Science.gov

Sample records for intermediate-age massive star

  1. Young and intermediate-age massive star clusters.

    PubMed

    Larsen, Søren S

    2010-02-28

    An overview of our current understanding of the formation and evolution of star clusters is given, with the main emphasis on high-mass clusters. Clusters form deeply embedded within dense clouds of molecular gas. Left-over gas is cleared within a few million years and, depending on the efficiency of star formation, the clusters may disperse almost immediately or remain gravitationally bound. Current evidence suggests that a small percentage of star formation occurs in clusters that remain bound, although it is not yet clear whether this fraction is truly universal. Internal two-body relaxation and external shocks will lead to further, gradual dissolution on time scales of up to a few hundred million years for low-mass open clusters in the Milky Way, while the most massive clusters (>10(5) M(o)) have lifetimes comparable to or exceeding the age of the Universe. The low-mass end of the initial cluster mass function is well approximated by a power-law distribution, dN/dM proportional to M(-2), but there is mounting evidence that quiescent spiral discs form relatively few clusters with masses M > 2 x 10(5) M(o). In starburst galaxies and old globular cluster systems, this limit appears to be higher, at least several x10(6) M(o). The difference is likely related to the higher gas densities and pressures in starburst galaxies, which allow denser, more massive giant molecular clouds to form. Low-mass clusters may thus trace star formation quite universally, while the more long-lived, massive clusters appear to form preferentially in the context of violent star formation.

  2. THE EFFECTS OF ROTATION ON THE MAIN-SEQUENCE TURNOFF OF INTERMEDIATE-AGE MASSIVE STAR CLUSTERS

    SciTech Connect

    Yang, Wuming; Bi, Shaolan; Liu, Zhie; Meng, Xiangcun E-mail: yangwuming@ynao.ac.cn

    2013-10-20

    The double or extended main-sequence turnoffs (MSTOs) in the color-magnitude diagram (CMD) of intermediate-age massive star clusters in the Large Magellanic Cloud are generally interpreted as age spreads of a few hundred Myr. However, such age spreads do not exist in younger clusters (i.e., 40-300 Myr), which challenges this interpretation. The effects of rotation on the MSTOs of star clusters have been studied in previous works, but the results obtained are conflicting. Compared with previous works, we consider the effects of rotation on the main-sequence lifetime of stars. Our calculations show that rotating models have a fainter and redder MSTO with respect to non-rotating counterparts with ages between about 0.8 and 2.2 Gyr, but have a brighter and bluer MSTO when age is larger than 2.4 Gyr. The spread of the MSTO caused by a typical rotation rate is equivalent to the effect of an age spread of about 200 Myr. Rotation could lead to the double or extended MSTOs in the CMD of the star clusters with ages between about 0.8 and 2.2 Gyr. However, the extension is not significant, and it does not even exist in younger clusters. If the efficiency of the mixing were high enough, the effects of the mixing would counteract the effect of the centrifugal support in the late stage of evolution, and the rotationally induced extension would disappear in the old intermediate-age star clusters, but younger clusters would have an extended MSTO. Moreover, the effects of rotation might aid in understanding the formation of some 'multiple populations' in globular clusters.

  3. First Observational Signature of Rotational Deceleration in a Massive, Intermediate-age Star Cluster in the Magellanic Clouds

    NASA Astrophysics Data System (ADS)

    Wu, Xiaohan; Li, Chengyuan; de Grijs, Richard; Deng, Licai

    2016-07-01

    While the extended main-sequence turnoffs (eMSTOs) found in almost all 1-2 Gyr old star clusters in the Magellanic Clouds are often explained by postulating extended star formation histories (SFHs), the tight subgiant branches (SGBs) seen in some clusters challenge this popular scenario. Puzzlingly, the SGB of the eMSTO cluster NGC 419 is significantly broader at bluer than at redder colors. We carefully assess and confirm the reality of this observational trend. If we would assume that the widths of the features in color-magnitude space were entirely owing to a range in stellar ages, the SFHs of the eMSTO stars and the blue SGB region would be significantly more prolonged than that of the red part of the SGB. This cannot be explained by assuming an internal age spread. We show that rotational deceleration of a population of rapidly rotating stars, a currently hotly debated alternative scenario, naturally explains the observed trend along the SGB. Our analysis shows that a “converging” SGB could be produced if the cluster is mostly composed of rapidly rotating stars that slow down over time owing to the conservation of angular momentum during their evolutionary expansion from main-sequence turnoff stars to red giants.

  4. Star Clusters in Intermediate-Age Galaxy Merger Remnants

    NASA Astrophysics Data System (ADS)

    Miller, Bryan W.; Trancho, G.; Schweizer, F.

    2011-01-01

    Studies of globular cluster systems play a critical role in our understanding of galaxy formation. Star clusters are useful tracers of major star-formation events in galaxies since they are compact, relatively easy to detect, and have properties well described by simple-stellar-population models. Imaging with the Hubble Space Telescope has revealed that young compact star clusters are formed copiously during galaxy mergers, strengthening theories in which giant elliptical galaxies are formed through mergers of spirals. However, the formation and evolution of globular cluster systems is still not well understood. We should be able to observe how cluster systems evolve from the very young systems with power-law luminosity functions to old systems with log-normal luminosity functions like those observed in old elliptical galaxies. Finding intermediate-age cluster systems would constrain theories of cluster formation and destruction (evaporation, shocking, dynamical friction) as well as show the significance of merger events in the histories of galaxies. We present results of combining HST optical photometry with ground-based K-band photometry from NIRI and Flamingos-I on Gemini to study the star cluster systems of five intermediate-age merger remnants. The galaxies were chosen based on blue colors and fine structure such as shells and ripples that are indicative of past interactions. We find evidence for star clusters with ages consistent with the estimated merger ages. The properties of the star clusters systems and implications for galaxy and star cluster formation will be discussed. Based on observations obtained at the Gemini Observatory, which is operated by the Association of Universities for Research in Astronomy, Inc., under a cooperative agreement with the NSF on behalf of the Gemini partnership: the National Science Foundation (United States), the Particle Physics and Astronomy Research Council (United Kingdom), the National Research Council (Canada

  5. Massive Stars

    NASA Astrophysics Data System (ADS)

    Livio, Mario; Villaver, Eva

    2009-11-01

    Participants; Preface Mario Livio and Eva Villaver; 1. High-mass star formation by gravitational collapse of massive cores M. R. Krumholz; 2. Observations of massive star formation N. A. Patel; 3. Massive star formation in the Galactic center D. F. Figer; 4. An X-ray tour of massive star-forming regions with Chandra L. K. Townsley; 5. Massive stars: feedback effects in the local universe M. S. Oey and C. J. Clarke; 6. The initial mass function in clusters B. G. Elmegreen; 7. Massive stars and star clusters in the Antennae galaxies B. C. Whitmore; 8. On the binarity of Eta Carinae T. R. Gull; 9. Parameters and winds of hot massive stars R. P. Kudritzki and M. A. Urbaneja; 10. Unraveling the Galaxy to find the first stars J. Tumlinson; 11. Optically observable zero-age main-sequence O stars N. R. Walborn; 12. Metallicity-dependent Wolf-Raynet winds P. A. Crowther; 13. Eruptive mass loss in very massive stars and Population III stars N. Smith; 14. From progenitor to afterlife R. A. Chevalier; 15. Pair-production supernovae: theory and observation E. Scannapieco; 16. Cosmic infrared background and Population III: an overview A. Kashlinsky.

  6. Extended Star Formation in the Intermediate-age Large Magellanic Cloud Star Cluster NGC 2209

    NASA Astrophysics Data System (ADS)

    Keller, Stefan C.; Mackey, A. Dougal; Da Costa, Gary S.

    2012-12-01

    We present observations of the 1 Gyr old star cluster NGC 2209 in the Large Magellanic Cloud made with the GMOS imager on the Gemini South Telescope. These observations show that the cluster exhibits a main-sequence turnoff that spans a broader range in luminosity than can be explained by a single-aged stellar population. This places NGC 2209 amongst a growing list of intermediate-age (1-3 Gyr) clusters that show evidence for extended or multiple epochs of star formation of between 50 and 460 Myr in extent. The extended main-sequence turnoff observed in NGC 2209 is a confirmation of the prediction in Keller et al. made on the basis of the cluster's large core radius. We propose that secondary star formation is a defining feature of the evolution of massive star clusters. Dissolution of lower mass clusters through evaporation results in only clusters that have experienced secondary star formation surviving for a Hubble time, thus providing a natural connection between the extended main-sequence turnoff phenomenon and the ubiquitous light-element abundance ranges seen in the ancient Galactic globular clusters.

  7. EXTENDED STAR FORMATION IN THE INTERMEDIATE-AGE LARGE MAGELLANIC CLOUD STAR CLUSTER NGC 2209

    SciTech Connect

    Keller, Stefan C.; Mackey, A. Dougal; Da Costa, Gary S.

    2012-12-10

    We present observations of the 1 Gyr old star cluster NGC 2209 in the Large Magellanic Cloud made with the GMOS imager on the Gemini South Telescope. These observations show that the cluster exhibits a main-sequence turnoff that spans a broader range in luminosity than can be explained by a single-aged stellar population. This places NGC 2209 amongst a growing list of intermediate-age (1-3 Gyr) clusters that show evidence for extended or multiple epochs of star formation of between 50 and 460 Myr in extent. The extended main-sequence turnoff observed in NGC 2209 is a confirmation of the prediction in Keller et al. made on the basis of the cluster's large core radius. We propose that secondary star formation is a defining feature of the evolution of massive star clusters. Dissolution of lower mass clusters through evaporation results in only clusters that have experienced secondary star formation surviving for a Hubble time, thus providing a natural connection between the extended main-sequence turnoff phenomenon and the ubiquitous light-element abundance ranges seen in the ancient Galactic globular clusters.

  8. STRUCTURAL PARAMETERS OF SEVEN SMALL MAGELLANIC CLOUD INTERMEDIATE-AGE AND OLD STAR CLUSTERS

    SciTech Connect

    Glatt, Katharina; Grebel, Eva K.; Kayser, Andrea; Gallagher, John S.; Harbeck, Daniel; Nota, Antonella; Sabbi, Elena; Sirianni, Marco; Clementini, Gisella; Tosi, Monica; Da Costa, Gary; Koch, Andreas

    2009-11-15

    We present structural parameters for the seven intermediate-age and old star clusters NGC 121, Lindsay 1, Kron 3, NGC 339, NGC 416, Lindsay 38, and NGC 419 in the Small Magellanic Cloud (SMC). We fit King profiles and Elson, Fall, and Freeman profiles to both surface-brightness and star-count data taken with the Advanced Camera for Surveys aboard the Hubble Space Telescope. Clusters older than {approx}1 Gyr show a spread in cluster core radii that increases with age, while the youngest clusters have relatively compact cores. No evidence for post-core-collapse clusters was found. We find no correlation between core radius and distance from the SMC center, although consistent with other studies of dwarf galaxies, some relatively old and massive clusters have low densities. The oldest SMC star cluster, the only globular NGC121, is the most elliptical object of the studied clusters. No correlation is seen between ellipticity and distance from the SMC center. The structures of these massive intermediate-age (1-8 Gyr) SMC star clusters thus appear to primarily result from internal evolutionary processes.

  9. Structural Parameters of Seven Small Magellanic Cloud Intermediate-Age and Old Star Clusters

    NASA Astrophysics Data System (ADS)

    Glatt, Katharina; Grebel, Eva K.; Gallagher, John S., III; Nota, Antonella; Sabbi, Elena; Sirianni, Marco; Clementini, Gisella; Da Costa, Gary; Tosi, Monica; Harbeck, Daniel; Koch, Andreas; Kayser, Andrea

    2009-11-01

    We present structural parameters for the seven intermediate-age and old star clusters NGC 121, Lindsay 1, Kron 3, NGC 339, NGC 416, Lindsay 38, and NGC 419 in the Small Magellanic Cloud (SMC). We fit King profiles and Elson, Fall, and Freeman profiles to both surface-brightness and star-count data taken with the Advanced Camera for Surveys aboard the Hubble Space Telescope. Clusters older than ~1 Gyr show a spread in cluster core radii that increases with age, while the youngest clusters have relatively compact cores. No evidence for post-core-collapse clusters was found. We find no correlation between core radius and distance from the SMC center, although consistent with other studies of dwarf galaxies, some relatively old and massive clusters have low densities. The oldest SMC star cluster, the only globular NGC121, is the most elliptical object of the studied clusters. No correlation is seen between ellipticity and distance from the SMC center. The structures of these massive intermediate-age (1-8 Gyr) SMC star clusters thus appear to primarily result from internal evolutionary processes. Based on observations made with the NASA/ESA Hubble Space Telescope, obtained at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS 5-26555. These observations are associated with program GO-10396.

  10. Ages of intermediate-age Magellanic Cloud star clusters

    NASA Technical Reports Server (NTRS)

    Flower, P. J.

    1984-01-01

    Ages of intermediate-age Large Magellanic Cloud star clusters have been estimated without locating the faint, unevolved portion of cluster main sequences. Six clusters with established color-magnitude diagrams were selected for study: SL 868, NGC 1783, NGC 1868, NGC 2121, NGC 2209, and NGC 2231. Since red giant photometry is more accurate than the necessarily fainter main-sequence photometry, the distributions of red giants on the cluster color-magnitude diagrams were compared to a grid of 33 stellar evolutionary tracks, evolved from the main sequence through core-helium exhaustion, spanning the expected mass and metallicity range for Magellanic Cloud cluster red giants. The time-dependent behavior of the luminosity of the model red giants was used to estimate cluster ages from the observed cluster red giant luminosities. Except for the possibility of SL 868 being an old globular cluster, all clusters studied were found to have ages less than 10 to the 9th yr. It is concluded that there is currently no substantial evidence for a major cluster population of large, populous clusters greater than 10 to the 9th yr old in the Large Magellanic Cloud.

  11. Ages of intermediate-age Magellanic Cloud star clusters

    NASA Technical Reports Server (NTRS)

    Flower, P. J.

    1984-01-01

    Ages of intermediate-age Large Magellanic Cloud star clusters have been estimated without locating the faint, unevolved portion of cluster main sequences. Six clusters with established color-magnitude diagrams were selected for study: SL 868, NGC 1783, NGC 1868, NGC 2121, NGC 2209, and NGC 2231. Since red giant photometry is more accurate than the necessarily fainter main-sequence photometry, the distributions of red giants on the cluster color-magnitude diagrams were compared to a grid of 33 stellar evolutionary tracks, evolved from the main sequence through core-helium exhaustion, spanning the expected mass and metallicity range for Magellanic Cloud cluster red giants. The time-dependent behavior of the luminosity of the model red giants was used to estimate cluster ages from the observed cluster red giant luminosities. Except for the possibility of SL 868 being an old globular cluster, all clusters studied were found to have ages less than 10 to the 9th yr. It is concluded that there is currently no substantial evidence for a major cluster population of large, populous clusters greater than 10 to the 9th yr old in the Large Magellanic Cloud.

  12. Spectroscopically identified intermediate age stars at 0.5-3 pc distance from Sagittarius A*

    NASA Astrophysics Data System (ADS)

    Nishiyama, Shogo; Schödel, Rainer; Yoshikawa, Tatsuhito; Nagata, Tetsuya; Minowa, Yosuke; Tamura, Motohide

    2016-04-01

    Context. Nuclear star clusters (NSCs) at the dynamical center of galaxies appear to have a complex star formation history. This suggests repeated star formation, even in the influence of the strong tidal field from supermassive black holes. Although the central region of our Galaxy is an ideal target for studies of the star formation history in the NSCs, most studies in the past have concentrated on a projected distance of RSgr A ∗ ~ 0.5 pc from the supermassive black hole Sgr A*. Aims: In our previous study, we detected 31 so far unknown early-type star candidates throughout the Galactic NSC (at RSgr A ∗ = 0.5-3 pc). They were found via near-infrared (NIR) imaging observations with narrow-band filters which are sensitive to CO absorption lines at ~2.3 μm, a prominent feature for old, late-type stars. The aim of this study is to confirm the spectral type for the early-type star candidates. Methods: We have carried out NIR spectroscopic observations of the early-type star candidates using Subaru/IRCS/AO188 and the laser guide star system. K-band spectra for 20 out of the 31 candidates and reference late-type stars were obtained. By determining an equivalent width, EW(CO), of the 12CO absorption feature at ≈2.294 μm, we have derived an effective temperature and a bolometric magnitude for each candidate and late-type star, and then constructed an HR diagram. Results: No young (~Myr) massive stars are included in the 20 candidates we observed; however, 13 candidates are most likely intermediate-age giants (50-500 Myr). Two other sources have ages of ~1 Gyr and the remaining five sources are old (>1 Gyr), late-type giants. Conclusions: Although none of the early-type star candidates from our previous narrow-band imaging observations can be confirmed as a young star, we find that the photometric technique can distinguish old, late-type giants from young and intermediate-age populations. From the 20 spectroscopically observed candidates, 65% of them are confirmed

  13. Ages of Extragalactic Intermediate-Age Star Clusters

    NASA Technical Reports Server (NTRS)

    Flower, P. J.

    1983-01-01

    A dating technique for faint, distant star clusters observable in the local group of galaxies with the space telescope is discussed. Color-magnitude diagrams of Magellanic Cloud clusters are mentioned along with the metallicity of star clusters.

  14. INTERMEDIATE-AGE CLUSTERS IN A FIELD CONTAINING M31 AND M32 STARS

    SciTech Connect

    Rudenko, Pavlo; Worthey, Guy; Mateo, Mario E-mail: gworthey@wsu.edu

    2009-12-15

    Hubble Space Telescope/Advanced Camera for Surveys fields toward M31 and M32 were examined for the presence of possible star clusters. On the basis of stellar photometry, two intermediate-age clusters were found in the field that contains both M31 and M32 stars. One is approximately 200 Myr of age with a mass {approx}400 M {sub sun}, and the other is 1 Gyr old with mass {approx}8 x 10{sup 4} M {sub sun}. Several other cluster candidates are identified, but their stellar populations are more similar to the field: old and slightly metal-poor.

  15. A VLT/FLAMES STUDY OF THE PECULIAR INTERMEDIATE-AGE LARGE MAGELLANIC CLOUD STAR CLUSTER NGC 1846. I. KINEMATICS

    SciTech Connect

    Mackey, A. D.; Da Costa, G. S.; Yong, D.; Ferguson, A. M. N.

    2013-01-01

    In this paper we present high-resolution VLT/FLAMES observations of red giant stars in the massive intermediate-age Large Magellanic Cloud star cluster NGC 1846, which, on the basis of its extended main-sequence turnoff (EMSTO), possesses an internal age spread of Almost-Equal-To 300 Myr. We describe in detail our target selection and data reduction procedures, and construct a sample of 21 stars possessing radial velocities indicating their membership of NGC 1846 at high confidence. We consider high-resolution spectra of the planetary nebula Mo-17, and conclude that this object is also a member of the cluster. Our measured radial velocities allow us to conduct a detailed investigation of the internal kinematics of NGC 1846, the first time this has been done for an EMSTO system. The key result of this work is that the cluster exhibits a significant degree of systemic rotation, of a magnitude comparable to the mean velocity dispersion. Using an extensive suite of Monte Carlo models we demonstrate that, despite our relatively small sample size and the substantial fraction of unresolved binary stars in the cluster, the rotation signal we detect is very likely to be genuine. Our observations are in qualitative agreement with the predictions of simulations modeling the formation of multiple populations of stars in globular clusters, where a dynamically cold, rapidly rotating second generation is a common feature. NGC 1846 is less than one relaxation time old, so any dynamical signatures encoded during its formation ought to remain present.

  16. Conservation of Angular Momentum Confirmed: Rotational Deceleration in an Intermediate-Age Star Cluster

    NASA Astrophysics Data System (ADS)

    de Grijs, Richard; Wu, Xiaohan; Li, Chengyuan; Deng, Licai

    2017-01-01

    The subgiant branch (SGB) of the extended main-sequence turn-off (eMSTO) Small Magellanic Cloud cluster NGC 419 is significantly broader at bluer than at redder colors. If we would assume that the widths of the features in color--magnitude space were entirely owing to a range in stellar ages, the star-formation histories of the eMSTO stars and the blue SGB region would be significantly more prolonged than that of the red part of the SGB. This cannot be explained by assuming an internal age spread, a popular scenario to explain eMSTOs at intermediate ages (1--2 Gyr). We show that rotational deceleration of a population of rapidly rotating stars naturally explains the observed trend along the SGB. Our analysis shows that a "converging" SGB could be produced if the cluster is mostly composed of rapidly rotating stars that slow down over time owing to the conservation of angular momentum during their evolutionary expansion from main-sequence turn-off stars to red giants.

  17. No evidence for younger stellar generations within the intermediate-age massive clusters NGC 1783, NGC 1806 and NGC 411

    NASA Astrophysics Data System (ADS)

    Cabrera-Ziri, I.; Niederhofer, F.; Bastian, N.; Rejkuba, M.; Balbinot, E.; Kerzendorf, W. E.; Larsen, S. S.; Mackey, A. D.; Dalessandro, E.; Mucciarelli, A.; Charbonnel, C.; Hilker, M.; Gieles, M.; Hénault-Brunet, V.

    2016-07-01

    Recently, Li et al. claimed to have found evidence for multiple generations of stars in the intermediate-age clusters NGC 1783, NGC 1806 and NGC 411 in the Large and Small Magellanic Clouds. Here we show that these young stellar populations are present in the field regions around these clusters and are not likely associated with the clusters themselves. Using the same data sets, we find that the background subtraction method adopted by the authors does not adequately remove contaminating stars in the small number Poisson limit. Hence, we conclude that their results do not provide evidence of young generations of stars within these clusters.

  18. Extended main sequence turnoffs in intermediate-age star clusters: a correlation between turnoff width and early escape velocity

    SciTech Connect

    Goudfrooij, Paul; Kozhurina-Platais, Vera; Kalirai, Jason S.; Correnti, Matteo E-mail: verap@stsci.edu E-mail: correnti@stsci.edu; and others

    2014-12-10

    We present a color-magnitude diagram analysis of deep Hubble Space Telescope imaging of a mass-limited sample of 18 intermediate-age (1-2 Gyr old) star clusters in the Magellanic Clouds, including eight clusters for which new data were obtained. We find that all star clusters in our sample feature extended main-sequence turnoff (eMSTO) regions that are wider than can be accounted for by a simple stellar population (including unresolved binary stars). FWHM widths of the MSTOs indicate age spreads of 200-550 Myr. We evaluate the dynamical evolution of clusters with and without initial mass segregation. Our main results are (1) the fraction of red clump (RC) stars in secondary RCs in eMSTO clusters scales with the fraction of MSTO stars having pseudo-ages of ≲1.35 Gyr; (2) the width of the pseudo-age distributions of eMSTO clusters is correlated with their central escape velocity v {sub esc}, both currently and at an age of 10 Myr. We find that these two results are unlikely to be reproduced by the effects of interactive binary stars or a range of stellar rotation velocities. We therefore argue that the eMSTO phenomenon is mainly caused by extended star formation within the clusters; and (3) we find that v {sub esc} ≥ 15 km s{sup –1} out to ages of at least 100 Myr for all clusters featuring eMSTOs, and v {sub esc} ≤ 12 km s{sup –1} at all ages for two lower-mass clusters in the same age range that do not show eMSTOs. We argue that eMSTOs only occur for clusters whose early escape velocities are higher than the wind velocities of stars that provide material from which second-generation stars can form. The threshold of 12-15 km s{sup –1} is consistent with wind velocities of intermediate-mass asymptotic giant branch stars and massive binary stars in the literature.

  19. AGE DETERMINATION OF SIX INTERMEDIATE-AGE SMALL MAGELLANIC CLOUD STAR CLUSTERS WITH HST/ACS

    SciTech Connect

    Glatt, Katharina; Kayser, Andrea; Grebel, Eva K.; Sabbi, Elena; Gallagher, John S. III; Harbeck, Daniel; Nota, Antonella; Sirianni, Marco; Clementini, Gisella; Tosi, Monica; Koch, Andreas; Da Costa, Gary

    2008-10-15

    We present a photometric analysis of the star clusters Lindsay 1, Kron 3, NGC 339, NGC 416, Lindsay 38, and NGC 419 in the Small Magellanic Cloud (SMC), observed with the Hubble Space Telescope Advanced Camera for Surveys (ACS) in the F555W and F814W filters. Our color-magnitude diagrams (CMDs) extend {approx}3.5 mag deeper than the main-sequence turnoff points, deeper than any previous data. Cluster ages were derived using three different isochrone models: Padova, Teramo, and Dartmouth, which are all available in the ACS photometric system. Fitting observed ridgelines for each cluster, we provide a homogeneous and unique set of low-metallicity, single-age fiducial isochrones. The cluster CMDs are best approximated by the Dartmouth isochrones for all clusters, except for NGC 419 where the Padova isochrones provided the best fit. Using Dartmouth isochrones we derive ages of 7.5 {+-} 0.5 Gyr (Lindsay 1), 6.5 {+-} 0.5 Gyr (Kron 3), 6 {+-} 0.5 Gyr (NGC 339), 6 {+-} 0.5 Gyr (NGC 416), and 6.5 {+-} 0.5 Gyr (Lindsay 38). The CMD of NGC 419 shows several main-sequence turnoffs, which belong to the cluster and to the SMC field. We thus derive an age range of 1.2-1.6 Gyr for NGC 419. We confirm that the SMC contains several intermediate-age populous star clusters with ages unlike those of the Large Magellanic Cloud and the Milky Way. Interestingly, our intermediate-age star clusters have a metallicity spread of {approx}0.6 dex, which demonstrates that the SMC does not have a smooth, monotonic age-metallicity relation. We find an indication for centrally-concentrated blue straggler star candidates in NGC 416, while these are not present for the other clusters. Using the red clump magnitudes, we find that the closest cluster, NGC 419 ({approx}50 kpc), and the farthest cluster, Lindsay 38 ({approx}67 kpc), have a relative distance of {approx}17 kpc, which confirms the large depth of the SMC. The three oldest SMC clusters (NGC 121, Lindsay 1, and Kron 3) lie in the northwestern

  20. Age Determination of Six Intermediate-Age Small Magellanic Cloud Star Clusters with HST/ACS

    NASA Astrophysics Data System (ADS)

    Glatt, Katharina; Grebel, Eva K.; Sabbi, Elena; Gallagher, John S., III; Nota, Antonella; Sirianni, Marco; Clementini, Gisella; Tosi, Monica; Harbeck, Daniel; Koch, Andreas; Kayser, Andrea; Da Costa, Gary

    2008-10-01

    We present a photometric analysis of the star clusters Lindsay 1, Kron 3, NGC 339, NGC 416, Lindsay 38, and NGC 419 in the Small Magellanic Cloud (SMC), observed with the Hubble Space Telescope Advanced Camera for Surveys (ACS) in the F555W and F814W filters. Our color-magnitude diagrams (CMDs) extend ~3.5 mag deeper than the main-sequence turnoff points, deeper than any previous data. Cluster ages were derived using three different isochrone models: Padova, Teramo, and Dartmouth, which are all available in the ACS photometric system. Fitting observed ridgelines for each cluster, we provide a homogeneous and unique set of low-metallicity, single-age fiducial isochrones. The cluster CMDs are best approximated by the Dartmouth isochrones for all clusters, except for NGC 419 where the Padova isochrones provided the best fit. Using Dartmouth isochrones we derive ages of 7.5 ± 0.5 Gyr (Lindsay 1), 6.5 ± 0.5 Gyr (Kron 3), 6 ± 0.5 Gyr (NGC 339), 6 ± 0.5 Gyr (NGC 416), and 6.5 ± 0.5 Gyr (Lindsay 38). The CMD of NGC 419 shows several main-sequence turnoffs, which belong to the cluster and to the SMC field. We thus derive an age range of 1.2-1.6 Gyr for NGC 419. We confirm that the SMC contains several intermediate-age populous star clusters with ages unlike those of the Large Magellanic Cloud and the Milky Way. Interestingly, our intermediate-age star clusters have a metallicity spread of ~0.6 dex, which demonstrates that the SMC does not have a smooth, monotonic age-metallicity relation. We find an indication for centrally-concentrated blue straggler star candidates in NGC 416, while these are not present for the other clusters. Using the red clump magnitudes, we find that the closest cluster, NGC 419 (~50 kpc), and the farthest cluster, Lindsay 38 (~67 kpc), have a relative distance of ~17 kpc, which confirms the large depth of the SMC. The three oldest SMC clusters (NGC 121, Lindsay 1, and Kron 3) lie in the northwestern part of the SMC, while the youngest (NGC 419

  1. Combined Effects of Binaries and Stellar Rotation on the Color-Magnitude Diagrams of Intermediate-age Star Clusters

    NASA Astrophysics Data System (ADS)

    Li, Zhongmu; Mao, Caiyan; Chen, Li; Zhang, Qian

    2012-12-01

    About 70% of intermediate-age star clusters in the Large Magellanic Clouds have been confirmed to have broad main sequence, multiple or extended turnoffs, and dual red giant clumps. The observed result seems to be at odds with the classical idea that such clusters are simple stellar populations. Although many models have been used to explain the results via factors such as prolonged star formation history, metallicity spread, differential reddening, selection effect, observational uncertainty, stellar rotation, and binary interaction, the reason for the special color-magnitude diagrams is still uncertain. We revisit this question via the combination of stellar rotation and binary effects. As a result, it shows "golf club" color-magnitude diagrams with broad or multiple turnoffs, dual red clumps, blue stragglers, red stragglers, and extended main sequences. Because both binaries and massive rotators are common, our result suggests that most color-magnitude diagrams, including extended turnoff or multiple turnoffs, can be explained using simple stellar populations including both binary and stellar rotation effects, or composite populations with two components.

  2. COMBINED EFFECTS OF BINARIES AND STELLAR ROTATION ON THE COLOR-MAGNITUDE DIAGRAMS OF INTERMEDIATE-AGE STAR CLUSTERS

    SciTech Connect

    Li Zhongmu; Mao Caiyan; Chen Li; Zhang Qian

    2012-12-20

    About 70% of intermediate-age star clusters in the Large Magellanic Clouds have been confirmed to have broad main sequence, multiple or extended turnoffs, and dual red giant clumps. The observed result seems to be at odds with the classical idea that such clusters are simple stellar populations. Although many models have been used to explain the results via factors such as prolonged star formation history, metallicity spread, differential reddening, selection effect, observational uncertainty, stellar rotation, and binary interaction, the reason for the special color-magnitude diagrams is still uncertain. We revisit this question via the combination of stellar rotation and binary effects. As a result, it shows 'golf club' color-magnitude diagrams with broad or multiple turnoffs, dual red clumps, blue stragglers, red stragglers, and extended main sequences. Because both binaries and massive rotators are common, our result suggests that most color-magnitude diagrams, including extended turnoff or multiple turnoffs, can be explained using simple stellar populations including both binary and stellar rotation effects, or composite populations with two components.

  3. Age determination of 15 old to intermediate-age small Magellanic cloud star clusters

    SciTech Connect

    Parisi, M. C.; Clariá, J. J.; Piatti, A. E.; Geisler, D.; Leiton, R.; Carraro, G.; Costa, E.; Grocholski, A. J.; Sarajedini, A. E-mail: claria@oac.uncor.edu E-mail: dgeisler@astro-udec.cl E-mail: gcarraro@eso.org E-mail: grocholski@phys.lsu.edu

    2014-04-01

    We present color-magnitude diagrams in the V and I bands for 15 star clusters in the Small Magellanic Cloud (SMC) based on data taken with the Very Large Telescope (VLT, Chile). We selected these clusters from our previous work, wherein we derived cluster radial velocities and metallicities from calcium II infrared triplet (CaT) spectra also taken with the VLT. We discovered that the ages of six of our clusters have been appreciably underestimated by previous studies, which used comparatively small telescopes, graphically illustrating the need for large apertures to obtain reliable ages of old and intermediate-age SMC star clusters. In particular, three of these clusters, L4, L6, and L110, turn out to be among the oldest SMC clusters known, with ages of 7.9 ± 1.1, 8.7 ± 1.2, and 7.6 ± 1.0 Gyr, respectively, helping to fill a possible 'SMC cluster age gap'. Using the current ages and metallicities from Parisi et al., we analyze the age distribution, age gradient, and age-metallicity relation (AMR) of a sample of SMC clusters measured homogeneously. There is a suggestion of bimodality in the age distribution but it does not show a constant slope for the first 4 Gyr, and we find no evidence for an age gradient. Due to the improved ages of our cluster sample, we find that our AMR is now better represented in the intermediate/old period than we had derived in Parisi et al., where we simply took ages available in the literature. Additionally, clusters younger than ∼4 Gyr now show better agreement with the bursting model of Pagel and Tautvaišienė, but we confirm that this model is not a good representation of the AMR during the intermediate/old period. A more complicated model is needed to explain the SMC chemical evolution in that period.

  4. THE INSIDIOUS BOOSTING OF THERMALLY PULSING ASYMPTOTIC GIANT BRANCH STARS IN INTERMEDIATE-AGE MAGELLANIC CLOUD CLUSTERS

    SciTech Connect

    Girardi, Léo; Marigo, Paola; Bressan, Alessandro; Rosenfield, Philip

    2013-11-10

    this critical age range cannot be accurately derived by approximations such as the fuel consumption theorem, which ignore, by construction, the above evolutionary effect. Third, a careful revision of AGB star populations in intermediate-age MC clusters is urgently demanded, promisingly with the aid of detailed sets of stellar isochrones.

  5. Massive soliton stars

    NASA Astrophysics Data System (ADS)

    Chiu, Hong-Yee

    1990-05-01

    The structure of nontopological solutions of Einstein field equations as proposed by Friedberg, Lee, and Pang (1987) is examined. This analysis incorporates finite temperature effects and pair creation. Quarks are assumed to be the only species that exist in interior of soliton stars. The possibility of primordial creation of soliton stars in the incomplete decay of the degenerate vacuum in early universe is explored. Because of dominance of pair creation inside soliton stars, the luminosity of soliton stars is not determined by its radiative transfer characteristics, and the surface temperature of soliton stars can be the same as its interior temperature. It is possible that soliton stars are intense X-ray radiators at large distances. Soliton stars are nearly 100 percent efficient energy converters, converting the rest energy of baryons entering the interior into radiation. It is possible that a sizable number of baryons may also be trapped inside soliton stars during early epochs of the universe. In addition, if soliton stars exist they could assume the role played by massive black holes in galactic centers.

  6. Massive soliton stars

    NASA Technical Reports Server (NTRS)

    Chiu, Hong-Yee

    1990-01-01

    The structure of nontopological solutions of Einstein field equations as proposed by Friedberg, Lee, and Pang (1987) is examined. This analysis incorporates finite temperature effects and pair creation. Quarks are assumed to be the only species that exist in interior of soliton stars. The possibility of primordial creation of soliton stars in the incomplete decay of the degenerate vacuum in early universe is explored. Because of dominance of pair creation inside soliton stars, the luminosity of soliton stars is not determined by its radiative transfer characteristics, and the surface temperature of soliton stars can be the same as its interior temperature. It is possible that soliton stars are intense X-ray radiators at large distances. Soliton stars are nearly 100 percent efficient energy converters, converting the rest energy of baryons entering the interior into radiation. It is possible that a sizable number of baryons may also be trapped inside soliton stars during early epochs of the universe. In addition, if soliton stars exist they could assume the role played by massive black holes in galactic centers.

  7. Massive soliton stars

    NASA Technical Reports Server (NTRS)

    Chiu, Hong-Yee

    1990-01-01

    The structure of nontopological solutions of Einstein field equations as proposed by Friedberg, Lee, and Pang (1987) is examined. This analysis incorporates finite temperature effects and pair creation. Quarks are assumed to be the only species that exist in interior of soliton stars. The possibility of primordial creation of soliton stars in the incomplete decay of the degenerate vacuum in early universe is explored. Because of dominance of pair creation inside soliton stars, the luminosity of soliton stars is not determined by its radiative transfer characteristics, and the surface temperature of soliton stars can be the same as its interior temperature. It is possible that soliton stars are intense X-ray radiators at large distances. Soliton stars are nearly 100 percent efficient energy converters, converting the rest energy of baryons entering the interior into radiation. It is possible that a sizable number of baryons may also be trapped inside soliton stars during early epochs of the universe. In addition, if soliton stars exist they could assume the role played by massive black holes in galactic centers.

  8. Magnetospheres of massive stars

    NASA Astrophysics Data System (ADS)

    Küker, M.

    We study the interaction of line-driven winds from massive stars with the magnetic field rooted in these stars by carrying out numerical simulations using the Nirvana MHD code in 2D in spherical polar coordinates. The code's adaptive mesh refinement feature allows high spatial resolution across the whole simulation box. We study both O and Wolf-Rayet stars for a range of magnetic field strengths from weak to strong as measured by the confinement parameter. For weak fields our simulations show that the initially dipolar field opens up far away from the star and a thin disk-like structure forms in the equatorial plane of the magnetic field. For stronger fields the disk is disrupted close to the stellar surface and closed field lines persist at low latitudes. For very strong fields a pronounced magnetosphere forms where the gas is forced to move along the field lines and eventually falls back to the stellar surface.

  9. Constraining massive star evolution from massive clusters

    NASA Astrophysics Data System (ADS)

    Chene, Andre-Nicolas; Herve, Anthony; Martins, Fabrice; Bouret, Jean-Claude; Borissova, Jordanka; Ramirez, Sebastian; Kurtev, Radostin; Kumar, Nanda; Amigo, Pia; Fierro, Celia

    2013-06-01

    The exact evolution of massive stars is not accurately known at present. The general trend is that stars with masses above 40 - 60 Mo go from O-type stars to H-rich WN stars, and Luminous Blue Variables (?), before turning into H-poor WN stars and finally WC stars. At lower masses, the H-rich WN and LBV phases are replaced by a blue and a red supergiant phases, respectively. However, what are the details of such evolutionary sequences? The study of massive clusters is a golden opportunity to establish this. Indeed, the turn-off mass of massive clusters can be directly translated into the mass, and hence the nature, of the progenitors of their evolved objects contents. So far, only the Arches, Quintuplet, NGC3603, NGC2244 and central clusters have been studied this way. But 6 newly discovered heavily-obscured clusters in the large survey â"VISTA Variables in the Via Lactea" (VVV) have been found to have Wolf-Rayet stars as well as blue and/or red supergiants, together with many main sequence OB stars. This poster presents our efforts to model the massive star components of these clusters using CMFGEN, bringing new blocks to the pavement of massive stellar evolution and more than doubling the number of clusters in which such evolutionary sequence are established.

  10. Massive star forming environments

    NASA Astrophysics Data System (ADS)

    Devine, Kathryn Elizabeth

    2010-12-01

    We present a study of the earliest stages of massive star formation, in which we focus on Infrared Dark Clouds (IRDCs) and young massive clusters. We present Very Large Array spectral line observations of ammonia (NH 3) and CCS toward four IRDCs. The NH3 lines provide diagnostics of the temperature and density structure within IRDCs. Based upon the NH 3 column density, IRDCs have masses of ˜ 103 to 10 4 M⊙ . We detect twenty NH3 clumps within four IRDCs, with radii < 0.3 pc and masses ˜ 102 to 103 M⊙ . A majority of the clumps are associated with signatures of star formation: 24 mum emission, H2O masers, 8 GHz continuum emission, and/or outflows. The physical properties of the clumps are consistent with massive cluster progenitors. From the NH3 emission we also find distinct velocity components, or "subclouds", within each IRDC. Although they appear ubiquitous in IRDCs, subclouds have not previously been reported. Subclouds may represent an intermediate stage of molecular cloud fragmentation, between filamentary structure and clump formation. The spatial distribution of the CCS and NH3 emission is generally anti-correlated, with the NH 3 predominantly in the high-density clumps, and CCS in lower-density gas. This spatial distribution may be explained by chemical evolution models for star forming gas, where in chemically young clouds with recently disrupted gas CCS forms quickly. In early clump formation CCS is abundant and in the centers of more evolved star forming clumps CCS is depleted. Near infrared observations of three embedded massive star forming regions are presented from the Near Infrared Imager (NIRIM) camera on the 3.5 m WIYN telescope. We report J, H, and K' band photometry in the clusters AFGL437, AFGL5180, and AFGL5142 and use these results to probe the stellar populations, extinction, and ages of the clusters. We find that all three clusters suffer significant extinction (AK ˜1), have ages ≤ 5 Myr, and are actively forming stars. We

  11. The evolution of massive stars

    NASA Technical Reports Server (NTRS)

    1982-01-01

    The hypotheses underlying theoretical studies of the evolution of massive model stars with and without mass loss are summarized. The evolutionary tracks followed by the models across theoretical Hertzsprung-Russell (HR) diagrams are compared with the observed distribution of B stars in an HR diagram. The pulsational properties of models of massive star are also described.

  12. Mass loss of massive stars

    NASA Astrophysics Data System (ADS)

    Martins, F.

    2015-12-01

    In this contribution we review the properties of the winds of massive stars. We focus on OB stars, red supergiants, Luminous Blue Variables (LBVs) and Wolf-Rayet stars. For each type of star, we summarize the main wind properties and we give a brief description of the physical mechanism(s) responsible for mass loss.

  13. Fragmentation in massive star formation.

    PubMed

    Beuther, Henrik; Schilke, Peter

    2004-02-20

    Studies of evolved massive stars indicate that they form in a clustered mode. During the earliest evolutionary stages, these regions are embedded within their natal cores. Here we present high-spatial-resolution interferometric dust continuum observations disentangling the cluster-like structure of a young massive star-forming region. The derived protocluster mass distribution is consistent with the stellar initial mass function. Thus, fragmentation of the initial massive cores may determine the initial mass function and the masses of the final stars. This implies that stars of all masses can form via accretion processes, and coalescence of intermediate-mass protostars appears not to be necessary.

  14. The Destructive Birth of Massive Stars and Massive Star Clusters

    NASA Astrophysics Data System (ADS)

    Rosen, Anna; Krumholz, Mark; McKee, Christopher F.; Klein, Richard I.; Ramirez-Ruiz, Enrico

    2017-01-01

    Massive stars play an essential role in the Universe. They are rare, yet the energy and momentum they inject into the interstellar medium with their intense radiation fields dwarfs the contribution by their vastly more numerous low-mass cousins. Previous theoretical and observational studies have concluded that the feedback associated with massive stars' radiation fields is the dominant mechanism regulating massive star and massive star cluster (MSC) formation. Therefore detailed simulation of the formation of massive stars and MSCs, which host hundreds to thousands of massive stars, requires an accurate treatment of radiation. For this purpose, we have developed a new, highly accurate hybrid radiation algorithm that properly treats the absorption of the direct radiation field from stars and the re-emission and processing by interstellar dust. We use our new tool to perform a suite of three-dimensional radiation-hydrodynamic simulations of the formation of massive stars and MSCs. For individual massive stellar systems, we simulate the collapse of massive pre-stellar cores with laminar and turbulent initial conditions and properly resolve regions where we expect instabilities to grow. We find that mass is channeled to the massive stellar system via gravitational and Rayleigh-Taylor (RT) instabilities. For laminar initial conditions, proper treatment of the direct radiation field produces later onset of RT instability, but does not suppress it entirely provided the edges of the radiation-dominated bubbles are adequately resolved. RT instabilities arise immediately for turbulent pre-stellar cores because the initial turbulence seeds the instabilities. To model MSC formation, we simulate the collapse of a dense, turbulent, magnetized Mcl = 106 M⊙ molecular cloud. We find that the influence of the magnetic pressure and radiative feedback slows down star formation. Furthermore, we find that star formation is suppressed along dense filaments where the magnetic field is

  15. Extended Main-sequence Turn-offs in Intermediate-age Star Clusters: Stellar Rotation Diminishes, but Does Not Eliminate, Age Spreads

    NASA Astrophysics Data System (ADS)

    Goudfrooij, Paul; Girardi, Léo; Correnti, Matteo

    2017-09-01

    Extended main-sequence turn-off (eMSTO) regions are a common feature in color–magnitude diagrams of young- and intermediate-age star clusters in the Magellanic Clouds. The nature of eMSTOs remains debated in the literature. The currently most popular scenarios are extended star formation activity and ranges of stellar rotation rates. Here we study details of differences in main-sequence turn-off (MSTO) morphology expected from spreads in age versus spreads in rotation rates, using Monte Carlo simulations with the Geneva syclist isochrone models that include the effects of stellar rotation. We confirm a recent finding of Niederhofer et al. that a distribution of stellar rotation velocities yields an MSTO extent that is proportional to the cluster age, as observed. However, we find that stellar rotation yields MSTO crosscut widths that are generally smaller than observed ones at a given age. We compare the simulations with high-quality Hubble Space Telescope data of NGC 1987 and NGC 2249, which are the two only relatively massive star clusters with an age of ∼1 Gyr for which such data is available. We find that the distribution of stars across the eMSTOs of these clusters cannot be explained solely by a distribution of stellar rotation velocities, unless the orientations of rapidly rotating stars are heavily biased toward an equator-on configuration. Under the assumption of random viewing angles, stellar rotation can account for ∼60% and ∼40% of the observed FWHM widths of the eMSTOs of NGC 1987 and NGC 2249, respectively. In contrast, a combination of distributions of stellar rotation velocities and stellar ages fits the observed eMSTO morphologies very well.

  16. Massive Star Makes Waves

    NASA Image and Video Library

    2012-12-18

    The giant star Zeta Ophiuchi, a young, large and hot star located around 370 light-years away, is having a hocking effect on the surrounding dust clouds in this infrared image from NASA Spitzer Space Telescope.

  17. Massive star clusters in galaxies.

    PubMed

    Harris, William E

    2010-02-28

    The ensemble of all star clusters in a galaxy constitutes its star cluster system. In this review, the focus of the discussion is on the ability of star clusters, particularly the systems of old massive globular clusters (GCs), to mark the early evolutionary history of galaxies. I review current themes and key findings in GC research, and highlight some of the outstanding questions that are emerging from recent work.

  18. Theoretical Considerations of Massive Star Formation

    NASA Technical Reports Server (NTRS)

    Yorke, Harold W.

    2006-01-01

    This viewgraph presentation reviews the formation of massive stars. The formation of massive stars is different in many ways from the formation of other stars. The presentation shows the math, and the mechanisms that must be possible for a massive star to form.

  19. Theoretical Considerations of Massive Star Formation

    NASA Technical Reports Server (NTRS)

    Yorke, Harold W.

    2006-01-01

    This viewgraph presentation reviews the formation of massive stars. The formation of massive stars is different in many ways from the formation of other stars. The presentation shows the math, and the mechanisms that must be possible for a massive star to form.

  20. The Effects of the Overshooting of the Convective Core on Main-sequence Turnoffs of Young- and Intermediate-age Star Clusters

    NASA Astrophysics Data System (ADS)

    Yang, Wuming; Tian, Zhijia

    2017-02-01

    Recent investigations have shown that the extended main-sequence turnoffs (eMSTOs) are a common feature of intermediate-age star clusters in the Magellanic Clouds. The eMSTOs are also found in the color–magnitude diagram of young-age star clusters. The origin of the eMSTOs is still an open question. Moreover, asteroseismology shows that the value of the overshooting parameter {δ }{ov} of the convective core is not fixed for the stars with an approximatelly equal mass. Thus the MSTO of star clusters may be affected by the overshooting of the convective core (OVCC). We calculated the effects of the OVCC with different δ ov on the MSTO of young- and intermediate-age star clusters. If δ ov varies between stars in a cluster, the observed eMSTOs of young- and intermediate-age star clusters can be explained well by the effects. The equivalent age spreads of MSTO caused by the OVCC are related to the age of star clusters and are in good agreement with observed results of many clusters. Moreover, the observed eMSTOs of NGC 1856 are reproduced by the coeval populations with different δ ov. The eMSTOs of star clusters may be relevant to the effects of the OVCC. The effects of the OVCC are similar to that of rotation in some respects. However, the effects cannot result in a significant split of the main sequence of young star clusters at {m}U≲ 21. The presence of a rapid rotation can make the split of the main sequence of young star clusters more significant.

  1. Massive binary stars as a probe of massive star formation

    NASA Astrophysics Data System (ADS)

    Kiminki, Daniel C.

    2010-10-01

    Massive stars are among the largest and most influential objects we know of on a sub-galactic scale. Binary systems, composed of at least one of these stars, may be responsible for several types of phenomena, including type Ib/c supernovae, short and long gamma ray bursts, high-velocity runaway O and B-type stars, and the density of the parent star clusters. Our understanding of these stars has met with limited success, especially in the area of their formation. Current formation theories rely on the accumulated statistics of massive binary systems that are limited because of their sample size or the inhomogeneous environments from which the statistics are collected. The purpose of this work is to provide a higher-level analysis of close massive binary characteristics using the radial velocity information of 113 massive stars (B3 and earlier) and binary orbital properties for the 19 known close massive binaries in the Cygnus OB2 Association. This work provides an analysis using the largest amount of massive star and binary information ever compiled for an O-star rich cluster like Cygnus OB2, and compliments other O-star binary studies such as NGC 6231, NGC 2244, and NGC 6611. I first report the discovery of 73 new O or B-type stars and 13 new massive binaries by this survey. This work involved the use of 75 successful nights of spectroscopic observation at the Wyoming Infrared Observatory in addition to observations obtained using the Hydra multi-object spectrograph at WIYN, the HIRES echelle spectrograph at KECK, and the Hamilton spectrograph at LICK. I use these data to estimate the spectrophotometric distance to the cluster and to measure the mean systemic velocity and the one-sided velocity dispersion of the cluster. Finally, I compare these data to a series of Monte Carlo models, the results of which indicate that the binary fraction of the cluster is 57 +/- 5% and that the indices for the power law distributions, describing the log of the periods, mass

  2. PRESENT-DAY MASS FUNCTION OF SIX SMALL MAGELLANIC CLOUD INTERMEDIATE-AGE AND OLD STAR CLUSTERS

    SciTech Connect

    Glatt, Katharina; Grebel, Eva K.; Jordi, Katrin; Gallagher, John S. III; Harbeck, Daniel; Da Costa, Gary; Clementini, Gisella; Tosi, Monica; Nota, Antonella; Sabbi, Elena; Sirianni, Marco

    2011-08-15

    We determined the present-day mass functions (PDMFs) of the five intermediate-age star clusters Lindsay 1, Kron 3, NGC 339, NGC 416, and Lindsay 38 and the old star cluster NGC 121 in the Small Magellanic Cloud (SMC) based on observations with the Hubble Space Telescope Advanced Camera for Surveys. The global PDMFs are well matched by Salpeter-like power laws from their main-sequence turnoffs to {approx}0.6 M{sub sun} with a power-law exponent {alpha} ranging from 1.51 {+-} 0.11 (Lindsay 1) to 2.29 {+-} 0.15 (NGC 339). We derive total stellar masses of {approx}10{sup 5} M{sub sun}, except for Lindsay 38, whose mass is of the order of {approx}10{sup 4} M{sub sun}. Differences between the PDMFs most likely reflect the varying stages of dynamical evolution of the clusters. These SMC clusters do not follow the {alpha} versus concentration parameter c correlation as found for Galactic globular clusters of similar mass. This might be an age effect or due to their location in a galaxy where bulge and disk crossings do not play a role. No correlation is found between {alpha} and the cluster core and tidal radii (r{sub c} and r{sub t} , respectively), the half-light radii r{sub h} , age, central surface brightness, metallicity, and galactocentric radius r{sub gc}. All six clusters mass-segregated to different degrees. The two clusters Lindsay 1 and Kron 3 barely show signs for mass segregation, but have low-mass star deficient global PDMFs and might be the remnants of star clusters whose outer parts were stripped. A trend exists between the degree of mass segregation and the ratio age/relaxation time t{sub r,h}, which indicates the stage of dynamical evolution for a cluster. Our data thus suggest that the SMC clusters in the present sample had a range of initial densities and presumably different amounts of mass loss that led to different rates of dynamical evolution. The clusters' positions in the r{sub h,m}/r{sub t} versus r{sub 0}/r{sub h,m} plane imply that all of the

  3. Present-day Mass Function of Six Small Magellanic Cloud Intermediate-age and Old Star Clusters

    NASA Astrophysics Data System (ADS)

    Glatt, Katharina; Grebel, Eva K.; Jordi, Katrin; Gallagher, John S., III; Da Costa, Gary; Clementini, Gisella; Tosi, Monica; Harbeck, Daniel; Nota, Antonella; Sabbi, Elena; Sirianni, Marco

    2011-08-01

    We determined the present-day mass functions (PDMFs) of the five intermediate-age star clusters Lindsay 1, Kron 3, NGC 339, NGC 416, and Lindsay 38 and the old star cluster NGC 121 in the Small Magellanic Cloud (SMC) based on observations with the Hubble Space Telescope Advanced Camera for Surveys. The global PDMFs are well matched by Salpeter-like power laws from their main-sequence turnoffs to ~0.6 M sun with a power-law exponent α ranging from 1.51 ± 0.11 (Lindsay 1) to 2.29 ± 0.15 (NGC 339). We derive total stellar masses of ~105 M sun, except for Lindsay 38, whose mass is of the order of ~104 M sun. Differences between the PDMFs most likely reflect the varying stages of dynamical evolution of the clusters. These SMC clusters do not follow the α versus concentration parameter c correlation as found for Galactic globular clusters of similar mass. This might be an age effect or due to their location in a galaxy where bulge and disk crossings do not play a role. No correlation is found between α and the cluster core and tidal radii (rc and rt , respectively), the half-light radii rh , age, central surface brightness, metallicity, and galactocentric radius r gc. All six clusters mass-segregated to different degrees. The two clusters Lindsay 1 and Kron 3 barely show signs for mass segregation, but have low-mass star deficient global PDMFs and might be the remnants of star clusters whose outer parts were stripped. A trend exists between the degree of mass segregation and the ratio age/relaxation time t r, h , which indicates the stage of dynamical evolution for a cluster. Our data thus suggest that the SMC clusters in the present sample had a range of initial densities and presumably different amounts of mass loss that led to different rates of dynamical evolution. The clusters' positions in the r h, m /rt versus r 0/r h, m plane imply that all of the clusters are tidally filled. Our SMC clusters with projected distances larger than 3 kpc from the SMC center

  4. Massive Compact Stars as Quark Stars

    NASA Astrophysics Data System (ADS)

    Rodrigues, Hilário; Barbosa Duarte, Sérgio; de Oliveira, José Carlos T.

    2011-03-01

    High-mass compact stars have been reported recently in the literature, providing strong constraints on the properties of the ultra dense matter beyond the saturation nuclear density. In view of these results, the calculations of quark star or hybrid star equilibrium structure must be compatible with the provided observational data. But since the equations of state used in describing quark matter are in general too soft in comparison with the equation of states used to describe the hadronic or nuclear matter, the calculated quark star models presented in the literature are in general not suitable to explain the stability of highly-compact massive objects. In this work, we present the calculations of a spherically symmetric quark star structure by using an equation of state that takes into account the superconducting color-flavor locked phase of the strange quark matter. In addition, some fundamental aspects of QCD (asymptotic freedom and confinement) are considered by means of a phenomenological description of the deconfined quark phase, the density-dependent quark mass model. The quark matter behavior introduced by this model stiffens the corresponding equation of state. We thus investigate the influence of this model on the mass-radius diagram of quark stars. We obtain massive quark stars due to the stiffness of the equation of state, when a reasonable parameterization of the color superconducting gap is used. Models of quark stars enveloped by a nucleonic crust composed of a nuclear lattice embedded in an electron gas, with nuclei close to neutron drip line, are also discussed.

  5. Massive Stars in Interactive Binaries

    NASA Astrophysics Data System (ADS)

    St.-Louis, Nicole; Moffat, Anthony F. J.

    Massive stars start their lives above a mass of ~8 time solar, finally exploding after a few million years as core-collapse or pair-production supernovae. Above ~15 solar masses, they also spend most of their lives driving especially strong, hot winds due to their extreme luminosities. All of these aspects dominate the ecology of the Universe, from element enrichment to stirring up and ionizing the interstellar medium. But when they occur in close pairs or groups separated by less than a parsec, the interaction of massive stars can lead to various exotic phenomena which would not be seen if there were no binaries. These depend on the actual separation, and going from wie to close including colliding winds (with non-thermal radio emission and Wolf-Rayet dust spirals), cluster dynamics, X-ray binaries, Roche-lobe overflow (with inverse mass-ratios and rapid spin up), collisions, merging, rejuventation and massive blue stragglers, black-hole formation, runaways and gamma-ray bursts. Also, one wonders whether the fact that a massive star is in a binary affects its parameters compared to its isolated equivalent. These proceedings deal with all of these phenomena, plus binary statistics and determination of general physical properties of massive stars, that would not be possible with their single cousins. The 77 articles published in these proceedings, all based on oral talks, vary from broad revies to the lates developments in the field. About a third of the time was spent in open discussion of all participants, both for ~5 minutes after each talk and 8 half-hour long general dialogues, all audio-recorded, transcribed and only moderately edited to yield a real flavour of the meeting. The candid information in these discussions is sometimes more revealing than the article(s) that preceded them and also provide entertaining reading. The book is suitable for researchers and graduate students interested in stellar astrophysics and in various physical processes involved when

  6. PRISM Polarimetry of Massive Stars

    NASA Astrophysics Data System (ADS)

    Kerkstra, Brennan; Lomax, Jamie R.; Bjorkman, Karen S.; Bjorkman, Jon Eric; Skiff, Brian; Covey, Kevin R.; Wisniewski, John P.

    2016-01-01

    We present the early results from our long-term, multi-epoch filter polarization survey of massive stars in and around young Galactic clusters. These BVRI polarization data were obtained using the PRISM instrument mounted on the 1.8m Perkins Telescope at Lowell Observatory. We first detail the creation of our new semi-automated polarization data reduction pipeline that we developed to process these data. Next, we present our analysis of the instrumental polarization properties of the PRISM instrument, via observations of polarized and unpolarized standard stars. Finally, we present early results on the total and intrinsic polarization behavior of several isolated, previously suggested classical Be stars, and discuss these results in the context of the larger project.BK acknowledges support from a NSF/REU at the University of Oklahoma. This program was also supported by NSF-AST 11411563, 1412110, and 1412135.

  7. Massive Star Burps, Then Explodes

    NASA Astrophysics Data System (ADS)

    2007-04-01

    Berkeley -- In a galaxy far, far away, a massive star suffered a nasty double whammy. On Oct. 20, 2004, Japanese amateur astronomer Koichi Itagaki saw the star let loose an outburst so bright that it was initially mistaken for a supernova. The star survived, but for only two years. On Oct. 11, 2006, professional and amateur astronomers witnessed the star actually blowing itself to smithereens as Supernova 2006jc. Swift UVOT Image Swift UVOT Image (Credit: NASA / Swift / S.Immler) "We have never observed a stellar outburst and then later seen the star explode," says University of California, Berkeley, astronomer Ryan Foley. His group studied the event with ground-based telescopes, including the 10-meter (32.8-foot) W. M. Keck telescopes in Hawaii. Narrow helium spectral lines showed that the supernova's blast wave ran into a slow-moving shell of material, presumably the progenitor's outer layers ejected just two years earlier. If the spectral lines had been caused by the supernova's fast-moving blast wave, the lines would have been much broader. artistic rendering This artistic rendering depicts two years in the life of a massive blue supergiant star, which burped and spewed a shell of gas, then, two years later, exploded. When the supernova slammed into the shell of gas, X-rays were produced. (Credit: NASA/Sonoma State Univ./A.Simonnet) Another group, led by Stefan Immler of NASA's Goddard Space Flight Center, Greenbelt, Md., monitored SN 2006jc with NASA's Swift satellite and Chandra X-ray Observatory. By observing how the supernova brightened in X-rays, a result of the blast wave slamming into the outburst ejecta, they could measure the amount of gas blown off in the 2004 outburst: about 0.01 solar mass, the equivalent of about 10 Jupiters. "The beautiful aspect of our SN 2006jc observations is that although they were obtained in different parts of the electromagnetic spectrum, in the optical and in X-rays, they lead to the same conclusions," says Immler. "This

  8. Formation of Massive Stars: Theoretical Considerations

    NASA Technical Reports Server (NTRS)

    Yorke, Harold W.

    2008-01-01

    This slide presentation reviews theoretical considerations of the formation of massive stars. It addresses the questions that assuming a gravitationally unstable massive clump, how does enough material become concentrated into a sufficiently small volume within a sufficiently short time? and how does the forming massive star influence its immediate surroundings to limit its mass?

  9. Formation of Massive Stars: Theoretical Considerations

    NASA Technical Reports Server (NTRS)

    Yorke, Harold W.

    2008-01-01

    This slide presentation reviews theoretical considerations of the formation of massive stars. It addresses the questions that assuming a gravitationally unstable massive clump, how does enough material become concentrated into a sufficiently small volume within a sufficiently short time? and how does the forming massive star influence its immediate surroundings to limit its mass?

  10. Recovery From Giant Eruptions in Massive Stars

    NASA Astrophysics Data System (ADS)

    Kashi, A.; Davidson, K.; Humphreys, R. M.

    2015-12-01

    We perform radiation hydrodynamic simulations to study how very massive stars recover from giant eruptions. The post eruption star experience strong mass loss due to strong winds, driven by radial pulsations in the star*s interior, that operate by the κ-mechanism. The mass loss history obtained in our simulations resembles η Car*s history.

  11. Physics of Mass Loss in Massive Stars

    NASA Astrophysics Data System (ADS)

    Puls, Joachim; Sundqvist, Jon O.; Markova, Nevena

    2015-01-01

    We review potential mass-loss mechanisms in the various evolutionary stages of massive stars, from the well-known line-driven winds of O-stars and BA-supergiants to the less-understood winds of Red Supergiants. We discuss optically thick winds from Wolf-Rayet stars and Very Massive Stars, and the hypothesis of porosity-moderated, continuum-driven mass loss from stars formally exceeding the Eddington limit, which might explain the giant outbursts from Luminous Blue Variables. We finish this review with a glance on the impact of rapid rotation, magnetic fields and small-scale inhomogeneities in line-driven winds.

  12. Massive Young Star and its Cradle

    NASA Image and Video Library

    2010-07-14

    This star-forming region, captured by NASA Spitzer Space Telescope, is dominated by the bright, young star IRAS 13481-6124; it is the first massive baby star for which astronomers could obtain a detailed look at the dusty disk closely encircling it.

  13. Nucleosynthesis in Massive Stars and Supernovae

    NASA Astrophysics Data System (ADS)

    Woosley, S. E.; Hoffman, R. D.; Timmes, F. X.; Weaver, T. A.; Thielemann, F.-K.

    1997-02-01

    We briefly summarize some recent work on nucleosynthesis in massive stars and supernovae. Here we explore: 1) the effect of including additional sources of nucleosynthesis besides massive stars into the mixture - especially classical novae and several varieties of Type Ia supernovae; 2) the sensitivity of the results to choices of theoretical nuclear reaction rates in the mass range 28 <= A <= 70; 3) nucleosynthesis above the iron group using a much larger reaction network; and 4) the sensitivity of these results to recent revisions in experimental reaction rates for isotopes A <= 28. For the recently revised rates, 17O is no longer a massive star product.

  14. Massive Stars: Input Physics and Stellar Models

    NASA Astrophysics Data System (ADS)

    El Eid, M. F.; The, L.-S.; Meyer, B. S.

    2009-10-01

    We present a general overview of the structure and evolution of massive stars of masses ≥12 M ⊙ during their pre-supernova stages. We think it is worth reviewing this topic owing to the crucial role of massive stars in astrophysics, especially in the evolution of galaxies and the universe. We have performed several test computations with the aim to analyze and discuss many physical uncertainties still encountered in massive-star evolution. In particular, we explore the effects of mass loss, convection, rotation, 12C( α, γ)16O reaction and initial metallicity. We also compare and analyze the similarities and differences among various works and ours. Finally, we present useful comments on the nucleosynthesis from massive stars concerning the s-process and the yields for 26Al and 60Fe.

  15. Evolution of Massive Stars at Low Metallicity

    NASA Astrophysics Data System (ADS)

    Meynet, Georges; Walborn, Nolan R.; Hunter, Ian; Martayan, Christophe; van Marle, Allard Jan; Marchenko, Sergey; Vink, Jorick S.; Limongi, Marco; Levesque, Emily M.; Modjaz, Maryam

    2008-06-01

    This paper reports the contributions made on the occasion of the Special Session entitled “Evolution of Massive Stars at Low Metallicity” which was held on Sunday, December 9, 2007 in Kauai (USA).

  16. Old Massive Star Clusters in the Halo of Dwarf Galaxy NGC 6822

    NASA Astrophysics Data System (ADS)

    Hwang, Narae

    2015-08-01

    We present photometric and spectroscopic studies of halo star clusters in a dwarf irregular galaxy NGC 6822. The spectra of these halo clusters show that they are old (>=8 Gyr) and metal poor ([Fe/H] <=-1.5), and their luminosities indicate that these clusters are as massive as ~105 M⊙, which makes them old massive star clusters (Hwang et al. 2014). The massive star clusters are not uncommon in dwarf galaxies. However, these massive clusters in NGC 6822 are unique in terms that they have extended structure with half-light radii Rh ≈ 7.5 -14.0 pc, and that they are widely distributed, ranging from 10.‧7 (≈1.5 kpc) to 77‧ (≈11 kpc) from NGC 6822 center, which is almost perpendicular to the HI gas disk-like structure with young stellar components (Hwang et al. 2011). Interestingly, we have found out that the radial velocities of the massive clusters do not conform to the systematic rotation displayed by the HI structure nor the intermediate age carbon stars. There appears to be no consistent systematics among the velocities of these massive clusters, either. This may imply that these massive clusters have accreted into the halo of NGC 6822, not formed on-site. We are going to discuss the implication of these results regarding the formation of massive star clusters and the evolution of dwarf galaxies.

  17. Stellar Dynamical Processes in Massive Star and Star Cluster Formation

    NASA Astrophysics Data System (ADS)

    Tan, Jonathan; Eyer, L.

    2009-01-01

    We study how high precision astrometric measurements by SIM and GAIA of stars involved in dynamical ejection events from star clusters can constrain theories of massive star and star cluster formation. We focus on the Orion Nebula Cluster (ONC). First, we investigate the scientific potential associated with an accurate measurement of the distance and proper motion of Theta 1 Ori C, which is the most massive star in the cluster and was recently involved (about 4000 years ago) in the ejection of a B star: the Becklin-Neugebauer (BN) star. The motion of the BN star has taken it close to a massive protostar, known as source I, where it appears to have influenced the accretion and outflow activity, most likely by a tidal interaction with the accretion disk. An accurate proper motion measurement of Theta 1 Ori C will constrain BN's initial motion, allowing us to search for deflections caused by the gravitational potential of the massive protostar. Second, we search the Hipparcos catalog for candidate runaway stars, i.e. that have been dynamically ejected from the cluster over the course of the last several Myr. SIM and GAIA observations of these stars will be needed to confirm their origin from the ONC. The results of this study will constrain the star cluster formation timescale and the statistics of the population of ejected stars. JCT acknowledges support from from NSF CAREER grant AST-0645412 and a grant from NASA for SIM Science Studies.

  18. The Massive Star Population in M101

    NASA Astrophysics Data System (ADS)

    Grammer, Skyler; Humphreys, R. M.

    2014-01-01

    An increasing number of non-terminal giant eruptions are being observed by modern supernova and transient surveys. But very little is known about the origin of these giant eruptions and their progenitors, many of which are presumably very massive, evolved stars. Motivated by the small number of progenitors positively associated with these giant eruptions, we have begun a survey of the evolved massive star populations in nearby galaxies. The nearby, nearly face on, giant spiral M101 is an excellent laboratory for studying a large population of very massive stars and their environments. Using archival Hubble Space Telescope (HST) Advanced Camera For Surveys (ACS) data, we have produced a catalog of luminous stars with photometric errors <10% for V < 24.5 and 50% completeness down to V = 26.5 even in regions of high stellar crowding. Using the HST/ACS catalog, we have examined the 100 Myr star formation history (SFH) of the massive star population in M101. We examine how the build up of stars over the last 100 Myrs has proceeded both radially in the disk, and in the spiral arms and inter- arms. Our results indicate the presence of a radial age gradient in the disk with the youngest stars occurring at smaller radii. Comparing the SFHs in the arms to the inter-arms, we find that the star formation rates (SFR) are higher in the arms, by ˜ 1 dex, over the 100 Myr time. The cumulative star formation functions in the arm and inter-arms do not differ appreciably suggesting the arm and inter-arm populations have evolved coevally. We have determined the light curves for a large sample of the massive stars in M101 from the Large Binocular Telescope (LBT) nearby galaxy monitoring program. We have also obtained spectra of the visually brightest and most luminous variable sources with the multiple object spectrograph Hectospec on the Multiple Mirror Telescope and with the Multiple Object Dual Spectrograph on the LBT.

  19. How Massive Single Stars End Their Life

    NASA Technical Reports Server (NTRS)

    Heger, A.; Fryer, C. L.; Woosley, S. E.; Langer, N.; Hartmann, D. H.

    2003-01-01

    How massive stars die-what sort of explosion and remnant each produces-depends chiefly on the masses of their helium cores and hydrogen envelopes at death. For single stars, stellar winds are the only means of mass loss, and these are a function of the metallicity of the star. We discuss how metallicity, and a simplified prescription for its effect on mass loss, affects the evolution and final fate of massive stars. We map, as a function of mass and metallicity, where black holes and neutron stars are likely to form and where different types of supernovae are produced. Integrating over an initial mass function, we derive the relative populations as a function of metallicity. Provided that single stars rotate rapidly enough at death, we speculate on stellar populations that might produce gamma-ray bursts and jet-driven supernovae.

  20. How Massive Single Stars End Their Life

    NASA Technical Reports Server (NTRS)

    Heger, A.; Fryer, C. L.; Woosley, S. E.; Langer, N.; Hartmann, D. H.

    2003-01-01

    How massive stars die-what sort of explosion and remnant each produces-depends chiefly on the masses of their helium cores and hydrogen envelopes at death. For single stars, stellar winds are the only means of mass loss, and these are a function of the metallicity of the star. We discuss how metallicity, and a simplified prescription for its effect on mass loss, affects the evolution and final fate of massive stars. We map, as a function of mass and metallicity, where black holes and neutron stars are likely to form and where different types of supernovae are produced. Integrating over an initial mass function, we derive the relative populations as a function of metallicity. Provided that single stars rotate rapidly enough at death, we speculate on stellar populations that might produce gamma-ray bursts and jet-driven supernovae.

  1. Olivier Chesneau's Work on Massive Stars

    NASA Astrophysics Data System (ADS)

    Millour, F.

    2015-12-01

    Olivier Chesneau challenged several fields of observational stellar astrophysics with bright ideas and an impressive amount of work to make them real in the span of his career, from his first paper on P Cygni in 2000, up to his last one on V838 Mon in 2014. He was using all the so-called high-angular resolution techniques since it helped his science to be made, namely study in details the inner structure of the environments around stars, be it small mass (AGBs), more massive (supergiant stars), or explosives (Novae). I will focus here on his work on massive stars.

  2. SALT Spectroscopy of Evolved Massive Stars

    NASA Astrophysics Data System (ADS)

    Kniazev, A. Y.; Gvaramadze, V. V.; Berdnikov, L. N.

    2017-06-01

    Long-slit spectroscopy with the Southern African Large Telescope (SALT) of central stars of mid-infrared nebulae detected with the Spitzer Space Telescope and Wide-Field Infrared Survey Explorer (WISE) led to the discovery of numerous candidate luminous blue variables (cLBVs) and other rare evolved massive stars. With the recent advent of the SALT fiber-fed high-resolution echelle spectrograph (HRS), a new perspective for the study of these interesting objects is appeared. Using the HRS we obtained spectra of a dozen newly identified massive stars. Some results on the recently identified cLBV Hen 3-729 are presented.

  3. The Rb problem in massive AGB stars.

    NASA Astrophysics Data System (ADS)

    Pérez-Mesa, V.; García-Hernández, D. A.; Zamora, O.; Plez, B.; Manchado, A.; Karakas, A. I.; Lugaro, M.

    2017-03-01

    The asymptotic giant branch (AGB) is formed by low- and intermediate-mass stars (0.8 M_{⊙} < M < 8 M_{⊙}) in their last nuclear-burning phase, when they develop thermal pulses (TP) and suffer extreme mass loss. AGB stars are the main contributor to the enrichment of the interstellar medium (ISM) and thus to the chemical evolution of galaxies. In particular, the more massive AGB stars (M > 4 M_{⊙}) are expected to produce light (e.g., Li, N) and heavy neutron-rich s-process elements (such as Rb, Zr, Ba, Y, etc.), which are not formed in lower mass AGB stars and Supernova explosions. Classical chemical analyses using hydrostatic atmospheres revealed strong Rb overabundances and high [Rb/Zr] ratios in massive AGB stars of our Galaxy and the Magellanic Clouds (MC), confirming for the first time that the ^{22}Ne neutron source dominates the production of s-process elements in these stars. The extremely high Rb abundances and [Rb/Zr] ratios observed in the most massive stars (specially in the low-metallicity MC stars) uncovered a Rb problem; such extreme Rb and [Rb/Zr] values are not predicted by the s-process AGB models, suggesting fundamental problems in our present understanding of their atmospheres. We present more realistic dynamical model atmospheres that consider a gaseous circumstellar envelope with a radial wind and we re-derive the Rb (and Zr) abundances in massive Galactic AGB stars. The new Rb abundances and [Rb/Zr] ratios derived with these dynamical models significantly resolve the problem of the mismatch between the observations and the theoretical predictions of the more massive AGB stars.

  4. Placing Observational Constraints on Massive Star Models

    NASA Astrophysics Data System (ADS)

    Rosenfield, Philip

    2011-10-01

    The lives and deaths of massive stars are intricately linked to the evolution of galaxies. Yet, despite their integral importance to understanding galaxy evolution, models of massive stars are inconsistent with observations. These uncertainties can be traced to limited observational constraints available for improving massive star models. A sensitive test of the underlying physics of massive stars, e.g., convection, rotation, and mass loss is to measure the ratio of blue core helium burning stars {BHeB} to red core helium burning stars {RHeB}, 5-20Msun stars in the stage evolution immediately following the main sequence. Even the most sophisticated models cannot accurately predict the observed ratio over a range of metallicities, suggesting an insufficient understanding of the underlying physics. However, observational measurements of this ratio over a wide range of environments would provide substantial constraints on the physical parameters governing the evolution of all stars >5 Msun.We propose to place stringent observational constraints on the physics of massive star evolution by uniformly measuring the B/R HeB ratio in a wide range of galaxies. The HST archive contains high quality optical imaging of resolved stellar populations of dozens of nearby galaxies. From the ANGST program, we identified 38 galaxies, spanning 2 dex in metallicity that have significant BHeB and RHeB populations. Using this sample, we will empirically characterize the colors of the BHeB and RHeB sequences as a function of luminosity and metallicity, measure the B/R ratio, and constrain the lifetimes of the BHeB and RHeBs in the Padova stellar evolution models and the Cambridge STARS code.

  5. New clues to the cause of extended main-sequence turnoffs in intermediate-age star clusters in the Magellanic Clouds

    SciTech Connect

    Correnti, Matteo; Goudfrooij, Paul; Kalirai, Jason S.; Girardi, Leo; Puzia, Thomas H.; Kerber, Leandro E-mail: goudfroo@stsci.edu E-mail: leo.girardi@oapd.inaf.it E-mail: lkerber@gmail.com

    2014-10-01

    We use the Wide Field Camera 3 on board the Hubble Space Telescope (HST) to obtain deep, high-resolution images of two intermediate-age star clusters in the Large Magellanic Cloud of relatively low mass (≈10{sup 4} M {sub ☉}) and significantly different core radii, namely NGC 2209 and NGC 2249. For comparison purposes, we also reanalyzed archival HST images of NGC 1795 and IC 2146, two other relatively low-mass star clusters. From the comparison of the observed color-magnitude diagrams with Monte Carlo simulations, we find that the main-sequence turnoff (MSTO) regions in NGC 2209 and NGC 2249 are significantly wider than that derived from simulations of simple stellar populations, while those in NGC 1795 and IC 2146 are not. We determine the evolution of the clusters' masses and escape velocities from an age of 10 Myr to the present age. We find that differences among these clusters can be explained by dynamical evolution arguments if the currently extended clusters (NGC 2209 and IC 2146) experienced stronger levels of initial mass segregation than the currently compact ones (NGC 2249 and NGC 1795). Under this assumption, we find that NGC 2209 and NGC 2249 have estimated escape velocities, V {sub esc} ≳ 15 km s{sup –1} at an age of 10 Myr, large enough to retain material ejected by slow winds of first-generation stars, while the two clusters that do not feature extended MSTOs have V {sub esc} ≲ 12 km s{sup –1} at that age. These results suggest that the extended MSTO phenomenon can be better explained by a range of stellar ages rather than a range of stellar rotation velocities or interacting binaries.

  6. Magnetic Field Distribution for Massive Stars

    NASA Astrophysics Data System (ADS)

    Medvedev, A.; Kholtygin, A.

    2017-06-01

    A model of the evolution of an ensemble of magnetic massive stars on the main sequence is developed. We use our own population synthesis code, which allows us to obtain distributions of stars by radii, ages, masses, temperatures, effective magnetic fields, and magnetic fluxes from the pre-main sequence up to the TAMS stages. We assume that magnetic fields in massive stars decrease with time. The rate of magnetic field dissipation may depend on the mass of a star on ZAMS. The distribution of magnetic fluxes of the ZAMS stars is assumed to be log-normal. We show that such kind of distribution may be a result of the dynamo action occurring at the pre-MS evolutionary stage of magnetic stars. Our model also includes capabilities for statistical simulations and parameter estimation necessary for the analysis of real data. Comparison of model magnetic field distributions with those obtained from recent measurements of stellar magnetic fields allows us to conclude that the evolution of magnetic fields of massive stars is very slow if not absent. The shape of the real magnetic field distribution has no indications of the “magnetic desert,” previously suggested by Lignieres et al. (2014). Based on those findings we argue that the observed fraction of magnetic stars is determined only by physical conditions at early stages of stellar evolution.

  7. Heavy element abundances and massive star formation

    NASA Technical Reports Server (NTRS)

    Wang, Boqi; Silk, Joseph

    1993-01-01

    The determination of the stellar initial mass function (IMF) remains a great challenge in astronomy. In the solar neighborhood, the IMF is reasonable well determined for stellar masses from about 0.1 to 60 solar mass. However, outside the solar neighborhood, the IMF is poorly known. Among those frequently discussed arguments favoring a different IMF outside the solar neighborhood are the estimated time to consume the remaining gas in spiral galaxies, and the high rate of forming massive stars in starburst galaxies. An interesting question then is whether there may be an independent way of testing possible variations in the IMF. Indeed, the heavy elements in the interstellar medium are mostly synthesized in massive stars, so increasing, or decreasing, the fraction of massive stars naturally leads to a variation in the heavy element yield, and thus, the metallicity. The observed abundance should severely constrain any deviations of the IMF from the locally determined IMF. We focus on element oxygen, which is the most abundant heavy element in the interstellar medium. Oxygen is ejected only by massive stars that can become Type 1 supernovae, and the oxygen abundance is, therefore, a sensitive function of the fraction of massive stars in the IMF. Adopting oxygen enables us to avoid uncertainties in Type 1 supernovae. We use the nucleosynthesis results to calculate the oxygen yield for given IMF. We then calculate the oxygen abundance in the interstellar medium assuming instantaneous recycling of oxygen.

  8. Modeling populations of rotationally mixed massive stars

    NASA Astrophysics Data System (ADS)

    Brott, I.

    2011-02-01

    Massive stars can be considered as cosmic engines. With their high luminosities, strong stellar winds and violent deaths they drive the evolution of galaxies through-out the history of the universe. Despite the importance of massive stars, their evolution is still poorly understood. Two major issues have plagued evolutionary models of massive stars until today: mixing and mass loss On the main sequence, the effects of mass loss remain limited in the considered mass and metallicity range, this thesis concentrates on the role of mixing in massive stars. This thesis approaches this problem just on the cross road between observations and simulations. The main question: Do evolutionary models of single stars, accounting for the effects of rotation, reproduce the observed properties of real stars. In particular we are interested if the evolutionary models can reproduce the surface abundance changes during the main-sequence phase. To constrain our models we build a population synthesis model for the sample of the VLT-FLAMES Survey of Massive stars, for which star-formation history and rotational velocity distribution are well constrained. We consider the four main regions of the Hunter diagram. Nitrogen un-enriched slow rotators and nitrogen enriched fast rotators that are predicted by theory. Nitrogen enriched slow rotators and nitrogen unenriched fast rotators that are not predicted by our model. We conclude that currently these comparisons are not sufficient to verify the theory of rotational mixing. Physical processes in addition to rotational mixing appear necessary to explain the stars in the later two regions. The chapters of this Thesis have been published in the following Journals: Ch. 2: ``Rotating Massive Main-Sequence Stars I: Grids of Evolutionary Models and Isochrones'', I. Brott, S. E. de Mink, M. Cantiello, N. Langer, A. de Koter, C. J. Evans, I. Hunter, C. Trundle, J.S. Vink submitted to Astronomy & Astrop hysics Ch. 3: ``The VLT-FLAMES Survey of Massive

  9. Evolutionary tracks of massive stars during formation

    NASA Astrophysics Data System (ADS)

    Smith, Michael D.

    2014-02-01

    A model for massive stars is constructed by piecing together evolutionary algorithms for the protostellar structure, the environment, the inflow and the radiation feedback. We investigate specified accretion histories of constant, decelerating and accelerating forms and consider both hot and cold accretion, identified with spherical free-fall and disc accretion, respectively. Diagnostic tools for the interpretation of the phases of massive star formation and testing the evolutionary models are then developed. Evolutionary tracks able to fit Herschel Space Telescope data require the generated stars to be three to four times less massive than in previous interpretations, thus being consistent with clump star formation efficiencies of 10-15 per cent. However, for these cold Herschel clumps, the bolometric temperature is not a good diagnostic to differentiate between accretion models. We also find that neither spherical nor disc accretion can explain the high radio luminosities of many protostars. Nevertheless, we discover a solution in which the extreme ultraviolet flux needed to explain the radio emission is produced if the accretion flow is via free-fall on to hotspots covering less than 10 per cent of the surface area. Moreover, the protostar must be compact, and so has formed through cold accretion. We show that these conclusions are independent of the imposed accretion history. This suggests that massive stars form via gas accretion through discs which, in the phase before the star bloats, download their mass via magnetic flux tubes on to the protostar.

  10. Spatial Disrtribution and Evolution of Massive Stars

    NASA Astrophysics Data System (ADS)

    Aghakhanlootakanloo, Mojgan; Murphy, Jeremiah W.

    2017-01-01

    Observations show that luminous blue variables (LBVs) are far more dispersed than other massive stars, and Smith & Tombleson (2015) suggested that these large separations are inconsistent with the standard single-star evolution model of LBVs. Instead, they suggest that the large distances are most consistent with some sort of binary evolution. To test these suggestions, we modeled young stellar clusters and their passive dissolution, and we find that, indeed, the single-star evolution model is inconsistent with observations. Most importantly, we find two binary scenario models that are consistent. Our crude models suggest that LBVs are either the result of mergers and are rejuvenated stars, or they are mass gainers and received a kick when the primary star exploded. In the merger scenario, LBVs have more time to disperse because they are the merger of two lesser mass, in which the primary has a mass of about 19 solar masses. In the mass gainer and kick scenario, we find that LBV isolation is consistent with an average kick of 200 km/s. In either scenario, binarity plays a major role in the isolation of LBVs. In addition to constraining the evolution of LBVs, we suggest that careful scrutiny of the spatial distribution of massive stars in general will lead to a greater understanding for the evolution of massive stars.

  11. Not-so-simple stellar populations in the intermediate-age Large Magellanic Cloud star clusters NGC 1831 and NGC 1868

    SciTech Connect

    Li, Chengyuan; De Grijs, Richard; Deng, Licai E-mail: grijs@pku.edu.cn

    2014-04-01

    Using a combination of high-resolution Hubble Space Telescope/Wide-Field and Planetary Camera-2 observations, we explore the physical properties of the stellar populations in two intermediate-age star clusters, NGC 1831 and NGC 1868, in the Large Magellanic Cloud based on their color-magnitude diagrams. We show that both clusters exhibit extended main-sequence turn offs. To explain the observations, we consider variations in helium abundance, binarity, age dispersions, and the fast rotation of the clusters' member stars. The observed narrow main sequence excludes significant variations in helium abundance in both clusters. We first establish the clusters' main-sequence binary fractions using the bulk of the clusters' main-sequence stellar populations ≳ 1 mag below their turn-offs. The extent of the turn-off regions in color-magnitude space, corrected for the effects of binarity, implies that age spreads of order 300 Myr may be inferred for both clusters if the stellar distributions in color-magnitude space were entirely due to the presence of multiple populations characterized by an age range. Invoking rapid rotation of the population of cluster members characterized by a single age also allows us to match the observed data in detail. However, when taking into account the extent of the red clump in color-magnitude space, we encounter an apparent conflict for NGC 1831 between the age dispersion derived from that based on the extent of the main-sequence turn off and that implied by the compact red clump. We therefore conclude that, for this cluster, variations in stellar rotation rate are preferred over an age dispersion. For NGC 1868, both models perform equally well.

  12. Cyg X-1 - A massive neutron star

    NASA Technical Reports Server (NTRS)

    Goldman, I.

    1981-01-01

    The expected X-ray emission from Cyg X-1, considered a massive neutron star (8-15 solar masses) according to some gravity theories, is studied within the framework of Rosen's bimetric gravity theory (1973, 1974). It is shown that in such massive neutron stars, the innermost stable orbit lies far outside the star surface, and therefore the X-ray spectrum consists of two components: a soft one emitted from a cold accretion disk and a hard one emitted by the matter striking the neutron star surface after spiraling down freely from the disk. The proposed model is shown to be in good agreement with the observed luminosities. The model predicts a surface gravitational redshift of 3.16 which could be tested by the future X- and gamma-ray detectors.

  13. Theoretical Developments in Understanding Massive Star Formation

    NASA Technical Reports Server (NTRS)

    Yorke, Harold W.; Bodenheimer, Peter

    2007-01-01

    Except under special circumstances massive stars in galactic disks will form through accretion. The gravitational collapse of a molecular cloud core will initially produce one or more low mass quasi-hydrostatic objects of a few Jupiter masses. Through subsequent accretion the masses of these cores grow as they simultaneously evolve toward hydrogen burning central densities and temperatures. We review the evolution of accreting (proto-)stars, including new results calculated with a publicly available stellar evolution code written by the authors.

  14. Are All Magnetic White Dwarf Stars Massive?

    NASA Astrophysics Data System (ADS)

    Nitta, A.; Kepler, S. O.; Kulebi, B.; Koester, D.; Kleinman, S. J.; Winget, D. E.; Castanheira, B. G.; Corsico, A. H.

    2017-03-01

    We obtained follow-up spectra on 25 white dwarf stars identified in our white dwarf catalog of Sloan Digital Sky Survey (SDSS) as massive or magnetic. We identified over 300 magnetic white dwarf stars from SDSS with some uncertainties due to the low S/N of the spectra. With much higher S/N Gemini data, our sample should be able to help us confirm accuracy of our determinations. We present here our results so far from the follow up observations.

  15. Theoretical Developments in Understanding Massive Star Formation

    NASA Technical Reports Server (NTRS)

    Yorke, Harold W.; Bodenheimer, Peter

    2007-01-01

    Except under special circumstances massive stars in galactic disks will form through accretion. The gravitational collapse of a molecular cloud core will initially produce one or more low mass quasi-hydrostatic objects of a few Jupiter masses. Through subsequent accretion the masses of these cores grow as they simultaneously evolve toward hydrogen burning central densities and temperatures. We review the evolution of accreting (proto-)stars, including new results calculated with a publicly available stellar evolution code written by the authors.

  16. Hypernuclei and massive neutron stars

    NASA Astrophysics Data System (ADS)

    Fortin, M.; Avancini, S. S.; Providência, C.; Vidaña, I.

    2017-06-01

    Background: The recent accurate measurement of the mass of two pulsars close to or above 2 M⊙ has raised the question of whether such large pulsar masses allow for the existence of exotic degrees of freedom, such as hyperons, inside neutron stars. Purpose: In the present work, we will investigate, within a phenomenological relativistic mean field approach, how the existing hypernuclei properties may constrain the neutron star equation of state and confront the neutron star maximum masses obtained with equations of state calibrated to hypernuclei properties with the astrophysical 2 M⊙ constraint. Method: The study is performed using a relativistic mean field approach to describe both the hypernuclei and the neutron star equations of state. Unified equations of state are obtained. A set of five models that describe 2 M⊙ when only nucleonic degrees of freedom are employed. Some of these models also satisfy other well-established laboratory or theoretical constraints. Results: The Λ -meson couplings are determined for all the models considered, and the Λ potential in symmetric nuclear matter and Λ matter at saturation are calculated. Maximum neutron star masses are determined for two values of the Λ -ω meson coupling, gω Λ=2 gω N/3 and gω Λ=gω N , and a wide range of values for gϕ Λ. Hyperonic stars with the complete baryonic octet are studied, restricting the coupling of the Σ and Ξ hyperons to the ω ,ρ , and σ mesons due to the lack of experimental data, and maximum star masses calculated. Conclusions: We conclude that, within a phenomenological relativistic mean field approach, the currently available hypernuclei experimental data and the lack of constraints on the asymmetric equation of state of nuclear matter at high densities set only a limited number of constraints on the neutron star matter equation of state using the recent 2 M⊙ observations. It is shown that the Λ potential in symmetric nuclear matter takes a value of ˜30 -32 Me

  17. Chromospheric Activity at Intermediate Ages

    NASA Astrophysics Data System (ADS)

    Giampapa, Mark; Stauffer, John; Deliyannis, Constantine; Sherry, William

    2005-08-01

    The calibration of the empirical relation between Ca II chromospheric strength and stellar age between 0.6 Gyr (Hyades) and 4.0 - 5 Gyr (M67 and the Sun) relies on the uncertain determination of ages for individual field stars in the solar neighborhood. We therefore propose to obtain WIYN/Hydra spectra of ~ 100 solar-type dwarf stars in the 1.8 Gyr old open cluster, NGC 752. This cluster contains a sample of solar-type dwarfs that is homogeneous in age and chemical composition. Furthermore, NGC 752 is the nearest-and hence brightest- cluster at an age ~ 2 Gyr. The results will yield an improved calibration of the age-activity relation at intermediate ages. In addition, we will determine if the chromospheric Ca II strengths for the solar-type stars in NGC 752 lie in the so-called "Vaughan-Preston Gap''- an apparent discontinuity in the Ca II H& K strength-(B-V) diagram found for field stars in the solar neighborhood. Our data will yield insight on the two proposed origins for the gap, namely, that it is a result of two different modes of dynamo action or that it is actually an artifact of a discontinuity in the local star formation rate. This is a resubmission of a previously approved proposal that was allocated two nights in 2004 November. The time was lost to instrument problems (Hydra gripper malfunctions) and weather. No usable data were obtained.

  18. How Massive Can Stars Be?

    ERIC Educational Resources Information Center

    Pinochet, Jorge; Van Sint Jan, Michael

    2017-01-01

    Theoretical assessment of the upper limit of a star's mass is a difficult problem which lies at the frontier of astrophysical research. In this article we develop a simple and plausible argument to estimate this value. The value at which we arrive is ~228 solar masses; well within the range of predicted accepted theoretical values. Towards the end…

  19. Massive stars. A chemical signature of first-generation very massive stars.

    PubMed

    Aoki, W; Tominaga, N; Beers, T C; Honda, S; Lee, Y S

    2014-08-22

    Numerical simulations of structure formation in the early universe predict the formation of some fraction of stars with several hundred solar masses. No clear evidence of supernovae from such very massive stars has, however, yet been found in the chemical compositions of Milky Way stars. We report on an analysis of a very metal-poor star SDSS J001820.5-093939.2, which possesses elemental-abundance ratios that differ significantly from any previously known star. This star exhibits low [α-element Fe] ratios and large contrasts between the abundances of odd and even element pairs, such as scandium/titanium and cobalt/nickel. Such features have been predicted by nucleosynthesis models for supernovae of stars more than 140 times as massive as the Sun, suggesting that the mass distribution of first-generation stars might extend to 100 solar masses or larger.

  20. Massive stars in the galaxies of the Local Group

    NASA Astrophysics Data System (ADS)

    Massey, Philip

    2013-07-01

    The star-forming galaxies of the Local Group act as our laboratories for testing massive star evolutionary models. In this review, I briefly summarize what we believe we know about massive star evolution, and the connection between OB stars, Luminous Blue Variables, yellow supergiants, red supergiants, and Wolf-Rayet stars. The difficulties and recent successes in identifying these various types of massive stars in the neighboring galaxies of the Local Group will be discussed.

  1. Towards Realistic Modeling of Massive Star Clusters

    NASA Astrophysics Data System (ADS)

    Gnedin, O.; Li, H.

    2016-06-01

    Cosmological simulations of galaxy formation are rapidly advancing towards smaller scales. Current models can now resolve giant molecular clouds in galaxies and predict basic properties of star clusters forming within them. I will describe new theoretical simulations of the formation of the Milky Way throughout cosmic time, with the adaptive mesh refinement code ART. However, many challenges - physical and numerical - still remain. I will discuss how observations of massive star clusters and star forming regions can help us overcome some of them. Video of the talk is available at https://goo.gl/ZoZOfX

  2. Probing Massive Star Cluster Formation with ALMA

    NASA Astrophysics Data System (ADS)

    Johnson, Kelsey

    2015-08-01

    Observationally constraining the physical conditions that give rise to massive star clusters has been a long-standing challenge. Now with the ALMA Observatory coming on-line, we can finally begin to probe the birth environments of massive clusters in a variety of galaxies with sufficient angular resolution. In this talk I will give an overview of ALMA observations of galaxies in which candidate proto-super star cluster molecular clouds have been identified. These new data probe the physical conditions that give rise to super star clusters, providing information on their densities, pressures, and temperatures. In particular, the observations indicate that these clouds may be subject to external pressures of P/k > 108 K cm-3, which is consistent with the prevalence of optically observed adolescent super star clusters in interacting galaxy systems and other high pressure environments. ALMA observations also enable an assessement of the molecular cloud chemical abundances in the regions surrounding super star clusters. Molecular clouds associated with existing super star clusters are strongly correlated with HCO+ emission, but appear to have relatively low ratio of CO/HCO+ emission compared to other clouds, indicating that the super star clusters are impacting the molecular abundances in their vicinity.

  3. QUARK MATTER IN MASSIVE COMPACT STARS

    SciTech Connect

    Weissenborn, Simon; Pagliara, Giuseppe; Schaffner-Bielich, Juergen; Sagert, Irina; Hempel, Matthias

    2011-10-10

    The recent observation of the pulsar PSR J1614-2230 with a mass of 1.97 {+-} 0.04 M{sub sun} gives a strong constraint on the quark and nuclear matter equations of state (EoS). We explore the parameter ranges for a parameterized EoS for quark stars. We find that strange stars, made of absolutely stable strange quark matter, comply with the new constraint only if effects from the strong coupling constant and color-superconductivity are taken into account. Hybrid stars, compact stars with a quark matter core and a hadronic outer layer, can be as massive as 2 M{sub sun}, but only for a significantly limited range of parameters. We demonstrate that the appearance of quark matter in massive stars crucially depends on the stiffness of the nuclear matter EoS. We show that the masses of hybrid stars stay below the ones of hadronic and pure quark stars, due to the softening of the EoS at the quark-hadron phase transition.

  4. Massive star formation at high spatial resolution

    NASA Astrophysics Data System (ADS)

    Pascucci, Ilaria

    2004-05-01

    This thesis studies the early phases of massive stars and their impact on the surrounding. The capabilities of continuum radiative transfer (RT) codes to interpret the observations are also investigated. The main results of this work are: 1) Two massive star-forming regions are observed in the infrared. The thermal emission from the ultra-compact H II regions is resolved and the spectral type of the ionizing stars is estimated. The hot cores are not detected thus implying line-of-sight extinction larger than 200 visual magnitude. 2) The first mid-infrared interferometric measurements towards a young massive star resolve thermal emission on scales of 30-50 AU probing the size of the predicted disk. The visibility curve differs from those of intermediate-mass stars. 3) The close vicinity of Θ1C Ori are imaged using the NACO adaptive optics system. The binary proplyd Orion 168-326 and its interaction with the wind from Θ1C Ori are resolved. A proplyd uniquely seen face-on is also identified. 4) Five RT codes are compared in a disk configuration. The solutions provide the first 2D benchmark and serve to test the reliability of other RT codes. The images/visibilities from two RT codes are compared for a distorted disk. The parameter range in which such a distortion is detectable with MIDI is explored.

  5. Massive-Star Nucleosynthesis: Lessons from INTEGRAL

    NASA Astrophysics Data System (ADS)

    Diehl, Roland; Lang, Michael; Kretschmer, Karsten; Martin, Pierrick; Ohlendorf, Henrike; Voss, Rasmus

    2010-08-01

    Gamma-ray line observations with INTEGRAL measure decay of unstable isotopes which are ejected from sites of nucleosynthesis. Massive stars are believed to be producers of gamma-ray emitting isotopes 44Ti, 26Al, 60Fe. Measurements with the Ge spectrometer have shown that (1) inner core-collapse supernova ejecta from the Cas A supernova remnant appear to still travel at velocities beyond a few hundred km/sec (2) 26Al synthesis occurs throughout the Galaxy corresponds to a supernova rate from core collapses of about one every 50 years; (3) 60Fe synthesis expected from massive stars is above the constraints from gamma-ray observations; 26Al synthesis in the Cygnus region appears on the high side of predictions from models; 26Al emission from the nearby Sco-Cen group of stars has been identified demonstrates massive-star activity close to the Sun. 26Al gamma-rays have been used to determine a longitude-velocity distribution of the presumably hot tenuous ISM which carries 26Al, which can be compared to molecular-gas star motions to help understand the Galaxy's bar spiral-arm structure. Implications of the above nucleosynthesis constraints suggest that INTEGRAL's observed positron annihilation gamma-rays need a contribution from another source located in the central regions of our Galaxy, and/or positrons may propagate kpc-distances away from their sources before annihilating.

  6. Mass Lost from the Most Massive Stars

    NASA Astrophysics Data System (ADS)

    Weis, Kerstin

    2004-02-01

    The structure and evolution of galaxies is noticeably influenced by the energy input of very massive stars. They are not only the supply of heavier elements, they also influence the distribution and structure of the interstellar medium through their strong stellar winds and supernova explosions. Losing more than 50% of their ZAMS-mass during their life, stars more massive than ~ 50 M⊙ substantially contribute to the mass and energy input which can drive large scale outflows from galaxies. In this presentation I will mainly concentrate on a short but violent phase of mass loss of the most massive stars, known as Luminous Blue Variables. In only a few thousand years a large amount of mass is released (in some cases several solar masses), forming a nebula around the LBV. Besides of a general overview of the LBVs special concern will be given to the nebula around eta Carinae for which new results from CHANDRA observations show the shocks emitting in the X-ray band. Finally I will briefly address the question of the role of LBV type stars in the early phase of galaxy formation and in connection with the first stars formed.

  7. Recent massive star formation in 30 Doradus

    SciTech Connect

    Walborn, N.R.; Blades, J.C.

    1987-12-01

    Two early O-type stars apparently involved in dense nebular knots have been found in the northeast quadrant of the 30 Doradus nebula. One of them lies within the positional uncertainty radius of a previously detected water maser source, and it has a well-marked interstellar 4430 A diffuse band feature. These objects may be very young massive stars just emerging from their protostellar cocoons, and it is suggested that this part of 30 Doradus may represent an earlier evolutionary stage than the central region surrounding R136. A brief survey of recent literature on possibly related objects in the Magellanic Clouds suggests the emergence there of a class corresponding to optically observable, very early evolutionary stages of massive stars. 21 references.

  8. Formation and Assembly of Massive Star Clusters

    NASA Astrophysics Data System (ADS)

    McMillan, Stephen

    The formation of stars and star clusters is a major unresolved problem in astrophysics. It is central to modeling stellar populations and understanding galaxy luminosity distributions in cosmological models. Young massive clusters are major components of starburst galaxies, while globular clusters are cornerstones of the cosmic distance scale and represent vital laboratories for studies of stellar dynamics and stellar evolution. Yet how these clusters form and how rapidly and efficiently they expel their natal gas remain unclear, as do the consequences of this gas expulsion for cluster structure and survival. Also unclear is how the properties of low-mass clusters, which form from small-scale instabilities in galactic disks and inform much of our understanding of cluster formation and star-formation efficiency, differ from those of more massive clusters, which probably formed in starburst events driven by fast accretion at high redshift, or colliding gas flows in merging galaxies. Modeling cluster formation requires simulating many simultaneous physical processes, placing stringent demands on both software and hardware. Simulations of galaxies evolving in cosmological contexts usually lack the numerical resolution to simulate star formation in detail. They do not include detailed treatments of important physical effects such as magnetic fields, radiation pressure, ionization, and supernova feedback. Simulations of smaller clusters include these effects, but fall far short of the mass of even single young globular clusters. With major advances in computing power and software, we can now directly address this problem. We propose to model the formation of massive star clusters by integrating the FLASH adaptive mesh refinement magnetohydrodynamics (MHD) code into the Astrophysical Multi-purpose Software Environment (AMUSE) framework, to work with existing stellar-dynamical and stellar evolution modules in AMUSE. All software will be freely distributed on-line, allowing

  9. Extreme Star Formation in the Massive Young Cluster Westerlund 1

    NASA Astrophysics Data System (ADS)

    Hora, Joseph; Kraemer, Kathleen; Megeath, Tom; Gutermuth, Rob; Smith, Howard; Martinez Galarza, Juan Rafael; Guzman Fernandez, Andres; Carey, Sean; Koenig, Xavier; Schneider, Nicola; Motte, Frederique; Bontemps, Sylvain; Adams, Joseph; Simon, Robert; Nguyen-Luong, Quang; Schilke, Peter; Keto, Eric; Fazio, Giovanni; Allen, Lori

    2012-12-01

    We propose to extend Spitzer's study of massive star formation to the massive cluster Westerlund 1, which at ~4 kpc is the closest and most massive 'Super Star Cluster' known in the Galaxy. Star formation may have proceeded differently in this region, having created a higher overall density of coeval massive stars. The proposed observations will allow us to compare star formation in this region to that seen near the Sun, in the massive Cygnus-X complex, and in the outer Galaxy (coming from the studies of W5, the Cycle-5 SMOG project, and GLIMPSE360), and therefore to complete a more representative view of star formation in the Galaxy.

  10. Evolution and Nucleosynthesis of Very Massive Stars

    NASA Astrophysics Data System (ADS)

    Hirschi, Raphael

    In this chapter, after a brief introduction and overview of stellar evolution, we discuss the evolution and nucleosynthesis of very massive stars (VMS: M > 100 M_{odot } ) in the context of recent stellar evolution model calculations. This chapter covers the following aspects: general properties, evolution of surface properties, late central evolution, and nucleosynthesis including their dependence on metallicity, mass loss and rotation. Since very massive stars have very large convective cores during the main-sequence phase, their evolution is not so much affected by rotational mixing, but more by mass loss through stellar winds. Their evolution is never far from a homogeneous evolution even without rotational mixing. All VMS at metallicities close to solar end their life as WC(-WO) type Wolf-Rayet stars. Due to very important mass loss through stellar winds, these stars may have luminosities during the advanced phases of their evolution similar to stars with initial masses between 60 and 120 M_{odot } . A distinctive feature which may be used to disentangle Wolf-Rayet stars originating from VMS from those originating from lower initial masses is the enhanced abundances of neon and magnesium at the surface of WC stars. At solar metallicity, mass loss is so strong that even if a star is born with several hundred solar masses, it will end its life with less than 50 M_{odot } (using current mass loss prescriptions). At the metallicity of the LMC and lower, on the other hand, mass loss is weaker and might enable stars to undergo pair-instability supernovae.

  11. MASSIVE INFANT STARS ROCK THEIR CRADLE

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Extremely intense radiation from newly born, ultra-bright stars has blown a glowing spherical bubble in the nebula N83B, also known as NGC 1748. A new NASA Hubble Space Telescope image has helped to decipher the complex interplay of gas and radiation of a star-forming region in a nearby galaxy. The image graphically illustrates just how these massive stars sculpt their environment by generating powerful winds that alter the shape of the parent gaseous nebula. These processes are also seen in our Milky Way in regions like the Orion Nebula. The Hubble telescope is famous for its contribution to our knowledge about star formation in very distant galaxies. Although most of the stars in the Universe were born several billions of years ago, when the Universe was young, star formation still continues today. This new Hubble image shows a very compact star-forming region in a small part of one of our neighboring galaxies - the Large Magellanic Cloud. This galaxy lies only 165,000 light-years from our Milky Way and can easily be seen with the naked eye from the Southern Hemisphere. Young, massive, ultra-bright stars are seen here just as they are born and emerge from the shelter of their pre-natal molecular cloud. Catching these hefty stars at their birthplace is not as easy as it may seem. Their high mass means that the young stars evolve very rapidly and are hard to find at this critical stage. Furthermore, they spend a good fraction of their youth hidden from view, shrouded by large quantities of dust in a molecular cloud. The only chance is to observe them just as they start to emerge from their cocoon - and then only with very high-resolution telescopes. Astronomers from France, the U.S., and Germany have used Hubble to study the fascinating interplay between gas, dust, and radiation from the newly born stars in this nebula. Its peculiar and turbulent structure has been revealed for the first time. This high-resolution study has also uncovered several individual stars

  12. MASSIVE INFANT STARS ROCK THEIR CRADLE

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Extremely intense radiation from newly born, ultra-bright stars has blown a glowing spherical bubble in the nebula N83B, also known as NGC 1748. A new NASA Hubble Space Telescope image has helped to decipher the complex interplay of gas and radiation of a star-forming region in a nearby galaxy. The image graphically illustrates just how these massive stars sculpt their environment by generating powerful winds that alter the shape of the parent gaseous nebula. These processes are also seen in our Milky Way in regions like the Orion Nebula. The Hubble telescope is famous for its contribution to our knowledge about star formation in very distant galaxies. Although most of the stars in the Universe were born several billions of years ago, when the Universe was young, star formation still continues today. This new Hubble image shows a very compact star-forming region in a small part of one of our neighboring galaxies - the Large Magellanic Cloud. This galaxy lies only 165,000 light-years from our Milky Way and can easily be seen with the naked eye from the Southern Hemisphere. Young, massive, ultra-bright stars are seen here just as they are born and emerge from the shelter of their pre-natal molecular cloud. Catching these hefty stars at their birthplace is not as easy as it may seem. Their high mass means that the young stars evolve very rapidly and are hard to find at this critical stage. Furthermore, they spend a good fraction of their youth hidden from view, shrouded by large quantities of dust in a molecular cloud. The only chance is to observe them just as they start to emerge from their cocoon - and then only with very high-resolution telescopes. Astronomers from France, the U.S., and Germany have used Hubble to study the fascinating interplay between gas, dust, and radiation from the newly born stars in this nebula. Its peculiar and turbulent structure has been revealed for the first time. This high-resolution study has also uncovered several individual stars

  13. Observational constraints on massive-star evolution

    NASA Astrophysics Data System (ADS)

    Schulte-Ladbeck, Regina

    1997-07-01

    Massive stars are important constitutents of galaxies and are increasingly used as probes of galaxy evolution out to high redshifts. Yet, a very basic problem remains in understanding the distribution of massive stars across the Hertzsprung- Russell Diagram. This is known as the problem of the blue-to- red supergiant ratios in galaxies of different metallicities, a very sensitive indicator of the evolutionary paths that massive stars in different chemical environments appear to follow. Observations suggest a trend that the numbers of red supergiants increase with decreasing metallicity, but stellar- evolution models predict the opposite. We discuss various limitations of ground-based observations which have so far restricted accurate star counts to a few, nearby galaxies. We then argue that the HST archive contains a perfect set of photometric data to determine number counts of red supergiants in galaxies out to 5 Mpc. We propose to analyze WFPC2 observations in F555W {V} and F814W {I} filters to derive color-magnitude diagrams and complete luminosity functions of the red supergiant populations in 6 galaxies spanning a factor of 60 in metallicity. This systematic approach will put the functional form of the blue-to-red supergiant ratio with metallicity on firm observational footing.

  14. MASSIVE STAR FORMATION IN NGC 2074

    SciTech Connect

    Fleener, Christine E.; Chu, Y.-H.; Gruendl, Robert A.; Payne, James T.; Chen, C.-H. Rosie

    2010-01-15

    Spitzer observations of the Large Magellanic Cloud (LMC) have revealed a large population of young stellar objects (YSOs), but complementary high-resolution images in the optical or near-IR wavelengths are still needed to resolve the multiplicity and immediate environments of the YSOs. The Hubble Space Telescope imaged the star-forming region NGC 2074 in the LMC during its 100,000th orbit, providing an opportunity to more closely examine the YSOs and their environments in this region. We have studied the 10 YSO candidates identified from Spitzer observations, confirming their nature and determining their physical parameters by modeling their spectral energy distributions. The majority of the YSOs and central stars of ultracompact H II regions in NGC 2074 have masses consistent with spectral types of early B to late O. The co-existence of massive early-type O stars and the less massive YSOs indicates that their formation may have started at a similar time, a few 10{sup 5} yr ago. NGC 2074 provides an opportunity to study the evolution of massive stars at their infancy.

  15. On the Formation of Massive Stars

    NASA Astrophysics Data System (ADS)

    Kaper, L.; Ellerbroek, L.; Ochsendorf, B.; Bik, A.

    2012-12-01

    The birth process and (early) evolution of massive stars is still poorly understood. Heavy extinction hides their birthplaces from view and the short formation timescale limits the sample of objects to be studied. So far, our physical knowledge of massive YSOs has been derived from near-IR imaging and spectroscopy, revealing populations of young OB-type stars, some still surrounded by a disk, others apparently ‘normal’ main sequence stars powering H II regions. The most important spectral features of OB-type stars are, however, located in the UV and optical range. With the new optical/near-infrared spectrograph X-shooter on the ESO Very Large Telescope it is possible to extend the spectral coverage of these massive YSOs into the optical range. Our first results are very promising: the discovery of a jet demonstrates that one of our mYSOs is still actively accreting. Furthermore, the first firm spectral classification of another mYSO results in the precise location on a pre-main-sequence track.

  16. The Evolution and Stability of Massive Stars

    NASA Astrophysics Data System (ADS)

    Shiode, Joshua Hajime

    Massive stars are the ultimate source for nearly all the elements necessary for life. The first stars forge these elements from the sparse set of ingredients supplied by the Big Bang, and distribute enriched ashes throughout their galactic homes via their winds and explosive deaths. Subsequent generations follow suit, assembling from the enriched ashes of their predecessors. Over the last several decades, the astrophysics community has developed a sophisticated theoretical picture of the evolution of these stars, but it remains an incomplete accounting of the rich set of observations. Using state of the art models of massive stars, I have investigated the internal processes taking place throughout the life-cycles of stars spanning those from the first generation ("Population III") to the present-day ("Population I"). I will argue that early-generation stars were not highly unstable to perturbations, contrary to a host of past investigations, if a correct accounting is made for the viscous effect of convection. For later generations, those with near solar metallicity, I find that this very same convection may excite gravity-mode oscillations that produce observable brightness variations at the stellar surface when the stars are near the main sequence. If confirmed with modern high-precision monitoring experiments, like Kepler and CoRoT, the properties of observed gravity modes in massive stars could provide a direct probe of the poorly constrained physics of gravity mode excitation by convection. Finally, jumping forward in stellar evolutionary time, I propose and explore an entirely new mechanism to explain the giant eruptions observed and inferred to occur during the final phases of massive stellar evolution. This mechanism taps into the vast nuclear fusion luminosity, and accompanying convective luminosity, in the stellar core to excite waves capable of carrying a super-Eddington luminosity out to the stellar envelope. This energy transfer from the core to the

  17. Study of Stellar Clusters Containing Massive Stars

    NASA Astrophysics Data System (ADS)

    Costado, Teresa; Alfaro, E. J.; Delgado, A. J.; Djupvik, A. A.; Maíz Apellániz, J.

    2013-06-01

    Most stars form in clusters, but the percentage of stars born in dense stellar systems is currently matter of controversy and depends very much on the own definition of cluster. The cluster definition and hence the morphologies of individual clusters appear to vary significantly from region to region, as well as with age, which suggests that either, star formation in clusters is not universal and may depend on the local environment, or that all clusters form with the same morphology but early dynamical evolution quickly modifies the structure of the phase space distribution. In addition, young populated clusters containing massive stars are excellent labs for the study of the formation of the massive stellar component of the Galactic disk. Three main scenarios have been proposed for the formation of high-mass stars (M > 7-8 M_{⊙}): a) monolithic collapse of proto-stellar nuclei; b) competitive accretion inside the proto-cluster molecular cloud; and c) coalescence of proto-stellar nuclei and low-mass stars in very dense atmospheres. Both scientific questions: a) cluster formation and b) formation of high mass stars in clusters are intimately connected via the structural description of the phase space distribution of cluster stars and their Mass Function (MF). Models of static clusters with different initial spatial and kinematic distributions show how the spatial distribution dynamically evolves with time, allowing a characterization of their dynamical state from snapshots of their spatial distribution. Four are the main variables (and their distribution with mass and position) needed for a reliable characterization of the cluster dynamical state: a) Mass segregation parameter; b) Mapping of surface density for different ranges of masses; c) Q morphological parameter based on the minimum spanning tree graph and its variation with mass and cluster age, and d) MF of the cluster members. Two years ago, the Stellar System Group of IAA has begun an observational

  18. Instability considerations for massive star eruptions

    SciTech Connect

    Guzik, J. A.

    2004-01-01

    We propose a mechanism to explain the observed properties of the giant eruptions of 'supernova imposters' such as {eta} Car and P Cyg. This mechanism must be episodic, generate a large amount of energy, and be very deep-seated, in order to lift about 10 solar masses out of the deep gravitational potential well of these massive evolved stars. We suggest that nonradial gravity mode oscillations capable of existing in the core grow slowly to sufficient amplitude to cause an episode of mixing. This mixing generates a burst of nuclear energy deep in the star that is responsible for the observed large mass ejection and bolometric magnitude increase.

  19. Very Massive Stars in the local Universe

    NASA Astrophysics Data System (ADS)

    Vink, Jorick S.; Heger, Alexander; Krumholz, Mark R.; Puls, Joachim; Banerjee, S.; Castro, N.; Chen, K.-J.; Chenè, A.-N.; Crowther, P. A.; Daminelli, A.; Gräfener, G.; Groh, J. H.; Hamann, W.-R.; Heap, S.; Herrero, A.; Kaper, L.; Najarro, F.; Oskinova, L. M.; Roman-Lopes, A.; Rosen, A.; Sander, A.; Shirazi, M.; Sugawara, Y.; Tramper, F.; Vanbeveren, D.; Voss, R.; Wofford, A.; Zhang, Y.

    2015-03-01

    Recent studies have claimed the existence of very massive stars (VMS) up to 300 M ⊙ in the local Universe. As this finding may represent a paradigm shift for the canonical stellar upper-mass limit of 150 M ⊙, it is timely to discuss the status of the data, as well as the far-reaching implications of such objects. We held a Joint Discussion at the General Assembly in Beijing to discuss (i) the determination of the current masses of the most massive stars, (ii) the formation of VMS, (iii) their mass loss, and (iv) their evolution and final fate. The prime aim was to reach broad consensus between observers and theorists on how to identify and quantify the dominant physical processes.

  20. Speckle Interferometry of Massive and Cluster Stars

    NASA Astrophysics Data System (ADS)

    Mason, Brian; Hartkopf, William I.; Gies, Douglas R.; Henry, Todd J.; Tokovinin, Andrei A.

    2006-02-01

    Conducted on NOAO 4-m telescopes in 1994, the first speckle survey of O stars (Mason et al. 1998) had success far in excess of our expectations. In addition to the frequently cited multiplicity analysis, many of the new systems which were first resolved in this paper are of significant astrophysical importance. Now, some ten years after the original survey, we propose to re-investigate all systems analyzed before (N=195). Improvements in detector technology will allow for the detection of companions missed before as well as systems which may have been closer than the resolution limit in 1994. We will also make a first high-resolution inspection of the additional O stars (N=108) in the recent Galactic O Star Catalog of Maiz- Apellaniz & Walborn (2004). Further, we propose to investigate several additional samples of interesting objects, including 15 accessible Galactic WR stars from the speckle survey of Hartkopf et al. (1999), 16 massive, hot stars with separations which would indicate their applicability for mass determinations (for fully detached O stars masses are presently known for only twelve pairs), and 56 multiple stars for a study of their co- planarity statistics.

  1. Speckle Interferometry of Massive and Cluster Stars

    NASA Astrophysics Data System (ADS)

    Mason, Brian; Hartkopf, William I.; Gies, Douglas R.; Henry, Todd J.; Torres, Guillermo

    2005-08-01

    Conducted on NOAO 4-m telescopes in 1994, the first speckle survey of O stars (Mason et al. 1998) had success far in excess of our expectations. In addition to the frequently cited multiplicity analysis, many of the new systems which were first resolved in this paper are of significant astrophysical importance. To date, this paper has resulted in 86 citations in the refereed literature. Now, some ten years after the original survey, we propose to re-investigate all systems analyzed before (N=98) as well as make a first high-resolution inspection of the additional O stars (N=62) in the recent Galactic O Star Catalog of Maiz-Apellaniz & Walborn (2004). In addition, we propose to investigate several additional samples of interesting objects, including 10 accessible Galactic WR stars from the speckle survey of Hartkopf et al. (1999), 16 massive, hot stars with separations which would indicate their applicability for mass determinations (for fully detached O stars, we have only twelve mass determinations), 92 members of the Hyades and Pleiades clusters to complement RV studies of these clusters, and 197 Hyades & Pleiades stars, reobserved from the 1991 lists (Mason et al. 1993a,b).

  2. The Massive Star Population in M101

    NASA Astrophysics Data System (ADS)

    Grammer, Skyler H.

    An increasing number of non-terminal giant eruptions are being observed by modern supernova and transient surveys. Very little is known about the origin of these giant eruptions and their progenitors which are presumably very-massive, evolved stars such as luminous blue variables, hypergiants, and supergiants. Motivated by the small number of progenitors positively associated with these giant eruptions, we have begun a survey of the luminous and evolved massive star populations in several nearby galaxies. We aim to identify the likely progenitors of the giant eruptions, study the spatial variations in the stellar populations, and examine the relationship between massive star populations and their environment. The work presented here is focused on stellar populations in the relatively nearby, giant, spiral galaxy M101 from sixteen archival BVI HST/ACS images. We create a catalog of stars in the direction to M101 with photometric errors < 10% for V < 24.5 and 50% completeness down to V ˜ 26.5 even in regions of high stellar crowding. Using color and magnitude criteria we have identified candidate luminous OB type stars and blue supergiants, yellow supergiants, and red supergiants for future observation. We examine their spatial distributions across the face of M101 and find that the ratio of blue to red supergiants decreases by two orders of magnitude over the radial extent. From our catalog, we derive the star formation history (SFH) for the stellar populations in five 2' wide annuli by fitting the color-magnitude diagrams. Binning the SFH into time frames corresponding to populations traced by Halpha, far ultraviolet (FUV), and near ultraviolet (NUV) emission, we show that the fraction of stellar populations young enough to contribute in Halpha is 15% " 35% in the inner regions, compared to less than 5% in the outer regions. This provides a sufficient explanation for the lack of Halpha emission at large radii. We also model the blue to red supergiant ratio in our

  3. Proper Motions of Massive Stars in 30 Doradus

    NASA Astrophysics Data System (ADS)

    Lennon, Daniel

    2013-10-01

    We propose an ambitious proper motion survey of massive stars in the 30 Doradus region of the Large Magellanic Cloud using the unique capabilities of HST. We will derive the directions of motion of massive runaway stars, searching in particular for massive stars which have been ejected from the central very massive cluster R136. These data will be combined with radial velocities from the VLT-FLAMES Survey of the Tarantula Nebula and with atmospheric analyses and stellar evolution models to constrain their origins. We will also search for very young isolated massive stars to test models of single-star formation. This work is highly relevant to star formation, cluster dynamics, the origin of field WR stars and GRBs, the creation of very massive stars by runaway mergers, and the possible formation of intermediate-mass black holes.

  4. On the Formation of Massive Stars

    NASA Technical Reports Server (NTRS)

    Yorke, Harold W.; Sonnhalter, Cordula

    2002-01-01

    We calculate numerically the collapse of slowly rotating, nonmagnetic, massive molecular clumps of masses 30,60, and 120 Stellar Mass, which conceivably could lead to the formation of massive stars. Because radiative acceleration on dust grains plays a critical role in the clump's dynamical evolution, we have improved the module for continuum radiation transfer in an existing two-dimensional (axial symmetry assumed) radiation hydrodynamic code. In particular, rather than using "gray" dust opacities and "gray" radiation transfer, we calculate the dust's wavelength-dependent absorption and emission simultaneously with the radiation density at each wavelength and the equilibrium temperatures of three grain components: amorphous carbon particles. silicates, and " dirty ice " -coated silicates. Because our simulations cannot spatially resolve the innermost regions of the molecular clump, however, we cannot distinguish between the formation of a dense central cluster or a single massive object. Furthermore, we cannot exclude significant mass loss from the central object(s) that may interact with the inflow into the central grid cell. Thus, with our basic assumption that all material in the innermost grid cell accretes onto a single object. we are able to provide only an upper limit to the mass of stars that could possibly be formed. We introduce a semianalytical scheme for augmenting existing evolutionary tracks of pre-main-sequence protostars by including the effects of accretion. By considering an open outermost boundary, an arbitrary amount of material could, in principal, be accreted onto this central star. However, for the three cases considered (30, 60, and 120 Stellar Mass originally within the computation grid), radiation acceleration limited the final masses to 3 1.6, 33.6, and 42.9 Stellar Mass, respectively, for wavelength-dependent radiation transfer and to 19.1, 20.1, and 22.9 Stellar Mass. for the corresponding simulations with gray radiation transfer. Our

  5. Magnetic fields and massive star formation

    SciTech Connect

    Zhang, Qizhou; Keto, Eric; Ho, Paul T. P.; Ching, Tao-Chung; Chen, How-Huan; Qiu, Keping; Girart, Josep M.; Juárez, Carmen; Liu, Hauyu; Tang, Ya-Wen; Koch, Patrick M.; Rao, Ramprasad; Lai, Shih-Ping; Li, Zhi-Yun; Frau, Pau; Li, Hua-Bai; Padovani, Marco; Bontemps, Sylvain

    2014-09-10

    Massive stars (M > 8 M {sub ☉}) typically form in parsec-scale molecular clumps that collapse and fragment, leading to the birth of a cluster of stellar objects. We investigate the role of magnetic fields in this process through dust polarization at 870 μm obtained with the Submillimeter Array (SMA). The SMA observations reveal polarization at scales of ≲0.1 pc. The polarization pattern in these objects ranges from ordered hour-glass configurations to more chaotic distributions. By comparing the SMA data with the single dish data at parsec scales, we found that magnetic fields at dense core scales are either aligned within 40° of or perpendicular to the parsec-scale magnetic fields. This finding indicates that magnetic fields play an important role during the collapse and fragmentation of massive molecular clumps and the formation of dense cores. We further compare magnetic fields in dense cores with the major axis of molecular outflows. Despite a limited number of outflows, we found that the outflow axis appears to be randomly oriented with respect to the magnetic field in the core. This result suggests that at the scale of accretion disks (≲ 10{sup 3} AU), angular momentum and dynamic interactions possibly due to close binary or multiple systems dominate over magnetic fields. With this unprecedentedly large sample of massive clumps, we argue on a statistical basis that magnetic fields play an important role during the formation of dense cores at spatial scales of 0.01-0.1 pc in the context of massive star and cluster star formation.

  6. Molecular Outflows in Massive Star Forming Regions

    NASA Astrophysics Data System (ADS)

    Cunningham, Nichol

    2015-11-01

    This thesis presents millimetre continuum and molecular line observations exploring the properties of molecular outflows towards massive star forming regions. Massive stars produce some of the most energetic phenomena in the Galaxy, yet we still do not have a comprehensive understanding of how they actually form. Outflows are known to play a key role in this formation process and their properties, particularly how they change depending on the mass, luminosity and evolution of the driving source can shed light on how massive stars actually form. This thesis presents observations at both high (SMA 3 arcsecond) and low (JCMT 15 arcsecond) spatial resolution of the known jet/outflow tracers, SiO and 12CO, towards a sample massive star forming region drawn from the RMS survey. Furthermore, the presence of infall signatures is explored through observations of HCO+ and H13CO+, and the hot core nature of the regions is probed using tracers such as CH3CN, HC3N and CH3OH. SiO is detected towards approximately 50% of the massive young stellar objects and HII regions in the JCMT sample. The detection of SiO appears to be linked to the age of the RMS source, with the likely younger sources showing a stronger dependence with SiO. The presence of SiO also appears to be linked to the CO velocity, with SiO more efficiently tracing sources with higher velocity dispersions. In the MOPRA observations towards a sample of 33 RMS sources, CH3CN is detected towards 66% of the sources, with the redder likely younger sources having the largest rotational temperatures. This thesis presents the first interferometric SiO (5-4) and 12CO (2-1) observations, taken with the SMA, towards the massive star forming region G203.3166/NGC 2264-C. In this intermediate/massive star forming cluster, SiO is again tracing the youngest sources. Both the SiO and 12CO emission trace two bipolar, high velocity outflows towards the mm brightest, IR-dark, likely youngest sources in this reg! ion. In contrast the IR

  7. The Chandra Carina Complex Project: Massive Stars

    NASA Astrophysics Data System (ADS)

    Gagne, Marc; Townsley, L.; Corcoran, M.; Cohen, D.; Dickerson, K.; Oskinova, L.; Naze, Y.; Broos, P.; Chandra Carina Complex Project

    2010-03-01

    The Great Nebula in Carina is a superb site to study the violent massive star formation and feedback that typifies giant HII regions and starburst galaxies. We have combined 20 deep, new Chandra ACIS-I pointings with two existing ACIS-I fields to map over one square degree of the Carina complex. A state-of-the-art source detection algorithm has been used to create a catalog of 14,368 x-ray sources, the great majority with counterparts at near- and mid-infrared wavelengths. Carina contains the largest catalogued population of OB stars within 3 kpc, including many known binaries. In this paper, we report on the 130 x-ray detected OB and Wolf-Rayet Stars in the Carina complex. We use their x-ray spectra and light curves to categorize their x-ray emission. Not surprisingly, we find that the known OB and WolfRayet binaries have hard x-ray spectra and high Lx/Lbol strongly suggesting colling wind shocks. Most of the single OB stars have generally lower shock temperatures and lower Lx/Lbol, suggesting wind shocks embedded in the wind. About a dozen of the apparently single OB stars have harder x-ray spectra, and some time variability, possibly suggesting magnetically confined wind shocks, or flaring T Tauri companions.

  8. Rotation in young massive star clusters

    NASA Astrophysics Data System (ADS)

    Mapelli, Michela

    2017-05-01

    Hydrodynamical simulations of turbulent molecular clouds show that star clusters form from the hierarchical merger of several sub-clumps. We run smoothed-particle hydrodynamics simulations of turbulence-supported molecular clouds with mass ranging from 1700 to 43 000 M⊙. We study the kinematic evolution of the main cluster that forms in each cloud. We find that the parent gas acquires significant rotation, because of large-scale torques during the process of hierarchical assembly. The stellar component of the embedded star cluster inherits the rotation signature from the parent gas. Only star clusters with final mass < few × 100 M⊙ do not show any clear indication of rotation. Our simulated star clusters have high ellipticity (˜0.4-0.5 at t = 4 Myr) and are subvirial (Qvir ≲ 0.4). The signature of rotation is stronger than radial motions due to subvirial collapse. Our results suggest that rotation is common in embedded massive (≳1000 M⊙) star clusters. This might provide a key observational test for the hierarchical assembly scenario.

  9. Massive black holes in dense star clusters

    NASA Astrophysics Data System (ADS)

    Gurkan, Mehmet Atakan

    2005-11-01

    In this thesis, we study the formation of massive black holes in dense star clusters and their effects on the clusters' further evolution. We determine the necessary conditions for early core collapse, leading to the formation of a very massive star via runaway collisions. This process provides a natural mechanism for the formation of intermediate-mass black holes in young dense star clusters, which have been inferred from recent X-ray and optical observations. We performed about a hundred N -body simulations using our Monte Carlo technique, with a wide variety of initial conditions, containing up to 10 7 stars from a broad initial mass distribution. We find that for realistic initial mass functions, mass segregation and dynamical instabilities reduce the core collapse time, t cc , by two orders of magnitude compared to single- component cluster models. The ratio of the core collapse time to central relaxation time is generally ~0.15, which translates into ~0.07 for ratio of core collapse time to half-mass relaxation time for moderately concentrated clusters. This ratio can be smaller if there is initial mass segregation. We also find that typically the mass of the stars in the collapsing core is ~0.2% of the cluster's total mass. We then study the inspiral towards the Galactic center of young clusters which undergo early core collapse. We find that such clusters can bring many young stars to the central parsec, and hence explain the presence of many young stars in this region. However, this mechanism requires a large initial mass, and deposits more stars, both in the central parsec and outside it, than observed. We provide possible explanations for this discrepancy, and suggest future directions for research. Finally, we study the effects of primordial binaries on early core collapse runaway collisions. Even though such binaries generally delay and prevent core collapse (e.g., in globular clusters) they are expected to facilitate collisions and hence accelerate

  10. Radiative ablation of disks around massive stars

    NASA Astrophysics Data System (ADS)

    Kee, Nathaniel Dylan

    Hot, massive stars (spectral types O and B) have extreme luminosities (10. 4 -10. 6 L?) that drive strong stellar winds through UV line-scattering.Some massive stars also have disks, formed by either decretion from the star (as in the rapidly rotating "Classical Be stars"), or accretion during the star's formation. This dissertation examines the role of stellar radiation in driving (ablating) material away from these circumstellar disks. A key result is that the observed month to year decay of Classical Be disks can be explained by line-driven ablation without, as previously done, appealing to anomalously strong viscous diffusion. Moreover, the higher luminosity of O stars leads to ablation of optically thin disks on dynamical timescales of order a day, providing a natural explanation for the lack of observed Oe stars. In addition to the destruction of Be disks, this dissertation also introduces a model for their formation by coupling observationally inferred non-radial pulsation modes and rapid stellar rotation to launch material into orbiting Keplerian disks of Be-like densities. In contrast to such Be decretion disks, star-forming accretion disks are much denser and so are generally optically thick to continuum processes. To circumvent the computational challenges associated with radiation hydrodynamics through optically thick media, we develop an approximate method for treating continuum absorption in the limit of geometrically thin disks. The comparison of ablation with and without continuum absorption shows that accounting for disk optical thickness leads to less than a 50% reduction in ablation rate, implying that ablation rate depends mainly on stellar properties like luminosity. Finally, we discuss the role of "thin-shell mixing" in reducing X-rays from colliding wind binaries. Laminar, adiabatic shocks produce well understood X-ray emission, but the emission from radiatively cooled shocks is more complex due to thin-shell instabilities. The parameter

  11. Hot, Massive Stars in I Zw 18

    NASA Technical Reports Server (NTRS)

    Heap, Sara R.; Lindler, D.; Malumuth, E.

    2011-01-01

    I Zw 18 is one of the most primitive blue, compact dwarf galaxies. The ionized gas in I Zw 18 has a low oxygen abundance (O approx.1/30 Osun) and nitrogen abundance (N-1/100 Nsun) (Pequignot 2008). We have obtained a far-UV spectrum of the northwest massive star cluster of I Zw 18 using Hubble's Cosmic Origins Spectrograph (COS). The spectrum is compatible with continuous star-formation over the past approx.10 Myr, and a very low metallicity, log Z/Zsun 1.7, although the stellar surface may be enhanced in carbon. Stellar wind lines are very weak, and the edge velocity of wind lines is very low (approx.250 km/s).

  12. Energetic Supernovae of Very Massive Primordial Stars

    NASA Astrophysics Data System (ADS)

    Chen, Ke-Jung; Woosley, Stan

    2015-08-01

    Current models of the formation of the first stars in the universe suggest that these stars were very massive, having a typical mass scale of hundreds of solar masses. Some of them would die as pair instability supernovae (PSNe) which might be the biggest explosions of the universe. We present the results from multidimensional numerical studies of PSNe with a new radiation-hydrodynamics code, CASTRO and with realistic nuclear reaction networks. We simulate the fluid instabilities that occur in multiple spatial dimensions and discuss how the resulting mixing affects the explosion, mixing, and nucleosynthesis of these supernovae. Our simulations provide useful predictions for the observational signatures of PSNe, which might soon be examined by the James Webb Space Telescope.

  13. Neutrinos and the Deaths of Massive Stars

    NASA Astrophysics Data System (ADS)

    Hix, W. R.; Mezzacappa, A.; Messer, O. E. B.

    2005-06-01

    Observationally categorized as Type II or Ib/c supernovae, core collapse supernovae mark the end of the life of a massive star and the formation of a neutron star or black hole. These explosions are among the most energetic events in the universe, emitting 1046 J of energy, primarily in the form of neutrinos. They play a preeminent role in the cosmic origin of the elements and serve as a principal heating mechanism for the interstellar medium. Numerical simulations of the textbook neutrino-reheating mechanism for core collapse supernovae frequently fail to match the most fundamental observable property: an explosion with roughly 1044 J of kinetic energy. We review recent improvements in the modeling of core collapse supernovae, including improved tracking of the neutrino distribution and better accounting for the multi-dimensional nature of the hydrodynamic flows. We also discuss how continued improvements in the treatment of microscopic nuclear and neutrino physics has important macroscopic consequences.

  14. Binary interaction dominates the evolution of massive stars.

    PubMed

    Sana, H; de Mink, S E; de Koter, A; Langer, N; Evans, C J; Gieles, M; Gosset, E; Izzard, R G; Le Bouquin, J-B; Schneider, F R N

    2012-07-27

    The presence of a nearby companion alters the evolution of massive stars in binary systems, leading to phenomena such as stellar mergers, x-ray binaries, and gamma-ray bursts. Unambiguous constraints on the fraction of massive stars affected by binary interaction were lacking. We simultaneously measured all relevant binary characteristics in a sample of Galactic massive O stars and quantified the frequency and nature of binary interactions. More than 70% of all massive stars will exchange mass with a companion, leading to a binary merger in one-third of the cases. These numbers greatly exceed previous estimates and imply that binary interaction dominates the evolution of massive stars, with implications for populations of massive stars and their supernovae.

  15. Limiting Accretion onto Massive Stars by Fragmentation-Induced Starvation

    SciTech Connect

    Peters, Thomas; Klessen, Ralf S.; Mac Low, Mordecai-Mark; Banerjee, Robi; /ZAH, Heidelberg

    2010-08-25

    Massive stars influence their surroundings through radiation, winds, and supernova explosions far out of proportion to their small numbers. However, the physical processes that initiate and govern the birth of massive stars remain poorly understood. Two widely discussed models are monolithic collapse of molecular cloud cores and competitive accretion. To learn more about massive star formation, we perform simulations of the collapse of rotating, massive, cloud cores including radiative heating by both non-ionizing and ionizing radiation using the FLASH adaptive mesh refinement code. These simulations show fragmentation from gravitational instability in the enormously dense accretion flows required to build up massive stars. Secondary stars form rapidly in these flows and accrete mass that would have otherwise been consumed by the massive star in the center, in a process that we term fragmentation-induced starvation. This explains why massive stars are usually found as members of high-order stellar systems that themselves belong to large clusters containing stars of all masses. The radiative heating does not prevent fragmentation, but does lead to a higher Jeans mass, resulting in fewer and more massive stars than would form without the heating. This mechanism reproduces the observed relation between the total stellar mass in the cluster and the mass of the largest star. It predicts strong clumping and filamentary structure in the center of collapsing cores, as has recently been observed. We speculate that a similar mechanism will act during primordial star formation.

  16. LIMITING ACCRETION ONTO MASSIVE STARS BY FRAGMENTATION-INDUCED STARVATION

    SciTech Connect

    Peters, Thomas; Klessen, Ralf S.; Banerjee, Robi; Low, Mordecai-Mark Mac

    2010-12-10

    Massive stars influence their surroundings through radiation, winds, and supernova explosions far out of proportion to their small numbers. However, the physical processes that initiate and govern the birth of massive stars remain poorly understood. Two widely discussed models are monolithic collapse of molecular cloud cores and competitive accretion. To learn more about massive star formation, we perform and analyze simulations of the collapse of rotating, massive, cloud cores including radiative heating by both non-ionizing and ionizing radiation using the FLASH adaptive-mesh refinement code. These simulations show fragmentation from gravitational instability in the enormously dense accretion flows required to build up massive stars. Secondary stars form rapidly in these flows and accrete mass that would have otherwise been consumed by the massive star in the center, in a process that we term fragmentation-induced starvation. This explains why massive stars are usually found as members of high-order stellar systems that themselves belong to large clusters containing stars of all masses. The radiative heating does not prevent fragmentation, but does lead to a higher Jeans mass, resulting in fewer and more massive stars than would form without the heating. This mechanism reproduces the observed relation between the total stellar mass in the cluster and the mass of the largest star. It predicts strong clumping and filamentary structure in the center of collapsing cores, as has recently been observed. We speculate that a similar mechanism will act during primordial star formation.

  17. Massive stars in their death throes.

    PubMed

    Eldridge, John J

    2008-12-13

    The study of the stars that explode as supernovae used to be a forensic study, working backwards from the remnants of the star. This changed in 1987 when the first progenitor star was identified in pre-explosion images. Currently, there are eight detected progenitors with another 21 non-detections, for which only a limit on the pre-explosion luminosity can be placed. This new avenue of supernova research has led to many interesting conclusions, most importantly that the progenitors of the most common supernovae, type IIP, are red supergiants, as theory has long predicted. However, no progenitors have been detected thus far for the hydrogen-free type Ib/c supernovae, which, given the expected progenitors, is an unlikely result. Also, observations have begun to show evidence that luminous blue variables, which are among the most massive stars, may directly explode as supernovae. These results contradict the current stellar evolution theory. This suggests that we may need to update our understanding.

  18. First Circumstellar Disk around a Massive Star

    NASA Astrophysics Data System (ADS)

    1998-06-01

    Observations with an infrared-sensitive instrument at the ESO 3.6-m telescope at La Silla have for the first time shown the presence of a disk around a hot and massive star, known as G339.88-1.26 . Until now, disks have only been found around less massive stars. Planets are formed in such disks. The new discovery may thus have important implications for our understanding of the formation of planetary systems around stars. TIMMI observations Observations at mid-infrared wavelengths were carried out in July 1997 by Bringfried Stecklum (Landessternwarte Thüringen, Tautenburg, Germany) and Hans-Ulrich Käufl (ESO), using the TIMMI instrument at the ESO 3.6-m telescope. Additional measurements were carried out in March 1998. TIMMI ( T hermal I nfrared M ulti M ode I nstrument) is a general-purpose camera spectrometer operating at a wavelength of 10 µm. To reach sufficient sensitivity, the camera must be cooled to approx. -260 o C, i.e. a few degrees above the absolute minimum, by use of liquid Helium. Astronomical objects whose temperatures are between -120 o C and 300 o C radiate most of their energy at this wavelength. In addition, dust and haze that are absolutely impenetrable for light visible to the human eye, are often found to be nearly transparent at this wavelength. This is why fire-fighters now use similar equipment to look through smoke. G339.88-1.26: A very special object ESO PR Photo 22a/98 ESO PR Photo 22a/98 [JPEG, 800k] This image is a true-color composite of near-infrared observations of the sky region around the radio source G339.88-1.26 with the ESO/MPI 2.2-m telescope at La Silla. In this image, the visible colors red, green and blue have been used to represent the infrared filters J, H and K (at 1.25, 1.63 and 2.2 µm wavelength, respectively). No object is visible at the position of the radio source, even at these near-infrared wavelengths. A dark band of absorbing dust is clearly visible, exactly at the position of the object (indicated by an

  19. A MASSIVE RUNAWAY STAR FROM 30 DORADUS

    SciTech Connect

    Evans, C. J.; Walborn, N. R.; Massa, D.; Lennon, D. J.; Crowther, P. A.; Henault-Brunet, V.; Taylor, W. D.; Howarth, I. D.; Sana, H.; Van Loon, J. Th.

    2010-06-01

    We present the first ultraviolet (UV) and multi-epoch optical spectroscopy of 30 Dor 016, a massive O2-type star on the periphery of 30 Doradus in the Large Magellanic Cloud. The UV data were obtained with the Cosmic Origins Spectrograph on the Hubble Space Telescope as part of the Servicing Mission Observatory Verification program after Servicing Mission 4, and reveal no. 016 to have one of the fastest stellar winds known. From analysis of the C IV {lambda}{lambda}1548-51 doublet we find a terminal velocity, v {sub {infinity}} = 3450 {+-} 50 km s{sup -1}. Optical spectroscopy is from the VLT-FLAMES Tarantula Survey, from which we rule out a massive companion (with 2 days < P < 1 yr) to a confidence of 98%. The radial velocity of no. 016 is offset from the systemic value by -85 km s{sup -1}, suggesting that the star has traveled the 120 pc from the core of 30 Doradus as a runaway, ejected via dynamical interactions.

  20. The exclusion of a significant range of ages in a massive star cluster.

    PubMed

    Li, Chengyuan; de Grijs, Richard; Deng, Licai

    2014-12-18

    Stars spend most of their lifetimes on the main sequence in the Hertzsprung-Russell diagram. The extended main-sequence turn-off regions--containing stars leaving the main sequence after having spent all of the hydrogen in their cores--found in massive (more than a few tens of thousands of solar masses), intermediate-age (about one to three billion years old) star clusters are usually interpreted as evidence of internal age spreads of more than 300 million years, although young clusters are thought to quickly lose any remaining star-forming fuel following a period of rapid gas expulsion on timescales of order 10(7) years. Here we report, on the basis of a combination of high-resolution imaging observations and theoretical modelling, that the stars beyond the main sequence in the two-billion-year-old cluster NGC 1651, characterized by a mass of about 1.7 × 10(5) solar masses, can be explained only by a single-age stellar population, even though the cluster has a clearly extended main-sequence turn-off region. The most plausible explanation for the existence of such extended regions invokes a population of rapidly rotating stars, although the secondary effects of the prolonged stellar lifetimes associated with such a stellar population mixture are as yet poorly understood. From preliminary analysis of previously obtained data, we find that similar morphologies are apparent in the Hertzsprung-Russell diagrams of at least five additional intermediate-age star clusters, suggesting that an extended main-sequence turn-off region does not necessarily imply the presence of a significant internal age dispersion.

  1. Neutron stars structure in the context of massive gravity

    NASA Astrophysics Data System (ADS)

    Hendi, S. H.; Bordbar, G. H.; Eslam Panah, B.; Panahiyan, S.

    2017-07-01

    Motivated by the recent interests in spin-2 massive gravitons, we study the structure of neutron star in the context of massive gravity. The modifications of TOV equation in the presence of massive gravity are explored in 4 and higher dimensions. Next, by considering the modern equation of state for the neutron star matter (which is extracted by the lowest order constrained variational (LOCV) method with the AV18 potential), different physical properties of the neutron star (such as Le Chatelier's principle, stability and energy conditions) are investigated. It is shown that consideration of the massive gravity has specific contributions into the structure of neutron star and introduces new prescriptions for the massive astrophysical objects. The mass-radius relation is examined and the effects of massive gravity on the Schwarzschild radius, average density, compactness, gravitational redshift and dynamical stability are studied. Finally, a relation between mass and radius of neutron star versus the Planck mass is extracted.

  2. Very early stages of massive stars

    NASA Astrophysics Data System (ADS)

    Vasyunina, Tatiana

    2010-12-01

    The goal of this thesis work is to investigate the initial conditions and the early phases of the formation of high-mass stars by means of dedicated observational studies. We consider two object classes: infrared dark clouds (IRDCs), and a subsequent stage characterized by the presence of young embedded (proto-)stellar clusters. First, we estimate masses and column densities for a completely new sample of southern IRDCs, utilizing our own millimeter continuum emission maps as well as Spitzer satellite data. The parameters we derive show that IRDCs from our sample have the potential to form not only low- and intermediate-mass stars, but can also be the birth places of massive stars. In particular, the comparison of our results with previously obtained data for low-mass starless cores shows a clear trend for IRDCs to have systematically higher column densities. The interpolated IRDC peak column densities exceed the threshold for the onset of massive star formation previously advocated by theoretical studies. We also critically evaluate the limitations of the applied emission and extinction methods. Second, we investigate the physical conditions and the chemical composition of the dense gas within the IRDCs of our sample by means of a multi-line molecular spectroscopy analysis. All the clouds have complex HCO+ line pro les, and we detect SiO emission in some clouds. These ndings mark the presence of infall and out ow motions in at least some parts of the IRDCs, and hence, ongoing star formation. In comparison with low-mass starless cores, the IRDCs have broader and more intense lines. Thus, they may be characterised by more turbulent conditions. Nevertheless, we nd a tendency for the IRDCs to have molecular abundances similar to the case of low-mass starless cores. This indicates similar chemical initial conditions for low- and high-mass star-forming regions. Finally, we study the stellar composition and environmental conditions in the young embedded cluster IRAS

  3. Limits on Planets Orbiting Massive Stars from Radio Pulsar Timing

    NASA Technical Reports Server (NTRS)

    Thorsett, S. E.; Dewey, R. J.

    1993-01-01

    When a massive star collapses to a neutron star, rapidly losing over half its mass in a symmetric supernova explosiosn, any planets orbiting the star will be unbound. However, to explain the observed space velocity and binary fraction of radio pulsars, an asymmetric kick must be given to the neutron star of birth.

  4. Limits on Planets Orbiting Massive Stars from Radio Pulsar Timing

    NASA Technical Reports Server (NTRS)

    Thorsett, S. E.; Dewey, R. J.

    1993-01-01

    When a massive star collapses to a neutron star, rapidly losing over half its mass in a symmetric supernova explosiosn, any planets orbiting the star will be unbound. However, to explain the observed space velocity and binary fraction of radio pulsars, an asymmetric kick must be given to the neutron star of birth.

  5. Evolutionary Connections Between RSGs and Other Massive Stars

    NASA Astrophysics Data System (ADS)

    Smith, Nathan

    2015-08-01

    Red supergiants are an important mass-loss phase near the end of a massive star's life, but there are many other evolved mass-losing stars that populate the HR Diagram, and not all massive stars will pass through a red supergiant phase. This talk will provide an overview of other types of massive stars and how they relate to red supergiants. Mass loss by red supergiant winds will be weighed against the mass loss of other massive stars in terms of their contribution to pre-supernova evolution, focussing on trends with initial mass and metallicity. Moreover, some other evolved massive stars have already been RSG or will be in the future, and circumstellar material is an important clue in this regard. Last, the diversity of different supernova explosions, their circumstellar material, and statistics of SN types provide important constraints on the role of RSGs in the latest phases of evolution and mass loss.

  6. Bridging the gap: from massive stars to supernovae.

    PubMed

    Maund, Justyn R; Crowther, Paul A; Janka, Hans-Thomas; Langer, Norbert

    2017-10-28

    Almost since the beginning, massive stars and their resultant supernovae have played a crucial role in the Universe. These objects produce tremendous amounts of energy and new, heavy elements that enrich galaxies, encourage new stars to form and sculpt the shapes of galaxies that we see today. The end of millions of years of massive star evolution and the beginning of hundreds or thousands of years of supernova evolution are separated by a matter of a few seconds, in which some of the most extreme physics found in the Universe causes the explosive and terminal disruption of the star. Key questions remain unanswered in both the studies of how massive stars evolve and the behaviour of supernovae, and it appears the solutions may not lie on just one side of the explosion or the other or in just the domain of the stellar evolution or the supernova astrophysics communities. The need to view massive star evolution and supernovae as continuous phases in a single narrative motivated the Theo Murphy international scientific meeting 'Bridging the gap: from massive stars to supernovae' at Chicheley Hall, UK, in June 2016, with the specific purpose of simultaneously addressing the scientific connections between theoretical and observational studies of massive stars and their supernovae, through engaging astronomers from both communities.This article is part of the themed issue 'Bridging the gap: from massive stars to supernovae'. © 2017 The Author(s).

  7. Bridging the gap: from massive stars to supernovae

    NASA Astrophysics Data System (ADS)

    Maund, Justyn R.; Crowther, Paul A.; Janka, Hans-Thomas; Langer, Norbert

    2017-09-01

    Almost since the beginning, massive stars and their resultant supernovae have played a crucial role in the Universe. These objects produce tremendous amounts of energy and new, heavy elements that enrich galaxies, encourage new stars to form and sculpt the shapes of galaxies that we see today. The end of millions of years of massive star evolution and the beginning of hundreds or thousands of years of supernova evolution are separated by a matter of a few seconds, in which some of the most extreme physics found in the Universe causes the explosive and terminal disruption of the star. Key questions remain unanswered in both the studies of how massive stars evolve and the behaviour of supernovae, and it appears the solutions may not lie on just one side of the explosion or the other or in just the domain of the stellar evolution or the supernova astrophysics communities. The need to view massive star evolution and supernovae as continuous phases in a single narrative motivated the Theo Murphy international scientific meeting `Bridging the gap: from massive stars to supernovae' at Chicheley Hall, UK, in June 2016, with the specific purpose of simultaneously addressing the scientific connections between theoretical and observational studies of massive stars and their supernovae, through engaging astronomers from both communities. This article is part of the themed issue 'Bridging the gap: from massive stars to supernovae'.

  8. Molecular Outflows from Newly Formed Massive Stars

    NASA Astrophysics Data System (ADS)

    Kim, Kee-Tae; Kim, Won-Ju; Kim, Chang-Hee

    2015-12-01

    We map 6 massive young stellar objects (YSOs) in the CO J=2-1 line and survey 18 massive YSOs, including the six, in the hcopj, sioj, water 6_{16}-5_{23} maser, and methanol 7_{0}-6_{1} A^{+} maser lines. We detect CO bipolar outflows in all the six mapped sources. Four of them are newly discovered (ifive, ieight, inine, iten), while itwo is mapped in the CO J=2-1 line for the first time. The detected outflows are much more massive and energetic than outflows from low-mass YSOs with masses >20 M_⊙ and momenta >300 M_⊙ km/s. They have mass outflow rates (3-6)×10^{-4} M_⊙ yr^{-1}, which are at least one order of magnitude greater than those observed in low-mass YSOs. We detect hcop and SiO line emission in 18 (100%) and 4 (22%) sources, respectively. The hcop spectra show high-velocity wings in 11 (61%) sources. We detect water maser emission in 13 (72%) sources and 44 GHz methanol maser emission in 8 (44%) sources. Of the detected sources, 5 water and 6 methanol maser sources are new discoveries. iseven shows high-velocity (>30 kms) water maser lines. We find good correlations of the bolometric luminosity of the central (proto)star with the mechanical force, mechanical luminosity, and mass outflow rate of molecular outflow %L_{bol} with F_{m}, L_{m}, and dot{M}_{out} in the bolometric luminosity range of 10^{-1}-10^6 lsol, and identified 3 intermediate- or high-mass counterparts of Class O objects.

  9. YOUNG STELLAR GROUPS AND THEIR MOST MASSIVE STARS

    SciTech Connect

    Kirk, Helen; Myers, Philip C.

    2011-02-01

    We analyze the masses and spatial distributions of 14 young stellar groups in Taurus, Lupus3, ChaI, and IC348. These nearby groups, which typically contain 20-40 members, have membership catalogs complete to {approx}0.02 M{sub sun}, and are sufficiently young that their locations should be similar to where they formed. These groups show five properties seen in clusters having many more stars and much greater surface density of stars: (1) a broad range of masses, (2) a concentration of the most massive star toward the center of the group, (3) an association of the most massive star with a high surface density of lower mass stars, (4) a correlation of the mass of the most massive star with the total mass of the group, and (5) the distribution of a large fraction of the mass in a small fraction of the stars.

  10. WHAT SETS THE INITIAL ROTATION RATES OF MASSIVE STARS?

    SciTech Connect

    Rosen, Anna L.; Krumholz, Mark R.; Ramirez-Ruiz, Enrico

    2012-04-01

    The physical mechanisms that set the initial rotation rates in massive stars are a crucial unknown in current star formation theory. Observations of young, massive stars provide evidence that they form in a similar fashion to their low-mass counterparts. The magnetic coupling between a star and its accretion disk may be sufficient to spin down low-mass pre-main-sequence (PMS) stars to well below breakup at the end stage of their formation when the accretion rate is low. However, we show that these magnetic torques are insufficient to spin down massive PMS stars due to their short formation times and high accretion rates. We develop a model for the angular momentum evolution of stars over a wide range in mass, considering both magnetic and gravitational torques. We find that magnetic torques are unable to spin down either low-mass or high-mass stars during the main accretion phase, and that massive stars cannot be spun down significantly by magnetic torques during the end stage of their formation either. Spin-down occurs only if massive stars' disk lifetimes are substantially longer or their magnetic fields are much stronger than current observations suggest.

  11. MiMes and Magnetic Fields in Massive Stars

    NASA Astrophysics Data System (ADS)

    Petit, Veronique

    2013-06-01

    Massive star magnetism is often considered an astronomical ``wildcard'', as it is hard to predict in which stars it may occur. This reflects our fundamental ignorance of the origin of massive star magnetism, and compels us to better understand the scope of its influence on massive stars individually, and also as a population. In the last decade, our understanding of this phenomenon has made a giant leap forward thanks to a new generation of powerful spectropolarimeters capable of measuring the Zeeman effect in the spectra of these stars. Over the past 5 years, ambitious projects such as the Magnetism in Massive Stars (MiMeS) Collaboration have been seeking out magnetic massive stars in the Galaxy, to better understand their origins, physical properties, and how they influence observable stellar characteristics. In this talk, we review the general properties of OB star magnetism in the Galaxy, using recent MiMeS discoveries as examples. It is now clear that the magnetic properties of massive stars are established early in their evolution. This raises interesting and fundamental questions about the physics of stellar formation and connections with stellar magnetism, as MiMeS observations have established that about 1 in 15 Galactic OB stars hosts a magnetic field that is sufficiently strong to significantly influence its atmospheric and wind structure. Could your own mysterious and perplexing OB target be a magnetic massive star? To aid in answering this question, we review many of the outstanding or exotic properties exhibited by known magnetic OB stars that relate directly to their magnetic nature.

  12. The Unevolved Massive Star Content of the Magellanic Clouds

    NASA Astrophysics Data System (ADS)

    Massey, Philip

    2012-10-01

    The Magellanic Clouds offer a unique astrophysical laboratory where we can actually obtain an unbiased estimate of the number of unevolved massive stars above a certain mass. Comparing this number with the {known} number of evolved massive stars, such as Wolf-Rayets, yellow supergiants, and red supergiants, provides a hiterto unavailable test of massive star evolutionary theory. We are engaged in a long-term {5 year} effort to characterize the massive star content of select OB associations of the SMC and LMC using spectroscopy with the Magellan 6.5-m telescopes. Here we are asking for a short { 1 sec} SNAPshot of each of 23 OB associations in the F225W filter. These HST data will provide a crucial complement to our ground based data, allowing us to concentrate on the early and mid O-type stars with our spectroscopy, and to recognize close doubles that would otherwise be unrecognized from the ground.

  13. Mass loss from very young massive stars

    NASA Astrophysics Data System (ADS)

    Henning, Th.

    The physics of mass loss from very young massive stars is reviewed, and mass-loss rates are determined for several objects on the basis of published observational data. The observational evidence for mass loss of 0.0001-0.001 solar mass/yr with velocity 10-60 km/s, dynamical timescale 1000-100,000 yr, and kinetic energy (1-100) x 10 to the 38th W from these objects is chracterized; techniques for estimating mass-loss rates from H recombination lines, CO line profiles maser data, and IR-continuum observations are described; rates for molecular outflows and ionized winds are presented in tabels; and theoretical models developed to explain the mechanism driving bipolar mass loss are examined critically. It is found that neither radiation pressure on dust grins nor the ionized winds can drive the molecular outflow. The models considered most probable are those involving production of holes by original spherical stellar winds (Canto, 1980, rotationally driven magnetic pressure (Draine, 1983), and infall from an accretion disk (Torbett, 1984).

  14. Gravitational Collapse and Neutrino Emission of Population III Massive Stars

    NASA Astrophysics Data System (ADS)

    Nakazato, Ken'ichiro; Sumiyoshi, Kohsuke; Yamada, Shoichi

    2006-07-01

    Population III (Pop III) stars are the first stars in the universe. They do not contain metals, and their formation and evolution may be different from that of stars of later generations. In fact, according to the theory of star formation, Pop III stars might have very massive components (~100-10000 Msolar). In this paper, we compute the spherically symmetric gravitational collapse of these Pop III massive stars. We solve the general relativistic hydrodynamics and neutrino transfer equations simultaneously, treating neutrino reactions in detail. Unlike supermassive stars (>~105 Msolar), the stars of concern in this paper become opaque to neutrinos. The collapse is simulated until after an apparent horizon is formed. We confirm that the neutrino transfer plays a crucial role in the dynamics of gravitational collapse and find also that the β-equilibration leads to a somewhat unfamiliar evolution of electron fraction. Contrary to the naive expectation, the neutrino spectrum does not become harder for more massive stars. This is mainly because the neutrino cooling is more efficient and the outer core is more massive as the stellar mass increases. Here the outer core is the outer part of the iron core falling supersonically. We also evaluate the flux of relic neutrinos from Pop III massive stars. As expected, the detection of these neutrinos is difficult for the currently operating detectors. However, if ever observed, the spectrum will enable us to obtain information on the formation history of Pop III stars. We investigate 18 models covering the mass range of 300-104 Msolar, making this study the most detailed numerical exploration of spherically symmetric gravitational collapse of Pop III massive stars. This will also serve as an important foundation for multidimensional investigations.

  15. RECONSTRUCTING THE STELLAR MASS DISTRIBUTIONS OF GALAXIES USING S{sup 4}G IRAC 3.6 AND 4.5 {mu}m IMAGES. I. CORRECTING FOR CONTAMINATION BY POLYCYCLIC AROMATIC HYDROCARBONS, HOT DUST, AND INTERMEDIATE-AGE STARS

    SciTech Connect

    Meidt, Sharon E.; Schinnerer, Eva; Bosma, Albert; Athanassoula, E.; Sheth, Kartik; Munoz-Mateos, Juan-Carlos; Buta, Ronald J.; Zaritsky, Dennis; Hinz, Joannah L.; Skibba, Ramin A.; Laurikainen, Eija; Salo, Heikki; Elmegreen, Debra; Elmegreen, Bruce G.; Gadotti, Dimitri A.; Regan, Michael; Ho, Luis C.; Madore, Barry F.; Gil de Paz, Armando; and others

    2012-01-01

    With the aim of constructing accurate two-dimensional maps of the stellar mass distribution in nearby galaxies from Spitzer Survey of Stellar Structure in Galaxies 3.6 and 4.5 {mu}m images, we report on the separation of the light from old stars from the emission contributed by contaminants. Results for a small sample of six disk galaxies (NGC 1566, NGC 2976, NGC 3031, NGC 3184, NGC 4321, and NGC 5194) with a range of morphological properties, dust content, and star formation histories are presented to demonstrate our approach. To isolate the old stellar light from contaminant emission (e.g., hot dust and the 3.3 {mu}m polycyclic aromatic hydrocarbon (PAH) feature) in the IRAC 3.6 and 4.5 {mu}m bands we use an independent component analysis (ICA) technique designed to separate statistically independent source distributions, maximizing the distinction in the [3.6]-[4.5] colors of the sources. The technique also removes emission from evolved red objects with a low mass-to-light ratio, such as asymptotic giant branch (AGB) and red supergiant (RSG) stars, revealing maps of the underlying old distribution of light with [3.6]-[4.5] colors consistent with the colors of K and M giants. The contaminants are studied by comparison with the non-stellar emission imaged at 8 {mu}m, which is dominated by the broad PAH feature. Using the measured 3.6 {mu}m/8 {mu}m ratio to select individual contaminants, we find that hot dust and PAHs together contribute between {approx}5% and 15% to the integrated light at 3.6 {mu}m, while light from regions dominated by intermediate-age (AGB and RSG) stars accounts for only 1%-5%. Locally, however, the contribution from either contaminant can reach much higher levels; dust contributes on average 22% to the emission in star-forming regions throughout the sample, while intermediate-age stars contribute upward of 50% in localized knots. The removal of these contaminants with ICA leaves maps of the old stellar disk that retain a high degree of

  16. ATLASGAL - towards a complete sample of massive star forming clumps

    NASA Astrophysics Data System (ADS)

    Urquhart, J. S.; Moore, T. J. T.; Csengeri, T.; Wyrowski, F.; Schuller, F.; Hoare, M. G.; Lumsden, S. L.; Mottram, J. C.; Thompson, M. A.; Menten, K. M.; Walmsley, C. M.; Bronfman, L.; Pfalzner, S.; König, C.; Wienen, M.

    2014-09-01

    By matching infrared-selected, massive young stellar objects (MYSOs) and compact H II regions in the Red MSX Source survey to massive clumps found in the submillimetre ATLASGAL (APEX Telescope Large Area Survey of the Galaxy) survey, we have identified ˜1000 embedded young massive stars between 280° < ℓ < 350° and 10° < ℓ < 60° with | b | < 1.5°. Combined with an existing sample of radio-selected methanol masers and compact H II regions, the result is a catalogue of ˜1700 massive stars embedded within ˜1300 clumps located across the inner Galaxy, containing three observationally distinct subsamples, methanol-maser, MYSO and H II-region associations, covering the most important tracers of massive star formation, thought to represent key stages of evolution. We find that massive star formation is strongly correlated with the regions of highest column density in spherical, centrally condensed clumps. We find no significant differences between the three samples in clump structure or the relative location of the embedded stars, which suggests that the structure of a clump is set before the onset of star formation, and changes little as the embedded object evolves towards the main sequence. There is a strong linear correlation between clump mass and bolometric luminosity, with the most massive stars forming in the most massive clumps. We find that the MYSO and H II-region subsamples are likely to cover a similar range of evolutionary stages and that the majority are near the end of their main accretion phase. We find few infrared-bright MYSOs associated with the most massive clumps, probably due to very short pre-main-sequence lifetimes in the most luminous sources.

  17. Proper Motions of Isolated Massive Stars Near the Galactic Center

    NASA Astrophysics Data System (ADS)

    Lennon, Daniel

    2012-10-01

    The Galactic Center is one of the most perplexing and unusual regions of the Galaxy. Not only is it home to the central massive black hole but it contains three very massive young star clusters within the central 30 pc; the Arches, Quintuplet and Central clusters. Furthermore, emission-line surveys have revealed the presence of what appears to be a diaspora of 40 very massive isolated Wolf-Rayet-like stars scattered throughout the region, outside of these massive clusters. Their origin is currently unkown but the suspected causes include such diverse and exotic mechanisms as ejection by dynamical interaction within the massive clusters, ejection by supernovae events within those clusters old enough to have SN, ejection by interaction with the central black hole, stellar mergers in the field, and in situ star formation of isolated massive stars. These processes however should all leave clear and distinct dynamical signatures on their products.We propose using WFC3/IR to conduct a survey of 150 square arcminutes the Galactic Center region to measure relative proper motions to an accuracy of 10 km/s for stars with masses as low as a few solar masses {late B-type}. Our objectives include determining which of the known isolated massive stars are runaways, estimating their probable places of origin, discovering less luminous runaways that are invisible to emission line surveys, characterizing the dynamical properties of runaway stars in all luminosty ranges, and searching for signs of tidally disrupted massive clusters. The survey will have lasting legacy value to those trying to unravel the physics of galactic centers and the environments around massive black holes.

  18. Proper Motions of Isolated Massive Stars Near the Galactic Center

    NASA Astrophysics Data System (ADS)

    Lennon, Daniel

    2014-10-01

    The Galactic Center is one of the most perplexing and unusual regions of the Galaxy. Not only is it home to the central massive black hole but it contains three very massive young star clusters within the central 30 pc; the Arches, Quintuplet and Central clusters. Furthermore, emission-line surveys have revealed the presence of what appears to be a diaspora of ~40 very massive isolated Wolf-Rayet-like stars scattered throughout the region, outside of these massive clusters. Their origin is currently unkown but the suspected causes include such diverse and exotic mechanisms as ejection by dynamical interaction within the massive clusters, ejection by supernovae events within those clusters old enough to have SN, ejection by interaction with the central black hole, stellar mergers in the field, and in situ star formation of isolated massive stars. These processes however should all leave clear and distinct dynamical signatures on their products.We propose using WFC3/IR to conduct a survey of ~150 square arcminutes the Galactic Center region to measure relative proper motions to an accuracy of 10 km/s for stars with masses as low as a few solar masses (late B-type). Our objectives include determining which of the known isolated massive stars are runaways, estimating their probable places of origin, discovering less luminous runaways that are invisible to emission line surveys, characterizing the dynamical properties of runaway stars in all luminosty ranges, and searching for signs of tidally disrupted massive clusters. The survey will have lasting legacy value to those trying to unravel the physics of galactic centers and the environments around massive black holes.

  19. On stars, galaxies and black holes in massive bigravity

    SciTech Connect

    Enander, Jonas; Mörtsell, Edvard E-mail: edvard@fysik.su.se

    2015-11-01

    In this paper we study the phenomenology of stars and galaxies in massive bigravity. We give parameter conditions for the existence of viable star solutions when the radius of the star is much smaller than the Compton wavelength of the graviton. If these parameter conditions are not met, we constrain the ratio between the coupling constants of the two metrics, in order to give viable conditions for e.g. neutron stars. For galaxies, we put constraints on both the Compton wavelength of the graviton and the conformal factor and coupling constants of the two metrics. The relationship between black holes and stars, and whether the former can be formed from the latter, is discussed. We argue that the different asymptotic structure of stars and black holes makes it unlikely that black holes form from the gravitational collapse of stars in massive bigravity.

  20. The Prevalence and Impact of Wolf-Rayet Stars in Emerging Massive Star Clusters

    NASA Astrophysics Data System (ADS)

    Sokal, Kimberly R.; Johnson, Kelsey E.; Indebetouw, Rémy; Massey, Philip

    2016-08-01

    We investigate Wolf-Rayet (WR) stars as a source of feedback contributing to the removal of natal material in the early evolution of massive star clusters. Despite previous work suggesting that massive star clusters clear out their natal material before the massive stars evolve into the WR phase, WR stars have been detected in several emerging massive star clusters. These detections suggest that the timescale for clusters to emerge can be at least as long as the time required to produce WR stars (a few million years), and could also indicate that WR stars may be providing the tipping point in the combined feedback processes that drive a massive star cluster to emerge. We explore the potential overlap between the emerging phase and the WR phase with an observational survey to search for WR stars in emerging massive star clusters hosting WR stars. We select candidate emerging massive star clusters from known radio continuum sources with thermal emission and obtain optical spectra with the 4 m Mayall Telescope at Kitt Peak National Observatory and the 6.5 m MMT.4 We identify 21 sources with significantly detected WR signatures, which we term “emerging WR clusters.” WR features are detected in ˜50% of the radio-selected sample, and thus we find that WR stars are commonly present in currently emerging massive star clusters. The observed extinctions and ages suggest that clusters without WR detections remain embedded for longer periods of time, and may indicate that WR stars can aid, and therefore accelerate, the emergence process.

  1. MASSIVE STARS IN THE Cl 1813-178 CLUSTER: AN EPISODE OF MASSIVE STAR FORMATION IN THE W33 COMPLEX

    SciTech Connect

    Messineo, Maria; Davies, Ben; Figer, Donald F.; Trombley, Christine; Kudritzki, R. P.; Valenti, Elena; Najarro, F.; Michael Rich, R.

    2011-05-20

    Young massive (M > 10{sup 4} M{sub sun}) stellar clusters are a good laboratory to study the evolution of massive stars. Only a dozen of such clusters are known in the Galaxy. Here, we report about a new young massive stellar cluster in the Milky Way. Near-infrared medium-resolution spectroscopy with UIST on the UKIRT telescope and NIRSPEC on the Keck telescope, and X-ray observations with the Chandra and XMM satellites, of the Cl 1813-178 cluster confirm a large number of massive stars. We detected 1 red supergiant, 2 Wolf-Rayet stars, 1 candidate luminous blue variable, 2 OIf, and 19 OB stars. Among the latter, twelve are likely supergiants, four giants, and the faintest three dwarf stars. We detected post-main-sequence stars with masses between 25 and 100 M{sub sun}. A population with age of 4-4.5 Myr and a mass of {approx}10, 000 M{sub sun} can reproduce such a mixture of massive evolved stars. This massive stellar cluster is the first detection of a cluster in the W33 complex. Six supernova remnants and several other candidate clusters are found in the direction of the same complex.

  2. The massive star population of Cygnus OB2

    NASA Astrophysics Data System (ADS)

    Wright, Nicholas J.; Drew, Janet E.; Mohr-Smith, Michael

    2015-05-01

    We have compiled a significantly updated and comprehensive census of massive stars in the nearby Cygnus OB2 association by gathering and homogenizing data from across the literature. The census contains 169 primary OB stars, including 52 O-type stars and 3 Wolf-Rayet stars. Spectral types and photometry are used to place the stars in a Hertzsprung-Russell diagram, which is compared to both non-rotating and rotating stellar evolution models, from which stellar masses and ages are calculated. The star formation history and mass function of the association are assessed, and both are found to be heavily influenced by the evolution of the most massive stars to their end states. We find that the mass function of the most massive stars is consistent with a `universal' power-law slope of Γ = 1.3. The age distribution inferred from stellar evolutionary models with rotation and the mass function suggest the majority of star formation occurred more or less continuously between 1 and 7 Myr ago, in agreement with studies of low- and intermediate-mass stars in the association. We identify a nearby young pulsar and runaway O-type star that may have originated in Cyg OB2 and suggest that the association has already seen its first supernova. Finally we use the census and mass function to calculate the total mass of the association of 16 500^{+3800}_{-2800} M⊙, at the low end, but consistent with, previous estimates of the total mass of Cyg OB2. Despite this Cyg OB2 is still one of the most massive groups of young stars known in our Galaxy making it a prime target for studies of star formation on the largest scales.

  3. Theories of the Massive Star Formation: A (Short) Review

    NASA Astrophysics Data System (ADS)

    Hennebelle, Patrick; Commerçon, Benoît

    We briefly review the recent numerical works that have been performed to understand the formation of massive stars. After a brief description of the classical works, we review more specifically (i) the problem of building stars more massive than 20 M ⊙ and (ii) how to prevent the massive cores to fragment in many objects. Multi-D simulations succeed in circumventing the radiative pressure leading to the formation of massive stars although some questions are still debated regarding how is accretion exactly proceeding. While the core fragmentation is slightly reduced by the radiative feedback and the magnetic field when they are treated separately, it is almost entirely suppressed when both of them are included. This is because, magnetic field by removing angular momentum focusses the flow in a compact region. This makes the radiative feedback very efficient leading to a significant increase of the temperature.

  4. Discovery of five new massive pulsating white dwarf stars

    NASA Astrophysics Data System (ADS)

    Castanheira, B. G.; Kepler, S. O.; Kleinman, S. J.; Nitta, A.; Fraga, L.

    2013-03-01

    Using the SOuthern Astrophysical Research telescope (SOAR) Optical Imager at the SOAR 4.1 m telescope, we report on the discovery of five new massive pulsating white dwarf stars. Our results represent an increase of about 20 per cent in the number of massive pulsators. We have detected both short and long periods, low and high amplitude pulsation modes, covering the whole range of the ZZ Ceti instability strip. In this paper, we present a first seismological study of the new massive pulsators based on the few frequencies detected. Our analysis indicates that these stars have masses higher than average, in agreement with the spectroscopic determinations. In addition, we study for the first time the ensemble properties of the pulsating white dwarf stars with masses above 0.8 M⊙. We found a bimodal distribution of the main pulsation period with the effective temperature for the massive DAVs, which indicates mode selection mechanisms.

  5. VLT-Flames Tarantula Survey and Multiplicity of Massive Stars

    NASA Astrophysics Data System (ADS)

    Sana, H.

    2013-06-01

    The VLT-Flames Tarantula Survey (VFTS) has obtained optical spectroscopy of over 800 OB and Wolf-Rayet stars in the 30 Doradus region with the aim to investigate a number of questions regarding the formation, evolution and final fate of the most massive stars and the dynamics of the region. In this presentation, I will review some of the most important results obtained by the VFTS so far. The multi-epoch strategy was designed to identify spectroscopic binaries, and I will describe the binary properties in the 30 Dor region in the broader context of our knowledge of the multiplicity of massive stars.

  6. The evolutionary tracks of young massive star clusters

    SciTech Connect

    Pfalzner, S.; Steinhausen, M.; Vincke, K.; Menten, K.; Parmentier, G.

    2014-10-20

    Stars mostly form in groups consisting of a few dozen to several ten thousand members. For 30 years, theoretical models have provided a basic concept of how such star clusters form and develop: they originate from the gas and dust of collapsing molecular clouds. The conversion from gas to stars being incomplete, the leftover gas is expelled, leading to cluster expansion and stars becoming unbound. Observationally, a direct confirmation of this process has proved elusive, which is attributed to the diversity of the properties of forming clusters. Here we take into account that the true cluster masses and sizes are masked, initially by the surface density of the background and later by the still present unbound stars. Based on the recent observational finding that in a given star-forming region the star formation efficiency depends on the local density of the gas, we use an analytical approach combined with N-body simulations to reveal evolutionary tracks for young massive clusters covering the first 10 Myr. Just like the Hertzsprung-Russell diagram is a measure for the evolution of stars, these tracks provide equivalent information for clusters. Like stars, massive clusters form and develop faster than their lower-mass counterparts, explaining why so few massive cluster progenitors are found.

  7. Massive star evolution: luminous blue variables as unexpected supernova progenitors

    NASA Astrophysics Data System (ADS)

    Groh, J. H.; Meynet, G.; Ekström, S.

    2013-02-01

    Stars more massive than about 8 M⊙ end their lives as a supernova (SN), an event of fundamental importance Universe-wide. Theoretically, these stars have been expected to be either at the red supergiant, blue supergiant, or Wolf-Rayet stage before the explosion. We performed coupled stellar evolution and atmospheric modeling of stars with initial masses between 20 M⊙ and 120 M⊙. We found that the 20 M⊙ and 25 M⊙ rotating models, before exploding as SN, have spectra that do not resemble any of the aforementioned classes of massive stars. Rather, they have remarkable similarities with rare, unstable massive stars known as luminous blue variables (LBV). While observations show that some SNe seem to have had LBVs as progenitors, no theoretical model had yet predicted that a star could explode at this stage. Our models provide theoretical support for relatively low-luminosity LBVs exploding as SN in the framework of single stellar evolution. This is a significant shift in paradigm, meaning that a fraction of LBVs could be the end stage of massive star evolution, rather than a transitory evolutionary phase. We suggest that type IIb SN could have LBV as progenitors, and a prime example could be SN 2008ax.

  8. The Evolution and Properties of Rotating Massive Star Populations

    NASA Astrophysics Data System (ADS)

    Choi, Jieun; Conroy, Charlie; Byler, Nell

    2017-04-01

    We investigate the integrated properties of massive (> 10 {M}ȯ ) rotating single-star stellar populations for a variety of initial rotation rates (v/{v}{crit}=0.0, 0.2, 0.4, 0.5, and 0.6). We couple the new MESA Isochrone and Stellar Tracks (MIST) models to the Flexible Stellar Population Synthesis (FSPS) package, extending the stellar population synthesis models to include the contributions from very massive stars (> 100 {M}ȯ ), which can be significant in the first ∼4 Myr after a starburst. These models predict ionizing luminosities that are consistent with recent observations of young nuclear star clusters. We also construct composite stellar populations assuming a distribution of initial rotation rates. Even in low-metallicity environments where rotation has a significant effect on the evolution of massive stars, we find that stellar population models require a significant contribution from fast-rotating (v/{v}{crit}> 0.4) stars in order to sustain the production of ionizing photons beyond a few Myr following a starburst. These results have potentially important implications for cosmic reionization by massive stars and the interpretation of nebular emission lines in high-redshift star-forming galaxies.

  9. Discovery of X-ray pulsations from a massive star.

    PubMed

    Oskinova, Lidia M; Nazé, Yael; Todt, Helge; Huenemoerder, David P; Ignace, Richard; Hubrig, Swetlana; Hamann, Wolf-Rainer

    2014-06-03

    X-ray emission from stars much more massive than the Sun was discovered only 35 years ago. Such stars drive fast stellar winds where shocks can develop, and it is commonly assumed that the X-rays emerge from the shock-heated plasma. Many massive stars additionally pulsate. However, hitherto it was neither theoretically predicted nor observed that these pulsations would affect their X-ray emission. All X-ray pulsars known so far are associated with degenerate objects, either neutron stars or white dwarfs. Here we report the discovery of pulsating X-rays from a non-degenerate object, the massive B-type star ξ(1) CMa. This star is a variable of β Cep-type and has a strong magnetic field. Our observations with the X-ray Multi-Mirror (XMM-Newton) telescope reveal X-ray pulsations with the same period as the fundamental stellar oscillations. This discovery challenges our understanding of stellar winds from massive stars, their X-ray emission and their magnetism.

  10. The Deaths of Very Massive Stars

    NASA Astrophysics Data System (ADS)

    Woosley, Stan. E.; Heger, Alexander

    The theory underlying the evolution and death of stars heavier than 10 M⊙ on the main sequence is reviewed with an emphasis upon stars much heavier than 30 M⊙. These are stars that, in the absence of substantial mass loss, are expected to either produce black holes when they die, or, for helium cores heavier than about 35 M⊙, encounter the pair instability. A wide variety of outcomes is possible depending upon the initial composition of the star, its rotation rate, and the physics used to model its evolution. These stars can produce some of the brightest supernovae in the universe, but also some of the faintest. They can make gamma-ray bursts or collapse without a whimper. Their nucleosynthesis can range from just CNO to a broad range of elements up to the iron group. Though rare nowadays, they probably played a disproportionate role in shaping the evolution of the universe following the formation of its first stars.

  11. INTERNAL GRAVITY WAVES IN MASSIVE STARS: ANGULAR MOMENTUM TRANSPORT

    SciTech Connect

    Rogers, T. M.; Lin, D. N. C.; McElwaine, J. N.; Lau, H. H. B. E-mail: lin@ucolick.org E-mail: hblau@astro.uni-bonn.de

    2013-07-20

    We present numerical simulations of internal gravity waves (IGW) in a star with a convective core and extended radiative envelope. We report on amplitudes, spectra, dissipation, and consequent angular momentum transport by such waves. We find that these waves are generated efficiently and transport angular momentum on short timescales over large distances. We show that, as in Earth's atmosphere, IGW drive equatorial flows which change magnitude and direction on short timescales. These results have profound consequences for the observational inferences of massive stars, as well as their long term angular momentum evolution. We suggest IGW angular momentum transport may explain many observational mysteries, such as: the misalignment of hot Jupiters around hot stars, the Be class of stars, Ni enrichment anomalies in massive stars, and the non-synchronous orbits of interacting binaries.

  12. Astronomers puzzle over a peculiar age-defying massive star

    NASA Image and Video Library

    2017-09-28

    An age-defying star designated as IRAS 19312+1950 exhibits features characteristic of a very young star and a very old star. The object stands out as extremely bright inside a large, chemically rich cloud of material, as shown in this image from NASA’s Spitzer Space Telescope. A NASA-led team of scientists thinks the star – which is about 10 times as massive as our sun and emits about 20,000 times as much energy – is a newly forming protostar. That was a big surprise because the region had not been known as a stellar nursery before. But the presence of a nearby interstellar bubble, which indicates the presence of a recently formed massive star, also supports this idea. Read more: go.nasa.gov/2bMza9d Image Credit: NASA/JPL-Caltech

  13. Remnant massive neutron stars of binary neutron star mergers: Evolution process and gravitational waveform

    NASA Astrophysics Data System (ADS)

    Hotokezaka, Kenta; Kiuchi, Kenta; Kyutoku, Koutarou; Muranushi, Takayuki; Sekiguchi, Yu-ichiro; Shibata, Masaru; Taniguchi, Keisuke

    2013-08-01

    Massive (hypermassive and supramassive) neutron stars are likely to be often formed after the merger of binary neutron stars. We explore the evolution process of the remnant massive neutron stars and gravitational waves emitted by them, based on numerical-relativity simulations for binary neutron star mergers employing a variety of equations of state and choosing a plausible range of the neutron star mass of binaries. We show that the lifetime of remnant hypermassive neutron stars depends strongly on the total binary mass and also on the equations of state. Gravitational waves emitted by the remnant massive neutron stars universally have a quasiperiodic nature of an approximately constant frequency although the frequency varies with time. We also show that the frequency and time-variation feature of gravitational waves depend strongly on the equations of state. We derive a fitting formula for the quasiperiodic gravitational waveforms, which may be used for the data analysis of a gravitational-wave signal.

  14. Astronomers Gain Important Insight on How Massive Stars Form

    NASA Astrophysics Data System (ADS)

    2006-09-01

    Astronomers using the National Science Foundation's Very Large Array (VLA) radio telescope have discovered key evidence that may help them figure out how very massive stars can form. Young Star Graphic Artist's Conception of Young Star Showing Motions Detected in G24 A1: (1) Infall toward torus, (2) Rotation and (3) outflow. CREDIT: Bill Saxton, NRAO/AUI/NSF Click on image for larger graphic file (JPEG, 129K) "We think we know how stars like the Sun are formed, but there are major problems in determining how a star 10 times more massive than the Sun can accumulate that much mass. The new observations with the VLA have provided important clues to resolving that mystery," said Maria Teresa Beltran, of the University of Barcelona in Spain. Beltran and other astronomers from Italy and Hawaii studied a young, massive star called G24 A1 about 25,000 light-years from Earth. This object is about 20 times more massive than the Sun. The scientists reported their findings in the September 28 issue of the journal Nature. Stars form when giant interstellar clouds of gas and dust collapse gravitationally, compacting the material into what becomes the star. While astronomers believe they understand this process reasonably well for smaller stars, the theoretical framework ran into a hitch with larger stars. "When a star gets up to about eight times the mass of the Sun, it pours out enough light and other radiation to stop the further infall of material," Beltran explained. "We know there are many stars bigger than that, so the question is, how do they get that much mass?" One idea is that infalling matter forms a disk whirling around the star. With most of the radiation escaping without hitting the disk, material can continue to fall into the star from the disk. According to this model, some material will be flung outward along the rotation axis of the disk into powerful outflows. "If this model is correct, there should be material falling inward, rushing outward and rotating

  15. New Frontiers in Stellar Astrophysics: Massive Stars as Cosmological Tools

    NASA Astrophysics Data System (ADS)

    Levesque, Emily M.

    2015-01-01

    Massive stars are crucial building blocks in the study of star-forming galaxies, stellar evolution, and transient events, and their applications as fundamental astrophysical tools span a broad range of subfields. Unfortunately, many key traits of massive stars - from their physical properties and ionizing radiation to their evolution and core-collapse deaths - remain poorly understood. I will discuss several current research programs focused on developing a comprehensive picture of massive stars across the cosmos. These include observational surveys and population synthesis models of star-forming galaxies; progenitor and host environment studies of transient phenomena such as supernovae and gamma-ray bursts; and the remarkable reach of extragalactic stellar observations, which recently led to the discovery of the first Thorne-Zytkow object candidate. With cutting-edge theoretical models and the capabilities of current ground-based and orbital observatories, we are ideally poised to make substantial progress in our understanding of massive stars over the coming decade. This in turn will equip us with the tools we need to take full advantage of the frontiers opened up by new observational facilities such as JWST, the ELTs, and LSST, allowing us to immediately begin probing the new corners of the universe that they reveal.

  16. Massive star-formation regions in the Magellanic Clouds

    SciTech Connect

    Hutchings, J.B.; Thompson, I.B.

    1988-08-01

    Optical and UV spectroscopy of stars from six compact, luminous groups or clusters in the SMC and LMC is presented. The groups are characterized by high concentrations of nebulosity or starlight confined to areas smaller than 30 arcsec on a side, in which some stars can be resolved. The spectra and fluxes are used to derive luminosities and effective temperatures for the stars. Spectroscopic and stellar wind properties are also noted. It is found that the stars are all of O and B-type, with low extinction. The stars generally have little or no sign of stellar winds, and often have spectral peculiarities, such as weak lines or mixed spectral indicators. Most spectra have strong, broad Ly-alpha absorption, and some have broad Ca II absorption. The stars are placed on the H-R diagram, and it is argued that some of them are massive stars in pre-main-sequence stages of their evolution. 8 references.

  17. RCW 108: Massive Young Stars Trigger Stellar Birth

    NASA Technical Reports Server (NTRS)

    2008-01-01

    RCW 108 is a region where stars are actively forming within the Milky Way galaxy about 4,000 light years from Earth. This is a complicated region that contains young star clusters, including one that is deeply embedded in a cloud of molecular hydrogen. By using data from different telescopes, astronomers determined that star birth in this region is being triggered by the effect of nearby, massive young stars.

    This image is a composite of X-ray data from NASA's Chandra X-ray Observatory (blue) and infrared emission detected by NASA's Spitzer Space Telescope (red and orange). More than 400 X-ray sources were identified in Chandra's observations of RCW 108. About 90 percent of these X-ray sources are thought to be part of the cluster and not stars that lie in the field-of-view either behind or in front of it. Many of the stars in RCW 108 are experiencing the violent flaring seen in other young star-forming regions such as the Orion nebula. Gas and dust blocks much of the X-rays from the juvenile stars located in the center of the image, explaining the relative dearth of Chandra sources in this part of the image.

    The Spitzer data show the location of the embedded star cluster, which appears as the bright knot of red and orange just to the left of the center of the image. Some stars from a larger cluster, known as NGC 6193, are also visible on the left side of the image. Astronomers think that the dense clouds within RCW 108 are in the process of being destroyed by intense radiation emanating from hot and massive stars in NGC 6193.

    Taken together, the Chandra and Spitzer data indicate that there are more massive star candidates than expected in several areas of this image. This suggests that pockets within RCW 108 underwent localized episodes of star formation. Scientists predict that this type of star formation is triggered by the effects of radiation from bright, massive stars such as those in NGC 6193. This radiation may cause the interior of gas

  18. RCW 108: Massive Young Stars Trigger Stellar Birth

    NASA Technical Reports Server (NTRS)

    2008-01-01

    RCW 108 is a region where stars are actively forming within the Milky Way galaxy about 4,000 light years from Earth. This is a complicated region that contains young star clusters, including one that is deeply embedded in a cloud of molecular hydrogen. By using data from different telescopes, astronomers determined that star birth in this region is being triggered by the effect of nearby, massive young stars.

    This image is a composite of X-ray data from NASA's Chandra X-ray Observatory (blue) and infrared emission detected by NASA's Spitzer Space Telescope (red and orange). More than 400 X-ray sources were identified in Chandra's observations of RCW 108. About 90 percent of these X-ray sources are thought to be part of the cluster and not stars that lie in the field-of-view either behind or in front of it. Many of the stars in RCW 108 are experiencing the violent flaring seen in other young star-forming regions such as the Orion nebula. Gas and dust blocks much of the X-rays from the juvenile stars located in the center of the image, explaining the relative dearth of Chandra sources in this part of the image.

    The Spitzer data show the location of the embedded star cluster, which appears as the bright knot of red and orange just to the left of the center of the image. Some stars from a larger cluster, known as NGC 6193, are also visible on the left side of the image. Astronomers think that the dense clouds within RCW 108 are in the process of being destroyed by intense radiation emanating from hot and massive stars in NGC 6193.

    Taken together, the Chandra and Spitzer data indicate that there are more massive star candidates than expected in several areas of this image. This suggests that pockets within RCW 108 underwent localized episodes of star formation. Scientists predict that this type of star formation is triggered by the effects of radiation from bright, massive stars such as those in NGC 6193. This radiation may cause the interior of gas

  19. The Formation Of Massive Stars And The Effects Of Rotation On Star Formation

    NASA Astrophysics Data System (ADS)

    Maeder, A.

    2011-11-01

    We first review the current debates about massive star formation over the last decade. Then we concentrate on the accretion scenario, emphasizing the evidences in favor of it. We study the basic properties of the accretion scenario in the spherical case. In the case of massive stars, the free-fall time is longer than the Kelvin-Helmholtz timescale, so that the massive stars in formation reach thermal equilibrium before the accretion is completed. This is why the history of the accretion rates for massive stars is so critical. We derive analytically the typical accretion rates, their upper and lower limits, showing the importance of dust properties. We examine the basic properties of the disk, their luminosity and temperature in the stationary approximation, as well as their various components. The results of some recent numerical models are discussed with a particular attention to the effects that favor accretion on the central body relatively to the case of spherical accretion. These effects strongly influence the final stellar mass resulting from a collapsing clump in a cloud. We also show some properties of the pre-main sequence tracks of massive stars in the Hertzsprung-Russell diagram. During the first part of their evolution up to a mass of about 3M⊙ the forming stars are overluminous, then they are strongly underluminous (with respect to the zero age main sequence) up to a mass of about 10M⊙ until they adjust after a slight overluminosity to the main sequence values. We consider some rotational properties related to star formation. The angular momentum has to be reduced by a factor of about 106 during star formation. Some effects contributing to this reduction have been studied particularly in the case of low- and intermediate-mass stars: disk locking and magnetic braking. We also discuss the case of massive stars and emphasize the effects of the gravity darkening of rotating stars that may favor the accretion from the disk of massive stars in formation.

  20. Light element production by low energy nuclei from massive stars

    NASA Technical Reports Server (NTRS)

    Vangioni-Flam, E.; Casse, M.; Ramaty, R.

    1997-01-01

    The Orion complex is a source of gamma rays attributed to the de-excitation of fast carbon and oxygen nuclei excited through interactions with ambient hydrogen and helium. This has consequences for the production and evolution of light isotopes in the Galaxy, as massive stars appear as prolific sources of C-O rich low energy nuclei. The different stages of massive star evolution are considered in relation to the acceleration of nuclei to moderate energies. It is concluded that the low energy nuclear component originating from massive stars plays a larger role than the usual Galactic cosmic rays in shaping the evolution of Li-6, Be-9, B-10 and B-11, especially in the early Galactic evolution. The enhancement of the B-11/B-10 ratio observed in meteorites and in the interstellar medium is attributed to the interaction of low energy carbon nuclei with ambient H and to a lesser degree, to neutrino spallation.

  1. Role of Massive Stars in the Evolution of Primitive Galaxies

    NASA Technical Reports Server (NTRS)

    Heap, Sara

    2012-01-01

    An important factor controlling galaxy evolution is feedback from massive stars. It is believed that the nature and intensity of stellar feedback changes as a function of galaxy mass and metallicity. At low mass and metallicity, feedback from massive stars is mainly in the form of photoionizing radiation. At higher mass and metallicity, it is in stellar winds. IZw 18 is a local blue, compact dwarf galaxy that meets the requirements for a primitive galaxy: low halo mass greater than 10(exp 9)Msun, strong photoionizing radiation, no galactic outflow, and very low metallicity,log(O/H)+12=7.2. We will describe the properties of massive stars and their role in the evolution of IZw 18, based on analysis of ultraviolet images and spectra obtained with HST.

  2. Light element production by low energy nuclei from massive stars

    NASA Technical Reports Server (NTRS)

    Vangioni-Flam, E.; Casse, M.; Ramaty, R.

    1997-01-01

    The Orion complex is a source of gamma rays attributed to the de-excitation of fast carbon and oxygen nuclei excited through interactions with ambient hydrogen and helium. This has consequences for the production and evolution of light isotopes in the Galaxy, as massive stars appear as prolific sources of C-O rich low energy nuclei. The different stages of massive star evolution are considered in relation to the acceleration of nuclei to moderate energies. It is concluded that the low energy nuclear component originating from massive stars plays a larger role than the usual Galactic cosmic rays in shaping the evolution of Li-6, Be-9, B-10 and B-11, especially in the early Galactic evolution. The enhancement of the B-11/B-10 ratio observed in meteorites and in the interstellar medium is attributed to the interaction of low energy carbon nuclei with ambient H and to a lesser degree, to neutrino spallation.

  3. Massive Star Studies with the CHARA Array

    NASA Astrophysics Data System (ADS)

    Gies, D.; Boyajian, T.; Farrington, C.; McAlister, H.; O'Brien, D.; Richardson, N.; Raghavan, D.; Schaefer, G.; ten Brummelaar, T.; Touhami, Y.; Turner, N.

    2010-02-01

    Georgia State University operates the Center for High Angular Resolution Astronomy (CHARA) Array at the Mount Wilson Observatory in southern California. This optical/IR interferometer consists of six 1 m telescopes in a Y-shaped configuration. The Array uses three IR and two visible wavelength beam combiners that are optimized in different ways for visibility, spectral resolution, and number of telescope pairs. We describe observational programs underway on OB-stars, Be stars, and binary/multiple systems.

  4. Massive Stars in the W33 Giant Molecular Complex

    NASA Astrophysics Data System (ADS)

    Messineo, Maria; Clark, J. Simon; Figer, Donald F.; Kudritzki, Rolf-Peter; Najarro, Francisco; Rich, R. Michael; Menten, Karl M.; Ivanov, Valentin D.; Valenti, Elena; Trombley, Christine; Chen, C.-H. Rosie; Davies, Ben

    2015-06-01

    Rich in H ii regions, giant molecular clouds are natural laboratories to study massive stars and sequential star formation. The Galactic star-forming complex W33 is located at l=˜ 12\\buildrel{\\circ}\\over{.} 8 and at a distance of 2.4 kpc and has a size of ≈ 10 pc and a total mass of ≈ (0.8-8.0) × {{10}5} M ⊙ . The integrated radio and IR luminosity of W33—when combined with the direct detection of methanol masers, the protostellar object W33A, and the protocluster embedded within the radio source W33 main—mark the region as a site of vigorous ongoing star formation. In order to assess the long-term star formation history, we performed an infrared spectroscopic search for massive stars, detecting for the first time 14 early-type stars, including one WN6 star and four O4-7 stars. The distribution of spectral types suggests that this population formed during the past ˜2-4 Myr, while the absence of red supergiants precludes extensive star formation at ages 6-30 Myr. This activity appears distributed throughout the region and does not appear to have yielded the dense stellar clusters that characterize other star-forming complexes such as Carina and G305. Instead, we anticipate that W33 will eventually evolve into a loose stellar aggregate, with Cyg OB2 serving as a useful, albeit richer and more massive, comparator. Given recent distance estimates, and despite a remarkably similar stellar population, the rich cluster Cl 1813-178 located on the northwest edge of W33 does not appear to be physically associated with W33.

  5. Massive-Star Magnetospheres: Now in 3-D!

    NASA Astrophysics Data System (ADS)

    Townsend, Richard

    Magnetic fields are unexpected in massive stars, due to the absence of a dynamo convection zone beneath their surface layers. Nevertheless, kilogauss-strength, ordered fields were detected in a small subset of these stars over three decades ago, and the intervening years have witnessed the steady expansion of this subset. A distinctive feature of magnetic massive stars is that they harbor magnetospheres --- circumstellar environments where the magnetic field interacts strongly with the star's radiation-driven wind, confining it and channelling it into energetic shocks. A wide range of observational signatures are associated with these magnetospheres, in diagnostics ranging from X-rays all the way through to radio emission. Moreover, these magnetospheres can play an important role in massive-star evolution, by amplifying angular momentum loss in the wind. Recent progress in understanding massive-star magnetospheres has largely been driven by magnetohydrodynamical (MHD) simulations. However, these have been restricted to two- dimensional axisymmetric configurations, with three-dimensional configurations possible only in certain special cases. These restrictions are limiting further progress; we therefore propose to develop completely general three-dimensional models for the magnetospheres of massive stars, on the one hand to understand their observational properties and exploit them as plasma-physics laboratories, and on the other to gain a comprehensive understanding of how they influence the evolution of their host star. For weak- and intermediate-field stars, the models will be based on 3-D MHD simulations using a modified version of the ZEUS-MP code. For strong-field stars, we will extend our existing Rigid Field Hydrodynamics (RFHD) code to handle completely arbitrary field topologies. To explore a putative 'photoionization-moderated mass loss' mechanism for massive-star magnetospheres, we will also further develop a photoionization code we have recently

  6. Luminous blue variables and the fates of very massive stars.

    PubMed

    Smith, Nathan

    2017-10-28

    Luminous blue variables (LBVs) had long been considered massive stars in transition to the Wolf-Rayet (WR) phase, so their identification as progenitors of some peculiar supernovae (SNe) was surprising. More recently, environment statistics of LBVs show that most of them cannot be in transition to the WR phase after all, because LBVs are more isolated than allowed in this scenario. Additionally, the high-mass H shells around luminous SNe IIn require that some very massive stars above 40 M⊙ die without shedding their H envelopes, and the precursor outbursts are a challenge for understanding the final burning sequences leading to core collapse. Recent evidence suggests a clear continuum in pre-SN mass loss from super-luminous SNe IIn, to regular SNe IIn, to SNe II-L and II-P, whereas most stripped-envelope SNe seem to arise from a separate channel of lower-mass binary stars rather than massive WR stars.This article is part of the themed issue 'Bridging the gap: from massive stars to supernovae'. © 2017 The Author(s).

  7. Observed Consequences of Preupernova Instability in Very Massive Stars

    NASA Astrophysics Data System (ADS)

    Smith, Nathan

    This chapter concentrates on the deaths of very massive stars, the events leading up to their deaths, and how mass loss affects the resulting death. The previous four chapters emphasized the theory of wind mass loss, eruptions, and core collapse physics, but here we emphasize mainly the observational properties of the resulting death throes. Mass loss through winds, eruptions, and interacting binaries largely determines the wide variety of different types of supernovae that are observed, as well as the circumstellar environments into which the supernova blast waves expand. Connecting these observed properties of the explosions to the initial masses of their progenitor stars is, however, an enduring challenge and is especially difficult for very massive stars. Superluminous supernovae, pair instability supernovae, gamma ray bursts, and "failed" supernovae are all end fates that have been proposed for very massive stars, but the range of initial masses or other conditions leading to each of these (if they actually occur) are still very uncertain. Extrapolating to infer the role of very massive stars in the early universe is essentially unencumbered by observational constraints and still quite dicey.

  8. Luminous blue variables and the fates of very massive stars

    NASA Astrophysics Data System (ADS)

    Smith, Nathan

    2017-09-01

    Luminous blue variables (LBVs) had long been considered massive stars in transition to the Wolf-Rayet (WR) phase, so their identification as progenitors of some peculiar supernovae (SNe) was surprising. More recently, environment statistics of LBVs show that most of them cannot be in transition to the WR phase after all, because LBVs are more isolated than allowed in this scenario. Additionally, the high-mass H shells around luminous SNe IIn require that some very massive stars above 40 Mȯ die without shedding their H envelopes, and the precursor outbursts are a challenge for understanding the final burning sequences leading to core collapse. Recent evidence suggests a clear continuum in pre-SN mass loss from super-luminous SNe IIn, to regular SNe IIn, to SNe II-L and II-P, whereas most stripped-envelope SNe seem to arise from a separate channel of lower-mass binary stars rather than massive WR stars. This article is part of the themed issue 'Bridging the gap: from massive stars to supernovae'.

  9. X-ray emission from massive stars with magnetic fields

    NASA Astrophysics Data System (ADS)

    Oskinova, L. M.; Hamann, W.-R.; Cassinelli, J. P.; Brown, J. C.; Todt, H.

    2011-12-01

    We investigate the connections between the magnetic fields and the X-ray emission from massive stars. Our study shows that the X-ray properties of known strongly magnetic stars are diverse: while some comply to the predictions of the magnetically confined wind model, others do not. We conclude that strong, hard, and variable X-ray emission may be a sufficient attribute of magnetic massive stars, but it is not a necessary one. We address the general properties of X-ray emission from ``normal'' massive stars, especially the long standing mystery about the correlations between the parameters of X-ray emission and fundamental stellar properties. The recent development in stellar structure modeling shows that small-scale surface magnetic fields may be common. We suggest a ``hybrid'' scenario which could explain the X-ray emission from massive stars by a combination of magnetic mechanisms on the surface and shocks in the stellar wind. The magnetic mechanisms and the wind shocks are triggered by convective motions in sub-photospheric layers. This scenario opens the door for a natural explanation of the well established correlation between bolometric and X-ray luminosities. Based on observations obtained with \\xmm and \\cxo.

  10. OBSERVATIONAL SIGNATURES OF CONVECTIVELY DRIVEN WAVES IN MASSIVE STARS

    SciTech Connect

    Aerts, C.; Rogers, T. M.

    2015-06-20

    We demonstrate observational evidence for the occurrence of convectively driven internal gravity waves (IGWs) in young massive O-type stars observed with high-precision CoRoT space photometry. This evidence results from a comparison between velocity spectra based on two-dimensional hydrodynamical simulations of IGWs in a differentially rotating massive star and the observed spectra. We also show that the velocity spectra caused by IGWs may lead to detectable line-profile variability and explain the occurrence of macroturbulence in the observed line profiles of OB stars. Our findings provide predictions that can readily be tested by including a sample of bright, slowly and rapidly rotating OB-type stars in the scientific program of the K2 mission accompanied by high-precision spectroscopy and their confrontation with multi-dimensional hydrodynamic simulations of IGWs for various masses and ages.

  11. MASSIVE STARS IN THE LOCAL GROUP: Implications for Stellar Evolution and Star Formation

    NASA Astrophysics Data System (ADS)

    Massey, Philip

    The galaxies of the Local Group serve as important laboratories for understanding the physics of massive stars. Here I discuss what is involved in identifying various kinds of massive stars in nearby galaxies: the hydrogen-burning O-type stars and their evolved He-burning evolutionary descendants, the luminous blue variables, red supergiants, and Wolf-Rayet stars. Primarily I review what our knowledge of the massive star population in nearby galaxies has taught us about stellar evolution and star formation. I show that the current generation of stellar evolutionary models do well at matching some of the observed features and provide a look at the sort of new observational data that will provide a benchmark against which new models can be evaluated.

  12. On the massive star-forming capacity of molecular clouds

    NASA Technical Reports Server (NTRS)

    Franco, Jose; Shore, Steven N.; Tenorio-Tagle, Guillermo

    1994-01-01

    Assuming that photoionization is the self-limiting process for continued star formation, we estimate the maximum number of massive (OB) stars that can form within a molecular cloud. The most efficient cloud destruction mechanism in the early stages of H II region evolution is the evaporation of the cloud by stars located near the cloud boundary. The maximum number of OB stars is of order 1 per 10(exp 4) solar mass of average molecular gas, or 10 per 10(exp 4) solar mass of dense molecular gas. The resulting star-forming efficiencies within cloud complexes range from 2% to 16% depending on both the location of the stars in the cloud and the details of the initial mass function, with an overall value of about 5% for average molecular gas.

  13. Very Massive Stars in the Primitive Galaxy, IZw 18

    NASA Technical Reports Server (NTRS)

    Heap, Sara

    2012-01-01

    IZw 18 is a local blue, compact dwarf galaxy that meets the requirements for a primitive galaxy: low halo mass greater than 10(exp 9) Msun, strong photoionizing radiation, no galactic outflow, and very low metallicity,log(O/H)+12=7.2. We will describe the properties and evolutionary status of very massive stars in IZw 18, based on UV photometry of individual stars in I Zw 18 and analysis of unresolved ultraviolet spectra of IZw 18-NW obtained with HST.

  14. Massive Star Formation: Characterising Infall and Outflow in dense cores.

    NASA Astrophysics Data System (ADS)

    Akhter, Shaila; Cunningham, Maria; Harvey-Smith, Lisa; Jones, Paul Andrew; Purcell, Cormac; Walsh, Andrew John

    2015-08-01

    Massive stars are some of the most important objects in the Universe, shaping the evolution of galaxies, creating chemical elements, and hence shaping the evolution of the Universe. However, the processes by which they form, and how they shape their environment during their birth processes, are not well understood. We are using NH3 data from the "The H2O Southern Galactic Plane Survey" (HOPS) to define the positions of dense cores/clumps of gas in the southern Galactic plane that are likely to form stars. Due to its effective critical density, NH3 can detect massive star forming regions effectively compared to other tracers. We did a comparative study with different methods for finding clumps and found Fellwalker as the best. We found ~ 10% of the star forming clumps with multiple components and ~ 90% clumps with single component along the line of sight. Then, using data from the "The Millimetre Astronomy Legacy Team 90 GHz" (MALT90) survey, we search for the presence of infall and outflow associated with these cores. We will subsequently use the "3D Molecular Line Radiative Transfer Code" (MOLLIE) to constrain properties of the infall and outflow, such as velocity and mass flow. The aim of the project is to determine how common infall and outflow are in star forming cores, hence providing valuable constraints on the timescales and physical process involved in massive star formation.

  15. NoMaDS: The Northern Massive Dim Stars Survey

    NASA Astrophysics Data System (ADS)

    Pellerin, Anne; Maíz Apellániz, J.; Simón-Díaz, S.; Barbá, R. H.

    2012-01-01

    We present the Northern Massive Dim Stars Survey (NoMaDS), a high-resolution spectroscopic campaign at the 9.2m Hobby-Eberly Telescope. The project aims at building the most complete and homogeneous spectroscopic database of hot, massive Galactic OB stars. NoMaDS is part of an international collaboration that combines observations from Chilean, Spanish, and Texan facilities. The contribution of NoMaDS is to complement the other sister surveys by providing high signal-to-noise echelle spectra (R=30000) of Galactic OB stars that are too faint for smaller ground-based telescopes. NoMaDS will provide a sample of about 200 stars, many of which have never been observed before at such a high resolution. Here we present the details of the survey, as well as echelle spectra obtained with the High Resolution Spectrograph since May 2011. This includes spectra of standard OB stars, Wolf-Rayet stars, binary systems, and oblique magnetic rotators. This survey will provide unprecedented spectroscopic database for a more accurate spectral classification, a quantitative analysis using atmosphere modeling, the detection and follow up of the orbits of massive spectroscopic binaries as well as the study of diffuse interstellar bands.

  16. WISE Eyes Evolution of Massive Stars

    NASA Image and Video Library

    2011-04-08

    In the Perseus spiral arm of the Milky Way galaxy, opposite the galactic center, lies the nebula SH 2-235. As seen in infrared light, NASA Wide-field Infrared Survey Explorer reveals SH 2-235 to be a huge star formation complex.

  17. Massive Star Clusters in Dwarf Galaxies

    NASA Astrophysics Data System (ADS)

    Larsen, Søren S.

    2017-03-01

    Dwarf galaxies can have very high globular cluster specific frequencies, and the GCs are in general significantly more metal-poor than the bulk of the field stars. In some dwarfs, such as Fornax, WLM, and IKN, the fraction of metal-poor stars that belong to GCs can be as high as 20%-25%, an order of magnitude higher than the 1%-2% typical of GCs in halos of larger galaxies. Given that chemical abundance anomalies appear to be present also in GCs in dwarf galaxies, this implies severe difficulties for self-enrichment scenarios that require GCs to have lost a large fraction of their initial masses. More generally, the number of metal-poor field stars in these galaxies is today less than what would originally have been present in the form of low-mass clusters if the initial cluster mass function was a power-law extending down to low masses. This may imply that the initial GC mass function in these dwarf galaxies was significantly more top-heavy than typically observed in present-day star forming environments.

  18. Dusty Death of a Massive Star

    NASA Image and Video Library

    2006-06-06

    NASA Spitzer Space Telescope shows the supernova remnant 1E0102.2-7219 sits next to the nebula N76 in a bright, star-forming region of the Small Magellanic Cloud, a satellite galaxy to our Milky Way galaxy.

  19. Astronomers Discover Rotating Disk Around Young, Massive Star

    NASA Astrophysics Data System (ADS)

    1999-01-01

    Astronomers using radio telescopes in New Mexico and California have discovered a giant, rotating disk of material around a young, massive star, indicating that very massive stars as well as those closer to the size of the Sun may be circled by disks from which planets are thought to form. This is the most massive young star for which such a disk has yet been found. Debra Shepherd of the California Institute of Technology (Caltech) and Stan Kurtz of the National Autonomous University of Mexico, used the National Science Foundation's Very Large Array (VLA) radio telescope and telescopes of Caltech's Owens Valley Radio Observatory (OVRO) to make a detailed study of an object called G192.16-3.82, in the constellation Orion. They announced their findings at the American Astronomical Society's meeting in Austin, TX, today. What astronomers call Young Stellar Objects (YSOs) -- stars still in the process of formation -- are enigmatic objects, both drawing in material from their surroundings and expelling material outward at the same time. "The details of the interaction between these two processes are poorly understood," Shepherd said. "In addition, most theories are based on observing low-mass stars, and we don't know if things work the same way with higher-mass stars." "We now have the first unambiguous evidence for a rotating disk around a high-mass star that also is powering an outflow," Shepherd said. "We need to make more observations to confirm the finding, but this information will help test theories of how such young stellar objects operate." It has been difficult to study massive star formation, because massive stars are rarer than smaller ones, they tend to form in clusters, making observations more difficult, and there are few of them forming relatively nearby. The object that Shepherd and Kurtz chose is reasonably isolated. "We think it provides us with a good laboratory for studying the process," Kurtz said. The young star at the core of G192.16-3.82 is

  20. Metallicity dependence of envelope inflation in massive stars

    NASA Astrophysics Data System (ADS)

    Sanyal, D.; Langer, N.; Szécsi, D.; -C Yoon, S.; Grassitelli, L.

    2017-01-01

    Context. Recently it has been found that models of massive stars reach the Eddington limit in their interior, which leads to dilute extended envelopes. Aims: We perform a comparative study of the envelope properties of massive stars at different metallicities, with the aim to establish the impact of the stellar metallicity on the effect of envelope inflation. Methods: We analysed published grids of core-hydrogen burning massive star models computed with metallicities appropriate for massive stars in the Milky Way, the Large Magellanic Cloud, and the Small Magellanic Cloud, the very metal poor dwarf galaxy I Zwicky 18, and for metal-free chemical composition. Results: Stellar models of all the investigated metallicities reach and exceed the Eddington limit in their interior, aided by the opacity peaks of iron, helium, and hydrogen, and consequently develop inflated envelopes. Envelope inflation leads to a redward bending of the zero-age main sequence and a broadening of the main-sequence band in the upper part of the Hertzsprung-Russell diagram. We derive the limiting L/M-values as a function of the stellar surface temperature above which inflation occurs, and find them to be higher for lower metallicity. While Galactic models show inflation above 29 M⊙, the corresponding mass limit for Population III stars is 150 M⊙. While the masses of the inflated envelopes are generally low, we find that they can reach 1-100 M⊙ in models with effective temperatures below 8000 K, with higher masses reached by models of lower metallicity. Conclusions: Envelope inflation is expected to occur in sufficiently massive stars at all metallicities, and is expected to lead to rapidly growing pulsations, high macroturbulent velocities, and might well be related to the unexplained variability observed in luminous blue variables such as S Doradus and η Carina.

  1. Candidate X-Ray-emitting OB Stars in MYStIX Massive Star-forming Regions

    NASA Astrophysics Data System (ADS)

    Povich, Matthew S.; Busk, Heather A.; Feigelson, Eric D.; Townsley, Leisa K.; Kuhn, Michael A.

    2017-03-01

    Massive O-type and early B-type (OB) stars in the nearby Galaxy remain incompletely cataloged due to high extinction, bright visible and infrared nebular emission in H ii regions, and high field star contamination. These difficulties are alleviated by restricting the search to stars with X-ray emission. Using the X-ray point sources from the Massive Young Star-forming Complex Study in Infrared and X-Rays (MYStIX) survey of OB-dominated regions, we identify 98 MYStIX candidate OB (MOBc) stars by fitting their 1-8 μm spectral energy distributions (SEDs) with reddened stellar atmosphere models. We identify 27 additional MOBc stars based on JHK S photometry of X-ray stars lacking SED fitting. These candidate OB stars indicate that the current census of stars earlier than B1, taken across the 18 MYStIX regions studied, is less than 50% complete. We also fit the SEDs of 239 previously published OB stars to measure interstellar extinction and bolometric luminosities, revealing six candidate massive binary systems and five candidate O-type (super)giants. As expected, candidate OB stars have systematically higher extinction than previously published OB stars. Notable results for individual regions include identification of the OB population of a recently discovered massive cluster in NGC 6357, an older OB association in the M17 complex, and new massive luminous O stars near the Trifid Nebula. In several relatively poorly studied regions (RCW 38, NGC 6334, NGC 6357, Trifid, and NGC 3576), the OB populations may increase by factors of ≳ 2.

  2. The influence of feedback from massive stars on the formation and emergence of massive clusters

    NASA Astrophysics Data System (ADS)

    Dale, James E.

    2017-03-01

    Massive star clusters are of fundamental importance both observationally, since they are visible at such great distances, and theoretically, because of their influence on the large-scale ISM. Understanding stellar feedback is a prerequisite for making sense of their formation and early evolution, since feedback influences cluster structure, star formation efficiency, and sets the timescales on which clusters emerge from their parent clouds to become optically visible. I review the progress made in understanding these issues from a numerical perspective.

  3. An unstable truth: how massive stars get their mass

    NASA Astrophysics Data System (ADS)

    Rosen, Anna L.; Krumholz, Mark R.; McKee, Christopher F.; Klein, Richard I.

    2016-12-01

    The pressure exerted by massive stars' radiation fields is an important mechanism regulating their formation. Detailed simulation of massive star formation therefore requires an accurate treatment of radiation. However, all published simulations have either used a diffusion approximation of limited validity; have only been able to simulate a single star fixed in space, thereby suppressing potentially important instabilities; or did not provide adequate resolution at locations where instabilities may develop. To remedy this, we have developed a new, highly accurate radiation algorithm that properly treats the absorption of the direct radiation field from stars and the re-emission and processing by interstellar dust. We use our new tool to perform 3D radiation-hydrodynamic simulations of the collapse of massive pre-stellar cores with laminar and turbulent initial conditions and properly resolve regions where we expect instabilities to grow. We find that mass is channelled to the stellar system via gravitational and Rayleigh-Taylor (RT) instabilities, in agreement with previous results using stars capable of moving, but in disagreement with methods where the star is held fixed or with simulations that do not adequately resolve the development of RT instabilities. For laminar initial conditions, proper treatment of the direct radiation field produces later onset of instability, but does not suppress it entirely provided the edges of radiation-dominated bubbles are adequately resolved. Instabilities arise immediately for turbulent pre-stellar cores because the initial turbulence seeds the instabilities. Our results suggest that RT features should be present around accreting massive stars throughout their formation.

  4. Solar-like oscillations in a massive star.

    PubMed

    Belkacem, Kévin; Samadi, Réza; Goupil, Marie-Jo; Lefèvre, Laure; Baudin, Fréderic; Deheuvels, Sébastien; Dupret, Marc-Antoine; Appourchaux, Thierry; Scuflaire, Richard; Auvergne, Michel; Catala, Claude; Michel, Eric; Miglio, Andrea; Montalban, Josefina; Thoul, Anne; Talon, Suzanne; Baglin, Annie; Noels, Arlette

    2009-06-19

    Seismology of stars provides insight into the physical mechanisms taking place in their interior, with modes of oscillation probing different layers. Low-amplitude acoustic oscillations excited by turbulent convection were detected four decades ago in the Sun and more recently in low-mass main-sequence stars. Using data gathered by the Convection Rotation and Planetary Transits mission, we report here on the detection of solar-like oscillations in a massive star, V1449 Aql, which is a known large-amplitude (beta Cephei) pulsator.

  5. On the evolution and explosion of massive stars

    SciTech Connect

    Limongi, Marco; Chieffi, Alessandro

    2008-05-21

    We review our recent progresses on the presupernova evolution of massive stars in the range 11-120 M{sub {center_dot}} of solar metallicity. Special attention will be devoted to the effect of the mass loss rate during the Wolf-Rayet stages in determining the structure and the physical properties of the star prior the supernova explosion. We also discuss the explosive yields and the initial mass-remnant mass relation in the framework of the kinetic bomb induced explosion and hence the contribution of these stars to the global chemical enrichment of the interstellar medium.

  6. Wolf-Rayet stars as starting points or as endpoints of the evolution of massive stars?

    NASA Technical Reports Server (NTRS)

    Lamers, H. J. G. L. M.; Maeder, A.; Schmutz, W.; Cassinelli, J. P.

    1991-01-01

    The paper investigates the evidence for the two interpretations of Wolf-Rayet stars suggested in the literature: (1) massive premain-sequence stars with disks and (2) massive stars which have lost most of their H-rich layers in a stellar wind is investigated. The abundance determinations which are done in two different ways and which lead to different conclusions are discussed. The composition is solar, which would suggest interpretation (1), or the CNO abundances are strongly anomalous, which would suggest interpretation (2). Results from evolutionary calculations, stellar statistics, the existence of Ofpe/WN9 transition stars and W-R stars with evolved companions show overwhelming evidence that W-R stars are not premain-sequence stars but that they are in a late stage of evolution. Moreover, the fact that W-R stars are usually in clear regions of space, whereas massive premain-sequence stars are embedded in ultracompact H II regions also shows that W-R stars are not young premain-sequence stars.

  7. Observational studies of regions of massive star formation

    NASA Astrophysics Data System (ADS)

    Cooper, Heather Danielle Blythe

    2013-03-01

    Massive stars have a profound influence on their surroundings. However, relatively little is known about their formation. The study of massive star formation is hindered by a lack of observational evidence, primarily due to difficulties observing massive stars at early stages in their development. The Red MSX Source survey (RMS survey) is a valuable tool with which to address these issues. Near-infrared H- and K-band spectra were taken for 247 candidate massive young stellar objects (MYSOs), selected from the RMS survey. 195 (∼80%) of the targets are YSOs, of which 131 are massive YSOs (LBOL>5E3L⊙, M>8 M⊙). This is the largest spectroscopic study of massive YSOs to date. This study covers minimally obscured objects right through to very red, dusty sources. Almost all YSOs show some evidence for emission lines, though there is a wide variety of observed properties, with HI, H2 Fe II, and CO among the most commonly observed lines. Evidence for disks and outflows was frequently seen. Comparisons of Brγ and H2 emission with low mass YSOs suggest that the emission mechanism for these lines is the same for low-, intermediate-, and high-mass YSOs, i.e. high-mass YSOs appear to resemble scaled-up versions of low-mass YSOs. It was found that the YSOs form an evolutionary sequence, based on their spectra, consistent with the existing theoretical models. Type I YSOs have strong H2 emission, no ionized lines, and are redder than the other two subtypes. As such, these are considered to be the youngest sources. The Type III sources are bluest, and therefore considered to be the oldest subtype. They have strong H I lines and fluorescent Fe II 1.6878 μm emission. They may also have weak H2 emission. Type III sources may even be beginning to form a mini-H II region. XSHOOTER data from 10 Herbig Be stars were analysed. The evidence suggests that winds and disks are common among Herbig stars, as they are among their main sequence classical Be star counterparts. Line

  8. The spectroscopic Hertzsprung-Russell diagram of Galactic massive stars

    NASA Astrophysics Data System (ADS)

    Castro, N.; Fossati, L.; Langer, N.; Simón-Díaz, S.; Schneider, F. R. N.; Izzard, R. G.

    2014-10-01

    The distribution of stars in the Hertzsprung-Russell diagram narrates their evolutionary history and directly assesses their properties. Placing stars in this diagram however requires the knowledge of their distances and interstellar extinctions, which are often poorly known for Galactic stars. The spectroscopic Hertzsprung-Russell diagram (sHRD) tells similar evolutionary tales, but is independent of distance and extinction measurements. Based on spectroscopically derived effective temperatures and gravities of almost 600 stars, we derive for the first time the observational distribution of Galactic massive stars in the sHRD. While biases and statistical limitations in the data prevent detailed quantitative conclusions at this time, we see several clear qualitative trends. By comparing the observational sHRD with different state-of-the-art stellar evolutionary predictions, we conclude that convective core overshooting may be mass-dependent and, at high mass (≳15 M⊙), stronger than previously thought. Furthermore, we find evidence for an empirical upper limit in the sHRD for stars with Teff between 10 000 and 32 000 K and, a strikingly large number of objects below this line. This over-density may be due to inflation expanding envelopes in massive main-sequence stars near the Eddington limit. Appendix A is available in electronic form at http://www.aanda.org

  9. The Infancy of Massive Stars: Looking into the Cradle

    NASA Astrophysics Data System (ADS)

    Kaper, L.; Bik, A.; Hanson, M. M.; Comerón, F.

    2002-10-01

    With the aim to directly detect the photospheres of newly born, massive stars, we have obtained near-infrared spectra of the deeply embedded, candidate ionizing stars of (ultra-)compact HII regions with the Very Large Telescope. The targets were selected on the basis of their near-infrared luminosity and colour measured from narrow-band images collected in a survey of 45 southern UCHII's. Although the UC HII sample was compiled using the IRAS-colour criterium of Wood &Churchwell, the association with ultracompact (radio) sources, and therefore the secure identification with infant HII regions, is often not obvious. However, the K-band spectroscopy confirms the OB-star nature of 36 strongly reddened stars, among them O stars of very early spectral type. Another twenty stars do not show photospheric absorption lines, but include a strong and broad Brγ emission line. These stars share characteristics with objects classified as massive YSOs (such as, e.g., in M17). We present arguments that they are likely surrounded by a circumstellar disk.

  10. The High Angular Resolution Multiplicity of Massive Stars

    NASA Astrophysics Data System (ADS)

    Mason, Brian D.; Hartkopf, William I.; Gies, Douglas R.; Henry, Todd J.; Helsel, John W.

    2009-02-01

    We present the results of a speckle interferometric survey of Galactic massive stars that complements and expands upon a similar survey made over a decade ago. The speckle observations were made with the Kitt Peak National Observatory and Cerro Tololo Inter-American Observatory 4 m telescopes and USNO speckle camera, and they are sensitive to the detection of binaries in the angular separation regime between 0farcs03 and 5'' with relatively bright companions (ΔV < 3). We report on the discovery of companions to 14 OB stars. In total we resolved companions of 41 of 385 O-stars (11%), 4 of 37 Wolf-Rayet stars (11%), and 89 of 139 B-stars (64%; an enriched visual binary sample that we selected for future orbital determinations). We made a statistical analysis of the binary frequency among the subsample that are listed in the Galactic O Star Catalog by compiling published data on other visual companions detected through adaptive optics studies and/or noted in the Washington Double Star Catalog and by collecting published information on radial velocities and spectroscopic binaries. We find that the binary frequency is much higher among O-stars in clusters and associations compared to the numbers for field and runaway O-stars, consistent with predictions for the ejection processes for runaway stars. We present a first orbit for the O-star δ Orionis; a linear solution of the close, apparently optical, companion of the O-star ι Orionis; and an improved orbit of the Be star δ Scorpii. Finally, we list astrometric data for another 249 resolved and 221 unresolved targets that are lower mass stars that we observed for various other science programs.

  11. Massive Stars in Colliding Wind Systems: the GLAST Perspective

    SciTech Connect

    Reimer, Anita; Reimer, Olaf; /Stanford U., HEPL /KIPAC, Menlo Park

    2011-11-29

    Colliding winds of massive stars in binary systems are considered as candidate sites of high-energy non-thermal photon emission. They are already among the suggested counterparts for a few individual unidentified EGRET sources, but may constitute a detectable source population for the GLAST observatory. The present work investigates such population study of massive colliding wind systems at high-energy gamma-rays. Based on the recent detailed model (Reimer et al. 2006) for non-thermal photon production in prime candidate systems, we unveil the expected characteristics of this source class in the observables accessible at LAT energies. Combining the broadband emission model with the presently cataloged distribution of such systems and their individual parameters allows us to conclude on the expected maximum number of LAT-detections among massive stars in colliding wind binary systems.

  12. Eta Carinae in the Context of the Most Massive Stars

    NASA Technical Reports Server (NTRS)

    Gull, Theodore R.; Damineli, Augusto

    2009-01-01

    Eta Car, with its historical outbursts, visible ejecta and massive, variable winds, continues to challenge both observers and modelers. In just the past five years over 100 papers have been published on this fascinating object. We now know it to be a massive binary system with a 5.54-year period. In January 2009, Car underwent one of its periodic low-states, associated with periastron passage of the two massive stars. This event was monitored by an intensive multi-wavelength campaign ranging from -rays to radio. A large amount of data was collected to test a number of evolving models including 3-D models of the massive interacting winds. August 2009 was an excellent time for observers and theorists to come together and review the accumulated studies, as have occurred in four meetings since 1998 devoted to Eta Car. Indeed, Car behaved both predictably and unpredictably during this most recent periastron, spurring timely discussions. Coincidently, WR140 also passed through periastron in early 2009. It, too, is a intensively studied massive interacting binary. Comparison of its properties, as well as the properties of other massive stars, with those of Eta Car is very instructive. These well-known examples of evolved massive binary systems provide many clues as to the fate of the most massive stars. What are the effects of the interacting winds, of individual stellar rotation, and of the circumstellar material on what we see as hypernovae/supernovae? We hope to learn. Topics discussed in this 1.5 day Joint Discussion were: Car: the 2009.0 event: Monitoring campaigns in X-rays, optical, radio, interferometry WR140 and HD5980: similarities and differences to Car LBVs and Eta Carinae: What is the relationship? Massive binary systems, wind interactions and 3-D modeling Shapes of the Homunculus & Little Homunculus: what do we learn about mass ejection? Massive stars: the connection to supernovae, hypernovae and gamma ray bursters Where do we go from here? (future

  13. The Role of Rotation in the Evolution of Massive Stars

    NASA Technical Reports Server (NTRS)

    Heap, Sara R.; Lanz, Thierry M.

    2003-01-01

    Recent evolutionary models of massive stars predict important effects of rotation including: increasing the rate of mass loss; lowering the effective gravity; altering the evolutionary track on the Hertzsprung-Russel Diagram (HRD); extending the main-sequence phase (both on the HR diagram and in time); and mixing of CNO-processed elements up to the stellar surface. Observations suggest that rotation is a more important factor at lower metallicities because of higher initial rotational velocities and weaker winds. This makes the Small Magellanic Cloud (SMC), a low-metallicity galaxy (Z=0.2 solar Z), an excellent environment for discerning the role of rotation in massive stars. We report on a FUSE+STIS+optical spectral analysis of 17 O-type stars in the SMC, where we found an enormous range in N abundances. Three stars in the sample have the same (low) CN abundances as the nebular material out of which they formed, namely C=0.085 solar C and N=0.034 solar N. However, more than half show N approx. solar N, an enrichment factor of 30X! Such unexpectedly high levels of N have ramifications for the evolution of massive stars including precursors to supernovae. They also raise questions about the sources of nitrogen in the early universe. This study was supported in part by grants from NASA's ADP, HST GO-7437, and FUSE B134.

  14. The Role of Rotation in the Evolution of Massive Stars

    NASA Technical Reports Server (NTRS)

    Heap, Sara R.; Lanz, Thierry M.

    2002-01-01

    Recent evolutionary models of massive stars predict important effects of rotation including: increasing the rate of mass-loss; lowering the effective gravity; altering the evolutionary track on the HRD; extending the main-sequence phase (both on the HR diagram and in time); and mixing of CNO-processed elements up to the stellar surface. Observations suggest that rotation is a more important factor at lower metallicities because of higher initial rotational velocities and weaker winds. This makes the SMC, a low-metallicity galaxy (Z= 0.2 solar Z), an excellent environment for discerning the role of rotation in massive stars. We report on a FUSE + STIS + optical spectral analysis of 17 O-type stars in the SMC, where we found an enormous range in N abundances. Three stars in the sample have the same (low) CN abundances as the nebular material out of which they formed, namely C = 0.085 solar C and N = 0.034 solar N. However, more than half show N approx. solar N, an enrichment factor of 30X! Such unexpectedly high levels of N have ramifications for the evolution of massive stars including precursors to supernovae. They also raise questions about the sources of nitrogen in the early universe.

  15. High Resolution Studies of Mass Loss from Massive Binary Stars

    NASA Astrophysics Data System (ADS)

    Corcoran, Michael F.; Gull, Theodore R.; Hamaguchi, Kenji; Richardson, Noel; Madura, Thomas; Post Russell, Christopher Michael; Teodoro, Mairan; Nichols, Joy S.; Moffat, Anthony F. J.; Shenar, Tomer; Pablo, Herbert

    2017-01-01

    Mass loss from hot luminous single and binary stars has a significant, perhaps decisive, effect on their evolution. The combination of X-ray observations of hot shocked gas embedded in the stellar winds and high-resolution optical/UV spectra of the cooler mass in the outflow provides unique ways to study the unstable process by which massive stars lose mass both through continuous stellar winds and rare, impulsive, large-scale mass ejections. The ability to obtain coordinated observations with the Hubble Space Telescope Imaging Spectrograph (HST/STIS) and the Chandra High-Energy Transmission Grating Spectrometer (HETGS) and other X-ray observatories has allowed, for the first time, studies of resolved line emisssion over the temperature range of 104- 108K, and has provided observations to confront numerical dynamical models in three dimensions. Such observations advance our knowledge of mass-loss asymmetries, spatial and temporal variabilities, and the fundamental underlying physics of the hot shocked outflow, providing more realistic constraints on the amount of mass lost by different luminous stars in a variety of evolutionary stages. We discuss the impact that these joint observational studies have had on our understanding of dynamical mass outflows from massive stars, with particular emphasis on two important massive binaries, Delta Ori Aa, a linchpin of the mass luminosity relation for upper HRD main sequence stars, and the supermassive colliding wind binary Eta Carinae.

  16. Late stages of massive star evolution and nucleosynthesis

    SciTech Connect

    Nomoto, Ken'ichi; Hashimoto, Masa-aki

    1986-01-01

    The evolution of massive stars in the mass range of 8 to 25 M solar mass is reviewed. The effect of electron degeneracy on the gravothermal nature of stars is discussed. Depending on the stellar mass, the stars form three types of cores, namely, non-degenerate, semi-degenerate, and strongly degenerate cores. The evolution for these cases is quite distinct from each other and leads to the three different types of final fate. It is suggested that our helium star model, which is equivalent to a 25 M solar mass star, will form a relatively small mass iron core despite the faster /sup 12/C(..cap alpha..,..gamma..)/sup 16/O reaction. 50 refs., 21 figs.

  17. Interferometric Radio Observations of the Interactive Winds of Massive Stars

    NASA Astrophysics Data System (ADS)

    Brookes, Diane Patricia

    2016-06-01

    Massive stars have very strong stellar winds which interact with their environment. This work has involved the study of these interactive winds at radio and other wavelengths. Radio observations have been made of the massive runaway star BD+43 3654 and its bow shock which is interacting with the inter-stellar medium. These observations, together with archive data at other wavelengths, have revealed stratified dust and turbulent gas in this interaction zone. Further radio studies have been undertaken of the interaction zones of the colliding winds of massive binary systems. Observations of the colliding wind binary WR 147 at 5GHz have revealed a curved collision zone, suggestive of simple interactive models. Measurements of the flux from the Wolf-Rayet component of this massive binary system has allowed a mass-loss rate to be derived and though the companion O-star is not detected, an upper flux limit has allowed upper limits on the mass-loss rate and limits on the terminal velocity to be inferred. Also revealed is a curious ’bridge’ feature previously observed in WR 147 which occurs between the two binary components. One mechanism is suggested to explain this anomalous feature, the ionising flux of one binary component, the O-star, may be ionising the wind of the other, the WR component. Modelling of the ionisation structure of the stellar winds has been undertaken to verify that this may be occurring. Radio observations of massive stars made at low-frequency have produced detections of WR 147 and the brighter colliding wind binary, WR 146. These detections have allowed modelling of the non-thermal emission in order to deduce where the non-thermal absorption turn-over occurs in these systems. The resultant modelling has illustrated that these colliding wind regions are complex, with multiple absorption regions best describing their nature.

  18. Evolution of massive single stars with rotation

    NASA Astrophysics Data System (ADS)

    Meynet, Georges

    2015-08-01

    After a brief recall of the physics of rotation, we shall discuss how this physics can be implemented in stellar evolution codes and what are the main calibration processes allowing to constrain some poorly known parameters associated with the description of the turbulence. Models with and without magnetic fields will be discussed. Stellar models predictions will be confronted with observed features. Consequences for the origin of various stellar populations, as red and blue supergiants and Wolf-Rayet stars, of various types of core collapse supernovae will be presented.

  19. GRAVITATIONAL SLINGSHOT OF YOUNG MASSIVE STARS IN ORION

    SciTech Connect

    Chatterjee, Sourav; Tan, Jonathan C. E-mail: jt@astro.ufl.edu

    2012-08-01

    The Orion Nebula Cluster (ONC) is the nearest region of massive star formation and thus a crucial testing ground for theoretical models. Of particular interest among the ONC's {approx}1000 members are: {theta}{sup 1} Ori C, the most massive binary in the cluster with stars of masses 38 and 9 M{sub Sun }; the Becklin-Neugebauer (BN) object, a 30 km s{sup -1} runaway star of {approx}8 M{sub Sun }; and the Kleinmann-Low (KL) nebula protostar, a highly obscured, {approx}15 M{sub Sun} object still accreting gas while also driving a powerful, apparently 'explosive' outflow. The unusual behavior of BN and KL is much debated: How did BN acquire its high velocity? How is this related to massive star formation in the KL nebula? Here, we report the results of a systematic survey using {approx}10{sup 7} numerical experiments of gravitational interactions of the {theta}{sup 1}C and BN stars. We show that dynamical ejection of BN from this triple system at its observed velocity leaves behind a binary with total energy and eccentricity matching those observed for {theta}{sup 1}C. Five other observed properties of {theta}{sup 1}C are also consistent with it having ejected BN and altogether we estimate that there is only a {approx}< 10{sup -5} probability that {theta}{sup 1}C has these properties by chance. We conclude that BN was dynamically ejected from the {theta}{sup 1}C system about 4500 years ago. BN then plowed through the KL massive star-forming core within the last 1000 years causing its recently enhanced accretion and outflow activity.

  20. Gravitational Slingshot of Young Massive Stars in Orion

    NASA Astrophysics Data System (ADS)

    Tan, Jonathan; Chatterjee, S.

    2012-05-01

    The Orion Nebula Cluster (ONC) is the nearest region of massive star formation and thus a crucial testing ground for theoretical models. Of particular interest amongst the ONC's 1000 members are: theta1C, the most massive binary in the cluster with stars of masses 38 and 9 Msun; the Becklin-Neugebauer (BN) object, a 30 km/s runaway star of 8 Msun; and the Kleinmann-Low (KL) nebula protostar, a highly-obscured, 15 Msun object still accreting gas while also driving a powerful, apparently "explosive" outflow. The unusual behavior of BN and KL is much debated: How did BN acquire its high velocity? How is this related to massive star formation in the KL nebula? Here we report the results of a systematic survey using 10^7 numerical experiments of gravitational interactions of the theta1C and BN stars. We show that dynamical ejection of BN from this triple system at its observed velocity leaves behind a binary with total energy and eccentricity matching those observed for theta1C. Several other observed properties of theta1C are also consistent with it having ejected BN and altogether we estimate there is only a 10^-5 probability that theta1C has these properties by chance. Our results suggest that after being launched from theta1C 4,500 years ago, BN has plowed through the KL massive-star-forming core within the last 1,000 years causing its recently-enhanced accretion and outflow activity.

  1. Gravitational Slingshot of Young Massive Stars in Orion

    NASA Astrophysics Data System (ADS)

    Chatterjee, Sourav; Tan, Jonathan C.

    2012-08-01

    The Orion Nebula Cluster (ONC) is the nearest region of massive star formation and thus a crucial testing ground for theoretical models. Of particular interest among the ONC's ~1000 members are: θ1 Ori C, the most massive binary in the cluster with stars of masses 38 and 9 M ⊙ the Becklin-Neugebauer (BN) object, a 30 km s-1 runaway star of ~8 M ⊙ and the Kleinmann-Low (KL) nebula protostar, a highly obscured, ~15 M ⊙ object still accreting gas while also driving a powerful, apparently "explosive" outflow. The unusual behavior of BN and KL is much debated: How did BN acquire its high velocity? How is this related to massive star formation in the KL nebula? Here, we report the results of a systematic survey using ~107 numerical experiments of gravitational interactions of the θ1C and BN stars. We show that dynamical ejection of BN from this triple system at its observed velocity leaves behind a binary with total energy and eccentricity matching those observed for θ1C. Five other observed properties of θ1C are also consistent with it having ejected BN and altogether we estimate that there is only a <~ 10-5 probability that θ1C has these properties by chance. We conclude that BN was dynamically ejected from the θ1C system about 4500 years ago. BN then plowed through the KL massive star-forming core within the last 1000 years causing its recently enhanced accretion and outflow activity.

  2. Westerlund 2, top to bottom: how massive star clusters form.

    NASA Astrophysics Data System (ADS)

    Nota, Antonella

    2012-10-01

    Massive stellar clusters are the main indicators of star formation activity in the distant universe, still their origin and evolution is only partially understood.We have demonstrated that combining deep high resolution optical and IR photometry is a powerful method to investigate the initial phases of massive stellar clusters. We are now proposing to obtain deep, high resolution ACS and WFC3 observations designed to individually resolve and measure stars in Westerlund 2 {Wd2}, one of the youngest and most massive clusters in the Milky Way, from the upper mass cut-off down to the hydrogen-burning limit.Wd2 is quite unique, because it is close {8kpc}, young {<2Myr}, massive {>10^4 Mo} and not well studied. Yet, it is perfectly suitable to investigate how it formed, since neither stellar evolution nor cluster dynamics have had enough time to significantly affect its initial conditions. We propose to determine its mass function, which will well approximate its IMF, establish whether primordial mass segregation is present, characterise the population of pre-Main Sequence stars that have been found by Spitzer, and - as a added bonus - take a high resolution view of the surroundings of WR20a, a very massive eclipsing WR binary that might have been ejected from the cluster center. Second epoch observations in two years will allow us to accurately identify the Wd2 cluster members, and will establish the presence of additional walkaway stars, in addition possibly to WR20a. Because high resolution, high dynamic range, and PSF stability - necessary for the astrometric part - are absolute requirements to complete this project, this study can only be done with HST.

  3. Westerlund 2, top to bottom: how massive star clusters form.

    NASA Astrophysics Data System (ADS)

    Nota, Antonella

    2014-10-01

    Massive stellar clusters are the main indicators of star formation activity in the distant universe, still their origin and evolution is only partially understood.We have demonstrated that combining deep high resolution optical and IR photometry is a powerful method to investigate the initial phases of massive stellar clusters. We are now proposing to obtain deep, high resolution ACS and WFC3 observations designed to individually resolve and measure stars in Westerlund 2 (Wd2), one of the youngest and most massive clusters in the Milky Way, from the upper mass cut-off down to the hydrogen-burning limit.Wd2 is quite unique, because it is close (8kpc), young (<2Myr), massive (>10^4 Mo) and not well studied. Yet, it is perfectly suitable to investigate how it formed, since neither stellar evolution nor cluster dynamics have had enough time to significantly affect its initial conditions. We propose to determine its mass function, which will well approximate its IMF, establish whether primordial mass segregation is present, characterise the population of pre-Main Sequence stars that have been found by Spitzer, and - as a added bonus - take a high resolution view of the surroundings of WR20a, a very massive eclipsing WR binary that might have been ejected from the cluster center. Second epoch observations in two years will allow us to accurately identify the Wd2 cluster members, and will establish the presence of additional walkaway stars, in addition possibly to WR20a. Because high resolution, high dynamic range, and PSF stability - necessary for the astrometric part - are absolute requirements to complete this project, this study can only be done with HST.

  4. Circumstellar medium around rotating massive stars at solar metallicity

    NASA Astrophysics Data System (ADS)

    Georgy, Cyril; Walder, Rolf; Folini, Doris; Bykov, Andrei; Marcowith, Alexandre; Favre, Jean M.

    2013-11-01

    Aims: Observations show nebulae around some massive stars but not around others. If observed, their chemical composition is far from homogeneous. Our goal is to put these observational features into the context of the evolution of massive stars and their circumstellar medium (CSM) and, more generally, to quantify the role of massive stars for the chemical and dynamical evolution of the ISM. Methods: Using the A-MAZE code, we perform 2d-axisymmetric hydrodynamical simulations of the evolution of the CSM, shaped by stellar winds, for a whole grid of massive stellar models from 15 to 120 M⊙ and following the stellar evolution from the zero-age main-sequence to the time of supernova explosion. In addition to the usual quantities, we also follow five chemical species: H, He, C, N, and O. Results: We show how various quantities evolve as a function of time: size of the bubble, position of the wind termination shock, chemical composition of the bubble, etc. The chemical composition of the bubble changes considerably compared to the initial composition, particularly during the red-supergiant (RSG) and Wolf-Rayet (WR) phases. In some extreme cases, the inner region of the bubble can be completely depleted in hydrogen and nitrogen, and is mainly composed of carbon, helium, and oxygen. We argue why the bubble typically expands at a lower rate than predicted by self-similarity theory. In particular, the size of the bubble is very sensitive to the density of the ISM, decreasing by a factor of ~2.5 for each additional dex in ISM density. The bubble size also decreases with the metallicity of the central star, because low-metallicity stars have weaker winds. Our models qualitatively fit the observations of WR ejecta nebulae.

  5. Tidal capture of stars by a massive black hole

    NASA Technical Reports Server (NTRS)

    Novikov, I. D.; Pethick, C. J.; Polnarev, A. G.

    1992-01-01

    The processes leading to tidal capture of stars by a massive black hole and the consequences of these processes in a dense stellar cluster are discussed in detail. When the amplitude of a tide and the subsequent oscillations are sufficiently large, the energy deposited in a star after periastron passage and formation of a bound orbit cannot be estimated directly using the linear theory of oscillations of a spherical star, but rather numerical estimates must be used. The evolution of a star after tidal capture is discussed. The maximum ratio R of the cross-section for tidal capture to that for tidal disruption is about 3 for real systems. For the case of a stellar system with an empty capture loss cone, even in the case when the impact parameter for tidal capture only slightly exceeds the impact parameter for direct tidal disruption, tidal capture would be much more important than tidal disruption.

  6. MASSIVE STAR MULTIPLICITY: THE CEPHEID W Sgr

    SciTech Connect

    Remage Evans, Nancy; Massa, Derck; Proffitt, Charles

    2009-03-15

    We have obtained spectra of the W Sgr system with the Space Telescope Imaging Spectrograph on the Hubble Space Telescope (HST). The spectra resolve the system into a distant companion B which is the hottest star in the system and the spectroscopic binary (A = Aa + Ab). A and B are separated by 0.''16. We have extracted the spectra of both of these. We see no flux in the Aa + Ab spectrum which cannot be accounted for by the Cepheid, and put an upper limit on the spectral type and mass of the companion Ab of F5 V and {<=}1.4 M {sub sun}. Using the orbit from HST fine guidance sensor measurements from Benedict et al., this results in an upper limit to the mass of the Cepheid of {<=}5.4 M {sub sun}. We also discuss two possible distant companions. Based on the photometry from the Two Micron All Sky Survey Point Source Catalog, they are not physical companions of the W Sgr system.

  7. Galactic Evolved Massive Stars Discovered by Their Infrared Emission

    NASA Astrophysics Data System (ADS)

    Marston, Anthony; Mauerhan, J. C.; Van Dyk, S.; Cohen, M.; Morris, P.

    2013-06-01

    Determining the Galactic distribution and numbers of massive stars, such as Wolf-Rayet stars (WRs), is hampered by intervening Galactic or local circumstellar dust obscuration. In order to probe such regions of the Galaxy we can use infrared observations, which provide a means for finding such hidden populations through the dust. The availability of both 2MASS and Spitzer/GLIMPSE large-scale survey data provides infrared colours from 1.25 to 8 μm for a large fraction of the inner Galactic plane. In 2005 we had initiated a pilot study of the combined set of infrared colours for early-release GLIMPSE fields and show that WRs typically occupy a sparsely populated region of the color space. (This has also subsequently been demonstrated by our work in Hadfield et al. [2007, MNRAS, 376, 248] and Mauerhan et al. [2009, PASP, 121, 591].) We followed up 42 of our WR candidates spectroscopically in the near-infrared, and with limited additional observations of some of these candidates in the optical. Six new WRs, four late-type WN and two late-type WC stars, were discovered as a result. Of the remaining ~86% of the sample, five appear to be O-type stars. 21 stars are likely of type Be, and 10 stars appear to be of late-type, or possibly young stellar objects, which have ``contaminated'' the infrared color space. The survey is generally unbiased towards clusters or field stars, and the new WRs found are in both the field and in and around the RCW 49 region (including cluster Westerlund 2). In this work, and in our other recent work, we show that the infrared broad-band colours so far to be the most efficient means of identifying (particularly, dust-obscured) candidate massive stars, notably WRs.

  8. Galactic kinematics from a sample of young massive stars

    NASA Astrophysics Data System (ADS)

    Bobylev, V. V.; Bajkova, A. T.

    2013-08-01

    Based on published sources, we have created a kinematic database on 220 massive (> 10 M ⊙) young Galactic star systems located within ≤3 kpc of the Sun. Out of them, ≈100 objects are spectroscopic binary and multiple star systems whose components are massive OB stars; the remaining objects are massive Hipparcos B stars with parallax errors of no more than 10%. Based on the entire sample, we have constructed the Galactic rotation curve, determined the circular rotation velocity of the solar neighborhood around the Galactic center at R 0 = 8kpc, V 0 = 259±16 km s-1, and obtained the following spiral density wave parameters: the amplitudes of the radial and azimuthal velocity perturbations f R = -10.8 ± 1.2 km s-1 and f θ = 7.9 ± 1.3 km s-1, respectively; the pitch angle for a two-armed spiral pattern i = -6.0° ± 0.4°, with the wavelength of the spiral density wave near the Sun being λ = 2.6 ± 0.2 kpc; and the radial phase of the Sun in χ ⊙ = -120° ± 4°. We show that such peculiarities of the Gould Belt as the local expansion of the system, the velocity ellipsoid vertex deviation, and the significant additional rotation can be explained in terms of the density wave theory. All these effects decrease noticeably once the influence of the spiral density wave on the velocities of nearby stars has been taken into account. The influence of Gould Belt stars on the Galactic parameter estimates has also been revealed. Eliminating them from the kinematic equations has led to the following new values of the spiral density wave parameters: f θ = 2.9 ± 2.1 km s-1 and χ ⊙ = -104° ± 6°.

  9. The Formation and Early Evolution of Embedded Massive Star Clusters

    NASA Astrophysics Data System (ADS)

    Barnes, Peter

    We propose to combine Spitzer, WISE, Herschel, and other archival spacecraft data with an existing ground- and space-based mm-wave to near-IR survey of molecular clouds over a large portion of the Milky Way, in order to systematically study the formation and early evolution of massive stars and star clusters, and provide new observational calibrations for a theoretical paradigm of this key astrophysical problem. Central Objectives: The Galactic Census of High- and Medium-mass Protostars (CHaMP) is a large, unbiased, uniform, and panchromatic survey of massive star and cluster formation and early evolution, covering 20°x6° of the Galactic Plane. Its uniqueness lies in the comprehensive molecular spectroscopy of 303 massive dense clumps, which have also been included in several archival spacecraft surveys. Our objective is a systematic demographic analysis of massive star and cluster formation, one which has not been possible without knowledge of our CHaMP cloud sample, including all clouds with embedded clusters as well as those that have not yet formed massive stars. For proto-clusters deeply embedded within dense molecular clouds, analysis of these space-based data will: 1. Yield a complete census of Young Stellar Objects in each cluster. 2. Allow systematic measurements of embedded cluster properties: spectral energy distributions, luminosity functions, protostellar and disk fractions, and how these vary with cluster mass, age, and density. Combined with other, similarly complete and unbiased infrared and mm data, CHaMP's goals include: 3. A detailed comparison of the embedded stellar populations with their natal dense gas to derive extinction maps, star formation efficiencies and feedback effects, and the kinematics, physics, and chemistry of the gas in and around the clusters. 4. Tying the demographics, age spreads, and timescales of the clusters, based on pre-Main Sequence evolution, to that of the dense gas clumps and Giant Molecular Clouds. 5. A

  10. Photometrically-derived properties of massive-star clusters obtained with different massive-star evolution tracks and deterministic models

    NASA Astrophysics Data System (ADS)

    Wofford, Aida; Charlot, Stéphane; Eldridge, John

    2015-08-01

    We compute libraries of stellar + nebular spectra of populations of coeval stars with ages of <100 Myr and metallicities of Z=0.001 to 0.040, using different sets of massive-star evolution tracks, i.e., new Padova tracks for single non-rotating stars, the Geneva tracks for single non-rotating and rotating stars, and the Auckland tracks for single non-rotating and binary stars. For the stellar component, we use population synthesis codes galaxev, starburst99, and BPASS, depending on the set of tracks. For the nebular component we use photoionization code cloudy. From these spectra, we obtain magnitudes in filters F275W, F336W, F438W, F547M, F555W, F657N, and F814W of the Hubble Space Telescope (HST) Wide Field Camera Three. We use i) our computed magnitudes, ii) new multi-band photometry of massive-star clusters in nearby (<11 Mpc) galaxies spanning the metallicity range 12+log(O/H)=7.2-9.2, observed as part of HST programs 13364 (PI Calzetti) and 13773 (PI Chandar), and iii) Bayesian inference to a) establish how well the different models are able to constrain the metallicities, extinctions, ages, and masses of the star clusters, b) quantify differences in the cluster properties obtained with the different models, and c) assess how properties of lower-mass clusters are affected by the stochastic sampling of the IMF. In our models, the stellar evolution tracks, stellar atmospheres, and nebulae have similar chemical compositions. Different metallicities are available with different sets of tracks and we compare results from models of similar metallicities. Our results have implications for studies of the formation and evolution of star clusters, the cluster age and mass functions, and the star formation histories of galaxies.

  11. Simulating the Birth of Massive Star Clusters: Is Destruction Inevitable?

    NASA Astrophysics Data System (ADS)

    Rosen, Anna

    2013-10-01

    Very early in its operation, the Hubble Space Telescope {HST} opened an entirely new frontier: study of the demographics and properties of star clusters far beyond the Milky Way. However, interpretation of HST's observations has proven difficult, and has led to the development of two conflicting models. One view is that most massive star clusters are disrupted during their infancy by feedback from newly formed stars {i.e., "infant mortality"}, independent of cluster mass or environment. The other model is that most star clusters survive their infancy and are disrupted later by mass-dependent dynamical processes. Since observations at present have failed to discriminate between these views, we propose a theoretical investigation to provide new insight. We will perform radiation-hydrodynamic simulations of the formation of massive star clusters, including for the first time a realistic treatment of the most important stellar feedback processes. These simulations will elucidate the physics of stellar feedback, and allow us to determine whether cluster disruption is mass-dependent or -independent. We will also use our simulations to search for observational diagnostics that can distinguish bound from unbound clusters, and to predict how cluster disruption affects the cluster luminosity function in a variety of galactic environments.

  12. Astronomers Discover Most Massive Neutron Star Yet Known

    NASA Astrophysics Data System (ADS)

    2010-10-01

    Astronomers using the National Science Foundation's Green Bank Telescope (GBT) have discovered the most massive neutron star yet found, a discovery with strong and wide-ranging impacts across several fields of physics and astrophysics. "This neutron star is twice as massive as our Sun. This is surprising, and that much mass means that several theoretical models for the internal composition of neutron stars now are ruled out," said Paul Demorest, of the National Radio Astronomy Observatory (NRAO). "This mass measurement also has implications for our understanding of all matter at extremely high densities and many details of nuclear physics," he added. Neutron stars are the superdense "corpses" of massive stars that have exploded as supernovae. With all their mass packed into a sphere the size of a small city, their protons and electrons are crushed together into neutrons. A neutron star can be several times more dense than an atomic nucleus, and a thimbleful of neutron-star material would weigh more than 500 million tons. This tremendous density makes neutron stars an ideal natural "laboratory" for studying the most dense and exotic states of matter known to physics. The scientists used an effect of Albert Einstein's theory of General Relativity to measure the mass of the neutron star and its orbiting companion, a white dwarf star. The neutron star is a pulsar, emitting lighthouse-like beams of radio waves that sweep through space as it rotates. This pulsar, called PSR J1614-2230, spins 317 times per second, and the companion completes an orbit in just under nine days. The pair, some 3,000 light-years distant, are in an orbit seen almost exactly edge-on from Earth. That orientation was the key to making the mass measurement. As the orbit carries the white dwarf directly in front of the pulsar, the radio waves from the pulsar that reach Earth must travel very close to the white dwarf. This close passage causes them to be delayed in their arrival by the distortion of

  13. Ionizing feedback from massive stars in massive clusters - II. Disruption of bound clusters by photoionization

    NASA Astrophysics Data System (ADS)

    Dale, J. E.; Ercolano, B.; Bonnell, I. A.

    2012-07-01

    We present a smoothed particle hydrodynamics parameter study of the dynamical effect of photoionization from O-type stars on star-forming clouds of a range of masses and sizes during the time window before supernovae explode. Our model clouds all have the same degree of turbulent support initially, the ratio of turbulent kinetic energy to gravitational potential energy being set to Ekin/|Epot|= 0.7. We allow the clouds to form stars and study the dynamical effects of the ionizing radiation from the massive stars or clusters born within them. We find that dense filamentary structures and accretion flows limit the quantities of gas that can be ionized, particularly in the higher density clusters. More importantly, the higher escape velocities in our more massive (106 M⊙) clouds prevent the H II regions from sweeping up and expelling significant quantities of gas, so that the most massive clouds are largely dynamically unaffected by ionizing feedback. However, feedback has a profound effect on the lower density 104 and 105 M⊙ clouds in our study, creating vast evacuated bubbles and expelling tens of per cent of the neutral gas in the 3-Myr time-scale before the first supernovae are expected to detonate, resulting in clouds highly porous to both photons and supernova ejecta.

  14. Massive pre-main-sequence stars in M17

    NASA Astrophysics Data System (ADS)

    Ramírez-Tannus, M. C.; Kaper, L.; de Koter, A.; Tramper, F.; Bik, A.; Ellerbroek, L. E.; Ochsendorf, B. B.; Ramírez-Agudelo, O. H.; Sana, H.

    2017-08-01

    The formation process of massive stars is still poorly understood. Massive young stellar objects (mYSOs) are deeply embedded in their parental clouds; these objects are rare, and thus typically distant, and their reddened spectra usually preclude the determination of their photospheric parameters. M17 is one of the best-studied H ii regions in the sky, is relatively nearby, and hosts a young stellar population. We have obtained optical to near-infrared spectra of previously identified candidate mYSOs and a few OB stars in this region with X-shooter on the ESO Very Large Telescope. The large wavelength coverage enables a detailed spectroscopic analysis of the photospheres and circumstellar disks of these candidate mYSOs. We confirm the pre-main-sequence (PMS) nature of six of the stars and characterise the O stars. The PMS stars have radii that are consistent with being contracting towards the main sequence and are surrounded by a remnant accretion disk. The observed infrared excess and the double-peaked emission lines provide an opportunity to measure structured velocity profiles in the disks. We compare the observed properties of this unique sample of young massive stars with evolutionary tracks of massive protostars and propose that these mYSOs near the western edge of the H ii region are on their way to become main-sequence stars ( 6-20 M⊙) after having undergone high mass accretion rates (Ṁacc 10-4-10-3M⊙yr-1). Their spin distribution upon arrival at the zero age main-sequence is consistent with that observed for young B stars, assuming conservation of angular momentum and homologous contraction. Based on observations collected at the European Southern Observatory at Paranal, Chile (ESO programmes 60.A-9404(A), 085.D-0741, 089.C-0874(A), and 091.C-0934(B)).The full normalised X-shooter spectra are available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/604/A78

  15. Induced massive star formation in the trifid nebula?

    PubMed

    Cernicharo; Lefloch; Cox; Cesarsky; Esteban; Yusef-Zadeh; Mendez; Acosta-Pulido; Garcia Lopez RJ; Heras

    1998-10-16

    The Trifid nebula is a young (10(5) years) galactic HII region where several protostellar sources have been detected with the infrared space observatory. The sources are massive (17 to 60 solar masses) and are associated with molecular gas condensations at the edges or inside the nebula. They appear to be in an early evolutionary stage and may represent the most recent generation of stars in the Trifid. These sources range from dense, apparently still inactive cores to more evolved sources, undergoing violent mass ejection episodes, including a source that powers an optical jet. These observations suggest that the protostellar sources may have evolved by induced star formation in the Trifid nebula.

  16. No preferential spatial distribution for massive stars expected from their formation

    NASA Astrophysics Data System (ADS)

    Parker, Richard J.; Dale, James E.

    2017-09-01

    We analyse N-body and smoothed particle hydrodynamic (SPH) simulations of young star-forming regions to search for differences in the spatial distributions of massive stars compared to lower mass stars. The competitive accretion theory of massive star formation posits that the most massive stars should sit in deeper potential wells than lower mass stars. This may be observable in the relative surface density or spatial concentration of the most massive stars compared to other lower mass stars. Massive stars in cool-collapse N-body models do end up in significantly deeper potentials and are mass segregated. However, in models of warm (expanding) star-forming regions, whilst the massive stars do come to be in deeper potentials than average stars, they are not mass segregated. In the purely hydrodynamical SPH simulations, the massive stars do come to reside in deeper potentials, which is due to their runaway growth. However, when photoionization and stellar winds are implemented in the simulations, these feedback mechanisms regulate the mass of the stars and disrupt the inflow of gas into the clouds' potential wells. This generally makes the potential wells shallower than in the control runs, and prevents the massive stars from occupying deeper potentials. This in turn results in the most massive stars having a very similar spatial concentration and surface density distribution to lower mass stars. Whilst massive stars do form via competitive accretion in our simulations, this rarely translates to a different spatial distribution and so any lack of primordial mass segregation in an observed star-forming region does not preclude competitive accretion as a viable formation mechanism for massive stars.

  17. Effects of axions on nucleosynthesis in massive stars

    NASA Astrophysics Data System (ADS)

    Aoyama, Shohei; Suzuki, Takeru K.

    2015-09-01

    We investigate the effect of axion cooling on nucleosynthesis in a massive star with 16 M⊙ by a standard stellar evolution calculation. We find that axion cooling suppresses nuclear reactions in carbon, oxygen, and silicon burning phases because of the extraction of the energy. As a result, larger amounts of the already synthesized neon and magnesium remain without being consumed to produce further, heavier elements. Even in the case with axion-photon coupling constant ga γ=10-11 GeV-1 , which is six times smaller than the current upper limit, the amount of neon and magnesium that remain just before the core-collapse supernova explosion is considerably larger than the standard value. This implies that we could give a more stringent constraint on ga γ from the nucleosynthesis of heavy elements in massive stars.

  18. Hyperspectral Imagers for the Study of Massive Star Nebulae

    NASA Astrophysics Data System (ADS)

    Drissen, L.; Alarie, A.; Martin, T.; Spiomm/Sitelle Team

    2012-12-01

    We present two wide-field imaging Fourier transform spectrometers built by our team to study the interstellar medium around massive stars in the Milky Way and nearby galaxies. SpIOMM, attached to the Mont Mégantic 1.6-m telescope, is capable of obtaining the visible spectrum of every source of light in a 12 arcminute field of view, with a spectral resolution ranging from R = 1 (wide-band image) to R = 25 000, resulting in about a million spectra with a spatial resolution of one arcsecond. SITELLE will be a similar instrument attached to the Canada-France-Hawaii telescope, and will be in operation in early 2013. We illustrate SpIOMM's capabilities to study the interactions between massive stars and their environment.

  19. Magnetic fields in the formation of massive stars.

    PubMed

    Girart, Josep M; Beltrán, Maria T; Zhang, Qizhou; Rao, Ramprasad; Estalella, Robert

    2009-06-12

    Massive stars play a crucial role in the production of heavy elements and in the evolution of the interstellar medium, yet how they form is still a matter of debate. We report high-angular-resolution submillimeter observations toward the massive hot molecular core (HMC) in the high-mass star-forming region G31.41+0.31. We find that the evolution of the gravitational collapse of the HMC is controlled by the magnetic field. The HMC is simultaneously contracting and rotating, and the magnetic field lines threading the HMC are deformed along its major axis, acquiring an hourglass shape. The magnetic energy dominates over the centrifugal and turbulence energies, and there is evidence of magnetic braking in the contracting core.

  20. Revisiting NGC 3109: A Systematic Blue Massive Stars Analysis

    NASA Astrophysics Data System (ADS)

    Castro, Norberto; Urbaneja, Miguel A.; Evans, Chris; Garcia, Miriam; Herrero, Artemio; Bresolin, Fabio

    2013-06-01

    In the last years thoughtful quantitative analyses of extragalactic blue massive stars have shown not only that these studies are doable even at large distances (e.g. ˜2 Mpc away), but also essential for a better understanding of host galaxies and stellar evolution, in environments with different metallicities. Carrying out a systematic analysis is mandatory. We present in this work the tools and the FASTWIND stellar grids designed for overcoming this issue, measuring stellar parameters and chemical abundances. We have applied these techniques to the complete sample of blue massive stars observed in NGC 3109, a low metallicity irregular galaxy at 1.3 Mpc, by the ARAUCARIA project and presented by Evans et al. (2007). We report the first systematic quantitative analysis in this galaxy, together with the stellar parameters and the evolution stages of these objects. The chemical composition obtained will shed new light about the chemical composition and distribution along NGC 3109.

  1. Star formation at low rates - the impact of lacking massive stars on stellar feedback

    NASA Astrophysics Data System (ADS)

    Hensler, Gerhard; Steyrleithner, Patrick; Recchi, Simone

    2017-03-01

    Due to their low masses dwarf galaxies experience low star-formation rates resulting in stellar cluster masses insufficient to fill the initial mass function (IMF) to the uppermost mass. Numerical simulations usually do not account for the completeness of the IMF, but treat a filed IMF by numbers, masses, and stellar feedback by fractions. To ensure that only entire stars are formed, we consider an IMF filled from the lower-mass regime and truncated where at least one entire massive star is formed. By 3D simulations we investigate the effects of two possible IMFs on the evolution of dwarf galaxies: filled vs. truncated IMF. For the truncated IMF the star-formation self-regulation is suppressed, while the energy release by typeII supernovae is larger, both compared to the filled IMF. Moreover, the abundance ratios of particular elements yielded from massive and intermediate-mass stars differ significantly between the two IMF distributions.

  2. THE ROLE OF THE MAGNETOROTATIONAL INSTABILITY IN MASSIVE STARS

    SciTech Connect

    Wheeler, J. Craig; Kagan, Daniel; Chatzopoulos, Emmanouil

    2015-01-20

    The magnetorotational instability (MRI) is key to physics in accretion disks and is widely considered to play some role in massive star core collapse. Models of rotating massive stars naturally develop very strong shear at composition boundaries, a necessary condition for MRI instability, and the MRI is subject to triply diffusive destabilizing effects in radiative regions. We have used the MESA stellar evolution code to compute magnetic effects due to the Spruit-Tayler (ST) mechanism and the MRI, separately and together, in a sample of massive star models. We find that the MRI can be active in the later stages of massive star evolution, leading to mixing effects that are not captured in models that neglect the MRI. The MRI and related magnetorotational effects can move models of given zero-age main sequence mass across ''boundaries'' from degenerate CO cores to degenerate O/Ne/Mg cores and from degenerate O/Ne/Mg cores to iron cores, thus affecting the final evolution and the physics of core collapse. The MRI acting alone can slow the rotation of the inner core in general agreement with the observed ''initial'' rotation rates of pulsars. The MRI analysis suggests that localized fields ∼10{sup 12} G may exist at the boundary of the iron core. With both the ST and MRI mechanisms active in the 20 M {sub ☉} model, we find that the helium shell mixes entirely out into the envelope. Enhanced mixing could yield a population of yellow or even blue supergiant supernova progenitors that would not be standard SN IIP.

  3. Unveiling Hidden Massive Stars: Star Formation and the IMF in Carina

    NASA Astrophysics Data System (ADS)

    Alexander, Michael; Povich, Matthew; McSwain, M. Virginia

    2014-02-01

    We propose two nights of observations with the OSIRIS IR spectrograph on SOAR to obtain spectra for a large sample of massive star candidates within the Carina Nebula. Target stars have been identified as OB candidates through the use of combined X-ray emission and IR SED fitting and are too extincted to be readily observed at optical wavelengths. We will obtain K-band spectroscopy of 56 highly extincted stars in order to identify their spectral type and luminosity class. The proposed observations will confirm or reject individual stars as massive members of the Carina nebula star forming complex. The placement of these stars around the nebula will address questions on the process of triggered star formation, and the wide distribution of targets may shed light on the idea that OB stars can form in isolation. Additionally, any new OB stars will bolster the high-mass end of the stellar IMF and lead to a more accurate determine of the total stellar mass and a better understanding of the recent star formation history within the region.

  4. X-RAY EMISSION FROM MAGNETIC MASSIVE STARS

    SciTech Connect

    Nazé, Yaël; Petit, Véronique; Rinbrand, Melanie; Owocki, Stan; Cohen, David; Ud-Doula, Asif; Wade, Gregg A.

    2014-11-01

    Magnetically confined winds of early-type stars are expected to be sources of bright and hard X-rays. To clarify the systematics of the observed X-ray properties, we have analyzed a large series of Chandra and XMM-Newton observations, corresponding to all available exposures of known massive magnetic stars (over 100 exposures covering ∼60% of stars compiled in the catalog of Petit et al.). We show that the X-ray luminosity is strongly correlated with the stellar wind mass-loss rate, with a power-law form that is slightly steeper than linear for the majority of the less luminous, lower- M-dot B stars and flattens for the more luminous, higher- M-dot O stars. As the winds are radiatively driven, these scalings can be equivalently written as relations with the bolometric luminosity. The observed X-ray luminosities, and their trend with mass-loss rates, are well reproduced by new MHD models, although a few overluminous stars (mostly rapidly rotating objects) exist. No relation is found between other X-ray properties (plasma temperature, absorption) and stellar or magnetic parameters, contrary to expectations (e.g., higher temperature for stronger mass-loss rate). This suggests that the main driver for the plasma properties is different from the main determinant of the X-ray luminosity. Finally, variations of the X-ray hardnesses and luminosities, in phase with the stellar rotation period, are detected for some objects and they suggest that some temperature stratification exists in massive stars' magnetospheres.

  5. Kinematics of a Massive Star Cluster in Formation

    NASA Astrophysics Data System (ADS)

    Tan, Jonathan

    2014-10-01

    We propose to measure the proper motion stellar kinematics of a massive (~10^4Msun), forming proto-star-cluster to test basic theoretical models of formation. This will be the first time such a measurement has been performed. It requires HST-WFC3/IR and is beyond the practical capabilities of ground-based adaptive optics (AO) observations. In contrast to previously-studied massive, young (<10 Myr-old), already-formed clusters, such as NGC3603, Westerlund 1 or the Arches, our target protocluster, G286.21+0.17 (hereafter G286), is still gas-dominated and undergoing active star formation. It has been carefully selected from a complete survey of ~300 dense molecular gas clumps in a 120 sq. deg. region of the Galactic plane. The cluster is also relatively nearby (~2.5 kpc), but not too close that it would span a prohibitively large angular area or suffer from significant saturation problems. Such massive systems are rare and indeed we are unaware of any equivalent, early-stage (i.e., gas dominated) cluster that is closer. Given the depth of its gravitational potential based on its mass and size, the expected proper motions of many independent sub-clusters of stars are detectable at the ~5 sigma level over a 2-year baseline and global contraction of the cluster can be seen if it is happening even at just ~10% of the free-fall rate.

  6. A comparison of evolutionary tracks for single Galactic massive stars

    NASA Astrophysics Data System (ADS)

    Martins, F.; Palacios, A.

    2013-12-01

    Context. The evolution of massive stars is not fully understood. The relation between different types of evolved massive stars is not clear, and the role of factors such as binarity, rotation or magnetism needs to be quantified. Aims: Several groups make available the results of 1D single stellar evolution calculations in the form of evolutionary tracks and isochrones. They use different stellar evolution codes for which the input physics and its implementation varies. In this paper, we aim at comparing the currently available evolutionary tracks for massive stars. We focus on calculations aiming at reproducing the evolution of Galactic stars. Our main goal is to highlight the uncertainties on the predicted evolutionary paths. Methods: We compute stellar evolution models with the codes MESA and STAREVOL. We compare our results with those of four published grids of massive stellar evolution models (Geneva, STERN, Padova and FRANEC codes). We first investigate the effects of overshooting, mass loss, metallicity, chemical composition. We subsequently focus on rotation. Finally, we compare the predictions of published evolutionary models with the observed properties of a large sample of Galactic stars. Results: We find that all models agree well for the main sequence evolution. Large differences in luminosity and temperatures appear for the post main sequence evolution, especially in the cool part of the Hertzsprung-Russell (HR) diagram. Depending on the physical ingredients, tracks of different initial masses can overlap, rendering any mass estimate doubtful. For masses between 7 and 20 M⊙, we find that the main sequence width is slightly too narrow in the Geneva models including rotation. It is (much) too wide for the (STERN) FRANEC models. This conclusion is reached from the investigation of the HR diagram and from the evolution of the surface velocity as a function of surface gravity. An overshooting parameter α between 0.1 and 0.2 in models with rotation is

  7. Massive Stars and the Ionization of the Diffuse Medium

    NASA Astrophysics Data System (ADS)

    Kahre, Lauren E.; Walterbos, Rene A. M.

    2015-08-01

    Diffuse ionized Gas (DIG, sometimes called the warm ionized medium or WIM) has been recognized as a major component of the interstellar medium (ISM) in disk galaxies. A general understanding of the characteristics of the DIG is emerging, but several questions remain unanswered. One of these is the ionization mechanism for this gas, believed to be connected to OB stars and HII regions. Using 5-band (NUV (2750 A), U, V, B, and I) photometric imaging data from the Hubble Space Telescope (HST) Legacy Extragalactic Ultraviolet Survey (LEGUS) and ground-based Halpha data from the Local Volume Legacy (LVL) survey and HST Halpha data from LEGUS, we will investigate the photoionization of HII regions and DIG in nearly 50 galaxies. The 5-band photometry will enable us to determine properties of the most massive stars and reddening corrections for specific regions within a galaxy. Luminosities and ages for groups and clusters will be obtained from SED-fitting of photometric data. For individual stars ages will be determined from isochrone-fitting using reddening-corrected color-magnitude diagrams. We can then obtain estimates of the ionizing luminosities by matching these photometric properties for massive stars and clusters to various stellar atmosphere models. We will compare these predictions to the inferred Lyman continuum production rates from reddening-corrected ground- and HST-based Halpha data for HII regions and DIG. This particular presentation will demonstrate the above process for a set of selected regions in galaxies within the LEGUS sample. It will subsequently be expanded to cover the full LEGUS sample, with the overall goals of obtaining a better understanding of the radiative energy feedback from massive stars on the ISM, particularly their ability to ionize the surrounding ISM over a wide range of spatial scales and SFR surface densities, and to connect the ionization of the ISM to HII region morphologies.

  8. NEARBY MASSIVE STAR CLUSTER YIELDS INSIGHTS INTO EARLY UNIVERSE

    NASA Technical Reports Server (NTRS)

    2002-01-01

    A NASA Hubble Space Telescope 'family portrait' of young, ultra-bright stars nested in their embryonic cloud of glowing gases. The celestial maternity ward, called N81, is located 200,000 light-years away in the Small Magellanic Cloud (SMC), a small irregular satellite galaxy of our Milky Way. Hubble's exquisite resolution allows astronomers to pinpoint 50 separate stars tightly packed in the nebula's core within a 10 light-year diameter - slightly more than twice the distance between earth and the nearest star to our sun. The closest pair of stars is only 1/3 of a light-year apart (0.3 arcseconds in the sky). This furious rate of mass loss from these super-hot stars is evident in the Hubble picture that reveals dramatic shapes sculpted in the nebula's wall of glowing gases by violent stellar winds and shock waves. A pair of bright stars in the center of the nebula is pouring out most of the ultraviolet radiation to make the nebula glow. Just above them, a small dark knot is all that's left of the cold cloud of molecular hydrogen and dust the stars were born from. Dark absorption lanes of residual dust trisect the nebula. The nebula offers a unique opportunity for a close-up glimpse at the 'firestorm' accompanying the birth of extremely massive stars, each blazing with the brilliance of 300,000 of our suns. Such galactic fireworks were much more common billions of years ago in the early universe, when most star formation took place. The 'natural-color' view was assembled from separate images taken with the Wide Field and Planetary Camera 2, in ultraviolet light and two narrow emission lines of ionized Hydrogen (H-alpha, H-beta). The picture was taken on September 4, 1997. Credit: Mohammad Heydari-Malayeri (Paris Observatory, France), NASA/ESA

  9. NEARBY MASSIVE STAR CLUSTER YIELDS INSIGHTS INTO EARLY UNIVERSE

    NASA Technical Reports Server (NTRS)

    2002-01-01

    A NASA Hubble Space Telescope 'family portrait' of young, ultra-bright stars nested in their embryonic cloud of glowing gases. The celestial maternity ward, called N81, is located 200,000 light-years away in the Small Magellanic Cloud (SMC), a small irregular satellite galaxy of our Milky Way. Hubble's exquisite resolution allows astronomers to pinpoint 50 separate stars tightly packed in the nebula's core within a 10 light-year diameter - slightly more than twice the distance between earth and the nearest star to our sun. The closest pair of stars is only 1/3 of a light-year apart (0.3 arcseconds in the sky). This furious rate of mass loss from these super-hot stars is evident in the Hubble picture that reveals dramatic shapes sculpted in the nebula's wall of glowing gases by violent stellar winds and shock waves. A pair of bright stars in the center of the nebula is pouring out most of the ultraviolet radiation to make the nebula glow. Just above them, a small dark knot is all that's left of the cold cloud of molecular hydrogen and dust the stars were born from. Dark absorption lanes of residual dust trisect the nebula. The nebula offers a unique opportunity for a close-up glimpse at the 'firestorm' accompanying the birth of extremely massive stars, each blazing with the brilliance of 300,000 of our suns. Such galactic fireworks were much more common billions of years ago in the early universe, when most star formation took place. The 'natural-color' view was assembled from separate images taken with the Wide Field and Planetary Camera 2, in ultraviolet light and two narrow emission lines of ionized Hydrogen (H-alpha, H-beta). The picture was taken on September 4, 1997. Credit: Mohammad Heydari-Malayeri (Paris Observatory, France), NASA/ESA

  10. Fallback and Black Hole Production in Massive Stars

    SciTech Connect

    Zhang, Wei-Qun; Woosley, S.E.; Heger, A.; /UC, Santa Cruz /Los Alamos

    2007-01-08

    The compact remnants of core collapse supernovae--neutron stars and black holes--have properties that reflect both the structure of their stellar progenitors and the physics of the explosion. In particular, the masses of these remnants are sensitive to the density structure of the presupernova star and to the explosion energy. To a considerable extent, the final mass is determined by the ''fallback'', during the explosion, of matter that initially moves outwards, yet ultimately fails to escape. We consider here the simulated explosion of a large number of massive stars (10 to 100 M{sub {circle_dot}}) of Population I (solar metallicity) and III (zero metallicity), and find systematic differences in the remnant mass distributions. As pointed out by Chevalier (1989), supernovae in more compact progenitor stars have stronger reverse shocks and experience more fallback. For Population III stars above about 25 M{sub {circle_dot}} and explosion energies less than 1.5 x 10{sup 51} erg, black holes are a common outcome, with masses that increase monotonically with increasing main sequence mass up to a maximum hole mass of about 35 M{sub {circle_dot}}. If such stars produce primary nitrogen, however, their black holes are systematically smaller. For modern supernovae with nearly solar metallicity, black hole production is much less frequent and the typical masses, which depend sensitively on explosion energy, are smaller. We explore the neutron star initial mass function for both populations and, for reasonable assumptions about the initial mass cut of the explosion, find good agreement with the average of observed masses of neutron stars in binaries. We also find evidence for a bimodal distribution of neutron star masses with a spike around 1.2 M{sub {circle_dot}} (gravitational mass) and a broader distribution peaked around 1.4 M{sub {circle_dot}}.

  11. Nucleosynthesis of Short-lived Radioactivities in Massive Stars

    NASA Technical Reports Server (NTRS)

    Meyer, B. S.

    2004-01-01

    A leading model for the source of many of the short-lived radioactivities in the early solar nebula is direct incorporation from a massive star [1]. A recent and promising incarnation of this model includes an injection mass cut, which is a boundary between the stellar ejecta that become incorporated into the solar cloud and those ejecta that do not [2-4]. This model also includes a delay time between ejection from the star and incorporation into early solar system solid bodies. While largely successful, this model requires further validation and comparison against data. Such evaluation becomes easier if we have a better sense of the nature of the synthesis of the various radioactivities in the star. That is the goal of this brief abstract.

  12. Evolution of massive stars in very young clusters and associations

    NASA Technical Reports Server (NTRS)

    Stothers, R. B.

    1985-01-01

    Statistics concerning the stellar content of young galactic clusters and associations which show well defined main sequence turnups have been analyzed in order to derive information about stellar evolution in high-mass galaxies. The analytical approach is semiempirical and uses natural spectroscopic groups of stars on the H-R diagram together with the stars' apparent magnitudes. The new approach does not depend on absolute luminosities and requires only the most basic elements of stellar evolution theory. The following conclusions are offered on the basis of the statistical analysis: (1) O-tupe main-sequence stars evolve to a spectral type of B1 during core hydrogen burning; (2) most O-type blue stragglers are newly formed massive stars burning core hydrogen; (3) supergiants lying redward of the main-sequence turnup are burning core helium; and most Wolf-Rayet stars are burning core helium and originally had masses greater than 30-40 solar mass. The statistics of the natural spectroscopic stars in young galactic clusters and associations are given in a table.

  13. Star Formation in the Galactic Center: Massive stars and the ISM in Sgr B

    NASA Astrophysics Data System (ADS)

    Cotera, Angela

    Our Galactic Center (GC) is a unique region that enables detailed studies of a mild starburst nucleus at resolutions unapproachable in other galaxies. The GC provides unparalleled opportunities to test theories of the interrelationship of massive stars, molecular and ionized gas, dust, turbulent giant molecular clouds, large-scale magnetic fields, and a black hole; all under extreme conditions. We propose to use FLITECAM to obtain a Paschen-alpha map extending east from the Radio Arc region (previously observed in Paschen-alpha with HST) out to Sgr B. Made up of two distinct regions (Sgr B1 and Sgr B2), Sgr B is one of the most complex star-forming regions in the Galaxy, containing a massive molecular cloud, dozens of HII regions, and numerous young stellar objects (YSOs). Although much of Sgr B2 is unobservable at IR wavelengths due to extinction, Sgr B1 and the periphery of Sgr B2 have lower extinction making the proposed observations possible in these regions. We further propose to complete our Cycle 3 FORCAST observations of the peak mid-infrared emission in Sgr B1 to investigate the temperature and dust structure within these regions which contain known massive stars and massive YSOs. When combined with existing multi-wavelength observations, we will be able to address crucial questions such as: Where are the young massive stars currently located? Is star formation in our Galactic nucleus fundamentally different due to the extreme conditions in the central 400pc? How does the stellar feedback from massive star formation impact turbulence in giant molecular clouds?

  14. H II REGIONS: WITNESSES TO MASSIVE STAR FORMATION

    SciTech Connect

    Peters, Thomas; Banerjee, Robi; Klessen, Ralf S.; Low, Mordecai-Mark Mac; Galvan-Madrid, Roberto; Keto, Eric R.

    2010-03-10

    We describe the first three-dimensional simulation of the gravitational collapse of a massive, rotating molecular cloud that includes heating by both non-ionizing and ionizing radiation. These models were performed with the FLASH code, incorporating a hybrid, long characteristic, ray-tracing technique. We find that as the first protostars gain sufficient mass to ionize the accretion flow, their H II regions are initially gravitationally trapped, but soon begin to rapidly fluctuate between trapped and extended states, in agreement with observations. Over time, the same ultracompact H II region can expand anisotropically, contract again, and take on any of the observed morphological classes. In their extended phases, expanding H II regions drive bipolar neutral outflows characteristic of high-mass star formation. The total lifetime of H II regions is given by the global accretion timescale, rather than their short internal sound-crossing time. This explains the observed number statistics. The pressure of the hot, ionized gas does not terminate accretion. Instead, the final stellar mass is set by fragmentation-induced starvation. Local gravitational instabilities in the accretion flow lead to the build-up of a small cluster of stars, all with relatively high masses due to heating from accretion radiation. These companions subsequently compete with the initial high-mass star for the same common gas reservoir and limit its mass growth. This is in contrast to the classical competitive accretion model, where the massive stars are never hindered in growth by the low-mass stars in the cluster. Our findings show that the most significant differences between the formation of low-mass and high-mass stars are all explained as the result of rapid accretion within a dense, gravitationally unstable, ionized flow.

  15. Cygnus OB2 - Archaeology Of Our Closest Massive Star Factory

    NASA Astrophysics Data System (ADS)

    Van Der Veen, Erik

    2011-01-01

    Cygnus OB2 is the nearest example of a massive star-forming region, at only 1.45kpc. Despite its status and importance, we still lack a basic understanding of this complex. Practically all of its 50+ O-type stars and some of its B-type stars have been scoped, but low-mass members remain poorly studied. An extensive set of new spectra collected using the FAST and HectoSpec instruments at the Fred Lawrence Whipple Observatory is allowing for a much more detailed study of the association. Optical spectra of pre-main sequence objects, vital in developing our global understanding of star formation and the products thereof, are being analyzed in order to characterize masses and velocities of individual objects within the region. The level of reddening of the spectra is first identified, providing a more reliable estimate of spectral type than photometry alone, and from which stellar mass and temperatures are derived. Velocities are then obtained via cross-correlation and line centroiding techniques. Combining these two results will map out the distribution of velocities as a function of stellar mass. The end goal of this study is to understand the dynamics and boundedness of the cluster, and to diagnose the presence of any sub-clustering and mass segregation. In this way, Cygnus OB2 is poised to become a stepping stone with which to extend our detailed understanding of Gould Belt star forming regions down to the lowest mass stars to much more massive clusters and starbursts.

  16. Massive star formation by accretion. I. Disc accretion

    NASA Astrophysics Data System (ADS)

    Haemmerlé, L.; Eggenberger, P.; Meynet, G.; Maeder, A.; Charbonnel, C.

    2016-01-01

    Context. Massive stars likely form by accretion and the evolutionary track of an accreting forming star corresponds to what is called the birthline in the Hertzsprung-Russell (HR) diagram. The shape of this birthline is quite sensitive to the evolution of the entropy in the accreting star. Aims: We first study the reasons why some birthlines published in past years present different behaviours for a given accretion rate. We then revisit the question of the accretion rate, which allows us to understand the distribution of the observed pre-main-sequence (pre-MS) stars in the HR diagram. Finally, we identify the conditions needed to obtain a large inflation of the star along its pre-MS evolution that may push the birthline towards the Hayashi line in the upper part of the HR diagram. Methods: We present new pre-MS models including accretion at various rates and for different initial structures of the accreting core. We compare them with previously published equivalent models. From the observed upper envelope of pre-MS stars in the HR diagram, we deduce the accretion law that best matches the accretion history of most of the intermediate-mass stars. Results: In the numerical computation of the time derivative of the entropy, some treatment leads to an artificial loss of entropy and thus reduces the inflation that the accreting star undergoes along the birthline. In the case of cold disc accretion, the existence of a significant swelling during the accretion phase, which leads to radii ≳ 100 R⊙ and brings the star back to the red part of the HR diagram, depends sensitively on the initial conditions. For an accretion rate of 10-3M⊙ yr-1, only models starting from a core with a significant radiative region evolve back to the red part of the HR diagram. We also obtain that, in order to reproduce the observed upper envelope of pre-MS stars in the HR diagram with an accretion law deduced from the observed mass outflows in ultra-compact HII regions, the fraction of the

  17. FRAGMENTATION AT THE EARLIEST PHASE OF MASSIVE STAR FORMATION

    SciTech Connect

    Zhang Qizhou; Wang Yang; Pillai, Thushara; Rathborne, Jill

    2009-05-01

    We present 1.3 mm continuum and spectral line images of two massive molecular clumps P1 and P2 in the G28.34+0.06 region with the Submillimeter Array (SMA). While the two clumps contain masses of 1000 and 880 M {sub sun}, respectively, P1 has a luminosity OF <10{sup 2} L {sub sun}, and a lower gas temperature and smaller line width than P2. Thus, P1 appears to be at a much earlier stage of massive star formation than P2. The high-resolution SMA observations reveal two distinctive cores in P2 with masses of 97 and 49 M {sub sun}, respectively. The 4 GHz spectral bandpass captures line emission from CO isotopologues, SO, CH{sub 3}OH, and CH{sub 3}CN, similar to hot molecular cores harboring massive young stars. The P1 clump, on the other hand, is resolved into five cores along the filament with masses from 22 to 64 M {sub sun} and an average projected separation of 0.19 pc. Except {sup 12}CO, no molecular line emission is detected toward the P1 cores at a 1{sigma} rms of 0.1 K. Since strong {sup 12}CO and C{sup 18}O emissions are seen with the single-dish telescope at a resolution of 11'', the nondetection of these lines with the SMA indicates a depletion factor up to 10{sup 3}. While the spatial resolution of the SMA is better than the expected Jeans length, the masses in P1 cores are much larger than the thermal Jeans mass, indicating the importance of turbulence and/or magnetic fields in cloud fragmentation. The hierarchical structures in the P1 region provide a glimpse of the initial phase of massive star and cluster formation.

  18. Ongoing Massive Star Formation in the Bulge of M51

    NASA Astrophysics Data System (ADS)

    Lamers, H. J. G. L. M.; Panagia, N.; Scuderi, S.; Romaniello, M.; Spaans, M.; de Wit, W. J.; Kirshner, R.

    2002-02-01

    We present a study of Hubble Space Telescope Wide Field Planetary Camera 2 observations of the inner kiloparsec of the interacting galaxy M51 in six bands from 2550 to 8140 Å. The images show an oval-shaped area (which we call the ``bulge'') of about 11''×16'', or 450×650 pc, around the nucleus that is dominated by a smooth ``yellow/reddish'' background population with overimposed dust lanes. These dust lanes are the inner extensions of the spiral arms. The extinction properties, derived in four fields in and outside dust lanes, are similar to the Galactic extinction law. The reddish stellar population has an intrinsic color of (B-V)0~=1.0, suggesting an age in excess of 5 Gyr. We found 30 bright pointlike sources in the bulge of M51, i.e., within 110-350 pc from the nucleus. The point sources have 21.4stars. There are three reasons to conclude that most of these point sources are isolated massive stars (or very small groups of a few isolated massive stars) rather than clusters:1. The energy distributions of most objects are best fitted with models of single stars of MV between -6.1 and -9.1, temperatures between 4000 and 50,000 K, and with 4.2massive stars.3. The distribution of the sources in the Hertzsprung-Russel diagram shows a gap in the range of 20,000Kstars, but not of clusters.We have derived upper limits to the total mass of lower mass stars (M*<10 Msolar) that could be

  19. Gravitational waves from remnant massive neutron stars of binary neutron star merger: Viscous hydrodynamics effects

    NASA Astrophysics Data System (ADS)

    Shibata, Masaru; Kiuchi, Kenta

    2017-06-01

    Employing a simplified version of the Israel-Stewart formalism of general-relativistic shear-viscous hydrodynamics, we explore the evolution of a remnant massive neutron star of binary neutron star merger and pay special attention to the resulting gravitational waveforms. We find that for the plausible values of the so-called viscous alpha parameter of the order 10-2 the degree of the differential rotation in the remnant massive neutron star is significantly reduced in the viscous time scale, ≲5 ms . Associated with this, the degree of nonaxisymmetric deformation is also reduced quickly, and as a consequence, the amplitude of quasiperiodic gravitational waves emitted also decays in the viscous time scale. Our results indicate that for modeling the evolution of the merger remnants of binary neutron stars we would have to take into account magnetohydrodynamics effects, which in nature could provide the viscous effects.

  20. STAR FORMATION IN MASSIVE CLUSTERS VIA BONDI ACCRETION

    SciTech Connect

    Murray, Norman; Chang, Philip E-mail: pchang@cita.utoronto.ca

    2012-02-10

    Essentially all stars form in giant molecular clouds (GMCs). However, inside GMCs, most of the gas does not participate in star formation; rather, denser gas accumulates in clumps in the GMC, with the bulk of the stars in a given GMC forming in a few of the most massive clumps. In the Milky Way, these clumps have masses M{sub cl} {approx}< 5 Multiplication-Sign 10{sup -2} of the GMC, radii r{sub cl} {approx} 1 pc, and free-fall times {tau}{sub cl} {approx} 2 Multiplication-Sign 10{sup 5} yr. We show that clumps inside GMCs should accrete at a modified Bondi accretion rate, which depends on clump mass as M-dot{sub cl}{approx}M{sub cl}{sup 5/4}. This rate is initially rather slow, usually slower than the initial star formation rate inside the clump (we adopt the common assumption that inside the clump, M-dot{sub *}={epsilon}{sub ff}M{sub cl}/{tau}{sub cl}, with {epsilon}{sub ff} Almost-Equal-To 0.017). However, after {approx}2 GMC free-fall times {tau}{sub GMC}, the clump accretion rate accelerates rapidly; formally, the clump can accrete the entire GMC in {approx}3{tau}{sub GMC}. At the same time, the star formation rate accelerates, tracking the Bondi accretion rate. If the GMC is disrupted by feedback from the largest clump, half the stars in that clump form in the final {tau}{sub GMC} before the GMC is disrupted. The theory predicts that the distribution of effective star formation rates, measured per GMC free-fall time, is broad, ranging from {approx}0.001 up to 0.1 or larger and that the mass spectrum of star clusters is flatter than that of clumps, consistent with observations.

  1. Stellar and wind parameters of massive stars from spectral analysis

    NASA Astrophysics Data System (ADS)

    Araya, I.; Curé, M.

    2017-07-01

    The only way to deduce information from stars is to decode the radiation it emits in an appropriate way. Spectroscopy can solve this and derive many properties of stars. In this work we seek to derive simultaneously the stellar and wind characteristics of A and B supergiant stars. Our stellar properties encompass the effective temperature, the surface gravity, the stellar radius, the micro-turbulence velocity, the rotational velocity and, finally, the chemical composition. For wind properties we consider the mass-loss rate, the terminal velocity and the line-force parameters (α, k and δ) obtained from the standard line-driven wind theory. To model the data we use the radiative transport code Fastwind considering the newest hydrodynamical solutions derived with Hydwind code, which needs stellar and line-force parameters to obtain a wind solution. A grid of spectral models of massive stars is created and together with the observed spectra their physical properties are determined through spectral line fittings. These fittings provide an estimation about the line-force parameters, whose theoretical calculations are extremely complex. Furthermore, we expect to confirm that the hydrodynamical solutions obtained with a value of δ slightly larger than ˜ 0.25, called δ-slow solutions, describe quite reliable the radiation line-driven winds of A and late B supergiant stars and at the same time explain disagreements between observational data and theoretical models for the Wind-Momentum Luminosity Relationship (WLR).

  2. VLA 7-mm Observations of Massive Star-forming Regions

    NASA Astrophysics Data System (ADS)

    Linz, Hendrik; Hofner, Peter; Araya, Esteban; Stecklum, Bringfried

    2003-07-01

    The early stages during the formation of massive stars are deeply enshrouded due to the presence of dense and dusty natal material. This prevents observations in the optical and often also in the near-infrared. The emission of the star-forming regions peaks in the far-infrared and sub-mm regime, but at these wavelengths, single-dish observations are restricted in spatial resolution and can give only upper limits on the energetics of the objects of interest. Interferometry at mm wavelengths is one appropriate technique to overcome these limitations. We have started an extensive programme to observe pre-selected massive star-forming regions. Our tool is the VLA and its 7-mm receiver system. The VLA can be operated in several antenna configurations delivering resolutions from 1.5 arcsec down to 0.05 arcsec, which is superior to other current mm-interferometers. Sub-arcsec resolution is strongly needed to disentangle the often crowded regions of high-mass star formation and to clearly separate our objects of interest from the adjacent ultracompact HII regions. At 7 mm we are on the save ground of the Rayleigh-Jeans limit even for emission of cold dust (a fact that is not always true for observations at smaller wavelengths). Almost all circumstellar density configurations are optically thin at 7 mm, thus, the observations will trace the total dust content. However, at 7 mm also the free-free emission from ionised gas (caused by the UV emission of the young massive stars) can contribute to the observed signal. Therefore, we have to identify and remove these "parasitic" constituents by extrapolating interferometric data obtained at cm-wavelengths. The targets are either taken from the list of Molinari (Molinari et al. 2000, A&A, 355, 617) or are well-known massive star-forming complexes, for which we have already acquired additional data at other wavelengths. We have started with observations at lower and medium resolution (1.5 - 0.5 arcsec) to distinguish candidates for

  3. Nucleosynthesis above the iron group in massive stars

    SciTech Connect

    Hoffman, R D; Woosley, S E; Weaver, T A

    2000-10-11

    The production of nuclei up to and including the light s-process component at A {approx} 60-90 is calculated for all stages of stable and explosive nuclear burning in stars of 15 and 25 M{sub {circle_dot}}. An extended nuclear reaction network of 480 isotopes is employed along with approximately two dozen recent revisions to key nuclear reaction rates. As noted previously, the new rates suggest a greatly diminished production of {sup 17}O and {sup 18}O in massive stars. {sup 22}Ne is also moderately enhanced. We find that a combination of pre-explosive s-process, {gamma}-process, and (mild) r-processes in massive stars give a consistently solar production of almost all isotopes from mass 64 through 90. However, even after the late stages of evolution are complete and the explosion is over, this same group of elements is overproduced compared to what is needed for the sun, especially in the 25 M{sub {circle_dot}} model.

  4. Core Collapse and Then? The Route to Massive Star Explosions

    NASA Astrophysics Data System (ADS)

    Janka, Hans-Thomas; Buras, Robert; Kifonidis, Konstantinos; Plewa, Tomek; Rampp, Markus

    The rapidly growing base of observational data for supernova explosions of massive stars demands theoretical explanations. Central to these is a self-consistent model for the physical mechanism that provides the energy to start and drive the disruption of the star. We give arguments why the delayed neutrino-heating mechanism should still be regarded as the standard paradigm to explain most explosions of massive stars and show how large-scale and even global asymmetries can result as a natural consequence of convective overturn in the neutrino-heating region behind the supernova shock. Since the explosion is a threshold phenomenon and depends sensitively on the efficiency of the energy transfer by neutrinos, even relatively minor differences in numerical simulations can matter on the secular timescale of the delayed mechanism. To enhance this point, we present some results of recent one- and two-dimensional computations, which we have performed with a Boltzmann solver for the neutrino transport and a state-of-the-art description of neutrino-matter interactions. Although our most complete models fail to explode, the simulations demonstrate that one is encouragingly close to the critical threshold because a modest variation of the neutrino transport in combination with postshock convection leads to a weak neutrino-driven explosion with properties that fulfill important requirements from observations.

  5. Evidence for multiple populations in the intermediate-age cluster Lindsay 1 in the SMC

    NASA Astrophysics Data System (ADS)

    Hollyhead, K.; Kacharov, N.; Lardo, C.; Bastian, N.; Hilker, M.; Rejkuba, M.; Koch, A.; Grebel, E. K.; Georgiev, I.

    2017-02-01

    Lindsay 1 is an intermediate-age (≈8 Gyr) massive cluster in the Small Magellanic Cloud. Using VLT FORS2 spectra of 16 probable cluster members on the lower red giant branch of the cluster, we measure CN and CH band strengths (at ≃ 3883 and 4300 Å, respectively), along with carbon and nitrogen abundances and find that a sub-population of stars has significant nitrogen enrichment. A lack of spread in carbon abundances excludes evolutionary mixing as the source of this enrichment, so we conclude that this is evidence of multiple populations. Therefore, Lindsay 1 is the youngest cluster to show such variations, implying that the process triggering the onset of multiple populations must operate until at least redshift ˜1.

  6. Highly Variable Young Massive Stars in ATLASGAL Clumps

    NASA Astrophysics Data System (ADS)

    Kumar, M. S. N.; Contreras Peña, C.; Lucas, P. W.; Thompson, M. A.

    2016-12-01

    High-amplitude variability in young stellar objects (YSOs) is usually associated with episodic accretion events. It has not been observed so far in massive YSOs. Here, the high-amplitude variable star sample of Contreras Peña et al. has been used to search for highly variable (ΔK ≥ 1 mag) sources coinciding with dense clumps mapped using the 850 μm continuum emission by the ATLASGAL survey. A total of 18 variable sources are centered on the submillimeter clump peaks and coincide (<1″) with a 24 μm point or compact (<10″) source. Of these 18 sources, 13 can be fit by YSO models. The 13 variable YSOs (VYSOs) have luminosities of ∼103 L ⊙, an average mass of 8 M ⊙, and a range of ages up to 106 yr. A total of 11 of these 13 VYSOs are located in the midst of infrared dark clouds. Nine of the 13 sources have ΔK > 2 mag, significantly higher compared to the mean variability of the entire VVV sample. The light curves of these objects sampled between 2010 and 2015 display rising, declining, or quasi-periodic behavior but no clear periodicity. Light-curve analysis using the Plavchan method shows that the most prominent phased signals have periods of a few hundred days. The nature and timescale of variations found in 6.7 Ghz methanol maser emission in massive stars are similar to that of the VYSO light curves. We argue that the origin of the observed variability is episodic accretion. We suggest that the timescale of a few hundred days may represent the frequency at which a spiraling disk feeds dense gas to the young massive star.

  7. Effects of Ionization Feedback in Massive Star Formation

    NASA Astrophysics Data System (ADS)

    Peters, Thomas; Banerjee, R.; Klessen, R. S.; Mac Low, M.

    2009-01-01

    We present 3D high-resolution radiation-hydrodynamical simulations of massive star formation. We model the collapse of a massive molecular cloud core forming a high-mass star in its center. We use a version of the FLASH code that has been extended by including sink particles which are a source of both ionizing and non-ionizing radiation. The sink particles evolve according to a prestellar model which determines the stellar and accretion luminosities. Radiation transfer is done using the hybrid characteristics raytracing approach on the adaptive mesh developed by Rijkhorst et al. (2006). The radiative transfer module has been augmented to allow simulations with arbitrarily high resolution. Our highest resolution models resolve the disk scale height by at least 16 zones. Opacities for non-ionizing radiation have been added to account for the accretion heating, which is expected to be strong at the initial stage of star formation and believed to prevent fragmentation. Studies of collapsing massive cores show the formation of a gravitationally highly unstable disk. The accretion heating is not strong enough to suppress this instability. The ionizing radiation builds up an H II region around the protostar, which destroys the accretion disk close to it. We describe preliminary results, with a focus on how long the H II region remains confined by the accretion flow, and whether it can ever cut off accretion entirely. Thomas Peters acknowledges support from a Kade Fellowship for his visit to the American Museum of Natural History. He is a fellow of the International Max Planck Research School for Astronomy and Cosmic Physics at the University of Heidelberg and the Heidelberg Graduate School of Fundamental Physics. We also thank the DFG for support via the Emmy Noether Grant BA 3607/1 and the individual grant KL1358/5.

  8. Hunting for missing (massive) stars in the Galaxy

    NASA Astrophysics Data System (ADS)

    Flagey, Nicolas

    2015-08-01

    We discovered over 400 compact (<1’) “bubbles” from visual inspection of the Spitzer/MIPSGAL 24 μm images of the Galactic plane (Carey et al. 2009; Mizuno et al. 2010). At the time of their discovery, only 15% of these MIPSGAL bubbles (MBs) existed in available catalogs, and most of these previously known MB were planetary nebulae. Over the past three years an important observational effort has been made to characterize the nature of more MBs (e.g. Wachter et al. 2010; Gvaramadze et al. 2010; Flagey et al. 2011, 2014; Nowak et al. 2014). The number of identified MBs has now doubled (30% of the 428), and massive stars represent almost half of the known objects. Most of the new identifications have been obtained via optical and near-IR spectroscopic observations of the source detected at the center of the MBs.I will first present the catalog of the MB and the general properties, in terms of morphology, size, and broadband fluxes, of the circumstellar shells. In particular, I will show that far-IR observations from the Herschel Galactic Plane Survey (Molinari et al. 2010) provide a direct measurement of the dust mass ejected by theMB. Then, I will detail some of the follow-up spectroscopic observations obtained to identify the origin of the mid-IR emission and the nature of the unknown objects. In particular, I will focus on: (1) unique Spitzer/IRS observations of 15 MBs that lead to the discovery of several dust poor planetary nebulae with very hot white dwarf, and the characterization of several WR and LBV candidates; (2) ground based (Palomar, IRTF, VLT) near-IR observations of central sources in MB, that revealed a large number of new massive stars, both cool and hot. I will summarize the results of these investigations and others in terms of newly discovered massive stars in our Galaxy.

  9. Ionizing feedback from massive stars in massive clusters - III. Disruption of partially unbound clouds

    NASA Astrophysics Data System (ADS)

    Dale, J. E.; Ercolano, B.; Bonnell, I. A.

    2013-03-01

    We extend our previous smoothed particle hydrodynamics parameter study of the effects of photoionization from O-stars on star-forming clouds to include initially unbound clouds. We generate a set of model clouds in the mass range 104-106 M⊙ with initial virial ratios Ekin/Epot = 2.3, allow them to form stars and study the impact of the photoionizing radiation produced by the massive stars. We find that, on the 3 Myr time-scale before supernovae are expected to begin detonating, the fraction of mass expelled by ionizing feedback is a very strong function of the cloud escape velocities. High-mass clouds are largely unaffected dynamically, while low-mass clouds have large fractions of their gas reserves expelled on this time-scale. However, the fractions of stellar mass unbound are modest and significant portions of the unbound stars are so only because the clouds themselves are initially partially unbound. We find that ionization is much more able to create well-cleared bubbles in the unbound clouds, owing to their intrinsic expansion, but that the presence of such bubbles does not necessarily indicate that a given cloud has been strongly influenced by feedback. We also find, in common with the bound clouds from our earlier work, that many of the systems simulated here are highly porous to photons and supernova ejecta, and that most of them will likely survive their first supernova explosions.

  10. Massive pre-main sequence stars in M17

    NASA Astrophysics Data System (ADS)

    Ramirez-Tannus, Maria C.; Kaper, Lex; Ochsendorf, Bram B.; Ellerbroek, Lucas E.

    We have obtained optical to near-infrared (300-2500 nm) VLT/X-shooter spectra of six candidate mYSOs, deeply embedded in the massive star forming region M17. These mYSO candidates have been identified based on their infrared excess and spectral features (double-peaked emission lines, CO band-head emission) indicating the presence of a disk (Hanson et al. 1997). In most cases, we detect a photospheric spectrum allowing us to measure the physical properties of the mYSOs and to confirm their PMS nature.

  11. Star on the Run - Speeding Star Observed with VLT hints at Massive Black Hole

    NASA Astrophysics Data System (ADS)

    2005-11-01

    Using ESO's Very Large Telescope, astronomers [1] have recorded a massive star moving at more than 2.6 million kilometres per hour. Stars are not born with such large velocities. Its position in the sky leads to the suggestion that the star was kicked out from the Large Magellanic Cloud, providing indirect evidence for a massive black hole in the Milky Way's closest neighbour. These results will soon be published in the Astrophysical Journal Letters [2]. "At such a speed, the star would go around the Earth in less than a minute!", says Uli Heber, one of the scientists at the Dr. Remeis-Sternwarte (University of Erlangen-Nürnberg, Germany) and the Centre for Astrophysics Research (University of Hertfordshire, UK) who conducted the study. The hot massive star was discovered in the framework of the Hamburg/ESO sky survey far out in the halo of the Milky Way, towards the Doradus Constellation ("the Swordfish"). "This is a rather unusual place for such a star: massive stars are ordinarily found in the disc of the Milky Way", explains Ralf Napiwotzki, another member of the team. "Our data obtained with the UVES instrument on the Very Large Telescope, at Paranal (Chile), confirm the star to be rather young and to have a chemical composition similar to our Sun." The data also revealed the high speed of the star, solving the riddle of its present location: the star did not form in the Milky Way halo, but happens to be there while on its interstellar - or intergalactic - travel. "But when we calculated how long it would take for the star to travel from the centre of our Galaxy to its present location, we found this to be more than three times its age", says Heber. "Either the star is older than it appears or it was born and accelerated elsewhere", he adds. As a matter of fact, HE0457-5439 - as the star is called - lies closer to one of the Milky Way satellite galaxies, the Large Magellanic Cloud (LMC), located 160,000 light-years away from us. The astronomers find it likely

  12. X-rays From Centrifugal Magnetospheres in Massive Stars

    NASA Astrophysics Data System (ADS)

    Bard, Christopher; Townsend, Richard

    2015-01-01

    In the subset of massive OB stars with strong global magnetic fields, X-rays arise from magnetically confined wind shocks (Babel & Montmerle 1997). However, it is not yet clear what the effect of stellar rotation and mass-loss rate is on these wind shocks and resulting X-rays. Here, we present results from a grid of Arbitrary Rigid-Field Hydrodynamic simulations (ARFHD) of a B-star centrifugal magnetosphere with an eye towards quantifying the effect of stellar rotation and mass-loss rate on the level of X-ray emission. The results are also compared to a generalized XADM model for X-rays in dynamical magnetospheres (ud-Doula et al. 2014).

  13. LIMB-DARKENED RADIATION-DRIVEN WINDS FROM MASSIVE STARS

    SciTech Connect

    Cure, M.; Cidale, L.

    2012-10-01

    We calculated the influence of the limb-darkened finite-disk correction factor in the theory of radiation-driven winds from massive stars. We solved the one-dimensional m-CAK hydrodynamical equation of rotating radiation-driven winds for all three known solutions, i.e., fast, {Omega}-slow, and {delta}-slow. We found that for the fast solution, the mass-loss rate is increased by a factor of {approx}10%, while the terminal velocity is reduced about 10%, when compared with the solution using a finite-disk correction factor from a uniformly bright star. For the other two slow solutions, the changes are almost negligible. Although we found that the limb darkening has no effects on the wind-momentum-luminosity relationship, it would affect the calculation of synthetic line profiles and the derivation of accurate wind parameters.

  14. The relation between the most-massive star and its parental star cluster mass

    NASA Astrophysics Data System (ADS)

    Weidner, C.; Kroupa, P.; Bonnell, I. A. D.

    2010-01-01

    We present a thorough literature study of the most-massive star, mmax, in several young star clusters in order to assess whether or not star clusters are populated from the stellar initial mass function (IMF) by random sampling over the mass range 0.01 <= m <= 150Msolar without being constrained by the cluster mass, Mecl. The data reveal a partition of the sample into lowest mass objects (Mecl <= 102Msolar), moderate mass clusters (102Msolar < Mecl <= 103Msolar) and rich clusters above 103Msolar. Additionally, there is a plateau of a constant maximal star mass (mmax ~ 25Msolar) for clusters with masses between 103Msolar and 4 × 103Msolar. Statistical tests of this data set reveal that the hypothesis of random sampling from the IMF between 0.01 and 150Msolar is highly unlikely for star clusters more massive than 102Msolar with a probability of p ~ 2 × 10-7 for the objects with Mecl between 102 and 103Msolar and p ~ 3 × 10-9 for the more massive star clusters. Also, the spread of mmax values at a given Mecl is smaller than expected from random sampling. We suggest that the basic physical process able to explain this dependence of stellar inventory of a star cluster on its mass may be the interplay between stellar feedback and the binding energy of the cluster-forming molecular cloud core. Given these results, it would follow that an integrated galactic IMF (IGIMF) sampled from such clusters would automatically be steeper in comparison to the IMF within individual star clusters.

  15. How Very Massive Metal Free Stars Start Cosmological Reionization

    SciTech Connect

    Wise, John H.; Abel, Tom

    2007-11-07

    The initial conditions and relevant physics for the formation of the earliest galaxies are well specified in the concordance cosmology. Using ab initio cosmological Eulerian adaptive mesh refinement radiation hydrodynamical calculations, we discuss how very massive stars start the process of cosmological reionization. The models include non-equilibrium primordial gas chemistry and cooling processes and accurate radiation transport in the Case B approximation using adaptively ray traced photon packages, retaining the time derivative in the transport equation. Supernova feedback is modeled by thermal explosions triggered at parsec scales. All calculations resolve the local Jeans length by at least 16 grid cells at all times and as such cover a spatial dynamic range of {approx}10{sup 6}. These first sources of reionization are highly intermittent and anisotropic and first photoionize the small scales voids surrounding the halos they form in, rather than the dense filaments they are! embedded in. As the merging objects form larger, dwarf sized galaxies, the escape fraction of UV radiation decreases and the H II regions only break out on some sides of the galaxies making them even more anisotropic. In three cases, SN blast waves induce star formation in overdense regions that were formed earlier from ionization front instabilities. These stars form tens of parsecs away from the center of their parent DM halo. Approximately 5 ionizing photons are needed per sustained ionization when star formation in 10{sup 6} M{sub {circle_dot}} halos are dominant in the calculation. As the halos become larger than {approx}10{sup 7} M{sub {circle_dot}}, the ionizing photon escape fraction decreases, which in turn increases the number of photons per ionization to 15--50, in calculations with stellar feedback only. Supernova feedback in these more massive halos creates a more diffuse medium, allowing the stellar radiation to escape more easily and maintaining the ratio of 5 ionizing

  16. PROTOSTELLAR OUTFLOWS AND RADIATIVE FEEDBACK FROM MASSIVE STARS

    SciTech Connect

    Kuiper, Rolf; Yorke, Harold W.; Turner, Neal J. E-mail: Harold.W.Yorke@jpl.nasa.gov

    2015-02-20

    We carry out radiation hydrodynamical simulations of the formation of massive stars in the super-Eddington regime including both their radiative feedback and protostellar outflows. The calculations start from a prestellar core of dusty gas and continue until the star stops growing. The accretion ends when the remnants of the core are ejected, mostly by the force of the direct stellar radiation in the polar direction and elsewhere by the reradiated thermal infrared radiation. How long the accretion persists depends on whether the protostellar outflows are present. We set the mass outflow rate to 1% of the stellar sink particle's accretion rate. The outflows open a bipolar cavity extending to the core's outer edge, through which the thermal radiation readily escapes. The radiative flux is funneled into the polar directions while the core's collapse proceeds near the equator. The outflow thus extends the ''flashlight effect'', or anisotropic radiation field, found in previous studies from the few hundred AU scale of the circumstellar disk up to the 0.1 parsec scale of the core. The core's flashlight effect allows core gas to accrete on the disk for longer, in the same way that the disk's flashlight effect allows disk gas to accrete on the star for longer. Thus although the protostellar outflows remove material near the core's poles, causing slower stellar growth over the first few free-fall times, they also enable accretion to go on longer in our calculations. The outflows ultimately lead to stars of somewhat higher mass.

  17. Pair Instability Supernovae of Very Massive Population III Stars

    NASA Astrophysics Data System (ADS)

    Chen, Ke-Jung; Heger, Alexander; Woosley, Stan; Almgren, Ann; Whalen, Daniel J.

    2014-09-01

    Numerical studies of primordial star formation suggest that the first stars in the universe may have been very massive. Stellar models indicate that non-rotating Population III stars with initial masses of 140-260 M ⊙ die as highly energetic pair-instability supernovae. We present new two-dimensional simulations of primordial pair-instability supernovae done with the CASTRO code. Our simulations begin at earlier times than previous multidimensional models, at the onset of core contraction, to capture any dynamical instabilities that may be seeded by core contraction and explosive burning. Such instabilities could enhance explosive yields by mixing hot ash with fuel, thereby accelerating nuclear burning, and affect the spectra of the supernova by dredging up heavy elements from greater depths in the star at early times. Our grid of models includes both blue supergiants and red supergiants over the range in progenitor mass expected for these events. We find that fluid instabilities driven by oxygen and helium burning arise at the upper and lower boundaries of the oxygen shell ~20-100 s after core bounce. Instabilities driven by burning freeze out after the SN shock exits the helium core. As the shock later propagates through the hydrogen envelope, a strong reverse shock forms that drives the growth of Rayleigh-Taylor instabilities. In red supergiant progenitors, the amplitudes of these instabilities are sufficient to mix the supernova ejecta.

  18. Pair instability supernovae of very massive population III stars

    SciTech Connect

    Chen, Ke-Jung; Woosley, Stan; Heger, Alexander; Almgren, Ann; Whalen, Daniel J.

    2014-09-01

    Numerical studies of primordial star formation suggest that the first stars in the universe may have been very massive. Stellar models indicate that non-rotating Population III stars with initial masses of 140-260 M {sub ☉} die as highly energetic pair-instability supernovae. We present new two-dimensional simulations of primordial pair-instability supernovae done with the CASTRO code. Our simulations begin at earlier times than previous multidimensional models, at the onset of core contraction, to capture any dynamical instabilities that may be seeded by core contraction and explosive burning. Such instabilities could enhance explosive yields by mixing hot ash with fuel, thereby accelerating nuclear burning, and affect the spectra of the supernova by dredging up heavy elements from greater depths in the star at early times. Our grid of models includes both blue supergiants and red supergiants over the range in progenitor mass expected for these events. We find that fluid instabilities driven by oxygen and helium burning arise at the upper and lower boundaries of the oxygen shell ∼20-100 s after core bounce. Instabilities driven by burning freeze out after the SN shock exits the helium core. As the shock later propagates through the hydrogen envelope, a strong reverse shock forms that drives the growth of Rayleigh-Taylor instabilities. In red supergiant progenitors, the amplitudes of these instabilities are sufficient to mix the supernova ejecta.

  19. Spectroscopic evolution of massive stars on the main sequence

    NASA Astrophysics Data System (ADS)

    Martins, F.; Palacios, A.

    2017-02-01

    Context. The evolution of massive stars depends on several parameters, and the relation between different morphological types is not fully constrained. Aims: We aim to provide an observational view of evolutionary models in the Hertzsprung-Russell diagram, on the main sequence. This view should help compare observations and model predictions. Methods: We first computed evolutionary models with the code STAREVOL for initial masses between 15 and 100 M⊙. We subsequently calculated atmosphere models at specific points along the evolutionary tracks, using the code CMFGEN. Synthetic spectra obtained in this way were classified as if they were observational data: we assigned them a spectral type and a luminosity class. We tested our spectral classification by comparison to observed spectra of various stars with different spectral types. We also compared our results with empirical data of a large number of OB stars. Results: We obtain spectroscopic sequences along evolutionary tracks. In our computations, the earliest O stars (O2-3.5) appear only above 50 M⊙. For later spectral types, a similar mass limit exists, but is lower. A luminosity class V does not correspond to the entire main sequence. This only holds for the 15 M⊙ track. As mass increases, a larger portion of the main sequence is spent in luminosity class III. Above 50 M⊙, supergiants appear before the end of core-hydrogen burning. Dwarf stars (luminosity class V) do not occur on the zero-age main sequence above 80 M⊙. Consequently, the distribution of luminosity class V in the HR diagram is not a diagnostic of the length of the main sequence (above 15 M⊙) and cannot be used to constrain the size of the convective core. The distribution of dwarfs and giants in the HR diagram that results from our calculations agrees well with the location of stars analyzed by means of quantitative spectroscopy. For supergiants, there is a slight discrepancy in the sense that luminosity class I is observed slightly

  20. A minimum column density of 1 g cm(-2) for massive star formation.

    PubMed

    Krumholz, Mark R; McKee, Christopher F

    2008-02-28

    Massive stars are very rare, but their extreme luminosities make them both the only type of young star we can observe in distant galaxies and the dominant energy sources in the Universe today. They form rarely because efficient radiative cooling keeps most star--forming gas clouds close to isothermal as they collapse, and this favours fragmentation into stars of one solar mass or lower. Heating of a cloud by accreting low-mass stars within it can prevent fragmentation and allow formation of massive stars, but the necessary properties for a cloud to form massive stars-and therefore where massive stars form in a galaxy--have not yet been determined. Here we show that only clouds with column densities of at least 1 g cm(-2) can avoid fragmentation and form massive stars. This threshold, and the environmental variation of the stellar initial mass function that it implies, naturally explain the characteristic column densities associated with massive star clusters and the difference between the radial profiles of Halpha and ultraviolet emission in galactic disks. The existence of a threshold also implies that the initial mass function should show detectable variation with environment within the Galaxy, that the characteristic column densities of clusters containing massive stars should vary between galaxies, and that star formation rates in some galactic environments may have been systematically underestimated.

  1. Photometric investigation of the totally eclipsing contact binary V12 in the intermediate-age open cluster NGC 7789

    SciTech Connect

    Qian, S.-B.; Wang, J.-J.; Liu, L.; Zhou, X.; Essam, A.; Ali, G. B.; Haroon, A.-A.

    2015-02-01

    NGC 7789 is an intermediate-age open cluster with an age similar to the mean age of contact binary stars. V12 is a bright W UMa-type binary star with an orbital period of 0.3917 days. The first complete light curves of V12 in the V, R, and I bands are presented and analyzed with the Wilson–Devinney (W-D) method. The results show that V12 is an intermediate-contact binary (f=43.0(±2.2)%) with a mass ratio of 3.848, and it is a W-type contact binary where the less massive component is slightly hotter than the more massive one. The asymmetry of the light curves is explained by the presence of a dark spot on the more massive component. The derived orbital inclination (i=83{sub .}{sup ∘}6) indicates that it is a totally eclipsing binary, which suggests that the determined parameters are reliable. The orbital period may show a long-term increase at a rate of P-dot =+2.48(±0.17)×10{sup −6} days yr{sup −1} that reveals a rapid mass transfer from the less massive component to the more massive one. However, more observations are needed to confirm this conclusion. The presence of an intermediate-contact binary in an intermediate-age open cluster may suggest that some contact binaries have a very short pre-contact timescale. The presence of a third body and/or stellar collision may help to shorten the pre-contact evolution.

  2. W49A: A Massive Molecular Cloud Forming a Massive Star Cluster in the Galactic Disk

    NASA Astrophysics Data System (ADS)

    Galvan-Madrid, Roberto; Liu, Hauyu Baobab; Pineda, Jaime E.; Zhang, Zhi-Yu; Ginsburg, Adam; Roman-Zuñiga, Carlos; Peters, Thomas

    2015-08-01

    I summarize our current results of the MUSCLE survey of W49A, the most luminous star formation region in the Milky Way. Our approach emphasizes multi-scale, multi-resolution imaging in dust, ionized-, and molecular gas, to trace the multiple gas components from <0.1 pc (core scale) all the way up to the scale of the entire giant molecular cloud (GMC), ˜100 pc. The 106 M⊙ GMC is structured in a radial network of filaments that converges toward the central 'hub' with ˜2x105 M⊙, which contains within a few pc a deeply embedded young massive cluster (YMC) of stellar mass ~5x104 M⊙. We also discuss the dynamics of the filamentary network, the role of turbulence in the formation of this YMC, and how objects like W49A can link Milky Way and extragalactic star formation relations.

  3. Dynamic Star Formation in the Massive DR21 Filament

    SciTech Connect

    Schneider, N.; Csengeri, T.; Bontemps, S.; Motte, F.; Simon, R.; Hennebelle, P.; Federrath, C.; Klessen, R.; /ZAH, Heidelberg /KIPAC, Menlo Park

    2010-08-25

    The formation of massive stars is a highly complex process in which it is unclear whether the star-forming gas is in global gravitational collapse or an equilibrium state supported by turbulence and/or magnetic fields. By studying one of the most massive and dense star-forming regions in the Galaxy at a distance of less than 3 kpc, i.e. the filament containing the well-known sources DR21 and DR21(OH), we attempt to obtain observational evidence to help us to discriminate between these two views. We use molecular line data from our {sup 13}CO 1 {yields} 0, CS 2 {yields} 1, and N{sub 2}H{sup +} 1 {yields} 0 survey of the Cygnus X region obtained with the FCRAO and CO, CS, HCO{sup +}, N{sub 2}H{sup +}, and H{sub 2}CO data obtained with the IRAM 30m telescope. We observe a complex velocity field and velocity dispersion in the DR21 filament in which regions of the highest column-density, i.e., dense cores, have a lower velocity dispersion than the surrounding gas and velocity gradients that are not (only) due to rotation. Infall signatures in optically thick line profiles of HCO{sup +} and {sup 12}CO are observed along and across the whole DR21 filament. By modelling the observed spectra, we obtain a typical infall speed of {approx}0.6 km s{sup -1} and mass accretion rates of the order of a few 10{sup -3} M{sub {circle_dot}} yr{sup -1} for the two main clumps constituting the filament. These massive clumps (4900 and 3300 M{sub {circle_dot}} at densities of around 10{sup 5} cm{sup -3} within 1 pc diameter) are both gravitationally contracting. The more massive of the clumps, DR21(OH), is connected to a sub-filament, apparently 'falling' onto the clump. This filament runs parallel to the magnetic field. Conclusions. All observed kinematic features in the DR21 filament (velocity field, velocity dispersion, and infall), its filamentary morphology, and the existence of (a) sub-filament(s) can be explained if the DR21 filament was formed by the convergence of flows on large

  4. Discovering Massive Runaway Stars with Infrared Bow Shock Nebulae: Four OB Stars Found in WISE

    NASA Astrophysics Data System (ADS)

    Wernke, Heather N.; Kobulnicky, Henry A.; Dale, Daniel A.; Povich, Matthew S.; Andrews, Julian E.; Chick, William T.; Munari, Stephan; Olivier, Grace M.; Schurhammer, Danielle; Sorber, Rebecca L.

    2016-01-01

    Supernovae, pulsars, and gamma-ray bursts are examples of the result of the death of massive (late-O and early-B type) stars. Determining stellar mass loss rates can help us predict the type of death the star will endure. We focus on stars that are located at the center of an infrared bow shock nebula, indicating that the star was flung from its birthplace at supersonic speed. Observing these massive, high-velocity, runaway stars with bow shock nebulae to determine their spectral type will help in the measurements of their stellar mass loss rates. The spectra of four OB stars driving bow shock candidates are presented. These four candidates were found by searching through the Wide-field Infrared Survey Explorer (WISE) All-Sky Data Release and were the most visible in the WISE 21µm band. The spectrum for each star was obtained with the Longslit Spectrograph at the Wyoming Infrared Observatory (WIRO). The spectral types of G077.3617+01.16 (HD 229159), G079.8219+00.096 ([CPR2002]A10), G092.7265+00.18, and G076.0752-02.2044 (TYC 2697-1046-1) were found to be B1.0I, O9.0V, B0.0V, and B0.0V respectively. As predicted, the candidates are all either late-O or early-B type stars. Now that the spectral types of these stars are known, further analysis can be done to determine the velocities, temperatures, masses, and stellar mass loss rates.This work is supported by the National Science Foundation under grants AST-1063146 (REU), AST-1411851 (RUI), and AST-1412845.

  5. Mass Loss and Pre-SN Evolution of Massive Stars

    NASA Astrophysics Data System (ADS)

    Smith, N.

    2010-06-01

    I review the role that mass loss plays in the pre-SN evolution of massive stars in a variety of different scenarios, and what observable effect it may have on the resulting SN. The amount of mass lost, its speed, and how soon before core collapse the material is removed can have a dramatic effect on the resulting SN light curve and spectrum. Massive stars trek across the HR diagram as they evolve, and the SN can look very different depending on where along this path core collapse occurs; it may not depend solely on initial mass. The most extreme pre-SN mass ejections in massive luminous blue variables (LBVs) have recently (and surprisingly) been linked to the very luminous Type IIn supernovae with circumstellar interaction that dominates the spectrum and enhances the visual luminosity. In some cases these objects require strong LBV-like shell ejections in the decades immediately before a SN. Strong winds or episodic mass loss of luminous red supergiants (RSGs) and yellow hypergiants may also lead to less extreme Type IIn events. Post-RSG blue supergiants like SN 1987A's progenitor and lower-luminosity LBVs like HD 168625 are also candidates for Type II SNe with visible circumstellar material. Finally, progenitors that successfully shed their H envelopes (either through LBV eruptions, strong winds, or binary mass transfer) die as Type Ib or Ic supernovae, and some of these also show evidence for immediate pre-SN shell ejections. Many of the potential progenitors of Types Ib, Ic, IIn, IIb, and II-L overlap in their range of probable initial mass, and I will point to some open questions about how they fit together in the context of stellar evolution, and the roles of mass loss and initial mass in determining their relative rates.

  6. JET FORMATION FROM MASSIVE YOUNG STARS: MAGNETOHYDRODYNAMICS VERSUS RADIATION PRESSURE

    SciTech Connect

    Vaidya, Bhargav; Porth, Oliver; Fendt, Christian; Beuther, Henrik E-mail: fendt@mpia.de

    2011-11-20

    Observations indicate that outflows from massive young stars are more collimated during their early evolution compared to later stages. Our paper investigates various physical processes that impact the outflow dynamics, i.e., its acceleration and collimation. We perform axisymmetric magnetohydrodynamic (MHD) simulations particularly considering the radiation pressure exerted by the star and the disk. We have modified the PLUTO code to include radiative forces in the line-driving approximation. We launch the outflow from the innermost disk region (r < 50 AU) by magnetocentrifugal acceleration. In order to disentangle MHD effects from radiative forces, we start the simulation in pure MHD and later switch on the radiation force. We perform a parameter study considering different stellar masses (thus luminosity), magnetic flux, and line-force strength. For our reference simulation-assuming a 30 M{sub Sun} star-we find substantial de-collimation of 35% due to radiation forces. The opening angle increases from 20 Degree-Sign to 32 Degree-Sign for stellar masses from 20 M{sub Sun} to 60 M{sub Sun }. A small change in the line-force parameter {alpha} from 0.60 to 0.55 changes the opening angle by {approx}8 Degree-Sign . We find that it is mainly the stellar radiation that affects the jet dynamics. Unless the disk extends very close to the star, its force is too small to have much impact. Essentially, our parameter runs with different stellar masses can be understood as a proxy for the time evolution of the star-outflow system. Thus, we have shown that when the stellar mass (thus luminosity) increases with age, the outflows become less collimated.

  7. The chemical composition of Galactic ring nebulae around massive stars

    NASA Astrophysics Data System (ADS)

    Esteban, C.; Mesa-Delgado, A.; Morisset, C.; García-Rojas, J.

    2016-08-01

    We present deep spectra of ring nebulae associated with Wolf-Rayet (WR) and O-type stars: NGC 6888, G2.4+1.4, RCW 58, S 308, NGC 7635 and RCW 52. The data have been taken with the 10m Gran Telescopio Canarias and the 6.5m Clay Telescope. We extract spectra of several apertures in some of the objects. We derive C2+ and O2+ abundances from faint recombination lines in NGC 6888 and NGC 7635, permitting to derive their C/H and C/O ratios and estimate the abundance discrepancy factor (ADF) of O2+. The ADFs are larger than the typical ones of normal H II regions but similar to those found in the ionized gas of star-forming dwarf galaxies. We find that chemical abundances are rather homogeneous in the nebulae where we have spectra of several apertures: NGC 6888, NGC 7635 and G2.4+1.4. We obtain very high values of electron temperature in a peripheral zone of NGC 6888, finding that shock excitation can reproduce its spectral properties. We find that all the objects associated with WR stars show N enrichment. Some of them also show He enrichment and O deficiency as well as a lower Ne/O than expected, this may indicate the strong action of the ON and NeNa cycles. We have compared the chemical composition of NGC 6888, G2.4+1.4, RCW 58 and S 308 with the nucleosynthesis predicted by stellar evolution models of massive stars. We find that non-rotational models of stars of initial masses between 25 and 40 M⊙ seem to reproduce the observed abundance ratios of most of the nebulae.

  8. A Massive-born Neutron Star with a Massive White Dwarf Companion

    NASA Astrophysics Data System (ADS)

    Cognard, Ismaël; Freire, Paulo C. C.; Guillemot, Lucas; Theureau, Gilles; Tauris, Thomas M.; Wex, Norbert; Graikou, Eleni; Kramer, Michael; Stappers, Benjamin; Lyne, Andrew G.; Bassa, Cees; Desvignes, Gregory; Lazarus, Patrick

    2017-08-01

    We report on the results of a 4 year timing campaign of PSR J2222-0137, a 2.44 day binary pulsar with a massive white dwarf (WD) companion, with the Nançay, Effelsberg, and Lovell radio telescopes. Using the Shapiro delay for this system, we find a pulsar mass m p = 1.76 ± 0.06 M ⊙ and a WD mass m c = 1.293 ± 0.025 M ⊙. We also measure the rate of advance of periastron for this system, which is marginally consistent with the general relativity prediction for these masses. The short lifetime of the massive WD progenitor star led to a rapid X-ray binary phase with little (< 10-2 M ⊙) mass accretion onto the neutron star; hence, the current pulsar mass is, within uncertainties, its birth mass, which is the largest measured to date. We discuss the discrepancy with previous mass measurements for this system; we conclude that the measurements presented here are likely to be more accurate. Finally, we highlight the usefulness of this system for testing alternative theories of gravity by tightly constraining the presence of dipolar radiation. This is of particular importance for certain aspects of strong-field gravity, like spontaneous scalarization, since the mass of PSR J2222-0137 puts that system into a poorly tested parameter range.

  9. Resolved photometry of extragalactic young massive star clusters

    NASA Astrophysics Data System (ADS)

    Larsen, S. S.; de Mink, S. E.; Eldridge, J. J.; Langer, N.; Bastian, N.; Seth, A.; Smith, L. J.; Brodie, J.; Efremov, Yu. N.

    2011-08-01

    Aims: We present colour-magnitude diagrams (CMDs) of young massive star clusters in several galaxies located well beyond the Local Group. The richness of these clusters allows us to obtain large samples of post-main sequence stars and test how well the observed CMDs are reproduced by canonical stellar isochrones. Methods: We use imaging of seven clusters in the galaxies NGC 1313, NGC 1569, NGC 1705, NGC 5236 and NGC 7793 obtained with the Advanced Camera for Surveys on board the Hubble Space Telescope and carry out PSF-fitting photometry of individual stars in the clusters. The clusters have ages in the range ~(5-50) × 106 years and masses of ~105 M⊙-106 M⊙. Although crowding prevents us from obtaining photometry in the inner regions of the clusters, we are still able to measure up to 30-100 supergiant stars in each of the richest clusters. The resulting CMDs and luminosity functions are compared with photometry of artificially generated clusters, designed to reproduce the photometric errors and completeness as realistically as possible. Results: In agreement with previous studies, our CMDs show no clear gap between the H-burning main sequence and the He-burning supergiant stars, contrary to predictions by common stellar isochrones. In general, the isochrones also fail to match the observed number ratios of red-to-blue supergiant stars, although the difficulty of separating blue supergiants from the main sequence complicates this comparison. In several cases we observe a large spread (1-2 mag) in the luminosities of the supergiant stars that cannot be accounted for by observational errors. We find that this spread can be reproduced by including an age spread of ~(10-30) × 106 years in the models. However, age spreads cannot fully account for the observed morphology of the CMDs and other processes, such as the evolution of interacting binary stars, may also play a role. Conclusions: Colour-magnitude diagrams can be successfully obtained for massive star

  10. The origin of massive clusters: from hyper-massive clouds to mini-bursts of star formation

    NASA Astrophysics Data System (ADS)

    Motte, Frederique; Louvet, Fabien; Nguyen Luong, Quang

    2015-08-01

    Herschel revealed high-density cloud filaments of several pc^3, which are forming clusters of OB-type stars. Counting Herschel protostars gives a direct measure of the mass of stars forming in a period of ~10^5 yrs, the ``instantaneous'' star formation activity. Given their activity, these so-called mini-starburst cloud ridges could be seen as "miniature and instant models" of starburst galaxies. Their characteristics could shed light on the origin of massive clusters.

  11. The growth of massive stars via stellar collisions in ensemble star clusters

    NASA Astrophysics Data System (ADS)

    Fujii, M. S.; Portegies Zwart, S.

    2013-04-01

    Recent simulations and observations suggest that star clusters form via the assembling of smaller subclusters. Because of their short relaxation time, subclusters experience core collapse much earlier than virialized solo clusters, which have similar properties of the merger remnant of the assembling clusters. As a consequence, it seems that the assembling clusters result in efficient multiple collisions of stars in the cluster core. We performed a series of N-body simulations of ensemble and solitary clusters including stellar collisions and found that the efficiency of multiple collisions between stars is suppressed if subclusters assemble after they experience core collapse individually. In this case, subclusters form their own multiple collision stars which experienced a few collisions, but they fail to collide with each other after their host subclusters assemble. The multiple collision stars scatter each other and escape, and furthermore the central density of the remnant clusters had already been depleted for the stars to experience more collisions. On the other hand, if subclusters assemble before they experience core collapse, the multiple collisions of stars proceed efficiently in the remnant cluster, and the collision products are more massive than virialized solo clusters and comparable in mass to cold solo clusters.

  12. Jet Formation from Massive Young Stars: Magnetohydrodynamics versus Radiation Pressure

    NASA Astrophysics Data System (ADS)

    Vaidya, Bhargav; Fendt, Christian; Beuther, Henrik; Porth, Oliver

    2011-11-01

    Observations indicate that outflows from massive young stars are more collimated during their early evolution compared to later stages. Our paper investigates various physical processes that impact the outflow dynamics, i.e., its acceleration and collimation. We perform axisymmetric magnetohydrodynamic (MHD) simulations particularly considering the radiation pressure exerted by the star and the disk. We have modified the PLUTO code to include radiative forces in the line-driving approximation. We launch the outflow from the innermost disk region (r < 50 AU) by magnetocentrifugal acceleration. In order to disentangle MHD effects from radiative forces, we start the simulation in pure MHD and later switch on the radiation force. We perform a parameter study considering different stellar masses (thus luminosity), magnetic flux, and line-force strength. For our reference simulation—assuming a 30 M ⊙ star—we find substantial de-collimation of 35% due to radiation forces. The opening angle increases from 20° to 32° for stellar masses from 20 M ⊙ to 60 M ⊙. A small change in the line-force parameter α from 0.60 to 0.55 changes the opening angle by ~8°. We find that it is mainly the stellar radiation that affects the jet dynamics. Unless the disk extends very close to the star, its force is too small to have much impact. Essentially, our parameter runs with different stellar masses can be understood as a proxy for the time evolution of the star-outflow system. Thus, we have shown that when the stellar mass (thus luminosity) increases with age, the outflows become less collimated.

  13. X-ray diagnostics of massive star winds

    NASA Astrophysics Data System (ADS)

    Oskinova, Lidia M.

    2016-09-01

    Nearly all types of massive stars with radiatively driven stellar winds are X-ray sources that can be observed by the presently operating powerful X-ray telescopes. In this review I briefly address recent advances in our understanding of stellar winds obtained from X-ray observations. X-rays may strongly influence the dynamics of weak winds of main sequence B-type stars. X-ray pulsations were detected in a β Cep type variable giving evidence of tight photosphere-wind connections. The winds of OB dwarfs with subtypes later than O9V may be predominantly in a hot phase, and X-ray observations offer the best window for their studies. The X-ray properties of OB supergiants are largely determined by the effects of radiative transfer in their clumped stellar winds. The recently suggested method to directly measure mass-loss rates of O stars by fitting the shapes of X-ray emission lines is considered but its validity cannot be confirmed. To obtain robust quantitative information on stellar wind parameters from X-ray spectroscopy, a multiwavelength analysis by means of stellar atmosphere models is required. Independent groups are now performing such analyses with encouraging results. Joint analyses of optical, UV, and X-ray spectra of OB supergiants yield consistent mass-loss rates. Depending on the adopted clumping parameters, the empirically derived mass-loss rates are a factor of a few smaller or comparable to those predicted by standard recipes (Vink et al., 2001). All sufficiently studied O stars display variable X-ray emission that might be related to corotating interaction regions in their winds. In the latest stages of stellar evolution, single red supergiants (RSG) and luminous blue variable (LBV) stars do not emit observable amounts of X-rays. On the other hand, nearly all types of Wolf-Rayet (WR) stars are X-ray sources. X-ray spectroscopy allows a sensitive probe of WR wind abundances and opacities.

  14. Modeling and analysing massive star spectra: recent advances

    NASA Astrophysics Data System (ADS)

    Hamann, Wolf-Rainer; Todt, Helge; Sander, Andreas; Hainich, Rainer; Shenar, Tomer; Oskinova, Lidia

    2013-06-01

    Depending on their mass-loss rate, the spectra of massive stars are more or less formed in the expanding parts of their atmosphere, i.e. in the stellar wind. Over decades we have developed a sophisticated non-LTE code for modeling such spectra adequately. Originally, the "Potsdam WR PoWR" code aimed at Wolf-Rayet stars with their emission-line dominated spectra. Meanwhile we have added a more detailed treatment of the lower, nearly static parts of the atmosphere, including pressure broadening of lines. This extends the applicability of the models to spectra showing both, photospheric absorption lines and stellar wind features, e.g. from O and B-type stars. The ionizing effect of X-rays, which are intrinsically produced in stellar winds, can be taken into account. Instead of a one-temperature plasma, a power-law distribution of the X-ray emission measure can be chosen and gives the best fit of the EUV spectral energy distribution. The effect of rotation on the emergent spectrum can be simulated under suitable assumptions on the angular motions in the wind. When clumping is accounted for in the approximation of optically thin structures, this leads to a reduction of empirical mass-loss rates when determined from recombination lines. A more general, but not fully consistent formalism has been incorporated to account for the effect of "macroclumping" on resonance lines. PoWR calculations were also combined with a 3-D Monte Carlo code for resonance line scattering in a structured stellar wind. A formalism has been developed to establish the hydrodynamically consistent solution for radiation-driven winds, including all multiple-scattering effects that are essential e.g. for WR stars, but this branch of the code is not ready yet for routinely use. PoWR models have been used extensively for analyzing WR stars in the Galaxy and the Magellanic Clouds, and for a couple of OB-type stars and LBVs. An increasing number of models is made available via internet.

  15. Hydrodynamics, nucleosynthesis, and mass loss in massive stars

    NASA Astrophysics Data System (ADS)

    Young, Patrick Allen

    2004-11-01

    of a fast wind interacting with earlier mass loss produces clumps of material through a thermal instability with the necessary conditions for formation of the molecules. In conclusion, the effects of the more complete physics on the core size and abundance profiles of a massive star during core Si burning are examined as an example of future developments.

  16. Two Intermediate Age Open Clusters - NGC752 and NGC3680

    NASA Astrophysics Data System (ADS)

    Carraro, G.; Bertelli, G.; Bressan, A.; Chiosi, C.

    1993-10-01

    In this paper, with the aid of synthetic color-magnitude diagram (CMD) technique we study two scarcely populated and slightly metal-poor intermediate age open clusters, namely NGC 752 and NGC 3680. The analysis is made using both standard and overshoot models calculated by the Padova group (Fagotto 1990; Alongi et al. 1991, 1993). The advantage with the synthetic CMD technique is that it allows for quantitative predictions for the star counts and luminosity functions. Adopting the metallicity indicated for each cluster by current determinations, we seek to determine the color excess, distance modulus, and age at the same time. Looking at the fit of the whole CMD, the behaviour of the main sequence stars LF, and two suitable ratios of star counts we try to discriminate between the two evolutionary schemes. We suggest that models with convective overshoot ought to be preferred to the classical ones.

  17. Massive-star supernovae as major dust factories.

    PubMed

    Sugerman, Ben E K; Ercolano, Barbara; Barlow, M J; Tielens, A G G M; Clayton, Geoffrey C; Zijlstra, Albert A; Meixner, Margaret; Speck, Angela; Gledhill, Tim M; Panagia, Nino; Cohen, Martin; Gordon, Karl D; Meyer, Martin; Fabbri, Joanna; Bowey, Janet E; Welch, Douglas L; Regan, Michael W; Kennicutt, Robert C

    2006-07-14

    We present late-time optical and mid-infrared observations of the Type II supernova 2003gd in the galaxy NGC 628. Mid-infrared excesses consistent with cooling dust in the ejecta are observed 499 to 678 days after outburst and are accompanied by increasing optical extinction and growing asymmetries in the emission-line profiles. Radiative-transfer models show that up to 0.02 solar masses of dust has formed within the ejecta, beginning as early as 250 days after outburst. These observations show that dust formation in supernova ejecta can be efficient and that massive-star supernovae could have been major dust producers throughout the history of the universe.

  18. A Study of Massive Stars with an Initial Mass of 50 M⊙ at Different Evolutionary Stages

    NASA Astrophysics Data System (ADS)

    Maryeva, O.

    2017-06-01

    We present the results of the studies of several massive stars at different evolutionary stages but with similar initial masses: O supergiants from the Cyg OB2 association, unique LBV/post-LBV Romano's star, and two Wolf-Rayet stars WR156 and FSZ35. All these stars have similar initial masses of about 50 M⊙. It allows us to consider them a single star at different moments of life, which gives the opportunity to track the changes in physical parameters (such as effective temperature, luminosity, mass loss rate, wind velocity) and chemical abundances during the life of a massive star. It is important to test current evolution theories for such objects.

  19. Unravelling the Mystery of Massive Star Birth - All Stars are Born the Same Way

    NASA Astrophysics Data System (ADS)

    2010-07-01

    Astronomers have obtained the first image of a dusty disc closely encircling a massive baby star, providing direct evidence that massive stars form in the same way as their smaller brethren. This discovery, made thanks to a combination of ESO's telescopes, is described in an article in this week's issue of Nature. "Our observations show a disc surrounding an embryonic young, massive star, which is now fully formed," says Stefan Kraus, who led the study. "One can say that the baby is about to hatch!" The team of astronomers looked at an object known by the cryptic name of IRAS 13481-6124. About twenty times the mass of our Sun and five times its radius, the young central star, which is still surrounded by its pre-natal cocoon, is located in the constellation of Centaurus, about 10 000 light-years away. From archival images obtained by the NASA Spitzer Space Telescope as well as from observations done with the APEX 12-metre submillimetre telescope, astronomers discovered the presence of a jet. "Such jets are commonly observed around young low-mass stars and generally indicate the presence of a disc," says Kraus. Circumstellar discs are an essential ingredient in the formation process of low-mass stars such as our Sun. However, it is not known whether such discs are also present during the formation of stars more massive than about ten solar masses, where the strong light emitted might prevent mass falling onto the star. For instance, it has been proposed that massive stars might form when smaller stars merge. In order to discover and understand the properties of this disc, astronomers employed ESO's Very Large Telescope Interferometer (VLTI). By combining light from three of the VLTI's 1.8-metre Auxiliary Telescopes with the AMBER instrument, this facility allows astronomers to see details equivalent to those a telescope with a mirror of 85 metres in diameter would see. The resulting resolution is about 2.4 milliarcseconds, which is equivalent to picking out the head

  20. Nature of massive emission-line stars of the LMC NGC 1850 star-formation region

    NASA Astrophysics Data System (ADS)

    Garrido, H.; Aguayo, G.; Martayan, C.; Baade, D.

    2013-06-01

    Based on an analysis of slitless spectroscopic data we obtained with the ESO Wide Field Imager, we present the identification and nature of 96 massive emission-line stars (ELS) located in and around the LMC clusters NGC 1850, NGC 1855, and NGC 1858. Most of the ELS are concentrated around the young double cluster NGC 1850 and its vicinity. Combined to the photometry and lightcurves, these observations suggest that the NGC 1850 star-formation history has followed different episodes due to the dynamical interaction between clusters, photo-ionization and compression of the associated H II region, leading to other recent star formation burst. The actual ELS localization also seems to indicate a possible mass and spatial segregation with the evolution/age of the clusters.

  1. Radioactive 26Al from massive stars in the Galaxy.

    PubMed

    Diehl, Roland; Halloin, Hubert; Kretschmer, Karsten; Lichti, Giselher G; Schönfelder, Volker; Strong, Andrew W; von Kienlin, Andreas; Wang, Wei; Jean, Pierre; Knödlseder, Jürgen; Roques, Jean-Pierre; Weidenspointner, Georg; Schanne, Stephane; Hartmann, Dieter H; Winkler, Christoph; Wunderer, Cornelia

    2006-01-05

    Gamma-rays from radioactive 26Al (half-life approximately 7.2 x 10(5) years) provide a 'snapshot' view of continuing nucleosynthesis in the Galaxy. The Galaxy is relatively transparent to such gamma-rays, and emission has been found concentrated along its plane. This led to the conclusion that massive stars throughout the Galaxy dominate the production of 26Al. On the other hand, meteoritic data show evidence for locally produced 26Al, perhaps from spallation reactions in the protosolar disk. Furthermore, prominent gamma-ray emission from the Cygnus region suggests that a substantial fraction of Galactic 26Al could originate in localized star-forming regions. Here we report high spectral resolution measurements of 26Al emission at 1808.65 keV, which demonstrate that the 26Al source regions corotate with the Galaxy, supporting its Galaxy-wide origin. We determine a present-day equilibrium mass of 2.8 (+/- 0.8) solar masses of 26Al. We use this to determine that the frequency of core collapse (that is, type Ib/c and type II) supernovae is 1.9 (+/- 1.1) events per century.

  2. Radioactive 26Al from massive stars in the Galaxy

    NASA Astrophysics Data System (ADS)

    Diehl, Roland; Halloin, Hubert; Kretschmer, Karsten; Lichti, Giselher G.; Schönfelder, Volker; Strong, Andrew W.; von Kienlin, Andreas; Wang, Wei; Jean, Pierre; Knödlseder, Jürgen; Roques, Jean-Pierre; Weidenspointner, Georg; Schanne, Stephane; Hartmann, Dieter H.; Winkler, Christoph; Wunderer, Cornelia

    2006-01-01

    Gamma-rays from radioactive 26Al (half-life ~7.2 × 105years) provide a `snapshot' view of continuing nucleosynthesis in the Galaxy. The Galaxy is relatively transparent to such γ-rays, and emission has been found concentrated along its plane. This led to the conclusion that massive stars throughout the Galaxy dominate the production of 26Al. On the other hand, meteoritic data show evidence for locally produced 26Al, perhaps from spallation reactions in the protosolar disk. Furthermore, prominent γ-ray emission from the Cygnus region suggests that a substantial fraction of Galactic 26Al could originate in localized star-forming regions. Here we report high spectral resolution measurements of 26Al emission at 1808.65keV, which demonstrate that the 26Al source regions corotate with the Galaxy, supporting its Galaxy-wide origin. We determine a present-day equilibrium mass of 2.8 (+/- 0.8) solar masses of 26Al. We use this to determine that the frequency of core collapse (that is, type Ib/c and type II) supernovae is 1.9(+/- 1.1) events per century.

  3. Characterizing the convective velocity fields in massive stars

    SciTech Connect

    Chatzopoulos, Emmanouil; Graziani, Carlo; Couch, Sean M.

    2014-11-01

    We apply the mathematical formalism of vector spherical harmonics decomposition to convective stellar velocity fields from multidimensional hydrodynamics simulations and show that the resulting power spectra furnish a robust and stable statistical description of stellar convective turbulence. Analysis of the power spectra helps identify key physical parameters of the convective process such as the dominant scale of the turbulent motions that influence the structure of massive evolved pre-supernova stars. We introduce the numerical method that can be used to calculate vector spherical harmonics power spectra from two-dimensional (2D) and three-dimensional (3D) convective shell simulation data. Using this method we study the properties of oxygen shell burning and convection for a 15 M {sub ☉} star simulated by the hydrodynamics code FLASH in 2D and 3D. We discuss the importance of realistic initial conditions to achieving successful core-collapse supernova explosions in multidimensional simulations. We show that the calculated power spectra can be used to generate realizations of the velocity fields of presupernova convective shells. We find that the slope of the solenoidal mode power spectrum remains mostly constant throughout the evolution of convection in the oxygen shell in both 2D and 3D simulations. We also find that the characteristic radial scales of the convective elements are smaller in 3D than in 2D, while the angular scales are larger in 3D.

  4. Modeling Broadband X-Ray Absorption of Massive Star Winds

    NASA Technical Reports Server (NTRS)

    Leutenegger, Maurice A.; Cohen,David H.; Zsargo, Janos; Martell, Erin M.; MacArthur, James P.; Owocki, Stanley P.; Gagne, Marc; Hillier, D. John

    2010-01-01

    We present a method for computing the net transition of X-rays emitted by shock-heated plasma distributed throughout a partially optically thick stellar wind from a massive star. We find the transmission by an exact integration of the formal solution, assuming the emitting plasma and absorbing plasma are mixed at a constant mass ratio above some minimum radius, below which there is assumed to be no emission. This model is more realistic than either the slab absorption associated with a corona at the base of the wind or the exospheric approximation that assumes all observed X-rays are emitted without attenuation from above the radius of optical depth unity. Our model is implemented in XSPEC as a pre-calculated table that can be coupled to a user-defined table of the wavelength dependent wind opacity. We provide a default wind opacity model that is more representative of real wind opacities than the commonly used neutral ISM tabulation. Preliminary modeling of Chandra grating data indicates that the X-ray hardness trend of OB stars with spectral subtype cars largely be understood as a wind absorption effect.

  5. Pre-explosion dynamo in the cores of massive stars

    NASA Astrophysics Data System (ADS)

    Soker, Noam; Gilkis, Avishai

    2017-01-01

    We propose a speculative scenario where dynamo amplification of magnetic fields in the core convective shells of massive stars, tens of years to hours before they explode, leads to envelope expansion and enhanced mass-loss rate, resulting in pre-explosion outbursts (PEOs). The convective luminosity in the burning shells of carbon, neon, oxygen, and then silicon, are very high. Based on the behaviour of active main-sequence stars, we speculate that the convective shells can trigger magnetic activity with a power of about 0.001 times the convective luminosity. Magnetic flux tubes might buoy outward and deposit their energy in the outer parts of the envelope. This in turn might lead to the expansion of the envelope and to an enhanced mass-loss rate. If a close binary companion is present, mass transfer might take place and lead to an energetic outburst. The magnetic activity requires minimum core rotation and that the stochastic magnetic activity be on its high phase. Only in rare cases these conditions are met, accounting for that only the minority of core collapse supernovae experience PEO. Such a pre-explosion magnetic activity might have implications for the explosion mechanism itself.

  6. MODELING BROADBAND X-RAY ABSORPTION OF MASSIVE STAR WINDS

    SciTech Connect

    Leutenegger, Maurice A.; Zsargo, Janos; Martell, Erin M.; Owocki, Stanley P.; Gagne, Marc; Hillier, D. John

    2010-08-20

    We present a method for computing the net transmission of X-rays emitted by shock-heated plasma distributed throughout a partially optically thick stellar wind from a massive star. We find the transmission by an exact integration of the formal solution, assuming that the emitting plasma and absorbing plasma are mixed at a constant mass ratio above some minimum radius, below which there is assumed to be no emission. This model is more realistic than either the slab absorption associated with a corona at the base of the wind or the exospheric approximation that assumes that all observed X-rays are emitted without attenuation from above the radius of optical depth unity. Our model is implemented in XSPEC as a pre-calculated table that can be coupled to a user-defined table of the wavelength-dependent wind opacity. We provide a default wind opacity model that is more representative of real wind opacities than the commonly used neutral interstellar medium (ISM) tabulation. Preliminary modeling of Chandra grating data indicates that the X-ray hardness trend of OB stars with spectral subtype can largely be understood as a wind absorption effect.

  7. Studying the nature of runaway stars using Andromeda's massive stellar population

    NASA Astrophysics Data System (ADS)

    Bulkley, Jordan; Seth, Anil; Johnson, Cliff; Dalcanton, Julianne; Guhathakurta, Raja; Dorman, Claire; Hamren, Katie; Caldwell, Nelson; Williams, Ben

    2016-03-01

    Theory of the formation of massive stars remains incomplete, the question of the environments required have yet to be answered. An agreement on whether all massive stars must form in cluster type environments, or if isolated formation is viable has yet to be reached. This is further complicated by the presence of runaway stars, stellar objects which have been ejected from their host cluster. Studying the nature of these isolated runaway stars becomes paramount in the larger goal of developing a more comprehensive massive star formation theory. Creating a survey of runaway star candidates is possible thanks to Panchromatic Hubble Andromeda Treasury's UV and optical photometry, and the identified clusters from the Andromeda Project. A first glimpse into the data suggests large body of massive stars are 50 parsecs or more from the closest cluster and roughly half of the entire massive stellar population is found outside of defined cluster boundaries. Additional analysts shows a stark difference between the velocity dispersion of massive stars and appropriately young clusters, the stars exhibiting a inflated dispersion. Using this result in conjunction with artificial clusters and star populations, constrains on the percentage of expected runaway objects can be made.

  8. Stellar neutron sources and s-process in massive stars

    NASA Astrophysics Data System (ADS)

    Talwar, Rashi

    The s-process or the slow neutron capture process is a nucleosynthesis process taking place at relatively low neutron densities in stars. It runs along the valley of beta stability since the neutron capture rate is much slower compared to the beta decay rate. The s-process occurs mainly during core helium burning and shell carbon burning phase in massive stars and during thermally pulsing helium burning phase in asymptotic giant-branch stars. The potential stellar neutron source for the s-process is associated with alpha-capture reactions on light nuclei. The capture-reaction rates provide the reaction flow for the build-up of22Ne neutron source during the heliumburning phase in these stars. The low energy 26Mg resonances at stellar energies below 800 keV are predicted to have a critical influence on the alpha-capture rates on 22Ne. Some of these resonances may also correspond to pronounced alpha cluster structure near the alpha-threshold. However, these resonances have remained elusive during direct alpha capture measurements owing to the high Coulomb barrier and background from cosmic rays and beam induced reactions. Hence, in the present work, alpha-inelastic scattering and alpha- transfer measurements have been performed to probe the level structure of 26Mg nucleus in order to determine the 22Ne+alpha-capture rates. Both experiments have been performed using the high-resolution Grand Raiden Spectrometer at the Research Center for Nuclear Physics (RCNP), Osaka, Japan. For the alpha-inelastic scattering measurement, a self-supporting solid 26Mg target was used and for the alpha-transfer study via the (6Li,d) reaction, 22Ne gas enclosed in a gas cell with Aramid windows was used. The reaction products were momentum analysed by the spectrometer and detected at the focal plane equipped with two multi-wire drift chambers and two plastic-scintillation detectors. The focal plane detection system provided information on the position, the angle, the time of flight and

  9. Recent results on the connection between massive stars and supernovae

    NASA Astrophysics Data System (ADS)

    Hillier, D. John

    2015-08-01

    With the dramatic increase in observational data on supernovae (SNe), SN studies are undergoing a renaissance. It is known that Type II SN IIP arise from the explosion of a red supergiant (RSG). In several cases the RSG is seen in pre-explosion images, but it is absent in post-SN images — unambiguous proof that the RSG has exploded. Surprisingly, all RSG progenitors identified have a mass less than approximately 20 M⊙. To date, there has been no direct detection of the progenitor of a Type Ib or Ic SN. Because their ejecta masses are generally low (3 to 5 M⊙), these SNe are believed to arise from a relatively low mass star in a binary system. Such systems dominate the statistics due to the initial mass function. The broad-lined Ic SNe tend to have higher mass, and some of these may be associated with classic Wolf-Rayet (W-R) stars. Type IIn SNe are a heterogeneous class of SN — they arise when the SN ejecta interacts with preexisting circumstellar material. Their spectra often exhibit narrow emission lines, and they can be particularly luminous due to the efficient conversion of kinetic energy into radiation. The origin of Type IIn SN and their connection to stellar evolution is the subject of fierce debate and controversy. The final class to be discussed are the pair-instability supernovae (PISNe) which arise from a nuclear detonation. PISNe have a distinct chemical signature, and the observational evidence for the existence of this class of SN is ambiguous and controversial. While much progress has been made, it is still difficult to get models of core-collapse SNe to explode from first principles. The problem is inherently 3D and numerous questions remain unanswered. How much material falls back onto the core? What is the nature and extent of mixing in the ejecta? What are the chemical yields? Do all massive stars end their life as a luminous SN?

  10. Outflow Feedback Regulated Massive Star Formation in Parsec-Scale Cluster Forming Clumps

    SciTech Connect

    Wang, Peng; Li, Zhi-Yun; Abel, Tom; Nakamura, Fumitaka; /Niigata U.

    2010-02-15

    We investigate massive star formation in turbulent, magnetized, parsec-scale clumps of molecular clouds including protostellar outflow feedback using three dimensional numerical simulations of effective resolution 2048{sup 3}. The calculations are carried out using a block structured adaptive mesh refinement code that solves the ideal MHD equations including self-gravity and implements accreting sink particles. We find that, in the absence of regulation by magnetic fields and outflow feedback, massive stars form readily in a turbulent, moderately condensed clump of {approx} 1,600 M{sub {circle_dot}} (containing {approx} 10{sup 2} initial Jeans masses), along with a cluster of hundreds of lower mass stars. The massive stars are fed at high rates by (1) transient dense filaments produced by large-scale turbulent compression at early times, and (2) by the clump-wide global collapse resulting from turbulence decay at late times. In both cases, the bulk of the massive star's mass is supplied from outside a 0.1 pc-sized 'core' that surrounds the star. In our simulation, the massive star is clump-fed rather than core-fed. The need for large-scale feeding makes the massive star formation prone to regulation by outflow feedback, which directly opposes the feeding processes. The outflows reduce the mass accretion rates onto the massive stars by breaking up the dense filaments that feed the massive star formation at early times, and by collectively slowing down the global collapse that fuel the massive star formation at late times. The latter is aided by a moderate magnetic field of strength in the observed range (corresponding to a dimensionless clump mass-to-flux ratio {lambda} {approx} a few); the field allows the outflow momenta to be deposited more efficiently inside the clump. We conclude that the massive star formation in our simulated turbulent, magnetized, parsec-scale clump is outflow-regulated and clump-fed (ORCF for short). An important implication is that the

  11. The Evolution of Massive Stars: a Selection of Facts and Questions

    NASA Astrophysics Data System (ADS)

    Vanbeveren, D.

    In the present paper we discuss a selection of facts and questions related to observations and evolutionary calculations of massive single stars and massive stars in interacting binaries. We focus on the surface chemical abundances, the role of stellar winds, the early Be-stars, the high mass X-ray binaries and the effects of rotation on stellar evolution. Finally, we present an unconventionally formed object scenario (UFO-scenario) of WR binaries in dense stellar environments.

  12. RUNAWAY MASSIVE STARS FROM R136: VFTS 682 IS VERY LIKELY A 'SLOW RUNAWAY'

    SciTech Connect

    Banerjee, Sambaran; Kroupa, Pavel; Oh, Seungkyung E-mail: pavel@astro.uni-bonn.de

    2012-02-10

    We conduct a theoretical study on the ejection of runaway massive stars from R136-the central massive, starburst cluster in the 30 Doradus complex of the Large Magellanic Cloud. Specifically, we investigate the possibility of the very massive star (VMS) VFTS 682 being a runaway member of R136. Recent observations of the above VMS, by virtue of its isolated location and its moderate peculiar motion, have raised the fundamental question of whether isolated massive star formation is indeed possible. We perform the first realistic N-body computations of fully mass-segregated R136-type star clusters in which all the massive stars are in primordial binary systems. These calculations confirm that the dynamical ejection of a VMS from an R136-like cluster, with kinematic properties similar to those of VFTS 682, is common. Hence, the conjecture of isolated massive star formation is unnecessary to account for this VMS. Our results are also quite consistent with the ejection of 30 Dor 016, another suspected runaway VMS from R136. We further note that during the clusters' evolution, mergers of massive binaries produce a few single stars per cluster with masses significantly exceeding the canonical upper limit of 150 M{sub Sun }. The observations of such single super-canonical stars in R136, therefore, do not imply an initial mass function with an upper limit greatly exceeding the accepted canonical 150 M{sub Sun} limit, as has been suggested recently, and they are consistent with the canonical upper limit.

  13. The Location, Clustering, and Propagation of Massive Star Formation in Giant Molecular Clouds

    NASA Astrophysics Data System (ADS)

    Ochsendorf, Bram B.; Meixner, Margaret; Chastenet, Jérémy; Tielens, Alexander G. G. M.; Roman-Duval, Julia

    2016-11-01

    Massive stars are key players in the evolution of galaxies, yet their formation pathway remains unclear. In this work, we use data from several galaxy-wide surveys to build an unbiased data set of ∼600 massive young stellar objects, ∼200 giant molecular clouds (GMCs), and ∼100 young (<10 Myr) optical stellar clusters (SCs) in the Large Magellanic Cloud. We employ this data to quantitatively study the location and clustering of massive star formation and its relation to the internal structure of GMCs. We reveal that massive stars do not typically form at the highest column densities nor centers of their parent GMCs at the ∼6 pc resolution of our observations. Massive star formation clusters over multiple generations and on size scales much smaller than the size of the parent GMC. We find that massive star formation is significantly boosted in clouds near SCs. However, whether a cloud is associated with an SC does not depend on either the cloud’s mass or global surface density. These results reveal a connection between different generations of massive stars on timescales up to 10 Myr. We compare our work with Galactic studies and discuss our findings in terms of GMC collapse, triggered star formation, and a potential dichotomy between low- and high-mass star formation.

  14. The location, clustering, and propagation of massive star formation in giant molecular clouds

    NASA Astrophysics Data System (ADS)

    Ochsendorf, Bram; Meixner, Margaret; Chastenet, Jeremy; Tielens, A. G. G. M.; Roman-Duval, Julia

    2017-01-01

    Massive stars are key players in the evolution of galaxies, yet their formation pathway remains unclear. In this talk, I will highlight results from a project utilizing data from several galaxy-wide surveys to build an unbiased dataset of ~700 massive young stellar objects (MYSOs), ~200 giant molecular clouds (GMCs), and ~100 young (< 10 Myr) optical stellar clusters (SCs) in the Large Magellanic Cloud. We have employed this data to quantitatively study the location and clustering of massive star formation and its relation to the internal structure of GMCs. The main results are as follows: (1) Massive stars do not typically form at the highest column densities nor centers of their parent GMCs. (2) Massive star formation clusters over multiple generations and on size scales much smaller than the size of the parent GMC. (3) The rate of massive star formation is significantly boosted in clouds near SCs. Yet, comparison of molecular clouds associated with SCs with those that are not reveals no significant difference in their global properties. These results reveal a connection between different generations of massive stars on timescales up to 10 Myr. I will compare our findings with Galactic studies and discuss this in terms of GMC collapse, triggered star formation, and a potential dichotomy between low- and high-mass star formation.

  15. Evolved massive stars in W33 and in GMC G23.3 - 0.3

    NASA Astrophysics Data System (ADS)

    Messineo, M.; Clark, J. S.; Figer, D. F.; Menten, K. M.; Kudritzki, R.-P.; Najarro, F.; Rich, R. M.; Ivanov, V. D.; Valenti, E.; Trombley, C.; Chen, C.-H. R.; Davies, B.; MacKenty, J. W.

    2017-03-01

    We conducted infrared spectroscopic observations of bright stars in the direction of the molecular clouds W33 and GMC G23.3 - 0.3. We compared stellar spectro-photometric distances with parallactic distances to these regions, and we were able to assess the association of the detected massive stars with these molecular complexes. The spatial and temporal distributions of the detected stars enabled us to locate sources of ionizing radiation and to gather precise information on the star formation history of these clouds. The studied clouds present different distributions of massive stars.

  16. Intermediate-Mass Star-Forming Regions: What are the Most Massive Stars Formed?

    NASA Astrophysics Data System (ADS)

    Kobulnicky, Chip; Vargas, Carlos; Kerton, Charles; Arvidsson, Kim

    2010-08-01

    High-mass star formation cannot be viewed as simply a scaled-up version of the paradigm for low-mass star formation. The high-mass regime (M> 10 Msun) appears to require significant differences in cloud fragmentation, accretion, radiation, turbulence, and overall molecular density compared to the low-mass regime. We have identified a sample of intermediate-mass star-forming regions (IM SFRs) hosting embedded clusters that straddle the boundary of these two regimes and can be used to understand the factors that govern the transition between these extremes. Most notable among these factors is the possibility of a critical cloud mass column density that appears to divide high-mass SFRs from IM SFRs. Yet, the very nature of IM SFRs and their stellar content are almost completely unknown, primarily because of the previous difficulty in identifying such objects. We propose HK band spectroscopy of the brightest stellar sources near nine IM SFRs to identify probable members, confirm the IM nature of the most massive stars, and characterize their evolutionary state. Three nights with FLAMINGOS on the 4 m (or equivalent IR spectrograph) will suffice to obtain classification spectra and several spectral diagnostics sensitive to accretion for at least 8-10 stars per object.

  17. An Extraordinary Cluster of Massive Young Stars in the Milky Way's Nucleus

    NASA Technical Reports Server (NTRS)

    Serabyn, E.; Shupe, D.; Figer, D. F.

    1998-01-01

    The mass distribution of newborn stars is key to the evolution of galaxies, as it determines whether a galaxy's interstellar medium is funneled predominantly into dim, long-lived, low-mass stars, as is the case in normal galactic disks, or into bright, short-lived, massive stars, as is perhaps the case in starburst nuclei.

  18. A Study of Massive Stars Evolving toward the Wolf-Rayet Stage

    NASA Astrophysics Data System (ADS)

    Maryeva, O. V.; Klochkova, V. G.; Chentsov, E. L.; Polcaro, V. F.; Rossi, C.; Viotti, R. F.

    2017-02-01

    We present the results of our study of two massive stars, V1302 Aql (IRC+10420) and GR 290 (M33/V532, Romano's Star), with different initial masses but now approaching the region of Wolf-Rayet stars on the Hertzsprung-Russell diagram, one from the yellow hypergiants side and the other from the Luminous Blue Variables side.

  19. What Sets the Massive Star Formation Rates and Efficiencies of Giant Molecular Clouds?

    NASA Astrophysics Data System (ADS)

    Ochsendorf, Bram B.; Meixner, Margaret; Roman-Duval, Julia; Rahman, Mubdi; Evans, Neal J., II

    2017-06-01

    Galactic star formation scaling relations show increased scatter from kpc to sub-kpc scales. Investigating this scatter may hold important clues to how the star formation process evolves in time and space. Here, we combine different molecular gas tracers, different star formation indicators probing distinct populations of massive stars, and knowledge of the evolutionary state of each star-forming region to derive the star formation properties of ˜150 star-forming complexes over the face of the Large Magellanic Cloud (LMC). We find that the rate of massive star formation ramps up when stellar clusters emerge and boost the formation of subsequent generations of massive stars. In addition, we reveal that the star formation efficiency of individual giant molecular clouds (GMCs) declines with increasing cloud gas mass ({M}{cloud}). This trend persists in Galactic star-forming regions and implies higher molecular gas depletion times for larger GMCs. We compare the star formation efficiency per freefall time ({ɛ }{ff}) with predictions from various widely used analytical star formation models. While these models can produce large dispersions in {ɛ }{ff} similar to those in observations, the origin of the model-predicted scatter is inconsistent with observations. Moreover, all models fail to reproduce the observed decline of {ɛ }{ff} with increasing {M}{cloud} in the LMC and the Milky Way. We conclude that analytical star formation models idealizing global turbulence levels and cloud densities and assuming a stationary star formation rate (SFR) are inconsistent with observations from modern data sets tracing massive star formation on individual cloud scales. Instead, we reiterate the importance of local stellar feedback in shaping the properties of GMCs and setting their massive SFR.

  20. The Wind and Mass-loss Properties of the Most Massive Stars

    NASA Astrophysics Data System (ADS)

    Bestenlehner, Joachim; Vink, Jorick; Gräfener, Götz; Najarro, Francisco

    2013-06-01

    Mass-loss rates play an important role in the evolution of massive stars. The initial, present day and the mass at their end of their lifetime is considerable different as a result of mass loss. Different stages of evolution have different mass-loss rates. The understanding of massive star evolution is tightly connected to the understanding of their mass loss properties. In the context of the VLT-Flames Tarantula Survey I will present the results from our spectral analysis of stars in the transition region from O-stars to very massive WN(h)-stars. WN(h)-stars are very young and massive stars which develop already in the earliest stages of their evolution WR-star like winds. For the analysis we used the non-LTE radiative transfer code CMFGEN to investigate the wind and mass-loss properties of these very massive stars. This analysis also tests theoretical predictions which suggest a notable change of the mass-loss behaviour at a certain Eddington factor in the transition region from O to WN(h)-stars (Bestenlehner et al. 2011, Bestenlehner et al. in prep.)

  1. THE PROTOPLANETARY DISKS IN THE NEARBY MASSIVE STAR-FORMING REGION CYGNUS OB2

    SciTech Connect

    Guarcello, M. G.; Drake, J. J.; Wright, N. J.; Hora, J. L.; Aldcroft, T.; Fruscione, A.; Kashyap, V. L.; Drew, J. E.; Gutermuth, R. A.; Naylor, T.; King, R.; Garcia-Alvarez, D.

    2013-08-20

    The formation of stars in massive clusters is one of the main modes of the star formation process. However, the study of massive star-forming regions is hampered by their typically large distances to the Sun. One exception to this is the massive star-forming region Cygnus OB2 in the Cygnus X region, at the distance of {approx}1400 pc. Cygnus OB2 hosts very rich populations of massive and low-mass stars, being the best target in our Galaxy to study the formation of stars, circumstellar disks, and planets in the presence of massive stars. In this paper, we combine a wide and deep set of photometric data, from the r band to 24 {mu}m, in order to select the disk-bearing population of stars in Cygnus OB2 and identify the class I, class II, and stars with transition and pre-transition disks. We selected 1843 sources with infrared excesses in an area of 1 Degree-Sign Multiplication-Sign 1 Degree-Sign centered on Cyg OB2 in several evolutionary stages: 8.4% class I, 13.1% flat-spectrum sources, 72.9% class II, 2.3% pre-transition disks, and 3.3% transition disks. The spatial distribution of these sources shows a central cluster surrounded by an annular overdensity and some clumps of recent star formation in the outer region. Several candidate subclusters are identified, both along the overdensity and in the rest of the association.

  2. WO-Type Wolf-Rayet Stars: the Last Hurrah of the Most Massive Stars?

    NASA Astrophysics Data System (ADS)

    Massey, Philip

    2014-10-01

    WO-type Wolf-Rayet (WR) stars are considered the final evolutionary stage of the highest mass stars, immediate precursors to Type Ic (He-poor) core-collapse supernovae. These WO stars are rare, and until recently only 6 were known. Our knowledge about their physical properties is mostly based on a single object, Sand 2 in the LMC. It was the only non-binary WO star both bright and unreddened enough that its FUV and NUV spectra could be obtained by FUSE and HST/FOS. A non-LTE analysis showed that Sand 2 is very hot and its (C+O)/He abundance ratio is higher than that found in WC-type WRs, suggesting it is indeed highly evolved. However, the O VI resonance doublet in the FUV required a considerably cooler temperature (120,000 K) model than did the optical O VI lines (170,000 K). Further, the enhanced chemical abundances did not match the predictions of stellar evolutionary models. Another non-LTE study found a 3x higher (C+O)/He abundance ratio and a cooler temperature. We have recently discovered two other bright, single, and lightly reddened WOs in the LMC, allowing us to take a fresh look at these important objects. Our newly found WOs span a range in excitation type, from WO1 (the highest) to WO4 (the lowest). Sand 2 is intermediate (WO3). We propose to use COS to obtain FUV and NUV data of all three stars for as comprehensive a study as is currently possible. These UV data will be combined with our optical Magellan spectra for a detailed analysis with CMFGEN with the latest atomic data. Knowing the degree of chemical evolution of these WO stars is crucial to determining their evolutionary status, and thus in understanding the final stages of the most massive stars.

  3. RECOVERY FROM GIANT ERUPTIONS IN VERY MASSIVE STARS

    SciTech Connect

    Kashi, Amit; Davidson, Kris; Humphreys, Roberta M.

    2016-01-20

    We use a hydro-and-radiative-transfer code to explore the behavior of a very massive star (VMS) after a giant eruption—i.e., following a supernova impostor event. Beginning with reasonable models for evolved VMSs with masses of 80 M{sub ⊙} and 120 M{sub ⊙}, we simulate the change of state caused by a giant eruption via two methods that explicitly conserve total energy. (1) Synthetically removing outer layers of mass of a few M{sub ⊙} while reducing the energy of the inner layers. (2) Synthetically transferring energy from the core to the outer layers, an operation that automatically causes mass ejection. Our focus is on the aftermath, not the poorly understood eruption itself. Then, using a radiation-hydrodynamic code in 1D with realistic opacities and convection, the interior disequilibrium state is followed for about 200 years. Typically the star develops a ∼400 km s{sup −1} wind with a mass loss rate that begins around 0.1 M{sub ⊙} yr{sup −1} and gradually decreases. This outflow is driven by κ-mechanism radial pulsations. The 1D models have regular pulsations but 3D models will probably be more chaotic. In some cases a plateau in the mass-loss rate may persist about 200 years, while other cases are more like η Car which lost >10 M{sub ⊙} and then had an abnormal mass loss rate for more than a century after its eruption. In our model, the post-eruption outflow carried more mass than the initial eruption. These simulations constitute a useful preliminary reconnaissance for 3D models which will be far more difficult.

  4. Recovery from Giant Eruptions in Very Massive Stars

    NASA Astrophysics Data System (ADS)

    Kashi, Amit; Davidson, Kris; Humphreys, Roberta M.

    2016-01-01

    We use a hydro-and-radiative-transfer code to explore the behavior of a very massive star (VMS) after a giant eruption—i.e., following a supernova impostor event. Beginning with reasonable models for evolved VMSs with masses of 80 M⊙ and 120 M⊙, we simulate the change of state caused by a giant eruption via two methods that explicitly conserve total energy. (1) Synthetically removing outer layers of mass of a few M⊙ while reducing the energy of the inner layers. (2) Synthetically transferring energy from the core to the outer layers, an operation that automatically causes mass ejection. Our focus is on the aftermath, not the poorly understood eruption itself. Then, using a radiation-hydrodynamic code in 1D with realistic opacities and convection, the interior disequilibrium state is followed for about 200 years. Typically the star develops a ˜400 km s-1 wind with a mass loss rate that begins around 0.1 M⊙ yr-1 and gradually decreases. This outflow is driven by κ-mechanism radial pulsations. The 1D models have regular pulsations but 3D models will probably be more chaotic. In some cases a plateau in the mass-loss rate may persist about 200 years, while other cases are more like η Car which lost >10 M⊙ and then had an abnormal mass loss rate for more than a century after its eruption. In our model, the post-eruption outflow carried more mass than the initial eruption. These simulations constitute a useful preliminary reconnaissance for 3D models which will be far more difficult.

  5. Massive Star Formation in the Cygnus-X DR15 Complex

    NASA Astrophysics Data System (ADS)

    Laws, Anna; Hora, Joseph L.; Zhang, Qizhou

    2017-01-01

    To unravel the mysteries of massive star formation it is necessary to observe Young Stellar Objects (YSOs) in a variety of environments and evolutionary stages. The Cygnus-X region, at a distance of 1.4kpc, is one of the closest massive star-forming complexes and so offers an excellent view of the earliest stages of massive stars and clusters. A key area in this complex is DR15, a cluster population with many intriguing objects including a molecular pillar and InfraRed Dark Cloud (IRDC) that is likely to host newly forming massive stars. Previous infrared studies incorporating data from Spitzer and Herschel have built catalogs of YSOs in the DR15 region, revealing its abundance of massive star formation. To improve on these catalogs and to probe the earliest stages of star formation, we have observed the region at high spatial resolution using the Submillimeter Array (SMA). The SMA data are more sensitive to objects in earlier evolutionary phases and provide additional constraints when modeling the Spectral Energy Distribution (SED) of each star, resulting in more accurate values for each star’s mass and accretion rate. The SMA data allow us to trace the particular YSOs that are actively accreting and drive molecular outflows, which influence the ISM and chemical trends across the region. DR15 offers an exciting chance to expand our understanding of the processes behind massive star formation.

  6. UV-selected Young Massive Star Cluster Populations in Nearby Star-forming Galaxies

    NASA Astrophysics Data System (ADS)

    Smith, Linda J.

    2015-08-01

    The Legacy ExtraGalactic UV Survey (LEGUS) is an HST Treasury program aimed at the investigation of star-formation and its relationship to environment in nearby galaxies. The results of a UV-selected study of young massive star clusters in a sample of nearby galaxies (< 10 Mpc) using detections based on the WFC3/UVIS F275W filter will be presented. Previous studies have used V or I-band detections and tend to ignore clusters younger than 10 Myr old. This very young population, which represents the most recent cluster-forming event in the LEGUS galaxies will be discussed.This poster is presented on behalf of the LEGUS team (PI Daniela Calzetti).

  7. Atomic Physics of Shocked Plasma in Winds of Massive Stars

    NASA Technical Reports Server (NTRS)

    Leutenegger, Maurice A.; Cohen, David H.; Owocki, Stanley P.

    2012-01-01

    High resolution diffraction grating spectra of X-ray emission from massive stars obtained with Chandra and XMM-Newton have revolutionized our understanding of their powerful, radiation-driven winds. Emission line shapes and line ratios provide diagnostics on a number of key wind parameters. Modeling of resolved emission line velocity profiles allows us to derive independent constraints on stellar mass-loss rates, leading to downward revisions of a factor of a few from previous measurements. Line ratios in He-like ions strongly constrain the spatial distribution of Xray emitting plasma, confirming the expectations of radiation hydrodynamic simulations that X-ray emission begins moderately close to the stellar surface and extends throughout the wind. Some outstanding questions remain, including the possibility of large optical depths in resonance lines, which is hinted at by differences in line shapes of resonance and intercombination lines from the same ion. Resonance scattering leads to nontrivial radiative transfer effects, and modeling it allows us to place constraints on shock size, density, and velocity structure

  8. Infrared absorption of H_2_O toward massive young stars.

    NASA Astrophysics Data System (ADS)

    van Dishoeck, E. F.; Helmich, F. P.

    1996-11-01

    We present ISO-SWS observations of absorption lines of gas-phase water within its bending vibrational mode at 6μm toward four massive young stars, which cover a range in physical parameters. Hot water with an excitation temperature >200K is detected toward GL 2136 and GL 4176, in addition to GL 2591 discussed by Helmich et al. (1996A&A...315L.173H). The abundance of water with respect to H_2_ is high in these regions, ~(2-3)x10^-5^, and comparable to the solid H_2_O abundance. In contrast, no gas-phase water absorption lines are seen toward NGC 7538 IRS9. The amount of gas-phase water is correlated with the column density of warm gas along the line of sight. Infrared observations of a larger variety of sources may provide insight into the relative importance of evaporation of grain mantles vs. high temperature gas-phase chemistry in producing the observed high abundance of H_2_O.

  9. Magnetic fields during the early phase of massive star formation

    NASA Astrophysics Data System (ADS)

    Seifried, Daniel Jürgen

    2013-01-01

    The goal of this work is to improve our current understanding of the formation process of massive stars in the presence of magnetic fields by means of numerical simulations. In particular, I focus on protostellar accretion rates, the evolution and the properties of protostellar discs and their associated outflows, and the interplay of turbulence and magnetic fields and its impact on protostellar disc formation. In a systematic parameter study I show that the accretion rates are remarkably constant over a wide range of initial conditions. Furthermore, I show that in the absence of turbulence for strong initial magnetic fields only sub-Keplerian discs can form which is attributed to the strong magnetic braking effect. This result seems to be in contrast to observational results. The morphology of the outflows, which shows a strong dependence on the initial conditions, can ultimately be linked to the structure of the underlying disc. Well-collimated outflows with high outflows velocities only develop if a Keplerian protostellar disc is present, otherwise slowly expanding, sphere-like outflows develop. Furthermore, I analyse the driving mechanism of outflows with an analytical criterion derived in the course of this work. When including supersonic, turbulent motions in the simulations, Keplerian protostellar discs form in contrast to the non-turbulent simulations. This result is in agreement with observations of early-type protostellar objects.

  10. Nucleosynthesis in Asymmetric, Core-Collapse Supernovae of Massive Stars

    NASA Astrophysics Data System (ADS)

    Fujimoto, Shin-ichiro; Ono, Masaomi; Hashimoto, Masa-aki; Kotake, Kei

    We investigate nucleosynthesis in core-collapse supernovae (SNe) of massive stars of 10.8-40M ȯ , based on 2D hydrodynamic simulations of the SN explosion. We follow long-term evolution of the explosion over 1 s after the core bounce, adopting a neutrino-core model, with which we evaluate the evolution of neutrino luminosities and temperatures. We adopt two sets of parameters for the core model; one results in early explosion of 0.2-0.4 s after the bounce and the other later explosion of 0.4-0.6 s. We then calculate abundance evolution of the SN ejecta through post-processing calculation using a large nuclear reaction network. We find that for both the early and later explosion cases, the explosion energy, Eexp, and ejected masses of 56Ni, 57Ni, and 44Ti strongly correlate with the compactness parameter at 2.5M ȯ . Only for the early explosion case, we well reproduce a correlation of the mass of 56Ni to Eexp observed in Type II-Plateau SNe and find two progenitors (˜ 20 and 25M ȯ ) whose Eexp, and the masses of 56Ni and 57Ni are comparable to those in SN1987A.

  11. Atomic physics of shocked plasma in winds of massive stars

    SciTech Connect

    Leutenegger, Maurice A.; Cohen, David H.; Owocki, Stanley P.

    2012-05-25

    High resolution diffraction grating spectra of X-ray emission from massive stars obtained with Chandra and XMM-Newton have revolutionized our understanding of their powerful, radiation-driven winds. Emission line shapes and line ratios provide diagnostics on a number of key wind parameters. Modeling of resolved emission line velocity profiles allows us to derive independent constraints on stellar mass-loss rates, leading to downward revisions of a factor of a few from previous measurements. Line ratios in He-like ions strongly constrain the spatial distribution of Xray emitting plasma, confirming the expectations of radiation hydrodynamic simulations that X-ray emission begins moderately close to the stellar surface and extends throughout the wind. Some outstanding questions remain, including the possibility of large optical depths in resonance lines, which is hinted at by differences in line shapes of resonance and intercombination lines from the same ion. Resonance scattering leads to nontrivial radiative transfer effects, and modeling it allows us to place constraints on shock size, density, and velocity structure.

  12. SUPERSONIC LINE BROADENING WITHIN YOUNG AND MASSIVE SUPER STAR CLUSTERS

    SciTech Connect

    Tenorio-Tagle, Guillermo; Silich, Sergiy; Wuensch, Richard; Munoz-Tunon, Casiana; Palous, Jan E-mail: richard@wunsch.c E-mail: cmt@ll.iac.e

    2010-01-10

    The origin of supersonic infrared and radio recombination nebular lines often detected in young and massive superstar clusters is discussed. We suggest that these arise from a collection of repressurizing shocks (RSs), acting effectively to re-establish pressure balance within the cluster volume and from the cluster wind which leads to an even broader although much weaker component. The supersonic lines here are shown to occur in clusters that undergo a bimodal hydrodynamic solution, that is within clusters that are above the threshold line in the mechanical luminosity or cluster mass versus the size of the cluster plane. A plethora of RSs is due to frequent and recurrent thermal instabilities that take place within the matter reinserted by stellar winds and supernovae. We show that the maximum speed of the RSs and of the cluster wind are both functions of the temperature reached at the stagnation radius. This temperature depends only on the cluster heating efficiency (eta). Based on our two-dimensional simulations we calculate the line profiles that result from several models and confirm our analytical predictions. From a comparison between the predicted and observed values of the half-width zero intensity of the two line components, we conclude that the thermalization efficiency in young super star clusters above the threshold line must be lower than 20%.

  13. Discovering Massive Runaway Stars with Infrared Bowshock Nebulae: Identifying Twelve New Early-Type Stars using SMOG

    NASA Astrophysics Data System (ADS)

    Chick, William T.; Andrews, Julian E.; Kobulnicky, Henry A.; Povich, Matthew S.; Dale, Daniel A.; Munari, Stephan; Olivier, Grace M.; Schurhammer, Danielle; Sorber, Rebecca L.; Wernke, Heather N.

    2016-01-01

    Massive O and B type stars are crucial to the evolution of the interstellar medium, dominating the production of ionizing radiation, mechanical energy, and heavy elements. However, due to their short lives and relative scarcity, these stars are some of the least well understood and are difficult to locate outside of large star forming regions. A small but significant fraction of these massive stars have been observed to be high-velocity runaway stars moving rapidly away from their origin. When these stars encounter nebular gas they create characteristic arc-shaped bowshocks of heated compressed dust and gas. Using the distinct infrared emission morphology of the hot dust, these bowshock nebulae are predicted to give the location of the massive early type stars.Visual inspection of 24-micron band images from the Spitzer Mapping of the Outer Galaxy (SMOG) revealed 12 new bowshock nebula candidates. Follow up optical spectroscopy from the Wyoming Infrared Observatory confirmed that all 12 of the associated stellar sources are early-type stars. Combined with related results from visual searches for bowshock nebulae using WISE and Spitzer surveys in the inner Galaxy, we have identified over 85 new early type bowshock supporting stellar sources, a 95% success rate. We conclude that morphological selection of arc-shared infrared nebulae with a symmetrically placed star is an efficient way to discover early type stars.This work is supported by the National Science Foundation under grants AST-1063146 (REU), AST-1411851 (RUI), and AST-1412845.

  14. Massive stars and the energy balance of the ISM: I. The imapct of an isolated 60 M star

    NASA Technical Reports Server (NTRS)

    Yorke, H. W.; Freyer, T.; Hensler, G.

    2002-01-01

    We present results of numerical simulations carried out with a 2D radiation hydrodynamics code in order to study the impact of massive stars on their surrounding interstellar medium. This first paper deals with the evolution of the circumstellar gas around an isolated 60 M star.

  15. Imprints of fast-rotating massive stars in the Galactic Bulge.

    PubMed

    Chiappini, Cristina; Frischknecht, Urs; Meynet, Georges; Hirschi, Raphael; Barbuy, Beatriz; Pignatari, Marco; Decressin, Thibaut; Maeder, André

    2011-04-28

    The first stars that formed after the Big Bang were probably massive, and they provided the Universe with the first elements heavier than helium ('metals'), which were incorporated into low-mass stars that have survived to the present. Eight stars in the oldest globular cluster in the Galaxy, NGC 6522, were found to have surface abundances consistent with the gas from which they formed being enriched by massive stars (that is, with higher α-element/Fe and Eu/Fe ratios than those of the Sun). However, the same stars have anomalously high abundances of Ba and La with respect to Fe, which usually arises through nucleosynthesis in low-mass stars (via the slow-neutron-capture process, or s-process). Recent theory suggests that metal-poor fast-rotating massive stars are able to boost the s-process yields by up to four orders of magnitude, which might provide a solution to this contradiction. Here we report a reanalysis of the earlier spectra, which reveals that Y and Sr are also overabundant with respect to Fe, showing a large scatter similar to that observed in extremely metal-poor stars, whereas C abundances are not enhanced. This pattern is best explained as originating in metal-poor fast-rotating massive stars, which might point to a common property of the first stellar generations and even of the 'first stars'.

  16. Effects of a new 3-alpha reaction on the s-process in massive stars

    SciTech Connect

    Kikuch, Yukihiro; Ono, Masaomi; Matsuo, Yasuhide; Hashimoto, Masa-aki; Fujimoto, Shin-ichiro

    2012-11-12

    Effect of a new 3-alpha reaction rate on the s-process during the evolution of a massive star of 25 solar mass is investigated for the first time, because the s-process in massive stars have been believed to be established with only minor change. We find that the s-process with use of the new rate during the core helium burning is very inefficient compared to the case with the previous 3-alpha rate. However, the difference of the overproduction is found to be largely compensated by the subsequent carbon burning. Since the s-process in massive stars has been attributed so far to the neutron irradiation during core helium burning, our finding reveals for the first time the importance of the carbon burning for the s-process during the evolution of massive stars.

  17. NGC 346: Looking in the Cradle of a Massive Star Cluster

    NASA Astrophysics Data System (ADS)

    Gouliermis, Dimitrios A.; Hony, Sacha

    2017-03-01

    How does a star cluster of more than few 10,000 solar masses form? We present the case of the cluster NGC 346 in the Small Magellanic Cloud, still embedded in its natal star-forming region N66, and we propose a scenario for its formation, based on observations of the rich stellar populations in the region. Young massive clusters host a high fraction of early-type stars, indicating an extremely high star formation efficiency. The Milky Way galaxy hosts several young massive clusters that fill the gap between young low-mass open clusters and old massive globular clusters. Only a handful, though, are young enough to study their formation. Moreover, the investigation of their gaseous natal environments suffers from contamination by the Galactic disk. Young massive clusters are very abundant in distant starburst and interacting galaxies, but the distance of their hosting galaxies do not also allow a detailed analysis of their formation. The Magellanic Clouds, on the other hand, host young massive clusters in a wide range of ages with the youngest being still embedded in their giant HII regions. Hubble Space Telescope imaging of such star-forming complexes provide a stellar sampling with a high dynamic range in stellar masses, allowing the detailed study of star formation at scales typical for molecular clouds. Our cluster analysis on the distribution of newly-born stars in N66 shows that star formation in the region proceeds in a clumpy hierarchical fashion, leading to the formation of both a dominant young massive cluster, hosting about half of the observed pre-main-sequence population, and a self-similar dispersed distribution of the remaining stars. We investigate the correlation between stellar surface density (and star formation rate derived from star-counts) and molecular gas surface density (derived from dust column density) in order to unravel the physical conditions that gave birth to NGC 346. A power law fit to the data yields a steep correlation between these

  18. Evidence of magnetic field decay in massive main-sequence stars

    NASA Astrophysics Data System (ADS)

    Fossati, L.; Schneider, F. R. N.; Castro, N.; Langer, N.; Simón-Díaz, S.; Müller, A.; de Koter, A.; Morel, T.; Petit, V.; Sana, H.; Wade, G. A.

    2016-08-01

    A significant fraction of massive main-sequence stars show strong, large-scale magnetic fields. The origin of these fields, their lifetimes, and their role in shaping the characteristics and evolution of massive stars are currently not well understood. We compile a catalogue of 389 massive main-sequence stars, 61 of which are magnetic, and derive their fundamental parameters and ages. The two samples contain stars brighter than magnitude 9 in the V-band and range in mass between 5 and 100 M⊙. We find that the fractional main-sequence age distribution of all considered stars follows what is expected for a magnitude limited sample, while that of magnetic stars shows a clear decrease towards the end of the main sequence. This dearth of old magnetic stars is independent of the choice of adopted stellar evolution tracks, and appears to become more prominent when considering only the most massive stars. We show that the decreasing trend in the distribution is significantly stronger than expected from magnetic flux conservation. We also find that binary rejuvenation and magnetic suppression of core convection are unlikely to be responsible for the observed lack of older magnetic massive stars, and conclude that its most probable cause is the decay of the magnetic field, over a time span longer than the stellar lifetime for the lowest considered masses, and shorter for the highest masses. We then investigate the spin-down ages of the slowly rotating magnetic massive stars and find them to exceed the stellar ages by far in many cases. The high fraction of very slowly rotating magnetic stars thus provides an independent argument for a decay of the magnetic fields.

  19. Hot, Massive Stars in the Extremely Metal-Poor Galaxy, I Zw 18

    NASA Technical Reports Server (NTRS)

    Heap, Sara R.; Malumuth, Eliot M.

    2010-01-01

    The extremely metal-poor galaxy I Zw 18, is the Rosetta Stone for understanding z=7-8 galaxies now being discovered by Hubb|e's Wide Field Camera 3 (HST/WFC3). Using HST/STIS images and recently obtained HST/COS ultraviolet spectra, we derive information about the hot, massive stars in this galaxy including stellar abundances, constraints on the stellar IMF and mass distribution of young clusters containing hot, massive stars.

  20. Hot, Massive Stars in the Extremely Metal-Poor Galaxy, I Zw 18

    NASA Technical Reports Server (NTRS)

    Heap, Sara R.; Malumuth, Eliot M.

    2010-01-01

    The extremely metal-poor galaxy I Zw 18, is the Rosetta Stone for understanding z=7-8 galaxies now being discovered by Hubb|e's Wide Field Camera 3 (HST/WFC3). Using HST/STIS images and recently obtained HST/COS ultraviolet spectra, we derive information about the hot, massive stars in this galaxy including stellar abundances, constraints on the stellar IMF and mass distribution of young clusters containing hot, massive stars.

  1. Asymmetric supernova remnants generated by Galactic, massive runaway stars

    NASA Astrophysics Data System (ADS)

    Meyer, D. M.-A.; Langer, N.; Mackey, J.; Velázquez, P. F.; Gusdorf, A.

    2015-07-01

    After the death of a runaway massive star, its supernova shock wave interacts with the bow shocks produced by its defunct progenitor, and may lose energy, momentum and its spherical symmetry before expanding into the local interstellar medium (ISM). We investigate whether the initial mass and space velocity of these progenitors can be associated with asymmetric supernova remnants. We run hydrodynamical models of supernovae exploding in the pre-shaped medium of moving Galactic core-collapse progenitors. We find that bow shocks that accumulate more than about 1.5 M⊙ generate asymmetric remnants. The shock wave first collides with these bow shocks 160-750 yr after the supernova, and the collision lasts until 830-4900 yr. The shock wave is then located 1.35-5 pc from the centre of the explosion, and it expands freely into the ISM, whereas in the opposite direction it is channelled into the region of undisturbed wind material. This applies to an initially 20 M⊙ progenitor moving with velocity 20 km s-1 and to our initially 40 M⊙ progenitor. These remnants generate mixing of ISM gas, stellar wind and supernova ejecta that is particularly important upstream from the centre of the explosion. Their light curves are dominated by emission from optically thin cooling and by X-ray emission of the shocked ISM gas. We find that these remnants are likely to be observed in the [O III] λ 5007 spectral line emission or in the soft energy-band of X-rays. Finally, we discuss our results in the context of observed Galactic supernova remnants such as 3C 391 and the Cygnus Loop.

  2. 3D hydrodynamic simulations of carbon burning in massive stars

    NASA Astrophysics Data System (ADS)

    Cristini, A.; Meakin, C.; Hirschi, R.; Arnett, D.; Georgy, C.; Viallet, M.; Walkington, I.

    2017-10-01

    We present the first detailed 3D hydrodynamic implicit large eddy simulations of turbulent convection of carbon burning in massive stars. Simulations begin with radial profiles mapped from a carbon-burning shell within a 15 M⊙ 1D stellar evolution model. We consider models with 1283, 2563, 5123, and 10243 zones. The turbulent flow properties of these carbon-burning simulations are very similar to the oxygen-burning case. We performed a mean field analysis of the kinetic energy budgets within the Reynolds-averaged Navier-Stokes framework. For the upper convective boundary region, we find that the numerical dissipation is insensitive to resolution for linear mesh resolutions above 512 grid points. For the stiffer, more stratified lower boundary, our highest resolution model still shows signs of decreasing sub-grid dissipation suggesting it is not yet numerically converged. We find that the widths of the upper and lower boundaries are roughly 30 per cent and 10 per cent of the local pressure scaleheights, respectively. The shape of the boundaries is significantly different from those used in stellar evolution models. As in past oxygen-shell-burning simulations, we observe entrainment at both boundaries in our carbon-shell-burning simulations. In the large Péclet number regime found in the advanced phases, the entrainment rate is roughly inversely proportional to the bulk Richardson number, RiB (∝RiB-α, 0.5 ≲ α ≲ 1.0). We thus suggest the use of RiB as a means to take into account the results of 3D hydrodynamics simulations in new 1D prescriptions of convective boundary mixing.

  3. SELF-REGULATED SHOCKS IN MASSIVE STAR BINARY SYSTEMS

    SciTech Connect

    Parkin, E. R.; Sim, S. A. E-mail: s.sim@qub.ac.uk

    2013-04-20

    In an early-type, massive star binary system, X-ray bright shocks result from the powerful collision of stellar winds driven by radiation pressure on spectral line transitions. We examine the influence of the X-rays from the wind-wind collision shocks on the radiative driving of the stellar winds using steady-state models that include a parameterized line force with X-ray ionization dependence. Our primary result is that X-ray radiation from the shocks inhibits wind acceleration and can lead to a lower pre-shock velocity, and a correspondingly lower shocked plasma temperature, yet the intrinsic X-ray luminosity of the shocks, L{sub X}, remains largely unaltered, with the exception of a modest increase at small binary separations. Due to the feedback loop between the ionizing X-rays from the shocks and the wind driving, we term this scenario as self-regulated shocks. This effect is found to greatly increase the range of binary separations at which a wind-photosphere collision is likely to occur in systems where the momenta of the two winds are significantly different. Furthermore, the excessive levels of X-ray ionization close to the shocks completely suppress the line force, and we suggest that this may render radiative braking less effective. Comparisons of model results against observations reveal reasonable agreement in terms of log (L{sub X}/L{sub bol}). The inclusion of self-regulated shocks improves the match for kT values in roughly equal wind momenta systems, but there is a systematic offset for systems with unequal wind momenta (if considered to be a wind-photosphere collision).

  4. The incidence of stellar mergers and mass gainers among massive stars

    SciTech Connect

    De Mink, S. E.; Sana, H.; Langer, N.; Izzard, R. G.; Schneider, F. R. N.

    2014-02-10

    Because the majority of massive stars are born as members of close binary systems, populations of massive main-sequence stars contain stellar mergers and products of binary mass transfer. We simulate populations of massive stars accounting for all major binary evolution effects based on the most recent binary parameter statistics and extensively evaluate the effect of model uncertainties. Assuming constant star formation, we find that 8{sub −4}{sup +9}% of a sample of early-type stars are the products of a merger resulting from a close binary system. In total we find that 30{sub −15}{sup +10}% of massive main-sequence stars are the products of binary interaction. We show that the commonly adopted approach to minimize the effects of binaries on an observed sample by excluding systems detected as binaries through radial velocity campaigns can be counterproductive. Systems with significant radial velocity variations are mostly pre-interaction systems. Excluding them substantially enhances the relative incidence of mergers and binary products in the non-radial velocity variable sample. This poses a challenge for testing single stellar evolutionary models. It also raises the question of whether certain peculiar classes of stars, such as magnetic O stars, are the result of binary interaction and it emphasizes the need to further study the effect of binarity on the diagnostics that are used to derive the fundamental properties (star-formation history, initial mass function, mass-to-light ratio) of stellar populations nearby and at high redshift.

  5. Wolf-Rayet, Yellow and Red Supergiant in the single massive stars perspective

    NASA Astrophysics Data System (ADS)

    Georgy, Cyril; Hirschi, R.; Ekstrom, S.; Meynet, G.

    2013-06-01

    Rotation and mass loss are the key ingredients determining the fate of single massive stars. In recent years, a large effort has been made to compute whole grids of stellar models at different metallicities, including or not the effects of rotation, with the Geneva evolution code. In this talk, I will focus on the evolved stages of massive star evolution (red and yellow supergiants, Wolf-Rayet stars), in the framework of these new grids of models. I will highlight the effects of rotation and mass loss on the post-main sequence evolution of massive stars at solar and lower metallicity. In particular, I will discuss their impact on the maximum mass for a star to end its life as a RSG (leading to a type IIP supernova), on the possibility for a star to finish as a YSG, and on the initial mass ranges leading to various WR star subtypes. I will then compare the results predicted by our code with observed populations of evolved massive stars, bringing constraints on our computations, as well as some indications on the binary star fraction needed to reproduce them.

  6. OT2_fwyrowsk_3: A Water survey of massive star forming clumps in the inner Galaxy

    NASA Astrophysics Data System (ADS)

    Wyrowski, F.

    2011-09-01

    Water, as a dominant form of oxygen, the most abundant element in the universe after H and He, controls the chemistry of many other species. It is a unique diagnostic of warm gas and energetic processes taking place during star formation. We therefore propose to exploit the unique opportunity of Herschel to study water in large, statistically significant, flux limited samples of massive star forming regions detected in the recently completed ATLASGAL submm dust continuum survey of the inner Galactic plane. In the last years, our view of massive star forming regions has dramatically changed by Galactic plane surveys covering cm to IR wavelengths. These surveys enable us for the first time to study ALL evolutionary stages of massive star formation (MSF) in an unbiased way. Water, acting as a natural filter for warm, dense gas, allows to probe the chemical and physical conditions in all of these stages close to where the massive stars are forming or just have been formed. ATLASGAL observed submm dust continuum emission as best tracer of the earliest phases of MSF since it is directly probing the material from which the stars form. As a large unbiased survey it provide the statistical base to study the scarce and short-living protoclusters as the origin of the massive stars and the richest clusters in the Galaxy and supplies us with a legacy value sample of MSF regions for the water follow ups. Water is typically seen with strongly increased abundances in broad line wings, providing a new, sensitive probe of shocked outflowing gas. In addition, the envelope is probed in a combination of absorption and emission with a clear jump in abundance in the warm inner regions close to the forming massive stars. Only Herschel can provide a water survey of a large sample of ATLASGAL selected sources to study water through the evolution of massive star forming regions with a statistically significant sample size.

  7. Luminous Infrared Sources in the Local Group: Identifying the Missing Links in Massive Star Evolution

    NASA Astrophysics Data System (ADS)

    Britavskiy, N.; Bonanos, A. Z.; Mehner, A.

    2015-01-01

    We present the first systematic survey of dusty massive stars (RSGs, LBVs, sgB[e]) in nearby galaxies, with the goal of understanding their importance in massive star evolution. Using the fact that these stars are bright in mid-infrared colors due to dust, we provide a technique for selecting and identifying dusty evolved stars based on the results of Bonanos et al. (2009, 2010), Britavskiy et al. (2014), and archival Spitzer/IRAC photometry. We present the results of our spectroscopic follow-up of luminous infrared sources in the Local Group dwarf irregular galaxies: Pegasus, Phoenix, Sextans A and WLM. The survey aims to complete the census of dusty massive stars in the Local Group.

  8. Low Mach Number Simulation of Core Convection in Massive Stars

    NASA Astrophysics Data System (ADS)

    Gilet, Candace Elise

    This work presents three-dimensional simulations of core convection in a 15 solar mass star halfway through its main sequence lifetime. We examine the effects of two common modeling choices on the resulting convective flow: using a reduced domain size and using a monatomic, or single species, approximation. We compare a multi-species simulation on a full sphere (360 degree) domain with a multi-species simulation on an octant domain and also with a single species simulation on a full sphere domain. To perform the long-time calculations, we use the new low Mach number code MAESTRO. The first part of this work deals with numerical aspects of using MAESTRO for the core convection system, a new application for MAESTRO. We extend MAESTRO to include two new models, a single species model and a simplified two-dimensional planar model, to aid in the exploration of using MAESTRO for core convection in massive stars. We discuss using MAESTRO with a novel spherical geometry domain configuration, namely, with the outer boundary located in the interior of the star, and show how this can create spurious velocities that must be numerically damped using a sponging layer. We describe the preparation of the initial model for the simulation. We find that assuring neutral stratification in the convective core and reasonable resolution of the gravity waves in the stable layer are key factors in generating suitable initial conditions for the simulation. Further, we examine a numerical aspect of the velocity constraint that is part of the low Mach number formulation of the Euler equations. In particular, we investigate the numerical procedure for computing beta0, the density-like variable that captures background stratification in the velocity constraint, and find that the original method of computation remains a good choice. The three-dimensional simulation results show that using a single species model actually increases the computational cost of the simulation because the single

  9. A RAPIDLY EVOLVING REGION IN THE GALACTIC CENTER: WHY S-STARS THERMALIZE AND MORE MASSIVE STARS ARE MISSING

    SciTech Connect

    Chen, Xian; Amaro-Seoane, Pau E-mail: Pau.Amaro-Seoane@aei.mpg.de

    2014-05-10

    The existence of ''S-stars'' within a distance of 1'' from Sgr A* contradicts our understanding of star formation, due to Sgr A* 's forbiddingly violent environment. A suggested possibility is that they form far away and were brought in by some fast dynamical process, since they are young. Nonetheless, all conjectured mechanisms either fail to reproduce their eccentricities—without violating their young age—or cannot explain the problem of {sup i}nverse mass segregation{sup :} the fact that lighter stars (the S-stars) are closer to Sgr A* and more massive ones, Wolf-Rayet (WR) and O-stars, are farther out. In this Letter we propose that the mechanism responsible for both the distribution of the eccentricities and the paucity of massive stars is the Kozai-Lidov-like resonance induced by a sub-parsec disk recently discovered in the Galactic center. Considering that the disk probably extended to a smaller radius in the past, we show that in as short as (a few) 10{sup 6} yr, the stars populating the innermost 1'' region would redistribute in angular-momentum space and recover the observed ''super-thermal'' distribution. Meanwhile, WR and O-stars in the same region intermittently attain ample eccentricities that will lead to their tidal disruptions by the central massive black hole. Our results provide new evidences that Sgr A* was powered several millions years ago by an accretion disk as well as by tidal stellar disruptions.

  10. A Rapidly Evolving Region in the Galactic Center: Why S-stars Thermalize and More Massive Stars are Missing

    NASA Astrophysics Data System (ADS)

    Chen, Xian; Amaro-Seoane, Pau

    2014-05-01

    The existence of "S-stars" within a distance of 1'' from Sgr A* contradicts our understanding of star formation, due to Sgr A* 's forbiddingly violent environment. A suggested possibility is that they form far away and were brought in by some fast dynamical process, since they are young. Nonetheless, all conjectured mechanisms either fail to reproduce their eccentricities—without violating their young age—or cannot explain the problem of "inverse mass segregation": the fact that lighter stars (the S-stars) are closer to Sgr A* and more massive ones, Wolf-Rayet (WR) and O-stars, are farther out. In this Letter we propose that the mechanism responsible for both the distribution of the eccentricities and the paucity of massive stars is the Kozai-Lidov-like resonance induced by a sub-parsec disk recently discovered in the Galactic center. Considering that the disk probably extended to a smaller radius in the past, we show that in as short as (a few) 106 yr, the stars populating the innermost 1'' region would redistribute in angular-momentum space and recover the observed "super-thermal" distribution. Meanwhile, WR and O-stars in the same region intermittently attain ample eccentricities that will lead to their tidal disruptions by the central massive black hole. Our results provide new evidences that Sgr A* was powered several millions years ago by an accretion disk as well as by tidal stellar disruptions.

  11. Star Formation at Low Rates: How a Lack of Massive Stars Impacts the Evolution of Dwarf Galaxies

    NASA Astrophysics Data System (ADS)

    Hensler, Gerhard

    2017-01-01

    In recent years dedicated observations have uncovered star formation at extremely low rates in dwarf galaxies, tidal tails, ram-pressure stripped gas clouds, and the outskirts of galactic disks. At the same time, numerical simulations of galaxy evolution have advanced to higher spatial and mass resolutions, but have yet to account for the underfilling of the uppermost mass bins of stellar initial mass function (IMF) at low star-formation rates. In such situations, simulations may simply scale down the IMF, without realizing that this unrealistically results infractions of massive stars, along with fractions of massive star feedback energy (e.g., radiation and SNII explosions). Not properlyaccounting for such parameters has consequences for the self-regulation of star formation, the energetics of galaxies, as well as for the evolution of chemical abundances.Here we present numerical simulations of dwarf galaxies with low star-formation rates allowing for two extreme cases of the IMF: a "filled" case with fractional massive stars vs. a truncated IMF, at which the IMF is built bottom-up until the gas reservoir allows the formation of a last single star at an uppermost mass. The aim of the study is to demonstrate the different effects on galaxy evolution with respect to self-regulation, feedback, and chemistry. The case of a stochastic sampled IMF is situated somewhere in between these extremes.

  12. Ultraviolet Imaging Telescope photometry of massive stars - The OB association NGC 206 in M31

    NASA Technical Reports Server (NTRS)

    Hill, Jesse K.; Pfarr, Barbara B.; Bohlin, Ralph C.; Isensee, Joan E.; O'Connell, Robert W.; Neff, Susan G.; Roberts, Morton S.; Smith, Andrew M.; Stecher, Theodore P.

    1992-01-01

    The Ultraviolet Imaging Telescope (UIT) obtained UV images of the giant M31 OB association NGC 206. Magnitudes in bands at 1520 and 2490 A were obtained for 30 massive stars, which demonstrate the effectiveness of UIT for photometry of moderately crowded hot stars to V about 21. The UV colors and magnitudes observed for stars in NGC 206 place them in the region of the color magnitude diagram occupied by evolutionary models for 30-60 solar mass stars, after correcting for extinction. The brighter stars are systematically redder than the fainter stars, indicating that they are supergiants of age about 4 Myr, while the fainter, bluer stars are nearer age zero. The relative numbers of probable supergiants measured by us and the number of probable main-sequence O stars measured from optical images are in agreement with the relative lifetimes. Calculated UIT colors are presented for a library of standard star spectra constructed from IUE and ground-based observations.

  13. Discovering Massive Runaway Stars with Infrared Bow Shock Nebulae: Four New OB Runaway Candidate Stars Found in WISE Atlas Images

    NASA Astrophysics Data System (ADS)

    Olivier, Grace M.; Kobulnicky, Henry A.; Povich, Matthew S.; Chick, William T.; Dale, Daniel A.; Andrews, Julian E.; Munari, Stephan; Schurhammer, Danielle; Sorber, Rebecca; Wernke, Heather N.

    2016-01-01

    Determining the mass loss rates of massive stars is an important unsolved problem in astronomy because mass loss dictates the evolutionary track of the star and its fate. One way to measure mass loss rates is through studying the infrared bow shocks from massive O and B type stars. These stars form bow shocks because they have been expelled from their birth regions and are moving at high velocities through the ISM. The stars we studied in this project were discovered by searching the Wide-Field Infrared Survey Explorer (WISE) 22 μm atlas. Using the Longslit Spectrograph at the Wyoming Infrared Observatory (WIRO) we observed each star to obtain a spectrum. Spectral types were then fit to these stars, the stars: G073.6200+1.8522 (B0V), G074.3117+1.0041 (O9V), G059.9225-1.9671 (B3V), and G063.1263+0.3327 (B5V). The spectral types of these stars agree with the predicted range of late-O to early-B type stars. These spectral types will be used to determine temperature, stellar wind velocities, space velocities, and other fundamental quantities that can be used to study stellar mass loss. This work is supported by the National Science Foundation under grants AST-1063146 (REU), AST-1411851 (RUI), and AST-1412845.

  14. GT1_cdedes_1: Heating and cooling mechanics in massive star formation

    NASA Astrophysics Data System (ADS)

    Dedes, C.

    2010-03-01

    Massive stars are important constituents of the interstellar medium (ISM) in our Galaxy and beyond. Their strong feedback processes influence the dynamics, energetics and chemistry of the surrounding interstellar medium both locally and on large scales. An important question to be answered is the one of cooling and heating mechanisms in regions of massive star formation. In the vicinity of massive stars, heating is provided mostly by far-UV (FUV) and infra-red radiation. Cooling is mostly provided by emission in the fine structure lines of CII. There are however other atomic and molecular lines such as OI, CO, OH and H_2O which can become significant coolants in the dense, embedded regions of massive star formation. This early phase when the forming massive star is still deeply embedded in its natal envelope, yet already interacting with, and potentially destroying, its environment through copious amounts of UV radiation, massive outflows and ultra compact HII (UCHII) regions, is an important phase in the star formation process. To understand the heating and cooling balance in this phase, one has to consider the contributions of various radiative and dynamical processes such as the FUV radiation from the young star itself, shocks created by strong stellar winds and the photon dominated regions (PDRs) where the radiation impinges on the molecular material. The tracers of these processes can be observed in the far-infrared, a wavelength range that is now accessible at unprecedented high spectral and spatial resolution with the Herschel Space Observatory. We propose to observe the aformentioned tracers of cooling and heating in the massive star forming region IRAS 12326-6245 to obtain a complete picture of the different processes, the regions they originate from and how they interact. This proposal is for time granted to the HIFI hardware team (PI: Frank Helmich) and to be accounted as part of the Swiss guaranteed time (Lead-Co-I: Arnold O. Benz).

  15. The High-mass Truncation of the Star Cluster Mass Function: Limits on Massive Cluster Formation

    NASA Astrophysics Data System (ADS)

    Johnson, L. C.; PHAT Team

    2017-01-01

    Long-lived star clusters serve as useful tracers of star formation, and massive clusters in particular are often associated with vigorous star formation activity. We examine how massive cluster formation varies as a function of star formation surface density (ΣSFR) by comparing cluster populations from galaxies that span a wide range of characteristic ΣSFR values. The Panchromatic Hubble Andromeda Treasury (PHAT) survey yielded an unparalleled census of young star clusters in M31 and allows us to examine massive cluster formation in a low intensity star formation environment. We measure the cluster mass function for a sample of 840 young star clusters with ages between 10-300 Myr. The data show clear evidence of a high-mass truncation: only 15 clusters more massive than 104 M⊙ are observed, compared to ~100 expected for a canonical M-2 power-law mass function with the same total number of clusters above the catalog completeness limit. Adopting a Schechter function parameterization, we fit a characteristic truncation mass (Mc) of 8.5×103 M⊙ — the lowest truncation mass ever reported. When combined with previous mass function results, we find that the cluster mass function truncation correlates strongly with the star formation rate surface density, where Mc ∝ ΣSFR1.3. We also find evidence that suggests the observed Mc-ΣSFR relation also holds for globular clusters, linking the two populations via a common formation pathway.

  16. WIDE-FIELD INFRARED SURVEY EXPLORER OBSERVATIONS OF THE EVOLUTION OF MASSIVE STAR-FORMING REGIONS

    SciTech Connect

    Koenig, X. P.; Leisawitz, D. T.; Benford, D. J.; Padgett, D. L.; Rebull, L. M.

    2012-01-10

    We present the results of a mid-infrared survey of 11 outer Galaxy massive star-forming regions and 3 open clusters with data from the Wide-field Infrared Survey Explorer (WISE). Using a newly developed photometric scheme to identify young stellar objects and exclude extragalactic contamination, we have studied the distribution of young stars within each region. These data tend to support the hypothesis that latter generations may be triggered by the interaction of winds and radiation from the first burst of massive star formation with the molecular cloud material leftover from that earlier generation of stars. We dub this process the 'fireworks hypothesis' since star formation by this mechanism would proceed rapidly and resemble a burst of fireworks. We have also analyzed small cutout WISE images of the structures around the edges of these massive star-forming regions. We observe large (1-3 pc size) pillar and trunk-like structures of diffuse emission nebulosity tracing excited polycyclic aromatic hydrocarbon molecules and small dust grains at the perimeter of the massive star-forming regions. These structures contain small clusters of emerging Class I and Class II sources, but some are forming only a single to a few new stars.

  17. Wide-Field Infrared Survey Explorer Observations of the Evolution of Massive Star-Forming Regions

    NASA Technical Reports Server (NTRS)

    Koenig, X. P.; Leisawitz, D. T.; Benford, D. J.; Rebull, L. M.; Padgett, D. L.; Asslef, R. J.

    2012-01-01

    We present the results of a mid-infrared survey of II outer Galaxy massive star-forming regions and 3 open clusters with data from the Wide-field Infrared Survey Explorer (WISE). Using a newly developed photometric scheme to identify young stellar objects and exclude extragalactic contamination, we have studied the distribution of young stars within each region. These data tend to support the hypothesis that latter generations may be triggered by the interaction of winds and radiation from the first burst of massive star formation with the molecular cloud material leftover from that earlier generation of stars. We dub this process the "fireworks hypothesis" since star formation by this mechanism would proceed rapidly and resemble a burst of fireworks. We have also analyzed small cutout WISE images of the structures around the edges of these massive star-forming regions. We observe large (1-3 pc size) pillar and trunk-like structures of diffuse emission nebulosity tracing excited polycyclic aromatic hydrocarbon molecules and small dust grains at the perimeter of the massive star-forming regions. These structures contain small clusters of emerging Class I and Class II sources, but some are forming only a single to a few new stars.

  18. Wide-Field Infrared Survey Explorer Observations of the Evolution of Massive Star-Forming Regions

    NASA Technical Reports Server (NTRS)

    Koenig, X. P.; Leisawitz, D. T.; Benford, D. J.; Rebull, L. M.; Padgett, D. L.; Assef, R. J.

    2011-01-01

    We present the results of a mid-infrared survey of 11 outer Galaxy massive star-forming regions and 3 open clusters with data from the Wide-field Infrared Survey Explorer (WISE). Using a newly developed photometric scheme to identify young stellar objects and exclude extragalactic contamination, we have studied the distribution of young stars within each region. These data tend to support the hypothesis that latter generations may be triggered by the interaction of winds and radiation from the first burst of massive star formation with the molecular cloud material leftover from that earlier generation of stars.We dub this process the "fireworks hypothesis" since star formation by this mechanism would proceed rapidly and resemble a burst of fireworks.We have also analyzed small cutout WISE images of the structures around the edges of these massive star-forming regions. We observe large (1-3 pc size) pillar and trunk-like structures of diffuse emission nebulosity tracing excited polycyclic aromatic hydrocarbon molecules and small dust grains at the perimeter of the massive star-forming regions. These structures contain small clusters of emerging Class I and Class II sources, but some are forming only a single to a few new stars.

  19. Wide-Field Infrared Survey Explorer Observations of the Evolution of Massive Star-Forming Regions

    NASA Technical Reports Server (NTRS)

    Koenig, X. P.; Leisawitz, D. T.; Benford, D. J.; Rebull, L. M.; Padgett, D. L.; Asslef, R. J.

    2012-01-01

    We present the results of a mid-infrared survey of II outer Galaxy massive star-forming regions and 3 open clusters with data from the Wide-field Infrared Survey Explorer (WISE). Using a newly developed photometric scheme to identify young stellar objects and exclude extragalactic contamination, we have studied the distribution of young stars within each region. These data tend to support the hypothesis that latter generations may be triggered by the interaction of winds and radiation from the first burst of massive star formation with the molecular cloud material leftover from that earlier generation of stars. We dub this process the "fireworks hypothesis" since star formation by this mechanism would proceed rapidly and resemble a burst of fireworks. We have also analyzed small cutout WISE images of the structures around the edges of these massive star-forming regions. We observe large (1-3 pc size) pillar and trunk-like structures of diffuse emission nebulosity tracing excited polycyclic aromatic hydrocarbon molecules and small dust grains at the perimeter of the massive star-forming regions. These structures contain small clusters of emerging Class I and Class II sources, but some are forming only a single to a few new stars.

  20. Wide-Field Infrared Survey Explorer Observations of the Evolution of Massive Star-Forming Regions

    NASA Technical Reports Server (NTRS)

    Koenig, X. P.; Leisawitz, D. T.; Benford, D. J.; Rebull, L. M.; Padgett, D. L.; Assef, R. J.

    2011-01-01

    We present the results of a mid-infrared survey of 11 outer Galaxy massive star-forming regions and 3 open clusters with data from the Wide-field Infrared Survey Explorer (WISE). Using a newly developed photometric scheme to identify young stellar objects and exclude extragalactic contamination, we have studied the distribution of young stars within each region. These data tend to support the hypothesis that latter generations may be triggered by the interaction of winds and radiation from the first burst of massive star formation with the molecular cloud material leftover from that earlier generation of stars.We dub this process the "fireworks hypothesis" since star formation by this mechanism would proceed rapidly and resemble a burst of fireworks.We have also analyzed small cutout WISE images of the structures around the edges of these massive star-forming regions. We observe large (1-3 pc size) pillar and trunk-like structures of diffuse emission nebulosity tracing excited polycyclic aromatic hydrocarbon molecules and small dust grains at the perimeter of the massive star-forming regions. These structures contain small clusters of emerging Class I and Class II sources, but some are forming only a single to a few new stars.

  1. Influence of Entropy on Composition and Structure of Massive Protoneutron Stars

    NASA Astrophysics Data System (ADS)

    Hong, Bin; Jia, Huan-Yu; Mu, Xue-Ling; Zhou, Xia

    2016-08-01

    Adjusting the suitable coupling constants in relativistic mean Geld (RMF) theory and focusing on thermal effect of an entropy per baryon (S) from 0 to 3, we investigate the composition and structure of massive protoneutron stars corresponding PSR J1614-2230 and PSR J0348+0432. It is found that massive protoneutron stars (PNSs) have more hyperons than cold neutron stars. The entropy per baryon will stiffen the equation of state, and the influence on the pressure is more obvious at low density than high density, while the influence on the energy density is more obvious at high density than low density. It is found that higher entropy will give higher maximum mass, higher central temperature and lower central density. The entropy per baryon changes from 0 to 3, the radius of a PNS corresponding PSR J0348+0432 will increase from 12.86 km to 19.31 km and PSR J1612-2230 will increase from 13.03 km to 19.93 km. The entropy per baryon will raise the central temperature of massive PNSs in higher entropy per baryon, but the central temperature of massive PNSs maybe keep unchanged in lower entropy per baryon. The entropy per baryon will increase the moment of inertia of a massive protoneutron star, while decrease gravitational redshift of a massive neutron star. Supported by National Natural Science Foundation of China under Grant No. 11175147

  2. THE MILKY WAY PROJECT: A STATISTICAL STUDY OF MASSIVE STAR FORMATION ASSOCIATED WITH INFRARED BUBBLES

    SciTech Connect

    Kendrew, S.; Robitaille, T. P.; Simpson, R.; Lintott, C. J.; Bressert, E.; Povich, M. S.; Sherman, R.; Schawinski, K.; Wolf-Chase, G.

    2012-08-10

    The Milky Way Project citizen science initiative recently increased the number of known infrared bubbles in the inner Galactic plane by an order of magnitude compared to previous studies. We present a detailed statistical analysis of this data set with the Red MSX Source (RMS) catalog of massive young stellar sources to investigate the association of these bubbles with massive star formation. We particularly address the question of massive triggered star formation near infrared bubbles. We find a strong positional correlation of massive young stellar objects (MYSOs) and H II regions with Milky Way Project bubbles at separations of <2 bubble radii. As bubble sizes increase, a statistically significant overdensity of massive young sources emerges in the region of the bubble rims, possibly indicating the occurrence of triggered star formation. Based on numbers of bubble-associated RMS sources, we find that 67% {+-} 3% of MYSOs and (ultra-)compact H II regions appear to be associated with a bubble. We estimate that approximately 22% {+-} 2% of massive young stars may have formed as a result of feedback from expanding H II regions. Using MYSO-bubble correlations, we serendipitously recovered the location of the recently discovered massive cluster Mercer 81, suggesting the potential of such analyses for discovery of heavily extincted distant clusters.

  3. The evolution of massive stars: bridging the gap in the Local Group

    NASA Astrophysics Data System (ADS)

    Massey, Philip; Neugent, Kathryn F.; Levesque, Emily M.

    2017-09-01

    The nearby galaxies of the Local Group can act as our laboratories in helping to bridge the gap between theory and observations. In this review, we will describe the complications of identifying samples of OB stars, yellow and red supergiants, and Wolf-Rayet stars, and what we have so far learned from these studies. This article is part of the themed issue 'Bridging the gap: from massive stars to supernovae'.

  4. Highly dynamically evolved intermediate-age open clusters

    NASA Astrophysics Data System (ADS)

    Piatti, Andrés E.; Dias, Wilton S.; Sampedro, Laura M.

    2017-04-01

    We present a comprehensive UBVRI and Washington CT1T2 photometric analysis of seven catalogued open clusters, namely: Ruprecht 3, 9, 37, 74, 150, ESO 324-15 and 436-2. The multiband photometric data sets in combination with 2MASS photometry and Gaia astrometry for the brighter stars were used to estimate their structural parameters and fundamental astrophysical properties. We found that Ruprecht 3 and ESO 436-2 do not show self-consistent evidence of being physical systems. The remained studied objects are open clusters of intermediate age (9.0 ≤ log(t yr-1) ≤ 9.6), of relatively small size (rcls ∼ 0.4-1.3 pc) and placed between 0.6 and 2.9 kpc from the Sun. We analysed the relationships between core, half-mass, tidal and Jacoby radii as well as half-mass relaxation times to conclude that the studied clusters are in an evolved dynamical stage. The total cluster masses obtained by summing those of the observed cluster stars resulted to be ∼10-15 per cent of the masses of open clusters of similar age located closer than 2 kpc from the Sun. We found that cluster stars occupy volumes as large as those for tidally filled clusters.

  5. The Masses of the Most Massive Stars: Resolving the ``Mass Discrepancy" with Eclipsing Binaries

    NASA Astrophysics Data System (ADS)

    Massey, Philip; Morrell, Nidia; Eastwood, Kathy; Gies, Douglas; Penny, Laura

    2007-02-01

    The physics of massive stars is complicated, and although great strides have been made both in massive star evolution (interior) modeling, and in stellar atmosphere modeling, the two methods produce large disagreements (factors of two) in the derived masses for some massive stars. Thus our knowledge of the mass-luminosity relation for massive stars, and our ability to measure the initial mass function at the upper end, is cast into doubt. We have set out to resolve this ``mass discrepancy" by using a third method, one that relies only on Newtonian physics, namely obtaining masses from orbit solutions for eclipsing massive binaries. We have completed six months of photometric monitoring of Galactic OB associations, and have identified a dozen promising systems that show eclipses. For some of these, we have only the brightness and promixity to the cluster's center to believe the star is interesting, and we now need spectra to determine if these systems are truly early O stars or not. In addition, we are asking for additional queue photometry time on the 1.3-m (or 1.0-m) to determine the period accurately. These are both necessarily preludes to the time- intensive spectroscoic radial velocity observations we plan to propose next year.

  6. The rotation rates of massive stars. How slow are the slow ones?

    NASA Astrophysics Data System (ADS)

    Sundqvist, J. O.; Simón-Díaz, S.; Puls, J.; Markova, N.

    2013-11-01

    Context. Rotation plays a key role in the life cycles of stars with masses above ~8 M⊙. Hence, accurate knowledge of the rotation rates of such massive stars is critical for understanding their properties and for constraining models of their evolution. Aims: This paper investigates the reliability of current methods used to derive projected rotation speeds vsini from line-broadening signatures in the photospheric spectra of massive stars, focusing on stars that are not rapidly rotating. Methods: We use slowly rotating magnetic O-stars with well-determined rotation periods to test the Fourier transform (FT) and goodness-of-fit (GOF) methods typically used to infer projected rotation rates of massive stars. Results: For our two magnetic test stars with measured rotation periods longer than one year, i.e., with vsini ≲ 1 km s-1, we derive vsini ≈ 40-50 km s-1 from both the FT and GOF methods. These severe overestimates are most likely caused by an insufficient treatment of the competing broadening mechanisms referred to as microturbulence and macroturbulence. Conclusions: These findings warn us not to rely uncritically on results from current standard techniques to derive projected rotation speeds of massive stars in the presence of significant additional line broadening, at least when vsini ≲ 50 km s-1. This may, for example, be crucial for i) determining the statistical distribution of observed rotation rates of massive stars; ii) interpreting the evolutionary status and spin-down histories of rotationally braked B-supergiants; and iii) explaining the deficiency of observed O-stars with spectroscopically inferred vsini ≈ 0 km s-1. Further investigations of potential shortcomings of the above techniques are presently under way. Final reduced spectra are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/559/L10

  7. High molecular gas fractions in normal massive star-forming galaxies in the young Universe.

    PubMed

    Tacconi, L J; Genzel, R; Neri, R; Cox, P; Cooper, M C; Shapiro, K; Bolatto, A; Bouché, N; Bournaud, F; Burkert, A; Combes, F; Comerford, J; Davis, M; Schreiber, N M Förster; Garcia-Burillo, S; Gracia-Carpio, J; Lutz, D; Naab, T; Omont, A; Shapley, A; Sternberg, A; Weiner, B

    2010-02-11

    Stars form from cold molecular interstellar gas. As this is relatively rare in the local Universe, galaxies like the Milky Way form only a few new stars per year. Typical massive galaxies in the distant Universe formed stars an order of magnitude more rapidly. Unless star formation was significantly more efficient, this difference suggests that young galaxies were much more molecular-gas rich. Molecular gas observations in the distant Universe have so far largely been restricted to very luminous, rare objects, including mergers and quasars, and accordingly we do not yet have a clear idea about the gas content of more normal (albeit massive) galaxies. Here we report the results of a survey of molecular gas in samples of typical massive-star-forming galaxies at mean redshifts of about 1.2 and 2.3, when the Universe was respectively 40% and 24% of its current age. Our measurements reveal that distant star forming galaxies were indeed gas rich, and that the star formation efficiency is not strongly dependent on cosmic epoch. The average fraction of cold gas relative to total galaxy baryonic mass at z = 2.3 and z = 1.2 is respectively about 44% and 34%, three to ten times higher than in today's massive spiral galaxies. The slow decrease between z approximately 2 and z approximately 1 probably requires a mechanism of semi-continuous replenishment of fresh gas to the young galaxies.

  8. Connecting the Dots: MUSE Unveils the Destructive Effect of Massive Stars

    NASA Astrophysics Data System (ADS)

    McLeod, A. F.; Ginsburg, A.; Klaassen, P.; Mottram, J.; Ramsay, S.; Testi, L.

    2016-09-01

    Throughout their entire lives, massive stars have a substantial impact on their surroundings, such as via protostellar outflows, stellar winds, ionising radiation and supernovae. Conceptually this is well understood, but the exact role of feedback mechanisms on the global star formation process and the stellar environment, as well as their dependence on the properties of the star-forming regions, are yet to be understood in detail. Observational quantification of the various feedback mechanisms is needed to precisely understand how high mass stars interact with and shape their environment, and which feedback mechanisms dominate under given conditions. We analysed the photo-evaporative effect of ionising radiation from massive stars on their surrounding molecular clouds using MUSE integral field data. This allowed us to determine the mass-loss rate of pillar-like structures (due to photo-evaporation) in different environments, and relate it to the ionising power of nearby massive stars. The resulting correlation is the first observational quantification of the destructive effect of ionising radiation from massive stars.

  9. A Catalog of New Spectroscopically Confirmed Massive OB Stars in Carina

    NASA Astrophysics Data System (ADS)

    Alexander, Michael J.; Hanes, Richard J.; Povich, Matthew S.; McSwain, M. Virginia

    2016-12-01

    The Carina star-forming region is one of the largest in the Galaxy, and its massive star population is still being unveiled. The large number of stars combined with high, and highly variable, interstellar extinction makes it inherently difficult to find OB stars in this type of young region. We present the results of a spectroscopic campaign to study the massive star population of the Carina Nebula, with the primary goal to confirm or reject previously identified Carina OB star candidates. A total of 141 known O- and B-type stars and 94 candidates were observed, of which 73 candidates had high enough signal-to-noise ratio to classify. We find 23 new OB stars within the Carina Nebula, a 32% confirmation rate. One of the new OB stars has blended spectra and is suspected to be a double-lined spectroscopic binary (SB2). We also reclassify the spectral types of the known OB stars and discover nine new SB2s among this population. Finally, we discuss the spatial distribution of these new OB stars relative to known structures in the Carina Nebula.

  10. Kinematics of the inner thousand AU region around the young massive star AFGL 2591-VLA3: a massive disk candidate?

    NASA Astrophysics Data System (ADS)

    Wang, K.-S.; van der Tak, F. F. S.; Hogerheijde, M. R.

    2012-07-01

    Context. Recent detections of disks around young high-mass stars support the idea of massive star formation through accretion rather than coalescence, but the detailed kinematics in the equatorial region of the disk candidates is not well known, which limits our understanding of the accretion process. Aims: This paper explores the kinematics of the gas around a young massive star with millimeter-wave interferometry to improve our understanding of the formation of massive stars though accretion. Methods: We use Plateau de Bure interferometric images to probe the environment of the nearby (~1 kpc) and luminous (~20 000 L⊙) high-mass (10-16 M⊙) young star AFGL 2591-VLA3 in continuum and in lines of HDO, H_218O and SO2 in the 115 and 230 GHz bands. Radiative transfer calculations are employed to investigate the kinematics of the source. Results: At ~0.5″ (500 AU) resolution, the line images clearly resolve the velocity field of the central compact source (diameter of ~800 AU) and show linear velocity gradients in the northeast-southwest direction. Judging from the disk-outflow geometry, the observed velocity gradient results from rotation and radial expansion in the equatorial region of VLA3. Radiative transfer calculations suggest that the velocity field is consistent with sub-Keplerian rotation plus Hubble-law like expansion. The line profiles of the observed molecules suggest a layered structure, with HDO emission arising from the disk mid-plane, H_218O from the warm mid-layer, and SO2 from the upper disk. Conclusions: We propose AFGL 2591-VLA3 as a new massive disk candidate, with peculiar kinematics. The rotation of this disk is sub-Keplerian, probably due to magnetic braking, while the stellar wind may be responsible for the expansion of the disk. The expansion motion may also be an indirect evidence of disk accretion in the very inner region because of the conservation of angular momentum. The sub-Keplerian rotation discovered in our work suggests that

  11. A butterfly-shaped 'Papillon Nebula' yields secrets of massive star birth

    NASA Astrophysics Data System (ADS)

    1999-06-01

    The newly found massive newborn stars are in one of our satellite galaxies, the Large Magellanic Cloud (LMC), 170,000 light-years away - right in our cosmic backyard. The Hubble image shows a view of a turbulent cauldron of starbirth, unromantically called N159. Fierce stellar winds from the hot newborn massive stars sculpt ridges, arcs and filaments in the vast cloud, which is over 150 light-years across. This is the clearest image ever obtained of this region. Seen for the first time is the butterfly-shaped or 'Papillon' (French for butterfly) nebula, buried in the centre of the maelstrom of glowing gases and dark dust. The unprecedented details of the structure of the Papillon, itself less than 2 light-years in size (about 1/2000th of a degree in the sky), are seen in the inset. This bipolar shape might be explained by the outflow of gas from the massive star (over 10 times the mass of our Sun) hidden in the central absorption zone. Such stars are so hot and bright that the pressure created by their light halts the infall of gas and directs it away from the star in two opposite directions. This mechanism is not fully understood, but presumably the outflow is constrained around the star's equator and directed to escape along the star's rotation axis. This observation is part of a search for young massive stars in the LMC. This butterfly-shaped nebula is considered to be a rare class of compact 'blob' around newborn, massive stars. The red in this true-colour image comes from the emission of hydrogen and the yellow from hotter oxygen gas. The picture was taken on 5 September 1998 with Wide Field Planetary Camera 2.

  12. Massive runaway stars in the Small Magellanic Cloud

    NASA Astrophysics Data System (ADS)

    Gvaramadze, V. V.; Pflamm-Altenburg, J.; Kroupa, P.

    2011-01-01

    Using archival Spitzer Space Telescope data, we identified for the first time a dozen runaway OB stars in the Small Magellanic Cloud (SMC) through the detection of their bow shocks. The geometry of detected bow shocks allows us to infer the direction of motion of the associated stars and to determine their possible parent clusters and associations. One of the identified runaway stars, AzV 471, was already known as a high-velocity star on the basis of its high peculiar radial velocity, which is offset by ≃ 40 km s-1 from the local systemic velocity. We discuss implications of our findings for the problem of the origin of field OB stars. Several of the bow shock-producing stars are found in the confines of associations, suggesting that these may be “alien” stars contributing to the age spread observed for some young stellar systems. We also report the discovery of a kidney-shaped nebula attached to the early WN-type star SMC-WR3 (AzV 60a). We interpreted this nebula as an interstellar structure created owing to the interaction between the stellar wind and the ambient interstellar medium.

  13. The passage of a star by a massive black hole

    NASA Technical Reports Server (NTRS)

    Nolthenius, R. A.; Katz, J. I.

    1982-01-01

    The gridless, smoothed particle hydrodynamic method of Lucy (1977) and Gingold and Monaghan (1977, 1980, a, b, 1981) is used to solve the three-dimensional problem posed by the effects on a 1.0 solar mass star of a 10,000 solar mass black hole's passage, in an initially parabolic orbit with a variety of pericenter distances. It is found that the tidal forces induce rotation and radial and nonradial pulsations in the star, and that the loss of orbital energy to these internal motions leads to the star's capture by the black hole. While the outer layers of the star are disrupted at small pericenter distances, the entire star is destroyed at even smaller distances. These results are applicable to X-ray sources, active galactic nuclei, and quasars

  14. s-Process Nucleosynthesis in Advanced Burning Phases of Massive Stars

    NASA Astrophysics Data System (ADS)

    The, Lih-Sin; El Eid, Mounib F.; Meyer, Bradley S.

    2007-02-01

    We present a detailed study of s-process nucleosynthesis in massive stars of solar-like initial composition and masses 15, 20, 25, and 30 Msolar. We update our previous results of s-process nucleosynthesis during the core He burning of these stars and then focus on an analysis of the s-process under the physical conditions encountered during the shell carbon burning. We show that the recent compilation of the 22Ne(α,n)25Mg rate leads to a remarkable reduction of the efficiency of the s-process during core He burning. In particular, this rate leads to the lowest overproduction factor of 80Kr found to date during core He burning in massive stars. The s-process yields resulting from shell carbon burning turn out to be very sensitive to the structural evolution of the carbon shell. This structure is influenced by the mass fraction of 12C attained at the end of core helium burning, which in turn is mainly determined by the 12C(α,γ)16O reaction. The still-present uncertainty in the rate for this reaction implies that the s-process in massive stars is also subject to this uncertainty. We identify some isotopes like 70Zn and 87Rb as the signatures of the s-process during shell carbon burning in massive stars. In determining the relative contribution of our s-only stellar yields to the solar abundances, we find it is important to take into account the neutron exposure of shell carbon burning. When we analyze our yields with a Salpeter initial mass function, we find that massive stars contribute at least 40% to s-only nuclei with mass A<=87. For s-only nuclei with mass A>90, massive stars contribute on average ~7%, except for 152Gd, 187Os, and 198Hg, which contribute ~14%, ~13%, and ~11%, respectively.

  15. LITHIUM IN THE INTERMEDIATE-AGE OPEN CLUSTER, NGC 3680

    SciTech Connect

    Anthony-Twarog, Barbara J.; Twarog, Bruce A.; Deliyannis, Constantine P.; Croxall, Kevin V.; Cummings, Jeffrey D. E-mail: btwarog@ku.edu E-mail: kcroxall@indiana.edu

    2009-10-15

    High-dispersion spectra centered on the Li 6708 A line have been obtained for 70 potential members of the intermediate-age open cluster NGC 3680, with an emphasis on stars in the turnoff region of the cluster color-magnitude diagram (CMD). A measurable Li abundance has been derived for 53 stars, 39 of which have radial velocities and proper motions consistent with cluster membership. After being transferred to common temperature and abundance scales, previous Li estimates have been combined to generate a sample of 49 members, 40 of which bracket the cluster Li-dip. Spectroscopic elemental analysis of eight giants and five turnoff stars produces [Fe/H] = -0.17 {+-} 0.07 (sd) and -0.07 {+-} 0.02 (sd), respectively. We also report measurements of Ca, Si, and Ni which are consistent with scaled-solar ratios within the errors. Adopting [Fe/H] = -0.08 (Section 3.6), Y {sup 2} isochrone comparisons lead to an age of 1.75 {+-} 0.1 Gyr and an apparent modulus of (m - M) = 10.30 {+-} 0.15 for the cluster, placing the center of the Li-dip at 1.35 {+-} 0.03 M {sub sun}. Among the giants, five of the nine cluster members are now known to have measurable Li with A(Li) near 1.0. A combined sample of dwarfs in the Hyades and Praesepe is used to delineate the Li-dip profile at 0.7 Gyr and [Fe/H] = +0.15, establishing its center at 1.42 {+-} 0.02 M {sub sun} and noting the possible existence of a secondary dip on its red boundary. When evolved to the typical age of the clusters NGC 752 (age = 1.45 Gyr, (m - M) = 8.4), IC 4651 (age = 1.5 Gyr, (m - M) = 10.4), and NGC 3680, the Hyades/Praesepe Li-dip profile reproduces the observed morphology of the combined Li-dip within the CMDs of the intermediate-age clusters while implying a metallicity dependence for the central mass of the Li-dip given by M/M {sub sun} = 1.38 {+-} 0.04 + 0.4 {+-} 0.2 [Fe/H]. The implications of the similarity of the Li-dichotomy among giants in NGC 752 and IC 4651 and the disagreement with the pattern among NGC

  16. Massive Stars and their Siblings: the Extreme End of the Companion Mass Function

    NASA Astrophysics Data System (ADS)

    de Mink, Selma

    2014-10-01

    The gold-rush for detecting exoplanets has lead to an exponential improvement of optimization algorithms for high-contrast imaging optimized for HST. We propose to exploit these to probe the virtually unexplored population of low mass stars in the very close vicinity of young massive stars in order to I. progress our understanding of how low-mass stars form and survive under the influence of the ionizing radiation of their massive host and II. provide urgently needed constraints on competing theories of massive star formation by measuring their multiplicity. The high spatial and temporal stability of HST's point spread function is essential for the detection of very faint companions down to sub-arcsecond separations even in crowded regions at contrast up to delta-mag ~ 10, i.e. flux ratios up to 10,000. Furthermore the characterization of the low mass companions calls for wavelength bands largely affected by absorption by H2O in the earth's atmosphere. To achieve this goal we propose to use WFC3/IR to observe two adjacent fields in the center of the very young, nearby star cluster Trumpler 14, which harbors a rich population of massive stars.

  17. Massive Stars and their Siblings: the Extreme End of the Companion Mass Function

    NASA Astrophysics Data System (ADS)

    de Mink, Selma

    2013-10-01

    The gold-rush for detecting exoplanets has lead to an exponential improvement of optimization algorithms for high-contrast imaging optimized for HST. We propose to exploit these to probe the virtually unexplored population of low mass stars in the very close vicinity of young massive stars in order to I. progress our understanding of how low-mass stars form and survive under the influence of the ionizing radiation of their massive host and II. provide urgently needed constraints on competing theories of massive star formation by measuring their multiplicity. The high spatial and temporal stability of HST's point spread function is essential for the detection of very faint companions down to sub-arcsecond separations even in crowded regions at contrast up to delta-mag ~ 10, i.e. flux ratios up to 10,000. Furthermore the characterization of the low mass companions calls for wavelength bands largely affected by absorption by H2O in the earth's atmosphere. To achieve this goal we propose to use WFC3/IR to observe two adjacent fields in the center of the very young, nearby star cluster Trumpler 14, which harbors a rich population of massive stars.

  18. Low-metallicity massive single stars with rotation. Evolutionary models applicable to I Zwicky 18

    NASA Astrophysics Data System (ADS)

    Szécsi, Dorottya; Langer, Norbert; Yoon, Sung-Chul; Sanyal, Debashis; de Mink, Selma; Evans, Christopher J.; Dermine, Tyl

    2015-09-01

    Context. Low-metallicity environments such as the early Universe and compact star-forming dwarf galaxies contain many massive stars. These stars influence their surroundings through intense UV radiation, strong winds and explosive deaths. A good understanding of low-metallicity environments requires a detailed theoretical comprehension of the evolution of their massive stars. Aims: We aim to investigate the role of metallicity and rotation in shaping the evolutionary paths of massive stars and to provide theoretical predictions that can be tested by observations of metal-poor environments. Methods: Massive rotating single stars with an initial metal composition appropriate for the dwarf galaxy I Zw 18 ([Fe/H] = -1.7) are modelled during hydrogen burning for initial masses of 9-300 M⊙ and rotational velocities of 0-900 km s-1. Internal mixing processes in these models were calibrated based on an observed sample of OB-type stars in the Magellanic Clouds. Results: Even moderately fast rotators, which may be abundant at this metallicity, are found to undergo efficient mixing induced by rotation resulting in quasi chemically-homogeneous evolution. These homogeneously-evolving models reach effective temperatures of up to 90 kK during core hydrogen burning. This, together with their moderate mass-loss rates, make them transparent wind ultraviolet intense stars (TWUIN star), and their expected numbers might explain the observed He II ionising photon flux in I Zw 18 and other low-metallicity He II galaxies. Our slowly rotating stars above ~80 M⊙ evolve into late B- to M-type supergiants during core hydrogen burning, with visual magnitudes up to 19m at the distance of I Zw 18. Both types of stars, TWUIN stars and luminous late-type supergiants, are only predicted at low metallicity. Conclusions: Massive star evolution at low metallicity is shown to differ qualitatively from that in metal-rich environments. Our grid can be used to interpret observations of local star

  19. Theoretical Near-IR Spectra for Surface Abundance Studies of Massive Stars

    NASA Technical Reports Server (NTRS)

    Sonneborn, George; Bouret, J.

    2011-01-01

    We present initial results of a study of abundance and mass loss properties of O-type stars based on theoretical near-IR spectra computed with state-of-the-art stellar atmosphere models. The James Webb Space Telescope (JWST) will be a powerful tool to obtain high signal-to-noise ratio near-IR (1-5 micron) spectra of massive stars in different environments of local galaxies. Our goal is to analyze model near-IR spectra corresponding to those expected from NIRspec on JWST in order to map the wind properties and surface composition across the parameter range of 0 stars and to determine projected rotational velocities. As a massive star evolves, internal coupling, related mixing, and mass loss impact its intrinsic rotation rate. These three parameters form an intricate loop, where enhanced rotation leads to more mixing which in turn changes the mass loss rate, the latter thus affecting the rotation rate. Since the effects of rotation are expected to be much more pronounced at low metallicity, we pay special attention to models for massive stars in the the Small Magellanic Cloud. This galaxy provides a unique opportunity to probe stellar evolution, and the feedback of massive stars on galactic evol.ution in conditions similar to the epoch of maximal star formation. Plain-Language Abstract: We present initial results of a study of abundance and mass loss properties of massive stars based on theoretical near-infrared (1-5 micron) spectra computed with state-of-the-art stellar atmosphere models. This study is to prepare for observations by the James Webb Space Telescope.

  20. The Milky Way's nuclear star cluster and massive black hole

    NASA Astrophysics Data System (ADS)

    Schödel, Rainer

    2016-02-01

    Because of its nearness to Earth, the centre of the Milky Way is the only galaxy nucleus in which we can study the characteristics, distribution, kinematics, and dynamics of the stars on milli-parsec scales. We have accurate and precise measurements of the Galactic centre's central black hole, Sagittarius A*, and can study its interaction with the surrounding nuclear star cluster in detail. This contribution aims at providing a concise overview of our current knowledge about the Milky Way's central black hole and nuclear star cluster, at highlighting the observational challenges and limitations, and at discussing some of the current key areas of investigation.

  1. Evolved massive stars in W33 and in GMC 23.3-0.3

    NASA Astrophysics Data System (ADS)

    Messineo, Maria; Clark, J. Simon; Figer, Donald F.; Menten, Karl M.; Kudritzki, Rolf-Peter; Najarro, Francisco; Rich, Michael; Ivanov, Valentin D.; Valenti, Elena; Trombley, Christine; Chen, Rosie; Davies, Ben; MacKenty, John W.

    2015-08-01

    We have conducted an infrared spectroscopic survey for massive evolved stars and/or clusters in the Galactic giant molecular clouds G23.3-0.3 and W33. A large number of extraordinary sub-clumps/clusters of massive stars were detected. The spatial and temporal distribution of these massive stars yields information on the star formation history of the clouds.In G23.3-0.3, we discovered a dozen massive O-type stars, one candidate luminous blue variable, and several red supergiants. The O-type stars have masses from 25 to 50 Msun and ages of 5-8 Myr, while the RSGs belong to a burst that occurred 20-30 Myr ago. Therefore, GMC G23.3-0.3 has had one of the longest known histories of star formation (20-30 Myr). GMC G23.3-0.3 is rich in HII regions and supernova remnants; we detected massive stars in the cores of SNR W41 and of SNR G22.7-0.2.In W33, we detected a few evolved O-type stars and one Wolf-Rayet star, but none of the late-type objects has the luminosity of a red supergiant. W33 is characterized by discrete sources and has had at least 3-5 Myr of star formation history, which is now propagating from west to east. While our detections of massive evolved stars in W33 are made on the west side of the cloud, several dense molecular cores that may harbor proto clusters have recently been detected on the east side of the cloud by Immer et al. (2014).Messineo, Maria; Menten, Karl M.; Figer, Donald F.; Davies, Ben; Clark, J. Simon; Ivanov, Valentin D.Kudritzki, Rolf-Peter; Rich, R. Michael; MacKenty, John W.; Trombley, Christine 2014A&A...569A..20MMessineo, Maria; Clark, J. Simon; Figer, Donald F.; Kudritzki, Rolf-Peter; Francisco, Najarro; Rich, R. Michael; Menten, Karl M.; Ivanov, Valentin D.; Valenti, Elena; Trombley, Christine; Chen, C.H. Rosie; Davies, Ben; submitted to ApJ.

  2. On the onset of secondary stellar generations in giant star-forming regions and massive star clusters

    SciTech Connect

    Palouš, J.; Wünsch, R.; Tenorio-Tagle, G.

    2014-09-10

    Here we consider the strong evolution experienced by the matter reinserted by massive stars, both in giant star-forming regions driven by a constant star formation rate and in massive and coeval superstar clusters. In both cases we take into consideration the changes induced by stellar evolution on the number of massive stars, the number of ionizing photons, and the integrated mechanical luminosity of the star-forming regions. The latter is at all times compared with the critical luminosity that defines, for a given size, the lower mechanical luminosity limit above which the matter reinserted via strong winds and supernova explosions suffers frequent and recurrent thermal instabilities that reduce its temperature and pressure and inhibit its exit as part of a global wind. Instead, the unstable reinserted matter is compressed by the pervasive hot gas, and photoionization maintains its temperature at T ∼ 10{sup 4} K. As the evolution proceeds, more unstable matter accumulates and the unstable clumps grow in size. Here we evaluate the possible self-shielding of thermally unstable clumps against the UV radiation field. Self-shielding allows for a further compression of the reinserted matter, which rapidly develops a high-density neutral core able to absorb in its outer skin the incoming UV radiation. Under such conditions the cold (T ∼ 10 K) neutral cores soon surpass the Jeans limit and become gravitationally unstable, creating a new stellar generation with the matter reinserted by former massive stars. We present the results of several calculations of this positive star formation feedback scenario promoted by strong radiative cooling and mass loading.

  3. SOAR Optical and Near-infrared Spectroscopic Survey of Newly Discovered Massive Stars in the Periphery of Galactic Massive Star Clusters I-NGC 3603

    NASA Astrophysics Data System (ADS)

    Roman-Lopes, A.; Franco, G. A. P.; Sanmartim, D.

    2016-06-01

    In this work, we present the results of a spectroscopic study of very massive stars (VMSs) found outside the center of the massive stellar cluster NGC 3603. From the analysis of the associated Southern Astrophysical Research (SOAR) Telescope spectroscopic data and related optical-near-IR (NIR) photometry, we confirm the existence of several VMSs in the periphery of NGC 3603. The first group of objects (MTT58, WR42e, and RF7) is composed of three new Galactic exemplars of the OIf*/WN type, all of them with probable initial masses well above 100 {M}⊙ and estimated ages of about 1 Myr. Based on our Goodman blue-optical spectrum of another source in our sample (MTT68), we can confirm the previous finding in the NIR of the only other Galactic exemplar (besides HD 93129A) of the O2If* type known to date. Based on its position relative to a set of theoretical isochrones in a Hertzprung-Russel (H-R) diagram, we concluded that the new O2If* star could be one of the most massive (150 {M}⊙ ) and luminous (M V = -7.3) O-stars in the Galaxy. Also, another remarkable result is the discovery of a new O2v star (MTT31), which is the first exemplar of that class so far identified in the Milk Way. From its position in the H-R diagram it is found that this new star probably had an initial mass of 80 {M}⊙ , as well as an absolute magnitude of M V = -6.0, corresponding to a luminosity similar to other known O2v stars in the Large Magellanic Cloud. Finally, we also communicate the discovery of a new Galactic O3.5If* star (RFS8) that is quite an intriguing case. Indeed, it is located far to the south of the NGC 3603 center, in apparent isolation at a large radial projected linear distance of ˜62 pc. Its derived luminosity is similar to that of the other O3.5If* (Sh18) found in NGC 3603's innermost region, and the fact that a such high mass star is observed so isolated in the field led us to speculate that perhaps it could have been expelled from the innermost parts of the complex

  4. A young massive planet in a star-disk system.

    PubMed

    Setiawan, J; Henning, Th; Launhardt, R; Müller, A; Weise, P; Kürster, M

    2008-01-03

    There is a general consensus that planets form within disks of dust and gas around newly born stars. Details of their formation process, however, are still a matter of ongoing debate. The timescale of planet formation remains unclear, so the detection of planets around young stars with protoplanetary disks is potentially of great interest. Hitherto, no such planet has been found. Here we report the detection of a planet of mass (9.8+/-3.3)M(Jupiter) around TW Hydrae (TW Hya), a nearby young star with an age of only 8-10 Myr that is surrounded by a well-studied circumstellar disk. It orbits the star with a period of 3.56 days at 0.04 au, inside the inner rim of the disk. This demonstrates that planets can form within 10 Myr, before the disk has been dissipated by stellar winds and radiation.

  5. ON THE DIFFERENTIAL ROTATION OF MASSIVE MAIN-SEQUENCE STARS

    SciTech Connect

    Rogers, T. M.

    2015-12-20

    To date, asteroseismology has provided core-to-surface differential rotation measurements in eight main-sequence stars. These stars, ranging in mass from ∼1.5–9 M{sub ⊙}, show rotation profiles ranging from uniform to counter-rotation. Although they have a variety of masses, these stars all have convective cores and overlying radiative regions, conducive to angular momentum transport by internal gravity waves (IGWs). Using two-dimensional numerical simulations, we show that angular momentum transport by IGWs can explain all of these rotation profiles. We further predict that, should high mass, faster rotating stars be observed, the core-to-envelope differential rotation will be positive, but less than one.

  6. Crystallization of silicates in massive young star cluster Westerlund 1: a nearby starburst analog

    NASA Astrophysics Data System (ADS)

    Kemper, Francisca

    2014-10-01

    We propose to observe dust forming stars in massive young cluster Westerlund 1 with the FORCASTgrism modes. The objective of this proposal is to determine the crystalline fraction of the silicates formed by the brightest mid-infrared point sources in this cluster, by disentangling the crystalline and amorphous silicate contributions to the infrared spectroscopy. This research is motivated by the discovery of large amounts of crystalline silicate dust in starburst galaxies (Spoon et al. 2006), while the silicates in the interstellar medium of our own galaxies are completely amorphous (Kemper et al. 2004). Spoon et al. explain the high crystallinity by the production by massive stars, although models show this may not be sufficient (Kemper et al. 2011). With these observations we hope to accurately pin down the crystalline silicate production by massive stars in a starburst environment.

  7. Massive outflows driven by magnetic effects in star-forming clouds with high mass accretion rates

    NASA Astrophysics Data System (ADS)

    Matsushita, Yuko; Machida, Masahiro N.; Sakurai, Yuya; Hosokawa, Takashi

    2017-09-01

    The relation between the mass accretion rate on to the circumstellar disc and the rate of mass ejection by magnetically driven winds is investigated using three-dimensional magnetohydrodynamics simulations. Using a spherical cloud core with a varying ratio of thermal to gravitational energy, which determines the mass accretion rate on to the disc, to define the initial conditions, the outflow propagation for approximately 104 yr after protostar formation is then calculated for several cloud cores. The mass ejection rate and accretion rate are comparable only when the magnetic energy of the initial cloud core is comparable to the gravitational energy. Consequently, in strongly magnetized clouds a higher mass accretion rate naturally produces both massive protostars and massive outflows. The simulated outflow mass, momentum, kinetic energy and momentum flux agree well with observations, indicating that massive stars form through the same mechanism as low-mass stars but require a significantly strong magnetic field to launch massive outflows.

  8. The dynamical importance of binary systems in young massive star clusters

    NASA Astrophysics Data System (ADS)

    de Grijs, Richard; Li, Chengyuan; Geller, Aaron M.

    2017-03-01

    Characterization of the binary fractions in star clusters is of fundamental importance for many fields in astrophysics. Observations indicate that the majority of stars are found in binary systems, while most stars with masses greater than 0.5M ⊙ are formed in star clusters. In addition, since binaries are on average more massive than single stars, in resolved star clusters these systems are thought to be good tracers of (dynamical) mass segregation. Over time, dynamical evolution through two-body relaxation will cause the most massive objects to migrate to the cluster center, while the relatively lower-mass objects remain in or migrate to orbits at greater radii. This process will globally dominate a cluster's stellar distribution. However, close encounters involving binary systems may disrupt `soft' binaries. This process will occur more frequently in a cluster's central, dense region than in its periphery, which may mask the effects of mass segregation. Using high resolution Hubble Space Telescope observations, combined with sophisticated N-body simulations, we investigate the radial distributions of the main-sequence binary fractions in massive young Large Magellanic Cloud star clusters. We show that binary disruption may play an important role on very short timescales, depending on the environmental conditions in the cluster cores. This may lead to radial binary fractions that initially decline in the cluster centers, which is contrary to the effects expected from dynamical mass segregation.

  9. A populous intermediate-age open cluster and evidence of an embedded cluster among the FSR globular cluster candidates

    NASA Astrophysics Data System (ADS)

    Bica, E.; Bonatto, C.

    2008-03-01

    We study the nature of the globular cluster (GC) candidates FSR 1603 and FSR1755 selected from the catalogue of Froebrich, Scholz & Raftery. Their properties are investigated with Two-Micron All-Sky Survey field-star decontaminated photometry, which is used to build colour-magnitude diagrams (CMDs) and stellar radial density profiles. FSR1603 has the open cluster Ruprecht 101 as optical counterpart, and we show it to be a massive intermediate-age cluster. Relevant parameters of FSR1603 are the age ~1Gyr, distance from the Sun dsolar ~ 2.7kpc, Galactocentric distance RGC ~ 6.4kpc, core radius RC ~ 1.1pc, mass function slope χ ~ 1.8, observed stellar mass (for stars with mass in the range 1.27 <= m <= 2.03Msolar) Mobs ~ 500Msolar and a total (extrapolated to m = 0.08Msolar) stellar mass Mtot ~ 2300Msolar. FSR1755, on the other hand, is not a populous cluster. It may be a sparse young cluster embedded in the HII region Sh2-3, subject to an absorption AV ~ 4.1, located at dsolar ~ 1.3kpc. Important field-star contamination, spatially variable heavy dust obscuration, even in Ks, and gas emission characterize its field. A nearly vertical, sparse blue stellar sequence shows up in the CMDs.

  10. The multiplicity of massive stars: A high angular resolution survey with the HST fine guidance sensor

    SciTech Connect

    Aldoretta, E. J.; Gies, D. R.; Henry, T. J.; Jao, W.-C.; Norris, R. P. E-mail: gies@chara.gsu.edu E-mail: jao@chara.gsu.edu; and others

    2015-01-01

    We present the results of an all-sky survey made with the Fine Guidance Sensor on the Hubble Space Telescope to search for angularly resolved binary systems among massive stars. The sample of 224 stars is comprised mainly of Galactic O- and B-type stars and luminous blue variables, plus a few luminous stars in the Large Magellanic Cloud. The FGS TRANS mode observations are sensitive to the detection of companions with an angular separation between 0.″01 and 1.″0 and brighter than △m=5. The FGS observations resolved 52 binary and 6 triple star systems and detected partially resolved binaries in 7 additional targets (43 of these are new detections). These numbers yield a companion detection frequency of 29% for the FGS survey. We also gathered literature results on the numbers of close spectroscopic binaries and wider astrometric binaries among the sample, and we present estimates of the frequency of multiple systems and the companion frequency for subsets of stars residing in clusters and associations, field stars, and runaway stars. These results confirm the high multiplicity fraction, especially among massive stars in clusters and associations. We show that the period distribution is approximately flat in increments of logP. We identify a number of systems of potential interest for long-term orbital determinations, and we note the importance of some of these companions for the interpretation of the radial velocities and light curves of close binaries that have third companions.

  11. Gas Content and Star Formation Efficiency of Massive Main Sequence Galaxies at z~3-4

    NASA Astrophysics Data System (ADS)

    Schinnerer, Eva; Groves, Brent; Karim, Alexander; Sargent, Mark T.; Oesch, Pascal; Le Fevre, Olivier; Tasca, Lidia; Magnelli, Benjamin; Cassata, Paolo; Smolcic, Vernesa

    2016-01-01

    Recent observations have shown that the neutral gas content and star formation efficiency of massive (with log(stellar masses) > 10), normal star forming galaxies, i.e. they reside on the main sequence of star forming galaxies, are steadily decreasing from the peak of star formation activity (at redshifts of z~2) till today. This decrease is coincident with the observed decline in the cosmic star formation rate density over this time range. However, only few observations have probed the evolution of the gas content and star formation efficiency beyond this peak epoch when the cosmic star formation rate density has been increasing, i.e. at redshifts of z~3-4.We will present new ALMA rest-frame 250um continuum detections of 45 massive, normal star forming galaxies in this critical redshift interval selected in the COSMOS deep field. Using the sub-mm continnum as proxy for the cold neutral gas content, we find gas mass fractions and depletions similar to those reported during the peak epoch of star formation. We will discuss our findings in the context of results from lower redshift observations and model expectations.

  12. VLT/X-shooter spectroscopy of massive pre-main-sequence stars in M17

    NASA Astrophysics Data System (ADS)

    Ramirez-Tannus, Maria Claudia; Kaper, Lex

    2015-08-01

    The formation process of massive stars is still poorly understood. Formation timescales are short, the corresponding accretion rates very high, and the forming stars are hidden from view due to vast amounts of interstellar extinction. On top of that, massive stars are rare, are located at relatively large distances, and play a major role in shaping the interstellar medium due to their strong UV radiation fields and stellar winds. Although massive stars show most spectral features in the UV and optical range, so far only for a handful of massive Young Stellar Objects (mYSOs) optical and near-infrared spectra have been obtained. For some of these their pre-main-sequence (PMS) nature has now been firmly established (e.g. Ochsendorf et al. 2011, Ellerbroek et al. 2013). The objective of our project is to determine the physical properties of mYSOs, to search for signatures remnant of their formation process and to better understand the feedback on their environment.To this aim the optical to near-infrared (300-2500 nm) spectra of six candidate mYSOs (Hanson et al. 1997), deeply embedded in the massive star forming region M17, have been obtained with X-Shooter on the ESO Very Large Telescope. These mYSO candidates have been identified based on their infrared excess and spectral features (double-peaked emission lines, CO band-head emission) indicating the presence of a disk. In most cases, we detect a photospheric spectrum allowing us to measure the physical properties of the mYSO and to confirm its PMS nature. We also uncover many emission features, including forbidden lines, providing information on the (active) formation process of these young (massive) stars.

  13. The evolution and birth properties of the most massive stars as progenitors of double neutron stars and black holes

    NASA Astrophysics Data System (ADS)

    De Mink, Selma

    Improving our understanding of the evolution of most massive stars from their birth marked by the onset of nuclear burning until their death marked by their final explosions is crucial for predicting an understanding the nature and rate of detectable gravitational wave sources. I will highlight several recent advancements in this area triggered by the combination of theoretical work and new large spectroscopic surveys of massive stars. I will discuss (a) new constraints on the initial conditions: the binary frequency, distribution of separations, mass ratios, eccentricities and rotation rates, (b) ongoing attempts to understand the potentially drastic effects of mixing induced by stellar rotation and its consequences for the final core masses and (c) attempts to find observational constraints for stars with 100-500 solar masses.

  14. Exploring the origin of magnetic fields in massive stars. II. New magnetic field measurements in cluster and field stars

    NASA Astrophysics Data System (ADS)

    Hubrig, S.; Schöller, M.; Ilyin, I.; Kharchenko, N. V.; Oskinova, L. M.; Langer, N.; González, J. F.; Kholtygin, A. F.; Briquet, M.; Magori Collaboration

    2013-03-01

    Context. Theories on the origin of magnetic fields in massive stars remain poorly developed, because the properties of their magnetic field as function of stellar parameters could not yet be investigated. Additional observations are of utmost importance to constrain the conditions that are conducive to magnetic fields and to determine first trends about their occurrence rate and field strength distribution. Aims: To investigate whether magnetic fields in massive stars are ubiquitous or appear only in stars with a specific spectral classification, certain ages, or in a special environment, we acquired 67 new spectropolarimetric observations for 30 massive stars. Among the observed sample, roughly one third of the stars are probable members of clusters at different ages, whereas the remaining stars are field stars not known to belong to any cluster or association. Methods: Spectropolarimetric observations were obtained during four different nights using the low-resolution spectropolarimetric mode of FOcal Reducer low dispersion Spectrograph (FORS 2) mounted on the 8-m Antu telescope of the VLT. Furthermore, we present a number of follow-up observations carried out with the high-resolution spectropolarimeters SOFIN mounted at the Nordic Optical Telescope (NOT) and HARPS mounted at the ESO 3.6 m between 2008 and 2011. To assess the membership in open clusters and associations, we used astrometric catalogues with the highest quality kinematic and photometric data currently available. Results: The presence of a magnetic field is confirmed in nine stars previously observed with FORS 1/2: HD 36879, HD 47839, CPD-28 2561, CPD-47 2963, HD 93843, HD 148937, HD 149757, HD 328856, and HD 164794. New magnetic field detections at a significance level of at least 3σ were achieved in five stars: HD 92206c, HD 93521, HD 93632, CPD-46 8221, and HD 157857. Among the stars with a detected magnetic field, five stars belong to open clusters with high membership probability. According to

  15. An Emerging Wolf-Rayet Massive Star Cluster in NGC 4449

    NASA Astrophysics Data System (ADS)

    Sokal, Kimberly R.; Johnson, Kelsey E.; Indebetouw, Rémy; Reines, Amy E.

    2015-03-01

    We present a panchromatic investigation of the partially embedded, emerging massive cluster Source 26 (=S26) in NGC 4449 with optical spectra obtained at Apache Point Observatory and archival Hubble, Spitzer, and Herschel 5 Space Telescope images. First identified as a radio continuum source with a thermal component due to ionized material, the massive cluster S26 also exhibits optical Wolf-Rayet (WR) emission lines that reveal a large evolved massive star population. We find that S26 is host to ˜240 massive stars, of which ˜18 are WR stars; the relative populations are roughly consistent with other observed massive star-forming clusters and galaxies. We construct SEDs over two spatial scales (˜100 and ˜300 pc) that clearly exhibit warm dust and polycyclic aromatic hydrocarbon (PAH) emission. The best fit dust and grain models reveal that both the intensity of the exciting radiation and PAH grain destruction increase toward the cluster center. Given that the timescale of evacuation is important for the future dynamical evolution of the cluster, it is important to determine whether O-type and WR stars can evacuate the material gradually before supernova do so on a much faster timescale. With a minimum age of ≈ 3 Myr, it is clear that S26 has not yet fully evacuated its natal material, which indicates that unevolved O-type stars alone do not provide sufficient feedback to remove the gas and dust. We hypothesize that the feedback of WR stars in this cluster may be necessary for clearing the material from the gravitational potential of the cluster. We find S26 is similar to emission line clusters observed in the Antennae galaxies and may be considered a younger analog to 30 Doradus in the LMC.

  16. The massive binary companion star to the progenitor of supernova 1993J.

    PubMed

    Maund, Justyn R; Smartt, Stephen J; Kudritzki, Rolf P; Podsiadlowski, Philipp; Gilmore, Gerard F

    2004-01-08

    The massive star that underwent a collapse of its core to produce supernova (SN)1993J was subsequently identified as a non-variable red supergiant star in images of the galaxy M81 taken before explosion. It showed an excess in ultraviolet and B-band colours, suggesting either the presence of a hot, massive companion star or that it was embedded in an unresolved young stellar association. The spectra of SN1993J underwent a remarkable transformation from the signature of a hydrogen-rich type II supernova to one of a helium-rich (hydrogen-deficient) type Ib. The spectral and photometric peculiarities were best explained by models in which the 13-20 solar mass supergiant had lost almost its entire hydrogen envelope to a close binary companion, producing a 'type IIb' supernova, but the hypothetical massive companion stars for this class of supernovae have so far eluded discovery. Here we report photometric and spectroscopic observations of SN1993J ten years after the explosion. At the position of the fading supernova we detect the unambiguous signature of a massive star: the binary companion to the progenitor.

  17. NUCLEOSYNTHESIS AND EVOLUTION OF MASSIVE METAL-FREE STARS

    SciTech Connect

    Heger, Alexander; Woosley, S. E. E-mail: woosley@ucolick.or

    2010-11-20

    The evolution and explosion of metal-free stars with masses 10-100 M{sub sun} are followed, and their nucleosynthetic yields, light curves, and remnant masses determined. Such stars would have been the first to form after the big bang and may have left a distinctive imprint on the composition of the early universe. When the supernova yields are integrated over a Salpeter initial mass function (IMF), the resulting elemental abundance pattern is qualitatively solar, but with marked deficiencies of odd-Z elements with 7 {<=} Z {<=} 13. Neglecting the contribution of the neutrino wind from the neutron stars that they form, no appreciable abundances are made for elements heavier than germanium. The computed pattern compares favorably with what has been observed in metal-deficient stars with [Z] {approx}< -3. The amount of ionizing radiation from this generation of stars is {approx}2.16 MeV per baryon (4.15 B per M{sub sun}; where 1 B = 1 Bethe = 10{sup 51} erg) for a Salpeter IMF, and may have played a role in reionizing the universe. Neglecting rotation, most of the stars end their lives as blue supergiants and form supernovae with distinctive light curves resembling SN 1987A, but some produce primary nitrogen due to dredge-up and become red supergiants. These make brighter supernovae like typical Type IIp's. For the lower mass supernovae considered, the distribution of remnant masses clusters around typical modern neutron star masses, but above 20-30 M{sub sun}, with the value depending on explosion energy, black holes are copiously formed by fallback, with a maximum hole mass of {approx}40 M{sub sun}. A novel automated fitting algorithm is developed for determining optimal combinations of explosion energy, mixing, and IMF in the large model database to agree with specified data sets. The model is applied to the low-metallicity sample of Cayrel et al. and the two ultra-iron-poor stars HE0107-5240 and HE1327-2326. Best agreement with these very low metallicity stars is

  18. B fields in OB stars (BOB): Low-resolution FORS2 spectropolarimetry of the first sample of 50 massive stars

    NASA Astrophysics Data System (ADS)

    Fossati, L.; Castro, N.; Schöller, M.; Hubrig, S.; Langer, N.; Morel, T.; Briquet, M.; Herrero, A.; Przybilla, N.; Sana, H.; Schneider, F. R. N.; de Koter, A.; BOB Collaboration

    2015-10-01

    Within the context of the collaboration "B fields in OB stars" (BOB), we used the FORS2 low-resolution spectropolarimeter to search for a magnetic field in 50 massive stars, including two reference magnetic massive stars. Because of the many controversies of magnetic field detections obtained with the FORS instruments, we derived the magnetic field values with two completely independent reduction and analysis pipelines. We compare and discuss the results obtained from the two pipelines. We obtained a general good agreement, indicating that most of the discrepancies on magnetic field detections reported in the literature are caused by the interpretation of the significance of the results (i.e., 3-4σ detections considered as genuine, or not), instead of by significant differences in the derived magnetic field values. By combining our results with past FORS1 measurements of HD 46328, we improve the estimate of the stellar rotation period, obtaining P = 2.17950 ± 0.00009 days. For HD 125823, our FORS2 measurements do not fit the available magnetic field model, based on magnetic field values obtained 30 years ago. We repeatedly detect a magnetic field for the O9.7V star HD 54879, the HD 164492C massive binary, and the He-rich star CPD -57 3509. We obtain a magnetic field detection rate of 6 ± 4%, while by considering only the apparently slow rotators we derive a detection rate of 8 ± 5%, both comparable with what was previously reported by other similar surveys. We are left with the intriguing result that, although the large majority of magnetic massive stars is rotating slowly, our detection rate is not a strong function of the stellar rotational velocity. Based on observations made with ESO Telescopes at the La Silla Paranal Observatory under programme ID 191.D-0255(A, C).

  19. Constraining the axion-photon coupling with massive stars.

    PubMed

    Friedland, Alexander; Giannotti, Maurizio; Wise, Michael

    2013-02-08

    We point out that stars in the mass window ~8-12M([circumpunct]) can serve as sensitive probes of the axion-photon interaction, g(Aγγ). Specifically, for these stars axion energy losses from the helium-burning core would shorten and eventually eliminate the blue loop phase of the evolution. This would contradict observational data, since the blue loops are required, e.g., to account for the existence of Cepheid stars. Using the MESA stellar evolution code, modified to include the extra cooling, we conservatively find g(Aγγ)

  20. Massive Star Clusters and the high-mass population in the Galactic center

    NASA Astrophysics Data System (ADS)

    Stolte, A.

    2013-06-01

    With a star formation rate of 10% of the SFR in the Milky Way disc, the Galactic center is the most active star-forming environment in the Milky Way today. The small volume of the central molecular zone (CMZ), spanning a diameter of merely 400 pc, appears to foster especially the formation of high-mass stars. The CMZ is host to three of the most massive, young star clusters and a quarter of the known Wolf-Rayet population in the Galaxy. In this review, I will present the census of high-mass star formation that emerged from the recent Galactic center surveys, and will summarise the properties of the starburst clusters as the most productive sites of high-mass star formation.

  1. VizieR Online Data Catalog: Models for massive low-Z single stars (Szecsi+, 2015)

    NASA Astrophysics Data System (ADS)

    Szecsi, D.; Langer, N.; Yoon, S.-C.; Sanyal, D.; de Mink, S. E.; Evans, C. J.; Dermine, T.

    2015-07-01

    Massive rotating single stars with an initial metal composition appropriate for the dwarf galaxy I Zw 18 ([Fe/H]=-1.7) are modelled during hydrogen burning for initial masses of 9-300M⊙ and rotational velocities of 0-900km/s. Internal mixing processes in these models were calibrated based on an observed sample of OB-type stars in the Magellanic Clouds. (4 data files).

  2. Rubidium and zirconium abundances in massive Galactic asymptotic giant branch stars revisited

    NASA Astrophysics Data System (ADS)

    Pérez-Mesa, V.; Zamora, O.; García-Hernández, D. A.; Plez, B.; Manchado, A.; Karakas, A. I.; Lugaro, M.

    2017-09-01

    Context. Luminous Galactic OH/IR stars have been identified as massive (>4-5 M⊙) asymptotic giant branch (AGB) stars experiencing hot bottom burning and Li production. Their Rb abundances and [Rb/Zr] ratios, as derived from classical hydrostatic model atmospheres, are significantly higher than predictions from AGB nucleosynthesis models, posing a problem for our understanding of AGB evolution and nucleosynthesis. Aims: We report new Rb and Zr abundances in the full sample (21) of massive Galactic AGB stars, previously studied with hydrostatic models, by using more realistic extended model atmospheres. Methods: For this, we use a modified version of the spectral synthesis code Turbospectrum and consider the presence of a circumstellar envelope and radial wind in the modelling of the optical spectra of these massive AGB stars. The Rb and Zr abundances are determined from the 7800 Å Rb I resonant line and the 6474 Å ZrO bandhead, respectively, and we explore the sensitivity of the derived abundances to variations of the stellar (Teff) and wind (Ṁ, β and vexp) parameters in the pseudo-dynamical models. The Rb and Zr abundances derived from the best spectral fits are compared with the most recent AGB nucleosynthesis theoretical predictions. Results: The Rb abundances derived with the pseudo-dynamical models are much lower (in the most extreme stars even by 1-2 dex) than those derived with the hydrostatic models, while the Zr abundances are similar. The Rb I line profile and Rb abundance are very sensitive to the wind mass-loss rate Ṁ (especially for Ṁ ≥ 10-8M⊙ yr-1) but much less sensitive to variations of the wind velocity-law (β parameter) and the expansion velocity vexp(OH). Conclusions: We confirm the earlier preliminary results based on a smaller sample of massive O-rich AGB stars, suggesting that the use of extended atmosphere models can solve the discrepancy between the AGB nucleosynthesis theoretical models and the observations of Galactic

  3. The MiMeS survey of magnetism in massive stars: CNO surface abundances of Galactic O stars

    NASA Astrophysics Data System (ADS)

    Martins, F.; Hervé, A.; Bouret, J.-C.; Marcolino, W.; Wade, G. A.; Neiner, C.; Alecian, E.; Grunhut, J.; Petit, V.

    2015-03-01

    Context. The evolution of massive stars is still partly unconstrained. Mass, metallicity, mass loss, and rotation are the main drivers of stellar evolution. Binarity and the magnetic field may also significantly affect the fate of massive stars. Aims: Our goal is to investigate the evolution of single O stars in the Galaxy. Methods: For that, we used a sample of 74 objects comprising all luminosity classes and spectral types from O4 to O9.7. We relied on optical spectroscopy obtained in the context of the MiMeS survey of massive stars. We performed spectral modelling with the code CMFGEN. We determined the surface properties of the sample stars, with special emphasis on abundances of carbon, nitrogen, and oxygen. Results: Most of our sample stars have initial masses in the range of 20 to 50 M⊙. We show that nitrogen is more enriched and carbon and oxygen are more depleted in supergiants than in dwarfs, with giants showing intermediate degrees of mixing. CNO abundances are observed in the range of values predicted by nucleosynthesis through the CNO cycle. More massive stars, within a given luminosity class, appear to be more chemically enriched than lower mass stars. We compare our results with predictions of three types of evolutionary models and show that for two sets of models, 80% of our sample can be explained by stellar evolution including rotation. The effect of magnetism on surface abundances is unconstrained. Conclusions: Our study indicates that in the 20-50 M⊙ mass range, the surface chemical abundances of most single O stars in the Galaxy are fairly well accounted for by stellar evolution of rotating stars. Based on observations obtained at 1) the Telescope Bernard Lyot (USR5026) operated by the Observatoire Midi-Pyrénées, Université de Toulouse (Paul Sabatier), Centre National de la Recherche Scientifique of France; 2) at the Canada-France-Hawaii Telescope (CFHT) which is operated by the National Research Council (NRC) of Canada, the Institut

  4. Formation of new stellar populations from gas accreted by massive young star clusters.

    PubMed

    Li, Chengyuan; de Grijs, Richard; Deng, Licai; Geller, Aaron M; Xin, Yu; Hu, Yi; Faucher-Giguère, Claude-André

    2016-01-28

    Stars in clusters are thought to form in a single burst from a common progenitor cloud of molecular gas. However, massive, old 'globular' clusters--those with ages greater than ten billion years and masses several hundred thousand times that of the Sun--often harbour multiple stellar populations, indicating that more than one star-forming event occurred during their lifetimes. Colliding stellar winds from late-stage, asymptotic-giant-branch stars are often suggested to be triggers of second-generation star formation. For this to occur, the initial cluster masses need to be greater than a few million solar masses. Here we report observations of three massive relatively young star clusters (1-2 billion years old) in the Magellanic Clouds that show clear evidence of burst-like star formation that occurred a few hundred million years after their initial formation era. We show that such clusters could have accreted sufficient gas to form new stars if they had orbited in their host galaxies' gaseous disks throughout the period between their initial formation and the more recent bursts of star formation. This process may eventually give rise to the ubiquitous multiple stellar populations in globular clusters.

  5. Linking 1D evolutionary to 3D hydrodynamical simulations of massive stars

    NASA Astrophysics Data System (ADS)

    Cristini, A.; Meakin, C.; Hirschi, R.; Arnett, D.; Georgy, C.; Viallet, M.

    2016-03-01

    Stellar evolution models of massive stars are important for many areas of astrophysics, for example nucleosynthesis yields, supernova progenitor models and understanding physics under extreme conditions. Turbulence occurs in stars primarily due to nuclear burning at different mass coordinates within the star. The understanding and correct treatment of turbulence and turbulent mixing at convective boundaries in stellar models has been studied for decades but still lacks a definitive solution. This paper presents initial results of a study on convective boundary mixing (CBM) in massive stars. The ‘stiffness’ of a convective boundary can be quantified using the bulk Richardson number ({{Ri}}{{B}}), the ratio of the potential energy for restoration of the boundary to the kinetic energy of turbulent eddies. A ‘stiff’ boundary ({{Ri}}{{B}}˜ {10}4) will suppress CBM, whereas in the opposite case a ‘soft’ boundary ({{Ri}}{{B}}˜ 10) will be more susceptible to CBM. One of the key results obtained so far is that lower convective boundaries (closer to the centre) of nuclear burning shells are ‘stiffer’ than the corresponding upper boundaries, implying limited CBM at lower shell boundaries. This is in agreement with 3D hydrodynamic simulations carried out by Meakin and Arnett (2007 Astrophys. J. 667 448-75). This result also has implications for new CBM prescriptions in massive stars as well as for nuclear burning flame front propagation in super-asymptotic giant branch stars and also the onset of novae.

  6. Massive Star Goes Out With a Whimper Instead of a Bang (Artist's Concept)

    NASA Image and Video Library

    2017-05-25

    Every second a star somewhere out in the universe explodes as a supernova. But some extremely massive stars go out with a whimper instead of a bang. When they do, they can collapse under the crushing tug of gravity and vanish out of sight, only to leave behind a black hole. The doomed star N6946-BH1 was 25 times as massive as our sun. It began to brighten weakly in 2009. But, by 2015, it appeared to have winked out of existence. By a careful process of elimination, based on observations by the Large Binocular Telescope and NASA's Hubble and Spitzer space telescopes, researchers eventually concluded that the star must have become a black hole. This may be the fate for extremely massive stars in the universe. This illustration shows the final stages in the life of a supermassive star that fails to explode as a supernova, but instead implodes to form a black hole. https://photojournal.jpl.nasa.gov/catalog/PIA21466

  7. THE MASSIVE STAR POPULATION IN M101. I. THE IDENTIFICATION AND SPATIAL DISTRIBUTION OF THE VISUALLY LUMINOUS STARS

    SciTech Connect

    Grammer, Skyler; Humphreys, Roberta M. E-mail: roberta@umn.edu

    2013-11-01

    An increasing number of non-terminal giant eruptions are being observed by modern supernova and transient surveys. But very little is known about the origin of these giant eruptions and their progenitors, many of which are presumably very massive, evolved stars. Motivated by the small number of progenitors positively associated with these giant eruptions, we have begun a survey of the evolved massive star populations in nearby galaxies. The nearby, nearly face-on, giant spiral M101 is an excellent laboratory for studying a large population of very massive stars. In this paper, we present BVI photometry obtained from archival HST/ACS Wide Field Camera images of M101. We have produced a catalog of luminous stars with photometric errors <10% for V < 24.5 and 50% completeness down to V ∼ 26.5 even in regions of high stellar crowding. Using color and luminosity criteria, we have identified candidate luminous OB-type stars and blue supergiants, yellow supergiants, and red supergiants for future observation. We examine their spatial distributions across the face of M101 and find that the ratio of blue to red supergiants decreases by two orders of magnitude over the radial extent of M101 corresponding to 0.5 dex in metallicity. We discuss the resolved stellar content in the giant star-forming complexes NGC 5458, 5453, 5461, 5451, 5462, and 5449 and discuss their color-magnitude diagrams in conjunction with the spatial distribution of the stars to determine their spatio-temporal formation histories.

  8. The Massive Star Population in M101. I. The Identification and Spatial Distribution of the Visually Luminous Stars

    NASA Astrophysics Data System (ADS)

    Grammer, Skyler; Humphreys, Roberta M.

    2013-11-01

    An increasing number of non-terminal giant eruptions are being observed by modern supernova and transient surveys. But very little is known about the origin of these giant eruptions and their progenitors, many of which are presumably very massive, evolved stars. Motivated by the small number of progenitors positively associated with these giant eruptions, we have begun a survey of the evolved massive star populations in nearby galaxies. The nearby, nearly face-on, giant spiral M101 is an excellent laboratory for studying a large population of very massive stars. In this paper, we present BVI photometry obtained from archival HST/ACS Wide Field Camera images of M101. We have produced a catalog of luminous stars with photometric errors <10% for V < 24.5 and 50% completeness down to V ~ 26.5 even in regions of high stellar crowding. Using color and luminosity criteria, we have identified candidate luminous OB-type stars and blue supergiants, yellow supergiants, and red supergiants for future observation. We examine their spatial distributions across the face of M101 and find that the ratio of blue to red supergiants decreases by two orders of magnitude over the radial extent of M101 corresponding to 0.5 dex in metallicity. We discuss the resolved stellar content in the giant star-forming complexes NGC 5458, 5453, 5461, 5451, 5462, and 5449 and discuss their color-magnitude diagrams in conjunction with the spatial distribution of the stars to determine their spatio-temporal formation histories.

  9. A multiwavelength study of evolved massive stars in the Galactic Centre

    NASA Astrophysics Data System (ADS)

    Dong, H.; Wang, Q. D.; Morris, M. R.

    2012-09-01

    The central region of the Milky Way Galaxy provides a unique laboratory for a systematic, spatially resolved population study of evolved massive stars of various types in a relatively high-metallicity environment. We have conducted a multiwavelength data analysis of 180 such stars or candidates, most of which were drawn from a recent large-scale Hubble Space Telescope (HST)/Near-Infrared Camera and MultiObject Spectrometer (NICMOS) narrow-band Paschen α survey, plus additional 14 Wolf-Rayet stars identified in earlier ground-based spectroscopic observations of the same field. The multiwavelength data include broad-band infrared (IR) photometry measurements from HST/NIC2, Simultaneous three-colour InfraRed Imager for Unbiased Surveys (SIRIUS), Two-Micron All-Sky Survey (2MASS), Spitzer/IRAC and X-ray observations from Chandra. We correct for extinctions towards individual stars, improve the Paschen α line equivalent width measurements, quantify the substantial mid-IR dust emission associated with carbon sequence Wolf-Rayet (WC) stars and find X-ray counterparts. In the process, we identify 10 foreground sources, some of which may be nearby cataclysmic variables. The nitrogen sequence Wolf-Rayet (WN) stars in the Arches and Central clusters show correlations between the Paschen α equivalent width and the adjacent continuum emission. However, the WN stars in the latter cluster are systematically dimmer than those in the Arches cluster, presumably due to the different ages of the two clusters. In the equivalent width-magnitude plot, late-type nitrogen sequence Wolf-Rayet (WNL) stars, WC stars and OB supergiants roughly fall into three distinct regions. We estimate that the dust mass associated with individual WC stars in the quintuplet cluster can reach 10-5 M⊙, or more than one order of magnitude larger than previous estimates. Thus, WC stars could be a significant source of dust in the galaxies of the early Universe. Nearly half of the evolved massive stars in

  10. SOUTHERN MASSIVE STARS AT HIGH ANGULAR RESOLUTION: OBSERVATIONAL CAMPAIGN AND COMPANION DETECTION

    SciTech Connect

    Sana, H.; Lacour, S.; Gauchet, L.; Pickel, D.; Berger, J.-P.; Norris, B.; Olofsson, J.; Absil, O.; De Koter, A.; Kratter, K.; Schnurr, O.; Zinnecker, H.

    2014-11-01

    Multiplicity is one of the most fundamental observable properties of massive O-type stars and offers a promising way to discriminate between massive star formation theories. Nevertheless, companions at separations between 1 and 100 milliarcsec (mas) remain mostly unknown due to intrinsic observational limitations. At a typical distance of 2 kpc, this corresponds to projected physical separations of 2-200 AU. The Southern MAssive Stars at High angular resolution survey (SMaSH+) was designed to fill this gap by providing the first systematic interferometric survey of Galactic massive stars. We observed 117 O-type stars with VLTI/PIONIER and 162 O-type stars with NACO/Sparse Aperture Masking (SAM), probing the separation ranges 1-45 and 30-250 mas and brightness contrasts of ΔH < 4 and ΔH < 5, respectively. Taking advantage of NACO's field of view, we further uniformly searched for visual companions in an 8'' radius down to ΔH = 8. This paper describes observations and data analysis, reports the discovery of almost 200 new companions in the separation range from 1 mas to 8'' and presents a catalog of detections, including the first resolved measurements of over a dozen known long-period spectroscopic binaries. Excluding known runaway stars for which no companions are detected, 96 objects in our main sample (δ < 0°; H < 7.5) were observed both with PIONIER and NACO/SAM. The fraction of these stars with at least one resolved companion within 200 mas is 0.53. Accounting for known but unresolved spectroscopic or eclipsing companions, the multiplicity fraction at separation ρ < 8'' increases to f {sub m} = 0.91 ± 0.03. The fraction of luminosity class V stars that have a bound companion reaches 100% at 30 mas while their average number of physically connected companions within 8'' is f {sub c} = 2.2 ± 0.3. This demonstrates that massive stars form nearly exclusively in multiple systems. The nine non-thermal radio emitters observed by SMaSH+ are all resolved

  11. Southern Massive Stars at High Angular Resolution: Observational Campaign and Companion Detection

    NASA Astrophysics Data System (ADS)

    Sana, H.; Le Bouquin, J.-B.; Lacour, S.; Berger, J.-P.; Duvert, G.; Gauchet, L.; Norris, B.; Olofsson, J.; Pickel, D.; Zins, G.; Absil, O.; de Koter, A.; Kratter, K.; Schnurr, O.; Zinnecker, H.

    2014-11-01

    Multiplicity is one of the most fundamental observable properties of massive O-type stars and offers a promising way to discriminate between massive star formation theories. Nevertheless, companions at separations between 1 and 100 milliarcsec (mas) remain mostly unknown due to intrinsic observational limitations. At a typical distance of 2 kpc, this corresponds to projected physical separations of 2-200 AU. The Southern MAssive Stars at High angular resolution survey (SMaSH+) was designed to fill this gap by providing the first systematic interferometric survey of Galactic massive stars. We observed 117 O-type stars with VLTI/PIONIER and 162 O-type stars with NACO/Sparse Aperture Masking (SAM), probing the separation ranges 1-45 and 30-250 mas and brightness contrasts of ΔH < 4 and ΔH < 5, respectively. Taking advantage of NACO's field of view, we further uniformly searched for visual companions in an 8'' radius down to ΔH = 8. This paper describes observations and data analysis, reports the discovery of almost 200 new companions in the separation range from 1 mas to 8'' and presents a catalog of detections, including the first resolved measurements of over a dozen known long-period spectroscopic binaries. Excluding known runaway stars for which no companions are detected, 96 objects in our main sample (δ < 0° H < 7.5) were observed both with PIONIER and NACO/SAM. The fraction of these stars with at least one resolved companion within 200 mas is 0.53. Accounting for known but unresolved spectroscopic or eclipsing companions, the multiplicity fraction at separation ρ < 8'' increases to f m = 0.91 ± 0.03. The fraction of luminosity class V stars that have a bound companion reaches 100% at 30 mas while their average number of physically connected companions within 8'' is f c = 2.2 ± 0.3. This demonstrates that massive stars form nearly exclusively in multiple systems. The nine non-thermal radio emitters observed by SMaSH+ are all resolved, including the newly

  12. RCW 108: Massive Young Stars Trigger Stellar Birth

    NASA Image and Video Library

    2008-10-06

    RCW 108 is a region where stars are actively forming within the Milky Way galaxy about 4,000 light years from Earth. This image is part of a large collection of images of merging galaxies taken by NASA Hubble Space Telescope.

  13. Very massive neutron stars in Ni's theory of gravity

    NASA Technical Reports Server (NTRS)

    Mikkelsen, D. R.

    1977-01-01

    It is shown that in Ni's theory of gravity, which is identical to general relativity in the post-Newtonian limit, neutron stars of arbitrarily large mass are possible. This result is independent, within reasonable bounds, of the equation of state of matter at supernuclear densities.

  14. Very massive neutron stars in Ni's theory of gravity

    NASA Technical Reports Server (NTRS)

    Mikkelsen, D. R.

    1977-01-01

    It is shown that in Ni's theory of gravity, which is identical to general relativity in the post-Newtonian limit, neutron stars of arbitrarily large mass are possible. This result is independent, within reasonable bounds, of the equation of state of matter at supernuclear densities.

  15. Hydrocarbons near the Cores of Massive Star-Forming Regions

    NASA Astrophysics Data System (ADS)

    Jiang, Xue-Jian

    2015-08-01

    Chemical models suggest that the reduced abundance of the abundant molecular species C2H can be the signpost of the heated molecular gas in the ˜104 AU vicinity around embedded high-mass stars. High angular resolution observations of C2H and other simple hydrocanbons therefore may offer valuable diagnose of embedded star-forming activities. With the aid of single dish (Delingha, CSO, JCMT) and interferometric (SMA and CARMA) observations of C2H, C3H, HC3N, etc., and mm continuum emission towards a few OB cluster-forming regions AFGL 490, ON 1, W33 Main, and G10.6-0.4, which cover a broad range of bolometric luminosity (˜103-106 L⊙). We found that on large scales, the C2H line emission traces the dense molecular gas envelope. However, for all observed sources, the C2H emission peaks are offset by several times 104 AU from the 1.1 mm continuum emission peaks, at which the most luminous stars are located. The C2H hyperfine lines and the 1.1 mm continuum emission show that the C2H column density (and abundances) around the continuum peaks is lower than those in the ambient gas envelope. Our results support the theoretical prediction for centrally embedded ˜103-106 L⊙ OB star-forming cores, while future higher resolution observations, as well as comparison with elaborate chemical models are required to examine the behavior of hydrocarbons around the localized sites of high-mass star-formation.

  16. New Results on Nucleosynthesis in Massive Stars; Nuclear Data Needs for Nucleosynthesis

    SciTech Connect

    Hoffman, R; Rauscher, T; Heger, A; Woosley, S

    2001-11-09

    We review the current status of the nuclear reaction rates needed to study nucleosynthesis in massive stars. Results for the calculated nucleosynthesis of all stable species from Hydrogen to Bismuth in a completely evolved 25 M{sub {circle_dot}} star of initial solar metallicity will be presented. Special emphasis will be paid to two particular reactions, {sup 12}C({alpha}, {gamma}){sup 16}O and {sup 22}Ne({alpha},n){sup 25}Mg, and their effect on the structure of the star and resultant nucleosynthesis. Both have been measured many times, but the present range of experimental uncertainty translates into remarkable sensitivity of the calculated nucleosynthesis.

  17. Variability Survey of Massive Stars in OB-Associations: Preliminary Results on the Cygnus Region

    NASA Astrophysics Data System (ADS)

    Laur, J.; Tuvikene, T.; Eenmäe, T.; Kolka, I.; Leedjärv, L.

    We present V- and I-passband photometry of massive stars in the Cyg OB1 and Cyg OB2 associations, based on about 80 observing nights spanning 300 days in the 2011 season. The variability of 22 supergiants and 48 OB-stars with luminosity classes III--V is analyzed. We report two new variable OB stars and 15 variable supergiants of which four are new discoveries. The light variations of Schulte 12 are interpreted as microvariability. We also present light curves of the red supergiants BC Cyg and BI Cyg which exhibit brightness drop of more than 0.4 mag during the season.

  18. Evolution of Intermediate Mass and Massive Binary Stars: Physics, Mass Loss, and Rotation

    NASA Astrophysics Data System (ADS)

    Vanbeveren, D.; Mennekens, N.

    2017-02-01

    In the present review we discuss the past and present status of the interacting OB-type binary frequency. We critically examine the popular idea that Be-stars and supergiant sgB[e] stars are binary evolutionary products. The effects of rotation on stellar evolution in general, stellar population studies in particular, and the link with binaries will be evaluated. Finally a discussion is presented of massive double compact star binary mergers as possible major sites of chemical enrichment of r-process elements and as the origin of recent aLIGO GW events.

  19. Origins of massive field stars in the Galactic Centre: a spectroscopic study

    NASA Astrophysics Data System (ADS)

    Dong, Hui; Mauerhan, Jon; Morris, Mark R.; Wang, Q. Daniel; Cotera, Angela

    2015-01-01

    Outside of the known star clusters in the Galactic Centre, a large number of evolved massive stars have been detected; but their origins remain uncertain. We present a spectroscopic study of eight such stars, based on new Gemini Near-Infrared Spectrograph (GNIRS) and Near-IR Integral Field Spectrograph (NIFS) near-infrared observations. This work has led to the discovery of a new O If+ star. We compare the reddening-corrected J - K versus K diagram for our stars with the massive ones in the Arches cluster and use stellar evolutionary tracks to constrain their ages and masses. The radial velocities of both the stars and their nearby H II regions are also reported. All of the stars are blueshifted relative to the Arches cluster by > 50 km s-1. We find that our source P35 has a velocity consistent with that of the surrounding molecular gas. The velocity gradient of nearby ionized gas along the Gemini GNIRS long slit, relative to P35 and the adjacent -30 to 0 km s-1 molecular cloud, can best be explained by a pressure-driven flow model. Thus, P35 most likely formed in situ. Three more of our stars have radial velocities different from their adjacent molecular gas, indicating that they are interlopers. The four stars closest to the Arches cluster have similar spectra, ages and masses to known cluster members, suggesting that they were likely ejected from the cluster via three-body interactions. Therefore, we find that the relatively isolated stars are partly form in situ and partly be ejected from the known star clusters in the Galactic Center.

  20. Non-linear Oscillations of Massive Stars Near the Eddington Limit

    NASA Astrophysics Data System (ADS)

    Sanyal, Debashis; Langer, Norbert

    2013-06-01

    The physics of massive star evolution, even on the main sequence is marred by uncertainties and hence, poorly understood. The focus of our work lies on the evolution of very massive stars on the main sequence when they approach the Eddington limit. Massive stars evolving near the Eddington limit are characterized by pronounced core-halo structures (Ishii et al. 1999) with extended low density envelopes accounting for even ~ 70% of the stellar radius, and density inversions (Petrovic et al. 2006, Graefener et al. 2011). These are ideal conditions or radial oscillations called ``strange modes'' (Glatzel 2004) which have very small growth times (~ dynamical timescale). We present non-linear calculations of these pulsations using a state-of-the-art one-dimensional hydrodynamic stellar evolution code (BEC) and latest input physics. The brightness perturbations caused as a result may relate to the microvariations observed in LBVs like AG Car (Lamers et al. 2004) or in supergiants like Deneb. Moreover, the feature of inflated envelopes coupled with the dynamic pulsations can play a major role in the modelling of mass transfer in very massive binary systems. We investigate how mass loss (through RLOF or wind) from such inflated stars may affect the envelope structure.

  1. Disks Surrounding Massive Stars: When Computational Models are Confronted by Observations

    DTIC Science & Technology

    2010-01-01

    frecuentemente, ĺıneas de emisión de metales una vez ionizados, debido a la presencia del disco. Hemos calculado modelos teóricos computacionales de...parámetros libres del modelo para estos sistemas estrella-disco. ABSTRACT Many massive stars are embedded within gaseous circumstellar matter; sometimes dust

  2. Study of Intermediate Age (~10-30 Myr) Open Clusters

    NASA Astrophysics Data System (ADS)

    Olguin, Lorenzo; Michel, Raul; Contreras, Maria; Hernandez, Jesus; Schuster, William; Chavarria-Kleinhenn, Carlos

    2013-07-01

    We present the study of a sample of intermediate age open clusters (age ~ 10-30 Myr) using optical (UBVRI) and infrared photometric data. Optical photometry was obtained as part of the San Pedro Martir Open Clusters Project (SPM-OCP, Schuster et al. 2007; Michel et al. 2013). Infrared photometry was retrieved from 2MASS public data archive and WISE database. Open clusters included in the SPM-OCP were selected from catalogues presented by Dias et al. (2002) and Froebrich, Scholz & Raftery (2007). One of the main goals of the SPM-OCP is to compile a self-consistent and homogeneous set of cluster fundamental parameters such as reddening, distance, age, and metallicity whenever possible. In this work, we have analyzed a set of 25 clusters from the SPM-OCP with estimated ages between 10 and 30 Myr. Derived fundamental parameters for each cluster in the sample as well as an example of typical color-color and color-magnitude diagrams are presented. Kinematic membership was established by using proper motion data taken from the literature. Based on infrared photometry, we have searched for candidate stars to posses a circumstellar disk within each clusters. For those selected candidates a follow-up spectroscpic study is being carried out. This work was partially supported by UNAM-PAPIIT grant IN-109311.

  3. The High Angular Resolution Multiplicity of Massive Stars

    DTIC Science & Technology

    2009-02-01

    Measure obtained with the NOFS 61 inch reflector. Inadvertently omitted from Hartkopf et al. (2008). (10) Measure obtained with the Mt . Wilson 100 ...measures from the Kitt Peak and Cerro Tololo 4 m telescopes, the Mount Wilson 100 inch , and the USNO (Flagstaff Station) 61 inch , as well as un- published...sug- gested that the true binary frequency may reach 100 % among cluster stars once account is made for the observational bias against detection of

  4. Star formation in the massive cluster merger Abell 2744

    NASA Astrophysics Data System (ADS)

    Rawle, T. D.; Altieri, B.; Egami, E.; Pérez-González, P. G.; Richard, J.; Santos, J. S.; Valtchanov, I.; Walth, G.; Bouy, H.; Haines, C. P.; Okabe, N.

    2014-07-01

    We present a comprehensive study of star-forming (SF) galaxies in the Hubble Space Telescope (HST) Frontier Field recent cluster merger A2744 (z = 0.308). Wide-field, ultraviolet-infrared (UV-IR) imaging enables a direct constraint of the total star formation rate (SFR) for 53 cluster galaxies, with SFRUV+IR = 343 ± 10 M⊙ yr-1. Within the central 4 arcmin (1.1 Mpc) radius, the integrated SFR is complete, yielding a total SFRUV+IR = 201 ± 9 M⊙ yr-1. Focusing on obscured star formation, this core region exhibits a total SFRIR = 138 ± 8 M⊙ yr-1, a mass-normalized SFRIR of ΣSFR = 11.2 ± 0.7 M⊙ yr-1 per 1014 M⊙ and a fraction of IR-detected SF galaxies f_SF = 0.080^{+0.010}_{-0.037}. Overall, the cluster population at z ˜ 0.3 exhibits significant intrinsic scatter in IR properties (total SFRIR, Tdust distribution) apparently unrelated to the dynamical state: A2744 is noticeably different to the merging Bullet cluster, but similar to several relaxed clusters. However, in A2744 we identify a trail of SF sources including jellyfish galaxies with substantial unobscured SF due to extreme stripping (SFRUV/SFRIR up to 3.3). The orientation of the trail, and of material stripped from constituent galaxies, indicates that the passing shock front of the cluster merger was the trigger. Constraints on star formation from both IR and UV are crucial for understanding galaxy evolution within the densest environments.

  5. Magnetic Models of Circumstellar Clouds around Massive Stars

    NASA Astrophysics Data System (ADS)

    Owocki, S.; Townsend, R.; Ud-Doula, A.

    2008-08-01

    This talk reviewed recent efforts to develop dynamical models for the effects of a surface dipole field on radiatively driven wind outflows. One particular project applies magnetohydrodynamic (MHD) simulations of a Magnetically Confined Wind Shock (MCWS) model (originally developed by Babel & Montmerle 1997) to explain X-ray emission observed by Rosat (Gagné et al. 1997) from the magnetic O7V star θ^{1 Ori C.

  6. Chemical abundances of massive stars in Local Group galaxies

    NASA Astrophysics Data System (ADS)

    Venn, Kim A.; Kaufer, Andreas; Tolstoy, Eline; Kudritzki, Rolf-Peter; Przybilla, Norbert; Smartt, Stephen J.; Lennon, Daniel J.

    The relative abundances of elements in galaxies can provide valuable information on the stellar and chemical evolution of a galaxy. While nebulae can provide abundances for a variety of light elements, stars are the only way to directly determine the abundances of iron-group and s-process and r-process elements in a galaxy. The new 8m and 10m class telescopes and high-efficiency spectrographs now make high-quality spectral observations of bright supergiants possible in dwarf galaxies in the Local Group. We have been concentrating on elemental abundances in the metal-poor dwarf irregular galaxies, NGC 6822, WLM, Sextants A, and GR 8. Comparing abundance ratios to those predicted from their star formation histories, determined from color-magnitude diagrams, and comparing those ratios between these galaxies can give us new insights into the evolution of these dwarf irregular galaxies. Iron-group abundances also allow us to examine the metallicities of the stars in these galaxies directly, which affects their inferred mass loss rates and predicted stellar evolution properties.

  7. The mass-radius relationship of massive compact stars

    SciTech Connect

    Chowdhury, Partha Roy

    2015-02-24

    The properties of pure hadronic and hybrid compact stars are reviewed using nuclear equation of state (EoS) for β-equilibrated neutron star (NS) matter obtained using a density-dependent M3Y (DDM3Y) effective nucleon-nucleon interaction. Depending on the model, the energy density of quark matter can be lower than that of this nuclear EoS at higher densities, implying the possibility of transition to quark matter inside the core and the transition density depends on the particular quark matter model used. The recent observations of the binary millisecond pulsar J1614–2230 by P.B. Demorest et al. [1] and PSR J0348+0432 by J. Antoniadis et al. [2] suggest that the masses lie within 1.97 ± 0.04 M{sub ⊙} and 2.01 ± 0.04 M{sub ⊙}, respectively, where M{sub ⊙} is the solar mass. In conformity with recent observations, a pure nucleonic EoS determines that the maximum mass of NS rotating with frequency ν∼ 667 Hz below r-mode instability is ∼ 1.95 M{sub ⊙} with radius ∼ 10 km. Compact stars with quark cores rotating with same frequency have the maximum mass of ∼ 1.72 M{sub ⊙} turns out to be lower than the observed masses.

  8. Feedback-regulated star formation - II. Dual constraints on the SFE and the age spread of stars in massive clusters

    NASA Astrophysics Data System (ADS)

    Dib, Sami; Gutkin, Julia; Brandner, Wolfgang; Basu, Shantanu

    2013-12-01

    We show that the termination of the star formation process by winds from massive stars in protocluster-forming clumps imposes dual constraints on the star formation efficiencies (SFEs) and stellar age spreads (Δτ*) in stellar clusters. We have considered two main classes of clump models. One class of models is one in which the core formation efficiency (CFE) per unit time and as a consequence the star formation rate (SFR) is constant in time and another class of models in which the CFE per unit time, and as a consequence the SFR, increases with time. Models with an increasing mode of star formation yield shorter age spreads (a few 0.1 Myr) and typically higher SFEs than models in which star formation is uniform in time. We find that the former models reproduce remarkably well the SFE-Δτ* values of starburst clusters such as NGC 3603 YC and Westerlund 1, while the latter describe better the star formation process in lower density environments such as in the Orion nebula cluster. We also show that the SFE and Δτ* of massive clusters are expected to be higher in low metallicity environments. This could be tested with future large extragalactic surveys of stellar clusters. We advocate that placing a stellar cluster on the SFE-Δτ* diagram is a powerful method to distinguish between different stellar clusters formation scenarios such as between generic gravitational instability of a gas cloud/clump or as the result of cloud-cloud collisions. It is also a very useful tool for testing star formation theories and numerical models versus the observations.

  9. Asteroseismological Study of Massive ZZ Ceti Stars with Fully Evolutionary Models

    NASA Astrophysics Data System (ADS)

    Romero, A. D.; Kepler, S. O.; Córsico, A. H.; Althaus, L. G.; Fraga, L.

    2013-12-01

    We present the first asteroseismological study for 42 massive ZZ Ceti stars based on a large set of fully evolutionary carbon-oxygen core DA white dwarf models characterized by a detailed and consistent chemical inner profile for the core and the envelope. Our sample comprises all of the ZZ Ceti stars with spectroscopic stellar masses between 0.72 and 1.05 M ⊙ known to date. The asteroseismological analysis of a set of 42 stars enables study of the ensemble properties of the massive, pulsating white dwarf stars with carbon-oxygen cores, in particular the thickness of the hydrogen envelope and the stellar mass. A significant fraction of stars in our sample have stellar mass that is high enough to crystallize at the effective temperatures of the ZZ Ceti instability strip, which enables us to study the effects of crystallization on the pulsation properties of these stars. Our results show that the phase diagram presented in Horowitz et al. seems to be a good representation of the crystallization process inside white dwarf stars, in agreement with the results from white dwarf luminosity function in globular clusters.

  10. Asteroseismological study of massive ZZ Ceti stars with fully evolutionary models

    SciTech Connect

    Romero, A. D.; Kepler, S. O.; Córsico, A. H.; Althaus, L. G.

    2013-12-10

    We present the first asteroseismological study for 42 massive ZZ Ceti stars based on a large set of fully evolutionary carbon-oxygen core DA white dwarf models characterized by a detailed and consistent chemical inner profile for the core and the envelope. Our sample comprises all of the ZZ Ceti stars with spectroscopic stellar masses between 0.72 and 1.05 M {sub ☉} known to date. The asteroseismological analysis of a set of 42 stars enables study of the ensemble properties of the massive, pulsating white dwarf stars with carbon-oxygen cores, in particular the thickness of the hydrogen envelope and the stellar mass. A significant fraction of stars in our sample have stellar mass that is high enough to crystallize at the effective temperatures of the ZZ Ceti instability strip, which enables us to study the effects of crystallization on the pulsation properties of these stars. Our results show that the phase diagram presented in Horowitz et al. seems to be a good representation of the crystallization process inside white dwarf stars, in agreement with the results from white dwarf luminosity function in globular clusters.

  11. A giant outburst two years before the core-collapse of a massive star.

    PubMed

    Pastorello, A; Smartt, S J; Mattila, S; Eldridge, J J; Young, D; Itagaki, K; Yamaoka, H; Navasardyan, H; Valenti, S; Patat, F; Agnoletto, I; Augusteijn, T; Benetti, S; Cappellaro, E; Boles, T; Bonnet-Bidaud, J-M; Botticella, M T; Bufano, F; Cao, C; Deng, J; Dennefeld, M; Elias-Rosa, N; Harutyunyan, A; Keenan, F P; Iijima, T; Lorenzi, V; Mazzali, P A; Meng, X; Nakano, S; Nielsen, T B; Smoker, J V; Stanishev, V; Turatto, M; Xu, D; Zampieri, L

    2007-06-14

    The death of massive stars produces a variety of supernovae, which are linked to the structure of the exploding stars. The detection of several precursor stars of type II supernovae has been reported (see, for example, ref. 3), but we do not yet have direct information on the progenitors of the hydrogen-deficient type Ib and Ic supernovae. Here we report that the peculiar type Ib supernova SN 2006jc is spatially coincident with a bright optical transient that occurred in 2004. Spectroscopic and photometric monitoring of the supernova leads us to suggest that the progenitor was a carbon-oxygen Wolf-Rayet star embedded within a helium-rich circumstellar medium. There are different possible explanations for this pre-explosion transient. It appears similar to the giant outbursts of luminous blue variable stars (LBVs) of 60-100 solar masses, but the progenitor of SN 2006jc was helium- and hydrogen-deficient (unlike LBVs). An LBV-like outburst of a Wolf-Rayet star could be invoked, but this would be the first observational evidence of such a phenomenon. Alternatively, a massive binary system composed of an LBV that erupted in 2004, and a Wolf-Rayet star exploding as SN 2006jc, could explain the observations.

  12. SPITZER SAGE-SMC INFRARED PHOTOMETRY OF MASSIVE STARS IN THE SMALL MAGELLANIC CLOUD

    SciTech Connect

    Bonanos, A. Z.; Lennon, D. J.; Massa, D. L. E-mail: lennon@stsci.ed

    2010-08-15

    We present a catalog of 5324 massive stars in the Small Magellanic Cloud (SMC), with accurate spectral types compiled from the literature, and a photometric catalog for a subset of 3654 of these stars, with the goal of exploring their infrared properties. The photometric catalog consists of stars with infrared counterparts in the Spitzer SAGE-SMC survey database, for which we present uniform photometry from 0.3to24 {mu}m in the UBVIJHK{sub s} +IRAC+MIPS24 bands. We compare the color-magnitude diagrams and color-color diagrams to those of stars in the Large Magellanic Cloud (LMC), finding that the brightest infrared sources in the SMC are also the red supergiants, supergiant B[e] (sgB[e]) stars, luminous blue variables, and Wolf-Rayet stars, with the latter exhibiting less infrared excess, the red supergiants being less dusty and the sgB[e] stars being on average less luminous. Among the objects detected at 24 {mu}m in the SMC are a few very luminous hypergiants, four B-type stars with peculiar, flat spectral energy distributions, and all three known luminous blue variables. We detect a distinct Be star sequence, displaced to the red, and suggest a novel method of confirming Be star candidates photometrically. We find a higher fraction of Oe and Be stars among O and early-B stars in our SMC catalog, respectively, when compared to the LMC catalog, and that the SMC Be stars occur at higher luminosities. We estimate mass-loss rates for the red supergiants, confirming the correlation with luminosity even at the metallicity of the SMC. Finally, we confirm the new class of stars displaying composite A and F type spectra, the sgB[e] nature of 2dFS1804 and find the F0 supergiant 2dFS3528 to be a candidate luminous blue variable with cold dust.

  13. Can Very Massive Population III Stars Produce a Super-Collapsar?

    NASA Astrophysics Data System (ADS)

    Yoon, Sung-Chul; Kang, Jisu; Kozyreva, Alexandra

    2015-03-01

    A fraction of the first generation of stars in the early universe may be very massive (≳ 300 {{M}⊙ }) as they form in metal-free environments. Formation of black holes from these stars can be accompanied by supermassive collapsars to produce long gamma-ray bursts of a unique type having a very high total energy (˜ {{10}54} erg) as recently suggested by several authors. We present new stellar evolution models of very massive Population III stars including the effect of rotation to provide theoretical constraints on super-collapsar progenitors. We find that the angular momentum condition for a super-collapsar can be fulfilled if magnetic torques are ignored, in which case Eddington-Sweet circulations play the dominant role for the transport of angular momentum. We further find that the initial mass range for super-collapsar progenitors would be limited to 300 {{M}⊙ }≲ M≲ 700 {{M}⊙ }. However, all of our very massive star models of this mass range end their lives as red supergiants rather than blue supergiants, in good agreement with most of the previous studies. The predicted final fate of these stars is either a jet-powered type IIP supernova or an ultra-long, relatively faint gamma-ray transient, depending on the initial amount of angular momentum.

  14. Uncertainties in s-process nucleosynthesis in massive stars determined by Monte Carlo variations

    NASA Astrophysics Data System (ADS)

    Nishimura (西村信哉), N.; Hirschi, R.; Rauscher, T.; Murphy, A. St. J.; Cescutti, G.

    2017-08-01

    The s-process in massive stars produces the weak component of the s-process (nuclei up to A ∼ 90), in amounts that match solar abundances. For heavier isotopes, such as barium, production through neutron capture is significantly enhanced in very metal-poor stars with fast rotation. However, detailed theoretical predictions for the resulting final s-process abundances have important uncertainties caused both by the underlying uncertainties in the nuclear physics (principally neutron-capture reaction and β-decay rates) as well as by the stellar evolution modelling. In this work, we investigated the impact of nuclear-physics uncertainties relevant to the s-process in massive stars. Using a Monte Carlo based approach, we performed extensive nuclear reaction network calculations that include newly evaluated upper and lower limits for the individual temperature-dependent reaction rates. We found that most of the uncertainty in the final abundances is caused by uncertainties in the neutron-capture rates, while β-decay rate uncertainties affect only a few nuclei near s-process branchings. The s-process in rotating metal-poor stars shows quantitatively different uncertainties and key reactions, although the qualitative characteristics are similar. We confirmed that our results do not significantly change at different metallicities for fast rotating massive stars in the very low metallicity regime. We highlight which of the identified key reactions are realistic candidates for improved measurement by future experiments.

  15. EARLY-STAGE MASSIVE STAR FORMATION NEAR THE GALACTIC CENTER: Sgr C

    SciTech Connect

    Kendrew, S.; Johnston, K.; Beuther, H.; Ginsburg, A.; Bally, J.; Battersby, C.; Cyganowski, C. J.

    2013-10-01

    We present near-infrared spectroscopy and 1 mm line and continuum observations of a recently identified site of high mass star formation likely to be located in the Central Molecular Zone (CMZ) near Sgr C. Located on the outskirts of the massive evolved H II region associated with Sgr C, the area is characterized by an Extended Green Object (EGO) measuring ∼10'' in size (0.4 pc), whose observational characteristics suggest the presence of an embedded massive protostar driving an outflow. Our data confirm that early-stage star formation is taking place on the periphery of the Sgr C H II region, with detections of two protostellar cores and several knots of H{sub 2} and Brackett γ emission alongside a previously detected compact radio source. We calculate the cores' joint mass to be ∼10{sup 3} M {sub ☉}, with column densities of 1-2 × 10{sup 24} cm{sup –2}. We show the host molecular cloud to hold ∼10{sup 5} M {sub ☉} of gas and dust with temperatures and column densities favorable for massive star formation to occur, however, there is no evidence of star formation outside of the EGO, indicating that the cloud is predominantly quiescent. Given its mass, density, and temperature, the cloud is comparable to other remarkable non-star-forming clouds such as G0.253 in the eastern CMZ.

  16. Isoscalar-vector interaction and hybrid quark core in massive neutron stars

    NASA Astrophysics Data System (ADS)

    Shao, G. Y.; Colonna, M.; Di Toro, M.; Liu, Y. X.; Liu, B.

    2013-05-01

    The hadron-quark phase transition in the core of massive neutron stars is studied with a newly constructed two-phase model. For nuclear matter, a nonlinear Walecka type model with general nucleon-meson and meson-meson couplings, recently calibrated by Steiner, Hemper and Fischer, is taken. For quark matter, a modified Polyakov-Nambu—Jona-Lasinio model, which gives consistent results with lattice QCD data, is used. Most importantly, we introduce an isoscalar-vector interaction in the description of quark matter, and we study its influence on the hadron-quark phase transition in the interior of massive neutron stars. With the constraints of neutron star observations, our calculation shows that the isoscalar-vector interaction between quarks is indispensable if massive hybrids star exist in the universe, and its strength determines the onset density of quark matter, as well as the mass-radius relations of hybrid stars. Furthermore, as a connection with heavy-ion-collision experiments we give some discussions about the strength of isoscalar-vector interaction and its effect on the signals of hadron-quark phase transition in heavy-ion collisions, in the energy range of the NICA at JINR-Dubna and FAIR at GSI-Darmstadt facilities.

  17. Early-stage Massive Star Formation near the Galactic Center: Sgr C

    NASA Astrophysics Data System (ADS)

    Kendrew, S.; Ginsburg, A.; Johnston, K.; Beuther, H.; Bally, J.; Cyganowski, C. J.; Battersby, C.

    2013-10-01

    We present near-infrared spectroscopy and 1 mm line and continuum observations of a recently identified site of high mass star formation likely to be located in the Central Molecular Zone (CMZ) near Sgr C. Located on the outskirts of the massive evolved H II region associated with Sgr C, the area is characterized by an Extended Green Object (EGO) measuring ~10'' in size (0.4 pc), whose observational characteristics suggest the presence of an embedded massive protostar driving an outflow. Our data confirm that early-stage star formation is taking place on the periphery of the Sgr C H II region, with detections of two protostellar cores and several knots of H2 and Brackett γ emission alongside a previously detected compact radio source. We calculate the cores' joint mass to be ~103 M ⊙, with column densities of 1-2 × 1024 cm-2. We show the host molecular cloud to hold ~105 M ⊙ of gas and dust with temperatures and column densities favorable for massive star formation to occur, however, there is no evidence of star formation outside of the EGO, indicating that the cloud is predominantly quiescent. Given its mass, density, and temperature, the cloud is comparable to other remarkable non-star-forming clouds such as G0.253 in the eastern CMZ.

  18. Gravitational waves from the collision of tidally disrupted stars with massive black holes

    SciTech Connect

    East, William E.

    2014-11-10

    We use simulations of hydrodynamics coupled with full general relativity to investigate the gravitational waves produced by a star colliding with a massive black hole when the star's tidal disruption radius lies far outside of the black hole horizon. We consider both main-sequence and white-dwarf compaction stars, and nonspinning black holes, as well as those with near-extremal spin. We study the regime in between where the star can be accurately modeled by a point particle, and where tidal effects completely suppress the gravitational wave signal. We find that nonnegligible gravitational waves can be produced even when the star is strongly affected by tidal forces, as well as when it collides with large angular momentum. We discuss the implications that these results have for the potential observation of gravitational waves from these sources with future detectors.

  19. Identifying Massive Runaway Stars by Detecting Infrared Bowshock Nebula: Four OB Stars and a New Massive Early-B Binary System

    NASA Astrophysics Data System (ADS)

    Sorber, Rebecca L.; Rebecca L. Sorber, Henry A. Kobulnicky, Daniel A. Dale, Matthew S. Povich, William T. Chick, Heather N. Wernke, Julian E. Andrews, Stephan Munari, Grace M. Olivier, Danielle Schurhammer

    2016-01-01

    Though the main sequence evolution of OB type stars is relatively well known, the mass loss rates for these stars are still highly uncertain. Some OB stars are gravitationally ejected from their birth sites, traveling at speeds of 30 km/s or more which results in a prominent bowshock nebulae. We identified OB bowshock candidates at low Galactic latitudes by visual inspection of the Wide-field Infrared Survey Explorer (WISE) 22-micron images. Each candidate was observed using the Longslit Spectrograph at the Wyoming Infrared Observatory (WIRO) 2.3 meter telescope. We present here the results from observing four such candidates, and all four are confirmed as early type stars: GO92.3191+0.0591 (B1V) (aka ALS11826), GO86.551014-1.0873935 (B2V; a probable short-period binary), G076.6921-2.4071 (B5V), and G075.5711-0.2558 (B0V) (aka HD 194303). These results enlarge the sample of candidate runaway massive stars hosting bowshocks and provide a promising sample of such objects for studying stellar mass loss. This work is supported by the National Science Foundation Grants AST-1063146 (REU), AST-1411851 (RUI), and AST-1412845.

  20. A THIRD MASSIVE STAR COMPONENT IN THE {sigma} ORIONIS AB SYSTEM

    SciTech Connect

    Simon-Diaz, S.; Caballero, J. A.; Lorenzo, J.

    2011-11-20

    We report on the detection of a third massive star component in the {sigma} Orionis AB system, traditionally considered as a binary system. The system has been monitored by the IACOB Spectroscopic Survey of Northern Massive Stars program, obtaining 23 high-resolution FIES-NOT spectra with a time span of {approx}2.5 years. The analysis of the radial velocity curves of the two spectroscopic components observed in the spectra has allowed us to obtain the orbital parameters of the system, resulting in a high eccentric orbit (e {approx} 0.78) with an orbital period of 143.5 {+-} 0.5 days. This result implies the actual presence of three stars in the {sigma} Orionis AB system when combined with previous results obtained from the study of the astrometric orbit (with an estimated period of {approx}157 years).

  1. ALMA Reveals Potential Localized Dust Enrichment from Massive Star Clusters in II Zw 40

    NASA Astrophysics Data System (ADS)

    Consiglio, S. Michelle; Turner, Jean L.; Beck, Sara; Meier, David S.

    2016-12-01

    We present subarcsecond images of submillimeter CO and continuum emission from a local galaxy forming massive star clusters: the blue compact dwarf galaxy II Zw 40. At ˜0.″4 resolution (20 pc), the CO(3-2), CO(1-0), 3 mm, and 870 μm continuum maps illustrate star formation on the scales of individual molecular clouds. Dust contributes about one-third of the 870 μm continuum emission, with free-free accounting for the rest. On these scales, there is not a good correspondence between gas, dust, and free-free emission. Dust continuum is enhanced toward the star-forming region as compared to the CO emission. We suggest that an unexpectedly low and spatially variable gas-to-dust ratio is the result of rapid and localized dust enrichment of clouds by the massive clusters of the starburst.

  2. Young and old massive star clusters: Theoretical challenges for the next decade

    NASA Astrophysics Data System (ADS)

    Charbonnel, Corinne

    2015-08-01

    Breakthrough results of high resolution observations both with HST and from the ground have revolutionized our view and our understanding of massive star clusters, young and old, in the Galaxy, in the Local Group, as well as in merging and interacting galaxies. This drastic paradigm shift has revealed the complexity of these systems and has raised a number of fundamental questions on the physical processes that drive the formation and evolution of massive star clusters in different environments, on the star cluster initial mass function, and on the contribution of these objects to the general galactic field stellar population. In this talk we review some of the main theoretical challenges that have to be faced in the field at the very same moment when we enter a golden age for observations and numerical multi-dimensional simulations.

  3. NH3 Survey Observation of Massive Star-Forming Region W 43

    NASA Astrophysics Data System (ADS)

    Nishitani, Hiroyuki; Sorai, Kazuo; Habe, Asao; Hosaki, Keita; Watanabe, Yoshimasa; Ohishi, Yukie; Motogi, Kazuhito; Minamidani, Tetsuhiro; Fujimoto, Masayuki Y.

    2012-04-01

    We consider the properties of giant molecular cloud complexes in the star-forming region W 43 with a resolution of several pc scale, and discuss their relations to the evolutionary stages of massive star formation. We performed a NH3 (J , K) = (1, 1), (2, 2), and (3, 3) inversion-line survey with the Hokkaido University 11-m telescope. Among 51 observed positions, selected based on integrated intensity maps of 13CO (J = 1-0), these three emissions were detected from 21, 8, and 5 positions, respectively. The integrated intensity of the NH3 (J , K) = (1, 1) line was found to be proportional to the far-infrared luminosity, estimated from IRAS data. The rotation temperatures were deduced to be ˜ 15-20 K at eight observed positions. In addition, the upper limits were estimated for 13 positions, which include the relatively low temperatures below 14 K at two positions with a relatively high fractions of NH3 for 13CO and with a low far-infrared luminosity. We derived the ortho-to-para abundance ratio of NH3. From the population distribution between the ortho- and para-levels of NH3, we also derived temperatures of ˜ 6-12 K, which may be interpreted as the temperatures when NH3 molecules were formed. We discuss the relevance of the present results of our observations to the massive star-formation process and the current status of the W 43 region while taking into account previous observations of other indicators of massive star formation. It is shown that the complexes contain several regions in different evolutionary stages, or with the distinct characteristics of star formation within a timescales shorter than the lifetime of massive stars.

  4. X-ray spectral diagnostics of activity in massive stars

    NASA Astrophysics Data System (ADS)

    Cohen, David H.; Wollman, Emma E.; Leutenegger, Maurice A.

    2011-07-01

    X-rays give direct evidence of instabilities, time-variable structure, and shock heating in the winds of O stars. The observed broad X-ray emission lines provide information about the kinematics of shock-heated wind plasma, enabling us to test wind-shock models. And their shapes provide information about wind absorption, and thus about the wind mass-loss rates. Mass-loss rates determined from X-ray line profiles are not sensitive to density-squared clumping effects, and indicate mass-loss rate reductions of factors of 3 to 6 over traditional diagnostics that suffer from density-squared effects. Broad-band X-ray spectral energy distributions also provide mass-loss rate information via soft X-ray absorption signatures. In some cases, the degree of wind absorption is so high, that the hardening of the X-ray SED can be quite significant. We discuss these results as applied to the early O stars ζ Pup (O4 If), 9 Sgr (O4 V((f))), and HD 93129A (O2 If*).

  5. First detections of FS Canis Majoris stars in clusters. Evolutionary state as constrained by coeval massive stars

    NASA Astrophysics Data System (ADS)

    de la Fuente, D.; Najarro, F.; Trombley, C.; Davies, B.; Figer, D. F.

    2015-03-01

    Context. FS CMa stars are low-luminosity objects showing the B[e] phenomenon whose evolutionary state remains a puzzle. These stars are surrounded by compact disks of warm dust of unknown origin. Hitherto, membership of FS CMa stars to coeval populations has never been confirmed. Aims: The discovery of low-luminosity line emitters in the young massive clusters Mercer 20 and Mercer 70 prompts us to investigate the nature of such objects. We intend to confirm membership to coeval populations in order to characterize these emission-line stars through the cluster properties. Methods: Based on ISAAC/VLT medium-resolution spectroscopy and NICMOS/HST photometry of massive cluster members, new characterizations of Mercer 20 and Mercer 70 are performed. Coevality of each cluster and membership of the newly-discovered B[e] objects are investigated using our observations as well as literature data of the surroundings. Infrared excess and narrow-band photometric properties of the B[e] stars are also studied. Results: We confirm and classify 22 new cluster members, including Wolf-Rayet stars and blue hypergiants. Spectral types (O9-B1.5 V) and radial velocities of B[e] objects are compatible with the remaining cluster members, while emission features of Mg ii, Fe ii], and [Fe ii] are identified in their spectra. The ages of these stars are 4.5 and 6 Myr, and they show mild infrared excesses. Conclusions: We confirm the presence of FS CMa stars in the coeval populations of Mercer 20 and Mercer 70. We discuss the nature and evolutionary state of FS CMa stars, discarding a post-AGB nature and introducing a new hypothesis about mergers. A new search method for FS CMa candidates in young massive clusters based on narrow-band Paschen-α photometry is proposed and tested in photometric data of other clusters, yielding three new candidates. Based on observations collected at the European Organisation for Astronomical Research in the Southern Hemisphere, Chile, under program IDs 083.D

  6. THE COSMIC CORE-COLLAPSE SUPERNOVA RATE DOES NOT MATCH THE MASSIVE-STAR FORMATION RATE

    SciTech Connect

    Horiuchi, Shunsaku; Beacom, John F.; Kochanek, Christopher S.; Stanek, K. Z.; Thompson, Todd A.; Prieto, Jose L.

    2011-09-10

    We identify a 'supernova rate problem': the measured cosmic core-collapse supernova rate is a factor of {approx}2 smaller (with significance {approx}2{sigma}) than that predicted from the measured cosmic massive-star formation rate. The comparison is critical for topics from galaxy evolution and enrichment to the abundance of neutron stars and black holes. We systematically explore possible resolutions. The accuracy and precision of the star formation rate data and conversion to the supernova rate are well supported, and proposed changes would have far-reaching consequences. The dominant effect is likely that many supernovae are missed because they are either optically dim (low-luminosity) or dark, whether intrinsically or due to obscuration. We investigate supernovae too dim to have been discovered in cosmic surveys by a detailed study of all supernova discoveries in the local volume. If possible supernova impostors are included, then dim supernovae are common enough by fraction to solve the supernova rate problem. If they are not included, then the rate of dark core collapses is likely substantial. Other alternatives are that there are surprising changes in our understanding of star formation or supernova rates, including that supernovae form differently in small galaxies than in normal galaxies. These possibilities can be distinguished by upcoming supernova surveys, star formation measurements, searches for disappearing massive stars, and measurements of supernova neutrinos.

  7. YOUNG STELLAR OBJECTS IN THE MASSIVE STAR-FORMING REGION W49

    SciTech Connect

    Saral, G.; Hora, J. L.; Willis, S. E.; Koenig, X. P.; Gutermuth, R. A.; Saygac, A. T.

    2015-11-01

    We present the initial results of our investigation of the star-forming complex W49, one of the youngest and most luminous massive star-forming regions in our Galaxy. We used Spitzer/Infrared Array Camera (IRAC) data to investigate massive star formation with the primary objective of locating a representative set of protostars and the clusters of young stars that are forming around them. We present our source catalog with the mosaics from the IRAC data. In this study we used a combination of IRAC, MIPS, Two Micron All Sky Survey, and UKIRT Deep Infrared Sky Survey (UKIDSS) data to identify and classify the young stellar objects (YSOs). We identified 232 Class 0/I YSOs, 907 Class II YSOs, and 74 transition disk candidate objects using color–color and color–magnitude diagrams. In addition, to understand the evolution of star formation in W49, we analyzed the distribution of YSOs in the region to identify clusters using a minimal spanning tree method. The fraction of YSOs that belong to clusters with ≥7 members is found to be 52% for a cutoff distance of 96″, and the ratio of Class II/I objects is 2.1. We compared the W49 region to the G305 and G333 star-forming regions and concluded that W49 has the richest population, with seven subclusters of YSOs.

  8. Gone with the wind: Where is the missing stellar wind energy from massive star clusters?

    NASA Astrophysics Data System (ADS)

    Rosen, Anna L.; Lopez, Laura A.; Krumholz, Mark R.; Ramirez-Ruiz, Enrico

    2014-08-01

    Star clusters larger than ˜103 M⊙ contain multiple hot stars that launch fast stellar winds. The integrated kinetic energy carried by these winds is comparable to that delivered by supernova explosions, suggesting that at early times winds could be an important form of feedback on the surrounding cold material from which the star cluster formed. However, the interaction of these winds with the surrounding clumpy, turbulent, cold gas is complex and poorly understood. Here, we investigate this problem via an accounting exercise: we use empirically determined properties of four well-studied massive star clusters to determine where the energy injected by stellar winds ultimately ends up. We consider a range of kinetic energy loss channels, including radiative cooling, mechanical work on the cold interstellar medium, thermal conduction, heating of dust via collisions by the hot gas, and bulk advection of thermal energy by the hot gas. We show that, for at least some of the clusters, none of these channels can account for more than a small fraction of the injected energy. We suggest that turbulent mixing at the hot-cold interface or physical leakage of the hot gas from the H II region can efficiently remove the kinetic energy injected by the massive stars in young star clusters. Even for the clusters where we are able to account for all the injected kinetic energy, we show that our accounting sets strong constraints on the importance of stellar winds as a mechanism for feedback on the cold interstellar medium.

  9. Super massive black hole in galactic nuclei with tidal disruption of stars

    SciTech Connect

    Zhong, Shiyan; Berczik, Peter; Spurzem, Rainer

    2014-09-10

    Tidal disruption of stars by super massive central black holes from dense star clusters is modeled by high-accuracy direct N-body simulation. The time evolution of the stellar tidal disruption rate, the effect of tidal disruption on the stellar density profile, and, for the first time, the detailed origin of tidally disrupted stars are carefully examined and compared with classic papers in the field. Up to 128k particles are used in simulation to model the star cluster around a super massive black hole, and we use the particle number and the tidal radius of the black hole as free parameters for a scaling analysis. The transition from full to empty loss-cone is analyzed in our data, and the tidal disruption rate scales with the particle number, N, in the expected way for both cases. For the first time in numerical simulations (under certain conditions) we can support the concept of a critical radius of Frank and Rees, which claims that most stars are tidally accreted on highly eccentric orbits originating from regions far outside the tidal radius. Due to the consumption of stars moving on radial orbits, a velocity anisotropy is found inside the cluster. Finally we estimate the real galactic center based on our simulation results and the scaling analysis.

  10. A massive hypergiant star as the progenitor of the supernova SN 2005gl.

    PubMed

    Gal-Yam, A; Leonard, D C

    2009-04-16

    Our understanding of the evolution of massive stars before their final explosions as supernovae is incomplete, from both an observational and a theoretical standpoint. A key missing piece in the supernova puzzle is the difficulty of identifying and studying progenitor stars. In only a single case-that of supernova SN 1987A in the Large Magellanic Cloud-has a star been detected at the supernova location before the explosion, and been subsequently shown to have vanished after the supernova event. The progenitor of SN 1987A was a blue supergiant, which required a rethink of stellar evolution models. The progenitor of supernova SN 2005gl was proposed to be an extremely luminous object, but the association was not robustly established (it was not even clear that the putative progenitor was a single luminous star). Here we report that the previously proposed object was indeed the progenitor star of SN 2005gl. This very massive star was likely a luminous blue variable that standard stellar evolution predicts should not have exploded in that state.

  11. A Spectroscopic Survey of Massive Stars in M31 and M33

    NASA Astrophysics Data System (ADS)

    Massey, Philip; Neugent, Kathryn F.; Smart, Brianna M.

    2016-09-01

    We describe our spectroscopic follow-up to the Local Group Galaxy Survey (LGGS) photometry of M31 and M33. We have obtained new spectroscopy of 1895 stars, allowing us to classify 1496 of them for the first time. Our study has identified many foreground stars, and established membership for hundreds of early- and mid-type supergiants. We have also found nine new candidate luminous blue variables and a previously unrecognized Wolf-Rayet star. We republish the LGGS M31 and M33 catalogs with improved coordinates, and including spectroscopy from the literature and our new results. The spectroscopy in this paper is responsible for the vast majority of the stellar classifications in these two nearby spiral neighbors. The most luminous (and hence massive) of the stars in our sample are early-type B supergiants, as expected; the more massive O stars are more rare and fainter visually, and thus mostly remain unobserved so far. The majority of the unevolved stars in our sample are in the 20-40 M ⊙ range. The spectroscopic observations reported here were obtained at the MMT Observatory, a joint facility of the University of Arizona and the Smithsonian Institution. MMT telescope time was granted by NOAO, through the Telescope System Instrumentation Program (TSIP). TSIP is funded by the National Science Foundation. This paper uses data products produced by the OIR Telescope Data Center, supported by the Smithsonian Astrophysical Observatory.

  12. OGLE-2008-BLG-355Lb: A massive planet around a late-type star

    SciTech Connect

    Koshimoto, N.; Sumi, T.; Fukagawa, M.; Shibai, H.; Udalski, A.; Bennett, D. P.; Bond, I. A.; Ling, C. H.; Rattenbury, N.; Botzler, C. S.; Freeman, M.; Abe, F.; Furusawa, K.; Itow, Y.; Masuda, K.; Matsubara, Y.; Fukui, A.; Muraki, Y.; Ohnishi, K.; Saito, To.; Collaboration: MOA Collaboration; OGLE Collaboration; and others

    2014-06-20

    We report the discovery of a massive planet, OGLE-2008-BLG-355Lb. The light curve analysis indicates a planet:host mass ratio of q = 0.0118 ± 0.0006 at a separation of 0.877 ± 0.010 Einstein radii. We do not measure a significant microlensing parallax signal and do not have high angular resolution images that could detect the planetary host star. Therefore, we do not have a direct measurement of the host star mass. A Bayesian analysis, assuming that all host stars have equal probability to host a planet with the measured mass ratio, implies a host star mass of M{sub h}=0.37{sub −0.17}{sup +0.30} M{sub ⊙} and a companion of mass M{sub P}=4.6{sub −2.2}{sup +3.7}M{sub J}, at a projected separation of r{sub ⊥}=1.70{sub −0.30}{sup +0.29} AU. The implied distance to the planetary system is D {sub L} = 6.8 ± 1.1 kpc. A planetary system with the properties preferred by the Bayesian analysis may be a challenge to the core accretion model of planet formation, as the core accretion model predicts that massive planets are far more likely to form around more massive host stars. This core accretion model prediction is not consistent with our Bayesian prior of an equal probability of host stars of all masses to host a planet with the measured mass ratio. Thus, if the core accretion model prediction is right, we should expect that follow-up high angular resolution observations will detect a host star with a mass in the upper part of the range allowed by the Bayesian analysis. That is, the host would probably be a K or G dwarf.

  13. Massive stars dying alone: Extremely remote environments of SN2009ip and SN2010jp

    NASA Astrophysics Data System (ADS)

    Smith, Nathan

    2014-10-01

    We propose an imaging study of the astonishingly remote environments of two recent supernovae (SNe): SN2009ip and SN2010jp. Both were unusual Type IIn explosions that crashed into dense circumstellar material (CSM) ejected by the star shortly before explosion. The favored progenitors of these SNe are very massive luminous blue variable (LBV) stars. In fact, SN2009ip presents an extraordinay case where the LBV-like progenitor was actually detected directly in archival HST data, and where we obtained spectra and photometry for numerous pre-SN eruptions. No other SN has this treasure trove of detailed information about the progenitor (not even SN1987A). SN2010jp represents a possible collapsar-powered event, since it showed evidence of a fast bipolar jet in spectra and a low 56Ni mass; this would be an analog of the black-hole forming explosions that cause gamma ray bursts, but where the relativistic jet is damped by a residual H envelope on the star. In both cases, the only viable models for these SNe involve extremely massive (initial masses of 40-100 Msun) progenitor stars. This seems at odds with their extremely remote environments in the far outskirts of their host galaxies, with no detected evidence for an underlying massive star population in ground-based data (nor in the single shallow WFPC2/F606W image of SN2009ip). Here we propose deep UV HST images to search for any mid/late O-type stars nearby, deep red images to detect any red supergiants, and an H-alpha image to search for any evidence of ongoing star formation in the vicinity. These observations will place important and demanding constraints on the initial masses and ages of these progenitors.

  14. A census of the Carina Nebula - I. Cumulative energy input from massive stars

    NASA Astrophysics Data System (ADS)

    Smith, Nathan

    2006-04-01

    The Carina Nebula (NGC 3372) is our richest nearby laboratory in which to study feedback through ultraviolet radiation and stellar winds from very massive stars during the formation of an OB association, at an early phase in the evolution of the surrounding proto-superbubble before supernova explosions have influenced the environment. This feedback is triggering successive generations of new star formation around the periphery of the nebula, while simultaneously evaporating the gas and dust reservoirs out of which young stars are trying to accrete material. This paper takes inventory of the combined effect from all the known massive stars that power the Carina Nebula through their total ionizing flux and integrated mechanical energy from their stellar winds. Carina is close enough and accessible enough that spectral types for individual stars are available, and many close binary and multiple systems have recently been spatially resolved, so that one can simply add them. Adopting values from the literature for corresponding spectral types, the present-day total ionizing photon luminosity produced by the 65 O stars and three WNL stars in Carina is QH~= 1051s-1, the total bolometric luminosity of all stars earlier than B2 is 2.5 × 107Lsolar, and the total mechanical luminosity of stellar winds is LSW~= 105Lsolar. The total QH was about 25 per cent higher when η Carinae was on the main sequence, before it and its companion were surrounded by its obscuring dust shell; for the first 3Myr, the net ionizing flux of the 70 O stars in Carina was about 150 times greater than in the Orion Nebula. About 400-500Msolar has been contributed to the HII region by stellar wind mass-loss during the past 3Myr. Values for QH and LSW are also given for the individual clusters Tr14, 15 and 16, and Bo10 and 11, which are more relevant on smaller spatial scales than the total values for the whole nebula.

  15. Main sequence models for massive zero-metal stars

    NASA Technical Reports Server (NTRS)

    Cary, N.

    1974-01-01

    Zero-age main-sequence models for stars of 20, 10, 5, and 2 solar masses with no heavy elements are constructed for three different possible primordial helium abundances: Y=0.00, Y=0.23, and Y=0.30. The latter two values of Y bracket the range of primordial helium abundances cited by Wagoner. With the exceptions of the two 20 solar mass models that contain helium, these models are found to be self-consistent in the sense that the formation of carbon through the triple-alpha process during premain sequence contraction is not sufficient to bring the CN cycle into competition with the proton-proton chain on the ZAMS. The zero-metal models of the present study have higher surface and central temperatures, higher central densities, smaller radii, and smaller convective cores than do the population I models with the same masses.

  16. Main sequence models for massive zero-metal stars

    NASA Technical Reports Server (NTRS)

    Cary, N.

    1974-01-01

    Zero-age main-sequence models for stars of 20, 10, 5, and 2 solar masses with no heavy elements are constructed for three different possible primordial helium abundances: Y=0.00, Y=0.23, and Y=0.30. The latter two values of Y bracket the range of primordial helium abundances cited by Wagoner. With the exceptions of the two 20 solar mass models that contain helium, these models are found to be self-consistent in the sense that the formation of carbon through the triple-alpha process during premain sequence contraction is not sufficient to bring the CN cycle into competition with the proton-proton chain on the ZAMS. The zero-metal models of the present study have higher surface and central temperatures, higher central densities, smaller radii, and smaller convective cores than do the population I models with the same masses.

  17. The life of massive stars seen through optical/infrared interferometry

    NASA Astrophysics Data System (ADS)

    Sanchez-Bermudez, J.; Alberdi, A.; Schödel, R.

    2015-05-01

    During the last decade, optical/infrared interferometry has become an essential tool to contribute to the understanding of stellar astrophysics. We present our results in the study of different aspects in the life of massive stars using optical interferometry. Particularly, we focused the discussion in our findings about multiplicity, interactions of the massive stars with the interstellar medium, and the early stages of high-mass stars. Our near-infrared observations comprise both: (i) long-baseline interferometry making use of AMBER/VLTI, and (ii) sparse aperture masking with VLT/NACO/SAM. These data have been obtained by our research group in the previous years, and the results have been published in several peer-reviewed papers. The principles of the optical/near-infrared interferometry are briefly presented. Particularly, we describe how to get the calibrated Interferometric observables. Henceforth, we present our results of two massive systems (HD150136 and Herschel 36) for which we discovered their triple nature using AMBER/VLTI. Finally, we will present the recently found evidence of a disk and a binary system in a very massive young stellar object known as IRS 9A in the NGC 3603 region.

  18. Narrow-band Imaging of Massive Star-Forming Regions: Tracing Outflows and the Rate of Star-Formation

    NASA Astrophysics Data System (ADS)

    Hall, Kendall; Willis, Sarah; Hora, Joseph L.

    2016-01-01

    Narrowband images targeting ionized hydrogen (Brackett gamma, 2.17 microns) and molecular hydrogen (2.12 microns) were obtained for six massive star-forming regions within the Milky Way, NGC 6334, G305, G3333, G3264, G3266, and G351. These regions are within 1-4 kpc from our solar system. The narrowband flux in Brackett gamma was used as a star-formation tracer to calculate a star-formation rate for each region. This is compared with other star-formation rates found using other methods such as the count of young stars and YSOs, and rates calculated from using other tracers (e.g. 70 micron monochromatic luminosity). The molecular hydrogen narrowband images were manually searched to locate outflows from young stars. Once these outflows are identified, it may help to get a better survey of the young stellar population. A better understanding of the stellar population distribution can lead to more accurate star-formation rates to compare to those calculated from star-formation tracers. We found the regions NGC 6334 and G3266 to have the highest levels of ongoing star formation activity as indicated by the number of molecular hydrogen objects (MHOs) detected. There are a total of 279 cataloged MHOs in 181 categorized systems for the six regions. There are a total of 150 identified potential driving sources.This work was supported in part by the NSF REU and DoD ASSURE programs under NSF grant no. 1262851 and by the Smithsonian Institution.

  19. DIRECT DIAGNOSTICS OF FORMING MASSIVE STARS: STELLAR PULSATION AND PERIODIC VARIABILITY OF MASER SOURCES

    SciTech Connect

    Inayoshi, Kohei; Tanaka, Kei E. I.; Sugiyama, Koichiro; Hosokawa, Takashi; Motogi, Kazuhito E-mail: koichiro@yamaguchi-u.ac.jp

    2013-06-01

    The 6.7 GHz methanol maser emission, a tracer of forming massive stars, sometimes shows enigmatic periodic flux variations over several 10-100 days. In this Letter, we propose that these periodic variations could be explained by the pulsation of massive protostars growing under rapid mass accretion with rates of M-dot{sub *}{approx}>10{sup -3} M{sub Sun} yr{sup -1}. Our stellar evolution calculations predict that the massive protostars have very large radii exceeding 100 R{sub Sun} at maximum, and here we study the pulsational stability of such bloated protostars by way of the linear stability analysis. We show that the protostar becomes pulsationally unstable with various periods of several 10-100 days depending on different accretion rates. With the fact that the stellar luminosity when the star is pulsationally unstable also depends on the accretion rate, we derive the period-luminosity relation log (L/ L{sub Sun }) = 4.62 + 0.98log (P/100 days), which is testable with future observations. Our models further show that the radius and mass of the pulsating massive protostar should also depend on the period. It would be possible to infer such protostellar properties and the accretion rate with the observed period. Measuring the maser periods enables a direct diagnosis of the structure of accreting massive protostars, which are deeply embedded in dense gas and are inaccessible with other observations.

  20. Effects of the Core-collapse Supernova Ejecta Impact on a Rapidly Rotating Massive Companion Star

    NASA Astrophysics Data System (ADS)

    Zhu, Chunhua; Lü, Guoliang; Wang, Zhaojun

    2017-02-01

    We investigate the effects of the core-collapse supernova (CCSN) ejecta on a rapidly rotating and massive companion star. We show that the stripped mass is twice as high as that of a massive but nonrotating companion star. In close binaries with orbital periods of about 1 day, the stripped masses reach up to ∼ 1 {M}ȯ . By simulating the evolutions of the rotational velocities of the massive companion stars based on different stripped masses, we find that the rotational velocity decreases greatly for a stripped mass higher than about 1 {M}ȯ . Of all the known high-mass X-ray binaries (HMXBs), Cygnus X-3 and 1WGA J0648.024418 have the shortest orbital periods, 0.2 and 1.55 days, respectively. The optical counterpart of the former is a Wolf-Rayet star, whereas it is a hot subdwarf for the latter. Applying our model to the two HMXBs, we suggest that the hydrogen-rich envelopes of their optical counterparts may have been stripped by CCSN ejecta.

  1. AN APPARENT PRECESSING HELICAL OUTFLOW FROM A MASSIVE EVOLVED STAR: EVIDENCE FOR BINARY INTERACTION

    SciTech Connect

    Lau, R. M.; Hankins, M. J.; Herter, T. L.; Morris, M. R.; Mills, E. A. C.; Ressler, M. E.

    2016-02-20

    Massive, evolved stars play a crucial role in the metal enrichment, dust budget, and energetics of the interstellar medium; however, the details of their evolution are uncertain because of their rarity and short lifetimes before exploding as supernovae. Discrepancies between theoretical predictions from single-star evolutionary models and observations of massive stars have evoked a shifting paradigm that implicates the importance of binary interaction. We present mid- to far-infrared observations from the Stratospheric Observatory for Infrared Astronomy of a conical “helix” of warm dust (∼180 K) that appears to extend from the Wolf–Rayet star WR102c. Our interpretation of the helix is a precessing, collimated outflow that emerged from WR102c during a previous evolutionary phase as a rapidly rotating luminous blue variable. We attribute the precession of WR102c to gravitational interactions with an unseen compact binary companion whose orbital period can be constrained to 800 days < P < 1400 days from the inferred precession period, τ{sub p} ∼ 1.4 × 10{sup 4} yr, and limits imposed on the stellar and orbital parameters of the system. Our results concur with the range of orbital periods (P ≲ 1500 days) where spin-up via mass exchange is expected to occur for massive binary systems.

  2. An Apparent Precessing Helical Outflow from a Massive Evolved Star: Evidence for Binary Interaction

    NASA Astrophysics Data System (ADS)

    Lau, R. M.; Hankins, M. J.; Herter, T. L.; Morris, M. R.; Mills, E. A. C.; Ressler, M. E.

    2016-02-01

    Massive, evolved stars play a crucial role in the metal enrichment, dust budget, and energetics of the interstellar medium; however, the details of their evolution are uncertain because of their rarity and short lifetimes before exploding as supernovae. Discrepancies between theoretical predictions from single-star evolutionary models and observations of massive stars have evoked a shifting paradigm that implicates the importance of binary interaction. We present mid- to far-infrared observations from the Stratospheric Observatory for Infrared Astronomy of a conical “helix” of warm dust (˜180 K) that appears to extend from the Wolf-Rayet star WR102c. Our interpretation of the helix is a precessing, collimated outflow that emerged from WR102c during a previous evolutionary phase as a rapidly rotating luminous blue variable. We attribute the precession of WR102c to gravitational interactions with an unseen compact binary companion whose orbital period can be constrained to 800 days < P < 1400 days from the inferred precession period, τp ˜ 1.4 × 104 yr, and limits imposed on the stellar and orbital parameters of the system. Our results concur with the range of orbital periods (P ≲ 1500 days) where spin-up via mass exchange is expected to occur for massive binary systems.

  3. Globular Cluster Formation at High Density: A Model for Elemental Enrichment with Fast Recycling of Massive-star Debris

    NASA Astrophysics Data System (ADS)

    Elmegreen, Bruce G.

    2017-02-01

    The self-enrichment of massive star clusters by p-processed elements is shown to increase significantly with increasing gas density as a result of enhanced star formation rates and stellar scatterings compared to the lifetime of a massive star. Considering the type of cloud core where a globular cluster (GC) might have formed, we follow the evolution and enrichment of the gas and the time dependence of stellar mass. A key assumption is that interactions between massive stars are important at high density, including interactions between massive stars and massive-star binaries that can shred stellar envelopes. Massive-star interactions should also scatter low-mass stars out of the cluster. Reasonable agreement with the observations is obtained for a cloud-core mass of ∼4 × 106 M ⊙ and a density of ∼2 × 106 cm‑3. The results depend primarily on a few dimensionless parameters, including, most importantly, the ratio of the gas consumption time to the lifetime of a massive star, which has to be low, ∼10%, and the efficiency of scattering low-mass stars per unit dynamical time, which has to be relatively large, such as a few percent. Also for these conditions, the velocity dispersions of embedded GCs should be comparable to the high gas dispersions of galaxies at that time, so that stellar ejection by multistar interactions could cause low-mass stars to leave a dwarf galaxy host altogether. This could solve the problem of missing first-generation stars in the halos of Fornax and WLM.

  4. Massive Stars and the Energy Balance of the Interstellar Medium. 1; The Impact of an Isolated 60 M. Star

    NASA Technical Reports Server (NTRS)

    Freyer, Tim; Hensler, Gerhard; Yorke, Harold W.

    2003-01-01

    We present results of numerical simulations carried out with a two-dimensional radiation hydrodynamics code in order to study the impact of massive stars on their surrounding interstellar medium. This first paper deals with the evolution of the circumstellar gas around an isolated 60 M. star. The interaction of the photo- ionized H II region with the stellar wind bubble forms a variety of interesting structures like shells, clouds, fingers, and spokes. These results demonstrate that complex structures found in H II regions are not necessarily relics from the time before the gas became ionized but may result from dynamical processes during the course of the H II region evolution. We have also analyzed the transfer and deposit of the stellar wind and radiation energy into the circumstellar medium until the star explodes as a supernova. Although the total mechanical wind energy supplied by the star is negligible compared to the accumulated energy of the Lyman continuum photons, the kinetic energy imparted to the circumstellar gas over the star s lifetime is 4 times higher than for a comparable windless simulation. Furthermore, the thermal energy of warm photoionized gas is lower by some 55%). Our results document the necessity to consider both ionizing radiation and stellar winds for an appropriate description of the interaction of OB stars with their circumstellar environment.

  5. Magnetic massive stars as progenitors of `heavy' stellar-mass black holes

    NASA Astrophysics Data System (ADS)

    Petit, V.; Keszthelyi, Z.; MacInnis, R.; Cohen, D. H.; Townsend, R. H. D.; Wade, G. A.; Thomas, S. L.; Owocki, S. P.; Puls, J.; ud-Doula, A.

    2017-04-01

    The groundbreaking detection of gravitational waves produced by the inspiralling and coalescence of the black hole (BH) binary GW150914 confirms the existence of 'heavy' stellar-mass BHs with masses >25 M⊙. Initial characterization of the system by Abbott et al. supposes that the formation of BHs with such large masses from the evolution of single massive stars is only feasible if the wind mass-loss rates of the progenitors were greatly reduced relative to the mass-loss rates of massive stars in the Galaxy, concluding that heavy BHs must form in low-metallicity (Z ≲ 0.25-0.5 Z⊙) environments. However, strong surface magnetic fields also provide a powerful mechanism for modifying mass-loss and rotation of massive stars, independent of environmental metallicity. In this paper, we explore the hypothesis that some heavy BHs, with masses >25 M⊙ such as those inferred to compose GW150914, could be the natural end-point of evolution of magnetic massive stars in a solar-metallicity environment. Using the MESA code, we developed a new grid of single, non-rotating, solar-metallicity evolutionary models for initial zero-age main sequence masses from 40 to 80 M⊙ that include, for the first time, the quenching of the mass-loss due to a realistic dipolar surface magnetic field. The new models predict terminal-age main-sequence (TAMS) masses that are significantly greater than those from equivalent non-magnetic models, reducing the total mass lost by a strongly magnetized 80 M⊙ star during its main-sequence evolution by 20 M⊙. This corresponds approximately to the mass-loss reduction expected from an environment with metallicity Z = 1/30 Z⊙.

  6. Small-scale hero: Massive-star enrichment in the Hercules dwarf spheroidal

    NASA Astrophysics Data System (ADS)

    Koch, Andreas; Matteucci, Francesca; Feltzing, Sofia

    2012-09-01

    Dwarf spheroidal galaxies are often conjectured to be the sites of the first stars. The best current contenders for finding the chemical imprints from the enrichment by those massive objects are the ``ultrafaint dwarfs'' (UFDs). Here we present evidence for remarkably low heavy element abundances in the metal poor Hercules UFD. Combined with other peculiar abundance patterns this indicates that Hercules was likely only influenced by very few, massive explosive events - thus bearing the traces of an early, localized chemical enrichment with only very little other contributions from other sources at later times.

  7. Second-generation stars in globular clusters from rapid radiative cooling of pre-supernova massive star winds

    NASA Astrophysics Data System (ADS)

    Lochhaas, Cassandra; Thompson, Todd A.

    2017-09-01

    Following work by Wünsch and collaborators, we investigate a self-enrichment scenario for second-generation star formation in globular clusters wherein wind material from the first-generation massive stars rapidly radiatively cools. Radiative energy loss allows retention of fast winds within the central regions of clusters, where it fuels star formation. Secondary star formation occurs in ∼3-5 Myr, before supernovae, producing uniform iron abundances in both populations. We derive the critical criteria for radiative cooling of massive star winds and the second-generation mass as a function of cluster mass, radius and metallicity. We derive a critical condition on M/R, above which second-generation star formation can occur. We speculate that above this threshold the strong decrease in the cluster wind energy and momentum allows ambient gas to remain from the cluster formation process. We reproduce large observed second-generation fractions of ∼30-80 per cent if wind material mixes with ambient gas. Importantly, the mass of ambient gas required is only of order the first generation's stellar mass. Second-generation helium enrichment ΔY is inversely proportional to mass fraction in the second generation; a large second generation can form with ΔY ∼ 0.001-0.02, while a small second generation can reach ΔY ∼ 0.16. Like other self-enrichment models for the second generation, we are not able to simultaneously account for both the full range of the Na-O anticorrelation and the second-generation fraction.

  8. Massive open star clusters using the VVV survey. II. Discovery of six clusters with Wolf-Rayet stars

    NASA Astrophysics Data System (ADS)

    Chené, A.-N.; Borissova, J.; Bonatto, C.; Majaess, D. J.; Baume, G.; Clarke, J. R. A.; Kurtev, R.; Schnurr, O.; Bouret, J.-C.; Catelan, M.; Emerson, J. P.; Feinstein, C.; Geisler, D.; de Grijs, R.; Hervé, A.; Ivanov, V. D.; Kumar, M. S. N.; Lucas, P.; Mahy, L.; Martins, F.; Mauro, F.; Minniti, D.; Moni Bidin, C.

    2013-01-01

    Context. The ESO Public Survey "VISTA Variables in the Vía Láctea" (VVV) provides deep multi-epoch infrared observations for an unprecedented 562 sq. degrees of the Galactic bulge, and adjacent regions of the disk. Nearly 150 new open clusters and cluster candidates have been discovered in this survey. Aims: This is the second in a series of papers about young, massive open clusters observed using the VVV survey. We present the first study of six recently discovered clusters. These clusters contain at least one newly discovered Wolf-Rayet (WR) star. Methods: Following the methodology presented in the first paper of the series, wide-field, deep JHKs VVV observations, combined with new infrared spectroscopy, are employed to constrain fundamental parameters for a subset of clusters. Results: We find that the six studied stellar groups are real young (2-7 Myr) and massive (between 0.8 and 2.2 × 103 M⊙) clusters. They are highly obscured (AV ~ 5-24 mag) and compact (1-2 pc). In addition to WR stars, two of the six clusters also contain at least one red supergiant star, and one of these two clusters also contains a blue supergiant. We claim the discovery of 8 new WR stars, and 3 stars showing WR-like emission lines which could be classified WR or OIf. Preliminary analysis provides initial masses of ~30-50 M⊙ for the WR stars. Finally, we discuss the spiral structure of the Galaxy using the six new clusters as tracers, together with the previously studied VVV clusters. Based on observations with ISAAC, VLT, ESO (programme 087.D-0341A), New Technology Telescope at ESO's La Silla Observatory (programme 087.D-0490A) and with the Clay telescope at the Las Campanas Observatory (programme CN2011A-086). Also based on data from the VVV survey (programme 172.B-2002).

  9. Star formation in massive Milky Way molecular clouds: Building a bridge to distant galaxies

    NASA Astrophysics Data System (ADS)

    Willis, Sarah Elizabeth

    The Kennicutt-Schmidt relation is an empirical power-law linking the surface density of the star formation rate (SigmaSFR) to the surface density of gas (Sigmagas ) averaged over the observed face of a starforming galaxy Kennicutt (1998). The original presentation used observations of CO to measure gas density and H alpha emission to measure the population of hot, massive young stars (and infer the star formation rate). Observations of Sigma SFR from a census of young stellar objects in nearby molecular clouds in our Galaxy are up to 17 times higher than the extragalactic relation would predict given their Sigmagas. These clouds primarily form low-mass stars that are essentially invisible to star formation rate tracers. A sample of six giant molecular cloud (GMC) complexes with signposts of massive star formation was identified in our galaxy. The regions selected have a range of total luminosity and morphology. Deep ground-based observations in the near-infrared with NEWFIRM and IRAC observations with the Spitzer Space Telescope were used to conduct a census of the young stellar content associated with each of these clouds. The star formation rates from the stellar census in each of these regions was compared with the star formation rates measured by extragalactic star formation rate tracers based on monochromatic mid-infrared luminosities. Far-infrared Herschel observations from 160 through 500 mum were used to determine the column density and temperature in each region. The region NGC 6334 served as a test case to compare the Herschel column density measurements with the measurements for near-infrared extinction. The combination of the column density maps and the stellar census lets us examine SigmaSFR vs. Sigma gas for the massive GMCs. These regions are consistent with the results for the low-mass molecular clouds, indicating Sigma SFR levels that are higher than predicted based on Sigma gas. The overall Sigmagas levels are higher for the massive star forming

  10. Chemical differentiation in regions of massive star formation

    NASA Technical Reports Server (NTRS)

    Rodgers, S. D.; Charnley, S. B.

    2001-01-01

    We have reexamined the origin of the apparent differentiation between nitrogen-bearing molecules and complex oxygen-bearing molecules that is observed in hot molecular cores associated with massive protostars. Observations show that methanol is an ubiquitous and abundant component of protostellar ices. Recent observations suggest that ammonia may constitute an appreciable fraction of the ices toward some sources. In contrast to previous theories that suggested that N/O differentiation was caused by an anticorrelation between methanol and ammonia in the precursor grain mantles, we show that the presence of ammonia in mantles and the core temperature are key quantities in determining N/O differentiation. Calculations are presented which show that when large amounts of ammonia are evaporated alkyl cation transfer reactions are suppressed and the abundances of complex O-bearing organic molecules greatly reduced. Cooler cores (100 K) eventually evolve to an oxygen-rich chemical state similar to that attained when no ammonia was injected, but on a timescale that is an order of magnitude longer (10(5) yr). Hotter cores (300 K) never evolve an O-rich chemistry unless ammonia is almost absent from the mantles. In this latter case, a complex O-rich chemistry develops on a timescale of 10(4) yr, as in previous models, but disappears in about 2 x 10(5) yr, after which time the core is rich in NH3, HCN, and other N-bearing molecules. There are thus two ways in which N-rich cores can occur. We briefly discuss the implications for the determination of hot-core ages and for explaining N/O differentiation in several well-studied sources.

  11. LOW MACH NUMBER MODELING OF CORE CONVECTION IN MASSIVE STARS

    SciTech Connect

    Gilet, C.; Almgren, A. S.; Bell, J. B.; Nonaka, A.; Woosley, S. E.; Zingale, M.

    2013-08-20

    This work presents three-dimensional simulations of core convection in a 15 M{sub Sun} star halfway through its main sequence lifetime. To perform the necessary long-time calculations, we use the low Mach number code MAESTRO, with initial conditions taken from a one-dimensional stellar model. We first identify several key factors that the one-dimensional initial model must satisfy to ensure efficient simulation of the convection process. We then use the three-dimensional simulations to examine the effects of two common modeling choices on the resulting convective flow: using a fixed composition approximation and using a reduced domain size. We find that using a fixed composition model actually increases the computational cost relative to using the full multi-species model because the fixed composition system takes longer to reach convection that is in a quasi-static state. Using a reduced (octant rather than full sphere) simulation domain yields flow with statistical properties that are within a factor of two of the full sphere simulation values. Both the octant and full sphere simulations show similar mixing across the convection zone boundary that is consistent with the turbulent entrainment model. However, the global character of the flow is distinctly different in the octant simulation, showing more rapid changes in the large-scale structure of the flow and thus a more isotropic flow on average.

  12. Low Mach Number Modeling of Core Convection in Massive Stars

    NASA Astrophysics Data System (ADS)

    Gilet, C.; Almgren, A. S.; Bell, J. B.; Nonaka, A.; Woosley, S. E.; Zingale, M.

    2013-08-01

    This work presents three-dimensional simulations of core convection in a 15 M ⊙ star halfway through its main sequence lifetime. To perform the necessary long-time calculations, we use the low Mach number code MAESTRO, with initial conditions taken from a one-dimensional stellar model. We first identify several key factors that the one-dimensional initial model must satisfy to ensure efficient simulation of the convection process. We then use the three-dimensional simulations to examine the effects of two common modeling choices on the resulting convective flow: using a fixed composition approximation and using a reduced domain size. We find that using a fixed composition model actually increases the computational cost relative to using the full multi-species model because the fixed composition system takes longer to reach convection that is in a quasi-static state. Using a reduced (octant rather than full sphere) simulation domain yields flow with statistical properties that are within a factor of two of the full sphere simulation values. Both the octant and full sphere simulations show similar mixing across the convection zone boundary that is consistent with the turbulent entrainment model. However, the global character of the flow is distinctly different in the octant simulation, showing more rapid changes in the large-scale structure of the flow and thus a more isotropic flow on average.

  13. The rate and latency of star formation in dense, massive clumps in the Milky Way

    NASA Astrophysics Data System (ADS)

    Heyer, M.; Gutermuth, R.; Urquhart, J. S.; Csengeri, T.; Wienen, M.; Leurini, S.; Menten, K.; Wyrowski, F.

    2016-04-01

    Context. Newborn stars form within the localized, high density regions of molecular clouds. The sequence and rate at which stars form in dense clumps and the dependence on local and global environments are key factors in developing descriptions of stellar production in galaxies. Aims: We seek to observationally constrain the rate and latency of star formation in dense massive clumps that are distributed throughout the Galaxy and to compare these results to proposed prescriptions for stellar production. Methods: A sample of 24 μm-based Class I protostars are linked to dust clumps that are embedded within molecular clouds selected from the APEX Telescope Large Area Survey of the Galaxy. We determine the fraction of star-forming clumps, f∗, that imposes a constraint on the latency of star formation in units of a clump's lifetime. Protostellar masses are estimated from models of circumstellar environments of young stellar objects from which star formation rates are derived. Physical properties of the clumps are calculated from 870 μm dust continuum emission and NH3 line emission. Results: Linear correlations are identified between the star formation rate surface density, ΣSFR, and the quantities ΣH2/τff and ΣH2/τcross, suggesting that star formation is regulated at the local scales of molecular clouds. The measured fraction of star forming clumps is 23%. Accounting for star formation within clumps that are excluded from our sample due to 24 μm saturation, this fraction can be as high as 31%, which is similar to previous results. Dense, massive clumps form primarily low mass (<1-2 M⊙) stars with emergent 24 μm fluxes below our sensitivity limit or are incapable of forming any stars for the initial 70% of their lifetimes. The low fraction of star forming clumps in the Galactic center relative to those located in the disk of the Milky Way is verified. Full Tables 2-4 are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130

  14. Formation of Massive Primordial Stars: Intermittent UV Feedback with Episodic Mass Accretion

    NASA Astrophysics Data System (ADS)

    Hosokawa, Takashi; Hirano, Shingo; Kuiper, Rolf; Yorke, Harold W.; Omukai, Kazuyuki; Yoshida, Naoki

    2016-06-01

    We present coupled stellar evolution (SE) and 3D radiation-hydrodynamic (RHD) simulations of the evolution of primordial protostars, their immediate environment, and the dynamic accretion history under the influence of stellar ionizing and dissociating UV feedback. Our coupled SE RHD calculations result in a wide diversity of final stellar masses covering 10 {M}⊙ ≲ M * ≲ 103 {M}⊙ . The formation of very massive (≳250 {M}⊙ ) stars is possible under weak UV feedback, whereas ordinary massive (a few ×10 {M}⊙ ) stars form when UV feedback can efficiently halt the accretion. This may explain the peculiar abundance pattern of a Galactic metal-poor star recently reported by Aoki et al., possibly the observational signature of very massive precursor primordial stars. Weak UV feedback occurs in cases of variable accretion, in particular when repeated short accretion bursts temporarily exceed 0.01 {M}⊙ {{{yr}}}-1, causing the protostar to inflate. In the bloated state, the protostar has low surface temperature and UV feedback is suppressed until the star eventually contracts, on a thermal adjustment timescale, to create an H ii region. If the delay time between successive accretion bursts is sufficiently short, the protostar remains bloated for extended periods, initiating at most only short periods of UV feedback. Disk fragmentation does not necessarily reduce the final stellar mass. Quite the contrary, we find that disk fragmentation enhances episodic accretion as many fragments migrate inward and are accreted onto the star, thus allowing continued stellar mass growth under conditions of intermittent UV feedback. This trend becomes more prominent as we improve the resolution of our simulations. We argue that simulations with significantly higher resolution than reported previously are needed to derive accurate gas mass accretion rates onto primordial protostars.

  15. The MiMeS survey of magnetism in massive stars: introduction and overview

    NASA Astrophysics Data System (ADS)

    Wade, G. A.; Neiner, C.; Alecian, E.; Grunhut, J. H.; Petit, V.; Batz, B. de; Bohlender, D. A.; Cohen, D. H.; Henrichs, H. F.; Kochukhov, O.; Landstreet, J. D.; Manset, N.; Martins, F.; Mathis, S.; Oksala, M. E.; Owocki, S. P.; Rivinius, Th.; Shultz, M. E.; Sundqvist, J. O.; Townsend, R. H. D.; ud-Doula, A.; Bouret, J.-C.; Braithwaite, J.; Briquet, M.; Carciofi, A. C.; David-Uraz, A.; Folsom, C. P.; Fullerton, A. W.; Leroy, B.; Marcolino, W. L. F.; Moffat, A. F. J.; Nazé, Y.; Louis, N. St; Aurière, M.; Bagnulo, S.; Bailey, J. D.; Barbá, R. H.; Blazère, A.; Böhm, T.; Catala, C.; Donati, J.-F.; Ferrario, L.; Harrington, D.; Howarth, I. D.; Ignace, R.; Kaper, L.; Lüftinger, T.; Prinja, R.; Vink, J. S.; Weiss, W. W.; Yakunin, I.

    2016-02-01

    The MiMeS (Magnetism in Massive Stars) project is a large-scale, high-resolution, sensitive spectropolarimetric investigation of the magnetic properties of O- and early B-type stars. Initiated in 2008 and completed in 2013, the project was supported by three Large Program allocations, as well as various programmes initiated by independent principal investigators, and archival resources. Ultimately, over 4800 circularly polarized spectra of 560 O and B stars were collected with the instruments ESPaDOnS (Echelle SpectroPolarimetric Device for the Observation of Stars) at the Canada-France-Hawaii Telescope, Narval at the Télescope Bernard Lyot and HARPSpol at the European Southern Observatory La Silla 3.6 m telescope, making MiMeS by far the largest systematic investigation of massive star magnetism ever undertaken. In this paper, the first in a series reporting the general results of the survey, we introduce the scientific motivation and goals, describe the sample of targets, review the instrumentation and observational techniques used, explain the exposure time calculation designed to provide sensitivity to surface dipole fields above approximately 100 G, discuss the polarimetric performance, stability and uncertainty of the instrumentation, and summarize the previous and forthcoming publications.

  16. Global and radial variations in the efficiency of massive star formation among galaxies

    NASA Technical Reports Server (NTRS)

    Allen, Lori E.; Young, Judith S.

    1990-01-01

    In order to determine the regions within galaxies which give rise to the most efficient star formation and to test the hypothesis that galaxies with high infrared luminosities per unit molecular mass are efficiently producing high mass stars, researchers have undertaken an H alpha imaging survey in galaxies whose CO distributions have been measured as part of the Five College Radio Astronomy Observatory (FCRAO) Extragalactic CO Survey. From these images researchers have derived global H alpha fluxes and distributions for comparison with far infrared radiation (FIR) fluxes and CO fluxes and distributions. Here, researchers present results on the global massive star formation efficiency (SFE = L sub H sub alpha/M(H2)) as a function of morphological type and environment, and on the radial distribution of the SFE within both peculiar and isolated galaxies. On the basis of comparison of the global L sub H sub alpha/M(H2) and L sub FIR/M(H2) for 111 galaxies, researchers conclude that environment rather than morphological type has the strongest effect on the global efficiency of massive star formation. Based on their study of a small sample, they find that the largest radial gradients are observed in the interacting/peculiar galaxies, indicating that environment affects the star formation efficiency within galaxies as well.

  17. Formation of massive black holes through runaway collisions in dense young star clusters.

    PubMed

    Zwart, Simon F Portegies; Baumgardt, Holger; Hut, Piet; Makino, Junichiro; McMillan, Stephen L W

    2004-04-15

    A luminous X-ray source is associated with MGG 11--a cluster of young stars approximately 200 pc from the centre of the starburst galaxy M 82 (refs 1, 2). The properties of this source are best explained by invoking a black hole with a mass of at least 350 solar masses (350 M(o)), which is intermediate between stellar-mass and supermassive black holes. A nearby but somewhat more massive cluster (MGG 9) shows no evidence of such an intermediate-mass black hole, raising the issue of just what physical characteristics of the clusters can account for this difference. Here we report numerical simulations of the evolution and motion of stars within the clusters, where stars are allowed to merge with each other. We find that for MGG 11 dynamical friction leads to the massive stars sinking rapidly to the centre of the cluster, where they participate in a runaway collision. This produces a star of 800-3,000 M(o) which ultimately collapses to a black hole of intermediate mass. No such runaway occurs in the cluster MGG 9, because the larger cluster radius leads to a mass segregation timescale a factor of five longer than for MGG 11.

  18. Kinematics of the Massive Star Forming Region, Orion BN/KL

    NASA Astrophysics Data System (ADS)

    Lu, Jessica

    2013-10-01

    The dynamics of stars in the Orion Nebula Cluster {ONC} hold the clues to the history of this nearby region of massive star formation. We propose to investigate the stellar dynamics in the ONC with unprecedented depth and accuracy by carrying out an astrometric study of the proper motions of stars in this region, including the Trapezium Cluster and stars in and around the Kleinmann-Low Nebula {KL}. Numerous images of the ONC have been taken by the HST between 1995 and 2007 at several wavelengths, so we will take advantage of this long time baseline and of the excellent astrometric properties of this rich data set to construct a new database of proper motions. This astrometric database will be used to tie together the radio, infrared and optical reference frames for the ONC, and to decide between dynamical hypotheses that have been offered for the radio and infrared- bright protostellar objects in the KL Nebula, including the Becklin-Neugebauer source, and the well-studied radio sources "I" and "n". We will also use the proper motion database to look for dynamical substructure and mass segregation in the ONC, as well as runaway stars and other repercussions of cataclysmic dynamical events. The proposing team has considerable experience with astrometric studies of massive clusters, as well as with research on the stellar and protostellar content of the Orion and KL Nebulae.

  19. Hyperon puzzle, hadron-quark crossover and massive neutron stars

    NASA Astrophysics Data System (ADS)

    Masuda, Kota; Hatsuda, Tetsuo; Takatsuka, Tatsuyuki

    2016-03-01

    Bulk properties of cold and hot neutron stars are studied on the basis of the hadron-quark crossover picture where a smooth transition from the hadronic phase to the quark phase takes place at finite baryon density. By using a phenomenological equation of state (EOS) "CRover", which interpolates the two phases at around 3 times the nuclear matter density (ρ0, it is found that the cold NSs with the gravitational mass larger than 2M_{odot} can be sustained. This is in sharp contrast to the case of the first-order hadron-quark transition. The radii of the cold NSs with the CRover EOS are in the narrow range (12.5 ± 0.5) km which is insensitive to the NS masses. Due to the stiffening of the EOS induced by the hadron-quark crossover, the central density of the NSs is at most 4 ρ0 and the hyperon-mixing barely occurs inside the NS core. This constitutes a solution of the long-standing hyperon puzzle. The effect of color superconductivity (CSC) on the NS structures is also examined with the hadron-quark crossover. For the typical strength of the diquark attraction, a slight softening of the EOS due to two-flavor CSC (2SC) takes place and the maximum mass is reduced by about 0.2M_{odot}. The CRover EOS is generalized to the supernova matter at finite temperature to describe the hot NSs at birth.