of massive (300 M{sub Sun }), star-forming molecular cloud cores. We show that the combined effects of magnetic fields and radiative feedback strongly suppress core fragmentation, leading to the production of single-star systems rather than small clusters. We find that the two processes are efficient at suppressing fragmentation in different regimes, with the feedback most effective in the dense, central region and the magnetic field most effective in more diffuse, outer regions. Thus, the combination of the two is much more effective at suppressing fragmentation than either one considered in isolation. Our work suggests that typical massive cores, which have mass-to-flux ratios of about 2 relative to critical, likely form a single-star system, but that cores with weaker fields may form a small star cluster. This result helps us understand why the observed relationship between the core mass function and the stellar initial mass function holds even for {approx}100 M{sub Sun} cores with many thermal Jeans masses of material. We also demonstrate that a {approx}40 AU Keplerian disk is able to form in our simulations, despite the braking effect caused by the strong magnetic field.

  2. Early-type massive stars in Carina Nebula within the Gaia-ESO Survey.

    NASA Astrophysics Data System (ADS)

    Berlanas, S. R.; Herrero, A.; Martins, F.; Simón-Díaz, S.; Mahy, L.; Blomme, R.; GES WG-13

    2017-03-01

    The Gaia-ESO Survey (GES) is obtaining high quality spectra of ˜ 10^5 stars in our Galaxy, providing an homogeneous and unique overview of all the main components of the Milky Way, its formation history and the evolution of young, mature and ancient Galactic populations. Our group is in charge of the early-type massive stars that define the youngest population in the survey. In this contribution, we present the results of the quantitative spectroscopic analysis of O-type stars in the Carina Nebula within the Gaia-ESO Survey. For this aim, we have used FASTWIND and CMFGEN stellar atmosphere codes, providing stellar parameters for the current sample (GES data release iDR4).

  3. HIGH-VELOCITY OUTFLOWS WITHOUT AGN FEEDBACK: EDDINGTON-LIMITED STAR FORMATION IN COMPACT MASSIVE GALAXIES

    SciTech Connect

    Diamond-Stanic, Aleksandar M.; Moustakas, John; Coil, Alison L.; Tremonti, Christy A.; Sell, Paul H.; Hickox, Ryan C.; Robaina, Aday R.; Rudnick, Gregory H.

    2012-08-20

    We present the discovery of compact, obscured star formation in galaxies at z {approx} 0.6 that exhibit {approx}> 1000 km s{sup -1} outflows. Using optical morphologies from the Hubble Space Telescope and infrared photometry from the Wide-field Infrared Survey Explorer, we estimate star formation rate (SFR) surface densities that approach {Sigma}{sub SFR} Almost-Equal-To 3000 M{sub Sun} yr{sup -1} kpc{sup -2}, comparable to the Eddington limit from radiation pressure on dust grains. We argue that feedback associated with a compact starburst in the form of radiation pressure from massive stars and ram pressure from supernovae and stellar winds is sufficient to produce the high-velocity outflows we observe, without the need to invoke feedback from an active galactic nucleus.

  4. On the Binary Origin of FS CMa Stars: Young Massive Clusters as Test Beds

    NASA Astrophysics Data System (ADS)

    de la Fuente, D.; Najarro, F.; Garcia, M.

    2017-02-01

    FS CMa stars are low-luminosity objects showing the B[e] phenomenon whose evolutionary origin is yet to be unraveled. Various binary-related hypotheses have been recently proposed, two of them involving a spiral-in evolution of the binary orbit. The latter occurs more often in dense stellar environments, such as young massive clusters (YMCs). Hence, a systematic study of FS CMa stars in YMCs would be crucial to find out how these objects are created. Two FS CMa stars have been confirmed and three candidates have been found in YMCs through a search method based on narrow-band photometry at Paschen-α and the neighboring continuum. We apply this method to archival data from the Paschen-α survey of the Galactic Center region, yielding a new candidate in the Quintuplet cluster. Limitations of this method and other alternatives are briefly discussed.

  5. Gamma-ray bursts from massive Population-III stars: clues from the radio band

    NASA Astrophysics Data System (ADS)

    Burlon, D.; Murphy, T.; Ghirlanda, G.; Hancock, P. J.; Parry, R.; Salvaterra, R.

    2016-07-01

    Current models suggest gamma-ray bursts could be used as a way of probing Population-III stars - the first stars in the early Universe. In this paper, we use numerical simulations to demonstrate that late-time radio observations of gamma-ray burst afterglows could provide a means of identifying bursts that originate from Population-III stars, if these were highly massive, independently from their redshift. We then present the results from a pilot study using the Australia Telescope Compact Array at 17 GHz, designed to test the hypothesis that there may be Population-III gamma-ray bursts amongst the current sample of known events. We observed three candidates plus a control gamma-ray burst, and make no detections with upper limits of 20-40 μJy at 500-1300 d post-explosion.

  6. [A new automated method to identify emission line star from massive spectra].

    PubMed

    Pan, Jing-Chang; Zhang, Cai-Ming; Wei, Peng; Luo, A-Li; Zhao, Yong-Heng

    2012-06-01

    Stellar spectra are characterized by obvious absorption lines or absorption bands, while those with emission lines are usually special stars such as cataclysmic variable stars (CVs), HerbigAe/Be etc. The further study of this kind of spectra is meaningful. The present paper proposed a new method to identify emission line stars (ELS) spectra automatically. After the continuum normalization is done for the original spectral flux, line detection is made by comparing the normalized flux with the mean and standard deviation of the flux in its neighbor region The results of the experiment on massive spectra from SDSS DR8 indicate that the method can identify ELS spectra completely and accurately. Since no complex transformation and computation are involved in this method, the identifying process is fast and it is ideal for the ELS detection in large sky survey projects like LAMOST and SDSS.

  7. On the formation of low-mass black holes in massive binary stars

    SciTech Connect

    Brown, G.E.; Weingartner, J.C.; Wijers, R.A. |

    1996-05-01

    Recently, Brown & Bethe suggested that most stars with main-sequence mass in the range of {approximately}18{minus}30 {ital M}{sub {circle_dot}} explode, returning matter to the Galaxy, and then go into low-mass ({ge}1.5 {ital M}{sub {circle_dot}}) black holes. Even more massive main-sequence stars would chiefly go into high-mass ({approximately}10 {ital M}{sub {circle_dot}}) black holes. The Brown-Bethe estimates gave {approximately}5{times}10{sup 8} low-mass black holes in the Galaxy. We here address why none of these have been seen, with the possible exception of the compact objects in SN 1987A and 4U 1700-37. Our main point is that the primary star in a binary loses its hydrogen envelope by transfer of matter to the secondary and loss into space, and the resulting {open_quote}{open_quote}naked{close_quote}{close_quote} helium star evolves differently than a helium core, which is at least initially covered by the hydrogen envelope in a massive main-sequence star. We show that primary stars in binaries can end up as neutron stars even if their initial mass substantially exceeds the mass limit for neutron star formation from single stars ({approximately}18 {ital M}{sub {circle_dot}}). An example is 4U 1223{endash}62, in which we suggest that the initial primary mass exceeded 35 {ital M}{sub {circle_dot}}, yet X-ray pulsations show a neutron star to be present. We also discuss some individual systems and argue that 4U 1700{endash}37, the only example of a well-studied high-mass X-ray binary that does not pulse, could well contain a low-mass black hole. The statistical composition of the X-ray binary population is consistent with our scenario, but due to the paucity of systems it is consistent with more traditional models as well. {copyright} {ital 1996 The American Astronomical Society.}

  8. Core-collapse supernova progenitor constraints using the spatial distributions of massive stars in local galaxies

    NASA Astrophysics Data System (ADS)

    Kangas, T.; Portinari, L.; Mattila, S.; Fraser, M.; Kankare, E.; Izzard, R. G.; James, P.; González-Fernández, C.; Maund, J. R.; Thompson, A.

    2017-01-01

    We studied the spatial correlations between the Hα emission and different types of massive stars in two local galaxies, the Large Magellanic Cloud (LMC) and Messier 33. We compared these to correlations derived for core-collapse supernovae (CCSNe) in the literature to connect CCSNe of different types with the initial masses of their progenitors and to test the validity of progenitor mass estimates which use the pixel statistics method. We obtained samples of evolved massive stars in both galaxies from catalogues with good spatial coverage and/or completeness, and combined them with coordinates of main-sequence stars in the LMC from the SIMBAD database. We calculated the spatial correlation of stars of different classes and spectral types with Hα emission. We also investigated the effects of distance, noise and positional errors on the pixel statistics method. A higher correlation with Hα emission is found to correspond to a shorter stellar lifespan, and we conclude that the method can be used as an indicator of the ages, and therefore initial masses, of SN progenitors. We find that the spatial distributions of type II-P SNe and red supergiants of appropriate initial mass (≳9 M⊙) are consistent with each other. We also find the distributions of type Ic SNe and WN stars with initial masses ≳20 M⊙ consistent, while supergiants with initial masses around 15 M⊙ are a better match for type IIb and II-L SNe. The type Ib distribution corresponds to the same stellar types as type II-P, which suggests an origin in interacting binaries. On the other hand, we find that luminous blue variable stars show a much stronger correlation with Hα emission than do type IIn SNe.

  9. MOLECULAR LINE EMISSION FROM A PROTOPLANETARY DISK IRRADIATED EXTERNALLY BY A NEARBY MASSIVE STAR

    SciTech Connect

    Walsh, Catherine; Millar, T. J.; Nomura, Hideko

    2013-04-01

    Star formation often occurs within or nearby stellar clusters. Irradiation by nearby massive stars can photoevaporate protoplanetary disks around young stars (so-called proplyds) which raises questions regarding the ability of planet formation to take place in these environments. We investigate the two-dimensional physical and chemical structure of a protoplanetary disk surrounding a low-mass (T Tauri) star which is irradiated by a nearby massive O-type star to determine the survivability and observability of molecules in proplyds. Compared with an isolated star-disk system, the gas temperature ranges from a factor of a few (in the disk midplane) to around two orders of magnitude (in the disk surface) higher in the irradiated disk. Although the UV flux in the outer disk, in particular, is several orders of magnitude higher, the surface density of the disk is sufficient for effective shielding of the disk midplane so that the disk remains predominantly molecular in nature. We also find that non-volatile molecules, such as HCN and H{sub 2}O, are able to freeze out onto dust grains in the disk midplane so that the formation of icy planetesimals, e.g., comets, may also be possible in proplyds. We have calculated the molecular line emission from the disk assuming LTE and determined that multiple transitions of atomic carbon, CO (and isotopologues, {sup 13}CO and C{sup 18}O), HCO{sup +}, CN, and HCN may be observable with ALMA, allowing characterization of the gas column density, temperature, and optical depth in proplyds at the distance of Orion ( Almost-Equal-To 400 pc).

  10. THE BOLOCAM GALACTIC PLANE SURVEY. VII. CHARACTERIZING THE PROPERTIES OF MASSIVE STAR-FORMING REGIONS

    SciTech Connect

    Dunham, Miranda K.; Rosolowsky, Erik; Evans II, Neal J.; Cyganowski, Claudia; Urquhart, James S.

    2011-11-10

    We present the results of a Green Bank Telescope survey of NH{sub 3}(1,1), (2,2), (3,3) lines toward 631 Bolocam Galactic Plane Survey (BGPS) sources at a range of Galactic longitudes in the inner Galaxy. We have detected the NH{sub 3}(1,1) line toward 72% of our targets (456), demonstrating that the high column density features identified in the BGPS and other continuum surveys accurately predict the presence of dense gas. We have determined kinematic distances and resolved the distance ambiguity for all BGPS sources detected in NH{sub 3}. The BGPS sources trace the locations of the Scutum and Sagittarius spiral arms, with the number of sources. We measure the physical properties of each source and find that depending on the distance, BGPS sources are primarily clumps, with some cores and clouds. We have examined the physical properties as a function of Galactocentric distance, and find a mean gas kinetic temperature of 15.6 K, and that the NH{sub 3} column density and abundance decrease by nearly an order of magnitude. Comparing sources at similar distances demonstrates that the physical properties are indistinguishable, which suggests a similarity in clump structure across the Galactic disk. We have also compared the BGPS sources to criteria for efficient star formation presented independently by Heiderman et al. and Lada et al., and for massive star formation presented by Kauffmann et al. Forty-eight percent of our sample should be forming stars (including massive stars) with high efficiency, and 87% contain subregions that should be efficiently forming stars. Indeed, we find that 67% of the sample exhibit signs of star formation activity based on an association with a mid-infrared source.

  11. High-velocity stars as a result of encounters between stars and massive binary black holes in galactic nuclei

    NASA Astrophysics Data System (ADS)

    Zhuiko, S. V.; Orlov, V. V.; Shirokova, K. S.

    2017-01-01

    Numerical simulations of the motions of stars in the gravitational fields of binary black holes with various component mass ratios have been carried out. Two models are considered: (1) the two-body problem with two fixed centers; (2) the general three-body problem. The first model is applicable only over short times Δ t ≫ T, where T is the period of the binary system. The second model is applicable at all times except for during close encounters of stars with one of the binary components, r ≤ 0.00002 pc, where r is the distance from the star to the nearer black hole. In very close passages, relativistic corrections must be taken into account. Estimates of the probability of formation of high-velocity stars as a result of such interactions are obtained. It is shown that this mechanism is not suitable for the nucleus of our Galaxy due to the probable absence of a second massive black hole in the central region of the Galaxy.

  12. Far-infrared line coolants in massive star-forming regions

    NASA Astrophysics Data System (ADS)

    Leurini, Silvia

    2014-10-01

    The lines of [OI] and [CII] are powefulr tracers of different environments. In photo-dissociation regions (PDRs) their line ratio strongly depends on density; in molecular outflows from low-mass young stellar objects the luminosity of the [OI] line at 63 micron is directly proportional to the rate of mass outflow from the star and it is independent on visual extinction, inclination, and geometry of the outflow. In metal-rich galaxies, [OI] and [CII] lines are among the main coolants, and being very luminous, they are potentially powerful tracers of star formation rates (SFRs) even in galaxies at high z. However, [OI] and [CII] were till now observed only with very poor spectral resolution. They can be heavily affected by absorptions from the source or from different foreground clouds, and the contribution of outflows and PDRs cannot be quantified without resolved profiles. Therefore their diagnostic value is of limited use. We propose here to exploit the unprecedented resolution of the GREAT receiver aboard SOFIA for the first spectroscopically resolved observations of [OI] and [CII] of a sample of galactic massive star-forming clumps. The sources are a flux-limited sub-sample from the ATLASGAL continuum survey of the inner Galaxy and cover a broad range of evolutionary phases. Thanks to the wealth of already collected ancillary data (in particular water, high-J CO and NH3), the proposed observations will be fundamental to calibrate [OI] and [CII] as PDR, outflow and SFR tracers in a sample of sources rapresentative of the Galactic population of massive star-forming clumps. The data will answer the following questions: Which ISM components do [OI] and [CII] trace? How does the complete (CO+H2O+[OI]+[CII]) FIR cooling budget change with bolometric luminosity? Does [OI] show prominent high-velocity emission in massive sources or is ti dominated by PDR emission?

  13. Star formation in grand-design, spiral galaxies. Young, massive clusters in the near-infrared

    NASA Astrophysics Data System (ADS)

    Grosbøl, P.; Dottori, H.

    2012-06-01

    Aims: Spiral structure is a prominent feature in many disk galaxies and is often outlined by bright, young objects. We study the distribution of young stellar clusters in grand-design spiral galaxies and thereby determine whether strong spiral perturbations can influence star formation. Methods: Deep, near-infrared JHK-maps were observed for ten nearby, grand-design, spiral galaxies using HAWK-I at the Very Large Telescope. Complete, magnitude-limited candidate lists of star-forming complexes were obtained by searching within the K-band maps. The properties of the complexes were derived from (H - K) - (J - H) diagrams including the identification of the youngest complexes (i.e. ≲7 Myr) and the estimation of their extinction. Results: Young stellar clusters with ages ≲7 Myr have significant internal extinction in the range of AV = 3-7m, while older ones typically have AV < 1m. The cluster luminosity function (CLF) is well-fitted by a power law with an exponent of around -2 and displays no evidence of a high luminosity cut-off. The brightest cluster complexes in the disk reach luminosities of MK = -15.5m or estimated masses of 106 M⊙. At radii with a strong, two-armed spiral pattern, the star formation rate in the arms is higher by a factor of 2-5 than in the inter-arm regions. The CLF in the arms is also shifted towards brighter MK by at least 0.4m. We also detect clusters with colors compatible with Large Magellanic Cloud intermediate age clusters and Milky Way globular clusters. The (J - K) - MK diagram of several galaxies shows, for the brightest clusters, a clear separation between young clusters that are highly attenuated by dust and older ones with low extinction. Conclusions: The gap in the (J - K) - MK diagrams implies that there has been a rapid expulsion of dust at an age around 7 Myr, possibly triggered by supernovae. Strong spiral perturbations concentrate the formation of clusters in the arm regions and shifts their CLF towards brighter magnitudes

  14. MASSIVE STAR FORMATION AT THE PERIPHERY OF THE EVOLVED GIANT H II REGION W 39

    SciTech Connect

    Kerton, C. R.; Arvidsson, K.; Alexander, M. J. E-mail: karvidsson@adlerplanetarium.org

    2013-03-15

    We present the first detailed study of the large, {approx}30 pc diameter, inner-Galaxy H II region W 39. Radio recombination line observations combined with H I absorption spectra and Galactic rotation models show that the region lies at V{sub LSR} = +65.4 {+-} 0.5 km s{sup -1}, corresponding to a near kinematic distance of 4.5 {+-} 0.2 kpc. Analysis of radio continuum emission shows that the H II region is being powered by a cluster of OB stars with a combined hydrogen-ionizing luminosity of log (Q) {>=} 50, and that there are three compact H II regions located on the periphery of W 39, each with log (Q) {approx} 48.5 (single O7-O9 V star equivalent). In the infrared, W 39 has a hierarchical bubble morphology, and is a likely site of sequential star formation involving massive stars. Kinematic models of the expansion of W 39 yield timescales of the order of Myr, consistent with a scenario where the formation of the smaller H II regions has been triggered by the expansion of W 39. Using Spitzer GLIMPSE and MIPSGAL data, we show that star formation activity is not distributed uniformly around the periphery of W 39 but is concentrated in two areas that include the compact H II regions as well as a number of intermediate-mass Class I and Class II young stellar objects.

  15. On the existence of accretion-driven bursts in massive star formation

    NASA Astrophysics Data System (ADS)

    Meyer, D. M.-A.; Vorobyov, E. I.; Kuiper, R.; Kley, W.

    2017-01-01

    Accretion-driven luminosity outbursts are a vivid manifestation of variable mass accretion on to protostars. They are known as the so-called FU Orionis phenomenon in the context of low-mass protostars. More recently, this process has been found in models of primordial star formation. Using numerical radiation hydrodynamics simulations, we stress that present-day forming massive stars also experience variable accretion and show that this process is accompanied by luminous outbursts induced by the episodic accretion of gaseous clumps falling from the circumstellar disc on to the protostar. Consequently, the process of accretion-induced luminous flares is also conceivable in the high-mass regime of star formation and we propose to regard this phenomenon as a general mechanism that can affect protostars regardless of their mass and/or the chemical properties of the parent environment in which they form. In addition to the commonness of accretion-driven outbursts in the star formation machinery, we conjecture that luminous flares from regions hosting forming high-mass stars may be an observational implication of the fragmentation of their accretion discs.

  16. Discovering Massive Runaway Stars with Infrared Bow Shock Nebulae: First Results

    NASA Astrophysics Data System (ADS)

    Andrews, Julian E.; Povich, Matthew S.; Kobulnicky, Henry A.; Chick, William T.; Dale, Daniel A.; Munari, Stephan; Olivier, Grace M.; Schurhammer, Danielle; Sorber, Rebecca L.; Wernke, Heather N.

    2016-01-01

    We have searched the plane of the Milky Way for candidate 22 μm and 24 μm infrared bow shock nebulae using the Wide-Field Infrared Survey Explorer (WISE) All-Sky Data Release and Spitzer GLIMPSE mosaic images. Infrared bow shocks driven by massive, OB stars can provide new constraints on stellar mass-loss rates and reveal new runaway late O- and early B-type stars. Candidate infrared bow shocks identified in this search were chosen using the criteria of a mostly symmetric arc-like morphology with the arc being bright in only 22 or 24 μm along with an apparent driving star associated with the bow shock in line with its axis of symmetry. Preliminary visible spectroscopic observations of candidate bow shock driving stars obtained using the Longslit Spectrograph at the Wyoming Infrared Observatory (WIRO) reveal that these visual inspections yield a 95% success rate of finding late O- or early B-type stars.This work is supported by the National Science Foundation under grants AST-1063146 (REU), AST-1411851 (RUI), and AST-1412845.

  17. The Coevolution of Nuclear Star Clusters, Massive Black Holes, and Their Host Galaxies

    NASA Astrophysics Data System (ADS)

    Antonini, Fabio; Barausse, Enrico; Silk, Joseph

    2015-10-01

    Studying how nuclear star clusters (NSCs) form and how they are related to the growth of the central massive black holes (MBHs) and their host galaxies is fundamental for our understanding of the evolution of galaxies and the processes that have shaped their central structures. We present the results of a semi-analytical galaxy formation model that follows the evolution of dark matter halos along merger trees, as well as that of the baryonic components. This model allows us to study the evolution of NSCs in a cosmological context, by taking into account the growth of NSCs due to both dynamical-friction-driven migration of stellar clusters and star formation triggered by infalling gas, while also accounting for dynamical heating from (binary) MBHs. We find that in situ star formation contributes a significant fraction (up to ∼80%) of the total mass of NSCs in our model. Both NSC growth through in situ star formation and that through star cluster migration are found to generate NSC—host galaxy scaling correlations that are shallower than the same correlations for MBHs. We explore the role of galaxy mergers on the evolution of NSCs and show that observational data on NSC—host galaxy scaling relations provide evidence of partial erosion of NSCs by MBH binaries in luminous galaxies. We show that this observational feature is reproduced by our models, and we make predictions about the NSC and MBH occupation fraction in galaxies. We conclude by discussing several implications for theories of NSC formation.

  18. Spitzer view of massive star formation in the tidally stripped Magellanic Bridge

    SciTech Connect

    Chen, C.-H. Rosie; Indebetouw, Remy; Muller, Erik; Kawamura, Akiko; Gordon, Karl D.; Meixner, Margaret; Seale, Jonathan P.; Shiao, Bernie; Sewiło, Marta; Whitney, Barbara A.; Meade, Marilyn R.; Fukui, Yasuo; Madden, Suzanne C.; Robitaille, Thomas P.

    2014-04-20

    The Magellanic Bridge is the nearest low-metallicity, tidally stripped environment, offering a unique high-resolution view of physical conditions in merging and forming galaxies. In this paper, we present an analysis of candidate massive young stellar objects (YSOs), i.e., in situ, current massive star formation (MSF) in the Bridge using Spitzer mid-IR and complementary optical and near-IR photometry. While we definitely find YSOs in the Bridge, the most massive are ∼10 M {sub ☉}, <<45 M {sub ☉} found in the LMC. The intensity of MSF in the Bridge also appears to be decreasing, as the most massive YSOs are less massive than those formed in the past. To investigate environmental effects on MSF, we have compared properties of massive YSOs in the Bridge to those in the LMC. First, YSOs in the Bridge are apparently less embedded than in the LMC: 81% of Bridge YSOs show optical counterparts, compared to only 56% of LMC sources with the same range of mass, circumstellar dust mass, and line-of-sight extinction. Circumstellar envelopes are evidently more porous or clumpy in the Bridge's low-metallicity environment. Second, we have used whole samples of YSOs in the LMC and the Bridge to estimate the probability of finding YSOs at a given H I column density, N(H I). We found that the LMC has ∼3 × higher probability than the Bridge for N(H I) >12 × 10{sup 20} cm{sup –2}, but the trend reverses at lower N(H I). Investigating whether this lower efficiency relative to H I is due to less efficient molecular cloud formation or to less efficient cloud collapse, or to both, will require sensitive molecular gas observations.

  19. Analysis of a Close Pair of Faint Sources Near a Massive Young Star

    NASA Astrophysics Data System (ADS)

    Kamon, Saki; Kraus, Adam L.; Rizzuto, Aaron C.; Ireland, Michael; Carpenter, John M.

    2017-01-01

    Directly imaged exoplanets are rare but important, because they provide a rare glimpse at how planet interiors and atmospheres evolve over time via direct measurement of planetary luminosities and spectra. The details of individual planetary system architectures directly inform our understanding of planet formation and evolution. We present our findings from a high-resolution imaging survey of a nearby star-forming region that indicate the presence of a close pair of faint sources near a massive, A-type young star. From multiple epochs of AO imaging obtained with NIRC2, we test for association of each faint source with the host star via measurement of common proper motion. We also assess whether the sources are two planetary mass objects, or a more massive object obscured by an edge on disk. In the case of two planetary mass objects, we estimate the component masses from their luminosities and colors.We conclude by discussing possible future observations to further determine the nature of this complicated system.

  20. A NEW MECHANISM FOR MASS ACCRETION UNDER RADIATION PRESSURE IN MASSIVE STAR FORMATION

    SciTech Connect

    Tanaka, Kei E. I.; Nakamoto, Taishi

    2010-05-01

    During the formation of a massive star, strong radiation pressure from the central star acts on the dust sublimation front and tends to halt the accretion flow. To overcome this strong radiation pressure, it has been considered that a strong ram pressure produced by a high-mass accretion rate of 10{sup -3} M{sub sun} yr{sup -1} or more is needed. We reinvestigated the necessary condition to overcome the radiation pressure and found a new mechanism for overcoming it. Accumulated mass in a stagnant flow near the dust sublimation front helps the mass accretion by its weight. This mechanism relaxes the condition for the massive star formation. We call this mechanism the 'OMOSHI effect', where OMOSHI is an acronym for 'One Mechanism for Overcoming Stellar High radiation pressure by weIght'. Additionally, in Japanese, OMOSHI is a noun meaning a weight that is put on something to prevent it from moving. We investigate the generation of the OMOSHI effect using local one-dimensional radiation hydrodynamics simulations. The radiation pressure and the gravitational force are connected through the gas pressure, and to sum up, the radiation pressure is balanced or overcome by the gravitational force. We also discuss the global structure and temporal variation of the accretion flow.

  1. Big Fish in Small Ponds: Massive Stars in the Low-mass Clusters of M83

    NASA Astrophysics Data System (ADS)

    Andrews, J. E.; Calzetti, D.; Chandar, R.; Elmegreen, B. G.; Kennicutt, R. C.; Kim, Hwihyun; Krumholz, Mark R.; Lee, J. C.; McElwee, Sean; O'Connell, R. W.; Whitmore, B.

    2014-09-01

    We have used multi-wavelength Hubble Space Telescope WFC3 data of the starbursting spiral galaxy M83 in order to measure variations in the upper end of the stellar initial mass function (uIMF) using the production rate of ionizing photons in unresolved clusters with ages <= 8 Myr. As in earlier papers on M51 and NGC 4214, the uIMF in M83 is consistent with a universal IMF, and stochastic sampling of the stellar populations in the lap103 M ⊙ clusters are responsible for any deviations in this universality. The ensemble cluster population, as well as individual clusters, also imply that the most massive star in a cluster does not depend on the cluster mass. In fact, we have found that these small clusters seem to have an over-abundance of ionizing photons when compared to an expected universal or truncated IMF. This also suggests that the presence of massive stars in these clusters does not affect the star formation in a destructive way.

  2. Big Fish in Small Ponds: massive stars in the low-mass clusters of M83

    SciTech Connect

    Andrews, J. E.; Calzetti, D.; McElwee, Sean; Chandar, R.; Elmegreen, B. G.; Kennicutt, R. C.; Kim, Hwihyun; Krumholz, Mark R.; Lee, J. C.; Whitmore, B.; O'Connell, R. W. E-mail: callzetti@astro.umass.edu

    2014-09-20

    We have used multi-wavelength Hubble Space Telescope WFC3 data of the starbursting spiral galaxy M83 in order to measure variations in the upper end of the stellar initial mass function (uIMF) using the production rate of ionizing photons in unresolved clusters with ages ≤ 8 Myr. As in earlier papers on M51 and NGC 4214, the uIMF in M83 is consistent with a universal IMF, and stochastic sampling of the stellar populations in the ∼<10{sup 3} M {sub ☉} clusters are responsible for any deviations in this universality. The ensemble cluster population, as well as individual clusters, also imply that the most massive star in a cluster does not depend on the cluster mass. In fact, we have found that these small clusters seem to have an over-abundance of ionizing photons when compared to an expected universal or truncated IMF. This also suggests that the presence of massive stars in these clusters does not affect the star formation in a destructive way.

  3. Bow shock nebulae of hot massive stars in a magnetized medium

    NASA Astrophysics Data System (ADS)

    Meyer, D. M.-A.; Mignone, A.; Kuiper, R.; Raga, A. C.; Kley, W.

    2017-01-01

    A significant fraction of OB-type, main-sequence massive stars are classified as runaway and move supersonically through the interstellar medium (ISM). Their strong stellar winds interact with their surroundings, where the typical strength of the local ISM magnetic field is about 3.5-7 μG, which can result in the formation of bow shock nebulae. We investigate the effects of such magnetic fields, aligned with the motion of the flow, on the formation and emission properties of these circumstellar structures. Our axisymmetric, magneto-hydrodynamical simulations with optically thin radiative cooling, heating and anisotropic thermal conduction show that the presence of the background ISM magnetic field affects the projected optical emission of our bow shocks at Hα and [O III] λ 5007 which become fainter by about 1-2 orders of magnitude, respectively. Radiative transfer calculations against dust opacity indicate that the magnetic field slightly diminishes their projected infrared emission and that our bow shocks emit brightly at 60 μm. This may explain why the bow shocks generated by ionizing runaway massive stars are often difficult to identify. Finally, we discuss our results in the context of the bow shock of ζ Ophiuchi and we support the interpretation of its imperfect morphology as an evidence of the presence of an ISM magnetic field not aligned with the motion of its driving star.

  4. All quiet on the Western front? New evidence for massive star formation in Sgr C

    NASA Astrophysics Data System (ADS)

    Kendrew, Sarah; Ginsburg, Adam; Johnston, Katharine; Beuther, Henrik; Bally, John; Cyganowski, Claudia J.; Battersby, Cara

    2014-05-01

    We summarize here our recent findings from near-infrared spectroscopy and 1 mm line and continuum observations of a recently identified extended green object (EGO) in Sgr C, whose observational characteristics suggest early-stage massive star formation is taking place. Located on the outskirts of the massive evolved Hii region associated with Sgr C in the Western central molecular zone (CMZ), the EGO measures ˜10″ (0.4 pc at 8.5 kpc). We confirm that early-stage star formation is taking place on the periphery of the Sgr C Hii region. The data show clear detections of two protostellar cores and several knots of H2 and Brackett γ emission alongside a previously detected compact radio source. We calculate the cores' joint mass to be ˜103 M⊙, with column densities of 1-2 × 1024 cm-2. The host molecular clouds mass is approximately 105 M⊙. Despite these favorable conditions, the cloud is curiously devoid of any further star formation, making it comparable to other remarkably quiescent clouds, such as G0.253 in the Eastern CMZ.

  5. STAR FORMATION IN THE MASSIVE ''STARLESS'' INFRARED DARK CLOUD G0.253+0.016

    SciTech Connect

    Rodriguez, Luis F.; Zapata, Luis A. E-mail: lzapata@crya.unam.mx

    2013-04-10

    G0.253+0.016 is a remarkable massive infrared dark cloud located within {approx}100 pc of the galactic center. With a high mass of 1.3 Multiplication-Sign 10{sup 5} M{sub Sun }, a compact average radius of {approx}2.8 pc, and a low dust temperature of 23 K, it has been believed to be a yet starless precursor to a massive Arches-like stellar cluster. We present sensitive JVLA 1.3 and 5.6 cm radio continuum observations that reveal the presence of three compact thermal radio sources projected against this cloud. These radio sources are interpreted as H II regions powered by {approx}B0.5 zero-age main sequence stars. We conclude that although G0.253+0.016 does not show evidence of O-type star formation, there are certainly early B-type stars embedded in it. We detect three more sources in the periphery of G0.253+0.016 with non-thermal spectral indices. We suggest that these sources may be related to the galactic center region and deserve further study.

  6. SINGLE-STAR H II REGIONS AS A PROBE OF MASSIVE STAR SPECTRAL ENERGY DISTRIBUTIONS

    SciTech Connect

    Zastrow, Jordan; Oey, M. S.; Pellegrini, E. W.

    2013-06-01

    The shape of OB-star ionizing spectral energy distributions (SEDs) is a critical component in many diagnostics of galaxy and interstellar medium properties. To quantitatively examine the shape of the OB-star SED, we compare long slit observations of single-star, Large Magellanic Cloud H II regions to the predictions from CLOUDY photoionization simulations that use CoStar, TLUSTY, and WM-basic stellar atmosphere models as the ionizing source. For each atmosphere model, we run grids of H II region simulations with the effective temperature (T{sub eff}) of the star as a free parameter. The best SEDs from each atmosphere code are found by matching the predicted emission-line spectra with those observed from the nebulae. By assuming a clumpy gas distribution, all atmosphere codes are able to reproduce the observed emission lines, except at the highest energy transitions {approx}> 40 eV. Taking into account both low and high energy transitions, we find that simulations using WM-basic produce the best agreement with the observed line ratios. The rates of ionizing photons from different atmosphere models vary systematically with the relative hardness of the SEDs. However, in general the rates produced by the model SEDs, for standard log(g) = 4.0 models, are consistent with the rates derived from the H{alpha} luminosities. We find that our effective temperatures inferred from the nebular ionization balance are consistent with those predicted by conventional photospheric-based calibrations from the literature. We suggest that future spectral type to T{sub eff} calibrations can be constructed from nebular data.

  7. Single-star H II Regions as a Probe of Massive Star Spectral Energy Distributions

    NASA Astrophysics Data System (ADS)

    Zastrow, Jordan; Oey, M. S.; Pellegrini, E. W.

    2013-06-01

    The shape of OB-star ionizing spectral energy distributions (SEDs) is a critical component in many diagnostics of galaxy and interstellar medium properties. To quantitatively examine the shape of the OB-star SED, we compare long slit observations of single-star, Large Magellanic Cloud H II regions to the predictions from CLOUDY photoionization simulations that use CoStar, TLUSTY, and WM-basic stellar atmosphere models as the ionizing source. For each atmosphere model, we run grids of H II region simulations with the effective temperature (T eff) of the star as a free parameter. The best SEDs from each atmosphere code are found by matching the predicted emission-line spectra with those observed from the nebulae. By assuming a clumpy gas distribution, all atmosphere codes are able to reproduce the observed emission lines, except at the highest energy transitions >~ 40 eV. Taking into account both low and high energy transitions, we find that simulations using WM-basic produce the best agreement with the observed line ratios. The rates of ionizing photons from different atmosphere models vary systematically with the relative hardness of the SEDs. However, in general the rates produced by the model SEDs, for standard log(g) = 4.0 models, are consistent with the rates derived from the Hα luminosities. We find that our effective temperatures inferred from the nebular ionization balance are consistent with those predicted by conventional photospheric-based calibrations from the literature. We suggest that future spectral type to T eff calibrations can be constructed from nebular data.

  8. Mass loss from evolved massive stars: self-consistent modeling of the wind and photosphere

    NASA Astrophysics Data System (ADS)

    Groh, J. H.

    2007-03-01

    This work analyzes the mass loss phenomenon in evolved massive stars through self-consistent modeling of the wind and photosphere of such stars, using the radiative transfer code CMFGEN. In the first part, fundamental physical parameters of Wolf-Rayet stars of spectral types WN3-w (WR 46 e WR 152) and WN6-s (WR 136) were obtained. The results clearly indicate that hydrogen is present on the surface of those stars in a considerable fraction, defying current evolutionary models. For both WN subtypes, significant difference between the physical parameters obtained here and in previous works were noticed. The 20-year evolution of the luminous blue variable (LBV) AG Carinae was analyzed in detail in the second part of this work. The results indicate unexpected changes in the current paradigm of massive star evolution during the S Dor cycle. In this work, the high rotational velocity obtained during the hot phases, and the transition between the bistability regimes of line-driven winds were detected for the first time in LBVs. Those results need to be considered in future analysis of such massive stars. This Thesis also presents a pioneering study about the impact of the time variability effects on the analysis of the winds of LBVs. The results achieved here are valid for the whole LBV class, and show that the mass-loss rates derived from Hα and radio free-free emission are affected by time-dependent effects. The mass-loss rate evolution during the S Dor cycle, derived using time-dependent models, implies that LBV eruptions begin well before the maximum in the visual lightcurve during this phase. The analysis of the full S Dor cycle of AG Car rule out that the S Dor variability is caused exclusively by an expanding pseudo-photosphere. The AG Car hydrostatic radius was found to vary by a factor of six between cool and hot phases, while the bolometric luminosity is 50% higher during the hot phase. Both results provide observational contraints for the physical mechanism

  9. The Impact of Feedback During Massive Star Formation by Core Accretion

    NASA Astrophysics Data System (ADS)

    Tanaka, Kei E. I.; Tan, Jonathan C.; Zhang, Yichen

    2017-01-01

    We study feedback during massive star formation using semi-analytic methods, considering the effects of disk winds, radiation pressure, photoevaporation, and stellar winds, while following protostellar evolution in collapsing massive gas cores. We find that disk winds are the dominant feedback mechanism setting star formation efficiencies (SFEs) from initial cores of ∼0.3–0.5. However, radiation pressure is also significant to widen the outflow cavity causing reductions of SFE compared to the disk-wind only case, especially for > 100 {M}ȯ star formation at clump mass surface densities {{{Σ }}}{cl}≲ 0.3 {{g}} {{cm}}-2. Photoevaporation is of relatively minor importance due to dust attenuation of ionizing photons. Stellar winds have even smaller effects during the accretion stage. For core masses {M}c≃ 10–1000 {M}ȯ and {{{Σ }}}{cl}≃ 0.1–3 {{g}} {{cm}}-2, we find the overall SFE to be {\\bar{\\varepsilon }}* f=0.31{({R}c/0.1{pc})}-0.39, potentially a useful sub-grid star formation model in simulations that can resolve pre-stellar core radii, {R}c=0.057{({M}c/60{M}ȯ )}1/2{({{{Σ }}}{cl}/{{g}}{{cm}}-2)}-1/2 {pc}. The decline of SFE with Mc is gradual with no evidence for a maximum stellar-mass set by feedback processes up to stellar masses of {m}* ∼ 300 {M}ȯ . We thus conclude that the observed truncation of the high-mass end of the IMF is shaped mostly by the pre-stellar core mass function or internal stellar processes. To form massive stars with the observed maximum masses of ∼150–300{M}ȯ , initial core masses need to be ≳ 500–1000 {M}ȯ . We also apply our feedback model to zero-metallicity primordial star formation, showing that, in the absence of dust, photoevaporation staunches accretion at ∼ 50 {M}ȯ . Our model implies radiative feedback is most significant at metallicities ∼ {10}-2{Z}ȯ , since both radiation pressure and photoevaporation are effective in this regime.

  10. Hydrodynamical simulations of the tidal stripping of binary stars by massive black holes

    NASA Astrophysics Data System (ADS)

    Mainetti, Deborah; Lupi, Alessandro; Campana, Sergio; Colpi, Monica

    2016-04-01

    In a galactic nucleus, a star on a low angular momentum orbit around the central massive black hole can be fully or partially disrupted by the black hole tidal field, lighting up the compact object via gas accretion. This phenomenon can repeat if the star, not fully disrupted, is on a closed orbit. Because of the multiplicity of stars in binary systems, also binary stars may experience in pairs such a fate, immediately after being tidally separated. The consumption of both the binary components by the black hole is expected to power a double-peaked flare. In this paper, we perform for the first time, with GADGET2, a suite of smoothed particle hydrodynamics simulations of binary stars around a galactic central black hole in the Newtonian regime. We show that accretion luminosity light curves from double tidal disruptions reveal a more prominent knee, rather than a double peak, when decreasing the impact parameter of the encounter and when elevating the difference between the mass of the star which leaves the system after binary separation and the mass of the companion. The detection of a knee can anticipate the onset of periodic accretion luminosity flares if one of the stars, only partially disrupted, remains bound to the black hole after binary separation. Thus knees could be precursors of periodic flares, which can then be predicted, followed up and better modelled. Analytical estimates in the black hole mass range 105-108 M⊙ show that the knee signature is enhanced in the case of black holes of mass 106-107 M⊙.

  11. The Schmidt Law in Six Galactic Massive Star-forming Regions

    NASA Astrophysics Data System (ADS)

    Willis, S.; Guzman, A.; Marengo, M.; Smith, H. A.; Martínez-Galarza, J. R.; Allen, L.

    2015-08-01

    We present a census of young stars in five massive star-forming regions in the 4th Galactic quadrant, G305, G326-4, G326-6, G333 (RCW 106), and G351, and combine this census with an earlier census of young stars in NGC 6334. Each region was observed at J, H, and Ks with the NOAO Extremely Wide-Field Infrared Imager and combined with deep observations taken with the Infrared Array Camera (IRAC) on board the Spitzer Space Telescope at the wavelengths 3.6 and 4.5 μm. We derived a five band point-source catalog containing >200,000 infrared sources in each region. We have identified a total of 2871 YSO candidates, 363 Class I YSOs, and 2508 Class II YSOs. We mapped the column density of each cloud using observations from Herschel between 160 and 500 μm and near-infrared extinction maps in order to determine the average gas surface density above AV > 2. We study the surface density of the YSOs and the star-formation rate as a function of the column density within each cloud and compare them to the results for nearby star-forming regions. We find a range in power-law indices across the clouds, with the dispersion in the local relations in an individual cloud much lower than the average over the six clouds. We find the average over the six clouds to be {{{Σ }}}{SFR}∼ {{{Σ }}}{gas}2.15+/- 0.41 and power-law exponents ranging from 1.77 to 2.86, similar to the values derived within nearby star-forming regions, including Taurus and Orion. The large dispersion in the power-law relations between individual Milky Way molecular clouds reinforces the idea that there is not a direct universal connection between Σgas and a cloud's observed star-formation rate.

  12. Rapidly rotating neutron stars with a massive scalar field—structure and universal relations

    NASA Astrophysics Data System (ADS)

    Doneva, Daniela D.; Yazadjiev, Stoytcho S.

    2016-11-01

    We construct rapidly rotating neutron star models in scalar-tensor theories with a massive scalar field. The fact that the scalar field has nonzero mass leads to very interesting results since the allowed range of values of the coupling parameters is significantly broadened. Deviations from pure general relativity can be very large for values of the parameters that are in agreement with the observations. We found that the rapid rotation can magnify the differences several times compared to the static case. The universal relations between the normalized moment of inertia and quadrupole moment are also investigated both for the slowly and rapidly rotating cases. The results show that these relations are still EOS independent up to a large extend and the deviations from pure general relativity can be large. This places the massive scalar-tensor theories amongst the few alternative theories of gravity that can be tested via the universal I-Love-Q relations.

  13. Young and old massive star clusters and their stellar populations - Theoretical challenges for the next decade

    NASA Astrophysics Data System (ADS)

    Charbonnel, Corinne

    2017-03-01

    Several models presented in the literature compete to explain the origin of multiple stellar populations in globular clusters (GC), but they all fail to reproduce the large variety of present-day characteristics of these systems. In parallel, independent clues on GC early evolution may be derived from observations of young massive clusters (YMC) in the Local Group. But are these two populations of clusters related? And can we reconcile the informations and data concerning GCs and YMCs? Here we summarize some open questions on the nucleosynthetic origin of multiple stellar populations in GCs, on the actual evolution and characteristics of GC low-mass stars, and on early gas expulsion from massive clusters. We propose theoretical paths to be explored in the near future.

  14. GT2_proyer_3: Unveiling the evolutionary paths of the most massive stars through the study of their ejected nebulae

    NASA Astrophysics Data System (ADS)

    Royer, P.

    2011-05-01

    Several important questions remain open regarding the latest stages of evolution of the most massive stars, in particular regarding the exact evolutionary paths between the various subtypes of O stars, LBVs and Wolf-Rayet stars, and the mass-loss history of these objects throughout their lives. In the framework of the MESS GTKP+GT1, we have obtained or will obtain PACS imaging of 9 massive star nebulae of various types (LBV, LBV candidate, OF/WN, Of?p, WR) and PACS spectroscopy of 4 of them. In this short follow-up proposal we want to obtain PACS line spectroscopy for 3 peculiar massive and evolved objects for which spectroscopy is lacking. In particular, these observations will allow to determine the elemental abundances in the nebulae as well as the mass of the neutral gas using the fine structure lines formed in the ionized gas and in the photo-dissociation region respectively.

  15. ON THE EFFECTS OF OPTICALLY THICK GAS (DISKS) AROUND MASSIVE STARS

    SciTech Connect

    Kuiper, Rolf; Yorke, Harold W. E-mail: Harold.W.Yorke@jpl.nasa.gov

    2013-02-15

    Numerical simulations have shown that the often cited radiation pressure barrier to accretion onto massive stars can be circumvented, when the radiation field is highly anisotropic in the presence of a circumstellar accretion disk with high optical depth. Here, these studies of the so-called flashlight effect are expanded by including the opacity of the innermost dust-free but potentially optically thick gas regions around forming massive stars. In addition to frequency-dependent opacities for the dust grains, we use temperature- and density-dependent Planck and Rosseland mean opacities for the gas. The simulations show that the innermost dust-free parts of the accretion disks are optically thick to the stellar radiation over a substantial fraction of the solid angle above and below the disk's midplane. The temperature in the shielded disk region decreases faster with radius than in a comparison simulation with a lower constant gas opacity, and the dust sublimation front is shifted to smaller radii. The shielding by the dust-free gas in the inner disk thus contributes to an enhanced flashlight effect, which ultimately results in a smaller opening angle of the radiation pressure driven outflow and in a much longer timescale of sustained feeding of the circumstellar disk by the molecular cloud core. We conclude that it is necessary to properly account for the opacity of the inner dust-free disk regions around forming massive stars in order to correctly assess the effectiveness of the flashlight effect, the opening angle of radiation pressure driven outflows, and the lifetime and morphological evolution of the accretion disk.

  16. Millimetre spectral line mapping observations towards four massive star-forming H II regions

    NASA Astrophysics Data System (ADS)

    Li, Shanghuo; Wang, Junzhi; Zhang, Zhi-Yu; Fang, Min; Li, Juan; Zhang, Jiangshui; Fan, Junhui; Zhu, Qingfeng; Li, Fei

    2017-04-01

    We present spectral line mapping observations towards four massive star-forming regions - Cepheus A, DR21S, S76E and G34.26+0.15 - with the IRAM 30-m telescope at the 2 and 3 mm bands. In total, 396 spectral lines from 51 molecules, one helium recombination line, 10 hydrogen recombination lines and 16 unidentified lines were detected in these four sources. An emission line of nitrosyl cyanide (ONCN, 140, 14-130, 13) was detected in G34.26+0.15, as the first detection in massive star-forming regions. We found that c-C3H2 and NH2D show enhancement in shocked regions, as suggested by the evidence of SiO and/or SO emission. The column density and rotational temperature of CH3CN were estimated with the rotational diagram method for all four sources. Isotope abundance ratios of 12C/13C were derived using HC3N and its 13C isotopologue, which were around 40 in all four massive star-forming regions and slightly lower than the local interstellar value (∼65). The 14N/15N and 16O/18O abundance ratios in these sources were also derived using the double isotopic method, which were slightly lower than in the local interstellar medium. Except for Cep A, the 33S/34S ratios in the other three targets were derived, which were similar to that in the local interstellar medium. The column density ratios of N(DCN)/N(HCN) and N(DCO+)/N(HCO+) in these sources were more than two orders of magnitude higher than the elemental [D]/[H] ratio, which is 1.5 × 10-5. Our results show that the later stage sources, G34.26+0.15 in particular, present more molecular species than earlier stage sources. Evidence of shock activity is seen in all stages studied.

  17. Uv Imaging of Intermediate-Age Magellanic Cloud Clusters: Hot Stellar Populations in Composite Stellar Systems

    NASA Astrophysics Data System (ADS)

    Freedman, Wendy

    1994-01-01

    Hot stars were first recognized to be an important component of galactic spheroids with early vacuum ultraviolet observations of ellipticals and spiral bulges that were made with OAO. Now, 20 years later, we still do not have a full understanding of the VUV evolution of intermediate and old age stellar populations. Using the WFPC2, we therefore propose to undertake an ultraviolet survey of a sample of star clusters spanning a range in age in the Large Magellanic Cloud. The objective of this investigation is to determine the nature of the hot stellar components in rich, intermediate-to-old age LMC clusters. Ground-based optical/IR studies suggest the presence of short-lived hot horizontal branch and post-asymptotic giant branch stars in these clusters but detailed characterizations of the stars require the ultraviolet capability of HST. In this effort we will be aided by the absence of red leaks in the WFPC2 Woods filter and very high angular resolution of the HST. Although old star clusters in the Galaxy and M31 are, and will be, the subjects of intense investigation by HST, OUR SURVEY WILL BE THE FIRST OF ITS KIND FOR POPULATIONS OF INTERMEDIATE AGE. Such systems are critical for interpreting the spectra and colors of high redshift galaxies, and will provide important support to these studies.

  18. A Comprehensive Investigation of the Structuring of the Interstellar Medium of Massive Stars

    NASA Technical Reports Server (NTRS)

    Chu, You-Hua; Wakker, Bart

    2001-01-01

    We proposed to use the International Ultraviolet Explorer (IUE), ROSAT (X-ray satellite), Advanced Spacecraft for Cosmology Astrophysics (ASCA), and Hubble Space Telescope (HST) archival data, complemented by data obtained from ground-based observatories, to study the physical structure of the interstellar medium as a result of interactions between massive stars and the ambient medium. During the granting period, we have carried out the major tasks proposed originally and reported the results in a large number of papers. The papers published during the last two years below. We conclude that this program has been highly successfully.

  19. Stability boundaries for massive stars in the sHR diagram

    NASA Astrophysics Data System (ADS)

    Saio, Hideyuki; Georgy, Cyril; Meynet, Georges

    2015-01-01

    Stability boundaries of radial pulsations in massive stars are compared with positions of variable and non-variable blue-supergiants in the spectroscopic HR (sHR) diagram (Langer & Kudritzki 2014), whose vertical axis is 4 log T eff - log g(= log L/M). Observational data indicate that variables tend to have higher L/M than non-variables in agreement with the theoretical prediction. However, many variable blue-supergiants are found to have values of L/M below the theoretical stability boundary; i.e., surface gravities seem to be too high by around 0.2-0.3 dex.

  20. The 26Al Gamma-ray Line from Massive-Star Regions

    NASA Astrophysics Data System (ADS)

    Siegert, Thomas; Diehl, Roland

    The measurement of gamma rays from the diffuse afterglow of radioactivity originating in massive-star nucleosynthesis is considered a laboratory for testing models, when specific stellar groups are investigated, at known distance and with well-constrained stellar population. Regions which have been exploited for such studies include Cygnus, Carina, Orion, and Scorpius-Centaurus. The Orion region hosts the Orion OB1 association and its subgroups at about 450 pc distance. We report the detection of l gamma rays from this region with INTEGRAL/SPI.

  1. WSO and the winds of massive stars: the gate to the metal-poor Local Universe

    NASA Astrophysics Data System (ADS)

    Garcia, Miriam; Herrero, Artemio; Najarro, Francisco

    2011-09-01

    The spectrographs on-board the World Space Observatory (WSO) will provide access to the 1020-1800 Å wavelength range with unprecedented sensitivity. Previous observatories operating in the 1150-2000 Å range (such as IUE and HST-STIS) have proved extremely useful to study the winds of OB type stars, which leave their most prominent imprints in the far ultraviolet range. The addition of the λ < 1200 Å wavelengths is critical as it contains important diagnostic lines for mass loss and shocks in the wind, as found by FUSE-based analyses. WSO will enable quantitative spectroscopic analyses of blue massive stars in the Local Group beyond the Magellanic Clouds. The results will lead to the characterization of their winds as a function of metallicity, and shed new light on current urging questions regarding radiation driven winds.

  2. A circumstellar molecular gas structure associated with the massive young star Cepheus A-HW 2

    NASA Technical Reports Server (NTRS)

    Torrelles, Jose M.; Rodriguez, Luis F.; Canto, Jorge; Ho, Paul T. P.

    1993-01-01

    We report the detection via VLA-D observations of ammonia of a circumstellar high-density molecular gas structure toward the massive young star related to the object Cepheus A-HW 2, a firm candidate for the powering source of the high-velocity molecular outflow in the region. We suggest that the circumstellar molecular gas structure could be related to the circumstellar disk previously suggested from infrared, H2O, and OH maser observations. We consider as a plausible scenario that the double radio continuum source of HW 2 could represent the ionized inner part of the circumstellar disk, in the same way as proposed to explain the double radio source in L1551. The observed motions in the circumstellar molecular gas can be produced by bound motions (e.g., infall or rotation) around a central mass of about 10-20 solar masses (B0.5 V star or earlier).

  3. Gas expulsion in massive star clusters?. Constraints from observations of young and gas-free objects

    NASA Astrophysics Data System (ADS)

    Krause, Martin G. H.; Charbonnel, Corinne; Bastian, Nate; Diehl, Roland

    2016-03-01

    Context. Gas expulsion is a central concept in some of the models for multiple populations and the light-element anti-correlations in globular clusters. If the star formation efficiency was around 30 per cent and the gas expulsion happened on the crossing timescale, this process could preferentially expel stars born with the chemical composition of the proto-cluster gas, while stars with special composition born in the centre would remain bound. Recently, a sample of extragalactic, gas-free, young massive clusters has been identified that has the potential to test the conditions for gas expulsion. Aims: We investigate the conditions required for residual gas expulsion on the crossing timescale. We consider a standard initial mass function and different models for the energy production in the cluster: metallicity-dependent stellar winds, radiation, supernovae and more energetic events, such as hypernovae, which are related to gamma ray bursts. The latter may be more energetic than supernovae by up to two orders of magnitude. Methods: We computed a large number of thin-shell models for the gas dynamics, and calculated whether the Rayleigh-Taylor instability is able to disrupt the shell before it reaches the escape speed. Results: We show that the success of gas expulsion depends on the compactness index of a star cluster C5 ≡ (M∗/ 105 M⊙)/(rh/ pc), with initial stellar mass M∗ and half-mass radius rh. For given C5, a certain critical, local star formation efficiency is required to remove the rest of the gas. Common stellar feedback processes may not lead to gas expulsion with significant loss of stars above C5 ≈ 1. Considering pulsar winds and hypernovae, the limit increases to C5 ≈ 30. If successful, gas expulsion generally takes place on the crossing timescale. Some observed young massive clusters have 1

  4. s-process production in rotating massive stars at solar and low metallicities

    NASA Astrophysics Data System (ADS)

    Frischknecht, Urs; Hirschi, Raphael; Pignatari, Marco; Maeder, André; Meynet, George; Chiappini, Cristina; Thielemann, Friedrich-Karl; Rauscher, Thomas; Georgy, Cyril; Ekström, Sylvia

    2016-02-01

    Rotation was shown to have a strong impact on the structure and light element nucleosynthesis in massive stars. In particular, models including rotation can reproduce the primary nitrogen observed in halo extremely metal poor (EMP) stars. Additional exploratory models showed that rotation may enhance s-process production at low metallicity. Here we present a large grid of massive star models including rotation and a full s-process network to study the impact of rotation on the weak s-process. We explore the possibility of producing significant amounts of elements beyond the strontium peak, which is where the weak s-process usually stops. We used the Geneva stellar evolution code coupled to an enlarged reaction network with 737 nuclear species up to bismuth to calculate 15-40 M⊙ models at four metallicities (Z = 0.014, 10-3, 10-5 and 10-7) from the main sequence up to the end of oxygen burning. We confirm that rotation-induced mixing between the convective H-shell and He-core enables an important production of primary 14N and 22Ne and s-process at low metallicity. At low metallicity, even though the production is still limited by the initial number of iron seeds, rotation enhances the s-process production, even for isotopes heavier than strontium, by increasing the neutron-to-seed ratio. The increase in this ratio is a direct consequence of the primary production of 22Ne. Despite nuclear uncertainties affecting the s-process production and stellar uncertainties affecting the rotation-induced mixing, our results show a robust production of s-process at low metallicity when rotation is taken into account. Considering models with a distribution of initial rotation rates enables us to reproduce the observed large range of the [Sr/Ba] ratios in (carbon-enhanced and normal) EMP stars.

  5. Massive stars dying alone: the extremely remote environment of SN 2009ip

    NASA Astrophysics Data System (ADS)

    Smith, Nathan; Andrews, Jennifer E.; Mauerhan, Jon C.

    2016-12-01

    We present late-time Hubble Space Telescope (HST) images of the site of supernova (SN) 2009ip taken almost 3 yr after its bright 2012 luminosity peak. SN 2009ip is now slightly fainter in broad filters than the progenitor candidate detected by HST in 1999. The current source continues to be dominated by ongoing late-time circumstellar material interaction that produces strong Hα emission and a weak pseudo-continuum, as found previously for 1-2 yr after explosion. The intent of these observations was to search for evidence of recent star formation in the local (˜1 kpc; 10 arcsec) environment around SN 2009ip, in the remote outskirts of its host spiral galaxy NGC 7259. We can rule out the presence of any massive star-forming complexes like 30 Dor or the Carina nebula at the SN site or within a few kpc. If the progenitor of SN 2009ip was really a 50-80 M⊙ star as archival HST images suggested, then it is strange that there is no sign of this type of massive star formation anywhere in the vicinity. A possible explanation is that the progenitor was the product of a merger or binary mass transfer, rejuvenated after a lifetime that was much longer than 4-5 Myr, allowing its natal H II region to have faded. A smaller region like the Orion nebula would be an unresolved but easily detected point source. This is ruled out within ˜1.5 kpc around SN 2009ip, but a small H II region could be hiding in the glare of SN 2009ip itself. Later images after a few more years have passed are needed to confirm that the progenitor candidate is truly gone and to test for the possibility of a small H II region or cluster at the SN position.

  6. Massive pulsating stars observed by BRITE-Constellation. I. The triple system β Centauri (Agena)

    NASA Astrophysics Data System (ADS)

    Pigulski, A.; Cugier, H.; Popowicz, A.; Kuschnig, R.; Moffat, A. F. J.; Rucinski, S. M.; Schwarzenberg-Czerny, A.; Weiss, W. W.; Handler, G.; Wade, G. A.; Koudelka, O.; Matthews, J. M.; Mochnacki, St.; Orleański, P.; Pablo, H.; Ramiaramanantsoa, T.; Whittaker, G.; Zocłońska, E.; Zwintz, K.

    2016-04-01

    Context. Asteroseismology of massive pulsating stars of β Cep and SPB types can help us to uncover the internal structure of massive stars and understand certain physical phenomena that are taking place in their interiors. We study β Centauri (Agena), a triple system with two massive fast-rotating early B-type components which show p- and g-mode pulsations; the system's secondary is also known to have a measurable magnetic field. Aims: This paper aims to precisely determine the masses and detect pulsation modes in the two massive components of β Cen with BRITE-Constellation photometry. In addition, seismic models for the components are considered and the effects of fast rotation are discussed. This is done to test the limitations of seismic modeling for this very difficult case. Methods: A simultaneous fit of visual and spectroscopic orbits is used to self-consistently derive the orbital parameters, and subsequently the masses, of the components. Time-series analysis of BRITE-Constellation data is used to detect pulsation modes and derive their frequencies, amplitudes, phases, and rates of frequency change. Theoretically-predicted frequencies are calculated for the appropriate evolutionary models and their stability is checked. The effects of rotational splitting and coupling are also presented. Results: The derived masses of the two massive components are equal to 12.02 ± 0.13 and 10.58 ± 0.18 M⊙. The parameters of the wider, A-B system, presently approaching periastron passage, are constrained. Analysis of the combined blue- and red-filter BRITE-Constellation photometric data of the system revealed the presence of 19 periodic terms, of which eight are likely g modes, nine are p modes, and the remaining two are combination terms. It cannot be excluded that one or two low-frequency terms are rotational frequencies. It is possible that both components of β Cen are β Cep/SPB hybrids. An attempt to use the apparent changes of frequency to distinguish which

  7. Rapid growth of black holes in massive star-forming galaxies.

    PubMed

    Alexander, D M; Smail, I; Bauer, F E; Chapman, S C; Blain, A W; Brandt, W N; Ivison, R J

    2005-04-07

    The tight relationship between the masses of black holes and galaxy spheroids in nearby galaxies implies a causal connection between the growth of these two components. Optically luminous quasars host the most prodigious accreting black holes in the Universe, and can account for greater than or approximately equal to 30 per cent of the total cosmological black-hole growth. As typical quasars are not, however, undergoing intense star formation and already host massive black holes (> 10(8)M(o), where M(o) is the solar mass), there must have been an earlier pre-quasar phase when these black holes grew (mass range approximately (10(6)-10(8))M(o)). The likely signature of this earlier stage is simultaneous black-hole growth and star formation in distant (redshift z > 1; >8 billion light years away) luminous galaxies. Here we report ultra-deep X-ray observations of distant star-forming galaxies that are bright at submillimetre wavelengths. We find that the black holes in these galaxies are growing almost continuously throughout periods of intense star formation. This activity appears to be more tightly associated with these galaxies than any other coeval galaxy populations. We show that the black-hole growth from these galaxies is consistent with that expected for the pre-quasar phase.

  8. THE HCN/HNC ABUNDANCE RATIO TOWARD DIFFERENT EVOLUTIONARY PHASES OF MASSIVE STAR FORMATION

    SciTech Connect

    Jin, Mihwa; Lee, Jeong-Eun; Kim, Kee-Tae E-mail: jeongeun.lee@khu.ac.kr

    2015-07-20

    Using the H{sup 13}CN and HN{sup 13}C J = 1–0 line observations, the abundance ratio of HCN/HNC has been estimated for different evolutionary stages of massive star formation: infrared dark clouds (IRDCs), high-mass protostellar objects (HMPOs), and ultracompact H ii regions (UCH iis). IRDCs were divided into “quiescent IRDC cores (qIRDCc)” and “active IRDC cores (aIRDCc),” depending on star formation activity. The HCN/HNC ratio is known to be higher at active and high temperature regions related to ongoing star formation, compared to cold and quiescent regions. Our observations toward 8 qIRDCc, 16 aIRDCc, 23 HMPOs, and 31 UCH iis show consistent results; the ratio is 0.97 (±0.10), 2.65 (±0.88), 4.17 (±1.03), and 8.96 (±3.32) in these respective evolutionary stages, increasing from qIRDCc to UCH iis. The change of the HCN/HNC abundance ratio, therefore, seems directly associated with the evolutionary stages of star formation, which have different temperatures. One suggested explanation for this trend is the conversion of HNC to HCN, which occurs effectively at higher temperatures. To test the explanation, we performed a simple chemical model calculation. In order to fit the observed results, the energy barrier of the conversion must be much lower than the value provided by theoretical calculations.

  9. The gravitational wave background from star-massive black hole fly-bys

    NASA Astrophysics Data System (ADS)

    Toonen, Silvia; Hopman, Clovis; Freitag, Marc

    2009-09-01

    Stars on eccentric orbits around a massive black hole (MBH) emit bursts of gravitational waves (GWs) at periapse. Such events may be directly resolvable in the Galactic Centre. However, if the star does not spiral in, the emitted GWs are not resolvable for extragalactic MBHs, but constitute a source of background noise. We estimate the power spectrum of this extreme mass ratio burst background (EMBB) and compare it to the anticipated instrumental noise of the Laser Interferometer Space Antenna (LISA). To this end, we model the regions close to an MBH, accounting for mass segregation, and for processes that limit the presence of stars close to the MBH, such as GW inspiral and hydrodynamical collisions between stars. We find that the EMBB is dominated by GW bursts from stellar mass black holes, and the magnitude of the noise spectrum (fSGW)1/2 is at least a factor of ~10 smaller than the instrumental noise. As an additional result of our analysis, we show that LISA is unlikely to detect relativistic bursts in the Galactic Centre.

  10. Effects of Stellar-Mass Black Holes on Massive Star Cluster Evolution

    NASA Astrophysics Data System (ADS)

    Chatterjee, Sourav; Morscher, Meagan; Rodriguez, Carl L.; Pattabiraman, Bharat; Rasio, Frederic A.

    2017-03-01

    Recent observations have revealed the existence of stellar mass black hole (BH) candidates in some globular clusters (GC) in the Milky Way and in other galaxies. Given that the detection of BHs is challenging, these detections likely indicate the existence of large populations of BHs in these clusters. This is in direct contrast to the past understanding that at most a handful of BHs may remain in old GCs due to quick mass segregation and rapid mutual dynamical ejection. Modern realistic star-by-star numerical simulations suggest that the retention fraction of BHs is typically much higher than what was previously thought. The BH dynamics near the cluster center leads to dynamical formation of new binaries and dynamical ejections, and acts as a persistent and significant energy source for these clusters. We have started exploring effects of BHs on the global evolution and survival of star clusters. We find that the evolution as well as survival of massive star clusters can critically depend on the details of the initial assumptions related to BH formation physics, such as natal kick distribution, and the initial stellar mass function (IMF). In this article we will present our latest results.

  11. Deviations from a uniform period spacing of gravity modes in a massive star.

    PubMed

    Degroote, Pieter; Aerts, Conny; Baglin, Annie; Miglio, Andrea; Briquet, Maryline; Noels, Arlette; Niemczura, Ewa; Montalban, Josefina; Bloemen, Steven; Oreiro, Raquel; Vucković, Maja; Smolders, Kristof; Auvergne, Michel; Baudin, Frederic; Catala, Claude; Michel, Eric

    2010-03-11

    The life of a star is dominantly determined by the physical processes in the stellar interior. Unfortunately, we still have a poor understanding of how the stellar gas mixes near the stellar core, preventing precise predictions of stellar evolution. The unknown nature of the mixing processes as well as the extent of the central mixed region is particularly problematic for massive stars. Oscillations in stars with masses a few times that of the Sun offer a unique opportunity to disentangle the nature of various mixing processes, through the distinct signature they leave on period spacings in the gravity mode spectrum. Here we report the detection of numerous gravity modes in a young star with a mass of about seven solar masses. The mean period spacing allows us to estimate the extent of the convective core, and the clear periodic deviation from the mean constrains the location of the chemical transition zone to be at about 10 per cent of the radius and rules out a clear-cut profile.

  12. The evolution of massive stars including mass loss - Presupernova models and explosion

    NASA Technical Reports Server (NTRS)

    Woosley, S. E.; Langer, Norbert; Weaver, Thomas A.

    1993-01-01

    The evolution of massive stars of 35, 40, 60, and 85 solar masses is followed through all stages of nuclear burning to the point of Fe core collapse. Critical nuclear reaction and mass-loss rates are varied. Efficient mass loss during the Wolf-Rayet (WR) stage is likely to lead to final masses as small as 4 solar masses. For a reasonable parameterization of the mass loss, there may be convergence of all WR stars, both single and in binaries, to a narrow band of small final masses. Our representative model, a 4.25 solar-mass WR presupernova derived from a 60 solar mass star, is followed through a simulated explosion, and its explosive nucleosynthesis and light curve are determined. Its properties are similar to those observed in Type Ib supernovae. The effects of the initial mass and mass loss on the presupernova structure of small mass WR models is also explored. Important properties of the presupernova star and its explosion can only be obtained by following the complete evolution starting on the main sequence.

  13. COLLAPSE OF MOLECULAR CLOUD CORES WITH RADIATION TRANSFER: FORMATION OF MASSIVE STARS BY ACCRETION

    SciTech Connect

    Sigalotti, Leonardo Di G.; Daza-Montero, Judith; De Felice, Fernando

    2009-12-20

    Most early radiative transfer calculations of protostellar collapse have suggested an upper limit of approx40 M{sub sun} for the final stellar mass before radiation pressure can exceed the star's gravitational pull and halt the accretion. Here we perform further collapse calculations, using frequency-dependent radiation transfer coupled to a frequency-dependent dust model that includes amorphous carbon particles, silicates, and ice-coated silicates. The models start from pressure-bounded, logatropic spheres of mass between 5 M{sub sun} and 150 M{sub sun} with an initial nonsingular density profile. We find that in a logatrope the infall is never reversed by the radiative forces on the dust and that stars with masses approx>100 M{sub sun} may form by continued accretion. Compared to previous models that start the collapse with a rho propor to r{sup -2} density configuration, our calculations result in higher accretion times and lower average accretion rates with peak values of approx5.8 x 10{sup -5} M{sub sun} yr{sup -1}. The radii and bolometric luminosities of the produced massive stars (approx>90 M{sub sun}) are in good agreement with the figures reported for detected stars with initial masses in excess of 100 M{sub sun}. The spectral energy distribution from the stellar photosphere reproduces the observed fluxes for hot molecular cores with peaks of emission from mid- to near-infrared.

  14. A LIBRARY OF THEORETICAL ULTRAVIOLET SPECTRA OF MASSIVE, HOT STARS FOR EVOLUTIONARY SYNTHESIS

    SciTech Connect

    Leitherer, Claus; Ortiz Otalvaro, Paula A.; Bresolin, Fabio; Kudritzki, Rolf-Peter; Lo Faro, Barbara; Pauldrach, Adalbert W. A.; Pettini, Max; Rix, Samantha A. E-mail: pauortizo@gmail.co E-mail: kud@ifa.hawaii.ed E-mail: uh10107@usm.uni-muenchen.d E-mail: srix@ing.iac.e

    2010-08-15

    We computed a comprehensive set of theoretical ultraviolet spectra of hot, massive stars with the radiation-hydrodynamics code WM-Basic. This model atmosphere and spectral synthesis code is optimized for computing the strong P Cygni type lines originating in the winds of hot stars, which are the strongest features in the ultraviolet spectral region. The computed set is suitable as a spectral library for inclusion in evolutionary synthesis models of star clusters and star-forming galaxies. The chosen stellar parameters cover the upper left Hertzsprung-Russell diagram at L {approx}> 10{sup 2.75} L {sub sun} and T {sub eff} {approx}> 20,000 K. The adopted elemental abundances are 0.05 Z {sub sun}, 0.2 Z {sub sun}, 0.4 Z {sub sun}, Z {sub sun}, and 2 Z {sub sun}. The spectra cover the wavelength range from 900 to 3000 A and have a resolution of 0.4 A. We compared the theoretical spectra to data of individual hot stars in the Galaxy and the Magellanic Clouds obtained with the International Ultraviolet Explorer and Far Ultraviolet Spectroscopic Explorer satellites and found very good agreement. We built a library with the set of spectra and implemented it into the evolutionary synthesis code Starburst99 where it complements and extends the existing empirical library toward lower chemical abundances. Comparison of population synthesis models at solar and near-solar composition demonstrates consistency between synthetic spectra generated with either library. We discuss the potential of the new library for the interpretation of the rest-frame ultraviolet spectra of star-forming galaxies. Properties that can be addressed with the models include ages, initial mass function, and heavy-element abundance. The library can be obtained both individually or as part of the Starburst99 package.

  15. Curtain-Lifting Winds Allow Rare Glimpse into Massive Star Factory

    NASA Astrophysics Data System (ADS)

    2003-06-01

    Formation of Exceedingly Luminous and Hot Stars in Young Stellar Cluster Observed Directly Summary Based on a vast observational effort with different telescopes and instruments, ESO-astronomer Dieter Nürnberger has obtained a first glimpse of the very first stages in the formation of heavy stars. These critical phases of stellar evolution are normally hidden from the view, because massive protostars are deeply embedded in their native clouds of dust and gas, impenetrable barriers to observations at all but the longest wavelengths. In particular, no visual or infrared observations have yet "caught" nascent heavy stars in the act and little is therefore known so far about the related processes. Profiting from the cloud-ripping effect of strong stellar winds from adjacent, hot stars in a young stellar cluster at the center of the NGC 3603 complex, several objects located near a giant molecular cloud were found to be bona-fide massive protostars, only about 100,000 years old and still growing. Three of these objects, designated IRS 9A-C, could be studied in more detail. They are very luminous (IRS 9A is about 100,000 times intrinsically brighter than the Sun), massive (more than 10 times the mass of the Sun) and hot (about 20,000 degrees). They are surrounded by relative cold dust (about 0°C), probably partly arranged in disks around these very young objects. Two possible scenarios for the formation of massive stars are currently proposed, by accretion of large amounts of circumstellar material or by collision (coalescence) of protostars of intermediate masses. The new observations favour accretion, i.e. the same process that is active during the formation of stars of smaller masses. PR Photo 16a/03: Stellar cluster and star-forming region NGC 3603. PR Photo 16b/03: Region near very young, massive stars IRS 9A-C in NGC 3603 (8 bands from J to Q). How do massive stars form? This question is easy to pose, but so far very difficult to answer. In fact, the processes

  16. An X-ray and radio study of the massive star-forming cluster IRAS 20126+4104

    NASA Astrophysics Data System (ADS)

    Montes, Virginie; Hofner, Peter; Anderson, Crystal; Rosero, Viviana

    2015-08-01

    Two main competitive theories intent to explain massive star formation: the turbulent core model, which is an extension of the low-mass star formation model (McKee & Tan 2003), and models involving competitive accretion or stellar collisions (Bonnell & Bate 2006). The characterization of the cluster in which massive stars remain can help discriminate between the two main scenarios of their formation.Until recently it was believed that massive stars were only formed in dense molecular clouds leading to a substantial cluster. However, a previous study of the massive star forming region IRAS 20126+4104 using Spitzer observations by Qiu et al. (2008), suggested that the massive protostar was isolated, and the region was showing no obvious cluster.Here we adopt a multiwavelength technique to characterize the stellar environment of the IRAS 20126+4104 region combining Chandra X-ray ACIS-I and VLA 6cm continuum observations, and near-infrared (2MASS) data of the region. We detected 150 X-ray sources in the ACIS-I field and 13 radio sources within the 9’.2 VLA primary beam. Associating X-ray sources with their near-infrared counterparts from the 2MASS catalog and a color study of those counterparts, allow us to determine the galactic foreground/background contamination, and we conclude that 90 X-ray sources are associated with the region.This study shows an increasing surface density of X-ray sources toward the massive protostar and a number of at least 42 YSOs within 1.2 pc distance from the massive protostar. This number is consistent with typical B-type stars clusters (Lada & Lada 2003).

  17. Mass-loss predictions for evolved very metal-poor massive stars

    NASA Astrophysics Data System (ADS)

    Muijres, L.; Vink, J. S.; de Koter, A.; Hirschi, R.; Langer, N.; Yoon, S.-C.

    2012-10-01

    Context. The first couple of stellar generations may have been massive, of order 100 M⊙, and to have played a dominant role in galaxy formation and the chemical enrichment of the early Universe. Some fraction of these objects may have died as pair-instability supernovae or gamma-ray bursts. The winds of these stars may have played an important role in determining these outcomes. As the winds are driven by radiation pressure on spectral lines, their strengths are expected to vary with metallicity. Until now, most mass-loss predictions for metal-poor O-type stars have assumed a scaled-down solar-abundance pattern. However, Population III evolutionary tracks show significant surface enrichment through rotational mixing of CNO-processed material, because even metal-poor stars switch to CNO-burning early on. Aims: We address the question of whether the CNO surface enhanced self-enrichment in the first few generations of stars could impact their mass-loss properties. Methods: We employ Monte Carlo simulations to establish the local line-force and solve for the momentum equation of the stellar outflow, testing whether an outflow can actually be established by assessing the net acceleration at the sonic point of the flow. Stellar evolution models of rotating metal-poor stars are used to specify the surface chemical composition, focussing on the phases of early enrichment. Results: We find that the mass-loss rates of CNO enhanced metal-poor stars are higher than those of non-enriched stars, but they are much lower than those rates where the CNO abundance is included in the total abundance Z. Metal-poor stars hotter than ~50 000 K, in the metallicity range investigated here (with an initial metallicity Z ≲ 10-4) are found to have no wind, as the high-ionization species of the CNO elements have too few strong lines to drive an outflow. We present a heuristic formula that provides mass-loss estimates for CNO-dominated winds in relation to scaled-down solar abundances

  18. The Blob, the Very Rare Massive Star and the Two Populations

    NASA Astrophysics Data System (ADS)

    2005-04-01

    The nebula N214 [1] is a large region of gas and dust located in a remote part of our neighbouring galaxy, the Large Magellanic Cloud. N214 is a quite remarkable site where massive stars are forming. In particular, its main component, N214C (also named NGC 2103 or DEM 293), is of special interest since it hosts a very rare massive star, known as Sk-71 51 [2] and belonging to a peculiar class with only a dozen known members in the whole sky. N214C thus provides an excellent opportunity for studying the formation site of such stars. Using ESO's 3.5-m New Technology telescope (NTT) located at La Silla (Chile) and the SuSI2 and EMMI instruments, astronomers from France and the USA [3] studied in great depth this unusual region by taking the highest resolution images so far as well as a series of spectra of the most prominent objects present. N214C is a complex of ionised hot gas, a so-called H II region [4], spreading over 170 by 125 light-years (see ESO PR Photo 12b/05). At the centre of the nebula lies Sk-71 51, the region's brightest and hottest star. At a distance of ~12 light-years north of Sk-71 51 runs a long arc of highly compressed gas created by the strong stellar wind of the star. There are a dozen less bright stars scattered across the nebula and mainly around Sk-71 51. Moreover, several fine, filamentary structures and fine pillars are visible. The green colour in the composite image, which covers the bulk of the N214C region, comes from doubly ionised oxygen atoms [5] and indicates that the nebula must be extremely hot over a very large extent. The Star Sk-71 51 decomposed ESO PR Photo 12c/05 ESO PR Photo 12c/05 The Cluster Around Sk-71 51 [Preview - JPEG: 400 x 620 pix - 189k] [Normal - JPEG: 800 x 1239 pix - 528k] Caption: ESO PR Photo 12c/05 shows a small field around the hot star Sk-71 51 as seen through the V filter. The left image shows a single frame after subtraction of the nebular background. The image quality - or seeing - is roughly 8.5 pixels

  19. An outburst from a massive star 40 days before a supernova explosion.

    PubMed

    Ofek, E O; Sullivan, M; Cenko, S B; Kasliwal, M M; Gal-Yam, A; Kulkarni, S R; Arcavi, I; Bildsten, L; Bloom, J S; Horesh, A; Howell, D A; Filippenko, A V; Laher, R; Murray, D; Nakar, E; Nugent, P E; Silverman, J M; Shaviv, N J; Surace, J; Yaron, O

    2013-02-07

    Some observations suggest that very massive stars experience extreme mass-loss episodes shortly before they explode as supernovae, as do several models. Establishing a causal connection between these mass-loss episodes and the final explosion would provide a novel way to study pre-supernova massive-star evolution. Here we report observations of a mass-loss event detected 40 days before the explosion of the type IIn supernova SN 2010mc (also known as PTF 10tel). Our photometric and spectroscopic data suggest that this event is a result of an energetic outburst, radiating at least 6 × 10(47) erg of energy and releasing about 10(-2) solar masses of material at typical velocities of 2,000 km s(-1). The temporal proximity of the mass-loss outburst and the supernova explosion implies a causal connection between them. Moreover, we find that the outburst luminosity and velocity are consistent with the predictions of the wave-driven pulsation model, and disfavour alternative suggestions.

  20. OUTFLOWS AND MASSIVE STARS IN THE PROTOCLUSTER IRAS 05358+3543

    SciTech Connect

    Ginsburg, Adam G.; Bally, John; Yan Chihung; Williams, Jonathan P. E-mail: John.Bally@colorado.ed

    2009-12-10

    We present new near-IR H{sub 2}, CO J = 2-1, and CO J = 3-2 observations to study outflows in the massive star-forming region IRAS 05358+3543. The Canada-France-Hawaii Telescope H{sub 2} images and James Clerk Maxwell Telescope CO data cubes of the IRAS 05358 region reveal several new outflows, most of which emerge from the dense cluster of submillimeter cores associated with the Sh 2-233IR NE cluster to the northeast of IRAS 05358. We used Apache Point Observatory JHK spectra to determine line-of-sight velocities of the outflowing material. Analysis of archival Very Large Array cm continuum data and previously published very long baseline interferometry observations reveal a massive star binary as a probable source of one or two of the outflows. We have identified probable sources for six outflows and candidate counterflows for seven out of a total of 11 seen to be originating from the IRAS 05358 clusters. We classify the clumps within Sh 2-233IR NE as an early protocluster and Sh 2-233IR SW as a young cluster, and conclude that the outflow energy injection rate approximately matches the turbulent decay rate in Sh 2-233IR NE.

  1. FEEDBACK FROM MASSIVE STARS AND GAS EXPULSION FROM PROTO-GLOBULAR CLUSTERS

    SciTech Connect

    Calura, F.; Romano, D.; D’Ercole, A.; Few, C. G.

    2015-11-20

    Globular clusters (GCs) are considerably more complex structures than previously thought, harboring at least two stellar generations that present clearly distinct chemical abundances. Scenarios explaining the abundance patterns in GCs mostly assume that originally the clusters had to be much more massive than today, and that the second generation of stars originates from the gas shed by stars of the first generation (FG). The lack of metallicity spread in most GCs further requires that the supernova-enriched gas ejected by the FG is completely lost within ∼30 Myr, a hypothesis never tested by means of three-dimensional hydrodynamic simulations. In this paper, we use 3D hydrodynamic simulations including stellar feedback from winds and supernovae, radiative cooling and self-gravity to study whether a realistic distribution of OB associations in a massive proto-GC of initial mass M{sub tot} ∼ 10{sup 7} M{sub ⊙} is sufficient to expel its entire gas content. Our numerical experiment shows that the coherence of different associations plays a fundamental role: as the bubbles interact, distort, and merge, they carve narrow tunnels that reach deeper and deeper toward the innermost cluster regions, and through which the gas is able to escape. Our results indicate that after 3 Myr, the feedback from stellar winds is responsible for the removal of ∼40% of the pristine gas, and that after 14 Myr, 99% of the initial gas mass has been removed.

  2. Feedback from Massive Stars and Gas Expulsion from Proto&ndashGlobular Clusters

    NASA Astrophysics Data System (ADS)

    Calura, F.; Few, C. G.; Romano, D.; D'Ercole, A.

    2015-11-01

    Globular clusters (GCs) are considerably more complex structures than previously thought, harboring at least two stellar generations that present clearly distinct chemical abundances. Scenarios explaining the abundance patterns in GCs mostly assume that originally the clusters had to be much more massive than today, and that the second generation of stars originates from the gas shed by stars of the first generation (FG). The lack of metallicity spread in most GCs further requires that the supernova-enriched gas ejected by the FG is completely lost within ˜30 Myr, a hypothesis never tested by means of three-dimensional hydrodynamic simulations. In this paper, we use 3D hydrodynamic simulations including stellar feedback from winds and supernovae, radiative cooling and self-gravity to study whether a realistic distribution of OB associations in a massive proto-GC of initial mass Mtot ˜ 107 M⊙ is sufficient to expel its entire gas content. Our numerical experiment shows that the coherence of different associations plays a fundamental role: as the bubbles interact, distort, and merge, they carve narrow tunnels that reach deeper and deeper toward the innermost cluster regions, and through which the gas is able to escape. Our results indicate that after 3 Myr, the feedback from stellar winds is responsible for the removal of ˜40% of the pristine gas, and that after 14 Myr, 99% of the initial gas mass has been removed.

  3. THE THREE-DIMENSIONAL EVOLUTION TO CORE COLLAPSE OF A MASSIVE STAR

    SciTech Connect

    Couch, Sean M.; Chatzopoulos, Emmanouil; Arnett, W. David; Timmes, F. X.

    2015-07-20

    We present the first three-dimensional (3D) simulation of the final minutes of iron core growth in a massive star, up to and including the point of core gravitational instability and collapse. We capture the development of strong convection driven by violent Si burning in the shell surrounding the iron core. This convective burning builds the iron core to its critical mass and collapse ensues, driven by electron capture and photodisintegration. The non-spherical structure and motion generated by 3D convection is substantial at the point of collapse, with convective speeds of several hundreds of km s{sup −1}. We examine the impact of such physically realistic 3D initial conditions on the core-collapse supernova mechanism using 3D simulations including multispecies neutrino leakage and find that the enhanced post-shock turbulence resulting from 3D progenitor structure aids successful explosions. We conclude that non-spherical progenitor structure should not be ignored, and should have a significant and favorable impact on the likelihood for neutrino-driven explosions. In order to make simulating the 3D collapse of an iron core feasible, we were forced to make approximations to the nuclear network making this effort only a first step toward accurate, self-consistent 3D stellar evolution models of the end states of massive stars.

  4. Intermediate-age globular clusters in four galaxy merger remnants

    SciTech Connect

    Trancho, Gelys; Miller, Bryan W.; Schweizer, François; Burdett, Daniel P.; Palamara, David

    2014-08-01

    We present the results of combining Hubble Space Telescope optical photometry with ground-based K{sub s} -band photometry from the Gemini imagers NIRI and FLAMINGOS-I to study the globular cluster (GC) populations in four early-type galaxies that are candidate remnants of recent mergers (NGC 1700, NGC 2865, NGC 4382, and NGC 7727). These galaxies were chosen based on their blue colors and fine structure, such as shells and ripples that are indicative of past interactions. We fit the combined VIK{sub s} GC data with simple toy models of mixed cluster populations that contain three subpopulations of different age and metallicity. The fits, done via chi-squared mapping of the parameter space, yield clear evidence for the presence of intermediate-age clusters in each galaxy. We find that the ages of ∼1-2 Gyr for these GC subpopulations are consistent with the previously estimated merger ages for the host galaxies.

  5. Intermediate-age Globular Clusters in Four Galaxy Merger Remnants

    NASA Astrophysics Data System (ADS)

    Trancho, Gelys; Miller, Bryan W.; Schweizer, François; Burdett, Daniel P.; Palamara, David

    2014-08-01

    We present the results of combining Hubble Space Telescope optical photometry with ground-based Ks -band photometry from the Gemini imagers NIRI and FLAMINGOS-I to study the globular cluster (GC) populations in four early-type galaxies that are candidate remnants of recent mergers (NGC 1700, NGC 2865, NGC 4382, and NGC 7727). These galaxies were chosen based on their blue colors and fine structure, such as shells and ripples that are indicative of past interactions. We fit the combined VIKs GC data with simple toy models of mixed cluster populations that contain three subpopulations of different age and metallicity. The fits, done via chi-squared mapping of the parameter space, yield clear evidence for the presence of intermediate-age clusters in each galaxy. We find that the ages of ~1-2 Gyr for these GC subpopulations are consistent with the previously estimated merger ages for the host galaxies.

  6. THE COEVOLUTION OF NUCLEAR STAR CLUSTERS, MASSIVE BLACK HOLES, AND THEIR HOST GALAXIES

    SciTech Connect

    Antonini, Fabio; Barausse, Enrico; Silk, Joseph

    2015-10-10

    Studying how nuclear star clusters (NSCs) form and how they are related to the growth of the central massive black holes (MBHs) and their host galaxies is fundamental for our understanding of the evolution of galaxies and the processes that have shaped their central structures. We present the results of a semi-analytical galaxy formation model that follows the evolution of dark matter halos along merger trees, as well as that of the baryonic components. This model allows us to study the evolution of NSCs in a cosmological context, by taking into account the growth of NSCs due to both dynamical-friction-driven migration of stellar clusters and star formation triggered by infalling gas, while also accounting for dynamical heating from (binary) MBHs. We find that in situ star formation contributes a significant fraction (up to ∼80%) of the total mass of NSCs in our model. Both NSC growth through in situ star formation and that through star cluster migration are found to generate NSC—host galaxy scaling correlations that are shallower than the same correlations for MBHs. We explore the role of galaxy mergers on the evolution of NSCs and show that observational data on NSC—host galaxy scaling relations provide evidence of partial erosion of NSCs by MBH binaries in luminous galaxies. We show that this observational feature is reproduced by our models, and we make predictions about the NSC and MBH occupation fraction in galaxies. We conclude by discussing several implications for theories of NSC formation.

  7. Accurate Parameters for the Most Massive Stars in the Local Universe: the Brightest Eclipsing Binaries in M33

    NASA Astrophysics Data System (ADS)

    Prieto, José L.; Bonanos, Alceste; Stanek, Krzysztof

    2007-08-01

    Eclipsing binaries are the only systems that provide accurate fundamental parameters of distant stars. Currently, only a handful of accurate measurements of stars with masses between 40-80 Msun have been made. We propose to make accurate measurements of the masses, radii and luminosities of the most massive eclipsing binaries in M33. The results of this study will provide much needed constraints on theories that model the formation and evolution of massive stars and binary systems. Furthermore, it will provide vital statistics on the occurrence of massive binary twins, like the 80+80 solar masses WR 20a system and the 30+30 solar masses detached eclipsing binary in M33.

  8. The Formation of Massive Primordial Stars in the Presence of Moderate UV Backgrounds

    NASA Astrophysics Data System (ADS)

    Latif, M. A.; Schleicher, D. R. G.; Bovino, S.; Grassi, T.; Spaans, M.

    2014-09-01

    Radiative feedback produced by stellar populations played a vital role in early structure formation. In particular, photons below the Lyman limit can escape the star-forming regions and produce a background ultraviolet (UV) flux, which consequently may influence the pristine halos far away from the radiation sources. These photons can quench the formation of molecular hydrogen by photodetachment of H-. In this study, we explore the impact of such UV radiation on fragmentation in massive primordial halos of a few times 107 M ⊙. To accomplish this goal, we perform high resolution cosmological simulations for two distinct halos and vary the strength of the impinging background UV field in units of J 21 assuming a blackbody radiation spectrum with a characteristic temperature of T rad = 104 K. We further make use of sink particles to follow the evolution for 10,000 yr after reaching the maximum refinement level. No vigorous fragmentation is observed in UV-illuminated halos while the accretion rate changes according to the thermal properties. Our findings show that a few 102-104 solar mass protostars are formed when halos are irradiated by J 21 = 10-500 at z > 10 and suggest a strong relation between the strength of the UV flux and mass of a protostar. This mode of star formation is quite different from minihalos, as higher accretion rates of about 0.01-0.1 M ⊙ yr-1 are observed by the end of our simulations. The resulting massive stars are potential cradles for the formation of intermediate-mass black holes at earlier cosmic times and contribute to the formation of a global X-ray background.

  9. Linking star formation and galaxy kinematics in the massive cluster Abell 2163

    NASA Astrophysics Data System (ADS)

    Menacho, Veronica; Verdugo, Miguel

    2015-02-01

    The origin of the morphology-density relation is still an open question in galaxy evolution. It is most likely driven by the combination of the efficient star formation in the highest peaks of the mass distribution at high-z and the transformation by environmental processes at later times as galaxies fall into more massive halos. To gain additional insights about these processes we study the kinematics, star formation and structural properties of galaxies in Abell 2163 a very massive (~4×1015 M⊙, Holz & Perlmutter 2012) merging cluster at z = 0.2. We use high resolution spectroscopy with VLT/VIMOS to derive rotation curves and dynamical masses for galaxies that show regular kinematics. Galaxies that show irregular rotation are also analysed to study the origin of their distortion. This information is combined with stellar masses and structural parameters obtained from high quality CFHT imaging. From narrow band photometry (2.2m/WFI), centered on the redshifted Hα line, we obtain star formation rates. Although our sample is still small, field and cluster galaxies lie in a similar Tully-Fisher relation as local galaxies. Controlling by additional parameters like SFRs or bulge-to-disk ratio do not affect this result. We find however that ~50% of the cluster galaxies display irregular kinematics in contrast to what is found in the field at similar redshifts (~30%, Böhm et al. 2004) and in agreement with other studies in clusters (e.g. Bösch et al. 2013, Kutdemir et al. 2010) which points out to additional processes operating in clusters that distort the galaxy kinematics.

  10. Radiation-Hydrodynamic Simulations of Massive Star Formation with Protostellar Outflows

    SciTech Connect

    Cunningham, A J; Klein, R I; Krumholz, M R; McKee, C F

    2011-03-02

    We report the results of a series of AMR radiation-hydrodynamic simulations of the collapse of massive star forming clouds using the ORION code. These simulations are the first to include the feedback effects protostellar outflows, as well as protostellar radiative heating and radiation pressure exerted on the infalling, dusty gas. We find that that outflows evacuate polar cavities of reduced optical depth through the ambient core. These enhance the radiative flux in the poleward direction so that it is 1.7 to 15 times larger than that in the midplane. As a result the radiative heating and outward radiation force exerted on the protostellar disk and infalling cloud gas in the equatorial direction are greatly diminished. The simultaneously reduces the Eddington radiation pressure barrier to high-mass star formation and increases the minimum threshold surface density for radiative heating to suppress fragmentation compared to models that do not include outflows. The strength of both these effects depends on the initial core surface density. Lower surface density cores have longer free-fall times and thus massive stars formed within them undergo more Kelvin contraction as the core collapses, leading to more powerful outflows. Furthermore, in lower surface density clouds the ratio of the time required for the outflow to break out of the core to the core free-fall time is smaller, so that these clouds are consequently influenced by outflows at earlier stages of collapse. As a result, outflow effects are strongest in low surface density cores and weakest in high surface density one. We also find that radiation focusing in the direction of outflow cavities is sufficient to prevent the formation of radiation pressure-supported circumstellar gas bubbles, in contrast to models which neglect protostellar outflow feedback.

  11. Evidence for Reduced Specific Star Formation Rates in the Centers of Massive Galaxies at z = 4

    NASA Astrophysics Data System (ADS)

    Jung, Intae; Finkelstein, Steven L.; Song, Mimi; Dickinson, Mark; Dekel, Avishai; Ferguson, Henry C.; Fontana, Adriano; Koekemoer, Anton M.; Lu, Yu; Mobasher, Bahram; Papovich, Casey; Ryan, Russell E., Jr.; Salmon, Brett; Straughn, Amber N.

    2017-01-01

    We perform the first spatially resolved stellar population study of galaxies in the early universe (z = 3.5–6.5), utilizing the Hubble Space Telescope Cosmic Assembly Near-infrared Deep Extragalactic Legacy Survey imaging data set over the GOODS-S field. We select a sample of 418 bright and extended galaxies at z = 3.5–6.5 from a parent sample of ∼8000 photometric-redshift-selected galaxies from Finkelstein et al. We first examine galaxies at 3.5 ≲ z ≲ 4.0 using additional deep K-band survey data from the HAWK-I UDS and GOODS Survey which covers the 4000 Å break at these redshifts. We measure the stellar mass, star formation rate, and dust extinction for galaxy inner and outer regions via spatially resolved spectral energy distribution fitting based on a Markov Chain Monte Carlo algorithm. By comparing specific star formation rates (sSFRs) between inner and outer parts of the galaxies we find that the majority of galaxies with high central mass densities show evidence for a preferentially lower sSFR in their centers than in their outer regions, indicative of reduced sSFRs in their central regions. We also study galaxies at z ∼ 5 and 6 (here limited to high spatial resolution in the rest-frame ultraviolet only), finding that they show sSFRs which are generally independent of radial distance from the center of the galaxies. This indicates that stars are formed uniformly at all radii in massive galaxies at z ∼ 5–6, contrary to massive galaxies at z ≲ 4.

  12. Massive Star Formation in Early-type(Sa-Sab) Spiral Galaxies

    NASA Astrophysics Data System (ADS)

    Hameed, S.

    1999-12-01

    We have conducted an Hα imaging survey of 57 bright, nearby, early-type spiral galaxies. The new Hα images have revealed them to be a heterogeneous class of galaxies with Hα morphologies ranging from filamentary, low luminosity nuclear emission line spirals to what we suspect are compact, luminous nuclear starbursts. Contrary to popular perception, our images have revealed a significant number(15-20%) of Sa-Sab galaxies with massive star formation rates comparable to the most prolifically star forming Sc galaxies. A determination of the Hα morphology and a measure of the Hα luminosity suggests that early-type spirals can be classified into two broad categories. The first category includes galaxies for which the individual HII regions have L(Hα ) < 1039 erg/s. Most of the category 1 galaxies appear to be morphologically undisturbed, but show a wide diversity in nuclear Hα properties. The second category includes galaxies which have at least one HII region in the disk with L(Hα ) >= 1039 erg/s. All category 2 galaxies show morphological peculiarities, such as tidal tails, which suggests that the anomalously luminous HII regions may have formed as a result of a recent interaction. We have also determined HII region luminosity functions for a subset of our sample and find that the shape of the HII region LF is different when a giant HII region is present compared to a galaxy which contains only HII regions of modest luminosity. The difference may point to corresponding differences in massive star formation triggering mechanisms.

  13. The formation of massive primordial stars in the presence of moderate UV backgrounds

    SciTech Connect

    Latif, M. A.; Schleicher, D. R. G.; Bovino, S.; Grassi, T.; Spaans, M.

    2014-09-01

    Radiative feedback produced by stellar populations played a vital role in early structure formation. In particular, photons below the Lyman limit can escape the star-forming regions and produce a background ultraviolet (UV) flux, which consequently may influence the pristine halos far away from the radiation sources. These photons can quench the formation of molecular hydrogen by photodetachment of H{sup –}. In this study, we explore the impact of such UV radiation on fragmentation in massive primordial halos of a few times 10{sup 7} M {sub ☉}. To accomplish this goal, we perform high resolution cosmological simulations for two distinct halos and vary the strength of the impinging background UV field in units of J {sub 21} assuming a blackbody radiation spectrum with a characteristic temperature of T {sub rad} = 10{sup 4} K. We further make use of sink particles to follow the evolution for 10,000 yr after reaching the maximum refinement level. No vigorous fragmentation is observed in UV-illuminated halos while the accretion rate changes according to the thermal properties. Our findings show that a few 10{sup 2}-10{sup 4} solar mass protostars are formed when halos are irradiated by J {sub 21} = 10-500 at z > 10 and suggest a strong relation between the strength of the UV flux and mass of a protostar. This mode of star formation is quite different from minihalos, as higher accretion rates of about 0.01-0.1 M {sub ☉} yr{sup –1} are observed by the end of our simulations. The resulting massive stars are potential cradles for the formation of intermediate-mass black holes at earlier cosmic times and contribute to the formation of a global X-ray background.

  14. Protostellar Outflows and Radiative Feedback from Massive Stars. II. Feedback, Star-formation Efficiency, and Outflow Broadening

    NASA Astrophysics Data System (ADS)

    Kuiper, Rolf; Turner, Neal J.; Yorke, Harold W.

    2016-11-01

    We perform two-dimensional axially symmetric radiation hydrodynamic simulations to assess the impact of outflows and radiative force feedback from massive protostars by varying when the protostellar outflow starts, and to determine the ratio of ejection to accretion rates and the strength of the wide-angle disk wind component. The star-formation efficiency, i.e., the ratio of final stellar mass to initial core mass, is dominated by radiative forces and the ratio of outflow to accretion rates. Increasing this ratio has three effects. First, the protostar grows slower with a lower luminosity at any given time, lowering radiative feedback. Second, bipolar cavities cleared by the outflow become larger, further diminishing radiative feedback on disk and core scales. Third, the higher momentum outflow sweeps up more material from the collapsing envelope, decreasing the protostar's potential mass reservoir via entrainment. The star-formation efficiency varies with the ratio of ejection to accretion rates from 50% in the case of very weak outflows to as low as 20% for very strong outflows. At latitudes between the low-density bipolar cavity and the high-density accretion disk, wide-angle disk winds remove some of the gas, which otherwise would be part of the accretion flow onto the disk; varying the strength of these wide-angle disk winds, however, alters the final star-formation efficiency by only ±6%. For all cases, the opening angle of the bipolar outflow cavity remains below 20° during early protostellar accretion phases, increasing rapidly up to 65° at the onset of radiation pressure feedback.

  15. A massive star origin for an unusual helium-rich supernova in an elliptical galaxy.

    PubMed

    Kawabata, K S; Maeda, K; Nomoto, K; Taubenberger, S; Tanaka, M; Deng, J; Pian, E; Hattori, T; Itagaki, K

    2010-05-20

    The unusual helium-rich (type Ib) supernova SN 2005E is distinguished from all supernovae hitherto observed by its faint and rapidly fading light curve, prominent calcium lines in late-phase spectra and lack of any mark of recent star formation near the supernova location. These properties are claimed to be explained by a helium detonation in a thin surface layer of an accreting white dwarf. Here we report that the observed properties of SN 2005cz, which appeared in an elliptical galaxy, resemble those of SN 2005E. We argue that these properties are best explained by a core-collapse supernova at the low-mass end (8-12 solar masses) of the range of massive stars that explode. Such a low-mass progenitor lost its hydrogen-rich envelope through binary interaction, had very thin oxygen-rich and silicon-rich layers above the collapsing core, and accordingly ejected a very small amount of radioactive (56)Ni and oxygen. Although the host galaxy NGC 4589 is an elliptical, some studies have revealed evidence of recent star-formation activity, consistent with the core-collapse model.

  16. Chandra X-Ray Observatory Image of a Massive Star Explosion

    NASA Technical Reports Server (NTRS)

    2000-01-01

    The Chandra X-Ray Observatory has captured this spectacular image of G292.0+1.8, a young, oxygen-rich supernova remnant with a pulsar at its center surrounded by outflowing material. This image shows a rapidly expanding shell of gas that is 36 light-years across and contains large amounts of elements such as oxygen, neon, magnesium, silicon and sulfur. Embedded in this cloud of multimillion-degree gas is a key piece of evidence linking neutron stars and supernovae produced by the collapse of massive stars. With an age estimated at 1,600 years, G292.0+1.8 is one of three known oxygen-rich supernovae in our galaxy. These supernovae are of great interest to astronomers because they are one of the primary sources of the heavy elements necessary to form planets and people. Scattered through the image are bluish knots of emissions containing material that is highly enriched in newly created oxygen, neon, and magnesium produced deep within the original star and ejected by the supernova explosion.

  17. A consistent solution for the velocity field and mass-loss rate of massive stars

    NASA Astrophysics Data System (ADS)

    Müller, P. E.; Vink, J. S.

    2008-12-01

    Stellar winds are an important aspect of our understanding of the evolution of massive stars and their input into the interstellar medium. Here we present solutions for the velocity field and mass-loss rates for stellar outflows as well as for the case of mass accretion through the use of the so-called Lambert W-function. For the case of a radiation-driven wind, the velocity field is obtained analytically using a parameterised description for the line acceleration that only depends on radius, which we obtain from Monte-Carlo multi-line radiative transfer calculations. In our form of the equation of motion the critical point is the sonic point. We also derive an approximate analytical solution for the supersonic flow which closely resembles our exact solution. For the simultaneous solution of the mass-loss rate and velocity field, we describe a new iterative method. We apply our theoretical expressions and our iterative method to the stellar wind from a typical O5-V main sequence star, and find good agreement with empirical values. Our computations represent a self-consistent mass-loss calculation including the effect of multi-line scattering for an O-type star, opening up the possibility of applying Monte Carlo mass-loss calculations in regions of the Universe for which empirical constraints cannot be readily obtained.

  18. New Frontiers for Massive Star Winds: Imaging and Spectroscopy with the James Webb Space Telescope

    NASA Technical Reports Server (NTRS)

    Sonneborn, George

    2007-01-01

    The James Webb Space Telescope (JWST) is a large, infrared-optimized space telescope scheduled for launch in 2013. JWST will find the first stars and galaxies that formed in the early universe, connecting the Big Bang to our own Milky Way galaxy. JWST will peer through dusty clouds to see stars forming planetary systems, connecting the Milky Way to our own Solar System. JWST's instruments are designed to work primarily in the infrared range of 1 - 28 microns, with some capability in the visible range. JWST will have a large mirror, 6.5 meters in diameter, and will be diffraction-limited at 2 microns (0.1 arcsec resolution). JWST will be placed in an L2 orbit about 1.5 million km from the Earth. The instruments will provide imaging, coronography, and multi-object and integral-field spectroscopy across the full 1 - 28 micron wavelength range. The breakthrough capabilities of JWST will enable new studies of massive star winds from the Milky Way to the early universe.

  19. Uncertainties in the production of p nuclei in massive stars obtained from Monte Carlo variations

    NASA Astrophysics Data System (ADS)

    Rauscher, T.; Nishimura, N.; Hirschi, R.; Cescutti, G.; Murphy, A. St. J.; Heger, A.

    2016-12-01

    Nuclear data uncertainties in the production of p nuclei in massive stars have been quantified in a Monte Carlo procedure. Bespoke temperature-dependent uncertainties were assigned to different types of reactions involving nuclei from Fe to Bi. Their simultaneous impact was studied in post-processing explosive trajectories for three different stellar models. It was found that the grid of mass zones in the model of a 25 M⊙ star, which is widely used for investigations of p nucleosynthesis, is too crude to properly resolve the detailed temperature changes required for describing the production of p nuclei. Using models with finer grids for 15 and 25 M⊙ stars with initial solar metallicity, it was found that most of the production uncertainties introduced by nuclear reaction uncertainties are smaller than a factor of 2. Since a large number of rates were varied at the same time in the Monte Carlo procedure, possible cancellation effects of several uncertainties could be taken into account. Key rates were identified for each p nucleus, which provide the dominant contribution to the production uncertainty. These key rates were found by examining correlations between rate variations and resulting abundance changes. This method is superior to studying flow patterns, especially when the flows are complex, and to individual, sequential variation of a few rates.

  20. DIFFERENT EVOLUTIONARY STAGES IN THE MASSIVE STAR-FORMING REGION W3 MAIN COMPLEX

    SciTech Connect

    Wang Yuan; Jiang Zhibo; Beuther, Henrik; Bik, Arjan; Zhang Qizhou; Rodon, Javier A.; Fallscheer, Cassandra

    2012-08-01

    We observed three high-mass star-forming regions in the W3 high-mass star formation complex with the Submillimeter Array and IRAM 30 m telescope. These regions, i.e., W3 SMS1 (W3 IRS5), SMS2 (W3 IRS4) and SMS3, are in different evolutionary stages and are located within the same large-scale environment, which allows us to study rotation and outflows as well as chemical properties in an evolutionary sense. While we find multiple millimeter continuum sources toward all regions, these three subregions exhibit different dynamical and chemical properties, which indicate that they are in different evolutionary stages. Even within each subregion, massive cores of different ages are found, e.g., in SMS2, sub-sources from the most evolved ultracompact H II region to potential starless cores exist within 30,000 AU of each other. Outflows and rotational structures are found in SMS1 and SMS2. Evidence for interactions between the molecular cloud and the H II regions is found in the {sup 13}CO channel maps, which may indicate triggered star formation.

  1. Massive Star Formation in a Gravitationally-Lensed H II Galaxy at z = 3.357

    SciTech Connect

    Villar-Martin, M; Stern, D; Hook, R N; Rosati, P; Lombardi, M; Humphrey, A; Fosbury, R; Stanford, S A; Holden, B P

    2004-03-02

    The Lynx arc, with a redshift of 3.357, was discovered during spectroscopic follow-up of the z = 0.570 cluster RX J0848+4456 from the ROSAT Deep Cluster Survey. The arc is characterized by a very red R - K color and strong, narrow emission lines. Analysis of HST WFPC 2 imaging and Keck optical and infrared spectroscopy shows that the arc is an H II galaxy magnified by a factor of {approx} 10 by a complex cluster environment. The high intrinsic luminosity, the emission line spectrum, the absorption components seen in Ly{alpha} and C IV, and the restframe ultraviolet continuum are all consistent with a simple H II region model containing {approx} 10{sup 6} hot O stars. The best fit parameters for this model imply a very hot ionizing continuum (T{sub BB} {approx} 80, 000 K), high ionization parameter (log U {approx} -1), and low nebular metallicity (Z/Z{sub {circle_dot}} {approx} 0.05). The narrowness of the emission lines requires a low mass-to-light ratio for the ionizing stars, suggestive of an extremely low metallicity stellar cluster. The apparent overabundance of silicon in the nebula could indicate enrichment by past pair instability supernovae, requiring stars more massive than {approx}140M{sub {circle_dot}}.

  2. Investigating star formation properties of galaxies in massive clusters with Herschel and ALMA

    NASA Astrophysics Data System (ADS)

    Wu, John F.; Baker, Andrew J.; Aguirre, Paula; Barkats, D.; Halpern, Mark; Hilton, Matt; Hughes, John Patrick; Infante, Leopoldo; Lindner, Robert; Marriage, Tobias; Menanteau, Felipe; Sifon, Cristobal; Weiss, Axel; ACT Collaboration

    2016-01-01

    I will present results from an investigation of star formation properties of galaxies residing in two massive z ~ 1 clusters (including the 'El Gordo' merger) that were initially selected via their Sunyaev-Zeldovich decrements by the Atacama Cosmology Telescope (ACT) southern survey. This study uses new Herschel Space Observatory and Atacama Large Millimeter/submillimeter Array (ALMA) Cycle 2 observations, which provide information about the dust and cold gas content of galaxies in our targeted clusters. We have detected CO (4-3) and [CI] in individual star-forming cluster galaxies, and also measured stacked continuum and spectral line fluxes at long (e.g., far-infrared, submillimeter, and radio) wavelengths. We use these results to explore the relations between star formation and local environment and cluster dynamical state.This work has been supported by (i) an award issued by JPL/Caltech in association with Herschel, which is a European Space Agency Cornerstone Mission with significant participation by NASA, and (ii) the National Science Foundation through award GSSP SOSPA2-018 from the National Radio Astronomy Observatory, which is operated under cooperative agreement by Associated Universities, Inc.

  3. The Massive Star Population in M101. II. Spatial Variations in the Recent Star Formation History

    NASA Astrophysics Data System (ADS)

    Grammer, Skyler; Humphreys, Roberta M.

    2014-09-01

    We investigate star formation history (SFH) as a function of radius in M101 using archival Hubble Space Telescope Advanced Camera for Surveys photometry. We derive the SFH from the resolved stellar populations in five 2' wide annuli. Binning the SFH into time frames corresponding to stellar populations traced by Hα, far-ultraviolet, and near-ultraviolet emission, we find that the fraction of stellar populations young enough to contribute in Hα is 15%-35% in the inner regions, compared to less than 5% in the outer regions. This provides a sufficient explanation for the lack of Hα emission at large radii. We also model the blue to red supergiant ratio in our five annuli, examine the effects that a metallicity gradient and variable SFH have on the predicted ratios, and compare to the observed values. We find that the radial behavior of our modeled blue to red supergiant ratios is highly sensitive to both spatial variations in the SFH and metallicity. Incorporating the derived SFH into modeled ratios, we find that we are able to reproduce the observed values at large radii (low metallicity), but at small radii (high metallicity) the modeled and observed ratios are discrepant.

  4. The massive star population in M101. II. Spatial variations in the recent star formation history

    SciTech Connect

    Grammer, Skyler; Humphreys, Roberta M. E-mail: roberta@umn.edu

    2014-09-01

    We investigate star formation history (SFH) as a function of radius in M101 using archival Hubble Space Telescope Advanced Camera for Surveys photometry. We derive the SFH from the resolved stellar populations in five 2' wide annuli. Binning the SFH into time frames corresponding to stellar populations traced by Hα, far-ultraviolet, and near-ultraviolet emission, we find that the fraction of stellar populations young enough to contribute in Hα is 15%-35% in the inner regions, compared to less than 5% in the outer regions. This provides a sufficient explanation for the lack of Hα emission at large radii. We also model the blue to red supergiant ratio in our five annuli, examine the effects that a metallicity gradient and variable SFH have on the predicted ratios, and compare to the observed values. We find that the radial behavior of our modeled blue to red supergiant ratios is highly sensitive to both spatial variations in the SFH and metallicity. Incorporating the derived SFH into modeled ratios, we find that we are able to reproduce the observed values at large radii (low metallicity), but at small radii (high metallicity) the modeled and observed ratios are discrepant.

  5. Stellar Evolution of the Star Cluster NGC 602 and Massive Star Formation in the Low-Density Wing of the SMC

    NASA Astrophysics Data System (ADS)

    Fulmer, Leah; Oskinova, Lida; Ramachandran, Varsha; Hamann, Wolf-Rainer; Gallagher, John S.

    2017-01-01

    The young star cluster NGC 602 and its surroundings in the Wing of the Small Magellanic Cloud (SMC) exhibit active star formation despite the sparse supply of dense gas from which to form stars. This region is also associated with the huge ionized gas ring DEM167 in the SMC. Using archival optical photometric data from the Uppsala Schmidt Telescope and new near-UV photometric data from the Galaxy Evolution Explorer, we determine the colors and consequently the relative ages of ~1000 stars in this region. Furthermore, we incorporate spectra obtained with the ESO-VLT to more accurately determine the properties of luminous massive stars. These measurements are combined to explore the recent star formation history of this region near the tip of the SMC and to study how the young stellar populations relate to the ISM.

  6. NATURE OF W51e2: MASSIVE CORES AT DIFFERENT PHASES OF STAR FORMATION

    SciTech Connect

    Shi Hui; Han, J. L.; Zhao Junhui E-mail: hjl@nao.cas.c

    2010-02-10

    We present high-resolution continuum images of the W51e2 complex processed from archival data of the Submillimeter Array (SMA) at 0.85 and 1.3 mm and the Very Large Array at 7 and 13 mm. We also made line images and profiles of W51e2 for three hydrogen radio recombination lines (RRLs; H26alpha, H53alpha, and H66alpha) and absorption of two molecular lines of HCN(4-3) and CO(2-1). At least four distinct continuum components have been detected in the 3'' region of W51e2 from the SMA continuum images at 0.85 and 1.3 mm with resolutions of 0.''3 x 0.''2 and 1.''4 x 0.''7, respectively. The west component, W51e2-W, coincides with the ultracompact H II region reported from previous radio observations. The H26alpha line observation reveals an unresolved hyper-compact ionized core (<0.''06 or <310 AU) with a high electron temperature of 1.2 x 10{sup 4} K, with the corresponding emission measure EM>7 x 10{sup 10} pc cm{sup -6} and the electron density N{sub e} >7 x 10{sup 6} cm{sup -3}. The inferred Lyman continuum flux implies that the H II region W51e2-W requires a newly formed massive star, an O8 star or a cluster of B-type stars, to maintain the ionization. W51e2-E, the brightest component at 0.85 mm, is located 0.''9 east from the hyper-compact ionized core. It has a total mass of {approx}140 M{sub sun} according to our spectral energy distribution analysis and a large infall rate of >1.3 x 10{sup -3} M{sub sun} yr{sup -1} inferred from the absorption of HCN. W51e2-E appears to be the accretion center in W51e2. Given the fact that no free-free emission and no RRLs have been detected, the massive core of W51e2-E appears to host one or more growing massive proto-stars. Located 2'' northwest from W51e2-E, W51e2-NW is detected in the continuum emission at 0.85 and 1.3 mm. No continuum emission has been detected at lambda>= 7 mm. Along with the maser activities previously observed, our analysis suggests that W51e2-NW is at an earlier phase of star formation. W51e2-N is

  7. A high fraction of Be stars in young massive clusters: evidence for a large population of near-critically rotating stars

    NASA Astrophysics Data System (ADS)

    Bastian, N.; Cabrera-Ziri, I.; Niederhofer, F.; de Mink, S.; Georgy, C.; Baade, D.; Correnti, M.; Usher, C.; Romaniello, M.

    2017-03-01

    Recent photometric analyses of the colour-magnitude diagrams of young massive clusters (YMCs) have found evidence for splitting in the main sequence and extended main-sequence turn-offs, both of which have been suggested to be caused by stellar rotation. Comparison of the observed main-sequence splitting with models has led various authors to suggest a rather extreme stellar rotation distribution, with a minority (10-30 per cent) of stars with low rotational velocities and the remainder (70-90 per cent) of stars rotating near the critical rotation (i.e. near break-up). We test this hypothesis by searching for Be stars within two YMCs in the Large Magellanic Cloud (NGC 1850 and NGC 1856), which are thought to be critically rotating stars with decretion discs that are (partially) ionized by their host stars. In both clusters, we detect large populations of Be stars at the main-sequence turn-off (∼30-60 per cent of stars), which supports previous suggestions of large populations of rapidly rotating stars within massive clusters.

  8. IDENTIFICATION OF A POPULATION OF X-RAY-EMITTING MASSIVE STARS IN THE GALACTIC PLANE

    SciTech Connect

    Anderson, Gemma E.; Gaensler, B. M.; Kaplan, David L.; Posselt, Bettina; Slane, Patrick O.; Murray, Stephen S.; Drake, Jeremy J.; Grindlay, Jonathan E.; Hong, Jaesub; Lee, Julia C.; Mauerhan, Jon C.; Benjamin, Robert A.; Brogan, Crystal L.; Chakrabarty, Deepto; Drew, Janet E.; Lazio, T. Joseph W.; Steeghs, Danny T. H.; Van Kerkwijk, Marten H.

    2011-02-01

    We present X-ray, infrared, optical, and radio observations of four previously unidentified Galactic plane X-ray sources: AX J163252-4746, AX J184738-0156, AX J144701-5919, and AX J144547-5931. Detection of each source with the Chandra X-ray Observatory has provided sub-arcsecond localizations, which we use to identify bright infrared counterparts to all four objects. Infrared and optical spectroscopy of these counterparts demonstrate that all four X-ray sources are extremely massive stars, with spectral classifications: Ofpe/WN9 (AX J163252-4746), WN7 (AX J184738-0156 = WR121a), WN7-8h (AX J144701-5919), and OIf{sup +} (AX J144547-5931). AX J163252-4746 and AX J184738-0156 are both luminous, hard, X-ray emitters with strong Fe XXV emission lines in their X-ray spectra at {approx}6.7 keV. The multi-wavelength properties of AX J163252-4746 and AX J184738-0156 are not consistent with isolated massive stars or accretion onto a compact companion; we conclude that their X-ray emission is most likely generated in a colliding-wind binary (CWB) system. For both AX J144701-5919 and AX J144547-5931, the X-ray emission is an order of magnitude less luminous and with a softer spectrum. These properties are consistent with a CWB interpretation for these two sources also, but other mechanisms for the generation of X-rays cannot be excluded. There are many other as yet unidentified X-ray sources in the Galactic plane, with X-ray properties similar to those seen for AX J163252-4746, AX J184738-0156, AX J144701-5919, and AX J144547-5931. This may indicate a substantial population of X-ray-emitting massive stars and CWBs in the Milky Way.

  9. Kinetic temperature of massive star forming molecular clumps measured with formaldehyde

    NASA Astrophysics Data System (ADS)

    Tang, X. D.; Henkel, C.; Menten, K. M.; Zheng, X. W.; Esimbek, J.; Zhou, J. J.; Yeh, C. C.; König, C.; Yuan, Y.; He, Y. X.; Li, D. L.

    2017-01-01

    Context. For a general understanding of the physics involved in the star formation process, measurements of physical parameters such as temperature and density are indispensable. The chemical and physical properties of dense clumps of molecular clouds are strongly affected by the kinetic temperature. Therefore, this parameter is essential for a better understanding of the interstellar medium. Formaldehyde, a molecule which traces the entire dense molecular gas, appears to be the most reliable tracer to directly measure the gas kinetic temperature. Aims: We aim to determine the kinetic temperature with spectral lines from formaldehyde and to compare the results with those obtained from ammonia lines for a large number of massive clumps. Methods: Three 218 GHz transitions (JKAKC = 303-202, 322-221, and 321-220) of para-H2CO were observed with the 15 m James Clerk Maxwell Telescope (JCMT) toward 30 massive clumps of the Galactic disk at various stages of high-mass star formation. Using the RADEX non-LTE model, we derive the gas kinetic temperature modeling the measured para-H2CO 322-221/303-202 and 321-220/303-202 ratios. Results: The gas kinetic temperatures derived from the para-H2CO (321-220/303-202) line ratios range from 30 to 61 K with an average of 46 ± 9 K. A comparison of kinetic temperature derived from para-H2CO, NH3, and the dust emission indicates that in many cases para-H2CO traces a similar kinetic temperature to the NH3 (2, 2)/(1, 1) transitions and the dust associated with the HII regions. Distinctly higher temperatures are probed by para-H2CO in the clumps associated with outflows/shocks. Kinetic temperatures obtained from para-H2CO trace turbulence to a higher degree than NH3 (2, 2)/(1, 1) in the massive clumps. The non-thermal velocity dispersions of para-H2CO lines are positively correlated with the gas kinetic temperature. The massive clumps are significantly influenced by supersonic non-thermal motions. The reduced spectra (FITS files) are only

  10. An Updated Look at Binary Characteristics of Massive Stars in the Cygnus OB2 Association

    NASA Astrophysics Data System (ADS)

    Kiminki, Daniel C.; Kobulnicky, Henry A.

    2012-05-01

    This work provides a statistical analysis of the massive star binary characteristics in the Cygnus OB2 association using radial velocity information of 114 B3-O5 primary stars and orbital properties for the 24 known binaries. We compare these data to a series of Monte Carlo simulations to infer the intrinsic binary fraction and distributions of mass ratios, periods, and eccentricities. We model the distribution of mass ratio, log-period, and eccentricity as power laws and find best-fitting indices of α = 0.1 ± 0.5, β = 0.2 ± 0.4, and γ = -0.6 ± 0.3, respectively. These distributions indicate a preference for massive companions, short periods, and low eccentricities. Our analysis indicates that the binary fraction of the cluster is 44% ± 8% if all binary systems are (artificially) assumed to have P < 1000 days; if the power-law period distribution is extrapolated to 104 years, then a plausible upper limit for bound systems, the binary fraction is ~90% ± 10%. Of these binary (or higher order) systems, ~45% will have companions close enough to interact during pre- or post-main-sequence evolution (semi-major axis lsim4.7 AU). The period distribution for P < 26 days is not well reproduced by any single power law owing to an excess of systems with periods around 3-5 days (0.08-0.31 AU) and a relative shortage of systems with periods around 7-14 days (0.14-0.62 AU). We explore the idea that these longer-period systems evolved to produce the observed excess of short-period systems. The best-fitting binary parameters imply that secondaries generate, on average, ~16% of the V-band light in young massive populations. This means that photometrically based distance measurements for young massive clusters and associations will be systematically low by ~8% (0.16 mag in the distance modulus) if the luminous contributions of unresolved secondaries are not taken into account.

  11. Radiation Transfer of Models of Massive Star Formation. III. The Evolutionary Sequence

    NASA Astrophysics Data System (ADS)

    Zhang, Yichen; Tan, Jonathan C.; Hosokawa, Takashi

    2014-06-01

    We present radiation transfer simulations of evolutionary sequences of massive protostars forming from massive dense cores in environments of high mass surface densities, based on the Turbulent Core Model. The protostellar evolution is calculated with a multi-zone numerical model, with the accretion rate regulated by feedback from an evolving disk wind outflow cavity. The disk evolution is calculated assuming a fixed ratio of disk to protostellar mass, while the core envelope evolution assumes an inside-out collapse of the core with a fixed outer radius. In this framework, an evolutionary track is determined by three environmental initial conditions: the core mass Mc , the mass surface density of the ambient clump Σcl, and the ratio of the core's initial rotational to gravitational energy β c . Evolutionary sequences with various Mc , Σcl, and β c are constructed. We find that in a fiducial model with Mc = 60 M ⊙, Σcl = 1 g cm-2, and β c = 0.02, the final mass of the protostar reaches at least ~26 M ⊙, making the final star formation efficiency >~ 0.43. For each of the evolutionary tracks, radiation transfer simulations are performed at selected stages, with temperature profiles, spectral energy distributions (SEDs), and multiwavelength images produced. At a given stage, the envelope temperature depends strongly on Σcl, with higher temperatures in a higher Σcl core, but only weakly on Mc . The SED and MIR images depend sensitively on the evolving outflow cavity, which gradually widens as the protostar grows. The fluxes at <~ 100 μm increase dramatically, and the far-IR peaks move to shorter wavelengths. The influence of Σcl and β c (which determines disk size) are discussed. We find that, despite scatter caused by different Mc , Σcl, β c , and inclinations, sources at a given evolutionary stage appear in similar regions of color-color diagrams, especially when using colors with fluxes at >~ 70 μm, where scatter due to inclination is minimized

  12. A Submillimetre Study of Massive Star Formation Within the W51 Complex and Infrared Dark Clouds

    NASA Astrophysics Data System (ADS)

    Parsons, Harriet Alice Louise

    Despite its importance the fundamental question of how massive stars form remains unanswered, with improvements to both models and observations having crucial roles to play. To quote Bate et al. (2003) computational models of star formation are limited because "conditions in molecular clouds are not sufficiently well understood to be able to select a representative sample of cloud cores for the initial conditions". It is this notion that motivates the study of the environments within Giant Molecular Clouds (GMCs) and Infrared Dark Clouds (IRDCs), known sites of massive star formation, at the clump and core level. By studying large populations of these objects, it is possible to make conclusions based on global properties. With this in mind I study the dense molecular clumps within one of the most massive GMCs in the Galaxy: the W51 GMC. New observations of the W51 GMC in the 12CO, 13CO and C18O (3-2) transitions using the HARP instrument on the JCMT are presented. With the help of the clump finding algorithm CLUMPFIND a total of 1575 dense clumps are identified of which 1130 are associated with the W51 GMC, yielding a dense mass reservoir of 1.5 × 10^5 M contained within these clumps. Of these clumps only 1% by number are found to be super-critical, yielding a super-critical clump formation efficiency of 0.5%, below current SFE estimates of the region. This indicates star formation within the W51 GMC will diminish over time although evidence from the first search for molecular outflows presents the W51 GMC in an active light with a lower limit of 14 outflows. The distribution of the outflows within the region searched found them concentrated towards the W51A region. Having much smaller sizes and masses, obtaining global properties of clumps and cores within IRDCs required studying a large sample of these objects. To do this pre-existing data from the SCUBA Legacy Catalogue was utilised to study IRDCs within a catalogues based on 8 μm data. This data identified

  13. Massive star-forming host galaxies of quasars on Sloan digital sky survey stripe 82

    SciTech Connect

    Matsuoka, Yoshiki; Strauss, Michael A.; Price, Ted N. III; DiDonato, Matthew S.

    2014-01-10

    The stellar properties of about 800 galaxies hosting optically luminous, unobscured quasars at z < 0.6 are analyzed. Deep co-added Sloan Digital Sky Survey (SDSS) images of the quasars on Stripe 82 are decomposed into nucleus and host galaxy using point spread function and Sérsic models. The systematic errors in the measured galaxy absolute magnitudes and colors are estimated to be less than 0.5 mag and 0.1 mag, respectively, with simulated quasar images. The effect of quasar light scattered by the interstellar medium is also carefully addressed. The measured quasar-to-galaxy ratio in total flux decreases toward longer wavelengths, from ∼8 in the u band to ∼1 in the i and z bands. We find that the SDSS quasars are hosted exclusively by massive galaxies (stellar mass M {sub star} > 10{sup 10} M {sub ☉}), which is consistent with previous results for less luminous narrow-line (obscured) active galactic nuclei (AGNs). The quasar hosts are very blue and almost absent on the red sequence, showing stark contrast to the color-magnitude distribution of normal galaxies. The fact that more powerful AGNs reside in galaxies with higher star-formation efficiency may indicate that negative AGN feedback, if it exists, is not concurrent with the most luminous phase of AGNs. We also find positive correlation between the mass of supermassive black holes (SMBHs; M {sub BH}) and host stellar mass, but the M {sub BH}-M {sub star} relation is offset toward large M {sub BH} or small M {sub star} compared to the local relation. While this could indicate that SMBHs grow earlier than do their host galaxies, such an argument is not conclusive, as the effect may be dominated by observational biases.

  14. THE PHYSICAL ENVIRONMENT OF THE MASSIVE STAR-FORMING REGION W42

    SciTech Connect

    Dewangan, L. K.; Luna, A.; Mayya, Y. D.; Ojha, D. K.; Mallick, K. K.; Anandarao, B. G.

    2015-10-01

    We present an analysis of multi-wavelength observations from various data sets and Galactic plane surveys to study the star-formation process in the W42 complex. A bipolar appearance of the W42 complex is evident due to the ionizing feedback from the O5–O6 type star in a medium that is highly inhomogeneous. The Very Large Telescope/NACO adaptive-optics K and L{sup ′} images (resolutions ∼0.″2–0.″1) resolved this ionizing source into multiple point-like sources below ∼5000 AU scale. The position angle ∼15° of the W42 molecular cloud is consistent with the H-band starlight mean polarization angle, which in turn is close to the Galactic magnetic field, suggesting the influence of the Galactic field on the evolution of the W42 molecular cloud. Herschel sub-millimeter data analysis reveals three clumps located along the waist axis of the bipolar nebula, with the peak column densities of ∼(3–5) × 10{sup 22} cm{sup −2} corresponding to visual extinctions of A{sub V} ∼ 32–53.5 mag. The Herschel temperature map traces a temperature gradient in W42, revealing regions of 20 K, 25 K, and 30–36 K. Herschel maps reveal embedded filaments (length ∼1–3 pc) that appear to be radially pointed to the denser clump associated with the O5–O6 star, forming a hub-filament system. A total of 512 candidate young stellar objects (YSOs) are identified in the complex, ∼40% of which are present in clusters distributed mainly within the molecular cloud, including the Herschel filaments. Our data sets suggest that the YSO clusters, including the massive stars, are located at the junction of the filaments, similar to those seen in the Rosette Molecular Cloud.

  15. HD 179821 (V1427 Aql, IRAS 19114+0002) - a massive post-red supergiant star?

    NASA Astrophysics Data System (ADS)

    Şahin, T.; Lambert, David L.; Klochkova, Valentina G.; Panchuk, Vladimir E.

    2016-10-01

    We have derived elemental abundances of a remarkable star, HD 179821, with unusual composition (e.g. [Na/Fe] = 1.0 ± 0.2 dex) and extra-ordinary spectral characteristics. Its metallicity at [Fe/H] = 0.4 dex places it among the most metal-rich stars yet analysed. The abundance analysis of this luminous star is based on high-resolution and high-quality (S/N ≈ 120-420) optical echelle spectra from McDonald Observatory and Special Astronomy Observatory. The data includes five years of observations over 21 epochs. Standard 1D local thermodynamic equilibrium analysis provides a fresh determination of the atmospheric parameters over all epochs: Teff = 7350 ± 200 K, log g= +0.6 ± 0.3, and a microturbulent velocity ξ = 6.6 ± 1.6 km s-1 and [Fe/H] = 0.4 ± 0.2, and a carbon abundance [C/Fe] = -0.19 ± 0.30. We find oxygen abundance [O/Fe] = -0.25 ± 0.28 and an enhancement of 0.9 dex in N. A supersonic macroturbulent velocity of 22.0 ± 2.0 km s-1 is determined from both strong and weak Fe I and Fe II lines. Elemental abundances are obtained for 22 elements. HD 179821 is not enriched in s-process products. Eu is overabundant relative to the anticipated [X/Fe] ≈ 0.0. Some peculiarities of its optical spectrum (e.g. variability in the spectral line shapes) is noticed. This includes the line profile variations for H α line. Based on its estimated luminosity, effective temperature and surface gravity, HD 179821 is a massive star evolving to become a red supergiant and finally a Type II supernova.

  16. Exploring the origin of magnetic fields in massive stars: a survey of O-type stars in clusters and in the field

    NASA Astrophysics Data System (ADS)

    Hubrig, S.; Schöller, M.; Kharchenko, N. V.; Langer, N.; de Wit, W. J.; Ilyin, I.; Kholtygin, A. F.; Piskunov, A. E.; Przybilla, N.; Magori Collaboration

    2011-04-01

    Context. Although the effects of magnetic fields in massive stars have been found to be substantial by recent models and observations, the magnetic fields of only a small number of massive O-type stars have so far been investigated. Additional observations are of the utmost importance to constraining the conditions that are conducive to magnetic fields and to determine the first trends about their occurrence rate and field strength distribution. Aims: To investigate statistically whether magnetic fields in massive stars are ubiquitous or appear only in stars with a specific spectral classification, certain ages, or in a special environment, we acquired 41 new spectropolarimetric observations for 36 stars. Among the observed sample, roughly half of the stars are probable members of clusters at different ages, whereas the remaining stars are field stars not known to belong to any cluster or association. Methods: Spectropolarimetric observations were obtained during three different nights using the low-resolution spectropolarimetric mode of FORS 2 (FOcal Reducer low dispersion Spectrograph) mounted on the 8-m Antu telescope of the VLT. To assess the membership in open clusters and associations, we used astrometric catalogues with the highest quality kinematic and photometric data currently available. Results: A field at a significance level of 3σ was detected in ten O-type stars. The strongest longitudinal magnetic fields were measured in two Of?p stars: ⟨ Bz ⟩ = -381 ± 122 G for CPD-28 2561 and ⟨ Bz ⟩ = -297 ± 62 G for HD 148937, the latter of which had previously been detected by ourselves as magnetic. The observations of HD 148937 obtained on three different nights indicate that the magnetic field is slightly variable. Our new measurements support our previous conclusion that large-scale organized magnetic fields with polar field strengths in excess of 1 kG are not widespread among O-type stars. Among the stars with a detected magnetic field, only one

  17. HATS-15b and HATS-16b: Two Massive Planets Transiting Old G Dwarf Stars

    NASA Astrophysics Data System (ADS)

    Ciceri, S.; Mancini, L.; Henning, T.; Bakos, G.; Penev, K.; Brahm, R.; Zhou, G.; Hartman, J. D.; Bayliss, D.; Jordán, A.; Csubry, Z.; de Val-Borro, M.; Bhatti, W.; Rabus, M.; Espinoza, N.; Suc, V.; Schmidt, B.; Noyes, R.; Howard, A. W.; Fulton, B. J.; Isaacson, H.; Marcy, G. W.; Butler, R. P.; Arriagada, P.; Crane, J. D.; Shectman, S.; Thompson, I.; Tan, T. G.; Lázár, J.; Papp, I.; Sari, P.

    2016-07-01

    We report the discovery of HATS-15 b and HATS-16 b, two massive transiting extrasolar planets orbiting evolved (∼10 Gyr) main-sequence stars. The planet HATS-15 b, which is hosted by a G9 V star (V=14.8 mag), is a hot Jupiter with mass of 2.17\\quad +/- \\quad 0.15 {M}{{J}} and radius of 1.105\\quad +/- \\quad 0.040 {R}{{J}}, and it completes its orbit in about 1.7 days. HATS-16 b is a very massive hot Jupiter with mass of 3.27\\quad +/- \\quad 0.19 {M}{{J}} and radius of 1.30\\quad +/- \\quad 0.15 {R}{{J}}; it orbits around its G3 V parent star (V=13.8 mag) in ∼2.7 days. HATS-16 is slightly active and shows a periodic photometric modulation, implying a rotational period of 12 days, which is unexpectedly short given its isochronal age. This fast rotation might be the result of the tidal interaction between the star and its planet. The HATSouth network is operated by a collaboration consisting of Princeton University (PU), the Max Planck Institute für Astronomie (MPIA), the Australian National University (ANU), and the Pontificia Universidad Católica de Chile (PUC). The station at Las Campanas Observatory (LCO) of the Carnegie Institute is operated by PU in conjunction with PUC, the station at the High Energy Spectroscopic Survey (H.E.S.S.) site is operated in conjunction with MPIA, and the station at Siding Spring Observatory (SSO) is operated jointly with ANU. Based in part on observations performed at the ESO La Silla Observatory in Chile, with the Coralie and FEROS spectrographs mounted on the Euler-Swiss and MPG 2.2 m telescopes, respectively. This paper includes data gathered with the 6.5 m Magellan Telescopes located at Las Campanas Observatory, Chile. Based in part on data collected at Keck Telescope. Observations obtained with facilities of the Las Cumbres Observatory Global Telescope are used in this paper.

  18. Xenon, osmium, and lead formed in O-shells and C-shells of massive stars

    NASA Technical Reports Server (NTRS)

    Heymann, D.; Dziczkaniec, M.

    1980-01-01

    In this paper it is shown that the explosive products from O-shells of massive stars which contain Xe-124 with large overproduction factors do not contain any of the naturally occurring isotopes of Os and Pb. Further, it is shown that the explosive products from C-shells (explosive carbon burning) do contain Os and Pb along with Xe which is strongly enriched in r-Xe of anomalous isotopic composition. The composition of Os in this matter is probably s-like rather than r-like. Pb in this matter is enriched in Pb-208. The results and arguments of this paper have implications for studies of isotopic compositions of Xe, Os, and Pb in residues of the Allende and other carbonaceous chondrites.

  19. Nucleosynthesis in a massive star associated with magnetohydrodynamical jets from collapsars

    SciTech Connect

    Ono, M.; Hashimoto, M.; Fujimoto, S.; Kotake, K.; Yamada, S.

    2012-11-12

    We investigate the nucleosynthesis during the stellar evolution and the jet-like supernova explosion of a massive star of 70 M{sub Circled-Dot-Operator} having the solar metallicity in the main sequence stage. The nucleosynthesis calculations have been performed with large nuclear reaction networks, where the weak s-, p-, and r-processes are taken into account. As a result s-elements of 60 > A > 90 and r-elements of 90 > A > 160 are highly overproduced relative to the solar system abundances. We find that the Sr-Y-Zr isotopes are primarily synthesized in the explosive nucleosynthesis which could be one of the sites of the lighter element primary process (LEPP).

  20. Analytical solutions for radiation-driven winds in massive stars. I. The fast regime

    SciTech Connect

    Araya, I.; Curé, M.; Cidale, L. S.

    2014-11-01

    Accurate mass-loss rate estimates are crucial keys in the study of wind properties of massive stars and for testing different evolutionary scenarios. From a theoretical point of view, this implies solving a complex set of differential equations in which the radiation field and the hydrodynamics are strongly coupled. The use of an analytical expression to represent the radiation force and the solution of the equation of motion has many advantages over numerical integrations. Therefore, in this work, we present an analytical expression as a solution of the equation of motion for radiation-driven winds in terms of the force multiplier parameters. This analytical expression is obtained by employing the line acceleration expression given by Villata and the methodology proposed by Müller and Vink. On the other hand, we find useful relationships to determine the parameters for the line acceleration given by Müller and Vink in terms of the force multiplier parameters.

  1. A possible relativistic jetted outburst from a massive black hole fed by a tidally disrupted star.

    PubMed

    Bloom, Joshua S; Giannios, Dimitrios; Metzger, Brian D; Cenko, S Bradley; Perley, Daniel A; Butler, Nathaniel R; Tanvir, Nial R; Levan, Andrew J; O'Brien, Paul T; Strubbe, Linda E; De Colle, Fabio; Ramirez-Ruiz, Enrico; Lee, William H; Nayakshin, Sergei; Quataert, Eliot; King, Andrew R; Cucchiara, Antonino; Guillochon, James; Bower, Geoffrey C; Fruchter, Andrew S; Morgan, Adam N; van der Horst, Alexander J

    2011-07-08

    Gas accretion onto some massive black holes (MBHs) at the centers of galaxies actively powers luminous emission, but most MBHs are considered dormant. Occasionally, a star passing too near an MBH is torn apart by gravitational forces, leading to a bright tidal disruption flare (TDF). Although the high-energy transient Sw 1644+57 initially displayed none of the theoretically anticipated (nor previously observed) TDF characteristics, we show that observations suggest a sudden accretion event onto a central MBH of mass about 10(6) to 10(7) solar masses. There is evidence for a mildly relativistic outflow, jet collimation, and a spectrum characterized by synchrotron and inverse Compton processes; this leads to a natural analogy of Sw 1644+57 to a temporary smaller-scale blazar.

  2. The tidal disruption of a star by a massive black hole

    NASA Technical Reports Server (NTRS)

    Evans, Charles R.; Kochanek, Christopher S.

    1989-01-01

    Results are reported from a three-dimensional numerical calculation of the tidal disruption of a low-mass main-sequence star on a parabolic orbit around a massive black hole (Mh = 10 to the 6th stellar mass). The postdisruption evolution is followed until hydrodynamic forces becomes negligible and the liberated gas becomes ballistic. Also given is the rate at which bound mass returns to pericenter after orbiting the hole once. The processes that determine the time scale to circularize the debris orbits and allow an accretion torus to form are discussed. This time scale and the time scales for radiative cooling and accretion inflow determine the onset and duration of the subsequent flare in the AGN luminosity.

  3. Xenon, osmium, and lead formed in O-shells and C-shells of massive stars

    NASA Astrophysics Data System (ADS)

    Heymann, D.; Dziczkaniec, M.

    1980-03-01

    In this paper it is shown that the explosive products from O-shells of massive stars which contain Xe-124 with large overproduction factors do not contain any of the naturally occurring isotopes of Os and Pb. Further, it is shown that the explosive products from C-shells (explosive carbon burning) do contain Os and Pb along with Xe which is strongly enriched in r-Xe of anomalous isotopic composition. The composition of Os in this matter is probably s-like rather than r-like. Pb in this matter is enriched in Pb-208. The results and arguments of this paper have implications for studies of isotopic compositions of Xe, Os, and Pb in residues of the Allende and other carbonaceous chondrites.

  4. Evolutionary helium and CNO anomalies in the atmospheres and winds of massive hot stars

    NASA Technical Reports Server (NTRS)

    Walborn, Nolan R.

    1987-01-01

    The ubiquitous evidence for processed materials in the atmospheres, winds, and circumstellar ejecta of massive stars is reviewed. A broad array of normal and peculiar evolutionary stages is considered, up to and including Type II supernova progenitors. The quantitative analysis of these spectra is difficult, and until recently for the most part only qualitative or approximate results have been available. However, several important current programs promise reliable abundance calculations. A significant emerging result is that the morphologically normal majority of both hot and cold supergiants may already display an admixture of CNO-cycle products in their atmospheres. It may become possible in this way to identify blue supergiants returning from the red supergiant region, as appears to have been the case for the SN 1987A progenitor.

  5. SOAR Near-Infrared and Optical Survey of OIf* and OIf*/WN Stars in the Periphery of Galactic Massive Star Forming Regions

    NASA Astrophysics Data System (ADS)

    Roman-Lopes, A.; Franco, G. A. P.; Sanmartin, D.

    In this contribution we present some preliminary results obtained from a SOAR-Goodman optical spectroscopic survey aimed to confirm the OIf* - OIf*/WN nature of a sample of Galactic candidates that were previously confirmed as massive stars based on near-infrared spectra taken with OSIRIS at SOAR. With only a few of such stars known in the Galaxy to date, our study significantly contributes to improve the number of known Galactic O2If* stars, as well as almost doubling the number of known members of the galactic sample of the rare type OIf*/WN.

  6. Local Radiation Hydrodynamic Simulations of Massive Star Envelopes at the Iron Opacity Peak

    NASA Astrophysics Data System (ADS)

    Jiang, Yan-Fei; Cantiello, Matteo; Bildsten, Lars; Quataert, Eliot; Blaes, Omer

    2015-11-01

    We perform three-dimensional radiation hydrodynamic simulations of the structure and dynamics of the radiation-dominated envelopes of massive stars at the location of the iron opacity peak. One-dimensional hydrostatic calculations predict an unstable density inversion at this location, whereas our simulations reveal a complex interplay of convective and radiative transport whose behavior depends on the ratio of the photon diffusion time to the dynamical time. The latter is set by the ratio of the optical depth per pressure scale height, {τ }0, to {τ }{{c}}=c/{c}{{g}}, where {c}{{g}}≈ 50 {km} {{{s}}}-1 is the isothermal sound speed in the gas alone. When {τ }0\\gg {τ }{{c}}, convection reduces the radiation acceleration and removes the density inversion. The turbulent energy transport in the simulations agrees with mixing length theory and provides its first numerical calibration in the radiation-dominated regime. When {τ }0\\ll {τ }{{c}}, convection becomes inefficient and the turbulent energy transport is negligible. The turbulent velocities exceed cg, driving shocks and large density fluctuations that allow photons to preferentially diffuse out through low-density regions. However, the effective radiation acceleration is still larger than the gravitational acceleration so that the time average density profile contains a modest density inversion. In addition, the simulated envelope undergoes large-scale oscillations with periods of a few hours. The turbulent velocity field may affect the broadening of spectral lines and therefore stellar rotation measurements in massive stars, while the time variable outer atmosphere could lead to variations in their mass loss and stellar radius.

  7. Locating and Measuring the High Mass Ejecta from the Unstable Massive Star System eta Carinae

    NASA Astrophysics Data System (ADS)

    Morris, Patrick

    2014-10-01

    The luminous, massive binary system eta Carinae is both one of the nearest and most unstable objects in a class of evolved massive stars, near the end of its lifetime before expected destruction in a supernova. It experienced a major outburst in 1843, producing the well-known Homunculus nebula, containing some 15 to 40 Msun in warm (~170 K) and cool (90-110 K) dust and associated gas, according to mid-infrared ISO spectroscopy. The location of this material is very uncertain, due to large apertures of the spectroscopic observations, and lack of direct imaging beyond 25 microns. We propose to use the FORCAST imager with long wavelength filters to better locate and estimate the mass in thermal components of this material that may be resolved, constraining it to the interior regions or bipolar lobes of the Homunculus nebula, or in outer ejecta that would support the hypothesis of a major event prior to the 1843 eruption. This is crucial to understanding the mass-loss history of this object on the edge of a final supernova explosion, and provide constraints on the distribution and extinction properties of the dust in 3D hydrodynamical + radiative transfer numerical modeling of the Homunculus nebula.

  8. RADIATION TRANSFER OF MODELS OF MASSIVE STAR FORMATION. I. DEPENDENCE ON BASIC CORE PROPERTIES

    SciTech Connect

    Zhang Yichen; Tan, Jonathan C. E-mail: jt@astro.ufl.edu

    2011-05-20

    Radiative transfer calculations of massive star formation are presented. These are based on the Turbulent Core Model of McKee and Tan and self-consistently included a hydrostatic core, an inside-out expansion wave, a zone of free-falling rotating collapse, wide-angle dust-free outflow cavities, an active accretion disk, and a massive protostar. For the first time for such models, an optically thick inner gas disk extends inside the dust destruction front. This is important to conserve the accretion energy naturally and for its shielding effect on the outer region of the disk and envelope. The simulation of radiation transfer is performed with the Monte Carlo code of Whitney, yielding spectral energy distributions (SEDs) for the model series, from the simplest spherical model to the fiducial one, with the above components each added step by step. Images are also presented in different wavebands of various telescope cameras, including Spitzer IRAC and MIPS, SOFIA FORCAST, and Herschel PACS and SPIRE. The existence of the optically thick inner disk produces higher optical wavelength fluxes but reduces near- and mid-IR emission. The presence of outflow cavities, the inclination angle to the line of sight, and the thickness of the disk all affect the SEDs and images significantly. For the high-mass surface density cores considered here, the mid-IR emission can be dominated by the outflow cavity walls, as has been suggested by De Buizer. The effect of varying the pressure of the environment bounding the surface of the massive core is also studied. With lower surface pressures, the core is larger, has lower extinction and accretion rates, and the observed mid-IR flux from the disk can then be relatively high even though the accretion luminosity is lower. In this case the silicate absorption feature becomes prominent, in contrast to higher density cores forming under higher pressures.

  9. Radiation Transfer of Models of Massive Star Formation. I. Dependence on Basic Core Properties

    NASA Astrophysics Data System (ADS)

    Zhang, Yichen; Tan, Jonathan C.

    2011-05-01

    Radiative transfer calculations of massive star formation are presented. These are based on the Turbulent Core Model of McKee & Tan and self-consistently included a hydrostatic core, an inside-out expansion wave, a zone of free-falling rotating collapse, wide-angle dust-free outflow cavities, an active accretion disk, and a massive protostar. For the first time for such models, an optically thick inner gas disk extends inside the dust destruction front. This is important to conserve the accretion energy naturally and for its shielding effect on the outer region of the disk and envelope. The simulation of radiation transfer is performed with the Monte Carlo code of Whitney, yielding spectral energy distributions (SEDs) for the model series, from the simplest spherical model to the fiducial one, with the above components each added step by step. Images are also presented in different wavebands of various telescope cameras, including Spitzer IRAC and MIPS, SOFIA FORCAST, and Herschel PACS and SPIRE. The existence of the optically thick inner disk produces higher optical wavelength fluxes but reduces near- and mid-IR emission. The presence of outflow cavities, the inclination angle to the line of sight, and the thickness of the disk all affect the SEDs and images significantly. For the high-mass surface density cores considered here, the mid-IR emission can be dominated by the outflow cavity walls, as has been suggested by De Buizer. The effect of varying the pressure of the environment bounding the surface of the massive core is also studied. With lower surface pressures, the core is larger, has lower extinction and accretion rates, and the observed mid-IR flux from the disk can then be relatively high even though the accretion luminosity is lower. In this case the silicate absorption feature becomes prominent, in contrast to higher density cores forming under higher pressures.

  10. VizieR Online Data Catalog: OGLE-III SMC massive stars VI light curves (Kourniotis+, 2014)

    NASA Astrophysics Data System (ADS)

    Kourniotis, M.; Bonanos, A. Z.; Soszynski, I.; Poleski, R.; Krikelis, G.; Udalski, A.; Szymanski, M. K.; Kubiak, M.; Pietrzynski, G.; Wyrzykowski, L.; Ulaczyk, K.; Kozlowski, S.; Pietrukowicz, P.

    2014-01-01

    We used the photometry provided by the OGLE-III monitoring survey to study the variability of 4646 massive stars with known spectral types in the SMC. Based on the standard deviation of the light curves, we classified the stars into constant, low-amplitude and high amplitude variables. We searched the low- and high-amplitude variables for periodic signals using the Analysis of Variance method (Schwarzenberg-Czerny, 1989MNRAS.241..153S). The following tables present newly discovered and known EBs, ellipsoidal variables, Cepheids and other periodic stars. We also present the irregular variables, which have stochastic, high-amplitude variability. (12 data files).

  11. EVOLUTION OF VERY MASSIVE POPULATION III STARS WITH MASS ACCRETION FROM PRE-MAIN SEQUENCE TO COLLAPSE

    SciTech Connect

    Ohkubo, Takuya; Nomoto, Ken'ichi; Umeda, Hideyuki; Yoshida, Naoki; Tsuruta, Sachiko E-mail: umeda@astron.s.u-tokyo.ac.j E-mail: naoki.yoshida@ipmu.j

    2009-12-01

    We calculate the evolution of zero-metallicity Population III (Pop III) stars whose mass grows from the initial mass of approx1 M{sub sun} by accreting the surrounding gases. Our calculations cover whole evolutionary stages from the pre-main sequence, via various nuclear burning stages, through the final core-collapse or pair-creation instability phases. We adopt two different sets of stellar mass accretion rates as our fiducial models. One is derived from a cosmological simulation of the first generation (PopIII.1) stars, and the other is derived from a simulation of the second generation stars that are affected by radiation from PopIII.1 stars. The latter represents one case of PopIII.2 stars. We also adopt additional models that include radiative feedback effects. We show that the final mass of Pop III.1 stars can be as large as approx1000 M {sub sun}, beyond the mass range (140-300 M{sub sun}) for the pair-instability supernovae. Such massive stars undergo core-collapse to form intermediate-mass black holes, which may be the seeds for merger trees to supermassive black holes. On the other hand, Pop III.2 stars become less massive (approx<40-60 M{sub sun}), being in the mass range of ordinary iron core-collapse stars. Such stars explode and eject heavy elements to contribute to chemical enrichment of the early universe as observed in the abundance patterns of extremely metal-poor stars in the Galactic halo. In view of the large range of possible accretion rates, further studies are important to see if these fiducial models are actually the cases.

  12. Evidence for the Non-destruction of the Most Massive Molecular Clouds even After they have Given Birth to Massive Star Clusters

    NASA Astrophysics Data System (ADS)

    Zaragoza-Cardiel, Javier; Beckman, John Etienne; Font, Joan; Camps-Fariña, Artemi

    2015-08-01

    We have observed the interacting galaxies system, the Antennae, using the Fabry-Perot interferometer GHαFaS on the 4.2m William Herschel Telescope at the Observatorio del Roque de los Muchachos, La Palma, deriving the Hα surface brightness, velocity and velocity dispersion maps, and extracting key physical parameters (mean electron density, mass, velocity dispersion, and effective radius) of 303 HII regions, using a technique for which 3D mapping, including velocity, is essential. We also derived the CO(3-2) surface brightness, velocity, and velocity dispersion maps, and extracted the relevant parameters (size, CO luminosity, velocity dispersion and mass) of ~142 GMC's, using observations from the ALMA archive.We compared the properties of HII regions with GMC's, finding that the two distinct populations of HII regions are related to two populations of GMC's, as both show bimodal mass functions with a break at 106.5 solar masses. The classical Larson scaling laws need modification for the more massive population of GMC's, as the surface gas density increases with mass, which leads to enhanced star formation efficiency.The analysis of the turbulent velocity dispersion of the regions suggests that the more massive regions are bound by their own gravity, while the less massive star forming regions are confined by external pressure. If the two population of HII regions are derived from the twopopulations of GMC's, our results show the GMC's do not dissolve after they have given birth to massive stars, at least for the regime of the population of high mass clouds.

  13. The Physical Parameters of Red Supergiants: When Massive