DOE Office of Scientific and Technical Information (OSTI.GOV)
Collard, L.B.
2000-09-26
This revision was prepared to address comments from DOE-SR that arose following publication of revision 0. This Special Analysis (SA) addresses disposal of wastes with high concentrations of I-129 in the Intermediate-Level (IL) Vaults at the operating, low-level radioactive waste disposal facility (the E-Area Low-Level Waste Facility or LLWF) on the Savannah River Site (SRS). This SA provides limits for disposal in the IL Vaults of high-concentration I-129 wastes, including activated carbon beds from the Effluent Treatment Facility (ETF), based on their measured, waste-specific Kds.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1977-06-01
The pilot plant is developed for ERDA low-level contact-handled transuranic waste, ERDA remote-handled intermediate-level transuranic waste, and for high-level waste experiments. All wastes placed in the WIPP arrive at the site processed and packaged; no waste processing is done at the WIPP. All wastes placed into the WIPP are retrievable. The proposed site for WIPP lies 26 miles east of Carlsbad, New Mexico. This document includes the executive summary and a detailed description of the facilities and systems. (DLC)
Radioactive waste management in Poland status and strategy for the future
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wlodarski, J.
1995-12-01
Site selection for a new radioactive waste repository in Poland has been started. The repository will contain low- and intermediate-level radioactive wastes and spent fuel. Superficial, shallow underground and deep underground disposal options were considered; 39 potential sites have been selected. Issues to be resolved regarding waste management in Poland are also outlined in this paper.
The status of LILW disposal facility construction in Korea
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, Min-Seok; Chung, Myung-Sub; Park, Kyu-Wan
2013-07-01
In this paper, we discuss the experiences during the construction of the first LILW disposal facility in South Korea. In December 2005, the South Korean Government designated Gyeongju-city as a host city of Low- and Intermediate-Level Radioactive Waste(LILW) disposal site through local referendums held in regions whose local governments had applied to host disposal facility in accordance with the site selection procedures. The LILW disposal facility is being constructed in Bongilri, Yangbuk-myeon, Gyeongju. The official name of the disposal facility is called 'Wolsong Low and Intermediate Level Radioactive Waste Disposal Center (LILW Disposal Center)'. It can dispose of 800,000 drumsmore » of radioactive wastes in a site of 2,100,000 square meters. At the first stage, LILW repository of underground silo type with disposal capacity of 100,000 drums is under construction expected to be completed by June of 2014. The Wolsong Low and Intermediate Level Radioactive Waste Disposal Center consists of surface facilities and underground facilities. The surface facilities include a reception and inspection facility, an interim storage facility, a radioactive waste treatment building, and supporting facilities such as main control center, equipment and maintenance shop. The underground facilities consist of a construction tunnel for transport of construction equipment and materials, an operation tunnel for transport of radioactive waste, an entrance shaft for workers, and six silos for final disposal of radioactive waste. As of Dec. 2012, the overall project progress rate is 93.8%. (authors)« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Koo, Ja-Kong; Do, Nam-Young
The K site near Seoul began landfilling in 1992. The landfilled wastes include municipal solid waste (66.4%), construction residues (20.4%), water and wastewater sludges (trace levels), and hazardous waste (trace levels). The water content of the municipal solid waste is very high (47.3%); as a result, the leachate level (average E.L.) of the landfill, the design value of which is 7.0 m, was measured at 10.3 m in January 1995 and is increasing. The increase of leachate level in the landfill site causes a problem with slope stability. The leachate level at each disposal stage divided by the intermediate covermore » layer was calculated with the HELP (Hydrologic Evaluation of Landfill Performance) model and calibrated with the data measured from February 1993 to June 1995. Also, the hydraulic conductivities of the waste layer and the intermediate cover layer in each stage were calibrated continuously with HELP model analysis. To verify these results, the total water balance in the landfill site was calculated using the infiltration rate calculated from HELP modeling. The leachate level was E.L. 10.0 m, which was close to the measured leachate level. To estimate the change of the leachate level in the future, the total water balances with different leachate discharge rates of 3,000, 3,500, and 5,000 m{sup 3}/day were analyzed. When the leachate discharge rate was 5,000 ton/day and the initial water content was decreased below 25%, the average leachate level was 10.8 m. This result satisfies the safety factor requirements (=1.3) for landfill slope stability. 4 refs., 8 figs., 1 tab.« less
Ceramization of low and intermediate level radioactive wastes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fiquet, O.; Berson, X.
1993-12-31
A ceramic conditioning is studied for a large variety of low and intermediate level wastes. These wastes arise from several waste streams coming from all process steps of the fuel cycle. The physical properties of ceramics can advantageously be used for radioactive waste immobilization. Their chemical durability can offer a barrier against external aggression. More over, some minerals have possible host sites in their crystal structure for heavy elements which can confer the best immobilization mechanism. The general route for development studies is described giving compositions and process choices. Investigations have been conducted on clay materials and on the processmore » parameters which condition the final product properties. Two practical examples are described concerning chemical precipitation sludge resulting from liquid waste treatment and chamot used as a fluidized bed in a graphite incinerator. Important process parameters are put in evidence and the possibility of a pilot plant development is briefly mentioned. Results of investigations are promising to define a new route of conditioning.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dunn, Darrell; Poinssot, Christophe; Begg, Bruce
Management of nuclear waste remains an important international topic that includes reprocessing of commercial nuclear fuel, waste-form design and development, storage and disposal packaging, the process of repository site selection, system design, and performance assessment. Requirements to manage and dispose of materials from the production of nuclear weapons, and the renewed interest in nuclear power, in particular through the Generation IV Forum and the Advanced Fuel Cycle Initiative, can be expected to increase the need for scientific advances in waste management. A broad range of scientific and engineering disciplines is necessary to provide safe and effective solutions and address complexmore » issues. This volume offers an interdisciplinary perspective on materials-related issues associated with nuclear waste management programs. Invited and contributed papers cover a wide range of topics including studies on: spent fuel; performance assessment and models; waste forms for low- and intermediate-level waste; ceramic and glass waste forms for plutonium and high-level waste; radionuclides; containers and engineered barriers; disposal environments and site characteristics; and partitioning and transmutation.« less
Site characterization for LIL radioactive waste disposal in Romania
DOE Office of Scientific and Technical Information (OSTI.GOV)
Diaconu, D. R.; Birdsell, K. H.; Witkowski, M. S.
2001-01-01
Recent studies in radioactive waste management in Romania have focussed mainly on the disposal of low and intermediate level waste from the operation of the new nuclear power plant at Cernavoda. Following extensive geological, hydrological, seismological, physical and chemical investigations, a disposal site at Saligny has been selected. This paper presents description of the site at Saligny as well as the most important results of the site characterisation. These are reflected in the three-dimensional, stratigraphical representation of the loess and clay layers and in representative parameter values for the main layers. Based on these data, the simulation of the background,more » unsaturated-zone water flow at the Saligny site, calculated by the FEHM code, is in a good agreement with the measured moisture profile.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Faybishenko, Boris; Birkholzer, Jens; Sassani, David
The overall objective of the Fifth Worldwide Review (WWR-5) is to document the current state-of-the-art of major developments in a number of nations throughout the World pursuing geological disposal programs, and to summarize challenging problems and experience that have been obtained in siting, preparing and reviewing cases for the operational and long-term safety of proposed and operating nuclear waste repositories. The scope of the Review is to address current specific technical issues and challenges in safety case development along with the interplay of technical feasibility, siting, engineering design issues, and operational and post-closure safety. In particular, the chapters included inmore » the report present the following types of information: the current status of the deep geological repository programs for high level nuclear waste and low- and intermediate level nuclear waste in each country, concepts of siting and radioactive waste and spent nuclear fuel management in different countries (with the emphasis of nuclear waste disposal under different climatic conditions and different geological formations), progress in repository site selection and site characterization, technology development, buffer/backfill materials studies and testing, support activities, programs, and projects, international cooperation, and future plans, as well as regulatory issues and transboundary problems.« less
Investigations of the unsaturated zone at two radioactive waste disposal sites in Lithuania.
Skuratovič, Žana; Mažeika, Jonas; Petrošius, Rimantas; Martma, Tõnu
2016-01-01
The unsaturated zone is an important part of the water cycle, governed by many hydrological and hydrogeological factors and processes and provide water and nutrients to the terrestrial ecosystem. Besides, the soils of the unsaturated zone are regarded as the first natural barrier to a large extent and are able to limit the spread of contaminants depending on their properties. The unsaturated zone provides a linkage between atmospheric moisture, groundwater, and seepage of groundwater to streams, lakes, or other surface water bodies. The major difference between water flow in saturated and unsaturated soils is that the hydraulic conductivity, which is conventionally assumed to be a constant in saturated soils, is a function of the degree of saturation or matrix suction in the unsaturated soils. In Lithuania, low and intermediate level radioactive wastes generated from medicine, industry and research were accumulated at the Maisiagala radioactive waste repository. Short-lived low and intermediate levels radioactive waste, generated during the operation of the Ignalina Nuclear Power Plant (INPP) and arising after the INPP decommissioning will be disposed of in the near surface repository close to the INPP (Stabatiske site). Extensive data sets of the hydraulic properties and water content attributed to unsaturated zone soil profiles of the two radioactive waste disposal sites have been collected and summarized. Globally widespread radionuclide tritium ((3)H) and stable isotope ratio ((18)O/(16)O and (2)H/(1)H) distribution features were determined in precipitation, unsaturated zone soil moisture profiles and groundwater.
Performance assessment for low-level waste disposal in the UK
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ashworth, A.B.
1995-12-31
British Nuclear Fuels plc (BNFL) operate a site for the disposal of Low Level Radioactive Waste at Drigg in West Cumbria, in North-West England. HMIP are responsible for the regulation of the site with regard to environmental discharges of radioactive materials, both operational and post-closure. This paper is concerned with post-closure matters only. Two post-closure performance assessments have been carried out for this site: one by the National Radiological Protection Board (NRPB) in 1987; and a subsequent one carried out on behalf of HMIP, completed in 1991. Currently, BNFL are preparing a Safety Case for continued operation of the Driggmore » site, and it expected that the core of this Case will comprise BNFL`s own analysis of post-closure performance. HMIP has developed procedures for the assessment of this Case, based upon experience of the previous Drigg assessments, and also upon the experience of similar work carried out in the assessment of Intermediate Level Waste (ILW) disposal at both deep and shallow potential sites. This paper describes the more important features of these procedures.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Van Cotthem, Alain; Van Humbeeck, Hughes; Biurrun, Enrique
The underground architecture and layout of the proposed Belgian high-level (HLW) and long-lived, intermediate-level radioactive wastes (ILW-LL) disposal system (repository) is mainly based on lessons learned during the development and 30-year-long operation of an underground research laboratory (URL) ('HADES') located adjacent to the city of Mol at a depth of 225 m in a 100-m-thick, Tertiary clay formation; the Boom clay. The following main operational and safety challenges are addressed in the proposed architecture and layout: 1. Following excavation, the underground openings needed to be promptly supported to minimize the extent of the excavation damaged zone (EDZ). 2. The sizemore » and unsupported stand-up time at tunnel crossings/intersections also needed to be minimized to minimize the extent of the related EDZ. 3. Steel components had to be minimized to limit the related long-term (post-closure) corrosion and hydrogen production. 4. The shafts and all equipment had to go down through a 180-m-thick aquifer and handle up to 65-Ton payloads. 5. The shaft seals had to be placed in the underlying clay layer. The currently proposed layout minimizes the excavated volume based on strict long-term-safety criteria and optimizes operational safety. Operational safety is further enhanced by a remote-controlled waste-package-handling system transporting the waste packages from their respective surface location down to their respective disposal location with no intermediate operation. The related on-site preparation and thenceforth use of cement-based, waste package- transportation containers are integral operational-safety components. In addition to strengthening the waste packages and providing radiation protection, these containers also provide long-term corrosion protection of the internal 'primary' steel packages. (authors)« less
Industrial Program of Waste Management - Cigeo Project - 13033
DOE Office of Scientific and Technical Information (OSTI.GOV)
Butez, Marc; Bartagnon, Olivier; Gagner, Laurent
2013-07-01
The French Planning Act of 28 June 2006 prescribed that a reversible repository in a deep geological formation be chosen as the reference solution for the long-term management of high-level and intermediate-level long-lived radioactive waste. It also entrusted the responsibility of further studies and design of the repository (named Cigeo) upon the French Radioactive Waste Management Agency (Andra), in order for the review of the creation-license application to start in 2015 and, subject to its approval, the commissioning of the repository to take place in 2025. Andra is responsible for siting, designing, implementing, operating the future geological repository, including operationalmore » and long term safety and waste acceptance. Nuclear operators (Electricite de France (EDF), AREVA NC, and the French Commission in charge of Atomic Energy and Alternative Energies (CEA) are technically and financially responsible for the waste they generate, with no limit in time. They provide Andra, on one hand, with waste packages related input data, and on the other hand with their long term industrial experiences of high and intermediate-level long-lived radwaste management and nuclear operation. Andra, EDF, AREVA and CEA established a cooperation agreement for strengthening their collaborations in these fields. Within this agreement Andra and the nuclear operators have defined an industrial program for waste management. This program includes the waste inventory to be taken into account for the design of the Cigeo project and the structural hypothesis underlying its phased development. It schedules the delivery of the different categories of waste and defines associated flows. (authors)« less
Janovics, R; Kelemen, D I; Kern, Z; Kapitány, S; Veres, M; Jull, A J T; Molnár, M
2016-03-01
Tree ring series were collected from the vicinity of a Hungarian radioactive waste treatment and disposal facility and from a distant control background site, which is not influenced by the radiocarbon discharge of the disposal facility but it represents the natural regional (14)C level. The (14)C concentration of the cellulose content of tree rings was measured by AMS. Data of the tree ring series from the disposal facility was compared to the control site for each year. The results were also compared to the (14)C data of the atmospheric (14)C monitoring stations at the disposal facility and to international background measurements. On the basis of the results, the excess radiocarbon of the disposal facility can unambiguously be detected in the tree from the repository site. Copyright © 2016 Elsevier Ltd. All rights reserved.
Integrated Management of all Historical, Operational and Future Decomissioning Solid ILW at Dounreay
DOE Office of Scientific and Technical Information (OSTI.GOV)
Graham, D.
This paper describes major components of the Dounreay Site Restoration Plan, DSRP to deal with the site's solid intermediate level waste, ILW legacy. Historic solid ILW exists in the Shaft (disposals between 1959 and 1977), the Wet Silo (operated between 1973 and 1998), and in operating engineered drummed storage. Significant further arisings are expected from future operations, post-operations clean out and decommissioning through to the completion of site restoration, expected to be complete by about 2060. The raw waste is in many solid forms and also incorporates sludge, some fissile material and hazardous chemical components. The aim of the Solidmore » ILW Project is to treat and condition all this waste to make it passively safe and in a form which can be stored for a substantial period, and then transported to the planned U.K. national deep repository for ILW disposal. The Solid ILW Project involves the construction of head works for waste retrieval operations at the Shaft and Wet Silo, a Waste Treatment Plant and a Conditioned Waste Store to hold the conditioned waste until the disposal facilities become available. In addition, there are infrastructure activities to enable the new construction: contaminated ground remediation, existing building demolition, underground and overground services diversion, sea cliff stabilization, and groundwater isolation at the Shaft.« less
Rout, Simon P; Radford, Jessica; Laws, Andrew P; Sweeney, Francis; Elmekawy, Ahmed; Gillie, Lisa J; Humphreys, Paul N
2014-01-01
The anoxic, alkaline hydrolysis of cellulosic materials generates a range of cellulose degradation products (CDP) including α and β forms of isosaccharinic acid (ISA) and is expected to occur in radioactive waste disposal sites receiving intermediate level radioactive wastes. The generation of ISA's is of particular relevance to the disposal of these wastes since they are able to form complexes with radioelements such as Pu enhancing their migration. This study demonstrates that microbial communities present in near-surface anoxic sediments are able to degrade CDP including both forms of ISA via iron reduction, sulphate reduction and methanogenesis, without any prior exposure to these substrates. No significant difference (n = 6, p = 0.118) in α and β ISA degradation rates were seen under either iron reducing, sulphate reducing or methanogenic conditions, giving an overall mean degradation rate of 4.7 × 10(-2) hr(-1) (SE ± 2.9 × 10(-3)). These results suggest that a radioactive waste disposal site is likely to be colonised by organisms able to degrade CDP and associated ISA's during the construction and operational phase of the facility.
NASA Astrophysics Data System (ADS)
Duffó, G. S.; Arva, E. A.; Schulz, F. M.; Vazquez, D. R.
2013-07-01
The National Atomic Energy Commission of the Argentine Republic is developing a nuclear waste disposal management programme that contemplates the design and construction of a facility for the final disposal of intermediate-level radioactive wastes. The repository is based on the use of multiple, independent and redundant barriers. The major components are made in reinforced concrete so, the durability of these structures is an important aspect for the facility integrity. This work presents an investigation performed on an instrumented reinforced concrete prototype specifically designed for this purpose, to study the behaviour of an intermediate level radioactive waste disposal facility from the rebar corrosion point of view. The information obtained will be used for the final design of the facility in order to guarantee a service life more or equal than the foreseen durability for this type of facilities.
NASA Astrophysics Data System (ADS)
Duffó, G. S.; Arva, E. A.; Schulz, F. M.; Vazquez, D. R.
2012-01-01
The National Atomic Energy Commission of the Argentine Republic is developing a nuclear waste disposal management programme that contemplates the design and construction of a facility for the final disposal of intermediate-level radioactive wastes. The repository is based on the use of multiple, independent and redundant barriers. The major components are made in reinforced concrete so, the durability of these structures is an important aspect for the facility integrity. This work presents an investigation performed on a reinforced concrete specifically designed for this purpose, to predict the service life of the intermediate level radioactive waste disposal facility from data obtained with several techniques. Results obtained with corrosion sensors embedded in a concrete prototype are also included. The information obtained will be used for the final design of the facility in order to guarantee a service life more or equal than the foreseen durability for this type of facilities.
Review and Implementation of Technology for Solid Radioactive Waste Volume Reduction
1999-10-15
were shifted to Project 1.1 for spent nuclear fuel cask development to accelerate that project. Those funds should be repaid to Project 1.3 in the... transported between the shipyards such as Nerpa, and other intermediate storage sites such as Gremikha and Andreeva Bay. At these sites the largest...waste source and allow pretreatment unit operations using commercially available technologies of contaminant assaying, cutting/shearing, sorting
Derivation of the Korean radwaste scaling factor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kwang Yong Jee; Hong Joo Ahn; Se Chul Sohn
2007-07-01
The concentrations of several radionuclides in low and intermediate level radioactive waste (LILW) drums have to be determined before shipping to disposal facilities. A notice, by the Ministry of Science and Technology (MOST) of the Korean Government, related to the disposal of LILW drums came into effect at the beginning of 2005, with regards to a radionuclide regulation inside a waste drum. MOST allows for an indirect radionuclide assay using a scaling factor to measure the inventories due to the difficulty of nondestructively measuring the essential {alpha} and {beta}-emitting nuclides inside a drum. That is, a scaling factor calculated throughmore » a correlation of the {alpha} or {beta}-emitting nuclide (DTM, Difficult-To-Measure) with a {gamma}-emitting nuclide (ETM, Easy-To-Measure) which has systematically similar properties with DTM nuclides. In this study, radioactive wastes, such as spent resin and dry active waste which were generated at different sites of a PWR and a site of a PHWR type Korean NPP, were partially sampled and analyzed for regulated radionuclides by using radiochemical methods. According to a reactor type and a waste form, the analysis results of each radionuclide were classified. Korean radwaste scaling factor was derived from database of radionuclide concentrations. (authors)« less
NASA Astrophysics Data System (ADS)
Gemitzi, Alexandra; Tsihrintzis, Vassilios A.; Voudrias, Evangelos; Petalas, Christos; Stravodimos, George
2007-01-01
This study presents a methodology for siting municipal solid waste landfills, coupling geographic information systems (GIS), fuzzy logic, and multicriteria evaluation techniques. Both exclusionary and non-exclusionary criteria are used. Factors, i.e., non-exclusionary criteria, are divided in two distinct groups which do not have the same level of trade off. The first group comprises factors related to the physical environment, which cannot be expressed in terms of monetary cost and, therefore, they do not easily trade off. The second group includes those factors related to human activities, i.e., socioeconomic factors, which can be expressed as financial cost, thus showing a high level of trade off. GIS are used for geographic data acquisition and processing. The analytical hierarchy process (AHP) is the multicriteria evaluation technique used, enhanced with fuzzy factor standardization. Besides assigning weights to factors through the AHP, control over the level of risk and trade off in the siting process is achieved through a second set of weights, i.e., order weights, applied to factors in each factor group, on a pixel-by-pixel basis, thus taking into account the local site characteristics. The method has been applied to Evros prefecture (NE Greece), an area of approximately 4,000 km2. The siting methodology results in two intermediate suitability maps, one related to environmental and the other to socioeconomic criteria. Combination of the two intermediate maps results in the final composite suitability map for landfill siting.
PIC-container for containment and disposal of low and intermediate level radioactive wastes
NASA Astrophysics Data System (ADS)
Araki, K.; Shinji, Y.; Maki, Y.; Ishizaki, K.; Minegishi, K.; Sudoh, G.
1981-03-01
Steel fiber reinforced polymer impregnated concrete (SFPIC) was investigated for low and intermediate level radioactive waste containers. The 60 L and 200 L containers were designed as pressure container (without equalizer) for 500 kg/square cm and 700 kg/square cm. Polymerization of impregnated methylmethacrylate monomer was performed by 60 Co-gamma ray radiation and thermal catalytic polymerization respectively. Under the loading of 500 kg/square cm and 700 kg/square cm-outside hydraulic pressure, these containers were kept in their good condition. The observed maximum strains were about .001380 and .003950 at the outside central position of container body for circumferential direction of the 60 L and 200 L container, respectively. The containers were immersed in deionized water for 400 days, nuclides were not leached from the container. The SFPIC container was suitable for containment and disposal of low and intermediate level radioactive wastes.
Scenario for the safety assessment of near surface radioactive waste disposal in Serpong, Indonesia
DOE Office of Scientific and Technical Information (OSTI.GOV)
Purnomo, A.S.
2007-07-01
Near surface disposal has been practiced for some decades, with a wide variation in sites, types and amounts of wastes, and facility designs employed. Experience has shown that the effective and safe isolation of waste depends on the performance of the overall disposal system, which is formed by three major components or barriers: the site, the disposal facility and the waste form. The objective of radioactive waste disposal is to isolate waste so that it does not result in undue radiation exposure to humans and the environment. In near surface disposal, the disposal facility is located on or below themore » ground surface, where the protective covering is generally a few meters thick. These facilities are intended to contain low and intermediate level waste without appreciable quantities of long-lived radionuclides. Safety is the most important aspect in the applications of nuclear technology and the implementation of nuclear activities in Indonesia. This aspect is reflected by a statement in the Act Number 10 Year 1997, that 'The Development and use of nuclear energy in Indonesia has to be carried out in such away to assure the safety and health of workers, the public and the protection of the environment'. Serpong are one of the sites for a nuclear research center facility, it is the biggest one in Indonesia. In the future will be developed the first near surface disposal on site of the nuclear research facility in Serpong. The paper will mainly focus on scenario of the safety assessments of near-surface radioactive waste disposal is often important to evaluate the performance of the disposal system (disposal facility, geosphere and biosphere). It will give detail, how at the present and future conditions, including anticipated and less probable events in order to prevent radionuclide migration to human and environment. Refer to the geology characteristic and ground water table is enable to place something Near Surface Disposal on unsaturated zone in Serpong site. (authors)« less
Bedinger, Marion S.; Stevens, Peter R.
1990-01-01
In the United States, low-level radioactive waste is disposed by shallow-land burial. Low-level radioactive waste generated by non-Federal facilities has been buried at six commercially operated sites; low-level radioactive waste generated by Federal facilities has been buried at eight major and several minor Federally operated sites (fig. 1). Generally, low-level radioactive waste is somewhat imprecisely defined as waste that does not fit the definition of high-level radioactive waste and does not exceed 100 nCi/g in the concentration of transuranic elements. Most low-level radioactive waste generated by non-Federal facilities is generated at nuclear powerplants; the remainder is generated primarily at research laboratories, hospitals, industrial facilities, and universities. On the basis of half lives and concentrations of radionuclides in low-level radioactive waste, the hazard associated with burial of such waste generally lasts for about 500 years. Studies made at several of the commercially and Federally operated low-level radioactive-waste repository sites indicate that some of these sites have not provided containment of waste nor the expected protection of the environment.
Prudic, David E.; Dennehy, Kevin F.; Bedinger, Marion S.; Stevens, Peter R.
1990-01-01
Engineering practices, including the excavation of trenches, placement of waste, nature of waste forms, backfilling procedures and materials, and trench-cover construction and materials at low-level radioactive-waste repository sites greatly affect the geohydrology of the sites. Engineering practices are dominant factors in eventual stability and isolation of the waste. The papers presented relating to Topic I were discussions of the hydrogeologic setting at existing low-level radioactive-waste repository sites and changes in the hydrology induced by site operations. Papers summarizing detailed studies presented at this workshop include those at sites near Sheffield, Ill.; Oak Ridge National Laboratory, Tenn.; West Valley, N.Y.; Maxey Flats, Ky.; Barnwell, S.C.; and Beatty, Nev.
Rout, Simon P.; Charles, Christopher J.; Garratt, Eva J.; Laws, Andrew P.; Gunn, John; Humphreys, Paul N.
2015-01-01
The contamination of surface environments with hydroxide rich wastes leads to the formation of high pH (>11.0) soil profiles. One such site is a legacy lime works at Harpur Hill, Derbyshire where soil profile indicated in-situ pH values up to pH 12. Soil and porewater profiles around the site indicated clear evidence of the presence of the α and β stereoisomers of isosaccharinic acid (ISA) resulting from the anoxic, alkaline degradation of cellulosic material. ISAs are of particular interest with regards to the disposal of cellulosic materials contained within the intermediate level waste (ILW) inventory of the United Kingdom, where they may influence radionuclide mobility via complexation events occurring within a geological disposal facility (GDF) concept. The mixing of uncontaminated soils with the alkaline leachate of the site resulted in ISA generation, where the rate of generation in-situ is likely to be dependent upon the prevailing temperature of the soil. Microbial consortia present in the uncontaminated soil were capable of surviving conditions imposed by the alkaline leachate and demonstrated the ability to utilise ISAs as a carbon source. Leachate-contaminated soil was sub-cultured in a cellulose degradation product driven microcosm operating at pH 11, the consortia present were capable of the degradation of ISAs and the generation of methane from the resultant H2/CO2 produced from fermentation processes. Following microbial community analysis, fermentation processes appear to be predominated by Clostridia from the genus Alkaliphilus sp, with methanogenesis being attributed to Methanobacterium and Methanomassiliicoccus sp. The study is the first to identify the generation of ISA within an anthropogenic environment and advocates the notion that microbial activity within an ILW-GDF is likely to influence the impact of ISAs upon radionuclide migration. PMID:25748643
Rout, Simon P; Charles, Christopher J; Garratt, Eva J; Laws, Andrew P; Gunn, John; Humphreys, Paul N
2015-01-01
The contamination of surface environments with hydroxide rich wastes leads to the formation of high pH (>11.0) soil profiles. One such site is a legacy lime works at Harpur Hill, Derbyshire where soil profile indicated in-situ pH values up to pH 12. Soil and porewater profiles around the site indicated clear evidence of the presence of the α and β stereoisomers of isosaccharinic acid (ISA) resulting from the anoxic, alkaline degradation of cellulosic material. ISAs are of particular interest with regards to the disposal of cellulosic materials contained within the intermediate level waste (ILW) inventory of the United Kingdom, where they may influence radionuclide mobility via complexation events occurring within a geological disposal facility (GDF) concept. The mixing of uncontaminated soils with the alkaline leachate of the site resulted in ISA generation, where the rate of generation in-situ is likely to be dependent upon the prevailing temperature of the soil. Microbial consortia present in the uncontaminated soil were capable of surviving conditions imposed by the alkaline leachate and demonstrated the ability to utilise ISAs as a carbon source. Leachate-contaminated soil was sub-cultured in a cellulose degradation product driven microcosm operating at pH 11, the consortia present were capable of the degradation of ISAs and the generation of methane from the resultant H2/CO2 produced from fermentation processes. Following microbial community analysis, fermentation processes appear to be predominated by Clostridia from the genus Alkaliphilus sp, with methanogenesis being attributed to Methanobacterium and Methanomassiliicoccus sp. The study is the first to identify the generation of ISA within an anthropogenic environment and advocates the notion that microbial activity within an ILW-GDF is likely to influence the impact of ISAs upon radionuclide migration.
Operational Strategies for Low-Level Radioactive Waste Disposal Site in Egypt - 13513
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mohamed, Yasser T.
The ultimate aims of treatment and conditioning is to prepare waste for disposal by ensuring that the waste will meet the waste acceptance criteria of a disposal facility. Hence the purpose of low-level waste disposal is to isolate the waste from both people and the environment. The radioactive particles in low-level waste emit the same types of radiation that everyone receives from nature. Most low-level waste fades away to natural background levels of radioactivity in months or years. Virtually all of it diminishes to natural levels in less than 300 years. In Egypt, The Hot Laboratories and Waste Management Centermore » has been established since 1983, as a waste management facility for LLW and ILW and the disposal site licensed for preoperational in 2005. The site accepts the low level waste generated on site and off site and unwanted radioactive sealed sources with half-life less than 30 years for disposal and all types of sources for interim storage prior to the final disposal. Operational requirements at the low-level (LLRW) disposal site are listed in the National Center for Nuclear Safety and Radiation Control NCNSRC guidelines. Additional procedures are listed in the Low-Level Radioactive Waste Disposal Facility Standards Manual. The following describes the current operations at the LLRW disposal site. (authors)« less
Fischer, John N.
1986-01-01
In the United States, low-level radioactive waste is disposed of by shallow land burial. Commercial low-level radioactive waste has been buried at six sites, and low-level radioactive waste generated by the Federal Government has been buried at nine major and several minor sites. Several existing low-level radioactive waste sites have not provided expected protection of the environment. These shortcomings are related, at least in part, to an inadequate understanding of site hydrogeology at the time the sites were selected. To better understand the natural systems and the effect of hydrogeologic factors on long-term site performance, the U.S. Geological Survey has conducted investigations at five of the six commercial low-level radioactive waste sites and at three Federal sites. These studies, combined with those of other Federal and State agencies, have identified and confirmed important hydrogeologic factors in the effective disposal of low-level radioactive waste by shallow land burial. These factors include precipitation, surface drainage, topography, site stability, geology, thickness of the host soil-rock horizon, soil and sediment permeability, soil and water chemistry, and depth to the water table.
NASA Astrophysics Data System (ADS)
Gautschi, Andreas
2017-09-01
In Switzerland, the Opalinus Clay - a Jurassic (Aalenian) claystone formation - has been proposed as the first-priority host rock for a deep geological repository for both low- and intermediate-level and high-level radioactive wastes. An extensive site and host rock investigation programme has been carried out during the past 30 years in Northern Switzerland, comprising extensive 2D and 3D seismic surveys, a series of deep boreholes within and around potential geological siting regions, experiments in the international Mont Terri Rock Laboratory, compilations of data from Opalinus Clay in railway and motorway tunnels and comparisons with similar rocks. The hydrogeological properties of the Opalinus Clay that are relevant from the viewpoint of long-term safety are described and illustrated. The main conclusions are supported by multiple lines of evidence, demonstrating consistency of conclusions based on hydraulic properties, porewater chemistry, distribution of natural tracers across the Opalinus Clay as well as small- and large-scale diffusion models and the derived conceptual understanding of solute transport.
DOE Office of Scientific and Technical Information (OSTI.GOV)
NSTec Environmental Programs
2010-10-04
The Nevada National Security Site (NNSS) is located approximately 105 km (65 mi) northwest of Las Vegas, Nevada. The U.S. Department of Energy National Nuclear Security Administration Nevada Site Office (NNSA/NSO) is the federal lands management authority for the NNSS and National Security Technologies, LLC (NSTec) is the Management and Operations contractor. Access on and off the NNSS is tightly controlled, restricted, and guarded on a 24-hour basis. The NNSS is posted with signs along its entire perimeter. NSTec is the operator of all solid waste disposal sites on the NNSS. The Area 5 Radioactive Waste Management Site (RWMS) ismore » the location of the permitted facility for the Solid Waste Disposal Site (SWDS). The Area 5 RWMS is located near the eastern edge of the NNSS (Figure 1), approximately 26 km (16 mi) north of Mercury, Nevada. The Area 5 RWMS is used for the disposal of low-level waste (LLW) and mixed low-level waste. Many areas surrounding the RWMS have been used in conducting nuclear tests. The site will be used for the disposal of regulated Asbestiform Low-Level Waste (ALLW), small quantities of low-level radioactive hydrocarbon-burdened (LLHB) media and debris, LLW, LLW that contains Polychlorinated Biphenyl (PCB) Bulk Product Waste greater than 50 ppm that leaches at a rate of less than 10 micrograms of PCB per liter of water, and small quantities of LLHB demolition and construction waste (hereafter called permissible waste). Waste containing free liquids, or waste that is regulated as hazardous waste under the Resource Conservation and Recovery Act (RCRA) or state-of-generation hazardous waste regulations, will not be accepted for disposal at the site. Waste regulated under the Toxic Substances Control Act (TSCA) that will be accepted at the disposal site is regulated asbestos-containing materials (RACM) and PCB Bulk Product Waste greater than 50 ppm that leaches at a rate of less than 10 micrograms of PCB per liter of water. The term asbestiform is used throughout this document to describe RACM. The disposal site will be used as a depository of permissible waste generated both on site and off site. All generators designated by NNSA/NSO will be eligible to dispose regulated ALLW at the Asbestiform Low-Level Waste Disposal Site in accordance with the DOE/NV-325, Nevada National Security Site Waste Acceptance Criteria (NNSSWAC, current revision). Approval will be given by NNSA/NSO to generators that have successfully demonstrated through process knowledge (PK) and/or sampling and analysis that the waste is low-level, contains asbestiform material, or contains PCB Bulk Product Waste greater than 50 ppm that leaches at a rate of less than 10 micrograms of PCB per liter of water, or small quantities of LLHB demolition and construction waste and does not contain prohibited waste materials. Each waste stream will be approved through the Radioactive Waste Acceptance Program (RWAP), which ensures that the waste meets acceptance requirements outlined in the NNSSWAC.« less
NASA Astrophysics Data System (ADS)
Zuloaga, P.; Ordoñez, M.; Andrade, C.; Castellote, M.
2011-04-01
The generic design of the centralised spent fuel storage facility was approved by the Spanish Safety Authority in 2006. The planned operational life is 60 years, while the design service life is 100 years. Durability studies and surveillance of the behaviour have been considered from the initial design steps, taking into account the accessibility limitations and temperatures involved. The paper presents an overview of the ageing management program set in support of the Performance Assessment and Safety Review of El Cabril low and intermediate level waste (LILW) disposal facility. Based on the experience gained for LILW, ENRESA has developed a preliminary definition of the Ageing Management Plan for the Centralised Interim Storage Facility of spent Fuel and High Level Waste (HLW), which addresses the behaviour of spent fuel, its retrievability, the confinement system and the reinforced concrete structure. It includes tests plans and surveillance design considerations, based on the El Cabril LILW disposal facility.
HIGH TEMPERATURE TREATMENT OF INTERMEDIATE-LEVEL RADIOACTIVE WASTES - SIA RADON EXPERIENCE
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sobolev, I.A.; Dmitriev, S.A.; Lifanov, F.A.
2003-02-27
This review describes high temperature methods of low- and intermediate-level radioactive waste (LILW) treatment currently used at SIA Radon. Solid and liquid organic and mixed organic and inorganic wastes are subjected to plasma heating in a shaft furnace with formation of stable leach resistant slag suitable for disposal in near-surface repositories. Liquid inorganic radioactive waste is vitrified in a cold crucible based plant with borosilicate glass productivity up to 75 kg/h. Radioactive silts from settlers are heat-treated at 500-700 0C in electric furnace forming cake following by cake crushing, charging into 200 L barrels and soaking with cement grout. Variousmore » thermochemical technologies for decontamination of metallic, asphalt, and concrete surfaces, treatment of organic wastes (spent ion-exchange resins, polymers, medical and biological wastes), batch vitrification of incinerator ashes, calcines, spent inorganic sorbents, contaminated soil, treatment of carbon containing 14C nuclide, reactor graphite, lubricants have been developed and implemented.« less
Geohydrologic aspects for siting and design of low-level radioactive-waste disposal
Bedinger, M.S.
1989-01-01
The objective for siting and design of low-level radioactive-waste repository sites is to isolate the waste from the biosphere until the waste no longer poses an unacceptable hazard as a result of radioactive decay. Low-level radioactive waste commonly is isolated at shallow depths with various engineered features to stabilize the waste and to reduce its dissolution and transport by ground water. The unsaturated zone generally is preferred for isolating the waste. Low-level radioactive waste may need to be isolated for 300 to 500 years. Maintenance and monitoring of the repository site are required by Federal regulations for only the first 100 years. Therefore, geohydrology of the repository site needs to provide natural isolation of the waste for the hazardous period following maintenance of the site. Engineering design of the repository needs to be compatible with the natural geohydrologic conditions at the site. Studies at existing commercial and Federal waste-disposal sites provide information on the problems encountered and the basis for establishing siting guidelines for improved isolation of radioactive waste, engineering design of repository structures, and surveillance needs to assess the effectiveness of the repositories and to provide early warning of problems that may require remedial action.Climate directly affects the hydrology of a site and probably is the most important single factor that affects the suitability of a site for shallow-land burial of low-level radioactive waste. Humid and subhumid regions are not well suited for shallow isolation of low-level radioactive waste in the unsaturated zone; arid regions with zero to small infiltration from precipitation, great depths to the water table, and long flow paths to natural discharge areas are naturally well suited to isolation of the waste. The unsaturated zone is preferred for isolation of low-level radioactive waste. The guiding rationale is to minimize contact of water with the waste and to minimize transport of waste from the repository. The hydrology of a flow system containing a repository is greatly affected by the engineering of the repository site. Prediction of the performance of the repository is a complex problem, hampered by problems of characterizing the natural and manmade features of the flow system and by the limitations of models to predict flow and geochemical processes in the saturated and unsaturated zones. Disposal in low-permeability unfractured clays in the saturated zone may be feasible where the radionuclide transport is controlled by diffusion rather than advection.
Hazardous Waste Cleanup: Chemtura Corporation in Perth Amboy, New Jersey
The Chemtura Corporation (formerly Crompton Corp.) is located at 10 Convery Boulevard in Perth Amboy, New Jersey. The site encompasses approximately 25 acres, and is an active facility that manufactures chemicals and chemical intermediates for a variety
Implementation of the Brazilian National Repository - RBMN Project - 13008
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cassia Oliveira de Tello, Cledola
2013-07-01
Ionizing radiation in Brazil is used in electricity generation, medicine, industry, agriculture and for research and development purposes. All these activities can generate radioactive waste. At this point, in Brazil, the use of nuclear energy and radioisotopes justifies the construction of a national repository for radioactive wastes of low and intermediate-level. According to Federal Law No. 10308, Brazilian National Commission for Nuclear Energy (CNEN) is responsible for designing and constructing the intermediate and final storages for radioactive wastes. Additionally, a restriction on the construction of Angra 3 is that the repository is under construction until its operation start, attaining somemore » requirements of the Brazilian Environmental Regulator (IBAMA). Besides this NPP, in the National Energy Program is previewed the installation of four more plants, by 2030. In November 2008, CNEN launched the Project RBMN (Repository for Low and Intermediate-Level Radioactive Wastes), which aims at the implantation of a National Repository for disposal of low and intermediate-level of radiation wastes. This Project has some aspects that are unique in the Brazilian context, especially referring to the time between its construction and the end of its institutional period. This time is about 360 years, when the area will be released for unrestricted uses. It means that the Repository must be safe and secure for more than three hundred years, which is longer than half of the whole of Brazilian history. This aspect is very new for the Brazilian people, bringing a new dimension to public acceptance. Another point is this will be the first repository in South America, bringing a real challenge for the continent. The current status of the Project is summarized. (authors)« less
NASA Astrophysics Data System (ADS)
Duffó, G. S.; Farina, S. B.; Arva, E. A.; Giordano, C. M.; Lafont, C. J.
2006-11-01
The Argentine Atomic Energy Commission (CNEA) is responsible of the development of a management nuclear waste disposal programme. This programme contemplates the design and construction of a facility for the final disposal of intermediate-level radioactive waste. The proposed concept is the near-surface monolithic repository similar to those in operation in El Cabril, Spain. The design of this type of repository is based on the use of multiple, independent and redundant barriers. Since the vault and cover are major components of the engineered barriers, the durability of these concrete structures is an important aspect for the facilities integrity. This work presents a laboratory and field investigation performed for the last 6 years on reinforced concrete specimens, in order to predict the service life of the intermediate level radioactive waste disposal vaults from data obtained from electrochemical techniques. On the other hand, the development of sensors that allow on-line measurements of rebar corrosion potential and corrosion current density; incoming oxygen flow that reaches the metal surface; concrete electrical resistivity and chloride concentration is shown. Those sensors, properly embedded in a new full scale vault (nowadays in construction), will allow the monitoring of the corrosion process of the steel rebars embedded in thestructure.
U.S. Geological Survey research in radioactive waste disposal - Fiscal years 1986-1990
Trask, N.J.; Stevens, P.R.
1991-01-01
The report summarizes progress on geologic and hydrologic research related to the disposal of radioactive wastes. The research efforts are categorized according to whether they are related most directly to: (1) high-level wastes, (2) transuranic wastes, (3) low-level and mixed low-level and hazardous wastes, or (4) uranium mill tailings. Included is research applicable to the identification and geohydrologic characterization of waste-disposal sites, to investigations of specific sites where wastes have been stored, to development of techniques and methods for characterizing disposal sites, and to studies of geologic and hydrologic processes related to the transport and/or retention of waste radionuclides.
An industry perspective on commercial radioactive waste disposal conditions and trends.
Romano, Stephen A
2006-11-01
The United States is presently served by Class-A, -B and -C low-level radioactive waste and naturally-occurring and accelerator-produced radioactive material disposal sites in Washington and South Carolina; a Class-A and mixed waste disposal site in Utah that also accepts naturally-occurring radioactive material; and hazardous and solid waste facilities and uranium mill tailings sites that accept certain radioactive materials on a site-specific basis. The Washington site only accepts low-level radioactive waste from 11 western states due to interstate Compact restrictions on waste importation. The South Carolina site will be subject to geographic service area restrictions beginning 1 July 2008, after which only three states will have continued access. The Utah site dominates the commercial Class-A and mixed waste disposal market due to generally lower state fees than apply in South Carolina. To expand existing commercial services, an existing hazardous waste site in western Texas is seeking a Class-A, -B and -C and mixed waste disposal license. With that exception, no new Compact facilities are proposed. This fluid, uncertain situation has inspired national level rulemaking initiatives and policy studies, as well as alternative disposal practices for certain low-activity materials.
Geochemical Data Package for Performance Assessment Calculations Related to the Savannah River Site
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kaplan, Daniel I.
The Savannah River Site (SRS) disposes of low-level radioactive waste (LLW) and stabilizes high-level radioactive waste (HLW) tanks in the subsurface environment. Calculations used to establish the radiological limits of these facilities are referred to as Performance Assessments (PA), Special Analyses (SA), and Composite Analyses (CA). The objective of this document is to revise existing geochemical input values used for these calculations. This work builds on earlier compilations of geochemical data (2007, 2010), referred to a geochemical data packages. This work is being conducted as part of the on-going maintenance program of the SRS PA programs that periodically updates calculationsmore » and data packages when new information becomes available. Because application of values without full understanding of their original purpose may lead to misuse, this document also provides the geochemical conceptual model, the approach used for selecting the values, the justification for selecting data, and the assumptions made to assure that the conceptual and numerical geochemical models are reasonably conservative (i.e., bias the recommended input values to reflect conditions that will tend to predict the maximum risk to the hypothetical recipient). This document provides 1088 input parameters for geochemical parameters describing transport processes for 64 elements (>740 radioisotopes) potentially occurring within eight subsurface disposal or tank closure areas: Slit Trenches (ST), Engineered Trenches (ET), Low Activity Waste Vault (LAWV), Intermediate Level (ILV) Vaults, Naval Reactor Component Disposal Areas (NRCDA), Components-in-Grout (CIG) Trenches, Saltstone Facility, and Closed Liquid Waste Tanks. The geochemical parameters described here are the distribution coefficient, Kd value, apparent solubility concentration, k s value, and the cementitious leachate impact factor.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dorries, Alison M
2010-11-09
Facing the closure of nearly all on-site management and disposal capability for low-level radioactive waste (LLW), Los Alamos National Laboratory (LANL) is making ready to ship the majority of LLW off-site. In order to ship off-site, waste must meet the Treatment, Storage, and Disposal Facility's (TSDF) Waste Acceptance Criteria (WAC). In preparation, LANL's waste management organization must ensure LANL waste generators characterize and package waste compliantly and waste characterization documentation is complete and accurate. Key challenges that must be addressed to successfully make the shift to off-site disposal of LLW include improving the detail, accuracy, and quality of process knowledgemore » (PK) and acceptable knowledge (AK) documentation, training waste generators and waste management staff on the higher standard of data quality and expectations, improved WAC compliance for off-site facilities, and enhanced quality assurance throughout the process. Certification of LANL generators will allow direct off-site shipping of LLW from their facilities.« less
Contamination by trace elements at e-waste recycling sites in Bangalore, India.
Ha, Nguyen Ngoc; Agusa, Tetsuro; Ramu, Karri; Tu, Nguyen Phuc Cam; Murata, Satoko; Bulbule, Keshav A; Parthasaraty, Peethmbaram; Takahashi, Shin; Subramanian, Annamalai; Tanabe, Shinsuke
2009-06-01
The recycling and disposal of electronic waste (e-waste) in developing countries is causing an increasing concern due to its effects on the environment and associated human health risks. To understand the contamination status, we measured trace elements (TEs) in soil, air dust, and human hair collected from e-waste recycling sites (a recycling facility and backyard recycling units) and the reference sites in Bangalore and Chennai in India. Concentrations of Cu, Zn, Ag, Cd, In, Sn, Sb, Hg, Pb, and Bi were higher in soil from e-waste recycling sites compared to reference sites. For Cu, Sb, Hg, and Pb in some soils from e-waste sites, the levels exceeded screening values proposed by US Environmental Protection Agency (EPA). Concentrations of Cr, Mn, Co, Cu, In, Sn, Sb, Tl, Pb and Bi in air from the e-waste recycling facility were relatively higher than the levels in Chennai city. High levels of Cu, Mo, Ag, Cd, In, Sb, Tl, and Pb were observed in hair of male workers from e-waste recycling sites. Our results suggest that e-waste recycling and its disposal may lead to the environmental and human contamination by some TEs. To our knowledge, this is the first study on TE contamination at e-waste recycling sites in Bangalore, India.
Development of integrated radioactive waste packaging and conditioning solutions in the UK
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sibley, Peter; Butter, Kevin; Zimmerman, Ian
2013-07-01
In order to offer a more cost effective, safer and efficient Intermediate Level Waste (ILW) management service, EnergySolutions EU Ltd. and Gesellschaft fur Nuklear-Service mbH (GNS) have been engaged in the development of integrated radioactive waste retrieval, packaging and conditioning solutions in the UK. Recognising the challenges surrounding regulatory endorsement and on-site implementation in particular, this has resulted in an alternative approach to meeting customer, safety regulator and disposability requirements. By working closely with waste producers and the organisation(s) responsible for endorsing radioactive waste management operations in the UK, our proposed solutions are now being implemented. By combining GNS' off-the-shelf,more » proven Ductile Cast Iron Containers (DCICs) and water removal technologies, with EnergySolutions EU Ltd.'s experience and expertise in waste retrieval, safety case development and disposability submissions, a fully integrated service offering has been developed. This has involved significant effort to overcome technical challenges such as onsite equipment deployment, active commissioning, conditioning success criteria and disposability acceptance. Our experience in developing such integrated solutions has highlighted the importance of working in collaboration with all parties to achieve a successful and viable outcome. Ultimately, the goal is to ensure reliable, safe and effective delivery of waste management solutions. (authors)« less
Journey to the Nevada Test Site Radioactive Waste Management Complex
None
2018-01-16
Journey to the Nevada Test Site Radioactive Waste Management Complex begins with a global to regional perspective regarding the location of low-level and mixed low-level waste disposal at the Nevada Test Site. For decades, the Nevada National Security Site (NNSS) has served as a vital disposal resource in the nation-wide cleanup of former nuclear research and testing facilities. State-of-the-art waste management sites at the NNSS offer a safe, permanent disposal option for U.S. Department of Energy/U.S. Department of Defense facilities generating cleanup-related radioactive waste.
Enhanced Fuzzy-OWA model for municipal solid waste landfill site selection
NASA Astrophysics Data System (ADS)
Ahmad, Siti Zubaidah; Ahamad, Mohd Sanusi S.; Yusoff, Mohd Suffian; Abujayyab, Sohaib K. M.
2017-10-01
In Malaysia, the municipal solid waste landfill site is an essential facility that needs to be evaluated as its demand is infrequently getting higher. The increment of waste generation forces the government to cater the appropriate site for waste disposal. However, the selection process for new landfill sites is a difficult task with regard to land scarcity and time consumption. In addition, the complication will proliferate when there are various criteria to be considered. Therefore, this paper intends to show the significance of the fuzzy logic-ordered weighted average (Fuzzy-OWA) model for the landfill site suitability analysis. The model was developed to generalize the multi-criteria combination that was extended to the GIS applications as part of the decision support module. OWA has the capability to implement different combination operators through the selection of appropriate order weight that is possible in changing the form of aggregation such as minimum, intermediate and maximum types of combination. OWA give six forms of aggregation results that have their specific significance that indirectly evaluates the environmental, physical and socio-economic (EPSE) criteria respectively. Nevertheless, one of the aggregated results has shown similarity with the weighted linear combination (WLC) method.
Studies of Current Circulation at Ocean Waste Disposal Sites
NASA Technical Reports Server (NTRS)
Klemas, V. (Principal Investigator); Davis, G.; Henry, R.
1976-01-01
The author has identified the following significant results. Acid waste plume was observed in LANDSAT imagery fourteen times ranging from during dump up to 54 hours after dump. Circulation processes at the waste disposal site are highly storm-dominated, with the majority of the water transport occurring during strong northeasterlies. There is a mean flow to the south along shore. This appears to be due to the fact that northeasterly winds produce stronger currents than those driven by southeasterly winds and by the thermohaline circulation. During the warm months (May through October), the ocean at the dump site stratifies with a distinct thermocline observed during all summer cruising at depths ranging from 10 to 21 m. During stratified conditions, the near-bottom currents were small. Surface currents responded to wind conditions resulting in rapid movement of surface drogues on windy days. Mid-depth drogues showed an intermediate behavior, moving more rapidly as wind velocities increased.
Corrosion susceptibility of steel drums containing cemented intermediate level nuclear wastes
NASA Astrophysics Data System (ADS)
Duffó, Gustavo S.; Farina, Silvia B.; Schulz, Fátima M.; Marotta, Francesca
2010-10-01
Cementation processes are used as immobilization techniques for low or intermediate level radioactive waste for economical and safety reasons and for being a simple operation. In particular, ion-exchange resins commonly used for purification of radioactive liquid waste from nuclear reactors are immobilized before being stored to improve the leach resistance of the waste matrix and to maintain mechanical stability. Combustible solid radioactive waste can be incinerated and the resulting ashes can also be immobilized before storage. The immobilized resins and ashes are then contained in steel drums that may undergo corrosion depending on the presence of certain contaminants. The work described in this paper was aimed at evaluating the corrosion susceptibility of steel drums in contact with cemented ion-exchange resins and incineration ashes containing different concentrations of aggressive species (mostly chloride and sulphate ions). A special type of specimen was designed to simulate the cemented waste in the drum. The evolution of the corrosion potential and the corrosion current density of the steel, as well as the electrical resistivity of the matrix were monitored over a time period of 1 year. The results show the deleterious effect of chloride on the expected lifespan of the waste containers.
Multi-discipline Waste Acceptance Process at the Nevada National Security Site - 13573
DOE Office of Scientific and Technical Information (OSTI.GOV)
Carilli, Jhon T.; Krenzien, Susan K.
2013-07-01
The Nevada National Security Site low-level radioactive waste disposal facility acceptance process requires multiple disciplines to ensure the protection of workers, the public, and the environment. These disciplines, which include waste acceptance, nuclear criticality, safety, permitting, operations, and performance assessment, combine into the overall waste acceptance process to assess low-level radioactive waste streams for disposal at the Area 5 Radioactive Waste Management Site. Four waste streams recently highlighted the integration of these disciplines: the Oak Ridge Radioisotope Thermoelectric Generators and Consolidated Edison Uranium Solidification Project material, West Valley Melter, and classified waste. (authors)
Radioactive waste disposal fees-Methodology for calculation
NASA Astrophysics Data System (ADS)
Bemš, Július; Králík, Tomáš; Kubančák, Ján; Vašíček, Jiří; Starý, Oldřich
2014-11-01
This paper summarizes the methodological approach used for calculation of fee for low- and intermediate-level radioactive waste disposal and for spent fuel disposal. The methodology itself is based on simulation of cash flows related to the operation of system for waste disposal. The paper includes demonstration of methodology application on the conditions of the Czech Republic.
U.S. Geological Survey research in radioactive waste disposal - Fiscal years 1983, 1984, and 1985
Dinwiddie, G.A.; Trask, N.J.
1986-01-01
The report summarizes progress on geologic and hydrologic research related to the disposal of radioactive wastes. The research is described according to whether it is related most directly to: (1) high-level and transuranic wastes, (2) low-level wastes, or (3) uranium mill tailings. Included is research applicable to the identification and geohydrologic characterization of waste-disposal sites, to investigations of specific sites where wastes have been stored, and to studies of regions or environments where waste-disposal sites might be located. A significant part of the activity is concerned with techniques and methods for characterizing disposal sites and studies of geologic and hydrologic processes related to the transport and (or) retention of waste radionuclides.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sharifi, Mozafar; Hadidi, Mosslem; Vessali, Elahe
2009-10-15
The evaluation of a hazardous waste disposal site is a complicated process because it requires data from diverse social and environmental fields. These data often involve processing of a significant amount of spatial information which can be used by GIS as an important tool for land use suitability analysis. This paper presents a multi-criteria decision analysis alongside with a geospatial analysis for the selection of hazardous waste landfill sites in Kurdistan Province, western Iran. The study employs a two-stage analysis to provide a spatial decision support system for hazardous waste management in a typically under developed region. The purpose ofmore » GIS was to perform an initial screening process to eliminate unsuitable land followed by utilization of a multi-criteria decision analysis (MCDA) to identify the most suitable sites using the information provided by the regional experts with reference to new chosen criteria. Using 21 exclusionary criteria, as input layers, masked maps were prepared. Creating various intermediate or analysis map layers a final overlay map was obtained representing areas for hazardous waste landfill sites. In order to evaluate different landfill sites produced by the overlaying a landfill suitability index system was developed representing cumulative effects of relative importance (weights) and suitability values of 14 non-exclusionary criteria including several criteria resulting from field observation. Using this suitability index 15 different sites were visited and based on the numerical evaluation provided by MCDA most suitable sites were determined.« less
Sharifi, Mozafar; Hadidi, Mosslem; Vessali, Elahe; Mosstafakhani, Parasto; Taheri, Kamal; Shahoie, Saber; Khodamoradpour, Mehran
2009-10-01
The evaluation of a hazardous waste disposal site is a complicated process because it requires data from diverse social and environmental fields. These data often involve processing of a significant amount of spatial information which can be used by GIS as an important tool for land use suitability analysis. This paper presents a multi-criteria decision analysis alongside with a geospatial analysis for the selection of hazardous waste landfill sites in Kurdistan Province, western Iran. The study employs a two-stage analysis to provide a spatial decision support system for hazardous waste management in a typically under developed region. The purpose of GIS was to perform an initial screening process to eliminate unsuitable land followed by utilization of a multi-criteria decision analysis (MCDA) to identify the most suitable sites using the information provided by the regional experts with reference to new chosen criteria. Using 21 exclusionary criteria, as input layers, masked maps were prepared. Creating various intermediate or analysis map layers a final overlay map was obtained representing areas for hazardous waste landfill sites. In order to evaluate different landfill sites produced by the overlaying a landfill suitability index system was developed representing cumulative effects of relative importance (weights) and suitability values of 14 non-exclusionary criteria including several criteria resulting from field observation. Using this suitability index 15 different sites were visited and based on the numerical evaluation provided by MCDA most suitable sites were determined.
Fisher, Jeffrey M.; Bedinger, Marion S.; Stevens, Peter R.
1990-01-01
Shallow-land burial in arid areas is considered the best method for isolating low-level radioactive waste from the environment (Nichols and Goode, this report; Mercer and others, 1983). A major threat to waste isolation in shallow trenches is ground-water percolation. Repository sites in arid areas are believed to minimize the risk of ground-water contamination because such sites receive minimal precipitation and are underlain by thick unsaturated zones. Unfortunately, few data are available on rates of water percolation in an arid environment.
DOE Office of Scientific and Technical Information (OSTI.GOV)
NSTec Environmental Programs
The NTS solid waste disposal sites must be permitted by the state of Nevada Solid Waste Management Authority (SWMA). The SWMA for the NTS is the Nevada Division of Environmental Protection, Bureau of Federal Facilities (NDEP/BFF). The U.S. Department of Energy's National Nuclear Security Administration Nevada Site Office (NNSA/NSO) as land manager (owner), and National Security Technologies (NSTec), as operator, will store, collect, process, and dispose all solid waste by means that do not create a health hazard, a public nuisance, or cause impairment of the environment. NTS disposal sites will not be included in the Nye County Solid Wastemore » Management Plan. The NTS is located approximately 105 kilometers (km) (65 miles [mi]) northwest of Las Vegas, Nevada (Figure 1). The U.S. Department of Energy (DOE) is the federal lands management authority for the NTS, and NSTec is the Management and Operations contractor. Access on and off the NTS is tightly controlled, restricted, and guarded on a 24-hour basis. The NTS has signs posted along its entire perimeter. NSTec is the operator of all solid waste disposal sites on the NTS. The Area 5 RWMS is the location of the permitted facility for the Solid Waste Disposal Site (SWDS). The Area 5 RWMS is located near the eastern edge of the NTS (Figure 2), approximately 26 km (16 mi) north of Mercury, Nevada. The Area 5 RWMS is used for the disposal of low-level waste (LLW) and mixed low-level waste. Many areas surrounding the RWMS have been used in conducting nuclear tests. A Notice of Intent to operate the disposal site as a Class III site was submitted to the state of Nevada on January 28, 1994, and was acknowledged as being received in a letter to the NNSA/NSO on August 30, 1994. Interim approval to operate a Class III SWDS for regulated asbestiform low-level waste (ALLW) was authorized on August 12, 1996 (in letter from Paul Liebendorfer to Runore Wycoff), with operations to be conducted in accordance with the ''Management Plan for the Disposal of Low-Level Waste with Regulated Asbestos Waste.'' A requirement of the authorization was that on or before October 9, 1999, a permit was required to be issued. Because of NDEP and NNSA/NSO review cycles, the final permit was issued on April 5, 2000, for the operation of the Area 5 Low-Level Waste Disposal Site, utilizing Pit 7 (P07) as the designated disposal cell. The original permit applied only to Pit 7, with a total design capacity of 5,831 cubic yards (yd{sup 3}) (157,437 cubic feet [ft{sup 3}]). NNSA/NSO is expanding the SWDS to include the adjacent Upper Cell of Pit 6 (P06), with an additional capacity of 28,037 yd{sup 3} (756,999 ft{sup 3}) (Figure 3). The proposed total capacity of ALLW in Pit 7 and P06 will be approximately 33,870 yd{sup 3} (0.9 million ft{sup 3}). The site will be used for the disposal of regulated ALLW, small quantities of low-level radioactive hydrocarbon-burdened (LLHB) media and debris, LLW, LLW that contains PCB Bulk Product Waste greater than 50 ppm that leaches at a rate of less than 10 micrograms of PCB per liter of water, and small quantities of LLHB demolition and construction waste (hereafter called permissible waste). Waste containing free liquids, or waste that is regulated as hazardous waste under the Resource Conservation and Recovery Act (RCRA) or state-of-generation hazardous waste regulations, will not be accepted for disposal at the site. The only waste regulated under the Toxic Substances Control Act (TSCA) that will be accepted at the disposal site is regulated asbestos-containing materials (RACM). The term asbestiform is used throughout this document to describe this waste. Other TSCA waste (i.e., polychlorinated biphenyls [PCBs]) will not be accepted for disposal at the SWDS. The disposal site will be used as a depository of permissible waste generated both on site and off site. All generators designated by NNSA/NSO will be eligible to dispose regulated ALLW at the Asbestiform Low-Level Waste Disposal Site in accordance with the U.S. Department of Energy, Nevada Operations Office (DOE/NV) 325, Nevada Test Site Waste Acceptance Criteria (NTSWAC, current revision). Approval will be given by NNSA/NSO to generators that have successfully demonstrated through process knowledge (PK) and/or sampling and analysis that the waste is low-level, contains asbestiform material, and does not contain prohibited waste materials. Each waste stream will be approved through the Radioactive Waste Acceptance Program (RWAP), which ensures that the waste meets acceptance requirements outlined in the NTS Class III Permit and the NTSWAC.« less
DOE Waste Treatability Group Guidance
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kirkpatrick, T.D.
1995-01-01
This guidance presents a method and definitions for aggregating U.S. Department of Energy (DOE) waste into streams and treatability groups based on characteristic parameters that influence waste management technology needs. Adaptable to all DOE waste types (i.e., radioactive waste, hazardous waste, mixed waste, sanitary waste), the guidance establishes categories and definitions that reflect variations within the radiological, matrix (e.g., bulk physical/chemical form), and regulated contaminant characteristics of DOE waste. Beginning at the waste container level, the guidance presents a logical approach to implementing the characteristic parameter categories as part of the basis for defining waste streams and as the solemore » basis for assigning streams to treatability groups. Implementation of this guidance at each DOE site will facilitate the development of technically defined, site-specific waste stream data sets to support waste management planning and reporting activities. Consistent implementation at all of the sites will enable aggregation of the site-specific waste stream data sets into comparable national data sets to support these activities at a DOE complex-wide level.« less
Immobilization of Fast Reactor First Cycle Raffinate
DOE Office of Scientific and Technical Information (OSTI.GOV)
Langley, K. F.; Partridge, B. A.; Wise, M.
This paper describes the results of work to bring forward the timing for the immobilization of first cycle raffinate from reprocessing fuel from the Dounreay Prototype Fast Reactor (PFR). First cycle raffinate is the liquor which contains > 99% of the fission products separated from spent fuel during reprocessing. Approximately 203 m3 of raffinate from the reprocessing of PFR fuel is held in four tanks at the UKAEA's site at Dounreay, Scotland. Two methods of immobilization of this high level waste (HLW) have been considered: vitrification and cementation. Vitrification is the standard industry practice for the immobilization of first cyclemore » raffinate, and many papers have been presented on this technique elsewhere. However, cementation is potentially feasible for immobilizing first cycle raffinate because the heat output is an order of magnitude lower than typical HLW from commercial reprocessing operations such as that at the Sellafield site in Cumbria, England. In fact, it falls within the upper end of the UK definition of intermediate level waste (ILW). Although the decision on which immobilization technique will be employed has yet to be made, initial development work has been undertaken to identify a suitable cementation formulation using inactive simulant of the raffinate. An approach has been made to the waste disposal company Nirex to consider the disposability of the cemented product material. The paper concentrates on the process development work that is being undertaken on cementation to inform the decision making process for selection of the immobilization method.« less
Dermol, Urška; Kontić, Branko
2011-01-01
The benefits of strategic environmental considerations in the process of siting a repository for low- and intermediate-level radioactive waste (LILW) are presented. The benefits have been explored by analyzing differences between the two site selection processes. One is a so-called official site selection process, which is implemented by the Agency for radwaste management (ARAO); the other is an optimization process suggested by experts working in the area of environmental impact assessment (EIA) and land-use (spatial) planning. The criteria on which the comparison of the results of the two site selection processes has been based are spatial organization, environmental impact, safety in terms of potential exposure of the population to radioactivity released from the repository, and feasibility of the repository from the technical, financial/economic and social point of view (the latter relates to consent by the local community for siting the repository). The site selection processes have been compared with the support of the decision expert system named DEX. The results of the comparison indicate that the sites selected by ARAO meet fewer suitability criteria than those identified by applying strategic environmental considerations in the framework of the optimization process. This result stands when taking into account spatial, environmental, safety and technical feasibility points of view. Acceptability of a site by a local community could not have been tested, since the formal site selection process has not yet been concluded; this remains as an uncertain and open point of the comparison. Copyright © 2010 Elsevier Ltd. All rights reserved.
NEVADA TEST SITE WASTE ACCEPTANCE CRITERIA
DOE Office of Scientific and Technical Information (OSTI.GOV)
U.S. DEPARTMENT OF ENERGY, NATIONAL NUCLEAR SECURITY ADMINISTRATION, NEVADA SITE OFFICE
This document establishes the U. S. Department of Energy, National Nuclear Security Administration Nevada Site Office (NNSA/NSO) waste acceptance criteria (WAC). The WAC provides the requirements, terms, and conditions under which the Nevada Test Site will accept low-level radioactive and mixed waste for disposal. Mixed waste generated within the State of Nevada by NNSA/NSO activities is accepted for disposal. It includes requirements for the generator waste certification program, characterization, traceability, waste form, packaging, and transfer. The criteria apply to radioactive waste received at the Nevada Test Site Area 3 and Area 5 Radioactive Waste Management Site for storage or disposal.
Naval facility energy conversion plants as resource recovery system components
NASA Astrophysics Data System (ADS)
Capps, A. G.
1980-01-01
This interim report addresses concepts for recovering energy from solid waste by using Naval facilities steam plants as principle building blocks of candidate solid waste/resource recovery systems at Navy installations. The major conclusions of this portion of the project are: although it is technically feasible to adapt Navy energy conversion systems to fire Waste Derived Fuels (WDF) in one or more of its forms, the optimal form selected should be a site-specific total system; near- to intermediate-term programs should probably continue to give first consideration to waterwall incinerators and to the cofiring of solid WDF in coal-capable plants; package incinerators and conversions of oil burning plants to fire a fluff form of solid waste fuel may be the options with the greatest potential for the intermediate term because waterwalls would be uneconomical in many small plants and because the majority of medium-sized oil-burning plants will not be converted to burn coal; and pyrolytic processes to produce gaseous and liquid fuels have not been sufficiently developed as yet to be specified for commerical operation.
Assessment and evaluation of engineering options at a low-level radioactive waste storage site
NASA Astrophysics Data System (ADS)
Kanehiro, B. Y.; Guvanasen, V.
1982-09-01
Solutions to hydrologic and geotechnical problems associated with existing disposal sites were sought and the efficiency of engineering options that were proposed to improve the integrity of such sites were evaluated. The Weldon Spring site is generally like other low-level nuclear waste sites, except that the wastes are primarily in the form of residues and contaminated rubble from the processing of uranium and thorium ores rather than industrial isotopes or mill tailings.
Geoscientific Characterization of the Bruce Site, Tiverton, Ontario
NASA Astrophysics Data System (ADS)
Raven, K.; Jackson, R.; Avis, J.; Clark, I.; Jensen, M.
2009-05-01
Ontario Power Generation is proposing a Deep Geologic Repository (DGR) for the long-term management of its Low and Intermediate Level Radioactive Waste (L&ILW) within a Paleozoic-age sedimentary sequence beneath the Bruce site near Tiverton, Ontario, Canada. The concept envisions that the DGR would be excavated at a depth of approximately 680 m within the Ordovician Cobourg Formation, a massive, dense, low- permeability, argillaceous limestone. Characterization of the Bruce site for waste disposal is being conducted in accordance with a four year multi-phase Geoscientific Site Characterization Plan (GSCP). The GSCP, initially developed in 2006 and later revised in 2008 to account for acquired site knowledge based on successful completion of Phase I investigations, describes the tools and methods selected for geological, hydrogeological and geomechanical site characterization. The GSCP was developed, in part, on an assessment of geoscience data needs and collection methods, review of the results of detailed geoscientific studies completed in the same bedrock formations found off the Bruce site, and recent international experience in geoscientific characterization of similar sedimentary rocks for long-term radioactive waste management purposes. Field and laboratory work related to Phase 1 and Phase 2A are nearing completion and have focused on the drilling, testing and monitoring of four continuously cored vertical boreholes through Devonian, Silurian, Ordovician and Cambrian bedrock to depths of about 860 mBGS. Work in 2009 will focus on drilling and testing of inclined boreholes to assess presence of vertical structure. The available geological, hydrogeological and hydrogeochemical data indicate the presence of remarkably uniform and predictable geology, physical hydrogeologic and geochemical properties over well separation distances exceeding 1 km. The current data set including 2-D seismic reflection surveys, field and lab hydraulic testing, lab petrophysical and diffusion testing, lab porewater and field groundwater characterization, and field head monitoring confirm the anticipated favourable characteristics of the Bruce site for long-term waste management. These favourable characteristics include a tight geomechanically stable host formation that is overlain and underlain by thick, massive, very low permeability shale and argillaceous limestone formations where radionuclide transport appears to be very limited and dominated by diffusion.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Harmon, K.M.; Lakey, L.T.; Leigh, I.W.
Worldwide activities related to nuclear fuel cycle and radioactive waste management programs are summarized. Several trends have developed in waste management strategy: All countries having to dispose of reprocessing wastes plan on conversion of the high-level waste (HLW) stream to a borosilicate glass and eventual emplacement of the glass logs, suitably packaged, in a deep geologic repository. Countries that must deal with plutonium-contaminated waste emphasize pluonium recovery, volume reduction and fixation in cement or bitumen in their treatment plans and expect to use deep geologic repositories for final disposal. Commercially available, classical engineering processing are being used worldwide to treatmore » and immobilize low- and intermediate-level wastes (LLW, ILW); disposal to surface structures, shallow-land burial and deep-underground repositories, such as played-out mines, is being done widely with no obvious technical problems. Many countries have established extensive programs to prepare for construction and operation of geologic repositories. Geologic media being studied fall into three main classes: argillites (clay or shale); crystalline rock (granite, basalt, gneiss or gabbro); and evaporates (salt formations). Most nations plan to allow 30 years or longer between discharge of fuel from the reactor and emplacement of HLW or spent fuel is a repository to permit thermal and radioactive decay. Most repository designs are based on the mined-gallery concept, placing waste or spent fuel packages into shallow holes in the floor of the gallery. Many countries have established extensive and costly programs of site evaluation, repository development and safety assessment. Two other waste management problems are the subject of major R and D programs in several countries: stabilization of uranium mill tailing piles; and immobilization or disposal of contaminated nuclear facilities, namely reactors, fuel cycle plants and R and D laboratories.« less
(Low-level waste disposal facility siting and site characterization)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mezga, L.J.; Ketelle, R.H.; Pin, F.G.
A US team consisting of representatives of Oak Ridge National Laboratory (ORNL), Savannah River Plant (SRP), Savannah river Laboratory (SRL), and the Department of Energy Office of Defense Waste and Byproducts Management participated in the fourth meeting held under the US/French Radioactive Waste Management Agreement between the US Department of Energy and the Commissariat a l'Energie Atomique. This meeting, held at Agence Nationale pour les Gestion des Dechets Radioactifs' (ANDRA's) Headquarters in Paris, was a detailed, technical topical workshop focusing on Low-Level Waste Disposal Facility Siting and Site Characterization.'' The meeting also included a visit to the Centre de lamore » Manche waste management facility operated by ANDRA to discuss and observe the French approach to low-level waste management. The final day of the meeting was spent at the offices of Societe Generale pour les Techniques Nouvelles (SGN) discussing potential areas of future cooperation and exchange. 20 figs.« less
Koyama, Tadafumi
1994-01-01
A method for immobilizing waste chloride salts containing radionuclides such as cesium and strontium and hazardous materials such as barium. A sodalite intermediate is prepared by mixing appropriate amounts of silica, alumina and sodium hydroxide with respect to sodalite and heating the mixture to form the sodalite intermediate and water. Heating is continued to drive off the water to form a water-free intermediate. The water-free intermediate is mixed with either waste salt or waste salt which has been contacted with zeolite to concentrate the radionuclides and hazardous material. The waste salt-intermediate mixture is then compacted and heated under conditions of heat and pressure to form sodalite with the waste salt, radionuclides and hazardous material trapped within the sodalite cage structure. This provides a final product having excellent leach resistant capabilities.
Koyama, Tadafumi.
1994-08-23
A method is described for immobilizing waste chloride salts containing radionuclides such as cesium and strontium and hazardous materials such as barium. A sodalite intermediate is prepared by mixing appropriate amounts of silica, alumina and sodium hydroxide with respect to sodalite and heating the mixture to form the sodalite intermediate and water. Heating is continued to drive off the water to form a water-free intermediate. The water-free intermediate is mixed with either waste salt or waste salt which has been contacted with zeolite to concentrate the radionuclides and hazardous material. The waste salt-intermediate mixture is then compacted and heated under conditions of heat and pressure to form sodalite with the waste salt, radionuclides and hazardous material trapped within the sodalite cage structure. This provides a final product having excellent leach resistant capabilities.
Koyama, T.
1992-01-01
This report describes a method for immobilizing waste chloride salts containing radionuclides such as cesium and strontium and hazardous materials such as barium. A sodalite intermediate is prepared by mixing appropriate amounts of silica, alumina and sodium hydroxide with respect to sodalite and heating the mixture to form the sodalite intermediate and water. Heating is continued to drive off the water to form a water-free intermediate. The water-free intermediate is mixed with either waste salt or waste salt which has been contacted with zeolite to concentrate the radionuclides and hazardous material. The waste salt-intermediate mixture is then compacted and heated under conditions of heat and pressure to form sodalite with the waste salt, radionuclides and hazardous material trapped within the sodalite cage structure. This provides a final product having excellent leach resistant capabilities.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Johnston, J.W.; Thacker, M.S.; DeWitt, C.B.
In the area of environmental restoration, one of the most challenging problems is the task of remediating mixed waste-contaminated sites. This paper discusses a successful Interim Corrective Measure (ICM) performed at a mixed waste-contaminated site on Kirtland Air Force Base (AFB) in Albuquerque, New Mexico. The site, known as RW-68, Cratering Area and Radium Dump/Slag Piles, was used during the late 1940s and early 1950s for the destruction and incineration of captured World War II aircraft. It contained 19 slag piles totaling approximately 150 tons of slag, ash, refractory brick, and metal debris. The piles were contaminated with radium-226 andmore » RCRA-characteristic levels of heavy metals. Therefore, the piles were considered mixed waste. To eliminate the threat to human health and the environment, an ICM of removal, segregation, stabilization, and disposal was conducted from October through December 1996. Approximately 120 cubic yards (cu yds) of mixed waste, 188 cu yds of low-level radioactive-contaminated soil, 1 cu yd of low-level radioactive-contaminated debris, 5 cu yds of RCRA-characteristic hazardous waste, and 45 tons of nonhazardous debris were stabilized and disposed of during the ICM. To render the RCRA metals and radionuclides insoluble, stabilization was performed on the mixed and RCRA-characteristic waste streams. All stabilized material was subjected to TCLP analysis to verify it no longer exhibited RCRA-characteristic properties. Radiological and geophysical surveys were conducted concurrently with site remediation activities. These surveys provided real-time documentation of site conditions during each phase of the ICM and confirmed successful cleanup of the site. The three radioactive waste streams, stabilized mixed waste, low-level radioactive-contaminated soil, and low-level radioactive-contaminated debris, were disposed of at the Envirocare low-level radioactive disposal facility.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1988-12-01
This document contains twelve papers on various aspects of low-level radioactive waste management. Topics of this volume include: performance assessment methodology; remedial action alternatives; site selection and site characterization procedures; intruder scenarios; sensitivity analysis procedures; mathematical models for mixed waste environmental transport; and risk assessment methodology. Individual papers were processed separately for the database. (TEM)
Zettwoch, Douglas D.
2002-01-01
The U.S. Geological Survey, in cooperation with the Kentucky Natural Resources and Environmental Protection Cabinet--Department for Environmental Protection--Division of Waste Management, has an ongoing program to monitor water levels at the Maxey Flats low-level radioactive waste disposal site near Morehead, Kentucky. Ground-water-level and precipitation data were collected from 112 wells and 1 rain gage at the Maxey Flats low-level radioactive waste disposal site during October 1988-September 2000. Data were collected on a semi-annual basis from 62 wells, continuously from 6 wells, and monthly or bimonthly from 44 wells (13 of which had continuous recorders installed for the period October 1998-September 2000). One tipping-bucket rain gage was used to collect data at the Maxey Flats site for the period October 1988-September 2000.
NASA Astrophysics Data System (ADS)
Card, D. H.; Hunter, P. H.; Barg, D.; Desouza, F.; Felthauser, K.; Winkler, V.; White, R.
1982-02-01
The ramifications of constructing a nuclear energy center in an arid western region were studied. The alternatives for disposing of the low level waste on the site are compared with the alternative of transporting the waste to the nearest commercial waste disposal site for permanent disposal. Both radiological and nonradiological impacts on the local socioeconomic infrastructure and the environment are considered. Disposal on the site was found to cost considerably less than off site disposal with only negligible impacts associated with the disposal option on either mankind or the environment.
Thirty-year solid waste generation forecast for facilities at SRS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1994-07-01
The information supplied by this 30-year solid waste forecast has been compiled as a source document to the Waste Management Environmental Impact Statement (WMEIS). The WMEIS will help to select a sitewide strategic approach to managing present and future Savannah River Site (SRS) waste generated from ongoing operations, environmental restoration (ER) activities, transition from nuclear production to other missions, and decontamination and decommissioning (D&D) programs. The EIS will support project-level decisions on the operation of specific treatment, storage, and disposal facilities within the near term (10 years or less). In addition, the EIS will provide a baseline for analysis ofmore » future waste management activities and a basis for the evaluation of the specific waste management alternatives. This 30-year solid waste forecast will be used as the initial basis for the EIS decision-making process. The Site generates and manages many types and categories of waste. With a few exceptions, waste types are divided into two broad groups-high-level waste and solid waste. High-level waste consists primarily of liquid radioactive waste, which is addressed in a separate forecast and is not discussed further in this document. The waste types discussed in this solid waste forecast are sanitary waste, hazardous waste, low-level mixed waste, low-level radioactive waste, and transuranic waste. As activities at SRS change from primarily production to primarily decontamination and decommissioning and environmental restoration, the volume of each waste s being managed will change significantly. This report acknowledges the changes in Site Missions when developing the 30-year solid waste forecast.« less
Nevada Test Site Waste Acceptance Criteria (NTSWAC)
DOE Office of Scientific and Technical Information (OSTI.GOV)
NNSA /NSO Waste Management Project
This document establishes the U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office, Nevada Test Site Waste Acceptance Criteria (NTSWAC). The NTSWAC provides the requirements, terms, and conditions under which the Nevada Test Site will accept low-level radioactive (LLW) and LLW Mixed Waste (MW) for disposal.
The purpose of this paper is to provide RPMs and others investigating hazardous waste sites a summary of the technical issues that need to be considered when determining if a site (i.e., hazardous waste site/area of concern) has elevated levels of ...
WASTE TREATMENT BUILDING SYSTEM DESCRIPTION DOCUMENT
DOE Office of Scientific and Technical Information (OSTI.GOV)
F. Habashi
2000-06-22
The Waste Treatment Building System provides the space, layout, structures, and embedded subsystems that support the processing of low-level liquid and solid radioactive waste generated within the Monitored Geologic Repository (MGR). The activities conducted in the Waste Treatment Building include sorting, volume reduction, and packaging of dry waste, and collecting, processing, solidification, and packaging of liquid waste. The Waste Treatment Building System is located on the surface within the protected area of the MGR. The Waste Treatment Building System helps maintain a suitable environment for the waste processing and protects the systems within the Waste Treatment Building (WTB) from mostmore » of the natural and induced environments. The WTB also confines contaminants and provides radiological protection to personnel. In addition to the waste processing operations, the Waste Treatment Building System provides space and layout for staging of packaged waste for shipment, industrial and radiological safety systems, control and monitoring of operations, safeguards and security systems, and fire protection, ventilation and utilities systems. The Waste Treatment Building System also provides the required space and layout for maintenance activities, tool storage, and administrative facilities. The Waste Treatment Building System integrates waste processing systems within its protective structure to support the throughput rates established for the MGR. The Waste Treatment Building System also provides shielding, layout, and other design features to help limit personnel radiation exposures to levels which are as low as is reasonably achievable (ALARA). The Waste Treatment Building System interfaces with the Site Generated Radiological Waste Handling System, and with other MGR systems that support the waste processing operations. The Waste Treatment Building System interfaces with the General Site Transportation System, Site Communications System, Site Water System, MGR Site Layout, Safeguards and Security System, Site Radiological Monitoring System, Site Electrical Power System, Site Compressed Air System, and Waste Treatment Building Ventilation System.« less
Jugnia, Louis B; Manno, Dominic; Drouin, Karine; Hendry, Meghan
2018-05-04
Bioremediation was performed in situ at a former military range site to assess the performance of native bacteria in degrading hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) and 2,4-dinitrotoluene (2,4-DNT). The fate of these pollutants in soil and soil pore water was investigated as influenced by waste glycerol amendment to the soil. Following waste glycerol application, there was an accumulation of organic carbon that promoted microbial activity, converting organic carbon into acetate and propionate, which are intermediate compounds in anaerobic processes. This augmentation of anaerobic activity strongly correlated to a noticeable reduction in RDX concentrations in the amended soil. Changes in concentrations of RDX in pore water were similar to those observed in the soil suggesting that RDX leaching from the soil matrix, and treatment with waste glycerol, contributed to the enhanced removal of RDX from the water and soil. This was not the case with 2,4-DNT, which was neither found in pore water nor affected by the waste glycerol treatment. Results from saturated conditions and Synthetic Precipitation Leaching Procedure testing, to investigate the environmental fate of 2,4-DNT, indicated that 2,4-DNT found on site was relatively inert and was likely to remain in its current state on the site.
Closure Plan for the Area 5 Radioactive Waste Management Site at the Nevada Test Site
DOE Office of Scientific and Technical Information (OSTI.GOV)
NSTec Environmental Management
The Area 5 Radioactive Waste Management Site (RMWS) at the Nevada Test Site (NTS) is managed and operated by National Security Technologies, LLC (NSTec), for the U.S. Department of Energy (DOE), National Nuclear Security Administration Nevada Site Office (NNSA/NSO). This document is the first update of the preliminary closure plan for the Area 5 RWMS at the NTS that was presented in the Integrated Closure and Monitoring Plan (DOE, 2005a). The major updates to the plan include a new closure schedule, updated closure inventory, updated site and facility characterization data, the Title II engineering cover design, and the closure processmore » for the 92-Acre Area of the RWMS. The format and content of this site-specific plan follows the Format and Content Guide for U.S. Department of Energy Low-Level Waste Disposal Facility Closure Plans (DOE, 1999a). This interim closure plan meets closure and post-closure monitoring requirements of the order DOE O 435.1, manual DOE M 435.1-1, Title 40 Code of Federal Regulations (CFR) Part 191, 40 CFR 265, Nevada Administrative Code (NAC) 444.743, and Resource Conservation and Recovery Act (RCRA) requirements as incorporated into NAC 444.8632. The Area 5 RWMS accepts primarily packaged low-level waste (LLW), low-level mixed waste (LLMW), and asbestiform low-level waste (ALLW) for disposal in excavated disposal cells.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
The Department of Energy`s (DOE) Rocky Flats Environmental Technology Site (the Site), formerly known as the Rocky Flats Plant, has generated radioactive, hazardous, and mixed waste (waste with both radioactive and hazardous constituents) since it began operations in 1952. Such wastes were the byproducts of the Site`s original mission to produce nuclear weapons components. Since 1989, when weapons component production ceased, waste has been generated as a result of the Site`s new mission of environmental restoration and deactivation, decontamination and decommissioning (D&D) of buildings. It is anticipated that the existing onsite waste storage capacity, which meets the criteria for low-levelmore » waste (LL), low-level mixed waste (LLM), transuranic (TRU) waste, and TRU mixed waste (TRUM) would be completely filled in early 1997. At that time, either waste generating activities must cease, waste must be shipped offsite, or new waste storage capacity must be developed.« less
Chooz A, First Pressurized Water Reactor to be Dismantled in France - 13445
DOE Office of Scientific and Technical Information (OSTI.GOV)
Boucau, Joseph; Mirabella, C.; Nilsson, Lennart
2013-07-01
Nine commercial nuclear power plants have been permanently shut down in France to date, of which the Chooz A plant underwent an extensive decommissioning and dismantling program. Chooz Nuclear Power Station is located in the municipality of Chooz, Ardennes region, in the northeast part of France. Chooz B1 and B2 are 1,500 megawatt electric (MWe) pressurized water reactors (PWRs) currently in operation. Chooz A, a 305 MWe PWR implanted in two caves within a hill, began operations in 1967 and closed in 1991, and will now become the first PWR in France to be fully dismantled. EDF CIDEN (Engineering Centermore » for Dismantling and Environment) has awarded Westinghouse a contract for the dismantling of its Chooz A reactor vessel (RV). The project began in January 2010. Westinghouse is leading the project in a consortium with Nuvia France. The project scope includes overall project management, conditioning of the reactor vessel (RV) head, RV and RV internals segmentation, reactor nozzle cutting for lifting the RV out of the pit and seal it afterwards, dismantling of the RV thermal insulation, ALARA (As Low As Reasonably Achievable) forecast to ensure acceptable doses for the personnel, complementary vacuum cleaner to catch the chips during the segmentation work, needs and facilities, waste characterization and packaging, civil work modifications, licensing documentation. The RV and RV internals will be segmented based on the mechanical cutting technology that Westinghouse applied successfully for more than 13 years. The segmentation activities cover the cutting and packaging plan, tooling design and qualification, personnel training and site implementation. Since Chooz A is located inside two caves, the project will involve waste transportation from the reactor cave through long galleries to the waste buffer area. The project will end after the entire dismantling work is completed, and the waste storage is outside the caves and ready to be shipped either to the ANDRA (French National Radioactive Waste Management Agency) waste disposal facilities - (for low-level waste [LLW] and very low-level waste [VLLW], which are considered short lived) - or to the EDF Interim Storage Facility planned to be built on another site - (for low- and intermediate-level waste [LILW], which is considered long lived). The project has started with a detailed conceptual study that determines the step-by-step approach for dismantling the reactor and eventually supplying the packed containers ready for final disposal. All technical reports must be verified and approved by EDF and the French Nuclear Safety Authority before receiving the authorization to start the site work. The detailed conceptual study has been completed to date and equipment design and manufacturing is ongoing. This paper will present the conceptual design of the reactor internals segmentation and packaging process that will be implemented at Chooz A, including the planning, methodology, equipment, waste management, and packaging strategy. (authors)« less
Code of Federal Regulations, 2011 CFR
2011-01-01
... 10 Energy 2 2011-01-01 2011-01-01 false Spent fuel, high-level radioactive waste, or reactor... RADIOACTIVE WASTE, AND REACTOR-RELATED GREATER THAN CLASS C WASTE Siting Evaluation Factors § 72.108 Spent fuel, high-level radioactive waste, or reactor-related greater than Class C waste transportation. The...
Code of Federal Regulations, 2010 CFR
2010-01-01
... 10 Energy 2 2010-01-01 2010-01-01 false Spent fuel, high-level radioactive waste, or reactor... RADIOACTIVE WASTE, AND REACTOR-RELATED GREATER THAN CLASS C WASTE Siting Evaluation Factors § 72.108 Spent fuel, high-level radioactive waste, or reactor-related greater than Class C waste transportation. The...
Mo, Ling; Wu, Jiang-Ping; Luo, Xiao-Jun; Sun, Yu-Xin; Zheng, Xiao-Bo; Zhang, Qiang; Zou, Fa-Shen; Mai, Bi-Xian
2013-03-01
Dechlorane Plus (DP) isomers were examined in common kingfishers (Alcedo atthis) and their prey fishes collected from an electronic waste (e-waste) recycling site and a reference site in South China, to investigate the possible influence of DP residue levels on the isomeric compositions. ∑DP (sum of syn-DP and anti-DP) concentrations in kingfishers from the e-waste recycling site ranged from 29 to 150 (median of 58) ng/g lipid weight (lw), which were one order of magnitude greater than those from the reference site (median = 3.9 ng/g lw). The isomer fractions of anti-DP (f(anti)) in kingfishers from the e-waste recycling site (mean of 0.65) were significantly smaller than those from the reference site (0.76). Additionally, the f(anti) values were negatively correlated to logarithm of ∑DP concentrations in the kingfishers (r(2) = 0.41, p < 0.0001). These results suggested that DP residue levels could influence its isomeric composition in the piscivorous bird. Copyright © 2012 Elsevier Ltd. All rights reserved.
IONSIV(R) IE-911 Performance in Savannah River Site Radioactive Waste
DOE Office of Scientific and Technical Information (OSTI.GOV)
Walker, D.D.
2001-06-04
This report describes cesium sorption from high-level radioactive waste solutions onto IONSIV(R) IE-911 at ambient temperature. Researchers characterized six radioactive waste samples from five high-level waste tanks in the Savannah River Site tank farm, diluted the wastes to 5.6 M Na+, and made equilibrium and kinetic measurements of cesium sorption. The equilibrium measurements were compared to ZAM (Zheng, Anthony, and Martin) model predictions. The kinetic measurements were compared to simulant solutions whose column performance has been measured.
Broad-scale impacts of salmon farms on temperate macroalgal assemblages on rocky reefs.
Oh, E S; Edgar, G J; Kirkpatrick, J B; Stuart-Smith, R D; Barrett, N S
2015-09-15
Intensive fish culture in open sea pens delivers large amounts of nutrients to coastal environments. Relative to particulate waste impacts, the ecological impacts of dissolved wastes are poorly known despite their potential to substantially affect nutrient-assimilating components of surrounding ecosystems. Broad-scale enrichment effects of salmonid farms on Tasmanian reef communities were assessed by comparing macroalgal cover at four fixed distances from active fish farm leases across 44 sites. Macroalgal assemblages differed significantly between sites immediately adjacent (100m) to fish farms and reference sites at 5km distance, while sites at 400m and 1km exhibited intermediate characteristics. Epiphyte cover varied consistently with fish farm impacts in both sheltered and exposed locations. The green algae Chaetomorpha spp. predominated near fish farms at swell-exposed sites, whereas filamentous green algae showed elevated densities near sheltered farms. Cover of canopy-forming perennial algae appeared unaffected by fish farm impacts. Copyright © 2015 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Crowe, B.; Black, P.; Tauxe, J.; Yucel, V.; Rawlinson, S.; Colarusso, A.; DiSanza, F.
2001-12-01
The National Nuclear Security Administration, Nevada Operations Office (NNSA/NV) operates and maintains two active facilities on the Nevada Test Site (NTS) that dispose Department of Energy (DOE) defense-generated low-level radioactive (LLW), mixed radioactive, and classified waste in shallow trenches, pits and large-diameter boreholes. The operation and maintenance of the LLW disposal sites are self-regulated under DOE Order 435.1, which requires review of a Performance Assessment for four performance objectives: 1) all pathways 25 mrem/yr limit; 2) atmospheric pathways 10 mrem/yr limit; 3) radon flux density of 20 pCi/m2/s; and 4) groundwater resource protection (Safe Drinking Water Act; 4 mrem/yr limit). The inadvertent human intruder is protected under a dual 500- and 100-mrem limit (acute and chronic exposure). In response to the Defense Nuclear Facilities Safety Board Recommendation 92 2, a composite analysis is required that must examine all interacting sources for compliance against both 30 and 100 mrem/yr limits. A small component of classified transuranic waste is buried at intermediate depths in 3-meter diameter boreholes at the Area 5 LLW disposal facility and is assessed through DOE-agreement against the requirements of the Environmental Protection Agency (EPA)'s 40 CFR 191. The hazardous components of mixed LLW are assessed against RCRA requirements. The NTS LLW sites fall directly under three sets of federal regulations and the regulatory differences result not only in organizational challenges, but also in different decision objectives and technical paths to completion. The DOE regulations require deterministic analysis for a 1,000-year compliance assessment supplemented by probabilistic analysis under a long-term maintenance program. The EPA regulations for TRU waste are probabilistically based for a compliance interval of 10,000 years. Multiple steps in the assessments are strongly dependent on assumptions for long-term land use policies. Integrating the different requirements into coherent and consistent sets of conceptual models of the disposal setting, alternative scenarios, and system models of fate, transport and dose-based assessments is technically challenging. Environmental assessments for these sites must be broad-based and flexible to accommodate the multiple objectives.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ryan, Joseph V.; Freedman, Vicky L.
2016-09-28
Approximately 50 million gallons of high-level radioactive mixed waste has accumulated in 177 buried single- and double-shell tanks at the Hanford Site in southeastern Washington State as a result of the past production of nuclear materials, primarily for defense uses. The United States Department of Energy (DOE) is proceeding with plans to permanently dispose of this waste. Plans call for separating the tank waste into high-level waste (HLW) and low-activity waste (LAW) fractions, which will be vitrified at the Hanford Waste Treatment and Immobilization Plant (WTP). Principal radionuclides of concern in LAW are 99Tc, 129I, and U, while non-radioactive contaminantsmore » of concern are Cr and nitrate/nitrite. HLW glass will be sent off-site to an undetermined federal site for deep geological disposal while the much larger volume of immobilized low-activity waste will be placed in the on-site, near-surface Integrated Disposal Facility (IDF).« less
Wu, Jiang-Ping; Mo, Ling; Zhi, Hui; Peng, Ying; Tao, Lin; Ren, Zi-He; Luo, Xiao-Jun; Mai, Bi-Xian
2016-06-01
The health effects of exposure to electronic waste (e-waste)-derived pollutants are an important issue. The authors explored the association between the hepatic levels of e-waste-derived halogenated contaminants (including polychlorinated biphenyls [PCBs], polybrominated diphenyl ethers [PBDEs], and polybrominated biphenyls [PBBs]) and hepatic ethoxyresorufin-O-deethylase (EROD) activity of the common kingfisher (Alcedo atthis) from an e-waste site and 2 reference sites in South China. The summed concentrations of PCBs, PBDEs, and PBBs ranged from 620 ng/g to 15 000 ng/g, 25 ng/g to 900 ng/g, and 14 ng/g to 49 ng/g wet weight, respectively, in the kingfishers from the e-waste site, and these values were significantly greater (2-3 orders of magnitude) than those obtained at the 2 reference sites. Correspondingly, significant hepatic EROD induction was observed in the kingfishers from the e-waste site compared with the reference sites. The EROD activity was significantly correlated to the levels of most of the PCB and PBDE congeners examined as well as PBB 153, suggesting that EROD induction may be evoked by these e-waste-derived pollutants. Environ Toxicol Chem 2016;35:1594-1599. © 2015 SETAC. © 2015 SETAC.
NEVADA TEST SITE WASTE ACCEPTANCE CRITERIA, JUNE 2006
DOE Office of Scientific and Technical Information (OSTI.GOV)
U.S. DEPARTMENT OF ENERGY, NATIONAL NUCLEAR SECURITY ADMINISTRATION NEVADA SITE OFFICE
This document establishes the U.S. Department of Energy (DOE), National Nuclear Security Administration Nevada Site Office (NNSA/NSO) waste acceptance criteria (WAC). The WAC provides the requirements, terms, and conditions under which the Nevada Test Site (NTS) will accept low-level radioactive (LLW) and mixed waste (MW) for disposal. It includes requirements for the generator waste certification program, characterization, traceability, waste form, packaging, and transfer. The criteria apply to radioactive waste received at the NTS Area 3 and Area 5 Radioactive Waste Management Complex (RWMC) for storage or disposal.
Nevada Test Site Waste Acceptance Criteria
DOE Office of Scientific and Technical Information (OSTI.GOV)
U. S. Department of Energy, National Nuclear Security Administration Nevada Site Office
This document establishes the U.S. Department of Energy (DOE), National Nuclear Security Administration Nevada Site Office (NNSA/NSO) waste acceptance criteria (WAC). The WAC provides the requirements, terms, and conditions under which the Nevada Test Site (NTS) will accept low-level radioactive (LLW) and mixed waste (MW) for disposal. It includes requirements for the generator waste certification program, characterization, traceability, waste form, packaging, and transfer. The criteria apply to radioactive waste received at the NTS Area 3 and Area 5 Radioactive Waste Management Complex (RWMC) for storage or disposal.
Delepine-Lesoille, Sylvie; Girard, Sylvain; Landolt, Marcel; Bertrand, Johan; Planes, Isabelle; Boukenter, Aziz; Marin, Emmanuel; Humbert, Georges; Leparmentier, Stéphanie; Auguste, Jean-Louis; Ouerdane, Youcef
2017-06-13
This paper presents the state of the art distributed sensing systems, based on optical fibres, developed and qualified for the French Cigéo project, the underground repository for high level and intermediate level long-lived radioactive wastes. Four main parameters, namely strain, temperature, radiation and hydrogen concentration are currently investigated by optical fibre sensors, as well as the tolerances of selected technologies to the unique constraints of the Cigéo's severe environment. Using fluorine-doped silica optical fibre surrounded by a carbon layer and polyimide coating, it is possible to exploit its Raman, Brillouin and Rayleigh scattering signatures to achieve the distributed sensing of the temperature and the strain inside the repository cells of radioactive wastes. Regarding the dose measurement, promising solutions are proposed based on Radiation Induced Attenuation (RIA) responses of sensitive fibres such as the P-doped ones. While for hydrogen measurements, the potential of specialty optical fibres with Pd particles embedded in their silica matrix is currently studied for this gas monitoring through its impact on the fibre Brillouin signature evolution.
Delepine-Lesoille, Sylvie; Girard, Sylvain; Landolt, Marcel; Bertrand, Johan; Planes, Isabelle; Boukenter, Aziz; Marin, Emmanuel; Humbert, Georges; Leparmentier, Stéphanie; Auguste, Jean-Louis; Ouerdane, Youcef
2017-01-01
This paper presents the state of the art distributed sensing systems, based on optical fibres, developed and qualified for the French Cigéo project, the underground repository for high level and intermediate level long-lived radioactive wastes. Four main parameters, namely strain, temperature, radiation and hydrogen concentration are currently investigated by optical fibre sensors, as well as the tolerances of selected technologies to the unique constraints of the Cigéo’s severe environment. Using fluorine-doped silica optical fibre surrounded by a carbon layer and polyimide coating, it is possible to exploit its Raman, Brillouin and Rayleigh scattering signatures to achieve the distributed sensing of the temperature and the strain inside the repository cells of radioactive wastes. Regarding the dose measurement, promising solutions are proposed based on Radiation Induced Attenuation (RIA) responses of sensitive fibres such as the P-doped ones. While for hydrogen measurements, the potential of specialty optical fibres with Pd particles embedded in their silica matrix is currently studied for this gas monitoring through its impact on the fibre Brillouin signature evolution. PMID:28608831
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brentlinger, L.A.; Hofmann, P.L.; Peterson, R.W.
1989-08-01
The movement of nuclear waste can be accomplished by various transport modal options involving different types of vehicles, transport casks, transport routes, and intermediate intermodal transfer facilities. A series of systems studies are required to evaluate modal/intermodal spent fuel transportation options in a consistent fashion. This report provides total life-cycle cost and life-cycle dose estimates for a series of transport modal options under existing site constraints. 14 refs., 7 figs., 28 tabs.
NASA Astrophysics Data System (ADS)
Bai, Y.; Collier, N. C.; Milestone, N. B.; Yang, C. H.
2011-06-01
The UK currently uses composite blends of Portland cement and other inorganic cementitious material such as blastfurnace slag and pulverised fuel ash to encapsulate or immobilise intermediate and low level radioactive wastes. Typically levels up 9:1 blast furnace slag:Portland cement or 4:1 pulverised fuel ash:Portland cement are used. Whilst these systems offer many advantages, their high pH causes corrosion of various metallic intermediate level radioactive wastes. To address this issue, lower pH/weakly alkaline cementitious systems have to be explored. While the blast furnace slag:Portland cement system is referred to as a composite cement system, the underlying reaction is actually an indirect activation of the slag hydration by the calcium hydroxide generated by the cement hydration, and by the alkali ions and gypsum present in the cement. However, the slag also can be activated directly with activators, creating a system known as alkali-activated slag. Whilst these activators used are usually strongly alkaline, weakly alkaline and near neutral salts can also be used. In this paper, the potential for using weakly alkaline and near neutral salts to activate slag in this manner is reviewed and discussed, with particular emphasis placed on the immobilisation of reactive metallic nuclear wastes.
Basic repository environmental assessment design basis, Lavender Canyon site
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1988-01-01
This study examines the engineering factors and costs associated with the construction, operation, and decommissioning of a high-level nuclear waste repository in salt in the Paradox Basin in Lavender Canyon, Utah. The study assumes a repository capacity of 36,000 metric tons of heavy metal (MTHM) of unreprocessed spent fuel and 36,000 MTHM of commercial high-level reprocessing waste, along with 7020 canisters of defense high-level reprocessing waste and associated quantities of remote- and contact-handled transuranic waste (TRU). With the exception of TRU, all the waste forms are placed in 300- to 1000-year-life carbon-steel waste packages in a collocated waste handling andmore » packaging facility (WHPF), which is also described. The construction, operation, and decommissioning of the proposed repository is estimated to cost approximately $5.51 billion. Costs include those for the collocated WHPP, engineering, and contingency, but exclude waste form assembly and shipment to the site and waste package fabrication and shipment to the site. These costs reflect the relative average wage rates of the region and the relatively sound nature of the salt at this site. Construction would require an estimated 7.75 years. Engineering factors and costs are not strongly influenced by environmental considerations. 51 refs., 24 figs., 20 tabs.« less
Srigboh, Roland Kofi; Basu, Niladri; Stephens, Judith; Asampong, Emmanuel; Perkins, Marie; Neitzel, Richard L.; Fobil, Julius
2016-01-01
Electronic waste (e-waste) recycling is growing worldwide and raising a number of environmental health concerns. One of the largest e-waste sites is Agbogbloshie (Ghana). While several toxic elements have been reported in Agbogbloshie’s environment, there is limited knowledge of human exposures there. The objectives of this study were to characterize exposures to several essential (copper, iron, manganese, selenium, zinc) and toxic (arsenic, cadmium, cobalt, chromium, mercury, nickel, lead) elements in the urine and blood of male workers (n=58) at Agbogbloshie, as well as females (n=11) working in activities that serve the site, and to relate these exposures to sociodemographic and occupational characteristics. The median number of years worked at the site was 5, and the average worker indicated being active in 6.8 tasks (of 9 key e-waste job categories). Additionally, we categorized four main e-waste activities (in brackets % of population self-reported main activity): dealing (22.4%), sorting (24.1%), dismantling (50%), and burning (3.4%) e-waste materials. Many blood and urinary elements (including essential ones) were within biomonitoring reference ranges. However, blood cadmium (1.2 ug/L median) and lead (6.4 ug/dl; 67% above U.S. CDC/NIOSH reference level), and urinary arsenic (38.3 ug/L; 39% above U.S. ATSDR value) levels were elevated compared to background populations elsewhere. Workers who burned e-waste tended to have the highest biomarker levels. The findings of this study contribute to a growing body of work at Agbogbloshie (and elsewhere) to document that individuals working within e-waste sites are exposed to a number of toxic elements, some at potentially concerning levels. PMID:27580259
Srigboh, Roland Kofi; Basu, Niladri; Stephens, Judith; Asampong, Emmanuel; Perkins, Marie; Neitzel, Richard L; Fobil, Julius
2016-12-01
Electronic waste (e-waste) recycling is growing worldwide and raising a number of environmental health concerns. One of the largest e-waste sites is Agbogbloshie (Ghana). While several toxic elements have been reported in Agbogbloshie's environment, there is limited knowledge of human exposures there. The objectives of this study were to characterize exposures to several essential (copper, iron, manganese, selenium, zinc) and toxic (arsenic, cadmium, cobalt, chromium, mercury, nickel, lead) elements in the urine and blood of male workers (n = 58) at Agbogbloshie, as well as females (n = 11) working in activities that serve the site, and to relate these exposures to sociodemographic and occupational characteristics. The median number of years worked at the site was 5, and the average worker indicated being active in 6.8 tasks (of 9 key e-waste job categories). Additionally, we categorized four main e-waste activities (in brackets % of population self-reported main activity): dealing (22.4%), sorting (24.1%), dismantling (50%), and burning (3.4%) e-waste materials. Many blood and urinary elements (including essential ones) were within biomonitoring reference ranges. However, blood cadmium (1.2 μg/L median) and lead (6.4 μg/dl; 67% above U.S. CDC/NIOSH reference level), and urinary arsenic (38.3 μg/L; 39% above U.S. ATSDR value) levels were elevated compared to background populations elsewhere. Workers who burned e-waste tended to have the highest biomarker levels. The findings of this study contribute to a growing body of work at Agbogbloshie (and elsewhere) to document that individuals working within e-waste sites are exposed to a number of toxic elements, some at potentially concerning levels. Copyright © 2016 Elsevier Ltd. All rights reserved.
40 CFR 761.347 - First level sampling-waste from existing piles.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 40 Protection of Environment 31 2014-07-01 2014-07-01 false First level sampling-waste from..., DISTRIBUTION IN COMMERCE, AND USE PROHIBITIONS Sampling Non-Liquid, Non-Metal PCB Bulk Product Waste for... Waste Destined for Off-Site Disposal, in Accordance With § 761.61 § 761.347 First level sampling—waste...
40 CFR 761.347 - First level sampling-waste from existing piles.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 40 Protection of Environment 32 2013-07-01 2013-07-01 false First level sampling-waste from..., DISTRIBUTION IN COMMERCE, AND USE PROHIBITIONS Sampling Non-Liquid, Non-Metal PCB Bulk Product Waste for... Waste Destined for Off-Site Disposal, in Accordance With § 761.61 § 761.347 First level sampling—waste...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, Dong-Sang
2015-03-02
The legacy nuclear wastes stored in underground tanks at the US Department of Energy’s Hanford site is planned to be separated into high-level waste and low-activity waste fractions and vitrified separately. Formulating optimized glass compositions that maximize the waste loading in glass is critical for successful and economical treatment and immobilization of nuclear wastes. Glass property-composition models have been developed and applied to formulate glass compositions for various objectives for the past several decades. The property models with associated uncertainties and combined with composition and property constraints have been used to develop preliminary glass formulation algorithms designed for vitrification processmore » control and waste form qualification at the planned waste vitrification plant. This paper provides an overview of current status of glass property-composition models, constraints applicable to Hanford waste vitrification, and glass formulation approaches that have been developed for vitrification of hazardous and highly radioactive wastes stored at the Hanford site.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nichols, Will E.; Mehta, Sunil
The updated Hanford Site Composite Analysis will provide an all-pathways dose projection to a hypothetical future member of the public from all planned low-level radioactive waste disposal facilities and potential contributions from all other projected end-state sources of radioactive material left at Hanford following site closure. Its primary purpose is to support the decision-making process of the U.S. Department of Energy (DOE) under DOE O 435.1-1, Radioactive Waste Management (DOE, 2001), related to managing low-level waste disposal facilities at the Hanford Site.
Sugiyama, Daisuke; Hattori, Takatoshi
2013-01-01
In environmental remediation after nuclear accidents, radioactive wastes have to be appropriately managed in existing exposure situations with contamination resulting from the emission of radionuclides by such accidents. In this paper, a framework of radiation protection from radioactive waste management in existing exposure situations for application to the practical and reasonable waste management in contaminated areas, referring to related ICRP recommendations was proposed. In the proposed concept, intermediate reference levels for waste management are adopted gradually according to the progress of the reduction in the existing ambient dose in the environment on the basis of the principles of justification and optimisation by taking into account the practicability of the management of radioactive waste and environmental remediation. It is essential to include the participation of relevant stakeholders living in existing exposure situations in the selection of reference levels for the existing ambient dose and waste management.
Sugiyama, Daisuke; Hattori, Takatoshi
2013-01-01
In environmental remediation after nuclear accidents, radioactive wastes have to be appropriately managed in existing exposure situations with contamination resulting from the emission of radionuclides by such accidents. In this paper, a framework of radiation protection from radioactive waste management in existing exposure situations for application to the practical and reasonable waste management in contaminated areas, referring to related ICRP recommendations was proposed. In the proposed concept, intermediate reference levels for waste management are adopted gradually according to the progress of the reduction in the existing ambient dose in the environment on the basis of the principles of justification and optimisation by taking into account the practicability of the management of radioactive waste and environmental remediation. It is essential to include the participation of relevant stakeholders living in existing exposure situations in the selection of reference levels for the existing ambient dose and waste management. PMID:22719047
Development of the Use of Alternative Cements for the Treatment of Intermediate Level Waste
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hayes, M.; Godfrey, I.H.
2007-07-01
This paper describes initial development studies undertaken to investigate the potential use of alternative, non ordinary Portland cement (OPC) based encapsulation matrices to treat historic legacy wastes within the UK's Intermediate Level Waste (ILW) inventory. Currently these wastes are encapsulated in composite OPC cement systems based on high replacement with blast furnace slag of pulverised fuel ash. However, the high alkalinity of these cements can lead to high corrosion rates with reactive metals found in some wastes releasing hydrogen and forming expansive corrosion products. This paper therefore details preliminary results from studies on two commercial products, calcium sulfo-aluminate (CSA) andmore » magnesium phosphate (MP) cement which react with a different hydration chemistry, and which may allow wastes containing these metals to be encapsulated with lower reactivity. The results indicate that grouts can be formulated from both cements over a range of water contents and reactant ratios that have significantly improved fluidity in comparison to typical OPC cements. All designed mixes set in 24 hours with zero bleed and the pH values in the plastic state were in the range 10-11 for CSA and 5-7 for MP cements. In addition, a marked reduction in aluminium corrosion rate has been observed in both types of cements compared to a composite OPC system. These results therefore provide encouragement that both cement types can provide a possible alternative to OPC in the immobilisation of reactive wastes, however further investigation is needed. (authors)« less
Existing data on the 216-Z liquid waste sites
DOE Office of Scientific and Technical Information (OSTI.GOV)
Owens, K.W.
1981-05-01
During 36 years of operation at the Hanford Site, the ground has been used for disposal of liquid and solid transuranic and/or low-level wastes. Liquid waste was disposed in surface and subsurface cribs, trenches, French drains, reverse wells, ditches and ponds. Disposal structures associated with Z Plant received liquid waste from plutonium finishing and reclamation, waste treatment and laboratory operations. The nineteen 216-Z sites have received 83% of the plutonium discharged to 325 liquid waste facilities at the Hanford Site. The purpose of this document is to support the Hanford Defense Waste Environmental Impact Statement by drawing the existing datamore » together for the 216-Z liquid waste disposal sites. This document provides an interim reference while a sitewide Waste Information Data System (WIDS) is developed and put on line. Eventually these and additional site data for all Hanford waste disposal sites will be available on WIDS. Compilation of existing data is the first step in evaluating the need and developing the technology for long-term management of these waste sites. The scope of this document is confined to data describing the status of the 216-Z waste sites as of December 31, 1979. Information and sketches are taken from existing documents and drawings.« less
Conversion of transuranic waste to low level waste by decontamination: a site specific update
DOE Office of Scientific and Technical Information (OSTI.GOV)
Allen, R.P.; Hazelton, R.F.
1985-09-01
As a followup to an FY-1984 cost/benefit study, a program was conducted in FY-1985 to transfer to the relevant DOE sites the information and technology for the direct conversion of transuranic (TRU) waste to low-level waste (LLW) by decontamination. As part of this work, the economic evaluation of the various TRUW volume reduction and conversion options was updated and expanded to include site-specific factors. The results show, for the assumptions used, that size reduction, size reduction followed by decontamination, or in situ decontamination are cost effective compared with the no-processing option. The technology transfer activities included site presentations and discussionsmore » with operations and waste management personnel to identify application opportunities and site-specific considerations and constraints that could affect the implementation of TRU waste conversion principles. These discussions disclosed definite potential for the beneficial application of these principles at most of the sites, but also confirmed the existence of site-specific factors ranging from space limitations to LLW disposal restrictions that could preclude particular applications or diminish expected benefits. 8 refs., 2 figs., 4 tabs.« less
Field scale manure born animal waste management : GIS application
USDA-ARS?s Scientific Manuscript database
Intensive beef backgrounding often accumulate manure born soil nutrients, microbes, and pharmaceuticals at different site locations. Unless properly managed, such waste materials can pollute surrounding soil and water sources. Soil sampling from these sites helps determining waste material levels bu...
Importance of geologic characterization of potential low-level radioactive waste disposal sites
Weibel, C.P.; Berg, R.C.
1991-01-01
Using the example of the Geff Alternative Site in Wayne County, Illinois, for the disposal of low-level radioactive waste, this paper demonstrates, from a policy and public opinion perspective, the importance of accurately determining site stratigraphy. Complete and accurate characterization of geologic materials and determination of site stratigraphy at potential low-level waste disposal sites provides the frame-work for subsequent hydrologic and geochemical investigations. Proper geologic characterization is critical to determine the long-term site stability and the extent of interactions of groundwater between the site and its surroundings. Failure to adequately characterize site stratigraphy can lead to the incorrect evaluation of the geology of a site, which in turn may result in a lack of public confidence. A potential problem of lack of public confidence was alleviated as a result of the resolution and proper definition of the Geff Alternative Site stratigraphy. The integrity of the investigation was not questioned and public perception was not compromised. ?? 1991 Springer-Verlag New York Inc.
Pyramiding tumuli waste disposal site and method of construction thereof
Golden, Martin P.
1989-01-01
An improved waste disposal site for the above-ground disposal of low-level nuclear waste as disclosed herein. The disposal site is formed from at least three individual waste-containing tumuli, wherein each tumuli includes a central raised portion bordered by a sloping side portion. Two of the tumuli are constructed at ground level with adjoining side portions, and a third above-ground tumulus is constructed over the mutually adjoining side portions of the ground-level tumuli. Both the floor and the roof of each tumulus includes a layer of water-shedding material such as compacted clay, and the clay layer in the roofs of the two ground-level tumuli form the compacted clay layer of the floor of the third above-ground tumulus. Each tumulus further includes a shield wall, preferably formed from a solid array of low-level handleable nuclear wate packages. The provision of such a shield wall protects workers from potentially harmful radiation when higher-level, non-handleable packages of nuclear waste are stacked in the center of the tumulus.
Impact of informal electronic waste recycling on metal concentrations in soils and dusts.
Ohajinwa, Chimere May; van Bodegom, Peter M; Vijver, Martina G; Peijnenburg, Willie J G M
2018-07-01
Electronic and electrical equipment contains over 1000 different substances, including metals. During informal e-waste recycling some of these substances such as metals, are released into the environment causing environmental pollution. This study assessed the impact of different informal e-waste recycling activities (burning, dismantling, and repairing) on metal concentrations in top soils and various dust. A comparative cross-sectional study design was adopted to assess metal concentrations in top soils and in various dust samples from multiple e-waste recycling sites. Metal concentrations at e-waste recycling sites were compared to the concentrations at control sites in three study locations in Nigeria (Lagos, Ibadan, and Aba). In the three study locations, mean metal concentrations at the e-waste recycling sites exceeded the concentrations at the control sites and the Nigerian standard guideline values by 100 s to 1000 s times. Burning sites showed the highest pollution level, followed by dismantling sites, then repair sites. Our findings show serious environmental and public health concerns. The metal concentrations were also higher than levels reported in other studies at the same locations in Nigeria, indicating that the situation is worsening. This study provides scientific evidence for an urgent need to develop effective strategies to strengthen enforcement of existing e-waste regulations in Nigeria. Copyright © 2018 Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gregory, Louis
This report satisfies the U.S. Department of Energy (DOE), National Nuclear Security Administration Nevada Field Office (NNSA/NFO) commitment to prepare a quarterly summary report of waste shipments to the Nevada National Security Site (NNSS) Radioactive Waste Management Complex (RWMC) at Area 5. This report summarizes the 1st quarter of fiscal year (FY) 2017 low-level radioactive waste (LLW), mixed low-level radioactive waste (MLLW) and classified non-radioactive (CNR) shipments. There were no shipments sent for offsite treatment from a NNSS facility and returned to the NNSS this quarter of FY2017.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Matlack, K. S.; Abramowitz, H.; Miller, I. S.
About 50 million gallons of high-level mixed waste is currently stored in underground tanks at the United States Department of Energy’s (DOE’s) Hanford site in the State of Washington. The Hanford Tank Waste Treatment and Immobilization Plant (WTP) will provide DOE’s Office of River Protection (ORP) with a means of treating this waste by vitrification for subsequent disposal. The tank waste will be separated into low- and high-activity waste fractions, which will then be vitrified respectively into Immobilized Low Activity Waste (ILAW) and Immobilized High Level Waste (IHLW) products. The ILAW product will be disposed in an engineered facility onmore » the Hanford site while the IHLW product is designed for acceptance into a national deep geological disposal facility for high-level nuclear waste. The ILAW and IHLW products must meet a variety of requirements with respect to protection of the environment before they can be accepted for disposal.« less
Tank 19F Folding Crawler Final Evaluation, Rev. 0
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nance, T.
2000-10-25
The Department of Energy (DOE) is committed to removing millions of gallons of high-level radioactive waste from 51 underground waste storage tanks at the Savannah River Site (SRS). The primary radioactive waste constituents are strontium, plutonium,and cesium. It is recognized that the continued storage of this waste is a risk to the public, workers, and the environment. SRS was the first site in the DOE complex to have emptied and operationally closed a high-level radioactive waste tank. The task of emptying and closing the rest of the tanks will be completed by FY28.
Marston, Thomas M.; Beisner, Kimberly R.; Naftz, David L.; Snyder, Terry
2012-01-01
During August of 2008, 35 solid-phase samples were collected from abandoned uranium waste dumps, undisturbed geologic background sites, and adjacent streambeds in Browns Hole in southeastern Utah. The objectives of this sampling program were (1) to assess impacts on human health due to exposure to radium, uranium, and thorium during recreational activities on and around uranium waste dumps on Bureau of Land Management lands; (2) to compare concentrations of trace elements associated with mine waste dumps to natural background concentrations; (3) to assess the nonpoint source chemical loading potential to ephemeral and perennial watersheds from uranium waste dumps; and (4) to assess contamination from waste dumps to the local perennial stream water in Muleshoe Creek. Uranium waste dump samples were collected using solid-phase sampling protocols. Solid samples were digested and analyzed for major and trace elements. Analytical values for radium and uranium in digested samples were compared to multiple soil screening levels developed from annual dosage calculations in accordance with the Comprehensive Environmental Response, Compensation, and Liability Act's minimum cleanup guidelines for uranium waste sites. Three occupancy durations for sites were considered: 4.6 days per year, 7.0 days per year, and 14.0 days per year. None of the sites exceeded the radium soil screening level of 96 picocuries per gram, corresponding to a 4.6 days per year exposure. Two sites exceeded the radium soil screening level of 66 picocuries per gram, corresponding to a 7.0 days per year exposure. Seven sites exceeded the radium soil screening level of 33 picocuries per gram, corresponding to a 14.0 days per year exposure. A perennial stream that flows next to the toe of a uranium waste dump was sampled, analyzed for major and trace elements, and compared with existing aquatic-life and drinking-water-quality standards. None of the water-quality standards were exceeded in the stream samples.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shott, G.; Yucel, V.; Desotell, L.
2006-07-01
The long-term safety of U.S. Department of Energy (DOE) low-level radioactive disposal facilities is assessed by conducting a performance assessment -- a systematic analysis that compares estimated risks to the public and the environment with performance objectives contained in DOE Manual 435.1-1, Radioactive Waste Management Manual. Before site operations, facilities design features such as final inventory, waste form characteristics, and closure cover design may be uncertain. Site operators need a modeling tool that can be used throughout the operational life of the disposal site to guide decisions regarding the acceptance of problematic waste streams, new disposal cell design, environmental monitoringmore » program design, and final site closure. In response to these needs the National Nuclear Security Administration Nevada Site Office (NNSA/NSO) has developed a decision support system for the Area 5 Radioactive Waste Management Site in Frenchman Flat on the Nevada Test Site. The core of the system is a probabilistic inventory and performance assessment model implemented in the GoldSim{sup R} simulation platform. The modeling platform supports multiple graphic capabilities that allow clear documentation of the model data sources, conceptual model, mathematical implementation, and results. The combined models have the capability to estimate disposal site inventory, contaminant concentrations in environmental media, and radiological doses to members of the public engaged in various activities at multiple locations. The model allows rapid assessment and documentation of the consequences of waste management decisions using the most current site characterization information, radionuclide inventory, and conceptual model. The model is routinely used to provide annual updates of site performance, evaluate the consequences of disposal of new waste streams, develop waste concentration limits, optimize the design of new disposal cells, and assess the adequacy of environmental monitoring programs. (authors)« less
Final repository for Denmark's low- and intermediate level radioactive waste
NASA Astrophysics Data System (ADS)
Nilsson, B.; Gravesen, P.; Petersen, S. S.; Binderup, M.
2012-12-01
Bertel Nilsson*, Peter Gravesen, Stig A. Schack Petersen, Merete Binderup Geological Survey of Denmark and Greenland (GEUS), Øster Voldgade 10, 1350 Copenhagen, Denmark, * email address bn@geus.dk The Danish Parliament decided in 2003 that the temporal disposal of the low- and intermediate level radioactive waste at the nuclear facilities at Risø should find another location for a final repository. The Danish radioactive waste must be stored on Danish land territory (exclusive Greenland) and must hold the entire existing radioactive waste, consisting of the waste from the decommissioning of the nuclear facilities at Risø, and the radioactive waste produced in Denmark from hospitals, universities and industry. The radioactive waste is estimated to a total amount of up to 10,000 m3. The Geological Survey of Denmark and Greenland, GEUS, is responsible for the geological studies of suitable areas for the repository. The task has been to locate and recognize non-fractured Quaternary and Tertiary clays or Precambrian bedrocks with low permeability which can isolate the radioactive waste from the surroundings the coming more than 300 years. Twenty two potential areas have been located and sequential reduced to the most favorable two to three locations taking into consideration geology, hydrogeology, nature protection and climate change conditions. Further detailed environmental and geology investigations will be undertaken at the two to three potential localities in 2013 to 2015. This study together with a study of safe transport of the radioactive waste and an investigation of appropriate repository concepts in relation to geology and safety analyses will constitute the basis upon which the final decision by the Danish Parliament on repository concept and repository location. The final repository is planned to be established and in operation at the earliest 2020.
Lu, Shao-You; Li, Yan-Xi; Zhang, Jian-Qing; Zhang, Tao; Liu, Gui-Hua; Huang, Ming-Zhi; Li, Xiao; Ruan, Ju-Jun; Kannan, Kurunthachalam; Qiu, Rong-Liang
2016-09-01
Emission of polycyclic aromatic hydrocarbons (PAHs) from e-waste recycling activities in China is known. However, little is known on the association between PAH exposure and oxidative damage to DNA and lipid content in people living near e-waste dismantling sites. In this study, ten hydroxylated polycyclic aromatic hydrocarbons (OH-PAHs) and two biomarkers [8-hydroxy-2'-deoxyguanosine (8-OHdG) and malondialdehyde (MDA)] of oxidative stress were investigated in urine samples collected from people living in and around e-waste dismantling facilities, and in reference population from rural and urban areas in China. The urinary levels of ∑10OH-PAHs determined in e-waste recycling area (GM: 25.4μg/g Cre) were significantly higher (p<0.05) than those found in both rural (11.7μg/g Cre) and urban (10.9μg/g Cre) reference areas. The occupationally exposed e-waste workers (36.6μg/g Cre) showed significantly higher (p<0.01) urinary Σ10OH-PAHs concentrations than non-occupationally exposed people (23.2μg/g Cre) living in the e-waste recycling site. The differences in urinary Σ10OH-PAHs levels between smokers (23.4μg/g Cre) and non-smokers (24.7μg/g Cre) were not significant (p>0.05) in e-waste dismantling sites, while these differences were significant (p<0.05) in rural and urban reference areas; this indicated that smoking is not associated with elevated levels of PAH exposure in e-waste dismantling site. Furthermore, we found that urinary concentrations of Σ10OH-PAHs and individual OH-PAHs were significantly associated with elevated 8-OHdG, in samples collected from e-waste dismantling site; the levels of urinary 1-hydroxypyrene (1-PYR) (r=0.284, p<0.01) was significantly positively associated with MDA. Our results indicate that the exposure to PAHs at the e-waste dismantling site may have an effect on oxidative damage to DNA among selected participants, but this needs to be validated in large studies. Copyright © 2016 Elsevier Ltd. All rights reserved.
[PHAHs levels in soil samples from the E-waste disassembly sites and their sources allocation].
Zhao, Gao-Feng; Wang, Zi-Jian
2009-06-15
Soil samples (each with 3 replicates of - 1 kg, at the top 0-5 cm layer) were collected from each of the e-waste disassembly sites and the control site. Also obtained from each disassembly site were samples (each weighing - 0.2 kg) of cable coating,stuffing powder, and circuit boards chipping. The contents of 23 PBB congeners, 12 PBDE congeners, and 27 PCB congeners in soil and in their potential sources, including e-waste residues, were measured using the GC-MS5975B technique. The highest level of PBBs was found in the cable coating among the three e-waste residues, with a concentration of 35.25 ng x g(-1). The contents of low-brominated PBBs (including monobromobiphenyls and dibromobiphenyls) accounted for 38% of the total PBBs concentration observed in cable coating sample. The highest levels of PBDEs and PBDE209 were found in the stuffing powder for electronic component among the collected e-waste residues, with a concentration of 29.71 and 4.19 x 10(3) ng x g(-1). PBDE153 and PBDE183 were the most predominant PBDE congeners, with their concentration accounting for 43% and 24% of the total PBDEs concentration observed in the stuffing powder sample, respectively. Levels of PCBs in cable coating were the highest in these e-waste residues, with a concentration of 680.02 ngx g(-1). The observed values of the three PHAHs in soils from the disassembly site were considerably higher than their corresponding values observed in the control site (p < 0.05), which indicates that these PHAHs from e-waste is the pollution source of local environment.
Thirteenth annual U.S. DOE low-level radioactive waste management conference: Proceedings
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1991-12-31
The 40 papers in this document comprise the proceedings of the Department of Energy`s Thirteenth Annual Low-Level Radioactive Waste Management Conference that was held in Atlanta, Georgia, on November 19--21, 1991. General subjects addressed during the conference included: disposal facility design; greater-than-class C low-level waste; public acceptance considerations; waste certification; site characterization; performance assessment; licensing and documentation; emerging low-level waste technologies; waste minimization; mixed waste; tracking and transportation; storage; and regulatory changes. Papers have been processed separately for inclusion on the data base.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Larsson, Arne; Lidar, Per; Bergh, Niklas
2013-07-01
Decommissioning of nuclear power plants generates large volumes of radioactive or potentially radioactive waste. The proper management of the dismantling waste plays an important role for the time needed for the dismantling phase and thus is critical to the decommissioning cost. An efficient and thorough process for inventorying, characterization and categorization of the waste provides a sound basis for the planning process. As part of comprehensive decommissioning studies for Nordic NPPs, Westinghouse has developed the decommissioning inventories that have been used for estimations of the duration of specific work packages and the corresponding costs. As part of creating the designmore » basis for a national repository for decommissioning waste, the total production of different categories of waste packages has also been predicted. Studsvik has developed a risk based concept for categorization and handling of the generated waste using six different categories with a span from extremely small risk for radiological contamination to high level waste. The two companies have recently joined their skills in the area of decommissioning on selected market in a consortium named 'ndcon' to further strengthen the proposed process. Depending on the risk for radiological contamination or the radiological properties and other properties of importance for waste management, treatment routes are proposed with well-defined and proven methods for on-site or off-site treatment, activity determination and conditioning. The system is based on a graded approach philosophy aiming for high confidence and sustainability, aiming for re-use and recycling where found applicable. The objective is to establish a process where all dismantled material has a pre-determined treatment route. These routes should through measurements, categorization, treatment, conditioning, intermediate storage and final disposal be designed to provide a steady, un-disturbed flow of material to avoid interruptions. Bottle-necks in the process causes increased space requirements and will have negative impact on the project schedule, which increases not only the cost but also the dose exposure to personnel. For these reasons it is critical to create a process that transfers material into conditioned waste ready for disposal as quickly as possible. To a certain extent the decommissioning program should be led by the waste management process. With the objective to reduce time for handling of dismantled material at site and to efficiently and environmental-friendly use waste management methods (clearance for re-use followed by clearance for recycling), the costs for the plant decommissioning could be reduced as well as time needed for performing the decommissioning project. Also, risks for delays would be reduced with a well-defined handling scheme which limits surprises. Delays are a major cost driver for decommissioning projects. (authors)« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Doane, R.W.; Grant, R.H.
1996-09-01
Thermo NUtech is the prime contractor for the Defense Nuclear Agency (DNA), responsible for the operation and maintenance of the Johnston Atoll plutonium Contaminated Soil Cleanup Project. During this production period, the Scope of Work included movement of soil to and from the plant, processing contaminated soil through the Segmented Gate System (SGS) and Soil Washing System, packaging of waste soil for shipment, identification and implementation of process improvements, data collection and validation, and compliance with all applicable regulations governing environmental safety and health. The SGS utilizes arrays of sensitive radiation detectors coupled with sophisticated computer software to segregate contaminatedmore » soil from a moving feed supply on conveyor belts. Contaminated soil is diverted to a `hot path` for plutonium particles greater than 5000 Becquerels or to a supplemental soil washing process designed to remove dispersed low leve%l contamination from a soil faction consisting of very small particles. Low to intermediate levels of contamination are removed from the soil to meet DNA`s criteria for unrestricted use of less than 500 Becquerels per kilogram of soil, with no hot particles. The low level concentrate is expected to be packaged for shipment to an approved defense waste disposal site.« less
ON-SITE MERCURY ANALYSIS OF SOIL AT HAZARDOUS WASTE SITES BY IMMUNOASSAY AND ASV
Two field methods for Hg, immunoassay and anodic stripping voltammetry (ASV), that can provide onsite results for quick decisions at hazardous waste sites were evaluated. Each method was applied to samples from two Superfund sites that contain high levels of Hg; Sulphur Bank Me...
Gidarakos, Evangelos; Anastasiadou, Kalliopi; Koumantakis, Emmanuil; Nikolaos, Stappas
2008-05-30
Although, according to European legislation the use of Asbestos Containing Materials is forbidden, many buildings in Greece still contain asbestos products, which must be removed at some point in the near future. Therefore, suitable disposal sites must be found within Greece, so that the unverified disposal of asbestos waste in municipal waste Landfills is brought to an end. In the present work, an innovative approach to the disposal problem of asbestos wastes in Greece has been examined, through a risk assessment analysis of the inactive asbestos mine of Northern Greece and an evaluation of its suitability as a disposal site for asbestos wastes in the future. According to the research carried out, two areas (Site 1 and Site 2) inside the mine area are suitable for the construction of a disposal site for asbestos wastes. The geological investigations showed that in Site 1 and Site 2 ultrabasic rocks of ophiolite complex were prevalent, which have been intensely serpentinized and converted into the fibrous shape of serpentine (asbestos). Concentrations of hazardous substances such as heavy metals in the soil of Site 1 and Site 2 oscillate at low levels, with the exception of the concentrations of nickel and chrome which are high. The investigative work also included the collection of meteorological data and the monitoring of the water level of the artificial lake, which has developed inside the open mine. The main aim is to safely dispose asbestos wastes inside the mine, to minimize any pollution of the wider vicinity of the mine, as well as to engage in restoration activities.
Becker, J K; Lindborg, T; Thorne, M C
2014-12-01
In safety assessments of repositories for radioactive wastes, large spatial and temporal scales have to be considered when developing an approach to risk calculations. A wide range of different types of information may be required. Local to the site of interest, temperature and precipitation data may be used to determine the erosional regime (which may also be conditioned by the vegetation characteristics adopted, based both on climatic and other considerations). However, geomorphological changes may be governed by regional rather than local considerations, e.g. alteration of river base levels, river capture and drainage network reorganisation, or the progression of an ice sheet or valley glacier across the site. The regional climate is in turn governed by the global climate. In this work, a commentary is presented on the types of climate models that can be used to develop projections of climate change for use in post-closure radiological impact assessments of geological repositories for radioactive wastes. These models include both Atmosphere-Ocean General Circulation Models and Earth Models of Intermediate Complexity. The relevant outputs available from these models are identified and consideration is given to how these outputs may be used to inform projections of landscape development. Issues of spatial and temporal downscaling of climate model outputs to meet the requirements of local-scale landscape development modelling are also addressed. An example is given of how climate change and landscape development influence the radiological impact of radionuclides potentially released from the deep geological disposal facility for spent nuclear fuel that SKB (the Swedish Nuclear Fuel and Waste Management Company) proposes to construct at Forsmark, Sweden. Copyright © 2014 Elsevier Ltd. All rights reserved.
DETERMINATION OF OPTIMAL TOXICANT LOADING FOR BIOLOGICAL CLOSURE OF A HAZARDOUS WASTE SITE
Information on Phase I and Phase Il of a multitask effort to achieve biological closure of an abandoned hazardous waste site. aste materials, in the form of buried sludges and lagoon wastes, were examined. ptimal loading levels were evaluated on the basis of biodegradative potent...
Waste management strategy for cost effective and environmentally friendly NPP decommissioning
DOE Office of Scientific and Technical Information (OSTI.GOV)
Per Lidar; Arne Larsson; Niklas Bergh
2013-07-01
Decommissioning of nuclear power plants generates large volumes of radioactive or potentially radioactive waste. The proper management of the dismantling waste plays an important role for the time needed for the dismantling phase and thus is critical to the decommissioning cost. An efficient and thorough process for inventorying, characterization and categorization of the waste provides a sound basis for the planning process. As part of comprehensive decommissioning studies for Nordic NPPs, Westinghouse has developed the decommissioning inventories that have been used for estimations of the duration of specific work packages and the corresponding costs. As part of creating the designmore » basis for a national repository for decommissioning waste, the total production of different categories of waste packages has also been predicted. Studsvik has developed a risk based concept for categorization and handling of the generated waste using six different categories with a span from extremely small risk for radiological contamination to high level waste. The two companies have recently joined their skills in the area of decommissioning on selected market in a consortium named ndcon to further strengthen the proposed process. Depending on the risk for radiological contamination or the radiological properties and other properties of importance for waste management, treatment routes are proposed with well-defined and proven methods for on-site or off-site treatment, activity determination and conditioning. The system is based on a graded approach philosophy aiming for high confidence and sustainability, aiming for re-use and recycling where found applicable. The objective is to establish a process where all dismantled material has a pre-determined treatment route. These routes should through measurements, categorization, treatment, conditioning, intermediate storage and final disposal be designed to provide a steady, un-disturbed flow of material to avoid interruptions. Bottle-necks in the process causes increased space requirements and will have negative impact on the project schedule, which increases not only the cost but also the dose exposure to personnel. For these reasons it is critical to create a process that transfers material into conditioned waste ready for disposal as quickly as possible. To a certain extent the decommissioning program should be led by the waste management process. With the objective to reduce time for handling of dismantled material at site and to efficiently and environmental-friendly use waste management methods (clearance for re-use followed by clearance for recycling), the costs for the plant decommissioning could be reduced as well as time needed for performing the decommissioning project. Also, risks for delays would be reduced with a well-defined handling scheme which limits surprises. Delays are a major cost driver for decommissioning projects. (authors)« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Makoto Kashiwagi; Garamszeghy, Mike; Lantes, Bertrand
Disposal of low-and intermediate-level activated waste generated at nuclear power plants is being planned or carried out in many countries. The radioactivity concentrations and/or total quantities of long-lived, difficult-to-measure nuclides (DTM nuclides), such as C-14, Ni-63, Nb-94, α emitting nuclides etc., are often restricted by the safety case for a final repository as determined by each country's safety regulations, and these concentrations or amounts are required to be known and declared. With respect to waste contaminated by contact with process water, the Scaling Factor method (SF method), which is empirically based on sampling and analysis data, has been applied asmore » an important method for determining concentrations of DTM nuclides. This method was standardized by the International Organization for Standardization (ISO) and published in 2007 as ISO21238 'Scaling factor method to determine the radioactivity of low and intermediate-level radioactive waste packages generated at nuclear power plants' [1]. However, for activated metal waste with comparatively high concentrations of radioactivity, such as may be found in reactor control rods and internal structures, direct sampling and radiochemical analysis methods to evaluate the DTM nuclides are limited by access to the material and potentially high personnel radiation exposure. In this case, theoretical calculation methods in combination with empirical methods based on remote radiation surveys need to be used to best advantage for determining the disposal inventory of DTM nuclides while minimizing exposure to radiation workers. Pursuant to this objective a standard for the theoretical evaluation of the radioactivity concentration of DTM nuclides in activated waste, is in process through ISO TC85/SC5 (ISO Technical Committee 85: Nuclear energy, nuclear technologies, and radiological protection; Subcommittee 5: Nuclear fuel cycle). The project team for this ISO standard was formed in 2011 and is composed of experts from 11 countries. The project team has been conducting technical discussions on theoretical methods for determining concentrations of radioactivity, and has developed the draft International Standard of ISO16966 'Theoretical activation calculation method to evaluate the radioactivity of activated waste generated at nuclear reactors' [2]. This paper describes the international standardization process developed by the ISO project team, and outlines the following two theoretical activity evaluation methods:? Point method? Range method. (authors)« less
The impact measure of solid waste management on health: the hazard index.
Musmeci, Loredana; Bellino, Mirella; Cicero, Maria Rita; Falleni, Fabrizio; Piccardi, Augusta; Trinca, Stefania
2010-01-01
The risk associated with waste exposure depends on the level of emissions arising from waste disposal and from the effects of these emissions on human health (dose-response). In 2007 an epidemiological study was conducted in two Italian provinces of the Campania Region, namely Naples and Caserta, with the aim of assessing the health effects deriving from exposure to waste. In these studies, the important aspect is the population exposure assessment, in relation to the different types of waste disposal. The Regional Agency for Environmental Protection (ARPA Campania) has identified and characterized the various authorized/unauthorized dumping sites in the provinces of Naples and Caserta. Most of the waste disposal used are illegal and invisible (sunken or buried); thus, the toxic substances therein contained are unknown and difficult to identify. In order to locate the possible areas exposed to a higher waste-related health risk, a synthetical "hazard index" (at the municipality level) was designed. By means of GIS, the number of waste impact areas was identified for each of the 196 municipalities in the two provinces; then, Census data (ISTAT 2001) was used to estimate the proportion of the population living in the impact areas. The synthetical hazard index at municipality level accounts for three elements: a) the intrinsic characterization of the waste disposal, determining the way in which the pollutant is released; b) the impact area of the dumping site (within 1 km radius), same areas are influenced by more than one site; c) the density of the population living in the "impact area" surrounding the waste disposal site.
On-site low level radwaste storage facility
DOE Office of Scientific and Technical Information (OSTI.GOV)
Knauss, C.H.; Gardner, D.A.
1993-12-31
This paper will explore several storage and processing technologies that are available for the safe storage of low-level waste, their advantages and their limitations such that potential users may be able to determine which technology may be most appropriate for their particular application. Also, a brief discussion will be included on available types of shipping and disposal containers and waste forms for use in those containers when ready for ultimate disposal. For the purposes of this paper, the waste streams considered will be restricted to nuclear power plant wastes. Wastes that will be discussed are powdered and bead resins formore » cooling and reactor water clean-up, filter cartridges, solidified waste oils, and Dry Active Wastes (DAW), which consist of contaminated clothing, tools, respirator filters, etc. On-site storage methods that will be analyzed include a storage facility constructed of individual temporary shielded waste containers on a hard surface; an on-site, self contained low level radwaste facility for resins and filters; and an on-site storage and volume reduction facility for resins and filters; and an on-site DAW. Simple, warehouse-type buildings and pre-engineered metal buildings will be discussed only to a limited degree since dose rate projections can be high due to their lack of adequate shielding for radiation protection. Waste processing alternatives that will be analyzed for resins include dewatering, solidifying in Portland cement, solidifying in bituminous material, and solidifying in a vinyl ester styrene matrix. The storage methods describes will be analyzed for their ability to shield the populace from the effects of direct transmission and skyshine radiation when storing the above mentioned materials, which have been properly processed for storage and have been placed in suitable storage containers.« less
DESIGN ANALYSIS FOR THE DEFENSE HIGH-LEVEL WASTE DISPOSAL CONTAINER
DOE Office of Scientific and Technical Information (OSTI.GOV)
G. Radulesscu; J.S. Tang
The purpose of ''Design Analysis for the Defense High-Level Waste Disposal Container'' analysis is to technically define the defense high-level waste (DHLW) disposal container/waste package using the Waste Package Department's (WPD) design methods, as documented in ''Waste Package Design Methodology Report'' (CRWMS M&O [Civilian Radioactive Waste Management System Management and Operating Contractor] 2000a). The DHLW disposal container is intended for disposal of commercial high-level waste (HLW) and DHLW (including immobilized plutonium waste forms), placed within disposable canisters. The U.S. Department of Energy (DOE)-managed spent nuclear fuel (SNF) in disposable canisters may also be placed in a DHLW disposal container alongmore » with HLW forms. The objective of this analysis is to demonstrate that the DHLW disposal container/waste package satisfies the project requirements, as embodied in Defense High Level Waste Disposal Container System Description Document (SDD) (CRWMS M&O 1999a), and additional criteria, as identified in Waste Package Design Sensitivity Report (CRWMS M&Q 2000b, Table 4). The analysis briefly describes the analytical methods appropriate for the design of the DHLW disposal contained waste package, and summarizes the results of the calculations that illustrate the analytical methods. However, the analysis is limited to the calculations selected for the DHLW disposal container in support of the Site Recommendation (SR) (CRWMS M&O 2000b, Section 7). The scope of this analysis is restricted to the design of the codisposal waste package of the Savannah River Site (SRS) DHLW glass canisters and the Training, Research, Isotopes General Atomics (TRIGA) SNF loaded in a short 18-in.-outer diameter (OD) DOE standardized SNF canister. This waste package is representative of the waste packages that consist of the DHLW disposal container, the DHLW/HLW glass canisters, and the DOE-managed SNF in disposable canisters. The intended use of this analysis is to support Site Recommendation reports and to assist in the development of WPD drawings. Activities described in this analysis were conducted in accordance with the Development Plan ''Design Analysis for the Defense High-Level Waste Disposal Container'' (CRWMS M&O 2000c) with no deviations from the plan.« less
Nuclear waste viewed in a new light; a synchrotron study of uranium encapsulated in grout.
Stitt, C A; Hart, M; Harker, N J; Hallam, K R; MacFarlane, J; Banos, A; Paraskevoulakos, C; Butcher, E; Padovani, C; Scott, T B
2015-03-21
How do you characterise the contents of a sealed nuclear waste package without breaking it open? This question is important when the contained corrosion products are potentially reactive with air and radioactive. Synchrotron X-rays have been used to perform micro-scale in-situ observation and characterisation of uranium encapsulated in grout; a simulation for a typical intermediate level waste storage packet. X-ray tomography and X-ray powder diffraction generated both qualitative and quantitative data from a grout-encapsulated uranium sample before, and after, deliberately constrained H2 corrosion. Tomographic reconstructions provided a means of assessing the extent, rates and character of the corrosion reactions by comparing the relative densities between the materials and the volume of reaction products. The oxidation of uranium in grout was found to follow the anoxic U+H2O oxidation regime, and the pore network within the grout was observed to influence the growth of uranium hydride sites across the metal surface. Powder diffraction analysis identified the corrosion products as UO2 and UH3, and permitted measurement of corrosion-induced strain. Together, X-ray tomography and diffraction provide means of accurately determining the types and extent of uranium corrosion occurring, thereby offering a future tool for isolating and studying the reactions occurring in real full-scale waste package systems. Copyright © 2014 Elsevier B.V. All rights reserved.
Non-Thermal Treatment of Hanford Site Low-Level Mixed Waste
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1998-09-01
DOE proposes to transport contact-handled LLMW from the Hanford Site to the Allied Technology Group (ATG) Mixed Waste Facility (MWF) in Richland, Washington, for non-thermal treatment and to return the treated waste to the Hanford Site for eventual land disposal. Over a 3-year period the waste would be staged to the ATG MWF, and treated waste would be returned to the Hanford Site. The ATG MWF would be located on an 18 hectare (ha) (45 acre [at]) ATG Site adjacent to ATG's licensed low-level waste processing facility at 2025 Battelle Boulevard. The ATG MWF is located approximately 0.8 kilometers (km)more » (0.5 miles [mi]) south of Horn Rapids Road and 1.6 km (1 mi) west of Stevens Drive. The property is located within the Horn Rapids triangle in northern Richland (Figure 2.1). The ATG MWF is to be located on the existing ATG Site, near the DOE Hanford Site, in an industrial area in the City of Richland. The effects of siting, construction, and overall operation of the MWF have been evaluated in a separate State Environmental Policy Act (SEPA) EIS (City of Richland 1998). The proposed action includes transporting the LLMW from the Hanford Site to the ATG Facility, non-thermal treatment of the LLMW at the ATG MWF, and transporting the waste from ATG back to the Hanford Site. Impacts fi-om waste treatment operations would be bounded by the ATG SEPA EIS, which included an evaluation of the impacts associated with operating the non-thermal portion of the MWF at maximum design capacity (8,500 metric tons per year) (City of Richland 1998). Up to 50 employees would be required for non-thermal treatment portion of the MWF. This includes 40 employees that would perform waste treatment operations and 10 support staff. Similar numbers were projected for the thermal treatment portion of the MWF (City of Richland 1998).« less
Fujimori, Takashi; Takigami, Hidetaka; Agusa, Tetsuro; Eguchi, Akifumi; Bekki, Kanae; Yoshida, Aya; Terazono, Atsushi; Ballesteros, Florencio C
2012-06-30
We report concentrations, enrichment factors, and hazard indicators of 11 metals (Ag, As, Cd, Co, Cu, Fe, In, Mn, Ni, Pb, and Zn) in soil and dust surface matrices from formal and informal electronic waste (e-waste) recycling sites around Metro Manila, the Philippines, referring to soil guidelines and previous data from various e-waste recycling sites in Asia. Surface dust from e-waste recycling sites had higher levels of metal contamination than surface soil. Comparison of formal and informal e-waste recycling sites (hereafter, "formal" and "informal") revealed differences in specific contaminants. Formal dust contained a mixture of serious pollutant metals (Ni, Cu, Pb, and Zn) and Cd (polluted modestly), quite high enrichment metals (Ag and In), and crust-derived metals (As, Co, Fe, and Mn). For informal soil, concentration levels of specific metals (Cd, Co, Cu, Mn, Ni, Pb, and Zn) were similar among Asian recycling sites. Formal dust had significantly higher hazardous risk than the other matrices (p<0.005), excluding informal dust (p=0.059, almost significant difference). Thus, workers exposed to formal dust should protect themselves from hazardous toxic metals (Pb and Cu). There is also a high health risk for children ingesting surface matrices from informal e-waste recycling sites. Copyright © 2012 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
MANN, F.M.
2000-08-01
The Hanford Immobilized Low-Activity Waste Performance Assessment examines the long-term environmental and human health effects associated with the planned disposal of the vitrified low-activity fraction of waste presently contained in Hanford Site tanks. The tank waste is the byproduct of separating special nuclear materials from irradiated nuclear fuels over the past 50 years. This waste is stored in underground single- and double-shell tanks. The tank waste is to be retrieved, separated into low-activity and high-level fractions, and then immobilized by vitrification. The US. Department of Energy (DOE) plans to dispose of the low-activity fraction in the Hanford Site 200 Eastmore » Area. The high-level fraction will be stored at the Hanford Site until a national repository is approved. This report provides the site-specific long-term environmental information needed by the DOE to modify the current Disposal Authorization Statement for the Hanford Site that would allow the following: construction of disposal trenches; and filling of these trenches with ILAW containers and filler material with the intent to dispose of the containers.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Goldston, W.T.; Hiergesell, R.A.; Kaplan, D.I.
2006-07-01
At the Savannah River Site (SRS), nuclear production reactors used de-ionizers to control the chemistry of the reactor moderator during their operation to produce nuclear materials primarily for the weapons program. These de-ionizers were removed from the reactors and stored as a legacy waste and due to the relatively high carbon-14 (C-14) contamination (i.e., on the order of 740 giga becquerel (GBq) (20 curies) per de-ionizer) were considered a legacy 'waste with no path to disposal'. Considerable progress has been made in consideration of a disposal path for the legacy reactor de-ionizers. Presently, 48 - 50 de-ionizers being stored atmore » SRS have 'no path to disposal' because the disposal limit for C-14 in the SRS's low-level waste disposal facility's Intermediate Level Vault (ILV) is only 160 GBq (4.2 curies) per vault. The current C-14 ILV disposal limit is based on a very conservative analysis of the air pathway. The paper will describe the alternatives that were investigated that resulted in the selection of a route to pursue. This paper will then describe SRS's efforts to reduce the conservatism in the analysis, which resulted in a significantly larger C-14 disposal limit. The work consisted of refining the gas-phase analysis to simulate the migration of C-14 from the waste to the ground surface and evaluated the efficacy of carbonate chemistry in cementitious environment of the ILV for suppressing the volatilization of C-14. During the past year, a Special Analysis was prepared for Department of Energy approval to incorporate the results of these activities that increased the C-14 disposal limits for the ILV, thus allowing for disposal of the Reactor Moderator De-ionizers. Once the Special Analysis is approved by DOE, the actual disposal would be dependent on priority and funding, but the de-ionizers will be removed from the 'waste with no path to disposal list'. (authors)« less
10 CFR 62.13 - Contents of a request for emergency access: Alternatives.
Code of Federal Regulations, 2011 CFR
2011-01-01
... EMERGENCY ACCESS TO NON-FEDERAL AND REGIONAL LOW-LEVEL WASTE DISPOSAL FACILITIES Request for a Commission... following: (1) Storage of low-level radioactive waste at the site of generation; (2) Storage of low-level... disposal at a Federal low-level radioactive waste disposal facility in the case of a Federal or defense...
Vaccari, Mentore; Tudor, Terry; Perteghella, Andrea
2018-01-01
Given rising spend on the provision of healthcare services, the sustainable management of waste from healthcare facilities is increasingly becoming a focus as a means of reducing public health risks and financial costs. Using data on per capita healthcare spend at the national level, as well as a case study of a hospital in Italy, this study examined the relationship between trends in waste generation and the associated costs of managing the waste. At the national level, healthcare spend as a percentage of gross domestic product positively correlated with waste arisings. At the site level, waste generation and type were linked to department type and clinical performance, with the top three highest generating departments of hazardous healthcare waste being anaesthetics (5.96 kg day -1 bed -1 ), paediatric and intensive care (3.37 kg day -1 bed -1 ) and gastroenterology-digestive endoscopy (3.09 kg day -1 bed -1 ). Annual overall waste management costs were $US5,079,191, or approximately $US2.36 kg -1 , with the management of the hazardous fraction of the waste being highest at $US3,707,939. In Italy, reduction in both waste arisings and the associated costs could be realised through various means, including improved waste segregation, and linking the TARI tax to waste generation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1984-12-01
In February 1983, the US Department of Energy (DOE) identified the Lavender Canyon site in Utah, as one of nine potentially acceptable sites for a mined geologic repository for spent nuclear fuel and high-level radioactive waste. To determine their suitability, the Lavender Canyon site and the eight other potentially acceptable sites h
Row erupts over US firm's plan to import nuclear waste
NASA Astrophysics Data System (ADS)
Gwynne, Peter
2008-06-01
A controversy is brewing in the US over a plan by a firm in Utah to import, process and dispose of 20 000 tonnes of low-level radioactive waste from decommissioned nuclear reactors built in Italy by American companies. EnergySolutions intends to recycle some of this waste at a site near Oak Ridge, Tennessee, so that it can be re-used as shielding blocks in nuclear plants. The firm then wants to dispose of the remaining radioactive material at a site in Clive, Utah, where over 90% of low-level radioactive waste generated in the US is currently buried.
Eguchi, Akifumi; Nomiyama, Kei; Minh Tue, Nguyen; Trang, Pham Thi Kim; Hung Viet, Pham; Takahashi, Shin; Tanabe, Shinsuke
2015-02-01
This study demonstrated the contamination levels of polychlorinated biphenyls (PCBs), hydroxylated PCBs (OH-PCBs), polybrominated diphenyl ethers (PBDEs), methoxylated PBDEs (MeO-PBDEs), hydroxylated PBDEs (OH-PBDEs), and bromophenols (BPhs), and their relationships with thyroid hormones (THs), in the serum of human donors from an e-waste recycling site and a rural site in Hung Yen province, Vietnam. Occupationally related exposure was indicated by significantly higher residue levels of PCBs, OH-PCBs, PBDEs, and BPhs in the serum of donors from the e-waste recycling site (median: 420, 160, 290, and 300pgg(-1) wet wt, respectively) than those in the serum of donors from the rural site (median: 290, 82, 230, and 200pgg(-)(1) wet wt, respectively). On the other hand, levels of OH-/MeO-PBDEs were significantly higher in serum of donors from the reference site (median: 160 and 20pgg(-1) wet wt, respectively) than in those from the e-waste recycling site (median: 43 and 0.52pgg(-1) wet wt, respectively). In addition, we implemented stepwise generalized linear models to assess the association between the levels of TH and PCBs, PBDEs, and their related compounds. In females, we found positive associations of PCBs and OH-PCB concentrations with total thyroxine, free thyroxine, total triiodothyronine, and free triiodothyronine, and a negative association with thyroid-stimulating hormone concentrations. Copyright © 2015 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Bowles, Frederick A.; Vogt, Peter R.; Jung, Woo-Yeol
1998-05-01
Placing waste on the seafloor, with the intention that it remain in place and isolated from mankind, requires a knowledge of the environmental factors that may be applicable to a specific seafloor area. DBDB5 (Digital Bathymetric Database gridded at 5' latitude by 5' longitude cell dimension) is used here for regional assessments of seafloor depth, slope, and relief at five surrogate abyssal waste sites; two each in the western Atlantic and eastern Pacific, and one in the Gulf of Mexico. Only Pacific-1 exhibits a `high' slope (2°) by DBDB5 standards, whereas the remaining sites are located on almost level seafloor. Detailed examination of the sites using multibeam-based contour sheets show the area around Atlantic-1 to be a featureless plain. Atlantic-2 and both Pacific sites are surrounded by abyssal hill topography, with local slopes ranging from greater than 6° at all sites to above 15° at Pacific-2. Neither Pacific site features a seafloor as `flat' as at Atlantic-1 or at the Gulf of Mexico site. Locating waste sites on sedimented slopes could have serious consequences due to catastrophic slope failure and downslope displacement of waste by mass sediment-transport processes. Neither slumping nor sliding are perceived as critical processes affecting the surrogate sites because of their locations on negligibly sloping seafloors. However, debris flows and turbidity currents are capable of transporting large volumes of sediment for long distances over low gradients and, in the case of turbidity currents, at great speed. Dispersal of loose waste material by these processes is virtually assured, but less likely if the waste is bagged. The turbidity current problem is alleviated (but not eliminated) by locating waste sites on distal portions of abyssal plains. Both Pacific sites are surrounded by abyssal hills and, in the case of Pacific-2, far beyond the reach of land-derived turbidity currents. Thin sediment cover and low rates of sedimentation have also resulted in highly stable slope (abyssal hill) deposits. Hence, the probability of locally derived, small-volume flows is low at these sites. Existing high sea levels have also resulted in a worldwide decrease in turbidity current activity relative to glacial times when sea levels were much lower.
10 CFR 72.90 - General considerations.
Code of Federal Regulations, 2012 CFR
2012-01-01
..., HIGH-LEVEL RADIOACTIVE WASTE, AND REACTOR-RELATED GREATER THAN CLASS C WASTE Siting Evaluation Factors... environmental impact of the ISFSI or MRS must be investigated and assessed. (b) Proposed sites for the ISFSI or... proposed site for an MRS, the potential for radiological and other environmental impacts on the region must...
10 CFR 72.90 - General considerations.
Code of Federal Regulations, 2011 CFR
2011-01-01
..., HIGH-LEVEL RADIOACTIVE WASTE, AND REACTOR-RELATED GREATER THAN CLASS C WASTE Siting Evaluation Factors... environmental impact of the ISFSI or MRS must be investigated and assessed. (b) Proposed sites for the ISFSI or... proposed site for an MRS, the potential for radiological and other environmental impacts on the region must...
Waste Information Management System: One Year After Web Deployment
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shoffner, P.A.; Geisler, T.J.; Upadhyay, H.
2008-07-01
The implementation of the Department of Energy (DOE) mandated accelerated cleanup program created significant potential technical impediments. The schedule compression required close coordination and a comprehensive review and prioritization of the barriers that impeded treatment and disposition of the waste streams at each site. Many issues related to site waste treatment and disposal were potential critical path issues under the accelerated schedules. In order to facilitate accelerated cleanup initiatives, waste managers at DOE field sites and at DOE Headquarters in Washington, D.C., needed timely waste forecast information regarding the volumes and types of waste that would be generated by DOEmore » sites over the next 30 years. Each local DOE site has historically collected, organized, and displayed site waste forecast information in separate and unique systems. However, waste information from all sites needed a common application to allow interested parties to understand and view the complete complex-wide picture. A common application allows identification of total waste volumes, material classes, disposition sites, choke points, and technological or regulatory barriers to treatment and disposal. The Applied Research Center (ARC) at Florida International University (FIU) in Miami, Florida, has completed the deployment of this fully operational, web-based forecast system. New functional modules and annual waste forecast data updates have been added to ensure the long-term viability and value of this system. In conclusion: WIMS continues to successfully accomplish the goals and objectives set forth by DOE for this project. WIMS has replaced the historic process of each DOE site gathering, organizing, and reporting their waste forecast information utilizing different database and display technologies. In addition, WIMS meets DOE's objective to have the complex-wide waste forecast information available to all stakeholders and the public in one easy-to-navigate system. The enhancements to WIMS made over the year since its web deployment include the addition of new DOE sites, an updated data set, and the ability to easily print the forecast data tables, the disposition maps, and the GIS maps. Future enhancements will include a high-level waste summary, a display of waste forecast by mode of transportation, and a user help module. The waste summary display module will provide a high-level summary view of the waste forecast data based on the selection of sites, facilities, material types, and forecast years. The waste summary report module will allow users to build custom filtered reports in a variety of formats, such as MS Excel, MS Word, and PDF. The user help module will provide a step-by-step explanation of various modules, using screen shots and general tutorials. The help module will also provide instructions for printing and margin/layout settings to assist users in using their local printers to print maps and reports. (authors)« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
None, None
1999-09-01
Mercury contaminated wastes in many forms are present at various U. S. Department of Energy (DOE) sites. Based on efforts led by the Mixed Waste Focus Area (MWFA) and its Mercury Working Group (HgWG), the inventory of wastes contaminated with <260 ppm mercury and with radionuclides stored at various DOE sites is estimated to be approximately 6,000 m 3). At least 26 different DOE sites have this type of mixed low-level waste in their storage facilities. Extraction methods are required to remove mercury from waste containing >260 ppm levels, but below 260 ppm Hg contamination levels the U. S. Environmentalmore » Protection Agency (EPA) does not require removal of mercury from the waste. Steps must still be taken, however, to ensure that the final waste form does not leach mercury in excess of the limit for mercury prescribed in the Resource Conservation and Recovery Act (RCRA) when subjected to the Toxicity Characteristic Leaching Procedure (TCLP). At this time, the limit is 0.20 mg/L. However, in the year 2000, the more stringent Universal Treatment Standard (UTS) of 0.025 mg/L will be used as the target endpoint. Mercury contamination in the wastes at DOE sites presents a challenge because it exists in various forms, such as soil, sludges, and debris, as well as in different chemical species of mercury. Stabilization is of interest for radioactively contaminated mercury waste (<260 ppm Hg) because of its success with particular wastes, such as soils, and its promise of applicability to a broad range of wastes. However, stabilization methods must be proven to be adequate to meet treatment standards. It must also be proven feasible in terms of economics, operability, and safety. To date, no standard method of stabilization has been developed and proven for such varying waste types as those within the DOE complex.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Blauvelt, Richard; Small, Ken; Gelles, Christine
2006-07-01
Faced with closure schedules as a driving force, significant progress has been made during the last 2 years on the disposition of DOE mixed waste streams thought previously to be problematic. Generators, the Department of Energy and commercial vendors have combined to develop unique disposition paths for former orphan streams. Recent successes and remaining issues will be discussed. The session will also provide an opportunity for Federal agencies to share lessons learned on low- level and mixed low-level waste challenges and identify opportunities for future collaboration. This panel discussion was organized by PAC member Dick Blauvelt, Navarro Research and Engineeringmore » Inc who served as co-chair along with Dave Eaton from INL. In addition, George Antonucci, Duratek Barnwell and Rich Conley, AFSC were invited members of the audience, prepared to contribute the Barnwell and DOD perspective to the issues as needed. Mr. Small provide information regarding the five year 20K M3 window of opportunity at the Nevada Test Site for DOE contractors to dispose of mixed waste that cannot be received at the Energy Solutions (Envirocare) site in Utah because of activity levels. He provided a summary of the waste acceptance criteria and the process sites must follow to be certified to ship. When the volume limit or time limit is met, the site will undergo a RCRA closure. Ms. Gelles summarized the status of the orphan issues, commercial options and the impact of the EM reorganization on her program. She also announced that there would be a follow-on meeting in 2006 to the very successful St. Louis meeting of last year. It will probably take place in Chicago in July. Details to be announced. Mr. McKenney discussed progress made at the Hanford Reservation regarding disposal of their mixed waste inventory. The news is good for the Hanford site but not good for the rest of the DOE complex since shipment for out of state of both low level and low level mixed waste will continue to be prohibited until the completion of a new NEPA study. This is anticipated to take several years. Bill Franz from Portsmouth and Dave Eaton representing the INL provided the audience with information regarding some of the problematic mixed waste streams at their respective sites. Portsmouth has some unique radiological issues with isotopes such as Tc-99 while the INL is trying to deal with mixed waste in the 10-100 nCi/g range. Kaylin Loveland spoke of the new,Energy Solutions organization and provided information on mixed waste treatment capabilities at the Clive site. Mike Lauer described the licensing activities at the WCS site in Texas where they are trying to eventually have disposal capabilities for Class A, B and C mixed waste from both DOE and the commercial sector. The audience included about 75 WM'06 attendees who asked some excellent questions and provided an active and informative exchange of information on the topic. (authors)« less
Periodic Verification of the Scaling Factor for Radwastes in Korean NPPs - 13294
DOE Office of Scientific and Technical Information (OSTI.GOV)
Park, Yong Joon; Ahn, Hong Joo; Song, Byoung Chul
2013-07-01
According to the acceptance criteria for a low and intermediate level radioactive waste (LILW) listed in Notice No. 2012-53 of the Nuclear Safety and Security Commission (NSSC), specific concentrations of radionuclides inside a drum has to be identified and quantified. In 5 years of effort, scaling factors were derived through destructive radiochemical analysis, and the dry active waste, spent resin, concentration bottom, spent filter, and sludge drums generated during 2004 ∼ 2008 were evaluated to identify radionuclide inventories. Eventually, only dry active waste among LILWs generated from Korean NPPs were first shipped to a permanent disposal facility on December 2010.more » For the LILWs generated after 2009, the radionuclides are being radiochemically quantified because the Notice clarifies that the certifications of the scaling factors should be verified biennially. During the operation of NPP, the radionuclides designated in the Notice are formed by neutron activation of primary coolant, reactor structural materials, corrosion products, and fission products released into primary coolant through defects or failures in fuel cladding. Eventually, since the radionuclides released into primary coolant are transported into the numerous auxiliary and support systems connected to primary system, the LILWs can be contaminated, and the radionuclides can have various concentration distributions. Thus, radioactive wastes, such as spent resin and dry active waste generated at various Korean NPP sites, were sampled at each site, and the activities of the regulated radionuclides present in the sample were determined using radiochemical methods. The scaling factors were driven on the basis of the activity ratios between a or β-emitting nuclides and γ-emitting nuclides. The resulting concentrations were directly compared with the established scaling factors' data using statistical methods. In conclusions, the established scaling factors were verified with a reliability of within 2σ, and the scaling factors will be applied for newly analyzed LILWs to evaluate the radionuclide inventories. (authors)« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lewis, M.S.
The Barnwell Waste Management Facility (BWMF) is scheduled to restrict access to waste generators outside of the Atlantic Compact (SC, CT, NJ) on July 1, 2008. South Carolina, authorized under the Low-Level Waste Policy Act of 1980 and Amendments Act of 1985, and in agreement with the other Atlantic Compact states, will only accept Class A, B, and C low-level radioactive waste (LLRW) generated within compact. For many years, the BWMF has been the only LLRW disposal facility to accept Class B and C waste from LLRW generators throughout the country, except those that have access to the Northwest Compactmore » Site. Many Class B/C waste generators consider this to be a national crisis situation requiring interim or possible permanent storage, changes in operation, significant cost impacts, and/or elimination of services, especially in the health care and non-power generation industries. With proper in-house waste management practices and utilization of commercial processor services, a national crisis can be avoided, although some generators with specific waste forms or radionuclides will remain without options. In summary: It is unknown what the future will bring for commercial LLRW disposal. Could the anticipated post Barnwell Class B/C crisis be avoided by any of the following? - Barnwell Site remains open for the nation's commercial Class B/C waste; - Richland Site opens back up to the nation for commercial Class B/C waste; - Texas Site opens up to the nation for commercial Class B/C waste; - Federal Government intervenes by keeping a commercial Class B/C site open for the nation's commercial Class B/C waste; - Federal Government makes a DOE site available for commercial Class B/C waste; - Federal Government revisits the LLRW Policy Act of 1980 and Amendments Act of 1985. Without a future LLRW site capable of accepting Class B/C currently on the horizon, commercial LLRW generators are faced with waste volume elimination, reduction, or storage. With proper in-house waste management practices, utilization of commercial processor services and regulatory relief, a national crisis can be avoided. Waste volumes for storage can be reduced to as little as 10% of the current Class B/C volume. Although a national LLRW crisis can be avoided, some generators with specific waste forms or radionuclides will have a significant financial and/or operational impact due to a lack of commercial LLRW management options. (authors)« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Terusaki, Stanley; Gallegos, Gretchen; MacQueen, Donald
2012-10-02
LLNL Site 300 has applied to renew the permits for its Explosives Waste Treatment Facility (EWTF), Explosives Waste Storage Facility (EWSF) and Building 883 Storage Facility. As a part of the permit renewal process, the Department of Toxic Substances Control (DTSC) requested LLNL to obtain soil samples in order to conduct a scoping-level ecological risk assessment pursuant to the Department of Toxic Substances Control, Guidance for Ecological Risk Assessment at Hazardous Waste Sites and Permitted Facilities, Part A: Overview, July 4, 1996. As stated in the guidance document, the scoping-level ecological risk assessment provides a framework to determine the potentialmore » interaction ecological receptors and chemicals of concern from hazardous waste treatment operations in the area of EWTF.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Skaggs, Richard L.; Coleman, Andre M.; Seiple, Timothy E.
Here, waste-to-Energy (WtE) technologies offer the promise of diverting organic wastes, including wastewater sludge, livestock waste, and food waste, for beneficial energy use while reducing the quantities of waste that are disposed or released to the environment. To ensure economic and environmental viability of WtE feedstocks, it is critical to gain an understanding of the spatial and temporal variability of waste production. Detailed information about waste characteristics, capture/diversion, transport requirements, available conversion technologies, and overall energy conversion efficiency is also required. Building on the development of a comprehensive WtE feedstock database that includes municipal wastewater sludge; animal manure; food processingmore » waste; and fats, oils, and grease for the conterminous United States, we conducted a detailed analysis of the wastes' potential for biofuel production on a site-specific basis. Our analysis indicates that with conversion by hydrothermal liquefaction, these wastes have the potential to produce up to 22.3 GL/y (5.9 Bgal/y) of a biocrude oil intermediate that can be upgraded and refined into a variety of liquid fuels, in particular renewable diesel and aviation kerosene. Conversion to aviation kerosene can potentially meet 23.9% of current U.S. demand.« less
Skaggs, Richard L.; Coleman, Andre M.; Seiple, Timothy E.; ...
2017-10-18
Here, waste-to-Energy (WtE) technologies offer the promise of diverting organic wastes, including wastewater sludge, livestock waste, and food waste, for beneficial energy use while reducing the quantities of waste that are disposed or released to the environment. To ensure economic and environmental viability of WtE feedstocks, it is critical to gain an understanding of the spatial and temporal variability of waste production. Detailed information about waste characteristics, capture/diversion, transport requirements, available conversion technologies, and overall energy conversion efficiency is also required. Building on the development of a comprehensive WtE feedstock database that includes municipal wastewater sludge; animal manure; food processingmore » waste; and fats, oils, and grease for the conterminous United States, we conducted a detailed analysis of the wastes' potential for biofuel production on a site-specific basis. Our analysis indicates that with conversion by hydrothermal liquefaction, these wastes have the potential to produce up to 22.3 GL/y (5.9 Bgal/y) of a biocrude oil intermediate that can be upgraded and refined into a variety of liquid fuels, in particular renewable diesel and aviation kerosene. Conversion to aviation kerosene can potentially meet 23.9% of current U.S. demand.« less
Spatial heterogeneity in parasite infections at different spatial scales in an intertidal bivalve.
Thieltges, David W; Reise, Karsten
2007-01-01
Spatial heterogeneities in the abundance of free-living organisms as well as in infection levels of their parasites are a common phenomenon, but knowledge on parasitism in invertebrate intermediate hosts in this respect is scarce. We investigated the spatial pattern of four dominant trematode species which utilize a common intertidal bivalve, the cockle Cerastoderma edule, as second intermediate host in their life cycles. Sampling of cockles from the same cohort at 15 sites in the northern Wadden Sea (North Sea) over a distance of 50 km revealed a conspicuous spatial heterogeneity in infection levels in all four species over the total sample as well as among and within sampling sites. Whereas multiple regression analyses indicated the density of first intermediate upstream hosts to be the strongest determinant of infection levels in cockles, the situation within sites was more complex with no single strong predictor variable. However, host size was positively and host density negatively correlated with infection levels and there was an indication of differential susceptibility of cockle hosts. Small-scale differences in physical properties of the habitat in the form of residual water at low tide resulted in increased infection levels of cockles which we experimentally transferred into pools. A complex interplay of these factors may be responsible for within-site heterogeneities. At larger spatial scales, these factors may be overridden by the strong effect of upstream hosts. In contrast to first intermediate trematode hosts, there was no indication for inter-specific interactions. In other terms, the recruitment of trematodes in second intermediate hosts seems to be largely controlled by pre-settlement processes both among and within host populations.
NASA Astrophysics Data System (ADS)
Farina, S.; Schulz Rodriguez, F.; Duffó, G.
2013-07-01
The present work is a study of the corrosion susceptibility of steel drums in contact with cemented ion-exchange resins contaminated with different types and concentrations of aggressive species. A special type of specimen was manufactured to simulate the cemented ion-exchange resins in the drum. The evolution of the corrosion potential and the corrosion rate of the steel, as well as the electrical resistivity of the matrix were monitored over a time period of 900 days. The aggressive species studied were chloride ions (the main ionic species of concern) and sulphate ions (produced during radiolysis of the cationic exchange-resins after cementation). The work was complemented with an analysis of the corrosion products formed on the steel in each condition, as well as the morphology of the corrosion products. When applying the results obtained in the present work to estimate the corrosion depth of the steel drumscontaining the cemented radioactive waste after a period of 300 years (foreseen durability of the Intermediate Level Radioactive Waste facility in Argentina) , it is found that in the most unfavourable case (high chloride contamination), the corrosion penetration will be considerably lower than the thickness of the wall of the steel drums.
Robotics for mixed waste operations, demonstration description
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ward, C.R.
The Department of Energy (DOE) Office of Technology Development (OTD) is developing technology to aid in the cleanup of DOE sites. Included in the OTD program are the Robotics Technology Development Program and the Mixed Waste Integrated Program. These two programs are working together to provide technology for the cleanup of mixed waste, which is waste that has both radioactive and hazardous constituents. There are over 240,000 cubic meters of mixed low level waste accumulated at DOE sites and the cleanup is expected to generate about 900,000 cubic meters of mixed low level waste over the next five years. Thismore » waste must be monitored during storage and then treated and disposed of in a cost effective manner acceptable to regulators and the states involved. The Robotics Technology Development Program is developing robotics technology to make these tasks safer, better, faster and cheaper through the Mixed Waste Operations team. This technology will also apply to treatment of transuranic waste. The demonstration at the Savannah River Site on November 2-4, 1993, showed the progress of this technology by DOE, universities and industry over the previous year. Robotics technology for the handling, characterization and treatment of mixed waste as well robotics technology for monitoring of stored waste was demonstrated. It was shown that robotics technology can make future waste storage and waste treatment facilities better, faster, safer and cheaper.« less
Solid Waste Assurance Program Implementation Plan
DOE Office of Scientific and Technical Information (OSTI.GOV)
Irons, L.G.
1995-06-19
On June 6, 1995, a waiver to Hanford Site Solid Waste Acceptance Criteria, was approved by the US Department of Energy Richland Operations Office (RL) to replace the low-level, mixed, and transuranic (TRU) generator assessment programs with the Solid Waste Assurance Program (SWAP). This is associated with a waiver that was approved on March 16, 1995 to replace the Storage/Disposal Approval Record (SDAR) requirements with the Waste Specification System (WSS). This implementation plan and the SWAP applies to Solid Waste Disposal (SWD) functions, facilities, and personnel who perform waste acceptance, verification, receipt, and management functions of dangerous, radioactive, and mixedmore » waste from on- and off-site generators who ship to or within the Hanford Site for treatment, storage, and/or disposal (TSD) at SWD TSD facilities.« less
Asante, Kwadwo Ansong; Agusa, Tetsuro; Biney, Charles Augustus; Agyekum, William Atuobi; Bello, Mohammed; Otsuka, Masanari; Itai, Takaaki; Takahashi, Shin; Tanabe, Shinsuke
2012-05-01
To understand human contamination by multi-trace elements (TEs) in electrical and electronic waste (e-waste) recycling site at Agbogbloshie, Accra in Ghana, this study analyzed TEs and As speciation in urine of e-waste recycling workers. Concentrations of Fe, Sb, and Pb in urine of e-waste recycling workers were significantly higher than those of reference sites after consideration of interaction by age, indicating that the recycling workers are exposed to these TEs through the recycling activity. Urinary As concentration was relatively high, although the level in drinking water was quite low. Speciation analysis of As in human urine revealed that arsenobetaine and dimethylarsinic acid were the predominant As species and concentrations of both species were positively correlated with total As concentration as well as between each other. These results suggest that such compounds may be derived from the same source, probably fish and shellfish and greatly influence As exposure levels. To our knowledge, this is the first study on human contamination resulting from the primitive recycling of e-waste in Ghana. This study will contribute to the knowledge about human exposure to trace elements from an e-waste site in a less industrialized region so far scantly covered in the literature. Copyright © 2012 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Carlisle, Derek; Adamson, Kate
2012-07-01
The Pile Fuel Storage Pond (PFSP) at Sellafield was built and commissioned between the late 1940's and early 1950's as a storage and cooling facility for irradiated fuel and isotopes from the two Windscale Pile reactors. The pond was linked via submerged water ducts to each reactor, where fuel and isotopes were discharged into skips for transfer along the duct to the pond. In the pond the fuel was cooled then de-canned underwater prior to export for reprocessing. The plant operated successfully until it was taken out of operation in 1962 when the First Magnox Fuel Storage Pond took overmore » fuel storage and de-canning operations on the site. The pond was then used for storage of miscellaneous Intermediate Level Waste (ILW) and fuel from the UK's Nuclear Programme for which no defined disposal route was available. By the mid 1970's the import of waste ceased and the plant, with its inventory, was placed into a passive care and maintenance regime. By the mid 1990s, driven by the age of the facility and concern over the potential challenge to dispose of the various wastes and fuels being stored, the plant operator initiated a programme of work to remediate the facility. This programme is split into a number of key phases targeted at sustained reduction in the hazard associated with the pond, these include: - Pond Preparation: Before any remediation work could start the condition of the pond had to be transformed from a passive store to a plant capable of complex retrieval operations. This work included plant and equipment upgrades, removal of redundant structures and the provision of a effluent treatment plant for removing particulate and dissolved activity from the pond water. - Canned Fuel Retrieval: Removal of canned fuel, including oxide and carbide fuels, is the highest priority within the programme. Handling and export equipment required to remove the canned fuel from the pond has been provided and treatment routes developed utilising existing site facilities to allow the fuel to be reprocessed or conditioned for long term storage. - Sludge Retrieval: In excess of 300 m{sup 3} of sludge has accumulated in the pond over many years and is made up of debris arising from fuel and metallic corrosion, wind blown debris and bio-organic materials. The Sludge Retrieval Project has provided the equipment necessary to retrieve the sludge, including skip washer and tipper machines for clearing sludge from the pond skips, equipment for clearing sludge from the pond floor and bays, along with an 'in pond' corral for interim storage of retrieved sludge. Two further projects are providing new plant processing routes, which will initially store and eventually passivate the sludge. - Metal Fuel Retrieval: Metal Fuel from early Windscale Pile operations and various other sources is stored within the pond; the fuel varies considerably in both form and condition. A retrieval project is planned which will provide fuel handling, conditioning, sentencing and export equipment required to remove the metal fuel from the pond for export to on site facilities for interim storage and disposal. - Solid Waste Retrieval: A final retrieval project will provide methods for handling, retrieval, packaging and export of the remaining solid Intermediate Level Waste within the pond. This includes residual metal fuel pieces, fuel cladding (Magnox, aluminium and zircaloy), isotope cartridges, reactor furniture, and miscellaneous activated and contaminated items. Each of the waste streams requires conditioning to allow it to be and disposed of via one of the site treatment plants. - Pond Dewatering and Dismantling: Delivery of the above projects will allow operations to progressively remove the radiological inventory, thereby reducing the hazard/risk posed by the plant. This will then allow subsequent dewatering of the pond and dismantling of the structure. (authors)« less
Mechanisms and modelling of waste-cement and cement-host rock interactions
NASA Astrophysics Data System (ADS)
2017-06-01
Safe and sustainable disposal of hazardous and radioactive waste is a major concern in today's industrial societies. The hazardous waste forms originate from residues of thermal treatment of waste, fossil fuel combustion and ferrous/non-ferrous metal smelting being the most important ones in terms of waste production. Low- and intermediate-level radioactive waste is produced in the course of nuclear applications in research and energy production. For both waste forms encapsulation in alkaline, cement-based matrices is considered to ensure long-term safe disposal. Cementitious materials are in routine use as industrial materials and have mainly been studied with respect to their evolution over a typical service life of several decades. Use of these materials in waste management applications, however, requires assessments of their performance over much longer time periods on the order of thousands to several ten thousands of years.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gregory, Louis
2014-12-02
This report satisfies the U.S. Department of Energy (DOE), National Nuclear Security Administration Nevada Field Office (NNSA/NFO) commitment to prepare a quarterly summary report of radioactive waste shipments to and from the Nevada National Security Site (NNSS) Radioactive Waste Management Complex (RWMC) at Area 5. There were no shipments sent for offsite treatment and returned to the NNSS this quarter. There was one shipment of two drums sent for offsite treatment and disposal. This report summarizes the 4th quarter of Fiscal Year (FY) 2014 low-level radioactive waste (LLW) and mixed low-level radioactive waste (MLLW) shipments. This report also includes annualmore » summaries for FY 2014.« less
Progress and future direction for the interim safe storage and disposal of Hanford high-level waste
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kinzer, J.E.; Wodrich, D.D.; Bacon, R.F.
This paper describes the progress made at the largest environmental cleanup program in the United States. Substantial advances in methods to start interim safe storage of Hanford Site high-level wastes, waste characterization to support both safety- and disposal-related information needs, and proceeding with cost-effective disposal by the U.S. Department of Energy (DOE) and its Hanford Site contractors, have been realized. Challenges facing the Tank Waste Remediation System (TWRS) Program, which is charged with the dual and parallel missions of interim safe storage and disposal of the high-level tank waste stored at the Hanford Site, are described. In these times ofmore » budget austerity, implementing an ongoing program that combines technical excellence and cost effectiveness is the near-term challenge. The technical initiatives and progress described in this paper are made more cost effective by DOE`s focus on work force productivity improvement, reduction of overhead costs, and reduction, integration and simplification of DOE regulations and operations requirements to more closely model those used in the private sector.« less
Miller, Gretchen R; Rubin, Yoram; Mayer, K Ulrich; Benito, Pascual H
2008-01-01
Land application of food-processing waste water occurs throughout California's Central Valley and may be degrading local ground water quality, primarily by increasing salinity and nitrogen levels. Natural attenuation is considered a treatment strategy for the waste, which often contains elevated levels of easily degradable organic carbon. Several key biogeochemical processes in the vadose zone alter the characteristics of the waste water before it reaches the ground water table, including microbial degradation, crop nutrient uptake, mineral precipitation, and ion exchange. This study used a process-based, multi-component reactive flow and transport model (MIN3P) to numerically simulate waste water migration in the vadose zone and to estimate its attenuation capacity. To address the high variability in site conditions and waste-stream characteristics, four food-processing industries were coupled with three site scenarios to simulate a range of land application outcomes. The simulations estimated that typically between 30 and 150% of the salt loading to the land surface reaches the ground water, resulting in dissolved solids concentrations up to sixteen times larger than the 500 mg L(-1) water quality objective. Site conditions, namely the ratio of hydraulic conductivity to the application rate, strongly influenced the amount of nitrate reaching the ground water, which ranged from zero to nine times the total loading applied. Rock-water interaction and nitrification explain salt and nitrate concentrations that exceed the levels present in the waste water. While source control remains the only method to prevent ground water degradation from saline wastes, proper site selection and waste application methods can reduce the risk of ground water degradation from nitrogen compounds.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Skaggs, Richard L.; Coleman, André M.; Seiple, Timothy E.
Waste-to-Energy (WtE) technologies offer the promise of diverting organic wastes, including wastewater sludge, livestock waste, and food waste, for beneficial energy use while reducing the quantities of waste that are disposed or released to the environment. To ensure economic and environmental viability of WtE feedstocks, it is critical to gain an understanding of the spatial and temporal variability of waste production. Detailed information about waste characteristics, capture/diversion, transport requirements, available conversion technologies, and overall energy conversion efficiency is also required. Building on the development of a comprehensive WtE feedstock database that includes municipal wastewater sludge; animal manure; food processing waste;more » and fats, oils, and grease for the conterminous United States, we conducted a detailed analysis of the wastes’ potential for biofuel production on a site-specific basis. Our analysis indicates that with conversion by hydrothermal liquefaction, these wastes have the potential to produce up to 22.3 GL/y (5.9 Bgal/y) of a biocrude oil intermediate that can be upgraded and refined into a variety of liquid fuels, in particular renewable diesel and aviation kerosene. Conversion to aviation kerosene can potentially meet 23.9% of current U.S. demand.« less
Skaggs, Richard L.; Coleman, André M.; Seiple, Timothy E.; ...
2017-10-18
Waste-to-Energy (WtE) technologies offer the promise of diverting organic wastes, including wastewater sludge, livestock waste, and food waste, for beneficial energy use while reducing the quantities of waste that are disposed or released to the environment. To ensure economic and environmental viability of WtE feedstocks, it is critical to gain an understanding of the spatial and temporal variability of waste production. Detailed information about waste characteristics, capture/diversion, transport requirements, available conversion technologies, and overall energy conversion efficiency is also required. Building on the development of a comprehensive WtE feedstock database that includes municipal wastewater sludge; animal manure; food processing waste;more » and fats, oils, and grease for the conterminous United States, we conducted a detailed analysis of the wastes’ potential for biofuel production on a site-specific basis. Our analysis indicates that with conversion by hydrothermal liquefaction, these wastes have the potential to produce up to 22.3 GL/y (5.9 Bgal/y) of a biocrude oil intermediate that can be upgraded and refined into a variety of liquid fuels, in particular renewable diesel and aviation kerosene. Conversion to aviation kerosene can potentially meet 23.9% of current U.S. demand.« less
Siting process for disposal site of low level radiactive waste in Thailand
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yamkate, P.; Sriyotha, P.; Thiengtrongjit, S.
The radioactive waste in Thailand is composed of low level waste from the application of radioisotopes in medical treatment and industry, the operation of the 2 MW TRIGA Mark III Research Reactor and the production of radioisotopes at OAEP. In addition, the high activity of sealed radiation sources i.e. Cs-137 Co-60 and Ra-226 are also accumulated. Since the volume of treated waste has been gradually increased, the general needs for a repository become apparent. The near surface disposal method has been chosen for this aspect. The feasibility study on the underground disposal site has been done since 1982. The sitemore » selection criteria have been established, consisting of the rejection criteria, the technical performance criteria and the economic criteria. About 50 locations have been picked for consideration and 5 candidate sites have been selected and subsequent investigated. After thoroughly investigation, a definite location in Ratchburi Province, about 180 kilometers southwest of Bangkok, has been selected as the most suitable place for the near surface disposal of radioactive waste in Thailand.« less
Urinary heavy metal levels and relevant factors among people exposed to e-waste dismantling.
Wang, Hongmei; Han, Mei; Yang, Suwen; Chen, Yanqing; Liu, Qian; Ke, Shen
2011-01-01
Primitive electronic waste (e-waste) recycling has become a growing environmental concern, and toxic heavy metals released from e-waste activities may continue to threaten the health of local people. To study the impact of heavy metals in people around e-waste sites, 349 people from e-waste recycling sites (exposure group) and 118 people from a green plantation (control group) were surveyed, and their urinary levels of lead (UPb), cadmium (UCd), manganese (UMn), copper (UCu), and Zinc (UZn) were assayed. Questionnaire surveys for risk factors were also performed and analyzed by using the Pearson correlation analysis. Results indicated that the levels of urinary Cd in both occupational dismantling people {GM(GSD) 0.72(0.71) ug/L} and non-occupational dismantling people {GM(GSD) 0.50(0.79) ug/L} were higher than the control group {GM(GSD) 0.27(0.85) ug/L}. Further analyses of correlations between urinary heavy metal levels and exposure factors in the exposed group revealed positive relationship between the duration of dismantling and the level of UPb (p < 0.05). Meanwhile, rice sources from local village have a positive correlation with the level of UPb and UCd (p < 0.01). Other factors, however, may also have influences on heavy metal burden, and not all urinary heavy metal levels can be contributed to e-waste dismantling exposure levels. Primitive e-waste recycling activities may contribute to the changes of urinary heavy metal levels and increase the health risk for those chronically working on e-waste dismantling. Copyright © 2010 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1998-01-01
This Environmental Assessment (EA) has been prepared by the Department of Energy (DOE) to assess the potential environmental impacts associated with the construction, operation and decontamination and decommissioning (D&D) of the Waste Segregation Facility (WSF) for the sorting, shredding, and compaction of low-level radioactive waste (LLW) at the Savannah River Site (SRS) located near Aiken, South Carolina. The LLW to be processed consists of two waste streams: legacy waste which is currently stored in E-Area Vaults of SRS and new waste generated from continuing operations. The proposed action is to construct, operate, and D&D a facility to process low-activity job-controlmore » and equipment waste for volume reduction. The LLW would be processed to make more efficient use of low-level waste disposal capacity (E-Area Vaults) or to meet the waste acceptance criteria for treatment at the Consolidated Incineration Facility (CIF) at SRS.« less
Li, Ran; Yang, Qiaoyun; Qiu, Xinghua; Li, Keqiu; Li, Guang; Zhu, Ping; Zhu, Tong
2013-04-02
The health effects of exposure to pollutants from electronic waste (e-waste) pose an important issue. In this study, we explored the association between oxidative stress and blood levels of e-waste-related pollutants. Blood samples were collected from individuals living in the proximity of an e-waste recycling site located in northern China, and pollutants, as well as reactive oxygen species (ROS), were measured in comparison to a reference population. The geometric mean concentrations of PCBs, dechlorane plus, and 2,2',4,4',5,5'-hexabromobiphenyl in plasma from the exposure group were 60.4, 9.0, and 0.55 ng g(-1) lipid, respectively, which were 2.2, 3.2, and 2.2 times higher than the corresponding measurement in the reference group. Correspondingly, ROS levels in white blood cells, including in neutrophil granulocytes, from the exposure group were significantly higher than in those from the reference group, suggesting potential ROS related health effects for residents at the e-waste site. In contrast, fewer ROS were generated in the respiratory burst of neutrophil granulocytes for the exposure group, indicating a depressed innate immune function for the individuals living at the e-waste site. These findings suggest a potential linkage between exposure to pollutants from e-waste recycling and both elevated oxidative stress and altered immune function.
RESULTS OF THE ENVIRONMENTAL MANAGEMENT (EM) CORPORATE PROJECT TEAM DISPOSING WASTE & REDUCING RISK
DOE Office of Scientific and Technical Information (OSTI.GOV)
SHRADER, T.A.; KNERR, R.
2005-01-31
In 2002, the US Department of Energy's (DOE) Office of Environmental Management (EM) released the Top-To-Bottom Review of cognizant clean-up activities around the DOE Complex. The review contained a number of recommendations for changing the way EM operates in order to reduce environmental risk by significantly accelerating clean-up at the DOE-EM sites. In order to develop and implement these recommendations, a number of corporate project teams were formed to identify, evaluate, and initiate implementation of alternatives for the different aspects of clean-up. In August 2002, a corporate team was formed to review all aspects of the management, treatment, and disposalmore » of low level radioactive waste (LLW), mixed low level radioactive waste (MLLW), transuranic waste (TRU), and hazardous waste (HW). Over the next 21 months, the Corporate Project Team: Disposing Waste, Reducing Risk, developed a number of alternatives for implementing the recommendations of the Top-To-Bottom Review based on information developed during numerous site visits and interviews with complex and industry personnel. With input from over a dozen EM sites at various stages of clean-up, the team identified the barriers to the treatment and disposal of low level waste, mixed low level waste, and transuranic waste. Once identified, preliminary design alternatives were developed and presented to the Acquisition Authority (for this project, the Assistant Secretary for Environmental Management) for review and approval. Once the preliminary design was approved, the team down selected to seven key alternatives which were subsequently fully developed in the Project Execution Plan. The seven most viable alternatives were: (1) creation of an Executive Waste Disposal Board; (2) projectizing the disposal of low level waste and mixed low level waste; (3) creation of a National Consolidation and Acceleration Facility for waste; (4) improvements to the Broad Spectrum contract; (5) improvements to the Toxic Substance Control Act (TSCA) Incinerator contract and operations; (6) development of a policy for load management of waste shipments to the Waste Isolation Pilot Plant (WIPP); and (7) development of a complex-wide fee incentive for transuranic waste disposal. The alternatives were further refined and a plan developed for institutionalizing the alternatives in various site contracts. In order to focus the team's efforts, all team activities were conducted per the principles of DOE Order 413.3, Program and Project Management for the Acquisition of Capital Assets. Although the Order was developed for construction projects, the principles were adapted for use on this ''soft'' project in which the deliverables were alternatives for the way work was performed. The results of the team's investigation and the steps taken during the project are presented along with lessons learned.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, M. Hope; Truex, Mike; Freshley, Mark
Complex sites are defined as those with difficult subsurface access, deep and/or thick zones of contamination, large areal extent, subsurface heterogeneities that limit the effectiveness of remediation, or where long-term remedies are needed to address contamination (e.g., because of long-term sources or large extent). The Test Area North at the Idaho National Laboratory, developed for nuclear fuel operations and heavy metal manufacturing, is used as a case study. Liquid wastes and sludge from experimental facilities were disposed in an injection well, which contaminated the subsurface aquifer located deep within fractured basalt. The wastes included organic, inorganic, and low-level radioactive constituents,more » with the focus of this case study on trichloroethylene. The site is used as an example of a systems-based framework that provides a structured approach to regulatory processes established for remediation under existing regulations. The framework is intended to facilitate remedy decisions and implementation at complex sites where restoration may be uncertain, require long timeframes, or involve use of adaptive management approaches. The framework facilitates site, regulator, and stakeholder interactions during the remedial planning and implementation process by using a conceptual model description as a technical foundation for decisions, identifying endpoints, which are interim remediation targets or intermediate decision points on the path to an ultimate end, and maintaining protectiveness during the remediation process. At the Test Area North, using a structured approach to implementing concepts in the endpoint framework, a three-component remedy is largely functioning as intended and is projected to meet remedial action objectives by 2095 as required. The remedy approach is being adjusted as new data become available. The framework provides a structured process for evaluating and adjusting the remediation approach, allowing site owners, regulators, and stakeholders to manage contamination at complex sites where adaptive remedies are needed.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Petersen, C.A., Westinghouse Hanford
The overall objective of this report is to provide a technical basis to support a U.S. Nuclear Regulatory Commission determination to classify the low-activity waste from the Hanford Site single-shell and double-shell tanks as `incidental` wastes after removal of additional radionuclides and immobilization.The proposed processing method, in addition to the previous radionuclide removal efforts, will remove the largest practical amount of total site radioactivity, attributable to high-level wastes, for disposal in a deep geologic repository. The remainder of the waste would be considered `incidental` waste and could be disposed onsite.
Assessment of medical waste management in seven hospitals in Lagos, Nigeria.
Awodele, Olufunsho; Adewoye, Aishat Abiodun; Oparah, Azuka Cyril
2016-03-15
Medical waste (MW) can be generated in hospitals, clinics and places where diagnosis and treatment are conducted. The management of these wastes is an issue of great concern and importance in view of potential public health risks associated with such wastes. The study assessed the medical waste management practices in selected hospitals and also determined the impact of Lagos Waste Management Authority (LAWMA) intervention programs. A descriptive cross-sectional survey method was used. Data were collected using three instrument (questionnaire, site visitation and in -depth interview). Two public (hospital A, B) and five private (hospital C, D, E, F and G) which provide services for low, middle and high income earners were used. Data analysis was done with SPSS version 20. Chi-squared test was used to determine level of significance at p < 0.05. The majority 56 (53.3%) of the respondents were females with mean age of 35.46 (±1.66) years. The hospital surveyed, except hospital D, disposes both general and medical waste separately. All the facilities have the same process of managing their waste which is segregation, collection/on-site transportation, on-site storage and off-site transportation. Staff responsible for collecting medical waste uses mainly hand gloves as personal protective equipment. The intervention programs helped to ensure compliance and safety of the processes; all the hospitals employ the services of LAWMA for final waste disposal and treatment. Only hospital B offered on-site treatment of its waste (sharps only) with an incinerator while LAWMA uses hydroclave to treat its wastes. There are no policies or guidelines in all investigated hospitals for managing waste. An awareness of proper waste management amongst health workers has been created in most hospitals through the initiative of LAWMA. However, hospital D still mixes municipal and hazardous wastes. The treatment of waste is generally done by LAWMA using hydroclave, to prevent environmental hazards except hospital B that treats its sharp with an incinerator. In order to enhance uniform and appropriate waste management practices in the entire State, there is need for capacity building at all levels and also policies and guidelines formulations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Clayton, Christopher; Kothari, Vijendra; Starr, Ken
2012-07-01
The U.S. Department of Energy (DOE) methods and protocols allow evaluation of remediation and final site conditions to determine if remediated sites remain protective. Two case studies are presented that involve the Niagara Falls Storage Site (NFSS) and associated vicinity properties (VPs), which are being remediated under the Formerly Utilized Sites Remedial Action Program (FUSRAP). These properties are a part of the former Lake Ontario Ordnance Works (LOOW). In response to stakeholders concerns about whether certain remediated NFSS VPs were putting them at risk, DOE met with stakeholders and agreed to evaluate protectiveness. Documentation in the DOE records collection adequatelymore » described assessed and final radiological conditions at the completed VPs. All FUSRAP wastes at the completed sites were cleaned up to meet DOE guidelines for unrestricted use. DOE compiled the results of the investigation in a report that was released for public comment. In conducting the review of site conditions, DOE found that stakeholders were also concerned about waste from the Separations Process Research Unit (SPRU) at the Knolls Atomic Power Laboratory (KAPL) that was handled at LOOW. DOE agreed to determine if SPRU waste remained at that needed to be remediated. DOE reviewed records of waste characterization, historical handling locations and methods, and assessment and remediation data. DOE concluded that the SPRU waste was remediated on the LOOW to levels that pose no unacceptable risk and allow unrestricted use and unlimited exposure. This work confirms the following points as tenets of an effective long-term surveillance and maintenance (LTS and M) program: - Stakeholder interaction must be open and transparent, and DOE must respond promptly to stakeholder concerns. - DOE, as the long-term custodian, must collect and preserve site records in order to demonstrate that remediated sites pose no unacceptable risk. - DOE must continue to maintain constructive relationships with the U.S. Army Corps of Engineers and state and federal regulators. After review of historical site documentation, DOE reports, and USACE radiological data, DOE concluded the following: - DOE had access to adequate documentation to evaluate site conditions at the former LOOW. This is important to confirm now, while institutional knowledge of early FUSRAP work remains available. - DOE remediated the completed VPs to conditions that are protective for unrestricted residential use. Sample and walkover gamma scan results indicate that no wastes remain that exceed cleanup criteria. - Process knowledge and field observations establish that Cs-137 is the predominant radionuclide in the KAPL waste stream. Cs-137, a strong gamma emitter, was used as an indicator for remediation of KAPL waste. Other radionuclides were present in much lower relative concentrations and were likely also removed during remediation of the VPs. - KAPL contaminants were removed during remedial activities at the former LOOW as either co-located or co-mingled with other radionuclides. - For the active VPs (VP-E, VP-E', and VP-G), results of DOE's cleanup of the accessible portions of these properties indicate that KAPL waste does not remain at concentrations greater than the DOE cleanup limit: - Inaccessible areas were not associated with historic KAPL waste handling. Therefore, it is unlikely that KAPL waste remains on the active VPs. - Because gamma activity was used by DOE during remediation/verification activities for excavation control, additional USACE cleanup of FUSRAP wastes on these properties will likely result in the remediation of any co-located residual KAPL wastes to acceptable levels or identification of KAPL waste that is not co-located. - Although USACE has not established a cleanup level for Cs-137 on the active NFSS VPs, DOE assessment and remediation data indicate that assessed Cs-137 was remediated and significant Cs-137 is unlikely to remain. Because of the low likelihood of encountering significant KAPL waste on the active NFSS VPs, additional remediation is not anticipated at these properties. - USACE assessment soil sampling results on the NFSS proper indicate that KAPL waste does not exceed the DOE cleanup level for Cs-137. USACE has not established a cleanup level for Cs-137 on NFSS proper. The USACE cleanup of FUSRAP wastes on the NFSS proper will likely result in the remediation of any co-located residual KAPL wastes or identification of KAPL waste that is not co-located. DOE is drafting a report of the investigation of KAPL waste at LOOW. The report will be released to the public for comment when the draft is complete. DOE responses to stakeholder inquiries resulted in a common understanding of site conditions and site risk. DOE expects additional interaction with stakeholders at the former LOOW as USACE completes remediation of the active VPs and the NFSS proper, and these relationships will hopefully have built trust between DOE and the stakeholders that DOE will perform its duties in an open and transparent manner that includes stakeholders as stewards for remediated FUSRAP sites. (authors)« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gallegos, Gretchen M.; Terusaki, Stan H.
2013-12-01
An ecological risk assessment is required as part of the Resource Recovery and Conservation Act (RCRA) permit renewal process for Miscellaneous Units subject to 22 CCR 66270.23. This risk assessment is prepared in support of the RCRA permit renewal for the Explosives Waste Treatment Facility (EWTF) at Site 300 of the Lawrence Livermore National Laboratory (LLNL). LLNL collected soil samples and used the resulting data to produce a scoping-level ecological risk assessment pursuant to the Department of Toxic Substances Control, Guidance for Ecological Risk Assessment at Hazardous Waste Sites and Permitted Facilities, Part A: Overview, July 4, 1996. The scoping-levelmore » ecological risk assessment provides a framework to determine the potential interaction between ecological receptors and chemicals of concern from hazardous waste treatment operations in the area of EWTF. A scoping-level ecological risk assessment includes the step of conducting soil sampling in the area of the treatment units. The Sampling Plan in Support of the Human Health and Ecological Risk Assessment for the Operation of the Explosives Waste Treatment Facility at Site 300 of the Lawrence Livermore National Laboratory, (Terusaki, 2007), outlines the EWTF project-specific soil sampling requirements. Soil samples were obtained and analyzed for constituents from four chemical groups: furans, explosives, semi-volatiles and metals. Analytical results showed that furans, explosives and semi-volatiles were not detected; therefore, no further analysis was conducted. The soil samples did show the presence of metals. Soil samples analyzed for metals were compared to site-wide background levels, which had been developed for site -wide cleanup activities pursuant to the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA). Total metal concentrations from 28 discrete soil samples obtained in the EWTF area were all below CERCLA-developed background levels. Therefore, following DTSC 1996 guidance, the EWTF hazardous waste treatment units exit the ecological risk evaluation process upon completion of the requirements of a scoping-level assessment report. This summary report documents that the requirements of a scoping-level assessment have been met.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mahowald, Hallie B.; Wright, Marjorie Alys
2014-01-16
Los Alamos National Laboratory (LANL or the Laboratory) operations data for Calendar Year (CY) 2012 mostly fell within the 2008 Site-Wide Environmental Impact Statement (SWEIS) projections. Operation levels for one LANL facility exceeded the 2008 SWEIS capability projections—Radiochemistry Facility; however, none of the capability increases caused exceedances in radioactive air emissions, waste generation, or National Pollutant Discharge Elimination System (NPDES) discharge. Several facilities exceeded the2008 SWEIS levels for waste generation quantities; however, all were one-time, non-routine events that do not reflect the day-to-day operations of the Laboratory. In addition, total site-wide waste generation quantities were below SWEIS projections for allmore » waste types, reflecting the overall levels of operations at both the Key and Non-Key Facilities. Although gas and electricity consumption have remained within the 2008 SWEIS limits for utilities, water consumption exceeded the 2008 SWEIS projections by 27 million gallons in CY 2012.« less
Remote-handled/special case TRU waste characterization summary
DOE Office of Scientific and Technical Information (OSTI.GOV)
Detamore, J.A.
1984-03-30
TRU wastes are those (other than high level waste) contaminated with specified quantities of certain alpha-emitting radionuclides of long half-life and high specific radiotoxicity. TRU waste is defined as /sup 226/Ra isotopic sources and those other materials that, without regard to source or form, are contaminated with transuranic elements with half-lives greater than 20 years, and have TRU alpha contamination greater than 100 nCi/g. RH TRU waste has high beta and gamma radiation levels, up to 30,000 R/hr, and thermal output may be a few hundred watts per container. The radiation levels in most of this remotely handled (RH) TRUmore » waste, however, are below 100 R/hr. Remote-handled wastes are stored at Los Alamos, Hanford, Oak Ridge, and the Idaho National Engineering Laboratory. This report presents a site by site discussion of RH waste handling, placement, and container data. This is followed by a series of data tables that were compiled in the TRU Waste Systems Office. These tables are a compendium of data that are the most up to date and accurate data available today. 10 tables.« less
Low-level radioactive waste technology: a selected, annotated bibliography
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fore, C.S.; Vaughan, N.D.; Hyder, L.K.
1980-10-01
This annotated bibliography of 447 references contains scientific, technical, economic, and regulatory information relevant to low-level radioactive waste technology. The bibliography focuses on environmental transport, disposal site, and waste treatment studies. The publication covers both domestic and foreign literature for the period 1952 to 1979. Major chapters selected are Chemical and Physical Aspects; Container Design and Performance; Disposal Site; Environmental Transport; General Studies and Reviews; Geology, Hydrology and Site Resources; Regulatory and Economic Aspects; Transportation Technology; Waste Production; and Waste Treatment. Specialized data fields have been incorporated into the data file to improve the ease and accuracy of locating pertinentmore » references. Specific radionuclides for which data are presented are listed in the Measured Radionuclides field, and specific parameters which affect the migration of these radionuclides are presented in the Measured Parameters field. In addition, each document referenced in this bibliography has been assigned a relevance number to facilitate sorting the documents according to their pertinence to low-level radioactive waste technology. The documents are rated 1, 2, 3, or 4, with 1 indicating direct applicability to low-level radioactive waste technology and 4 indicating that a considerable amount of interpretation is required for the information presented to be applied. The references within each chapter are arranged alphabetically by leading author, corporate affiliation, or title of the document. Indexes are provide for (1) author(s), (2) keywords, (3) subject category, (4) title, (5) geographic location, (6) measured parameters, (7) measured radionuclides, and (8) publication description.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shott, Gregory J.
This special analysis (SA) evaluates whether the Lawrence Livermore National Laboratory (LLNL) Low Activity Beta/Gamma Sources waste stream (BCLALADOEOSRP, Revision 0) is suitable for disposal by shallow land burial (SLB) at the Area 5 Radioactive Waste Management Site (RWMS) at the Nevada National Security Site (NNSS). The LLNL Low Activity Beta/Gamma Sources waste stream consists of sealed sources that are no longer needed. The LLNL Low Activity Beta/Gamma Sources waste stream required a special analysis because cobalt-60 (60Co), strontium-90 (90Sr), cesium-137 (137Cs), and radium-226 (226Ra) exceeded the NNSS Waste Acceptance Criteria (WAC) Action Levels (U.S. Department of Energy, National Nuclearmore » Security Administration Nevada Field Office [NNSA/NFO] 2015). The results indicate that all performance objectives can be met with disposal of the LLNL Low Activity Beta/Gamma Sources in a SLB trench. The LLNL Low Activity Beta/Gamma Sources waste stream is suitable for disposal by SLB at the Area 5 RWMS. However, the activity concentration of 226Ra listed on the waste profile sheet significantly exceeds the action level. Approval of the waste profile sheet could potentially allow the disposal of high activity 226Ra sources. To ensure that the generator does not include large 226Ra sources in this waste stream without additional evaluation, a control is need on the maximum 226Ra inventory. A limit based on the generator’s estimate of the total 226Ra inventory is recommended. The waste stream is recommended for approval with the control that the total 226Ra inventory disposed shall not exceed 5.5E10 Bq (1.5 Ci).« less
NASA Astrophysics Data System (ADS)
Cochepin, B.; Munier, I.; MADE, B.
2017-12-01
The storage vaults for low and intermediate-level short-lived radioactive waste in the East of France are settled on the Aptian sand layer. In the context of the periodic examination by the nuclear regulators, it has been recommended to assess more precisely the chemical conditions for a potential release of radionuclides in the underlying water table. In particular, this study aims at assessing the eventuality of spreading an alkaline plume in the Aptian sand pore water by the chemical degradation of the vault cementitious materials. The numerical approach developed for this purpose is supported by both experimental characterizations of tracers in the water table and results from preliminary numerical studies on the hydrology of the site and the hydraulic evolution of the storage. The results from these specific simulations were simplified in the reactive transport model to focus on the mechanistic description of the chemical processes taking place in the waste and vaults and on their consequences on the underlying water table. During the operating period of the disposal, the reactive transport modelling shows that the low water saturation in the vaults material and in the vadose zone prevents the aquifer from a significant increase of the water pH under the cement-based vaults. These results are in reasonable agreement with the pH regularly measured in the underlying water table. After storage closure, during the few hundred years of the monitoring period and furthermore beyond, the reactive transport modelling shows a noticeable release of hydroxyls and alkali ions under the disposal vaults and their spread downstream the storage site leading to pH values above 10. It is noteworthy that the pH is not buffered in the Aptian sands because of their low amount in clayey minerals. This effect is now considered for pH-sensitive radionuclide solutes in safety assessment calculations by weighting correspondingly their retention parameters.
Code of Federal Regulations, 2012 CFR
2012-01-01
... RADIOACTIVE WASTE, AND REACTOR-RELATED GREATER THAN CLASS C WASTE Siting Evaluation Factors § 72.108 Spent... proposed ISFSI or MRS must be evaluated with respect to the potential impact on the environment of the...
Lessons Learned from Radioactive Waste Storage and Disposal Facilities
DOE Office of Scientific and Technical Information (OSTI.GOV)
Esh, David W.; Bradford, Anna H.
2008-01-15
The safety of radioactive waste disposal facilities and the decommissioning of complex sites may be predicated on the performance of engineered and natural barriers. For assessing the safety of a waste disposal facility or a decommissioned site, a performance assessment or similar analysis is often completed. The analysis is typically based on a site conceptual model that is developed from site characterization information, observations, and, in many cases, expert judgment. Because waste disposal facilities are sited, constructed, monitored, and maintained, a fair amount of data has been generated at a variety of sites in a variety of natural systems. Thismore » paper provides select examples of lessons learned from the observations developed from the monitoring of various radioactive waste facilities (storage and disposal), and discusses the implications for modeling of future waste disposal facilities that are yet to be constructed or for the development of dose assessments for the release of decommissioning sites. Monitoring has been and continues to be performed at a variety of different facilities for the disposal of radioactive waste. These include facilities for the disposal of commercial low-level waste (LLW), reprocessing wastes, and uranium mill tailings. Many of the lessons learned and problems encountered provide a unique opportunity to improve future designs of waste disposal facilities, to improve dose modeling for decommissioning sites, and to be proactive in identifying future problems. Typically, an initial conceptual model was developed and the siting and design of the disposal facility was based on the conceptual model. After facility construction and operation, monitoring data was collected and evaluated. In many cases the monitoring data did not comport with the original site conceptual model, leading to additional investigation and changes to the site conceptual model and modifications to the design of the facility. The following cases are discussed: commercial LLW disposal facilities; uranium mill tailings disposal facilities; and reprocessing waste storage and disposal facilities. The observations developed from the monitoring and maintenance of waste disposal and storage facilities provide valuable lessons learned for the design and modeling of future waste disposal facilities and the decommissioning of complex sites.« less
Technology for Director Dubious: Evaluation and Decision in Public Contexts
1977-08-01
Utilities at six Nuclear Waste Disposal Sites v . . . ".. . Acknowledgment h., Preparation of this report and conceptual work on the place of decision...cannot necessarily be related to public decisions without a great deal of intermediate work ." On the question of measuring values, Mr. Coates seems to...is addressed to the first of the two key problems that Mr. Coates identified: the problem of uncer- tainty. The work that I will be reporting comes
40 CFR 415.441 - Specialized definitions.
Code of Federal Regulations, 2010 CFR
2010-07-01
... material, intermediate product, finished product, by-product, or waste product. The term “process... any raw material, intermediate product, finished product, by-product or waste product by means of (1) rainfall runoff; (2) accidental spills; (3) accidental leaks caused by the failure of process equipment...
Shafiq, Muhammad; Shaukat, Tahira; Nazir, Aisha; Bareen, Firdaus-E-
2017-08-01
Kasur is one of the hubs of leather industry in the Punjab, Pakistan, where chrome tanning method of leather processing is extensively being used. Chromium (Cr) accumulation levels in the irrigation water, soil, and seasonal vegetables were studied in three villages located in the vicinity of wastewater treatment plant and solid waste dumping site operated by the Kasur Tanneries Waste Management Agency (KTWMA). The data was interpreted using analysis of variance (ANOVA), clustering analysis (CA), and principal component analysis (PCA). Interpolated surface maps for Cr were generated using the actual data obtained for the 30 sampling sites in each of the three villages for irrigation water, soil, and seasonal vegetables. The level of contamination in the three villages was directly proportional to their distance from KTWMA wastewater treatment plant and the direction of water runoff. The highest level of Cr contamination in soil (mg kg -1 ) was observed at Faqeeria Wala (37.67), intermediate at Dollay Wala (30.33), and the least in Maan (25.16). A gradational variation in Cr accumulation was observed in the three villages from contaminated wastewater having the least contamination level (2.02-4.40 mg L -1 ), to soil (25.16-37.67 mg kg -1 ), and ultimately in the seasonal vegetable crops (156.67-248.33 mg kg -1 ) cultivated in the region, having the highest level of Cr contamination above the permissible limit. The model used not only predicted the current situation of Cr contamination in the three villages but also indicated the trend of magnification of Cr contamination from irrigation water to soil and to the base of the food chain. Among the multiple causes of Cr contamination of vegetables, soil irrigation with contaminated groundwater was observed to be the dominant one.
Itai, Takaaki; Otsuka, Masanari; Asante, Kwadwo Ansong; Muto, Mamoru; Opoku-Ankomah, Yaw; Ansa-Asare, Osmund Duodu; Tanabe, Shinsuke
2014-02-01
Illegal import and improper recycling of electronic waste (e-waste) are an environmental issue in developing countries around the world. African countries are no exception to this problem and the Agbogbloshie market in Accra, Ghana is a well-known e-waste recycling site. We have studied the levels of metal(loid)s in the mixtures of residual ash, formed by the burning of e-waste, and the cover soil, obtained using a portable X-ray fluorescence spectrometer (P-XRF) coupled with determination of the 1M HCl-extractable fraction by an inductively coupled plasma mass spectrometer. The accuracy and precision of the P-XRF measurements were evaluated by measuring 18 standard reference materials; this indicated the acceptable but limited quality of this method as a screening tool. The HCl-extractable levels of Al, Co, Cu, Zn, Cd, In, Sb, Ba, and Pb in 10 soil/ash mixtures varied by more than one order of magnitude. The levels of these metal(loid)s were found to be correlated with the color (i.e., soil/ash ratio), suggesting that they are being released from disposed e-waste via open burning. The source of rare elements could be constrained using correlation to the predominant metals. Human hazard quotient values based on ingestion of soil/ash mixtures exceeded unity for Pb, As, Sb, and Cu in a high-exposure scenario. This study showed that along with common metals, rare metal(loid)s are also enriched in the e-waste burning site. We suggest that risk assessment considering exposure to multiple metal(loid)s should be addressed in studies of e-waste recycling sites. © 2013. Published by Elsevier B.V. All rights reserved.
Wang, Liulin; Hou, Meiling; An, Jing; Zhong, Yufang; Wang, Xuetong; Wang, Yangjun; Wu, Minghong; Bi, Xinhui; Sheng, Guoying; Fu, Jiamo
2011-10-01
Electrical and electronic waste (E-waste) has now become the fastest growing solid waste around the world. Primitive recycling operations for E-waste have resulted in severe contamination of toxic metals and organic chemicals in the related areas. In this study, six dust and soil samples collected from E-waste recycling workshops and open-burning sites in Longtang were analyzed to investigate their cytotoxicity and genotoxicity on L02 cells. These six samples were: dust No. 1 collected at the gate of the workshop; dust No. 2 collected from air conditioning compressor dismantling site; dust No. 3 collected from where some motors, wires, and aluminium products since the 1980s were dismantled; soil No. 1 collected at the circuit board acid washing site; soil No. 2 collected from a wire open-burning site; soil No. 3 collected near a fiber open-burning site. At the same time, two control soil samples were collected from farmlands approximately 8 km away from the dismantling workshops. The results showed that all of these samples could inhibit cell proliferation and cause cell membrane lesion, among which dust No. 3 and soil No. 2 had the strongest toxicity. Moreover, the comet assay showed that the dust No. 3 had the most significant capability to cause DNA single-strand beaks (SSB), while the road dust (dust No. 1) collected at the gate of the workshop, a relatively farer site, showed the slightest capability to induce DNA SSB. The intracellular reactive oxygen species (ROS) detection showed that ROS level was elevated with the increase of dust and soil samples concentration. Dust No. 3 and soil No. 2 had the highest ROS level, followed by dust No. 2 and 1, soil No. 3 and 1. All of the above results indicated that polluted soil and dust from the E-waste area had cytotoxicity and genotoxicity on L02 cells, the mechanism might involve the increased ROS level and consequent DNA SSB.
USDA-ARS?s Scientific Manuscript database
Intensive beef backgrounding often accumulate manure born soil nutrients, microbes, and pharmaceuticals at different site locations. Unless properly managed, such waste materials can pollute surrounding soil and water sources. Soil sampling from these sites helps determining waste material levels bu...
Eguchi, Akifumi; Kunisue, Tatsuya; Wu, Qian; Trang, Pham Thi Kim; Viet, Pham Hung; Kannan, Kurunthachalam; Tanabe, Shinsuke
2014-07-01
Perchlorate (ClO4 (-)) and thiocyanate (SCN(-)) interfere with iodide (I(-)) uptake by the sodium/iodide symporter, and thereby these anions may affect the production of thyroid hormones (THs) in the thyroid gland. Although human exposure to perchlorate and thiocyanate has been studied in the United States and Europe, few investigations have been performed in Asian countries. In this study, we determined concentrations of perchlorate, thiocyanate, and iodide in 131 serum samples collected from 2 locations in Northern Vietnam, Bui Dau (BD; electrical and electronic waste [e-waste] recycling site) and Doung Quang (DQ; rural site) and examined the association between serum levels of these anions with levels of THs. The median concentrations of perchlorate, thiocyanate, and iodide detected in the serum of Vietnamese subjects were 0.104, 2020, and 3.11 ng mL(-1), respectively. Perchlorate levels were significantly greater in serum of the BD population (median 0.116 ng mL(-1)) than those in the DQ population (median 0.086 ng mL(-1)), which indicated greater exposure from e-waste recycling operations by the former. Serum concentrations of thiocyanate were not significantly different between the BD and DQ populations, but increased levels of this anion were observed among smokers. Iodide was a significant positive predictor of serum levels of FT3 and TT3 and a significant negative predictor of thyroid-stimulating hormone in males. When the association between serum levels of perchlorate or thiocyanate and THs was assessed using a stepwise multiple linear regression model, no significant correlations were found. In addition to greater concentrations of perchlorate detected in the e-waste recycling population, however, given that lower concentrations of iodide were observed in the serum of Vietnamese females, detailed risk assessments on TH homeostasis for females inhabiting e-waste recycling sites, especially for pregnant women and their neonates, are required.
40 CFR 415.431 - Specialized definitions.
Code of Federal Regulations, 2010 CFR
2010-07-01
..., intermediate product, finished product, by-product, or waste product. The term “process wastewater” does not... material, intermediate product, finished product, by-product or waste product by means of (1) rainfall runoff; (2) accidental spills; (3) accidental leaks caused by the failure of process equipment, which are...
40 CFR 415.91 - Specialized definitions.
Code of Federal Regulations, 2010 CFR
2010-07-01
... of any raw material, intermediate product, finished product, by-product, or waste product. The term... contact with any raw material, intermediate product, finished product, by-product or waste product by... this subpart. (b) The term product shall mean hydrogen peroxide as a one hundred percent hydrogen...
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1985-12-31
In 1982, the Congress enacted the Nuclear Waste Policy Act (Public Law 97-425), which established a comprehensive national program directed toward siting, constructing, and operating geologic repositories for the permanent disposal of high-level radioactive waste. In February 1983, the United States Department of Energy (DOE) identified the nine referenced repository locations as potentially acceptable sites for a mined geologic repository. These sites have been evaluated in accordance with the DOE`s General Guidelines for the Recommendation of Sites for Nuclear Waste Repositories. The DOE findings and determinations are based on the evaluations contained in the draft Environmental Assessments (EA). A finalmore » EA will be prepared after considering the comments received on the draft EA. The purpose of this document is to provide the public with specific site information on each potential repository location.« less
Monitoring Metal Pollution Levels in Mine Wastes around a Coal Mine Site Using GIS
NASA Astrophysics Data System (ADS)
Sanliyuksel Yucel, D.; Yucel, M. A.; Ileri, B.
2017-11-01
In this case study, metal pollution levels in mine wastes at a coal mine site in Etili coal mine (Can coal basin, NW Turkey) are evaluated using geographical information system (GIS) tools. Etili coal mine was operated since the 1980s as an open pit. Acid mine drainage is the main environmental problem around the coal mine. The main environmental contamination source is mine wastes stored around the mine site. Mine wastes were dumped over an extensive area along the riverbeds, and are now abandoned. Mine waste samples were homogenously taken at 10 locations within the sampling area of 102.33 ha. The paste pH and electrical conductivity values of mine wastes ranged from 2.87 to 4.17 and 432 to 2430 μS/cm, respectively. Maximum Al, Fe, Mn, Pb, Zn and Ni concentrations of wastes were measured as 109300, 70600, 309.86, 115.2, 38 and 5.3 mg/kg, respectively. The Al, Fe and Pb concentrations of mine wastes are higher than world surface rock average values. The geochemical analysis results from the study area were presented in the form of maps. The GIS based environmental database will serve as a reference study for our future work.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jackson, J. P.; Pastor, R. S.
2002-02-28
The West Valley Demonstration Project (WVDP) has successfully pretreated and vitrified nearly all of the 600,000 gallons of liquid high-level radioactive waste that was generated at the site of the only commercial nuclear fuel reprocessing plant to have operated in the United States. Low-level waste (LLW) generated during the course of the cleanup effort now requires disposal. Currently the WVDP only ships Class A LLW for off-site disposal. It has been shipping Class A wastes to Envirocare of Utah, Inc. since 1997. However, the WVDP may also have a future need to ship Class B and Class C waste, whichmore » Envirocare is not currently authorized to accept. The Nevada Test Site (NTS), a U.S. Department of Energy (DOE) facility, can accept all three waste classifications. The WVDP set a goal to receive certification to begin shipping Class A wastes to NTS by 2001. Formal certification/approval was granted by the DOE Nevada Operations Office on July 12, 2001. This paper discusses how the WVDP contractor, West Valley Nuclear Services Company (WVNSCO), completed the activities required to achieve NTS certification in 2001 to ship waste to its facility. The information and lessons learned provided are significant because the WVDP is the only new generator receiving certification based on an NTS audit in January 2001 that resulted in no findings and only two observations--a rating that is unparalleled in the DOE Complex.« less
Performance assessment for the disposal of low-level waste in the 200 West Area Burial Grounds
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wood, M.I.; Khaleel, R.; Rittmann, P.D.
1995-06-01
This document reports the findings of a performance assessment (PA) analysis for the disposal of solid low-level radioactive waste (LLW) in the 200 West Area Low-Level Waste Burial Grounds (LLBG) in the northwest corner of the 200 West Area of the Hanford Site. This PA analysis is required by US Department of Energy (DOE) Order 5820.2A (DOE 1988a) to demonstrate that a given disposal practice is in compliance with a set of performance objectives quantified in the order. These performance objectives are applicable to the disposal of DOE-generated LLW at any DOE-operated site after the finalization of the order inmore » September 1988. At the Hanford Site, DOE, Richland Operations Office (RL) has issued a site-specific supplement to DOE Order 5820.2A, DOE-RL 5820.2A (DOE 1993), which provides additiona I ce objectives that must be satisfied.« less
Yi, Shuping; Ma, Haiyi; Zheng, Chunmiao; Zhu, Xiaobin; Wang, Hua'an; Li, Xueshan; Hu, Xueling; Qin, Jianbo
2012-01-01
Near surface disposal of low- and intermediate-level radioactive wastes (LILW) requires evaluating the field conditions of the candidate site. However, assessment of the site conditions may be challenging due to the limited prior knowledge of some remote sites, and various multi-disciplinary data requirements at any given site. These situations arise in China as in the rest of the industrialized world, particularly since a regional strategy for LILW disposal has been implemented to protect humans and the environment. This paper presents a demonstration of the site assessment process through a case study focusing mainly on the geologic, hydrogeologic and geochemical characteristics of the candidate site. A joint on-site and laboratory investigation, supplemented by numerical modeling, was implemented in this assessment. Results indicate that no fault is present in the site area, although there are some minor joints and fractures, primarily showing a north-south trend. Most of the joints are filled with quartz deposits and would thus function hydraulically as impervious barriers. Investigation of local hydrologic boundaries has shown that the candidate site represents an essentially isolated hydrogeologic unit, and that little or no groundwater flow occurs across its boundaries on the north or east, or across the hilly areas to the south. Groundwater in the site area is recharged by precipitation and discharges primarily by evapo-transpiration and surface flow through a narrow outlet to the west. Groundwater flows slowly from the hilly area to the foot of the hills and discharges mainly into the inner brooks and marshes. Some groundwater circulates in deeper granite in a slower manner. The vadose zone in the site was investigated specially for their significant capability for restraining the transport of radionuclides. Results indicate that the vadose zone is up to 38m in thickness and is made up of alluvial clay soils and very highly weathered granite. The vadose zone has low saturated hydraulic conductivities on the order of 10(-5)cm/s and in this respect is well-suited for the disposal of LILW. The saturated formations are primarily made up of silt and moderately-to-slightly weathered granite, which exhibit even lower hydraulic conductivities, on the order of 10(-6)cm/s, also favorable for restraining the transport of radionuclides. Chemical analyses indicate that the groundwaters at the site are of the HCO(3)-Na · Ca and HCO(3) · SO(4)-Na · Ca types and are weakly corrosive to concrete and steel. Geochemical analyses indicate that the rock and soil materials (particularly weathered granite) at the site contain very small fractions of colloidal particles and exhibit low Cation Exchange Capacities (CEC), and would therefore have limited capacity for sorption of radionuclides. Groundwater flow and solute transport models of the candidate site have been developed using MODFLOW and MT3DMS, incorporating the data obtained during the assessment program. Calibration was based on the available measured groundwater level fluctuations and tracer concentrations from in situ dispersion tests. The longitudinal dispersion coefficient as determined in calibration is equal to 5.0 × 10(-3) m(2)/d. Numerical sensitivity analyses indicate that the hydraulic conductivity and the longitudinal dispersion coefficient are the key parameters controlling the transport of radionuclides, while the numerical model is not sensitive to changes in the effective porosity and the specific yield. Preliminary predictions have been performed with the calibrated model both for the natural setting of the site and the graded site in which the valleys of the site are backfilled with low permeable materials. Results indicate that the proposed site grading increases the safety of the site for disposal of LILW by reducing both the groundwater level and the hydraulic gradient and that radionuclide transport would not likely be a problem or cause groundwater contamination. Although there are some problems remaining to be addressed in future work, the conclusion of the assessment is that the conditions at this site are appropriate for LILW disposal. This study provides an example of the procedures necessary in an assessment of site conditions relevant to the safe disposal of LILW. Such an assessment is crucial to the site selection process and to subsequent environmental impact assessment. Copyright © 2011 Elsevier B.V. All rights reserved.
40 CFR 63.1219 - What are the replacement standards for hazardous waste incinerators?
Code of Federal Regulations, 2014 CFR
2014-07-01
... data and information. (d) Significant figures. The emission limits provided by paragraphs (a) and (b) of this section are presented with two significant figures. Although you must perform intermediate calculations using at least three significant figures, you may round the resultant emission levels to two...
40 CFR 63.1219 - What are the replacement standards for hazardous waste incinerators?
Code of Federal Regulations, 2012 CFR
2012-07-01
... data and information. (d) Significant figures. The emission limits provided by paragraphs (a) and (b) of this section are presented with two significant figures. Although you must perform intermediate calculations using at least three significant figures, you may round the resultant emission levels to two...
40 CFR 63.1219 - What are the replacement standards for hazardous waste incinerators?
Code of Federal Regulations, 2013 CFR
2013-07-01
... data and information. (d) Significant figures. The emission limits provided by paragraphs (a) and (b) of this section are presented with two significant figures. Although you must perform intermediate calculations using at least three significant figures, you may round the resultant emission levels to two...
Qi, Guangxia; Yue, Dongbei; Liu, Jianguo; Li, Rui; Shi, Xiaochong; He, Liang; Guo, Jingting; Miao, Haomei; Nie, Yongfeng
2013-10-15
Waste samples at different depths of a covered municipal solid waste (MSW) landfill in Beijing, China, were excavated and characterized to investigate the impact of intermediate soil cover on waste stabilization. A comparatively high amount of unstable organic matter with 83.3 g kg(-1) dry weight (dw) total organic carbon was detected in the 6-year-old MSW, where toxic inorganic elements containing As, Cd, Cr, Cu, Mn, Ni, Pb, and Zn of 10.1, 0.98, 85.49, 259.7, 530.4, 30.5, 84.0, and 981.7 mg kg(-1) dw, respectively, largely accumulated because of the barrier effect of intermediate soil cover. This accumulation resulted in decreased microbial activities. The intermediate soil cover also caused significant reduction in moisture in MSW under the soil layer, which was as low as 25.9%, and led to inefficient biodegradation of 8- and 10-year-old MSW. Therefore, intermediate soil cover with low permeability seems to act as a barrier that divides a landfill into two landfill cells with different degradation processes by restraining water flow and hazardous matter. Copyright © 2013 Elsevier Ltd. All rights reserved.
Public involvement on closure of Asse II radioactive waste repository in Germany
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kallenbach-Herbert, Beate
2013-07-01
From 1967 to 1978, about 125,800 barrels of low- and intermediate level waste were disposed of - nominally for research purposes - in the former 'Asse' salt mine which had before been used for the production of potash for many years. Since 1988 an inflow of brine is being observed which will cause dangers of flooding and of a collapse due to salt weakening and dissolution if it should increase. Since several years the closure of the Asse repository is planned with the objective to prevent the flooding and collapse of the mine and the release of radioactive substances tomore » the biosphere. The first concept that was presented by the former operator, however, seemed completely unacceptable to regional representatives from politics and NGOs. Their activities against these plans made the project a top issue on the political agenda from the federal to the local level. The paper traces the main reasons which lead to the severe safety problems in the past as well as relevant changes in the governance system today. A focus is put on the process for public involvement in which the Citizens' Advisory Group 'A2B' forms the core measure. Its structure and framework, experience and results, expectations from inside and outside perspectives are presented. Furthermore the question is tackled how far this process can serve as an example for a participatory approach in a siting process for a geological repository for high active waste which can be expected to be highly contested in the affected regions. (authors)« less
Wang, Qian; He, An M; Gao, Bo; Chen, Lan; Yu, Qiang Z; Guo, Huan; Shi, Bin J; Jiang, Pu; Zhang, Zeng Y; Li, Ping L; Sheng, Ying G; Fu, Mo J; Wu, Chun T; Chen, Min X; Yuan, Jing
2011-01-01
In recent years, adverse health effects of chemicals from electronic waste (e-waste) have been reported. However, little is known about the genotoxic effects of chemicals in e-waste. In the present study, air concentrations of the toxic metals at e-waste and control sites were analyzed using inductively-coupled plasma mass spectrometry. Levels of toxic metals (lead, copper and cadmium) in blood and urine were detected using atomic absorption spectrophotometry in 48 exposed individuals and 56 age- and sex-matched controls. The frequencies of lymphocytic micronucleated binucleated cells (MNBNCs) were determined using a cytokinesis-block micronucleus assay. Results indicated that blood lead levels were significantly higher in the exposed group (median: 11.449 μg/dL, 1st/3rd quartiles: 9.351-14.410 μg/dL) than in the control group (median: 9.104 μg/dL, 1st/3rd quartiles: 7.275-11.389 μg/dL). The exposed group had higher MNBNCs frequencies (median: 4.0 per thousand, 1st/3rd quartiles: 2.0-7.0 per thousand) compared with the controls (median: 1.0 per thousand, 1st/3rd quartiles: 0.0-2.0 per thousand). Additionally, MNBNCs frequencies and blood lead levels were positively correlated (r = 0.254, p<0.01). Further analysis suggested that a history of working with e-waste was a predictor for increased blood lead levels and MNBNCs frequencies in the subjects. The results suggest that both the living and occupational environments at the e-waste site may be risk factors for increased MNBNCs frequencies among those who are exposed.
Municipal Solid Waste Composition Study of Selected Area in Gambang, Pahang
NASA Astrophysics Data System (ADS)
Mokhtar, Nadiah; Ishak, Wan Faizal Wan; Suraya Romali, Noor; Fatimah Che Osmi, Siti; Armi Abu Samah, Mohd
2013-06-01
The amount of municipal solid waste (MSW) generated continue to increase in response to rapid growth in population, change in life style and accelerated urbanization and industrialization process. The study on MSW is important in order to determine the composition further seeks an immediate remedy to minimize the waste generated at the early stage. As most of the MSW goes to the landfill or dumping sites, particularly in Malaysia, closure of filled-up landfill may become an alarm clock for an immediate action of proper solid waste management. This research aims to determine the waste composition generated from selected residential area at Gambang, Kuantan, Pahang which represent Old residential area (ORA), Intermediate residential area (IRA) and New residential area (NRA). The study was conducted by segregating and weighing solid waste in the residential area into 6 main components ie., food waste, paper, plastic, glass, metal and others. In a period of four weeks, samples from the residential unit were taken and analyzed. The MSW generation rates were recorded vary from 0.217 to 0.388 kg person-1day-1. Food waste has become the major solid waste component generated daily which mounted up to 50%. From this research, the result revealed that the recyclable composition of waste generated by residents have a potential to be reuse, recycle and reduce at the point sources.
Hoover, D.B.; Chornack, Michael P.; Nervick, K.H.; Broker, M.M.
1982-01-01
Two sites in the southwest quadrant of the Nevada Test Site (NTS) were investigated as potential repositories for high-level nuclear waste. These are designated the Wahmonie and Calico Hills sites. The emplacement medium at both sites was to be an inferred intrusive body at shallow depth; the inference of the presence of the body was based on aeromagnetic and regional gravity data. This report summarizes results of Schlumberger VES, induced polarization dipole-dipole traverses and magnetotelluric soundings made in the vicinity of the sites in order to characterize the geoelectric section. At the Wahmonie site VES work identified a low resistivity unit at depth surrounding the inferred intrusive body. The low resistivity unit is believed to be either the argillite (Mississippian Eleana Formation) or a thick unit of altered volcanic rock (Tertiary). Good electrical contrast is provided between the low resistivity unit and a large volume of intermediate resistivity rock correlative with the aeromagnetic and gravity data. The intermediate resistivity unit (100-200 ohm-m) is believed to be the intrusive body. The resistivity values are very low for a fresh, tight intrusive and suggest significant fracturing, alteration and possible mineralization have occurred within the upper kilometer of rock. Induced polarization data supports the VES work, identifies a major fault on the northwest side of the inferred intrusive and significant potential for disseminated mineralization within the body. The mineralization potential is particularly significant because as late as 1928, a strike of high grade silver-gold ore was made at the site. The shallow electrical data at Calico Hills revealed no large volume high resistivity body that could be associated with a tight intrusive mass in the upper kilometer of section. A drill hole UE 25A-3 sunk to 762 m (2500 ft) at the site revealed only units of the Eleana argillite thermally metamorphosed below 396 m (1300 ft) and in part highly magnetic. Subsequent work has shown that much if not all of the magnetic and gravity anomalies can be attributed to the Eleana Formation. The alteration and doming, however, still argue for an intrusive but at greater depth than originally thought. The electrical, VES, and IP data show a complex picture due to variations in structure and alteration within the Eleana and surrounding volcanic units. These data do not suggest the presence of an intrusive in the upper kilometer of section. The magnetotelluric data however gives clear evidence for a thick, resistive body in the earth's crust below the site. While the interpreted depth is very poorly constrained due to noise and structural problems, the top of the resistive body is on the order of 2.5 km deep. The IP data also identifies area of increased polarizability at Calico Hills, which may also have future economic mineralization.
Field, Erin K.; D'Imperio, Seth; Miller, Amber R.; VanEngelen, Michael R.; Gerlach, Robin; Lee, Brady D.; Apel, William A.; Peyton, Brent M.
2010-01-01
Low-level-radioactive-waste (low-level-waste) sites, including those at various U.S. Department of Energy sites, frequently contain cellulosic waste in the form of paper towels, cardboard boxes, or wood contaminated with heavy metals and radionuclides such as chromium and uranium. To understand how the soil microbial community is influenced by the presence of cellulosic waste products, multiple soil samples were obtained from a nonradioactive model low-level-waste test pit at the Idaho National Laboratory. Samples were analyzed using 16S rRNA gene clone libraries and 16S rRNA gene microarray (PhyloChip) analyses. Both methods revealed changes in the bacterial community structure with depth. In all samples, the PhyloChip detected significantly more operational taxonomic units, and therefore relative diversity, than the clone libraries. Diversity indices suggest that diversity is lowest in the fill and fill-waste interface (FW) layers and greater in the wood waste and waste-clay interface layers. Principal-coordinate analysis and lineage-specific analysis determined that the Bacteroidetes and Actinobacteria phyla account for most of the significant differences observed between the layers. The decreased diversity in the FW layer and increased members of families containing known cellulose-degrading microorganisms suggest that the FW layer is an enrichment environment for these organisms. These results suggest that the presence of the cellulosic material significantly influences the bacterial community structure in a stratified soil system. PMID:20305022
Code of Federal Regulations, 2010 CFR
2010-01-01
... transferred to a Federal repository no later than 10 years following separation of fission products from the.... Disposal of high-level radioactive fission product waste material will not be permitted on any land other... of the policy stated above with respect to high-level radioactive fission product wastes generated...
Code of Federal Regulations, 2011 CFR
2011-01-01
... transferred to a Federal repository no later than 10 years following separation of fission products from the.... Disposal of high-level radioactive fission product waste material will not be permitted on any land other... of the policy stated above with respect to high-level radioactive fission product wastes generated...
EnergySolution's Clive Disposal Facility Operational Research Model - 13475
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nissley, Paul; Berry, Joanne
2013-07-01
EnergySolutions owns and operates a licensed, commercial low-level radioactive waste disposal facility located in Clive, Utah. The Clive site receives low-level radioactive waste from various locations within the United States via bulk truck, containerised truck, enclosed truck, bulk rail-cars, rail boxcars, and rail inter-modals. Waste packages are unloaded, characterized, processed, and disposed of at the Clive site. Examples of low-level radioactive waste arriving at Clive include, but are not limited to, contaminated soil/debris, spent nuclear power plant components, and medical waste. Generators of low-level radioactive waste typically include nuclear power plants, hospitals, national laboratories, and various United States government operatedmore » waste sites. Over the past few years, poor economic conditions have significantly reduced the number of shipments to Clive. With less revenue coming in from processing shipments, Clive needed to keep its expenses down if it was going to maintain past levels of profitability. The Operational Research group of EnergySolutions were asked to develop a simulation model to help identify any improvement opportunities that would increase overall operating efficiency and reduce costs at the Clive Facility. The Clive operations research model simulates the receipt, movement, and processing requirements of shipments arriving at the facility. The model includes shipment schedules, processing times of various waste types, labor requirements, shift schedules, and site equipment availability. The Clive operations research model has been developed using the WITNESS{sup TM} process simulation software, which is developed by the Lanner Group. The major goals of this project were to: - identify processing bottlenecks that could reduce the turnaround time from shipment arrival to disposal; - evaluate the use (or idle time) of labor and equipment; - project future operational requirements under different forecasted scenarios. By identifying processing bottlenecks and unused equipment and/or labor, improvements to operating efficiency could be determined and appropriate cost saving measures implemented. Model runs forecasting various scenarios helped illustrate potential impacts of certain conditions (e.g. 20% decrease in shipments arrived), variables (e.g. 20% decrease in labor), or other possible situations. (authors)« less
Active Sites Environmental Monitoring Program: Mid-FY 1991 report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ashwood, T.L.; Wickliff, D.S.; Morrissey, C.M.
1991-10-01
This report summarizes the activities of the Active Sites Environmental Monitoring Program (ASEMP) from October 1990 through March 1991. The ASEMP was established in 1989 by Solid Waste Operations and the Environmental Sciences Division to provide early detection and performance monitoring at active low-level radioactive waste (LLW) disposal sites in Solid Waste Storage Area (SWSA) 6 and transuranic (TRU) waste storage sites in SWSA 5 as required by chapters II and III of US Department of Energy Order 5820.2A. Monitoring results continue to demonstrate the no LLW is being leached from the storage vaults on the tumulus pads. Loading ofmore » vaults on Tumulus II began during this reporting period and 115 vaults had been loaded by the end of March 1991.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Feizollahi, F.; Shropshire, D.
This Waste Management Facility Cost Information (WMFCI) report for Greater-Than-Class C low-level waste (GTCC LLW) and DOE equivalent special case waste contains preconceptual designs and planning level life-cycle cost (PLCC) estimates for treatment, storage, and disposal facilities needed for management of GTCC LLW and DOE equivalent waste. The report contains information on 16 facilities (referred to as cost modules). These facilities are treatment facility front-end and back-end support functions (administration support, and receiving, preparation, and shipping cost modules); seven treatment concepts (incineration, metal melting, shredding/compaction, solidification, vitrification, metal sizing and decontamination, and wet/air oxidation cost modules); two storage concepts (enclosedmore » vault and silo); disposal facility front-end functions (disposal receiving and inspection cost module); and four disposal concepts (shallow-land, engineered shallow-land, intermediate depth, and deep geological cost modules). Data in this report allow the user to develop PLCC estimates for various waste management options. A procedure to guide the U.S. Department of Energy (DOE) and its contractor personnel in the use of estimating data is also included in this report.« less
A fluidized bed enhances biotreatment
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1996-03-01
Chlorinated organics such as trichloroethylene (TCE) are often difficult to treat biologically because they degrade into intermediate compounds that are toxic to most microorganisms. But recent advances in fluidized bed biotreatment by Envirex, Inc. (Waukesha, Wis.) indicate that difficult-to-treat wastes like TCE can be successfully biodegraded. The key is to add chemicals (dubbed co-metabolic substrates), which promote the growth of microbes that preferentially degrade the unwanted intermediate compounds. Preliminary field tests using phenol, toluene and methane as the co-metabolic substrate show that TCE levels can be reduced by as much as 95%.
Koran, K M; Suidan, M T; Khodadoust, A P; Sorial, G A; Brenner, R C
2001-07-01
An integrated system has been developed to remediate soils contaminated with pentachlorophenol (PCP) and polycyclic aromatic hydrocarbons (PAHs). This system involves the coupling of two treatment technologies, soil-solvent washing and anaerobic biotreatment of the extract. Specifically, this study evaluated the effectiveness of a granular activated carbon (GAC) fluidized-bed reactor to treat a synthetic-waste stream of PCP and four PAHs (naphthalene, acenaphthene, pyrene, and benzo(b)fluoranthene) under anaerobic conditions. This waste stream was intended to simulate the wash fluids from a soil washing process treating soils from a wood-preserving site. The reactor achieved a removal efficiency of greater than 99.8% for PCP with conversion to its dechlorination intermediates averaging 46.5%. Effluent, carbon extraction, and isotherm data also indicate that naphthalene and acenaphthene were removed from the liquid phase with efficiencies of 86 and 93%, respectively. Effluent levels of pyrene and benzo(b)fluoranthene were extremely low due to the high-adsorptive capacity of GAC for these compounds. Experimental evidence does not suggest that the latter two compounds were biochemically transformed within the reactor.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Beauchesne, A.M.
1997-12-31
Topics explored through this project include: decisions involving disposal of mixed, low-level, and transuranic (TRU) waste and disposition of nuclear materials; decisions involving DOE budget requests and their effect on environmental cleanup and compliance at DOE facilities; strategies to treat mixed, low-level, and transuranic (TRU) waste and their effect on individual sites in the complex; changes to the FFCA site treatment plans as a result of proposals in the EM 2006 cleanup plans and contractor integration analysis; interstate waste and materials shipments; and reforms to existing RCRA and CERCLA regulations/guidance to address regulatory overlap and risks posed by DOE wastes.more » The work accomplished by the NGA project team during the past four months can be categorized as follows: maintained open communication with DOE on a variety of activities and issues within the DOE environmental management complex; and maintained communication with NGA Federal Facilities Compliance Task Force members regarding DOE efforts to formulate a configuration for mixed low-level waste and low-level treatment and disposal, DOE activities in the area of the Hazardous Waste Identification Rule, and DOE`s proposed National Dialogue.« less
Liu, Sibao; Simonetti, Trent; Zheng, Weiqing; Saha, Basudeb
2018-05-09
High yields of diesel-range alkanes are prepared by hydrodeoxygenation of vegetable oils and waste cooking oils over ReO x -modified Ir/SiO 2 catalysts under mild reaction conditions. The catalyst containing a Re/Ir molar ratio of 3 exhibits the best performance, achieving 79-85 wt % yield of diesel-range alkanes at 453 K and 2 MPa H 2 . The yield is nearly quantitative for the theoretical possible long-chain alkanes on the basis of weight of the converted oils. The catalyst retains comparable activity upon regeneration through calcination. Control experiments using probe molecules as model substrates suggest that C=C bonds of unsaturated triglycerides and free fatty acids are first hydrogenated to their corresponding saturated intermediates, which are then converted to aldehyde intermediates through hydrogenolysis of acyl C-O bonds and subsequently hydrogenated to fatty alcohols. Finally, long-chain alkanes without any carbon loss are formed by direct hydrogenolysis of the fatty alcohols. Small amounts of alkanes with one carbon fewer are also formed by decarbonylation of the aldehyde intermediates. A synergy between Ir and partially reduced ReO x sites is discussed to elucidate the high activity of Ir-ReO x /SiO 2. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Compensation for risks: host community benefits in siting locally unwanted facilities
NASA Astrophysics Data System (ADS)
Himmelberger, Jeffery J.; Ratick, Samuel J.; White, Allen L.
1991-09-01
This article analyzes the recent negotiations connected with siting 24 solid-waste landfills in Wisconsin. We examine the association between the type and amount of compensation paid to host communities by facility developers and the size of facilities, certain facility characteristics, the timing of negotiated agreements, the size of the host community, and the socioeconomic status of the host area. Our findings suggest that the level of compensation after adjusting for landfill capacity is positively associated with the percentage of total facility capacity dedicated to host community use, positively associated with the percentage of people of the host area who are in poverty, and larger for public facilities that accept municipal wastes. Other explanatory variables we examined, whose association with levels of compensation proved statistically insignificant, were facility size, facility status (new vs expansion), facility use (countyonly vs multicounty), timing of negotiation, host community size, and the host area education level, population density, and per capita income. We discuss the policy implications of our principal findings and future research questions in light of the persistent opposition surrounding the siting of solid-waste and other waste-management facilities.
Evapotranspiration Cover for the 92-Acre Area Retired Mixed Waste Pits:Interim CQA Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
The Delphi Groupe, Inc., and J. A. Cesare and Associates, Inc.
This Interim Construction Quality Assurance (CQA) Report is for the 92-Acre Evapotranspiration Cover, Area 5 Waste Management Division (WMD) Retired Mixed Waste Pits, Nevada National Security Site, Nevada for the period of January 20, 2011 to May 12, 2011. This Interim Construction Quality Assurance (CQA) Report is for the 92-Acre Evapotranspiration Cover, Area 5 Waste Management Division (WMD) Retired Mixed Waste Pits, Nevada National Security Site, Nevada for the period of January 20, 2011 to May 12, 2011. Construction was approved by the Nevada Division of Environmental Protection (NDEP) under the Approval of Corrective Action Decision Document/Corrective Action Plan (CADD/CAP)more » for Corrective Action Unit (CAU) 111: Area 5 WMD Retired Mixed Waste Pits, Nevada National Security Site, Nevada, on January 6, 2011, pursuant to Subpart XII.8a of the Federal Facility Agreement and Consent Order. The project is located in Area 5 of the Radioactive Waste Management Complex (RWMC) at the Nevada National Security Site (NNSS), formerly known as the Nevada Test Site, located in southern Nevada, approximately 65 miles northwest of Las Vegas, Nevada, in Nye County. The project site, in Area 5, is located in a topographically closed basin approximately 14 additional miles north of Mercury Nevada, in the north-central part of Frenchman Flat. The Area 5 RWMS uses engineered shallow-land burial cells to dispose of packaged waste. The 92-Acre Area encompasses the southern portion of the Area 5 RWMS, which has been designated for the first final closure operations. This area contains 13 Greater Confinement Disposal (GCD) boreholes, 16 narrow trenches, and 9 broader pits. With the exception of two active pits (P03 and P06), all trenches and pits in the 92-Acre Area had operational covers approximately 2.4 meters thick, at a minimum, in most areas when this project began. The units within the 92-Acre Area are grouped into the following six informal categories based on physical location, waste types and regulatory requirements: (1) Pit 3 Mixed Waste Disposal Unit (MWDU); (2) Corrective Action Unit (CAU) 111; (3) CAU 207; (4) Low-level waste disposal units; (5) Asbestiform low-level waste disposal units; and (6) One transuranic (TRU) waste trench.« less
10 CFR 72.210 - General license issued.
Code of Federal Regulations, 2010 CFR
2010-01-01
... NUCLEAR FUEL, HIGH-LEVEL RADIOACTIVE WASTE, AND REACTOR-RELATED GREATER THAN CLASS C WASTE General License for Storage of Spent Fuel at Power Reactor Sites § 72.210 General license issued. A general license is... reactor sites to persons authorized to possess or operate nuclear power reactors under 10 CFR part 50 or...
10 CFR 72.210 - General license issued.
Code of Federal Regulations, 2011 CFR
2011-01-01
... NUCLEAR FUEL, HIGH-LEVEL RADIOACTIVE WASTE, AND REACTOR-RELATED GREATER THAN CLASS C WASTE General License for Storage of Spent Fuel at Power Reactor Sites § 72.210 General license issued. A general license is... reactor sites to persons authorized to possess or operate nuclear power reactors under 10 CFR part 50 or...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1994-01-14
The Waste Management-Brookfield Landfill was a former gravel pit used to dispose of municipal, commercial, and industrial wastes. Methane gas migration has been a problem at the site in the past. A gas extraction system was installed within the landfill. Gas probes that measure total combustible gas have also been installed on site. Continuous methane/combustible gas monitors were placed in two residential basements; relatively high levels of gas were measured in one residence in 1985. Groundwater beneath the site has been contaminated from the site. The landfill does not have a liner. Waste Management has constructed a new clay capmore » that is well vegetated and maintained regularly. The site poses an indeterminate public health hazard from inhalation exposure to contaminated indoor air migrating into the basements of nearby residences.« less
The role of organic complexants and microparticulates in the facilitated transport of radionuclides
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schilk, A.J.; Robertson, D.E.; Abel, K.H.
1996-12-01
This progress report describes the results of ongoing radiological and geochemical investigations of the mechanisms of radionuclide transport in groundwater at two low-level waste (LLW) disposal sites within the waste management area of the Chalk River Laboratories (CRL), Ontario, Canada. These sites, the Chemical Pit liquid disposal facility and the Waste Management Area C solid LLW disposal site, have provided valuable 30- to 40-year-old field locations for characterizing the migration of radionuclides and evaluating a number of recent site performance objectives for LLW disposal facilities. This information will aid the NRC and other federal, state, and local regulators, as wellmore » as LLW disposal site developers and waste generators, in maximizing the effectiveness of existing or projected LLW disposal facilities for isolating radionuclides from the general public and thereby improving the health and safety aspects of LLW disposal.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bonin, Hugues W.; Walker, Michael W.; Bui, Van Tam
2004-01-15
Research carried out at the Royal Military College of Canada on the effects of mixed fields of radiation on high polymer adhesives and composite materials has shown that some polymers are quite resistant to radiation and could well serve in the fabrication of radioactive-waste disposal containers. A research program was launched to investigate the possibilities of using advanced polymers and polymer-based composites for high-level radioactive waste management on one hand and for intermediate- and low-level radioactive waste disposal on the other hand. Research was thus conducted in parallel on both fronts, and the findings for the later phase are presented.more » Thermoplastic polymers were studied for this application because they are superior materials, having the advantage over metals of not corroding and of displaying high resistance to chemical aggression. The experimental methods used in this research focused on determining the effects of radiation on the properties of the materials considered: polypropylene, nylon 66, polycarbonate, and polyurethane, with and without glass fiber reinforcement. The method involved submitting injection-molded tensile test bars to the mixed radiation field generated by the SLOWPOKE-2 nuclear reactor at the Royal Military College of Canada to accumulate doses ranging from 0.5 to 3.0 MGy. The physical, mechanical, and chemical effects of the various radiation doses on the materials were measured from density, tensile, differential scanning calorimetry, and scanning electron microscopy tests.For each polymer, the test results evidenced predominant cross-linking of the polymeric chains severed by radiation. This was evident from observed changes in the mechanical and chemical properties of the polymers, typical of cross-linking. The mechanical changes observed included an overall increase in density, an increase in Young's modulus, a decrease in strain at break, and only minor changes in strength. The chemical changes included differences in chemical transition temperatures characteristic of radiation damage. All the changes in these properties are characteristic of the cross-linking phenomenon. For the glass-fiber-reinforced polymers, the results of the tests evidenced minor radiation degradation at the fiber/matrix interfaces. Based on these results, any of the investigated polymers could potentially be used for disposal containers due to their abilities to adequately resist radiation. This allowed proceeding one step further into determining a potential design framework for containers for the long-term storage and disposal of low- and intermediate-level radioactive waste.« less
Problems in shallow land disposal of solid low-level radioactive waste in the united states
Stevens, P.R.; DeBuchananne, G.D.
1976-01-01
Disposal of solid low-level wastes containing radionuclides by burial in shallow trenches was initiated during World War II at several sites as a method of protecting personnel from radiation and isolating the radionuclides from the hydrosphere and biosphere. Today, there are 11 principal shallow-land burial sites in the United States that contain a total of more than 1.4 million cubic meters of solid wastes contaminated with a wide variety of radionuclides. Criteria for burial sites have been few and generalized and have contained only minimal hydrogeologic considerations. Waste-management practices have included the burial of small quantities of long-lived radionuclides with large volumes of wastes contaminated with shorter-lived nuclides at the same site, thereby requiring an assurance of extremely long-time containment for the entire disposal site. Studies at 4 of the 11 sites have documented the migration of radionuclides. Other sites are being studied for evidence of containment failure. Conditions at the 4 sites are summarized. In each documented instance of containment failure, ground water has probably been the medium of transport. Migrating radionuclides that have been identified include90Sr,137Cs,106Ru,239Pu,125Sb,60Co, and3H. Shallow land burial of solid wastes containing radionuclides can be a viable practice only if a specific site satisfies adequate hydrogeologic criteria. Suggested hydrogeologic criteria and the types of hydrogeologic data necessary for an adequate evaluation of proposed burial sites are given. It is mandatory that a concomitant inventory and classification be made of the longevity, and the physical and chemical form of the waste nuclides to be buried, in order that the anticipated waste types can be matched to the containment capability of the proposed sites. Ongoing field investigations at existing sites will provide data needed to improve containment at these sites and help develop hydrogeologic criteria for new sites. These studies have necessitated the development of special drilling, sampling, well construction, and testing techniques. A recent development in borehole geophysical techniques is downhole spectral gammaray analysis which not only locates but identifies specific radionuclides in the subsurface. Field investigations are being supplemented by laboratory studies of the hydrochemistry of the transuranic elements, the kinetics of solid-liquid phase interactions, and the potential complexing of radionuclides with organic compounds and solvents which mobilize normally highly sorbable nuclides. Theoretical studies of digital predictive solute transport models are being implemented to assure their availability for application to problems and processes identified in the field and laboratory. ?? 1976 International Association of Engineering Geology.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hansen, Francis D.; Kuhlman, Kristopher L.; Sobolik, Steven R.
Salt formations hold promise for eternal removal of nuclear waste from our biosphere. Germany and the United States have ample salt formations for this purpose, ranging from flat-bedded formations to geologically mature dome structures. As both nations revisit nuclear waste disposal options, the choice between bedded, domal, or intermediate pillow formations is once again a contemporary issue. For decades, favorable attributes of salt as a disposal medium have been extoled and evaluated, carefully and thoroughly. Yet, a sense of discovery continues as science and engineering interrogate naturally heterogeneous systems. Salt formations are impermeable to fluids. Excavation-induced fractures heal as sealmore » systems are placed or natural closure progresses toward equilibrium. Engineering required for nuclear waste disposal gains from mining and storage industries, as humans have been mining salt for millennia. This great intellectual warehouse has been honed and distilled, but not perfected, for all nuances of nuclear waste disposal. Nonetheless, nations are able and have already produced suitable license applications for radioactive waste disposal in salt. A remaining conundrum is site location. Salt formations provide isolation and geotechnical barriers reestablish impermeability after waste is placed in the geology. Between excavation and closure, physical, mechanical, thermal, chemical, and hydrological processes ensue. Positive attributes for isolation in salt have many commonalities independent of the geologic setting. In some cases, specific details of the environment will affect the disposal concept and thereby define interaction of features, events and processes, while simultaneously influencing scenario development. Here we identify and discuss high-level differences and similarities of bedded and domal salt formations. Positive geologic and engineering attributes for disposal purposes are more common among salt formations than are significant differences. Developing models, testing material, characterizing processes, and analyzing performance all have overlapping application regardless of the salt formation of interest.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hansen, Francis D.; Kuhlman, Kristopher L.; Sobolik, Steven R.
Salt formations hold promise for eternal removal of nuclear waste from our biosphere. Germany and the United States have ample salt formations for this purpose, ranging from flat-bedded formations to geologically mature dome structures. As both nations revisit nuclear waste disposal options, the choice between bedded, domal, or intermediate pillow formations is once again a contemporary issue. For decades, favorable attributes of salt as a disposal medium have been extoled and evaluated, carefully and thoroughly. Yet, a sense of discovery continues as science and engineering interrogate naturally heterogeneous systems. Salt formations are impermeable to fluids. Excavation-induced fractures heal as sealmore » systems are placed or natural closure progresses toward equilibrium. Engineering required for nuclear waste disposal gains from mining and storage industries, as humans have been mining salt for millennia. This great intellectual warehouse has been honed and distilled, but not perfected, for all nuances of nuclear waste disposal. Nonetheless, nations are able and have already produced suitable license applications for radioactive waste disposal in salt. A remaining conundrum is site location. Salt formations provide isolation, and geotechnical barriers reestablish impermeability after waste is placed in the geology. Between excavation and closure, physical, mechanical, thermal, chemical, and hydrological processes ensue. Positive attributes for isolation in salt have many commonalities independent of the geologic setting. In some cases, specific details of the environment will affect the disposal concept and thereby define interaction of features, events and processes, while simultaneously influencing scenario development. Here we identify and discuss high-level differences and similarities of bedded and domal salt formations. Positive geologic and engineering attributes for disposal purposes are more common among salt formations than are significant differences. Developing models, testing material, characterizing processes, and analyzing performance all have overlapping application regardless of the salt formation of interest.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ziehm, Ronny; Pichurin, Sergey Grigorevich
2003-02-27
As a part of the turnkey project ''Industrial Complex for Solid Radwaste Management (ICSRM) at the Chernobyl Nuclear Power Plant (ChNPP)'' an Engineered Near Surface Disposal Facility (ENSDF, LOT 3) will be built on the VEKTOR site within the 30 km Exclusion Zone of the ChNPP. This will be performed by RWE NUKEM GmbH, Germany, and it governs the design, licensing support, fabrication, assembly, testing, inspection, delivery, erection, installation and commissioning of the ENSDF. The ENSDF will receive low to intermediate level, short lived, processed/conditioned wastes from the ICSRM Solid Waste Processing Facility (SWPF, LOT 2), the ChNPP Liquid Radwastemore » Treatment Plant (LRTP) and the ChNPP Interim Storage Facility for RBMK Fuel Assemblies (ISF). The ENSDF has a capacity of 55,000 m{sup 3}. The primary functions of the ENSDF are: to receive, monitor and record waste packages, to load the waste packages into concrete disposal units, to enable capping and closure of the disposal unit s, to allow monitoring following closure. The ENSDF comprises the turnkey installation of a near surface repository in the form of an engineered facility for the final disposal of LILW-SL conditioned in the ICSRM SWPF and other sources of Chernobyl waste. The project has to deal with the challenges of the Chernobyl environment, the fulfillment of both Western and Ukrainian standards, and the installation and coordination of an international project team. It will be shown that proven technologies and processes can be assembled into a unique Management Concept dealing with all the necessary demands and requirements of a turnkey project. The paper emphasizes the proposed concepts for the ENSDF and their integration into existing infrastructure and installations of the VEKTOR site. Further, the paper will consider the integration of Western and Ukrainian Organizations into a cohesive project team and the requirement to guarantee the fulfillment of both Western standards and Ukrainian regulations and licensing requirements. The paper provides information on the output of the Detail Design and will reflect the progress of the design work.« less
Valsala, T P; Sonavane, M S; Kore, S G; Sonar, N L; De, Vaishali; Raghavendra, Y; Chattopadyaya, S; Dani, U; Kulkarni, Y; Changrani, R D
2011-11-30
The acidic and alkaline low level radioactive liquid waste (LLW) generated during the concentration of high level radioactive liquid waste (HLW) prior to vitrification and ion exchange treatment of intermediate level radioactive liquid waste (ILW), respectively are decontaminated by chemical co-precipitation before discharge to the environment. LLW stream generated from the ion exchange treatment of ILW contained high concentrations of carbonates, tributyl phosphate (TBP) degraded products and problematic radio nuclides like (106)Ru and (99)Tc. Presence of TBP degraded products was interfering with the co-precipitation process. In view of this a modified chemical treatment scheme was formulated for the treatment of this waste stream. By mixing the acidic LLW and alkaline LLW, the carbonates in the alkaline LLW were destroyed and the TBP degraded products got separated as a layer at the top of the vessel. By making use of the modified co-precipitation process the effluent stream (1-2 μCi/L) became dischargeable to the environment after appropriate dilution. Based on the lab scale studies about 250 m(3) of LLW was treated in the plant. The higher activity of the TBP degraded products separated was due to short lived (90)Y isotope. The cement waste product prepared using the TBP degraded product was having good chemical durability and compressive strength. Copyright © 2011 Elsevier B.V. All rights reserved.
Pathways for Disposal of Commercially-Generated Tritiated Waste
DOE Office of Scientific and Technical Information (OSTI.GOV)
Halverson, Nancy V.
From a waste disposal standpoint, tritium is a major challenge. Because it behaves like hydrogen, tritium exchanges readily with hydrogen in the ground water and moves easily through the ground. Land disposal sites must control the tritium activity and mobility of incoming wastes to protect human health and the environment. Consequently, disposal of tritiated low-level wastes is highly regulated and disposal options are limited. The United States has had eight operating commercial facilities licensed for low-level radioactive waste disposal, only four of which are currently receiving waste. Each of these is licensed and regulated by its state. Only two ofmore » these sites accept waste from states outside of their specified regional compact. For waste streams that cannot be disposed directly at one of the four active commercial low-level waste disposal facilities, processing facilities offer various forms of tritiated low-level waste processing and treatment, and then transport and dispose of the residuals at a disposal facility. These processing facilities may remove and recycle tritium, reduce waste volume, solidify liquid waste, remove hazardous constituents, or perform a number of additional treatments. Waste brokers also offer many low-level and mixed waste management and transportation services. These services can be especially helpful for small-quantity tritiated-waste generators, such as universities, research institutions, medical facilities, and some industries. The information contained in this report covers general capabilities and requirements for the various disposal/processing facilities and brokerage companies, but is not considered exhaustive. Typically, each facility has extensive waste acceptance criteria and will require a generator to thoroughly characterize their wastes. Then a contractual agreement between the waste generator and the disposal/processing/broker entity must be in place before waste is accepted. Costs for tritiated waste transportation, processing and disposal vary based a number of factors. In many cases, wastes with very low radioactivity are priced primarily based on weight or volume. For higher activities, costs are based on both volume and activity, with the activity-based charges usually being much larger than volume-based charges. Other factors affecting cost include location, waste classification and form, other hazards in the waste, etc. Costs may be based on general guidelines used by an individual disposal or processing site, but final costs are established by specific contract with each generator. For this report, seven hypothetical waste streams intended to represent commercially-generated tritiated waste were defined in order to calculate comparative costs. Ballpark costs for disposition of these hypothetical waste streams were calculated. These costs ranged from thousands to millions of dollars. Due to the complexity of the cost-determining factors mentioned above, the costs calculated in this report should be understood to represent very rough cost estimates for the various hypothetical wastes. Actual costs could be higher or could be lower due to quantity discounts or other factors.« less
Surveys of research in the Chemistry Division, Argonne National Laboratory
DOE Office of Scientific and Technical Information (OSTI.GOV)
Grazis, B.M.
1992-01-01
Research reports are presented on reactive intermediates in condensed phase (radiation chemistry, photochemistry), electron transfer and energy conversion, photosynthesis and solar energy conversion, metal cluster chemistry, chemical dynamics in gas phase, photoionization-photoelectrons, characterization and reactivity of coal and coal macerals, premium coal sample program, chemical separations, heavy elements coordination chemistry, heavy elements photophysics/photochemistry, f-electron interactions, radiation chemistry of high-level wastes (gas generation in waste tanks), ultrafast molecular electronic devices, and nuclear medicine. Separate abstracts have been prepared. Accelerator activites and computer system/network services are also reported.
Surveys of research in the Chemistry Division, Argonne National Laboratory
DOE Office of Scientific and Technical Information (OSTI.GOV)
Grazis, B.M.
1992-11-01
Research reports are presented on reactive intermediates in condensed phase (radiation chemistry, photochemistry), electron transfer and energy conversion, photosynthesis and solar energy conversion, metal cluster chemistry, chemical dynamics in gas phase, photoionization-photoelectrons, characterization and reactivity of coal and coal macerals, premium coal sample program, chemical separations, heavy elements coordination chemistry, heavy elements photophysics/photochemistry, f-electron interactions, radiation chemistry of high-level wastes (gas generation in waste tanks), ultrafast molecular electronic devices, and nuclear medicine. Separate abstracts have been prepared. Accelerator activites and computer system/network services are also reported.
Department of Energy's first waste determinations under section 3116: how did the process work?
DOE Office of Scientific and Technical Information (OSTI.GOV)
Picha Jr, K.G.; Kaltreider, R.; Suttora, L.
2007-07-01
Congress passed the Ronald W. Reagan National Defense Authorization Act (NDAA) for Fiscal Year 2005 on October 9, 2004, and the President signed it into law on October 28, 2004. Section 3116(a) of the NDAA allows the Department of Energy (DOE) to, in consultation with the Nuclear Regulatory Commission (NRC), determine whether certain radioactive waste resulting from reprocessing of spent nuclear fuel at two DOE sites is not high-level radioactive waste, and dispose of that waste in compliance with the performance objectives set out in subpart C of 10 CFR part 61 for low-level waste. On January 17, 2006, themore » Department issued its first waste determination under the NDAA for salt waste disposal at the Savannah River Site. On November 19, 2006, the Department issued its second waste determination for closure of tanks at the Idaho Nuclear Technology and Engineering Center Tank Farm Facility. These two determinations and a third draft determination illustrate the range of issues that may be encountered in preparing a waste determination in accordance with NDAA Section 3116. This paper discusses the experiences associated with these first two completed waste determinations and an in-progress third waste determination, and discusses lessons learned from the projects that can be applied to future waste determinations. (authors)« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Maheras, Steven J.; Best, Ralph E.; Ross, Steven B.
A preliminary evaluation of removing spent nuclear fuel (SNF) from 13 shutdown nuclear power reactor sites was conducted. At these shutdown sites the nuclear power reactors have been permanently shut down and the sites have been decommissioned or are undergoing decommissioning. The shutdown sites were Maine Yankee, Yankee Rowe, Connecticut Yankee, Humboldt Bay, Big Rock Point, Rancho Seco, Trojan, La Crosse, Zion, Crystal River, Kewaunee, San Onofre, and Vermont Yankee. The evaluation was divided into four components: (1) characterization of the SNF and greater-than-Class C low-level radioactive waste (GTCC waste) inventory, (2) a description of the on-site infrastructure and conditionsmore » relevant to transportation of SNF and GTCC waste, (3) an evaluation of the near-site transportation infrastructure and experience relevant to shipping transportation casks containing SNF and GTCC waste, including identification of gaps in information, and (4) an evaluation of the actions necessary to prepare for and remove SNF and GTCC waste. Every site was found to have at least one off-site transportation mode option for removing its SNF and GTCC waste; some have multiple options. Experience removing large components during reactor decommissioning provided an important source of information used to identify the transportation mode options for the sites. Especially important in conducting the evaluation were site visits, through which information was obtained that would not have been available otherwise. Extensive photographs taken during the site visits proved to be particularly useful in documenting the current conditions at or near the sites. It is expected that additional site visits will be conducted to add to the information presented in the evaluation.« less
High-Level Waste System Process Interface Description
DOE Office of Scientific and Technical Information (OSTI.GOV)
d'Entremont, P.D.
1999-01-14
The High-Level Waste System is a set of six different processes interconnected by pipelines. These processes function as one large treatment plant that receives, stores, and treats high-level wastes from various generators at SRS and converts them into forms suitable for final disposal. The three major forms are borosilicate glass, which will be eventually disposed of in a Federal Repository, Saltstone to be buried on site, and treated water effluent that is released to the environment.
SIMULANT DEVELOPMENT FOR SAVANNAH RIVER SITE HIGH LEVEL WASTE
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stone, M; Russell Eibling, R; David Koopman, D
2007-09-04
The Defense Waste Processing Facility (DWPF) at the Savannah River Site vitrifies High Level Waste (HLW) for repository internment. The process consists of three major steps: waste pretreatment, vitrification, and canister decontamination/sealing. The HLW consists of insoluble metal hydroxides (primarily iron, aluminum, magnesium, manganese, and uranium) and soluble sodium salts (carbonate, hydroxide, nitrite, nitrate, and sulfate). The HLW is processed in large batches through DWPF; DWPF has recently completed processing Sludge Batch 3 (SB3) and is currently processing Sludge Batch 4 (SB4). The composition of metal species in SB4 is shown in Table 1 as a function of the ratiomore » of a metal to iron. Simulants remove radioactive species and renormalize the remaining species. Supernate composition is shown in Table 2.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Berry, R. O.
In a cooperative effort of the members of the South Texas Chapter of the Heath Physics Society (STC-HPS) and the Texas A&M University Nuclear Engineering Department, great efforts have been made to reach out and provide educational opportunities to members of the general public, school age children, and specifically teachers. These efforts have taken the form of Science Teacher Workshops (STW), visits to schools all over the state of Texas, public forums, and many other educational arenas. A major motivational factor for these most recent efforts can be directly tied to the attempt of the State of Texas to sitemore » a low-level radioactive waste facility near Sierra Blanca in West Texas. When the State of Texas first proposed to site a low level radioactive waste site after the Low-Level Radioactive Waste Policy Act of 1980 was passed, many years of political struggle ensued. Finally, a site at Sierra Blanca in far West Texas was selected for study and characterization for a disposal site for waste generated in the Texas Compact states of Maine, Vermont and Texas. During this process, the outreach to and education of the local public became a paramount issue.« less
Emke, Erik; Vughs, Dennis; Kolkman, Annemieke; de Voogt, Pim
2018-05-01
Chemical analysis of domestic wastewater can reveal the presence of illicit drugs either consumed by a population or directly discharged into the sewer system. In the search for causes of a recent malfunctioning of a small domestic wastewater treatment plant aberrantly high loads of amphetamine were observed in the influent of the plant. Direct discharges of chemical waste from illegal production sites were suspected to be the cause. Illegal manufacturing of amphetamines creates substantial amounts of chemical waste. Here we show that fly-tipping of chemical waste originating from an amphetamine synthesis in the catchment of a small sewage treatment plant resulted in failure of the treatment process. Target analysis of drugs of abuse and non-target screening using high resolution mass spectrometry provided evidence for the presence of amphetamine produced from the precursor 1-phenylpropan-2-one by the Leuckart process through specific synthesis markers. Furthermore the identity and presence of the pre-precursor 3-oxo-2-phenylbutanamide was confirmed and a route specific marker was proposed. This is the first study that demonstrates that non-target screening of wastewater can identify intermediates, impurities and by products of the synthesis routes used in illegal manufacturing of amphetamine. The profiles of chemicals thus obtained can be used in tracking productions sites within the corresponding sewer catchment. Copyright © 2018 Elsevier B.V. All rights reserved.
Eguchi, Akifimi; Isobe, Tomohiko; Ramu, Karri; Tue, Nguyen Minh; Sudaryanto, Agus; Devanathan, Gnanasekaran; Viet, Pham Hung; Tana, Rouch Seang; Takahashi, Shin; Subramanian, Annamalai; Tanabe, Shinsuke
2013-03-01
In Asian developing countries, large amounts of municipal wastes are dumped into open dumping sites each day without adequate management. This practice may cause several adverse environmental consequences and increase health risks to local communities. These dumping sites are contaminated with many chemicals including brominated flame retardants (BFRs) such as polybrominated diphenyl ethers (PBDEs) and hexabromocyclododecanes (HBCDs). BFRs may be released into the environment through production processes and through the disposal of plastics and electronic wastes that contain them. The purpose of this study was to elucidate the status of BFR pollution in municipal waste dumping sites in Asian developing countries. Soil samples were collected from six open waste dumping sites and five reference sites in Cambodia, India, Indonesia, Malaysia, and Vietnam from 1999 to 2007. The results suggest that PBDEs are the dominant contaminants in the dumping sites in Asian developing countries, whereas HBCD contamination remains low. Concentrations of PBDEs and HBCDs ranged from ND to 180 μg/kg dry wt and ND to 1.4 μg/kg dry wt, respectively, in the reference sites and from 0.20 to 430 μg/kg dry wt and ND to 2.5 μg/kg dry wt, respectively, in the dumping sites. Contamination levels of PBDEs in Asian municipal dumping sites were comparable with those reported from electronic waste dismantling areas in Pearl River delta, China. Copyright © 2012 Elsevier Ltd. All rights reserved.
Onargan, T; Kucuk, K; Polat, M
2003-01-01
Izmir is a large metropolitan city with a population of 3,114,860. The city consists of 27 townships, each township has a population of not less than 10,000 inhabitants. The two major solid waste disposal sites are in the townships of Uzundere and Harmandali. The amount of solid waste that is disposed at each of these sites is about 800 and 1800 t/day, respectively. In Uzundere, compost is produced from the organic fraction of urban solid wastes while the residual material is deposited at a disposal site with a remaining capacity of 700,000 m(3) as of 2001. Gas monitoring and measurements were carried out at the disposal site in Uzundere. For this purpose, nine sampling wells were drilled on selected locations. Each well was furnished with perforated metal pipes suitable for gas monitoring and measurements. The following gases were monitored: O(2), CH(4), CO, CO(2), and H(2)S. The most important finding was that the concentrations of CH(4) in the wells ranged from 7 to 57%. Dilution of the CH(4) by O(2) down to the LEL levels (5-15%) is always possible and poses a continuing risk at the site. Furthermore, the levels of O(2) require that access to the site be limited to only authorized personnel.
Characterizing the environmental impact of metals in construction and demolition waste.
Yu, Danfeng; Duan, Huabo; Song, Qingbin; Li, Xiaoyue; Zhang, Hao; Zhang, Hui; Liu, Yicheng; Shen, Weijun; Wang, Jinben
2018-05-01
Large quantities of construction and demolition (C&D) waste are generated in China every year, but their potential environmental impacts on the surrounding areas are rarely assessed. This study focuses on metals contained in C&D waste, characterizing the metal concentrations and their related environmental risks. C&D waste samples were collected in Shenzhen City, China, from building demolition sites, renovation areas undergoing refurbishment, landfill sites, and recycling companies (all located in Shenzhen city) that produce recycled aggregate, in order to identify pollution levels of the metals As, Cd, Cr, Cu, Pb, Ni, and Zn. The results showed that (1) the metal concentrations in most demolition and renovation waste samples were below the soil environmental quality standard for agricultural purposes (SQ-Agr.) in China; (2) Cd, Cu, and Zn led to relatively higher environmental risks than other metals, especially for Zn (DM5 tile sample, 360 mg/kg; R4 tile sample, 281 mg/kg); (3) non-inert C&D waste such as wall insulation and foamed plastic had high concentrations of As and Cd, so that these materials required special attention for sound waste management; and (4) C&D waste collected from landfill sites had higher concentrations of Cd and Cu than did waste collected from demolition and refurbishment sites.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tharp, Tim; Donnelly, Jim
2012-07-01
The Y-12 National Security Complex (Y-12) is concluding a multi-year program to characterize and dispose of all legacy low-level waste (LLW). The inventory of legacy waste at Y-12 has been reduced from over 3500 containers in Fiscal Year (FY) 2000 to 6 containers at the end of FY2011. In addition, the site recently eliminated the inventory of other low-level waste that is greater than 365 days old (i.e., >365-Day LLW), to be in full compliance with DOE Order 435.1. A consistent technical characterization approach emerged for both of these populations of backlogged waste: (1) compile existing historical data and processmore » knowledge and conduct interviews with site personnel; (2) inspect the containers and any tags, labels, or other markings to confirm or glean additional data; (3) with appropriate monitoring, open the container, visually inspect and photograph the contents while obtaining preliminary radiological surveys; (4) obtain gross weight and field non-destructive assay (NDA) data as needed; (5) use the non-public Oak Ridge Reservation Haul Road to ship the container to a local offsite vendor for waste sorting and segregation; (6) sort, drain, sample, and remove prohibited items; and (7) compile final data and prepare for shipment to disposal. After disposing of this backlog, the focus has now turned to avoiding the recurrence of this situation by maintaining low inventories of low-level waste and shortening the duration between waste generation and disposal. An enhanced waste tracking system and monthly metric charts are used to monitor and report progress to contractor and federal site office management. During the past 2 years, the average age of LLW onsite at Y-12 has decreased from more than 180 days to less than 60 days. (authors)« less
James B. Baker; Michael G. Shelton
1998-01-01
Development of 86 intermediate and suppressed loblolly pine (Pinus taeda L.) trees, that had been recently released from overtopping pines and hardwoods, was monitored over a 15 year period. The trees were growing in natural stands on good sites (site index = 90 ft at 50 years) that had been recently cut to stocking levels ranging from 10 to 50 percent. At time of...
Tue, Nguyen Minh; Takahashi, Shin; Suzuki, Go; Isobe, Tomohiko; Viet, Pham Hung; Kobara, Yuso; Seike, Nobuyasu; Zhang, Gan; Sudaryanto, Agus; Tanabe, Shinsuke
2013-01-01
This study investigated the occurrence of polychlorinated biphenyls (PCBs), and several additive brominated flame retardants (BFRs) in indoor dust and air from two Vietnamese informal e-waste recycling sites (EWRSs) and an urban site in order to assess the relevance of these media for human exposure. The levels of polybrominated diphenyl ethers (PBDEs), hexabromocyclododecane (HBCD), 1,2-bis-(2,4,6-tribromophenoxy)ethane (BTBPE) and decabromodiphenyl ethane (DBDPE) in settled house dust from the EWRSs (130-12,000, 5.4-400, 5.2-620 and 31-1400 ng g(-1), respectively) were significantly higher than in urban house dust but the levels of PCBs (4.8-320 ng g(-1)) were not higher. The levels of PCBs and PBDEs in air at e-waste recycling houses (1000-1800 and 620-720 pg m(-3), respectively), determined using passive sampling, were also higher compared with non-e-waste houses. The composition of BFRs in EWRS samples suggests the influence from high-temperature processes and occurrence of waste materials containing older BFR formulations. Results of daily intake estimation for e-waste recycling workers are in good agreement with the accumulation patterns previously observed in human milk and indicate that dust ingestion contributes a large portion of the PBDE intake (60%-88%), and air inhalation to the low-chlorinated PCB intake (>80% for triCBs) due to their high levels in dust and air, respectively. Further investigation of both indoor dust and air as the exposure media for other e-waste recycling-related contaminants and assessment of health risk associated with exposure to these contaminant mixtures is necessary. Copyright © 2012 Elsevier Ltd. All rights reserved.
Korenkov, I P; Lashchenova, T N; Shandala, N K
2015-01-01
In the article there are presented materials on radiation-hygienic approaches to the treatment of very low level radioactive waste (VLLW) and industrial waste containing radionuclides. There is done detailed information on radiation-hygienic principles and criteria for the assurance ofradiation safety in the collection, transportation, storage and processing of VLLW as a category of radioactive waste.. Particular attention is paid to the problem of designing VLLW landfill site choice, system of radiation monitoring in operation and decommissioning of the landfill. There are presented data about the criteria for the release of VLLW buried at the site, from regulatory control. Also there are considered in detail the radiation-hygienic requirements for radiation safety of industrial waste containing radionuclides for which there is assumed unlimited and limited use of solid materials in economic activity, based on the requirements ofthe revised Basic Sanitary Rules for Radiation Safety - 99/2010. There are considered basic requirements for the organization of industrial waste landfill. As an example, there-are presented the hygiene requirements for industrial waste management and results of waste categorization in Northern Federal Enterprise for Radioactive Waste Management.
Singhania, Reeta Rani; Patel, Anil Kumar; Christophe, Gwendoline; Fontanille, Pierre; Larroche, Christian
2013-10-01
VFAs can be obtained from lignocellulosic agro-industrial wastes, sludge, and various biodegradable organic wastes as key intermediates through dark fermentation processes and synthesized through chemical route also. They are building blocks of several organic compounds viz. alcohol, aldehyde, ketones, esters and olefins. These can serve as alternate carbon source for microbial biolipid, biohydrogen, microbial fuel cells productions, methanisation, and for denitrification. Organic wastes are the substrate for VFA platform that is of zero or even negative cost, giving VFA as intermediate product but their separation from the fermentation broth is still a challenge; however, several separation technologies have been developed, membrane separation being the most suitable one. These aspects will be reviewed and results obtained during anaerobic treatment of slaughterhouse wastes with further utilisation of volatile fatty acids for yeast cultivation have been discussed. Copyright © 2012 Elsevier Ltd. All rights reserved.
Ford, Karl L; Beyer, W Nelson
2014-03-01
Thousands of hard rock mines exist in the western USA and in other parts of the world as a result of historic and current gold, silver, lead, and mercury mining. Many of these sites in the USA are on public lands. Typical mine waste associated with these sites are tailings and waste rock dumps that may be used by wildlife and open-range livestock. This report provides wildlife screening criteria levels for metals in soil and mine waste to evaluate risk and to determine the need for site-specific risk assessment, remediation, or a change in management practices. The screening levels are calculated from toxicity reference values based on maximum tolerable levels of metals in feed, on soil and plant ingestion rates, and on soil to plant uptake factors for a variety of receptors. The metals chosen for this report are common toxic metals found at mining sites: arsenic, cadmium, copper, lead, mercury, and zinc. The resulting soil screening values are well above those developed by the US Environmental Protection Agency. The difference in values was mainly a result of using toxicity reference values that were more specific to the receptors addressed rather than the most sensitive receptor.
Ford, Karl L; Beyer, W. Nelson
2014-01-01
Thousands of hard rock mines exist in the western USA and in other parts of the world as a result of historic and current gold, silver, lead, and mercury mining. Many of these sites in the USA are on public lands. Typical mine waste associated with these sites are tailings and waste rock dumps that may be used by wildlife and open-range livestock. This report provides wildlife screening criteria levels for metals in soil and mine waste to evaluate risk and to determine the need for site-specific risk assessment, remediation, or a change in management practices. The screening levels are calculated from toxicity reference values based on maximum tolerable levels of metals in feed, on soil and plant ingestion rates, and on soil to plant uptake factors for a variety of receptors. The metals chosen for this report are common toxic metals found at mining sites: arsenic, cadmium, copper, lead, mercury, and zinc. The resulting soil screening values are well above those developed by the US Environmental Protection Agency. The difference in values was mainly a result of using toxicity reference values that were more specific to the receptors addressed rather than the most sensitive receptor.
Anh, Hoang Quoc; Nam, Vu Duc; Tri, Tran Manh; Ha, Nguyen Manh; Ngoc, Nguyen Thuy; Mai, Pham Thi Ngoc; Anh, Duong Hong; Minh, Nguyen Hung; Tuan, Nguyen Anh; Minh, Tu Binh
2017-08-01
Residue concentrations of polybrominated diphenyl ethers (PBDEs) in different kinds of samples including consumer products, indoor dust, sediment and fish collected from two e-waste recycling sites, and some industrial, urban and suburban areas in Vietnam were determined to provide a comprehensive assessment of the contamination levels, accumulation pattern, emission potential and human exposure through dust ingestion and fish consumption. There was a large variation of PBDE levels in plastic parts of obsolete electronic equipment (from 1730 to 97,300 ng/g), which is a common result observed in consumer plastic products reported elsewhere. PBDE levels in indoor dust samples collected from e-waste recycling sites ranged from 250 to 8740 ng/g, which were markedly higher than those in industrial areas and household offices. Emission rate of PBDEs from plastic parts of disposed electronic equipment to dust was estimated to be in a range from 3.4 × 10 -7 to 1.2 × 10 -5 (year -1 ) for total PBDEs and from 2.9 × 10 -7 to 7.2 × 10 -6 (year -1 ) for BDE-209. Some fish species collected from ponds in e-waste recycling villages contained elevated levels of PBDEs, especially BDE-209, which were markedly higher than those in fish previously reported. Overall, levels and patterns of PBDE accumulation in different kinds of samples suggest significant emission from e-waste sites and that these areas are potential sources of PBDE contamination. Intakes of PBDEs via fish consumption were generally higher than those estimated through dust ingestion. Intake of BDE-99 and BDE-209 through dust ingestion contributes a large proportion due to higher concentrations in dust and fish. Body weight normalized daily intake through dust ingestion estimated for the e-waste recycling sites (0.10-3.46 ng/day/kg body wt.) were in a high range as compared to those reported in other countries. Our results highlight the potential releases of PBDEs from informal recycling activities and the high degree of human exposure and suggest the need for continuous investigations on environmental pollution and toxic impacts of e-waste-related hazardous chemicals.
Thorne, M C
2012-06-01
On 26 January 2012, the Blue Ribbon Commission on America's Nuclear Future released a report addressing, amongst other matters, options for the managing and disposal of high-level waste and spent fuel. The Blue Ribbon Commission was not chartered as a siting commission. Accordingly, it did not evaluate Yucca Mountain or any other location as a potential site for the storage or disposal of spent nuclear fuel and high-level waste. Nevertheless, if the Commission's recommendations are followed, it is clear that any future proposals to develop a repository at Yucca Mountain would require an extended period of consultation with local communities, tribes and the State of Nevada. Furthermore, there would be a need to develop generally applicable regulations for disposal of spent fuel and high-level radioactive waste, so that the Yucca Mountain site could be properly compared with alternative sites that would be expected to be identified in the initial phase of the site-selection process. Based on what is now known of the conditions existing at Yucca Mountain and the large number of safety, environmental and legal issues that have been raised in relation to the DOE Licence Application, it is suggested that it would be imprudent to include Yucca Mountain in a list of candidate sites for future evaluation in a consent-based process for site selection. Even if there were a desire at the local, tribal and state levels to act as hosts for such a repository, there would be enormous difficulties in attempting to develop an adequate post-closure safety case for such a facility, and in showing why this unsaturated environment should be preferred over other geological contexts that exist in the USA and that are more akin to those being studied and developed in other countries.
Site Selection for the Disposal of LLW in Taiwan
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chuang, W.S.; Chi, L.M.; Tien, N.C.
2006-07-01
This paper presents the implementation status of the low-level radioactive waste (LLW) disposal program in Taiwan, including the disposal facility regulations, status of waste management, final disposal program, licensing procedures, waste acceptance criteria, site selection criteria and processes and preliminary disposal concepts. The first phase of site selection for low-level radioactive waste final disposal in Taiwan was implemented between 1992 and 2002. The site selection process adopted a Geographic Information System (GIS), Hierarchical Analysis System, Expert Evaluation System, and site reconnaissance. An incentive program for voluntary sites was also initiated. After a series of evaluations and discussion of 30 potentialmore » candidate sites, including 8 recommended sites, 5 qualified voluntary townships, and several remote uninhabited small islets, Hsiao-chiou islet was selected as the first priority candidate site in February 1998. The geological investigation work in Hsiao-chiou was conducted from March 1999 through October 2000. An Environmental Impact Statement Report (EIS) and the Investment Feasibility Study Report (IFS) were submitted to the Environmental Protection Agency (EPA) in November 2000 and to the Ministry of Economic Affairs (MOEA) in June 2001, respectively. Unfortunately, the site investigation was discontinued in 2002 due to political and public acceptance consideration. After years of planning, the second phase of the site selection process was launched in August 2004 and will be conducted through 2008. It is planned that a repository will be constructed in early 2009 and start to operate in 2014. The site selection process for the second phase is based on the earlier work and four potential candidate sites were selected for evaluation until 2005. A near surface disposal concept is proposed for a site located in the Taiwan strait, and cavern disposal concepts are proposed for three other sites located on the main island. This paper presents the implementation status of the LLW disposal program in Taiwan, including the disposal facility regulations, status of waste management, final disposal program, licensing procedures, waste acceptance criteria, site selection criteria and processes, and preliminary disposal concepts 'NIMBY' (Not in my backyard) is a critical problem for implementation of the final disposal project. Resistance from local communities has been continuously received during site characterization. To overcome this, an incentive program to encourage community acceptance has been approved by the Government. Programs for community promotion are being proposed and negotiations are also underway. (authors)« less
Volcanism/tectonics working group summary
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kovach, L.A.
1995-09-01
This article is a summary of the proceedings of a group discussion which took place at the Workshop on the Role of Natural Analogs in Geologic Disposal of High-Level Nuclear Waste in San Antonio, Texas on July 22-25, 1991. The working group concentrated on the subject of the impacts of earthquakes, fault rupture, and volcanic eruption on the underground repository disposal of high-level radioactive wastes. The tectonics and seismic history of the Yucca Mountain site in Nevada is discussed and geologic analogs to that site are described.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1985-11-21
The 50-acre Lake Sandy Jo Landfill is located in the Black Oak community (predominantly residential) of southwestern Gary in Lake County, Indiana. From about 1971 until about 1980, the lake was filled in with construction and demolition debris, municipal garbage, industrial wastes, hazardous materials, and possibly drummed wastes. These wastes are partly to completely exposed on the landfill surface. Surface soil, subsurface soil, surface water, sediment, and ground water show a variety of metal and organic chemical carcinogens. Toxic noncarcinogen priority pollutants found were chloromethane, copper, cyanide, lead, mercury, and silver. Inorganic soil levels found on the site for leadmore » and cadmium exceed levels of concern that would permit unrestricted use of the site. Remedial measures would be necessary before the site could be granted unrestricted use.« less
Tongesayi, Tsanangurayi; Kugara, Jameson; Tongesayi, Sunungurai
2018-02-01
Most waste sites in Zimbabwe are not sanitary landfills but open dumps that indiscriminately receive waste from municipalities, industries, commercial establishments, and social services establishments. People, including children, who eke out a living through scavenging the dumps expose themselves to environmental pollutants at the dumps via inadvertent ingestion and inhalation of contaminated dust, and dermal absorption. The public is potentially being exposed to a slew of the pollutants via air, water, and food, all contaminated by uncontrolled leachates and aerially deposited dust and particulates from the sites. One of the unfortunate consequences of globalization is the sharing of contaminated food and the associated disease burdens; hence, regional contamination can have global impacts. We analyzed the levels of lead at two waste sites in Zimbabwe to assess the daily exposure levels of Pb to children and adults who scavenge the sites as well as determine levels of the heavy metal that are potentially contaminating air, water, soils, and food in the country. Levels of Pb ranged from 23,000 to 14,600,000 µg/kg at one of the sites and from 30,000 to 1,800,000 µg/kg at the other. Inadvertent daily exposure amounts that were calculated by assuming an inadvertent daily ingestion of 20-500 mg of soil/dust were mostly higher than the provisional tolerable daily intake established by the World Health Organization for infants, children, and adults. The XRF measurements were validated using certified reference samples, 2710a (Montana soil) and 2781 (domestic sludge), from the National Institute of Standards and Technology.
Fu, Jilagamazhi; Sharma, Parveen; Spicer, Vic; Krokhin, Oleg V.; Zhang, Xiangli; Fristensky, Brian; Cicek, Nazim; Sparling, Richard; Levin, David. B.
2015-01-01
Transcriptomes and proteomes of Pseudomonas putida LS46 cultured with biodiesel-derived waste glycerol or waste free fatty acids, as sole carbon sources, were compared under conditions that were either permissive or non-permissive for synthesis of medium chain length polyhydroxyalkanoates (mcl-PHA). The objectives of this study were to elucidate mechanisms that influence activation of biopolymer synthesis, intra-cellular accumulation, and monomer composition, and determine if these were physiologically specific to the carbon sources used for growth of P. putida LS46. Active mcl-PHA synthesis by P. putida LS46 was associated with high expression levels of key mcl-PHA biosynthesis genes and/or gene products including monomer-supplying proteins, PHA synthases, and granule-associated proteins. ‘Omics data suggested that expression of these genes were regulated by different genetic mechanisms in P. putida LS46 cells in different physiological states, when cultured on the two waste carbon sources. Optimal polymer production by P. putida LS46 was primarily limited by less efficient glycerol metabolism during mcl-PHA synthesis on waste glycerol. Mapping the ‘Omics data to the mcl-PHA biosynthetic pathway revealed significant variations in gene expression, primarily involved in: 1) glycerol transportation; 2) enzymatic reactions that recycle reducing equivalents and produce key mcl-PHA biosynthesis pathway intermediates (e.g. NADH/NADPH, acetyl-CoA). Active synthesis of mcl-PHAs was observed during exponential phase in cultures with waste free fatty acids, and was associated with the fatty acid beta-oxidation pathway. A putative Thioesterase in the beta-oxidation pathway that may regulate the level of fatty acid beta-oxidation intermediates, and thus carbon flux to mcl-PHA biosynthesis, was highly up-regulated. Finally, the data suggested that differences in expression of selected fatty acid metabolism and mcl-PHA monomer-supplying enzymes may play a role in determining the monomer composition of mcl-PHA polymers. Understanding the relationships between genome content, gene and gene product expression, and how these factors influence polymer synthesis, will aid in optimization of mcl-PHA production by P. putida LS46 using biodiesel waste streams. PMID:26544181
DOE Office of Scientific and Technical Information (OSTI.GOV)
Arnold, Bill Walter; Chang, Fu-lin; Mattie, Patrick D.
2006-02-01
Sandia National Laboratories (SNL) and Taiwan's Institute for Nuclear Energy Research (INER) have teamed together to evaluate several candidate sites for Low-Level Radioactive Waste (LLW) disposal in Taiwan. Taiwan currently has three nuclear power plants, with another under construction. Taiwan also has a research reactor, as well as medical and industrial wastes to contend with. Eventually the reactors will be decomissioned. Operational and decommissioning wastes will need to be disposed in a licensed disposal facility starting in 2014. Taiwan has adopted regulations similar to the US Nuclear Regulatory Commission's (NRC's) low-level radioactive waste rules (10 CFR 61) to govern themore » disposal of LLW. Taiwan has proposed several potential sites for the final disposal of LLW that is now in temporary storage on Lanyu Island and on-site at operating nuclear power plants, and for waste generated in the future through 2045. The planned final disposal facility will have a capacity of approximately 966,000 55-gallon drums. Taiwan is in the process of evaluating the best candidate site to pursue for licensing. Among these proposed sites there are basically two disposal concepts: shallow land burial and cavern disposal. A representative potential site for shallow land burial is located on a small island in the Taiwan Strait with basalt bedrock and interbedded sedimentary rocks. An engineered cover system would be constructed to limit infiltration for shallow land burial. A representative potential site for cavern disposal is located along the southeastern coast of Taiwan in a tunnel system that would be about 500 to 800 m below the surface. Bedrock at this site consists of argillite and meta-sedimentary rocks. Performance assessment analyses will be performed to evaluate future performance of the facility and the potential dose/risk to exposed populations. Preliminary performance assessment analyses will be used in the site-selection process and to aid in design of the disposal system. Final performance assessment analyses will be used in the regulatory process of licensing a site. The SNL/INER team has developed a performance assessment methodology that is used to simulate processes associated with the potential release of radionuclides to evaluate these sites. The following software codes are utilized in the performance assessment methodology: GoldSim (to implement a probabilistic analysis that will explicitly address uncertainties); the NRC's Breach, Leach, and Transport - Multiple Species (BLT-MS) code (to simulate waste-container degradation, waste-form leaching, and transport through the host rock); the Finite Element Heat and Mass Transfer code (FEHM) (to simulate groundwater flow and estimate flow velocities); the Hydrologic Evaluation of Landfill performance Model (HELP) code (to evaluate infiltration through the disposal cover); the AMBER code (to evaluate human health exposures); and the NRC's Disposal Unit Source Term -- Multiple Species (DUST-MS) code (to screen applicable radionuclides). Preliminary results of the evaluations of the two disposal concept sites are presented.« less
Code of Federal Regulations, 2011 CFR
2011-01-01
..., HIGH-LEVEL RADIOACTIVE WASTE, AND REACTOR-RELATED GREATER THAN CLASS C WASTE General License for Storage of Spent Fuel at Power Reactor Sites § 72.220 Violations. This general license is subject to the...
Code of Federal Regulations, 2010 CFR
2010-01-01
..., HIGH-LEVEL RADIOACTIVE WASTE, AND REACTOR-RELATED GREATER THAN CLASS C WASTE General License for Storage of Spent Fuel at Power Reactor Sites § 72.220 Violations. This general license is subject to the...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dreimanis, A.
This report considers the problem of multilevel consensus building for siting and construction of shared multinational/regional repositories for radioactive waste (RW) deep disposal. In the siting of a multinational repository there appears an essential innovative component of stakeholder consensus building, namely: to reach consent - political, social, economic, ecological - among international partners, in addition to solving the whole set of intra-national consensus building items. An entire partnering country is considered as a higher-level stakeholder - the national stakeholder, represented by the national government, being faced to simultaneous seeking an upward (international) and a downward (intra-national) consensus in a psychologicallymore » stressed environment, possibly being characterized by diverse political, economic and social interests. The following theses as a possible interdisciplinary approach towards building of shared understanding and stakeholder consensus on the international scale of RW disposal are forwarded and developed: a) building of international stakeholder consensus would be promoted by activating and diversifying on the international scale multilateral interactions between intra- and international stakeholders, including web-based networks of the RW disposal site investigations and decision-making, as well as networks for international cooperation among government authorities in nuclear safety, b) gradual progress in intergovernmental consensus and reaching multilateral agreements on shared deep repositories will be the result of democratic dialogue, via observing the whole set of various interests and common resolving of emerged controversies by using advanced synergetic approaches of conflict resolution, c) cross-cultural thinking and world perception, mental flexibility, creativity and knowledge are considered as basic prerogatives for gaining a higher level of mutual understanding and consensus for seeking further consensus, for advancing the preparedness to act together, and ultimately - for achieving desired shared goals. It is proposed that self-organized social learning will make it possible to promote adequate perception of risk and prevent, by diminishing uncertainties and unknown factors, social amplification of an imagined risk, as well as to increase the trust level and facilitate more adequate equity perception. The proposed approach to the multilevel stakeholder consensus building on international scale is extrapolated to the present-day activities of siting of such near-surface RW disposal facilities which supposedly could have non-negligible trans-boundary impact. A multilevel stakeholder interaction process is considered for the case of resolving of emerged problems in site selection for the planned near-surface RW repository in vicinity of the Lithuanian-Latvian border foreseen for disposal of short lived low- and intermediate level waste arising from the decommissioning of the Ignalina Nuclear Power Plant. (authors)« less
Zeng, Yan-Hong; Luo, Xiao-Jun; Tang, Bin; Mai, Bi-Xian
2016-09-01
Organohalogen pollutants (OHPs) including chlorinated paraffins (CPs), polybrominated diphenyl ethers (PBDEs) and other halogenated flame retardants (OHFRs) (dechlorane plus (DP), decabromodiphenyl ethane (DBDPE), 1,2-bis(2,4,6-tribromophenoxy) ethane (BTBPE), hexabromobenzene (HBB), hexabromocyclododecanes (HBCDs) and tetrabromobisphenol A (TBBPA)) originating from an e-waste recycling area in Guiyu, southern China were investigated in chicken and goose eggs. As expected, OHP concentrations were higher in chicken eggs collected from the location (site 1) approaching the e-waste recycling center than from the location (site 2) far from the e-waste recycling center. Also, much higher OHP levels were observed in goose eggs foraging in residential area (site 2) than that in agricultural area (site 1), suggesting a clear habitat dependent OHP bioaccumulation pattern both concerning distance from e-waste activities and type of foraging habitat. Goose eggs exhibited higher short chain chlorinated paraffins (SCCPs) concentrations but lower PBDE and OHFR levels than chicken eggs. The proportion of high brominated PBDEs (hepta-to deca-BDEs) was lower in goose eggs than that in chicken eggs and showed a clear decrease from site 1 to site 2. DP isomeric composition fanti values (the ratio of the anti-DP to the sum of the anti- and syn-DP) in goose eggs were significantly lower than those in chicken eggs (p < 0.001). These differences are likely a reflection of factors such as the species-specific differences in habitat preference and the differing environmental behaviors of the pollutants owing to their inherent properties (such as solubility and vapor pressure). Our findings suggested a high dietary intake of OHPs via home-produced eggs. For BDE99 there is a potential health concern with respect to the current dietary exposure via eggs. Copyright © 2016. Published by Elsevier Ltd.
Integrated software system for low level waste management
DOE Office of Scientific and Technical Information (OSTI.GOV)
Worku, G.
1995-12-31
In the continually changing and uncertain world of low level waste management, many generators in the US are faced with the prospect of having to store their waste on site for the indefinite future. This consequently increases the set of tasks performed by the generators in the areas of packaging, characterizing, classifying, screening (if a set of acceptance criteria applies), and managing the inventory for the duration of onsite storage. When disposal sites become available, it is expected that the work will require re-evaluating the waste packages, including possible re-processing, re-packaging, or re-classifying in preparation for shipment for disposal undermore » the regulatory requirements of the time. In this day and age, when there is wide use of computers and computer literacy is at high levels, an important waste management tool would be an integrated software system that aids waste management personnel in conducting these tasks quickly and accurately. It has become evident that such an integrated radwaste management software system offers great benefits to radwaste generators both in the US and other countries. This paper discusses one such approach to integrated radwaste management utilizing some globally accepted radiological assessment software applications.« less
Diesen, Veronica; Forsberg, Kerstin; Jonsson, Mats
2017-10-15
The deep repository for low and intermediate level radioactive waste SFR in Sweden will contain large amounts of cellulosic waste materials contaminated with radionuclides. Over time the repository will be filled with water and alkaline conditions will prevail. In the present study degradation of cellulosic materials and the ability of cellulosic degradation products to solubilize and thereby mobilise Eu(III) under repository conditions has been investigated. Further, the possible immobilization of Eu(III) by sorption onto cement in the presence of degradation products has been investigated. The cellulosic material has been degraded under anaerobic and aerobic conditions in alkaline media (pH: 12.5) at ambient temperature. The degradation was followed by measuring the total organic carbon (TOC) content in the aqueous phase as a function of time. After 173days of degradation the TOC content is highest in the anaerobic artificial cement pore water (1547mg/L). The degradation products are capable of solubilising Eu(III) and the total europium concentration in the aqueous phase was 900μmol/L after 498h contact time under anaerobic conditions. Further it is shown that Eu(III) is adsorbed to the hydrated cement to a low extent (<9μmol Eu/g of cement) in the presence of degradation products. Copyright © 2017 Elsevier B.V. All rights reserved.
Xing, Guan Hua; Chan, Janet Kit Yan; Leung, Anna Oi Wah; Wu, Sheng Chun; Wong, M H
2009-01-01
PCB levels in fish (collected from local rivers), atmosphere and human milk samples have been studied to determine the exposure levels of PCBs for local residents and e-waste workers in Guiyu, a major electronic waste scrapping center in China. The source appointment and correlation analyses showed that homologue composition of PCBs in 7 species of fish were consistent and similar to commercial PCBs Aroclor 1248. PCB levels in air surrounding the open burning site were significantly higher than those in residential area. Inhalation exposure contributed 27% and 93% to the total body loadings (the sum of dietary and inhalation exposure) of the local residents, and e-waste workers engaged in open burning respectively. Total PCB concentrations in human milk ranged from N.D. to 57.6 ng/g lipid, with an average of 9.50 ng/g lipid. The present results indicated that commercial PCBs derived from e-waste recycling are major sources of PCBs accumulating in different environmental media, leading to the accumulation of high chlorinated biphenyls in human beings.
Water, vapour and heat transport in concrete cells for storing radioactive waste
NASA Astrophysics Data System (ADS)
Carme Chaparro, M.; W. Saaltink, Maarten
2016-08-01
Water is collected from a drain situated at the centre of a concrete cell that stores radioactive waste at 'El Cabril', which is the low and intermediate level radioactive waste disposal facility of Spain. This indicates flow of water within the cell. 2D numerical models have been made in order to reproduce and understand the processes that take place inside the cell. Temperature and relative humidity measured by sensors in the cells and thermo-hydraulic parameters from laboratory test have been used. Results show that this phenomenon is caused by capillary rise from the phreatic level, evaporation and condensation within the cell produced by temperature gradients caused by seasonal temperature fluctuations outside. At the centre of the cell, flow of gas and convection also play a role. Three remedial actions have been studied that may avoid the leakage of water from the drain.
AmeriFlux US-ADR Amargosa Desert Research Site (ADRS)
Moreo, Michael [U.S. Geological Survey
2018-01-01
This is the AmeriFlux version of the carbon flux data for the site US-ADR Amargosa Desert Research Site (ADRS). Site Description - This tower is located at the Amargosa Desert Research Site (ADRS). The U.S. Geological Survey (USGS) began studies of unsaturated zone hydrology at ADRS in 1976. Over the years, USGS investigations at ADRS have provided long-term "benchmark" information about the hydraulic characteristics and soil-water movement for both natural-site conditions and simulated waste-site conditions in an arid environment. The ADRS is located in a creosote-bush community adjacent to disposal trenches for low-level radioactive waste.
Heavy Metal Contamination of Soils around a Hospital Waste Incinerator Bottom Ash Dumps Site
Adama, M.; Esena, R.; Fosu-Mensah, B.; Yirenya-Tawiah, D.
2016-01-01
Waste incineration is the main waste management strategy used in treating hospital waste in many developing countries. However, the release of dioxins, POPs, and heavy metals in fly and bottom ash poses environmental and public health concerns. To determine heavy metal (Hg, Pb, Cd, Cr, and Ag) in levels in incinerator bottom ash and soils 100 m around the incinerator bottom ash dump site, ash samples and surrounding soil samples were collected at 20 m, 40 m, 60 m, 80 m, 100 m, and 1,200 m from incinerator. These were analyzed using the absorption spectrophotometer method. The geoaccumulation (I geo) and pollution load indices (PLI) were used to assess the level of heavy metal contamination of surrounding soils. The study revealed high concentrations in mg/kg for, Zn (16417.69), Pb (143.80), Cr (99.30), and Cd (7.54) in bottom ash and these were above allowable limits for disposal in landfill. The study also found soils within 60 m radius of the incinerator to be polluted with the metals. It is recommended that health care waste managers be educated on the implication of improper management of incinerator bottom ash and regulators monitor hospital waste incinerator sites. PMID:27034685
Foster, J.B.; Garklavs, George; Mackey, G.W.
1984-01-01
Hydrogeologic studies were conducted at the low-level radioactive-waste disposal site near Sheffield, Illinois, from 1976-84. Data in this report include water levels in wells, lake stages, inorganic, organic, and radiometric chemical analyses of ground and surface water, hydraulic conductivities of glacial materials, grain-size distribution, clay and carbonate mineralogy, and cation exchange capacities of the glacial materials. Also included are results of petrographic analyses, physical measurements of wells, stratigraphy and lithology of cores collected from test wells, and horizontal coordinates of wells.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-10-07
... on- site in the pickle acid and low level radioactive wastewater treatment systems. Support... water production waste treatment system. Once- through non-contact cooling water does not require... production (deionized and make- up non-contact cooling water) treatment system and once through non- contact...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sackschewsky, Michael R.; Downs, Janelle L.
2007-05-31
This review provides an evaluation of potential impacts of actions that have been proposed under various alternatives to support the closure of the high level waste tanks on the Hanford Site. This review provides a summary of data collected in the field during the spring of 2007 at all of the proposed project sites within 200 East and 200 West Areas, and at sites not previously surveyed. The primary purpose of this review is to provide biological data that can be incorporated into or used to support the Tank Closure and Waste Management Environmental Impact Statement.
Medical waste management plan.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lane, Todd W.; VanderNoot, Victoria A.
2004-12-01
This plan describes the process for managing research generated medical waste at Sandia National Laboratories/California. It applies to operations at the Chemical and Radiation Detection Laboratory (CRDL), Building 968, and other biosafety level 1 or 2 activities at the site. It addresses the accumulation, storage, treatment and disposal of medical waste and sharps waste. It also describes the procedures to comply with regulatory requirements and SNL policies applicable to medical waste.
DOE Office of Scientific and Technical Information (OSTI.GOV)
NSTec Environmental Management; The Delphi Groupe, Inc.; J. A. Cesare and Associates, Inc.
The report is the Final Construction Quality Assurance (CQA) Report for the 92-Acrew Evapotranspiration Cover, Area 5 Waste Management Division Retired Mixed Waste Pits, Nevada National Security Site, Nevada, for the period of January 20, 2011, to January 31, 2012 The Area 5 RWMS uses engineered shallow-land burial cells to dispose of packaged waste. The 92-Acre Area encompasses the southern portion of the Area 5 RWMS, which has been designated for the first final closure operations. This area contains 13 Greater Confinement Disposal (GCD) boreholes, 16 narrow trenches, and 9 broader pits. With the exception of two active pits (P03more » and P06), all trenches and pits in the 92-Acre Area had operational covers approximately 2.4 meters thick, at a minimum, in most areas when this project began. The units within the 92-Acre Area are grouped into the following six informal categories based on physical location, waste types and regulatory requirements: (1) Pit 3 Mixed Waste Disposal Unit (MWDU); (2) Corrective Action Unit (CAU) 111; (3) CAU 207; (4) Low-level waste disposal units; (5) Asbestiform low-level waste disposal units; and (6) One transuranic (TRU) waste trench.« less
Water-quality reconnaissance of the north Dade County solid-waste facility, Florida
McKenzie, D.J.
1982-01-01
A water-quality sampling reconnaissance of the north Dade County solid-waste disposal facility (landfill) near Carol City, Florida, was conducted during 1977-78. The purpose of the reconnaissance was to determine selected quality characteristics of the surface- and ground-water of the landfill and contiguous area; and to assess, generally, if leachate produced by the decomposition of landfill wastes was adversely impacting the downgradient water quality. Sampling results indicated that several water-quality characteristics were present in landfill ground water at significantly higher levels than in ground water upgradient or downgradient from the landfill. Moreover, many of these water-quality characteristics were found at slightly higher levels at down gradient site 5 than at upgradient site 1 which suggested that some downgradient movement of landfill leachate had occurred. For example, chloride and alkalinity in ground water had average concentrations of 20 and 290 mg/L at background wells (site 1), 144 and 610 mg/L at landfill wells (sites 2 and 4), and 29 and 338 mg/L at downgradient wells (site 5). A comparison of the 1977-78 sampling results with the National Primary and Secondary Drinking Water Regulations indicated that levels of iron and color in ground water of the study area frequently exceeded national maximum contaminant levels, dissolved solids, turbidity, lead, and manganese occasionally exceeded regulations. Concentrations of iron and levels of color and turbidity in some surface water samples also exceeded National maximum contaminant levels. (USGS)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kapoor, A.; Gordon, S.; Goldston, W.
2013-07-08
This paper describes the operating experience and lessons learned at U.S. Department of Energy (DOE) sites as a result of an evaluation of potential trailer contamination and soft-sided packaging integrity issues related to the disposal of low-level and mixed low-level (LLW/MLLW) radioactive waste shipments. Nearly 4.3 million cubic meters of LLW/MLLW will have been generated and disposed of during fiscal year (FY) 2010 to FY 2015—either at commercial disposal sites or disposal sites owned by DOE. The LLW/MLLW is packaged in several different types of regulatory compliant packaging and transported via highway or rail to disposal sites safely and efficientlymore » in accordance with federal, state, and local regulations and DOE orders. In 1999, DOE supported the development of LLW containers that are more volumetrically efficient, more cost effective, and easier to use as compared to metal or wooden containers that existed at that time. The DOE Idaho National Engineering and Environmental Laboratory (INEEL), working in conjunction with the plastic industry, tested several types of soft-sided waste packaging systems that meet U.S. Department of Transportation requirements for transport of low specific activity and surface contaminated objects. Since then, soft-sided packaging of various capacities have been used successfully by the decontamination and decommissioning (D&D) projects to package, transport, and dispose D&D wastes throughout the DOE complex. The joint team of experts assembled by the Energy Facility Contractors Group from DOE waste generating sites, DOE and commercial waste disposal facilities, and soft-sided packaging suppliers conducted the review of soft-sided packaging operations and transportation of these packages to the disposal sites. As a result of this evaluation, the team developed several recommendations and best practices to prevent or minimize the recurrences of equipment contamination issues and proper use of soft-sided packaging for transport and disposal of waste.« less
Dennehy, K.F.; McMahon, P.B.
1985-01-01
Two years of selected hydrologic and micrometeorologic data collected at a low-level radioactive waste burial site near Barnwell, South Carolina are available on magnetic tape in card-image format. Hydrologic data include daily measurements of soil-moisture tension, soil-moisture specific conductance, and soil temperature at four monitoring site locations. Micrometeorlogic data include hourly measurements for the following parameters: dry- and wet-bulb temperatures, soil temperatures, soil heat flux, wind speeds and direction, incoming and reflected short-wave solar radiation, incoming and emitted long-wave radiation, net radiation and precipitation. (USGS)
Mansue, Lawrence J.; Mills, Patrick C.
1991-01-01
The U.S. Geological Survey conducted hydrogeologic studies at the low-level radioactive-waste disposal site near Sheffield, Illinois, from 1976 through 1987. During that period, 108 observation wells were installed in the vicinity of the disposal site in glacial and post-glacial deposits of Quaternary age and bedrock of Pennsylvanian age. Data in this report include the location of each well, the date each well was drilled, the geologic units penetrated by each well, the physical measurements of each well, the elevations of the top (measuring point) of each well and geologic-unit contacts at each well, and the highest and lowest recorded water levels in each well.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Greg Shott, Vefa Yucel, Lloyd Desotell
2008-05-01
This Special Analysis (SA) was prepared to assess the potential impact of inadvertent disposal of a limited quantity of transuranic (TRU) waste in classified Trench 4 (T04C) within the Area 5 Radioactive Waste Management Site (RWMS) at the Nevada Test Site (NTS). The Area 5 RWMS is a low-level radioactive waste disposal site in northern Frenchman Flat on the Nevada Test Site (NTS). The Area 5 RWMS is regulated by the U.S. Department of Energy (DOE) under DOE Order 435.1 and DOE Manual (DOE M) 435.1-1. The primary objective of the SA is to evaluate if inadvertent disposal of limitedmore » quantities of TRU waste in a shallow land burial trench at the Area 5 RWMS is in compliance with the existing, approved Disposal Authorization Statement (DAS) issued under DOE M 435.1-1. In addition, supplemental analyses are performed to determine if there is reasonable assurance that the requirements of Title 40, Code of Federal Regulations (CFR), Part 191, Environmental Radiation Protection Standards for Management and Disposal of Spent Nuclear Fuel, High-Level, and Transuranic Radioactive Wastes, can be met. The 40 CFR 191 analyses provide supplemental information regarding the risk to human health and the environment of leaving the TRU waste in T04C. In 1989, waste management personnel reviewing classified materials records discovered that classified materials buried in trench T04C at the Area 5 RWMS contained TRU waste. Subsequent investigations determined that a total of 102 55-gallon drums of TRU waste from Rocky Flats were buried in trench T04C in 1986. The disposal was inadvertent because unclassified records accompanying the shipment indicated that the waste was low-level. The exact location of the TRU waste in T04C was not recorded and is currently unknown. Under DOE M 435.1-1, Chapter IV, Section P.5, low-level waste disposal facilities must obtain a DAS. The DAS specifies conditions that must be met to operate within the radioactive waste management basis, consisting of a performance assessment (PA), composite analysis (CA), closure plan, monitoring plan, waste acceptance criteria, and a PA/CA maintenance plan. The DOE issued a DAS for the Area 5 RWMS in 2000. The Area 5 RWMS DAS was, in part, based on review of a CA as required under DOE M 435.1-1, Chapter IV, Section P.(3). A CA is a radiological assessment required for DOE waste disposed before 26 September 1988 and includes the radiological dose from all sources of radioactive material interacting with all radioactive waste disposed at the Area 5 RWMS. The approved Area 5 RWMS CA, which includes the inventory of TRU waste in T04C, indicates that the Area 5 RWMS waste inventory and all interacting sources of radioactive material can meet the 0.3 mSv dose constraint. The composite analysis maximum annual dose for a future resident at the Area 5 RWMS was estimated to be 0.01 mSv at 1,000 years. Therefore, the inadvertent disposal of TRU in T04C is protective of the public and the environment, and compliant with all the applicable requirements in DOE M 435.1-1 and the DAS. The U.S. Environmental Protection Agency promulgated 40 CFR 191 to establish standards for the planned disposal of spent nuclear fuel, high level, and transuranic wastes in geologic repositories. Although not required, the National Nuclear Security Administration Nevada Site Office requested a supplemental analysis to evaluate the likelihood that the inadvertent disposal of TRU waste in T04C meets the requirements of 40 CFR 191. The SA evaluates the likelihood of meeting the 40 CFR 191 containment requirements (CRs), assurance requirements, individual protection requirements (IPRs), and groundwater protection standards. The results of the SA indicate that there is a reasonable expectation of meeting all the requirements of 40 CFR 191. The conclusion of the SA is that the Area 5 RWMS with the TRU waste buried in T04C is in compliance with all requirements in DOE M 435.1-1 and the DAS. Compliance with the DAS is demonstrated by the results of the Area 5 RWMS CA. Supplemental analyses in the SA indicate there is a reasonable expectation that the TRU in T04C can meet all the requirements of 40 CFR 191. Therefore, inadvertent disposal of a limited quantity of TRU in a shallow land burial trench at the Area 5 RWMS does not pose a significant risk to the public and the environment.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shott, Gregory J.
This special analysis (SA) evaluates whether the Lawrence Livermore National Laboratory (LLNL) EnergyX Macroencapsulated waste stream (B LAMACRONCAP, Revision 1) is suitable for disposal by shallow land burial (SLB) at the Area 5 Radioactive Waste Management Site (RWMS) at the Nevada National Security Site (NNSS). The LLNL EnergyX Macroencapsulated waste stream is macroencapsulated mixed waste generated during research laboratory operations and maintenance (LLNL 2015). The LLNL EnergyX Macroencapsulated waste stream required a special analysis due to tritium (3H), cobalt-60 (60Co), cesium-137 (137Cs), and radium-226 (226Ra) exceeding the NNSS Waste Acceptance Criteria (WAC) Action Levels (U.S. Department of Energy, National Nuclearmore » Security Administration Nevada Field Office [NNSA/NFO] 2015).The results indicate that all performance objectives can be met with disposal of the waste stream in a SLB trench. Addition of the LLNL EnergyX Macroencapsulated inventory slightly increases multiple performance assessment results, with the largest relative increase occurring for the all-pathways annual total effective dose (TED). The maximum mean and 95th percentile 222Rn flux density remain less than the performance objective throughout the compliance period. The LLNL EnergyX Macroencapsulated waste stream is suitable for disposal by SLB at the Area 5 RWMS. The waste stream is recommended for approval without conditions.« less
ANNUAL RADIOACTIVE WASTE TANK INSPECTION PROGRAM - 2011
DOE Office of Scientific and Technical Information (OSTI.GOV)
West, B.; Waltz, R.
2012-06-21
Aqueous radioactive wastes from Savannah River Site (SRS) separations and vitrification processes are contained in large underground carbon steel tanks. Inspections made during 2011 to evaluate these vessels and other waste handling facilities along with evaluations based on data from previous inspections are the subject of this report. The 2011 inspection program revealed that the structural integrity and waste confinement capability of the Savannah River Site waste tanks were maintained. All inspections scheduled per SRR-LWE-2011-00026, HLW Tank Farm Inspection Plan for 2011, were completed. Ultrasonic measurements (UT) performed in 2011 met the requirements of C-ESR-G-00006, In-Service Inspection Program for Highmore » Level Waste Tanks, Rev. 3, and WSRC-TR-2002-00061, Rev.6. UT inspections were performed on Tanks 25, 26 and 34 and the findings are documented in SRNL-STI-2011-00495, Tank Inspection NDE Results for Fiscal Year 2011, Waste Tanks 25, 26, 34 and 41. A total of 5813 photographs were made and 835 visual and video inspections were performed during 2011. A potential leaksite was discovered at Tank 4 during routine annual inspections performed in 2011. The new crack, which is above the allowable fill level, resulted in no release to the environment or tank annulus. The location of the crack is documented in C-ESR-G-00003, SRS High Level Waste Tank Leaksite Information, Rev.6.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gregory, Louis
2015-02-20
This report satisfies the U.S. Department of Energy (DOE), National Nuclear Security Administration Nevada Field Office (NNSA/NFO) commitment to prepare a quarterly summary report of radioactive waste shipments to and from the Nevada National Security Site (NNSS) Radioactive Waste Management Complex (RWMC) at Area 5. There were no shipments sent for offsite treatment and returned to the NNSS this quarter. This report summarizes the 1st quarter of Fiscal Year (FY) 2015 low-level radioactive waste (LLW) and mixed low-level radioactive waste (MLLW) shipments. Tabular summaries are provided which include the following: Sources of and carriers for LLW and MLLW shipments tomore » and from the NNSS; Number and external volume of LLW and MLLW shipments; Highway routes used by carriers; and Incident/accident data applicable to LLW and MLLW shipments. In this report shipments are accounted for upon arrival at the NNSS, while disposal volumes are accounted for upon waste burial. The disposal volumes presented in this report include minor volumes of non-radioactive classified waste/material that were approved for disposal (non-radioactive classified or nonradioactive classified hazardous). Volume reports showing cubic feet generated using the Low-Level Waste Information System may vary slightly due to rounding conventions for volumetric conversions from cubic meters to cubic feet.« less
Hanford immobilized low-activity tank waste performance assessment
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mann, F.M.
1998-03-26
The Hanford Immobilized Low-Activity Tank Waste Performance Assessment examines the long-term environmental and human health effects associated with the planned disposal of the vitrified low-level fraction of waste presently contained in Hanford Site tanks. The tank waste is the by-product of separating special nuclear materials from irradiated nuclear fuels over the past 50 years. This waste has been stored in underground single and double-shell tanks. The tank waste is to be retrieved, separated into low and high-activity fractions, and then immobilized by private vendors. The US Department of Energy (DOE) will receive the vitrified waste from private vendors and plansmore » to dispose of the low-activity fraction in the Hanford Site 200 East Area. The high-level fraction will be stored at Hanford until a national repository is approved. This report provides the site-specific long-term environmental information needed by the DOE to issue a Disposal Authorization Statement that would allow the modification of the four existing concrete disposal vaults to provide better access for emplacement of the immobilized low-activity waste (ILAW) containers; filling of the modified vaults with the approximately 5,000 ILAW containers and filler material with the intent to dispose of the containers; construction of the first set of next-generation disposal facilities. The performance assessment activity will continue beyond this assessment. The activity will collect additional data on the geotechnical features of the disposal sites, the disposal facility design and construction, and the long-term performance of the waste. Better estimates of long-term performance will be produced and reviewed on a regular basis. Performance assessments supporting closure of filled facilities will be issued seeking approval of those actions necessary to conclude active disposal facility operations. This report also analyzes the long-term performance of the currently planned disposal system as a basis to set requirements on the waste form and the facility design that will protect the long-term public health and safety and protect the environment.« less
Calculating the pre-consumer waste footprint: A screening study of 10 selected products.
Laurenti, Rafael; Moberg, Åsa; Stenmarck, Åsa
2017-01-01
Knowledge about the total waste generated by the production of consumer goods can help raise awareness among policy-makers, producers and consumers of the benefits of closing loops in a future circular economy, avoiding unnecessary production and production steps and associated generation of large amounts of waste. In strict life cycle assessment practice, information on waste outputs from intermediate industrial processes of material and energy transformation is translated into and declared as potential environmental impacts, which are often not reported in the final results. In this study, a procedure to extract available intermediate data and perform a systematic pre-consumer waste footprint analysis was developed. The pre-consumer waste footprint concept was tested to analyse 10 generic products, which provided some novel and interesting results for the different product categories and identified a number of challenges that need to be resolved in development of the waste footprint concept. These challenges include standardised data declaration on waste in life cycle assessment, with a separation into waste categories illustrating the implicit environmental and scale of significance of waste types and quantities (e.g. hazardous waste, inert waste, waste for recycling/incineration) and establishment of a common definition of waste throughout sectors and nations.
40 CFR 761.346 - Three levels of sampling.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Three levels of sampling. 761.346... PROHIBITIONS Sampling Non-Liquid, Non-Metal PCB Bulk Product Waste for Purposes of Characterization for PCB Disposal in Accordance With § 761.62, and Sampling PCB Remediation Waste Destined for Off-Site Disposal...
40 CFR 761.346 - Three levels of sampling.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Three levels of sampling. 761.346... PROHIBITIONS Sampling Non-Liquid, Non-Metal PCB Bulk Product Waste for Purposes of Characterization for PCB Disposal in Accordance With § 761.62, and Sampling PCB Remediation Waste Destined for Off-Site Disposal...
ERIC Educational Resources Information Center
Department of Energy, Washington, DC.
This booklet is about the disposal of high-level nuclear waste in the United States with a particular focus on Yucca Mountain, Nevada as a repository site. Intended for readers who do not have a technical background, the booklet discusses why scientists and engineers think high-level nuclear waste may be disposed of safely underground. An…
Andraski, Brian J.; Prudic, David E.; ,
1997-01-01
The suitability of a waste-burial site depends on hydrologic processes that can affect the near-surface water balance. In addition, the loss of burial trench integrity by erosion and subsidence of trench covers may increase the likelihood of infiltration and percolation, thereby reducing the effectiveness of the site in isolating waste. Although the main components of the water balance may be defined, direct measurements can be difficult, and actual data for specific locations are seldom available. A prevalent assumption is that little or no precipitation will percolate to buried wastes at an arid site. Thick unsaturated zones, which are common to arid regions, are thought to slow water movement and minimize the risk of waste migration to the underlying water table. Thus, reliance is commonly placed on the natural system to isolate contaminants at waste-burial sites in the arid West.Few data are available to test assumptions about the natural soil-water flow systems at arid sites, and even less is known about how the natural processes are altered by construction of a waste-burial facility. The lack of data is the result of technical complexity of hydraulic characterization of the dry, stony soils, and insufficient field studies that account for the extreme temporal and spatial variations in precipitation, soils, and plants in arid regions. In 1976, the U.S. Geological Survey (USGS) began a long-term study at a waste site in the Mojave Desert. This paper summarizes the findings of ongoing investigations done under natural-site and waste-burial conditions, and discusses how this information may be applied to the design of surface barriers for waste sites in arid environments.The waste-burial site is in one of the most arid parts of the United States and is about 40 km northeast of Death Valley, near Beatty, Nev. (Figure 1). Precipitation averaged 108 mm/yr during 1981-1992. The water table is 85-115 m below land surface (Fischer, 1992). Sediments are largely alluvial and fluvial deposits (Nichols, 1987). Vegetation is sparse; creosote bush is the dominant species. The waste facility has been used for burial of low-level radioactive waste (1962-1992) and hazardous chemical waste (1970 to present). Burial-trench construction includes excavation of native soil, emplacement of waste, and backfilling with previously stockpiled soil. Only the most recently closed hazardous-waste trench (1991) incorporates a plastic liner in the cover. The surfaces of completed burial trenches and perimeter areas are kept free of vegetation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
L. M. Dittmer
2006-09-27
The 100-B-20 waste site, located in the 100-BC-1 Operable Unit of the Hanford Site, consisted of an underground oil tank that once serviced the 1716-B Maintenance Garage. The selected action for the 100-B-20 waste site involved removal of the oil tanks and their contents and demonstrating through confirmatory sampling that all cleanup goals have been met. In accordance with this evaluation, a reclassification status of interim closed out has been determined. The results demonstrate that the site will support future unrestricted land uses that can be represented by a rural-residential scenario. These results also show that residual concentrations support unrestrictedmore » future use of shallow zone soil and that contaminant levels remaining in the soil are protective of groundwater and the Columbia River.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Black, S.C.; Townsend, Y.E.
1997-02-01
The Nevada Test Site (NTS), located in southern Nevada, has been the primary location for testing of nuclear explosives in the continental US. Testing began in 1951 and continued until the moratorium in 1992. Waste storage and disposal facilities for defense radioactive and mixed waste are located in Areas 3 and 5. At the Area 5 Radioactive Waste Management Site (RWMS-5), low-level wastes (LLW) from US Department of Energy (DOE) affiliated onsite and offsite generators are disposed of using standard shallow land disposal techniques. Transuranic wastes are retrievably stored at the RWMS-5 in containers on a surface pad, pending shipmentmore » to the Waste Isolation Pilot Plant facility in New Mexico. Nonradioactive hazardous wastes are accumulated at a special site before shipment to a licensed offsite disposal facility. Non-standard packages of LLW are buried in subsidence craters in the Area 3 RWMS. This report describes these activities on and around the NTS and includes a listing of the results obtained from environmental surveillance activities during the second calendar quarter of 1996.« less
Thermo-poroelastic response of an argillaceous limestone
NASA Astrophysics Data System (ADS)
Selvadurai, Patrick; Najari, Meysam
2016-04-01
Argillaceous limestones are now being considered by many countries that intend to develop deep geologic storage facilities for siting both high-level and intermediate- to low-level nuclear fuel wastes. In deep geologic settings for high level nuclear wastes, the heating due to radioactive decay is transmitted through an engineered barrier, which consists of the waste container and an engineered geologic barrier, which consists of an encapsulating compacted bentonite. The heat transfer process therefore leads to heating of the rock mass where the temperature of the rock is substantially lower than the surface temperature of the waste container. This permits the use of mathematical theories of poroelastic media where phase transformations, involving conversion of water to a vapour form are absent. While the thermo-poroelastic responses of geologic media such as granite and porous tuff have been investigated in the literature, the investigation of thermo-poroelastic responses of argillaceous limestones is relatively new. Argillaceous limestones are considered to be suitable candidates for siting deep geologic repositories owing to the ability to accommodate stress states with generation of severe defects that can influence their transmissivity characteristics. Also the clay fraction in such rocks can contribute to long term healing type phenomena, which is a considerable advantage. This research presents the results of a laboratory investigation and computational modelling of the same that examines the applicability of the theory of thermo-poroelasticity, which extend Biot's classical theory of poroelasticity to include uncoupled heat conduction. The experimental configuration involves the boundary heating of a cylinder of the Cobourg Limestone from southern Ontario, Canada. The cylinder measuring 150 mm in diameter and 278 mm in length contains an axisymmetric fluid-filled cylindrical cavity measuring 26 mm in diameter and 139 mm in length. Thermo-poroelastic effects are induced by instantaneously raising the boundary temperature of the cylinder from 25oC to either 40oC or 60oC. The thermo-poroelastic effects will lead to the generation of pore fluid pressures in the sealed cavity. The cavity fluid pressures will increase with time and will decay as the excess pressure diffuse into the argillaceous limestone. This pressure pulse signature is used to validate the applicability of a thermo-hydro-mechanical model, where the mechanical, physical and flow parameters used have been determined form separate tests. The correlation between the experimental results and the computational predictions are also assessed in terms of a sensitivity study where ranges of estimates are assigned for parameters with critical influences. _____________________________________________ 1 William Scott Professor and James McGill Professor 2 Post Doctoral Fellow
Fontenot, L W; Noble, G P; Akins, J M; Stephens, M D; Cobb, G P
2000-04-01
Livers of bullfrogs (Rana catesbeiana) from a polychlorinated biphenyl (PCB) contaminated watershed and hazardous waste site located in Pickens County, South Carolina, contained significantly higher concentrations of PCBs (2.33 and 2.26 ppm, respectively) than those from a reference site (0.05 ppm). Green frogs (R. clamitans) from the two contaminated sites also accumulated higher levels of PCBs (2.37 and 3.88 ppm, respectively) than those from the reference site (0.02 ppm). No temporal variation was observed in PCB concentrations of bullfrogs or green frogs from the contaminated sites between 1992 and 1993. Levels of PCBs in the livers of northern water snakes (Nerodia sipedon) were significantly higher in snakes from the contaminated watershed (13.70 ppm) than in those from the waste site (2.29 ppm) and two reference sites (2.50 and 1.23 ppm). When compared to frogs, significantly higher bioaccumulation occurred in water snakes from the contaminated watershed. No significant differences in PCB levels were found with respect to sex or body size (snout-vent length (SVL) or body mass) for frogs or snakes. PCBs were detected also in eggs of both frogs and snakes. Results of this study provide baseline data and document the bioaccumulation of PCB residues in frog and snake tissues; however, the significance of these tissue residues to reproduction, survival, growth/development, and population dynamics in contaminated habitats is unknown.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bardal, M.A.; Darwen, N.J.
2008-07-01
Cold war plutonium production led to extensive amounts of radioactive waste stored in tanks at the Department of Energy's (DOE) Hanford site. Bechtel National, Inc. is building the largest nuclear Waste Treatment Plant in the world located at the Department of Energy's Hanford site to immobilize the millions of gallons of radioactive waste. The site comprises five main facilities; Pretreatment, High Level Waste vitrification, Low Active Waste vitrification, an Analytical Lab and the Balance of Facilities. The pretreatment facilities will separate the high and low level waste. The high level waste will then proceed to the HLW facility for vitrification.more » Vitrification is a process of utilizing a melter to mix molten glass with radioactive waste to form a stable product for storage. The melter cave is designated as the High Level Waste Melter Cave Support Handling System (HSH). There are several key processes that occur in the HSH cell that are necessary for vitrification and include: feed preparation, mixing, pouring, cooling and all maintenance and repair of the process equipment. Due to the cell's high level radiation, remote handling equipment provided by PaR Systems, Inc. is required to install and remove all equipment in the HSH cell. The remote handling crane is composed of a bridge and trolley. The trolley supports a telescoping tube set that rigidly deploys a TR 4350 manipulator arm with seven degrees of freedom. A rotating, extending, and retracting slewing hoist is mounted to the bottom of the trolley and is centered about the telescoping tube set. Both the manipulator and slewer are unique to this cell. The slewer can reach into corners and the manipulator's cross pivoting wrist provides better operational dexterity and camera viewing angles at the end of the arm. Since the crane functions will be operated remotely, the entire cell and crane have been modeled with 3-D software. Model simulations have been used to confirm operational and maintenance functional and timing studies throughout the design process. Since no humans can go in or out of the cell, there are several recovery options that have been designed into the system including jack-down wheels for the bridge and trolley, recovery drums for the manipulator hoist, and a wire rope cable cutter for the slewer jib hoist. If the entire crane fails in cell, the large diameter cable reel that provides power, signal, and control to the crane can be used to retrieve the crane from the cell into the crane maintenance area. (authors)« less
NASA Astrophysics Data System (ADS)
Appiah, Isaac; Wemegah, David Dotse; Asare, Van-Dycke Sarpong; Danuor, Sylvester K.; Forson, Eric Dominic
2018-06-01
Non-invasive geophysical investigation using magnetic gradiometry, magnetic susceptibility survey and electrical resistivity tomography (ERT) was carried out on the Sunyani Municipal Assembly (SMA) solid waste disposal (SWD) site. The study was aimed at delineating the physical boundaries and the area extent of the waste deposit, mapping the distribution of the waste at the site, detecting and delineating zones of leachate contamination and its preferential migration pathways beneath the waste deposit and its surroundings. The results of both magnetic susceptibility and gradiometric methods displayed in anomaly maps clearly delineated the physical boundaries of the waste deposit with an approximate area extent of 82,650 m2 that are characterised by high magnetic susceptibilities between 426 × 10-5 SI and 9890 × 10-5 SI. They also revealed high magnetic anomalies erratically distributed within the waste deposit attributable to its heterogeneous and uncontrolled nature. The high magnetic anomalies outside the designated waste boundaries were also attributed to indiscriminate deposition of the waste. Similarly, the ERT sections delineated and characterised zones of leachate contamination beneath the waste body and its close surroundings as well as pathways for leachate migration with low resistivity signatures up to 43.9 Ωm. In spite of the successes reported herein using the ERT, this research also revealed that the ERT is less effective in estimating the thickness of the waste deposit in unlined SWD sites due to leachate infiltration into the ground beneath it that masks the resistivities of the top level ground and makes it indistinguishable from the waste body.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gregory, Louis B.
This special analysis evaluates whether the Sandia National Laboratory (SNL) Classified Macroencapsulated Mixed Waste stream (ASLA000001007, Revision 4) is suitable for disposal by shallow land burial (SLB) at the Area 5 Radioactive Waste Management Site (RWMS) at the Nevada National Security Site (NNSS). The SNL Classified Macroencapsulated Mixed Waste stream consists of debris from classified nuclear weapons components (SNL 2015). The SNL Classified Macroencapsulated Mixed Waste stream required a special analysis due to tritium (3H) exceeding the NNSS Waste Acceptance Criteria (WAC) Action Levels (U.S. Department of Energy, National Nuclear Security Administration Nevada Field Office [NNSA/NFO] 2015). The SNL Classifiedmore » Macroencapsulated Mixed Waste stream had no significant effect on the maximum mean and 95th percentile results for the resident air pathway and all-pathways annual total effective dose (TED). The SNL Classified Macroencapsulated Mixed Waste stream increases the mean air pathway and all-pathways annual TED from approximately 100 to 200 years after closure. Addition of the SNL Classified Macroencapsulated Mixed Waste stream inventory shifts the maximum TED to approximately 100 years after closure and increases the TED for several alternative exposure scenarios. The maximum mean and the 95th percentile 222Rn flux density remain less than the performance objective throughout the compliance period. The SNL Classified Macroencapsulated Mixed Waste stream is suitable for disposal by SLB at the Area 5 RWMS. The waste stream is recommended for approval without conditions.« less
NASA Astrophysics Data System (ADS)
de Faria, Bruna Fernanda; Moreira, Silvana
2011-12-01
The problem of solid waste in most countries is on the rise as a result of rapid population growth, urbanization, industrial development and changes in consumption habits. Amongst the various forms of waste disposals, landfills are today the most viable for the Brazilian reality, both technically and economically. Proper landfill construction practices allow minimizing the effects of the two main sources of pollution from solid waste: landfill gas and slurry. However, minimizing is not synonymous with eliminating; consequently, the landfill alone cannot resolve all the problems with solid waste disposal. The main goal of this work is to evaluate the content of trace elements in samples of groundwater, surface water and slurry arising from local solid waste disposals in the city of Campinas, SP, Brazil. Samples were collected at the Delta, Santa Barbara and Pirelli landfills. At the Delta and Santa Barbara sites, values above the maximum permitted level established by CETESB for Cr, Mn, Fe, Ni and Pb were observed in samples of groundwater, while at the Pirelli site, elements with concentrations above the permitted levels were Mn, Fe, Ba and Pb. At Delta, values above levels permitted by the CONAMA 357 legislation were still observed in surface water samples for Cr, Mn, Fe and Cu, whereas in slurry samples, values above the permitted levels were observed for Cr, Mn, Fe, Ni, Cu, Zn and Pb. Slurry samples were prepared in accordance with two extraction methodologies, EPA 3050B and EPA 200.8. Concentrations of Cr, Ni, Cu and Pb were higher than the limit established by CONAMA 357 for most samples collected at different periods (dry and rainy) and also for the two extraction methodologies employed.
Glasses for immobilization of low- and intermediate-level radioactive waste
NASA Astrophysics Data System (ADS)
Laverov, N. P.; Omel'yanenko, B. I.; Yudintsev, S. V.; Stefanovsky, S. V.; Nikonov, B. S.
2013-03-01
Reprocessing of spent nuclear fuel (SNF) for recovery of fissionable elements is a precondition of long-term development of nuclear energetics. Solution of this problem is hindered by the production of a great amount of liquid waste; 99% of its volume is low- and intermediate-level radioactive waste (LILW). The volume of high-level radioactive waste (HLW), which is characterized by high heat release, does not exceed a fraction of a percent. Solubility of glasses at an elevated temperature makes them unfit for immobilization of HLW, the insulation of which is ensured only by mineral-like matrices. At the same time, glasses are a perfect matrix for LILW, which are distinguished by low heat release. The solubility of borosilicate glass at a low temperature is so low that even a glass with relatively low resistance enables them to retain safety of under-ground LILW depositories without additional engineering barriers. The optimal technology of liquid confinement is their concentration and immobilization in borosilicate glasses, which are disposed in shallow-seated geological repositories. The vitrification of 1 m3 liquid LILW with a salt concentration of ˜300 kg/m3 leaves behind only 0.2 m3 waste, that is, 4-6 times less than by bitumen impregnation and 10 times less than by cementation. Environmental and economic advantages of LILW vitrification result from (1) low solubility of the vitrified LILW in natural water; (2) significant reduction of LILW volume; (3) possibility to dispose the vitrified waste without additional engineering barriers under shallow conditions and in diverse geological media; (4) the strength of glass makes its transportation and storage possible; and finally (5) reliable longterm safety of repositories. When the composition of the glass matrix for LILW is being chosen, attention should be paid to the factors that ensure high technological and economic efficiency of vitrification. The study of vitrified LILW from the Kursk nuclear power plant with high-power channel reactors (HPCR; equivalent Russian acronym, RBMK) and the Kalinin nuclear power plant with pressurized water reactors (PWR; equivalent Russian acronym VVER) after their 14-yr storage in the shallow-seated repository at the MosNPO Radon testing ground has confirmed the safety of repositories ensured by confinement properties of borosilicate matrix. The most efficient vitrification technology is based on cold crucible induction melting. If the content of a chemical element in waste exceeds its solubility in glass, a crystalline phase is formed in the course of vitrification, so that the glass ceramics become a matrix for such waste. Vitrified waste with high Fe; Na and Al; Na, Fe, and Al; Na and B is characterized. The composition of frit and its proportion to waste depends on waste composition. This procedure requires careful laboratory testing.
ANNUAL RADIOACTIVE WASTE TANK INSPECTION PROGRAM- 2007
DOE Office of Scientific and Technical Information (OSTI.GOV)
West, B; Ruel Waltz, R
2008-06-05
Aqueous radioactive wastes from Savannah River Site (SRS) separations and vitrification processes are contained in large underground carbon steel tanks. The 2007 inspection program revealed that the structural integrity and waste confinement capability of the Savannah River Site waste tanks were maintained. A very small amount of material had seeped from Tank 12 from a previously identified leaksite. The material observed had dried on the tank wall and did not reach the annulus floor. A total of 5945 photographs were made and 1221 visual and video inspections were performed during 2007. Additionally, ultrasonic testing was performed on four Waste Tanksmore » (15, 36, 37 and 38) in accordance with approved inspection plans that met the requirements of WSRC-TR-2002- 00061, Revision 2 'In-Service Inspection Program for High Level Waste Tanks'. The Ultrasonic Testing (UT) In-Service Inspections (ISI) are documented in a separate report that is prepared by the ISI programmatic Level III UT Analyst. Tanks 15, 36, 37 and 38 are documented in 'Tank Inspection NDE Results for Fiscal Year 2007'; WSRC-TR-2007-00064.« less
POOL WATER TREATMENT AND COOLING SYSTEM DESCRIPTION DOCUMENT
DOE Office of Scientific and Technical Information (OSTI.GOV)
V. King
2000-06-19
The Pool Water Treatment and Cooling System is located in the Waste Handling Building (WHB), and is comprised of various process subsystems designed to support waste handling operations. This system maintains the pool water temperature within an acceptable range, maintains water quality standards that support remote underwater operations and prevent corrosion, detects leakage from the pool liner, provides the capability to remove debris from the pool, controls the pool water level, and helps limit radiological exposure to personnel. The pool structure and liner, pool lighting, and the fuel staging racks in the pool are not within the scope of themore » Pool Water Treatment and Cooling System. Pool water temperature control is accomplished by circulating the pool water through heat exchangers. Adequate circulation and mixing of the pool water is provided to prevent localized thermal hotspots in the pool. Treatment of the pool water is accomplished by a water treatment system that circulates the pool water through filters, and ion exchange units. These water treatment units remove radioactive and non-radioactive particulate and dissolved solids from the water, thereby providing the water clarity needed to conduct waste handling operations. The system also controls pool water chemistry to prevent advanced corrosion of the pool liner, pool components, and fuel assemblies. Removal of radioactivity from the pool water contributes to the project ALARA (as low as is reasonably achievable) goals. A leak detection system is provided to detect and alarm leaks through the pool liner. The pool level control system monitors the water level to ensure that the minimum water level required for adequate radiological shielding is maintained. Through interface with a demineralized water system, adequate makeup is provided to compensate for loss of water inventory through evaporation and waste handling operations. Interface with the Site Radiological Monitoring System provides continuous radiological monitoring of the pool water. The Pool Water Treatment and Cooling System interfaces with the Waste Handling Building System, Site-Generated Radiological Waste Handling System, Site Radiological Monitoring System, Waste Handling Building Electrical System, Site Water System, and the Monitored Geologic Repository Operations Monitoring and Control System.« less
Shi, Jingchun; Zheng, Gene Jin-Shu; Wong, Ming-Hung; Liang, Hong; Li, Yuelin; Wu, Yinglin; Li, Ping; Liu, Wenhua
2016-05-01
Guiyu, China has been one of the largest e-waste recycling sites of the world for more than 20 years. Abundant data show that local dwellers there suffered from severe health risks from e-waste contaminants. In this study, polycyclic aromatic hydrocarbons (PAHs) were used as candidates to test the contamination levels and their possible adverse effects on residents in Haimen Bay, the estuary of Lian River (less than 30km from Guiyu), which has been totally neglected. The concentrations of 16PAHs were determined in collected marine fish with a median ΣPAH concentration of 1478ng/g (wet weight), and the contamination may be mainly influenced by Lian River runoff, specifically from Guiyu. The lifetime excess cancer risk for local dwellers was much higher than the serious risk level (10(-4)). More seriously, outflows of PAHs from the e-waste recycling site (Guiyu) seemed to exert health risks of a much larger scale of population downstream. Copyright © 2016 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Bentham, H. L. M.; Morgan, J. V.; Angus, D. A.
2016-12-01
The UK has a large volume of high level and intermediate level radioactive waste and government policy is to dispose of this waste in a Geological Disposal Facility (GDF). This will be a highly-engineered facility capable of isolating radioactive waste within multiple protective barriers, deep underground, to ensure that no harmful quantities of radioactivity ever reach the surface environment. Although no specific GDF site in the UK has been chosen, granite is one of the candidate host rocks due to its strength, in engineering terms, and because of its low permeability in consideration of groundwater movement. We design time-lapse seismic surveys to characterise geological models of naturally fractured granite with GDF-related tunnel damage zones at a potential disposal depth of 1000 m (the UK GDF might be shallower). Additionally, we use effective medium models to calculate the velocity change when the fracture density is increased in the damage zones, and find a reduction of 60 m/s in P-wave velocity when the fracture density is doubled. Next, we simulate seismic surveys and apply 3D Full Waveform Inversion (FWI) to see how well we can recover the low-velocity damage zones. Furthermore we evaluate the effectiveness of using a survey design consisting of surface and tunnel receivers (a combined array) to resolve the target. After applying FWI we find the velocity anomaly within the damage zone can be resolved to within 2 m/s (3%) and the shape of the damage zone is resolved to 12.5 m (within a single grid cell). Using the combined array we are able to resolve the anomaly strength and shape more completely. When we add further complexity to the model by including tunnel infrastructure, we conclude the combined array is essential in recovering the tunnel damage zone. Our findings show that it is beneficial to use 3D FWI and novel survey designs for characterising subtle variations as may be present in granite, information that could assist in the GDF site selection process and also with GDF design.
Description and hydrogeologic evaluation of nine hazardous-waste sites in Kansas, 1984-86
Hart, R.J.; Spruill, T.B.
1988-01-01
Wastes generated at nine hazardous-waste sites in Kansas were disposed in open pits, 55-gal drums, or large storage tanks. These disposal methods have the potential to contaminate groundwater beneath the sites, the soil on the sites, and nearby surface water bodies. Various activities on the nine sites included production of diborane, transformer oil waste, production of soda ash, use of solvents for the manufacture of farm implements, reclamation of solvents and paints, oil-refinery wastes, meat packaging, and the manufacture and cleaning of tanker-truck tanks. Monitoring wells were installed upgradient and downgradient from the potential contamination source on each site. Strict decontamination procedures were followed to prevent cross contamination between well installations. Air-quality surveys were made on each site before other investigative procedures started. Hydrogeologic investigative techniques, such as terrain geophysical surveys, gamma-ray logs, and laboratory permeameter tests, were used. Groundwater level measurements provide data to determine the direction of flow. Groundwater contamination detected under the sites posed the greatest threat to the environment because of possible migration of contaminants by groundwater flow. Concentrations of volatile organic compounds, polynuclear aromatic hydrocarbons, and trace metals were detected in the groundwater at several of the sites. Many of the same compounds detected in the groundwater also were detected in soil and bed-material samples collected onsite or adjacent to the sites. Several contaminants were detected in background samples of groundwater and soil. (USGS)
40 CFR 761.280 - Application and scope.
Code of Federal Regulations, 2010 CFR
2010-07-01
... Remediation Waste and Porous Surfaces in Accordance With § 761.61(a)(6) § 761.280 Application and scope...-implementing, on-site disposal of bulk PCB remediation waste and porous surfaces consistent with the levels of...
Sugimoto, Takamichi; Ochi, Kazuhide; Hosomi, Naohisa; Takahashi, Tetsuya; Ueno, Hiroki; Nakamura, Takeshi; Nagano, Yoshito; Maruyama, Hirofumi; Kohriyama, Tatsuo; Matsumoto, Masayasu
2013-10-01
Demyelinating Charcot-Marie-Tooth disease (CMT) and chronic inflammatory demyelinating polyneuropathy (CIDP) are both demyelinating polyneuropathies. The differences in nerve enlargement degree and pattern at multiple evaluation sites/levels are not well known. We investigated the differences in nerve enlargement degree and the distribution pattern of nerve enlargement in patients with demyelinating CMT and CIDP, and verified the appropriate combination of sites/levels to differentiate between these diseases. Ten patients (aged 23-84 years, three females) with demyelinating CMT and 16 patients (aged 30-85 years, five females) with CIDP were evaluated in this study. The nerve sizes were measured at 24 predetermined sites/levels from the median and ulnar nerves and the cervical nerve roots (CNR) using ultrasonography. The evaluation sites/levels were classified into three regions: distal, intermediate and cervical. The number of sites/levels that exhibited nerve enlargement (enlargement site number, ESN) in each region was determined from the 24 sites/levels and from the selected eight screening sites/levels, respectively. The cross-sectional areas of the peripheral nerves were markedly larger at all evaluation sites in patients with demyelinating CMT than in patients with CIDP (p < 0.01). However, the nerve sizes of CNR were not significantly different between patients with either disease. When we evaluated ESN of four selected sites for screening from the intermediate region, the sensitivity and specificity to distinguish between demyelinating CMT and CIDP were 0.90 and 0.94, respectively, with the cut-off value set at four. Nerve ultrasonography is useful to detect nerve enlargement and can clarify morphological differences in nerves between patients with demyelinating CMT and CIDP.
Selecting reasonable future land use scenarios
DOE Office of Scientific and Technical Information (OSTI.GOV)
Allred, W.E.; Smith, R.W.
1995-12-31
This paper examines a process to help select the most reasonable future land use scenarios for hazardous waste and/or low-level radioactive waste disposal sites. The process involves evaluating future land use scenarios by applying selected criteria currently used by commercial mortgage companies to determine the feasibility of obtaining a loan for purchasing such land. The basis for the process is that only land use activities for which a loan can be obtained will be considered. To examine the process, a low-level radioactive waste site, the Radioactive Waste Management Complex at the Idaho National Engineering Laboratory, is used as an example.more » The authors suggest that the process is a very precise, comprehensive, and systematic (common sense) approach for determining reasonable future use of land. Implementing such a process will help enhance the planning, decisionmaking, safe management, and cleanup of present and future disposal facilities.« less
Disposal of low-level radioactive waste. Impact on the medical profession
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brill, D.R.; Allen, E.W.; Lutzker, L.G.
1985-11-01
During 1985, low-level radioactive waste disposal has become a critical concern. The issue has been forced by the threatened closure of the three commercial disposal sites. The medical community has used radioactive isotopes for decades in nuclear medicine, radiation therapy, radioimmunoassay, and biomedical research. Loss of disposal capacity for radioactive wastes generated by these activities, by the suppliers of radioisotopes, and by pharmaceutical companies will have a profound impact on the medical profession.
Twining, J R; Hughes, C E; Harrison, J J; Hankin, S; Crawford, J; Johansen, M; Dyer, L
2011-06-01
The results of a 21 month sampling program measuring tritium in tree transpirate with respect to local sources are reported. The aim was to assess the potential of tree transpirate to indicate the presence of sub-surface seepage plumes. Transpirate gathered from trees near low-level nuclear waste disposal trenches contained activity concentrations of (3)H that were significantly higher (up to ∼700 Bq L(-1)) than local background levels (0-10 Bq L(-1)). The effects of the waste source declined rapidly with distance to be at background levels within 10s of metres. A research reactor 1.6 km south of the site contributed significant (p < 0.01) local fallout (3)H but its influence did not reach as far as the disposal trenches. The elevated (3)H levels in transpirate were, however, substantially lower than groundwater concentrations measured across the site (ranging from 0 to 91% with a median of 2%). Temporal patterns of tree transpirate (3)H, together with local meteorological observations, indicate that soil water within the active root zones comprised a mixture of seepage and rainfall infiltration. The degree of mixing was variable given that the soil water activity concentrations were heterogeneous at a scale equivalent to the effective rooting volume of the trees. In addition, water taken up by roots was not well mixed within the trees. Based on correlation modelling, net rainfall less evaporation (a surrogate for infiltration) over a period of from 2 to 3 weeks prior to sampling seems to be the optimum predictor of transpirate (3)H variability for any sampled tree at this site. The results demonstrate successful use of (3)H in transpirate from trees to indicate the presence and general extent of sub-surface contamination at a low-level nuclear waste site. Crown Copyright © 2011. Published by Elsevier Ltd. All rights reserved.
SITE GENERATED RADIOLOGICAL WASTE HANDLING SYSTEM DESCRIPTION DOCUMENT
DOE Office of Scientific and Technical Information (OSTI.GOV)
S. C. Khamankar
2000-06-20
The Site Generated Radiological Waste Handling System handles radioactive waste products that are generated at the geologic repository operations area. The waste is collected, treated if required, packaged for shipment, and shipped to a disposal site. Waste streams include low-level waste (LLW) in solid and liquid forms, as-well-as mixed waste that contains hazardous and radioactive constituents. Liquid LLW is segregated into two streams, non-recyclable and recyclable. The non-recyclable stream may contain detergents or other non-hazardous cleaning agents and is packaged for shipment. The recyclable stream is treated to recycle a large portion of the water while the remaining concentrated wastemore » is packaged for shipment; this greatly reduces the volume of waste requiring disposal. There will be no liquid LLW discharge. Solid LLW consists of wet solids such as ion exchange resins and filter cartridges, as-well-as dry active waste such as tools, protective clothing, and poly bags. Solids will be sorted, volume reduced, and packaged for shipment. The generation of mixed waste at the Monitored Geologic Repository (MGR) is not planned; however, if it does come into existence, it will be collected and packaged for disposal at its point of occurrence, temporarily staged, then shipped to government-approved off-site facilities for disposal. The Site Generated Radiological Waste Handling System has equipment located in both the Waste Treatment Building (WTB) and in the Waste Handling Building (WHB). All types of liquid and solid LLW are processed in the WTB, while wet solid waste from the Pool Water Treatment and Cooling System is packaged where received in the WHB. There is no installed hardware for mixed waste. The Site Generated Radiological Waste Handling System receives waste from locations where water is used for decontamination functions. In most cases the water is piped back to the WTB for processing. The WTB and WHB provide staging areas for storing and shipping LLW packages as well as any mixed waste packages. The buildings house the system and provide shielding and support for the components. The system is ventilated by and connects to the ventilation systems in the buildings to prevent buildup and confine airborne radioactivity via the high efficiency particulate air filters. The Monitored Geologic Repository Operations Monitoring and Control System will provide monitoring and supervisory control facilities for the system.« less
EM-21 Retrieval Knowledge Center: Waste Retrieval Challenges
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fellinger, Andrew P.; Rinker, Michael W.; Berglin, Eric J.
EM-21 is the Waste Processing Division of the Office of Engineering and Technology, within the U.S. Department of Energy’s (DOE) Office of Environmental Management (EM). In August of 2008, EM-21 began an initiative to develop a Retrieval Knowledge Center (RKC) to provide the DOE, high level waste retrieval operators, and technology developers with centralized and focused location to share knowledge and expertise that will be used to address retrieval challenges across the DOE complex. The RKC is also designed to facilitate information sharing across the DOE Waste Site Complex through workshops, and a searchable database of waste retrieval technology information.more » The database may be used to research effective technology approaches for specific retrieval tasks and to take advantage of the lessons learned from previous operations. It is also expected to be effective for remaining current with state-of-the-art of retrieval technologies and ongoing development within the DOE Complex. To encourage collaboration of DOE sites with waste retrieval issues, the RKC team is co-led by the Savannah River National Laboratory (SRNL) and the Pacific Northwest National Laboratory (PNNL). Two RKC workshops were held in the Fall of 2008. The purpose of these workshops was to define top level waste retrieval functional areas, exchange lessons learned, and develop a path forward to support a strategic business plan focused on technology needs for retrieval. The primary participants involved in these workshops included retrieval personnel and laboratory staff that are associated with Hanford and Savannah River Sites since the majority of remaining DOE waste tanks are located at these sites. This report summarizes and documents the results of the initial RKC workshops. Technology challenges identified from these workshops and presented here are expected to be a key component to defining future RKC-directed tasks designed to facilitate tank waste retrieval solutions.« less
Contaminated groundwater characterization at the Chalk River Laboratories, Ontario, Canada
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schilk, A.J.; Robertson, D.E.; Thomas, C.W.
1993-03-01
The licensing requirements for the disposal of low-level radioactive waste (10 CFR 61) specify the performance objectives and technical requisites for federal and commercial land disposal facilities, the ultimate goal of which is to contain the buried wastes so that the general population is adequately protected from harmful exposure to any released radioactive materials. A major concern in the operation of existing and projected waste disposal sites is subterranean radionuclide transport by saturated or unsaturated flow, which could lead to the contamination of groundwater systems as well as uptake by the surrounding biosphere, thereby directly exposing the general public tomore » such materials. Radionuclide transport in groundwater has been observed at numerous commercial and federal waste disposal sites [including several locations within the waste management area of Chalk River Laboratories (CRL)], yet the physico-chemical processes that lead to such migration are still not completely understood. In an attempt to assist in the characterization of these processes, an intensive study was initiated at CRL to identify and quantify the mobile radionuclide species originating from three separate disposal sites: (a) the Chemical Pit, which has received aqueous wastes containing various radioisotopes, acids, alkalis, complexing agents and salts since 1956, (b) the Reactor Pit, which has received low-level aqueous wastes from a reactor rod storage bay since 1956, and (c) the Waste Management Area C, a thirty-year-old series of trenches that contains contaminated solid wastes from CRL and various regional medical facilities. Water samples were drawn downgradient from each of the above sites and passed through a series of filters and ion-exchange resins to retain any particulate and dissolved or colloidal radionuclide species, which were subsequently identified and quantified via radiochemical separations and gamma spectroscopy. These groundwaters were also analyzed for anions, trace metals, Eh, pH, alkalinity and dissolved oxygen.« less
Vascular plants of waste storage sites in the 200 areas of the Hanford reservation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Price, K.R.; Rickard, W.H.
1973-12-01
A brief accounting of terrestrial, riparian and semi-aquatic plants known to be associated with radioactive waste storage sites in the 200 Areas of the Hanford Reservation is given. In most cases the species are characteristic of those which generally inhabit the reservation, but some plants are restricted to specialized habitats provided by particular waste storage sites. It is impractical to list all species growing at each waste storage site because of seasonal variation and changes brought about by environmental management practices. An alpbabetical listing has been prepared with an example of where each species is known to occur. The listmore » will be updated as needed and expanded to include other waste storage areas. Plant specimens were collected during spring and fall when flowering material was available. Herbarium mounts were prepared of many specimens and have been retained as part of the Hanford Reservation herbarium collection. Identification to species level was made whenever possible. Color photographs of the specimen mounts are used as training aids and demonstration material by ARHCO Radiation Monitoring personnel. (auth)« less
UNSAT-H Version 2. 0: Unsaturated soil water and heat flow model
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fayer, M.J.; Jones, T.L.
1990-04-01
This report documents UNSAT-H Version 2.0, a model for calculating water and heat flow in unsaturated media. The documentation includes the bases for the conceptual model and its numerical implementation, benchmark test cases, example simulations involving layered soils and plant transpiration, and the code listing. Waste management practices at the Hanford Site have included disposal of low-level wastes by near-surface burial. Predicting the future long-term performance of any such burial site in terms of migration of contaminants requires a model capable of simulating water flow in the unsaturated soils above the buried waste. The model currently used to meet thismore » need is UNSAT-H. This model was developed at Pacific Northwest Laboratory to assess water dynamics of near-surface, waste-disposal sites at the Hanford Site. The code is primarily used to predict deep drainage as a function of such environmental conditions as climate, soil type, and vegetation. UNSAT-H is also used to simulate the effects of various practices to enhance isolation of wastes. 66 refs., 29 figs., 7 tabs.« less
Garklavs, George; Healy, R.W.
1986-01-01
Groundwater flow and tritium movement are described at and near a low-level radioactive waste disposal site near Sheffield, Illinois. Flow in the shallow aquifer is confined to three basins that ultimately drain into a stripmine lake. Most of the flow from the site is through a buried, pebbly sandfilled channel. Remaining flow is toward alluvium of an existing stream. Conceptual flow models for the two largest basins are used to improve definition of flow velocity and direction. Flow velocities range from about 25 to 2,500 ft/yr. Tritium was found in all three basins. The most extensive migration of tritium is coincident with buried channel. Tritium concentrations ranged from detection level to more than 300 nanocuries/L. (USGS)
Gao, Shutao; Hong, Jianwen; Yu, Zhiqiang; Wang, Jingzhi; Yang, Guoyi; Sheng, Guoying; Fu, Jiamo
2011-12-01
Polybrominated diphenyl ethers (PBDEs) were determined in 60 surface soils from two e-waste recycling sites (Qingyuan and Guiyu, China) and their surrounding areas to assess the extent and influence of PBDEs from e-waste recycling sites on the surrounding areas. A total of 32 surface soils from industrial areas in South China were also investigated for comparison. The mean concentrations of total PBDEs in the e-waste recycling sites of Guiyu and Qingyuan were 2,909 and 3,230 ng/g dry weight, respectively, whereas the PBDE concentrations decreased dramatically (1-2 orders of magnitude) with increasing distance from the recycling site, suggesting that the e-waste recycling activities were the major source of PBDEs in the surrounding areas. Decabromodiphenyl ethers accounted for 77.0 to 85.8% of total PBDEs in e-waste recycling areas, whereas it accounted for 90.2% in industrial areas. Principal component analysis showed that the major source of PBDEs in e-waste recycling areas were a combination of penta-, octa-, and deca-BDE commercial formulations, whereas deca-BDE commercial formulations were the major source of PBDE congeners in industrial areas. The inventories of PBDEs gave preliminary estimates of 6.22 tons and 13.4 tons for the e-waste recycling areas and industrial areas. The results suggested that significantly higher PBDEs in the e-waste recycling sites have already affected surrounding areas negatively within a relatively large distance. Because of the environmental persistence, bioaccumulation, and toxicity of PBDEs, improving the recycling techniques employed at such facilities and developing e-waste management policies are necessary. Copyright © 2011 SETAC.
DOE Office of Scientific and Technical Information (OSTI.GOV)
French, Sean B.; Shuman, Robert
2012-04-17
The Los Alamos National Laboratory (LANL or the Laboratory) generates radioactive waste as a result of various activities. Operational or institutional waste is generated from a wide variety of research and development activities including nuclear weapons development, energy production, and medical research. Environmental restoration (ER), and decontamination and decommissioning (D and D) waste is generated as contaminated sites and facilities at LANL undergo cleanup or remediation. The majority of this waste is low-level radioactive waste (LLW) and is disposed of at the Technical Area 54 (TA-54), Area G disposal facility. U.S. Department of Energy (DOE) Order 435.1 (DOE, 2001) requiresmore » that radioactive waste be managed in a manner that protects public health and safety, and the environment. To comply with this order, DOE field sites must prepare and maintain site-specific radiological performance assessments for LLW disposal facilities that accept waste after September 26, 1988. Furthermore, sites are required to conduct composite analyses that account for the cumulative impacts of all waste that has been (or will be) disposed of at the facilities and other sources of radioactive material that may interact with the facilities. Revision 4 of the Area G performance assessment and composite analysis was issued in 2008 (LANL, 2008). These analyses estimate rates of radionuclide release from the waste disposed of at the facility, simulate the movement of radionuclides through the environment, and project potential radiation doses to humans for several on-site and off-site exposure scenarios. The assessments are based on existing site and disposal facility data and on assumptions about future rates and methods of waste disposal. The accuracy of the performance assessment and composite analysis depends upon the validity of the data used and assumptions made in conducting the analyses. If changes in these data and assumptions are significant, they may invalidate or call into question certain aspects of the analyses. For example, if the volumes and activities of waste disposed of during the remainder of the disposal facility's lifetime differ significantly from those projected, the doses projected by the analyses may no longer apply. DOE field sites are required to implement a performance assessment and composite analysis maintenance program. The purpose of this program is to ensure the continued applicability of the analyses through incremental improvement of the level of understanding of the disposal site and facility. Site personnel are required to conduct field and experimental work to reduce the uncertainty in the data and models used in the assessments. Furthermore, they are required to conduct periodic reviews of waste receipts, comparing them to projected waste disposal rates. The radiological inventory for Area G was updated in conjunction with Revision 4 of the performance assessment and composite analysis (Shuman, 2008). That effort used disposal records and other sources of information to estimate the quantities of radioactive waste that have been disposed of at Area G from 1959, the year the facility started receiving waste on a routine basis, through 2007. It also estimated the quantities of LLW that will require disposal from 2008 through 2044, the year in which it is assumed that disposal operations at Area G will cease. This report documents the fourth review of Area G disposal receipts since the inventory was updated and examines information for waste placed in the ground during fiscal years (FY) 2008 through 2011. The primary objective of the disposal receipt review is to ensure that the future waste inventory projections developed for the performance assessment and composite analysis are consistent with the actual types and quantities of waste being disposed of at Area G. Toward this end, the disposal data that are the subject of this review are used to update the future waste inventory projections for the disposal facility. These projections are compared to the future inventory projections that were developed for Revision 4 of the performance assessment and composite analysis. The approach used to characterize the FY 2008 through 2011 waste is generally the same as that used to characterize the inventory for the Revision 4 analyses (Shuman, 2008). This methodology is described in Section 2. The results of the disposal receipt review are presented in Section 3 and discussed in terms of their significance to the Area G analyses.« less
Low-Level Waste Forum notes and summary reports for 1994. Volume 9, Number 3, May-June 1994
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1994-06-01
This issue includes the following articles: Vermont ratifies Texas compact; Pennsylvania study on rates of decay for classes of low-level radioactive waste; South Carolina legislature adjourns without extending access to Barnwell for out-of-region generators; Southeast Compact Commission authorizes payments for facility development, also votes on petitions, access contracts; storage of low-level radioactive waste at Rancho Seco removed from consideration; plutonium estimates for Ward Valley, California; judgment issued in Ward Valley lawsuits; Central Midwest Commission questions court`s jurisdiction over surcharge rebates litigation; Supreme Court decides commerce clause case involving solid waste; parties voluntarily dismiss Envirocare case; appellate court affirms dismissal ofmore » suit against Central Commission; LLW Forum mixed waste working group meets; US EPA Office of Radiation and Indoor Air rulemakings; EPA issues draft radiation site cleanup regulation; EPA extends mixed waste enforcement moratorium; and NRC denies petition to amend low-level radioactive waste classification regulations.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, HakSoo; Chung, SungHwan; Maeng, SungJun
2013-07-01
The amount of radioactive wastes from decommissioning of a nuclear power plant varies greatly depending on factors such as type and size of the plant, operation history, decommissioning options, and waste treatment and volume reduction methods. There are many methods to decrease the amount of decommissioning radioactive wastes including minimization of waste generation, waste reclassification through decontamination and cutting methods to remove the contaminated areas. According to OECD/NEA, it is known that the radioactive waste treatment and disposal cost accounts for about 40 percentage of the total decommissioning cost. In Korea, it is needed to reduce amount of decommissioning radioactivemore » waste due to high disposal cost, about $7,000 (as of 2010) per a 200 liter drum for the low- and intermediate-level radioactive waste (LILW). In this paper, cutting methods to minimize the radioactive waste of activated concrete were investigated and associated decommissioning cost impact was assessed. The cutting methods considered are cylindrical and volume reductive cuttings. The study showed that the volume reductive cutting is more cost-effective than the cylindrical cutting. Therefore, the volume reductive cutting method can be effectively applied to the activated bio-shield concrete. (authors)« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gregory, Louis
2014-09-20
This report satisfies the U.S. Department of Energy (DOE), National Nuclear Security Administration Nevada Field Office (NNSA/NFO) commitment to prepare a quarterly summary report of radioactive waste shipments to the Nevada National Security Site (NNSS) Radioactive Waste Management Complex (RWMC) at Area 5. There were no shipments sent for offsite treatment and returned to the NNSS this quarter. This report summarizes the 3rd quarter of Fiscal Year (FY) 2014 low-level radioactive waste (LLW) and mixed low-level radioactive waste (MLLW) shipments. This report also includes annual summaries for FY 2014 in Tables 4 and 5. Tabular summaries are provided which includemore » the following: Sources of and carriers for LLW and MLLW shipments to and from the NNSS; Number and external volume of LLW and MLLW shipments; Highway routes used by carriers; and Incident/accident data applicable to LLW and MLLW shipments. In this report shipments are accounted for upon arrival at the NNSS, while disposal volumes are accounted for upon waste burial. The disposal volumes presented in this report do not include minor volumes of non-radioactive materials that were approved for disposal. Volume reports showing cubic feet generated using the Low-Level Waste Information System may vary slightly due to differing rounding conventions.« less
Sun, Mingming; Ye, Mao; Schwab, Arthur P; Li, Xu; Wan, Jinzhong; Wei, Zhong; Wu, Jun; Friman, Ville-Petri; Liu, Kuan; Tian, Da; Liu, Manqiang; Li, Huixin; Hu, Feng; Jiang, Xin
2016-09-05
Landfills are perfect sites to study the effect of human migration on fluctuation of antibiotic resistance genes (ARGs) as they are the final destination of municipal waste. For example, large-scale human migration during the holidays is often accompanied by changes in waste dumping having potential effects on ARG abundance. Three landfills were selected to examine fluctuation in the abundance of fifteen ARGs and Intl1 genes for 14 months in Nanjing, eastern China. Mass human migration, the amount of dumped waste and temperature exerted the most significant effects on bimonthly fluctuations of ARG levels in landfill sites. As a middle-sized cosmopolitan city in China, millions of college students and workers migrate during holidays, contributing to the dramatic increases in waste production and fluctuation in ARG abundances. In line with this, mass migration explained most of the variation in waste dumping. The waste dumping also affected the bioaccessibility of mixed-compound pollutants that further positively impacted the level of ARGs. The influence of various bioaccessible compounds on ARG abundance followed the order: antibiotics>nutrients>metals>organic pollutants. Concentrations of bioaccessible compounds were more strongly correlated with ARG levels compared to total compound concentrations. Improved waste classification and management strategies could thus help to decrease the amount of bioaccessible pollutants leading to more effective control for urban ARG dissemination. Copyright © 2016 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
GOLDSTON, WELFORD T.; SMITH, WINCHESTER IV
DOE issued Order 435.1, ''Radioactive Waste Management,'' on July 9, 1999 for immediate implementation. The requirements for Low Level Mixed, Transuranic, and High Level Waste have been completely rewritten. The entire DOE complex has been struggling with how to implement these new requirements within the one year required timeframe. This paper will chronicle the implementation strategy and actual results of the work to carry out that strategy at the Savannah River Site. DOE-SR and the site contractors worked closely together to implement each of the new requirements across the SRS, crossing many barriers and providing innovative solutions to the manymore » problems that surfaced throughout the year. The results are that SRS declared compliance with all of the requirements of the Order within the prescribed timeframe. The challenge included all waste types in SRS facilities and programs that handle LLW, MLLW, TRU, and HLW. This paper will describe the implementation details for development of Radioactive Waste Management Basis for each facility, Identification of Wastes with No Path to Disposal, Waste Incidental to Reprocessing Determinations, Low Level Waste 90-Day Staging and One Year Limits for Storage Programs, to name a few of the requirements that were addressed by the SRS 435.1 Implementation Team. This paper will trace the implementation, problems (both technical and administrative), and the current pushback efforts associated with the DOE ''Top-to-Bottom'' review.« less
Tue, Nguyen Minh; Takahashi, Shin; Subramanian, Annamalai; Sakai, Shinichi; Tanabe, Shinsuke
2013-07-01
E-waste recycling using uncontrolled processes is a major source of dioxin-related compounds (DRCs), including not only the regulated polychlorinated dibenzo-p-dioxins/dibenzofurans (PCDD/Fs) and dioxin-like polychlorinated biphenyls (DL-PCBs) but also non-regulated brominated and mixed halogenated compounds (PBDD/Fs and PXDD/Fs). Various studies at informal e-waste recycling sites (EWRSs) in Asian developing countries found the soil contamination levels of PCDD/Fs from tens to ten thousand picogram TCDD-equivalents (TEQ) per gram and those of DL-PCBs up to hundreds of picogram TEQ per gram. The air concentration of PCDD/Fs was reported as high as 50 pg TEQ per m(3) in Guiyu, the largest Chinese EWRS. Non-regulated compounds also contributed substantially to the total DL toxicity of the DRC mixtures from e-waste, as evidenced by the high TEQ levels estimated for the currently identifiable PBDD/Fs as well as the large portion of unexplained bioassay-derived TEQ levels in soils/dusts from EWRSs. Considering the high exposure levels estimated for EWRS residents, especially children, comprehensive emission inventories of DRCs from informal e-waste recycling, the identities and toxic potencies of unidentified DRCs released, and their impacts on human health need to be investigated in future studies.
An On-Line Program for Intermediate Level Latin Readings.
ERIC Educational Resources Information Center
Raia, Ann
2001-01-01
Introduces an on-line intermediate Latin program to potential users by describing the goals and elements of the site (www.iona.edu/latin). Operation of the program is described, as well as the benefits for language education, its current uses, and suggestions for more creative uses in the classroom. (Author/VWL)
Melo, Márcio C; Caribé, Rômulo M; Ribeiro, Libânia S; Sousa, Raul B A; Monteiro, Veruschka E D; de Paiva, William
2016-12-05
Long-term settlement magnitude is influenced by changes in external and internal factors that control the microbiological activity in the landfill waste body. To improve the understanding of settlement phenomena, it is instructive to study lysimeters filled with MSW. This paper aims to understand the settlement behavior of MSW by correlating internal and external factors that influence waste biodegradation in a lysimeter. Thus, a lysimeter was built, instrumented and filled with MSW from the city of Campina Grande, the state of Paraíba, Brazil. Physicochemical analysis of the waste (from three levels of depth of the lysimeter) was carried out along with MSW settlement measurements. Statistical tools such as descriptive analysis and principal component analysis (PCA) were also performed. The settlement/compression, coefficient of variation and PCA results indicated the most intense rate of biodegradation in the top layer. The PCA results of intermediate and bottom levels presented fewer physicochemical and meteorological variables correlated with compression data in contrast with the top layer. It is possible to conclude that environmental conditions may influence internal indicators of MSW biodegradation, such as the settlement.
Tue, Nguyen Minh; Goto, Akitoshi; Takahashi, Shin; Itai, Takaaki; Asante, Kwadwo Ansong; Kunisue, Tatsuya; Tanabe, Shinsuke
2016-01-25
Although complex mixtures of dioxin-related compounds (DRCs) can be released from informal e-waste recycling, DRC contamination in African e-waste recycling sites has not been investigated. This study examined the concentrations of DRCs including chlorinated, brominated, mixed halogenated dibenzo-p-dioxins/dibenzofurans (PCDD/Fs, PBDD/Fs, PXDD/Fs) and dioxin-like polychlorinated biphenyls (DL-PCBs) in surface soil samples from the Agbogbloshie e-waste recycling site in Ghana. PCDD/F and PBDD/F concentrations in open burning areas (18-520 and 83-3800 ng/g dry, respectively) were among the highest reported in soils from informal e-waste sites. The concentrations of PCDFs and PBDFs were higher than those of the respective dibenzo-p-dioxins, suggesting combustion and PBDE-containing plastics as principal sources. PXDFs were found as more abundant than PCDFs, and higher brominated analogues occurred at higher concentrations. The median total WHO toxic equivalent (TEQ) concentration in open burning soils was 7 times higher than the U.S. action level (1000 pg/g), with TEQ contributors in the order of PBDFs>PCDD/Fs>PXDFs. DRC emission to soils over the e-waste site as of 2010 was estimated, from surface soil lightness based on the correlations between concentrations and lightness, at 200mg (95% confidence interval 93-540 mg) WHO-TEQ over three years. People living in Agbogbloshie are potentially exposed to high levels of not only chlorinated but also brominated DRCs, and human health implications need to be assessed in future studies. Copyright © 2015 Elsevier B.V. All rights reserved.
10 CFR 72.214 - List of approved spent fuel storage casks.
Code of Federal Regulations, 2010 CFR
2010-01-01
... STORAGE OF SPENT NUCLEAR FUEL, HIGH-LEVEL RADIOACTIVE WASTE, AND REACTOR-RELATED GREATER THAN CLASS C WASTE General License for Storage of Spent Fuel at Power Reactor Sites § 72.214 List of approved spent...
10 CFR 72.214 - List of approved spent fuel storage casks.
Code of Federal Regulations, 2011 CFR
2011-01-01
... STORAGE OF SPENT NUCLEAR FUEL, HIGH-LEVEL RADIOACTIVE WASTE, AND REACTOR-RELATED GREATER THAN CLASS C WASTE General License for Storage of Spent Fuel at Power Reactor Sites § 72.214 List of approved spent...
Schlosser, Olivier; Robert, Samuel; Debeaupuis, Catherine
2016-05-01
Non-hazardous waste landfilling has the potential to release biological agents into the air, notably mould spores. Some species, such as Aspergillus fumigatus, may be a cause of concern for at-risk nearby residents. However, air concentration in the surrounding environment of non-hazardous waste landfill sites is poorly documented. An extensive sampling programme was designed to investigate the relationship between culturable mesophilic moulds and A. fumigatus concentrations in air and distance downwind of non-hazardous waste landfill sites. On-site and off-site repeated measurements were performed at four landfill sites during cold and warm seasons. A high-flow air-sampler device was selected so as to allow peak concentration measurement. Linear mixed-effects models were used to explain variability in the concentrations in air over time and across sites, seasons, instantaneous meteorological conditions and discharged waste tonnage. Concentrations of mesophilic moulds and A. fumigatus at off-site upwind sampling locations were compared with concentrations at each of the downwind sampling locations. At the tipping face location, peak concentration reached 480,000CFUm(-3) for mesophilic moulds and 9300CFUm(-3) for A. fumigatus. Compared with upwind background levels, these concentrations were, on average, approximately 20 and 40 times higher respectively. A steep decline in the concentration of both mesophilic moulds and A. fumigatus was observed between the tipping face location and the downwind property boundary (reduction by 77% and 84% respectively), followed by a low decline leading to a 90% and 94% reduction in concentration at 200m from the property boundary and beyond. With the 200m and 500m downwind sampling point values added together, the 97.5th percentile of concentration was 6013CFUm(-3) and 87CFUm(-3) for mesophilic moulds and A. fumigatus, respectively. Other determining factors were the discharged waste tonnage, the season, instantaneous temperature and wind velocity for mesophilic mould, and instantaneous temperature for A. fumigatus. At 200m and 500 downwind from the property boundary, mesophilic moulds and A. fumigatus concentrations were still higher than the local background level. However, whilst statistically significant, this increase does not suggest an excess risk to nearby residents' health when compared with the wide range of outdoor background levels reported in literature. These findings suggest that moulds and A. fumigatus may be transported beyond 200m from the property boundary in concentrations above those found locally upwind of the landfill site. Nevertheless, for exposure assessment purposes, comparison should also be made with background levels in wider areas which are either residential or through which people travel to work for example. Copyright © 2016 Elsevier GmbH. All rights reserved.
NASA Astrophysics Data System (ADS)
Huang, W. H.; Chang, H. C.
2017-12-01
The disposal of low- and intermediate-level radioactive wastes requires use of multi-barriers for isolation of the wastes from the biosphere. Typically, the engineered barriers are composed of a concrete vault, buffer and backfill materials. Zhishin clay and Black Hill bentonite were used as raw clay material in making buffer and backfill materials in this study. These clays were compacted to make buffer material, or mixed with Taitung area argillite to produce backfill material for potential application as barriers for the disposal of low- and intermediate-level radioactive wastes. The interaction between concrete barrier and the buffer/backfill material is simulated by an accelerated migration test to investigate the effect of contacting concrete on the expected functions of buffer/backfill material. The results show buffer material close to the contact with concrete exhibits significant change in the ratio of calcium/sodium exchange capacity, due to the move of calcium ions released from the concrete. The shorter the distance from the contacting interface, the ratio of the calcium/sodium concentration in buffer/backfill materials increases. The longer the distance from the interface, the effect of the contact on alteration in clays become less significant. Also, some decreases in swelling capacity in the buffer/backfill material near the concrete-backfill interface are noted. Finally, a comparison is made between Zhisin clay and Balck Hill bentonite on the interaction between concrete and the two clays. Black Hill bentonite was found to be influenced more by the interaction, because of the higher content of montmorillonite. On the other hand, being a mixture of clay and sand, backfill material is less affected by the decalsification of concrete at the contact than buffer material.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cozzi, A.; Johnson, F.
Production of Mo-99 for medical isotope use is being investigated using dissolved low enriched uranium (LEU) fissioned using an accelerator driven process. With the production and separation of Mo-99, a low level waste stream will be generated. Since the production facility is a commercial endeavor, waste disposition paths normally available for federally generated radioactive waste may not be available. Disposal sites for commercially generated low level waste are available, and consideration to the waste acceptance criteria (WAC) of the disposal site should be integral in flowsheet development for the Mo-99 production. Pending implementation of the “Uranium Lease and Take-Back Programmore » for Irradiation for Production of Molybdenum-99 for Medical Use” as directed by the American Medical Isotopes Production Act of 2012, there are limited options for disposing of the waste generated by the production of Mo-99 using an accelerator. The commission of a trade study to assist in the determination of the most favorable balance of production throughput and waste management should be undertaken. The use of a waste broker during initial operations of a facility has several benefits that can offset the cost associated with using a subcontractor. As the facility matures, the development of in-house capabilities can be expanded to incrementally reduce the dependence on a subcontractor.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Swanson, J.L.
1993-09-01
Disposal of high-level tank wastes at the Hanford Site is currently envisioned to divide the waste between two principal waste forms: glass for the high-level waste (HLW) and grout for the low-level waste (LLW). The draft flow diagram shown in Figure 1.1 was developed as part of the current planning process for the Tank Waste Remediation System (TWRS), which is evaluating options for tank cleanup. The TWRS has been established by the US Department of Energy (DOE) to safely manage the Hanford tank wastes. It includes tank safety and waste disposal issues, as well as the waste pretreatment and wastemore » minimization issues that are involved in the ``clean option`` discussed in this report. This report describes the results of a study led by Pacific Northwest Laboratory to determine if a more aggressive separations scheme could be devised which could mitigate concerns over the quantity of the HLW and the toxicity of the LLW produced by the reference system. This aggressive scheme, which would meet NRC Class A restrictions (10 CFR 61), would fit within the overall concept depicted in Figure 1.1; it would perform additional and/or modified operations in the areas identified as interim storage, pretreatment, and LLW concentration. Additional benefits of this scheme might result from using HLW and LLW disposal forms other than glass and grout, but such departures from the reference case are not included at this time. The evaluation of this aggressive separations scheme addressed institutional issues such as: radioactivity remaining in the Hanford Site LLW grout, volume of HLW glass that must be shipped offsite, and disposition of appropriate waste constituents to nonwaste forms.« less
Phase Stability Determinations of DWPF Waste Glasses
DOE Office of Scientific and Technical Information (OSTI.GOV)
Marra, S.L.
1999-10-22
Liquid high-level nuclear waste will be immobilized at the Savannah River Site (SRS) by vitrification in borosilicate glass. To fulfill this requirement, glass samples were heat treated at various times and temperatures. These results will provide guidance to the repository program about conditions to be avoided during shipping, handling and storage of DWPF canistered waste forms.
Wickham, Anthony; Steinmetz, Hans-Jürgen; O'Sullivan, Patrick; Ojovan, Michael I
2017-05-01
Demonstrating competence in planning and executing the disposal of radioactive wastes is a key factor in the public perception of the nuclear power industry and must be demonstrated when making the case for new nuclear build. This work addresses the particular waste stream of irradiated graphite, mostly derived from reactor moderators and amounting to more than 250,000 tonnes world-wide. Use may be made of its unique chemical and physical properties to consider possible processing and disposal options outside the normal simple classifications and repository options for mixed low or intermediate-level wastes. The IAEA has an obvious involvement in radioactive waste disposal and has established a new project 'GRAPA' - Irradiated Graphite Processing Approaches - to encourage an international debate and collaborative work aimed at optimising and facilitating the treatment of irradiated graphite. Copyright © 2017 Elsevier Ltd. All rights reserved.
Bergeron, M.P.; Bugliosi, E.F.
1988-01-01
Two adjacent burial areas were excavated in a clay-rich till at a radioactive waste disposal site near West Valley in Cattaraugus County, N.Y.: (1) which contains mainly low-level radioactive wastes generated onsite by a nuclear fuel reprocessing plant, has been in operation since 1966; and (2) which contains commercial low-level radioactive wastes, was operated during 1963-75. Groundwater below the upper 3 meters of till generally moves downward through a 20- to 30-meter thick sequence of tills underlain by lacustrine and kame-delta deposits of fine sand and silt. Groundwater in the weathered, upper 3 meters of till can move laterally for several meters before either moving downward into the kame-delta deposits or discharging to the land surface. A two-dimensional finite-element model that simulates two vertical sections was used to evaluate hydrologic factors that control groundwater flow in the till. Conditions observed during March 1983 were reproduced accurately in steady-state simulations that used four isotropic units of differing hydraulic conductivity to represent two fractured and weathered till units near land surfaces, an intermediate group of isolated till zones that contain significant amounts of fine sand and silt, and a sequence of till units at depths that have been consolidated by overburden pressure. Recharge rates used in the best-fit simulation ranged from 1.4 cm/yr along smooth, sloping or compacted surfaces to 3.8 cm/yr near swampy areas. Values of hydraulic conductivity and infiltration used in the calibrated best-fit model were nearly identical to values used in a previous model analysis of the nearby commercial-waste burial area. Results of the model simulations of a burial pit assumed to be filled with water indicate that water near the bottom of the burial pit would migrate laterally in the shallow, weathered till for 5 to 6 meters before moving downward into the unweathered till, and water near the top of the pit would move laterally less than 20 meters before moving downward into the unweathered till. These results indicate that subsurface migration of radionuclides in groundwater to points of discharge to land surface is unlikely as long as the water level does not rise into the reworked cover material. (Author 's abstract)
The Conversion and Sustainable Use of Alumina Refinery Residues: Global Solution Examples
NASA Astrophysics Data System (ADS)
Fergusson, Lee
This paper introduces current industry best practice for the conversion of alumina refinery residues (or "red mud") from hazardous waste to benign, inert material. The paper will examine four neutralization methods and Basecon Technology, a sustainable conversion process. The paper will consider ways through which this converted material can be combined and processed for sustainable applications in the treatment of hazardous waste streams (such as industrial wastewater and sludges, biosolids, and CCA wastes), contaminated brownfield sites, and mine site wastes. Recent discoveries and applications, such as the successful treatment of high levels of radium in drinking water in the USA, will also be discussed. Examples of global solutions and their technical merits will be assessed.
The French Geological Repository Project Cigeo - 12023
DOE Office of Scientific and Technical Information (OSTI.GOV)
Harman, Alain; Labalette, Thibaud; Dupuis, Marie-Claude
The French Agency for Radioactive Waste Management, ANDRA, was launched by law in 1991 to perform and develop the research programme for managing high level and intermediate level long-lived radioactive waste generated by the French nuclear fleet. After a 15-year intensive research programme, including the study of alternative solutions, an overall review and assessment of the results was organized, including a national public debate. As a result, the Parliament passed a Planning Act on radioactive waste management in 2006. Commissioning of a geological repository by 2025 was one of the most important decisions taken at that time. To reach thismore » goal, a license application must be submitted and reviewed by the competent authorities by 2015. A detailed review and consultation process is, as well, defined in the Planning Act. Beside the legal framework the project needs to progress on two fronts. The first one is on siting. A significant milestone was reached in 2009 with the definition of a defined area to locate the underground repository facilities. This area was approved in March 2010 by the Government, after having collected the opinions and positions of all the interested parties, at both National and local levels. A new phase of dialogue with local players began to refine the implementation scenarios of surface facilities. The final site selection will be approved after a public debate planned for 2013. The second one is the industrial organization, planning and costing. The industrial project of this geological repository was called Cigeo (Centre Industriel de Stockage Geologique). Given the amount of work to be done to comply with the given time framework, a detailed organization with well-defined milestones must be set-up. Cigeo will be a specific nuclear facility, built and operated underground for over a hundred years. The consequence of this long duration is that the development of the repository facilities will take place in successive operational phases. The characteristics of the first waste packages received will determine the work and the corresponding investments by 2025 on the repository site. One of the main challenges will be to accommodate both activities of mining and nuclear operations at the same time and at the same location. From the technical standpoint, ventilation and fire risk cannot be managed through a simple transposition from current nuclear industry practices. The reversibility demand also leads to concrete proposals with regard to repository management flexibility and waste package retrievability. These proposals contribute to the dialogue with stakeholders to prepare for the public debate and a future law which will determine the reversibility conditions. New design developments are expected to be introduced in the application from the current studies conducted until 2014. The possibility of optimization beyond 2015 will be kept open taking into account the one hundred years operating time as well as the capability to integrate feedback gained from the first construction and operation works. The industrial committed work aims to reach the application stage by 2015. The license application procedure was defined by the 2006 Act. Subject to authorization, the construction might begin in 2017. (authors)« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
French, David M.; Hayes, Timothy A.; Pope, Howard L.
In times of continuing fiscal constraints, a management and operation tool that is straightforward to implement, works as advertised, and virtually ensures compliant waste packaging should be carefully considered and employed wherever practicable. In the near future, the Department of Energy (DOE) will issue the first major update to DOE Order 435.1, Radioactive Waste Management. This update will contain a requirement for sites that do not have a Waste Isolation Pilot Plant (WIPP) waste certification program to use two newly developed technical standards: Contact-Handled Defense Transuranic Waste Packaging Instructions and Remote-Handled Defense Transuranic Waste Packaging Instructions. The technical standards aremore » being developed from the DOE O 435.1 Notice, Contact-Handled and Remote-Handled Transuranic Waste Packaging, approved August 2011. The packaging instructions will provide detailed information and instruction for packaging almost every conceivable type of transuranic (TRU) waste for disposal at WIPP. While providing specificity, the packaging instructions leave to each site's own discretion the actual mechanics of how those Instructions will be functionally implemented at the floor level. While the Technical Standards are designed to provide precise information for compliant packaging, the density of the information in the packaging instructions necessitates a type of Rosetta Stone that translates the requirements into concise, clear, easy to use and operationally practical recipes that are waste stream and facility specific for use by both first line management and hands-on operations personnel. The Waste Generator Instructions provide the operator with step-by-step instructions that will integrate the sites' various operational requirements (e.g., health and safety limits, radiological limits or dose limits) and result in a WIPP certifiable waste and package that can be transported to and emplaced at WIPP. These little known but widely productive Waste Generator Instructions (WGIs) have been used occasionally in the past at large sites for treatment and packaging of TRU waste. The WGIs have resulted in highly efficient waste treatment, packaging and certification for disposal of TRU waste at WIPP. For example, a single WGI at LANL, combined with an increase in gram loading, resulted in a mind boggling 6,400% increase in waste loading for {sup 238}Pu heat source waste. In fact, the WGI combined with a new Contact Handled (CH) TRU Waste Content (TRUCON) Code provided a massive increase in shippable wattage per Transuranic Package Transporter-II (TRUPACT-II) over the previously used and more restrictive TRUCON Code that have been used previously for the heat source waste. In fact, the use of the WGI process at LANL's TA-55 facility reduced non-compliant drums for WIPP certification and disposal from a 13% failure rate down to a 0.5% failure rate and is expected to further reduce the failure rate to zero drums per year. The inherent value of the WGI is that it can be implemented in a site's current procedure issuance process and it provides documented proof of what actions were taken for each waste stream packaged. The WGI protocol provides a key floor-level operational component to achieve goal alignment between actual site operations, the WIPP TRU waste packaging instructions, and DOE O 435.1. (authors)« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vargas, Edmundo; Reyes, Rolando; Palattao, Maria Visitacion
The Philippine Nuclear Research Institute (PNRI) in collaboration with the interagency technical committee on radioactive waste has been undertaking a national project to find a final solution to the country's low to intermediate level radioactive waste. The strategy adopted was to co-locate 2 disposal concepts that will address the types of radioactive waste generated from the use of radioactive materials. This strategy is expected to compensate for the small volumes of waste generated in the Philippines as compared to countries with big nuclear energy programs. It will also take advantage of the benefits of a shared infrastructure and R andmore » D work that accompany such project. The preferred site selected from previous site selection and investigations is underlain by highly fractured 'andesitic volcaniclastics' mantled by residual clayey soil which act as the aquifer or water bearing layer. Results of investigation show that the groundwater in the area is relatively dilute and acidic. Springs at the lower elevations of the footprint also indicate acidic waters. The relatively acidic water is attributed to the formation of sulfuric acid by the oxidation of the pyrite in the andesite. A preliminary post closure safety assessment was carried out using the GMS MODFLOW and HYDRUS softwares purchased through the International Atomic Energy Agency (IAEA) technical assistance. Results from MODFLOW modeling show that the radionuclide transport follows the natural gradient from the top of the hill down to the natural discharge zones. The vault dispersion model shows a circular direction from the vaults towards the faults and eventually to the creeks. The contaminant transport from borehole shows at least one confined plume from the borehole towards the creek designated as Repo1 and eventually follows downstream. The influx of surface water and rainfall to the disposal vault was modeled using the HYDRUS software. The pressure head and water content at the base of the foundation layer and the bottom of the concrete is where a significant reduction in water content can be observed. It is also noted that water content and pressure remain constant after one year. (authors)« less
SRS SWPF Construction Completion
Craig, Jack; Sheppard, Frank; Marks, Pam
2018-01-16
Now that construction is complete, DOE and construction contractor Parsons, are focusing on testing the Savannah River Siteâs Salt Waste Processing Facility (SWPF) systems and training the workforce to operate the plant in preparation for the start of operations. Once in operation, the SWPF will significantly increase processing rates at SRS tank farms in an effort to empty the siteâs high-level radioactive waste tanks.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hoskinson, R.L.
1994-01-01
This report summarizes a study conducted using the Arc/Info{reg_sign} geographic information system (GIS) to analyze the criteria used for site selection for the Mixed and Low-Level Waste Treatment Facility (MLLWTF) and the Idaho Waste Processing Facility (IWPF). The purpose of the analyses was to determine, based on predefined criteria, the areas on the INEL that best satisfied the criteria. The coverages used in this study were produced by importing the AutoCAD files that produced the maps for a pre site selection draft report into the GIS. The files were then converted to Arc/Info{reg_sign} GIS format. The initial analysis was mademore » by considering all of the criteria as having equal importance in determining the areas of the INEL that would best satisfy the requirements. Another analysis emphasized four of the criteria as ``must`` criteria which had to be satisfied. Additional analyses considered other criteria that were considered for, but not included in the predefined criteria. This GIS analysis of the siting criteria for the IWPF and MLLWTF provides a logical, repeatable, and defensible approach to the determination of candidate locations for the facilities. The results of the analyses support the location of the Candidate Locations.« less
Case for retrievable high-level nuclear waste disposal
Roseboom, Eugene H.
1994-01-01
Plans for the nation's first high-level nuclear waste repository have called for permanently closing and sealing the repository soon after it is filled. However, the hydrologic environment of the proposed site at Yucca Mountain, Nevada, should allow the repository to be kept open and the waste retrievable indefinitely. This would allow direct monitoring of the repository and maintain the options for future generations to improve upon the disposal methods or use the uranium in the spent fuel as an energy resource.
The Role of Binding Site on the Mechanical Unfolding Mechanism of Ubiquitin
NASA Astrophysics Data System (ADS)
Cao, Penghui; Yoon, Gwonchan; Tao, Weiwei; Eom, Kilho; Park, Harold S.
2015-03-01
We apply novel atomistic simulations based on potential energy surface exploration to investigate the constant force-induced unfolding of ubiquitin. At the experimentally-studied force clamping level of 100 pN, we find a new unfolding mechanism starting with the detachment between β5 and β3 involving the binding site of ubiquitin, the Ile44 residue. This new unfolding pathway leads to the discovery of new intermediate configurations, which correspond to the end-to-end extensions previously seen experimentally. More importantly, it demonstrates the novel finding that the binding site of ubiquitin can be responsible not only for its biological functions, but also its unfolding dynamics. We also report in contrast to previous single molecule constant force experiments that when the clamping force becomes smaller than about 300 pN, the number of intermediate configurations increases dramatically, where almost all unfolding events at 100 pN involve an intermediate configuration. By directly calculating the life times of the intermediate configurations from the height of the barriers that were crossed on the potential energy surface, we demonstrate that these intermediate states were likely not observed experimentally due to their lifetimes typically being about two orders of magnitude smaller than the experimental temporal resolution.
Smith, Sarah L; Boothman, Christopher; Williams, Heather A; Ellis, Beverly L; Wragg, Joanna; West, Julia M; Lloyd, Jonathan R
2017-01-01
Geological disposal of intermediate level radioactive waste in the UK is planned to involve the use of cementitious materials, facilitating the formation of an alkali-disturbed zone within the host rock. The biogeochemical processes that will occur in this environment, and the extent to which they will impact on radionuclide migration, are currently poorly understood. This study investigates the impact of biogeochemical processes on the mobility of the radionuclide technetium, in column experiments designed to be representative of aspects of the alkali-disturbed zone. Results indicate that microbial processes were capable of inhibiting 99m Tc migration through columns, and X-ray radiography demonstrated that extensive physical changes had occurred to the material within columns where microbiological activity had been stimulated. The utilisation of organic acids under highly alkaline conditions, generating H 2 and CO 2 , may represent a mechanism by which microbial processes may alter the hydraulic conductivity of a geological environment. Column sediments were dominated by obligately alkaliphilic H 2 -oxidising bacteria, suggesting that the enrichment of these bacteria may have occurred as a result of H 2 generation during organic acid metabolism. The results from these experiments show that microorganisms are able to carry out a number of processes under highly alkaline conditions that could potentially impact on the properties of the host rock surrounding a geological disposal facility for intermediate level radioactive waste. Copyright © 2016. Published by Elsevier B.V.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kot, Wing K.; Pegg, Ian L.; Brandys, Marek
One of the primary roles of waste pretreatment at the Hanford Tank Waste Treatment and Immobilization Plant (WTP) is to separate the majority of the radioactive components from the majority of the nonradioactive components in retrieved tank wastes, producing a high level waste (HLW) stream and a low activity waste (LAW) stream. This separation process is a key element in the overall strategy to reduce the volume of HLW that requires vitrification and subsequent disposal in a national deep geological repository for high level nuclear waste. After removal of the radioactive constituents, the LAW stream, which has a much largermore » volume but smaller fraction of radioactivity than the HLW stream, will be immobilized and disposed of in near surface facilities at the Hanford site.« less
Wang, Qian; Wang, Li; Chen, Xi; Rao, Kai Min; Lu, Shao You; Ma, Sheng Tao; Jiang, Pu; Zheng, Dan; Xu, Shun Qing; Zheng, Hong Yan; Wang, Jian Shu; Yu, Zhi Qiang; Zhang, Rong; Tao, Yong; Yuan, Jing
2011-07-01
Di-(2-ethylhexyl) phthalate (DEHP) is a common plasticizer used in industrial and diverse consumer products. Animal studies indicate DEHP caused developmental, reproductive, and hepatic toxicities. However, human studies of the potential effects of DEHP are limited. The exposed site with a history of over 20 years of waste plastic recycling was located in Hunan Province, China. The reference site without known DEHP pollution source was about 50 km far away from the exposed site. In this study, 181 workers working in plastic waste recycling and 160 gender-age matched farmers were recruited. DEHP concentrations in water and cultivated soil samples, serum thyroid-stimulating hormone, malondialdehyde (MDA), superoxide dismutase (SOD), urinary 8-hydroxy-2'-deoxyguanosine (8-OHdG), and micronuclei frequency in human capillary blood lymphocytes were analyzed. Mean levels of DEHP were greater in environment at the recycling site than at reference site (industry wastewater for the exposed: 42.43 μg/l; well water: 14.20 vs. 0.79 μg/l, pond water: 135.68 vs. 0.37 μg/l, cultivated soil: 13.07 vs. 0.81 mg/kg, p < 0.05 for all). The workers had higher median levels of MDA (3.80 vs. 3.14 nmol/ml) and urinary 8-OHdG (340.37 vs. 268.18 μmol/mol creatinine) and decreased SOD activities (112.15 vs. 123.82 U/ml) than the reference group (p < 0.01 for all). Multivariate analysis revealed that the history of working in waste plastic recycling was an independent risk factor for the increased urinary 8-OHdG levels in the male workers (p < 0.01). The occupational DEHP exposure might contribute to oxidative deoxyribonucleic acid damage in the male workers.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Swazo, S.
The federal government`s monopoly over America`s nuclear energy production began during World War II with the birth of the Atomic Age. During the next thirty years, nuclear waste inventories increased with minor congressional concern. In the early 1970s, the need for federal legislation to address problems surrounding nuclear waste regulation, along with federal efforts to address these problems, became critical. Previous federal efforts had completely failed to address nuclear waste disposal. In 1982, Congress enacted the Nuclear Waste Policy Act (NWPA) to deal with issues of nuclear waste management and disposal, and to set an agenda for the development ofmore » two national high-level nuclear waste repositories. This article discusses the legal challenge to the NWPA in the Nevada v. Watkins case. This case illustrates the federalism problems faced by the federal government in trying to site the nation`s only high-level nuclear waste repository within a single state.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brandt, C.A.; Rickard, W.H. Jr.; Biehert, R.W.
1989-01-01
The Basalt Waste Isolation Project (BWIP) was undertaken to environmentally characterize a portion of the US Department of Energy's Hanford Site in Washington State as a potential host for the nation's first mined commercial nuclear waste repository. Studies were terminated by Congress in 1987. Between 1976 and 1987, 72 areas located across the Hanford Site were disturbed by the BWIP. These areas include borehole pads, a large Exploratory Shaft Facility, and the Near Surface Test Facility. Most boreholes were cleared of vegetation, leveled, and stabilized with a thick layer of compacted pit-run gravel and sand. The Near Surface Test Facilitymore » consists of three mined adits, a rock-spoils bench, and numerous support facilities. Restoration began in 1988 with the objective of returning sites to pre-existing conditions using native species. The Hanford Site retains some of the last remnants of the shrub-steppe ecosystem in Washington. The primary constraints to restoring native vegetation at Hanford are low precipitation and the presence of cheatgrass, an extremely capable alien competitor. 5 figs.« less
Leung, Anna O W; Cheung, Kwai Chung; Wong, Ming Hung
2015-06-01
The environmental pollution and health impacts caused by the primitive and crude recycling of e-waste have become urgent global issues. Guiyu, China is a major hotspot of e-waste recycling. In this study, the levels and distribution of polycyclic aromatic hydrocarbons in soil in Guiyu were determined to investigate the effect of e-waste activities on the environment and to identify possible sources of these pollutants. Sediment samples from a local duck pond, water gullies, a river tributary, and combusted residue from e-waste burning sites were also investigated. The general trend found in soil (Σ16 PAHs) was acid leaching site > duck pond > rice field > printer roller dump site > reservoir (control site) and ranged from 95.2 ± 54.2 to 5,210 ± 89.6 ng/g (dry wt). The highest average total PAH concentrations were found in combusted residues of wires, cables, and other computer electrical components located at two e-waste open burning sites (18,600 and 10,800 ± 3,940 ng/g). These were 195- and 113-fold higher than the PAH concentrations of soil at the control site. Sediment PAH concentrations ranged from 37.2 ± 6 to 534 ± 271 ng/g. Results of this study provide further evidence of significant input of PAHs to the environment attributed to crude e-waste recycling.
Ferrara, L; Iannace, M; Patelli, A M; Arienzo, M
2013-03-01
Since the mid 1980s, Naples and the Campania region have suffered from the dumping of wastes into overfilled landfills. The aim was to characterise a former cave located in Roccarainola (Naples, Italy) for its eventual destination to a controlled landfill site. A detailed hydro-geochemical survey of the area was carried out through drilling of 14 boreholes and four monitoring wells. Samples of water, sediment and soil were analysed for heavy metals and organic contaminants from a dew pond placed in the middle of the cave. The underneath aquifer was also surveyed. The nature of gases emitted from the site was investigated. Results of the geognostic survey revealed the presence of huge volumes of composite wastes, approximately half a million of cubic metre, which accumulated up to a thickness of 25.6 m. In some points, wastes lie below the free surface level of the aquifer. The sampled material from the boreholes revealed levels of As, Cd, Cr, Cu, Hg, Pb, Sn, Tl and Zn exceeding the intervention legal limits. Outstanding loads of Cd, Pb and Zn were found, with levels exceeding of about 50, 100 and 1,870 times the limit. In several points, polycyclic aromatic hydrocarbon load was extremely high, 35 vs 1 mg kg(-1) of the threshold. The aquifer was also very heavily polluted by Cd, Cr-tot, Cu, Fe, Mn, Ni, Pb and Zn, with impressive high load of Cr and Mn, up to 250-370 times the limits. Hot gases up to 62 °C with presence of xylene and ethylbenzene were found. Results indicated that the site needs an urgent intervention of recovery to avoid compromising the surrounding areas and aquifers of the Campania plain.
Modelling of cementitious backfill interactions with vitrified intermediate-level waste
NASA Astrophysics Data System (ADS)
Baston, Graham; Heath, Timothy; Hunter, Fiona; Swanton, Stephen
2017-06-01
New types of wasteform are being considered for the geological disposal of radioactive intermediate-level waste (ILW) in the UK. These include vitrified ILW products arising from the application of thermal treatment processes. For disposal of such wasteforms in a geological disposal facility, a range of concepts are under consideration, including those with a high-pH cementitious backfill (the NRVB, Nirex Reference Vault Backfill). Alternatively, a cement-based material that buffers to a less alkaline pH could be used (an LPB, Low-pH Backfill). To assess the compatibility of these potential new wasteforms with cement-based disposal concepts, it is necessary to understand their impacts on the long-term evolution of the backfill. A scoping thermodynamic modelling study was undertaken to help understand the possible effects of these wasteforms on the performance of the backfill. The model primarily considers the interactions occurring between the vitirified waste, the porewater and the backfill, within a static and (in most cases) totally closed system. The approach was simplified by assuming equilibrium between the backfill and the corroded glass available at selected times, rather than involving detailed, reactive transport modelling. The aim was to provide an understanding of whether the impacts of the vitrified wastes on backfill performance are sufficient to compromise disposal in such environments. The calculations indicated that for NRVB, the overall alkaline buffering capacity of the backfill is not expected to be impaired by interactions with vitrified waste; rather the buffering will be to less alkaline pH values (above pH 9) but for a longer period. For the LPB, slightly lower pH values were predicted in some cases. The sorption capacities of the backfills are unlikely to be impaired by interactions with vitrified ILW. Indeed they may be increased, due to the additional C-S-H phase formation. The results of this study suggest that disposal of vitrified ILW in a cement-based disposal system with a high-pH backfill is a potentially viable disposal option.
Tritium migration from a low-level radioactive-waste disposal site near Chicago, Illinois
Nicholas, J.R.; Healy, R.W.
1988-01-01
This paper describes the results of a study to determine the geologic and hydrologic factors that control migration of tritium from a closed, low-level radioactive-waste disposal site. The disposal site, which operated from 1943 to mid1949, contains waste generated by research activities at the world's first nuclear reactors. Tritium has migrated horizontally at least 1,300 feet northward in glacial drift and more than 650 feet in the underlying dolomite. Thin, gently sloping sand layers in an otherwise clayey glacial drift are major conduits for ground-water flow and tritium migration in a perched zone beneath the disposal site. Tritium concentrations in the drift beneath the disposal site exceed 100,000 nanocuries per liter. Regional horizontal joints in the dolomite are enlarged by solution and are the major conduits for ground-water flow and tritium migration in the dolomite. A weathered zone at the top of the dolomite also is a pathway for tritium migration. The maximum measured tritium concentration in the dolomite is 29.4 nanocuries per liter. Fluctuations of tritium concentration in the dolomite are the result of dilution by seasonal recharge from the drift.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vugrin, K.W.; Twitchell, Ch.A.
2008-07-01
Korea Hydro and Nuclear Power Co., Ltd. (KHNP) is an electric company in the Republic of Korea with twenty operational nuclear power plants and eight additional units that are either planned or currently under construction. Regulations require that KHNP manage the radioactive waste generated by their nuclear power plants. In the course of planning low, intermediate, and high level waste storage facilities, KHNP sought interaction with an acknowledged expert in the field of radioactive waste management and, consequently, contacted Sandia National Laboratories (SNL). KHNP has contracted with SNL to provide a year long training program on repository science. This papermore » discusses the design of the curriculum, specific plans for execution of the training program, and recommendations for smooth implementation of international training programs. (authors)« less
NASA Astrophysics Data System (ADS)
Rugger, B.; Templeton, W. L.; Gurbutt, P.
1983-05-01
Sea dumping operations of certain types of packaged low and medium level radioactive wastes have been carried out since 1967 in the North-East Atlantic under the auspices of the OECD Nuclear Energy Agency. On the occasion of the 1980 review of the continued suitability of the North-East Atlantic site used for the disposal of radioactive waste, it was recommended that an effort should be made to increase the scientific data base relating to the oceanographic and biological characteristics of the dumping area. In particular, it was suggested that a site specific model of the transfer of radionuclides in the marine environment be developed, which would permit a better assessment of the potential radiation doses to man from the dumping of radioactive waste. To fulfill these objectives a research and environmental surveillance program related to sea disposal of radioactive waste was set up in 1981 with the participation of thirteen Member countries and the International Laboratory for Marine Radioactivity of the IAEA in Monaco. The research program is focused on five research areas which are directly relevant to the preparation of more site specific assessments in the future. They are: model development; physical oceanography; geochemistry; biology; and radiological surveillance. Promising results have already been obtained and more are anticipated in the not too distant future. An interim description of the NEA dumping site has been prepared which provides an excellent data base for this area.
Final closure of a low level waste disposal facility
DOE Office of Scientific and Technical Information (OSTI.GOV)
Potier, J.M.
1995-12-31
The low-level radioactive waste disposal facility operated by the Agence Nationale pour la Gestion des Dechets Radioactifs near La Hague, France was opened in 1969 and is scheduled for final closure in 1996. The last waste package was received in June 1994. The total volume of disposed waste is approximately 525,000 m{sup 3}. The site closure consists of covering the disposal structures with a multi-layer impervious cap system to prevent rainwater from infiltrating the waste isolation system. A monitoring system has been set up to verify the compliance of infiltration rates with hydraulic performance objectives (less than 10 liters permore » square meter and per year).« less
Yucca Mountain, Nevada - A proposed geologic repository for high-level radioactive waste
Levich, R.A.; Stuckless, J.S.
2006-01-01
Yucca Mountain in Nevada represents the proposed solution to what has been a lengthy national effort to dispose of high-level radioactive waste, waste which must be isolated from the biosphere for tens of thousands of years. This chapter reviews the background of that national effort and includes some discussion of international work in order to provide a more complete framework for the problem of waste disposal. Other chapters provide the regional geologic setting, the geology of the Yucca Mountain site, the tectonics, and climate (past, present, and future). These last two chapters are integral to prediction of long-term waste isolation. ?? 2007 Geological Society of America. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Blaylock, B.P.; Legg, J.; Travis, C.C.
1995-06-01
This document describes a worker health risk evaluation methodology for assessing risks associated with Environmental Restoration (ER) and Waste Management (WM). The methodology is appropriate for estimating worker risks across the Department of Energy (DOE) Complex at both programmatic and site-specific levels. This document supports the worker health risk methodology used to perform the human health risk assessment portion of the DOE Programmatic Environmental Impact Statement (PEIS) although it has applications beyond the PEIS, such as installation-wide worker risk assessments, screening-level assessments, and site-specific assessments.
Data for wells at the low-level radioactive-waste burial site in the Palos Forest Preserve, Illinois
Olimpio, J.C.
1982-01-01
The U.S. Geological Survey is studying the geologic, hydrologic, and geochemical properties of the glacial drift and underlying bedrock at a low-level radioactive-waste burial site in the Palos Forest Preserve, 22 kilometers southwest of Chicago. Data collected from the 33 test wells drilled into the drift plus data from 4 wells drilled into the underlying dolomite bedrock are presented. Data include maps showing the location of the test wells, a general description of the drift, well-construction information, and lithologic descriptions of cores from the wells finished in the drift.
Olimpio, Julio C.
1984-01-01
A low-level radioactive-waste burial site is located in Palos Forest Preserve, about 22 kilometers southwest of Chicago, Illinois. Between 1943 and 1949 the site, named Plot M, was filled with radioactive waste from the first Argonne National Laboratory and from the University of Chicago Metallurgical Laboratory. Since 1973, tritium concentration levels up to 14 nanocuries per liter have been measured in water samples collected from a well 360 meters from the burial site. The U.S. Geological Survey is studying the geologic, hydrologic, and geochemical properties of the glacial drift and underlying bedrock at the Plot M site to determine the factors that control the movement of radionuclides. Test wells were drilled into the drift to collect water and core samples for laboratory analysis, to gather geologic and hydrologic data, and to conduct geophysical surveys. Plot M is located in drift that ranges in thickness from 25 to 45 meters. The drift is a stratified sequence of clay- and silt-rich sediments that contain thin, interstratified sand layers. The silt content of the drift increases with depth. The permeability of the drift, as indicated by field and laboratory hydraulic conductivity tests, ranges from 1.0 x 10 -6 to 1.0 ? 10 -8 centimeters per second. A tritium plume, the contaminated zone in the drift in which tritium concentration levels exceed 10 nanocuries per liter of water, extends horizontally northward from Plot M at least 50 meters and vertically downward to bedrock. The center of the plume, where tritium concentration levels are as high as 50,000 nanocuries per liter, is approximately 15 meters beneath the burial site. The size, shape, and 'bull's-eye' concentration pattern indicate that the plume is a single slug and that the site no longer releases tritium into the drift. The leading edge, or front, of the plume (the 10 nanocuries per liter boundary) left the burial site in either the late 1940's or the early 1950's and intersected the underlying bedrock surface before 1973. The calculated movement rate of the front is 6.3 x 10 -6 centimeters per second. Several key factors that control both the concentration level and the extent of migration of tritium in the drift at Plot M are 1. The limited amount of tritiated waste buried at Plot M. 2. The long period of time that has elapsed since the waste was buried (30-35 years) relative to the radioactive half-life of tritium (12.3 years). 3. The great thickness and low permeability of the glacial drift at the site.
Screening the Hanford tanks for trapped gas
DOE Office of Scientific and Technical Information (OSTI.GOV)
Whitney, P.
1995-10-01
The Hanford Site is home to 177 large, underground nuclear waste storage tanks. Hydrogen gas is generated within the waste in these tanks. This document presents the results of a screening of Hanford`s nuclear waste storage tanks for the presence of gas trapped in the waste. The method used for the screening is to look for an inverse correlation between waste level measurements and ambient atmospheric pressure. If the waste level in a tank decreases with an increase in ambient atmospheric pressure, then the compressibility may be attributed to gas trapped within the waste. In this report, this methodology ismore » not used to estimate the volume of gas trapped in the waste. The waste level measurements used in this study were made primarily to monitor the tanks for leaks and intrusions. Four measurement devices are widely used in these tanks. Three of these measure the level of the waste surface. The remaining device measures from within a well embedded in the waste, thereby monitoring the liquid level even if the liquid level is below a dry waste crust. In the past, a steady rise in waste level has been taken as an indicator of trapped gas. This indicator is not part of the screening calculation described in this report; however, a possible explanation for the rise is given by the mathematical relation between atmospheric pressure and waste level used to support the screening calculation. The screening was applied to data from each measurement device in each tank. If any of these data for a single tank indicated trapped gas, that tank was flagged by this screening process. A total of 58 of the 177 Hanford tanks were flagged as containing trapped gas, including 21 of the 25 tanks currently on the flammable gas watch list.« less
Environmental Assessment: Waste Tank Safety Program, Hanford Site, Richland, Washington
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1994-02-01
The US Department of Energy (DOE) needs to take action in the near-term, to accelerate resolution of waste tank safety issues at the Hanford Site near the City of Richland, Washington, and reduce the risks associated with operations and management of the waste tanks. The DOE has conducted nuclear waste management operations at the Hanford Site for nearly 50 years. Operations have included storage of high-level nuclear waste in 177 underground storage tanks (UST), both in single-shell tank (SST) and double-shell tank configurations. Many of the tanks, and the equipment needed to operate them, are deteriorated. Sixty-seven SSTs are presumedmore » to have leaked a total approximately 3,800,000 liters (1 million gallons) of radioactive waste to the soil. Safety issues associated with the waste have been identified, and include (1) flammable gas generation and episodic release; (2) ferrocyanide-containing wastes; (3) a floating organic solvent layer in Tank 241-C-103; (4) nuclear criticality; (5) toxic vapors; (6) infrastructure upgrades; and (7) interim stabilization of SSTs. Initial actions have been taken in all of these areas; however, much work remains before a full understanding of the tank waste behavior is achieved. The DOE needs to accelerate the resolution of tank safety concerns to reduce the risk of an unanticipated radioactive or chemical release to the environment, while continuing to manage the wastes safely.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1998-01-01
Through the National Governors' Association (NGA) project ''Critical Issues Related to Radioactive Waste and Materials Disposition Involving DOE Facilities'' NGA brings together Governors' policy advisors, state regulators, and DOE officials to examine critical issues related to the cleanup and operation of DOE nuclear weapons and research facilities. Topics explored through this project include: Decisions involving disposal of mixed, low-level, and transuranic (TRU) waste and disposition of nuclear materials. Decisions involving DOE budget requests and their effect on environmental cleanup and compliance at DOE facilities. Strategies to treat mixed, low-level, and transuranic (TRU) waste and their effect on individual sites inmore » the complex. Changes to the FFCA site treatment plans as a result of proposals in the EM 2006 cleanup plans and contractor integration analysis. Interstate waste and materials shipments. Reforms to existing RCRA and CERCLA regulations/guidance to address regulatory overlap and risks posed by DOE wastes. The overarching theme of this project is to help the Department improve coordination of its major program decisions with Governors' offices and state regulators and to ensure such decisions reflect input from these key state officials and stakeholders. This report summarizes activities conducted during the quarter from October 1, 1997 through December 31, 1997, under the NGA project. The work accomplished by the NGA project team during the past four months can be categorized as follows: maintained open communication with DOE on a variety of activities and issues within the DOE environmental management complex; and maintained communication with NGA Federal Facilities Compliance Task Force members regarding DOE efforts to formulate a configuration for mixed low-level waste and low-level treatment and disposal, DOE activities in the area of the Hazardous Waste Identification Rule, and DOE's proposed National Dialogue.« less
Enhanced LAW Glass Correlation - Phase 1
DOE Office of Scientific and Technical Information (OSTI.GOV)
Muller, Isabelle S.; Matlack, Keith S.; Pegg, Ian L.
About 50 million gallons of high-level mixed waste is currently stored in underground tanks at the United States Department of Energy’s (DOE’s) Hanford site in the State of Washington. The Hanford Tank Waste Treatment and Immobilization Plant (WTP) will provide DOE’s Office of River Protection (ORP) with a means of treating this waste by vitrification for subsequent disposal. The tank waste will be separated into low- and high-activity waste fractions, which will then be vitrified respectively into Immobilized Low Activity Waste (ILAW) and Immobilized High Level Waste (IHLW) products. The ILAW product will be disposed in an engineered facility onmore » the Hanford site while the IHLW product is designed for acceptance into a national deep geological disposal facility for high-level nuclear waste. The ILAW and IHLW products must meet a variety of requirements with respect to protection of the environment before they can be accepted for disposal. Acceptable glass formulations for vitrification of Hanford low activity waste (LAW) must meet a variety of product quality, processability, and waste loading requirements. To this end, The Vitreous State Laboratory (VSL) at The Catholic University of America (CUA) developed and tested a number of glass formulations during Part A, Part B1 and Part B2 of the WTP development program. The testing resulted in the selection of target glass compositions for the processing of eight of the Phase I LAW tanks. The selected glass compositions were tested at the crucible scale to confirm their compliance with ILAW performance requirements. Duramelter 100 (DM100) and LAW Pilot Melter tests were then conducted to demonstrate the viability of these glass compositions for LAW vitrification at high processing rates.« less
Yang, Rong; Xu, Zengguang; Chai, Junrui; Qin, Yuan; Li, Yanlong
2016-07-01
With the rapid increase of city waste, landfills have become a major method to deals with municipal solid waste. Thus, the safety of landfills has become a valuable research topic. In this paper, Jiangcungou Landfill, located in Shaanxi, China, was investigated and its slope stability was analyzed. Laboratory tests were used to obtain permeability coefficients of municipal solid waste. Based on the results, the distribution of leachate and stability in the landfill was computed and analyzed. These results showed: the range of permeability coefficient was from 1.0 × 10(-7) cm sec(-1) to 6.0 × 10(-3) cm sec(-1) on basis of laboratory test and some parameters of similar landfills. Owing to the existence of intermediate cover layers in the landfill, the perched water level appeared in the landfill with heavy rain. Moreover, the waste was filled with leachate in the top layer, and the range of leachate level was from 2 m to 5 m in depth under the waste surface in other layers. The closer it gets to the surface of landfill, the higher the perched water level of leachate. It is indicated that the minimum safety factors were 1.516 and 0.958 for winter and summer, respectively. Additionally, the slope failure may occur in summer. The research of seepage and stability in landfills may provide a less costly way to reduce accidents. Landslides often occur in the Jiangcungou Landfill because of the high leachate level. Some measures should be implemented to reduce the leachate level. This paper investigated seepage and slope stability of landfills by numerical methods. These results may provide the basis for increasing stability of landfills.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1988-06-24
The Cemetery Industrial Waste Dump National Priorities List Site is located in Rose Township, Oakland County, Michigan. Contamination at the site consists of an unknown quantity of buried drums which, when sampled, indicated the presence of metals, polychlorinated biphenyls (PCBs), and halogenated organic compounds. The site is approximately 2-4 acres. In the late 1960s 300 to 600 drums, which contained unknown industrial waste, were illegally buried at the site. Sampling of the drums on-site indicated the presence of several contaminants including: benzene, chlorobenzene, PCBs, arsenic, cadmium, lead, and others. Lead was detected in one monitoring well at 96 micro g/Lmore » and one residential well at a concentration of 61 micro g/L, both are above the Maximum Contaminant Level of 50 micro g/L. Arsenic was detected in the soil at a concentration of 12 mg/Kg. The site is of potential public health concern because of the risk to human health that could result from possible exposure to hazardous substances at levels that may result in adverse health effects. Potential human exposure pathways include direct dermal contact with the soil, the buried drums, and/or ground water; and ingestion of ground water.« less
Al-Ruzouq, Rami; Shanableh, Abdallah; Omar, Maher; Al-Khayyat, Ghadeer
2018-02-17
Waste management involves various procedures and resources for proper handling of waste materials in compliance with health codes and environmental regulations. Landfills are one of the oldest, most convenient, and cheapest methods to deposit waste. However, landfill utilization involves social, environmental, geotechnical, cost, and restrictive regulation considerations. For instance, landfills are considered a source of hazardous air pollutants that can cause health and environmental problems related to landfill gas and non-methanic organic compounds. The increasing number of sensors and availability of remotely sensed images along with rapid development of spatial technology are helping with effective landfill site selection. The present study used fuzzy membership and the analytical hierarchy process (AHP) in a geo-spatial environment for landfill site selection in the city of Sharjah, United Arab Emirates. Macro- and micro-level factors were considered; the macro-level contained social and economic factors, while the micro-level accounted for geo-environmental factors. The weighted spatial layers were combined to generate landfill suitability and overall suitability index maps. Sensitivity analysis was then carried out to rectify initial theoretical weights. The results showed that 30.25% of the study area had a high suitability index for landfill sites in the Sharjah, and the most suitable site was selected based on weighted factors. The developed fuzzy-AHP methodology can be applied in neighboring regions with similar geo-natural conditions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mason, John A.; Burke, Kevin J.; Looman, Marc R.
2012-07-01
This paper describes the development, testing and validation of a waste measurement instrument for characterising active remote handled radioactive waste arising from the operation of Magnox reactors in the United Kingdom. Following operation in UK Magnox gas cooled reactors and a subsequent period of cooling, parts of the magnesium-aluminium alloy cladding were removed from spent fuel and the uranium fuel rods with the remaining cladding were removed to Sellafield for treatment. The resultant Magnox based spent fuel element debris (FED), which constitutes active intermediate level waste (ILW) has been stored in concrete vaults at the reactor sites. As part ofmore » the decommissioning of the FED vaults the FED must be removed, measured and characterised and placed in intermediate storage containers. The present system was developed for use at the Trawsfynydd nuclear power station (NPS), which is in the decommissioning phase, but the approach is potentially applicable to FED characterisation at all of the Magnox reactors. The measurement system consists of a heavily shielded and collimated high purity Germanium (HPGe) detector with electromechanical cooling and a high count-rate preamplifier and digital multichannel pulse height analyser. The HPGe based detector system is controlled by a software code, which stores the measurement result and allows a comprehensive analysis of the measured FED data. Fuel element debris is removed from the vault and placed on a tray to a uniform depth of typically 10 cm for measurement. The tray is positioned approximately 1.2 meters above the detector which views the FED through a tungsten collimator with an inverted pyramid shape. At other Magnox sites the positions may be reversed with the shielded and collimated HPGe detector located above the tray on which the FED is measured. A comprehensive Monte Carlo modelling and analysis of the measurement process has been performed in order to optimise the measurement geometry and eliminate interferences from radioactive sources and FED in the immediate vicinity of the measurement position. The detector system has been calibrated and high activity radioactive sources of Cs-137, Co-60 and Na-22 have been used to validate the measurement process. The data acquisition and analysis software code has been tested and validated in keeping with the software quality assurance requirements of both ISO:9001-2008 - TICK-IT in the UK and NQA-1. The measurement and analysis system has been comprehensively tested with high activity sources, is flexible and may be applicable to a wide range of remote handled radioactive waste measurement applications. It is due to be installed at Trawsfynydd NPS later this year. This paper describes the Waste Tray Assay System (WTAS) that has been developed for the measurement of Magnox FED waste. The WTAS has been tested with a range of radioactive sources and its operation has been simulated with benchmarked MCNP Monte Carlo calculations. The measurement software has been validated as has the operation of the system for a range of strong radioactive sources. A system based on the design is due for installation and operation in 2012. The system has application to the measurement of Magnox Fuel Element Debris (FED) waste at other Magnox reactor sites. The major design objective of the WTAS that has been achieved is the ability of the assay system to determine the content of Cs-137, and in turn to enable the fissile burden to be assessed using a radionuclide fingerprint, in the presence of higher and highly variable quantities of Co-60, typically from nimonic springs. The approach can be used in other Magnox FED waste configurations where the detector is located above the FED waste sorting tray and where the collimation is fixed below the detector and at a distance above the tray. In this case, which has also been investigated, there are different shielding problems and mechanical support issues. The extensive use of MCNP Monte Carlo modelling to simulate the geometry of the sorting cell and the distribution of radioactive sources has helped to ensure that all of the detector shielding requirements are addressed and suitable Cs-137 and Co-60 discrimination can be achieved. The WTAS in its present form or in other configurations has relevance to the measurement of other active ILW and highly active RH waste. Examples include high activity RH LLW and RH TRU (Transuranic) waste as defined in the United States arising from both commercial nuclear and Department of Energy (DOE) operations. The analysis is able to analyse a range of radionuclides beyong those expected in the Magnox FED cases. (authors)« less
Lin, Litian; Ning, Lixin; Zhou, Rongfu; Jiang, Chunyan; Peng, Mingying; Huang, Yucheng; Chen, Jun; Huang, Yan; Tao, Ye; Liang, Hongbin
2018-06-18
Knowledge of site occupation of activators in phosphors is of essential importance for understanding and tailoring their luminescence properties by modifying the host composition. Relative site preference of Eu 2+ for the two distinct types of alkaline earth (AE) sites in Ba 1.9995- x Sr x Eu 0.0005 SiO 4 ( x = 0-1.9) is investigated based on photoluminescence measurements at low temperature. We found that Eu 2+ prefers to be at the 9-coordinated AE2 site at x = 0, 0.5, and 1.0, while at x = 1.5 and 1.9, it also occupies the 10-coordinated AE1 site with comparable preference, which is verified by density functional theory (DFT) calculations. Moreover, by combining low-temperature measurements of the heat capacity, the host band gap, and the Eu 2+ 4f 7 ground level position, the improved thermal stability of Eu 2+ luminescence in the intermediate composition ( x = 1.0) is interpreted as due to an enlarged energy gap between the emitting 5d level and the bottom of the host conduction band (CB), which results in a decreased nonradiative probability of thermal ionization of the 5d electron into the host CB. Radioluminescence properties of the samples under X-ray excitation are finally evaluated, suggesting a great potential scintillator application of the compound in the intermediate composition.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
This project overview comprises the following: project history; WIPP fact sheet; legal actions required; major WIPP milestones; low-level waste volumes; nuclear waste transportation; WIPP site selection; and questions and answers from the Department of Energy request for public input prior to public meetings in Roswell and Hobbs, New Mexico.
Pulp fiction - The volunteer concept (or how not to site additional LLRW disposal capacity)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Burton, D.A.
1995-12-31
Experiences of compacts and of individual states throughout the nation indicate that low-level radioactive waste disposal siting processes, based from the beginning upon the volunteer concept are fraught with problems. Most apparent among these problems is that the volunteer concept does not lead to scientifically and technically based siting endeavors. Ten years have passed since the Amendments Act of 1985, and no compact or state has been - successful in providing for new LLRW disposal capacity. That failure can be traced in part to the reliance upon the volunteer concept in siting attempts. If success is to be achieved, themore » future direction for LLRW management must focus on three areas: first, a comprehensive evaluation of all LLRW management options, including reduction of waste generated and on-site storage; secondly, a comprehensive evaluation of the current as well as projected waste stream, to determine the amount of disposal capacity actually needed; and, finally, sound scientifically and technically based siting processes.« less
Water balance at a low-level radioactive-waste disposal site
Healy, R.W.; Gray, J.R.; De Vries, G. M.; Mills, P.C.
1989-01-01
The water balance at a low-level radioactive-waste disposal site in northwestern Illinois was studied from July 1982 through June 1984. Continuous data collection allowed estimates to be made for each component of the water-balance equation independent of other components. The average annual precipitation was 948 millimeters. Average annual evapotranspiration was estimated at 637 millimeters, runoff was 160 millimeters, change in water storage in a waste-trench cover was 24 millimeters, and deep percolation was 208 millimeters. The magnitude of the difference between precipitation and all other components (81 millimeters per year) indicates that, in a similar environment, the water-budget method would be useful in estimating evapotranspiration, but questionable for estimation of other components. Precipitation depth and temporal distribution had a very strong effect on all other components of the water-balance equation. Due to the variability of precipitation from year to year, it appears that two years of data are inadequate for characterization of the long-term average water balance at the site.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Peace, Gerald; Goering, Timothy James
2004-03-01
The Mixed Waste Landfill occupies 2.6 acres in the north-central portion of Technical Area 3 at Sandia National Laboratories, Albuquerque, New Mexico. The landfill accepted low-level radioactive and mixed waste from March 1959 to December 1988. This report represents the Corrective Measures Study that has been conducted for the Mixed Waste Landfill. The purpose of the study was to identify, develop, and evaluate corrective measures alternatives and recommend the corrective measure(s) to be taken at the site. Based upon detailed evaluation and risk assessment using guidance provided by the U.S. Environmental Protection Agency and the New Mexico Environment Department, themore » U.S. Department of Energy and Sandia National Laboratories recommend that a vegetative soil cover be deployed as the preferred corrective measure for the Mixed Waste Landfill. The cover would be of sufficient thickness to store precipitation, minimize infiltration and deep percolation, support a healthy vegetative community, and perform with minimal maintenance by emulating the natural analogue ecosystem. There would be no intrusive remedial activities at the site and therefore no potential for exposure to the waste. This alternative poses minimal risk to site workers implementing institutional controls associated with long-term environmental monitoring as well as routine maintenance and surveillance of the site.« less
Li, Yue; Duan, Yan-Ping; Huang, Fan; Yang, Jing; Xiang, Nan; Meng, Xiang-Zhou; Chen, Ling
2014-06-01
Very few data for polybrominated diphenyl ethers (PBDEs) were available in the electronic waste (e-waste) as one of the most PBDEs emission source. This study reported concentrations of PBDEs in e-waste including printer, rice cooker, computer monitor, TV, electric iron and water dispenser, as well as dust from e-waste, e-waste dismantling workshop and surface soil from inside and outside of an e-waste recycling plant in Shanghai, Eastern China. The results showed that PBDEs were detected in the majority of e-waste, and the concentrations of ΣPBDEs ranged from not detected to 175 g/kg, with a mean value of 10.8 g/kg. PBDEs were found in TVs made in China after 1990. The mean concentrations of ΣPBDEs in e-waste made in Korea, Japan, Singapore and China were 1.84 g/kg, 20.5 g/kg, 0.91 g/kg, 4.48 g/kg, respectively. The levels of ΣPBDEs in e-waste made in Japan far exceed the threshold limit of RoHS (1.00 g/kg). BDE-209 dominated in e-waste, accounting for over 93%. The compositional patterns of PBDEs congeners resembled the profile of Saytex 102E, indicating the source of deca-BDE. Among the samples of dust and surface soil from a typical e-waste recycling site, the highest concentrations of Σ18PBDEs and BDE-209 were found in dust in e-waste, ranging from 1960 to 340,710 ng/g and from 910 to 320,400 ng/g, which were 1-2 orders of magnitude higher than other samples. It suggested that PBDEs released from e-waste via dust, and then transferred to surrounding environment. Copyright © 2013 Elsevier Ltd. All rights reserved.
Technical and design update in the AUBE French low-level radioactive waste disposal facility
DOE Office of Scientific and Technical Information (OSTI.GOV)
Marque, Y.
1989-01-01
Long-term industrial management of radioactive waste in France is carried out by the Agence Nationale pour la Gestion des Dechets Radioactifs (ANDRA). ANDRA is in charge of design, siting, construction, and operation of disposal centers. The solution selected in France for the disposal of low- and medium-level, short-lived radioactive waste is near-surface disposal in the earth using the principle of multiple barriers, in accordance with national safety rules and regulations, and based on operating experience from the Centre de Stockage de la Manche. Since the center's start-up in 1969, 400,000 m{sup 3} of waste have been disposed of. The Frenchmore » national program for waste management is proceeding with the construction of a second near-surface disposal, which is expected to be operational in 1991. It is located in the department of AUBE (from which its name derives), 100 miles southeast of Paris. The paper describes the criteria for siting and design of the AUBE disposal facility, design of the AUBE facility disposal module, and comparison with North Carolina and Pennsylvania disposal facility designs.« less
Presentation of the 2007 Richard S. Hodes, M.D. Honor Lecture Award
DOE Office of Scientific and Technical Information (OSTI.GOV)
McNamara, L.
Perma-Fix Environmental Services, Inc. Chief Operating Officer Larry McNamara is the 2007 recipient of the distinguished Richard S. Hodes, M.D. Honor Lecture Award from the Southeast Compact Commission for Low-Level Radioactive Waste Management. This award recognizes Mr. McNamara's innovation in the commercialization of mixed waste treatment processes for the nuclear industry, and the significant role that these innovations have played solving low-level radioactive waste (LLRW) management problems in the United States with specific emphasis on low-level mixed wastes. Low-level mixed wastes (LLMW) have historically been the most difficult wastes to treat because of the specialized equipment, permits and experience neededmore » to deal with a large variety of hazardous constituents. Prior to innovations in the mixed waste treatment industry championed by Mr. McNamara, wastes were stored at generator sites around the country in regulated storage areas, at great cost, and in many cases for decades. In this paper, Mr. McNamara shares lessons he has learned over the past seven years in developing and implementing innovative waste management solutions that have helped solve one of the nation's biggest challenges. He also describes the future challenges facing the industry. (authors)« less
Tokumaru, Takashi; Ozaki, Hirokazu; Onwona-Agyeman, Siaw; Ofosu-Anim, John; Watanabe, Izumi
2017-10-01
The concentrations of trace elements (Mg, Al, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Ga, As, Se, Rb, Sr, Y, Mo, Cd, In, Sn, Sb, Cs, Ba, Tl, Pb, and Bi) in soils, sediment, human hair, and foodstuff collected around the electronic waste (e-waste) recycling sites in Accra, Ghana were detected using inductively coupled plasma-mass spectrometry (ICP-MS). High levels of Cu, Zn, Mo, Cd, In, Sn, Sb, and Pb were observed in soils collected from the e-waste recycling sites. Four sequential extraction procedures were used to evaluate the mobility and bioavailability of metals (Cu, Zn, Cd, Sb, and Pb). Especially, the results showed that Cd and Zn in soils were mostly recovered in exchangeable fraction (respectively 58.9 and 62.8%). Sediment collected from around the site had enrichment of Zn, Sn, Sb, Mo, In, Pb, and Bi. The concentrations of Cu, Mo, Cd, Sb, and Pb in human hair were significantly higher than those collected from the control site (p < 0.01). Additionally, hierarchical cluster analysis reviewed that these elements were derived from e-waste activities. The results of Pb isotopic ratios in the samples indicate that Pb in human hair possibly originated from contaminated soils, fish, and foodstuff.
Environmental analysis burial of offsite low-level waste at SRP
NASA Astrophysics Data System (ADS)
Poe, W. L.; Moyer, R. A.
1980-12-01
The environmental effects of receipt and burial of low level naval waste are assessed. This low level waste was sent to the NRC-licensed burial ground operated by Chem-Nuclear Systems, Inc., at Barnwell, South Carolina. The DOE announced that DOE-generated low level waste would no longer be buried at commercial waste burial sites. The SRP was selected to receive the Naval waste described in this analysis. Receipt and burial of these wastes will have a negligible effect on SRP's environment and increase only sightly the environmental effects of the SRP operations discussed in the EIS on SRP waste management operations. The environmental effects of burial of this waste at Chem-Nuclear Burial Ground or at the SRP Burial Ground are described in this environmental analysis to permit assessment of incremental effects caused by the decision to bury this Naval waste in the SRP Burial Ground rather than in the Barnwell Burial Ground. The radiological effects from burial of this waste in either the SRP or Chem-Nuclear Burial Ground are very small when compared to those from natural background radiation or to the annual population dose commitment from operation of SRP. The environmental effects of burial at SRP to dose commitments normally received by the population surrounding SRP are compared.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Yue; Duan, Yan-Ping, E-mail: duanyanping@tongji.edu.cn; Huang, Fan
Highlights: • PBDEs were detected in the majority of e-waste. • PBDEs were found in TVs made in China after 1990. • The levels of ΣPBDEs in e-waste made in Japan far exceed the threshold limit of RoHS. • The inappropriate recycling and disposal of e-waste is an important source of PBDEs. - Abstract: Very few data for polybrominated diphenyl ethers (PBDEs) were available in the electronic waste (e-waste) as one of the most PBDEs emission source. This study reported concentrations of PBDEs in e-waste including printer, rice cooker, computer monitor, TV, electric iron and water dispenser, as well asmore » dust from e-waste, e-waste dismantling workshop and surface soil from inside and outside of an e-waste recycling plant in Shanghai, Eastern China. The results showed that PBDEs were detected in the majority of e-waste, and the concentrations of ΣPBDEs ranged from not detected to 175 g/kg, with a mean value of 10.8 g/kg. PBDEs were found in TVs made in China after 1990. The mean concentrations of ΣPBDEs in e-waste made in Korea, Japan, Singapore and China were 1.84 g/kg, 20.5 g/kg, 0.91 g/kg, 4.48 g/kg, respectively. The levels of ΣPBDEs in e-waste made in Japan far exceed the threshold limit of RoHS (1.00 g/kg). BDE-209 dominated in e-waste, accounting for over 93%. The compositional patterns of PBDEs congeners resembled the profile of Saytex 102E, indicating the source of deca-BDE. Among the samples of dust and surface soil from a typical e-waste recycling site, the highest concentrations of Σ{sub 18}PBDEs and BDE-209 were found in dust in e-waste, ranging from 1960 to 340,710 ng/g and from 910 to 320,400 ng/g, which were 1–2 orders of magnitude higher than other samples. It suggested that PBDEs released from e-waste via dust, and then transferred to surrounding environment.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tomas, J.
2003-02-25
Attempts to solve the problem of high-level waste disposal including the spent fuel from nuclear power plants have been made in the Czech Republic for over the 10 years. Already in 1991 the Ministry of Environment entitled The Czech Geological Survey to deal with the siting of the locality for HLW disposal and the project No. 3308 ''The geological research of the safe disposal of high level waste'' had started. Within this project a sub-project ''A selection of perspective HLW disposal sites in the Bohemian Massif'' has been elaborated and 27 prospective areas were identified in the Czech Republic. Thismore » selection has been later narrowed to 8 areas which are recently studied in more detail. As a parallel research activity with siting a granitic body Melechov Massif in Central Moldanubian Pluton has been chosen as a test site and the 1st stage of research i.e. evaluation and study of its geological, hydrogeological, geophysical, tectonic and structural properties has been already completed. The Melechov Massif was selected as a test site after the recommendation of WATRP (Waste Management Assessment and Technical Review Programme) mission of IAEA (1993) because it represents an area analogous with the host geological environment for the future HLW and spent fuel disposal in the Czech Republic, i.e. variscan granitoids. It is necessary to say that this site would not be in a locality where the deep repository will be built, although it is a site suitable for oriented research for the sampling and collection of descriptive data using up to date and advanced scientific methods. The Czech Republic HLW and spent fuel disposal programme is now based on The Concept of Radioactive Waste and Spent Nuclear Fuel Management (''Concept'' hereinafter) which has been prepared in compliance with energy policy approved by Government Decree No. 50 of 12th January 2000 and approved by the Government in May 2002. Preparation of the Concept was required, amongst other reasons in connection with preparations for the Czech Republic's accession to the European Union and in connection with the Joint Convention on the Safety of Spent Fuel Management and on the Safety of Radioactive Waste Management adopted under the auspices of the International Atomic Energy Agency, which was signed by the Czech Republic in 1997. According to the approved Concept it is expected that a deep geological repository in the Czech Republic will be built in granitic rocks.« less
AMS measurements of 14C and 129I in seawater around radioactive waste dump sites
NASA Astrophysics Data System (ADS)
Povinec, P. P.; Oregioni, B.; Jull, A. J. T.; Kieser, W. E.; Zhao, X.-L.
2000-10-01
According to a recent IAEA compilation of inventories of radioactive wastes dumped in the world ocean, a total of 85 PBq of radioactive wastes were dumped, in the Atlantic (45 PBq), the Pacific (1.4 PBq) and the Arctic (38 PBq) Oceans and their marginal seas between 1946 and 1993, mostly in the form of low-level wastes. 3H, and 14C formed an important part of the beta-activity of these dumped wastes. Because of its long half-life, 14C will be the main constituent in possible leakages from the wastes in the future. On the other hand, 14C and 129I are important radioactive tracers which have been artificially introduced into the oceans. Small amounts of 14C and 129I can be easily measured by accelerator mass spectrometry (AMS) on mg-size samples of carbon and iodine extracted from 500 ml seawater samples. The high analytical sensitivity enables one therefore to find even trace amounts of 14C and 129I which could be released from radioactive wastes, and to compare the measured levels with the global distribution of these radionuclides. The IAEAs Marine Environment Laboratory (IAEA-MEL) has been engaged in an assessment program related to radioactive waste dumping in the oceans since 1992 and has participated in several expeditions to the Atlantic, Arctic, Indian and Pacific Oceans to sample seawater, biota and sediment for radiological assessment studies. In the present paper, we report on methods of 14C and 129I measurements in seawater by AMS and present data on the NE Atlantic, the Arctic and the NW Pacific Ocean dumping sites. A small increase of 14C was observed at the NE Atlantic dumping site.
High levels of antimony in dust from e-waste recycling in southeastern China.
Bi, Xiangyang; Li, Zhonggen; Zhuang, Xiaochun; Han, Zhixuan; Yang, Wenlin
2011-11-01
Environmental contamination due to uncontrolled e-waste recycling is an emerging global issue. Antimony (Sb) is a toxic element used in semiconductor components and flame retardants for circuit board within electronic equipment. When e-waste is recycled, Sb is released and contaminates the surrounding environment; however, few studies have characterized the extent of this problem. In this study, we investigated Sb and arsenic (As) distributions in indoor dust from 13 e-waste recycling villages in Guiyu, Guangdong Province, southeastern China. Results revealed significantly elevated concentrations of Sb (6.1-232 mg/kg) in dust within all villages, which were 3.9-147 times higher than those from the non e-waste sites, indicating e-waste recycling was an important source of Sb pollution. On the contrary, As concentrations (5.4-17.7 mg/kg) in e-waste dusts were similar to reference values from the control sites. Therefore, dusts emitted from e-waste recycling may be characterized by high Sb/As ratios, which may help identify the contamination due to the e-waste recycling activities. Copyright © 2011 Elsevier B.V. All rights reserved.
Biological intrusion of low-level-waste trench covers
NASA Astrophysics Data System (ADS)
Hakonson, T. E.; Gladney, E. S.
The long-term integrity of low-level waste shallow land burialsites is dependent on the interaction of physical, chemical, and biological factors that modify the waste containment system. The need to consider biological processes as being potentially important in reducing the integrity of waste burial site cover treatment is demonstrated. One approach to limiting biological intrusion through the waste cover is to apply a barrier within the profile to limit root and animal penetration with depth. Experiments in the Los Alamos Experimental Engineered Test Facility were initiated to develop and evaluate biological barriers that are effective in minimizing intrusion into waste trenches. The experiments that are described employ four different candidate barrier materials of geologic origin. Experimental variables that will be evaluated, in addition to barrier type, are barrier depth and sil overburden depth.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hasan, M.A.; Selim, Y.T.; Lasheen, Y.F.
2013-07-01
The application of radioisotopes and radiation sources in medical diagnosis and therapy is an important issue. Physicians can use radioisotopes to diagnose and treat diseases. Methods of treatment, conditioning and management of low level radioactive wastes from the use of radiation sources and radioisotopes in hospitals and nuclear medicine application, are described. Solid Radioactive waste with low-level activity after accumulation, minimization, segregation and measurement, are burned or compressed in a compactor according to the international standards. Conditioned drums are transported to the interim storage site at the Egyptian Atomic Energy Authority (EAEA) represented in Hot Labs and Waste Management Centermore » (HLWMC) for storage and monitoring. (authors)« less
Burger, Joanna; Gochfeld, Michael; Kosson, D S; Powers, Charles W
2007-01-01
With the ending of the Cold War, the US and other nations were faced with a legacy of nuclear wastes. For some sites where hazardous nuclear wastes will remain in place, methods must be developed to protect human health and the environment. Biomonitoring is one method of assessing the status and trends of potential radionuclide exposure from nuclear waste sites, and of providing the public with early warning of any potential harmful exposure. Amchitka Island (51 degrees N lat, 179 degrees E long) was the site of three underground nuclear tests from 1965 to 1971. Following a substantive study of radionuclide levels in biota from the marine environment around Amchitka and a reference site, we developed a suite of bioindicators (with suggested isotopes) that can serve as a model for other sites contaminated with radionuclides. Although the species selection was site-specific, the methods can provide a framework for other sites. We selected bioindicators using five criteria: (1) occurrence at all three test shots (and reference site), (2) receptor groups (subsistence foods, commercial species, and food chain nodes), (3) species groups (plants, invertebrates, fish, and birds), (4) trophic levels, and (5) an accumulator of one or several radionuclides. Our major objective was to identify bioindicators that could serve for both human health and the ecosystem, and were abundant enough to collect adjacent to the three test sites and at the reference site. Site-specific information on both biota availability and isotope levels was essential in the final selection of bioindicators. Actinides bioaccumulated in algae and invertebrates, while radiocesium accumulated in higher trophic level birds and fish. Thus, unlike biomonitoring schemes developed for heavy metals or other contaminants, top-level predators are not sufficient to evaluate potential radionuclide exposure at Amchitka. The process described in this paper resulted in the selection of Fucus, Alaria fistulosa, blue mussel (Mytilus trossulus), dolly varden (Salvelinus malma), black rockfish (Sebastes melanops), Pacific cod (Gadus macrocephalus), Pacific halibut (Hippoglossus stenolepis), and glaucous-winged gull (Larus glaucescens) as bioindicators. This combination of species included mainly subsistence foods, commercial fish, and nodes on different food chains.
Waste Information Management System-2012 - 12114
DOE Office of Scientific and Technical Information (OSTI.GOV)
Upadhyay, H.; Quintero, W.; Shoffner, P.
2012-07-01
The Waste Information Management System (WIMS) -2012 was updated to support the Department of Energy (DOE) accelerated cleanup program. The schedule compression required close coordination and a comprehensive review and prioritization of the barriers that impeded treatment and disposition of the waste streams at each site. Many issues related to waste treatment and disposal were potential critical path issues under the accelerated schedule. In order to facilitate accelerated cleanup initiatives, waste managers at DOE field sites and at DOE Headquarters in Washington, D.C., needed timely waste forecast and transportation information regarding the volumes and types of radioactive waste that wouldmore » be generated by DOE sites over the next 40 years. Each local DOE site historically collected, organized, and displayed waste forecast information in separate and unique systems. In order for interested parties to understand and view the complete DOE complex-wide picture, the radioactive waste and shipment information of each DOE site needed to be entered into a common application. The WIMS application was therefore created to serve as a common application to improve stakeholder comprehension and improve DOE radioactive waste treatment and disposal planning and scheduling. WIMS allows identification of total forecasted waste volumes, material classes, disposition sites, choke points, technological or regulatory barriers to treatment and disposal, along with forecasted waste transportation information by rail, truck and inter-modal shipments. The Applied Research Center (ARC) at Florida International University (FIU) in Miami, Florida, developed and deployed the web-based forecast and transportation system and is responsible for updating the radioactive waste forecast and transportation data on a regular basis to ensure the long-term viability and value of this system. WIMS continues to successfully accomplish the goals and objectives set forth by DOE for this project. It has replaced the historic process of each DOE site gathering, organizing, and reporting their waste forecast information utilizing different databases and display technologies. In addition, WIMS meets DOE's objective to have the complex-wide waste forecast and transportation information available to all stakeholders and the public in one easy-to-navigate system. The enhancements to WIMS made since its initial deployment include the addition of new DOE sites and facilities, an updated waste and transportation information, and the ability to easily display and print customized waste forecast, the disposition maps, GIS maps and transportation information. The system also allows users to customize and generate reports over the web. These reports can be exported to various formats, such as Adobe{sup R} PDF, Microsoft Excel{sup R}, and Microsoft Word{sup R} and downloaded to the user's computer. Future enhancements will include database/application migration to the next level. A new data import interface will be developed to integrate 2012-13 forecast waste streams. In addition, the application is updated on a continuous basis based on DOE feedback. (authors)« less
Annual Summary of the Integrated Disposal Facility Performance Assessment 2011
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lehman, L. L.
2012-03-12
An annual summary of the adequacy of the Hanford Immobilized Low-Activity Waste (ILAW) Performance Assessment (PA) is required each year (DOE O 435.1 Chg 1,1 DOE M 435.1-1 Chg 1,2 DOE/ORP-2000-013). The most recently approved PA is DOE/ORP-2000-24.4 The ILAW PA evaluated the adequacy of the ILAW disposal facility, now referred to as the Integrated Disposal Facility (IDF), for the safe disposal of vitrified Hanford Site tank waste. More recently, a preliminary evaluation for the disposal of offsite low-level waste and mixed low-level waste was considered in RPP-1583.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rechard, Robert P.
This report presents a concise history in tabular form of events leading up to site identification in 1978, site selection in 1987, subsequent characterization, and ongoing analysis through 2008 of the performance of a repository for spent nuclear fuel and high-level radioactive waste at Yucca Mountain in southern Nevada. The tabulated events generally occurred in five periods: (1) commitment to mined geologic disposal and identification of sites; (2) site selection and analysis, based on regional geologic characterization through literature and analogous data; (3) feasibility analysis demonstrating calculation procedures and importance of system components, based on rough measures of performance usingmore » surface exploration, waste process knowledge, and general laboratory experiments; (4) suitability analysis demonstrating viability of disposal system, based on environment-specific laboratory experiments, in-situ experiments, and underground disposal system characterization; and (5) compliance analysis, based on completed site-specific characterization. Because the relationship is important to understanding the evolution of the Yucca Mountain Project, the tabulation also shows the interaction between four broad categories of political bodies and government agencies/institutions: (a) technical milestones of the implementing institutions, (b) development of the regulatory requirements and related federal policy in laws and court decisions, (c) Presidential and agency directives and decisions, and (d) critiques of the Yucca Mountain Project and pertinent national and world events related to nuclear energy and radioactive waste.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
González Pericot, N., E-mail: natalia.gpericot@upm.es; Villoria Sáez, P., E-mail: paola.villoria@upm.es; Del Río Merino, M., E-mail: mercedes.delrio@upm.es
2014-11-15
Highlights: • On-site segregation level: 1.80%; training and motivation strategies were not effective. • 70% Cardboard waste: from switches and sockets during the building services stage. • 40% Plastic waste: generated during structures and partition works due to palletizing. • >50% Wood packaging waste, basically pallets, generated during the envelope works. - Abstract: The construction sector is responsible for around 28% of the total waste volume generated in Europe, which exceeds the amount of household waste. This has led to an increase of different research studies focusing on construction waste quantification. However, within the research studies made, packaging waste hasmore » been analyzed to a limited extent. This article focuses on the packaging waste stream generated in the construction sector. To this purpose current on-site waste packaging management has been assessed by monitoring ten Mediterranean residential building works. The findings of the experimental data collection revealed that the incentive measures implemented by the construction company to improve on-site waste sorting failed to achieve the intended purpose, showing low segregation ratios. Subsequently, through an analytical study the generation patterns for packaging waste are established, leading to the identification of the prevailing kinds of packaging and the products responsible for their generation. Results indicate that plastic waste generation maintains a constant trend throughout the whole construction process, while cardboard becomes predominant towards the end of the construction works with switches and sockets from the electricity stage. Understanding the production patterns of packaging waste will be beneficial for adapting waste management strategies to the identified patterns for the specific nature of packaging waste within the context of construction worksites.« less
10 CFR 72.90 - General considerations.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 10 Energy 2 2010-01-01 2010-01-01 false General considerations. 72.90 Section 72.90 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) LICENSING REQUIREMENTS FOR THE INDEPENDENT STORAGE OF SPENT NUCLEAR FUEL, HIGH-LEVEL RADIOACTIVE WASTE, AND REACTOR-RELATED GREATER THAN CLASS C WASTE Siting Evaluation Factors...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Umari, A.M.J.; Geldon, A.; Patterson, G.
1994-12-31
Yucca Mountain, Nevada, currently is being investigated by the U.S. Geological Survey as a potential site for a high-level nuclear waste repository. Planned hydraulic-stress and tracer tests in fractured, tuffaceous rocks below the water table at Yucca Mountain will require work at depths in excess of 1,300 feet. To facilitate prototype testing of equipment and methods to be used in aquifer tests at Yucca Mountain, an analog site was selected in the foothills of the Sierra Nevada near Raymond, California. Two of nine 250- to 300-feet deep wells drilled into fractured, granitic rocks at the Raymond site have been instrumentedmore » with packers, pressure transducers, and other equipment that will be used at Yucca Mountain. Aquifer tests conducted at the Raymond site to date have demonstrated a need to modify some of the equipment and methods conceived for use at Yucca Mountain.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
SM Narbutovskih
2000-03-31
Pacific Northwest National Laboratory conducted a first determination groundwater quality assessment at the Hanford Site. This work was performed for the US Department of Energy, Richland Operations Office, in accordance with the Federal Facility Compliance Agreement during the time period 1996--1998. The purpose of the assessment was to determine if waste from the Single-Shell Tank (SST) Waste Management Area (WMA) B-BX-BY had entered the groundwater at levels above the drinking water standards (DWS). The resulting assessment report documented evidence demonstrating that waste from the WMA has, most likely, impacted groundwater quality. Based on 40 CFR 265.93 [d] paragraph (7), themore » owner-operator must continue to make the minimum required determinations of contaminant level and of rate/extent of migrations on a quarterly basis until final facility closure. These continued determinations are required because the groundwater quality assessment was implemented prior to final closure of the facility.« less
Blue Ribbon Commission Tour of Hanford Site
Paul Saueressig
2017-12-09
The Blue Ribbon Commission on America's Nuclear Future toured the Department of Energy's Hanford Site on July 14, 2010. Commission members, invited guests, and members of the public visited facilities that store high-level, radioactive waste.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Goldston, W.T.
DOE issued Order 435.1, ''Radioactive Waste Management,'' on July 9, 1999 for immediate implementation. The requirements for Low Level Mixed, Transuranic, and High Level Waste have been completely rewritten. The entire DOE complex has been struggling with how to implement these new requirements within the one year required timeframe. This paper will chronicle the implementation strategy and actual results of the work to carry out that strategy at the Savannah River Site.
Analysis of local acceptance of a radioactive waste disposal facility.
Chung, Ji Bum; Kim, Hong-Kew; Rho, Sam Kew
2008-08-01
Like many other countries in the world, Korea has struggled to site a facility for radioactive waste for almost 30 years because of the strong opposition from local residents. Finally, in 2005, Gyeongju was established as the first Korean site for a radioactive waste facility. The objectives of this research are to verify Gyeongju citizens' average level of risk perception of a radioactive waste disposal facility as compared to other risks, and to explore the best model for predicting respondents' acceptance level using variables related to cost-benefit, risk perception, and political process. For this purpose, a survey is conducted among Gyeongju residents, the results of which are as follows. First, the local residents' risk perception of an accident in a radioactive waste disposal facility is ranked seventh among a total of 13 risks, which implies that nuclear-related risk is not perceived very highly by Gyeongju residents; however, its characteristics are still somewhat negative. Second, the comparative regression analyses show that the cost-benefit and political process models are more suitable for explaining the respondents' level of acceptance than the risk perception model. This may be the result of the current economic depression in Gyeongju, residents' familiarity with the nuclear industry, or cultural characteristics of risk tolerance.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aurelio, Mario; Taguibao, Kristine Joy; Vargas, Edmundo
In the selection of sites for disposal facilities involving low- and intermediate-level radioactive waste (LILW), International Atomic Energy Agency (IAEA) recommendations require that 'the region in which the site is located shall be such that significant tectonic and surface processes are not expected to occur with an intensity that would compromise the required isolation capability of the repository'. Evaluating the appropriateness of a site therefore requires a deep understanding of the geological and tectonic setting of the area. The Philippines sits in a tectonically active region frequented by earthquakes and volcanic activity. Its highly variable morphology coupled with its locationmore » along the typhoon corridor in the west Pacific region subjects the country to surface processes often manifested in the form of landslides. The Philippine LILW near surface repository project site is located on the north eastern sector of the Island of Luzon in northern Philippines. This island is surrounded by active subduction trenches; to the east by the East Luzon Trough and to the west by the Manila Trench. The island is also traversed by several branches of the Philippine Fault System. The Philippine LILW repository project is located more than 100 km away from any of these major active fault systems. In the near field, the project site is located less than 10 km from a minor fault (Dummon River Fault) and more than 40 km away from a volcanic edifice (Mt. Caguas). This paper presents an analysis of the potential hazards that these active tectonic features may pose to the project site. The assessment of such geologic hazards is imperative in the characterization of the site and a crucial input in the design and safety assessment of the repository. (authors)« less
Nuclear Waste Disposal: Alternatives to Yucca Mountain
2009-02-06
metric tons of spent fuel at the nine decommissioned sites could be shipped to a federal central storage facility by 2018 , but that DOE had no...Disposal of High- Level Radioactive Waste into the Seabed, Overview of Research and Conclusions, Volume 1, Paris , 1988, p. 60. 63 1996 Protocol to...Convention on Prevention of Marine Pollution by Dumping of Wastes, Treaty Doc. 110-5, September 4, 2007
Method of draining water through a solid waste site without leaching
Treat, Russell L.; Gee, Glendon W.; Whyatt, Greg A.
1993-01-01
The present invention is a method of preventing water from leaching solid waste sites by preventing atmospheric precipitation from contacting waste as the water flows through a solid waste site. The method comprises placing at least one drain hole through the solid waste site. The drain hole is seated to prevent waste material from entering the drain hole, and the solid waste site cover material is layered and graded to direct water to flow toward the drain hole and to soil beneath the waste site.
Method of draining water through a solid waste site without leaching
Treat, R.L.; Gee, G.W.; Whyatt, G.A.
1993-02-02
The present invention is a method of preventing water from leaching solid waste sites by preventing atmospheric precipitation from contacting waste as the water flows through a solid waste site. The method comprises placing at least one drain hole through the solid waste site. The drain hole is seated to prevent waste material from entering the drain hole, and the solid waste site cover material is layered and graded to direct water to flow toward the drain hole and to soil beneath the waste site.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chu, Shaoping; Stauffer, Philip H.; Birdsell, Kay Hanson
The Los Alamos National Laboratory (LANL) generates radioactive waste as a result of various activities. Operational waste is generated from a wide variety of research and development activities including nuclear weapons development, energy production, and medical research. Environmental restoration (ER), and decontamination and decommissioning (D&D) waste is generated as contaminated sites and facilities at LANL undergo cleanup or remediation. The majority of this waste is low-level radioactive waste (LLW) and is disposed of at the Technical Area 54 (TA-54), Area G disposal facility.
Modeling Land Application of Food-Processing Wastewater in the Central Valley, California
NASA Astrophysics Data System (ADS)
Rubin, Y.; Benito, P.; Miller, G.; McLaughlin, J.; Hou, Z.; Hermanowicz, S.; Mayer, U.
2007-12-01
California's Central Valley contains over 640 food-processing plants, serving a multi-billion dollar agricultural industry. These processors consume approximately 7.9 x 107 m3 of water per year. Approximately 80% of these processors discharge the resulting wastewater, which is typically high in organic matter, nitrogen, and salts, to land, and many of these use land application as a treatment method. Initial investigations revealed elevated salinity levels to be the most common form of groundwater degradation near land application sites, followed by concentrations of nitrogen compounds, namely ammonia and nitrate. Enforcement actions have been taken against multiple food processors, and the regulatory boards have begun to re-examine the land disposal permitting process. This paper summarizes a study that was commissioned in support of these actions. The study has multiple components which will be reviewed briefly, including: (1) characterization of the food-processing related waste stream; (2) fate and transport of the effluent waste stream in the unsaturated zone at the land application sites; (3) fate and transport of the effluent waste stream at the regional scale; (4) predictive uncertainty due to spatial variability and data scarcity at the land application sites and at the regional scale; (5) problem mitigation through off-site and in-situ actions; (6) long-term solutions. The emphasis of the talk will be placed on presenting and demonstrating a stochastic framework for modeling the transport and attenuation of these wastes in the vadose zone and in the saturated zone, and the related site characterization needs, as affected by site conditions, water table depth, waste water application rate, and waste constituent concentrations.
NASA Astrophysics Data System (ADS)
You, Y.; Ward, M. J.; Hilpert, M.
2012-12-01
Antibiotic resistance is a growing public health problem worldwide and the routine use of antibiotics in industrial animal production has sparked debate on whether this practice might constitute an environmental and public health concern. At a broiler farm, electromagnetic induction (EMI) surveying assisted soil sampling from a chicken-waste-impacted site and a marginally affected site. Consistent with the EMI survey, disparity existed between the two sites with regard to soil pH, tetracycline resistance (TcR) levels among heterotrophic culturable soil bacteria, and the incidence/prevalence of a number of tet and erm genes in the soils. No significant difference was observed in these aspects between the marginally affected site and several sites in a regional state forest that has not been in agricultural use for decades. Shortly after our sampling, the farm closed down and all the waste was removed. This unique change in situation offered us an unusual opportunity to examine the reversibility of any impact of the chicken waste on the soil microbial community. Two years after the event, several antibiotic resistance genes (ARGs) were still detected in the waste-impacted soil, and quantitative real-time PCR (qPCR) data showed that their relative abundance remained at substantial levels. A mobilizable tet(L)-carrying plasmid, pSU1, was identified in several chicken-waste-exposed soil bacteria of three different genera. Quantification of the plasmid's mobilization gene suggested that pSU1 had contributed to the prevalence and persistence of tet(L) in the waste-impacted soil. A second mobilizable tet(L)-carrying plasmid, pBSDMV9, isolated from the same soil, contained a region with 98.8% nucleotide identity to pSU1. The mosaic structure of the plasmids and the highly conserved nature of the tet(L) genes suggested that plasmid rearrangement favoring the acquisition of tet(L) may have occurred in the soil relatively recently. Additionally, in one chicken-waste-exposed soil isolate, Bhargavaea cecembensis DMV42A, cloning and sequencing identified a new TcR gene, tet(45), adjacent to putative arsenic resistance genes. Tet45 was shown to function as an efflux pump in Escherichia coli. A CTn3-like mobile genetic element (MGE) harboring tet(M) was also identified in DMV42A. After filter matings with DMV42A, both tet(45) and a CTn3 gene were identified in newly TcR E. coli transconjugants, indicating that both genes are transmissible. In the waste-impacted soil, tet(M) and CTn3-like elements (as well as other Tn916-family MGEs) were found by qPCR to be more abundant than tet(45). By the end of the 2-year sampling period, these tet genes and MGEs were still present at similar levels. None of them were found at the marginally affected farm site, nor at any state forest site. While none of the ARGs/MGEs identified in this study were shown to be present in the chicken waste generated on the farm (no chicken waste was analyzed), several characteristics of the ARGs (including their prevalence, persistence, transmissibility, and association with MGEs) indicate that they are perhaps not associated with the natural soil resistome, but are instead part of the potentially worrisome expanded resistome associated with agricultural practices at concentrated animal feeding operations.
Secondary Waste Form Down-Selection Data Package—Fluidized Bed Steam Reforming Waste Form
DOE Office of Scientific and Technical Information (OSTI.GOV)
Qafoku, Nikolla; Westsik, Joseph H.; Strachan, Denis M.
2011-09-12
The Hanford Site in southeast Washington State has 56 million gallons of radioactive and chemically hazardous wastes stored in 177 underground tanks (ORP 2010). The U.S. Department of Energy (DOE), Office of River Protection (ORP), through its contractors, is constructing the Hanford Tank Waste Treatment and Immobilization Plant (WTP) to convert the radioactive and hazardous wastes into stable glass waste forms for disposal. Within the WTP, the pretreatment facility will receive the retrieved waste from the tank farms and separate it into two treated process streams. These waste streams will be vitrified, and the resulting waste canisters will be sentmore » to offsite (high-level waste [HLW]) and onsite (immobilized low-activity waste [ILAW]) repositories. As part of the pretreatment and ILAW processing, liquid secondary wastes will be generated that will be transferred to the Effluent Treatment Facility (ETF) on the Hanford Site for further treatment. These liquid secondary wastes will be converted to stable solid waste forms that will be disposed of in the Integrated Disposal Facility (IDF). To support the selection of a waste form for the liquid secondary wastes from WTP, Washington River Protection Solutions (WRPS) has initiated secondary waste form testing work at Pacific Northwest National Laboratory (PNNL). In anticipation of a down-selection process for a waste form for the Solidification Treatment Unit to be added to the ETF, PNNL is developing data packages to support that down-selection. The objective of the data packages is to identify, evaluate, and summarize the existing information on the four waste forms being considered for stabilizing and solidifying the liquid secondary wastes. At the Hanford Site, the FBSR process is being evaluated as a supplemental technology for treating and immobilizing Hanford LAW radioactive tank waste and for treating secondary wastes from the WTP pretreatment and LAW vitrification processes.« less
Copper tolerance in clones of Agrostis gigantea from a mine waste site
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hogan, G.D.; Courtin, G.M.; Rauser, W.E.
1977-04-15
A mine waste site from Sudbury, Ontario, contaminated with heavy metals is described. The dominant vegetative cover was formed by two grasses: Agrostis gigantea Roth. and Agrostis scabra Willd. Testing of 10 clones of A. gigantea from the roast bed and an adjoining area for copper tolerance showed that two clones collected from the roast bed were tolerant to increased copper levels. Copper tolerance was found in clones growing on soils with high copper contents and low pHs. The combination of high copper content and low pH brought about a high level of extractable copper within the soil. Soils withmore » equally high copper levels but higher pHs and therefore low extractable-copper levels did not support copper-tolerant clones.« less
10 CFR 60.16 - Site characterization plan required.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 10 Energy 2 2010-01-01 2010-01-01 false Site characterization plan required. 60.16 Section 60.16 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) DISPOSAL OF HIGH-LEVEL RADIOACTIVE WASTES IN GEOLOGIC REPOSITORIES Licenses Preapplication Review § 60.16 Site characterization plan required. Before proceeding to...
40 CFR 761.346 - Three levels of sampling.
Code of Federal Regulations, 2012 CFR
2012-07-01
... PROHIBITIONS Sampling Non-Liquid, Non-Metal PCB Bulk Product Waste for Purposes of Characterization for PCB Disposal in Accordance With § 761.62, and Sampling PCB Remediation Waste Destined for Off-Site Disposal... Section 761.346 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) TOXIC SUBSTANCES...
40 CFR 761.346 - Three levels of sampling.
Code of Federal Regulations, 2013 CFR
2013-07-01
... PROHIBITIONS Sampling Non-Liquid, Non-Metal PCB Bulk Product Waste for Purposes of Characterization for PCB Disposal in Accordance With § 761.62, and Sampling PCB Remediation Waste Destined for Off-Site Disposal... Section 761.346 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) TOXIC SUBSTANCES...
40 CFR 761.346 - Three levels of sampling.
Code of Federal Regulations, 2014 CFR
2014-07-01
... PROHIBITIONS Sampling Non-Liquid, Non-Metal PCB Bulk Product Waste for Purposes of Characterization for PCB Disposal in Accordance With § 761.62, and Sampling PCB Remediation Waste Destined for Off-Site Disposal... Section 761.346 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) TOXIC SUBSTANCES...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Weiner, Ruth F.; Blink, James A.; Rechard, Robert Paul
This report examines the current policy, legal, and regulatory framework pertaining to used nuclear fuel and high level waste management in the United States. The goal is to identify potential changes that if made could add flexibility and possibly improve the chances of successfully implementing technical aspects of a nuclear waste policy. Experience suggests that the regulatory framework should be established prior to initiating future repository development. Concerning specifics of the regulatory framework, reasonable expectation as the standard of proof was successfully implemented and could be retained in the future; yet, the current classification system for radioactive waste, including hazardousmore » constituents, warrants reexamination. Whether or not consideration of multiple sites are considered simultaneously in the future, inclusion of mechanisms such as deliberate use of performance assessment to manage site characterization would be wise. Because of experience gained here and abroad, diversity of geologic media is not particularly necessary as a criterion in site selection guidelines for multiple sites. Stepwise development of the repository program that includes flexibility also warrants serious consideration. Furthermore, integration of the waste management system from storage, transportation, and disposition, should be examined and would be facilitated by integration of the legal and regulatory framework. Finally, in order to enhance acceptability of future repository development, the national policy should be cognizant of those policy and technical attributes that enhance initial acceptance, and those policy and technical attributes that maintain and broaden credibility.« less
Conversion of Nuclear Waste to Molten Glass: Cold-Cap Reactions in Crucible Tests
Xu, Kai; Hrma, Pavel; Rice, Jarrett A.; ...
2016-05-23
The feed-to-glass conversion, which comprises complex chemical reactions and phase transitions, occurs in the cold cap during nuclear waste vitrification. Here, to investigate the conversion process, we analyzed heat-treated samples of a simulated high-level waste feed using X-ray diffraction, electron probe microanalysis, leaching tests, and residual anion analysis. Feed dehydration, gas evolution, and borate phase formation occurred at temperatures below 700°C before the emerging glass-forming melt was completely connected. Above 700°C, intermediate aluminosilicate phases and quartz particles gradually dissolved in the continuous borosilicate melt, which expanded with transient foam. Finally, knowledge of the chemistry and physics of feed-to-glass conversion willmore » help us control the conversion path by changing the melter feed makeup to maximize the glass production rate.« less
Acoustic Behavior of Hollow Blocks and Bricks Made of Concrete Doped with Waste-Tire Rubber.
Fraile-Garcia, Esteban; Ferreiro-Cabello, Javier; Defez, Beatriz; Peris-Fajanes, Guillermo
2016-11-26
In this paper, we investigate the acoustic behaviour of building elements made of concrete doped with waste-tire rubber. Three different mixtures were created, with 0%, 10%, and 20% rubber in their composition. Bricks, lattice joists, and hollow blocks were manufactured with each mixture, and three different cells were built and tested against aerial and impact noise. The values of the global acoustic isolation and the reduction of the sound pressure level of impacts were measured. Results proved that highly doped elements are an excellent option to isolate low frequency sounds, whereas intermediate and standard elements constitute a most interesting option to block middle and high frequency sounds. In both cases, the considerable amount of waste-tire rubber recycled could justify the employment of the doped materials for the sake of the environment.
Acoustic Behavior of Hollow Blocks and Bricks Made of Concrete Doped with Waste-Tire Rubber
Fraile-Garcia, Esteban; Ferreiro-Cabello, Javier; Defez, Beatriz; Peris-Fajanes, Guillermo
2016-01-01
In this paper, we investigate the acoustic behaviour of building elements made of concrete doped with waste-tire rubber. Three different mixtures were created, with 0%, 10%, and 20% rubber in their composition. Bricks, lattice joists, and hollow blocks were manufactured with each mixture, and three different cells were built and tested against aerial and impact noise. The values of the global acoustic isolation and the reduction of the sound pressure level of impacts were measured. Results proved that highly doped elements are an excellent option to isolate low frequency sounds, whereas intermediate and standard elements constitute a most interesting option to block middle and high frequency sounds. In both cases, the considerable amount of waste-tire rubber recycled could justify the employment of the doped materials for the sake of the environment. PMID:28774084
Emerging Environmental Justice Issues in Nuclear Power and Radioactive Contamination.
Kyne, Dean; Bolin, Bob
2016-07-12
Nuclear hazards, linked to both U.S. weapons programs and civilian nuclear power, pose substantial environment justice issues. Nuclear power plant (NPP) reactors produce low-level ionizing radiation, high level nuclear waste, and are subject to catastrophic contamination events. Justice concerns include plant locations and the large potentially exposed populations, as well as issues in siting, nuclear safety, and barriers to public participation. Other justice issues relate to extensive contamination in the U.S. nuclear weapons complex, and the mining and processing industries that have supported it. To approach the topic, first we discuss distributional justice issues of NPP sites in the U.S. and related procedural injustices in siting, operation, and emergency preparedness. Then we discuss justice concerns involving the U.S. nuclear weapons complex and the ways that uranium mining, processing, and weapons development have affected those living downwind, including a substantial American Indian population. Next we examine the problem of high-level nuclear waste and the risk implications of the lack of secure long-term storage. The handling and deposition of toxic nuclear wastes pose new transgenerational justice issues of unprecedented duration, in comparison to any other industry. Finally, we discuss the persistent risks of nuclear technologies and renewable energy alternatives.
DOE Office of Scientific and Technical Information (OSTI.GOV)
PACQUET, E.A.
The River Protection Project (RPP) is planning to retrieve radioactive waste from the single-shell tanks (SST) and double-shell tanks (DST) underground at the Hanford Site. This waste will then be transferred to a waste treatment plant to be immobilized (vitrified) in a stable glass form. Over the years, the waste solids in many of the tanks have settled to form a layer of sludge at the bottom. The thickness of the sludge layer varies from tank to tank, from no sludge or a few inches of sludge to about 15 ft of sludge. The purpose of this technology and engineeringmore » case study is to evaluate the Flygt{trademark} submersible propeller mixer as a potential technology for auxiliary mobilization of DST HLW solids. Considering the usage and development to date by other sites in the development of this technology, this study also has the objective of expanding the knowledge base of the Flygt{trademark} mixer concept with the broader perspective of Hanford Site tank waste retrieval. More specifically, the objectives of this study delineated from the work plan are described.« less
Potential benefits of waste transmutation to the U.S. high-level waste respository
DOE Office of Scientific and Technical Information (OSTI.GOV)
Michaels, G.E.
1995-10-01
This paper reexamines the potential benefits of waste transmutation to the proposed U.S. geologic repository at the Yucca Mountain site based on recent progress in the performance assessment for the Yucca Mountain base case of spent fuel emplacement. It is observed that actinides are assumed to have higher solubility than in previous studies and that Np and other actinides now dominate the projected aqueous releases from a Yucca Mountain repository. Actinides are also indentified as the dominant source of decay heat in the repository, and the effect of decay heat in perturbing the hydrology, geochemistry, and thermal characteristics of Yuccamore » Mountain are reviewed. It is concluded that the potential for thermally-driven, buoyant, gas-phase flow at Yucca Mountain introduces data and modeling requirements that will increase the costs of licensing the site and may cause the site to be unattractive for geologic disposal of wastes. A transmutation-enabled cold repository is proposed that might allow licensing of a repository to be based upon currently observable characteristics of the Yucca Mountain site.« less
Fischer, Jeffrey M.; Nichols, William D.; Dinwiddie, G.A.; Trask, N.J.
1986-01-01
A commercial low-level radioactive-waste disposal site has been operating near Beatty, Nevada, about 150 km northwest of Las Vegas, since 1962. The 32-ha site is situated in a desolate region of the Amargosa River Valley, sometimes referred to as the Amargosa Desert. Average annual precipitation is only about 114 mm. The site is underlain by 175 m of unconsolidated, generally coarse-grained, alluvial-fan and flood-plain deposits. The water table is at a depth of 90 m.
Chan, Janet Kit Yan; Wong, Ming H
2013-10-01
This paper reviews the levels of polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs) in different environmental media, human body burdens and health risk assessment results at e-waste recycling sites in China. To provide an indication of the seriousness of the pollution levels in the e-waste recycling sites in China, the data are compared with guidelines and available existing data for other areas. The comparison clearly shows that PCDD/Fs derived from the recycling processes lead to serious pollution in different environmental compartments (such as air, soil, sediment, dust and biota) and heavy body burdens. Of all kinds of e-waste recycling operations, open burning of e-waste and acid leaching activities are identified as the major sources of PCDD/Fs. Deriving from the published data, the estimated total exposure doses via dietary intake, inhalation, soil/dust ingestion and dermal contact are calculated for adults, children and breast-fed infants living in two major e-waste processing locations in China. The values ranged from 5.59 to 105.16 pg WHO-TEQ/kg bw/day, exceeding the tolerable daily intakes recommended by the WHO (1-4 pg WHO-TEQ/kg bw/day). Dietary intake is the most important exposure route for infants, children and adults living in these sites, contributing 60-99% of the total intakes. Inhalation is the second major exposure route, accounted for 12-30% of the total exposure doses of children and adults. In order to protect the environment and human health, there is an urgent need to control and monitor the informal e-waste recycling operations. Knowledge gaps, such as comprehensive dietary exposure data, epidemiological and clinical studies, body burdens of infants and children, and kinetics about PCDD/Fs partitions among different human tissues should be addressed. Copyright © 2012 Elsevier B.V. All rights reserved.
Stuckless, John S.; Levich, Robert A.
2012-01-01
This hydrology and geochemistry volume is a companion volume to the 2007 Geological Society of America Memoir 199, The Geology and Climatology of Yucca Mountain and Vicinity, Southern Nevada and California, edited by Stuckless and Levich. The work in both volumes was originally reported in the U.S. Department of Energy regulatory document Yucca Mountain Site Description, for the site characterization study of Yucca Mountain, Nevada, as the proposed U.S. geologic repository for high-level radioactive waste. The selection of Yucca Mountain resulted from a nationwide search and numerous committee studies during a period of more than 40 yr. The waste, largely from commercial nuclear power reactors and the government's nuclear weapons programs, is characterized by intense penetrating radiation and high heat production, and, therefore, it must be isolated from the biosphere for tens of thousands of years. The extensive, unique, and often innovative geoscience investigations conducted at Yucca Mountain for more than 20 yr make it one of the most thoroughly studied geologic features on Earth. The results of these investigations contribute extensive knowledge to the hydrologic and geochemical aspects of radioactive waste disposal in the unsaturated zone. The science, analyses, and interpretations are important not only to Yucca Mountain, but also to the assessment of other sites or alternative processes that may be considered for waste disposal in the future. Groundwater conditions, processes, and geochemistry, especially in combination with the heat from radionuclide decay, are integral to the ability of a repository to isolate waste. Hydrology and geochemistry are discussed here in chapters on unsaturated zone hydrology, saturated zone hydrology, paleohydrology, hydrochemistry, radionuclide transport, and thermally driven coupled processes affecting long-term waste isolation. This introductory chapter reviews some of the reasons for choosing to study Yucca Mountain as a repository site.
Stuckless, John S.; Levich, Robert A.
2012-01-01
This hydrology and geochemistry volume is a companion volume to the 2007 Geological Society of America Memoir 199, The Geology and Climatology of Yucca Mountain and Vicinity, Southern Nevada and California, edited by Stuckless and Levich. The work in both volumes was originally reported in the U.S. Department of Energy regulatory document Yucca Mountain Site Description, for the site characterization study of Yucca Mountain, Nevada, as the proposed U.S. geologic repository for high-level radioactive waste. The selection of Yucca Mountain resulted from a nationwide search and numerous committee studies during a period of more than 40 yr. The waste, largely from commercial nuclear power reactors and the government's nuclear weapons programs, is characterized by intense penetrating radiation and high heat production, and, therefore, it must be isolated from the biosphere for tens of thousands of years. The extensive, unique, and often innovative geoscience investigations conducted at Yucca Mountain for more than 20 yr make it one of the most thoroughly studied geologic features on Earth. The results of these investigations contribute extensive knowledge to the hydrologic and geochemical aspects of radioactive waste disposal in the unsaturated zone. The science, analyses, and interpretations are important not only to Yucca Mountain, but also to the assessment of other sites or alternative processes that may be considered for waste disposal in the future. Groundwater conditions, processes, and geochemistry, especially in combination with the heat from radionuclide decay, are integral to the ability of a repository to isolate waste. Hydrology and geochemistry are discussed here in chapters on unsaturated zone hydrology, saturated zone hydrology, paleohydrology, hydrochemistry, radionuclide transport, and thermally driven coupled processes affecting long-term waste isolation. This introductory chapter reviews some of the reasons for choosing to study Yucca Mountain as a repository site.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ondaro, Manuel
The Jose Cabrera Nuclear Power Plant (NPP) was the first commercial power reactor (Westinghouse 1 loop PWR 510 MWth, 160 MWe) commissioned in Spain and provided the base for future development and training. The reactor construction started in 1963 and it was officially on-line by 1969. The NPP operated from 1969 until 2006 when it became the first reactor to be shut down after completing its operational period. The containment is reinforced concrete with a stainless steel head. In 2010 responsibility for D and D was transferred to Enresa to achieve IAEA level 3 (a green field site available formore » unrestricted re-uses) by 2017. Of the total of more than 104,000 tons of materials that will be generated during dismantling, it is estimated that only ∼4,000 tons will be radioactive waste, some of which, 40 t are considered as intermediate level long-lived wastes and the rest (3,960 t) will be categorized as VLLW and ILLW. The Project is divided into five phases: Phase 0 - Removal of fuel and preliminary work.. Phase 1 - Preparatory Activities for D and D. complete. Phase 2 - Dismantling of Major Components. Phase 3 - Removal of Auxiliary Installations, Decontamination and Demolition. Phase 4 - Environmental Restoration. Phase 2, is currently ongoing (50% completed). To manage the diverse aspects of decommissioning operations, Enresa uses an internally developed computerized project management tool. The tool, based on knowledge gathered from other Enresa projects, can process operations management, maintenance operations, materials, waste, storage areas, procedures, work permits, operator dose management and records. Enresa considers that communication is important for both internal and external stakeholder relations and can be used to inform, to neutralize negative opinions and attitudes, to remove false expectations and for training. Enresa has created a new multi-purpose area (exhibition/visitor centre) and encourages visits from the public, local schools, local and national politicians and technical groups. Greenfield is the final end state objective. The total cost of this project, including a 20% contingency as estimated in 2003 is 135 Meuros. This figure does not include the management of the plant spent fuel, which has constituted an independent project that has been completed in 2009 (35 Meuros). Enresa, with 15 staff on site are managing a team of ∼250 workers, 40 of whom belong to the previous operator. The spent fuel is On-Site prior to the final destination in the future Spain Centralized Spent Fuel Installation. (authors)« less
Wynn, J.C.; Roseboom, E.H.
1987-01-01
Evaluation of potential high-level nuclear waste repository sites is an area where geophysical capabilities and limitations may significantly impact a major governmental program. Since there is concern that extensive exploratory drilling might degrade most potential disposal sites, geophysical methods become crucial as the only nondestructive means to examine large volumes of rock in three dimensions. Characterization of potential sites requires geophysicists to alter their usual mode of thinking: no longer are anomalies being sought, as in mineral exploration, but rather their absence. Thus the size of features that might go undetected by a particular method take on new significance. Legal and regulatory considerations that stem from this different outlook, most notably the requirements of quality assurance (necessary for any data used in support of a repository license application), are forcing changes in the manner in which geophysicists collect and document their data. -Authors
Trial coring in LLRW trenches at Chalk River
DOE Office of Scientific and Technical Information (OSTI.GOV)
Donders, R.E.; Killey, R.W.D.; Franklin, K.J.
1996-12-31
As part of a program to better characterize the low-hazard radioactive waste managed by AECL at Chalk River, coring techniques in waste trenches are being assessed. Trial coring has demonstrated that sampling in waste regions is possible, and that boreholes can be placed through the waste trenches. Such coring provides a valuable information gathering technique. Information available from trench coring includes: (1) trench cover depth, waste region depth, waste compaction level, and detailed stratigraphic data; (2) soil moisture content and facility drainage performance; (3) borehole gamma logs that indicate radiation levels in the region of the borehole; (4) biochemical conditionsmore » in the waste regions, vadose zone, and groundwater; (5) site specific information relevant to contaminant migration modelling or remedial actions; (6) information on contaminant releases and inventories. Boreholes through the trenches can also provide a means for early detection of potential contaminant releases.« less
[Effect of moisture content on anaerobic methanization of municipal solid waste].
Qu, Xian; He, Pin-Jing; Shao, Li-Ming; Bouchez, Théodore
2009-03-15
Biogas production, gas and liquid characteristics were investigated for comparing the effect of moisture content on methanization process of MSW with different compositions of food waste and cellulosic waste. Batch reactors were used to study the anaerobic methanization of typical Chinese and French municipal solid waste (MSW) and cellulosic waste with different moisture content, as 35%, field capacity (65%-70%), 80%, and saturated state (> 95%). The results showed that for the typical Chinese and French waste, which contained putrescible waste, the intermediate product, VFA, was diluted by high content of water, which helped to release the VFA inhibition on hydrolysis and methanization. Mass amount of methane was produced only when the moisture content of typical French waste was higher than 80%, while higher content of moisture was needed when the content of putrescible waste was higher in MSW, as > 95% for typical Chinese waste. Meanwhile the methane production rate and the ultimate cumulated methane production were increased when moisture content was leveled up. The ultimate cumulated methane production of the typical French waste with saturated state was 0.6 times higher than that of the waste with moisture content of 80%. For cellulosic waste, high moisture content of cellulosic materials contributed to increase the attachment area of microbes and enzyme on the surface of the materials, which enhance the waste hydrolysis and methanization. When the moisture content of the cellulosic materials increased from field capacity (65%) to saturated state (> 95%), the ultimate cumulated methane production increased for 3.8 times.
Road Map for Development of Crystal-Tolerant High Level Waste Glasses
DOE Office of Scientific and Technical Information (OSTI.GOV)
Matyas, Josef; Vienna, John D.; Peeler, David
This road map guides the research and development for formulation and processing of crystal-tolerant glasses, identifying near- and long-term activities that need to be completed over the period from 2014 to 2019. The primary objective is to maximize waste loading for Hanford waste glasses without jeopardizing melter operation by crystal accumulation in the melter or melter discharge riser. The potential applicability to the Savannah River Site (SRS) Defense Waste Processing Facility (DWPF) is also addressed in this road map.
Testing of candidate waste-package backfill and canister materials for basalt
NASA Astrophysics Data System (ADS)
Wood, M. I.; Anderson, W. J.; Aden, G. D.
1982-09-01
The Basalt Waste Isolation Project (BWIP) is developing a multiple-barrier waste package to contain high-level nuclear waste as part of an overall system (e.g., waste package, repository sealing system, and host rock) designed to isolate the waste in a repository located in basalt beneath the Hanford Site, Richland, Washington. The three basic components of the waste package are the waste form, the canister, and the backfill. An extensive testing program is under way to determine the chemical, physical, and mechanical properties of potential canister and backfill materials. The data derived from this testing program will be used to recommend those materials that most adequately perform the functions assigned to the canister and backfill.
Using Downhole Probes to Locate and Characterize Buried Transuranic and Mixed Low Level Waste
DOE Office of Scientific and Technical Information (OSTI.GOV)
Steinman, Donald K; Bramblett, Richard L; Hertzog, Russel C
2012-06-25
Borehole logging probes were developed and tested to locate and quantify transuranic elements in subsurface disposal areas and in contaminated sites at USDOE Weapons Complex sites. A new method of measuring very high levels of chlroine in the subsurface was developed using pulsed neutron technology from oilfield applications. The probes were demonstrated at the Hanford site in wells containing plutonium and other contaminants.
Radiocesium in the Savannah River Site environment.
Carlton, W H; Murphy, C E; Evans, A G
1994-09-01
The Savannah River Site has produced plutonium, tritium, and other special nuclear materials for national defense, other government programs, and some civilian purposes. Radiocesium, a waste product, has been released to the environment during the operation of five reactors, two radio-chemical processing facilities, and a high-level waste storage system. During the period 1955-1989, 130 GBq of 137Cs was released to the atmosphere and 2.2 x 10(4) GBq was released to site streams and ponds. Approximately 65% of the latter remained on the site. The maximum individual effective dose equivalent at the site boundary was estimated to be 3.3 microSv from atmospheric releases and 600 microSv from liquid releases. The 80-km population dose was 1.6 person-Sv.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-05-03
... available under ADAMS accession number ML111040419, and the ``Technical Analysis Supporting Definition of... NUCLEAR REGULATORY COMMISSION 10 CFR Part 61 RIN 3150-AI92 [NRC-2011-0012] Site-Specific Analyses...-level radioactive waste disposal facilities to conduct site-specific analyses to demonstrate compliance...
40 CFR 266.106 - Standards to control metals emissions.
Code of Federal Regulations, 2011 CFR
2011-07-01
... HAZARDOUS WASTE MANAGEMENT FACILITIES Hazardous Waste Burned in Boilers and Industrial Furnaces § 266.106... implemented by limiting feed rates of the individual metals to levels during the trial burn (for new... screening limit for the worst-case stack. (d) Tier III and Adjusted Tier I site-specific risk assessment...
40 CFR 266.106 - Standards to control metals emissions.
Code of Federal Regulations, 2010 CFR
2010-07-01
... HAZARDOUS WASTE MANAGEMENT FACILITIES Hazardous Waste Burned in Boilers and Industrial Furnaces § 266.106... implemented by limiting feed rates of the individual metals to levels during the trial burn (for new... screening limit for the worst-case stack. (d) Tier III and Adjusted Tier I site-specific risk assessment...
40 CFR 761.280 - Application and scope.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 761.280 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) TOXIC SUBSTANCES CONTROL... Remediation Waste and Porous Surfaces in Accordance With § 761.61(a)(6) § 761.280 Application and scope...-implementing, on-site disposal of bulk PCB remediation waste and porous surfaces consistent with the levels of...
40 CFR 761.280 - Application and scope.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 761.280 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) TOXIC SUBSTANCES CONTROL... Remediation Waste and Porous Surfaces in Accordance With § 761.61(a)(6) § 761.280 Application and scope...-implementing, on-site disposal of bulk PCB remediation waste and porous surfaces consistent with the levels of...
40 CFR 761.280 - Application and scope.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 761.280 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) TOXIC SUBSTANCES CONTROL... Remediation Waste and Porous Surfaces in Accordance With § 761.61(a)(6) § 761.280 Application and scope...-implementing, on-site disposal of bulk PCB remediation waste and porous surfaces consistent with the levels of...
40 CFR 761.280 - Application and scope.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 761.280 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) TOXIC SUBSTANCES CONTROL... Remediation Waste and Porous Surfaces in Accordance With § 761.61(a)(6) § 761.280 Application and scope...-implementing, on-site disposal of bulk PCB remediation waste and porous surfaces consistent with the levels of...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brenkert, A.L.; Parr, P.D.; Taylor, F.G.
This report reviews available literature on soil conditions, hydrology, and climatological data and suggests plant species suitable for covering the low-level nuclear waste disposal areas in the White Oak Creek Watershed within the Oak Ridge Reservation. Literature on naturally invading species and secondary succession, on plant species used for reclamation of coal spoils and roadsides, and on horticultural species is reviewed. The potential of plant species to take up, or mine, the waste through deep rooting is assessed. The effects of vegetation cover on the water balance in a watershed are reviewed. Several conclusions are presented concerning the management ofmore » vegetation cover on low-level solid waste disposal areas. 163 references, 2 figures, 9 tables.« less
Williamson, Adam J; Morris, Katherine; Law, Gareth T W; Rizoulis, Athanasios; Charnock, John M; Lloyd, Jonathan R
2014-11-18
Although there is consensus that microorganisms significantly influence uranium speciation and mobility in the subsurface under circumneutral conditions, microbiologically mediated U(VI) redox cycling under alkaline conditions relevant to the geological disposal of cementitious intermediate level radioactive waste, remains unexplored. Here, we describe microcosm experiments that investigate the biogeochemical fate of U(VI) at pH 10-10.5, using sediments from a legacy lime working site, stimulated with an added electron donor, and incubated in the presence and absence of added Fe(III) as ferrihydrite. In systems without added Fe(III), partial U(VI) reduction occurred, forming a U(IV)-bearing non-uraninite phase which underwent reoxidation in the presence of air (O2) and to some extent nitrate. By contrast, in the presence of added Fe(III), U(VI) was first removed from solution by sorption to the Fe(III) mineral, followed by bioreduction and (bio)magnetite formation coupled to formation of a complex U(IV)-bearing phase with uraninite present, which also underwent air (O2) and partial nitrate reoxidation. 16S rRNA gene pyrosequencing showed that Gram-positive bacteria affiliated with the Firmicutes and Bacteroidetes dominated in the post-reduction sediments. These data provide the first insights into uranium biogeochemistry at high pH and have significant implications for the long-term fate of uranium in geological disposal in both engineered barrier systems and the alkaline, chemically disturbed geosphere.
Microbial degradation of isosaccharinic acid at high pH
Bassil, Naji M; Bryan, Nicholas; Lloyd, Jonathan R
2015-01-01
Intermediate-level radioactive waste (ILW), which dominates the radioactive waste inventory in the United Kingdom on a volumetric basis, is proposed to be disposed of via a multibarrier deep geological disposal facility (GDF). ILW is a heterogeneous wasteform that contains substantial amounts of cellulosic material encased in concrete. Upon resaturation of the facility with groundwater, alkali conditions will dominate and will lead to the chemical degradation of cellulose, producing a substantial amount of organic co-contaminants, particularly isosaccharinic acid (ISA). ISA can form soluble complexes with radionuclides, thereby mobilising them and posing a potential threat to the surrounding environment or ‘far field'. Alkaliphilic microorganisms sampled from a legacy lime working site, which is an analogue for an ILW-GDF, were able to degrade ISA and couple this degradation to the reduction of electron acceptors that will dominate as the GDF progresses from an aerobic ‘open phase' through nitrate- and Fe(III)-reducing conditions post closure. Furthermore, pyrosequencing analyses showed that bacterial diversity declined as the reduction potential of the electron acceptor decreased and that more specialised organisms dominated under anaerobic conditions. These results imply that the microbial attenuation of ISA and comparable organic complexants, initially present or formed in situ, may play a role in reducing the mobility of radionuclides from an ILW-GDF, facilitating the reduction of undue pessimism in the long-term performance assessment of such facilities. PMID:25062127
ANNUAL RADIOACTIVE WASTE TANK INSPECTION PROGRAM 2010
DOE Office of Scientific and Technical Information (OSTI.GOV)
West, B.; Waltz, R.
Aqueous radioactive wastes from Savannah River Site (SRS) separations and vitrification processes are contained in large underground carbon steel tanks. Inspections made during 2010 to evaluate these vessels and other waste handling facilities along with evaluations based on data from previous inspections are the subject of this report. The 2010 inspection program revealed that the structural integrity and waste confinement capability of the Savannah River Site waste tanks were maintained. All inspections scheduled per SRR-LWE-2009-00138, HLW Tank Farm Inspection Plan for 2010, were completed. Ultrasonic measurements (UT) performed in 2010 met the requirements of C-ESG-00006, In-Service Inspection Program for Highmore » Level Waste Tanks, Rev. 3, and WSRC-TR-2002-00061, Rev.6. UT inspections were performed on Tanks 30, 31 and 32 and the findings are documented in SRNL-STI-2010-00533, Tank Inspection NDE Results for Fiscal Year 2010, Waste Tanks 30, 31 and 32. A total of 5824 photographs were made and 1087 visual and video inspections were performed during 2010. Ten new leaksites at Tank 5 were identified in 2010. The locations of these leaksites are documented in C-ESR-G-00003, SRS High Level Waste Tank Leaksite Information, Rev.5. Ten leaksites at Tank 5 were documented during tank wall/annulus cleaning activities. None of these new leaksites resulted in a release to the environment. The leaksites were documented during wall cleaning activities and the waste nodules associated with the leaksites were washed away. Previously documented leaksites were reactivated at Tank 12 during waste removal activities.« less
Ambient air monitoring of Beijing MSW logistics facilities in 2006.
Li, Chun-Ping; Li, Guo-Xue; Luo, Yi-Ming; Li, Yan-Fu
2008-11-01
In China, "green" integrated waste management methods are being implemented in response to environmental concerns. We measured the air quality at several municipal solid waste (MSW) sites to provide information for the incorporation of logistics facilities within the current integrated waste management system. We monitored ambient air quality at eight MSW collecting stations, five transfer stations, one composting plant, and five disposal sites in Beijing during April 2006. Composite air samples were collected and analyzed for levels of odor, ammonia (NH3), hydrogen sulfide (H2S), total suspended particles (TSPs), carbon monoxide (CO), sulfur dioxide (SO2), and nitrogen dioxide (NO2). The results of our atmospheric monitoring demonstrated that although CO and SO2 were within acceptable emission levels according to ambient standards, levels of H2S, TSP, and NO2 in the ambient air at most MSW logistics facilities far exceeded ambient limits established for China. The primary pollutants in the ambient air at Beijing MSW logistics facilities were H2S, TSPs, NO2, and odor. To improve current environmental conditions at MSW logistics facilities, the Chinese government encourages the separation of biogenic waste from MSW at the source.
Sim, Natasha M; Wilson, David C; Velis, Costas A; Smith, Stephen R
2013-10-01
The UN-Habitat Integrated Sustainable Waste Management (ISWM) benchmarking methodology was applied to profile the physical and governance features of municipal solid waste (MSW) management in the former Soviet Union city of Bishkek, capital of the Kyrgyz Republic. Most of the ISWM indicators were in the expected range for a low-income city when compared with 20 reference cities. Approximately 240,000 t yr(-1) of MSW is generated in Bishkek (equivalent to 200 kg capita(-1) yr(-1)); collection coverage is over 80% and 90% of waste disposed goes to semi-controlled sites operating with minimal environmental standards. The waste composition was a distinctive feature, with relatively high paper content (20-27% wt.) and intermediate organic content (30-40% wt.). The study provides the first quantitative estimates of informal sector recycling, which is currently unrecognised by the city authorities. Approximately 18% wt. of generated MSW is recycled, representing an estimated annual saving to the city authorities of US$0.7-1.1 million in avoided collection/disposal costs. The waste management system is controlled by a centralised municipal waste enterprise (Tazalyk); therefore, institutional coherence is high relative to lower-middle and low-income cities. However, performance on other governance factors, such as inclusivity and financial sustainability, is variable. Future priorities in Bishkek include extending collection to unserved communities; improving landfill standards; increasing recycling rates through informal sector cooperation; improving data availability; and engaging all stakeholders in waste management strategy decisions. Extending the scope and flexibility of the ISWM protocol is recommended to better represent the variation in conditions that occur in waste management systems in practice.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vargo, G.F. Jr.
1995-06-16
The purpose of this work scope is to identify a specific potential technology/device/instrument/ideas that would provide the tank waste data. A method is needed for identifying layering and physical state within the large waste tanks at the Hanford site in Washington State. These interfaces and state changes can adversely impact sampling and characterization activities.
Concrete and cement composites used for radioactive waste deposition.
Koťátková, Jaroslava; Zatloukal, Jan; Reiterman, Pavel; Kolář, Karel
2017-11-01
This review article presents the current state-of-knowledge of the use of cementitious materials for radioactive waste disposal. An overview of radwaste management processes with respect to the classification of the waste type is given. The application of cementitious materials for waste disposal is divided into two main lines: i) as a matrix for direct immobilization of treated waste form; and ii) as an engineered barrier of secondary protection in the form of concrete or grout. In the first part the immobilization mechanisms of the waste by cement hydration products is briefly described and an up-to date knowledge about the performance of different cementitious materials is given, including both traditional cements and alternative binder systems. The advantages, disadvantages as well as gaps in the base of information in relation to individual materials are stated. The following part of the article is aimed at description of multi-barrier systems for intermediate level waste repositories. It provides examples of proposed concepts by countries with advanced waste management programmes. In the paper summary, the good knowledge of the material durability due to its vast experience from civil engineering is highlighted however with the urge for specific approach during design and construction of a repository in terms of stringent safety requirements. Copyright © 2017 Elsevier Ltd. All rights reserved.
Workshop on the role of natural analogs in geologic disposal of high-level nuclear waste
DOE Office of Scientific and Technical Information (OSTI.GOV)
Murphy, W.M.
1995-09-01
A workshop on the Role of Natural Analogs in Geologic Disposal of High-Level Nuclear Waste (HLW) was held in San Antonio, Texas, on July 22-25, 1991. It was sponsored by the US Nuclear Regulatory Commission (NRC) and the Center for Nuclear Waste Regulatory Analyses (CNWRA). Invitations to the workshop were extended to a large number of individuals with a variety of technical and professional interests related to geologic disposal of nuclear waste and natural analog studies. The objective of the workshop was to examine the role of natural analog studies in performance assessment, site characterization, and prioritization of research relatedmore » to geologic disposal of HLW.« less
SUBGRADE MONOLITHIC ENCASEMENT STABILIZATION OF CATEGORY 3 LOW LEVEL WASTE (LLW)
DOE Office of Scientific and Technical Information (OSTI.GOV)
PHILLIPS, S.J.
2004-02-03
A highly efficient and effective technology has been developed and is being used for stabilization of Hazard Category 3 low-level waste at the U.S. Department of Energy's Hanford Site. Using large, structurally interconnected monoliths, which form one large monolith that fills a waste disposal trench, the patented technology can be used for final internment of almost any hazardous, radioactive, or toxic waste or combinations of these waste materials packaged in a variety of sizes, shapes, and volumes within governmental regulatory limits. The technology increases waste volumetric loading by 100 percent, area use efficiency by 200 percent, and volumetric configuration efficiencymore » by more than 500 percent over past practices. To date, in excess of 2,010 m{sup 3} of contact-handled and remote-handled low-level radioactive waste have been interned using this patented technology. Additionally, in excess of 120 m{sup 3} of low-level radioactive waste requiring stabilization in low-diffusion coefficient waste encasement matrix has been disposed using this technology. Greater than five orders of magnitude in radiation exposure reduction have been noted using this method of encasement of Hazard Category 3 waste. Additionally, exposure monitored at all monolith locations produced by the slip form technology is less than 1.29 x E-07 C {center_dot} kg{sup -1}. Monolithic encasement of Hazard Category 3 low-level waste and other waste category materials may be successfully accomplished using this technology at nominally any governmental or private sector waste disposal facility. Additionally, other waste materials consisting of hazardous, radioactive, toxic, or mixed waste materials can be disposed of using the monolithic slip form encasement technology.« less
Fujimori, Takashi; Itai, Takaaki; Goto, Akitoshi; Asante, Kwadwo A; Otsuka, Masanari; Takahashi, Shin; Tanabe, Shinsuke
2016-02-01
Open burning of electronic waste (e-waste) releases various metals and organohalogen compounds in the environment. Here we investigated the interplay of metals (Cu, Pb, Zn, Fe, Co, and Sr) and bromine (Br) in the formation of dioxin-related compounds (DRCs), including polychlorinated dibenzo-p-dioxins/furans (PCDD/Fs) and dioxin-like polychlorinated biphenyls (DL-PCBs), as well as non-regulated DRCs such as polybrominated dibenzo-p-dioxins/furans (PBDD/Fs) and their monobrominated PCDD/Fs in soils sampled from open burning e-waste sites at Agbogbloshie in Accra, Ghana. The predominant DRCs were PBDFs, PCDFs, PCDDs, and DL-PCBs. Statistical analyzes, X-ray absorption spectroscopy, and the PCDF/PCDD ratio suggested possible formation paths of PCDD/Fs and DL-PCBs by catalytic behaviors of copper chlorides (CuCl, CuCl2, and Cu2(OH)3Cl) and thermal breakdown of polyvinyl chloride. Predominant formation of brominated furans may be derived from electron transfer from intermediates of PBDE to copper, Cu(II) → Cu(I). Lead chloride also contributed to generate DRCs and may become highly bioaccessible through the open burning of e-waste. The main zinc species (ZnCl2 and ZnS) suggested a possible relationship to generate DRCs and specific zinc source such as tire burning. Cu, Pb, Zn, and Br contained in various e-wastes, wires/cables, plastics, and tires strongly influenced generation of many DRCs. Copyright © 2015 Elsevier Ltd. All rights reserved.
Preliminary post-emplacement safety analysis of the subseabed disposal of high-level nuclear waste
NASA Astrophysics Data System (ADS)
Kaplan, M. F.; Koplik, C. M.; Klett, R. D.
1984-09-01
The radiological hazard from the disposal of high-level nuclear waste within the deep ocean sediments is evaluated, on a preliminary basis, for locations in the central North Pacific and in the northwestern Atlantic. Radio-nuclide transport in the sediment and water column and by marine organisms is considered. Peak doses to an individual are approximately five orders of magnitude below background levels for both sites. Sensitivity analyses for most aspects of the post-emplacement systems models are included.
Zheng, Xiao-Bo; Wu, Jiang-Ping; Luo, Xiao-Jun; Zeng, Yan-Hong; She, Ya-Zhe; Mai, Bi-Xian
2012-09-15
Three regulated halogenated flame retardants (HFRs), i.e., polybrominated diphenyl ethers (PBDEs), polybrominated biphenyls (PBBs) and hexabromocyclododecanes (HBCDs), and several alternative HFRs (AHFRs) including Dechlorane Plus (DP), decabromodiphenyl ethane (DBDPE), and 1,2-bis(2,4,6-tribromophenoxy) ethane (BTBPE), were investigated in the home-produced eggs from three recycling sites and a reference site in an electronic waste (e-waste) recycling region, South China. Mean levels of HFRs in eggs from the recycling sites ranged 2640-14100, 700-1620, 44-350, and 720-3920 ng/g lipid weight for ∑PBDEs, ∑PBBs, ∑HBCDs, and ∑AHFRs, respectively, which were one to two orders of magnitude higher than those examined in the reference site. PBDEs were the predominant HFR in those eggs, with contributions >50% to the total HFRs; followed by PBBs and the AHFRs (contributing 14-22% in average). The α-HBCD was the predominant diastereoisomers of HBCDs, with preferential enrichment of the (-)-enantiomer in most of the eggs; but no significant stereoselective enrichment of the DP isomers was observed in these eggs. The average estimated daily intakes (EDIs) of PBDEs, PBBs, HBCDs, and the AHFRs via eggs from the recycling sites ranged 4200-20000, 1120-2440, 80-490, and 970-4530 ng/day, respectively, which were one to two orders of magnitude higher than those reported from other parts of the world. The potential adverse effects of these HFRs to human health in the e-waste sites should be further investigated. This is the first report on the isomer compositions of DP and the chiral signatures of HBCDs in hen eggs. Copyright © 2012 Elsevier Ltd. All rights reserved.
Francis, A J; Dobbs, S; Nine, B J
1980-01-01
Trench leachate samples collected anoxically from shallow-land, low-level radioactive waste disposal sites were analyzed for total aerobic and anaerobic populations, sulfate reducers, denitrifiers, and methanogens. Among the several aerobic and anaerobic bacteria isolated, only Bacillus sp., Pseudomonas sp., Citrobacter sp., and Clostridium sp. were identified. Mixed bacterial cultures isolated from the trench leachates were able to grow anaerobically in trench leachates, which indicates that the radionuclides and organic chemicals present were not toxic to these bacteria. Changes in concentrations of several of the organic constituents of the waste leachate samples were observed due to anaerobic microbial activity. Growth of a mixed culture of trench-water bacteria in media containing a mixture of radionuclides, 60Co, 85Sr, and 134,137Cs, was not affected at total activity concentrations of 2.6 X 10(2) and 2.7 X 10(3) pCi/ml. PMID:7406490
Hazardous Waste: Cleanup and Prevention.
ERIC Educational Resources Information Center
Vandas, Steve; Cronin, Nancy L.
1996-01-01
Discusses hazardous waste, waste disposal, unsafe exposure, movement of hazardous waste, and the Superfund clean-up process that consists of site discovery, site assessment, clean-up method selection, site clean up, and site maintenance. Argues that proper disposal of hazardous waste is everybody's responsibility. (JRH)
Corrosion Management of the Hanford High-Level Nuclear Waste Tanks
NASA Astrophysics Data System (ADS)
Beavers, John A.; Sridhar, Narasi; Boomer, Kayle D.
2014-03-01
The Hanford site is located in southeastern Washington State and stores more than 200,000 m3 (55 million gallons) of high-level radioactive waste resulting from the production and processing of plutonium. The waste is stored in large carbon steel tanks that were constructed between 1943 and 1986. The leak and structurally integrity of the more recently constructed double-shell tanks must be maintained until the waste can be removed from the tanks and encapsulated in glass logs for final disposal in a repository. There are a number of corrosion-related threats to the waste tanks, including stress-corrosion cracking, pitting corrosion, and corrosion at the liquid-air interface and in the vapor space. This article summarizes the corrosion management program at Hanford to mitigate these threats.
Lumetta, Gregg J; Braley, Jenifer C; Peterson, James M; Bryan, Samuel A; Levitskaia, Tatiana G
2012-06-05
Removing phosphate from alkaline high-level waste sludges at the Department of Energy's Hanford Site in Washington State is necessary to increase the waste loading in the borosilicate glass waste form that will be used to immobilize the highly radioactive fraction of these wastes. We are developing a process which first leaches phosphate from the high-level waste solids with aqueous sodium hydroxide, and then isolates the phosphate by precipitation with calcium oxide. Tests with actual tank waste confirmed that this process is an effective method of phosphate removal from the sludge and offers an additional option for managing the phosphorus in the Hanford tank waste solids. The presence of vibrationally active species, such as nitrate and phosphate ions, in the tank waste processing streams makes the phosphate removal process an ideal candidate for monitoring by Raman or infrared spectroscopic means. As a proof-of-principle demonstration, Raman and Fourier transform infrared (FTIR) spectra were acquired for all phases during a test of the process with actual tank waste. Quantitative determination of phosphate, nitrate, and sulfate in the liquid phases was achieved by Raman spectroscopy, demonstrating the applicability of Raman spectroscopy for the monitoring of these species in the tank waste process streams.
NASA Astrophysics Data System (ADS)
Knowlton, R. G.; Arnold, B. W.; Mattie, P. D.; Kuo, M.; Tien, N.
2006-12-01
For several years now, Taiwan has been engaged in a process to select a low-level radioactive waste (LLW) disposal site. Taiwan is generating LLW from operational and decommissioning wastes associated with nuclear power reactors, as well as research, industrial, and medical radioactive wastes. The preliminary selection process has narrowed the search to four potential candidate sites. These sites are to be evaluated in a performance assessment analysis to determine the likelihood of meeting the regulatory criteria for disposal. Sandia National Laboratories and Taiwan's Institute of Nuclear Energy Research have been working together to develop the necessary performance assessment methodology and associated computer models to perform these analyses. The methodology utilizes both deterministic (e.g., single run) and probabilistic (e.g., multiple statistical realizations) analyses to achieve the goals. The probabilistic approach provides a means of quantitatively evaluating uncertainty in the model predictions and a more robust basis for performing sensitivity analyses to better understand what is driving the dose predictions from the models. Two types of disposal configurations are under consideration: a shallow land burial concept and a cavern disposal concept. The shallow land burial option includes a protective cover to limit infiltration potential to the waste. Both conceptual designs call for the disposal of 55 gallon waste drums within concrete lined trenches or tunnels, and backfilled with grout. Waste emplaced in the drums may be solidified. Both types of sites are underlain or placed within saturated fractured bedrock material. These factors have influenced the conceptual model development of each site, as well as the selection of the models to employ for the performance assessment analyses. Several existing codes were integrated in order to facilitate a comprehensive performance assessment methodology to evaluate the potential disposal sites. First, a need existed to simulate the failure processes of the waste containers, with subsequent leaching of the waste form to the underlying host rock. The Breach, Leach, and Transport Multiple Species (BLT-MS) code was selected to meet these needs. BLT-MS also has a 2-D finite-element advective-dispersive transport module, with radionuclide in-growth and decay. BLT-MS does not solve the groundwater flow equation, but instead requires the input of Darcy flow velocity terms. These terms were abstracted from a groundwater flow model using the FEHM code. For the shallow land burial site, the HELP code was also used to evaluate the performance of the protective cover. The GoldSim code was used for two purposes: quantifying uncertainties in the predictions, and providing a platform to evaluate an alternative conceptual model involving matrix-diffusion transport. Results of the preliminary performance assessment analyses using examples to illustrate the computational framework will be presented. Sandia National Laboratories is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy under Contract DE AC04 94AL85000.
Thickness of unconsolidated deposits in the towns of Solon and Taylor, Cortland County, New York
Miller, Todd S.
1999-01-01
IntroductionSiting of waste-disposal facilities in Cortland County poses a potential threat to local ground-water resources. An especially sensitive waste-disposal siting issue arose in 1988, when the New York State Low-Level Radioactive Waste Siting Commission (NYSLLWSC) identified 15 sites in six towns (Towns of Solon, Taylor, Freetown, Cincinnatus, Marathon, and Willet) in the eastern part of the county for possible disposal of low-level radioactive waste (New York State Low-Level Radioactive Waste Siting Commission, 1988). Eventually, two sites in the Town of Taylor became finalist sites; one was selected from the list of 15 potential sites, and the other was offered by a private landowner. Little information was available on geohydrologic conditions in eastern Cortland County, such as the extent of aquifers and the thickness of unconsolidated deposits of low permeability (such as clay and till), even though these two criteria were among those used by NYSLLWSC for selection of potential disposal sites. The source of information on thickness of drift over bedrock was the surficial geologic map of New York (Muller and Cadwell, 1986). The siting effort was terminated before a final selection was made, but the issue had made county managers aware that detailed information on the extent and thickness of unconsolidated deposits (particularly till, which typically has low permeability and can limit the migration of contaminants) is needed before sound decisions on waste-disposal siting can be made.Glaciers deposited till nearly everywhere over bedrock in the uplands of central New York, but the thickness of the till varies greatly from place to place. An analysis by Coates (1966) of 400 drillers' logs of wells in a 2,000-mi2 area in the uplands of south-central New York (south of the Cortland County) indicated that (1) till is thin or absent on hilltops and is thickest on the lower parts of hills, (2) overall till thickness averages 60 ft, and (3) till thickness on the south, east, west, and north slopes averages 92, 52, 62, and 22 ft, respectively. Hills that have thick till on their south slopes have been referred to as till-shadowed hills by Coates (1974), who attributes this characteristic to glaciers that deposited thick amounts of till on the downflow side of a hill (analogous to flowing streams or wind that deposit sediment on the lee side of an object). Because the till on the south slopes is relatively thick and typically has low permeability, these slopes have been considered as potential areas for waste-disposal sites.In 1997, the U.S. Geological Survey (USGS), in cooperation with the Cortland County Department of Planning, began a 1-year study to map the thickness of unconsolidated deposits and the extent of valley-fill aquifers in the Towns of Solon and Taylor (an area of 60 mi2) in eastern Cortland County.This report (1) depicts the thickness of unconsolidated deposits and the extent of valley-fill aquifers in the Towns of Solon and taylor in eastern Cortland County, (2) examines whether the "till-shadowed hill" concept developed by Coates (1966) is applicable in this area, and (3) provides three schematic geologic sections showing the thickness of unconsolidated deposits in the uplands in the northwestern part of the study area.
Emery, Robert J
2012-11-01
Faced with the prospect of being unable to permanently dispose of low-level radioactive wastes (LLRW) generated from teaching, research, and patient care activities, component institutions of the University of Texas System worked collaboratively to create a dedicated interim storage facility to be used until a permanent disposal facility became available. Located in a remote section of West Texas, the University of Texas System Interim Storage Facility (UTSISF) was licensed and put into operation in 1993, and since then has provided safe and secure interim storage for up to 350 drums of dry solid LLRW at any given time. Interim storage capability provided needed relief to component institutions, whose on-site waste facilities could have possibly become overburdened. Experiences gained from the licensing and operation of the site are described, and as a new permanent LLRW disposal facility emerges in Texas, a potential new role for the storage facility as a surge capacity storage site in times of natural disasters and emergencies is also discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Knowlton, Robert G.; Cochran, John Russell; Arnold, Bill Walter
2007-01-01
Sandia National Laboratories and the Institute of Nuclear Energy Research, Taiwan have collaborated in a technology transfer program related to low-level radioactive waste (LLW) disposal in Taiwan. Phase I of this program included regulatory analysis of LLW final disposal, development of LLW disposal performance assessment capabilities, and preliminary performance assessments of two potential disposal sites. Performance objectives were based on regulations in Taiwan and comparisons to those in the United States. Probabilistic performance assessment models were constructed based on limited site data using software including GoldSim, BLT-MS, FEHM, and HELP. These software codes provided the probabilistic framework, container degradation, waste-formmore » leaching, groundwater flow, radionuclide transport, and cover infiltration simulation capabilities in the performance assessment. Preliminary performance assessment analyses were conducted for a near-surface disposal system and a mined cavern disposal system at two representative sites in Taiwan. Results of example calculations indicate peak simulated concentrations to a receptor within a few hundred years of LLW disposal, primarily from highly soluble, non-sorbing radionuclides.« less
Wang, Hongmei; Zhang, Yuan; Liu, Qian; Wang, Feifei; Nie, Jing; Qian, Yan
2010-09-01
Brominated flame retardants (BFRs) released from e-waste related activities may affect the health of local people. Assessing the impact of e-waste exposure during recycling and dismantling activities on local people's thyroid hormone levels is an area of ongoing research. During November and December 2008, the process of e-waste recycling and dismantling was investigated, and 236 occupation-exposed people and 89 non-occupation-exposed people approximate to the e-waste recycling sites were surveyed; their thyroid hormone levels (THs), thyrotropins (TSH) and BFRs levels in serum were assayed. Multiple regression models were constructed to analyze the changes of serum THs and TSH in the people living in the exposure area (exposure group) and the people in the control group. Covariates known to be or likely to be associated with THs, TSH and BFRs levels were analyzed. Lower level of Triiodothyronine (T(3)) in both occupation-exposed and non-occupation-exposed group were observed (p<0.01), when compared with the control group, and the same trend was obtained for free triiodothyronine (fT(3)) and free thyroxine (fT4) (p<0.01). However, no significant difference in thyroxine (T(4)) was found between the two groups. The level of TSH in the e-waste recycling occupational-exposed group ranged from 0.00 to 5.00microIU/ml with a mean of 1.26microIU/ml, whereas the level of TSH in the control group was from 0.03 to 5.54microIU/ml with a mean of 1.57microIU/ml. This study revealed that people having worked on e-waste recycling and dismantling had significantly lower TSH compared with the control group (p<0.01). Moreover, the level of BDE-205 is positively associated with the level of T4, as confirmed by the linear regression model (unstandardized regression coefficient, beta=0.25, rho=0.001) and a weaker positive relation was also found between the levels of BDE-126 and T4. Meanwhile, a weak negative relation was found between the levels of PBB 103 and T3, and between the levels of fT3 and fT4. These results suggest that exposure to BFRs released from primitive e-waste handling may contribute to the changes of THs and TSH levels. Crown Copyright 2010. Published by Elsevier GmbH. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rogue, F.; Binnall, E.P.
1982-10-01
Reliable instrumentation will be needed to monitor the performance of future high-level waste repository sites. A study has been made to assess instrument reliability at Department of Energy (DOE) waste repository related experiments. Though the study covers a wide variety of instrumentation, this paper concentrates on experiences with geotechnical instrumentation in hostile repository-type environments. Manufacturers have made some changes to improve the reliability of instruments for repositories. This paper reviews the failure modes, rates, and mechanisms, along with manufacturer modifications and recommendations for additional improvements to enhance instrument performance. 4 tables.
Zhu, Zhi-Cheng; Chen, She-Jun; Ding, Nan; Wang, Jing; Luo, Xiao-Jun; Mai, Bi-Xian
2014-08-01
Polychlorinated biphenyls (PCBs) were measured in house dust from an e-waste site and urban site in the Pearl River Delta, southern China. The PCB concentrations in house dust at the e-waste site ranged from 12.4 to 87 765 ng x g(-1), with an average of 10 167 ng x g(-1). There was no significant difference in the PCB concentrations between indoor and outdoor dust. The PCB homologue pattern was dominated by tri-, penta-, hexa-, and tetra-CBs, which was not similar to that in Chinese technical PCB product. There was also no significant difference in the PCB compositions between indoor and outdoor dust. PCB sources in house dust at the e-waste site were apportioned by chemical mass balance (CMB) model. The results showed that the PCBs were derived primarily from Aroclor 1262 (36.7% ), Aroclor 1254 (26.7%), Aroclor 1242 (21.4%), and Aroclor 1248 (18.5%). The daily exposure doses were 42, 17, and 2.9 ng x (kg x d)(-1) for toddlers, children/adolescents, and adults in the e-waste area, respectively. Risk assessment indicated that the hazard quotients were higher than 1 for toddlers and children/adolescents indicating adverse effects for them. The lifetime average excess carcinogenic risk for population in the e-waste area was 4.5 x 10(-5), within the acceptable range of U. S. Environmental Protection Agency. The mean concentrations of PCBs in house dust in Guangzhou was 48.7 ng x g(-1). The low PCB level is consistent with the fact that technical PCBs were not widely used in China in the past. The risks of exposure to PCBs via house dust in Guangzhou are very low.
The French Radioactive Waste Disposal System: Which Discussions for Which Decisions?
DOE Office of Scientific and Technical Information (OSTI.GOV)
Baillet, J.P.; Ouzounian, G.
2008-07-01
Over the last 20 years or so, radioactive-waste management has undergone remarkable developments in France. The Law of 30 December 1991 prescribed that Parliament would convene once again at the end of a 15-year research period. In 2005, the government asked the National Commission on Public Debate to organise a public debate on radioactive-waste management. Hence, for the first time, such an event was held in accordance with a national policy and not on a specific project. The debate took place between 12 September 2005 and 13 January 2006. Although the debate remained mostly a discussion among experts and opposedmore » most frequently pro-nuclear and anti-nuclear activists, it still provided an opportunity to define and clarify challenges. Following the public debate and in the light of the assessment of investigation results, Parliament adopted on 28 June 2006 a new Planning Act on the Management of Radioactive Waste, which applies to all radioactive residues, irrespective of their activity level, and prescribes specific procedures and deadlines, such as the commissioning of a disposal facility for radium-bearing and graphite waste by 2013 and of a deep geological repository for high-level and intermediate-level long-lived waste by 2025. In the latter case, the Planning Act renews the assessment system for Andra's studies and investigations by a committee of experts and by the OPECST over and above the review of the future licence application by the Nuclear Safety Authority. In addition, a new law will set up the reversibility conditions of the repository before the government may grant any authorisation. At the local level, the act reinforces the prerogatives of the Local Information and Oversight Committee, which is responsible for public information and consultation issues; furthermore, it prescribes that a public debate and a public inquiry be held as a prerequisite to the delivery of any authorisation. Hence, ANDRA is taking all necessary means in order to meet deadlines by involving communities as early as possible in the development process of the repository project. In its activities, the Agency relies on the CLIS and local elected officials, and particularly on mayors. It benefits from some experience in the field, since it has already commissioned two disposal facilities, both located in the Aube District, one in 1992 for low-level and intermediate-level short-lived waste (CSFMA), and the other in 2003 for very-low-level waste (CSTFA). Beyond statutory institutional deadlines, frequent information meetings in relevant local town halls have provided all the more opportunities to explain at length what the projects involved as they advanced. People need precise information in order to be reassured and to share it with their families and friends. It also appeared desirable to create as rapidly as possible the Local Information Committee (CLI) in order to organise a sound dialogue with local populations. Lastly, disposal facilities and disposal-facility projects are not independent from each other. The quality of the implementation and operation of disposal structures in surface facilities, such as the CSFMA and the CSTFA, represents an outstanding showcase for Andra's know-how and aims at reinforcing confidence in more ambitious projects, such as the deep geological repository. (author)« less
1995 solid waste 30-year characteristics volume summary
DOE Office of Scientific and Technical Information (OSTI.GOV)
Templeton, K.J.; DeForest, T.J.; Rice, G.I.
1995-10-01
The Hanford Site has been designated by the US Department of Energy (DOE) to store, treat, and dispose of solid waste received from both onsite and offsite generators. This waste is currently or planned to be generated from ongoing operations, maintenance and deactivation activities, decontamination and decommissioning (D&D) of facilities, and environmental restoration (ER) activities. This document, prepared by Pacific Northwest Laboratory (PNL) under the direction of Westinghouse Hanford Company (WHC), describes the characteristics of the waste to be shipped to Hanford`s SWOC. The physical waste forms and hazardous constituents are described for the low-level mixed waste (LLMW) and themore » transuranic - transuranic mixed waste (TW{underscore}TRUM).« less
Lehmer, Erin M; Clay, Christine A; Pearce-Duvet, Jessica; St Jeor, Stephen; Dearing, M Denise
2008-03-01
Deer mice (Peromyscus maniculatus) are the primary reservoir for Sin Nombre virus (SNV), a North American hantavirus that causes disease with high mortality in humans. Recent studies have proposed that habitat disturbance affects prevalence of SNV in deer mice; however, the outcomes proposed in these studies are in opposition to each other. Our objectives were to test these divergent hypotheses by: (1) measuring SNV infection in deer mice within a patchwork of disturbance; and (2) evaluating the relationships between SNV prevalence, population density and demography as possible mechanisms. In 2003 and 2004, we sampled 1,297 deer mice from 17 sites with varying levels of disturbance in the Great Basin Desert. Across sites and years, SNV prevalence varied from 0.0 to 38.9%. We found a negative relationship between SNV prevalence and disturbance. Although we found no direct relationship between SNV prevalence and deer mouse density, we found that density was highest on sites with the lowest levels of disturbance. The number of deer mice that survived across seasons (e.g., trans-seasonal survivors) differed across levels of disturbance and was greatest on our least disturbed study sites [Formula: see text] moderate on sites with intermediate levels of disturbance (x = 5.61%) and zero on highly disturbed sites. On low-disturbance sites, a greater proportion of trans-seasonal survivors were SNV seropositive (28.80%) compared to the intermediate-disturbance sites (16.67). Collectively, our results indicate that habitat disturbance plays a predictive role in SNV prevalence, with highly disturbed sites having reduced long-term survival of deer mice, including survival of infected individuals.
Cementitious waste option scoping study report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, A.E.; Taylor, D.D.
1998-02-01
A Settlement Agreement between the Department of Energy (DOE) and the State of Idaho mandates that all high-level radioactive waste (HLW) now stored at the Idaho Chemical Processing Plant (ICPP) on the Idaho National Engineering and Environmental Laboratory (INEEL) will be treated so that it is ready to be moved out of Idaho for disposal by a target date of 2035. This study investigates the nonseparations Cementitious Waste Option (CWO) as a means to achieve this goal. Under this option all liquid sodium-bearing waste (SBW) and existing HLW calcine would be recalcined with sucrose, grouted, canisterized, and interim stored asmore » a mixed-HLW for eventual preparation and shipment off-Site for disposal. The CWO waste would be transported to a Greater Confinement Disposal Facility (GCDF) located in the southwestern desert of the US on the Nevada Test Site (NTS). All transport preparation, shipment, and disposal facility activities are beyond the scope of this study. CWO waste processing, packaging, and interim storage would occur over a 5-year period between 2013 and 2017. Waste transport and disposal would occur during the same time period.« less
10 CFR 60.1 - Purpose and scope.
Code of Federal Regulations, 2010 CFR
2010-01-01
... REGULATORY COMMISSION (CONTINUED) DISPOSAL OF HIGH-LEVEL RADIOACTIVE WASTES IN GEOLOGIC REPOSITORIES General..., special nuclear, and byproduct material at a geologic repository operations area sited, constructed, or... at a geologic repository operations area sited, constructed, or operated at Yucca Mountain, Nevada...
10 CFR 60.15 - Site characterization.
Code of Federal Regulations, 2014 CFR
2014-01-01
... in situ testing before and during construction shall be planned and coordinated with geologic... REGULATORY COMMISSION (CONTINUED) DISPOSAL OF HIGH-LEVEL RADIOACTIVE WASTES IN GEOLOGIC REPOSITORIES Licenses... be described in such application. (b) Unless the Commission determines with respect to the site...
10 CFR 60.15 - Site characterization.
Code of Federal Regulations, 2013 CFR
2013-01-01
... in situ testing before and during construction shall be planned and coordinated with geologic... REGULATORY COMMISSION (CONTINUED) DISPOSAL OF HIGH-LEVEL RADIOACTIVE WASTES IN GEOLOGIC REPOSITORIES Licenses... be described in such application. (b) Unless the Commission determines with respect to the site...
10 CFR 60.15 - Site characterization.
Code of Federal Regulations, 2012 CFR
2012-01-01
... in situ testing before and during construction shall be planned and coordinated with geologic... REGULATORY COMMISSION (CONTINUED) DISPOSAL OF HIGH-LEVEL RADIOACTIVE WASTES IN GEOLOGIC REPOSITORIES Licenses... be described in such application. (b) Unless the Commission determines with respect to the site...
10 CFR 60.15 - Site characterization.
Code of Federal Regulations, 2011 CFR
2011-01-01
... in situ testing before and during construction shall be planned and coordinated with geologic... REGULATORY COMMISSION (CONTINUED) DISPOSAL OF HIGH-LEVEL RADIOACTIVE WASTES IN GEOLOGIC REPOSITORIES Licenses... be described in such application. (b) Unless the Commission determines with respect to the site...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Marietta, Melvin Gary; Anderson, D. Richard; Bonano, Evaristo J.
2011-11-01
Sandia National Laboratories (SNL) is the world leader in the development of the detailed science underpinning the application of a probabilistic risk assessment methodology, referred to in this report as performance assessment (PA), for (1) understanding and forecasting the long-term behavior of a radioactive waste disposal system, (2) estimating the ability of the disposal system and its various components to isolate the waste, (3) developing regulations, (4) implementing programs to estimate the safety that the system can afford to individuals and to the environment, and (5) demonstrating compliance with the attendant regulatory requirements. This report documents the evolution of themore » SNL PA methodology from inception in the mid-1970s, summarizing major SNL PA applications including: the Subseabed Disposal Project PAs for high-level radioactive waste; the Waste Isolation Pilot Plant PAs for disposal of defense transuranic waste; the Yucca Mountain Project total system PAs for deep geologic disposal of spent nuclear fuel and high-level radioactive waste; PAs for the Greater Confinement Borehole Disposal boreholes at the Nevada National Security Site; and PA evaluations for disposal of high-level wastes and Department of Energy spent nuclear fuels stored at Idaho National Laboratory. In addition, the report summarizes smaller PA programs for long-term cover systems implemented for the Monticello, Utah, mill-tailings repository; a PA for the SNL Mixed Waste Landfill in support of environmental restoration; PA support for radioactive waste management efforts in Egypt, Iraq, and Taiwan; and, most recently, PAs for analysis of alternative high-level radioactive waste disposal strategies including repositories deep borehole disposal and geologic repositories in shale and granite. Finally, this report summarizes the extension of the PA methodology for radioactive waste disposal toward development of an enhanced PA system for carbon sequestration and storage systems. These efforts have produced a generic PA methodology for the evaluation of waste management systems that has gained wide acceptance within the international community. This report documents how this methodology has been used as an effective management tool to evaluate different disposal designs and sites; inform development of regulatory requirements; identify, prioritize, and guide research aimed at reducing uncertainties for objective estimations of risk; and support safety assessments.« less
Associate Directorate Environmental Management Infrastructure Plan for Area G and Area L Domes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stevens, Patrice Ann; Baumer, Andrew Ronald
Technical Area 54, at Los Alamos National Laboratory (LANL) is situated in the east-central portion of the Laboratory on the Mesita del Buey between Pajarito Canyon to the south and Cañada del Buey to the north. TA-54 includes four MDAs designated as G, H, J, and L; a waste characterization, container storage, and transfer facility; active TRU waste and MLLW waste storage and low-level waste (LLW) disposal operations at Area G; active hazardous and mixed low-level (MLLW) waste storage operations at Area L; and administrative and support areas. MDA J has previously under-gone closure. Area G is a waste managementmore » and disposal area, used for the disposal and storage of radioactive wastes since 1957. Since August 2015, Area G has been in warm standby and provides minimal operations to support safety, compliance, and nitrate salt remediation. Located within Area G, MDA G covers 63-acres. MDA G contains 334 active and inactive waste management units, which include 36 pits, 294 shafts, and 4 trenches. In 1971, Area G began use for the retrievable storage of TRU waste. There are two pits, four trenches and 60 shafts that contain retrievable TRU waste. Thirty-three of the shafts contain TRU waste that may present unique problems for retrieval. In 1986, segregation of MLLW was initiated at Area G for treatment and temporary storage or for off-site disposal. Area G is the only active LLW disposal facility at the Laboratory. Current operations at Area G include storage and characterization of TRU and mixed TRU waste destined for off-site disposal at the Waste Isolation Pilot Plant (WIPP) in southeastern New Mexico and the storage of MLLW destined for off-site treatment and/or disposal. Several above-ground container storage units (CSUs) are currently used for storage of containerized MLLW and/or mixed TRU wastes. These consist of asphalt pads and associated fabric domes or other structures. As defined by the Consent Order, MDA G contains 229 of the 334 subsurface waste management units at Area G. These MDA G disposal units include 32 pits, 193 shafts, and 4 trenches and contain LLW, MLLW and TRU waste. The remaining 105 solid waste management units (SWMUs) include RCRA-regulated landfill and storage units and DOE-regulated LLW disposal units. The TA-54 closure project must ensure that continuing waste operations at Area G and their transition to an interim or enduring facility are coordinated with closure activities.« less
2014-01-01
Antibiotic resistance (AR) is often rooted in inappropriate antibiotic use, but poor water quality and inadequate sanitation exacerbate the problem, especially in emerging countries. An example is increasing multi-AR due to mobile carbapenemases, such as NDM-1 protein (coded by blaNDM-1 genes), which can produce extreme drug-resistant phenotypes. In 2010, NDM-1 positive isolates and blaNDM-1 genes were detected in surface waters across Delhi and have since been detected across the urban world. However, little is known about blaNDM-1 levels in more pristine locations, such as the headwaters of the Upper Ganges River. This area is of particular interest because it receives massive numbers of visitors during seasonal pilgrimages in May/June, including visitors from urban India. Here we quantified blaNDM-1 abundances, other AR genes (ARG), and coliform bacteria in sediments and water column samples from seven sites in the Rishikesh-Haridwar region of the Upper Ganges and five sites on the Yamuna River in Delhi to contrast blaNDM-1 levels and water quality conditions between season and region. Water quality in the Yamuna was very poor (e.g., anoxia at all sites), and blaNDM-1 abundances were high across sites in water (5.4 ± 0.4 log(blaNDM-1·mL–1); 95% confidence interval) and sediment (6.3 ± 0.7 log(blaNDM-1·mg–1)) samples from both seasons. In contrast, water column blaNDM-1 abundances were very low across all sites in the Upper Ganges in February (2.1 ± 0.6 log(blaNDM-1·mL–1)), and water quality was good (e.g., near saturation oxygen). However, per capita blaNDM-1 levels were 20 times greater in June in the Ganges water column relative to February, and blaNDM-1 levels significantly correlated with fecal coliform levels (r = 0.61; p = 0.007). Given that waste management infrastructure is limited in Rishikesh-Haridwar, data imply blaNDM-1 levels are higher in visitor’s wastes than local residents, which results in seasonally higher blaNDM-1 levels in the river. Pilgrimage areas without adequate waste treatment are possible “hot spots” for AR transmission, and waste treatment must be improved to reduce broader AR dissemination via exposed returning visitors. PMID:24521347
Hanford Site ground-water monitoring for 1993
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dresel, P.E.; Luttrell, S.P.; Evans, J.C.
This report presents the results of the Ground-Water Surveillance Project monitoring for calendar year 1993 on the Hanford Site, Washington. Hanford Site operations from 1943 onward produced large quantities of radiological and chemical waste that have impacted ground-water quality on the Site. Monitoring of water levels and ground-water chemistry is performed to track the extent of contamination and trends in contaminant concentrations. The 1993 monitoring was also designed to identify emerging ground-water quality problems. The information obtained is used to verify compliance with applicable environmental regulations and to evaluate remedial actions. Data from other monitoring and characterization programs were incorporatedmore » to provide an integrated assessment of Site ground-water quality. Additional characterization of the Site`s geologic setting and hydrology was performed to support the interpretation of contaminant distributions. Numerical modeling of sitewide ground-water flow also supported the overall project goals. Water-level monitoring was performed to evaluate ground-water flow directions, to track changes in water levels, and to relate such changes to changes in site disposal practices. Water levels over most of the Hanford Site continued to decline between June 1992 and June 1993. The greatest declines occurred in the 200-West Area. These declines are part of the continued response to the cessation of discharge to U Pond and other disposal facilities. The low permeability in this area which enhanced mounding of waste-water discharge has also slowed the response to the reduction of disposal. Water levels remained nearly constant in the vicinity of B Pond, as a result of continued disposal to the pond. Water levels measured from wells in the unconfined aquifer north and east of the Columbia River indicate that the primary source of recharge is irrigation practices.« less
NASA Astrophysics Data System (ADS)
Benabderrahmane, A., Sr.
2017-12-01
Hydrogeological site characterization for deep geological high level and intermediate level long lived radioactive waste repository cover a large time scale needed for safety analysis and calculation. Hydrogeological performance of a site relies also on the effects of geodynamic evolution as tectonic uplift, erosion/sedimentation and climate including glaciation on the groundwater flow and solute and heat transfer. Thermo-Hydro-Mechanical model of multilayered aquifer system of Paris Basin is developed to reproduce the present time flow and the natural tracer (Helium) concentration profiles based on the last 2 Ma of geodynamic evolution. Present time geological conceptual model consist of 27 layers at Paris Basin (Triassic-Tertiary) with refinement at project site scale (29 layers from Triassic to Portlandian). Target layers are the clay host formation of Callovo-Oxfrodian age (160 Ma) and the surrounding aquifer layers of Oxfordian and Dogger. Modelled processes are: groundwater flow, heat and solutes (natural tracers) transport, freezing and thawing of groundwater (expansion and retreat of permafrost), deformation of the multilayered aquifer system induced by differential tectonic uplift and the hydro-mechanical stress effect as caused by erosion of the outcropping layers. Numerical simulation considers a period from 2 Ma BP and up to the present. Transient boundary conditions are governed by geodynamic processes: (i) modification of the geometry of the basin and (ii) temperatures along the topography will change according to a series of 15 identical climate cycles with multiple permafrost (glaciation) periods. Numerical model contains 71 layers and 18 million cells. The solution procedure solves three coupled systems of equations, head, temperature and concentrations, by the use of a finite difference method, and by applying extensive parallel processing. The major modelling results related to the processes of importance for site characterization as hydraulic head distribution, flow velocity, heat and natural tracer transport impacted by geodynamic past evolution are discussed.
Small mammal populations at hazardous waste disposal sites near Houston, Texas, USA
Robbins, C.S.
1990-01-01
Small mammals were trapped, tagged and recaptured in 0?45 ha plots at six hazardous industrial waste disposal sites to determine if populations, body mass and age structures were different from paired control site plots. Low numbers of six species of small mammals were captured on industrial waste sites or control sites. Only populations of hispid cotton rats at industrial waste sites and control sites were large enough for comparisons. Overall population numbers, age structure, and body mass of adult male and female cotton rats were similar at industrial waste sites and control sites. Populations of small mammals (particularly hispid cotton rats) may not suffice as indicators of environments with hazardous industrial waste contamination.
36 CFR 6.5 - Solid waste disposal sites in operation on September 1, 1984.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 36 Parks, Forests, and Public Property 1 2011-07-01 2011-07-01 false Solid waste disposal sites in..., DEPARTMENT OF THE INTERIOR SOLID WASTE DISPOSAL SITES IN UNITS OF THE NATIONAL PARK SYSTEM § 6.5 Solid waste disposal sites in operation on September 1, 1984. (a) The operator of a solid waste disposal site in...
36 CFR 6.5 - Solid waste disposal sites in operation on September 1, 1984.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 36 Parks, Forests, and Public Property 1 2010-07-01 2010-07-01 false Solid waste disposal sites in..., DEPARTMENT OF THE INTERIOR SOLID WASTE DISPOSAL SITES IN UNITS OF THE NATIONAL PARK SYSTEM § 6.5 Solid waste disposal sites in operation on September 1, 1984. (a) The operator of a solid waste disposal site in...
36 CFR 6.5 - Solid waste disposal sites in operation on September 1, 1984.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 36 Parks, Forests, and Public Property 1 2013-07-01 2013-07-01 false Solid waste disposal sites in..., DEPARTMENT OF THE INTERIOR SOLID WASTE DISPOSAL SITES IN UNITS OF THE NATIONAL PARK SYSTEM § 6.5 Solid waste disposal sites in operation on September 1, 1984. (a) The operator of a solid waste disposal site in...
36 CFR 6.5 - Solid waste disposal sites in operation on September 1, 1984.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 36 Parks, Forests, and Public Property 1 2012-07-01 2012-07-01 false Solid waste disposal sites in..., DEPARTMENT OF THE INTERIOR SOLID WASTE DISPOSAL SITES IN UNITS OF THE NATIONAL PARK SYSTEM § 6.5 Solid waste disposal sites in operation on September 1, 1984. (a) The operator of a solid waste disposal site in...
36 CFR 6.5 - Solid waste disposal sites in operation on September 1, 1984.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 36 Parks, Forests, and Public Property 1 2014-07-01 2014-07-01 false Solid waste disposal sites in..., DEPARTMENT OF THE INTERIOR SOLID WASTE DISPOSAL SITES IN UNITS OF THE NATIONAL PARK SYSTEM § 6.5 Solid waste disposal sites in operation on September 1, 1984. (a) The operator of a solid waste disposal site in...
Web Supplement to "Teaching Chain-Weight Real GDP Measures."
ERIC Educational Resources Information Center
Cahill, Miles B.
2003-01-01
Describes a Web site that is a companion to the Miles Cahill article, "Teaching Chain-Weight Real GDP Measures." States that the exercises are useful because intermediate level textbooks treat this topic casually. Indicates that the Web site contains the comment tool, an overview of the concepts, and links to article references. (JEH)
10 CFR 72.218 - Termination of licenses.
Code of Federal Regulations, 2011 CFR
2011-01-01
... NUCLEAR FUEL, HIGH-LEVEL RADIOACTIVE WASTE, AND REACTOR-RELATED GREATER THAN CLASS C WASTE General License for Storage of Spent Fuel at Power Reactor Sites § 72.218 Termination of licenses. (a) The notification regarding the program for the management of spent fuel at the reactor required by § 50.54(bb) of...
10 CFR 72.218 - Termination of licenses.
Code of Federal Regulations, 2010 CFR
2010-01-01
... NUCLEAR FUEL, HIGH-LEVEL RADIOACTIVE WASTE, AND REACTOR-RELATED GREATER THAN CLASS C WASTE General License for Storage of Spent Fuel at Power Reactor Sites § 72.218 Termination of licenses. (a) The notification regarding the program for the management of spent fuel at the reactor required by § 50.54(bb) of...
Radiation-resistant microorganism
Fliermans, Carl B.
2007-01-09
An isolated and purified bacterium is provided which was isolated from a high-level radioactive waste site of mixed waste. The isolate has the ability to degrade a wide variety of organic contaminants while demonstrating high tolerance to ionizing radiation. The organism is uniquely suited to bioremediation of a variety or organic contaminants while in the presence of ionizing radiation.
Radiation-resistant microorganism
Fliermans, Carl B.
2010-06-15
An isolated and purified bacterium is provided which was isolated from a high-level radioactive waste site of mixed waste. The isolate has the ability to degrade a wide variety of organic contaminants while demonstrating high tolerance to ionizing radiation. The organism is uniquely suited to bioremediation of a variety or organic contaminants while in the presence of ionizing radiation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
L. M. Dittmer
2006-10-19
The 1607-F7, 141-M Building Septic Tank waste site was a septic tank and drain field that received sanitary sewage from the former 141-M Building. Remedial action was performed in August and November 2005. The results of verification sampling demonstrate that residual contaminant concentrations support future unrestricted land uses that can be represented by a rural-residential scenario. These results also show that residual concentrations support unrestricted future use of shallow zone soil and that contaminant levels remaining in the soil are protective of groundwater and the Columbia River.
NASA Astrophysics Data System (ADS)
Choung, S.; Francis, A. J.; Um, W.; Choi, S.; Kim, S.; Park, J.; Kim, S.
2013-12-01
The countries that have generated nuclear power have facing problems on the disposal of accumulated radioactive wastes. Geological disposal method has been chosen in many countries including Korea. A safety issue after the closure of geological repository has been raised, because microbial activities lead overpressure in the underground facilities through gas production. In particular, biodegradable organic materials derived from low- and intermediate-level radioactive wastes play important role on microbial activities in the geological repository. This study performed large scale in-situ experiments using organic wastes and groundwater, and investigated geochemical alteration and microbial activities at early stage (~63 days) as representative of the period, after closure of the geological repository. The geochemical alteration controlled significantly the microorganism types and populations. Database of the biogeochemical alteration facilitates prediction of radionuclides' mobility and establishment of remedial strategy against unpredictable accidents and hazards at early stage right after closure of the geological repository.
Mizukawa, Hazuki; Nomiyama, Kei; Kunisue, Tatsuya; Watanabe, Michio X; Subramanian, Annamalai; Iwata, Hisato; Ishizuka, Mayumi; Tanabe, Shinsuke
2015-04-01
The concentrations of polychlorinated biphenyls (PCBs), polybrominated diphenyl ethers (PBDEs), and their hydroxylated metabolites (OH-PCBs and OH-PBDEs) were measured in the blood of Eurasian wild pigs (Sus scrofa) from a municipal waste open dumping site (DS) and a reference site (RS) in South India. We showed that contamination with OH-PCBs was higher in female pigs from the DS than in all other adult pigs. The highest OH-PCB concentrations were found in piglets from the DS. Moreover, the hepatic expression levels of CYP1A and CYP2B were higher in piglets than in their dam, implying metabolism of PCBs by cytochrome P450 (CYP) enzymes. The OH-PCB congener profiles differed according to sex and collection sites, possibly because of variations in the expression levels of phase I and phase II enzymes among individual pigs, differences in the exposure sources, and maternal transfer of parent PCBs. The hepatic CYP1A expression levels were positively correlated with the blood concentrations of 4OH-CB107, 4OH-CB162, and 4OH-CB187, implying CYP1A-dependent formation of these OH-PCBs in the pig liver. We found no significant correlations between the blood concentrations of OH-PCBs and thyroid hormones (THs); however, the thyroxin (T4) levels were lower in pigs from the DS than in pigs from the RS. Our limited dataset suggest that induced CYP enzymes accelerate the metabolism of xenobiotics and endogenous molecules in pigs. Thus, besides parental compounds, the risk of hydroxylated metabolites entering wildlife and humans living in and around municipal open waste dumping sites should be considered. Copyright © 2015 Elsevier Inc. All rights reserved.
Ruiz-González, Mario Xavier; Czirják, Gábor Árpád; Genevaux, Pierre; Møller, Anders Pape; Mousseau, Timothy Alexander; Heeb, Philipp
2016-01-01
Ionizing radiation has been shown to produce negative effects on organisms, although little is known about its ecological and evolutionary effects. As a study model, we isolated bacteria associated with feathers from barn swallows Hirundo rustica from three study areas around Chernobyl differing in background ionizing radiation levels and one control study site in Denmark. Each bacterial community was exposed to four different γ radiation doses ranging from 0.46 to 3.96 kGy to test whether chronic exposure to radiation had selected for resistant bacterial strains. Experimental radiation duration had an increasingly overall negative effect on the survival of all bacterial communities. After exposure to γ radiation, bacteria isolated from the site with intermediate background radiation levels survived better and produced more colonies than the bacterial communities from other study sites with higher or lower background radiation levels. Long-term effects of radiation in natural populations might be an important selective pressure on traits of bacteria that facilitate survival in certain environments. Our findings indicate the importance of further studies to understand the proximate mechanisms acting to buffer the negative effects of ionizing radiation in natural populations. PMID:26976674
Ruiz-González, Mario Xavier; Czirják, Gábor Árpád; Genevaux, Pierre; Møller, Anders Pape; Mousseau, Timothy Alexander; Heeb, Philipp
2016-03-15
Ionizing radiation has been shown to produce negative effects on organisms, although little is known about its ecological and evolutionary effects. As a study model, we isolated bacteria associated with feathers from barn swallows Hirundo rustica from three study areas around Chernobyl differing in background ionizing radiation levels and one control study site in Denmark. Each bacterial community was exposed to four different γ radiation doses ranging from 0.46 to 3.96 kGy to test whether chronic exposure to radiation had selected for resistant bacterial strains. Experimental radiation duration had an increasingly overall negative effect on the survival of all bacterial communities. After exposure to γ radiation, bacteria isolated from the site with intermediate background radiation levels survived better and produced more colonies than the bacterial communities from other study sites with higher or lower background radiation levels. Long-term effects of radiation in natural populations might be an important selective pressure on traits of bacteria that facilitate survival in certain environments. Our findings indicate the importance of further studies to understand the proximate mechanisms acting to buffer the negative effects of ionizing radiation in natural populations.
Radioactive waste management in France: safety demonstration fundamentals.
Ouzounian, G; Voinis, S; Boissier, F
2012-01-01
The main challenge in development of the safety case for deep geological disposal is associated with the long periods of time over which high- and intermediate-level long-lived wastes remain hazardous. A wide range of events and processes may occur over hundreds of thousands of years. These events and processes are characterised by specific timescales. For example, the timescale for heat generation is much shorter than any geological timescale. Therefore, to reach a high level of reliability in the safety case, it is essential to have a thorough understanding of the sequence of events and processes likely to occur over the lifetime of the repository. It then becomes possible to assess the capability of the repository to fulfil its safety functions. However, due to the long periods of time and the complexity of the events and processes likely to occur, uncertainties related to all processes, data, and models need to be understood and addressed. Assessment is required over the lifetime of the radionuclides contained in the radioactive waste. Copyright © 2012. Published by Elsevier Ltd.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hladek, K.L.
1997-10-07
The 618-11 (Wye or 318-11) burial ground received transuranic (TRTJ) and mixed fission solid waste from March 9, 1962, through October 2, 1962. It was then closed for 11 months so additional burial facilities could be added. The burial ground was reopened on September 16, 1963, and continued operating until it was closed permanently on December 31, 1967. The burial ground received wastes from all of the 300 Area radioactive material handling facilities. The purpose of this document is to characterize the 618-11 solid waste burial ground by describing the site, burial practices, the disposed wastes, and the waste generatingmore » facilities. This document provides information showing that kilogram quantities of plutonium were disposed to the drum storage units and caissons, making them transuranic (TRU). Also, kilogram quantities of plutonium and other TRU wastes were disposed to the three trenches, which were previously thought to contain non-TRU wastes. The site burial facilities (trenches, caissons, and drum storage units) should be classified as TRU and the site plutonium inventory maintained at five kilograms. Other fissile wastes were also disposed to the site. Additionally, thousands of curies of mixed fission products were also disposed to the trenches, caissons, and drum storage units. Most of the fission products have decayed over several half-lives, and are at more tolerable levels. Of greater concern, because of their release potential, are TRU radionuclides, Pu-238, Pu-240, and Np-237. TRU radionuclides also included slightly enriched 0.95 and 1.25% U-231 from N-Reactor fuel, which add to the fissile content. The 618-11 burial ground is located approximately 100 meters due west of Washington Nuclear Plant No. 2. The burial ground consists of three trenches, approximately 900 feet long, 25 feet deep, and 50 feet wide, running east-west. The trenches constitute 75% of the site area. There are 50 drum storage units (five 55-gallon steel drums welded together) buried in three rows in the northeast comer. In addition, five eight-foot diameter caissons are located at the west end of the center row of the drum storage units. Initially, wastes disposed to the caissons and drum storage units were from the 325 and 327 building hot cells. Later, a small amount of remote-handled (RH) waste from the 309 building Plutonium Recycle Test Reactor (PRTR) cells, and the newly built 324 building hot cells, was disposed at the site.« less
Flammable gas data evaluation. Progress report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Whitney, P.D.; Meyer, P.A.; Miller, N.E.
1996-10-01
The Hanford Site is home to 177 large, underground nuclear waste storage tanks. Numerous safety and environmental concerns surround these tanks and their contents. One such concern is the propensity for the waste in these tanks to generate, retain, and periodically release flammable gases. This report documents some of the activities of the Flammable Gas Project Data Evaluation Task conducted for Westinghouse Hanford Company during fiscal year 1996. Described in this report are: (1) the results of examining the in-tank temperature measurements for insights into gas release behavior; (2) the preliminary results of examining the tank waste level measurements formore » insights into gas release behavior; and (3) an explanation for the observed hysteresis in the level/pressure measurements, a phenomenon observed earlier this year when high-frequency tank waste level measurements came on-line.« less
Using research to enhance student learning in intermediate mechanics
NASA Astrophysics Data System (ADS)
Ambrose, Bradley
2011-03-01
For many undergraduate physics majors the sophomore/junior level course in intermediate mechanics represents their first step beyond the introductory sequence. Over the past several years research has shown that intermediate mechanics students often encounter conceptual and reasoning difficulties similar to those that arise at the introductory level. Many difficulties suggest deeply-seated alternate conceptions, while others suggest loosely or spontaneously connected intuitions. Furthermore, students often do not connect the physics to the more sophisticated mathematics they are expected to use. This presentation will highlight results from research conducted at Grand Valley State University, the University of Maine (by co-PI Michael Wittmann) and pilot sites in the Intermediate Mechanics Tutorials project. These results, taken from the analysis of pretests (ungraded quizzes), written exams, and classroom observations, will illustrate specific student difficulties as well as examples of guided-inquiry teaching strategies that appear to address these difficulties. (Supported by NSF grants DUE-0441426 and DUE-0442388.)
On-site or off-site treatment of medical waste: a challenge
2014-01-01
Treating hazardous-infectious medical waste can be carried out on-site or off-site of health-care establishments. Nevertheless, the selection between on-site and off-site locations for treating medical waste sometimes is a controversial subject. Currently in Iran, due to policies of Health Ministry, the hospitals have selected on-site-treating method as the preferred treatment. The objectives of this study were to assess the current condition of on-site medical waste treatment facilities, compare on-site medical waste treatment facilities with off-site systems and find the best location of medical waste treatment. To assess the current on-site facilities, four provinces (and 40 active hospitals) were selected to participate in the survey. For comparison of on-site and off-site facilities (due to non availability of an installed off-site facility) Analytical Hierarchy Process (AHP) was employed. The result indicated that most on-site medical waste treating systems have problems in financing, planning, determining capacity of installations, operation and maintenance. AHP synthesis (with inconsistency ratio of 0.01 < 0.1) revealed that, in total, the off-site treatment of medical waste was in much higher priority than the on-site treatment (64.1% versus 35.9%). According to the results of study it was concluded that the off-site central treatment can be considered as an alternative. An amendment could be made to Iran’s current medical waste regulations to have infectious-hazardous waste sent to a central off-site installation for treatment. To begin and test this plan and also receive the official approval, a central off-site can be put into practice, at least as a pilot in one province. Next, if it was practically successful, it could be expanded to other provinces and cities. PMID:24739145
Carbinolamine Formation and Dehydration in a DNA Repair Enzyme Active Site
Dodson, M. L.; Walker, Ross C.; Lloyd, R. Stephen
2012-01-01
In order to suggest detailed mechanistic hypotheses for the formation and dehydration of a key carbinolamine intermediate in the T4 pyrimidine dimer glycosylase (T4PDG) reaction, we have investigated these reactions using steered molecular dynamics with a coupled quantum mechanics–molecular mechanics potential (QM/MM). We carried out simulations of DNA abasic site carbinolamine formation with and without a water molecule restrained to remain within the active site quantum region. We recovered potentials of mean force (PMF) from thirty replicate reaction trajectories using Jarzynski averaging. We demonstrated feasible pathways involving water, as well as those independent of water participation. The water–independent enzyme–catalyzed reaction had a bias–corrected Jarzynski–average barrier height of approximately for the carbinolamine formation reaction and ) for the reverse reaction at this level of representation. When the proton transfer was facilitated with an intrinsic quantum water, the barrier height was approximately in the forward (formation) reaction and for the reverse. In addition, two modes of unsteered (free dynamics) carbinolamine dehydration were observed: in one, the quantum water participated as an intermediate proton transfer species, and in the other, the active site protonated glutamate hydrogen was directly transferred to the carbinolamine oxygen. Water–independent unforced proton transfer from the protonated active site glutamate carboxyl to the unprotonated N–terminal amine was also observed. In summary, complex proton transfer events, some involving water intermediates, were studied in QM/MM simulations of T4PDG bound to a DNA abasic site. Imine carbinolamine formation was characterized using steered QM/MM molecular dynamics. Dehydration of the carbinolamine intermediate to form the final imine product was observed in free, unsteered, QM/MM dynamics simulations, as was unforced acid-base transfer between the active site carboxylate and the N–terminal amine. PMID:22384015
Leenheer, J.A.; Hsu, J.; Barber, L.B.
2001-01-01
In January 1999, wastewater influent and effluent from the pretreatment plant at the Stringfellow hazardous waste disposal site were sampled along with groundwater at six locations along the groundwater contaminant plume. The objectives of this sampling and study were to identify at the compound class level the unidentified 40-60% of wastewater organic contaminants, and to determine what organic compound classes were being removed by the wastewater pretreatment plant, and what organic compound classes persisted during subsurface waste migration. The unidentified organic wastes are primarily chlorinated aromatic sulfonic acids derived from wastes from DDT manufacture. Trace amounts of EDTA and NTA organic complexing agents were discovered along with carboxylate metabolites of the common alkylphenolpolyethoxylate plasticizers and nonionic surfactants. The wastewater pretreatment plant removed most of the aromatic chlorinated sulfonic acids that have hydrophobic neutral properties, but the p-chlorobenzenesulfonic acid which is the primary waste constituent passed through the pretreatment plant and was discharged in the treated wastewaters transported to an industrial sewer. During migration in groundwater, p-chlorobenzenesulfonic acid is removed by natural remediation processes. Wastewater organic contaminants have decreased 3- to 45-fold in the groundwater from 1985 to 1999 as a result of site remediation and natural remediation processes. The chlorinated aromatic sulfonic acids with hydrophobic neutral properties persist and have migrated into groundwater that underlies the adjacent residential community. Copyright ?? 2001 .
Implementation of SAP Waste Management System
DOE Office of Scientific and Technical Information (OSTI.GOV)
Frost, M.L.; LaBorde, C.M.; Nichols, C.D.
2008-07-01
The Y-12 National Security Complex (Y-12) assumed responsibility for newly generated waste on October 1, 2005. To ensure effective management and accountability of newly generated waste, Y-12 has opted to utilize SAP, Y-12's Enterprise Resource Planning (ERP) tool, to track low-level radioactive waste (LLW), mixed waste (MW), hazardous waste, and non-regulated waste from generation through acceptance and disposal. SAP Waste will include the functionality of the current waste tracking system and integrate with the applicable modules of SAP already in use. The functionality of two legacy systems, the Generator Entry System (GES) and the Waste Information Tracking System (WITS), andmore » peripheral spreadsheets, databases, and e-mail/fax communications will be replaced by SAP Waste. Fundamentally, SAP Waste will promote waste acceptance for certification and disposal, not storage. SAP Waste will provide a one-time data entry location where waste generators can enter waste container information, track the status of their waste, and maintain documentation. A benefit of the new system is that it will provide a single data repository where Y-12's Waste Management organization can establish waste profiles, verify and validate data, maintain inventory control utilizing hand-held data transfer devices, schedule and ship waste, manage project accounting, and report on waste handling activities. This single data repository will facilitate the production of detailed waste generation reports for use in forecasting and budgeting, provide the data for required regulatory reports, and generate metrics to evaluate the performance of the Waste Management organization and its subcontractors. SAP Waste will replace the outdated and expensive legacy system, establish tools the site needs to manage newly generated waste, and optimize the use of the site's ERP tool for integration with related business processes while promoting disposition of waste. (authors)« less
Assessment of cadmium exposure for neonates in Guiyu, an electronic waste pollution site of China.
Li, Yan; Huo, Xia; Liu, Junxiao; Peng, Lin; Li, Weiqiu; Xu, Xijin
2011-06-01
This study aimed to determine the levels of placental cadmium (PCd) and cord blood cadmium (CBCd) and the resulting expression of placental metallothionein (MT) in neonates and to investigate cadmium (Cd) exposure levels in neonates and mothers who live in Guiyu, China, an electronic waste (e-waste) pollution site. Among the 423 mothers included in the study from 2004/2005 to 2007, 289 lived in Guiyu (exposed group) and 134 lived in Chaonan, located 10 km away from Guiyu (controls) and had never been exposed to e-waste pollution. CBCd and PCd levels were measured by atomic absorption spectrometry. Placental MT was examined by immunohistochemistry. Information on maternal and neonatal characteristics and exposure conditions was obtained from hospital records and by personal interviews. For the 3 years, the median CBCd was higher for Guiyu neonates than for controls (3.61 vs. 1.25 μg/L), with 25.61% of Guiyu subjects exhibiting a median CBCd that exceeded the safety limit defined by the World Health Organization (5 μg/L), as compared with 14.18% of control neonates (p < 0.01). In Guiyu, the mean PCd was higher than that for controls (0.17 ± 0.48 vs. 0.10 ± 0.11 μg/g, p ≤ 0.01). The high levels of CBCd and PCd were significantly associated with parents' occupational and environmental exposure to e-waste recycling pollutants. Staining for MT was positive and dense for 67.00% (67/100) of Guiyu neonates as compared with 32.69% (17/52) of controls (p < 0.01). Exposure to e-waste recycling pollutants increased Cd exposure in neonates, which was accompanied by increased placental MT expression.
Emerging Environmental Justice Issues in Nuclear Power and Radioactive Contamination
Kyne, Dean; Bolin, Bob
2016-01-01
Nuclear hazards, linked to both U.S. weapons programs and civilian nuclear power, pose substantial environment justice issues. Nuclear power plant (NPP) reactors produce low-level ionizing radiation, high level nuclear waste, and are subject to catastrophic contamination events. Justice concerns include plant locations and the large potentially exposed populations, as well as issues in siting, nuclear safety, and barriers to public participation. Other justice issues relate to extensive contamination in the U.S. nuclear weapons complex, and the mining and processing industries that have supported it. To approach the topic, first we discuss distributional justice issues of NPP sites in the U.S. and related procedural injustices in siting, operation, and emergency preparedness. Then we discuss justice concerns involving the U.S. nuclear weapons complex and the ways that uranium mining, processing, and weapons development have affected those living downwind, including a substantial American Indian population. Next we examine the problem of high-level nuclear waste and the risk implications of the lack of secure long-term storage. The handling and deposition of toxic nuclear wastes pose new transgenerational justice issues of unprecedented duration, in comparison to any other industry. Finally, we discuss the persistent risks of nuclear technologies and renewable energy alternatives. PMID:27420080
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tierney, G.D.; Foxx, T.S.
1982-03-01
Since 1946, low-level radioactive waste has been buried in shallow landfills within the confines of the Los Alamos National Laboratory. Five of these sites were studied for plant composition and successional patterns by reconnaissance and vegetation mapping. The data show a slow rate of recovery for all sites, regardless of age, in both the pinon-juniper and ponderosa pine communities. The sites are not comparable in succession or composition because of location and previous land use. The two oldest sites have the highest species diversity and the only mature trees. All sites allowed to revegetate naturally tend to be colonized bymore » the same species that originally surrounded the sites. Sites on historic fields are colonized by the old field flora, whereas those in areas disturbed only by grazing are revegetated by the local native flora.« less
Fischer, Jeffrey M.
1992-01-01
A commercial disposal facility for low-level radioactive waste has been in operation near Beatty, Nevada, since 1962. The facility is in the arid Amargosa Desert where wastes are buried in trenches excavated into unsaturated alluvial sediments. Thick unsaturated zones in arid environments offer many potential advantages for disposal of radioactive wastes, but little is known about the natural movement of water near such facilities. Thus, a study was begun in 1982 to better define the direction and rates of water movement through the unsaturated zone in undisturbed sediments near the disposal facility. This report discusses the analyses of data collected between 1983 and 1988.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Greenberg, Harris R.; Blink, James A.; Halsey, William G.
2011-08-11
The Used Fuel Disposition Campaign (UFDC) within the Department of Energy’s Office of Nuclear Energy (DOE-NE) Fuel Cycle Technology (FCT) program has been tasked with investigating the disposal of the nation’s spent nuclear fuel (SNF) and high-level nuclear waste (HLW) for a range of potential waste forms and geologic environments. This Lessons Learned task is part of a multi-laboratory effort, with this LLNL report providing input to a Level 3 SNL milestone (System-Wide Integration and Site Selection Concepts for Future Disposition Options for HLW). The work package number is: FTLL11UF0328; the work package title is: Technical Bases / Lessons Learned;more » the milestone number is: M41UF032802; and the milestone title is: “LLNL Input to SNL L3 MS: System-Wide Integration and Site Selection Concepts for Future Disposition Options for HLW”. The system-wide integration effort will integrate all aspects of waste management and disposal, integrating the waste generators, interim storage, transportation, and ultimate disposal at a repository site. The review of international experience in these areas is required to support future studies that address all of these components in an integrated manner. Note that this report is a snapshot of nuclear power infrastructure and international waste management programs that is current as of August 2011, with one notable exception. No attempt has been made to discuss the currently evolving world-wide response to the tragic consequences of the earthquake and tsunami that devastated Japan on March 11, 2011, leaving more than 15,000 people dead and more than 8,000 people missing, and severely damaging the Fukushima Daiichi nuclear power complex. Continuing efforts in FY 2012 will update the data, and summarize it in an Excel spreadsheet for easy comparison and assist in the knowledge management of the study cases.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Flynn, Karen; McCormick, Matt
Hanford's DOE offices are responsible for one of the largest nuclear cleanup efforts in the world, cleaning up the legacy of nearly five decades of nuclear weapons production. Nowhere in the DOE Complex is cleanup more challenging than at the Hanford Site in southeastern Washington. Hanford cleanup entails remediation of hundreds of large complex hazardous waste sites; disposition of nine production reactors and the preservation of one as a National Historic Landmark; demolition of hundreds of contaminated facilities including five enormous process canyons; remediation of billions of gallons of contaminated groundwater; disposition of millions of tons of low-level, mixed low-level,more » and transuranic waste; disposition of significant quantities of special nuclear material; storage and ultimate disposition of irradiated nuclear fuel; remediation of contamination deep in the soil that could impact groundwater; decontamination and decommissioning of hundreds of buildings and structures; and treatment of 56 million gallons of radioactive waste in 177 large underground tanks through the construction of a first-of-its-kind Waste Treatment Plant. Cleanup of the Hanford Site is a complex and challenging undertaking. The DOE Richland Operations Office has a vision and a strategy for completing Hanford's cleanup including the transition to post-cleanup activities. Information on the strategy is outlined in the Hanford Site Completion Framework. The framework describes three major components of cleanup - River Corridor, Central Plateau, and Tank Waste. It provides the context for individual cleanup actions by describing the key challenges and approaches for the decisions needed to complete cleanup. The U.S. Department of Energy (DOE), as regulated by the U.S. Environmental Protection Agency (EPA) and Washington State Department of Ecology (Ecology), is implementing a strategy to achieve final cleanup decisions for the River Corridor portion of the Hanford Site. The DOE Richland Operations Office (RL) and DOE Office of River Protection (ORP) have prepared this document to describe the strategy and to begin developing the approach for making cleanup decisions for the remainder of the Hanford Site. DOE's intent is that the Completion Framework document will facilitate dialogue among the Tri-Parties and with Hanford's diverse interest groups, including Tribal Nations, State of Oregon, Hanford Advisory Board, Natural Resource Trustees, and the public. Future cleanup decisions will be enhanced by an improved understanding of the challenges facing cleanup and a common understanding of the goals and approaches for cleanup completion. The overarching goals for cleanup are sevenfold. - Goal 1: Protect the Columbia River. - Goal 2: Restore groundwater to its beneficial use to protect human health, the environment, and the Columbia River. - Goal 3: Clean up River Corridor waste sites and facilities to: Protect groundwater and the Columbia River. Shrink the active cleanup footprint to the Central Plateau, and support anticipated future uses of the land. - Goal 4: Clean up Central Plateau waste sites, tank farms, and facilities to: Protect groundwater. Minimize the footprint of areas requiring long-term waste management activities. Support anticipated future uses of the land. - Goal 5: Safely manage and transfer legacy materials scheduled for off-site disposition including special nuclear material (including plutonium), spent nuclear fuel, transuranic waste, and immobilized high-level waste. - Goal 6: Consolidate waste treatment, storage, and disposal operations on the Central Plateau. - Goal 7: Develop and implement institutional controls and long-term stewardship activities that protect human health, the environment, and Hanford's unique cultural, historical and ecological resources after cleanup activities are completed. These goals embody more than 20 years of dialogue among the Tri-Party Agencies, Tribal Nations, State of Oregon, stakeholders, and the public. They carry forward key values captured in forums such as the Hanford Future Site Uses Working Group, Tank Waste Task Force, Hanford Summits, and Hanford Advisory Board Exposure Scenario Workshops, as well as more than 200 advice letters issued by the Hanford Advisory Board (http://www.hanford.gov/page.cfm/hab). These goals help guide all aspects of Hanford Site cleanup. Cleanup activities at various areas of the site support the achievement of one or more of these goals. These goals help set priorities to apply resources and sequence cleanup efforts for the greatest benefit. These goals reflect DOE's recognition that the Columbia River is a critical resource for the people and ecology of the Pacific Northwest. The 50-mile stretch of the river known as the Hanford Reach is home to the last free-flowing section of the river in the U.S. As one of the largest rivers in North America, its waters support a multitude of uses that are vital to the economic and environmental well being of the region and it is particularly important in sustaining the culture of Native Americans. Cleanup actions must protect this river. (authors)« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1992-06-12
The 56-acre Muskego Sanitary Landfill site was located in the City of Muskego, Waukesha County, Wisconsin. From the 1950's to 1981, municipal waste, waste oils, paint products, and other waste were disposed of at the site. The site was separated into three disposal areas: the Old Fill Area (38 acres); the Southeast Fill Area (16 acres); and the Non-Contiguous Fill Area (4.2 acres), composed of a drum trench, north and south refuse trenches, and an L-shaped fill area, all containing waste similar to the Old Fill Area. As a result of deteriorating water quality at onsite ground water monitoring wells,more » Waste Management of Wisconsin Inc. (WMWI) and the state conducted numerous investigations that revealed elevated levels of contaminants in the ground water. Two separate areas at the site were discovered to contain buried drums and contaminated soil. The first area was located east of the Non-Contiguous Fill Area. The second area, known as the drum trench, was discovered in a portion of the Non-Contiguous Fill Area and contained 989 drums and 2,500 cubic yards of contaminated soil. The interim ROD addressed the control and remediation of the contamination sources, including landfill waste, contaminated soils, leachate, and landfill gas. The primary contaminants of concern affecting the soil and ground water were VOCs, including benzene, toluene, and xylenes; and other organics, including chlorinated ethanes, ketones, PAHs, PCBs, pesticides, phenols, and phthalates.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Soldaini, Michel
The first heading of your manuscript must be 'Introduction'. Phenix is the only remaining French fast breeder reactor after the shutdown of Superphenix (1999) and Rapsodie (1983). Phenix is located inside the Marcoule nuclear site along the Rhone river near Bagnols-sur-Ceze in southeastern France. Phenix is one of the facilities belonging the French Atomic Energy Commission (CEA) on the Marcoule site. It is a fast breeder reactor (FBR) developed at the end of the 1960's. that has been in operation since 1973 and was connected to the power grid in 1974. It is a second generation prototype developed while themore » first generation FBR, Rapsodie, was still in operation. Phenix is a 250 electrical MW power plant. During the first 20 years of operation, its main aim was to demonstrate the viability of sodium-cooled FBRs. Since the 1991 radioactive waste management act, Phenix has become an irradiation tool for the actinide transmutation program. To extend its operating life for 6 additional cycles, it was necessary to refurbish the plant; this involved major work performed from 1999 to 2003 at a total cost of about 250 M??. Today, with a realistic expectation, the final shutdown is planned for the beginning of 2009. The main objective of the Phenix dismantling project is to eliminate all the process equipment and clean all the building to remove all the radioactive zones. To reach this objective, three main hazards must be eliminated: Fuel (criticality hazard), Sodium, Radioactive equipment. The complexity of decommissioning a facility such as Phenix is increased by: - the lack of storage facility for high radioactive material, - the decision to treat all the radioactive sodium and sodium waste inside the plant, - the very high irradiation of the core structures due to the presence of cobalt alloys. On the other hand, Phenix plant is still under operating with a qualified staff and the radioactivity coming from structural activation is well known. After the final shutdown, the first operations will be conducted by the same staff under the same safety report. Another interesting fact is that the decommissioning funds project exist and are available. The CEA decided to begin the dismantling phase without waiting because after a period of decay it is not really cheaper or easier to work. This approach needs interim storage facilities not long after the final shutdown. For the low- and intermediate-level radioactive waste there are national storage centers but for the high-level wastes, each operator must manage its waste until a suitable disposal site is available. At Marcoule a new storage facility is now being designed and scheduled to begin operating after 2013-2014. After removal of the fuel and core elements, the primary sodium will be drained and eliminated by a carbonation process. To ensure biological shielding, the reference scenario calls for filling the primary vessel with water. The most radioactive structures (dia-grid and core support) will be cut up with remote tools, after which the rest of the structure will be cut up manually. Phenix contains about 1450 metric tons of sodium. The CEA initially planned to build ATENA, a new facility for all radioactive sodium waste from R and D and FBR facilities. For various reasons, but mainly to save money, the CEA decided to treat all radioactive sodium and sodium waste in the framework of the Phenix dismantling project. There are no real difficulties in the dismantling schedule because of the advanced state of development of the processes selected for the ATENA project. Because of the knowledge already obtained, the issues concern project management, waste management and human resources reduction more than technical 0014challe.« less
Waste-assimilation study of Koshkonong Creek below sewage-treatment plant at Sun Prairie, Wisconsin
Grant, R. Stephen
1976-01-01
A waste-load-assimilation study of a reach of Koshkonong Creek below the Sun Prairie, Wisconsin, sewage-treatment-plant outfall indicated that a high level of treatment would be required to meet Wisconsin water-quality standards. To maintain a minimum dissolved-oxygen concentration of 5 mg/liter during the critical summer low-flow period, 5-day carbonaceous biochemical-oxygen demand in waste discharges should not exceed 5 mg/liter and ammonium nitrogen should not exceed 1.5 mg/liter. Advanced treatment with denitrification is required because stream-reaeration coefficients are not high enough to offset deoxygenation caused by an abundance of attached biological slimes. The slimes apparently consumed dissolved oxygen at a rate of about 110 mg/liter per day at the time of the stream survey. During the critical summer low-flow period, natural stream discharge is very small compared to waste-water discharge , so benefits of dilution are insignificant. An evaluation of two proposed alternative waste-water discharge sites indicated that the present discharge site is hydraulically superior to these sites. Stream-reaeration coefficients used in the study were based on measurements using the radioactive-tracer method. (Woodard-USGS)
EM-31 RETRIEVAL KNOWLEDGE CENTER MEETING REPORT: MOBILIZE AND DISLODGE TANK WASTE HEELS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fellinger, A.
2010-02-16
The Retrieval Knowledge Center sponsored a meeting in June 2009 to review challenges and gaps to retrieval of tank waste heels. The facilitated meeting was held at the Savannah River Research Campus with personnel broadly representing tank waste retrieval knowledge at Hanford, Savannah River, Idaho, and Oak Ridge. This document captures the results of this meeting. In summary, it was agreed that the challenges to retrieval of tank waste heels fell into two broad categories: (1) mechanical heel waste retrieval methodologies and equipment and (2) understanding and manipulating the heel waste (physical, radiological, and chemical characteristics) to support retrieval optionsmore » and subsequent processing. Recent successes and lessons from deployments of the Sand and Salt Mantis vehicles as well as retrieval of C-Area tanks at Hanford were reviewed. Suggestions to address existing retrieval approaches that utilize a limited set of tools and techniques are included in this report. The meeting found that there had been very little effort to improve or integrate the multiple proven or new techniques and tools available into a menu of available methods for rapid insertion into baselines. It is recommended that focused developmental efforts continue in the two areas underway (low-level mixing evaluation and pumping slurries with large solid materials) and that projects to demonstrate new/improved tools be launched to outfit tank farm operators with the needed tools to complete tank heel retrievals effectively and efficiently. This document describes the results of a meeting held on June 3, 2009 at the Savannah River Site in South Carolina to identify technology gaps and potential technology solutions to retrieving high-level waste (HLW) heels from waste tanks within the complex of sites run by the U. S. Department of Energy (DOE). The meeting brought together personnel with extensive tank waste retrieval knowledge from DOE's four major waste sites - Hanford, Savannah River, Idaho, and Oak Ridge. The meeting was arranged by the Retrieval Knowledge Center (RKC), which is a technology development project sponsored by the Office of Technology Innovation & Development - formerly the Office of Engineering and Technology - within the DOE Office of Environmental Management (EM).« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lietzke, D.A.; Lee, S.Y.; Lambert, R.E.
1988-04-01
An intensive soil survey was conducted on the proposed Low-Level Waste Disposal Development and Demonstration Program site (LLWDDD) in Bear Creek Valley. Soils on the site were related to the underlying residuum and to the surficial colluvium and alluvium. Within any particular geologic formation, soils were subdivided based mostly on the degree of weathering, as reflected by saprolite weathering and morphologic features of the soils. Degree of weathering was related both to slope shape and gradient and to the joint-fracture system. Erosion classes were also used to make further subdivisions of any particular soil. Deep pits were dug in eachmore » of the major Conasauga Group formations (Pumpkin Valley, Rogersville, Maryville, and Nolichucky) for soil and saprolite characterization. Because of the widespread presence of alluvium and colluvium, which are potential sources of fill and final cover material, pits and trenches were dug to characterize the properties of these soils and to try to understand the past geomorphic history of the site. The results of the soil survey investigation indicated that the deeply weathered Pumpkin Valley residuum has good potential for the construction of tumuli or other types of belowground or aboveground burial of prepackaged compacted waste. 11 refs., 30 figs., 3 tabs.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Clayton, Christopher; Kothari, Vijendra; Starr, Ken
2012-02-26
The U. S. Department of Energy (DOE) methods and protocols allow evaluation of remediation and final site conditions to determine if remediated sites remain protective. Two case studies are presented that involve the Niagara Falls Storage Site (NFSS) and associated vicinity properties (VPs), which are being remediated under the Formerly Utilized Sites Remedial Action Program (FUSRAP). These properties are a part of the former Lake Ontario Ordnance Works (LOOW). In response to stakeholders concerns about whether certain remediated NFSS VPs were putting them at risk, DOE met with stakeholders and agreed to evaluate protectiveness. Documentation in the DOE records collectionmore » adequately described assessed and final radiological conditions at the completed VPs. All FUSRAP wastes at the completed sites were cleaned up to meet DOE guidelines for unrestricted use. DOE compiled the results of the investigation in a report that was released for public comment. In conducting the review of site conditions, DOE found that stakeholders were also concerned about waste from the Separations Process Research Unit (SPRU) at the Knolls Atomic Power Laboratory (KAPL) that was handled at LOOW. DOE agreed to determine if SPRU waste remained at that needed to be remediated. DOE reviewed records of waste characterization, historical handling locations and methods, and assessment and remediation data. DOE concluded that the SPRU waste was remediated on the LOOW to levels that pose no unacceptable risk and allow unrestricted use and unlimited exposure. This work confirms the following points as tenets of an effective long-term surveillance and maintenance (LTS&M) program: Stakeholder interaction must be open and transparent, and DOE must respond promptly to stakeholder concerns. DOE, as the long-term custodian, must collect and preserve site records in order to demonstrate that remediated sites pose no unacceptable risk. DOE must continue to maintain constructive relationships with the U.S. Army Corps of Engineers and state and federal regulators.« less
Arthur, Jonathan M.; Johnson, Michael J.; Mayers, C. Justin; Andraski, Brian J.
2012-11-13
This report describes micrometeorological, evapotranspiration, and soil-moisture data collected since 2006 at the Amargosa Desert Research Site adjacent to a low-level radio-active waste and hazardous chemical waste facility near Beatty, Nevada. Micrometeorological data include precipitation, solar radiation, net radiation, air temperature, relative humidity, saturated and ambient vapor pressure, wind speed and direction, barometric pressure, near-surface soil temperature, soil-heat flux, and soil-water content. Evapotranspiration (ET) data include latent-heat flux, sensible-heat flux, net radiation, soil-heat flux, soil temperature, air temperature, vapor pressure, and other principal energy-budget data. Soil-moisture data include periodic measurements of volumetric water-content at experimental sites that represent vegetated native soil, devegetated native soil, and simulated waste disposal trenches - maximum measurement depths range from 5.25 to 29.25 meters. All data are compiled in electronic spreadsheets that are included with this report.
Sasaki, Takehiro; Okubo, Satoru; Okayasu, Tomoo; Jamsran, Undarmaa; Ohkuro, Toshiya; Takeuchi, Kazuhiko
2009-03-01
The current growing body of evidence for diversity-disturbance relationships suggests that the peaked pattern predicted by the intermediate disturbance hypothesis (IDH) may not be the rule. Even if ecologists could quantify the diversity-disturbance relationship consistent with the IDH, the applicability of the IDH to land management has rarely been addressed. We examined two hypotheses related to the generality and management applicability of the IDH to Mongolian rangeland ecosystems: that the diversity-disturbance relationship varies as a function of landscape condition and that some intermediate scales of grazing can play an important role in terms of sustainable rangeland management through a grazing gradient approach. We quantified the landscape condition of each ecological site using an ordination technique and determined two types of landscape conditions: relatively benign and harsh environmental conditions. At the ecological sites characterized by relatively benign environmental conditions, diversity-disturbance relationships were generally consistent with the IDH, and maximum diversity was observed at some intermediate distance from the source of the grazing gradient. In contrast, the IDH was not supported at most (but not all) sites characterized by relatively harsh environmental conditions. The intermediate levels of grazing were generally located below the ecological threshold representing the points or zones at which disturbance should be limited to prevent drastic changes in ecological conditions, suggesting that there is little "conundrum" with regard to intermediate disturbance in the studied systems in terms of land management. We suggest that the landscape condition is one of the primary factors that cause inconsistencies in diversity-disturbance relationships. The ecological threshold can extend its utility in rangeland management because it also has the compatibility with the maintenance of species diversity. This study thus suggests that some intermediate scales of grazing and ecological thresholds are mutually supportive tools for sustainable management of Mongolian rangelands.
Striegl, Robert G.
1988-01-01
The unsaturated zone is a medium that provides pneumatic communication for the movement of gases from wastes buried in landfills to the atmosphere, biota, and groundwater. Gases in unsaturated glacial and eolian deposits near a waste-disposal trench at the low-level radioactive-waste disposal site near Sheffield, Bureau County, Illinois, were identified, and the spatial and temporal distributions of the partial pressures of those gases were determined for the period January 1984 through January 1986. Methods for the collection and analyses of the gases are described, as are geologic and hydrologic characteristics of the unsaturated zone that affect gas transport. The identified gases, which are of natural and of waste origin, include nitrogen, oxygen, and argon, carbon dioxide, methane, propane, butane, tritiated water vapor, 14carbon dioxide, and 222 radon. Concentrations of methane and 14carbon dioxide originated at the waste, as shown by partial-pressure gradients of the gases; 14carbon dioxide partial pressures exceeded natural background partial pressures by factors greater than 1 million at some locations. Variations in partial pressures of oxygen and carbon dioxide were seasonal among piezometers because of increased root and soil-microbe respiration during summer. Variations in methane and 14carbon dioxide partial pressures were apparently related to discrete releases from waste sources at unpredictable intervals of time. No greater than background partial pressures for tritiated water vapor or 222 radon were measured. (USGS)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ethan W. Brown
2001-09-01
Through the National Governors' Association (NGA) project ''Critical Issues Related to Radioactive Waste and Materials Disposition Involving DOE Facilities'' NGA brings together Governors' policy advisors, state regulators, and DOE officials to examine critical issues related to the cleanup and operation of DOE nuclear weapons and research facilities. Topics explored through this project include: Decisions involving disposal of mixed, low-level, and transuranic (TRU) waste and disposition of nuclear materials. Decisions involving DOE budget requests and their effect on environmental cleanup and compliance at DOE facilities. Strategies to treat mixed, low-level, and transuranic (TRU) waste and their effect on individual sites inmore » the complex. Changes to the FFCA site treatment plans as a result of proposals in the Department's Accelerating Cleanup: Paths to Closure plan and contractor integration analysis. Interstate waste and materials shipments. Reforms to existing RCRA and CERCLA regulations/guidance to address regulatory overlap and risks posed by DOE wastes. The overarching theme of this project is to help the Department improve coordination of its major program decisions with Governors' offices and state regulators and to ensure such decisions reflect input from these key state officials and stakeholders. This report summarizes activities conducted during the period from April 1, 2001 through June 30, 2001, under the NGA grant.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gerlach, Robin; Peyton, Brent M.; Apel, William A.
2014-01-29
Various U. S. Department of Energy (DOE) low and medium-level radioactive waste sites contain mixtures of heavy metals, radionuclides and assorted organic materials. In addition, there are numerous sites around the world that are contaminated with a mixture of organic and inorganic contaminants. In most sites, over time, water infiltrates the wastes, and releases metals, radionuclides and other contaminants causing transport into the surrounding environment. We investigated the role of fermentative microorganisms in such sites that may control metal, radionuclide and organics migration from source zones. The project was initiated based on the following overarching hypothesis: Metals, radionuclides and othermore » contaminants can be mobilized by infiltration of water into waste storage sites. Microbial communities of lignocellulose degrading and fermenting microorganisms present in the subsurface of contaminated DOE sites can significantly impact migration by directly reducing and immobilizing metals and radionuclides while degrading complex organic matter to low molecular weight organic compounds. These low molecular weight organic acids and alcohols can increase metal and radionuclide mobility by chelation (i.e., certain organic acids) or decrease mobility by stimulating respiratory metal reducing microorganisms. We demonstrated that fermentative organisms capable of affecting the fate of Cr6+, U6+ and trinitrotoluene can be isolated from organic-rich low level waste sites as well as from less organic rich subsurface environments. The mechanisms, pathways and extent of contaminant transformation depend on a variety of factors related to the type of organisms present, the aqueous chemistry as well as the geochemistry and mineralogy. This work provides observations and quantitative data across multiple scales that identify and predict the coupled effects of fermentative carbon and electron flow on the transport of radionuclides, heavy metals and organic contaminants in the subsurface; a primary concern of the DOE Environmental Remediation Science Division (ERSD) and Subsurface Geochemical Research (SBR) Program.« less