ARECIBO PALFA SURVEY AND EINSTEIN-HOME: BINARY PULSAR DISCOVERY BY VOLUNTEER COMPUTING
DOE Office of Scientific and Technical Information (OSTI.GOV)
Knispel, B.; Allen, B.; Aulbert, C.
2011-05-01
We report the discovery of the 20.7 ms binary pulsar J1952+2630, made using the distributed computing project Einstein-Home in Pulsar ALFA survey observations with the Arecibo telescope. Follow-up observations with the Arecibo telescope confirm the binary nature of the system. We obtain a circular orbital solution with an orbital period of 9.4 hr, a projected orbital radius of 2.8 lt-s, and a mass function of f = 0.15 M{sub sun} by analysis of spin period measurements. No evidence of orbital eccentricity is apparent; we set a 2{sigma} upper limit e {approx}< 1.7 x 10{sup -3}. The orbital parameters suggest amore » massive white dwarf companion with a minimum mass of 0.95 M{sub sun}, assuming a pulsar mass of 1.4 M{sub sun}. Most likely, this pulsar belongs to the rare class of intermediate-mass binary pulsars. Future timing observations will aim to determine the parameters of this system further, measure relativistic effects, and elucidate the nature of the companion star.« less
The Green Bank North Celestial Cap Pulsar Survey. III. 45 New Pulsar Timing Solutions
NASA Astrophysics Data System (ADS)
Lynch, Ryan S.; Swiggum, Joseph K.; Kondratiev, Vlad I.; Kaplan, David L.; Stovall, Kevin; Fonseca, Emmanuel; Roberts, Mallory S. E.; Levin, Lina; DeCesar, Megan E.; Cui, Bingyi; Cenko, S. Bradley; Gatkine, Pradip; Archibald, Anne M.; Banaszak, Shawn; Biwer, Christopher M.; Boyles, Jason; Chawla, Pragya; Dartez, Louis P.; Day, David; Ford, Anthony J.; Flanigan, Joseph; Hessels, Jason W. T.; Hinojosa, Jesus; Jenet, Fredrick A.; Karako-Argaman, Chen; Kaspi, Victoria M.; Leake, Sean; Lunsford, Grady; Martinez, José G.; Mata, Alberto; McLaughlin, Maura A.; Noori, Hind Al; Ransom, Scott M.; Rohr, Matthew D.; Siemens, Xavier; Spiewak, Renée; Stairs, Ingrid H.; van Leeuwen, Joeri; Walker, Arielle N.; Wells, Bradley L.
2018-06-01
We provide timing solutions for 45 radio pulsars discovered by the Robert C. Byrd Green Bank Telescope. These pulsars were found in the Green Bank North Celestial Cap pulsar survey, an all-GBT-sky survey being carried out at a frequency of 350 {MHz}. We include pulsar timing data from the Green Bank Telescope and Low Frequency Array. Our sample includes five fully recycled millisecond pulsars (MSPs, three of which are in a binary system), a new relativistic double neutron star system, an intermediate-mass binary pulsar, a mode-changing pulsar, a 138 ms pulsar with a very low magnetic field, and several nulling pulsars. We have measured two post-Keplerian parameters and thus the masses of both objects in the double neutron star system. We also report a tentative companion mass measurement via Shapiro delay in a binary MSP. Two of the MSPs can be timed with high precision and have been included in pulsar timing arrays being used to search for low-frequency gravitational waves, while a third MSP is a member of the black widow class of binaries. Proper motion is measurable in five pulsars, and we provide an estimate of their space velocity. We report on an optical counterpart to a new black widow system and provide constraints on the optical counterparts to other binary MSPs. We also present a preliminary analysis of nulling pulsars in our sample. These results demonstrate the scientific return of long timing campaigns on pulsars of all types.
Einstein@Home Discovery of 24 Pulsars in the Parkes Multi-beam Pulsar Survey
NASA Astrophysics Data System (ADS)
Knispel, B.; Eatough, R. P.; Kim, H.; Keane, E. F.; Allen, B.; Anderson, D.; Aulbert, C.; Bock, O.; Crawford, F.; Eggenstein, H.-B.; Fehrmann, H.; Hammer, D.; Kramer, M.; Lyne, A. G.; Machenschalk, B.; Miller, R. B.; Papa, M. A.; Rastawicki, D.; Sarkissian, J.; Siemens, X.; Stappers, B. W.
2013-09-01
We have conducted a new search for radio pulsars in compact binary systems in the Parkes multi-beam pulsar survey (PMPS) data, employing novel methods to remove the Doppler modulation from binary motion. This has yielded unparalleled sensitivity to pulsars in compact binaries. The required computation time of ≈17, 000 CPU core years was provided by the distributed volunteer computing project Einstein@Home, which has a sustained computing power of about 1 PFlop s-1. We discovered 24 new pulsars in our search, 18 of which were isolated pulsars, and 6 were members of binary systems. Despite the wide filterbank channels and relatively slow sampling time of the PMPS data, we found pulsars with very large ratios of dispersion measure (DM) to spin period. Among those is PSR J1748-3009, the millisecond pulsar with the highest known DM (≈420 pc cm-3). We also discovered PSR J1840-0643, which is in a binary system with an orbital period of 937 days, the fourth largest known. The new pulsar J1750-2536 likely belongs to the rare class of intermediate-mass binary pulsars. Three of the isolated pulsars show long-term nulling or intermittency in their emission, further increasing this growing family. Our discoveries demonstrate the value of distributed volunteer computing for data-driven astronomy and the importance of applying new analysis methods to extensively searched data.
Timing of millisecond pulsars in globular clusters
NASA Astrophysics Data System (ADS)
D'Amico, Nichi; Possenti, Andrea; Manchester, Dick; Johnston, Simon; Kramer, Michael; Sarkissian, John; Lyne, Andrew; Burgay, Marta; Corongiu, Alessandro; Camilo, Fernando; Bailes, Matthew; van Straten, Willem
2014-10-01
Timing of the dozen pulsars discovered by us in P303 is ensuring high quality results: (a) the peculiarities (in position or projected acceleration) of all the 5 millisecond pulsars in NGC6752 suggested the presence of non thermal dynamics in the core, perhaps due to black-holes of intermediate mass; (b) the eclipsing pulsar in NGC6397 is a stereotype for studying the late evolution of exotic binaries. We propose to continue our timing project focusing mostly on NGC6397 at 10cm, for studying the orbital secular evolution, the eclipse region, and the role played by the high energy photons released from the pulsar in the ejection of matter from the binary system.
Mildly Recycled Pulsars at High-Energies
NASA Astrophysics Data System (ADS)
Pellizzoni, A.
2011-08-01
Mildly recyled pulsars (MRP), conventionally defined as neutron star having spin period in the 20-100 ms range and surface magnetic field <1011 Gauss, probably rise from binary systems (disrupted or not) with an intermediate or an high mass companion. Despite their relatively low spin-down energies compared to the ``fully'' recycled millisecond pulsars (arising from common low mass X-ray binaries), nearby MRPs can be detected by deep X-ray observations and by timing analysis of the very long data span provided by gamma-ray space detectors. The discovery of peculiar timing and spectral properties, possibly transitional, of the MRPs can be of the utmost importance to link different classes of neutron stars and study their evolution.
Formation and Evolution of X-ray Binaries
NASA Astrophysics Data System (ADS)
Shao, Y.
2017-07-01
X-ray binaries are a class of binary systems, in which the accretor is a compact star (i.e., black hole, neutron star, or white dwarf). They are one of the most important objects in the universe, which can be used to study not only binary evolution but also accretion disks and compact stars. Statistical investigations of these binaries help to understand the formation and evolution of galaxies, and sometimes provide useful constraints on the cosmological models. The goal of this thesis is to investigate the formation and evolution processes of X-ray binaries including Be/X-ray binaries, low-mass X-ray binaries (LMXBs), ultraluminous X-ray sources (ULXs), and cataclysmic variables. In Chapter 1 we give a brief review on the basic knowledge of the binary evolution. In Chapter 2 we discuss the formation of Be stars through binary interaction. In this chapter we investigate the formation of Be stars resulting from mass transfer in binaries in the Galaxy. Using binary evolution and population synthesis calculations, we find that in Be/neutron star binaries the Be stars have a lower limit of mass ˜ 8 M⊙ if they are formed by a stable (i.e., without the occurrence of common envelope evolution) and nonconservative mass transfer. We demonstrate that the isolated Be stars may originate from both mergers of two main-sequence stars and disrupted Be binaries during the supernova explosions of the primary stars, but mergers seem to play a much more important role. Finally the fraction of Be stars produced by binary interactions in all B type stars can be as high as ˜ 13%-30% , implying that most of Be stars may result from binary interaction. In Chapter 3 we show the evolution of intermediate- and low-mass X-ray binaries (I/LMXBs) and the formation of millisecond pulsars. Comparing the calculated results with the observations of binary radio pulsars, we report the following results: (1) The allowed parameter space for forming binary pulsars in the initial orbital period-donor mass plane increases with the increasing neutron star mass. This may help to explain why some millisecond pulsars with orbital periods longer than ˜ 60 d seem to have less massive white dwarfs than expected. Alternatively, some of these wide binary pulsars may be formed through mass transfer driven by planet/brown dwarf-involved common envelope evolution; (2) Some of the pulsars in compact binaries might have evolved from intermediate-mass X-ray binaries with an anomalous magnetic braking; (3) The equilibrium spin periods of neutron stars in low-mass X-ray binaries are in general shorter than the observed spin periods of binary pulsars by more than one order of magnitude, suggesting that either the simple equilibrium spin model does not apply, or there are other mechanisms/processes spinning down the neutron stars. In Chapter 4, angular momentum loss mechanisms in the cataclysmic variables below the period gap are presented. By considering several kinds of consequential angular momentum loss mechanisms, we find that neither isotropic wind from the white dwarf nor outflow from the L1 point can explain the extra angular momentum loss rate, while an ouflow from the L2 point or a circumbinary disk can effectively extract the angular momentum provided that ˜ 15%-45% of the transferred mass is lost from the binary. A more promising mechanism is a circumbinary disk exerting a gravitational torque on the binary. In this case the mass loss fraction can be as low as ≲ 10-3. In Chapter 5 we present a study on the population of ultraluminous X-ray sources with an accreting neutron star. Most ULXs are believed to be X-ray binary systems, but previous observational and theoretical studies tend to prefer a black hole rather than a neutron star accretor. The recent discovery of 1.37 s pulsations from the ULX M82 X-2 has established its nature as a magnetized neutron star. In this chapter we model the formation history of neutron star ULXs in an M82- or Milky Way-like galaxy, by use of both binary population synthesis and detailed binary evolution calculations. We find that the birthrate is around 10-4 yr-1 for the incipient X-ray binaries in both cases. We demonstrate the distribution of the ULX population in the donor mass - orbital period plane. Our results suggest that, compared with black hole X-ray binaries, neutron star X-ray binaries may significantly contribute to the ULX population, and high/intermediate-mass X-ray binaries dominate the neutron star ULX population in M82/Milky Way-like galaxies, respectively. In Chapter 6, the population of intermediate- and low-mass X-ray binaries in the Galaxy is explored. We investigate the formation and evolutionary sequences of Galactic intermediate- and low-mass X-ray binaries by combining binary population synthesis (BPS) and detailed stellar evolutionary calculations. Using an updated BPS code we compute the evolution of massive binaries that leads to the formation of incipient I/LMXBs, and present their distribution in the initial donor mass vs. initial orbital period diagram. We then follow the evolution of I/LMXBs until the formation of binary millisecond pulsars (BMSPs). We show that during the evolution of I/LMXBs they are likely to be observed as relatively compact binaries. The resultant BMSPs have orbital periods ranging from about 1 day to a few hundred days. These features are consistent with observations of LMXBs and BMSPs. We also confirm the discrepancies between theoretical predictions and observations mentioned in the literature, that is, the theoretical average mass transfer rates of LMXBs are considerably lower than observed, and the number of BMSPs with orbital periods ˜ 0.1-1 \\unit{d} is severely underestimated. Both imply that something is missing in the modeling of LMXBs, which is likely to be related to the mechanisms of the orbital angular momentum loss. Finally in Chapter 7 we summarize our results and give the prospects for the future work.
EINSTEIN-HOME DISCOVERY OF 24 PULSARS IN THE PARKES MULTI-BEAM PULSAR SURVEY
DOE Office of Scientific and Technical Information (OSTI.GOV)
Knispel, B.; Kim, H.; Allen, B.
2013-09-10
We have conducted a new search for radio pulsars in compact binary systems in the Parkes multi-beam pulsar survey (PMPS) data, employing novel methods to remove the Doppler modulation from binary motion. This has yielded unparalleled sensitivity to pulsars in compact binaries. The required computation time of Almost-Equal-To 17, 000 CPU core years was provided by the distributed volunteer computing project Einstein-Home, which has a sustained computing power of about 1 PFlop s{sup -1}. We discovered 24 new pulsars in our search, 18 of which were isolated pulsars, and 6 were members of binary systems. Despite the wide filterbank channelsmore » and relatively slow sampling time of the PMPS data, we found pulsars with very large ratios of dispersion measure (DM) to spin period. Among those is PSR J1748-3009, the millisecond pulsar with the highest known DM ( Almost-Equal-To 420 pc cm{sup -3}). We also discovered PSR J1840-0643, which is in a binary system with an orbital period of 937 days, the fourth largest known. The new pulsar J1750-2536 likely belongs to the rare class of intermediate-mass binary pulsars. Three of the isolated pulsars show long-term nulling or intermittency in their emission, further increasing this growing family. Our discoveries demonstrate the value of distributed volunteer computing for data-driven astronomy and the importance of applying new analysis methods to extensively searched data.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Benvenuto, O. G.; De Vito, M. A.; Horvath, J. E., E-mail: adevito@fcaglp.unlp.edu.ar, E-mail: foton@iag.usp.br
We study the evolution of close binary systems formed by a normal (solar composition), intermediate-mass-donor star together with a neutron star. We consider models including irradiation feedback and evaporation. These nonstandard ingredients deeply modify the mass-transfer stages of these binaries. While models that neglect irradiation feedback undergo continuous, long-standing mass-transfer episodes, models including these effects suffer a number of cycles of mass transfer and detachment. During mass transfer, the systems should reveal themselves as low-mass X-ray binaries (LMXBs), whereas when they are detached they behave as binary radio pulsars. We show that at these stages irradiated models are in amore » Roche lobe overflow (RLOF) state or in a quasi-RLOF state. Quasi-RLOF stars have radii slightly smaller than their Roche lobes. Remarkably, these conditions are attained for an orbital period as well as donor mass values in the range corresponding to a family of binary radio pulsars known as ''redbacks''. Thus, redback companions should be quasi-RLOF stars. We show that the characteristics of the redback system PSR J1723-2837 are accounted for by these models. In each mass-transfer cycle these systems should switch from LMXB to binary radio pulsar states with a timescale of approximately one million years. However, there is recent and fast growing evidence of systems switching on far shorter, human timescales. This should be related to instabilities in the accretion disk surrounding the neutron star and/or radio ejection, still to be included in the model having the quasi-RLOF state as a general condition.« less
Timing of millisecond pulsars in globular clusters
NASA Astrophysics Data System (ADS)
D'Amico, Nichi; Possenti, Andrea; Manchester, Dick; Johnston, Simon; Kramer, Michael; Sarkissian, John; Lyne, Andrew; Burgay, Marta; Corongiu, Alessandro; Camilo, Fernando; Bailes, Matthew; van Straten, Willem
2013-10-01
Timing of the dozen pulsars discovered by us in P303 is ensuring high quality results: (a) the peculiarities (in position or projected acceleration) of all the 5 millisecond pulsars in NGC6752 suggested the presence of non thermal dynamics in the core, perhaps due to black-holes of intermediate mass; (b) the eclipsing pulsar in NGC6397 is a stereotype for studying the late evolution of exotic binaries. We propose to continue our timing project focusing mostly on NGC6752 at 20cm (in order to measure additional parameters useful to constrain the existence of a black-hole) and NGC6397 at 10cm (for studying the orbital secular evolution, the eclipse region, and the role played by the high energy photons released from the pulsar in the ejection of matter from the binary system).
Timing of millisecond pulsars in globular clusters
NASA Astrophysics Data System (ADS)
D'Amico, Nichi; Possenti, Andrea; Manchester, Dick; Johnston, Simon; Kramer, Michael; Sarkissian, John; Lyne, Andrew; Burgay, Marta; Corongiu, Alessandro; Camilo, Fernando; Bailes, Matthew; van Straten, Willem
2014-04-01
Timing of the dozen pulsars discovered by us in P303 is ensuring high quality results: (a) the peculiarities (in position or projected acceleration) of all the 5 millisecond pulsars in NGC6752 suggested the presence of non thermal dynamics in the core, perhaps due to black-holes of intermediate mass; (b) the eclipsing pulsar in NGC6397 is a stereotype for studying the late evolution of exotic binaries. We propose to continue our timing project focusing mostly on NGC6752 at 20cm (in order to measure additional parameters useful to constrain the existence of a black-hole) and NGC6397 at 10cm (for studying the orbital secular evolution, the eclipse region, and the role played by the high energy photons released from the pulsar in the ejection of matter from the binary system).
Timing of millisecond pulsars in globular clusters
NASA Astrophysics Data System (ADS)
D'Amico, Nichi; Possenti, Andrea; Manchester, Dick; Johnston, Simon; Kramer, Michael; Sarkissian, John; Lyne, Andrew; Burgay, Marta; Corongiu, Alessandro; Camilo, Fernando; Bailes, Matthew; van Straten, Willem
2011-04-01
Timing of the dozen pulsars discovered by us in P303 is ensuring high quality results: (a) the peculiarities (in position or projected acceleration) of all the 5 millisecond pulsars in NGC6752 suggested the presence of non thermal dynamics in the core, perhaps due to black-holes of intermediate mass; (b) the eclipsing pulsar in NGC6397 is a stereotype for studying the late evolution of exotic binaries. We propose to continue our timing project focusing mostly on NGC6752 at 20cm (in order to measure additional parameters useful to constrain the existence of a black-hole) and NGC6397 at 10cm (for studying the orbital secular evolution, the eclipse region, and the mechanisms leading to the ejection of matter from the binary system).
Timing of millisecond pulsars in globular clusters
NASA Astrophysics Data System (ADS)
D'Amico, Nichi; Possenti, Andrea; Manchester, Dick; Johnston, Simon; Kramer, Michael; Sarkissian, John; Lyne, Andrew; Burgay, Marta; Corongiu, Alessandro; Camilo, Fernando; Bailes, Matthew; van Straten, Willem
2012-10-01
Timing of the dozen pulsars discovered by us in P303 is ensuring high quality results: (a) the peculiarities (in position or projected acceleration) of all the 5 millisecond pulsars in NGC6752 suggested the presence of non thermal dynamics in the core, perhaps due to black-holes of intermediate mass; (b) the eclipsing pulsar in NGC6397 is a stereotype for studying the late evolution of exotic binaries. We propose to continue our timing project focusing mostly on NGC6752 at 20cm (in order to measure additional parameters useful to constrain the existence of a black-hole) and NGC6397 at 10cm (for studying the orbital secular evolution, the eclipse region, and the mechanisms leading to the ejection of matter from the binary system).
Timing of millisecond pulsars in globular clusters
NASA Astrophysics Data System (ADS)
D'Amico, Nichi; Possenti, Andrea; Manchester, Dick; Johnston, Simon; Kramer, Michael; Sarkissian, John; Lyne, Andrew; Burgay, Marta; Corongiu, Alessandro; Camilo, Fernando; Bailes, Matthew; van Straten, Willem
2012-04-01
Timing of the dozen pulsars discovered by us in P303 is ensuring high quality results: (a) the peculiarities (in position or projected acceleration) of all the 5 millisecond pulsars in NGC6752 suggested the presence of non thermal dynamics in the core, perhaps due to black-holes of intermediate mass; (b) the eclipsing pulsar in NGC6397 is a stereotype for studying the late evolution of exotic binaries. We propose to continue our timing project focusing mostly on NGC6752 at 20cm (in order to measure additional parameters useful to constrain the existence of a black-hole) and NGC6397 at 10cm (for studying the orbital secular evolution, the eclipse region, and the mechanisms leading to the ejection of matter from the binary system).
Timing of millisecond pulsars in globular clusters
NASA Astrophysics Data System (ADS)
D'Amico, Nichi; Possenti, Andrea; Manchester, Dick; Johnston, Simon; Kramer, Michael; Sarkissian, John; Lyne, Andrew; Burgay, Marta; Corongiu, Alessandro; Camilo, Fernando; Bailes, Matthew; van Straten, Willem
2011-10-01
Timing of the dozen pulsars discovered by us in P303 is ensuring high quality results: (a) the peculiarities (in position or projected acceleration) of all the 5 millisecond pulsars in NGC6752 suggested the presence of non thermal dynamics in the core, perhaps due to black-holes of intermediate mass; (b) the eclipsing pulsar in NGC6397 is a stereotype for studying the late evolution of exotic binaries. We propose to continue our timing project focusing mostly on NGC6752 at 20cm (in order to measure additional parameters useful to constrain the existence of a black-hole) and NGC6397 at 10cm (for studying the orbital secular evolution, the eclipse region, and the mechanisms leading to the ejection of matter from the binary system).
Timing of millisecond pulsars in globular clusters
NASA Astrophysics Data System (ADS)
D'Amico, Nichi; Possenti, Andrea; Manchester, Dick; Johnston, Simon; Kramer, Michael; Sarkissian, John; Lyne, Andrew; Burgay, Marta; Corongiu, Alessandro; Camilo, Fernando; Bailes, Matthew; van Straten, Willem
2013-04-01
Timing of the dozen pulsars discovered by us in P303 is ensuring high quality results: (a) the peculiarities (in position or projected acceleration) of all the 5 millisecond pulsars in NGC6752 suggested the presence of non thermal dynamics in the core, perhaps due to black-holes of intermediate mass; (b) the eclipsing pulsar in NGC6397 is a stereotype for studying the late evolution of exotic binaries. We propose to continue our timing project focusing mostly on NGC6752 at 20cm (in order to measure additional parameters useful to constrain the existence of a black-hole) and NGC6397 at 10cm (for studying the orbital secular evolution, the eclipse region, and the mechanisms leading to the ejection of matter from the binary system).
Tauris; van Den Heuvel EP; Savonije
2000-02-20
We have performed detailed numerical calculations of the nonconservative evolution of close X-ray binary systems with intermediate-mass (2.0-6.0 M middle dot in circle) donor stars and a 1.3 M middle dot in circle accreting neutron star. We calculated the thermal response of the donor star to mass loss in order to determine its stability and follow the evolution of the mass transfer. Under the assumption of the "isotropic reemission model," we demonstrate that in many cases it is possible for the binary to prevent a spiral-in and survive a highly super-Eddington mass transfer phase (1
Pulsars in binary systems: probing binary stellar evolution and general relativity.
Stairs, Ingrid H
2004-04-23
Radio pulsars in binary orbits often have short millisecond spin periods as a result of mass transfer from their companion stars. They therefore act as very precise, stable, moving clocks that allow us to investigate a large set of otherwise inaccessible astrophysical problems. The orbital parameters derived from high-precision binary pulsar timing provide constraints on binary evolution, characteristics of the binary pulsar population, and the masses of neutron stars with different mass-transfer histories. These binary systems also test gravitational theories, setting strong limits on deviations from general relativity. Surveys for new pulsars yield new binary systems that increase our understanding of all these fields and may open up whole new areas of physics, as most spectacularly evidenced by the recent discovery of an extremely relativistic double-pulsar system.
Evolution of redback radio pulsars in globular clusters
NASA Astrophysics Data System (ADS)
Benvenuto, O. G.; De Vito, M. A.; Horvath, J. E.
2017-02-01
Context. We study the evolution of close binary systems composed of a normal, intermediate mass star and a neutron star considering a chemical composition typical of that present in globular clusters (Z = 0.001). Aims: We look for similarities and differences with respect to solar composition donor stars, which we have extensively studied in the past. As a definite example, we perform an application on one of the redbacks located in a globular cluster. Methods: We performed a detailed grid of models in order to find systems that represent the so-called redback binary radio pulsar systems with donor star masses between 0.6 and 2.0 solar masses and orbital periods in the range 0.2-0.9 d. Results: We find that the evolution of these binary systems is rather similar to those corresponding to solar composition objects, allowing us to account for the occurrence of redbacks in globular clusters, as the main physical ingredient is the irradiation feedback. Redback systems are in the quasi-RLOF state, that is, almost filling their corresponding Roche lobe. During the irradiation cycle the system alternates between semi-detached and detached states. While detached the system appears as a binary millisecond pulsar, called a redback. Circumstellar material, as seen in redbacks, is left behind after the previous semi-detached phase. Conclusions: The evolution of binary radio pulsar systems considering irradiation successfully accounts for, and provides a way for, the occurrence of redback pulsars in low-metallicity environments such as globular clusters. This is the case despite possible effects of the low metal content of the donor star that could drive systems away from redback configuration.
Evolving ONe WD+He star systems to intermediate-mass binary pulsars
NASA Astrophysics Data System (ADS)
Liu, D.; Wang, B.; Chen, W.; Zuo, Z.; Han, Z.
2018-06-01
It has been suggested that accretion-induced collapse (AIC) is a non-negligible path for the formation of the observed neutron stars (NSs). An ONe white dwarf (WD) that accretes material from a He star may experience AIC process and eventually produce intermediate-mass binary pulsars (IMBPs), named as the ONe WD+He star scenario. Note that previous studies can only account for part of the observed IMBPs with short orbital periods. In this work, we investigate the evolution of about 900 ONe WD+He star binaries to explore the distribution of IMBPs. We found that the ONe WD+He star scenario could form IMBPs including pulsars with 5-340 ms spin periods and 0.75-1.38 M_{⊙} WD companions, in which the orbital periods range from 0.04 to 900 d. Compared with the 20 observed IMBPs, this scenario can cover the parameters of 13 sources in the final orbital period-WD mass plane and the Corbet diagram, most of which have short orbital periods. We found that the ONe WD+He star scenario can explain almost all the observed IMBPs with short orbital periods. This work can well match the observed parameters of PSR J1802-2124 (one of the two precisely observed IMBPs), providing a possible evolutional path for its formation. We also speculate that the compact companion of HD 49798 (a hydrogen depleted sdO6 star) may be not a NS based on this work.
Alternancia entre el estado de emisión de Rayos-X y Pulsar en Sistemas Binarios Interactuantes
NASA Astrophysics Data System (ADS)
De Vito, M. A.; Benvenuto, O. G.; Horvath, J. E.
2015-08-01
Redbacks belong to the family of binary systems in which one of the components is a pulsar. Recent observations show redbacks that have switched their state from pulsar - low mass companion (where the accretion of material over the pulsar has ceased) to low mass X-ray binary system (where emission is produced by the mass accretion on the pulsar), or inversely. The irradiation effect included in our models leads to cyclic mass transfer episodes, which allow close binary systems to switch between one state to other. We apply our results to the case of PSR J1723-2837, and discuss the need to include new ingredients in our code of binary evolution to describe the observed state transitions.
Hyperfast pulsars as the remnants of massive stars ejected from young star clusters
NASA Astrophysics Data System (ADS)
Gvaramadze, Vasilii V.; Gualandris, Alessia; Portegies Zwart, Simon
2008-04-01
Recent proper motion and parallax measurements for the pulsar PSR B1508+55 indicate a transverse velocity of ~1100kms-1, which exceeds earlier measurements for any neutron star. The spin-down characteristics of PSR B1508+55 are typical for a non-recycled pulsar, which implies that the velocity of the pulsar cannot have originated from the second supernova disruption of a massive binary system. The high velocity of PSR B1508+55 can be accounted for by assuming that it received a kick at birth or that the neutron star was accelerated after its formation in the supernova explosion. We propose an explanation for the origin of hyperfast neutron stars based on the hypothesis that they could be the remnants of a symmetric supernova explosion of a high-velocity massive star which attained its peculiar velocity (similar to that of the pulsar) in the course of a strong dynamical three- or four-body encounter in the core of dense young star cluster. To check this hypothesis, we investigated three dynamical processes involving close encounters between: (i) two hard massive binaries, (ii) a hard binary and an intermediate-mass black hole (IMBH) and (iii) a single stars and a hard binary IMBH. We find that main-sequence O-type stars cannot be ejected from young massive star clusters with peculiar velocities high enough to explain the origin of hyperfast neutron stars, but lower mass main-sequence stars or the stripped helium cores of massive stars could be accelerated to hypervelocities. Our explanation for the origin of hyperfast pulsars requires a very dense stellar environment of the order of 106- 107starspc-3. Although such high densities may exist during the core collapse of young massive star clusters, we caution that they have never been observed.
Timing of millisecond pulsars in globular clusters
NASA Astrophysics Data System (ADS)
D'Amico, Nichi; Possenti, Andrea; Manchester, Dick; Johnston, Simon; Kramer, Michael; Sarkissian, John; Lyne, Andrew; Burgay, Marta; Corongiu, Alessandro; Camilo, Fernando; Bailes, Matthew; van Straten, Willem
2010-10-01
Timing of the dozen pulsars discovered by us in P303 is ensuring high quality results: (a) the peculiarities (in position or projected acceleration) of all the 5 millisecond pulsars in NGC6752 suggested the presence of non thermal dynamics in the core, perhaps due to black-holes of intermediate mass; (b) the eclipsing pulsar in NGC6397 is a stereotype for studying the late evolution of exotic binaries. We propose to continue our timing project focusing mostly on NGC6752 at 20cm (in order to measure additional parameters useful to constrain the existence of a black-hole) and NGC6397 at 10cm (for studying the eclipse region and the orbital secular evolution).
Research in astrophysical processes
NASA Technical Reports Server (NTRS)
Ruderman, Malvin A.
1994-01-01
Work completed under this grant is summarized in the following areas:(1) radio pulsar turn on and evaporation of companions in very low mass x-ray binaries and in binary radio pulsar systems; (2) effects of magnetospheric pair production on the radiation from gamma-ray pulsars; (3) radiation transfer in the atmosphere of an illuminated companion star; (4) evaporation of millisecond pulsar companions;(5) formation of planets around pulsars; (6) gamma-ray bursts; (7) quasi-periodic oscillations in low mass x-ray binaries; (8) origin of high mass x-ray binaries, runaway OB stars, and the lower mass cutoff for core collapse supernovae; (9) dynamics of planetary atmospheres; (10) two point closure modeling of stationary, forced turbulence; (11) models for the general circulation of Saturn; and (12) compressible convection in stellar interiors.
PRS J0045-7319: A massive SMC binary
NASA Astrophysics Data System (ADS)
Bell, J. F.
1994-04-01
The existence of X-ray binary systems shows that neutron stars are found in orbit around massive stars. Before these systems enter the mass accretion phase, one would expect the neutron star might be detectable as a radio pulsar. The discovery of PSR B1259-63 by Johnston et al. (1992, Astrophys. J. Lett, 387, L37), which is in orbit around the Be star SS2883, provided the first evidence for such systems. PSR J0045-7319 was discovered in a systematic search of the Magellanic Clouds for radio pulsars by McConnell et al. (1991, Mon. Not. R. Astron. Soc., 249, 645). Its dispersion measure of 105 pc/cu cm assures its association with the Small Magellanic Cloud making it the only known pulsar in the SMC. The discovery of regular Doppler shifts of the pulse period of PSR J0045-7319 implies that the pulsar is in a highly eccentric 51-day binary orbit, making it the most luminous binary pulsar known (Kaspi et al., 1993, submitted to Astrophys. J.). The observed Keplerian orbital parameters show that the companion mass is greater the 4 solar mass. Optical observations of the field reveal a 16th magnitude, 11 solar mass, B1 main-sequence star, which we conclude is the pulsar's companion. The timing observations imply that this pulsar has not been spun up by accretion from the companion. This suggests that, like the PSR B1259-63 binary system, the PSR J0045-7319 system is a progenitor of an X-ray binary system. At periastron the pulsar approaches to within six stellar radii of the companion.
An Eccentric Binary Millisecond Pulsar in the Galactic Plane
NASA Technical Reports Server (NTRS)
Champion, David J.; Ransom, Scott M.; Lazarus, Patrick; Camilo, Fernando; Bassa, Cess; Kaspi, Victoria M.; Nice, David J.; Freire, Paulo C. C.; Stairs, Ingrid H.; vanLeeuwen, Joeri;
2008-01-01
Binary pulsar systems are superb probes of stellar and binary evolution and the physics of extreme environments. In a survey with the Arecibo telescope, we have found PSR J1903+0327, a radio pulsar with a rotational period of 2.15 milliseconds in a highly eccentric (e = 0.44) 95-day orbit around a solar mass (M.) companion. Infrared observations identify a possible main-sequence companion star. Conventional binary stellar evolution models predict neither large orbital eccentricities nor main-sequence companions around millisecond pulsars. Alternative formation scenarios involve recycling a neutron star in a globular cluster, then ejecting it into the Galactic disk, or membership in a hierarchical triple system. A relativistic analysis of timing observations of the pulsar finds its mass to be 1.74 +/- 0.04 Solar Mass, an unusually high value.
The magnetic fields, ages, and original spin periods of millisecond pulsars
NASA Technical Reports Server (NTRS)
Camilo, F.; Thorsett, S. E.; Kulkarni, S. R.
1994-01-01
Accurate determination of the spin-down rates of millisecond pulsars requires consideration of the apparent acceleration of the pulsars due to their high transverse velocities. We show that for several nearby pulsars the neglect of this effect leads to substantial errors in inferred pulsar ages and magnetic fields. Two important ramifications follow. (1) The intrinsic magnetic field strengths of all millisecond pulsars lie below 5 x 10(exp 8) G, strengthening an earlier suggestion of a 'gap' between the magnetic field strengths of millisecond pulsars and of high-mass binary pulsars such as PSR B1913+16, which are thought to have been formed by mass transfer in low-mass and high-mass X-ray binaries, respectively. This result suggests that the magnetic field strengths of recycled pulsars are related to their formation and evolution in binary systems. (2) The corrected characteristic ages of several millisecond pulsars appear to be greater than the age of the Galactic disk. We reconcile this apparent paradox by suggesting that some millisecond pulsars were born with periods close to their current periods. This conclusion has important implications for the interpretation of the cooling ages of white dwarf companions, the birthrate discrepancy between millisecond pulsars and their X-ray binary progenitors, and the possible existence of a class of weakly magnetized (B much less than 10(exp 8)G), rapidly rotating neutron stars.
Hidden slow pulsars in binaries
NASA Technical Reports Server (NTRS)
Tavani, Marco; Brookshaw, Leigh
1993-01-01
The recent discovery of the binary containing the slow pulsar PSR 1718-19 orbiting around a low-mass companion star adds new light on the characteristics of binary pulsars. The properties of the radio eclipses of PSR 1718-19 are the most striking observational characteristics of this system. The surface of the companion star produces a mass outflow which leaves only a small 'window' in orbital phase for the detection of PSR 1718-19 around 400 MHz. At this observing frequency, PSR 1718-19 is clearly observable only for about 1 hr out of the total 6.2 hr orbital period. The aim of this Letter is twofold: (1) to model the hydrodynamical behavior of the eclipsing material from the companion star of PSR 1718-19 and (2) to argue that a population of binary slow pulsars might have escaped detection in pulsar surveys carried out at 400 MHz. The possible existence of a population of partially or totally hidden slow pulsars in binaries will have a strong impact on current theories of binary evolution of neutron stars.
Stellar black holes in globular clusters
NASA Technical Reports Server (NTRS)
Kulkarni, S. R.; Hut, Piet; Mcmillan, Steve
1993-01-01
The recent discovery of large populations of millisec pulsars associated with neutron stars in globular clusters indicates that several hundred stellar black holes of about 10 solar masses each can form within a typical cluster. While, in clusters of high central density, the rapid dynamical evolution of the black-hole population leads to an ejection of nearly all holes on a short timescale, systems of intermediate density may involve a normal star's capture by one of the surviving holes to form a low-mass X-ray binary. One or more such binaries may be found in the globular clusters surrounding our galaxy.
Binary pulsar evolution: unveiled links and new species
NASA Astrophysics Data System (ADS)
Possenti, Andrea
2013-03-01
In the last years a series of blind and/or targeted pulsar searches led to almost triple the number of known binary pulsars in the galactic field with respect to a decade ago. The focus will be on few outliers, which are emerging from the average properties of the enlarged binary pulsar population. Some of them may represent the long sought missing links between two kinds of neutron star binaries, while others could represent the stereotype of new groups of binaries, resulting from an evolutionary path which is more exotic than those considered until recently. In particular, a new class of binaries, which can be dubbed Ultra Low Mass Binary Pulsars (ULMBPs), is emerging from recent data.
Birth of millisecond pulsars in globular clusters
NASA Technical Reports Server (NTRS)
Grindlay, J. E.; Bailyn, C. D.
1988-01-01
It is argued here that accretion-induced collapse of white dwarfs in binaries can form millisecond pulsars directly without requiring a precursor low-mass X-ray binary stage. Ablation of the precollapse binary companion by the millisecond pulsar's radiation field, a process invoked to explain some of the characteristics of the recently discovered eclipsing millisecond pulsar, can then yield isolated neutron stars witout requiring an additional stellar encounter.
Curious properties of the recycled pulsars and the potential of high precision timing
NASA Astrophysics Data System (ADS)
Bailes, Matthew
2010-03-01
Binary and Millisecond pulsars have a great deal to teach us about stellar evolution and are invaluable tools for tests of relativistic theories of gravity. Our understanding of these objects has been transformed by large-scale surveys that have uncovered a great deal of new objects, exquisitely timed by ever-improving instrumentation. Here we argue that there exists a fundamental relation between the spin period of a pulsar and its companion mass, and that this determines many of the observable properties of a binary pulsar. No recycled pulsars exist in which the minimum companion mass exceeds (P/10 ms) M ⊙. Furthermore, the three fastest disk millisecond pulsars are either single, or possess extremely low-mass companions ( Mc ˜ 0.02 M ⊙), consistent with this relation. Finally, the four relativistic binaries for which we have actual measurements of neutron star masses, suggest that not only are their spin periods related to the companion neutron star mass, but that the kick imparted to the system depends upon it too, leading to a correlation between orbital eccentricity and spin period. The isolation of the relativistic binary pulsars in the magnetic field-Period diagram is used to argue that this must be because the kicks imparted to proto-relativistic systems are usually small, leading to very few if any isolated runaway mildly-recycled pulsars. This calls into question the magnitude of supernova kicks in close binaries, which have been usually assumed to be similar to those imparted to the bulk of the pulsar population. Finally, we review some of the highlights of the Parkes precision timing efforts, which suggest 10 ns timing is obtainable on PSR J1909-3744 that will aid us in searching for a cosmological sources of gravitational waves.
Timing and searching millisecond pulsars in globular clusters
NASA Astrophysics Data System (ADS)
D'Amico, Nichi; Possenti, Andrea; Manchester, Dick; Johnston, Simon; Kramer, Michael; Sarkissian, John; Lyne, Andrew; Burgay, Marta; Corongiu, Alessandro; Camilo, Fernando; Bailes, Matthew; van Straten, Willem
2010-04-01
Timing the dozen pulsars discovered in P303 is ensuring high quality results: (a) the peculiarities (in position or projected acceleration) of all the 5 millisecond pulsars in NGC6752 suggested the presence of non thermal dynamics in the core, perhaps due to black-holes of intermediate mass; (b) the eclipsing pulsar in NGC6397 is a stereotype for studying the late evolution of exotic binaries. We propose to continue our timing project focusing mostly on NGC6752 at 20cm (in order to measure additional parameters useful to constrain the existence of a black-hole) and NGC6397 at 10cm (for studying the eclipse region and the orbital secular evolution). We also request time for performing observations for a new deeper than ever search for millisecond pulsars in a subset of suitable clusters. This revamped search (as well as the requested timing observations) will exploit the new back-ends (APSR and DFB4) now available at Parkes.
A State Change In The Missing Link Binary Pulsar System Psr J1023+0038
Stappers, B. W.; Archibald, A. M.; Hessels, J. W. T.; ...
2014-07-01
We present radio, X-ray, and γ-ray observations which reveal that the binary millisecond pulsar / low-mass X-ray binary transition system PSR J1023+0038 has undergone a transformation in state. Whereas until recently the system harbored a bright millisecond radio pulsar, the radio pulsations at frequencies between 300 to 5000MHz have now become undetectable. Concurrent with this radio disappearance, the γ-ray flux of the system has quintupled. We conclude that, though the radio pulsar is currently not detectable, the pulsar mechanism is still active and the pulsar wind, as well as a newly formed accretion disk, are together providing the necessary conditionsmore » to create the γ-ray increase. The system is the first example of a transient, compact, low-mass γ-ray binary and will continue to provide an exceptional test bed for better understanding the formation of millisecond pulsars as well as accretion onto neutron stars in general.« less
Formation of a 'planet' by rapid evaporation of a pulsar's companion
NASA Technical Reports Server (NTRS)
Rasio, F. A.; Shapiro, S. L.; Teukolsky, S. A.
1992-01-01
A model based on the binary configuration of the PSR1829-10 pulsar (Bailes et al., 1991) is used to show that the formation of a binary pulsar with a planet-size companion, large original separation, and small eccentricity could result from the rapid evaporation of a much more massive binary companion by the pulsar's radiation. Such an evaporation process is known to be taking place in at least two other binary pulsars: PSR1957 + 20 (Fruchter et al., 1990; Ryba and Taylor, 1991) and PSR1744 - 24A (Lyne et al., 1990). It is shown here that, about one million years ago, the companion mass and binary separation could have been comparable to those currently observed in the eclipsing binary pulsar PSR1957 + 20.
UNDERSTANDING THE EVOLUTION OF CLOSE BINARY SYSTEMS WITH RADIO PULSARS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Benvenuto, O. G.; De Vito, M. A.; Horvath, J. E., E-mail: obenvenu@fcaglp.unlp.edu.ar, E-mail: adevito@fcaglp.unlp.edu.ar, E-mail: foton@astro.iag.usp.br
We calculate the evolution of close binary systems (CBSs) formed by a neutron star (behaving as a radio pulsar) and a normal donor star, which evolve either to a helium white dwarf (HeWD) or to ultra-short orbital period systems. We consider X-ray irradiation feedback and evaporation due to radio pulsar irradiation. We show that irradiation feedback leads to cyclic mass transfer episodes, allowing CBSs to be observed in between episodes as binary radio pulsars under conditions in which standard, non-irradiated models predict the occurrence of a low-mass X-ray binary. This behavior accounts for the existence of a family of eclipsingmore » binary systems known as redbacks. We predict that redback companions should almost fill their Roche lobe, as observed in PSR J1723-2837. This state is also possible for systems evolving with larger orbital periods. Therefore, binary radio pulsars with companion star masses usually interpreted as larger than expected to produce HeWDs may also result in such quasi-Roche lobe overflow states, rather than hosting a carbon-oxygen WD. We found that CBSs with initial orbital periods of P{sub i} < 1 day evolve into redbacks. Some of them produce low-mass HeWDs, and a subgroup with shorter P{sub i} becomes black widows (BWs). Thus, BWs descend from redbacks, although not all redbacks evolve into BWs. There is mounting observational evidence favoring BW pulsars to be very massive (≳ 2 M {sub ☉}). As they should be redback descendants, redback pulsars should also be very massive, since most of the mass is transferred before this stage.« less
Binary and Millisecond Pulsars.
Lorimer, Duncan R
2008-01-01
We review the main properties, demographics and applications of binary and millisecond radio pulsars. Our knowledge of these exciting objects has greatly increased in recent years, mainly due to successful surveys which have brought the known pulsar population to over 1800. There are now 83 binary and millisecond pulsars associated with the disk of our Galaxy, and a further 140 pulsars in 26 of the Galactic globular clusters. Recent highlights include the discovery of the young relativistic binary system PSR J1906+0746, a rejuvination in globular cluster pulsar research including growing numbers of pulsars with masses in excess of 1.5 M ⊙ , a precise measurement of relativistic spin precession in the double pulsar system and a Galactic millisecond pulsar in an eccentric ( e = 0.44) orbit around an unevolved companion. Supplementary material is available for this article at 10.12942/lrr-2008-8.
1974: the discovery of the first binary pulsar
NASA Astrophysics Data System (ADS)
Damour, Thibault
2015-06-01
The 1974 discovery, by Russell A Hulse and Joseph H Taylor, of the first binary pulsar, PSR B1913+16, opened up new possibilities for the study of relativistic gravity. PSR B1913+16, as well as several other binary pulsars, provided direct observational proof that gravity propagates at the velocity of light and has a quadrupolar structure. Binary pulsars also provided accurate tests of the strong-field regime of relativistic gravity. General relativity has passed all of the binary pulsar tests with flying colors. The discovery of binary pulsars also had very important consequences for astrophysics, leading to accurate measurement of neutron star masses, improved understanding of the possible evolution scenarios for the co-evolution of binary stars, and proof of the existence of binary neutron stars emitting gravitational waves for hundreds of millions of years, before coalescing in catastrophic events radiating intense gravitational wave signals, and probably also leading to important emissions of electromagnetic radiation and neutrinos. This article reviews the history of the discovery of the first binary pulsar, and describes both its immediate impact and its longer-term effect on theoretical and experimental studies of relativistic gravity.
A Pulsar and White Dwarf in an Unexpected Orbit
NASA Astrophysics Data System (ADS)
Kohler, Susanna
2016-11-01
Astronomers have discovered a binary system consisting of a low-mass white dwarf and a millisecond pulsar but its eccentric orbit defies all expectations of how such binaries form.Observed orbital periods and binary eccentricities for binary millisecond pulsars. PSR J2234+0511 is the furthest right of the green stars that mark the five known eccentric systems. [Antoniadis et al. 2016]Unusual EccentricityIt would take a low-mass (0.4 solar masses) white dwarf over 100 billion years to form from the evolution of a single star. Since this is longer than the age of the universe, we believe that these lightweights are instead products of binary-star evolution and indeed, we observe many of these stars to still be in binary systems.But the binary evolution that can create a low-mass white dwarf includes a period of mass transfer, in which efficient tidal dissipation damps the systems orbital eccentricity. Because of this, we would expect all systems containing low-mass white dwarfs to have circular orbits.In the past, our observations of low-mass white dwarfmillisecond pulsar binaries have all been consistent with this expectation. But a new detection has thrown a wrench in the works: the unambiguous identification of a low-mass white dwarf thats in an eccentric (e=0.13) orbit with the millisecond pulsar PSR J2234+0511. How could this system have formed?Eliminating Formation ModelsLed by John Antoniadis (Dunlap Institute at University of Toronto), a team of scientists has used newly obtained optical photometry (from the Sloan Digital Sky Survey) and spectroscopy (from the Very Large Telescope in Chile) of the white dwarf to confirm the identification of this system.Antoniadis and collaborators then use measurements of the bodies masses (0.28 and 1.4 solar masses for the white dwarf and pulsar, respectively) and velocities, and constraints on the white dwarfs temperature, radius and surface gravity, to address three proposed models for the formation of this system.The 3D motion of the pulsar (black solid lines; current position marked with diamond) in our galaxy over the past 1.5 Gyr. This motion is typical for low-mass X-ray binary descendants, favoring a binary-evolution model over a 3-body-interaction model. [Antoniadis et al. 2016]In the first model, the eccentric binary was created via adynamic three-body formation channel. This possibility is deemed unlikely, as the white-dwarf properties and all the kinematic properties of the system point to normal binary evolution.In the secondmodel, the binary system gains its high eccentricity after mass transfer ends, when the pulsar progenitor experiences a spontaneous phase transition. The authors explore two options for this: one in which the neutron star implodes into a strange-quark star, and the other in which an over-massive white dwarf suffers a delayed collapse into a neutron star. Both cases are deemed unlikely, because the mass inferred for the pulsar progenitor is not consistent with either model.In the third model, the system forms a circumbinary disk fueled by material escaping the proto-white dwarf. After mass transfer has ended, interactions between the binary and its disk gradually increase the eccentricity of the system, pumping it up to what we observe today. All of the properties of the system measured by Antoniadis and collaborators are thus far consistent with this model.Further observations of this system and systems like it (several others have been detected, though not yet confirmed) will help determine whether binary evolution combined with interactions with a disk can indeed explain the formation of this unexpectedly eccentricsystem.CitationJohn Antoniadis et al 2016 ApJ 830 36. doi:10.3847/0004-637X/830/1/36
Swings between rotation and accretion power in a binary millisecond pulsar.
Papitto, A; Ferrigno, C; Bozzo, E; Rea, N; Pavan, L; Burderi, L; Burgay, M; Campana, S; Di Salvo, T; Falanga, M; Filipović, M D; Freire, P C C; Hessels, J W T; Possenti, A; Ransom, S M; Riggio, A; Romano, P; Sarkissian, J M; Stairs, I H; Stella, L; Torres, D F; Wieringa, M H; Wong, G F
2013-09-26
It is thought that neutron stars in low-mass binary systems can accrete matter and angular momentum from the companion star and be spun-up to millisecond rotational periods. During the accretion stage, the system is called a low-mass X-ray binary, and bright X-ray emission is observed. When the rate of mass transfer decreases in the later evolutionary stages, these binaries host a radio millisecond pulsar whose emission is powered by the neutron star's rotating magnetic field. This evolutionary model is supported by the detection of millisecond X-ray pulsations from several accreting neutron stars and also by the evidence for a past accretion disc in a rotation-powered millisecond pulsar. It has been proposed that a rotation-powered pulsar may temporarily switch on during periods of low mass inflow in some such systems. Only indirect evidence for this transition has hitherto been observed. Here we report observations of accretion-powered, millisecond X-ray pulsations from a neutron star previously seen as a rotation-powered radio pulsar. Within a few days after a month-long X-ray outburst, radio pulses were again detected. This not only shows the evolutionary link between accretion and rotation-powered millisecond pulsars, but also that some systems can swing between the two states on very short timescales.
On The Origin Of Hyper-Fast Pulsars
NASA Astrophysics Data System (ADS)
Gvaramadze, V. V.
2006-08-01
Recent proper motion and parallax measurements for the pulsar PSR B1508+55 gave the highest (transverse) velocity (~1100 km/s) ever measured for a neutron star (Chatterjee et al. 2005). The spin-down characteristics of PSR B1508+55 (typical of non-recycled pulsars) imply that the high velocity of this pulsar cannot be solely due to disruption of a tight massive binary system. A possible way to account for the high velocity of PSR B1508+55 is to assume that at least a part of this velocity is due to a natal or post-natal kick (Chatterjee et al. 2005). We propose an alternative explanation for the origin of hyper-fast pulsars. We suggest that PSR B1508+55 could be the remnant of a (symmetric) supernova explosion of the helium core of a massive star expelled at high velocity from the dense core of a young massive stellar cluster by an intermediate-mass (binary) black hole. The maximum peculiar velocity of the helium core is limited by the parabolic velocity on its surface and could be as large as ~2000 km/s. Thus, one can account not only for the high velocity measured for PSR B1508+55, but also for the even higher velocity of ~1600 km/s inferred for the pulsar PSR B2224+65 (Guitar; Chatterjee & Cordes 2004) on the basis of its proper motion and the dispersion measure distance estimate.
NASA Astrophysics Data System (ADS)
Breton, R. P.; Roberts, M. S. E.; Ransom, S. M.; Kaspi, V. M.; Durant, M.; Bergeron, P.; Faulkner, A. J.
2007-06-01
PSR J1744-3922 is a binary pulsar exhibiting highly variable pulsed radio emission. We report on a statistical multifrequency study of the pulsed radio flux variability which suggests that this phenomenon is extrinsic to the pulsar and possibly tied to the companion, although not strongly correlated with orbital phase. The pulsar has an unusual combination of characteristics compared to typical recycled pulsars: a long spin period (172 ms); a relatively high magnetic field strength (1.7×1010 G); a very circular, compact orbit of 4.6 hr; and a low-mass companion (0.08 Msolar). These spin and orbital properties are likely inconsistent with standard evolutionary models. We find similarities between the properties of the PSR J1744-3922 system and those of several other known binary pulsar systems, motivating the identification of a new class of binary pulsars. We suggest that this new class could result from: a standard accretion scenario of a magnetar or a high magnetic field pulsar; common envelope evolution with a low-mass star and a neutron star, similar to what is expected for ultracompact X-ray binaries; or accretion induced collapse of a white dwarf. We also report the detection of a possible K'=19.30(15) infrared counterpart at the position of the pulsar, which is relatively bright if the companion is a helium white dwarf at the nominal distance, and discuss its implications for the pulsar's companion and evolutionary history.
THE TIMING OF NINE GLOBULAR CLUSTER PULSARS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lynch, Ryan S.; Freire, Paulo C. C.; Ransom, Scott M.
2012-02-01
We have used the Robert C. Byrd Green Bank Telescope to time nine previously known pulsars without published timing solutions in the globular clusters (GCs) M62, NGC 6544, and NGC 6624. We have full timing solutions that measure the spin, astrometric, and (where applicable) binary parameters for six of these pulsars. The remaining three pulsars (reported here for the first time) were not detected enough to establish solutions. We also report our timing solutions for five pulsars with previously published solutions, and find good agreement with other authors, except for PSR J1701-3006B in M62. Gas in this system is probablymore » responsible for the discrepancy in orbital parameters, and we have been able to measure a change in the orbital period over the course of our observations. Among the pulsars with new solutions we find several binary pulsars with very low mass companions (members of the so-called 'black widow' class) and we are able to place constraints on the mass-to-light ratio in two clusters. We confirm that one of the pulsars in NGC 6624 is indeed a member of the rare class of non-recycled pulsars found in GCs. We have also measured the orbital precession and Shapiro delay for a relativistic binary in NGC 6544. If we assume that the orbital precession can be described entirely by general relativity, which is likely, we are able to measure the total system mass (2.57190(73) M{sub Sun }) and companion mass (1.2064(20) M{sub Sun }), from which we derive the orbital inclination (sin i = 0.9956(14)) and the pulsar mass (1.3655(21) M{sub Sun }), the most precise such measurement ever obtained for a millisecond pulsar. The companion is the most massive known around a fully recycled pulsar.« less
How I Learned to Stop Worrying and Love Eclipsing Binaries
NASA Astrophysics Data System (ADS)
Moe, Maxwell Cassady
Relatively massive B-type stars with closely orbiting stellar companions can evolve to produce Type Ia supernovae, X-ray binaries, millisecond pulsars, mergers of neutron stars, gamma ray bursts, and sources of gravitational waves. However, the formation mechanism, intrinsic frequency, and evolutionary processes of B-type binaries are poorly understood. As of 2012, the binary statistics of massive stars had not been measured at low metallicities, extreme mass ratios, or intermediate orbital periods. This thesis utilizes large data sets of eclipsing binaries to measure the physical properties of B-type binaries in these previously unexplored portions of the parameter space. The updated binary statistics provide invaluable insight into the formation of massive stars and binaries as well as reliable initial conditions for population synthesis studies of binary star evolution. We first compare the properties of B-type eclipsing binaries in our Milky Way Galaxy and the nearby Magellanic Cloud Galaxies. We model the eclipsing binary light curves and perform detailed Monte Carlo simulations to recover the intrinsic properties and distributions of the close binary population. We find the frequency, period distribution, and mass-ratio distribution of close B-type binaries do not significantly depend on metallicity or environment. These results indicate the formation of massive binaries are relatively insensitive to their chemical abundances or immediate surroundings. Second, we search for low-mass eclipsing companions to massive B-type stars in the Large Magellanic Cloud Galaxy. In addition to finding such extreme mass-ratio binaries, we serendipitously discover a new class of eclipsing binaries. Each system comprises a massive B-type star that is fully formed and a nascent low-mass companion that is still contracting toward its normal phase of evolution. The large low-mass secondaries discernibly reflect much of the light they intercept from the hot B-type stars, thereby producing sinusoidal variations in perceived brightness as they orbit. These nascent eclipsing binaries are embedded in the hearts of star-forming emission nebulae, and therefore provide a unique snapshot into the formation and evolution of massive binaries and stellar nurseries. We next examine a large sample of B-type eclipsing binaries with intermediate orbital periods. To achieve such a task, we develop an automated pipeline to classify the eclipsing binaries, measure their physical properties from the observed light curves, and recover the intrinsic binary statistics by correcting for selection effects. We find the population of massive binaries at intermediate separations differ from those orbiting in close proximity. Close massive binaries favor small eccentricities and have correlated component masses, demonstrating they coevolved via competitive accretion during their formation in the circumbinary disk. Meanwhile, B-type binaries at slightly wider separations are born with large eccentricities and are weighted toward extreme mass ratios, indicating the components formed relatively independently and subsequently evolved to their current configurations via dynamical interactions. By using eclipsing binaries as accurate age indicators, we also reveal that the binary orbital eccentricities and the line-of-sight dust extinctions are anticorrelated with respect to time. These empirical relations provide robust constraints for tidal evolution in massive binaries and the evolution of the dust content in their surrounding environments. Finally, we compile observations of early-type binaries identified via spectroscopy, eclipses, long-baseline interferometry, adaptive optics, lucky imaging, high-contrast photometry, and common proper motion. We combine the samples from the various surveys and correct for their respective selection effects to determine a comprehensive nature of the intrinsic binary statistics of massive stars. We find the probability distributions of primary mass, secondary mass, orbital period, and orbital eccentricity are all interrelated. These updated multiplicity statistics imply a greater frequency of low-mass X-ray binaries, millisecond pulsars, and Type Ia supernovae than previously predicted.
Nature and evolution of the eclipsing millisecond binary pulsar PSR1957 + 20
NASA Technical Reports Server (NTRS)
Kluzniak, W.; Ruderman, M.; Shaham, J.; Tavani, M.
1988-01-01
A model in which a millisecond pulsar may be able to evaporate a very light companion by a particular component of its energetic radiation is applied to the recently discovered 1.6-ms pulsar PSR1957 + 20. Pulsar turn-on in the very low-mass X-ray binary follows a stage of mass transfer dominated by an evaporative wind from the surface of the companion. The wind is driven by a large MeV gamma-ray flux powered by an accretion dynamo. That source of radiation ceases when it is replaced by that from the millisecond pulsar, which has been spun up by accretion.
Timing and searching millisecond pulsars in globular clusters
NASA Astrophysics Data System (ADS)
D'Amico, Nichi; Possenti, Andrea; Manchester, Dick; Johnston, Simon; Kramer, Michael; Sarkissian, John; Lyne, Andrew; Burgay, Marta; Corongiu, Alessandro; Camilo, Fernando; Bailes, Matthew
2009-10-01
Timing the dozen pulsars discovered in P303 is ensuring high quality results: (a) the peculiarities (in position or projected acceleration) of all the 5 millisecond pulsars in NGC6752 suggested the presence of non thermal dynamics in the core, perhaps due to black-holes of intermediate mass; (b) the eclipsing pulsar in NGC6397 is a stereotype for studying the late evolution of exotic binaries. We propose to continue our timing project focusing mostly on NGC6752 at 20cm (in order to measure additional parameters useful to constrain the existence of a black-hole) and NGC6397 at 10cm (for studying the eclipse region and the orbital secular evolution). We also request time for performing pilot observations for a new deeper than ever search for millisecond pulsars in a subset of suitable clusters. This revamped search (as well as the requested timing observations) will exploit the new back-ends (APSR and DFB4) now available at Parkes.
Neutron stars and millisecond pulsars from accretion-induced collapse in globular clusters
NASA Technical Reports Server (NTRS)
Bailyn, Charles D.; Grindlay, Jonathan E.
1990-01-01
This paper examines the limits on the number of millisecond pulsars which could be formed in globular clusters by the generally accepted scenario (in which a neutron star is created by the supernova of an initially massive star and subsequently captures a companion to form a low-mass X-ray binary which eventually becomes a millisecond pulsar). It is found that, while the number of observed low-mass X-ray binaries can be adequately explained in this way, the reasonable assumption that the pulsar luminosity function in clusters extends below the current observational limits down to the luminosity of the faintest millisecond pulsars in the field suggests a cluster population of millisecond pulsars which is substantially larger than the standard model can produce. Alleviating this problem by postulating much shorter lifetimes for the X-ray binaries requires massive star populations sufficiently large that the mass loss resulting from their evolution would be likely to unbind the cluster. It is argued that neutron star formation in globular clusters by accretion-induced collapse of white dwarfs may resolve the discrepancy in birthrates.
EVOLUTION OF TRANSIENT LOW-MASS X-RAY BINARIES TO REDBACK MILLISECOND PULSARS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jia, Kun; Li, Xiang-Dong, E-mail: lixd@nju.edu.cn
2015-11-20
Redback millisecond pulsars (MSPs; hereafter redbacks) are a subpopulation of eclipsing MSPs in close binaries. The formation processes of these systems are not clear. The three pulsars showing transitions between rotation- and accretion-powered states belong to both redbacks and transient low-mass X-ray binaries (LMXBs), suggesting a possible evolutionary link between them. Through binary evolution calculations, we show that the accretion disks in almost all LMXBs are subject to the thermal-viscous instability during certain evolutionary stages, and the parameter space for the disk instability covers the distribution of known redbacks in the orbital period—companion mass plane. We accordingly suggest that themore » abrupt reduction of the mass accretion rate during quiescence of transient LMXBs provides a plausible way to switch on the pulsar activity, leading to the formation of redbacks, if the neutron star has been spun up to be an energetic MSP. We investigate the evolution of redbacks, taking into account the evaporation feedback, and discuss its possible influence on the formation of black widow MSPs.« less
Inferring the Composition of Super-Jupiter Mass Companions of Pulsars with Radio Line Spectroscopy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ray, Alak; Loeb, Abraham, E-mail: akr@tifr.res.in, E-mail: aloeb@cfa.harvard.edu
We propose using radio line spectroscopy to detect molecular absorption lines (such as OH at 1.6–1.7 GHz) before and after the total eclipse of black widow and other short orbital period binary pulsars with low-mass companions. The companion in such a binary may be ablated away by energetic particles and high-energy radiation produced by the pulsar wind. The observations will probe the eclipsing wind being ablated by the pulsar and constrain the nature of the companion and its surroundings. Maser emission from the interstellar medium stimulated by a pulsar beam might also be detected from the intrabinary medium. The shortmore » temporal resolution allowed by the millisecond pulsars can probe this medium with the high angular resolution of the pulsar beam.« less
Spin-down of radio millisecond pulsars at genesis.
Tauris, Thomas M
2012-02-03
Millisecond pulsars are old neutron stars that have been spun up to high rotational frequencies via accretion of mass from a binary companion star. An important issue for understanding the physics of the early spin evolution of millisecond pulsars is the impact of the expanding magnetosphere during the terminal stages of the mass-transfer process. Here, I report binary stellar evolution calculations that show that the braking torque acting on a neutron star, when the companion star decouples from its Roche lobe, is able to dissipate >50% of the rotational energy of the pulsar. This effect may explain the apparent difference in observed spin distributions between x-ray and radio millisecond pulsars and help account for the noticeable age discrepancy with their young white dwarf companions.
A novel mechanism for creating double pulsars
NASA Technical Reports Server (NTRS)
Sigurdsson, Steinn; Hernquist, Lars
1992-01-01
Simulations of encounters between pairs of hard binaries, each containing a neutron star and a main-sequence star, reveal a new formation mechanism for double pulsars in dense cores of globular clusters. In many cases, the two normal stars are disrupted to form a common envelope around the pair of neutron stars, both of which will be spun up to become millisecond pulsars. We predict that a new class of pulsars, double millisecond pulsars, will be discovered in the cores of dense globular clusters. The genesis proceeds through a short-lived double-core common envelope phase, with the envelope ejected in a fast wind. It is possible that the progenitor may also undergo a double X-ray binary phase. Any circular, short-period double pulsar found in the galaxy would necessarily come from disrupted disk clusters, unlike Hulse-Taylor class pulsars or low-mass X-ray binaries which may be ejected from clusters or formed in the galaxy.
Studies of Binary Pulsar Evolution Through Hubble Space Telescope Imaging of White Dwarf Companions
NASA Astrophysics Data System (ADS)
Lundgren, S. C.; Foster, R. S.; Camilo, F.
1995-12-01
In observations of six binary millisecond pulsars with the Hubble Space Telescope, we have discovered white dwarf companions to PSRs J0034-0534, J1022+1001, and J1713+0747 and improved photometry on PSRs J1640+2224 and J2145-0750. The companion to PSR J2019+2425 was not detected down to m_I=25.4. For the five companions detected, effective temperatures were estimated for the colors measured. Two of the white dwarfs, J0034-0534 and J1713+0747, are among the coolest and oldest known. Using distance estimates to the pulsars, the absolute luminosities were determined. Constrains on the masses and cooling times were obtained from the luminosities and temperatures. The results for each pulsar were related to expectations based on models for white dwarf cooling, Roche lobe overflow in the preceding low-mass X-ray binary phase, and mass accretion rate/neutron star spin period relations. Precision pulsar astrophysics at the Naval Research Laboratory is supported by the Office of Naval Research. SL is supported by a post-doctoral fellowship through the National Research Council. FC acknowledges support from NSF grant AST 91-15103 and a fellowship under the auspices of the European Commission.
Fate of very low-mass secondaries in accreting binaries and the 1.5-ms pulsar
NASA Technical Reports Server (NTRS)
Ruderman, M. A.; Shaham, J.
1983-01-01
It is shown analytically that the canonical stability postulate for low-mass binaries can be inaccurate when the secondary component mass is less than 0.02 solar mass. The adjustable evolutionary parameter h is demonstrated to have a value (in terms of the mass flow effects) of 2/3, less than which catastrophic instability and tidal disruption of the secondary might occur. The disrupted secondary would be reduced to a remnant significantly smaller in mass than the earth, and not be observable visually. Additionally, close passage by another star could accelerate or initiate the process. The model is applicable to the pulsar binary PSR1937+214, and is noted not to conflict with spin-up theories.
FORMATION AND EVOLUTION OF GALACTIC INTERMEDIATE/LOW-MASS X-RAY BINARIES
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shao, Yong; Li, Xiang-Dong, E-mail: lixd@nju.edu.cn
2015-08-10
We investigate the formation and evolutionary sequences of Galactic intermediate- and low-mass X-ray binaries (I/LMXBs) by combining binary population synthesis (BPS) and detailed stellar evolutionary calculations. Using an updated BPS code we compute the evolution of massive binaries that leads to the formation of incipient I/LMXBs and present their distribution in the initial donor mass versus initial orbital period diagram. We then follow the evolution of the I/LMXBs until the formation of binary millisecond pulsars (BMSPs). We find that the birthrate of the I/LMXB population is in the range of 9 × 10{sup −6}–3.4 × 10{sup −5} yr{sup −1}, compatiblemore » with that of BMSPs that are thought to descend from I/LMXBs. We show that during the evolution of I/LMXBs they are likely to be observed as relatively compact binaries with orbital periods ≲1 day and donor masses ≲0.3M{sub ⊙}. The resultant BMSPs have orbital periods ranging from less than 1 day to a few hundred days. These features are consistent with observations of LMXBs and BMSPs. We also confirm the discrepancies between theoretical predictions and observations mentioned in the literature, that is, the theoretical average mass transfer rates (∼10{sup −10} M{sub ⊙} yr{sup −1}) of LMXBs are considerably lower than observed, and the number of BMSPs with orbital periods ∼0.1–10 days is severely underestimated. These discrepancies imply that something is missing in the modeling of LMXBs, which is likely to be related to the mechanisms of the orbital angular momentum loss.« less
Identifying the donor star of the most extreme ULX pulsar
NASA Astrophysics Data System (ADS)
Heida, Marianne
2017-08-01
Ultraluminous X-ray sources (ULXs) were once among the most promising candidates for long sought after intermediate-mass black holes, owing to their high X-ray luminosities (>10^39 erg/s) and off-nuclear positions. NGC 5907 ULX-1 was a prime example, and since it regularly reaches 10^41 erg/s it was thought to harbour a black hole with a mass of at least 500 solar masses. But in an astonishing discovery, the source was found to exhibit pulsations in the X-rays on second-timescales, revealing it to be a pulsar powered by accretion onto a neutron star with only 1.4 solar masses. This discovery challenges every known theory of accretion onto a compact object, which in this object exceeds the Eddington limit by a factor of 500. It requires us to imagine extreme departures from known accretion theory and/or binary evolution scenarios. The fuel source should be a massive companion star in order to sustain the required mass accretion rate, however X-ray timing favors a low-mass star. With the ability to detect a massive star, a short HST/WFC3 NIR observation would solve this mystery. A detection of a supergiant donor would open the path to future dynamical mass measurements with JWST, while a non-detection would prove that this extreme ULX pulsar contains a low-mass donor star, forcing us to consider new evolutionary formation channels.
NASA Astrophysics Data System (ADS)
Yukita, Mihoko; Tzanavaris, Panayiotis; Corbet, Robin; Ptak, Andrew; Hornschemeier, Ann; Pottschmidt, Katja; Ballhausen, Ralf; Enoto, Teruaki; Antoniou, Vallia; Lehmer, Bret; Maccarone, Thomas J.; Wik, Daniel; Williams, Ben; Zezas, Andreas
2018-01-01
Recent NuSTAR-Swift observations revealed that a single resolved X-ray source, Swift J0042.6+4112, with Lx of a few times 1038 erg/s dominates the hard X-ray emission from the Andromeda galaxy. HST-based stellar population synthesis modeling combined with the 0.5-50 keV spectral shape suggests that this might be an X-ray pulsar with an intermediate- (or low-) mass donor. Here we further explore the alternative scenario of a symbiotic or ultracompact X-ray binary, based on long-term variability from Swift observations between 2005 and 2016. We find that the soft (0.3-8.0 keV) X-ray flux varies within a factor of 4 but does not exhibit transient behavior. Its power spectrum suggests a 6.1-day period. Additionally, we find a strong 3s-period candidate from both NuSTAR and XMM observations taken in 2017. If interpreted as an orbital and spin period respectively, the source's temporal behavior would not support either the symbiotic or the ultracompact X-ray binary scenario. Rather, it is more consistent with an accreting pulsar with a higher mass donor.
Timing Measurements and Their Implications for Four Binary Millisecond Pulsars
NASA Astrophysics Data System (ADS)
Bell, J. F.; Bailes, M.; Manchester, R. N.; Lyne, A. G.; Camilo, F.; Sandhu, J. S.
1997-04-01
We present timing observations of four millisecond pulsars, using data obtained over three years at the Australia Telescope National Facility (ATNF) Parkes and Nuffield Radio Astronomy Laboratory (NRAL) Jodrell Bank radio telescopes. Astrometric, spin and binary parameters are updated, and substantially improved for three pulsars, PSRs J0613-0200, J1045-4509 and J1643-1224. We have measured the time variation of the projected semimajor axis of the PSR J0437-4715 orbit due to its proper motion, and use it to constrain the inclination of the orbit and the mass of the companion. Some evidence is found for changes in the dispersion measures of PSRs J1045-4509 and J1643-1224. Limits are placed on the existence of planetary mass companions, ruling out companions with masses and orbits similar to the terrestrial planets of the Solar system for eight pulsars.
Properties of the observed recycle radio pulsars
NASA Astrophysics Data System (ADS)
Johnston, Simon
1994-04-01
Recent searches for pulsars have been highly successful in discovering recycle and binary pulsars, and we now know of approximately 25 recycled pulsars in the Galaxy and approximately 30 in globular cluster systems. These pulsars fall into four classes; those with high-mass stellar companions, with neutron star companions, with low-mass companions, and those whose evolutionary history has been affected by a companion since lost. There are two pulsars known to have high-mass stellar companions. Both systems contain approximately 10 solar mass B-star companions and have high eccentricities (e approximately 0.85). PSR B1259-63 has a spin period of 47 ms and an orbital period in excess of three years. In constrast, PSR J0045-7319 has a spin period close to 1 s and an orbital period of only 50 days. These systems originated from a binary system containing two massive stars. The supernova explosion (SN) creates the pulsar and is also responsible for the observed high eccentricity. There are five pulsars thought to have neutron star companions. All these systems have orbital eccentricities in excess of 0.2, and they fall into two classes. The first class contain the pulsars formed after the first SN, and which have been spun-up to approximately 50 ms periods during the giant phase of their companion star. This also reduces the orbital peirod to 0.3 day and the second SN induces the high eccentricity. The pulsars observed in the second class were born after the second SN and thus have periods more typical of the bulk of pulsars (greater than 250 ms). The bulk of the recycled pulsars have low-mass (probably white dwarf) companions. In general, these pulsars have very fast spin-rates (the 'millisecond' pulsars) and large apparent ages. The observed eccentricities are extremely small (less than 10-5). These pulsars are re-born as millisecond pulsars after accreting matter and angular momentum from their companion stars in their giant phase. The orbit is circularized during the accretion phase and, because the creation of the white dwarf is a non-violent event, the orbit remains circular.
Millisecond radio pulsars in globular clusters
NASA Technical Reports Server (NTRS)
Verbunt, Frank; Lewin, Walter H. G.; Vanparadijs, Jan
1989-01-01
It is shown that the number of millisecond radio pulsars, in globular clusters, should be larger than 100, applying the standard scenario that all the pulsars descend from low-mass X-ray binaries. Moreover, most of the pulsars are located in a small number of clusters. The prediction that Teran 5 and Liller 1 contain at least about a dozen millisecond radio pulsars each is made. The observations of millisecond radio pulsars in globular clusters to date, in particular the discovery of two millisecond radio pulsars in 47 Tuc, are in agreement with the standard scenario, in which the neutron star is spun up during the mass transfer phase.
Retrograde Accretion Discs in High-Mass Be/X-Ray Binaries
NASA Technical Reports Server (NTRS)
Christodoulou, D. M.; Laycock, S. G. T.; Kazanas, D.
2017-01-01
We have compiled a comprehensive library of all X-ray observations of Magellanic pulsars carried out by XMM-Newton, Chandra and RXTE in the period 1997-2014. In this work, we use the data from 53 high-mass Be/X-ray binaries in the Small Magellanic Cloud to demonstrate that the distribution of spin-period derivatives versus spin periods of spinning-down pulsars is not at all different from that of the accreting spinning-up pulsars. The inescapable conclusion is that the up and down samples were drawn from the same continuous parent population; therefore, Be/X-ray pulsars that are spinning down over periods spanning 18 yr are, in fact, accreting from retrograde discs. The presence of prograde and retrograde discs in roughly equal numbers supports a new evolutionary scenario for Be/X-ray pulsars in their spin period-period derivative diagram.
Evolution of vaporizing pulsars
NASA Technical Reports Server (NTRS)
Mccormick, P.
1994-01-01
We construct evolutional scenarios for LMXB's using a simplified stellar model. We discuss the origin and evolution of short-period, low mass binary pulsars with evaporating companions. We suggest that these systems descend from low-mass X-ray binaries and that angular momentum loss mainly due to evaporative wind drives their evolution. We derive limits on the energy and angular momentum carried away by the wind based on the observed low eccentricity. In our model the companion remains near contact, and its quasiadiabatic expansion causes the binary to expand. Short-term oscillations of the orbital period may occur if the Roche-lobe overflow forms an evaporating disk.
Low-mass X-ray binary evolution and the origin of millisecond pulsars
NASA Technical Reports Server (NTRS)
Frank, Juhan; King, Andrew R.; Lasota, Jean-Pierre
1992-01-01
The evolution of low-mass X-ray binaries (LMXBs) is considered. It is shown that X-ray irradiation of the companion stars causes these systems to undergo episodes of rapid mass transfer followed by detached phases. The systems are visible as bright X-ray binaries only for a short part of each cycle, so that their space density must be considerably larger than previously estimated. This removes the difficulty in regarding LMXBs as the progenitors of low-mass binary pulsars. The low-accretion-rate phase of the cycle with the soft X-ray transients is identified. It is shown that 3 hr is likely to be the minimum orbital period for LMXBs with main-sequence companions and it is suggested that the evolutionary endpoint for many LMXBs may be systems which are the sites of gamma-ray bursts.
A massive pulsar in a compact relativistic binary.
Antoniadis, John; Freire, Paulo C C; Wex, Norbert; Tauris, Thomas M; Lynch, Ryan S; van Kerkwijk, Marten H; Kramer, Michael; Bassa, Cees; Dhillon, Vik S; Driebe, Thomas; Hessels, Jason W T; Kaspi, Victoria M; Kondratiev, Vladislav I; Langer, Norbert; Marsh, Thomas R; McLaughlin, Maura A; Pennucci, Timothy T; Ransom, Scott M; Stairs, Ingrid H; van Leeuwen, Joeri; Verbiest, Joris P W; Whelan, David G
2013-04-26
Many physically motivated extensions to general relativity (GR) predict substantial deviations in the properties of spacetime surrounding massive neutron stars. We report the measurement of a 2.01 ± 0.04 solar mass (M⊙) pulsar in a 2.46-hour orbit with a 0.172 ± 0.003 M⊙ white dwarf. The high pulsar mass and the compact orbit make this system a sensitive laboratory of a previously untested strong-field gravity regime. Thus far, the observed orbital decay agrees with GR, supporting its validity even for the extreme conditions present in the system. The resulting constraints on deviations support the use of GR-based templates for ground-based gravitational wave detectors. Additionally, the system strengthens recent constraints on the properties of dense matter and provides insight to binary stellar astrophysics and pulsar recycling.
Multi-periodic pulsations of a stripped red-giant star in an eclipsing binary system.
Maxted, Pierre F L; Serenelli, Aldo M; Miglio, Andrea; Marsh, Thomas R; Heber, Ulrich; Dhillon, Vikram S; Littlefair, Stuart; Copperwheat, Chris; Smalley, Barry; Breedt, Elmé; Schaffenroth, Veronika
2013-06-27
Low-mass white-dwarf stars are the remnants of disrupted red-giant stars in binary millisecond pulsars and other exotic binary star systems. Some low-mass white dwarfs cool rapidly, whereas others stay bright for millions of years because of stable fusion in thick surface hydrogen layers. This dichotomy is not well understood, so the potential use of low-mass white dwarfs as independent clocks with which to test the spin-down ages of pulsars or as probes of the extreme environments in which low-mass white dwarfs form cannot fully be exploited. Here we report precise mass and radius measurements for the precursor to a low-mass white dwarf. We find that only models in which this disrupted red-giant star has a thick hydrogen envelope can match the strong constraints provided by our data. Very cool low-mass white dwarfs must therefore have lost their thick hydrogen envelopes by irradiation from pulsar companions or by episodes of unstable hydrogen fusion (shell flashes). We also find that this low-mass white-dwarf precursor is a type of pulsating star not hitherto seen. The observed pulsation frequencies are sensitive to internal processes that determine whether this star will undergo shell flashes.
NASA Astrophysics Data System (ADS)
Freire, Paulo; Wex, Norbert
In this talk, we present a re-parameterization of the Shapiro delay as observed in the timing of radio pulses of binary pulsars. We express the Shapiro delay as a sum of harmonics of the orbital period of the system, and use the harmonic coefficients as the main parameters of a much improved description of the effect. This includes a superior description of the constraints on the masses and orbital inclination introduced by a measurement of the Shapiro delay. In some cases (which we discuss) this leads to dramatically improved parametric tests of general relativity with binary pulsars.
NASA Technical Reports Server (NTRS)
Applegate, James H.; Shaham, Jacob
1994-01-01
Recent observations indicate that the eclipsing pulsar binary PSR B1957+20 undergoes alternating epochs of orbital period increase and decrease. We apply a model developed to explain orbital period changes of alternating sign in other binaries to the PSR B1957+20 system and find that it fits the pulsars observations well. The novel feature of the PSR B1957+20 system is that the energy flow in the companion needed to power the orbital period change mechanism can be supplied by tidal dissipation, making the companion the first identified tidally powered star. The flow of energy in the companion drives magnetic activity, which underlies the observed orbital period variations. The magnetic activity and the wind driven by the pulsar irradiation results in a torque on the spin of the companion. This torque holds the companion out of synchronous rotation, causing tidal dissipation of energy. We propose that the progenitor had a approximately 2 hr orbital period and a companion mass of 0.1-0.2 solar mass, and the system is evolving to longer orbital periods by mass and angular momentum loss on a timescale of 10(exp 8) yr.
NASA Astrophysics Data System (ADS)
van den Eijnden, J.; Degenaar, N.; Russell, T. D.; Miller-Jones, J. C. A.; Wijnands, R.; Miller, J. M.; King, A. L.; Rupen, M. P.
2018-01-01
Her X-1 is an accreting neutron star (NS) in an intermediate-mass X-ray binary. Like low-mass X-ray binaries (LMXBs), it accretes via Roche lobe overflow, but similar to many high-mass X-ray binaries containing a NS; Her X-1 has a strong magnetic field and slow spin. Here, we present the discovery of radio emission from Her X-1 with the Very Large Array. During the radio observation, the central X-ray source was partially obscured by a warped disc. We measure a radio flux density of 38.7 ± 4.8 μJy at 9 GHz but cannot constrain the spectral shape. We discuss possible origins of the radio emission, and conclude that coherent emission, a stellar wind, shocks and a propeller outflow are all unlikely explanations. A jet, as seen in LMXBs, is consistent with the observed radio properties. We consider the implications of the presence of a jet in Her X-1 on jet formation mechanisms and on the launching of jets by NSs with strong magnetic fields.
EXTraS discovery of a 1.2-s X-ray pulsar in M31
NASA Astrophysics Data System (ADS)
Esposito, P.; Israel, G.; Belfiore, A.; Novara, G.; Sidoli, L.; Rodriguez Castillo, G.; De Luca, A.; Tiengo, A.; Haberl, F.; Salvaterra, R.
2017-10-01
A systematic search for periodic signals in the XMM-Newton's EPIC archive carried out within the EXTraS project resulted in the discovery of a 1.2-s flux modulation in 3XMM J004301.4+413017. It is the first accreting neutron star in M31 for which the spin period has been detected. Besides this distinction, 3XMM J0043 proved to be an interesting system. Doppler shifts of the spin modulation revealed an orbital motion with period of 1.27 d and the analysis of optical data shows that, while the source is likely associated to a globular cluster, a counterpart with V ˜ 22 outside the cluster cannot be excluded. The emission of the pulsar appears rather hard (most data are described by a power law with photon index <1) and, assuming the distance to M31, the 0.3-10 keV luminosity was variable, from ˜3×10^{37} to 2×10^{38} erg/s. Based on this, we discuss two main possible scenarios for 3X J0043: a peculiar low-mass X-ray binary, perhaps similar to 4U 1822-37 or 4U 1626-67, or an intermediate-mass X-ray binary akin Her X-1.
PSR J1755-2550: a young radio pulsar with a massive, compact companion
NASA Astrophysics Data System (ADS)
Ng, C.; Kruckow, M. U.; Tauris, T. M.; Lyne, A. G.; Freire, P. C. C.; Ridolfi, A.; Caiazzo, I.; Heyl, J.; Kramer, M.; Cameron, A. D.; Champion, D. J.; Stappers, B.
2018-06-01
Radio pulsars found in binary systems with short orbital periods are usually fast spinning as a consequence of recycling via mass transfer from their companion stars; this process is also thought to decrease the magnetic field of the neutron star being recycled. Here, we report on timing observations of the recently discovered binary PSR J1755-2550 and find that this pulsar is an exception: with a characteristic age of 2.1 Myr, it is relatively young; furthermore, with a spin period of 315 ms and a surface magnetic field strength at its poles of 0.88 × 1012 G, the pulsar shows no sign of having been recycled. Based on its timing and orbital characteristics, the pulsar either has a massive white dwarf (WD) or a neutron star (NS) companion. To distinguish between these two cases, we searched radio observations for a potential recycled pulsar companion and analysed archival optical data for a potential WD companion. Neither work returned conclusive detections. We apply population synthesis modelling and find that both solutions are roughly equally probable. Our population synthesis also predicts a minimum mass of 0.90 M⊙ for the companion star to PSR J1755-2550 and we simulate the systemic runaway velocities for the resulting WDNS systems which may merge and possibly produce Ca-rich supernovae. Whether PSR J1755-2550 hosts a WD or a NS companion star, it is certainly a member of a rare subpopulation of binary radio pulsars.
The Green Bank Northern Celestial Cap Pulsar Survey. II. The Discovery and Timing of 10 Pulsars
NASA Astrophysics Data System (ADS)
Kawash, A. M.; McLaughlin, M. A.; Kaplan, D. L.; DeCesar, M. E.; Levin, L.; Lorimer, D. R.; Lynch, R. S.; Stovall, K.; Swiggum, J. K.; Fonseca, E.; Archibald, A. M.; Banaszak, S.; Biwer, C. M.; Boyles, J.; Cui, B.; Dartez, L. P.; Day, D.; Ernst, S.; Ford, A. J.; Flanigan, J.; Heatherly, S. A.; Hessels, J. W. T.; Hinojosa, J.; Jenet, F. A.; Karako-Argaman, C.; Kaspi, V. M.; Kondratiev, V. I.; Leake, S.; Lunsford, G.; Martinez, J. G.; Mata, A.; Matheny, T. D.; Mcewen, A. E.; Mingyar, M. G.; Orsini, A. L.; Ransom, S. M.; Roberts, M. S. E.; Rohr, M. D.; Siemens, X.; Spiewak, R.; Stairs, I. H.; van Leeuwen, J.; Walker, A. N.; Wells, B. L.
2018-04-01
We present timing solutions for 10 pulsars discovered in 350 MHz searches with the Green Bank Telescope. Nine of these were discovered in the Green Bank Northern Celestial Cap survey and one was discovered by students in the Pulsar Search Collaboratory program during an analysis of drift-scan data. Following the discovery and confirmation with the Green Bank Telescope, timing has yielded phase-connected solutions with high-precision measurements of rotational and astrometric parameters. Eight of the pulsars are slow and isolated, including PSR J0930‑2301, a pulsar with a nulling fraction lower limit of ∼30% and a nulling timescale of seconds to minutes. This pulsar also shows evidence of mode changing. The remaining two pulsars have undergone recycling, accreting material from binary companions, resulting in higher spin frequencies. PSR J0557‑2948 is an isolated, 44 ms pulsar that has been partially recycled and is likely a former member of a binary system that was disrupted by a second supernova. The paucity of such so-called “disrupted binary pulsars” (DRPs) compared to double neutron star (DNS) binaries can be used to test current evolutionary scenarios, especially the kicks imparted on the neutron stars in the second supernova. There is some evidence that DRPs have larger space velocities, which could explain their small numbers. PSR J1806+2819 is a 15 ms pulsar in a 44-day orbit with a low-mass white dwarf companion. We did not detect the companion in archival optical data, indicating that it must be older than 1200 Myr.
Einstein@Home Discovery of a PALFA Millisecond Pulsar in an Eccentric Binary Orbit
NASA Astrophysics Data System (ADS)
Knispel, B.; Lyne, A. G.; Stappers, B. W.; Freire, P. C. C.; Lazarus, P.; Allen, B.; Aulbert, C.; Bock, O.; Bogdanov, S.; Brazier, A.; Camilo, F.; Cardoso, F.; Chatterjee, S.; Cordes, J. M.; Crawford, F.; Deneva, J. S.; Eggenstein, H.-B.; Fehrmann, H.; Ferdman, R.; Hessels, J. W. T.; Jenet, F. A.; Karako-Argaman, C.; Kaspi, V. M.; van Leeuwen, J.; Lorimer, D. R.; Lynch, R.; Machenschalk, B.; Madsen, E.; McLaughlin, M. A.; Patel, C.; Ransom, S. M.; Scholz, P.; Siemens, X.; Spitler, L. G.; Stairs, I. H.; Stovall, K.; Swiggum, J. K.; Venkataraman, A.; Wharton, R. S.; Zhu, W. W.
2015-06-01
We report the discovery of the millisecond pulsar (MSP) PSR J1950+2414 (P = 4.3 ms) in a binary system with an eccentric (e = 0.08) 22 day orbit in Pulsar Arecibo L-band Feed Array survey observations with the Arecibo telescope. Its companion star has a median mass of 0.3 M⊙ and is most likely a white dwarf (WD). Fully recycled MSPs like this one are thought to be old neutron stars spun-up by mass transfer from a companion star. This process should circularize the orbit, as is observed for the vast majority of binary MSPs, which predominantly have orbital eccentricities e < 0.001. However, four recently discovered binary MSPs have orbits with 0. 027 < e < 0.44; PSR J1950+2414 is the fifth such system to be discovered. The upper limits for its intrinsic spin period derivative and inferred surface magnetic field strength are comparable to those of the general MSP population. The large eccentricities are incompatible with the predictions of the standard recycling scenario: something unusual happened during their evolution. Proposed scenarios are (a) initial evolution of the pulsar in a triple system which became dynamically unstable, (b) origin in an exchange encounter in an environment with high stellar density, (c) rotationally delayed accretion-induced collapse of a super-Chandrasekhar WD, and (d) dynamical interaction of the binary with a circumbinary disk. We compare the properties of all five known eccentric MSPs with the predictions of these formation channels. Future measurements of the masses and proper motion might allow us to firmly exclude some of the proposed formation scenarios.
PSR J1740-3052: a pulsar with a massive companion
NASA Astrophysics Data System (ADS)
Stairs, I. H.; Manchester, R. N.; Lyne, A. G.; Kaspi, V. M.; Camilo, F.; Bell, J. F.; D'Amico, N.; Kramer, M.; Crawford, F.; Morris, D. J.; Possenti, A.; McKay, N. P. F.; Lumsden, S. L.; Tacconi-Garman, L. E.; Cannon, R. D.; Hambly, N. C.; Wood, P. R.
2001-08-01
We report on the discovery of a binary pulsar, PSR J1740-3052, during the Parkes multibeam survey. Timing observations of the 570-ms pulsar at Jodrell Bank and Parkes show that it is young, with a characteristic age of 350kyr, and is in a 231-d, highly eccentric orbit with a companion whose mass exceeds 11Msolar. An accurate position for the pulsar was obtained using the Australia Telescope Compact Array. Near-infrared 2.2-μm observations made with the telescopes at the Siding Spring observatory reveal a late-type star coincident with the pulsar position. However, we do not believe that this star is the companion of the pulsar, because a typical star of this spectral type and required mass would extend beyond the orbit of the pulsar. Furthermore, the measured advance of periastron of the pulsar suggests a more compact companion, for example, a main-sequence star with radius only a few times that of the Sun. Such a companion is also more consistent with the small dispersion measure variations seen near periastron. Although we cannot conclusively rule out a black hole companion, we believe that the companion is probably an early B star, making the system similar to the binary PSR J0045-7319.
NASA Astrophysics Data System (ADS)
Knispel, Benjamin
2011-07-01
Neutron stars are the endpoints of stellar evolution and one of the most compact forms of matter in the universe. They can be observed as radio pulsars and are promising sources for the emission of continuous gravitational waves. Discovering new radio pulsars in tight binary orbits offers the opportunity to conduct very high precision tests of General Relativity and to further our understanding of neutron star structure and matter at super-nuclear densities. The direct detection of gravitational waves would validate Einstein's theory of Relativity and open a new window to the universe by offering a novel astronomical tool. This thesis addresses both of these scientific fields: the first fully coherent search for radio pulsars in tight, circular orbits has been planned, set up and conducted in the course of this thesis. Two unusual radio pulsars, one of them in a binary system, have been discovered. The other half of this thesis is concerned with the simulation of the Galactic neutron star population to predict their emission of continuous gravitational waves. First realistic statistical upper limits on the strongest continuous gravitational-wave signal and detection predictions for realistic all-sky blind searches have been obtained. The data from a large-scale pulsar survey with the 305-m Arecibo radio telescope were searched for signals from radio pulsars in binary orbits. The massive amount of computational work was done on hundreds of thousands of computers volunteered by members of the general public through the distributed computing project Einstein@Home. The newly developed analysis pipeline searched for pulsar spin frequencies below 250 Hz and for orbital periods as short as 11 min. The structure of the search pipeline consisting of data preparation, data analysis, result post-processing, and set-up of the pipeline components is presented in detail. The first radio pulsar, discovered with this search, PSR J2007+2722, is an isolated radio pulsar, likely from a double neutron star system disrupted by the second supernova. We present discovery and initial characterisation using observations from five of the largest radio telescopes worldwide. Only a dozen similar systems were previously known. The second discovered radio pulsar, PSR J1952+2630, is in a 9.4-hr orbit with most likely a massive white dwarf of at least 0.95 M⊙. We characterise its orbit by analysis of the apparent spin period changes. This pulsar most likely belongs to the very rare class of intermediate-mass binary pulsars, from which only five systems were previously known. It is a promising target for the future measurement of relativistic effects. In the second half of this thesis, the emission of continuous gravitational waves from a Galactic population of neutron stars is studied. For the first time, realistic estimates of the statistical upper limit of the expected gravitational wave signal are obtained, improving previous estimates by about a factor of six. The simulation is used to obtain for the first time detectability predictions for these objects with ground based gravitational wave detectors and realistic blind searches. It is also shown how to improve possible searches by maximising the number of detections for a fixed amount of computation cycles.
Discovery of a Highly Relativistic Double Neutron Star Binary
NASA Astrophysics Data System (ADS)
Chatterjee, Shami; Stovall, Kevin; PALFA Collaboration, Paul Demorest, Nihan Pol
2018-01-01
We report the discovery of a double neutron star (DNS) binary system, PSR J1946+2052, in Arecibo L-Band Feed Array Pulsar Survey (PALFA) observations. PSR J1946+2052 is a 17-ms pulsar in a 1.88-hour, eccentric (e = 0.06) orbit with a 1.2 solar mass companion. We have localized the pulsar to a precision of 0.09 arcseconds using a new phase binning mode at the Jansky Very Large Array. The improved position has enabled a measurement of the pulsar spin period derivative of 9E-19 s/s; the low inferred magnetic field strength at the surface of 4E+9 Gauss indicates that the pulsar has been recycled. Among all known DNS systems, PSR J1946+2052 has the shortest orbital period, and currently radiates ~13% of a solar luminosity in gravitational wave power. Its estimated time to merger is only 45.5 MYr, the shortest known, and at that time it will display the largest spin effects of any such system discovered to date. We have also measured the advance of periastron passage for this system, 25.6 +/- 0.3 degrees per year, resulting in a total system mass measurement of 2.50 +/- 0.04 solar masses.
PSR J0751+1807: un ajuste a los parámetros característicos del sistema binario
NASA Astrophysics Data System (ADS)
De Vito, M. A.; Benvenuto, O. G.
PSR J0751+1807 is a millisecond pulsar belonging to a binary system with a low mass white dwarf companion. This system belongs to the group of recycled pulsars by mass transfer from a close companion, accelerating the pulsar rotation in this process. The orbital period for the system is of 6 hours. In this work we show our fit to the characteristic parameters of the system presented by Nice et al. (2005) FULL TEXT IN SPANISH
Discovery of the Orbit of the X-ray pulsar OAO 1657-415
NASA Technical Reports Server (NTRS)
Chakrabarty, Deepto; Grunsfeld, John M.; Prince, Thomas A.; Bildsten, Lars; Finger, Mark H.; Wilson, Robert B.; Fishman, Gerald J.; Meegan, Charles A.; Paciesas, William S.
1993-01-01
Timing observations of the 38 s accreting X-ray pulsar OAO 1657-415 made with the BATSE large-area detectors on the Compton Gamma Ray Observatory have revealed a binary orbit with an X-ray eclipse by the stellar companion. From the pulsar mass function fx(M) = 11.7 +/- 0.2 solar masses and the measured eclipse half-angle theta(e) = 29.7 +/- 1.3 deg, we infer that the stellar companion is a supergiant of spectral class B0-B6. If the companion can be identified and its orbital velocity measured, the neutron star mass can be constrained. Both intrinsic spin-up and spin-down of the pulsar were measured during our observation.
THE NuSTAR Hard X-Ray Survey of the Norma Arm Region
NASA Technical Reports Server (NTRS)
Fornasini, Francesca M.; Tomsick, John A.; Hong, Jaesub; Gotthelf, Eric V.; Bauer, Franz; Rahoui, Farid; Stern, Daniel K.; Bodaghee, Arash; Chiu, Jeng-Lun; Clavel, Maïca;
2017-01-01
We present a catalog of hard X-ray sources in a square-degree region surveyed by the Nuclear Spectroscopic Telescope Array (NuSTAR) in the direction of the Norma spiral arm. This survey has a total exposure time of 1.7 Ms, and the typical and maximum exposure depths are 50 ks and 1 Ms, respectively. In the area of deepest coverage, sensitivity limits of 5 x 10(exp -14) and 4 x 10(exp -14) ergs/s/sq cm in the 3-10 and 10-20 keV bands, respectively, are reached. Twenty-eight sources are firmly detected, and 10 are detected with low significance; 8 of the 38 sources are expected to be active galactic nuclei. The three brightest sources were previously identified as a low-mass X-ray binary, high-mass X-ray binary, and pulsar wind nebula. Based on their X-ray properties and multiwavelength counterparts, we identify the likely nature of the other sources as two colliding wind binaries, three pulsar wind nebulae, a black hole binary, and a plurality of cataclysmic variables (CVs). The CV candidates in the Norma region have plasma temperatures of approx. 10-20 keV, consistent with the Galactic ridge X-ray emission spectrum but lower than the temperatures of CVs near the Galactic center. This temperature difference may indicate that the Norma region has a lower fraction of intermediate polars relative to other types of CVs compared to the Galactic center. The NuSTAR logN-logS distribution in the 10-20keV band is consistent with the distribution measured by Chandra at 2-10 keV if the average source spectrum is assumed to be a thermal model with kT approx. =15 keV, as observed for the CV candidates.
The NuSTAR Hard X-Ray Survey of the Norma Arm Region
Fornasini, Francesca M.; Tomsick, John A.; Hong, JaeSub; ...
2017-04-06
We present a catalog of hard X-ray sources in a square-degree region surveyed by NuSTAR in the direction of the Norma spiral arm. This survey has a total exposure time of 1.7 Ms, and typical and maximum exposure depths of 50 ks and 1 Ms, respectively. In the area of deepest coverage, sensitivity limits of 5 x 10 -14 and 4 x 10-14 erg s -1 cm -2 in the 3–10 and 10–20 keV bands, respectively, are reached. Twenty-eight sources are firmly detected and ten are detected with low significance; eight of the 38 sources are expected to be activemore » galactic nuclei. The three brightest sources were previously identified as a low-mass X-ray binary, high-mass X-ray binary, and pulsar wind nebula. Based on their X-ray properties and multi-wavelength counterparts, we identify the likely nature of the other sources as two colliding wind binaries, three pulsar wind nebulae, a black hole binary, and a plurality of cataclysmic variables (CVs). The CV candidates in the Norma region have plasma temperatures of ≈10–20 keV, consistent with the Galactic Ridge X-ray emission spectrum but lower than temperatures of CVs near the Galactic Center. This temperature difference may indicate that the Norma region has a lower fraction of intermediate polars relative to other types of CVs compared to the Galactic Center. The NuSTAR logN-logS distribution in the 10–20 keV band is consistent with the distribution measured by Chandra at 2–10 keV if the average source spectrum is assumed to be a thermal model with kT ≈ 15 keV, as observed for the CV candidates.« less
The superslow pulsation X-ray pulsars in high mass X-ray binaries
NASA Astrophysics Data System (ADS)
Wang, Wei
2013-03-01
There exists a special class of X-ray pulsars that exhibit very slow pulsation of P spin > 1000 s in the high mass X-ray binaries (HMXBs). We have studied the temporal and spectral properties of these superslow pulsation neutron star binaries in hard X-ray bands with INTEGRAL observations. Long-term monitoring observations find spin period evolution of two sources: spin-down trend for 4U 2206+54 (P spin ~ 5560 s with Ṗ spin ~ 4.9 × 10-7 s s-1) and long-term spin-up trend for 2S 0114+65 (P spin ~ 9600 s with Ṗ spin ~ -1 × 10-6 s s-1) in the last 20 years. A Be X-ray transient, SXP 1062 (P spin ~ 1062 s), also showed a fast spin-down rate of Ṗ spin ~ 3 × 10-6 s s-1 during an outburst. These superslow pulsation neutron stars cannot be produced in the standard X-ray binary evolution model unless the neutron star has a much stronger surface magnetic field (B > 1014 G). The physical origin of the superslow spin period is still unclear. The possible origin and evolution channels of the superslow pulsation X-ray pulsars are discussed. Superslow pulsation X-ray pulsars could be younger X-ray binary systems, still in the fast evolution phase preceding the final equilibrium state. Alternatively, they could be a new class of neutron star system - accreting magnetars.
Ng, C.; Bailes, M.; Bates, S. D.; ...
2014-02-15
Here, we report on the discovery of four millisecond pulsars (MSPs) in the High Time Resolution Universe (HTRU) pulsar survey being conducted at the Parkes 64 m radio telescope. All four MSPs are in binary systems and are likely to have white dwarf companions. Additionally, we present updated timing solutions for 12 previously published HTRU MSPs, revealing new observational parameters such as five proper motion measurements and significant temporal dispersion measure variations in PSR J1017-7156. We discuss the case of PSR J1801-3210, which shows no significant period derivativemore » $$\\dot{P}$$ after four years of timing data. Our best-fitting solution shows a $$\\dot{P}$$ of the order of 10 -23, an extremely small number compared to that of a typical MSP. But, it is likely that the pulsar lies beyond the Galactic Centre, and an unremarkable intrinsic $$\\dot{P}$$ is reduced to close to zero by the Galactic potential acceleration. Furthermore, we highlight the potential to employ PSR J1801-3210 in the strong equivalence principle test due to its wide and circular orbit. In a broader comparison with the known MSP population, we suggest a correlation between higher mass functions and the presence of eclipses in ‘very low mass binary pulsars’, implying that eclipses are observed in systems with high orbital inclinations. We also suggest that the distribution of the total mass of binary systems is inversely related to the Galactic height distribution. Finally, we report on the first detection of PSRs J1543-5149 and J1811-2404 as gamma-ray pulsars.« less
Einstein@Home DISCOVERY OF A PALFA MILLISECOND PULSAR IN AN ECCENTRIC BINARY ORBIT
DOE Office of Scientific and Technical Information (OSTI.GOV)
Knispel, B.; Allen, B.; Lyne, A. G.
2015-06-10
We report the discovery of the millisecond pulsar (MSP) PSR J1950+2414 (P = 4.3 ms) in a binary system with an eccentric (e = 0.08) 22 day orbit in Pulsar Arecibo L-band Feed Array survey observations with the Arecibo telescope. Its companion star has a median mass of 0.3 M{sub ⊙} and is most likely a white dwarf (WD). Fully recycled MSPs like this one are thought to be old neutron stars spun-up by mass transfer from a companion star. This process should circularize the orbit, as is observed for the vast majority of binary MSPs, which predominantly have orbitalmore » eccentricities e < 0.001. However, four recently discovered binary MSPs have orbits with 0. 027 < e < 0.44; PSR J1950+2414 is the fifth such system to be discovered. The upper limits for its intrinsic spin period derivative and inferred surface magnetic field strength are comparable to those of the general MSP population. The large eccentricities are incompatible with the predictions of the standard recycling scenario: something unusual happened during their evolution. Proposed scenarios are (a) initial evolution of the pulsar in a triple system which became dynamically unstable, (b) origin in an exchange encounter in an environment with high stellar density, (c) rotationally delayed accretion-induced collapse of a super-Chandrasekhar WD, and (d) dynamical interaction of the binary with a circumbinary disk. We compare the properties of all five known eccentric MSPs with the predictions of these formation channels. Future measurements of the masses and proper motion might allow us to firmly exclude some of the proposed formation scenarios.« less
Binary Pulsar PSR J1518+4904: Orbital Precession and Mass Estimates
NASA Astrophysics Data System (ADS)
Nice, D. J.; Sayer, R. W.; Taylor, J. H.
1995-03-01
We have made timing observations of newly discovered binary pulsar PSR J1518+4904 over a span of five months using the 140ft telescope of NRAO/Green Bank at frequencies between 320 and 800 MHz. Typical precision of a pulse time of arrival is 15 mu s in a 1 hour integration (using a 40 MHz passband at 370 or 575 MHz). The timing data were reduced using standard techniques, and they fit well to a standard model of neutron star and orbital behavior. The pulse period is 40.934 ms, and the period derivative is at most 10(-18) , implying an age of at least 600 Myr and a surface magnetic field no stronger than 6*E(9) Gauss. The pulsar is in an 8.6 day, eccentric (e=0.249) orbit, with semi-major axis 0.040 AU. Orbital precession of 0.0110+/-0.0008 deg/yr (2sigma uncertainty) has been detected. This implies a total system mass of 2.6+/-0.3 M_sun. The masses of the pulsar and companion (quite possibly another neutron star) cannot be fully separated. However, the system mass, combined with other orbital parameters, implies a pulsar mass of at most 1.9 M_sun and a companion mass of at least 0.9 M_sun. Precision of the precession measurement increases at least linearly with the length of the data series, so further observations of this system will provide a better measure of the total system mass. It is unlikely that the estimates of the individual component masses will improve.
Binary pulsars as probes of a Galactic dark matter disk
NASA Astrophysics Data System (ADS)
Caputo, Andrea; Zavala, Jesús; Blas, Diego
2018-03-01
As a binary pulsar moves through a wind of dark matter particles, the resulting dynamical friction modifies the binary's orbit. We study this effect for the double disk dark matter (DDDM) scenario, where a fraction of the dark matter is dissipative and settles into a thin disk. For binaries within the dark disk, this effect is enhanced due to the higher dark matter density and lower velocity dispersion of the dark disk, and due to its co-rotation with the baryonic disk. We estimate the effect and compare it with observations for two different limits in the Knudsen number (Kn). First, in the case where DDDM is effectively collisionless within the characteristic scale of the binary (Kn ≫ 1) and ignoring the possible interaction between the pair of dark matter wakes. Second, in the fully collisional case (Kn ≪ 1), where a fluid description can be adopted and the interaction of the pair of wakes is taken into account. We find that the change in the orbital period is of the same order of magnitude in both limits. A comparison with observations reveals good prospects to probe currently allowed DDDM models with timing data from binary pulsars in the near future. We finally comment on the possibility of extending the analysis to the intermediate (rarefied gas) case with Kn ∼ 1.
Intra-binary Shock Heating of Black Widow Companions
NASA Astrophysics Data System (ADS)
Romani, Roger W.; Sanchez, Nicolas
2016-09-01
The low-mass companions of evaporating binary pulsars (black widows and similar) are strongly heated on the side facing the pulsar. However, in high-quality photometric and spectroscopic data, the heating pattern does not match that expected for direct pulsar illumination. Here we explore a model where the pulsar power is intercepted by an intra-binary shock (IBS) before heating the low-mass companion. We develop a simple analytic model and implement it in the popular “ICARUS” light curve code. The model is parameterized by the wind momentum ratio β and the companion wind speed {f}v{v}{{orb}}, and assumes that the reprocessed pulsar wind emits prompt particles or radiation to heat the companion surface. We illustrate an interesting range of light curve asymmetries controlled by these parameters. The code also computes the IBS synchrotron emission pattern, and thus can model black widow X-ray light curves. As a test, we apply the results to the high-quality asymmetric optical light curves of PSR J2215+5135; the resulting fit gives a substantial improvement upon direct heating models and produces an X-ray light curve consistent with that seen. The IBS model parameters imply that at the present loss rate, the companion evaporation has a characteristic timescale of {τ }{{evap}}≈ 150 Myr. Still, the model is not fully satisfactory, indicating that there are additional unmodeled physical effects.
X-ray observations of black widow pulsars
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gentile, P. A.; McLaughlin, M. A.; Roberts, M. S. E.
2014-03-10
We describe the first X-ray observations of five short orbital period (P{sub B} < 1 day), γ-ray emitting, binary millisecond pulsars (MSPs). Four of these—PSRs J0023+0923, J1124–3653, J1810+1744, and J2256–1024—are 'black-widow' pulsars, with degenerate companions of mass <<0.1 M {sub ☉}, three of which exhibit radio eclipses. The fifth source, PSR J2215+5135, is an eclipsing 'redback' with a near Roche-lobe filling ∼0.2 solar mass non-degenerate companion. Data were taken using the Chandra X-Ray Observatory and covered a full binary orbit for each pulsar. Two pulsars, PSRs J2215+5135 and J2256–1024, show significant orbital variability while PSR J1124–3653 shows marginal orbital variability.more » The lightcurves for these three pulsars have X-ray flux minima coinciding with the phases of the radio eclipses. This phenomenon is consistent with an intrabinary shock emission interpretation for the X-rays. The other two pulsars, PSRs J0023+0923 and J1810+1744, are fainter and do not demonstrate variability at a level we can detect in these data. All five spectra are fit with three separate models: a power-law model, a blackbody model, and a combined model with both power-law and blackbody components. The preferred spectral fits yield power-law indices that range from 1.3 to 3.2 and blackbody temperatures in the hundreds of eV. The spectrum for PSR J2215+5135 shows a significant hard X-ray component, with a large number of counts above 2 keV, which is additional evidence for the presence of intrabinary shock emission. This is similar to what has been detected in the low-mass X-ray binary to MSP transition object PSR J1023+0038.« less
Evolutionary paths of binaries with a neutron star. I. The case of SAX J1808.4-3658
NASA Astrophysics Data System (ADS)
Tailo, M.; D'Antona, F.; Burderi, L.; Ventura, P.; di Salvo, T.; Sanna, A.; Papitto, A.; Riggio, A.; Maselli, A.
2018-06-01
The evolutionary status of the low mass X-ray binary SAX J1808.4-3658 is simulated by following the binary evolution of its possible progenitor system through mass transfer, starting at a period of ˜6.6 hr. The evolution includes angular momentum losses via magnetic braking and gravitational radiation. It also takes into account the effects of illumination of the donor by both the X-ray emission and the spin down luminosity of the pulsar. The system goes through stages of mass transfer and stages during which it is detached, where only the rotationally powered pulsar irradiates the donor. We show that the pulsar irradiation is a necessary ingredient to reach SAX J1808.4-3658 orbital period when the donor mass is reduced to 0.04-0.06 M⊙. We also show that the models reproduce important properties of the system, including the orbital period derivative, which is shown to be directly linked to the evolution through mass transfer cycles. Moreover we find that the effects of the irradiation on the internal structure of the donor are non negligible, causing the companion star to be non completely convective at the values of mass observed for the system and significantly altering its long term evolution, as the magnetic braking remains active along the whole evolution.
Reassessing the fundamentals: On the evolution, ages and masses of neutron stars
NASA Astrophysics Data System (ADS)
Kiziltan, Bulent
The evolution, ages and masses of neutron stars are the fundamental threads that make pulsars accessible to other sub-disciplines of astronomy and physics. A realistic and accurate determination of these indirectly probed features play an important role in understanding a very broad range of astrophysical processes that are, in many cases, not empirically accessible otherwise. For the majority of pulsars, the only observables are the rotational period (P), and its derivative (P˙) which gives the rate of change in the spin. I start with calculating the joint P-P˙ distributions of millisecond pulsars for the standard evolutionary model in order to assess whether millisecond pulsars are the unequivocal descendants of low mass X-ray binaries. We show that the P-P˙ density implied by the standard evolutionary model is inconsistent with observations, which suggests that it is unlikely that millisecond pulsars have evolved from a single coherent progenitor population. In the absence of constraints from the binary companion or supernova remnant, the standard method for estimating pulsar ages is to infer an age from the rate of spin-down. I parametrically incorporate constraints that arise from binary evolution and limiting physics to derive a "modified spin-down age" for millisecond pulsars. We show that the standard method can be improved by this approach to achieve age estimates closer to the true age. Then, I critically review radio pulsar mass measurements and present a detailed examination through which we are able to put stringent constraints on the underlying neutron star mass distribution. For the first time, we are able to analyze a sizable population of neutron star-white dwarf systems in addition to double neutron star systems with a technique that accounts for systematically different measurement errors. We find that neutron stars that have evolved through different evolutionary paths reflect distinctive signatures through dissimilar distribution peak and mass cutoff values. Neutron stars in double neutron star and neutron star-white dwarf systems show consistent respective peaks at 1.35 M⊙ and 1.50 M⊙ , which suggest significant mass accretion (Deltam ≈ 0.15 M⊙ ) has occurred during the spin up phase. We find a mass cutoff at 2 M⊙ for neutron stars with white dwarf companions which establishes a firm lower bound for the maximum neutron star mass. This rules out the majority of strange quark and soft equation of state models as viable configurations for neutron star matter. The lack of truncation close to the maximum mass cutoff suggests that the 2 M⊙ limit is set by evolutionary constraints rather than nuclear physics or general relativity, and the existence of rare super-massive neutron stars is possible.
A millisecond pulsar in an extremely wide binary system
NASA Astrophysics Data System (ADS)
Bassa, C. G.; Janssen, G. H.; Stappers, B. W.; Tauris, T. M.; Wevers, T.; Jonker, P. G.; Lentati, L.; Verbiest, J. P. W.; Desvignes, G.; Graikou, E.; Guillemot, L.; Freire, P. C. C.; Lazarus, P.; Caballero, R. N.; Champion, D. J.; Cognard, I.; Jessner, A.; Jordan, C.; Karuppusamy, R.; Kramer, M.; Lazaridis, K.; Lee, K. J.; Liu, K.; Lyne, A. G.; McKee, J.; Osłowski, S.; Perrodin, D.; Sanidas, S.; Shaifullah, G.; Smits, R.; Theureau, G.; Tiburzi, C.; Zhu, W. W.
2016-08-01
We report on 22 yr of radio timing observations of the millisecond pulsar J1024-0719 by the telescopes participating in the European Pulsar Timing Array (EPTA). These observations reveal a significant second derivative of the pulsar spin frequency and confirm the discrepancy between the parallax and Shklovskii distances that has been reported earlier. We also present optical astrometry, photometry and spectroscopy of 2MASS J10243869-0719190. We find that it is a low-metallicity main-sequence star (K7V spectral type, [M/H] = -1.0, Teff = 4050 ± 50 K) and that its position, proper motion and distance are consistent with those of PSR J1024-0719. We conclude that PSR J1024-0719 and 2MASS J10243869-0719190 form a common proper motion pair and are gravitationally bound. The gravitational interaction between the main-sequence star and the pulsar accounts for the spin frequency derivatives, which in turn resolves the distance discrepancy. Our observations suggest that the pulsar and main-sequence star are in an extremely wide (Pb > 200 yr) orbit. Combining the radial velocity of the companion and proper motion of the pulsar, we find that the binary system has a high spatial velocity of 384 ± 45 km s-1 with respect to the local standard of rest and has a Galactic orbit consistent with halo objects. Since the observed main-sequence companion star cannot have recycled the pulsar to millisecond spin periods, an exotic formation scenario is required. We demonstrate that this extremely wide-orbit binary could have evolved from a triple system that underwent an asymmetric supernova explosion, though find that significant fine-tuning during the explosion is required. Finally, we discuss the implications of the long period orbit on the timing stability of PSR J1024-0719 in light of its inclusion in pulsar timing arrays.
NASA Astrophysics Data System (ADS)
Britt, Christopher T.; Strader, Jay; Chomiuk, Laura; Halpern, Jules P.; Tremou, Evangelina; Peacock, Mark; Salinas, Ricardo
2018-01-01
We present the orbital solution for the donor star of the candidate transitional millisecond pulsar 3FGL J1544.6-1125, currently observed as an accreting low-mass X-ray binary. The orbital period is 0.2415361(36) days, entirely consistent with the spectral classification of the donor star as a mid to late K dwarf. The semi-amplitude of the radial velocity curve is exceptionally low at K2=39.3+/-1.5 km s-1, implying a remarkably face-on inclination in the range 5-8o, depending on the neutron star and donor masses. After determining the veiling of the secondary, we derive a distance to the binary of 3.8+/-0.7 kpc, yielding a 0.3-10 keV X-ray luminosity of 6.1+/-1.9 x1033 erg s-1, similar to confirmed transitional millisecond pulsars. As face-on binaries rarely occur by chance, we discuss the possibility that Fermi-selected samples of transitional milli-second pulsars in the sub-luminous disk state are affected by beaming. By phasing emission line strength on the spectroscopic ephemeris, we find coherent variations, and argue that some optical light originates from emission from an asymmetric shock originating near the inner disk.
Observing the dynamics of supermassive black hole binaries with pulsar timing arrays.
Mingarelli, C M F; Grover, K; Sidery, T; Smith, R J E; Vecchio, A
2012-08-24
Pulsar timing arrays are a prime tool to study unexplored astrophysical regimes with gravitational waves. Here, we show that the detection of gravitational radiation from individually resolvable supermassive black hole binary systems can yield direct information about the masses and spins of the black holes, provided that the gravitational-wave-induced timing fluctuations both at the pulsar and at Earth are detected. This in turn provides a map of the nonlinear dynamics of the gravitational field and a new avenue to tackle open problems in astrophysics connected to the formation and evolution of supermassive black holes. We discuss the potential, the challenges, and the limitations of these observations.
FERMI STUDY OF 5–300 GeV EMISSION FROM THE HIGH-MASS PULSAR BINARY PSR B1259-63/LS 2883
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xing, Yi; Wang, Zhongxiang; Takata, Jumpei
2016-09-01
We report the results from our detailed analysis of the Fermi Large Area Telescope data for the pulsar binary PSR B1259−63/LS 2883. During the GeV flares that occurred when the pulsar was in the periastron passages, we have detected a 5–300 GeV component at ≃5 σ in emission from the binary. The detection verifies the presence of the component that has been marginally found in previous studies of the binary. Furthermore, we have discovered that this component was marginally present even in the quiescent state of the binary, specifically the mean anomaly phase 0.7–0.9. The component can be described bymore » a power law with a photon index Γ ∼ 1.4, and the flux in the flares is approximately one order of magnitude higher than that in quiescence. We discuss the origin of this component. It likely arises from the inverse-Compton process: due to the interaction between the winds from the pulsar and its massive companion, high-energy particles from the shock scatter the seed photons from the companion to GeV/TeV energies. Based on this scenario, model fits to the broad-band X-ray to TeV spectra of the binary in the flaring and quiescent states are provided.« less
High-energy emission from the eclipsing millisecond pulsar PSR 1957+20
NASA Technical Reports Server (NTRS)
Arons, Jonathan; Tavani, Marco
1993-01-01
The properties of the high-energy emission expected from the eclipsing millisecond pulsar system PSR 1957+20 are investigated. Emission is considered by both the relativistic shock produced by the pulsar wind in the nebula surrounding the binary and by the shock constraining the mass outflow from the companion star of PSR 1957+20. On the basis of the results of microscopic plasma physical models of relativistic shocks it is suggested that the high-energy radiation is produced in the range from X-rays to MeV gamma rays in the binary and in the range from 0.01 eV to about 40 keV in the nebula. Doppler boost of the emission in the radiating wind suggests the flux should vary on the orbital time scale, with the largest flux observed roughly coincident with the pulsar's radio eclipse.
B-ducted Heating of Black Widow Companions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sanchez, Nicolas; Romani, Roger W., E-mail: rwr@astro.stanford.edu
The companions of evaporating binary pulsars (black widows and related systems) show optical emission suggesting strong heating. In a number of cases, large observed temperatures and asymmetries are inconsistent with direct radiative heating for the observed pulsar spindown power and expected distance. Here we describe a heating model in which the pulsar wind sets up an intrabinary shock (IBS) against the companion wind and magnetic field, and a portion of the shock particles duct along this field to the companion magnetic poles. We show that a variety of heating patterns, and improved fits to the observed light curves, can bemore » obtained at expected pulsar distances and luminosities, at the expense of a handful of model parameters. We test this “IBS-B” model against three well-observed binaries and comment on the implications for system masses.« less
Radio Pulse Search and X-Ray Monitoring of SAX J1808.4−3658: What Causes Its Orbital Evolution?
DOE Office of Scientific and Technical Information (OSTI.GOV)
Patruno, Alessandro; King, Andrew R.; Jaodand, Amruta
The accreting millisecond X-ray pulsar SAX J1808.4−3658 shows a peculiar orbital evolution that proceeds at a very fast pace. It is important to identify the underlying mechanism responsible for this behavior because it can help to understand how this system evolves and which physical processes (such as mass loss or spin–orbit coupling) are occurring in the binary. It has also been suggested that, when in quiescence, SAX J1808.4−3658 turns on as a radio pulsar, a circumstance that might provide a link between accreting millisecond pulsars and black-widow (BW) radio pulsars. In this work, we report the results of a deepmore » radio pulsation search at 2 GHz using the Green Bank Telescope in 2014 August and an X-ray study of the 2015 outburst with Chandra , Swift XRT, and INTEGRAL . In quiescence, we detect no radio pulsations and place the strongest limit to date on the pulsed radio flux density of any accreting millisecond pulsar. We also find that the orbit of SAX J1808.4−3658 continues evolving at a fast pace. We compare the orbital evolution of SAX J1808.4−3658 to that of several other accreting and nonaccreting binaries, including BWs, redbacks, cataclysmic variables, black holes, and neutron stars in low-mass X-ray binaries. We discuss two possible scenarios: either the neutron star has a large moment of inertia and is ablating the donor, generating mass loss with an efficiency of 40%, or the donor star has a strong magnetic field of at least 1 kG and is undergoing quasi-cyclic variations due to spin–orbit coupling.« less
Limits on Planets Orbiting Massive Stars from Radio Pulsar Timing
NASA Technical Reports Server (NTRS)
Thorsett, S. E.; Dewey, R. J.
1993-01-01
When a massive star collapses to a neutron star, rapidly losing over half its mass in a symmetric supernova explosiosn, any planets orbiting the star will be unbound. However, to explain the observed space velocity and binary fraction of radio pulsars, an asymmetric kick must be given to the neutron star of birth.
NASA Astrophysics Data System (ADS)
Cameron, A. D.; Champion, D. J.; Kramer, M.; Bailes, M.; Barr, E. D.; Bassa, C. G.; Bhandari, S.; Bhat, N. D. R.; Burgay, M.; Burke-Spolaor, S.; Eatough, R. P.; Flynn, C. M. L.; Freire, P. C. C.; Jameson, A.; Johnston, S.; Karuppusamy, R.; Keith, M. J.; Levin, L.; Lorimer, D. R.; Lyne, A. G.; McLaughlin, M. A.; Ng, C.; Petroff, E.; Possenti, A.; Ridolfi, A.; Stappers, B. W.; van Straten, W.; Tauris, T. M.; Tiburzi, C.; Wex, N.
2018-03-01
We report the discovery of PSR J1757-1854, a 21.5-ms pulsar in a highly-eccentric, 4.4-h orbit with a neutron star (NS) companion. PSR J1757-1854 exhibits some of the most extreme relativistic parameters of any known pulsar, including the strongest relativistic effects due to gravitational-wave damping, with a merger time of 76 Myr. Following a 1.6-yr timing campaign, we have measured five post-Keplerian parameters, yielding the two component masses (mp = 1.3384(9) M⊙ and mc = 1.3946(9) M⊙) plus three tests of general relativity, which the theory passes. The larger mass of the NS companion provides important clues regarding the binary formation of PSR J1757-1854. With simulations suggesting 3-σ measurements of both the contribution of Lense-Thirring precession to the rate of change of the semimajor axis and the relativistic deformation of the orbit within ˜7-9 yr, PSR J1757-1854 stands out as a unique laboratory for new tests of gravitational theories.
Hydrodynamic Interaction between the Be Star and the Pulsar in the TeV Binary PSR B1259-63/LS 2883
NASA Astrophysics Data System (ADS)
Okazaki, Atsuo T.; Nagataki, Shigehiro; Naito, Tsuguya; Kawachi, Akiko; Hayasaki, Kimitake; Owocki, Stanley P.; Takata, Jumpei
2011-08-01
We have been studying the interaction between the Be star and the pulsar in the TeV binary PSR B1259-63/LS 2883, using 3-D SPH simulations of the tidal and wind interactions in this Be-pulsar system. We first ran a simulation without pulsar wind nor Be wind, while taking into account only the gravitational effect of the pulsar on the Be disk. In this simulation, the gas particles are ejected at a constant rate from the equatorial surface of the Be star, which is tilted in a direction consistent with multi-waveband observations. We ran the simulation until the Be disk was fully developed and started to repeat a regular tidal interaction with the pulsar. Then, we turned on the pulsar wind and the Be wind. We ran two simulations with different wind mass-loss rates for the Be star, one for a B2 V type and the other for a significantly earlier spectral type. Although the global shape of the interaction surface between the pulsar wind and the Be wind agrees with the analytical solution, the effect of the pulsar wind on the Be disk is profound. The pulsar wind strips off an outer part of the Be disk, truncating the disk at a radius significantly smaller than the pulsar orbit. Our results, therefore, rule out the idea that the pulsar passes through the Be disk around periastron, which has been assumed in previous studies. It also turns out that the location of the contact discontinuity can be significantly different between phases when the pulsar wind directly hits the Be disk and those when the pulsar wind collides with the Be wind. It is thus important to adequately take into account the circumstellar environment of the Be star, in order to construct a satisfactory model for this prototypical TeV binary.
High-energy variability of the Pulsar binary PSR J1311-3430
NASA Astrophysics Data System (ADS)
An, Hongjun; Fermi-LAT Collaboration
2018-01-01
We present analysis results of high-energy observations of the extreme mass-ratio black-widow millisecond pulsar binary PSR J1311-3430. Our studies in the UV, X-ray, and gamma-ray bands confirm the orbital modulation in the gamma-ray band as suggested previously. In addition, we find that the modulation is stronger in the high-energy band. In the lower-energy UV and X-ray bands, we detect flares which were observed previously and attributed to magnetic activities. We find that the optical flares are associated with the X-ray flares, suggesting common origin. We explore possible connections of the variabilities with the intrabinary shock (IBS) and magnetic activity on the low mass companion.
EVOLUTIONARY TRAJECTORIES OF ULTRACOMPACT 'BLACK WIDOW' PULSARS WITH VERY LOW MASS COMPANIONS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Benvenuto, O. G.; De Vito, M. A.; Horvath, J. E., E-mail: obenvenu@fcaglp.unlp.edu.ar, E-mail: adevito@fcaglp.unlp.edu.ar, E-mail: foton@astro.iag.usp.br
The existence of millisecond pulsars with planet-mass companions in close orbits is challenging from the stellar evolution point of view. We calculate in detail the evolution of binary systems self-consistently, including mass transfer, evaporation, and irradiation of the donor by X-ray feedback, demonstrating the existence of a new evolutionary path leading to short periods and compact donors as required by the observations of PSR J1719-1438. We also point out the alternative of an exotic nature of the companion planet-mass star.
Discovery of a Second Millesecond Accreting Pulsar: XTE J1751-305
NASA Technical Reports Server (NTRS)
Markwardt, C. B.; Swank, J. H.; Strohmayer, T. E.; intZand, J. J. M.; Marshall, F. E.; White, Nicholas E. (Technical Monitor)
2002-01-01
We report the discovery by the RXTE PCA of a second transient accreting millisecond pulsar, XTE J1751-305, during regular monitoring observations of the galactic bulge region. The pulsar has a spin frequency of 435 Hz, making it one of the fastest pulsars. The pulsations contain the signature of orbital Doppler modulation, which implies an orbital period of 42 minutes, the shortest orbital period of any known radio or X-ray millisecond pulsar. The mass function, f(sub x) = (1.278 +/- 0.003) x 10 (exp -6) solar mass, yields a minimum mass for the companion of between 0.013 and 0.0017 solar mass depending on the mass of the neutron star. No eclipses were detected. A previous X-ray outburst in June, 1998, was discovered in archival All-Sky Monitor data. Assuming mass transfer in this binary system is driven by gravitational radiation, we constrain the orbital inclination to be in the range 30 deg-85 deg and the companion mass to be 0.013-0.035 solar mass. The companion is most likely a heated helium dwarf. We also present results from the Chandra HRC-S observations which provide the best known position of XTE J1751-305.
Not an Oxymoron: Some X-ray Binary Pulsars with Enormous Spinup Rates Reveal Weak Magnetic Fields
NASA Astrophysics Data System (ADS)
Christodoulou, D. M.; Laycock, S. G. T.; Kazanas, D.
2018-05-01
Three high-mass X-ray binaries have been discovered recently exhibiting enormous spinup rates. Conventional accretion theory predicts extremely high surface dipolar magnetic fields that we believe are unphysical. Instead, we propose quite the opposite scenario: some of these pulsars exhibit weak magnetic fields, so much so that their magnetospheres are crushed by the weight of inflowing matter. The enormous spinup rate is achieved before inflowing matter reaches the pulsar's surface as the penetrating inner disk transfers its excess angular momentum to the receding magnetosphere which, in turn, applies a powerful spinup torque to the pulsar. This mechanism also works in reverse: it spins a pulsar down when the magnetosphere expands beyond corotation and finds itself rotating faster than the accretion disk which then exerts a powerful retarding torque to the magnetic field and to the pulsar itself. The above scenaria cannot be accommodated within the context of neutron-star accretion processes occurring near spin equilibrium, thus they constitute a step toward a new theory of extreme (far from equilibrium) accretion phenomena.
NASA Technical Reports Server (NTRS)
Strader, Jay; Chomiuk, Laura; Cheung, C. C.; Sand, David J.; Donato, Davide; Corbet, Robin H. D.; Koeppe, Dana; Edwards, Philip G.; Stevens, Jamie; Petrov, Leonid
2015-01-01
We present multiwavelength observations of the persistent Fermi-Large Area Telescope unidentified gamma-ray source 1FGL J1417.7-4407, showing it is likely to be associated with a newly discovered X-ray binary containing a massive neutron star (nearly 2 solar mass) and a approximately 0.35 solar mass giant secondary with a 5.4 day period. SOAR optical spectroscopy at a range of orbital phases reveals variable double-peaked H alpha emission, consistent with the presence of an accretion disk. The lack of radio emission and evidence for a disk suggests the gamma-ray emission is unlikely to originate in a pulsar magnetosphere, but could instead be associated with a pulsar wind, relativistic jet, or could be due to synchrotron self-Compton at the disk-magnetosphere boundary. Assuming a wind or jet, the high ratio of gamma- ray to X-ray luminosity (approximately 20) suggests efficient production of gamma-rays, perhaps due to the giant companion. The system appears to be a low-mass X-ray binary that has not yet completed the pulsar recycling process. This system is a good candidate to monitor for a future transition between accretion-powered and rotational-powered states, but in the context of a giant secondary.
NASA Astrophysics Data System (ADS)
Shao, Lijing; Sennett, Noah; Buonanno, Alessandra; Kramer, Michael; Wex, Norbert
2017-10-01
Pulsar timing and laser-interferometer gravitational-wave (GW) detectors are superb laboratories to study gravity theories in the strong-field regime. Here, we combine these tools to test the mono-scalar-tensor theory of Damour and Esposito-Farèse (DEF), which predicts nonperturbative scalarization phenomena for neutron stars (NSs). First, applying Markov-chain Monte Carlo techniques, we use the absence of dipolar radiation in the pulsar-timing observations of five binary systems composed of a NS and a white dwarf, and eleven equations of state (EOSs) for NSs, to derive the most stringent constraints on the two free parameters of the DEF scalar-tensor theory. Since the binary-pulsar bounds depend on the NS mass and the EOS, we find that current pulsar-timing observations leave scalarization windows, i.e., regions of parameter space where scalarization can still be prominent. Then, we investigate if these scalarization windows could be closed and if pulsar-timing constraints could be improved by laser-interferometer GW detectors, when spontaneous (or dynamical) scalarization sets in during the early (or late) stages of a binary NS (BNS) evolution. For the early inspiral of a BNS carrying constant scalar charge, we employ a Fisher-matrix analysis to show that Advanced LIGO can improve pulsar-timing constraints for some EOSs, and next-generation detectors, such as the Cosmic Explorer and Einstein Telescope, will be able to improve those bounds for all eleven EOSs. Using the late inspiral of a BNS, we estimate that for some of the EOSs under consideration, the onset of dynamical scalarization can happen early enough to improve the constraints on the DEF parameters obtained by combining the five binary pulsars. Thus, in the near future, the complementarity of pulsar timing and direct observations of GWs on the ground will be extremely valuable in probing gravity theories in the strong-field regime.
Lightweight Double Neutron Star Found
NASA Astrophysics Data System (ADS)
Kohler, Susanna
2018-02-01
More than forty years after the first discovery of a double neutron star, we still havent found many others but a new survey is working to change that.The Hunt for PairsThe observed shift in the Hulse-Taylor binarys orbital period over time as it loses energy to gravitational-wave emission. [Weisberg Taylor, 2004]In 1974, Russell Hulse and Joseph Taylor discovered the first double neutron star: two compact objects locked in a close orbit about each other. Hulse and Taylors measurements of this binarys decaying orbit over subsequent years led to a Nobel prize and the first clear evidence of gravitational waves carrying energy and angular momentum away from massive binaries.Forty years later, we have since confirmed the existence of gravitational waves directly with the Laser Interferometer Gravitational-Wave Observatory (LIGO). Nonetheless, finding and studying pre-merger neutron-star binaries remains a top priority. Observing such systems before they merge reveals crucial information about late-stage stellar evolution, binary interactions, and the types of gravitational-wave signals we expect to find with current and future observatories.Since the Hulse-Taylor binary, weve found a total of 16 additional double neutron-star systems which represents only a tiny fraction of the more than 2,600 pulsars currently known. Recently, however, a large number of pulsar surveys are turning their eyes toward the sky, with a focus on finding more double neutron stars and at least one of them has had success.The pulse profile for PSR J1411+2551 at 327 MHz. [Martinez et al. 2017]A Low-Mass DoubleConducted with the 1,000-foot Arecibo radio telescope in Puerto Rico, the Arecibo 327 MHz Drift Pulsar Survey has enabled the recent discovery of dozens of pulsars and transients. Among them, as reported by Jose Martinez (Max Planck Institute for Radio Astronomy) and coauthors in a recent publication, is PSR J1411+2551: a new double neutron star with one of the lowest masses ever measured for such a system.Through meticulous observations over the span of 2.5 years, Martinez and collaborators were able to obtain a number of useful measurements for the system, including the pulsars period (62 ms), the period of the binary (2.62 days), and the systems eccentricity (e = 0.17).In addition, the team measured the rate of advance of periastron of the system, allowing them to estimate the total mass of the system: M = 2.54 solar masses. This mass, combined with the eccentricity of the orbit, demonstrate that the companion of the pulsar in PSR J1411+2551 is almost certainly a neutron star and the system is one of the lightest known to date, even including the double neutron-star merger that was observed by LIGO in August this past year.Constraining Stellar PhysicsBased on its measured properties, PSR J1411+2551 is most likely a recycled pulsar in a double neutron-star system. [Martinez et al. 2017]The intriguing orbital properties and low mass of PSR J1411+2551 have already allowed the authors to explore a number of constraints to stellar evolution models, including narrowing the possible equations of state for neutron stars that could produce such a system. These constraints will be interesting to compare to constraints from LIGO and Virgo in the future, as more merging neutron-star systems are observed.Meanwhile, our best bet for obtaining further constraints is to continue searching for more pre-merger double neutron-star systems like the Hulse-Taylor binary and PSR J1411+2551. Let the hunt continue!CitationJ. G. Martinez et al 2017 ApJL 851 L29. doi:10.3847/2041-8213/aa9d87
Impact of accretion on the statistics of neutron star masses
NASA Astrophysics Data System (ADS)
Cheng, Z.; Taani, A.; Zhao, Y. H.
2013-02-01
We have collected the parameter of 38 neutron stars (NSs) in binary systems with spin periods and measured masses. By adopting the Boot-strap method, we reproduced the procedure of mass calculated for each system separately, to determine the truly mass distribution of the NS that obtained from observation. We also applied the Monte-Carlo simulation and introduce the characteristic spin period 20 ms, in order to distinguish between millisecond pulsars (MSPs) and less recycled pulsars. The mass distributions of MSPs and the less recycled pulsars could be fitted by a Gaussian function as 1.45+/-0.42 M⊙ and 1.31+/-0.17 M⊙ (with 1σ) respectively. As such, the MSP masses are heavier than those in less recycled systems by factor of ~ 0.13M⊙, since the accretion effect during the recycling process.
The NuSTAR Hard X-Ray Survey of the Norma Arm Region
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fornasini, Francesca M.; Tomsick, John A.; Chiu, Jeng-Lun
2017-04-01
We present a catalog of hard X-ray sources in a square-degree region surveyed by the Nuclear Spectroscopic Telescope Array ( NuSTAR ) in the direction of the Norma spiral arm. This survey has a total exposure time of 1.7 Ms, and the typical and maximum exposure depths are 50 ks and 1 Ms, respectively. In the area of deepest coverage, sensitivity limits of 5 × 10{sup −14} and 4 × 10{sup −14} erg s{sup −1} cm{sup −2} in the 3–10 and 10–20 keV bands, respectively, are reached. Twenty-eight sources are firmly detected, and 10 are detected with low significance; 8 of the 38 sources are expected tomore » be active galactic nuclei. The three brightest sources were previously identified as a low-mass X-ray binary, high-mass X-ray binary, and pulsar wind nebula. Based on their X-ray properties and multiwavelength counterparts, we identify the likely nature of the other sources as two colliding wind binaries, three pulsar wind nebulae, a black hole binary, and a plurality of cataclysmic variables (CVs). The CV candidates in the Norma region have plasma temperatures of ≈10–20 keV, consistent with the Galactic ridge X-ray emission spectrum but lower than the temperatures of CVs near the Galactic center. This temperature difference may indicate that the Norma region has a lower fraction of intermediate polars relative to other types of CVs compared to the Galactic center. The NuSTAR log N –log S distribution in the 10–20 keV band is consistent with the distribution measured by Chandra at 2–10 keV if the average source spectrum is assumed to be a thermal model with kT ≈ 15 keV, as observed for the CV candidates.« less
A RADIO PULSAR SEARCH OF THE {gamma}-RAY BINARIES LS I +61 303 AND LS 5039
DOE Office of Scientific and Technical Information (OSTI.GOV)
Virginia McSwain, M.; Ray, Paul S.; Ransom, Scott M.
2011-09-01
LS I +61 303 and LS 5039 are exceptionally rare examples of high-mass X-ray binaries with MeV-TeV emission, making them two of only five known '{gamma}-ray binaries'. There has been disagreement within the literature over whether these systems are microquasars, with stellar winds accreting onto a compact object to produce high energy emission and relativistic jets, or whether their emission properties might be better explained by a relativistic pulsar wind colliding with the stellar wind. Here we present an attempt to detect radio pulsars in both systems with the Green Bank Telescope. The upper limits of flux density are betweenmore » 4.1 and 14.5 {mu}Jy, and we discuss the null results of the search. Our spherically symmetric model of the wind of LS 5039 demonstrates that any pulsar emission will be strongly absorbed by the dense wind unless there is an evacuated region formed by a relativistic colliding wind shock. LS I +61 303 contains a rapidly rotating Be star whose wind is concentrated near the stellar equator. As long as the pulsar is not eclipsed by the circumstellar disk or viewed through the densest wind regions, detecting pulsed emission may be possible during part of the orbit.« less
Accreting Millisecond Pulsars: Neutron Star Masses and Radii
NASA Technical Reports Server (NTRS)
Strohmayer, Tod
2004-01-01
High amplitude X-ray brightness oscillations during thermonuclear X-ray bursts were discovered with the Rossi X-ray Timing Explorer (RXTE) in early 1996. Spectral and timing evidence strongly supports the conclusion that these oscillations are caused by rotational modulation of the burst emission and that they reveal the spin frequency of neutron stars in low mass X-ray binaries. The recent discovery of X-ray burst oscillations from two accreting millisecond pulsars has confirmed this basic picture and provided a new route to measuring neutron star properties and constraining the dense matter equation of state. I will briefly summarize the current observational understanding of accreting millisecond pulsars, and describe recent attempts to determine the mass and radius of the neutron star in XTE J1814-338.
CHANDRA AND SWIFT X-RAY OBSERVATIONS OF THE X-RAY PULSAR SMC X-2 DURING THE OUTBURST OF 2015
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, K. L.; Hu, C.-P; Lin, L. C. C.
2016-09-10
We report the Chandra /HRC-S and Swift /XRT observations for the 2015 outburst of the high-mass X-ray binary pulsar in the Small Magellanic Cloud, SMC X-2. While previous studies suggested that either an O star or a Be star in the field is the high-mass companion of SMC X-2, our Chandra /HRC-S image unambiguously confirms the O-type star as the true optical counterpart. Using the Swift /XRT observations, we extracted accurate orbital parameters of the pulsar binary through a time of arrivals analysis. In addition, there were two X-ray dips near the inferior conjunction, which are possibly caused by eclipsesmore » or an ionized high-density shadow wind near the companion’s surface. Finally, we propose that an outflow driven by the radiation pressure from day ∼10 played an important role in the X-ray/optical evolution of the outburst.« less
Pulsar timing and general relativity
NASA Technical Reports Server (NTRS)
Backer, D. C.; Hellings, R. W.
1986-01-01
Techniques are described for accounting for relativistic effects in the analysis of pulsar signals. Design features of instrumentation used to achieve millisecond accuracy in the signal measurements are discussed. The accuracy of the data permits modeling the pulsar physical characteristics from the natural glitches in the emissions. Relativistic corrections are defined for adjusting for differences between the pulsar motion in its spacetime coordinate system relative to the terrestrial coordinate system, the earth's motion, and the gravitational potentials of solar system bodies. Modifications of the model to allow for a binary pulsar system are outlined, including treatment of the system as a point mass. Finally, a quadrupole model is presented for gravitational radiation and techniques are defined for using pulsars in the search for gravitational waves.
Pulsar-irradiated stars in dense globular clusters
NASA Technical Reports Server (NTRS)
Tavani, Marco
1992-01-01
We discuss the properties of stars irradiated by millisecond pulsars in 'hard' binaries of dense globular clusters. Irradiation by a relativistic pulsar wind as in the case of the eclipsing millisecond pulsar PSR 1957+20 alter both the magnitude and color of the companion star. Some of the blue stragglers (BSs) recently discovered in dense globular clusters can be irradiated stars in binaries containing powerful millisecond pulsars. The discovery of pulsar-driven orbital modulations of BS brightness and color with periods of a few hours together with evidence for radio and/or gamma-ray emission from BS binaries would valuably contribute to the understanding of the evolution of collapsed stars in globular clusters. Pulsar-driven optical modulation of cluster stars might be the only observable effect of a new class of binary pulsars, i.e., hidden millisecond pulsars enshrouded in the evaporated material lifted off from the irradiated companion star.
The Green Bank North Celestial Cap Pulsar Survey: New Pulsars and Future Prospects
NASA Astrophysics Data System (ADS)
Lynch, Ryan S.; Swiggum, Joe; Stovall, Kevin; Chawla, Pragya; DeCesar, Megan E.; Fonseca, Emmanuel; Levin, Lina; Cui, Bingyi; Kondratiev, Vlad; Archibald, Anne; Boyles, Jason; Hessels, Jason W. T.; Jenet, Fredrick; Kaplan, David; Karako-Argaman, Chen; Kaspi, Victoria; Martinez, Jose; McLaughlin, Maura; Ransom, Scott M.; Roberts, Mallory; Siemens, Xavier; Spiewak, Renee; Stairs, Ingrid; van Leeuwn, Joeri; Green Bank North Celestial Cap Survey Collaboration
2018-01-01
The Green Bank North Celestial Cap pulsar survey is the most successful low frequency pulsar survey ever. GBNCC uses the Green Bank telescope to cover the full visible sky at 350 MHz. With the survey over 70% complete, we have discovered over 150 pulsars, including 20 MSPs and 11 RRATs. I will report on the current status of the survey and plans for its completion in the coming years. I will also report on several discoveries including: timing solutions for dozens of new pulsars; new high precision MSPs and their suitability for inclusion in pulsar timing arrays; a new relativistic double neutron star system; new pulsar mass measurements; proper motion measurements for several MSPs; a new mode changing pulsar; interesting new MSP binaries; nulling fraction analyses; and possible implications of the lack of any fast radio bursts in the survey so far.
The Bursting Pulsar GRO J1744-28: the slowest transitional pulsar?
NASA Astrophysics Data System (ADS)
Court, J. M. C.; Altamirano, D.; Sanna, A.
2018-06-01
GRO J1744-28 (the Bursting Pulsar) is a neutron star low-mass X-ray binary which shows highly structured X-ray variability near the end of its X-ray outbursts. In this letter we show that this variability is analogous to that seen in Transitional Millisecond Pulsars such as PSR J1023+0038: `missing link' systems consisting of a pulsar nearing the end of its recycling phase. As such, we show that the Bursting Pulsar may also be associated with this class of objects. We discuss the implications of this scenario; in particular, we discuss the fact that the Bursting Pulsar has a significantly higher spin period and magnetic field than any other known transitional pulsar. If the Bursting Pulsar is indeed transitional, then this source opens a new window of opportunity to test our understanding of these systems in an entirely unexplored physical regime.
A Massive-born Neutron Star with a Massive White Dwarf Companion
NASA Astrophysics Data System (ADS)
Cognard, Ismaël; Freire, Paulo C. C.; Guillemot, Lucas; Theureau, Gilles; Tauris, Thomas M.; Wex, Norbert; Graikou, Eleni; Kramer, Michael; Stappers, Benjamin; Lyne, Andrew G.; Bassa, Cees; Desvignes, Gregory; Lazarus, Patrick
2017-08-01
We report on the results of a 4 year timing campaign of PSR J2222-0137, a 2.44 day binary pulsar with a massive white dwarf (WD) companion, with the Nançay, Effelsberg, and Lovell radio telescopes. Using the Shapiro delay for this system, we find a pulsar mass m p = 1.76 ± 0.06 M ⊙ and a WD mass m c = 1.293 ± 0.025 M ⊙. We also measure the rate of advance of periastron for this system, which is marginally consistent with the general relativity prediction for these masses. The short lifetime of the massive WD progenitor star led to a rapid X-ray binary phase with little (< 10-2 M ⊙) mass accretion onto the neutron star; hence, the current pulsar mass is, within uncertainties, its birth mass, which is the largest measured to date. We discuss the discrepancy with previous mass measurements for this system; we conclude that the measurements presented here are likely to be more accurate. Finally, we highlight the usefulness of this system for testing alternative theories of gravity by tightly constraining the presence of dipolar radiation. This is of particular importance for certain aspects of strong-field gravity, like spontaneous scalarization, since the mass of PSR J2222-0137 puts that system into a poorly tested parameter range.
A Massive-born Neutron Star with a Massive White Dwarf Companion
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cognard, Ismaël; Guillemot, Lucas; Theureau, Gilles
We report on the results of a 4 year timing campaign of PSR J2222−0137, a 2.44 day binary pulsar with a massive white dwarf (WD) companion, with the Nançay, Effelsberg, and Lovell radio telescopes. Using the Shapiro delay for this system, we find a pulsar mass m {sub p} = 1.76 ± 0.06 M {sub ⊙} and a WD mass m {sub c} = 1.293 ± 0.025 M {sub ⊙}. We also measure the rate of advance of periastron for this system, which is marginally consistent with the general relativity prediction for these masses. The short lifetime of the massivemore » WD progenitor star led to a rapid X-ray binary phase with little (< 10{sup −2} M {sub ⊙}) mass accretion onto the neutron star; hence, the current pulsar mass is, within uncertainties, its birth mass, which is the largest measured to date. We discuss the discrepancy with previous mass measurements for this system; we conclude that the measurements presented here are likely to be more accurate. Finally, we highlight the usefulness of this system for testing alternative theories of gravity by tightly constraining the presence of dipolar radiation. This is of particular importance for certain aspects of strong-field gravity, like spontaneous scalarization, since the mass of PSR J2222−0137 puts that system into a poorly tested parameter range.« less
Supermassive black hole binaries and transient radio events: studies in pulsar astronomy
NASA Astrophysics Data System (ADS)
Burke-Spolaor, S.
2011-06-01
The field of pulsar astronomy encompasses a rich breadth of astrophysical topics. The research in this thesis contributes to two particular subjects of pulsar astronomy: gravitational wave science, and identifying celestial sources of pulsed radio emission. We first investigated the detection of supermassive black hole (SMBH) binaries, which are the brightest expected source of gravitational waves for pulsar timing. We considered whether two electromagnetic SMBH tracers, velocity-resolved emission lines in active nuclei, and radio galactic nuclei with spatially-resolved, flat-spectrum cores, can reveal systems emitting gravitational waves in the pulsar timing band. We found that there are systems which may in principle be simultaneously detectable by both an electromagnetic signature and gravitational emission, however the probability of actually identifying such a system is low (they will represent much less than 1% of a randomly selected galactic nucleus sample). This study accents the fact that electromagnetic indicators may be used to explore binary populations down to the 'stalling radii' at which binary inspiral evolution may stall indefinitely at radii exceeding those which produce gravitational radiation in the pulsar timing band. We then performed a search for binary SMBH holes in archival Very Long Baseline Interferometry data for 3114 radio-luminous active galactic nuclei. One source was detected as a double nucleus. This result is interpreted in terms of post-merger timescales for SMBH centralisation, implications for 'stalling', and the relationship of radio activity in nuclei to mergers. Our analysis suggested that binary pair evolution of SMBHs (both of masses >108M circled bullet) spends less than 500Myr in progression from the merging of galactic stellar cores to within the purported stalling radius for SMBH pairs, giving no evidence for an excess of stalled binary systems at small separations. Circumstantial evidence showed that the relative state of radio emission between paired SMBHs is correlated within orbital separations of 2.5 kpc. We then searched for transient radio events in two archival pulsar surveys, and in the new High Time Resolution Universe (HTRU) Survey. We present the methodology employed for these searches, noting the novel addition of methods for single-event recognition, automatic interference mitigation, and data inspection. 27 new neutron stars were discovered. We discuss the relationship between "rotating radio transient" (RRAT) and pulsar populations, finding that the Galactic z-distribution of RRATs closely resembles the distribution of pulsars, and where measurable, RRAT pulse widths are similar to individual pulses from pulsars of similar period, implying a similar beaming fraction. We postulate that many RRATs may simply represent a tail of extreme-nulling pulsars that are "on" for less than a pulse period; this is supported by the fact that nulling pulsars and single-pulse discoveries exhibit a continuous distribution across null/activity timescales and nulling fractions. We found a drop-off in objects with emissivity cycles longer than 300 seconds at intermediate and low nulling fractions which is not readily explained by selection effects. The HTRU deep low-latitude survey (70-min. pointings at galactic latitudes |b| < 3.5 degrees and longitudes -80 degrees < l < 30 degrees) will be capable of exploring whether this deficit is natural or an effect of selection. The intriguing object PSR J0941-39 may represent an evolutionary link between nulling populations; discovered as an sparsely-pulsing RRAT, in follow-up observations it often appeared as a bright (10 mJy) pulsar with a low nulling fraction. It is therefore apparent that a neutron star can oscillate between nulling levels, much like mode-changing pulsars. Crucially, the RRAT and pulsar-mode emission sites are coincident, implying that the two emission mechanisms are linked. We estimate that the full HTRU survey will roughly quadruple the known deep-nulling pulsar population, allowing statistical studies to be made of extreme-nulling populations. HTRU's low-latitude survey will explore the neutron star population with null lengths lasting up to several hours. We lastly reported the discovery of 16 pulses, the bulk of which exhibit a frequency sweep with a shape and magnitude resembling the "Lorimer Burst" (Lorimer et al. 2007), which three years ago was reported as a solitary radio burst that was thought to be the first discovery of a rare, impulsive event of unknown extragalactic origin. However, the new events were of clearly terrestrial origin, with properties unlike any known sources of terrestrial broad-band radio emission. The new detections cast doubt on the extragalactic interpretation of the original burst, and call for further sophistication in radio-pulse survey techniques to identify the origin of the anomalous terrestrial signals and definitively distinguish future extragalactic pulse detections from local signals. The ambiguous origin of these seemingly dispersed, swept-frequency signals suggest that radio-pulse searches using multiple detectors will be the only experiments able to provide definitive information about the origin of new swept-frequency radio burst detections. Finally, we summarise our major findings and suggest future work which would expand on the work in this thesis.
Orbital variability in the eclipsing pulsar binary PSR B1957+20
NASA Technical Reports Server (NTRS)
Arzoumanian, Z.; Fruchter, A. S.; Taylor, J. H.
1994-01-01
We have conducted timing observations of the eclipsing millisecond binary pulsar PSR B1957+20, extending the span of data on this pulsar to more than five years. During this time the orbital period of the system has varied by roughly Delta P(sub b)/P(sub b) = 1.6 x 10(exp -7), changing quardratically with time and displaying with time and displaying an orbital period second derivative of P(sub b) = (1.43 +/- 0.08) x 10(exp -18)/sec. The previous measurement of a large negative orbital period derivative reflected only the short-term behavior of the system during the early observations; the orbital period derivative is now positive. If, as we suspect, the PSR B1957+20 system is undergoing quasi-cyclic orbital period variations similar to those found in other close binaries such as Algol and RS CVn, then the 0.025 solar mass companion to PSR B1957+20 is most likely non-degenerate, convective, and magnetically active.
No tension between assembly models of super massive black hole binaries and pulsar observations.
Middleton, Hannah; Chen, Siyuan; Del Pozzo, Walter; Sesana, Alberto; Vecchio, Alberto
2018-02-08
Pulsar timing arrays are presently the only means to search for the gravitational wave stochastic background from super massive black hole binary populations, considered to be within the grasp of current or near-future observations. The stringent upper limit from the Parkes Pulsar Timing Array has been interpreted as excluding (>90% confidence) the current paradigm of binary assembly through galaxy mergers and hardening via stellar interaction, suggesting evolution is accelerated or stalled. Using Bayesian hierarchical modelling we consider implications of this upper limit for a range of astrophysical scenarios, without invoking stalling, nor more exotic physical processes. All scenarios are fully consistent with the upper limit, but (weak) bounds on population parameters can be inferred. Recent upward revisions of the black hole-galaxy bulge mass relation are disfavoured at 1.6σ against lighter models. Once sensitivity improves by an order of magnitude, a non-detection will disfavour the most optimistic scenarios at 3.9σ.
Long-term observations of the pulsars in 47 Tucanae - II. Proper motions, accelerations and jerks
NASA Astrophysics Data System (ADS)
Freire, P. C. C.; Ridolfi, A.; Kramer, M.; Jordan, C.; Manchester, R. N.; Torne, P.; Sarkissian, J.; Heinke, C. O.; D'Amico, N.; Camilo, F.; Lorimer, D. R.; Lyne, A. G.
2017-10-01
This paper is the second in a series where we report the results of the long-term timing of the millisecond pulsars (MSPs) in 47 Tucanae with the Parkes 64-m radio telescope. We obtain improved timing parameters that provide additional information for studies of the cluster dynamics: (a) the pulsar proper motions yield an estimate of the proper motion of the cluster as a whole (μα = 5.00 ± 0.14 mas yr - 1, μδ = - 2.84 ± 0.12 mas yr - 1) and the motion of the pulsars relative to each other. (b) We measure the second spin-period derivatives caused by the change of the pulsar line-of-sight accelerations; 47 Tuc H, U and possibly J are being affected by nearby objects. (c) For 10 binary systems, we now measure changes in the orbital period caused by their acceleration in the gravitational field of the cluster. From all these measurements, we derive a cluster distance no smaller than ˜4.69 kpc and show that the characteristics of these MSPs are very similar to their counterparts in the Galactic disc. We find no evidence in favour of an intermediate mass black hole at the centre of the cluster. Finally, we describe the orbital behaviour of four 'black widow' systems. Two of them, 47 Tuc J and O, exhibit orbital variability similar to that observed in other such systems, while for 47 Tuc I and R the orbits seem to be remarkably stable. It appears therefore that not all 'black widows' have unpredictable orbital behaviour.
NASA Astrophysics Data System (ADS)
Wang, Yan; Mohanty, Soumya D.
2017-04-01
The advent of next generation radio telescope facilities, such as the Square Kilometer Array (SKA), will usher in an era where a pulsar timing array (PTA) based search for gravitational waves (GWs) will be able to use hundreds of well timed millisecond pulsars rather than the few dozens in existing PTAs. A realistic assessment of the performance of such an extremely large PTA must take into account the data analysis challenge posed by an exponential increase in the parameter space volume due to the large number of so-called pulsar phase parameters. We address this problem and present such an assessment for isolated supermassive black hole binary (SMBHB) searches using a SKA era PTA containing 1 03 pulsars. We find that an all-sky search will be able to confidently detect nonevolving sources with a redshifted chirp mass of 1 010 M⊙ out to a redshift of about 28 (corresponding to a rest-frame chirp mass of 3.4 ×1 08 M⊙). We discuss the important implications that the large distance reach of a SKA era PTA has on GW observations from optically identified SMBHB candidates. If no SMBHB detections occur, a highly unlikely scenario in the light of our results, the sky-averaged upper limit on strain amplitude will be improved by about 3 orders of magnitude over existing limits.
Wang, Yan; Mohanty, Soumya D
2017-04-14
The advent of next generation radio telescope facilities, such as the Square Kilometer Array (SKA), will usher in an era where a pulsar timing array (PTA) based search for gravitational waves (GWs) will be able to use hundreds of well timed millisecond pulsars rather than the few dozens in existing PTAs. A realistic assessment of the performance of such an extremely large PTA must take into account the data analysis challenge posed by an exponential increase in the parameter space volume due to the large number of so-called pulsar phase parameters. We address this problem and present such an assessment for isolated supermassive black hole binary (SMBHB) searches using a SKA era PTA containing 10^{3} pulsars. We find that an all-sky search will be able to confidently detect nonevolving sources with a redshifted chirp mass of 10^{10} M_{⊙} out to a redshift of about 28 (corresponding to a rest-frame chirp mass of 3.4×10^{8} M_{⊙}). We discuss the important implications that the large distance reach of a SKA era PTA has on GW observations from optically identified SMBHB candidates. If no SMBHB detections occur, a highly unlikely scenario in the light of our results, the sky-averaged upper limit on strain amplitude will be improved by about 3 orders of magnitude over existing limits.
Acceleration by pulsar winds in binary systems
NASA Technical Reports Server (NTRS)
Harding, Alice K.; Gaisser, T. K.
1990-01-01
In the absence of accretion torques, a pulsar in a binary system will spin down due to electromagnetic dipole radiation and the spin-down power will drive a wind of relativistic electron-positron pairs. Winds from pulsars with short periods will prevent any subsequent accretion but may be confined by the companion star atmosphere, wind, or magnetosphere to form a standing shock. The authors investigate the possibility of particle acceleration at such a pulsar wind shock and the production of very high energy (VHE) and ultra high energy (UHE) gamma rays from interactions of accelerated protons in the companion star's wind or atmosphere. They find that in close binaries containing active pulsars, protons will be shock accelerated to a maximum energy dependent on the pulsar spin-down luminosity. If a significant fraction of the spin-down power goes into particle acceleration, these systems should be sources of VHE and possibly UHE gamma rays. The authors discuss the application of the pulsar wind model to binary sources such as Cygnus X-3, as well as the possibility of observing VHE gamma-rays from known binary radio pulsar systems.
Binary and Millisecond Pulsars.
Lorimer, Duncan R
2005-01-01
We review the main properties, demographics and applications of binary and millisecond radio pulsars. Our knowledge of these exciting objects has greatly increased in recent years, mainly due to successful surveys which have brought the known pulsar population to over 1700. There are now 80 binary and millisecond pulsars associated with the disk of our Galaxy, and a further 103 pulsars in 24 of the Galactic globular clusters. Recent highlights have been the discovery of the first ever double pulsar system and a recent flurry of discoveries in globular clusters, in particular Terzan 5. Supplementary material is available for this article at 10.12942/lrr-2005-7.
Pulsar searching and timing with the Parkes telescope
NASA Astrophysics Data System (ADS)
Ng, C. W. Y.
2014-11-01
Pulsars are highly magnetised, rapidly rotating neutron stars that radiate a beam of coherent radio emission from their magnetic poles. An introduction to the pulsar phenomenology is presented in Chapter 1 of this thesis. The extreme conditions found in and around such compact objects make pulsars fantastic natural laboratories, as their strong gravitational fields provide exclusive insights to a rich variety of fundamental physics and astronomy. The discovery of pulsars is therefore a gateway to new science. An overview of the standard pulsar searching technique is described in Chapter 2, as well as a discussion on notable pulsar searching efforts undertaken thus far with various telescopes. The High Time Resolution Universe (HTRU) Pulsar Survey conducted with the 64-m Parkes radio telescope in Australia forms the bulk of this PhD. In particular, the author has led the search effort of the HTRU low-latitude Galactic plane project part which is introduced in Chapter 3. We discuss the computational challenges arising from the processing of the petabyte-sized survey data. Two new radio interference mitigation techniques are introduced, as well as a partially-coherent segmented acceleration search algorithm which aims to increase our chances of discovering highly-relativistic short-orbit binary systems, covering a parameter space including the potential pulsar-black hole binaries. We show that under a linear acceleration approximation, a ratio of ~0.1 of data length over orbital period results in the highest effectiveness for this search algorithm. Chapter 4 presents the initial results from the HTRU low-latitude Galactic plane survey. From the 37 per cent of data processed thus far, we have re-detected 348 previously known pulsars and discovered a further 47 pulsars. Two of which are fast-spinning pulsars with periods less than 30 ms. PSR J1101-6424 is a millisecond pulsar (MSP) with a heavy white dwarf companion while its short spin period of 5 ms indicates contradictory full-recycling. PSR J1757-27 is likely to be an isolated pulsar with an unexpectedly long spin period of 17 ms. In addition, PSR J1847-0427 is likely to be an aligned rotator, and PSR J1759-24 exhibits transient emission property. We compare this newly-discovered pulsar population to that previously known, and we suggest that our current pulsar detection yield is as expected from population synthesis. The discovery of pulsars is just a first step and, in fact, the most interesting science can usually only be revealed when a follow-up timing campaign is carried out. Chapter 5 focuses on the timing of 16 MSPs discovered by the HTRU. We reveal new observational parameters such as five proper motion measurements and significant temporal dispersion measure variations in PSR J1017-7156. We discuss the case of PSR J1801-3210, which shows no significant period derivative after four years of timing data. Our best-fit solution shows a period derivative of the order of 10 to the power -23, an extremely small number compared to that of a typical MSP. However, it is likely that the pulsar lies beyond the Galactic Centre, and an unremarkable intrinsic period derivative is reduced to close to zero by the Galactic potential acceleration. Furthermore, we highlight the potential to employ PSR J1801-3210 in the strong equivalence principle test due to its wide and circular orbit. In a broader comparison with the known MSP population, we suggest a correlation between higher mass functions and the presence of eclipses in 'very low-mass binary pulsars', implying that eclipses are observed in systems with high orbital inclinations. We also suggest that the distribution of the total mass of binary systems is inversely-related to the Galactic height distribution. We report on the first detection of PSRs J1543-5149 and J1811-2404 as gamma-ray pulsars. Further discussion and conclusions arise from the pulsar searching and timing efforts conducted with the HTRU survey can be found in Chapter 6. Finally, this thesis is closed with a consideration of future work. We examine the prospects of continuing data processing and follow-up timing of discoveries from the HTRU Galactic plane survey. We also suggest potential improvements in the search algorithms aiming at increasing pulsar detectability.
NASA Technical Reports Server (NTRS)
Townsend, L. J.; Drave, S. P.; Hill, A. B.; Coe, M. J.; Corbet, R. H. D.; Bird, A. J.
2013-01-01
In this paper we present the identification of two periodic X-ray signals coming from the direction of the Small Magellanic Cloud (SMC). On detection with the Rossi X-ray Timing Explorer (RXTE), the 175.4 s and 85.4 s pulsations were considered to originate from new Be/X-ray binary (BeXRB) pulsars with unknown locations. Using rapid follow-up INTEGRAL and XMM-Newton observations, we show the first pulsar (designated SXP175) to be coincident with a candidate high-mass X-ray binary (HMXB) in the northern bar region of the SMC undergoing a small Type II outburst. The orbital period (87d) and spectral class (B0-B0.5IIIe) of this system are determined and presented here for the first time. The second pulsar is shown not to be new at all, but is consistent with being SXP91.1 - a pulsar discovered at the very beginning of the 13 year long RXTE key monitoring programme of the SMC. Whilst it is theoretically possible for accreting neutron stars to change spin period so dramatically over such a short time, the X-ray and optical data available for this source suggest this spin-up is continuous during long phases of X-ray quiescence, where accretion driven spin-up of the neutron star should be minimal.
Period distribution of pulsars in the Magellanic Clouds: Propeller line versus Equilibrium period
NASA Astrophysics Data System (ADS)
Tanashkin, A. S.; Ikhsanov, N. R.
2017-12-01
A majority of accretion-powered X-ray pulsars in wind-fed High Mass X-ray Binaries (HMXBs) located in the Magellanic Clouds are observed to be transient X-ray sources. They are characterized by short luminous outbursts, while spending most of the time in quiescence. The quiescent states of the pulsars in the diagram “Pulsar Period vs. X-ray Luminosity” fall on a line with the slope -0.43. The same slope is expected for the propeller line which separates stars in the accretor state from stars in the propeller state. We show, however, that a line with the same slope would also be expected if rotation of the pulsars is close to equilibrium.
The orbital eccentricities of binary millisecond pulsars in globular clusters
NASA Technical Reports Server (NTRS)
Rasio, Frederic A.; Heggie, Douglas C.
1995-01-01
Low-mass binary millisecond pulsars (LMBPs) are born with very small orbital eccentricities, typically of order e(sub i) approximately 10(exp -6) to 10(exp -3). In globular clusters, however, higher eccentricities e(sub f) much greater than e(sub i) can be induced by dynamical interactions with passing stars. Here we show that the cross section for this process is much larger than previously estimated. This is becuse, even for initially circular binaries, the induced eccentricity e(sub f) for an encounter with pericenter separation r(sub p) beyond a few times the binary semimajor axis a declines only as a power law (e(sub f) varies as (r(sub p)/a)(exp -5/2), and not as an exponential. We find that all currently known LMBPs in clusters were probably affected by interactions, with their current eccentricities typically greater than at birth by an order of magnitude or more.
Observation of the black widow B1957+20 millisecond pulsar binary system with the MAGIC telescopes
NASA Astrophysics Data System (ADS)
Ahnen, M. L.; Ansoldi, S.; Antonelli, L. A.; Arcaro, C.; Babić, A.; Banerjee, B.; Bangale, P.; Barres de Almeida, U.; Barrio, J. A.; Becerra González, J.; Bednarek, W.; Bernardini, E.; Berti, A.; Biasuzzi, B.; Biland, A.; Blanch, O.; Bonnefoy, S.; Bonnoli, G.; Borracci, F.; Bretz, T.; Carosi, R.; Carosi, A.; Chatterjee, A.; Colin, P.; Colombo, E.; Contreras, J. L.; Cortina, J.; Covino, S.; Cumani, P.; da Vela, P.; Dazzi, F.; de Angelis, A.; de Lotto, B.; De Oña Wilhelmi, E.; Di Pierro, F.; Doert, M.; Domínguez, A.; Dominis Prester, D.; Dorner, D.; Doro, M.; Einecke, S.; Eisenacher Glawion, D.; Elsaesser, D.; Engelkemeier, M.; Fallah Ramazani, V.; Fernández-Barral, A.; Fidalgo, D.; Fonseca, M. V.; Font, L.; Fruck, C.; Galindo, D.; García López, R. J.; Garczarczyk, M.; Gaug, M.; Giammaria, P.; Godinović, N.; Gora, D.; Gozzini, S. R.; Griffiths, S.; Guberman, D.; Hadasch, D.; Hahn, A.; Hassan, T.; Hayashida, M.; Herrera, J.; Hose, J.; Hrupec, D.; Hughes, G.; Ishio, K.; Konno, Y.; Kubo, H.; Kushida, J.; Kuveždić, D.; Lelas, D.; Lindfors, E.; Lombardi, S.; Longo, F.; López, M.; Majumdar, P.; Makariev, M.; Maneva, G.; Manganaro, M.; Mannheim, K.; Maraschi, L.; Mariotti, M.; Martínez, M.; Mazin, D.; Menzel, U.; Mirzoyan, R.; Moralejo, A.; Moreno, V.; Moretti, E.; Neustroev, V.; Niedzwiecki, A.; Nievas Rosillo, M.; Nilsson, K.; Nishijima, K.; Noda, K.; Nogués, L.; Paiano, S.; Palacio, J.; Paneque, D.; Paoletti, R.; Paredes, J. M.; Paredes-Fortuny, X.; Pedaletti, G.; Peresano, M.; Perri, L.; Persic, M.; Poutanen, J.; Prada Moroni, P. G.; Prandini, E.; Puljak, I.; Garcia, J. R.; Reichardt, I.; Rhode, W.; Ribó, M.; Rico, J.; Saito, T.; Satalecka, K.; Schroeder, S.; Schweizer, T.; Sillanpää, A.; Sitarek, J.; Šnidarić, I.; Sobczynska, D.; Stamerra, A.; Strzys, M.; Surić, T.; Takalo, L.; Tavecchio, F.; Temnikov, P.; Terzić, T.; Tescaro, D.; Teshima, M.; Torres, D. F.; Torres-Albà, N.; Treves, A.; Vanzo, G.; Vazquez Acosta, M.; Vovk, I.; Ward, J. E.; Will, M.; Wu, M. H.; Zarić, D.; MAGIC Collaboration; Cognard, I.; Guillemot, L.
2017-10-01
B1957+20 is a millisecond pulsar located in a black-widow-type compact binary system with a low-mass stellar companion. The interaction of the pulsar wind with the companion star wind and/or the interstellar plasma is expected to create plausible conditions for acceleration of electrons to TeV energies and subsequent production of very high-energy γ-rays in the inverse Compton process. We performed extensive observations with the Major Atmospheric Gamma Imaging Cherenkov Telescopes (MAGIC) telescopes of B1957+20. We interpret results in the framework of a few different models, namely emission from the vicinity of the millisecond pulsar, the interaction of the pulsar and stellar companion wind region or bow shock nebula. No significant steady very high-energy γ-ray emission was found. We derived a 95 per cent confidence level upper limit of 3.0 × 10-12 cm-2 s-1 on the average γ-ray emission from the binary system above 200 GeV. The upper limits obtained with the MAGIC constrain, for the first time, different models of the high-energy emission in B1957+20. In particular, in the inner mixed wind nebula model with mono-energetic injection of electrons, the acceleration efficiency of electrons is constrained to be below ˜2-10 per cent of the pulsar spin-down power. For the pulsar emission, the obtained upper limits for each emission peak are well above the exponential cut-off fits to the Fermi-LAT data, extrapolated to energies above 50 GeV. The MAGIC upper limits can rule out a simple power-law tail extension through the sub-TeV energy range for the main peak seen at radio frequencies.
Features of globular cluster's dynamics with an intermediate-mass black hole
NASA Astrophysics Data System (ADS)
Ryabova, Marina V.; Gorban, Alena S.; Shchekinov, Yuri A.; Vasiliev, Evgenii O.
2018-02-01
In this paper, we address the question of how a central intermediate-mass black hole (IMBH) in a globular cluster (GC) affects dynamics, core collapse, and formation of the binary population. It is shown that the central IMBH forms a binary system that affects dynamics of stars in the cluster significantly. The presence of an intermediate-mass black hole with mass ≥ 1.0-1.7%of the total stellar mass in the cluster inhibits the formation of binary stars population.
NASA Astrophysics Data System (ADS)
Yi, Shu-Xu; Cheng, K.-S.
2017-12-01
The velocity and density distribution of e± in the pulsar wind are crucial distinction among magnetosphere models, and contain key parameters determining the high-energy emission of pulsar binaries. In this work, a direct method is proposed, which might probe the properties of the wind from one pulsar in a double-pulsar binary. When the radio signals from the first-formed pulsar travel through the relativistic e± flow in the pulsar wind from the younger companion, the components of different radio frequencies will be dispersed. It will introduce an additional frequency-dependent time-of-arrival delay of pulses, which is function of the orbital phase. In this paper, we formulate the above-mentioned dispersive delay with the properties of the pulsar wind. As examples, we apply the formula to the double-pulsar system PSR J0737-3039A/B and the pulsar-neutron star binary PSR B1913+16. For PSR J0737-3039A/B, the time delay in 300 MHz is ≲ 10 μ s-1 near the superior conjunction, under the optimal pulsar wind parameters, which is approximately half of the current timing accuracy. For PSR B1913+16, with the assumption that the neutron-star companion has a typical spin-down luminosity of 1033 erg s-1, the time delay is as large as 10 - 20 μ s-1 in 300 MHz. The best timing precision of this pulsar is ∼ 5 μ s-1 in 1400 MHz. Therefore, it is possible that we can find this signal in archival data. Otherwise, we can set an upper limit on the spin-down luminosity. Similar analysis can be applied to other 11 known pulsar-neutron star binaries.
Planets around pulsars - Implications for planetary formation
NASA Technical Reports Server (NTRS)
Bodenheimer, Peter
1993-01-01
Data on planets around pulsars are summarized, and different models intended to explain the formation mechanism are described. Both theoretical and observational evidence suggest that very special circumstances are required for the formation of planetary systems around pulsars, namely, the prior presence of a millisecond pulsar with a close binary companion, probably a low mass main-sequence star. It is concluded that the discovery of two planets around PSR 1257+12 is important for better understanding the problems of dynamics and stellar evolution. The process of planetary formation should be learned through intensive studies of the properties of disks near young objects and application of techniques for detection of planets around main-sequence solar-type stars.
The SUrvey for Pulsars and Extragalactic Radio Bursts - I. Survey description and overview
NASA Astrophysics Data System (ADS)
Keane, E. F.; Barr, E. D.; Jameson, A.; Morello, V.; Caleb, M.; Bhandari, S.; Petroff, E.; Possenti, A.; Burgay, M.; Tiburzi, C.; Bailes, M.; Bhat, N. D. R.; Burke-Spolaor, S.; Eatough, R. P.; Flynn, C.; Jankowski, F.; Johnston, S.; Kramer, M.; Levin, L.; Ng, C.; van Straten, W.; Krishnan, V. Venkatraman
2018-01-01
We describe the Survey for Pulsars and Extragalactic Radio Bursts (SUPERB), an ongoing pulsar and fast transient survey using the Parkes radio telescope. SUPERB involves real-time acceleration searches for pulsars and single-pulse searches for pulsars and fast radio bursts. We report on the observational set-up, data analysis, multiwavelength/messenger connections, survey sensitivities to pulsars and fast radio bursts and the impact of radio frequency interference. We further report on the first 10 pulsars discovered in the project. Among these is PSR J1306-40, a millisecond pulsar in a binary system where it appears to be eclipsed for a large fraction of the orbit. PSR J1421-4407 is another binary millisecond pulsar; its orbital period is 30.7 d. This orbital period is in a range where only highly eccentric binaries are known, and expected by theory; despite this its orbit has an eccentricity of 10-5.
Searching Ultra-compact Pulsar Binaries with Abnormal Timing Behavior
NASA Astrophysics Data System (ADS)
Gong, B. P.; Li, Y. P.; Yuan, J. P.; Tian, J.; Zhang, Y. Y.; Li, D.; Jiang, B.; Li, X. D.; Wang, H. G.; Zou, Y. C.; Shao, L. J.
2018-03-01
Ultra-compact pulsar binaries are both ideal sources of gravitational radiation for gravitational wave detectors and laboratories for fundamental physics. However, the shortest orbital period of all radio pulsar binaries is currently 1.6 hr. The absence of pulsar binaries with a shorter orbital period is most likely due to technique limit. This paper points out that a tidal effect occurring on pulsar binaries with a short orbital period can perturb the orbital elements and result in a significant change in orbital modulation, which dramatically reduces the sensitivity of the acceleration searching that is widely used. Here a new search is proposed. The abnormal timing residual exhibited in a single pulse observation is simulated by a tidal effect occurring on an ultra-compact binary. The reproduction of the main features represented by the sharp peaks displayed in the abnormal timing behavior suggests that pulsars like PSR B0919+06 could be a candidate for an ultra-compact binary of an orbital period of ∼10 minutes and a companion star of a white dwarf star. The binary nature of such a candidate is further tested by (1) comparing the predicted long-term binary effect with decades of timing noise observed and (2) observing the optical counterpart of the expected companion star. Test (1) likely supports our model, while more observations are needed in test (2). Some interesting ultra-compact binaries could be found in the near future by applying such a new approach to other binary candidates.
Runaway stars in the Gum Nebula
NASA Technical Reports Server (NTRS)
Got, J. R., III; Ostriker, J. P.
1971-01-01
It is proposed that the two pulsars PSR 0833-45 (the Vela pulsar) and MP 0835 are runaways from a common binary system originally located in the B association around gamma Velorum. Arguments are presented for a simple model of the Gum nebula in which two distinct ionized regions are present. The first consists of the Stromgren spheres of gamma Velorum and zeta Puppis, while the second is a larger, more filamentary region ionized by the supernova explosion associated with PSR 0833-45. Using this model and the available dispersion measures, the distances to the two pulsars were estimated and found to be compatible with a runaway origin. The position angle of the rotation axis of PSR 0833-45 is also compatible with this origin. The masses of the parent stars of the two pulsars can be deduced from the runaway star dynamics and an assumed age for MP 0835. It is concluded that the masses were in excess of 10 solar masses. The dynamically-determined parent star masses are in agreement with the values expected for evolved members of the B association around gamma Velorum.
NICER Discovers the Ultracompact Orbit of the Accreting Millisecond Pulsar IGR J17062–6143
NASA Astrophysics Data System (ADS)
Strohmayer, T. E.; Arzoumanian, Z.; Bogdanov, S.; Bult, P. M.; Chakrabarty, D.; Enoto, T.; Gendreau, K. C.; Guillot, S.; Harding, A. K.; Ho, W. C. G.; Homan, J.; Jaisawal, G. K.; Keek, L.; Kerr, M.; Mahmoodifar, S.; Markwardt, C. B.; Ransom, S. M.; Ray, P. S.; Remillard, R.; Wolff, M. T.
2018-05-01
We present results of recent Neutron Star Interior Composition Explorer (NICER) observations of the accreting millisecond X-ray pulsar (AMXP) IGR J17062‑6143 that show that it resides in a circular, ultracompact binary with a 38-minute orbital period. NICER observed the source for ≈26 ks over a 5.3-day span in 2017 August, and again for 14 and 11 ks in 2017 October and November, respectively. A power spectral analysis of the August exposure confirms the previous detection of pulsations at 163.656 Hz in Rossi X-ray Timing Explorer (RXTE) data, and reveals phase modulation due to orbital motion of the neutron star. A coherent search for the orbital solution using the Z 2 method finds a best-fitting circular orbit with a period of 2278.21 s (37.97 minutes), a projected semimajor axis of 0.00390 lt-s, and a barycentric pulsar frequency of 163.6561105 Hz. This is currently the shortest known orbital period for an AMXP. The mass function is 9.12 × 10‑8 M ⊙, presently the smallest known for a stellar binary. The minimum donor mass ranges from ≈0.005 to 0.007 M ⊙ for a neutron star mass from 1.2 to 2 M ⊙. Assuming mass transfer is driven by gravitational radiation, we find donor mass and binary inclination bounds of 0.0175–0.0155 M ⊙ and 19° < i < 27.°5, where the lower and upper bounds correspond to 1.4 and 2 M ⊙ neutron stars, respectively. Folding the data accounting for the orbital modulation reveals a sinusoidal profile with fractional amplitude 2.04 ± 0.11% (0.3–3.2 keV).
X-RAY SPECTROSCOPY OF THE HIGH-MASS X-RAY BINARY PULSAR CENTAURUS X-3 OVER ITS BINARY ORBIT
DOE Office of Scientific and Technical Information (OSTI.GOV)
Naik, Sachindra; Ali, Zulfikar; Paul, Biswajit, E-mail: snaik@prl.res.in
2011-08-20
We present a comprehensive spectral analysis of the high-mass X-ray binary (HMXB) pulsar Centaurus X-3 with the Suzaku observatory covering nearly one orbital period. The light curve shows the presence of extended dips which are rarely seen in HMXBs. These dips are seen up to as high as {approx}40 keV. The pulsar spectra during the eclipse, out-of-eclipse, and dips are found to be well described by a partial covering power-law model with high-energy cutoff and three Gaussian functions for 6.4 keV, 6.7 keV, and 6.97 keV iron emission lines. The dips in the light curve can be explained by themore » presence of an additional absorption component with high column density and covering fraction, the values of which are not significant during the rest of the orbital phases. The iron line parameters during the dips and eclipse are significantly different compared to those during the rest of the observation. During the dips, the iron line intensities are found to be lesser by a factor of 2-3 with a significant increase in the line equivalent widths. However, the continuum flux at the corresponding orbital phase is estimated to be lesser by more than an order of magnitude. Similarities in the changes in the iron line flux and equivalent widths during the dips and eclipse segments suggest that the dipping activity in Cen X-3 is caused by an obscuration of the neutron star by dense matter, probably structures in the outer region of the accretion disk, as in the case of dipping low-mass X-ray binaries.« less
X-ray mapping of the stellar wind in the binary PSR J2032+4127/MT91 213
NASA Astrophysics Data System (ADS)
Petropoulou, M.; Vasilopoulos, G.; Christie, I. M.; Giannios, D.; Coe, M. J.
2018-02-01
PSR J2032+4127 is a young and rapidly rotating pulsar on a highly eccentric orbit around the high-mass Be star MT91 213. X-ray monitoring of the binary system over an ˜4000 d period with Swift has revealed an increase of the X-ray luminosity which we attribute to the synchrotron emission of the shocked pulsar wind. We use Swift X-ray observations to infer a clumpy stellar wind with r-2 density profile and constrain the Lorentz factor of the pulsar wind to 105 < γw < 106. We investigate the effects of an axisymmetric stellar wind with polar gradient on the X-ray emission. Comparison of the X-ray light curve hundreds of days before and after the periastron can be used to explore the polar structure of the wind.
Reconciling Optical and Radio Observations of the Binary Millisecond Pulsar PSR J1640+2224
NASA Astrophysics Data System (ADS)
Vigeland, Sarah J.; Deller, Adam T.; Kaplan, David L.; Istrate, Alina G.; Stappers, Benjamin W.; Tauris, Thomas M.
2018-03-01
Previous optical and radio observations of the binary millisecond pulsar PSR J1640+2224 have come to inconsistent conclusions about the identity of its companion, with some observations suggesting that the companion is a low-mass helium-core (He-core) white dwarf (WD), while others indicate that it is most likely a high-mass carbon–oxygen (CO) WD. Binary evolution models predict PSR J1640+2224 most likely formed in a low-mass X-ray binary based on the pulsar’s short spin period and long-period, low-eccentricity orbit, in which case its companion should be a He-core WD with mass about 0.35–0.39 M ⊙, depending on metallicity. If instead it is a CO WD, it would suggest that the system has an unusual formation history. In this paper we present the first astrometric parallax measurement for this system from observations made with the Very Long Baseline Array (VLBA), from which we determine the distance to be {1520}-150+170 {pc}. We use this distance and a reanalysis of archival optical observations originally taken in 1995 with the Wide Field Planetary Camera 2 on the Hubble Space Telescope (HST) to measure the WD’s mass. We also incorporate improvements in calibration, extinction model, and WD cooling models. We find that the existing observations are not sufficient to tightly constrain the companion mass, but we conclude the WD mass is >0.4 M ⊙ with >90% confidence. The limiting factor in our analysis is the low signal-to-noise ratio of the original HST observations.
Magnetic field decay in black widow pulsars
NASA Astrophysics Data System (ADS)
Mendes, Camile; de Avellar, Marcio G. B.; Horvath, J. E.; Souza, Rodrigo A. de; Benvenuto, O. G.; De Vito, M. A.
2018-04-01
We study in this work the evolution of the magnetic field in `redback-black widow' pulsars. Evolutionary calculations of these `spider' systems suggest that first the accretion operates in the redback stage, and later the companion star ablates matter due to winds from the recycled pulsar. It is generally believed that mass accretion by the pulsar results in a rapid decay of the magnetic field when compared to the rate of an isolated neutron star. We study the evolution of the magnetic field in black widow pulsars by solving numerically the induction equation using the modified Crank-Nicolson method with intermittent episodes of mass accretion on to the neutron star. Our results show that the magnetic field does not fall below a minimum value (`bottom field') in spite of the long evolution time of the black widow systems, extending the previous conclusions for much younger low-mass X-ray binary systems. We find that in this scenario, the magnetic field decay is dominated by the accretion rate, and that the existence of a bottom field is likely related to the fact that the surface temperature of the pulsar does not decay as predicted by the current cooling models. We also observe that the impurity of the pulsar crust is not a dominant factor in the decay of magnetic field for the long evolution time of black widow systems.
NASA Technical Reports Server (NTRS)
Ford, E.; Kaaret, P.; Tavani, M.; Barret, D.; Bloser, P.; Grindlay, J.; Harmon, B. A.; Paciesas, W. S.; Zhang, S. N.
1997-01-01
We have detected quasi-periodic oscillations (QPOs) near 1 kHz from the low mass X-ray binary 4U 0614+091 in observations with RXTE. The observations span several months and sample the source over a large range of X-ray luminosity. In every interval QPOs are present above 400 Hz with fractional RMS amplitudes from 3 to 12% over the full PCA band. At high count rates, two high frequency QPOs are detected simultaneously. The difference of their frequency centroids is consistent with a constant value of 323 Hz in all observations. During one interval a third signal is detected at 328 +/- 2 Hz. This suggests the system has a stable 'clock' which is most likely the neutron star with spin period 3.1 msec. Thus, our observations of 4U 0614+091 and those of 4U 1728-34 provide the first evidence for millisecond pulsars within low-mass X-ray binary systems and reveal the 'missing-link' between millisecond radiopulsars and the late stages of binary evolution in low mass X-ray binaries. The constant difference of the high frequency QPOs sug,,ests a beat-frequency interpretation. In this model, the high frequency QPO is associated with the Keplerian frequency of the inner accretion disk and the lower frequency QPO is a 'beat' between the differential rotation frequency of the inner disk and the spinning neutron star. Assuming the high frequency QPO is a Keplerian orbital frequency for the accretion disk, we find a maximum mass of 1.9 solar mass and a maximum radius of 17 km for the neutron star.
A Study of Cen X-3 as Seen by INTEGRAL
NASA Astrophysics Data System (ADS)
La Barbera, A.; Baushev, A.; Ferrigno, C.; Piraino, S.; Santangelo, A.; Segreto, A.; Orlandini, M.; Kretschmar, P.; Kreykenbohm, I.; Wilms, J.; Staubert, R.; Coburn, W.; Heindl, W. A.
2004-10-01
We present a preliminary analysis of 14 observa- tions (Science Windows SCW) of the eclipsing High Mass X ray Binary Pulsar Cen X 3 taken during the Galactic Plane Scan (GPS) with INTEGRAL. The source was detected in 4 SCWs by JEM-X for a total exposure time of 8.7 ksec and in 11 SCWs by ISGRI for a total exposure time of 23.8 ksec. The study of the pulse profile is reported. The 10 70 keV spec- trum is also described. The results are compared with those from previous X ray missions. Key words: pulsars, individual: Cen X 3; stars: neu- tron stars; X rays: binaries.
NASA Astrophysics Data System (ADS)
Babak, S.; Petiteau, A.; Sesana, A.; Brem, P.; Rosado, P. A.; Taylor, S. R.; Lassus, A.; Hessels, J. W. T.; Bassa, C. G.; Burgay, M.; Caballero, R. N.; Champion, D. J.; Cognard, I.; Desvignes, G.; Gair, J. R.; Guillemot, L.; Janssen, G. H.; Karuppusamy, R.; Kramer, M.; Lazarus, P.; Lee, K. J.; Lentati, L.; Liu, K.; Mingarelli, C. M. F.; Osłowski, S.; Perrodin, D.; Possenti, A.; Purver, M. B.; Sanidas, S.; Smits, R.; Stappers, B.; Theureau, G.; Tiburzi, C.; van Haasteren, R.; Vecchio, A.; Verbiest, J. P. W.
2016-01-01
We have searched for continuous gravitational wave (CGW) signals produced by individually resolvable, circular supermassive black hole binaries (SMBHBs) in the latest European Pulsar Timing Array (EPTA) data set, which consists of ultraprecise timing data on 41-ms pulsars. We develop frequentist and Bayesian detection algorithms to search both for monochromatic and frequency-evolving systems. None of the adopted algorithms show evidence for the presence of such a CGW signal, indicating that the data are best described by pulsar and radiometer noise only. Depending on the adopted detection algorithm, the 95 per cent upper limit on the sky-averaged strain amplitude lies in the range 6 × 10-15 < A < 1.5 × 10-14 at 5 nHz < f < 7 nHz. This limit varies by a factor of five, depending on the assumed source position and the most constraining limit is achieved towards the positions of the most sensitive pulsars in the timing array. The most robust upper limit - obtained via a full Bayesian analysis searching simultaneously over the signal and pulsar noise on the subset of ours six best pulsars - is A ≈ 10-14. These limits, the most stringent to date at f < 10 nHz, exclude the presence of sub-centiparsec binaries with chirp mass M_c>10^9 M_{⊙} out to a distance of about 25 Mpc, and with M_c>10^{10} M_{⊙} out to a distance of about 1Gpc (z ≈ 0.2). We show that state-of-the-art SMBHB population models predict <1 per cent probability of detecting a CGW with the current EPTA data set, consistent with the reported non-detection. We stress, however, that PTA limits on individual CGW have improved by almost an order of magnitude in the last five years. The continuing advances in pulsar timing data acquisition and analysis techniques will allow for strong astrophysical constraints on the population of nearby SMBHBs in the coming years.
A deep survey of the X-ray binary populations in the SMC
NASA Astrophysics Data System (ADS)
Zezas, A.; Antoniou, V.
2017-10-01
The Small Magellanic Cloud (SMC) has been the subject of systematic X-ray surveys over the past two decades, which have yielded a rich population of high-mass X-ray binaries consisting predominantly of Be/X-ray binaries. We present results from our deep Chandra survey of the SMC which targeted regions with stellar populations ranging between ˜10-100 Myr. X-ray luminosities down to ˜3×10^{32} erg/s were reached, probing all active accreting binaries and extending well into the regime of quiescent accreting binaries and X-ray emitting normal stars. We measure the dependence of the formation efficiency of X-ray binaries on age. We also detect pulsations from 19 known and one new candidate pulsar. We construct the X-ray luminosity function in different regions of the SMC, which shows clear evidence for the propeller effect the centrifugal inhibition of accretion due to the interaction of the accretion flow with the pulsar's magnetic field. Finally we compare these results with predictions for the formation efficiency of X-ray binaries as a function of age from X-ray binary population synthesis models.
Radius of the neutron star magnetosphere during disk accretion
NASA Astrophysics Data System (ADS)
Filippova, E. V.; Mereminskiy, I. A.; Lutovinov, A. A.; Molkov, S. V.; Tsygankov, S. S.
2017-11-01
The dependence of the spin frequency derivative \\dot ν of accreting neutron stars with a strongmagnetic field (X-ray pulsars) on the mass accretion rate (bolometric luminosity, L bol) has been investigated for eight transient pulsars in binary systems with Be stars. Using data from the Fermi/GBM and Swift/BAT telescopes, we have shown that for seven of the eight systems the dependence \\dot ν ( L bol) can be fitted by the model of angular momentum transfer through an accretion disk, which predicts the relation \\dot ν ˜ L 6/7 bol. Hysteresis in the dependence \\dot ν ( L bol) has been confirmed in the system V 0332+53 and has been detected for the first time in the systems KS 1947+300, GRO J1008-57, and 1A 0535+26. Estimates for the radius of the neutron star magnetosphere in all of the investigated systems have been obtained. We show that this quantity varies from pulsar to pulsar and depends strongly on the analytical model and the estimates for the neutron star and binary system parameters.
VizieR Online Data Catalog: 10 new pulsars in Arecibo drift-scan survey (Lorimer+, 2005)
NASA Astrophysics Data System (ADS)
Lorimer, D. R.; Xilouris, K. M.; Fruchter, A. S.; Stairs, I. H.; Camilo, F.; Vazquez, A. M.; Eder, J. A.; McLaughlin, M. A.; Roberts, M. S. E.; Hessels, J. W. T.; Ransom, S. M.
2006-02-01
We present the results of a 430-MHz survey for pulsars conducted during the upgrade to the 305-m Arecibo radio telescope. Our survey covered a total of 1147deg2 of sky using a drift-scan technique. We detected 33 pulsars, 10 of which were not known prior to the survey observations. The highlight of the new discoveries is PSR J0407+1607, which has a spin period of 25.7ms, a characteristic age of 1.5Gyr and is in a 1.8-yr orbit about a low-mass (>0.2M) companion. The long orbital period and small eccentricity (e=0.0009) make the binary system an important new addition to the ensemble of binary pulsars suitable to test for violations of the strong equivalence principle. We also report on our initially unsuccessful attempts to detect optically the companion to J0407+1607, which imply that its absolute visual magnitude is >12.1. If, as expected on evolutionary grounds, the companion is an He white dwarf, our non-detection implies a cooling age of least 1Gyr. (3 data files).
State-change in the "transition" binary millisecond pulsar J1023+0038
NASA Astrophysics Data System (ADS)
Stappers, B. W.; Archibald, A.; Bassa, C.; Hessels, J.; Janssen, G.; Kaspi, V.; Lyne, A.; Patruno, A.; Hill, A. B.
2013-10-01
We report a change in the state of PSR J1023+0038, a source which is believed to be transitioning from an X-ray binary to an eclipsing binary radio millisecond pulsar (Archibald et al. 2009, Science, 324, 1411). The system was known to contain an accretion disk in 2001 but has shown no signs of it, or of accretion, since then, rather exhibiting all the properties of an eclipsing binary millisecond radio pulsar (MSP).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Takata, J.; Tam, P. H. T.; Ng, C. W.
PSR J2032+4127 is a radio-loud gamma-ray-emitting pulsar; it is orbiting around a high-mass Be type star with a very long orbital period of 25–50 years, and is approaching periastron, which will occur in late 2017/early 2018. This system comprises a young pulsar and a Be type star, which is similar to the so-called gamma-ray binary PSR B1259–63/LS2883. It is expected therefore that PSR J2032+4127 shows an enhancement of high-energy emission caused by the interaction between the pulsar wind and Be wind/disk around periastron. Ho et al. recently reported a rapid increase in the X-ray flux from this system. In thismore » paper, we also confirm a rapid increase in the X-ray flux along the orbit, while the GeV flux shows no significant change. We discuss the high-energy emissions from the shock caused by the pulsar wind and stellar wind interaction and examine the properties of the pulsar wind in this binary system. We argue that the rate of increase of the X-ray flux observed by Swift indicates (1) a variation of the momentum ratio of the two-wind interaction region along the orbit, or (2) an evolution of the magnetization parameter of the pulsar wind with the radial distance from the pulsar. We also discuss the pulsar wind/Be disk interaction at the periastron passage, and propose the possibility of formation of an accretion disk around the pulsar. We model high-energy emissions through the inverse-Compton scattering process of the cold-relativistic pulsar wind off soft photons from the accretion disk.« less
Identification of the Hard X-Ray Source Dominating the E > 25 keV Emission of the Nearby Galaxy M31
NASA Technical Reports Server (NTRS)
Yukita, M.; Ptak, A.; Hornschemeier, A. E.; Wik, D.; Maccarone, T.J.; Pottschmidt, Katja; Zezas, A.; Antoniou, V.; Ballhausen, R.; Lehmer, B.D.;
2017-01-01
We report the identification of a bright hard X-ray source dominating the M31 bulge above 25 kiloelectronvolts from a simultaneous NuSTAR-Swift observation. We find that this source is the counterpart to Swift J0042.6+4112, which was previously detected in the Swift BAT All-Sky Hard X-Ray Survey. This Swift BAT source had been suggested to be the combined emission from a number of point sources; our new observations have identified a single X-ray source from 0.5 to 50 kiloelectronvolts as the counterpart for the first time. In the 0.5-10 kiloelectronvolt band, the source had been classified as an X-ray Binary candidate in various Chandra and XMM-Newton studies; however, since it was not clearly associated with Swift J0042.6+4112, the previous E is less than 10 kiloelectronvolts observations did not generate much attention. This source has a spectrum with a soft X-ray excess (kT approximately equal to 0.2 kiloelectronvolts) plus a hard spectrum with a power law of gamma approximately equal to 1 and a cutoff around 15-20 kiloelectronvolts, typical of the spectral characteristics of accreting pulsars. Unfortunately, any potential pulsation was undetected in the NuSTAR data, possibly due to insufficient photon statistics. The existing deep HST (Hubble Space Telescope) images exclude high-mass (greater than 3 times the radius of the moon) donors at the location of this source. The best interpretation for the nature of this source is an X-ray pulsar with an intermediate-mass (less than 3 times the radius of the moon M) companion or a symbiotic X-ray binary. We discuss other possibilities in more detail.
Identification of the Hard X-Ray Source Dominating the E > 25 keV Emission of the Nearby Galaxy M31
NASA Technical Reports Server (NTRS)
Yukita, M.; Ptak, A.; Hornschemeier, A. E.; Wik, D.; Maccarone, T. J.; Pottschmidt, K.; Zezas, A.; Antoniou, V.; Ballhausen, R.; Lehmer, B. D.;
2017-01-01
We report the identification of a bright hard X-ray source dominating the M31 bulge above 25 keV from a simultaneous NuSTAR-Swift observation. We find that this source is the counterpart to Swift J0042.6+4112, which was previously detected in the Swift BAT All-Sky Hard X-Ray Survey. This Swift BAT source had been suggested to be the combined emission from a number of point sources; our new observations have identified a single X-ray source from 0.5 to 50 keV as the counterpart for the first time. In the 0.5-10 keV band, the source had been classified as an X-ray Binary candidate in various Chandra and XMM-Newton studies; however, since it was not clearly associated with Swift J0042.6+4112, the previous E is less than 10keVobservations did not generate much attention. This source has a spectrum with a soft X-ray excess (kT approximately equal to 0.2 keV) plus a hard spectrum with a power law of gamma approximately equal to 1 and a cutoff around 15-20 keV, typical of the spectral characteristics of accreting pulsars. Unfortunately, any potential pulsation was undetected in the NuSTAR data, possibly due to insufficient photon statistics. The existing deep HST (Hubble Space Telescope) images exclude high-mass (greater than 3 times the radius of the moon) donors at the location of this source. The best interpretation for the nature of this source is an X-ray pulsar with an intermediate-mass (less than 3 times the radius of the moon M) companion or a symbiotic X-ray binary. We discuss other possibilities in more detail.
Pulsar J1411+2551: A Low-mass Double Neutron Star System
NASA Astrophysics Data System (ADS)
Martinez, J. G.; Stovall, K.; Freire, P. C. C.; Deneva, J. S.; Tauris, T. M.; Ridolfi, A.; Wex, N.; Jenet, F. A.; McLaughlin, M. A.; Bagchi, M.
2017-12-01
In this work, we report the discovery and characterization of PSR J1411+2551, a new binary pulsar discovered in the Arecibo 327 MHz Drift Pulsar Survey. Our timing observations of the radio pulsar in the system span a period of about 2.5 years. This timing campaign allowed a precise measurement of its spin period (62.4 ms) and its derivative (9.6 ± 0.7) × 10‑20 s s‑1 from these, we derive a characteristic age of >9.1 Gyr and a surface magnetic field strength of <2.6 × 109 G. These numbers indicate that this pulsar was mildly recycled by accretion of matter from the progenitor of the companion star. The system has an eccentric (e = 0.17) 2.61 day orbit. This eccentricity allows a highly significant measurement of the rate of advance of periastron, \\dot{ω } =0.07686+/- 0.00046^\\circ {{yr}}-1. Assuming general relativity accurately describes the orbital motion, this implies a total system mass M = 2.538 ± 0.022 M ⊙. The minimum companion mass is 0.92 M ⊙ and the maximum pulsar mass is 1.62 M ⊙. The large companion mass and the orbital eccentricity suggest that PSR J1411+2551 is a double neutron star system; the lightest known to date including the DNS merger GW170817. Furthermore, the relatively low orbital eccentricity and small proper motion limits suggest that the second supernova had a relatively small associated kick; this and the low system mass suggest that it was an ultra-stripped supernova.
Mass transfer in white dwarf-neutron star binaries
NASA Astrophysics Data System (ADS)
Bobrick, Alexey; Davies, Melvyn B.; Church, Ross P.
2017-05-01
We perform hydrodynamic simulations of mass transfer in binaries that contain a white dwarf and a neutron star (WD-NS binaries), and measure the specific angular momentum of material lost from the binary in disc winds. By incorporating our results within a long-term evolution model, we measure the long-term stability of mass transfer in these binaries. We find that only binaries containing helium white dwarfs (WDs) with masses less than a critical mass of MWD, crit = 0.2 M⊙ undergo stable mass transfer and evolve into ultracompact X-ray binaries. Systems with higher mass WDs experience unstable mass transfer, which leads to tidal disruption of the WD. Our low critical mass compared to the standard jet-only model of mass-loss arises from the efficient removal of angular momentum in the mechanical disc winds, which develop at highly super-Eddington mass-transfer rates. We find that the eccentricities expected for WD-NS binaries when they come into contact do not affect the loss of angular momentum, and can only affect the long-term evolution if they change on shorter time-scales than the mass-transfer rate. Our results are broadly consistent with the observed numbers of both ultracompact X-ray binaries and radio pulsars with WD companions. The observed calcium-rich gap transients are consistent with the merger rate of unstable systems with higher mass WDs.
A population of gamma-ray millisecond pulsars seen with the Fermi Large Area Telescope.
Abdo, A A; Ackermann, M; Ajello, M; Atwood, W B; Axelsson, M; Baldini, L; Ballet, J; Barbiellini, G; Baring, M G; Bastieri, D; Baughman, B M; Bechtol, K; Bellazzini, R; Berenji, B; Bignami, G F; Blandford, R D; Bloom, E D; Bonamente, E; Borgland, A W; Bregeon, J; Brez, A; Brigida, M; Bruel, P; Burnett, T H; Caliandro, G A; Cameron, R A; Camilo, F; Caraveo, P A; Carlson, P; Casandjian, J M; Cecchi, C; Celik, O; Charles, E; Chekhtman, A; Cheung, C C; Chiang, J; Ciprini, S; Claus, R; Cognard, I; Cohen-Tanugi, J; Cominsky, L R; Conrad, J; Corbet, R; Cutini, S; Dermer, C D; Desvignes, G; de Angelis, A; de Luca, A; de Palma, F; Digel, S W; Dormody, M; do Couto e Silva, E; Drell, P S; Dubois, R; Dumora, D; Edmonds, Y; Farnier, C; Favuzzi, C; Fegan, S J; Focke, W B; Frailis, M; Freire, P C C; Fukazawa, Y; Funk, S; Fusco, P; Gargano, F; Gasparrini, D; Gehrels, N; Germani, S; Giebels, B; Giglietto, N; Giordano, F; Glanzman, T; Godfrey, G; Grenier, I A; Grondin, M H; Grove, J E; Guillemot, L; Guiriec, S; Hanabata, Y; Harding, A K; Hayashida, M; Hays, E; Hobbs, G; Hughes, R E; Jóhannesson, G; Johnson, A S; Johnson, R P; Johnson, T J; Johnson, W N; Johnston, S; Kamae, T; Katagiri, H; Kataoka, J; Kawai, N; Kerr, M; Knödlseder, J; Kocian, M L; Kramer, M; Kuss, M; Lande, J; Latronico, L; Lemoine-Goumard, M; Longo, F; Loparco, F; Lott, B; Lovellette, M N; Lubrano, P; Madejski, G M; Makeev, A; Manchester, R N; Marelli, M; Mazziotta, M N; McConville, W; McEnery, J E; McLaughlin, M A; Meurer, C; Michelson, P F; Mitthumsiri, W; Mizuno, T; Moiseev, A A; Monte, C; Monzani, M E; Morselli, A; Moskalenko, I V; Murgia, S; Nolan, P L; Norris, J P; Nuss, E; Ohsugi, T; Omodei, N; Orlando, E; Ormes, J F; Paneque, D; Panetta, J H; Parent, D; Pelassa, V; Pepe, M; Pesce-Rollins, M; Piron, F; Porter, T A; Rainò, S; Rando, R; Ransom, S M; Ray, P S; Razzano, M; Rea, N; Reimer, A; Reimer, O; Reposeur, T; Ritz, S; Rochester, L S; Rodriguez, A Y; Romani, R W; Roth, M; Ryde, F; Sadrozinski, H F W; Sanchez, D; Sander, A; Saz Parkinson, P M; Scargle, J D; Schalk, T L; Sgrò, C; Siskind, E J; Smith, D A; Smith, P D; Spandre, G; Spinelli, P; Stappers, B W; Starck, J L; Striani, E; Strickman, M S; Suson, D J; Tajima, H; Takahashi, H; Tanaka, T; Thayer, J B; Thayer, J G; Theureau, G; Thompson, D J; Thorsett, S E; Tibaldo, L; Torres, D F; Tosti, G; Tramacere, A; Uchiyama, Y; Usher, T L; Van Etten, A; Vasileiou, V; Venter, C; Vilchez, N; Vitale, V; Waite, A P; Wallace, E; Wang, P; Watters, K; Webb, N; Weltevrede, P; Winer, B L; Wood, K S; Ylinen, T; Ziegler, M
2009-08-14
Pulsars are born with subsecond spin periods and slow by electromagnetic braking for several tens of millions of years, when detectable radiation ceases. A second life can occur for neutron stars in binary systems. They can acquire mass and angular momentum from their companions, to be spun up to millisecond periods and begin radiating again. We searched Fermi Large Area Telescope data for pulsations from all known millisecond pulsars (MSPs) outside of globular clusters, using rotation parameters from radio telescopes. Strong gamma-ray pulsations were detected for eight MSPs. The gamma-ray pulse profiles and spectral properties resemble those of young gamma-ray pulsars. The basic emission mechanism seems to be the same for MSPs and young pulsars, with the emission originating in regions far from the neutron star surface.
The High Time Resolution Universe surveys for pulsars and fast transients
NASA Astrophysics Data System (ADS)
Keith, Michael J.
2013-03-01
The High Time Resolution Universe survey for pulsars and transients is the first truly all-sky pulsar survey, taking place at the Parkes Radio Telescope in Australia and the Effelsberg Radio Telescope in Germany. Utilising multibeam receivers with custom built all-digital recorders the survey targets the fastest millisecond pulsars and radio transients on timescales of 64 μs to a few seconds. The new multibeam digital filter-bank system at has a factor of eight improvement in frequency resolution over previous Parkes multibeam surveys, allowing us to probe further into the Galactic plane for short duration signals. The survey is split into low, mid and high Galactic latitude regions. The mid-latitude portion of the southern hemisphere survey is now completed, discovering 107 previously unknown pulsars, including 26 millisecond pulsars. To date, the total number of discoveries in the combined survey is 135 and 29 MSPs These discoveries include the first magnetar to be discovered by it's radio emission, unusual low-mass binaries, gamma-ray pulsars and pulsars suitable for pulsar timing array experiments.
The Binary Pulsar: Gravity Waves Exist.
ERIC Educational Resources Information Center
Will, Clifford
1987-01-01
Reviews the history of pulsars generally and the 1974 discovery of the binary pulsar by Joe Taylor and Russell Hulse specifically. Details the data collection and analysis used by Taylor and Hulse. Uses this discussion as support for Albert Einstein's theory of gravitational waves. (CW)
On the Dramatic Spin-up/Spin-Down Torque Reversals in Accreting Pulsars
NASA Technical Reports Server (NTRS)
Nelson, Robert W.; Bildsten, Lars; Chakrabarty, Deepto; Finger, Mark H.; Koh, Danny T.; Prince, Thomas A.; Rubin, Bradley C.; Scott, D. Mathew; Vaughan, Brian A.; Wilson, Robert B.
1997-01-01
Dramatic torque reversals between spin-up and spin-down have been observed in half of the persistent X-ray pulsars monitored by the Burst and Transient Space Experiment (BATSE) all-sky monitor on the Compton Gamma Ray Observatory. Theoretical models developed to explain early pulsar timing data can explain spin-down torques via a disk-magnetosphere interaction if the star nearly corotates with the inner accretion disk. To produce the observed BATSE torque reversals, however, these equilibrium models require the disk to alternate between two mass accretion rates, with M+/- producing accretion torques of similar magnitude but always of opposite sign. Moreover, in at least one pulsar (GX 1+4) undergoing secular spin-down, the neutron star spins down faster during brief (approximately 20 day) hard X-ray flares-this is opposite the correlation expected from standard theory, assuming that BATSE pulsed flux increases with mass accretion rate. The 10 day to 10 yr intervals between torque reversals in these systems are much longer than any characteristic magnetic or viscous timescale near the inner disk boundary and are more suggestive of a global disk phenomenon. We discuss possible explanations of the observed torque behavior. Despite the preferred sense of rotation defined by the binary orbit, the BATSE observations are surprisingly consistent with an earlier suggestion for GX 1+4: the disks in these systems somehow alternate between episodes of prograde and retrograde rotation. We are unaware of any mechanism that could produce a stable retrograde disk in a binary undergoing Roche lobe overflow, but such flip-flop behavior does occur in numerical simulations of wind-fed systems. One possibility is that the disks in some of these binaries are fed by an X-ray-excited wind.
Understanding The Time Evolution Of Luminosity And Associated Accretion Structures In X-Ray Pulsars
NASA Astrophysics Data System (ADS)
Laycock, Silas
We propose to analyze the large archive of RXTE, XMM-Newton and Chandra observations of X-ray Binary Pulsars in the Magellanic Clouds and Milky Way. There are some 2000 individual RXTE PCA pointings on the SMC spanning 15 years, and a smaller number on the LMC. Each PCA observation covers a large fraction of the whole SMC (or LMC) population, and we are able to deconvolve the sometimes simultaneous signals to create an unrivaled record of pulsar temporal behavior. More than 200 XMM- Newton and Chandra observations of the SMC/LMC and individual Galactic pulsars provide information at lower luminosity levels. Together, these datasets cover the entire range of variability timescales and accretion regimes in High Mass X-ray Binaries. We will produce a comprehensive library of energy- resolved pulse profiles covering the entire luminosity and spin-period parameter space, and make this available to the community. We will then model these pulse profiles using state of the art techniques to parameterize the morphology, and publish the resulting data-cube. This result will include for example the distribution of offsets between magnetic and spin axes. These products are needed for the next generation of advances in neutron star theory and modeling. The unique dataset will also enable us to determine the upper and lower limits of accretion powered luminosity in a large statistically complete sample of neutron stars, and hence make several direct tests of fundamental NS parameters and accretion physics. In addition the long-duration of the dataset and "whole-galaxy" nature of the SMC sample make possible a new statistical approach to uncover the duty-cycle distribution and hence population demographics of transient High Mass X-ray Binary (HMXB) populations.
A PROPELLER MODEL FOR THE SUB-LUMINOUS STATE OF THE TRANSITIONAL MILLISECOND PULSAR PSR J1023+0038
DOE Office of Scientific and Technical Information (OSTI.GOV)
Papitto, A.; Torres, D. F.
The discovery of millisecond pulsars switching between states powered either by the rotation of their magnetic field or by the accretion of matter has recently proved the tight link shared by millisecond radio pulsars and neutron stars in low-mass X-ray binaries. Transitional millisecond pulsars also show an enigmatic intermediate state in which the neutron star is surrounded by an accretion disk and emits coherent X-ray pulsations, but is sub-luminous in X-rays with respect to accreting neutron stars, and is brighter in gamma-rays than millisecond pulsars in the rotation-powered state. Here, we model the X-ray and gamma-ray emission observed from PSR J1023+0038more » in such a state based on the assumptions that most of the disk in-flow is propelled away by the rapidly rotating neutron star magnetosphere, and that electrons can be accelerated to energies of a few GeV at the turbulent disk–magnetosphere boundary. We show that the synchrotron and self-synchrotron Compton emission coming from such a region, together with the hard disk emission typical of low states of accreting compact objects, is able to explain the radiation observed in the X-ray and gamma-ray bands. The average emission observed from PSR J1023+0038 is modeled by a disk in-flow with a rate of 1–3 × 10{sup −11} M{sub ⊙} yr{sup −1}, truncated at a radius ranging between 30 and 45 km, compatible with the hypothesis of a propelling magnetosphere. We compare the results we obtained with models that assume that a rotation-powered pulsar is turned on, showing how the spin-down power released in similar scenarios is hardly able to account for the magnitude of the observed emission.« less
GBM Observations of Be X-Ray Binary Outbursts
NASA Technical Reports Server (NTRS)
Wilson-Hodge, Colleen A.; Finger, M. H.; Jenke, P. A.
2014-01-01
Since 2008 we have been monitoring accreting pulsars using the Gamma ray Burst Monitor (GBM) on Fermi. This monitoring program includes daily blind full sky searches for previously unknown or previously quiescent pulsars and source specific analysis to track the frequency evolution of all detected pulsars. To date we have detected outbursts from 23 transient accreting pulsars, including 21 confirmed or likely Be/X-ray binaries. I will describe our techniques and highlight results for selected pulsars.
Black hole/pulsar binaries in the Galaxy
NASA Astrophysics Data System (ADS)
Shao, Yong; Li, Xiang-Dong
2018-06-01
We have performed population synthesis calculation on the formation of binaries containing a black hole (BH) and a neutron star (NS) in the Galactic disc. Some of important input parameters, especially for the treatment of common envelope evolution, are updated in the calculation. We have discussed the uncertainties from the star formation rate of the Galaxy and the velocity distribution of NS kicks on the birthrate (˜ 0.6-13 M yr^{-1}) of BH/NS binaries. From incident BH/NS binaries, by modelling the orbital evolution due to gravitational wave radiation and the NS evolution as radio pulsars, we obtain the distributions of the observable parameters such as the orbital period, eccentricity, and pulse period of the BH/pulsar binaries. We estimate that there may be ˜3-80 BH/pulsar binaries in the Galactic disc and around 10 per cent of them could be detected by the Five-hundred-metre Aperture Spherical radio Telescope.
The confrontation between general relativity and experiment
NASA Technical Reports Server (NTRS)
Will, C. M.
1980-01-01
Experiments that test the foundations of gravitation theory in terms of the Einstein equivalence principle are discussed along with solar system tests of general relativity at the post-Newtonian level. These include classical (light-deflection, time delay and perihelion shift) tests as well as tests of the strong equivalence principle. The binary pulsar is discussed as an extra-solar-system gravitational testing ground, and attention is given to the multipolarity of the waves and the amount of radiation damping. The mass function, periastron shift, redshift-Doppler parameter and rate of change of the orbit period (Pb) of the binary pulsar are also considered, and it is suggested that the measurement of Pb represents the first observation of the effects of gravitational radiation.
PALFA Discovery of a Highly Relativistic Double Neutron Star Binary
NASA Astrophysics Data System (ADS)
Stovall, K.; Freire, P. C. C.; Chatterjee, S.; Demorest, P. B.; Lorimer, D. R.; McLaughlin, M. A.; Pol, N.; van Leeuwen, J.; Wharton, R. S.; Allen, B.; Boyce, M.; Brazier, A.; Caballero, K.; Camilo, F.; Camuccio, R.; Cordes, J. M.; Crawford, F.; Deneva, J. S.; Ferdman, R. D.; Hessels, J. W. T.; Jenet, F. A.; Kaspi, V. M.; Knispel, B.; Lazarus, P.; Lynch, R.; Parent, E.; Patel, C.; Pleunis, Z.; Ransom, S. M.; Scholz, P.; Seymour, A.; Siemens, X.; Stairs, I. H.; Swiggum, J.; Zhu, W. W.
2018-02-01
We report the discovery and initial follow-up of a double neutron star (DNS) system, PSR J1946+2052, with the Arecibo L-Band Feed Array pulsar (PALFA) survey. PSR J1946+2052 is a 17 ms pulsar in a 1.88 hr, eccentric (e = 0.06) orbit with a ≳1.2 M ⊙ companion. We have used the Jansky Very Large Array to localize PSR J1946+2052 to a precision of 0.″09 using a new phase binning mode. We have searched multiwavelength catalogs for coincident sources but did not find any counterparts. The improved position enabled a measurement of the spin period derivative of the pulsar (\\dot{P}=9+/- 2× {10}-19); the small inferred magnetic field strength at the surface (B S = 4 × 109 G) indicates that this pulsar has been recycled. This and the orbital eccentricity lead to the conclusion that PSR J1946+2052 is in a DNS system. Among all known radio pulsars in DNS systems, PSR J1946+2052 has the shortest orbital period and the shortest estimated merger timescale, 46 Myr; at that time it will display the largest spin effects on gravitational-wave waveforms of any such system discovered to date. We have measured the advance of periastron passage for this system, \\dot{ω }=25.6+/- 0.3 \\deg {yr}}-1, implying a total system mass of only 2.50 ± 0.04 M ⊙, so it is among the lowest-mass DNS systems. This total mass measurement combined with the minimum companion mass constrains the pulsar mass to ≲1.3 M ⊙.
X-ray astronomy from Uhuru to HEAO-1
NASA Technical Reports Server (NTRS)
Clark, G. W.
1981-01-01
The nature of galactic and extragalactic X-ray sources is investigated using observations made with nine satellites and several rockets. The question of X-ray pulsars being neutron stars or white dwarfs is considered, as is the nature of Population II and low-luminosity X-ray stars, the diffuse X-ray emission from clusters of galaxies, the unidentified high-galactic-latitude (UHGL) sources, and the unresolved soft X-ray background. The types of sources examined include binary pulsars, Population II X-ray stars (both nonbursters and bursters) inside and outside globular clusters, coronal X-ray emitters, and active galactic nuclei. It is concluded that: (1) X-ray pulsars are strongly magnetized neutron stars formed in the evolution of massive close binaries; (2) all Population II X-ray stars are weakly magnetized or nonmagnetic neutron stars accreting from low-mass companions in close binary systems; (3) the diffuse emission from clusters is thermal bremsstrahlung of hot matter processed in stars and swept out by ram pressure exerted by the intergalactic gas; (4) most or all of the UHGL sources are active galactic nuclei; and (5) the soft X-ray background is emission from a hot component of the interstellar medium.
Physics of systems containing neutron stars
NASA Technical Reports Server (NTRS)
Ruderman, Malvin
1996-01-01
This grant dealt with several topics related to the dynamics of systems containing a compact object. Most of the research dealt with systems containing Neutron Stars (NS's), but a Black Hole (BH) or a White Dwarf (WD) in situations relevant to NS systems were also addressed. Among the systems were isolated regular pulsars, Millisecond Pulsars (MSP's) that are either Single (SMP's) or in a binary (BMP's), Low Mass X-Ray Binaries (LMXB's) and Cataclysmic Variables (CV's). Also dealt with was one aspect of NS structure, namely NS superfluidity. A large fraction of the research dealt with irradiation-driven winds from companions which turned out to be of importance in the evolution of LMXB's and MSP's, be they SMP's or BMP's. While their role during LMXB evolution (i.e. during the accretion phase) is not yet clear, they may play an important role in turning BMP's into SMP's and also in bringing about the formation of planets around MSP's. Work was concentrated on the following four problems: The Windy Pulsar B197+20 and its Evolution; Wind 'Echoes' in Tight Binaries; Post Nova X-ray Emission in CV's; and Dynamics of Pinned Superfluids in Neutron Stars.
Hunting for swinging millisecond pulsars with XMM-Newton
NASA Astrophysics Data System (ADS)
Papitto, Alessandro
2013-10-01
The recent XMM discovery of a millisecond pulsar swinging between an accretion- powered (X-ray) and a rotation-powered (radio) pulsar state provided the final evidence of the evolutionary link between these two classes, demonstrating that transitions between the two states can be observed over of a few weeks. We propose a ToO program (made of 3 triggers of 60 ks, over a 3years timescale) aimed at detecting X-ray accretion powered pulsations in sources already known as ms radio pulsars. Candidates are restricted to black widows and redbacks, systems in an evolutionary phase that allows state transitions. Enlarging the number of systems in this transitional phase is crucial to test binary evolution theories, and to study the disk-field interaction over a large range of mass accretion rates.
Pulsars as Calibration Tools and X-Ray Observations of Spider Pulsars
NASA Astrophysics Data System (ADS)
Gentile, Peter Anthony
We present the polarization pulse profiles for 29 pulsars observed with the Arecibo Observatory by the North American Nanohertz Observatory for Gravitational Waves (NANOGrav) timing project at 2.1 GHz, 1.4 GHz, and 430 MHz. These profiles represent the most sensitive polarimetric millisecond pulsar profiles to date, revealing the existence of microcomponents (that is, pulse components with peak intensities much lower than the total pulse peak intensity). Although microcomponents have been detected in some pulsars previously, we are able to detect new microcomponents for PSRs B1937+21, J1713+0747, and J2234+0944. We also present rotation measures for 28 of these pulsars, determined independently at different observation frequencies and epochs, and find the Galactic magnetic fields derived from these rotation measures to be consistent with current models. These polarization profiles were made using measurement equation template matching, which allows us to generate the polarimetric response of the Arecibo Observatory on an epoch-by-epoch basis. We use this method to describe its time variability, and find that the polarimetric responses of the Arecibo Observatory's 1.4 and 2.1 GHz receivers varies significantly with time. We then describe the first X-ray observations of five short orbital period (PB < 1 day), gamma-ray emitting, binary millisecond pulsars. Four of these--PSRs J0023+0923, J1124-3653, J1810+1744, and J2256-1024--are "black-widow" pulsars, with degenerate companions of mass 0.1 solar mass, three of which exhibit radio eclipses. The fifth source, PSR J2215+5135, is an eclipsing "redback" with a near Roche-lobe filling 0.2 solar mass non-degenerate companion. Data were taken using the Chandra X-Ray Observatory and covered a full binary orbit for each pulsar. Two pulsars, PSRs J2215+5135 and J2256-1024, show significant orbital variability while PSR J1124-3653 shows marginal orbital variability. The lightcurves for these three pulsars have X-ray flux minima coinciding with the phases of the radio eclipses. This phenomenon is consistent with an intrabinary shock emission interpretation for the X-rays. The other two pulsars, PSRs J0023+0923 and J1810+1744, are fainter and do not demonstrate variability at a level we can detect in these data. All five spectra are fit with three separate models: a power-law model, a blackbody model, and a combined model with both power-law and blackbody components. The preferred spectral fits yield power-law indices that range from 1.3 to 3.2 and blackbody temperatures in the hundreds of eV. The spectrum for PSR J2215+5135 shows a significant hard X-ray component, with a large number of counts above 2 keV, which is additional evidence for the presence of intrabinary shock emission. This is similar to what has been detected in the low-mass X-ray binary to MSP transition object PSR J1023+0038. We also describe X-Ray observations of three "redback" pulsars taken with the XMM-Newton X-Ray telescope, and cover at least one orbit for each source. We had previously analyzed data for one of these sources, PSR J2215+5135, taken with the Chandra X-Ray Observatory . These new observations also show orbital variability in PSR J2215+5135's X-Ray lightcurve, including an X-Ray minimum near superior conjunction, and the increased sensitivity allows us to see two clear features away from superior conjunction. For the other two sources, PSRs J1622-0315 and J1908+2105, we do not detect enough counts to constrain the X-Ray orbital variability. The spectra for each of these sources showed significant hard X-Ray emission, and were therefore not well described by thermal models. We report power-law indices from these fits in the range of 1.28 to 2.0. These spectral properties are consistent with intrabinary shock emission.
NASA Astrophysics Data System (ADS)
Tavani, Marco; Arons, Jonathan
1997-03-01
We study the physical processes in the system containing the 47 ms radio pulsar PSR B1259-63 orbiting around a Be star in a highly eccentric orbit. This system is the only known binary where a radio pulsar is observed to interact with gaseous material from a Be star. A rapidly rotating radio pulsar such as PSR B1259-63 is expected to produce a wind of electromagnetic emission and relativistic particles, and this binary is an ideal astrophysical laboratory to study the mass outflow/pulsar interaction in a highly time-variable environment. Motivated by the results of a recent multiwavelength campaign during the 1994 January periastron passage of PSR B1259-63, we discuss several issues regarding the mechanism of high-energy emission. Unpulsed power-law emission from the PSR B1259-63 system was detected near periastron in the energy range 1-200 keV. The observed X-ray/soft γ-ray emission is characterized by moderate luminosity, small and constant column density, lack of detectable pulsations, and peculiar spectral and intensity variability. In principle, high-energy (X-ray and gamma-ray) emission from the system can be produced by different mechanisms including (1) mass accretion onto the surface of the neutron star, (2) ``propeller''-like magnetospheric interaction at a small pulsar distance, and (3) shock-powered emission in a pulsar wind termination shock at a large distance from the pulsar. We carry out a series of calculations aimed at modeling the high-energy data of the PSR B1259-63 system throughout its orbit and especially near periastron. We find that the observed high-energy emission from the PSR B1259-63 system is not compatible with accretion or propeller-powered emission. This conclusion is supported by a model based on standard properties of Be stars and for plausible assumptions about the pulsar/outflow interaction geometry. We find that shock-powered high-energy emission produced by the pulsar/outflow interaction is consistent with all the characteristics of the high-energy emission of the PSR B1259-63 system. This opens the possibility of obtaining for the first time constraints on the physical properties of the PSR B1259-63 pulsar wind and its interaction properties in a strongly time-variable nebular environment. By studying the time evolution of the pulsar cavity, we can constrain the magnitude and geometry of the mass outflow as the PSR B1259-63 orbits around its Be star companion. The pulsar/outflow interaction is most likely mediated by a collisionless shock at the internal boundary of the pulsar cavity. The system shows all the characteristics of a binary plerion being diffuse and compact near apastron and periastron, respectively. The PSR B1259-63 system is subject to different radiative regimes depending on whether synchrotron or inverse-Compton (IC) cooling dominates the radiation of electron/positron pairs (e+/- pairs) advected away from the inner boundary of the pulsar cavity. The highly nonthermal nature of the observed X-ray/soft γ-ray emission from the PSR B1259-63 system near periastron establishes the existence of an efficient particle acceleration mechanism within a timescale shown to be less than ~102-103 s. A synchrotron/IC model of emission of e+/- pairs accelerated at the inner shock front of the pulsar cavity and adiabatically expanding in the MHD flow provides an excellent explanation of the observed time-variable X-ray flux and spectrum from the PSR B1259-63 system. We find that the best model for the PSR B1259-63 system is consistent with the pulsar orbital plane being misaligned with the plane of a thick equatorial Be star outflow. The angular width of the equatorially enhanced Be star outflow is constrained to be ~50° at the pulsar distance, and the misalignment angle is >~25°. We calculate the intensity and spectrum of the high-energy emission for the whole PSR B1259-63 orbit and predict the characteristics of the emission near the apastron region based on the periastron results. The mass-loss rate is deduced to be approximately constant in time during a ~2 yr period. Our results for the Be star outflow of the PSR B1259-63 system are consistent with models of the radio eclipses near periastron. The consequences of our analysis have general validity. Our study of the PSR B1259-63 system shows that X-ray emission can be caused by a mechanism alternative to accretion in a system containing an energetic pulsar interacting with nebular material. This fact can have far-reaching consequences for the interpretation of galactic astrophysical systems showing nonthermal X-ray and γ-ray emission. We show that a binary system such as PSR B1259-63 offers a novel way to study the acceleration process of relativistic plasmas subject to strongly time variable radiative environments.
Broad-Band Measurements of Cen X-3 With XTE and CGRO
NASA Technical Reports Server (NTRS)
Vestrand, W. Thomas
1999-01-01
Centaurus X-3 has played a key role in the development of our understanding of galactic x-ray binary sources. Timing analysis of the UHURU x-ray observations for the luminous Cen X-3 source (L approximately 10(exp 38) erg/s) revealed the first evidence for coherent x-ray pulsations from an object in a binary system (Giaconni 1971; Schreier 1972). It was quickly understood that the luminous pulsed x-ray emission could be generated by the accretion of matter from a companion star onto a rotating neutron star and led to the adoption of binary star models as the fundamental model for galactic x-ray sources (e.g. Pringle and Rees 1972; Lamb 1973). Based on modeling and refined observations since the original measurements, we now believe that Cen X-3 is a high mass x-ray binary system that contains a disk-fed pulsar with a period of 4.84 seconds that is in a 2.087 day orbit around an O-star companion. Since the pulsar discovery, its period has been intermittently monitored and those studies show a long term spin-up of the pulsar punctuated by short intervals of spin-down (e.g. Finger 1994). The implied torques are thought to originate from the interaction of an accretion disk with the magnetic field of a neutron star (Ghosh and Lamb 1979).
A possible origin of the Galactic Center magnetar SGR 1745-2900
NASA Astrophysics Data System (ADS)
Cheng, Quan; Zhang, Shuang-Nan; Zheng, Xiao-Ping
2017-05-01
Since there is a large population of massive O/B stars and putative neutron stars (NSs) located in the vicinity of the Galactic Center (GC), intermediate-mass X-ray binaries (IMXBs) constituted by an NS and a B-type star probably exist there. We investigate the evolutions of accreting NSs in IMXBs (similar to M82 X-2) with a ˜ 5.2 {M}⊙ companion and orbital period ≃ 2.53 d. By adopting a mildly super-Eddington rate \\dot{M}=6× {10}-8 {M}⊙ {{yr}}-1 for the early Case B Roche-lobe overflow (RLOF) accretion, we find that only in accreting NSs with quite elastic crusts (slippage factor s = 0.05) can the toroidal magnetic fields be amplified within 1 Myr, which is assumed to be the longest duration of the RLOF. These IMXBs will evolve into NS+white dwarf (WD) binaries if they are dynamically stable. However, before the formation of NS+WD binaries, the high stellar density in the GC will probably lead to frequent encounters between the NS+evolved star binaries (in post-early Case B mass transfer phase) and NSs or exchange encounters with other stars, which may produce single NSs. These NSs will evolve into magnetars when the amplified poloidal magnetic fields diffuse out to the NS surfaces. Consequently, our results provide a possible explanation for the origin of the GC magnetar SGR 1745-2900. Moreover, the accreting NSs with s> 0.05 will evolve into millisecond pulsars (MSPs). Therefore, our model reveals that the GC magnetars and MSPs could both originate from a special kind of IMXB.
Tests of general relativity from timing the double pulsar.
Kramer, M; Stairs, I H; Manchester, R N; McLaughlin, M A; Lyne, A G; Ferdman, R D; Burgay, M; Lorimer, D R; Possenti, A; D'Amico, N; Sarkissian, J M; Hobbs, G B; Reynolds, J E; Freire, P C C; Camilo, F
2006-10-06
The double pulsar system PSR J0737-3039A/B is unique in that both neutron stars are detectable as radio pulsars. They are also known to have much higher mean orbital velocities and accelerations than those of other binary pulsars. The system is therefore a good candidate for testing Einstein's theory of general relativity and alternative theories of gravity in the strong-field regime. We report on precision timing observations taken over the 2.5 years since its discovery and present four independent strong-field tests of general relativity. These tests use the theory-independent mass ratio of the two stars. By measuring relativistic corrections to the Keplerian description of the orbital motion, we find that the "post-Keplerian" parameter s agrees with the value predicted by general relativity within an uncertainty of 0.05%, the most precise test yet obtained. We also show that the transverse velocity of the system's center of mass is extremely small. Combined with the system's location near the Sun, this result suggests that future tests of gravitational theories with the double pulsar will supersede the best current solar system tests. It also implies that the second-born pulsar may not have formed through the core collapse of a helium star, as is usually assumed.
The Temperature and Cooling Age of the White Dwarf Companion to the Millisecond Pulsar PSR B1855+09.
van Kerkwijk MH; Bell; Kaspi; Kulkarni
2000-02-10
We report on Keck and Hubble Space Telescope observations of the binary millisecond pulsar PSR B1855+09. We detect its white dwarf companion and measure mF555W=25.90+/-0.12 and mF814W=24.19+/-0.11 (Vega system). From the reddening-corrected color, (mF555W-mF814W&parr0;0=1.06+/-0.21, we infer a temperature Teff=4800+/-800 K. The white dwarf mass is known accurately from measurements of the Shapiro delay of the pulsar signal, MC=0.258+0.028-0.016 M middle dot in circle. Hence, given a cooling model, one can use the measured temperature to determine the cooling age. The main uncertainty in the cooling models for such low-mass white dwarfs is the amount of residual nuclear burning, which is set by the thickness of the hydrogen layer surrounding the helium core. From the properties of similar systems, it has been inferred that helium white dwarfs form with thick hydrogen layers, with mass greater, similar3x10-3 M middle dot in circle, which leads to significant additional heating. This is consistent with expectations from simple evolutionary models of the preceding binary evolution. For PSR B1855+09, though, such models lead to a cooling age of approximately 10 Gyr, which is twice the spin-down age of the pulsar. It could be that the spin-down age were incorrect, which would call the standard vacuum dipole braking model into question. For two other pulsar companions, however, ages well over 10 Gyr are inferred, indicating that the problem may lie with the cooling models. There is no age discrepancy for models in which the white dwarfs are formed with thinner hydrogen layers ( less, similar3x10-4 M middle dot in circle).
More surprises from the violent gamma-ray binary LS 2883 /B1259-63.
NASA Astrophysics Data System (ADS)
Kargaltsev, Oleg; Hare, Jeremy; Pavlov, George G.
2018-01-01
We report the results of a Chandra X-ray Observatory (CXO) monitoring campaign of the high-mass gamma-ray binary LS 2883, which hosts the young pulsar B1259-63. The monitoring now covers two binary cycles (6.8 years) and allows us to conclude that ejections of high-velocity X-ray emitting material are common for this binary. In the first cycle we observed an extended feature which detached and moved away from the binary. The observed changes in position were consistent with a steady motion with v=(0.07+/-0.01)c and a slight hint of acceleration. Tracing the motion back in time suggested that the X-ray emitting matter was ejected close to periastron passage. In the last orbital cycle, accelerated motion (reaching (0.13+/-0.02)c) is strongly preferred over a steady motion (the latter would imply that the ejected material was launched ~400 days after the periastron passage). The moving feature is also more luminous, compared to the previous binary cycle, larger in its apparent extent, and exhibits a puzzling morphology. We will show the CXO movies from both binary cycles and discuss physical interpretation of the resolved outflow dynamics in this remarkable system, which provides unique insight into the properties of the pulsar and stellar winds and their interaction.
Implications of PSR J0737-3039B for the Galactic NS-NS binary merger rate
NASA Astrophysics Data System (ADS)
Kim, Chunglee; Perera, Benetge Bhakthi Pranama; McLaughlin, Maura A.
2015-03-01
The Double Pulsar (PSR J0737-3039) is the only neutron star-neutron star (NS-NS) binary in which both NSs have been detectable as radio pulsars. The Double Pulsar has been assumed to dominate the Galactic NS-NS binary merger rate R_g among all known systems, solely based on the properties of the first-born, recycled pulsar (PSR J0737-3039A, or A) with an assumption for the beaming correction factor of 6. In this work, we carefully correct observational biases for the second-born, non-recycled pulsar (PSR J0737-0737B, or B) and estimate the contribution from the Double Pulsar on R_g using constraints available from both A and B. Observational constraints from the B pulsar favour a small beaming correction factor for A (˜2), which is consistent with a bipolar model. Considering known NS-NS binaries with the best observational constraints, including both A and B, we obtain R_g=21_{-14}^{+28} Myr-1 at 95 per cent confidence from our reference model. We expect the detection rate of gravitational waves from NS-NS inspirals for the advanced ground-based gravitational-wave detectors is to be 8^{+10}_{-5} yr-1 at 95 per cent confidence. Within several years, gravitational-wave detections relevant to NS-NS inspirals will provide us useful information to improve pulsar population models.
NASA Astrophysics Data System (ADS)
Ng, C.; Champion, D. J.; Bailes, M.; Barr, E. D.; Bates, S. D.; Bhat, N. D. R.; Burgay, M.; Burke-Spolaor, S.; Flynn, C. M. L.; Jameson, A.; Johnston, S.; Keith, M. J.; Kramer, M.; Levin, L.; Petroff, E.; Possenti, A.; Stappers, B. W.; van Straten, W.; Tiburzi, C.; Eatough, R. P.; Lyne, A. G.
2015-07-01
We present initial results from the low-latitude Galactic plane region of the High Time Resolution Universe pulsar survey conducted at the Parkes 64-m radio telescope. We discuss the computational challenges arising from the processing of the terabyte-sized survey data. Two new radio interference mitigation techniques are introduced, as well as a partially coherent segmented acceleration search algorithm which aims to increase our chances of discovering highly relativistic short-orbit binary systems, covering a parameter space including potential pulsar-black hole binaries. We show that under a constant acceleration approximation, a ratio of data length over orbital period of ≈0.1 results in the highest effectiveness for this search algorithm. From the 50 per cent of data processed thus far, we have redetected 435 previously known pulsars and discovered a further 60 pulsars, two of which are fast-spinning pulsars with periods less than 30 ms. PSR J1101-6424 is a millisecond pulsar whose heavy white dwarf (WD) companion and short spin period of 5.1 ms indicate a rare example of full-recycling via Case A Roche lobe overflow. PSR J1757-27 appears to be an isolated recycled pulsar with a relatively long spin period of 17 ms. In addition, PSR J1244-6359 is a mildly recycled binary system with a heavy WD companion, PSR J1755-25 has a significant orbital eccentricity of 0.09 and PSR J1759-24 is likely to be a long-orbit eclipsing binary with orbital period of the order of tens of years. Comparison of our newly discovered pulsar sample to the known population suggests that they belong to an older population. Furthermore, we demonstrate that our current pulsar detection yield is as expected from population synthesis.
Development of Pulsar Detection Methods for a Galactic Center Search
NASA Astrophysics Data System (ADS)
Thornton, Stephen; Wharton, Robert; Cordes, James; Chatterjee, Shami
2018-01-01
Finding pulsars within the inner parsec of the galactic center would be incredibly beneficial: for pulsars sufficiently close to Sagittarius A*, extremely precise tests of general relativity in the strong field regime could be performed through measurement of post-Keplerian parameters. Binary pulsar systems with sufficiently short orbital periods could provide the same laboratories with which to test existing theories. Fast and efficient methods are needed to parse large sets of time-domain data from different telescopes to search for periodicity in signals and differentiate radio frequency interference (RFI) from pulsar signals. Here we demonstrate several techniques to reduce red noise (low-frequency interference), generate signals from pulsars in binary orbits, and create plots that allow for fast detection of both RFI and pulsars.
Gamma rays from hidden millisecond pulsars
NASA Technical Reports Server (NTRS)
Tavani, Marco
1992-01-01
The properties were studied of a new class of gamma ray sources consisting of millisecond pulsars totally or partially surrounded by evaporating material from irradiated companion stars. Hidden millisecond pulsars offer a unique possibility to study gamma ray, optical and radio emission from vaporizing binaries. The relevance of this class of binaries for GRO observations and interpretation of COS-B data is emphasized.
A millisecond pulsar in a stellar triple system.
Ransom, S M; Stairs, I H; Archibald, A M; Hessels, J W T; Kaplan, D L; van Kerkwijk, M H; Boyles, J; Deller, A T; Chatterjee, S; Schechtman-Rook, A; Berndsen, A; Lynch, R S; Lorimer, D R; Karako-Argaman, C; Kaspi, V M; Kondratiev, V I; McLaughlin, M A; van Leeuwen, J; Rosen, R; Roberts, M S E; Stovall, K
2014-01-23
Gravitationally bound three-body systems have been studied for hundreds of years and are common in our Galaxy. They show complex orbital interactions, which can constrain the compositions, masses and interior structures of the bodies and test theories of gravity, if sufficiently precise measurements are available. A triple system containing a radio pulsar could provide such measurements, but the only previously known such system, PSR B1620-26 (refs 7, 8; with a millisecond pulsar, a white dwarf, and a planetary-mass object in an orbit of several decades), shows only weak interactions. Here we report precision timing and multiwavelength observations of PSR J0337+1715, a millisecond pulsar in a hierarchical triple system with two other stars. Strong gravitational interactions are apparent and provide the masses of the pulsar M[Symbol: see text](1.4378(13), where M[Symbol: see text]is the solar mass and the parentheses contain the uncertainty in the final decimal places) and the two white dwarf companions (0.19751(15)M[Symbol: see text] and 0.4101(3))M[Symbol: see text], as well as the inclinations of the orbits (both about 39.2°). The unexpectedly coplanar and nearly circular orbits indicate a complex and exotic evolutionary past that differs from those of known stellar systems. The gravitational field of the outer white dwarf strongly accelerates the inner binary containing the neutron star, and the system will thus provide an ideal laboratory in which to test the strong equivalence principle of general relativity.
Binary millisecond pulsar discovery via gamma-ray pulsations.
Pletsch, H J; Guillemot, L; Fehrmann, H; Allen, B; Kramer, M; Aulbert, C; Ackermann, M; Ajello, M; de Angelis, A; Atwood, W B; Baldini, L; Ballet, J; Barbiellini, G; Bastieri, D; Bechtol, K; Bellazzini, R; Borgland, A W; Bottacini, E; Brandt, T J; Bregeon, J; Brigida, M; Bruel, P; Buehler, R; Buson, S; Caliandro, G A; Cameron, R A; Caraveo, P A; Casandjian, J M; Cecchi, C; Çelik, Ö; Charles, E; Chaves, R C G; Cheung, C C; Chiang, J; Ciprini, S; Claus, R; Cohen-Tanugi, J; Conrad, J; Cutini, S; D'Ammando, F; Dermer, C D; Digel, S W; Drell, P S; Drlica-Wagner, A; Dubois, R; Dumora, D; Favuzzi, C; Ferrara, E C; Franckowiak, A; Fukazawa, Y; Fusco, P; Gargano, F; Gehrels, N; Germani, S; Giglietto, N; Giordano, F; Giroletti, M; Godfrey, G; Grenier, I A; Grondin, M-H; Grove, J E; Guiriec, S; Hadasch, D; Hanabata, Y; Harding, A K; den Hartog, P R; Hayashida, M; Hays, E; Hill, A B; Hou, X; Hughes, R E; Jóhannesson, G; Jackson, M S; Jogler, T; Johnson, A S; Johnson, W N; Kataoka, J; Kerr, M; Knödlseder, J; Kuss, M; Lande, J; Larsson, S; Latronico, L; Lemoine-Goumard, M; Longo, F; Loparco, F; Lovellette, M N; Lubrano, P; Massaro, F; Mayer, M; Mazziotta, M N; McEnery, J E; Mehault, J; Michelson, P F; Mitthumsiri, W; Mizuno, T; Monzani, M E; Morselli, A; Moskalenko, I V; Murgia, S; Nakamori, T; Nemmen, R; Nuss, E; Ohno, M; Ohsugi, T; Omodei, N; Orienti, M; Orlando, E; de Palma, F; Paneque, D; Perkins, J S; Piron, F; Pivato, G; Porter, T A; Rainò, S; Rando, R; Ray, P S; Razzano, M; Reimer, A; Reimer, O; Reposeur, T; Ritz, S; Romani, R W; Romoli, C; Sanchez, D A; Saz Parkinson, P M; Schulz, A; Sgrò, C; do Couto e Silva, E; Siskind, E J; Smith, D A; Spandre, G; Spinelli, P; Suson, D J; Takahashi, H; Tanaka, T; Thayer, J B; Thayer, J G; Thompson, D J; Tibaldo, L; Tinivella, M; Troja, E; Usher, T L; Vandenbroucke, J; Vasileiou, V; Vianello, G; Vitale, V; Waite, A P; Winer, B L; Wood, K S; Wood, M; Yang, Z; Zimmer, S
2012-12-07
Millisecond pulsars, old neutron stars spun up by accreting matter from a companion star, can reach high rotation rates of hundreds of revolutions per second. Until now, all such "recycled" rotation-powered pulsars have been detected by their spin-modulated radio emission. In a computing-intensive blind search of gamma-ray data from the Fermi Large Area Telescope (with partial constraints from optical data), we detected a 2.5-millisecond pulsar, PSR J1311-3430. This unambiguously explains a formerly unidentified gamma-ray source that had been a decade-long enigma, confirming previous conjectures. The pulsar is in a circular orbit with an orbital period of only 93 minutes, the shortest of any spin-powered pulsar binary ever found.
NASA Astrophysics Data System (ADS)
Bogdanov, Slavko; Halpern, Jules P.
2015-04-01
We present X-ray, ultraviolet, and optical observations of 1RXS J154439.4-112820, the most probable counterpart of the unassociated Fermi-LAT source 3FGL J1544.6-1125. The optical data reveal rapid variability, which is a feature of accreting systems. The X-rays exhibit large-amplitude variations in the form of fast switching (within ˜10 s) between two distinct flux levels that differ by a factor of ≈10. The detailed optical and X-ray behavior is virtually identical to that seen in the accretion-disk-dominated states of the transitional millisecond pulsar (MSP) binaries PSR J1023+0038 and XSS J12270-4859, which are also associated with γ-ray sources. Based on the available observational evidence, we conclude that 1RXS J154439.4-112820 and 3FGL J1544.6-1125 are the same object, with the X-rays arising from intermittent low-luminosity accretion onto an MSP and the γ-rays originating from an accretion-driven outflow. 1RXS J154439.4-112820 is only the fourth γ-ray-emitting low-mass X-ray binary system to be identified and is likely to sporadically undergo transformations to a non-accreting rotation-powered pulsar system.
Merger of a white dwarf-neutron star binary to 1029 carat diamonds: origin of the pulsar planets
NASA Astrophysics Data System (ADS)
Margalit, Ben; Metzger, Brian D.
2017-03-01
We show that the merger and tidal disruption of a carbon/oxygen (C/O) white dwarf (WD) by a neutron star (NS) binary companion provides a natural formation scenario for the PSR B1257+12 planetary system. Starting with initial conditions for the debris disc produced of the disrupted WD, we model its long-term viscous evolution, including for the first time the effects of mass and angular momentum loss during the early radiatively inefficient accretion flow (RIAF) phase and accounting for the unusual C/O composition on the disc opacity. For plausible values of the disc viscosity α ∼ 10-3-10-2 and the RIAF mass-loss efficiency, we find that the disc mass remaining near the planet formation radius at the time of solid condensation is sufficient to explain the pulsar planets. Rapid rocky planet formation via gravitational instability of the solid carbon dominated disc is facilitated by the suppression of vertical shear instabilities due to the high solid-to-gas ratio. Additional evidence supporting a WD-NS merger scenario includes (1) the low observed occurrence rate of pulsar planets (≲1 per cent of NS birth), comparable to the expected WD-NS merger rate; (2) accretion by the NS during the RIAF phase is sufficient to spin PSR B1257+12 up to its observed 6 ms period; (3) similar models of 'low angular momentum' discs, such as those produced from supernova fallback, find insufficient mass reaching the planet formation radius. The unusually high space velocity of PSR B1257+12 of ≳326 km s-1 suggests a possible connection to the calcium-rich transients, dim supernovae which occur in the outskirts of their host galaxies and were proposed to result from mergers of WD-NS binaries receiving supernova kicks. The C/O disc composition implied by our model likely results in carbon-rich planets with diamond interiors.
NASA Technical Reports Server (NTRS)
Hut, Piet; Mcmillan, Steve; Goodman, Jeremy; Mateo, Mario; Phinney, E. S.; Pryor, Carlton; Richer, Harvey B.; Verbunt, Frank; Weinberg, Martin
1992-01-01
Recent observations have shown that globular clusters contain a substantial number of binaries most of which are believed to be primordial. We discuss different successful optical search techniques, based on radial-velocity variables, photometric variables, and the positions of stars in the color-magnitude diagram. In addition, we review searches in other wavelengths, which have turned up low-mass X-ray binaries and more recently a variety of radio pulsars. On the theoretical side, we give an overview of the different physical mechanisms through which individual binaries evolve. We discuss the various simulation techniques which recently have been employed to study the effects of a primordial binary population, and the fascinating interplay between stellar evolution and stellar dynamics which drives globular-cluster evolution.
Reassessing The Fundamentals New Constraints on the Evolution, Ages and Masses of Neutron Stars
NASA Astrophysics Data System (ADS)
Kızıltan, Bülent
2011-09-01
The ages and masses of neutron stars (NSs) are two fundamental threads that make pulsars accessible to other sub-disciplines of astronomy and physics. A realistic and accurate determination of these two derived parameters play an important role in understanding of advanced stages of stellar evolution and the physics that govern relevant processes. Here I summarize new constraints on the ages and masses of NSs with an evolutionary perspective. I show that the observed P-Ṗ demographics is more diverse than what is theoretically predicted for the standard evolutionary channel. In particular, standard recycling followed by dipole spin-down fails to reproduce the population of millisecond pulsars with higher magnetic fields (B > 4 × 108 G) at rates deduced from observations. A proper inclusion of constraints arising from binary evolution and mass accretion offers a more realistic insight into the age distribution. By analytically implementing these constraints, I propose a ``modified'' spin-down age (τ~) for millisecond pulsars that gives estimates closer to the true age. Finally, I independently analyze the peak, skewness and cutoff values of the underlying mass distribution from a comprehensive list of radio pulsars for which secure mass measurements are available. The inferred mass distribution shows clear peaks at 1.35 Msolar and 1.50 Msolar for NSs in double neutron star (DNS) and neutron star-white dwarf (NS-WD) systems respectively. I find a mass cutoff at 2 Msolar for NSs with WD companions, which establishes a firm lower bound for the maximum mass of NSs.
A hydrodynamics-informed, radiation model for HESS J0632+057 from radio to gamma rays
NASA Astrophysics Data System (ADS)
Barkov, Maxim V.; Bosch-Ramon, Valenti
2018-06-01
Relativistic hydrodynamical simulations of the eccentric gamma-ray binary HESS J0632+057 show that the energy of a putative pulsar wind should accumulate in the binary surroundings between periastron and apastron, being released by fast advection close to apastron. To assess whether this could lead to a maximum of the non-thermal emission before apastron, we derive simple prescriptions for the non-thermal energy content, the radiation efficiency, and the impact of energy losses on non-thermal particles, in the simulated hydrodynamical flow. These prescriptions are used to estimate the non-thermal emission in radio, X-rays, GeV, and TeV, from the shocked pulsar wind in a binary system simulated using a simplified 3-dimensional scheme for several orbital cycles. Lightcurves at different wavelengths are derived, together with synthetic radio images for different orbital phases. The dominant peak in the computed lightcurves is broad and appears close to, but before, apastron. This peak is followed by a quasi-plateau shape, and a minor peak only in gamma rays right after periastron. The radio maps show ejection of radio blobs before apastron in the periastron-apastron direction. The results show that a scenario with a highly eccentric high-mass binary hosting a young pulsar can explain the general phenomenology of HESS J0632+057: despite its simplicity, the adopted approach yields predictions that are robust at a semi-quantitative level and consistent with multiwavelength observations.
Strong binary pulsar constraints on Lorentz violation in gravity.
Yagi, Kent; Blas, Diego; Yunes, Nicolás; Barausse, Enrico
2014-04-25
Binary pulsars are excellent laboratories to test the building blocks of Einstein's theory of general relativity. One of these is Lorentz symmetry, which states that physical phenomena appear the same for all inertially moving observers. We study the effect of violations of Lorentz symmetry in the orbital evolution of binary pulsars and find that it induces a much more rapid decay of the binary's orbital period due to the emission of dipolar radiation. The absence of such behavior in recent observations allows us to place the most stringent constraints on Lorentz violation in gravity, thus verifying one of the cornerstones of Einstein's theory much more accurately than any previous gravitational observation.
RELATIVISTIC MEASUREMENTS FROM TIMING THE BINARY PULSAR PSR B1913+16
DOE Office of Scientific and Technical Information (OSTI.GOV)
Weisberg, J. M.; Huang, Y., E-mail: jweisber@carleton.edu
2016-09-20
We present relativistic analyses of 9257 measurements of times-of-arrival from the first binary pulsar, PSR B1913+16, acquired over the last 35 years. The determination of the “Keplerian” orbital elements plus two relativistic terms completely characterizes the binary system, aside from an unknown rotation about the line of sight, leading to a determination of the masses of the pulsar and its companion: 1.438 ± 0.001 M {sub ☉} and 1.390 ± 0.001 M {sub ☉}, respectively. In addition, the complete system characterization allows for the creation of relativistic gravitation test by comparing measured and predicted sizes of various relativistic phenomena. Wemore » find that the ratio of the observed orbital period decrease caused by gravitational wave damping (corrected by a kinematic term) to the general relativistic prediction is 0.9983 ± 0.0016, thereby confirms the existence and strength of gravitational radiation as predicted by general relativity. For the first time in this system, we have also successfully measured the two parameters characterizing the Shapiro gravitational propagation delay, and found that their values are consistent with general relativistic predictions. For the first time in any system, we have also measured the relativistic shape correction to the elliptical orbit, δ {sub θ} , although its intrinsic value is obscured by currently unquantified pulsar emission beam aberration. We have also marginally measured the time derivative of the projected semimajor axis, which, when improved in combination with beam aberration modeling from geodetic precession observations, should ultimately constrain the pulsar’s moment of inertia.« less
Spin-powered Pulsars in the CTA Era
NASA Astrophysics Data System (ADS)
Romani, Roger W.
2016-04-01
What can CTA do for the study of isolated and binary neutron stars? Are the recent Crab observations the vanguard of numerous strong pulsed detections in the CTA era? Will the typical pulsar show only the tail of the Fermi spectrum? Or will we be tantalized by a handful of new unusual sources? I review our current HE picture and suggest that pulsar binaries represent a new TeV frontier.
Be/X-Ray Pulsar Binary Science with LOFT
NASA Technical Reports Server (NTRS)
Wilson-Hodge, Colleen A.
2011-01-01
Accretion disks are ubiquitous in astronomical sources. Accretion powered pulsars are a good test bed for accretion disk physics, because unlike for other objects, the spin of the neutron star is directly observable allowing us to see the effects of angular momentum transfer onto the pulsar. The combination of a sensitive wide-field monitor and the large area detector on LOFT will enable new detailed studies of accretion powered pulsars which I will review. RXTE observations have shown an unusually high number of Be/X-ray pulsar binaries in the SMC. Unlike binaries in the Milky Way, these systems are all at the same distance, allowing detailed population studies using the sensitive LOFT WFM, potentially providing connections to star formation episodes. For Galactic accreting pulsar systems, LOFT will allow measurement of spectral variations within individual pulses, mapping the accretion column in detail for the first time. LOFT will also provide better constraints on magnetic fields in accreting pulsars, allowing measurements of cyclotron features, observations of transitions into the centrifugal inhibition regime, and monitoring of spin-up rate vs flux correlations. Coordinated multi-wavelength observations are crucial to extracting the best science from LOFT from these and numerous other objects.
Gamma-rays from the binary system containing PSR J2032+4127 during its periastron passage
NASA Astrophysics Data System (ADS)
Bednarek, Włodek; Banasiński, Piotr; Sitarek, Julian
2018-01-01
The energetic pulsar, PSR J2032+4127, has recently been discovered in the direction of the unidentified HEGRA TeV γ-ray source (TeV J2032+4130). It is proposed that this pulsar forms a binary system with the Be type star, MT91 213, expected to reach periastron late in 2017. We performed detailed calculations of the γ-ray emission produced close to the binary system’s periastron passage by applying a simple geometrical model. Electrons accelerated at the collision region of pulsar and stellar winds initiate anisotropic inverse Compton {e}+/- pair cascades by scattering soft radiation from the massive companion. The γ-ray spectra, from such a comptonization process, are compared with the measurements of the extended TeV γ-ray emission from the HEGRA TeV γ-ray source. We discuss conditions within the binary system, at the periastron passage of the pulsar, for which the γ-ray emission from the binary can overcome the extended, steady TeV γ-ray emission from the HEGRA TeV γ-ray source.
Binary Millisecond Pulsar Discovery via Gamma-Ray Pulsations
Pletsch, H. J.; Guillemot, L.; Fehrmann, H.; ...
2012-12-07
We present that millisecond pulsars, old neutron stars spun up by accreting matter from a companion star, can reach high rotation rates of hundreds of revolutions per second. Until now, all such “recycled” rotation-powered pulsars have been detected by their spin-modulated radio emission. In a computing-intensive blind search of gamma-ray data from the Fermi Large Area Telescope (with partial constraints from optical data), we detected a 2.5-millisecond pulsar, PSR J1311-3430. This unambiguously explains a formerly unidentified gamma-ray source that had been a decade-long enigma, confirming previous conjectures. Lastly, the pulsar is in a circular orbit with an orbital period ofmore » only 93 minutes, the shortest of any spin-powered pulsar binary ever found.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang Zhongxiang; Zhong Jing; Breton, Rene P.
2013-03-10
We report on time-resolved optical imaging of the X-ray binary SAX J1808.4-3658 during its quiescent state and 2008 outburst. The binary, containing an accretion-powered millisecond pulsar, has a large sinusoidal-like modulation in its quiescent optical emission. We employ a Markov chain Monte Carlo technique to fit our multi-band light curve data in quiescence with an irradiated star model, and derive a tight constraint of 50{sup +6}{sub -5} deg on the inclination angle i of the binary system. The pulsar and its companion are constrained to have masses of 0.97{sub -0.22}{sup +0.31} M{sub Sun} and 0.04{sub -0.01}{sup +0.02} M{sub Sun} (bothmore » 1{sigma} ranges), respectively. The dependence of these results on the measurements of the companion's projected radial velocity is discussed. We also find that the accretion disk had nearly constant optical fluxes over a {approx}500 day period in the quiescent state our data covered, but started brightening 1.5 months before the 2008 outburst. Variations in modulation during the outburst were detected in our four observations made 7-12 days after the start of the outburst, and a sinusoidal-like modulation with 0.2 mag amplitude changed to have a smaller amplitude of 0.1 mag. The modulation variations are discussed. We estimate the albedo of the companion during its quiescence and the outburst, which was approximately 0 and 0.8 (for isotropic emission), respectively. This large difference probably provides additional evidence that the neutron star in the binary turns on as a radio pulsar in quiescence.« less
Low mass X-ray binaries in the Inner Galaxy: implications for millisecond pulsars and the GeV excess
DOE Office of Scientific and Technical Information (OSTI.GOV)
Haggard, Daryl; Heinke, Craig; Hooper, Dan
2017-05-01
If millisecond pulsars (MSPs) are responsible for the excess gamma-ray emission observed from the region surrounding the Galactic Center, the same region should also contain a large population of low-mass X-ray binaries (LMXBs). In this study, we compile and utilize a sizable catalog of LMXBs observed in the the Milky Way's globular cluster system and in the Inner Galaxy, as well as the gamma-ray emission observed from globular clusters, to estimate the flux of gamma rays predicted from MSPs in the Inner Galaxy. From this comparison, we conclude that only up to ∼ 4-23% of the observed gamma-ray excess ismore » likely to originate from MSPs. This result is consistent with, and more robust than, previous estimates which utilized smaller samples of both globular clusters and LMXBs. If MSPs had been responsible for the entirety of the observed excess, INTEGRAL should have detected ∼ 10{sup 3} LMXBs from within a 10{sup o} radius around the Galactic Center, whereas only 42 LMXBs (and 46 additional LMXB candidates) have been observed.« less
Low mass X-ray binaries in the Inner Galaxy: implications for millisecond pulsars and the GeV excess
DOE Office of Scientific and Technical Information (OSTI.GOV)
Haggard, Daryl; Heinke, Craig; Hooper, Dan
2017-05-01
If millisecond pulsars (MSPs) are responsible for the excess gamma-ray emission observed from the region surrounding the Galactic Center, the same region should also contain a large population of low-mass X-ray binaries (LMXBs). In this study, we compile and utilize a sizable catalog of LMXBs observed in the the Milky Way's globular cluster system and in the Inner Galaxy, as well as the gamma-ray emission observed from globular clusters, to estimate the flux of gamma rays predicted from MSPs in the Inner Galaxy. From this comparison, we conclude that only up tomore » $$\\sim$$4-23% of the observed gamma-ray excess is likely to originate from MSPs. This result is consistent with, and more robust than, previous estimates which utilized smaller samples of both globular clusters and LMXBs. If MSPs had been responsible for the entirety of the observed excess, INTEGRAL should have detected $$\\sim$$10^3$ LMXBs from within a $$10^{\\circ}$$ radius around the Galactic Center, whereas only 42 LMXBs (and 46 additional LMXB candidates) have been observed.« less
STELLAR ENCOUNTER RATE IN GALACTIC GLOBULAR CLUSTERS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bahramian, Arash; Heinke, Craig O.; Sivakoff, Gregory R.
2013-04-01
The high stellar densities in the cores of globular clusters cause significant stellar interactions. These stellar interactions can produce close binary mass-transferring systems involving compact objects and their progeny, such as X-ray binaries and radio millisecond pulsars. Comparing the numbers of these systems and interaction rates in different clusters drives our understanding of how cluster parameters affect the production of close binaries. In this paper we estimate stellar encounter rates ({Gamma}) for 124 Galactic globular clusters based on observational data as opposed to the methods previously employed, which assumed 'King-model' profiles for all clusters. By deprojecting cluster surface brightness profilesmore » to estimate luminosity density profiles, we treat 'King-model' and 'core-collapsed' clusters in the same way. In addition, we use Monte Carlo simulations to investigate the effects of uncertainties in various observational parameters (distance, reddening, surface brightness) on {Gamma}, producing the first catalog of globular cluster stellar encounter rates with estimated errors. Comparing our results with published observations of likely products of stellar interactions (numbers of X-ray binaries, numbers of radio millisecond pulsars, and {gamma}-ray luminosity) we find both clear correlations and some differences with published results.« less
A 110-ms pulsar, with negative period derivative, in the globular cluster M15
NASA Technical Reports Server (NTRS)
Wolszczan, A.; Kulkarni, S. R.; Middleditch, J.; Backer, D. C.; Fruchter, A. S.; Dewey, R. J.
1989-01-01
The discovery of a 110-ms pulsar, PSR2127+11, in the globular cluster M15, is reported. The results of nine months of timing measurements place the new pulsar about 2 arcsec from the center of the cluster, and indicate that it is not a member of a close binary system. The measured negative value of the period derivative is probably the result of the pulsar being bodily accelerated in our direction by the gravitational field of the collapsed core of M15. This apparently overwhelms a positive contribution to the period derivative due to magnetic braking. Although the pulsar has an unexpectedly long period, it is argued that it belongs to the class of 'recycled' pulsars, which have been spun up by accretion in a binary system. The subsequent loss of the pulsar's companion is probably due to disruption of the system by close encounters with other stars.
Measuring Intermediate-Mass Black-Hole Binaries with Advanced Gravitational Wave Detectors.
Veitch, John; Pürrer, Michael; Mandel, Ilya
2015-10-02
We perform a systematic study to explore the accuracy with which the parameters of intermediate-mass black-hole binary systems can be measured from their gravitational wave (GW) signatures using second-generation GW detectors. We make use of the most recent reduced-order models containing inspiral, merger, and ringdown signals of aligned-spin effective-one-body waveforms to significantly speed up the calculations. We explore the phenomenology of the measurement accuracies for binaries with total masses between 50M(⊙) and 500M(⊙) and mass ratios between 0.1 and 1. We find that (i) at total masses below ∼200M(⊙), where the signal-to-noise ratio is dominated by the inspiral portion of the signal, the chirp mass parameter can be accurately measured; (ii) at higher masses, the information content is dominated by the ringdown, and total mass is measured more accurately; (iii) the mass of the lower-mass companion is poorly estimated, especially at high total mass and more extreme mass ratios; and (iv) spin cannot be accurately measured for our injection set with nonspinning components. Most importantly, we find that for binaries with nonspinning components at all values of the mass ratio in the considered range and at a network signal-to-noise ratio of 15, analyzed with spin-aligned templates, the presence of an intermediate-mass black hole with mass >100M(⊙) can be confirmed with 95% confidence in any binary that includes a component with a mass of 130M(⊙) or greater.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bogdanov, Slavko; Halpern, Jules P.
We present X-ray, ultraviolet, and optical observations of 1RXS J154439.4–112820, the most probable counterpart of the unassociated Fermi-LAT source 3FGL J1544.6–1125. The optical data reveal rapid variability, which is a feature of accreting systems. The X-rays exhibit large-amplitude variations in the form of fast switching (within ∼10 s) between two distinct flux levels that differ by a factor of ≈10. The detailed optical and X-ray behavior is virtually identical to that seen in the accretion-disk-dominated states of the transitional millisecond pulsar (MSP) binaries PSR J1023+0038 and XSS J12270–4859, which are also associated with γ-ray sources. Based on the available observationalmore » evidence, we conclude that 1RXS J154439.4–112820 and 3FGL J1544.6–1125 are the same object, with the X-rays arising from intermittent low-luminosity accretion onto an MSP and the γ-rays originating from an accretion-driven outflow. 1RXS J154439.4–112820 is only the fourth γ-ray-emitting low-mass X-ray binary system to be identified and is likely to sporadically undergo transformations to a non-accreting rotation-powered pulsar system.« less
PSR J1618-3921: a recycled pulsar in an eccentric orbit
NASA Astrophysics Data System (ADS)
Octau, F.; Cognard, I.; Guillemot, L.; Tauris, T. M.; Freire, P. C. C.; Desvignes, G.; Theureau, G.
2018-04-01
Context. The 11.99 ms pulsar PSR J1618-3921 orbits a He white dwarf companion of probably low mass with a period of 22.7 d. The pulsar was discovered in a survey of the intermediate Galactic latitudes at 1400 MHz that was conducted with the Parkes radio telescope in the late 1990s. Although PSR J1618-3921 was discovered more than 15 years ago, only limited information has been published about this pulsar, which has a surprisingly high orbital eccentricity (e ≃ 0.027) considering its high spin frequency and the likely low mass of the companion. Aims: The focus of this work is a precise measurement of the spin and the astrometric and orbital characteristics of PSR J1618-3921. This was done with timing observations made at the Nançay Radio Telescope from 2009 to 2017. Methods: We analyzed the timing data recorded at the Nançay Radio Telescope over several years to characterize the properties of PSR J1618-3921. A rotation ephemeris for this pulsar was obtained by analyzing the arrival times of the radio pulses at the telescope. Results: We confirm the unusual eccentricity of PSR J1618-3921 and discuss several hypotheses regarding its formation in the context of other discoveries of recycled pulsars in eccentric orbits.
Anti-correlated X-ray and Radio Variability in the Transitional Millisecond Pulsar PSR J1023+0038
NASA Astrophysics Data System (ADS)
Bogdanov, Slavko; Deller, Adam; Miller-Jones, James; Archibald, Anne; Hessels, Jason W. T.; Jaodand, Amruta; Patruno, Alessandro; Bassa, Cees; D'Angelo, Caroline
2018-01-01
The PSR J1023+0038 binary system hosts a 1.69-ms neutron star and a low-mass, main-sequence-like star. The system underwent a transformation from a rotation-powered to a low-luminosity accreting state in 2013 June, in which it has remained since. We present an unprecedented set of strictly simultaneous Chandra X-ray Observatory and Karl G. Jansky Very Large Array observations, which for the first time reveal a highly reproducible, anti-correlated variability pattern. Rapid declines in X-ray flux are always accompanied by a radio brightening with duration that closely matches the low X-ray flux mode intervals. We discuss these findings in the context of accretion and jet outflow physics and their implications for using the radio/X-ray luminosity plane to distinguish low-luminosity candidate black hole binary systems from accreting transitional millisecond pulsars.
The binary nature of PSR J2032+4127
Lyne, A. G.; Stappers, B. W.; Keith, M. J.; ...
2015-05-22
PSR J2032+4127 is a γ-ray and radio-emitting pulsar which has been regarded as a young luminous isolated neutron star. However, its recent spin-down rate has extraordinarily increased by a factor of 2. Here we present evidence that this is due to its motion as a member of a highly-eccentric binary system with an ~15–M⊙ Be star, MT91 213. Timing observations show that, not only are the positions of the two stars coincident within 0.4 arcsec, but timing models of binary motion of the pulsar fit the data much better than a model of a young isolated pulsar. MT91 213, andmore » hence the pulsar, lie in the Cyg OB2 stellar association, which is at a distance of only 1.4–1.7 kpc. The pulsar is currently on the near side of, and accelerating towards, the Be star, with an orbital period of 20–30 yr. Finally, the next periastron is well constrained to occur in early 2018, providing an opportunity to observe enhanced high-energy emission as seen in other Be-star binary systems.« less
Algorithms for searching Fast radio bursts and pulsars in tight binary systems.
NASA Astrophysics Data System (ADS)
Zackay, Barak
2017-01-01
Fast radio bursts (FRB's) are an exciting, recently discovered, astrophysical transients which their origins are unknown.Currently, these bursts are believed to be coming from cosmological distances, allowing us to probe the electron content on cosmological length scales. Even though their precise localization is crucial for the determination of their origin, radio interferometers were not extensively employed in searching for them due to computational limitations.I will briefly present the Fast Dispersion Measure Transform (FDMT) algorithm,that allows to reduce the operation count in blind incoherent dedispersion by 2-3 orders of magnitude.In addition, FDMT enables to probe the unexplored domain of sub-microsecond astrophysical pulses.Pulsars in tight binary systems are among the most important astrophysical objects as they provide us our best tests of general relativity in the strong field regime.I will provide a preview to a novel algorithm that enables the detection of pulsars in short binary systems using observation times longer than an orbital period.Current pulsar search programs limit their searches for integration times shorter than a few percents of the orbital period.Until now, searching for pulsars in binary systems using observation times longer than an orbital period was considered impossible as one has to blindly enumerate all options for the Keplerian parameters, the pulsar rotation period, and the unknown DM.Using the current state of the art pulsar search techniques and all computers on the earth, such an enumeration would take longer than a Hubble time. I will demonstrate that using the new algorithm, it is possible to conduct such an enumeration on a laptop using real data of the double pulsar PSR J0737-3039.Among the other applications of this algorithm are:1) Searching for all pulsars on all sky positions in gamma ray observations of the Fermi LAT satellite.2) Blind searching for continuous gravitational wave sources emitted by pulsars with non-axis-symmetric matter distribution.Previous attempts to conduct all of the above searches contained substantial sensitivity compromises.
The End of Accretion: The X-Ray Binary/Millisecond Pulsar Transition Object PSR J1023+0038
NASA Astrophysics Data System (ADS)
Archibald, Anne
2015-04-01
Millisecond radio pulsars (MSRPs), those spinning hundreds of times per second, have long been understood to be old pulsars that have been spun up by the accretion of matter from a companion in a low-mass X-ray binary (LMXB) phase. Yet the details of this transformation, particularly the end of the accretion process and the birth of a radio pulsar, remain mysterious. I will describe the discovery and detailed study of the first object known to transition between MSRP and LMXB states, PSR J1023+0038. By dint of a multiwavelength campaign of observations in the RMSP state, we are able to measure all the key system parameters and show the existence of an X-ray shock close to the pulsar-facing side of the companion. Since the discovery of PSR J1023+0038, two more objects (XSS J12270-4859 and M28I) have been found to make the same transition, and the study of these transitioning objects has become an active field of research. Most interestingly, PSR J1023+0038 has transitioned back into an LMXB state, with an active accretion disk and a puzzling increase in gamma-ray flux. Our detailed picture of the system allows us to test models of accretion against the phenomena we observe in PSR J1023+0038, and in fact these observations challenge current models: in spite of the low luminosity of the system (and low inferred accretion rate) some material is penetrating the centrifugal barrier and falling on the neutron-star surface. Key evidence for explaining this puzzling behaviour will come when PSR J1023+0038 returns to an MSRP state and we are able to compare pulsar timing models from after the LMXB state with those we obtained in this work.
High-precision timing of 42 millisecond pulsars with the European Pulsar Timing Array
NASA Astrophysics Data System (ADS)
Desvignes, G.; Caballero, R. N.; Lentati, L.; Verbiest, J. P. W.; Champion, D. J.; Stappers, B. W.; Janssen, G. H.; Lazarus, P.; Osłowski, S.; Babak, S.; Bassa, C. G.; Brem, P.; Burgay, M.; Cognard, I.; Gair, J. R.; Graikou, E.; Guillemot, L.; Hessels, J. W. T.; Jessner, A.; Jordan, C.; Karuppusamy, R.; Kramer, M.; Lassus, A.; Lazaridis, K.; Lee, K. J.; Liu, K.; Lyne, A. G.; McKee, J.; Mingarelli, C. M. F.; Perrodin, D.; Petiteau, A.; Possenti, A.; Purver, M. B.; Rosado, P. A.; Sanidas, S.; Sesana, A.; Shaifullah, G.; Smits, R.; Taylor, S. R.; Theureau, G.; Tiburzi, C.; van Haasteren, R.; Vecchio, A.
2016-05-01
We report on the high-precision timing of 42 radio millisecond pulsars (MSPs) observed by the European Pulsar Timing Array (EPTA). This EPTA Data Release 1.0 extends up to mid-2014 and baselines range from 7-18 yr. It forms the basis for the stochastic gravitational-wave background, anisotropic background, and continuous-wave limits recently presented by the EPTA elsewhere. The Bayesian timing analysis performed with TEMPONEST yields the detection of several new parameters: seven parallaxes, nine proper motions and, in the case of six binary pulsars, an apparent change of the semimajor axis. We find the NE2001 Galactic electron density model to be a better match to our parallax distances (after correction from the Lutz-Kelker bias) than the M2 and M3 models by Schnitzeler. However, we measure an average uncertainty of 80 per cent (fractional) for NE2001, three times larger than what is typically assumed in the literature. We revisit the transverse velocity distribution for a set of 19 isolated and 57 binary MSPs and find no statistical difference between these two populations. We detect Shapiro delay in the timing residuals of PSRs J1600-3053 and J1918-0642, implying pulsar and companion masses m_p=1.22_{-0.35}^{+0.5} M_{⊙}, m_c = 0.21_{-0.04}^{+0.06} M_{⊙} and m_p=1.25_{-0.4}^{+0.6} M_{⊙}, m_c = 0.23_{-0.05}^{+0.07} M_{⊙}, respectively. Finally, we use the measurement of the orbital period derivative to set a stringent constraint on the distance to PSRs J1012+5307 and J1909-3744, and set limits on the longitude of ascending node through the search of the annual-orbital parallax for PSRs J1600-3053 and J1909-3744.
Gamma rays from pulsar wind shock acceleration
NASA Technical Reports Server (NTRS)
Harding, Alice K.
1990-01-01
A shock forming in the wind of relativistic electron-positron pairs from a pulsar, as a result of confinement by surrounding material, could convert part of the pulsar spin-down luminosity to high energy particles through first order Fermi acceleration. High energy protons could be produced by this mechanism both in supernova remnants and in binary systems containing pulsars. The pion-decay gamma-rays resulting from interaction of accelerated protons with surrounding target material in such sources might be observable above 70 MeV with EGRET (Energetic Gamma-Ray Experimental Telescope) and above 100 GeV with ground-based detectors. Acceleration of protons and expected gamma-ray fluxes from SN1987A, Cyg X-3 type sources and binary pulsars are discussed.
Gravitational waves from binary supermassive black holes missing in pulsar observations.
Shannon, R M; Ravi, V; Lentati, L T; Lasky, P D; Hobbs, G; Kerr, M; Manchester, R N; Coles, W A; Levin, Y; Bailes, M; Bhat, N D R; Burke-Spolaor, S; Dai, S; Keith, M J; Osłowski, S; Reardon, D J; van Straten, W; Toomey, L; Wang, J-B; Wen, L; Wyithe, J S B; Zhu, X-J
2015-09-25
Gravitational waves are expected to be radiated by supermassive black hole binaries formed during galaxy mergers. A stochastic superposition of gravitational waves from all such binary systems would modulate the arrival times of pulses from radio pulsars. Using observations of millisecond pulsars obtained with the Parkes radio telescope, we constrained the characteristic amplitude of this background, A(c,yr), to be <1.0 × 10(-15) with 95% confidence. This limit excludes predicted ranges for A(c,yr) from current models with 91 to 99.7% probability. We conclude that binary evolution is either stalled or dramatically accelerated by galactic-center environments and that higher-cadence and shorter-wavelength observations would be more sensitive to gravitational waves. Copyright © 2015, American Association for the Advancement of Science.
Probing the Milky Way electron density using multi-messenger astronomy
NASA Astrophysics Data System (ADS)
Breivik, Katelyn; Larson, Shane
2015-04-01
Multi-messenger observations of ultra-compact binaries in both gravitational waves and electromagnetic radiation supply highly complementary information, providing new ways of characterizing the internal dynamics of these systems, as well as new probes of the galaxy itself. Electron density models, used in pulsar distance measurements via the electron dispersion measure, are currently not well constrained. Simultaneous radio and gravitational wave observations of pulsars in binaries provide a method of measuring the average electron density along the line of sight to the pulsar, thus giving a new method for constraining current electron density models. We present this method and assess its viability with simulations of the compact binary component of the Milky Way using the public domain binary evolution code, BSE. This work is supported by NASA Award NNX13AM10G.
Probing Neutron Star Evolution with Gamma Rays
NASA Astrophysics Data System (ADS)
Wijers, Ralph A. M. J.
1996-02-01
The research sponsored by this grant was conducted in two fields of high-energy astrophysics: gamma-ray bursts and evolution of neutron stars. It is unknown at this time whether they are related. The work performed in each area is discussed followed by a full list of publications supported by the grant. My research (with E. Fenimore, L. Lubin, B. Paczyiiski, and A. Ulmer) has focussed on devising tests that could distinguish between BATSE and galactic-halo distance scales using the available data. In the first instance, the issue was whether the early BATSE peak flux distribution could be used to extract more than just a slope of the log N(greater than P) distribution, and whether it joined smoothly to the steeper peak flux distribution of bright bursts. To this end, we analysed the peak flux distribution for the presence of a change in slope. This was done both by fitting models with a core radius to see whether a significant value for it could be found, and by developing a completely model-independent test to search for slope changes in arbitrary distributions that are nearly power laws. A slope change was marginally detected in the first-year BATSE data. Good progress has been made in understanding the evolution of neutron stars and their magnetic fields. Having shown in earlier work that magnetic fields in some neutron stars, particularly Her X-1, do not decay spontaneously on million-year time scales, we set out to check whether such spontaneous decay was needed in isolated radio pulsars, as claimed by many. We found that it is not; rather long decay times or no decay are preferred. Since there are neutron stars with low magnetic fields, one must conclude that there is something in their past that distinguishes them from most pulsars. These so-called recycled pulsars are in binaries much more often than normal pulsars. My research concentrates on the class of scenarios in which the recycled pulsars are initially the same as ordinary high-field radio pulsars, and have acquired their properties due to mass transfer processes in binary stars. This links their evolution to that of X-ray binaries.
A Statistical Study of the Mass Distribution of Neutron Stars
NASA Astrophysics Data System (ADS)
Cheng, Zheng; Zhang, Cheng-Min; Zhao, Yong-Heng; Wang, De-Hua; Pan, Yuan-Yue; Lei, Ya-Juan
2014-07-01
By reviewing the methods of mass measurements of neutron stars in four different kinds of systems, i.e., the high-mass X-ray binaries (HMXBs), low-mass X-ray binaries (LMXBs), double neutron star systems (DNSs) and neutron star-white dwarf (NS-WD) binary systems, we have collected the orbital parameters of 40 systems. By using the boot-strap method and the Monte-Carlo method, we have rebuilt the likelihood probability curves of the measured masses of 46 neutron stars. The statistical analysis of the simulation results shows that the masses of neutron stars in the X-ray neutron star systems and those in the radio pulsar systems exhibit different distributions. Besides, the Bayes statistics of these four different kind systems yields the most-probable probability density distributions of these four kind systems to be (1.340 ± 0.230)M8, (1, 505 ± 0.125)M8,(1.335 ± 0.055)M8 and (1.495 ± 0.225)M8, respectively. It is noteworthy that the masses of neutron stars in the HMXB and DNS systems are smaller than those in the other two kind systems by approximately 0.16M8. This result is consistent with the theoretical model of the pulsar to be accelerated to the millisecond order of magnitude via accretion of approximately 0.2M8. If the HMXBs and LMXBs are respectively taken to be the precursors of the BNS and NS-WD systems, then the influence of the accretion effect on the masses of neutron stars in the HMXB systems should be exceedingly small. Their mass distributions should be very close to the initial one during the formation of neutron stars. As for the LMXB and NS-WD systems, they should have already under- gone the process of suffcient accretion, hence there arises rather large deviation from the initial mass distribution.
Multiwavelength Observations of the Redback Millisecond Pulsar J1048+2339
Deneva, J. S.; Ray, P. S.; Camilo, F.; ...
2016-05-26
In this paper, we report on radio timing and multiwavelength observations of the 4.66 ms redback pulsar J1048+2339, which was discovered in an Arecibo search targeting the Fermi-Large Area Telescope source 3FGL J1048.6+2338. Two years of timing allowed us to derive precise astrometric and orbital parameters for the pulsar. PSR J1048+2339 is in a 6 hr binary and exhibits radio eclipses over half the orbital period and rapid orbital period variations. The companion has a minimum mass of 0.3 M ⊙, and we have identified a V ~ 20 variable optical counterpart in data from several surveys. The phasing ofmore » its ~1 mag modulation at the orbital period suggests highly efficient and asymmetric heating by the pulsar wind, which may be due to an intrabinary shock that is distorted near the companion, or to the companion's magnetic field channeling the pulsar wind to specific locations on its surface. Finally, we also present gamma-ray spectral analysis of the source and preliminary results from searches for gamma-ray pulsations using the radio ephemeris.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Miyasaka, Hiromasa; Harrison, Fiona A.; Fürst, Felix
The Nuclear Spectroscopic Telescope Array hard X-ray telescope observed the transient Be/X-ray binary GS 0834–430 during its 2012 outburst—the first active state of this system observed in the past 19 yr. We performed timing and spectral analysis and measured the X-ray spectrum between 3-79 keV with high statistical significance. We find the phase-averaged spectrum to be consistent with that observed in many other magnetized, accreting pulsars. We fail to detect cyclotron resonance scattering features that would allow us to constrain the pulsar's magnetic field in either phase-averaged or phase-resolved spectra. Timing analysis shows a clearly detected pulse period of ∼12.29more » s in all energy bands. The pulse profiles show a strong, energy-dependent hard phase lag of up to 0.3 cycles in phase, or about 4 s. Such dramatic energy-dependent lags in the pulse profile have never before been reported in high-mass X-ray binary pulsars. Previously reported lags have been significantly smaller in phase and restricted to low energies (E < 10 keV). We investigate the possible mechanisms that might produce this energy-dependent pulse phase shift. We find the most likely explanation for this effect is a complex beam geometry.« less
COBRA: a Bayesian approach to pulsar searching
NASA Astrophysics Data System (ADS)
Lentati, L.; Champion, D. J.; Kramer, M.; Barr, E.; Torne, P.
2018-02-01
We introduce COBRA, a GPU-accelerated Bayesian analysis package for performing pulsar searching, that uses candidates from traditional search techniques to set the prior used for the periodicity of the source, and performs a blind search in all remaining parameters. COBRA incorporates models for both isolated and accelerated systems, as well as both Keplerian and relativistic binaries, and exploits pulse phase information to combine search epochs coherently, over time, frequency or across multiple telescopes. We demonstrate the efficacy of our approach in a series of simulations that challenge typical search techniques, including highly aliased signals, and relativistic binary systems. In the most extreme case, we simulate an 8 h observation containing 24 orbits of a pulsar in a binary with a 30 M⊙ companion. Even in this scenario we show that we can build up from an initial low-significance candidate, to fully recovering the signal. We also apply the method to survey data of three pulsars from the globular cluster 47Tuc: PSRs J0024-7204D, J0023-7203J and J0024-7204R. This final pulsar is in a 1.6 h binary, the shortest of any pulsar in 47Tuc, and additionally shows significant scintillation. By allowing the amplitude of the source to vary as a function of time, however, we show that we are able to obtain optimal combinations of such noisy data. We also demonstrate the ability of COBRA to perform high-precision pulsar timing directly on the single pulse survey data, and obtain a 95 per cent upper limit on the eccentricity of PSR J0024-7204R of εb < 0.0007.
How young the accretion-powered pulsars could be?
NASA Astrophysics Data System (ADS)
Kostina, M. V.; Ikhsanov, N. R.
2017-12-01
A question about the age of accretion-powered X-ray pulsars has recently been reopened by a discovery of the X-ray pulsar SXP 1062 in the SMC. This High Mass X-ray Binary (HMXB) contains a neutron star rotating with the period of 1062 s and is associated with a supernova remnant of the age ∼ 104 yr. An attempt to explain the origin of this young long-period X-ray pulsar within the traditional scenario of three basic states (ejector, propeller and accretor) encounters difficulties. Even if this pulsar were born as a magnetar the spin-down time during the propeller stage would exceed 104 yr. Here we explore a more circuitous way of the pulsar spin evolution in HMXBs, in which the propeller stage in the evolutionary track is avoided. We find this way to be possible if the stellar wind of the massive companion to the neutron star is magnetized. The geometry of plasma flow captured by the neutron star in this case differs from spherically symmetrical and the magnetospheric radius of the neutron star is smaller than that evaluated in the convention accretion scenarios. We show that the age of an accretion-powered pulsar in this case can be as small as ∼ 104 years without the need of invoking initial magnetic field in excess of 1013 G.
NASA Astrophysics Data System (ADS)
Calderón Bustillo, Juan; Salemi, Francesco; Dal Canton, Tito; Jani, Karan P.
2018-01-01
The sensitivity of gravitational wave searches for binary black holes is estimated via the injection and posterior recovery of simulated gravitational wave signals in the detector data streams. When a search reports no detections, the estimated sensitivity is then used to place upper limits on the coalescence rate of the target source. In order to obtain correct sensitivity and rate estimates, the injected waveforms must be faithful representations of the real signals. Up to date, however, injected waveforms have neglected radiation modes of order higher than the quadrupole, potentially biasing sensitivity and coalescence rate estimates. In particular, higher-order modes are known to have a large impact in the gravitational waves emitted by intermediate-mass black holes binaries. In this work, we evaluate the impact of this approximation in the context of two search algorithms run by the LIGO Scientific Collaboration in their search for intermediate-mass black hole binaries in the O1 LIGO Science Run data: a matched filter-based pipeline and a coherent unmodeled one. To this end, we estimate the sensitivity of both searches to simulated signals for nonspinning binaries including and omitting higher-order modes. We find that omission of higher-order modes leads to biases in the sensitivity estimates which depend on the masses of the binary, the search algorithm, and the required level of significance for detection. In addition, we compare the sensitivity of the two search algorithms across the studied parameter space. We conclude that the most recent LIGO-Virgo upper limits on the rate of coalescence of intermediate-mass black hole binaries are conservative for the case of highly asymmetric binaries. However, the tightest upper limits, placed for nearly equal-mass sources, remain unchanged due to the small contribution of higher modes to the corresponding sources.
X-ray Pulsars Across the Parameter Space of Luminosity, Accretion Mode, and Spin
NASA Astrophysics Data System (ADS)
Laycock, Silas
We propose to expand the scope of our successful project providing a multi-satellite library of X-ray Pulsar observations to the community. The library provides high-level products, activity monitoring, pulse-profiles, phased event files, spectra, and a unique pulse-profile modeling interface. The library's scientific footprint will expand in 4 key directions: (1) Update, by processing all new XMM-Newton and Chandra observations (2015-2017) of X-ray Binary Pulsars in the Magellanic Clouds. (2) Expand, by including all archival Suzaku, Swift and NuStar observations, and including Galactic pulsars. (3) Improve, by offering innovative data products that provide deeper insight. (4) Advance, by implementing a new generation of physically motivated emission and pulse-profile models. The library currently includes some 2000 individual RXTE-PCA, 200 Chandra ACIS-I, and 120 XMM-PN observations of the SMC spanning 15 years, creating an unrivaled record of pulsar temporal behavior. In Phase-2, additional observations of SMC pulsars will be added: 221 Chandra (ACIS-S and ACIS-I), 22 XMM-PN, 142 XMM-MOS, 92 Suzaku, 25 NuSTAR, and >10,000 Swift; leveraging our pipeline and analysis techniques already developed. With the addition of 7 Galactic pulsars each having many hundred multisatellite observations, these datasets cover the entire range of variability timescales and accretion regimes. We will model the pulse-profiles using state of the art techniques to parameterize their morphology and obtain the distribution of offsets between magnetic and spin axes, and create samples of profiles under specific accretion modes (whether pencil-beam or fan-beam dominated). These products are needed for the next generation of advances in neutron star theory and modeling. The long-duration of the dataset and “whole-galaxy" nature of the SMC sample make possible a new statistical approach to uncover the duty-cycle distribution and hence population demographics of transient High Mass X-ray Binary (HMXB) populations. Our unique library is already fueling progress on fundamental NS parameters and accretion physics.
On black widow evolutionary scenarios for binary neutron stars
NASA Technical Reports Server (NTRS)
Eichler, David; Levinson, Amir
1988-01-01
The scenario whereby the pulsar 1957 + 20 ablates its companion by soft gamma-ray synchrotron emission (Ruderman et al., 1988) is critically examined, with particular regard to how the outflowing material, beginning at photospheric temperatures, is heated through the cooling barrier to coronal temperatures. Assuming the conductivity to be at most the Spitzer value, this consideration is found to constrain the mass flux more than two orders of magnitude more severely than merely considering cooling near the sonic point. This would imply that the ablation scenario fails by a large margin, even if the emission from the pulsar is beamed along the orbital plane.
Timing of 29 Pulsars Discovered in the PALFA Survey
NASA Astrophysics Data System (ADS)
Lyne, A. G.; Stappers, B. W.; Bogdanov, S.; Ferdman, R. D.; Freire, P. C. C.; Kaspi, V. M.; Knispel, B.; Lynch, R.; Allen, B.; Brazier, A.; Camilo, F.; Cardoso, F.; Chatterjee, S.; Cordes, J. M.; Crawford, F.; Deneva, J. S.; Hessels, J. W. T.; Jenet, F. A.; Lazarus, P.; van Leeuwen, J.; Lorimer, D. R.; Madsen, E.; McKee, J.; McLaughlin, M. A.; Parent, E.; Patel, C.; Ransom, S. M.; Scholz, P.; Seymour, A.; Siemens, X.; Spitler, L. G.; Stairs, I. H.; Stovall, K.; Swiggum, J.; Wharton, R. S.; Zhu, W. W.; Aulbert, C.; Bock, O.; Eggenstein, H.-B.; Fehrmann, H.; Machenschalk, B.
2017-01-01
We report on the discovery and timing observations of 29 distant long-period pulsars found in the ongoing Arecibo L-band Feed Array pulsar survey. Following discovery with the Arecibo Telescope, confirmation and timing observations of these pulsars over several years at Jodrell Bank Observatory have yielded high-precision positions and measurements of rotation and radiation properties. We have used multi-frequency data to measure the interstellar scattering properties of some of these pulsars. Most of the pulsars have properties that mirror those of the previously known pulsar population, although four show some notable characteristics. PSRs J1907+0631 and J1925+1720 are young and are associated with supernova remnants or plerionic nebulae: J1907+0631 lies close to the center of SNR G40.5-0.5, while J1925+1720 is coincident with a high-energy Fermi γ-ray source. One pulsar, J1932+1500, is in a surprisingly eccentric, 199 day binary orbit with a companion having a minimum mass of 0.33 M⊙. Several of the sources exhibit timing noise, and two, PSRs J0611+1436 and J1907+0631, have both suffered large glitches, but with very different post-glitch rotation properties. In particular, the rotational period of PSR J0611+1436 will not recover to its pre-glitch value for about 12 years, a far greater recovery timescale than seen following any other large glitches.
Discovery of an Unidentified Fermi Object as a Black Widow-Like Millisecond Pulsar
NASA Technical Reports Server (NTRS)
Kong, A. K. H.; Huang, R. H. H.; Cheng, K. S.; Takata, J.; Yatsu, Y.; Cheung, C. C.; Donato, D.; Lin, L. C. C.; Kataoka, J.; Takahashi, Y.;
2012-01-01
The Fermi Gamma-ray Space Telescope has revolutionized our knowledge of the gamma-ray pulsar population, leading to the discovery of almost 100 gamma-ray pulsars and dozens of gamma-ray millisecond pulsars (MSPs). Although the outer-gap model predicts different sites of emission for the radio and gamma-ray pulsars, until now all of the known gamma-ray MSPs have been visible in the radio. Here we report the discovery of a radio-quiet" gamma-ray emitting MSP candidate by using Fermi, Chandra, Swift, and optical observations. The X-ray and gamma-ray properties of the source are consistent with known gamma-ray pulsars. We also found a 4.63-hr orbital period in optical and X-ray data. We suggest that the source is a black widow-like MSP with a approx. 0.1 Stellar Mass late-type companion star. Based on the profile of the optical and X-ray light-curves, the companion star is believed to be heated by the pulsar while the X-ray emissions originate from pulsar magnetosphere and/or from intra-binary shock. No radio detection of the source has been reported yet and although no gamma-ray/radio pulsation has been found, we estimated that the spin period of the MSP is approx. 3-5 ms based on the inferred gamma-ray luminosity.
PALFA Discovers Neutron Stars on a Collision Course
NASA Astrophysics Data System (ADS)
Kohler, Susanna
2018-03-01
Got any plans in 46 million years? If not, you should keep an eye out for PSR J1946+2052 around that time this upcoming merger of two neutron stars promises to be an exciting show!Survey SuccessAverage profile for PSR J1946+2052 at 1.43 GHz from a 2 hr observation from the Arecibo Observatory. [Stovall et al. 2018]It seems like we just wrote about the dearth of known double-neutron-star systems, and about how new surveys are doing their best to find more of these compact binaries. Observing these systems improves our knowledge of how pairs of evolved stars behave before they eventually spiral in, merge, and emit gravitational waves that detectors like the Laser Interferometer Gravitational-wave Observatory might observe.Todays study, led by Kevin Stovall (National Radio Astronomy Observatory), goes to show that these surveys are doing a great job so far! Yet another double-neutron-star binary, PSR J1946+2052, has now been discovered as part of the Arecibo L-Band Feed Array pulsar (PALFA) survey. This one is especially unique due to the incredible speed with which these neutron stars orbit each other and their correspondingly (relatively!) short timescale for merger.An Extreme ExampleThe PALFA survey, conducted with the enormous 305-meter radio dish at Arecibo, has thus far resulted in the discovery of 180 pulsars including two double-neutron-star systems. The most recent discovery by Stovall and collaborators brings that number up to three, for a grand total of 16 binary-neutron-star systems (confirmed and unconfirmed) known to date.The 305-m Arecibo Radio Telescope, built into the landscape at Arecibo, Puerto Rico. [NOAO/AURA/NSF/H. Schweiker/WIYN]The newest binary in this collection, PSR J1946+2052, exhibits a pulsar with a 17-millisecond spin period thatwhips around its compact companion at a terrifying rate: the binary period is just 1.88 hours. Follow-up observations with the Jansky Very Large Array and other telescopes allowed the team to identify the binarys location to high precision and establish additional parameters of the system.PSR J1946+2052 is a system of extremes. The binarys total mass is found to be 2.5 solar masses, placing it among the lightest binary-neutron-star systems known. Its orbital period is the shortest weve observed, and the two neutron stars are on track to merge in less time than any other known neutron-star binaries: in just 46 million years. When the two stars reach the final stages of their merger, the effects of the pulsars rapid spin on the gravitational-wave signal will be the largest of any such system discovered to date.More Tests of General RelativityWhat can PSR J1946+2052 do for us? This extreme system will be especially useful as a gravitational laboratory. Continued observations of PSR J1946+2052 will pin down with unprecedented precision parameters like the Einstein delay and the rate of decay of the binarys orbit due to the emission of gravitational waves, testing the predictions of general relativity to an order of magnitude higher precision than was possible before.As we expect there to be thousands of systems like PSR J1946+2052 in our galaxy alone, better understanding this binary and finding more like it continue to be important steps toward interpreting compact-object merger observations in the future.CitationK. Stovall et al 2018 ApJL 854 L22. doi:10.3847/2041-8213/aaad06
Jet quenching in the neutron star low-mass X-ray binary 1RXS J180408.9-342058
NASA Astrophysics Data System (ADS)
Gusinskaia, N. V.; Deller, A. T.; Hessels, J. W. T.; Degenaar, N.; Miller-Jones, J. C. A.; Wijnands, R.; Parikh, A. S.; Russell, T. D.; Altamirano, D.
2017-09-01
We present quasi-simultaneous radio (VLA) and X-ray (Swift) observations of the neutron star low-mass X-ray binary (NS-LMXB) 1RXS J180408.9-342058 (J1804) during its 2015 outburst. We found that the radio jet of J1804 was bright (232 ± 4 μJy at 10 GHz) during the initial hard X-ray state, before being quenched by more than an order of magnitude during the soft X-ray state (19 ± 4 μJy). The source then was undetected in radio (<13 μJy) as it faded to quiescence. In NS-LMXBs, possible jet quenching has been observed in only three sources and the J1804 jet quenching we show here is the deepest and clearest example to date. Radio observations when the source was fading towards quiescence (LX = 1034-35 erg s-1) show that J1804 must follow a steep track in the radio/X-ray luminosity plane with β > 0.7 (where L_R ∝ L_X^{β }). Few other sources have been studied in this faint regime, but a steep track is inconsistent with the suggested behaviour for the recently identified class of transitional millisecond pulsars. J1804 also shows fainter radio emission at LX < 1035 erg s-1 than what is typically observed for accreting millisecond pulsars. This suggests that J1804 is likely not an accreting X-ray or transitional millisecond pulsar.
PSR J0538+2817 As The Remnant Of The First Supernova Explosion in a Massive Binary
NASA Astrophysics Data System (ADS)
Gvaramadze, V. V.
2006-08-01
It is generally accepted that the radio pulsar PSR J0538+2817 is associated with the supernova remnant (SNR) S147. The only problem for the association is the obvious discrepancy (Kramer et al. 2003) between the kinematic age of the system of ~30 kyr (estimated from the angular offset of the pulsar from the geometric center of the SNR and pulsar's proper motion) and the characteristic age of the pulsar of ~600 kyr. To reconcile these ages one can assume that the pulsar was born with a spin period close to the present one (Kramer et al. 2003; Romani & Ng 2003). We propose an alternative explanation of the age discrepancy based on the fact that PSR J0538+2817 could be the stellar remnant of the first supernova explosion in a massive binary system and therefore could be as old as indicated by its characteristic age. Our proposal implies that S147 is the diffuse remnant of the second supernova explosion (that disrupted the binary system) and that a much younger second neutron star (not necessarily manifesting itself as a radio pulsar) should be associated with S147. We use the existing observational data on the system PSR J0538+2817/SNR S147 to suggest that the progenitor of the supernova that formed S147 was a Wolf-Rayet star (so that the supernova explosion occurred within a wind bubble surrounded by a massive shell) and to constrain the parameters of the binary system. We also restrict the magnitude and direction of the kick velocity received by the young neutron star at birth and find that the kick vector should not strongly deviate from the orbital plane of the binary system.
Sigma observations of the low mass X-ray binaries of the galactic bulge
NASA Technical Reports Server (NTRS)
Goldwurm, A.; Denis, M.; Paul, J.; Faisse, S.; Roques, J. P.; Bouchet, L.; Vedrenne, G.; Mandrou, P.; Sunyaev, R.; Churazov, E.
1995-01-01
The soft gamma-ray telescope (35-1300 keV) SIGMA aboard the high energy GRANAT space observatory has been monitoring the Galactic Bulge region for more than 2000 h of effective time since March 1990. In the resulting average 35-75 keV image we detected ten sources at a level of greater than 5 standard deviations, 6 of which can be identified with low mass X-ray binaries (LMXB). Among them, one is the 1993 X-ray nova in Ophiuchus (GRS 1726-249), one is an X-ray pulsar (GX 1+4), two are associated with X-ray bursters (GX 354-0 and A 1742-294) and two with bursting X-ray binaries in the globular clusters Terzan 2 and Terzan 1. Their spectral and long term variability behavior as measured by SIGMMA are presented and discussed.
Probing the Masses of the PSR JO621+1002 Binary System Through Relativistic Apsidal Motion
NASA Technical Reports Server (NTRS)
Spaver, Eric M.; Nice, David J.; Arzoumanian, Zaven; Camilo, Fernando; Lyne, Andrew G.; Stairs, Ingrid H.; White, Nicholas E. (Technical Monitor)
2002-01-01
Orbital, spin and astrometric parameters of the millisecond pulsar PSR J0621+1002 have been determined through six years of timing observations at three radio telescopes. The chief result is a measurement of the rate of periastron advance, omega=0 deg.0116 +/-0 deg.0008/yr. Interpreted as a general relativistic effect, this implies the sum of the pulsar mass, m(1), and the companion mass, m(2), to be M=m(1)+m(2)= 2.81 +/-0.30 solar mass. The Keplerian parameters rule out certain combinations of m(1) and m(2), as does the non-detection of Shapiro delay in the pulse arrival times. These constraints, together with the assumption that the companion is a white dwarf, lead to the maximum likelihood values m(1)=1.69((sup +0.30)(sub -0.30)) solar mass and m(2)=0.98((sup +0.32)(sub -0.12) solar mass (68% confidence). The other major finding is that the pulsar experiences dramatic variability in its dispersion measure (DM), with gradients as steep as 0.013 pc/cu cm/yr. A structure function analysis of the DM variations uncovers spatial fluctuations in the interstellar electron density that cannot be fit to a single power law, unlike the Kolmogorov turbulent spectrum that has been seen in the direction of other pulsars. Other results from the timing analysis include the first measurements of the pulsar's proper motion, mu=3.5+/-0.3 mas/yr, and of its spin-down rate, dP/dt=4.7 x 10(exp -20), which, when corrected for kinematic biases and combined with the pulse period, P=28.8 ms, gives a characteristic age of 1.1 x 10(exp 10) yr and a surface magnetic field strength of 1.2 x 10 (exp 9) G.
Where are the r-modes? Chandra Observations of Millisecond Pulsars
NASA Technical Reports Server (NTRS)
Mahmoodifar, Simin; Strohmayer, Tod E.
2017-01-01
We present the results of Chandra observations of two non-accreting millisecond pulsars, PSRs J1640+2224(J1640) and J1709+2313 (J1709), with low inferred magnetic fields and spin-down rates in order to constrain their surface temperatures, obtain limits on the amplitude of unstable r-modes in them, and make comparisons with similar limits obtained for a sample of accreting low-mass X-ray binary (LMXB) neutron stars. We detect both pulsars in the X-ray band for the first time. They are faint, with inferred soft X-ray fluxes(0.3-3 keV) of approx. 6 x 10(exp -15) and 3 x 10( exp -15) erg/sq cm for J1640 and J1709, respectively. Spectral analysis assuming hydrogen atmosphere emission gives global effective temperature upper limits (90% confidence) of 3.3-4.3 x 10(exp 5) K for J1640 and 3.6-4.7 x 10(exp 5) K for J1709, where the low end of the range corresponds to canonical neutron stars (M = 1.4 Stellar Mass), and the upper end corresponds to higher-mass stars (M = 2.21 Stellar Mass). Under the assumption that r-mode heating provides the thermal support, we obtain dimensionless r-mode amplitude upper limits of 3.2-4.8 x 10(exp -8) and 1.8-2.8 x 10(exp -7) for J1640 and J1709, respectively, where again the low end of the range corresponds to lower-mass, canonical neutron stars (M =1.4 Stellar Mass). These limits are about an order of magnitude lower than those we derived previously for a sample of LMXBs, except for the accreting millisecond X-ray pulsar SAX J1808.43658, which has a comparable amplitude limit to J1640 and J1709.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Xuebing; Wang, Zhongxiang; Morrell, Nidia
2013-02-20
We report our multi-band infrared (IR) imaging of the transitional millisecond pulsar system J1023+0038, a rare pulsar binary known to have an accretion disk in 2000-2001. The observations were carried out with ground-based and space telescopes from near-IR to far-IR wavelengths. We detected the source in near-IR JH bands and Spitzer 3.6 and 4.5 {mu}m mid-IR channels. Combined with the previously reported optical spectrum of the source, the IR emission is found to arise from the companion star, with no excess emission detected in the wavelength range. Because our near-IR fluxes are nearly equal to those obtained by the 2MASSmore » all-sky survey in 2000 February, the result indicates that the binary did not contain the accretion disk at the time, whose existence would have raised the near-IR fluxes to twice larger values. Our observations have thus established the short-term nature of the interacting phase seen in 2000-2001: the accretion disk existed for at most 2.5 yr. The binary was not detected by the WISE all-sky survey carried out in 2010 at its 12 and 22 {mu}m bands and our Herschel far-IR imaging at 70 and 160 {mu}m. Depending on the assumed properties of the dust, the resulting flux upper limits provide a constraint of <3 Multiplication-Sign 10{sup 22}-3 Multiplication-Sign 10{sup 25} g on the mass of the dust grains that possibly exist as the remnants of the previously seen accretion disk.« less
The binary millisecond pulsar PSR J1023+0038 during its accretion state - I. Optical variability
NASA Astrophysics Data System (ADS)
Shahbaz, T.; Linares, M.; Nevado, S. P.; Rodríguez-Gil, P.; Casares, J.; Dhillon, V. S.; Marsh, T. R.; Littlefair, S.; Leckngam, A.; Poshyachinda, S.
2015-11-01
We present time-resolved optical photometry of the binary millisecond `redback' pulsar PSR J1023+0038 (=AY Sex) during its low-mass X-ray binary phase. The light curves taken between 2014 January and April show an underlying sinusoidal modulation due to the irradiated secondary star and accretion disc. We also observe superimposed rapid flaring on time-scales as short as ˜20 s with amplitudes of ˜0.1-0.5 mag and additional large flare events on time-scales of ˜5-60 min with amplitudes of ˜0.5-1.0 mag. The power density spectrum of the optical flare light curves is dominated by a red-noise component, typical of aperiodic activity in X-ray binaries. Simultaneous X-ray and UV observations by the Swift satellite reveal strong correlations that are consistent with X-ray reprocessing of the UV light, most likely in the outer regions of the accretion disc. On some nights we also observe sharp-edged, rectangular, flat-bottomed dips randomly distributed in orbital phase, with a median duration of ˜250 s and a median ingress/egress time of ˜20 s. These rectangular dips are similar to the mode-switching behaviour between disc `active' and `passive' luminosity states, observed in the X-ray light curves of other redback millisecond pulsars. This is the first time that the optical analogue of the X-ray mode-switching has been observed. The properties of the passive- and active-state light curves can be explained in terms of clumpy accretion from a trapped inner accretion disc near the corotation radius, resulting in rectangular, flat-bottomed optical and X-ray light curves.
Physical implications of the eclipsing binary pulsar
NASA Technical Reports Server (NTRS)
Wasserman, Ira; Cordes, James M.
1988-01-01
The observed characteristics of the msec pulsar P1957+20, discovered in an eclipsing binary by Fruchter et al. (1988), are considered theoretically. Model equations for the stellar wind and optical emission are derived and used to estimate the effective temperature and optical luminosity associated with wind excitation; then the energy levels required to generate such winds are investigated. The color temperature of the pulsar-heated stellar surface calculated under the assumption of adiabatic expansion is 1000-10,000 K, in good agreement with the observational estimate of 5500 K.
Rapidly Rising Optical Transients from the Birth of Binary Neutron Stars
NASA Astrophysics Data System (ADS)
Hotokezaka, Kenta; Kashiyama, Kazumi; Murase, Kohta
2017-11-01
We study optical counterparts of a new-born pulsar in a double neutron star system like PSR J0737-3039A/B. This system is believed to have ejected a small amount of mass of { O }(0.1 {M}⊙ ) at the second core-collapse supernova. We argue that the initial spin of the new-born pulsar can be determined by the orbital period at the time when the second supernova occurs. The spin angular momentum of the progenitor is expected to be similar to that of the He-burning core, which is tidally synchronized with the orbital motion, and then the second remnant may be born as a millisecond pulsar. If the dipole magnetic field strength of the nascent pulsar is comparable with that inferred from the current spin-down rate of PSR J0737-3039B, the initial spin-down luminosity is comparable to the luminosity of super-luminous supernovae. We consider thermal emission arising from the supernova ejecta driven by the relativistic wind from such a new-born pulsar. The resulting optical light curves have a rise time of ˜10 days and a peak luminosity of ˜1044 erg s-1. The optical emission may last for a month to several months, due to the reprocessing of X-rays and UV photons via photoelectric absorption. These features are broadly consistent with those of the rapidly rising optical transients. The high spin-down luminosity and small ejecta mass are favorable for the progenitor of the repeating fast radio burst, FRB 121102. We discuss a possible connection between new-born double pulsars and fast radio bursts.
The prospects of pulsar timing with new-generation radio telescopes and the Square Kilometre Array
NASA Astrophysics Data System (ADS)
Stappers, B. W.; Keane, E. F.; Kramer, M.; Possenti, A.; Stairs, I. H.
2018-05-01
Pulsars are highly magnetized and rapidly rotating neutron stars. As they spin, the lighthouse-like beam of radio emission from their magnetic poles sweeps across the Earth with a regularity approaching that of the most precise clocks known. This precision combined with the extreme environments in which they are found, often in compact orbits with other neutron stars and white dwarfs, makes them excellent tools for studying gravity. Present and near-future pulsar surveys, especially those using the new generation of telescopes, will find more extreme binary systems and pulsars that are more precise `clocks'. These telescopes will also greatly improve the precision to which we can measure the arrival times of the pulses. The Square Kilometre Array will revolutionize pulsar searches and timing precision. The increased number of sources will reveal rare sources, including possibly a pulsar-black hole binary, which can provide the most stringent tests of strong-field gravity. The improved timing precision will reveal new phenomena and also allow us to make a detection of gravitational waves in the nanohertz frequency regime. It is here where we expect to see the signature of the binary black holes that are formed as galaxies merge throughout cosmological history. This article is part of a discussion meeting issue `The promises of gravitational-wave astronomy'.
Precision timing measurements of PSR J1012+5307
NASA Astrophysics Data System (ADS)
Lange, Ch.; Camilo, F.; Wex, N.; Kramer, M.; Backer, D. C.; Lyne, A. G.; Doroshenko, O.
2001-09-01
We present results and applications of high-precision timing measurements of the binary millisecond pulsar J1012+5307. Combining our radio timing measurements with results based on optical observations, we derive complete 3D velocity information for this system. Correcting for Doppler effects, we derive the intrinsic spin parameters of this pulsar and a characteristic age of 8.6+/-1.9Gyr. Our upper limit for the orbital eccentricity of only 8×10-7 (68 per cent confidence level) is the smallest ever measured for a binary system. We demonstrate that this makes the pulsar an ideal laboratory in which to test certain aspects of alternative theories of gravitation. Our precision measurements suggest deviations from a simple pulsar spin-down timing model, which are consistent with timing noise and the extrapolation of the known behaviour of slowly rotating pulsars.
NASA Astrophysics Data System (ADS)
Murphy, Simon J.; Moe, Maxwell; Kurtz, Donald W.; Bedding, Timothy R.; Shibahashi, Hiromoto; Boffin, Henri M. J.
2018-03-01
The orbital parameters of binaries at intermediate periods (102-103 d) are difficult to measure with conventional methods and are very incomplete. We have undertaken a new survey, applying our pulsation timing method to Kepler light curves of 2224 main-sequence A/F stars and found 341 non-eclipsing binaries. We calculate the orbital parameters for 317 PB1 systems (single-pulsator binaries) and 24 PB2s (double-pulsators), tripling the number of intermediate-mass binaries with full orbital solutions. The method reaches down to small mass ratios q ≈ 0.02 and yields a highly homogeneous sample. We parametrize the mass-ratio distribution using both inversion and Markov-Chain Monte Carlo forward-modelling techniques, and find it to be skewed towards low-mass companions, peaking at q ≈ 0.2. While solar-type primaries exhibit a brown dwarf desert across short and intermediate periods, we find a small but statistically significant (2.6σ) population of extreme-mass-ratio companions (q < 0.1) to our intermediate-mass primaries. Across periods of 100-1500 d and at q > 0.1, we measure the binary fraction of current A/F primaries to be 15.4 per cent ± 1.4 per cent, though we find that a large fraction of the companions (21 per cent ± 6 per cent) are white dwarfs in post-mass-transfer systems with primaries that are now blue stragglers, some of which are the progenitors of Type Ia supernovae, barium stars, symbiotics, and related phenomena. Excluding these white dwarfs, we determine the binary fraction of original A/F primaries to be 13.9 per cent ± 2.1 per cent over the same parameter space. Combining our measurements with those in the literature, we find the binary fraction across these periods is a constant 5 per cent for primaries M1 < 0.8 M⊙, but then increases linearly with log M1, demonstrating that natal discs around more massive protostars M1 ≳ 1 M⊙ become increasingly more prone to fragmentation. Finally, we find the eccentricity distribution of the main-sequence pairs to be much less eccentric than the thermal distribution.
Pulsar-black hole binaries as a window on quantum gravity
NASA Astrophysics Data System (ADS)
Estes, John; Kavic, Michael; Lippert, Matthew; Simonetti, John H.
Pulsars (PSRs) are some of the most accurate clocks found in nature, while black holes (BHs) offer a unique arena for the study of quantum gravity. As such, PSR-BH binaries provide ideal astrophysical systems for detecting effects of quantum gravity. With the success of aLIGO and the advent of instruments like the Square Kilometer Array (SKA) and Evolved Laser Interferometer Space Antenna (eLISA), the prospects for discovery of such PSR-BH binaries are very promising. We argue that PSR-BH binaries can serve as ready-made testing grounds for proposed resolutions to the BH information paradox. We propose using timing signals from a PSR beam passing through the region near a BH event horizon as a probe of quantum gravitational effects. In particular, we demonstrate that fluctuations of the geometry outside a BH lead to an increase in the measured root-mean-square deviation of arrival times of PSR pulsar traveling near the horizon.
VizieR Online Data Catalog: Adiabatic mass loss in binary stars. II. (Ge+, 2015)
NASA Astrophysics Data System (ADS)
Ge, H.; Webbink, R. F.; Chen, X.; Han, Z.
2016-02-01
In the limit of extremely rapid mass transfer, the response of a donor star in an interacting binary becomes asymptotically one of adiabatic expansion. We survey here adiabatic mass loss from Population I stars (Z=0.02) of mass 0.10M⊙-100M⊙ from the zero-age main sequence to the base of the giant branch, or to central hydrogen exhaustion for lower main sequence stars. The logarithmic derivatives of radius with respect to mass along adiabatic mass-loss sequences translate into critical mass ratios for runaway (dynamical timescale) mass transfer, evaluated here under the assumption of conservative mass transfer. For intermediate- and high-mass stars, dynamical mass transfer is preceded by an extended phase of thermal timescale mass transfer as the star is stripped of most of its envelope mass. The critical mass ratio qad (throughout this paper, we follow the convention of defining the binary mass ratio as q{equiv}Mdonor/Maccretor) above which this delayed dynamical instability occurs increases with advancing evolutionary age of the donor star, by ever-increasing factors for more massive donors. Most intermediate- or high-mass binaries with nondegenerate accretors probably evolve into contact before manifesting this instability. As they approach the base of the giant branch, however, and begin developing a convective envelope, qad plummets dramatically among intermediate-mass stars, to values of order unity, and a prompt dynamical instability occurs. Among low-mass stars, the prompt instability prevails throughout main sequence evolution, with qad declining with decreasing mass, and asymptotically approaching qad=2/3, appropriate to a classical isentropic n=3/2 polytrope. Our calculated qad values agree well with the behavior of time-dependent models by Chen & Han (2003MNRAS.341..662C) of intermediate-mass stars initiating mass transfer in the Hertzsprung gap. Application of our results to cataclysmic variables, as systems that must be stable against rapid mass transfer, nicely circumscribes the range in qad as a function of the orbital period in which they are found. These results are intended to advance the verisimilitude of population synthesis models of close binary evolution. (3 data files).
The Orbital Parameters and Nature of the X-ray Pulsar IGR J16393-4643 Using Pulse Timing Analysis
NASA Astrophysics Data System (ADS)
Pearlman, Aaron B.; Corbet, R. H. D.; Pottschmidt, K.; Skinner, G. K.
2011-09-01
A 3.7 day orbital period was previously suggested for the 910 s X-ray pulsar IGR J16393-4643 from a pulse timing study of widely separated X-ray observations (Thompson et al., 2006), placing the system in the supergiant wind-fed region of the Ppulse-Porb diagram. However, orbital periods of 50.2 and 8.1 days could not be excluded. Nespoli et al. (2010) refute this wind-accreting high-mass X-ray binary classification and suggest a symbiotic X-ray binary (SyXB) designation based on infrared spectroscopy of the proposed counterpart and the potential 50.2 day orbital solution. SyXBs are low-mass X-ray binaries in which a neutron star accretes from the inhomogeneous medium around an M-type giant companion. We find that two statistically independent light curves of IGR J16393-4643, from the Swift Burst Alert Telescope (15-50 keV) and the Rossi X-ray Timing Explorer (RXTE) Proportional Counter Array (PCA) Galactic bulge scans (2-10 keV), show highly significant orbital modulation near 4.24 days. Making use of this precise orbital period, we present the results from pulse arrival time analysis on IGR J16393-4643 using RXTE PCA observations. We provide significantly improved phase-connected pulse timing results using archival observations presented in Thompson et al. (2006) and additional pulse timing data not included in their study to determine the orbital parameters of the system. The derived 7.5 M⊙ mass function is inconsistent with a SyXB identification.
"Missing Link" Revealing Fast-Spinning Pulsar Mysteries
NASA Astrophysics Data System (ADS)
2009-05-01
Astronomers have discovered a unique double-star system that represents a "missing link" stage in what they believe is the birth process of the most rapidly-spinning stars in the Universe -- millisecond pulsars. "We've thought for some time that we knew how these pulsars get 'spun up' to rotate so swiftly, and this system looks like it's showing us the process in action," said Anne Archibald, of McGill University in Montreal, Canada. Pulsar and Companion Neutron star with accretion disk (left) drawing material from companion star (right). CREDIT:Bill Saxton, NRAO/AUI/NSF Animations of this system and its evolution. Pulsars are superdense neutron stars, the remnants left after massive stars have exploded as supernovae. Their powerful magnetic fields generate lighthouse-like beams of light and radio waves that sweep around as the star rotates. Most rotate a few to tens of times a second, slowing down over thousands of years. However, some, dubbed millisecond pulsars, rotate hundreds of times a second. Astronomers believe the fast rotation is caused by a companion star dumping material onto the neutron star and spinning it up. The material from the companion would form a flat, spinning disk around the neutron star, and during this period, the radio waves characteristic of a pulsar would not be seen coming from the system. As the amount of matter falling onto the neutron star decreased and stopped, the radio waves could emerge, and the object would be recognized as a pulsar. This sequence of events is apparently what happened with a binary-star system some 4000 light-years from Earth. The millisecond pulsar in this system, called J1023, was discovered by the National Science Foundation's (NSF) Robert C. Byrd Green Bank Telescope (GBT) in West Virginia in 2007 in a survey led by astronomers at West Virginia University and the National Radio Astronomy Observatory (NRAO). The astronomers then found that the object had been detected by NSF's Very Large Array (VLA) radio telescope during a large sky survey in 1998, and had been observed in visible light by the Sloan Digital Sky Survey in 1999, revealing a Sun-like star. When observed again in 2000, the object had changed dramatically, showing evidence for a rotating disk of material, called an accretion disk, surrounding the neutron star. By May of 2002, the evidence for this disk had disappeared. "This strange behavior puzzled astronomers, and there were several different theories for what the object could be," said Ingrid Stairs of the University of British Columbia, who has been visiting the Australia Telescope National Facility and Swinburne University this year. The 2007 GBT observations showed that the object is a millisecond pulsar, spinning 592 times per second. "No other millisecond pulsar has ever shown evidence for an accretion disk," Archibald said. "We know that another type of binary-star system, called a low-mass X-ray binary (LMXB), also contains a fast-spinning neutron star and an accretion disk, but these don't emit radio waves. We've thought that LMXBs probably are in the process of getting spun up, and will later emit radio waves as a pulsar. This object appears to be the 'missing link' connecting the two types of systems," she explained. "It appears this thing has flipped from looking like an LMXB to looking like a pulsar, as it experienced an episode during which material pulled from the companion star formed an accretion disk around the neutron star. Later, that mass transfer stopped, the disk disappeared, and the pulsar emerged," said Scott Ransom of the NRAO. The scientists have studied J1023 in detail with the GBT, with the Westerbork radio telescope in the Netherlands, with the Arecibo radio telescope in Puerto Rico, and with the Parkes radio telescope in Australia. Their results indicate that the neutron star's companion has less than half the Sun's mass, and orbits the neutron star once every four hours and 45 minutes. "This system gives us an unparalled 'cosmic laboratory' for studying how millisecond pulsars evolve," Stairs said. Maura McLaughlin, of West Virginia University, agrees: "Future observations of this system at radio and other wavelengths are sure to hold many surprises." Archibald, Ransom, Stairs and McLaughlin are members of an international scientific team with representatives from McGill University, the University of British Columbia, the NRAO, West Virginia University, and others. The scientists announced their discovery in the May 21 online issue of the journal Science.
Featured Image: A Slow-Spinning X-Ray Pulsar
NASA Astrophysics Data System (ADS)
Kohler, Susanna
2017-05-01
This image (click for a closer look!) reveals the sky location of a new discovery: the slowest spinning X-ray pulsar a spinning, highly magnetized neutron star ever found in an extragalactic globular cluster. The pulsar, XB091D (circled in the bottom left inset), lies in the globular cluster B091D in the Andromeda galaxy. In a recent study led by Ivan Zolotukhin (University of Toulouse, Moscow State University, and Special Astrophysical Observatory of the Russian Academy of Sciences), a team of scientists details the importance of this discovery. This pulsar is gradually spinning faster and faster a process thats known as recycling, thought to occur as a pulsar accretes material from a donor star in a binary system. Zolotukhin and collaborators think that this particular pairing formed relatively recently, when the pulsar captured a passing star into a binary system. Were now seeing it in a unique stage of evolution where the pulsar is just starting to get recycled. For more information, check out the paper below!CitationIvan Yu. Zolotukhin et al 2017 ApJ 839 125. doi:10.3847/1538-4357/aa689d
TIMING OF 29 PULSARS DISCOVERED IN THE PALFA SURVEY
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lyne, A. G.; Stappers, B. W.; Bogdanov, S.
2017-01-10
We report on the discovery and timing observations of 29 distant long-period pulsars found in the ongoing Arecibo L-band Feed Array pulsar survey. Following discovery with the Arecibo Telescope, confirmation and timing observations of these pulsars over several years at Jodrell Bank Observatory have yielded high-precision positions and measurements of rotation and radiation properties. We have used multi-frequency data to measure the interstellar scattering properties of some of these pulsars. Most of the pulsars have properties that mirror those of the previously known pulsar population, although four show some notable characteristics. PSRs J1907+0631 and J1925+1720 are young and are associatedmore » with supernova remnants or plerionic nebulae: J1907+0631 lies close to the center of SNR G40.5−0.5, while J1925+1720 is coincident with a high-energy Fermi γ -ray source. One pulsar, J1932+1500, is in a surprisingly eccentric, 199 day binary orbit with a companion having a minimum mass of 0.33 M {sub ⊙}. Several of the sources exhibit timing noise, and two, PSRs J0611+1436 and J1907+0631, have both suffered large glitches, but with very different post-glitch rotation properties. In particular, the rotational period of PSR J0611+1436 will not recover to its pre-glitch value for about 12 years, a far greater recovery timescale than seen following any other large glitches.« less
NASA Astrophysics Data System (ADS)
Dvorkin, Irina; Barausse, Enrico
2017-10-01
Massive black hole binaries, formed when galaxies merge, are among the primary sources of gravitational waves targeted by ongoing pulsar timing array (PTA) experiments and the upcoming space-based Laser Interferometer Space Antenna (LISA) interferometer. However, their formation and merger rates are still highly uncertain. Recent upper limits on the stochastic gravitational wave background obtained by PTAs are starting to be in marginal tension with theoretical models for the pairing and orbital evolution of these systems. This tension can be resolved by assuming that these binaries are more eccentric or interact more strongly with the environment (gas and stars) than expected, or by accounting for possible selection biases in the construction of the theoretical models. However, another (pessimistic) possibility is that these binaries do not merge at all, but stall at large (˜pc) separations. We explore this extreme scenario by using a semi-analytic galaxy formation model including massive black holes (isolated and in binaries), and show that future generations of PTAs will detect the stochastic gravitational wave background from the massive black hole binary population within 10-15 yr of observations, even in the `nightmare scenario' in which all binaries stall at the hardening radius. Moreover, we argue that this scenario is too pessimistic, because our model predicts the existence of a subpopulation of binaries with small mass ratios (q ≲ 10-3) that should merge within a Hubble time simply as a result of gravitational wave emission. This subpopulation will be observable with large signal-to-noise ratios by future PTAs thanks to next-generation radio telescopes such as Square Kilometre Array or Five-hundred-meter Aperture Spherical Telescope, and possibly by LISA.
NASA Technical Reports Server (NTRS)
Enoto, Teruaki; Sasano, Makoto; Yamada, Shin'Ya; Tamagawa, Toru; Makishima, Kazuo; Pottschmidt, Katja; Marcu, Diana; Corbet, Robin H. D.; Fuerst, Felix; Wilms, Jorn
2014-01-01
The symbiotic X-ray binary (SyXB) 4U 1954+319 is a rare system hosting a peculiar neutron star (NS) and an M-type optical companion. Its approx. 5.4 hr NS spin period is the longest among all known accretion-powered pulsars and exhibited large (is approx. 7%) fluctuations over 8 yr. A spin trend transition was detected with Swift/BAT around an X-ray brightening in 2012. The source was in quiescent and bright states before and after this outburst based on 60 ks Suzaku observations in 2011 and 2012. The observed continuum is well described by a Comptonized model with the addition of a narrow 6.4 keV Fe-K alpha line during the outburst. Spectral similarities to slowly rotating pulsars in high-mass X-ray binaries, its high pulsed fraction (approx. 60%-80%), and the location in the Corbet diagram favor high B-field (approx. greater than 10(exp12) G) over a weak field as in low-mass X-ray binaries. The observed low X-ray luminosity (10(exp33)-10(exp35) erg s(exp-1)), probable wide orbit, and a slow stellar wind of this SyXB make quasi-spherical accretion in the subsonic settling regime a plausible model. Assuming a approx. 10(exp13) G NS, this scheme can explain the approx. 5.4 hr equilibrium rotation without employing the magnetar-like field (approx. 10(exp16) G) required in the disk accretion case. The timescales of multiple irregular flares (approx. 50 s) can also be attributed to the free-fall time from the Alfv´en shell for a approx. 10(exp13) G field. A physical interpretation of SyXBs beyond the canonical binary classifications is discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Qian, S.-B.; Wang, J.-J.; Liu, L.
2015-02-01
NGC 7789 is an intermediate-age open cluster with an age similar to the mean age of contact binary stars. V12 is a bright W UMa-type binary star with an orbital period of 0.3917 days. The first complete light curves of V12 in the V, R, and I bands are presented and analyzed with the Wilson–Devinney (W-D) method. The results show that V12 is an intermediate-contact binary (f=43.0(±2.2)%) with a mass ratio of 3.848, and it is a W-type contact binary where the less massive component is slightly hotter than the more massive one. The asymmetry of the light curves ismore » explained by the presence of a dark spot on the more massive component. The derived orbital inclination (i=83{sub .}{sup ∘}6) indicates that it is a totally eclipsing binary, which suggests that the determined parameters are reliable. The orbital period may show a long-term increase at a rate of P-dot =+2.48(±0.17)×10{sup −6} days yr{sup −1} that reveals a rapid mass transfer from the less massive component to the more massive one. However, more observations are needed to confirm this conclusion. The presence of an intermediate-contact binary in an intermediate-age open cluster may suggest that some contact binaries have a very short pre-contact timescale. The presence of a third body and/or stellar collision may help to shorten the pre-contact evolution.« less
Theoretical Implications of the PSR B1620-26 Triple System and Its Planet
NASA Astrophysics Data System (ADS)
Ford, Eric B.; Joshi, Kriten J.; Rasio, Frederic A.; Zbarsky, Boris
2000-01-01
We present a new theoretical analysis of the PSR B1620-26 triple system in the globular cluster M4, based on the latest radio pulsar timing data, which now include measurements of five time derivatives of the pulse frequency. These data allow us to determine the mass and orbital parameters of the second companion completely (up to the usual unknown orbital inclination angle i2). The current best-fit parameters correspond to a second companion of planetary mass, m2sini2~=7×10-3 Msolar , in an orbit of eccentricity e2~=0.45 and semimajor axis a2~=60 AU. Using numerical scattering experiments, we study a possible formation scenario for the triple system, which involves a dynamical exchange interaction between the binary pulsar and a primordial star-planet system. The current orbital parameters of the triple are consistent with such a dynamical origin and suggest that the separation of the parent star-planet system was very large, >~50 AU. We also examine the possible origin of the anomalously high eccentricity of the inner binary pulsar. While this eccentricity could have been induced during the same dynamical interaction that created the triple, we find that it could equally well arise from long-term secular perturbation effects in the triple, combining the general relativistic precession of the inner orbit with the Newtonian gravitational perturbation of the planet. The detection of a planet in this system may be taken as evidence that large numbers of extrasolar planetary systems, not unlike those discovered recently in the solar neighborhood, also exist in old star clusters.
CAN THE SUBSONIC ACCRETION MODEL EXPLAIN THE SPIN PERIOD DISTRIBUTION OF WIND-FED X-RAY PULSARS?
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Tao; Shao, Yong; Li, Xiang-Dong, E-mail: lixd@nju.edu.cn
Neutron stars in high-mass X-ray binaries (HMXBs) generally accrete from the wind matter of their massive companion stars. Recently, Shakura et al. suggested a subsonic accretion model for low-luminosity (<4 × 10{sup 36} erg s{sup −1}), wind-fed X-ray pulsars. To test the feasibility of this model, we investigate the spin period distribution of wind-fed X-ray pulsars with a supergiant companion star, using a population synthesis method. We find that the modeled distribution of supergiant HMXBs in the spin period–orbital period diagram is consistent with observations, provided that the winds from the donor stars have relatively low terminal velocities (≲1000 kmmore » s{sup −1}). The measured wind velocities in several supergiant HMXBs seem to favor this viewpoint. The predicted number ratio of wind-fed X-ray pulsars with persistent X-ray luminosities that are higher and lower than 4 × 10{sup 36} erg s{sup −1} is about 1:10.« less
The prospects of pulsar timing with new-generation radio telescopes and the Square Kilometre Array.
Stappers, B W; Keane, E F; Kramer, M; Possenti, A; Stairs, I H
2018-05-28
Pulsars are highly magnetized and rapidly rotating neutron stars. As they spin, the lighthouse-like beam of radio emission from their magnetic poles sweeps across the Earth with a regularity approaching that of the most precise clocks known. This precision combined with the extreme environments in which they are found, often in compact orbits with other neutron stars and white dwarfs, makes them excellent tools for studying gravity. Present and near-future pulsar surveys, especially those using the new generation of telescopes, will find more extreme binary systems and pulsars that are more precise 'clocks'. These telescopes will also greatly improve the precision to which we can measure the arrival times of the pulses. The Square Kilometre Array will revolutionize pulsar searches and timing precision. The increased number of sources will reveal rare sources, including possibly a pulsar-black hole binary, which can provide the most stringent tests of strong-field gravity. The improved timing precision will reveal new phenomena and also allow us to make a detection of gravitational waves in the nanohertz frequency regime. It is here where we expect to see the signature of the binary black holes that are formed as galaxies merge throughout cosmological history.This article is part of a discussion meeting issue 'The promises of gravitational-wave astronomy'. © 2018 The Author(s).
The Dynamic Radio Sky: An Opportunity for Discovery
2010-01-01
brown dwarfs, flare stars extrasolar planets signals from ET civilizations pulsar giant pulses, inter- mittant pulsars , magnetar flares, X-ray binaries...giant pulses from the Crab pulsar , a small number of dedicated radio transient surveys, and the serendipitous discovery of transient radio sources...transients. 3.1 Case Study: Rotating Radio Transients—A New Population of Neutron Stars The first pulsars were discovered through visual inspection of
Russell Hulse, the First Binary Pulsar, and Science Education
physics research. In 1977, Hulse changed fields from astrophysics to plasma physics and joined the Plasma discoverer of the first binary pulsar and co-recipient of the 1993 Nobel Prize in physics, will affiliate with The University of Texas at Dallas (UTD) as a visiting professor of physics and of science and math
X-rays from the eclipsing pulsar 1957+20
NASA Technical Reports Server (NTRS)
Fruchter, A. S.; Bookbinder, J.; Garcia, M. R.; Bailyn, C. D.
1992-01-01
The detection of soft X-rays of about 1 keV energy from the eclipsing pulsar PSR1957+20 is reported. This high-energy radiation should be a valuable diagnostic of the wind in this recycled pulsar system. Possible sources of the X-ray emission are the interstellar nebula driven by the pulsar wind, the interaction between the pulsar and its evaporating companion, and the pulsar itself. The small apparent size of the X-ray object argues against the first of these possibilities and suggests that the X-rays are produced within the binary.
A Search for Black Holes and Neutron Stars in the Kepler Field
NASA Astrophysics Data System (ADS)
Orosz, Jerome; Short, Donald; Welsh, William; Windmiller, Gur; Dabney, David
2018-01-01
Black holes and neutron stars represent the final evolutionary stages of the most massive stars. In addition to their use as probes into the evolution of massive stars, black holes and neutron stars are ideal laboratories to test General Relativity in the strong field limit. The number of neutron stars and black holes in the Milky Way is not precisely known, but there are an estimated one billion neutron stars in the galaxy based on the observed numbers of radio pulsars. The number of black holes is about 100 million, based on the behavior of the Initial Mass Function at high stellar masses.All of the known steller-mass black holes (and a fair number of neutron stars) are in ``X-ray binaries'' that were discovered because of their luminous X-ray emission. The requirement to be in an X-ray-emitting binary places a strong observational bias on the discovery of stellar-mass black holes. Thus the 21 known black hole binaries represent only the very uppermost tip of the population iceberg.We have conducted an optical survey using Kepler data designed to uncover black holes and neutron stars in both ``quiescent'' X-ray binaries and ``pre-contact'' X-ray binaries. We discuss how the search was conducted, including how potentially interesting light curves were classified and the how variability types were identified. Although we did not find any convincing candidate neutron star or black hole systems, we did find a few noteworthy binary systems, including two binaries that contain low-mass stars with unusually low albedos.
NASA Astrophysics Data System (ADS)
Iorio, Lorenzo
2017-07-01
We develop a general approach to analytically calculate the perturbations Δ δ τ _ {p} of the orbital component of the change δ τ _ {p} of the times of arrival of the pulses emitted by a binary pulsar p induced by the post-Keplerian accelerations due to the mass quadrupole Q_2, and the post-Newtonian gravitoelectric (GE) and Lense-Thirring (LT) fields. We apply our results to the so-far still hypothetical scenario involving a pulsar orbiting the supermassive black hole in the galactic center at Sgr A^*. We also evaluate the gravitomagnetic and quadrupolar Shapiro-like propagation delays δ τ _ {prop}. By assuming the orbit of the existing main sequence star S2 and a time span as long as its orbital period P_b, we obtain | Δ δ τ _ {p}^ {GE}| ≲ 10^3 {s}, | Δ δ τ _ {p}^ {LT}| ≲ 0.6 {s},| Δ δ τ _ {p}^{Q_2}| ≲ 0.04 {s}. Faster ( P_b= 5 {years}) and more eccentric ( e=0.97) orbits would imply net shifts per revolution as large as | < Δ δ τ _ {p}^ {GE}\\rangle | ≲ 10 {Ms}, | < Δ δ τ _ {p}^ {LT}\\rangle | ≲ 400 {s},| < Δ δ τ _ {p}^{Q_2}\\rangle | ≲ 10^3 {s}, depending on the other orbital parameters and the initial epoch. For the propagation delays, we have | δ τ _ {prop}^ {LT}| ≲ 0.02 {s}, | δ τ _ {prop}^{Q_2}| ≲ 1 μs. The results for the mass quadrupole and the Lense-Thirring field depend, among other things, on the spatial orientation of the spin axis of the Black Hole. The expected precision in pulsar timing in Sgr A^* is of the order of 100 μs, or, perhaps, even 1-10 μs. Our method is, in principle, neither limited just to some particular orbital configuration nor to the dynamical effects considered in the present study.
The 4U 0115+63: Another energetic gamma ray binary pulsar
NASA Technical Reports Server (NTRS)
Chadwick, P. M.; Dipper, N. A.; Dowthwaite, J. C.; Kirkman, I. W.; Mccomb, T. J. L.; Orford, K. J.; Turver, K. E.
1985-01-01
Following the discovery of Her X-1 as a source of pulsed 1000 Gev X-rays, a search for emission from an X-ray binary containing a pulsar with similar values of period, period derivative and luminosity was successful. The sporadic X-ray binary 4U 0115-63 has been observed, with probability 2.5 x 10 to the minus 6 power ergs/s to emit 1000 GeV gamma-rays with a time averaged energy flux of 6 to 10 to the 35th power.
Consolidated RXTE Observing Grants on Observation of Neutron Stars and Black Holes in Binaries
NASA Technical Reports Server (NTRS)
Prince, Thomas A.; Vaughan, Brian A.
1998-01-01
This final report is a study of neutron stars and black holes in binaries. The activities focused on observation made with the Rossi X-ray Timing Explorer. The following areas were covered: long term observations of accreting binary pulsars with the All-Sky Monitor (ASM); observations of Centaurus X-3 with the Proportional Counter Array (PCA) and the High-Energy X-ray Timing Experiment (HEXTE); observations of accreting pulsars with the PCA and HEXTE; studies of quasi-periodic oscillations (QPO); and investigations of accreting black-hole candidates.
PSR J0538+2817 as the remnant of the first supernova explosion in a massive binary
NASA Astrophysics Data System (ADS)
Gvaramadze, V. V.
It is generally accepted that the radio pulsar PSR J 0538 2817 is associated with the supernova remnant SNR S 147 The only problem for the association is the obvious discrepancy Kramer et al 2003 between the kinematic age of the system of sim 30 kyr estimated from the angular offset of the pulsar from the geometric center of the SNR and pulsar s proper motion and the characteristic age of the pulsar of sim 600 kyr To reconcile these ages one can assume that the pulsar was born with a spin period close to the present one Kramer et al 2003 Romani Ng 2003 We propose an alternative explanation of the age discrepancy based on the fact that PSR J 0538 2817 could be the stellar remnant of the first supernova explosion in a massive binary system and therefore could be as old as indicated by its characteristic age Our proposal implies that S 147 is the diffuse remnant of the second supernova explosion that disrupted the binary system and that a much younger second neutron star not necessarily manifesting itself as a radio pulsar should be associated with S 147 We use the existing observational data on the system PSR J 0538 2817 SNR S 147 to suggest that the progenitor of the supernova that formed S 147 was a Wolf-Rayet star so that the supernova explosion occurred within a wind bubble surrounded by a massive shell and to constrain the parameters of the binary system We also restrict the magnitude and direction of the kick velocity received by the young neutron star at birth and find that the kick vector
Keith, M. J.; Johnston, S.; Bailes, M.; ...
2011-11-03
We present the discovery of six millisecond pulsars (MSPs) in the High Time Reso- lution Universe (HTRU) survey for pulsars and fast transients carried out with the Parkes radio telescope. All six are in binary systems with approximately circular or- bits and are likely to have white dwarf companions. PSR J1017–7156 has a high flux density and a narrow pulse width, making it ideal for precision timing experiments. PSRs J1446–4701 and J1125–5825 are coincident with gamma-ray sources, and fold- ing the high-energy photons with the radio timing ephemeris shows evidence of pulsed gamma-ray emission. PSR J1502–6752 has a spin periodmore » of 26.7 ms, and its low period derivative implies that it is a recycled pulsar. The orbital parameters indicate it has a very low mass function, and therefore a companion mass much lower than usually expected for such a mildly recycled pulsar. In addition we present polarisation profiles for all 12 MSPs discovered in the HTRU survey to date. Similar to previous observations of MSPs, we find that many have large widths and a wide range of linear and circular polarisation fractions. Their polarisation profiles can be highly complex, and although the observed position angles often do not obey the rotating vector model, we present several examples of those that do. We speculate that the emission heights of MSPs are a substantial fraction of the light cylinder radius in order to explain broad emission profiles, which then naturally leads to a large number of cases where emission from both poles is observed.« less
The mass of the compact object in the X-ray binary her X-1/HZ her
NASA Astrophysics Data System (ADS)
Abubekerov, M. K.; Antokhina, E. A.; Cherepashchuk, A. M.; Shimanskii, V. V.
2008-05-01
We have obtained the first estimates of the masses of the components of the Her X-1/HZ Her X-ray binary system taking into account non-LTE effects in the formation of the H γ absorption line: m x = 1.8 M ⊙ and m v = 2.5 M ⊙. These mass estimates were made in a Roche model based on the observed radial-velocity curve of the optical star, HZ Her. The masses for the X-ray pulsar and optical star obtained for an LTE model lie are m x = 0.85 ± 0.15 M ⊙ and m v = 1.87 ± 0.13 M ⊙. These mass estimates for the components of Her X-1/HZ Her derived from the radial-velocity curve should be considered tentative. Further mass estimates from high-precision observations of the orbital variability of the absorption profiles in a non-LTE model for the atmosphere of the optical component should be made.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Wen-Cong; Podsiadlowski, Philipp, E-mail: chenwc@pku.edu.cn
2016-10-20
It is generally believed that ultracompact X-ray binaries (UCXBs) evolved from binaries consisting of a neutron star accreting from a low-mass white dwarf (WD) or helium star where mass transfer is driven by gravitational radiation. However, the standard WD evolutionary channel cannot produce the relatively long-period (40–60 minutes) UCXBs with a high time-averaged mass-transfer rate. In this work, we explore an alternative evolutionary route toward UCXBs, where the companions evolve from intermediate-mass Ap/Bp stars with an anomalously strong magnetic field (100–10,000 G). Including the magnetic braking caused by the coupling between the magnetic field and an irradiation-driven wind induced bymore » the X-ray flux from the accreting component, we show that intermediate-mass X-ray binaries (IMXBs) can evolve into UCXBs. Using the MESA code, we have calculated evolutionary sequences for a large number of IMXBs. The simulated results indicate that, for a small wind-driving efficiency f = 10{sup −5}, the anomalous magnetic braking can drive IMXBs to an ultra-short period of 11 minutes. Comparing our simulated results with the observed parameters of 15 identified UCXBs, the anomalous magnetic braking evolutionary channel can account for the formation of seven and eight sources with f = 10{sup −3}, and 10{sup −5}, respectively. In particular, a relatively large value of f can fit three of the long-period, persistent sources with a high mass-transfer rate. Though the proportion of Ap/Bp stars in intermediate-mass stars is only 5%, the lifetime of the UCXB phase is ≳2 Gyr, producing a relatively high number of observable systems, making this an alternative evolutionary channel for the formation of UCXBs.« less
ADIABATIC MASS LOSS IN BINARY STARS. II. FROM ZERO-AGE MAIN SEQUENCE TO THE BASE OF THE GIANT BRANCH
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ge, Hongwei; Chen, Xuefei; Han, Zhanwen
2015-10-10
In the limit of extremely rapid mass transfer, the response of a donor star in an interacting binary becomes asymptotically one of adiabatic expansion. We survey here adiabatic mass loss from Population I stars (Z = 0.02) of mass 0.10 M{sub ⊙}–100 M{sub ⊙} from the zero-age main sequence to the base of the giant branch, or to central hydrogen exhaustion for lower main sequence stars. The logarithmic derivatives of radius with respect to mass along adiabatic mass-loss sequences translate into critical mass ratios for runaway (dynamical timescale) mass transfer, evaluated here under the assumption of conservative mass transfer. Formore » intermediate- and high-mass stars, dynamical mass transfer is preceded by an extended phase of thermal timescale mass transfer as the star is stripped of most of its envelope mass. The critical mass ratio q{sub ad} (throughout this paper, we follow the convention of defining the binary mass ratio as q ≡ M{sub donor}/M{sub accretor}) above which this delayed dynamical instability occurs increases with advancing evolutionary age of the donor star, by ever-increasing factors for more massive donors. Most intermediate- or high-mass binaries with nondegenerate accretors probably evolve into contact before manifesting this instability. As they approach the base of the giant branch, however, and begin developing a convective envelope, q{sub ad} plummets dramatically among intermediate-mass stars, to values of order unity, and a prompt dynamical instability occurs. Among low-mass stars, the prompt instability prevails throughout main sequence evolution, with q{sub ad} declining with decreasing mass, and asymptotically approaching q{sub ad} = 2/3, appropriate to a classical isentropic n = 3/2 polytrope. Our calculated q{sub ad} values agree well with the behavior of time-dependent models by Chen and Han of intermediate-mass stars initiating mass transfer in the Hertzsprung gap. Application of our results to cataclysmic variables, as systems that must be stable against rapid mass transfer, nicely circumscribes the range in q{sub ad} as a function of the orbital period in which they are found. These results are intended to advance the verisimilitude of population synthesis models of close binary evolution.« less
Does mass accretion lead to field decay in neutron stars
NASA Technical Reports Server (NTRS)
Shibazaki, N.; Murakami, T.; Shaham, Jacob; Nomoto, K.
1989-01-01
The recent discovery of cyclotron lines from gamma-ray bursts indicates that the strong magnetic fields of isolated neutron stars might not decay. The possible inverse correlation between the strength of the magnetic field and the mass accreted by the neutron star suggests that mass accretion itself may lead to the decay of the magnetic field. The spin and magnetic field evolution of the neutron star was calculated under the hypothesis of the accretion-induced field decay. It is shown that the calculated results are consistent with the observations of binary and millisecond radio pulsars.
Are Binary Separations related to their System Mass?
NASA Astrophysics Data System (ADS)
Sterzik, M. F.; Durisen, R. H.
2004-08-01
We compile most recent multiplicity fractions and binary separation distributions for different primary masses, including very low-mass and brown dwarf primaries, and compare them with dynamical decay models of small-N clusters. The model predictions are based on detailed numerical calculations of the internal cluster dynamics, as well as on Monte-Carlo methods. Both observations and models reflect the same trends: (1) The multiplicity fraction is an increasing function of the primary mass. (2) The mean binary separations are increasing with the system mass in the sense that very low-mass binaries have average separations around ≈ 4AU, while the binary separation distribution for solar-type primaries peaks at ≈ 40AU. M-type binary systems apparently preferentially populate intermediate separations. Similar specific energy at the time of cluster formation for all cluster masses can possibly explain this trend.
Supernova remnant S 147 and its associated neutron star(s)
NASA Astrophysics Data System (ADS)
Gvaramadze, V. V.
2006-07-01
The supernova remnant S 147 harbors the pulsar PSR J 0538+2817 whose characteristic age is more than an order of magnitude greater than the kinematic age of the system (inferred from the angular offset of the pulsar from the geometric center of the supernova remnant and the pulsar proper motion). To reconcile this discrepancy we propose that PSR J 0538+2817 could be the stellar remnant of the first supernova explosion in a massive binary system and therefore could be as old as its characteristic age. Our proposal implies that S 147 is the diffuse remnant of the second supernova explosion (that disrupted the binary system) and that a much younger second neutron star (not necessarily manifesting itself as a radio pulsar) should be associated with S 147. We use the existing observational data on the system to suggest that the progenitor of the supernova that formed S 147 was a Wolf-Rayet star (so that the supernova explosion occurred within a wind bubble surrounded by a massive shell) and to constrain the parameters of the binary system. We also restrict the magnitude and direction of the kick velocity received by the young neutron star at birth and find that the kick vector should not strongly deviate from the orbital plane of the binary system.
Single-Source Gravitational Wave Limits From the J1713+0747 24-hr Global Campaign
NASA Astrophysics Data System (ADS)
Dolch, T.; NANOGrav Collaboration; Ellis, J. A.; Chatterjee, S.; Cordes, J. M.; Lam, M. T.; Bassa, C.; Bhattacharyya, B.; Champion, D. J.; Cognard, I.; Crowter, K.; Demorest, P. B.; Hessels, J. W. T.; Janssen, G.; Jenet, F. A.; Jones, G.; Jordan, C.; Karuppusamy, R.; Keith, M.; Kondratiev, V. I.; Kramer, M.; Lazarus, P.; Lazio, T. J. W.; Lorimer, D. R.; Madison, D. R.; McLaughlin, M. A.; Palliyaguru, N.; Perrodin, D.; Ransom, S. M.; Roy, J.; Shannon, R. M.; Smits, R.; Stairs, I. H.; Stappers, B. W.; Stinebring, D. R.; Stovall, K.; Verbiest, J. P. W.; Zhu, W. W.
2016-05-01
Dense, continuous pulsar timing observations over a 24-hr period provide a method for probing intermediate gravitational wave (GW) frequencies from 10 microhertz to 20 millihertz. The European Pulsar Timing Array (EPTA), the North American Nanohertz Observatory for Gravitational Waves (NANOGrav), the Parkes Pulsar Timing Array (PPTA), and the combined International Pulsar Timing Array (IPTA) all use millisecond pulsar observations to detect or constrain GWs typically at nanohertz frequencies. In the case of the IPTA's nine-telescope 24-Hour Global Campaign on millisecond pulsar J1713+0747, GW limits in the intermediate frequency regime can be produced. The negligible change in dispersion measure during the observation minimizes red noise in the timing residuals, constraining any contributions from GWs due to individual sources. At 10-5 Hz, the 95% upper limit on strain is 10-11 for GW sources in the pulsar's direction.
Refining Binary Pulsar B1913+16's Gravitational Wave Test via a VLBI Parallax Measurement
NASA Astrophysics Data System (ADS)
Weisberg, Joel; Deller, Adam; Chatterjee, Shami; Nice, David
2018-01-01
The orbital decay of binary pulsar B1913+16 provided the first evidence of gravitational waves as predicted by General Relativity, and ruled out numerous previously viable alternative gravitational theories (e.g., Taylor & Weisberg, APJ, 253, 908, 1982). The gravitational wave emission and resulting orbital decay manifest themselves as an orbital period derivative. Subsequent observations (e.g., Weisberg and Huang 2016, APJ, 829, 55) have greatly refined the precision of the orbital period derivative measurement. The accuracy of the experiment is currently limited by our knowledge of the relative galactic accelerations of the binary and solar system barycenters, which make another contribution to the observed orbital period derivative. The magnitude of these accelerations depend on various galactic constants and on the pulsar distance.As our knowledge of the Galaxy and its motions has improved, the pulsar's distance has become the largest remaining source of uncertainty in the experiment.Therefore, we conducted a series of astrometric measurements of PSR B1913+16 with the Very Long Baseline Array. We report the pulsar parallax and distance derived from these measurements, and use them to correct our observed orbital period derivative for the above galactic acceleration term, thereby providing a more accurate test of gravitational radiation emission from the system.
An x-ray nebula associated with the millisecond pulsar B1957+20.
Stappers, B W; Gaensler, B M; Kaspi, V M; van der Klis, M; Lewin, W H G
2003-02-28
We have detected an x-ray nebula around the binary millisecond pulsar B1957+20. A narrow tail, corresponding to the shocked pulsar wind, is seen interior to the known Halpha bow shock and proves the long-held assumption that the rotational energy of millisecond pulsars is dissipated through relativistic winds. Unresolved x-ray emission likely represents the shock where the winds of the pulsar and its companion collide. This emission indicates that the efficiency with which relativistic particles are accelerated in the postshock flow is similar to that for young pulsars, despite the shock proximity and much weaker surface magnetic field of this millisecond pulsar.
Lattimer, J M; Prakash, M
2004-04-23
Neutron stars are some of the densest manifestations of massive objects in the universe. They are ideal astrophysical laboratories for testing theories of dense matter physics and provide connections among nuclear physics, particle physics, and astrophysics. Neutron stars may exhibit conditions and phenomena not observed elsewhere, such as hyperon-dominated matter, deconfined quark matter, superfluidity and superconductivity with critical temperatures near 10(10) kelvin, opaqueness to neutrinos, and magnetic fields in excess of 10(13) Gauss. Here, we describe the formation, structure, internal composition, and evolution of neutron stars. Observations that include studies of pulsars in binary systems, thermal emission from isolated neutron stars, glitches from pulsars, and quasi-periodic oscillations from accreting neutron stars provide information about neutron star masses, radii, temperatures, ages, and internal compositions.
The X-ray Pulsar 2A 1822-371 as a super-Eddington source
NASA Astrophysics Data System (ADS)
Bak Nielsen, A.; Patruno, A.
2017-10-01
The LMXB pulsar 2A 1822-371 is a slow accreting x-ray pulsar which shows several peculiar properties. The pulsar is observed to spin-up continuously on a timescale of 7000 years , shorter than expected for these type of systems. The orbital period is expanding on an extremely short timescale that challenges current theories of binary evolution. Furthermore, the presence of a thick accretion disc corona poses a problem, since we observe X-ray pulsations which would otherwise be smeared out by the Compton scattering. I propose a solution to all of the above problems by suggesting that the system may be a super-Eddington source with a donor out of thermal equilibrium. I propose that 2A 1822-371 has a thin accretion outflow being launched from the inner accretion disk region. The solution reconciles both the need for an accretion disk corona, the fast spin-up and the changes in the orbital separation. I will also present preliminary results obtained with new XMM-Newton data that show the possible presence of a low frequency modulation similar to those observed in two accreting millisecond pulsars. Given the relatively strong magnetic field of 2A 1822-371, the modulation requires a super-Eddington mass transfer rate, further strengthening the proposed scenario.
The possible existence of Pop III NS-BH binary and its detectability
NASA Astrophysics Data System (ADS)
Kinugawa, Tomoya; Nakamura, Takashi; Nakano, Hiroyuki
2017-02-01
In the population synthesis simulations of Pop III stars, many BH (black hole)-BH binaries with merger time less than the age of the Universe (τH) are formed, while NS (neutron star)-BH binaries are not. The reason is that Pop III stars have no metal so that no mass loss is expected. Then, in the final supernova explosion to NS, much mass is lost so that the semimajor axis becomes too large for Pop III NS-BH binaries to merge within τH . However it is almost established that the kick velocity of the order of 200 ‑500 km s‑1 exists for NS from the observation of the proper motion of the pulsar. Therefore, the semimajor axis of the half of NS-BH binaries can be smaller than that of the previous argument for Pop III NS-BH binaries to decrease the merging time. We perform population synthesis Monte Carlo simulations of Pop III NS-BH binaries including the kick of NS and find that the event rate of Pop III NS-BH merger rate is 1 Gpc‑3 yr‑1 . This suggests that there is a good chance of detecting Pop III NS-BH mergers in O2 (Observation run 2) of Advanced LIGO and Advanced Virgo from this autumn.
NASA Astrophysics Data System (ADS)
Goldstein, Janna; Veitch, John; Sesana, Alberto; Vecchio, Alberto
2018-04-01
Super-massive black hole binaries are expected to produce a gravitational wave (GW) signal in the nano-Hertz frequency band which may be detected by pulsar timing arrays (PTAs) in the coming years. The signal is composed of both stochastic and individually resolvable components. Here we develop a generic Bayesian method for the analysis of resolvable sources based on the construction of `null-streams' which cancel the part of the signal held in common for each pulsar (the Earth-term). For an array of N pulsars there are N - 2 independent null-streams that cancel the GW signal from a particular sky location. This method is applied to the localisation of quasi-circular binaries undergoing adiabatic inspiral. We carry out a systematic investigation of the scaling of the localisation accuracy with signal strength and number of pulsars in the PTA. Additionally, we find that source sky localisation with the International PTA data release one is vastly superior than what is achieved by its constituent regional PTAs.
Sistemas binarios viuda negra: conectando sus orígenes con su estado final
NASA Astrophysics Data System (ADS)
Benvenuto, O. G.; De Vito, M. A.; Horvath, J. E.
``Black widow'' systems are located in a well determined region of the plane (where is the mass of the pulsar companion and is the orbital period of the system). An attempt has been made to understand which are the mechanisms that lead to companions of ``black widows'' to be located in this region; since standard binary evolution does not provide a satisfactory response. From our evolutionary calculations; we study the path performed in the plane by a binary system to reach the state of ``black widow''. We also discuss whether there is a connection between ``redbacks'' and ``black widows''. FULL TEXT IN SPANISH
Shrinking of Binaries in a WIMPY Background at the Galactic Center
NASA Astrophysics Data System (ADS)
Hills, J. G.
2001-12-01
The nature of the dark matter in the Galactic Halo is still not clear. Constraints can be placed on it; e.g., it cannot be in baryons less massive than about 1022 grams (Hills, 1986, Astron. J. 92, 595). It may be in elementary weakly interacting massive particles, WIMPS. Apart from providing most of the mass of the Galaxy, the only known significant dynamical effect of WIMPS is to cause a gradual shrinking of tightly bound binaries (Hills 1983, Astron. J. 88, 1269) as they interact with the background soup of WIMPS. This effect may be observable in binaries close to the Galactic Center if a significant fraction of the mass density near the central black hole is from WIMPS. The requisite binaries would have to have orbital velocities greater than the local velocity dispersion of the WIMPS relative to the binary. The velocity dispersion increases near the black hole. The binary cannot be too close to the black hole or its tidal field will breakup the binary. If the local WIMP density is 107 g/cm3, the fractional rate of reduction in the binary orbital period is about 5 x 10-10/yr for a binary having a semimajor axis equal to 3 solar radii in a soup of WIMPS having a velocity dispersion of 200 km/s relative to the binary. This gradual erosion of the binary period may be detectable, particularly, if one of the binary components is a pulsar.
Observations of accreting pulsars
NASA Technical Reports Server (NTRS)
Prince, Thomas A.; Bildsten, Lars; Chakrabarty, Deepto; Wilson, Robert B.; Finger, Mark H.
1994-01-01
We discuss recent observations of accreting binary pulsars with the all-sky BATSE instrument on the Compton Gamma Ray Observatory. BATSE has detected and studied nearly half of the known accreting pulsar systems. Continuous timing studies over a two-year period have yielded accurate orbital parameters for 9 of these systems, as well as new insights into long-term accretion torque histories.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kaplan, D. L.; Bhalerao, V. B.; Van Kerkwijk, M. H.
Most millisecond pulsars with low-mass companions are in systems with either helium-core white dwarfs or non-degenerate (''black widow'' or ''redback'') stars. A candidate counterpart to PSR J1816+4510 was identified by Kaplan et al. whose properties were suggestive of both types of companions although identical to neither. We have assembled optical spectroscopy of the candidate companion and confirm that it is part of the binary system with a radial velocity amplitude of 343 {+-} 7 km s{sup -1}, implying a high pulsar mass, M{sub psr}sin {sup 3} i = 1.84 {+-} 0.11 M{sub Sun }, and a companion mass M{sub c}more » sin {sup 3} i = 0.193 {+-} 0.012 M{sub Sun }, where i is the inclination of the orbit. The companion appears similar to proto-white dwarfs/sdB stars, with a gravity log{sub 10}(g) = 4.9 {+-} 0.3, and effective temperature 16, 000 {+-} 500 K. The strongest lines in the spectrum are from hydrogen, but numerous lines from helium, calcium, silicon, and magnesium are present as well, with implied abundances of roughly 10 times solar (relative to hydrogen). As such, while from the spectrum the companion to PSR J1816+4510 is superficially most similar to a low-mass white dwarf, it has much lower gravity, is substantially larger, and shows substantial metals. Furthermore, it is able to produce ionized gas eclipses, which had previously been seen only for low-mass, non-degenerate companions in redback or black widow systems. We discuss the companion in relation to other sources, but find that we understand neither its nature nor its origins. Thus, the system is interesting for understanding unusual stellar products of binary evolution, as well as, independent of its nature, for determining neutron-star masses.« less
Shining Light on Quantum Gravity with Pulsar-Black hole Binaries
NASA Astrophysics Data System (ADS)
Estes, John; Kavic, Michael; Lippert, Matthew; Simonetti, John H.
2017-03-01
Pulsars are some of the most accurate clocks found in nature, while black holes offer a unique arena for the study of quantum gravity. As such, pulsar-black hole (PSR-BH) binaries provide ideal astrophysical systems for detecting the effects of quantum gravity. With the success of aLIGO and the advent of instruments like SKA and eLISA, the prospects for the discovery of such PSR-BH binaries are very promising. We argue that PSR-BH binaries can serve as ready-made testing grounds for proposed resolutions to the black hole information paradox. We propose using timing signals from a pulsar beam passing through the region near a black hole event horizon as a probe of quantum gravitational effects. In particular, we demonstrate that fluctuations of the geometry outside a black hole lead to an increase in the measured root mean square deviation of the arrival times of pulsar pulses traveling near the horizon. This allows for a clear observational test of the nonviolent nonlocality proposal for black hole information escape. For a series of pulses traversing the near-horizon region, this model predicts an rms in pulse arrival times of ˜ 30 μ {{s}} for a 3{M}⊙ black hole, ˜ 0.3 {ms} for a 30{M}⊙ black hole, and ˜ 40 {{s}} for Sgr A*. The current precision of pulse time-of-arrival measurements is sufficient to discern these rms fluctuations. This work is intended to motivate observational searches for PSR-BH systems as a means of testing models of quantum gravity.
Timing Observations of PSR J1023+0038 During a Low-mass X-Ray Binary State
NASA Astrophysics Data System (ADS)
Jaodand, Amruta; Archibald, Anne M.; Hessels, Jason W. T.; Bogdanov, Slavko; D'Angelo, Caroline R.; Patruno, Alessandro; Bassa, Cees; Deller, Adam T.
2016-10-01
Transitional millisecond pulsars (tMSPs) switch, on roughly multi-year timescales, between rotation-powered radio millisecond pulsar (RMSP) and accretion-powered low-mass X-ray binary (LMXB) states. The tMSPs have raised several questions related to the nature of accretion flow in their LMXB state and the mechanism that causes the state switch. The discovery of coherent X-ray pulsations from PSR J1023+0038 (while in the LMXB state) provides us with the first opportunity to perform timing observations and to compare the neutron star’s spin variation during this state to the measured spin-down in the RMSP state. Whereas the X-ray pulsations in the LMXB state likely indicate that some material is accreting onto the neutron star’s magnetic polar caps, radio continuum observations indicate the presence of an outflow. The fraction of the inflowing material being ejected is not clear, but it may be much larger than that reaching the neutron star’s surface. Timing observations can measure the total torque on the neutron star. We have phase-connected nine XMM-Newton observations of PSR J1023+0038 over the last 2.5 years of the LMXB state to establish a precise measurement of spin evolution. We find that the average spin-down rate as an LMXB is 26.8 ± 0.4% faster than the rate (-2.39 × 10-15 Hz s-1) determined during the RMSP state. This shows that negative angular momentum contributions (dipolar magnetic braking, and outflow) exceed positive ones (accreted material), and suggests that the pulsar wind continues to operate at a largely unmodified level. We discuss implications of this tight observational constraint in the context of possible accretion models.
Sizing up the population of gamma-ray binaries
NASA Astrophysics Data System (ADS)
Dubus, Guillaume; Guillard, Nicolas; Petrucci, Pierre-Olivier; Martin, Pierrick
2017-12-01
Context. Gamma-ray binaries are thought to be composed of a young pulsar in orbit around a massive O or Be star with their gamma-ray emission powered by pulsar spin-down. The number of such systems in our Galaxy is not known. Aims: We aim to estimate the total number of gamma-ray binaries in our Galaxy and to evaluate the prospects for new detections in the GeV and TeV energy range, taking into account that their gamma-ray emission is modulated on the orbital period. Methods: We modelled the population of gamma-ray binaries and evaluated the fraction of detected systems in surveys with the Fermi-LAT (GeV), H.E.S.S., HAWC and CTA (TeV) using observation-based and synthetic template light curves. Results: The detected fraction depends more on the orbit-average flux than on the light-curve shape. Our best estimate for the number of gamma-ray binaries is 101-52+89 systems. A handful of discoveries are expected by pursuing the Fermi-LAT survey. Discoveries in TeV surveys are less likely. However, this depends on the relative amounts of power emitted in GeV and TeV domains. There could be as many as ≈ 200 HESS J0632+057-like systems with a high ratio of TeV to GeV emission compared to other gamma-ray binaries. Statistics allow for as many as three discoveries in five years of HAWC observations and five discoveries in the first two years of the CTA Galactic Plane survey. Conclusions: We favour continued Fermi-LAT observations over ground-based TeV surveys to find new gamma-ray binaries. Gamma-ray observations are most sensitive to short orbital period systems with a high spin-down pulsar power. Radio pulsar surveys (SKA) are likely to be more efficient in detecting long orbital period systems, providing a complementary probe into the gamma-ray binary population.
Einstein@Home Finds a Double Neutron Star
NASA Astrophysics Data System (ADS)
Kohler, Susanna
2016-12-01
Have you been contributing your computer idle time to the Einstein@Home project? If so, youre partly responsible for the programs recent discovery of a new double-neutron-star system that will be key to learning about general relativity and stellar evolution.The 305-m Arecibo Radio Telescope, built into the landscape at Arecibo, Puerto Rico. [NOAO/AURA/NSF/H. Schweiker/WIYN]The Hunt for PulsarsObserving binary systems containing two neutron stars and in particular, measuring the timing of the pulses when one or both companions is a pulsar can provide highly useful tests of general relativity and binary stellar evolution. Unfortunately, these systems are quite rare: of 2500 known radio pulsars, only 14 of them are in double-neutron-starbinaries.To find more systems like these, we perform large-scale, untargeted radio-pulsar surveys like the ongoing Pulsar-ALFA survey conducted with the enormous 305-m radio telescope at Arecibo Observatory in Puerto Rico. But combing through these data for the signature of a highly accelerated pulsar (the acceleration is a clue that its in a compact binary) is very computationally expensive.PSR J1913+1102s L-band pulse profile, created by phase-aligning and summing all observations. [Adapted from Lazarus et al. 2016]To combat this problem, the Einstein@Home project was developed. Einstein@Home allows anyone to volunteer their personal computers idle time to help run the analysis of survey data in the search for pulsars. In a recent publication led by Patrick Lazarus (Max Planck Institute for Radio Astronomy), the Einstein@Home team announced the discovery of the pulsar PSR J1913+1102 a member of what seems to be a brand new double-neutron-starsystem.An Intriguing DiscoveryLazarus and collaborators followed up on the discovery to obtain timing measurements of the pulsar, which they found to have a spin period of 27.3 ms. They measured PSR J1913+1102 to be in a 4.95-hr, nearly circular (e 0.09) binary orbit with a massive companion that, based on its properties, is most likely another neutron star. The team wasnt able to detect pulsations from the companion, but that could mean that its beam doesnt cross the Earth, or its very faint, or its simply no longer active as a pulsar.Orbital evolution of the six known double-neutron-star systems that will coalesce within a Hubble time, including J1913+1102 (black solid line). They move toward the origin as they lose energy to gravitational waves and approach merger. Shown are current positions (black dots), estimates of the positions when the compact binaries were formed (grey dots), and future evolution. [Lazarus et al. 2016]Lazarus and collaborators use their observations of the system to arguethat PSR J1913+1102 waslikely spun up (recycled) by accretion of matter from its companions progenitor. The companion then exploded in the second supernova of the system, providing a very small kick hence the low eccentricity of the system and resulting in the current double-neutron-starbinary we observe.Lessons from PSR J1913+1102Observations of compact binaries such as this one can reveal a wealth of information. Besides providing clues about how the binary evolved, precise timing measurements (now being made) will also allow powerful tests of general relativity.One of the measurements that may be possible by the end of this year will provide information about the orbital decay of the binary expected to continue for 0.5 Gyr until the system merges due to the emission of gravitational waves.In the meantime, you can bet that Einstein@Home will continue hunting for more systems like PSR J1913+1102 and its companion!CitationP. Lazarus et al 2016 ApJ 831 150. doi:10.3847/0004-637X/831/2/150
Constraining Accreting Binary Populations in Normal Galaxies
NASA Astrophysics Data System (ADS)
Lehmer, Bret; Hornschemeier, A.; Basu-Zych, A.; Fragos, T.; Jenkins, L.; Kalogera, V.; Ptak, A.; Tzanavaris, P.; Zezas, A.
2011-01-01
X-ray emission from accreting binary systems (X-ray binaries) uniquely probe the binary phase of stellar evolution and the formation of compact objects such as neutron stars and black holes. A detailed understanding of X-ray binary systems is needed to provide physical insight into the formation and evolution of the stars involved, as well as the demographics of interesting binary remnants, such as millisecond pulsars and gravitational wave sources. Our program makes wide use of Chandra observations and complementary multiwavelength data sets (through, e.g., the Spitzer Infrared Nearby Galaxies Survey [SINGS] and the Great Observatories Origins Deep Survey [GOODS]), as well as super-computing facilities, to provide: (1) improved calibrations for correlations between X-ray binary emission and physical properties (e.g., star-formation rate and stellar mass) for galaxies in the local Universe; (2) new physical constraints on accreting binary processes (e.g., common-envelope phase and mass transfer) through the fitting of X-ray binary synthesis models to observed local galaxy X-ray binary luminosity functions; (3) observational and model constraints on the X-ray evolution of normal galaxies over the last 90% of cosmic history (since z 4) from the Chandra Deep Field surveys and accreting binary synthesis models; and (4) predictions for deeper observations from forthcoming generations of X-ray telesopes (e.g., IXO, WFXT, and Gen-X) to provide a science driver for these missions. In this talk, we highlight the details of our program and discuss recent results.
Peering into the Dark Side: Magnesium Lines Establish a Massive Neutron Star in PSR J2215+5135
NASA Astrophysics Data System (ADS)
Linares, M.; Shahbaz, T.; Casares, J.
2018-05-01
New millisecond pulsars (MSPs) in compact binaries provide a good opportunity to search for the most massive neutron stars. Their main-sequence companion stars are often strongly irradiated by the pulsar, displacing the effective center of light from their barycenter and making mass measurements uncertain. We present a series of optical spectroscopic and photometric observations of PSR J2215+5135, a “redback” binary MSP in a 4.14 hr orbit, and measure a drastic temperature contrast between the dark/cold (T N = 5660{}-380+260 K) and bright/hot (T D = 8080{}-280+470 K) sides of the companion star. We find that the radial velocities depend systematically on the atmospheric absorption lines used to measure them. Namely, the semi-amplitude of the radial velocity curve (RVC) of J2215 measured with magnesium triplet lines is systematically higher than that measured with hydrogen Balmer lines, by 10%. We interpret this as a consequence of strong irradiation, whereby metallic lines dominate the dark side of the companion (which moves faster) and Balmer lines trace its bright (slower) side. Further, using a physical model of an irradiated star to fit simultaneously the two-species RVCs and the three-band light curves, we find a center-of-mass velocity of K 2 = 412.3 ± 5.0 km s‑1 and an orbital inclination i = 63.°9{}-2.7+2.4. Our model is able to reproduce the observed fluxes and velocities without invoking irradiation by an extended source. We measure masses of M 1 = 2.27{}-0.15+0.17 M ⊙ and M 2 = 0.33{}-0.02+0.03 M ⊙ for the neutron star and the companion star, respectively. If confirmed, such a massive pulsar would rule out some of the proposed equations of state for the neutron star interior.
Timing and Spectral Study of 4U 1538-52
NASA Technical Reports Server (NTRS)
Clark, George W.
2000-01-01
Improved orbital parameters of the high-mass binary X-ray pulsar 4U 1538-52 have been derived from high count rate data obtained from the Rossi X-Ray Timing Explorer. Pulse-timing analysis yields an eccentricity of 0.174 +/- 0.015, a periastron at 64 deg +/- 9 deg, and evidence of orbital decay with prime-P(sub orb)/P(sub orb) = (-2.9 +/- 2.1) x 10(exp -6)/yr.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cadelano, M.; Pallanca, C.; Ferraro, F. R.
2015-10-10
We used ultra-deep UV observations obtained with the Hubble Space Telescope to search for optical companions to binary millisecond pulsars (MSPs) in the globular cluster 47 Tucanae. We identified four new counterparts (to MSPs 47TucQ, 47TucS, 47TucT, and 47TucY) and confirmed those already known (to MSPs 47TucU and 47TucW). In the color–magnitude diagram, the detected companions are located in a region between the main sequence and the CO white dwarf (WD) cooling sequences, consistent with the cooling tracks of He WDs with masses between 0.15 M{sub ⊙} and 0.20 M{sub ⊙}. For each identified companion, mass, cooling age, temperature, andmore » pulsar mass (as a function of the inclination angle) have been derived and discussed. For 47TucU we also found that the past accretion history likely proceeded at a sub-Eddington rate. The companion to the redback 47TucW is confirmed to be a non-degenerate star, with properties particularly similar to those observed for black widow systems. Two stars have been identified within the 2σ astrometric uncertainty from the radio positions of 47TucH and 47TucI, but the available data prevent us from firmly assessing whether they are the true companions of these two MSPs.« less
Evolution of black holes in the galaxy
NASA Astrophysics Data System (ADS)
Brown, G. E.; Lee, C.-H.; Wijers, R. A. M. J.; Bethe, H. A.
2000-08-01
In this article we consider the formation and evolution of black holes, especially those in binary stars where radiation from the matter falling on them can be seen. We consider a number of effects introduced by some of us, which are not traditionally included in binary evolution of massive stars. These are (i) hypercritical accretion, which allows neutron stars to accrete enough matter to collapse to a black hole during their spiral-in into another star. (ii) The strong mass loss of helium stars, which causes their evolution to differ from that of the helium core of a massive star. (iii) The direct formation of low-mass black holes (M~2Msolar) from single stars, a consequence of a significant strange-matter content of the nuclear-matter equation of state at high density. We discuss these processes here, and then review how they affect various populations of binaries with black holes and neutron stars. We have found that hypercritical accretion changes the standard scenario for the evolution of binary neutron stars: it now usually gives a black-hole, neutron-star (BH-NS) binary, because the first-born neutron star collapses to a low-mass black hole in the course of the evolution. A less probable double helium star scenario has to be introduced in order to form neutron-star binaries. The result is that low-mass black-hole, neutron star (LBH-NS) binaries dominate the rate of detectable gravity-wave events, say, by LIGO, by a factor /~20 over the binary neutron stars. The formation of high-mass black holes is suppressed somewhat due to the influence of mass loss on the cores of massive stars, raising the minimum mass for a star to form a massive BH to perhaps 80Msolar. Still, inclusion of high-mass black-hole, neutron-star (HBH-NS) binaries increases the predicted LIGO detection rate by another /~30% lowering of the mass loss rates of Wolf-Rayet stars may lower the HBH mass limit, and thereby further increase the merger rate. We predict that /~33 mergers per year will be observed with LIGO once the advanced detectors planned to begin in 2004 are in place. Black holes are also considered as progenitors for gamma ray bursters (GRB). Due to their rapid spin, potentially high magnetic fields, and relatively clean environment, mergers of black-hole, neutron-star binaries may be especially suitable. Combined with their 10 times greater formation rate than binary neutron stars this makes them attractive candidates for GRB progenitors, although the strong concentration of GRBs towards host galaxies may favor massive star progenitors or helium-star, black-hole mergers. We also consider binaries with a low-mass companion, and study the evolution of the very large number of black-hole transients, consisting of a black hole of mass ~7Msolar accompanied by a K or M main-sequence star (except for two cases with a somewhat more massive subgiant donor). We show that common envelope evolution must take place in the supergiant stage of the massive progenitor of the black hole, giving an explanation of why the donor masses are so small. We predict that there are about 22 times more binaries than observed, in which the main-sequence star, somewhat more massive than a K- or M-star, sits quietly inside its Roche Lobe, and will only become an X-ray source when the companion evolves off the main sequence. We briefly discuss the evolution of low-mass X-ray binaries into millisecond pulsars. We point out that in the usual scenario for forming millisecond pulsars with He white-dwarf companions, the long period of stable mass transfer will usually lead to the collapse of the neutron star into a black hole. We then discuss Van den Heuvel's ``Hercules X-1 scenario'' for forming low-mass X-ray binaries, commenting on the differences in accretion onto the compact object by radiative or semiconvective donors, rather than the deeply convective donors used in the earlier part of our review. In Appendix /A we describe the evolution of Cyg X-3, finding the compact object to be a black hole of ~3Msolar, together with an ~10Msolar He star. In Appendix /B we do the accounting for gravitational mergers and in Appendix /C we show low-mass black-hole, neutron-star binaries to be good progenitors for gamma ray bursters.
Hot Evolved Companions to Intermediate-Mass Main-Sequence Stars: Solving the Mystery of KOI-81
NASA Astrophysics Data System (ADS)
Gies, Douglas
2010-09-01
The NASA Kepler Science Team recently announced the discovery of twotransiting binaries that have "planets" hotter than their host stars.These systems probably represent the first known examples of white dwarfsformed through mass loss and transfer among intermediate mass, closebinary stars. Here we propose to obtain COS FUV spectroscopy of one ofthese systems, KOI-81, in order to detect the hot companion in a part of the spectrum where it is relatively bright. The spectral flux and Doppler shift measurements will yield the temperatures, masses, radii, and compositions of both components. These observations will provide our first opportunity to explore this previously hidden stage of close binary evolution.
NASA Astrophysics Data System (ADS)
Kohler, Susanna
2016-07-01
Recent, unusual X-ray observations from our galactic neighbor, the Small Magellanic Cloud, have led to an interesting model for SXP 214, a pulsar in a binary star system.Artists illustration of the magnetic field lines of a pulsar, a highly magnetized, rotating neutron star. [NASA]An Intriguing BinaryAn X-ray pulsar is a magnetized, rotating neutron star in a binary system with a stellar companion. Material is fed from the companion onto the neutron star, channeled by the objects magnetic fields onto a hotspot thats millions of degrees. This hotspot rotating past our line of sight is what produces the pulsations that we observe from X-ray pulsars.Located in the Small Magellanic Cloud, SXP 214 is a transient X-ray pulsar in a binary with a Be-type star. This star is spinning so quickly that material is thrown off of it to form a circumstellar disk.Recently, a team of authors led by JaeSub Hong (Harvard-Smithsonian Center for Astrophysics) have presented new Chandra X-ray observations of SXP 214, tracking it for 50 ks (~14 hours) in January 2013. These observations reveal some very unexpected behavior for this pulsar.X-ray PuzzleThe energy distribution of the X-ray emission from SXP 214 over time. Dark shades or blue colors indicate high counts, and light shades or yellow colors indicate low counts. Lower-energy X-ray emission appeared only later, after about 20 ks. [Hong et al. 2016]Three interesting pieces of information came from the Chandra observations:SXP 214s rotation period was measured to be 211.5 s an increase in the spin rate since the discovery measurement of a 214-second period. Pulsars usually spin down as they lose angular momentum over time so what caused this one to spin up?Its overall X-ray luminosity steadily increased over the 50 ks of observations.Its spectrum became gradually softer (lower energy) over time; in the first 20 ks, the spectrum only consisted of hard X-ray photons above 3 keV, but after 20 ks, softer X-ray photons below 2 keV appeared.Hong and collaborators were then left with the task of piecing together this strange behavior into a picture of what was happening with this binary system.The authors proposed model for SXP 214. Here the binary has a ~30-day orbit tilted at 15 to the circumstellar disk. The pulsar passes through the circumstellar disk of its companion once per orbit. The interval marked A (orange line) is suggested as the period of time corresponding to the Chandra observations in this study: just as the neutron star is emerging from the disk after passing through it. [Hong et al. 2016]Passing Through a DiskIn the model the authors propose, the pulsar is on a ~30-day eccentric orbit that takes it through the circumstellar disk of its companion once per orbit.In this picture, the authors Chandra detections must have been made just as the pulsar was emerging from the circumstellar disk. The disk had initially hidden the soft X-ray emission from the pulsar, but as the pulsar emerged, that component became brighter, causing both the overall rise in X-ray counts and the shift in the spectrum to lower energies.Since the pulsars accretion is fueled by material picked up as it passes through the circumstellar disk, the accretion from a recent passage through the disk likely also caused the observed spin-up to the shorter period.If the authors model is correct, this series of observations of the pulsar as it emerges from the disk provides a rare opportunity to examine what happens to X-ray emission during this passage. More observations of this intriguing system can help us learn about the properties of the disk and the emission geometry of the neutron star surface.CitationJaeSub Hong et al 2016 ApJ 826 4. doi:10.3847/0004-637X/826/1/4
The Nature and Evolutionary History of GRO J1744-28
NASA Technical Reports Server (NTRS)
Rappaport, S.
1997-01-01
GRO J1744-28 is the first known X-ray source to display bursts, periodic pulsations, and quasi-periodic oscillations. This source may thus provide crucial clues that will lead to an understanding of the differences in the nature of the X-ray variability from various accreting neutron stars. The orbital period is 11.8 days, and the measured mass function of 1.31 x 10(exp -4) solar mass is one of the smallest among all known binaries. If we assume that the donor star is a low-mass giant transferring matter through the inner Lagrange point, then we can show that its mass is lower than approximately 0.7 solar mass and probably closer to 0.25 solar mass. Higher mass, but unevolved, donor stars are shown to be implausible. We also demonstrate that the current He core mass of the donor star lies in the range of 0.20-0.25 solar mass. Thus, this system is most likely in the final stages of losing its hydrogen-rich envelope, with only a small amount of mass remaining in the envelope. If this picture is correct, then GRO J1744-28 may well represent the closest observational link that we have between the low-mass X-ray binaries and recycled binary pulsars in wide orbits. We have carried out a series of binary evolution calculations and explored, both systematically and via a novel Monte Carlo approach, the range of initial system parameters and input physics that can lead to the binary parameters of the present-day GRO J1744-28 system. The input parameters include both the initial total mass and the core mass of the donor star, the neutron-star mass, the strength of the magnetic braking, the mass-capture fraction, and the specifics of the core mass/radius relation for giants. Through these evolution calculations, we compute probability distributions for the current binary system parameters (i.e., the total mass, core mass, radius, luminosity, and K-band magnitude of the donor star, the neutron star mass, the orbital inclination angle, and the semimajor axis of the binary). Our calculations yield the following values for the GRO J1744-28 system parameters (with 95% confidence limits in parentheses): donor star mass: 0.24 solar mass (0.2-0.7 solar mass); He core mass of the donor star: 0.22 solar mass (0.20-0.25 solar mass); neutron-star mass: 1.7 solar mass (1.39-1.96 solar mass); orbital inclination angle: 18deg (7deg-22deg); semi- major axis: 64 lt-s (60-67 lt-s); radius of the donor star: 6.2 solar radius(6-9 solar radius); luminosity of donor star: 23 solar luminosity (15-49 solar luminosity), and long-term mass transfer rate at the current epoch: 5 x 10(exp -10)solar mass/yr (2 x 10(exp -10) to 5 x 10(exp -9)solar mass/yr). We deduce that the magnetic field of the underlying neutron star lies in the range of approximately 1.8 x 10(exp 11)G to approximately 7 x 10(exp 11)G, with a most probable value of 2.7 x 10(exp 11)G. This is evidently sufficiently strong to funnel the accretion flow onto the magnetic polar caps and suppress the thermonuclear flashes that would otherwise give rise to the type 1 X-ray bursts observed in most X-ray bursters. We present a simple paradigm for magnetic accreting neutron stars where X-ray pulsars, GRO J1744-28, the Rapid Burster, and the type 1 X-ray bursters may form a continuum of possible behaviors among accreting neutron stars, with the strength of the neutron-star magnetic field serving as a crucial parameter that determines the mode of X-ray variability from a given object.
ASTROPHYSICAL PARAMETERS OF LS 2883 AND IMPLICATIONS FOR THE PSR B1259-63 GAMMA-RAY BINARY
DOE Office of Scientific and Technical Information (OSTI.GOV)
Negueruela, Ignacio; Lorenzo, Javier; Ribo, Marc
2011-05-01
Only a few binary systems with compact objects display TeV emission. The physical properties of the companion stars represent basic input for understanding the physical mechanisms behind the particle acceleration, emission, and absorption processes in these so-called gamma-ray binaries. Here we present high-resolution and high signal-to-noise optical spectra of LS 2883, the Be star forming a gamma-ray binary with the young non-accreting pulsar PSR B1259-63, showing it to rotate faster and be significantly earlier and more luminous than previously thought. Analysis of the interstellar lines suggests that the system is located at the same distance as (and thus is likelymore » a member of) Cen OB1. Taking the distance to the association, d = 2.3 kpc, and a color excess of E(B - V) = 0.85 for LS 2883 results in M{sub V} {approx} -4.4. Because of fast rotation, LS 2883 is oblate (R{sub eq} {approx_equal} 9.7 R{sub sun} and R{sub pole} {approx_equal} 8.1 R{sub sun}) and presents a temperature gradient (T{sub eq}{approx} 27,500 K, log g{sub eq} = 3.7; T{sub pole}{approx} 34,000 K, log g{sub pole} = 4.1). If the star did not rotate, it would have parameters corresponding to a late O-type star. We estimate its luminosity at log(L{sub *}/L{sub sun}) {approx_equal} 4.79 and its mass at M{sub *} {approx} 30 M{sub sun}. The mass function then implies an inclination of the binary system i{sub orb} {approx} 23{sup 0}, slightly smaller than previous estimates. We discuss the implications of these new astrophysical parameters of LS 2883 for the production of high-energy and very high-energy gamma rays in the PSR B1259-63/LS 2883 gamma-ray binary system. In particular, the stellar properties are very important for prediction of the line-like bulk Comptonization component from the unshocked ultrarelativistic pulsar wind.« less
Search for intermediate mass black hole binaries in the first observing run of Advanced LIGO
NASA Astrophysics Data System (ADS)
Abbott, B. P.; Abbott, R.; Abbott, T. D.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R. X.; Adya, V. B.; Affeldt, C.; Afrough, M.; Agarwal, B.; Agatsuma, K.; Aggarwal, N.; Aguiar, O. D.; Aiello, L.; Ain, A.; Allen, B.; Allen, G.; Allocca, A.; Almoubayyed, H.; Altin, P. A.; Amato, A.; Ananyeva, A.; Anderson, S. B.; Anderson, W. G.; Antier, S.; Appert, S.; Arai, K.; Araya, M. C.; Areeda, J. S.; Arnaud, N.; Arun, K. G.; Ascenzi, S.; Ashton, G.; Ast, M.; Aston, S. M.; Astone, P.; Aufmuth, P.; Aulbert, C.; AultONeal, K.; Avila-Alvarez, A.; Babak, S.; Bacon, P.; Bader, M. K. M.; Bae, S.; Baker, P. T.; Baldaccini, F.; Ballardin, G.; Ballmer, S. W.; Banagiri, S.; Barayoga, J. C.; Barclay, S. E.; Barish, B. C.; Barker, D.; Barone, F.; Barr, B.; Barsotti, L.; Barsuglia, M.; Barta, D.; Bartlett, J.; Bartos, I.; Bassiri, R.; Basti, A.; Batch, J. C.; Baune, C.; Bawaj, M.; Bazzan, M.; Bécsy, B.; Beer, C.; Bejger, M.; Belahcene, I.; Bell, A. S.; Berger, B. K.; Bergmann, G.; Berry, C. P. L.; Bersanetti, D.; Bertolini, A.; Betzwieser, J.; Bhagwat, S.; Bhandare, R.; Bilenko, I. A.; Billingsley, G.; Billman, C. R.; Birch, J.; Birney, R.; Birnholtz, O.; Biscans, S.; Bisht, A.; Bitossi, M.; Biwer, C.; Bizouard, M. A.; Blackburn, J. K.; Blackman, J.; Blair, C. D.; Blair, D. G.; Blair, R. M.; Bloemen, S.; Bock, O.; Bode, N.; Boer, M.; Bogaert, G.; Bohe, A.; Bondu, F.; Bonnand, R.; Boom, B. A.; Bork, R.; Boschi, V.; Bose, S.; Bouffanais, Y.; Bozzi, A.; Bradaschia, C.; Brady, P. R.; Braginsky, V. B.; Branchesi, M.; Brau, J. E.; Briant, T.; Brillet, A.; Brinkmann, M.; Brisson, V.; Brockill, P.; Broida, J. E.; Brooks, A. F.; Brown, D. A.; Brown, D. D.; Brown, N. M.; Brunett, S.; Buchanan, C. C.; Buikema, A.; Bulik, T.; Bulten, H. J.; Buonanno, A.; Buskulic, D.; Buy, C.; Byer, R. L.; Cabero, M.; Cadonati, L.; Cagnoli, G.; Cahillane, C.; Calderón Bustillo, J.; Callister, T. A.; Calloni, E.; Camp, J. B.; Canepa, M.; Canizares, P.; Cannon, K. C.; Cao, H.; Cao, J.; Capano, C. D.; Capocasa, E.; Carbognani, F.; Caride, S.; Carney, M. F.; Casanueva Diaz, J.; Casentini, C.; Caudill, S.; Cavaglià, M.; Cavalier, F.; Cavalieri, R.; Cella, G.; Cepeda, C. B.; Cerboni Baiardi, L.; Cerretani, G.; Cesarini, E.; Chamberlin, S. J.; Chan, M.; Chao, S.; Charlton, P.; Chassande-Mottin, E.; Chatterjee, D.; Cheeseboro, B. D.; Chen, H. Y.; Chen, Y.; Cheng, H.-P.; Chincarini, A.; Chiummo, A.; Chmiel, T.; Cho, H. S.; Cho, M.; Chow, J. H.; Christensen, N.; Chu, Q.; Chua, A. J. K.; Chua, S.; Chung, A. K. W.; Chung, S.; Ciani, G.; Ciolfi, R.; Cirelli, C. E.; Cirone, A.; Clara, F.; Clark, J. A.; Cleva, F.; Cocchieri, C.; Coccia, E.; Cohadon, P.-F.; Colla, A.; Collette, C. G.; Cominsky, L. R.; Constancio, M.; Conti, L.; Cooper, S. J.; Corban, P.; Corbitt, T. R.; Corley, K. R.; Cornish, N.; Corsi, A.; Cortese, S.; Costa, C. A.; Coughlin, M. W.; Coughlin, S. B.; Coulon, J.-P.; Countryman, S. T.; Couvares, P.; Covas, P. B.; Cowan, E. E.; Coward, D. M.; Cowart, M. J.; Coyne, D. C.; Coyne, R.; Creighton, J. D. E.; Creighton, T. D.; Cripe, J.; Crowder, S. G.; Cullen, T. J.; Cumming, A.; Cunningham, L.; Cuoco, E.; Dal Canton, T.; Danilishin, S. L.; D'Antonio, S.; Danzmann, K.; Dasgupta, A.; Da Silva Costa, C. F.; Dattilo, V.; Dave, I.; Davier, M.; Davies, G. S.; Davis, D.; Daw, E. J.; Day, B.; De, S.; DeBra, D.; Deelman, E.; Degallaix, J.; De Laurentis, M.; Deléglise, S.; Del Pozzo, W.; Denker, T.; Dent, T.; Dergachev, V.; De Rosa, R.; DeRosa, R. T.; DeSalvo, R.; Devenson, J.; Devine, R. C.; Dhurandhar, S.; Díaz, M. C.; Di Fiore, L.; Di Giovanni, M.; Di Girolamo, T.; Di Lieto, A.; Di Pace, S.; Di Palma, I.; Di Renzo, F.; Doctor, Z.; Dolique, V.; Donovan, F.; Dooley, K. L.; Doravari, S.; Dorrington, I.; Douglas, R.; Dovale Álvarez, M.; Downes, T. P.; Drago, M.; Drever, R. W. P.; Driggers, J. C.; Du, Z.; Ducrot, M.; Duncan, J.; Dwyer, S. E.; Edo, T. B.; Edwards, M. C.; Effler, A.; Eggenstein, H.-B.; Ehrens, P.; Eichholz, J.; Eikenberry, S. S.; Eisenstein, R. A.; Essick, R. C.; Etienne, Z. B.; Etzel, T.; Evans, M.; Evans, T. M.; Factourovich, M.; Fafone, V.; Fair, H.; Fairhurst, S.; Fan, X.; Farinon, S.; Farr, B.; Farr, W. M.; Fauchon-Jones, E. J.; Favata, M.; Fays, M.; Fehrmann, H.; Feicht, J.; Fejer, M. M.; Fernandez-Galiana, A.; Ferrante, I.; Ferreira, E. C.; Ferrini, F.; Fidecaro, F.; Fiori, I.; Fiorucci, D.; Fisher, R. P.; Flaminio, R.; Fletcher, M.; Fong, H.; Forsyth, P. W. F.; Forsyth, S. S.; Fournier, J.-D.; Frasca, S.; Frasconi, F.; Frei, Z.; Freise, A.; Frey, R.; Frey, V.; Fries, E. M.; Fritschel, P.; Frolov, V. V.; Fulda, P.; Fyffe, M.; Gabbard, H.; Gabel, M.; Gadre, B. U.; Gaebel, S. M.; Gair, J. R.; Gammaitoni, L.; Ganija, M. R.; Gaonkar, S. G.; Garufi, F.; Gaudio, S.; Gaur, G.; Gayathri, V.; Gehrels, N.; Gemme, G.; Genin, E.; Gennai, A.; George, D.; George, J.; Gergely, L.; Germain, V.; Ghonge, S.; Ghosh, Abhirup; Ghosh, Archisman; Ghosh, S.; Giaime, J. A.; Giardina, K. D.; Giazotto, A.; Gill, K.; Glover, L.; Goetz, E.; Goetz, R.; Gomes, S.; González, G.; Gonzalez Castro, J. M.; Gopakumar, A.; Gorodetsky, M. L.; Gossan, S. E.; Gosselin, M.; Gouaty, R.; Grado, A.; Graef, C.; Granata, M.; Grant, A.; Gras, S.; Gray, C.; Greco, G.; Green, A. C.; Groot, P.; Grote, H.; Grunewald, S.; Gruning, P.; Guidi, G. M.; Guo, X.; Gupta, A.; Gupta, M. K.; Gushwa, K. E.; Gustafson, E. K.; Gustafson, R.; Hall, B. R.; Hall, E. D.; Hammond, G.; Haney, M.; Hanke, M. M.; Hanks, J.; Hanna, C.; Hannam, M. D.; Hannuksela, O. A.; Hanson, J.; Hardwick, T.; Harms, J.; Harry, G. M.; Harry, I. W.; Hart, M. J.; Haster, C.-J.; Haughian, K.; Healy, J.; Heidmann, A.; Heintze, M. C.; Heitmann, H.; Hello, P.; Hemming, G.; Hendry, M.; Heng, I. S.; Hennig, J.; Henry, J.; Heptonstall, A. W.; Heurs, M.; Hild, S.; Hoak, D.; Hofman, D.; Holt, K.; Holz, D. E.; Hopkins, P.; Horst, C.; Hough, J.; Houston, E. A.; Howell, E. J.; Hu, Y. M.; Huerta, E. A.; Huet, D.; Hughey, B.; Husa, S.; Huttner, S. H.; Huynh-Dinh, T.; Indik, N.; Ingram, D. R.; Inta, R.; Intini, G.; Isa, H. N.; Isac, J.-M.; Isi, M.; Iyer, B. R.; Izumi, K.; Jacqmin, T.; Jani, K.; Jaranowski, P.; Jawahar, S.; Jiménez-Forteza, F.; Johnson, W. W.; Jones, D. I.; Jones, R.; Jonker, R. J. G.; Ju, L.; Junker, J.; Kalaghatgi, C. V.; Kalogera, V.; Kandhasamy, S.; Kang, G.; Kanner, J. B.; Karki, S.; Karvinen, K. S.; Kasprzack, M.; Katolik, M.; Katsavounidis, E.; Katzman, W.; Kaufer, S.; Kawabe, K.; Kéfélian, F.; Keitel, D.; Kemball, A. J.; Kennedy, R.; Kent, C.; Key, J. S.; Khalili, F. Y.; Khan, I.; Khan, S.; Khan, Z.; Khazanov, E. A.; Kijbunchoo, N.; Kim, Chunglee; Kim, J. C.; Kim, W.; Kim, W. S.; Kim, Y.-M.; Kimbrell, S. J.; King, E. J.; King, P. J.; Kirchhoff, R.; Kissel, J. S.; Kleybolte, L.; Klimenko, S.; Koch, P.; Koehlenbeck, S. M.; Koley, S.; Kondrashov, V.; Kontos, A.; Korobko, M.; Korth, W. Z.; Kowalska, I.; Kozak, D. B.; Krämer, C.; Kringel, V.; Krishnan, B.; Królak, A.; Kuehn, G.; Kumar, P.; Kumar, R.; Kumar, S.; Kuo, L.; Kutynia, A.; Kwang, S.; Lackey, B. D.; Lai, K. H.; Landry, M.; Lang, R. N.; Lange, J.; Lantz, B.; Lanza, R. K.; Lartaux-Vollard, A.; Lasky, P. D.; Laxen, M.; Lazzarini, A.; Lazzaro, C.; Leaci, P.; Leavey, S.; Lee, C. H.; Lee, H. K.; Lee, H. M.; Lee, H. W.; Lee, K.; Lehmann, J.; Lenon, A.; Leonardi, M.; Leroy, N.; Letendre, N.; Levin, Y.; Li, T. G. F.; Libson, A.; Littenberg, T. B.; Liu, J.; Lockerbie, N. A.; London, L. T.; Lord, J. E.; Lorenzini, M.; Loriette, V.; Lormand, M.; Losurdo, G.; Lough, J. D.; Lousto, C. O.; Lovelace, G.; Lück, H.; Lumaca, D.; Lundgren, A. P.; Lynch, R.; Ma, Y.; Macfoy, S.; Machenschalk, B.; MacInnis, M.; Macleod, D. M.; Magaña Hernandez, I.; Magaña-Sandoval, F.; Magaña Zertuche, L.; Magee, R. M.; Majorana, E.; Maksimovic, I.; Man, N.; Mandic, V.; Mangano, V.; Mansell, G. L.; Manske, M.; Mantovani, M.; Marchesoni, F.; Marion, F.; Márka, S.; Márka, Z.; Markakis, C.; Markosyan, A. S.; Maros, E.; Martelli, F.; Martellini, L.; Martin, I. W.; Martynov, D. V.; Marx, J. N.; Mason, K.; Masserot, A.; Massinger, T. J.; Masso-Reid, M.; Mastrogiovanni, S.; Matas, A.; Matichard, F.; Matone, L.; Mavalvala, N.; Mayani, R.; Mazumder, N.; McCarthy, R.; McClelland, D. E.; McCormick, S.; McCuller, L.; McGuire, S. C.; McIntyre, G.; McIver, J.; McManus, D. J.; McRae, T.; McWilliams, S. T.; Meacher, D.; Meadors, G. D.; Meidam, J.; Mejuto-Villa, E.; Melatos, A.; Mendell, G.; Mercer, R. A.; Merilh, E. L.; Merzougui, M.; Meshkov, S.; Messenger, C.; Messick, C.; Metzdorff, R.; Meyers, P. M.; Mezzani, F.; Miao, H.; Michel, C.; Middleton, H.; Mikhailov, E. E.; Milano, L.; Miller, A. L.; Miller, A.; Miller, B. B.; Miller, J.; Millhouse, M.; Minazzoli, O.; Minenkov, Y.; Ming, J.; Mishra, C.; Mitra, S.; Mitrofanov, V. P.; Mitselmakher, G.; Mittleman, R.; Moggi, A.; Mohan, M.; Mohapatra, S. R. P.; Montani, M.; Moore, B. C.; Moore, C. J.; Moraru, D.; Moreno, G.; Morriss, S. R.; Mours, B.; Mow-Lowry, C. M.; Mueller, G.; Muir, A. W.; Mukherjee, Arunava; Mukherjee, D.; Mukherjee, S.; Mukund, N.; Mullavey, A.; Munch, J.; Muniz, E. A. M.; Murray, P. G.; Napier, K.; Nardecchia, I.; Naticchioni, L.; Nayak, R. K.; Nelemans, G.; Nelson, T. J. N.; Neri, M.; Nery, M.; Neunzert, A.; Newport, J. M.; Newton, G.; Ng, K. K. Y.; Nguyen, T. T.; Nichols, D.; Nielsen, A. B.; Nissanke, S.; Noack, A.; Nocera, F.; Nolting, D.; Normandin, M. E. N.; Nuttall, L. K.; Oberling, J.; Ochsner, E.; Oelker, E.; Ogin, G. H.; Oh, J. J.; Oh, S. H.; Ohme, F.; Oliver, M.; Oppermann, P.; Oram, Richard J.; O'Reilly, B.; Ormiston, R.; Ortega, L. F.; O'Shaughnessy, R.; Ottaway, D. J.; Overmier, H.; Owen, B. J.; Pace, A. E.; Page, J.; Page, M. A.; Pai, A.; Pai, S. A.; Palamos, J. R.; Palashov, O.; Palomba, C.; Pal-Singh, A.; Pan, H.; Pang, B.; Pang, P. T. H.; Pankow, C.; Pannarale, F.; Pant, B. C.; Paoletti, F.; Paoli, A.; Papa, M. A.; Paris, H. R.; Parker, W.; Pascucci, D.; Pasqualetti, A.; Passaquieti, R.; Passuello, D.; Patricelli, B.; Pearlstone, B. L.; Pedraza, M.; Pedurand, R.; Pekowsky, L.; Pele, A.; Penn, S.; Perez, C. J.; Perreca, A.; Perri, L. M.; Pfeiffer, H. P.; Phelps, M.; Piccinni, O. J.; Pichot, M.; Piergiovanni, F.; Pierro, V.; Pillant, G.; Pinard, L.; Pinto, I. M.; Pitkin, M.; Poggiani, R.; Popolizio, P.; Porter, E. K.; Post, A.; Powell, J.; Prasad, J.; Pratt, J. W. W.; Predoi, V.; Prestegard, T.; Prijatelj, M.; Principe, M.; Privitera, S.; Prodi, G. A.; Prokhorov, L. G.; Puncken, O.; Punturo, M.; Puppo, P.; Pürrer, M.; Qi, H.; Qin, J.; Qiu, S.; Quetschke, V.; Quintero, E. A.; Quitzow-James, R.; Raab, F. J.; Rabeling, D. S.; Radkins, H.; Raffai, P.; Raja, S.; Rajan, C.; Rakhmanov, M.; Ramirez, K. E.; Rapagnani, P.; Raymond, V.; Razzano, M.; Read, J.; Regimbau, T.; Rei, L.; Reid, S.; Reitze, D. H.; Rew, H.; Reyes, S. D.; Ricci, F.; Ricker, P. M.; Rieger, S.; Riles, K.; Rizzo, M.; Robertson, N. A.; Robie, R.; Robinet, F.; Rocchi, A.; Rolland, L.; Rollins, J. G.; Roma, V. J.; Romano, R.; Romel, C. L.; Romie, J. H.; Rosińska, D.; Ross, M. P.; Rowan, S.; Rüdiger, A.; Ruggi, P.; Ryan, K.; Rynge, M.; Sachdev, S.; Sadecki, T.; Sadeghian, L.; Sakellariadou, M.; Salconi, L.; Saleem, M.; Salemi, F.; Samajdar, A.; Sammut, L.; Sampson, L. M.; Sanchez, E. J.; Sandberg, V.; Sandeen, B.; Sanders, J. R.; Sassolas, B.; Sathyaprakash, B. S.; Saulson, P. R.; Sauter, O.; Savage, R. L.; Sawadsky, A.; Schale, P.; Scheuer, J.; Schmidt, E.; Schmidt, J.; Schmidt, P.; Schnabel, R.; Schofield, R. M. S.; Schönbeck, A.; Schreiber, E.; Schuette, D.; Schulte, B. W.; Schutz, B. F.; Schwalbe, S. G.; Scott, J.; Scott, S. M.; Seidel, E.; Sellers, D.; Sengupta, A. S.; Sentenac, D.; Sequino, V.; Sergeev, A.; Shaddock, D. A.; Shaffer, T. J.; Shah, A. A.; Shahriar, M. S.; Shao, L.; Shapiro, B.; Shawhan, P.; Sheperd, A.; Shoemaker, D. H.; Shoemaker, D. M.; Siellez, K.; Siemens, X.; Sieniawska, M.; Sigg, D.; Silva, A. D.; Singer, A.; Singer, L. P.; Singh, A.; Singh, R.; Singhal, A.; Sintes, A. M.; Slagmolen, B. J. J.; Smith, B.; Smith, J. R.; Smith, R. J. E.; Son, E. J.; Sonnenberg, J. A.; Sorazu, B.; Sorrentino, F.; Souradeep, T.; Spencer, A. P.; Srivastava, A. K.; Staley, A.; Steinke, M.; Steinlechner, J.; Steinlechner, S.; Steinmeyer, D.; Stephens, B. C.; Stone, R.; Strain, K. A.; Stratta, G.; Strigin, S. E.; Sturani, R.; Stuver, A. L.; Summerscales, T. Z.; Sun, L.; Sunil, S.; Sutton, P. J.; Swinkels, B. L.; Szczepańczyk, M. J.; Tacca, M.; Talukder, D.; Tanner, D. B.; Tápai, M.; Taracchini, A.; Taylor, J. A.; Taylor, R.; Theeg, T.; Thomas, E. G.; Thomas, M.; Thomas, P.; Thorne, K. A.; Thorne, K. S.; Thrane, E.; Tiwari, S.; Tiwari, V.; Tokmakov, K. V.; Toland, K.; Tonelli, M.; Tornasi, Z.; Torrie, C. I.; Töyrä, D.; Travasso, F.; Traylor, G.; Trifirò, D.; Trinastic, J.; Tringali, M. C.; Trozzo, L.; Tsang, K. W.; Tse, M.; Tso, R.; Tuyenbayev, D.; Ueno, K.; Ugolini, D.; Unnikrishnan, C. S.; Urban, A. L.; Usman, S. A.; Vahi, K.; Vahlbruch, H.; Vajente, G.; Valdes, G.; van Bakel, N.; van Beuzekom, M.; van den Brand, J. F. J.; Van Den Broeck, C.; Vander-Hyde, D. C.; van der Schaaf, L.; van Heijningen, J. V.; van Veggel, A. A.; Vardaro, M.; Varma, V.; Vass, S.; Vasúth, M.; Vecchio, A.; Vedovato, G.; Veitch, J.; Veitch, P. J.; Venkateswara, K.; Venugopalan, G.; Verkindt, D.; Vetrano, F.; Viceré, A.; Viets, A. D.; Vinciguerra, S.; Vine, D. J.; Vinet, J.-Y.; Vitale, S.; Vo, T.; Vocca, H.; Vorvick, C.; Voss, D. V.; Vousden, W. D.; Vyatchanin, S. P.; Wade, A. R.; Wade, L. E.; Wade, M.; Walet, R.; Walker, M.; Wallace, L.; Walsh, S.; Wang, G.; Wang, H.; Wang, J. Z.; Wang, M.; Wang, Y.-F.; Wang, Y.; Ward, R. L.; Warner, J.; Was, M.; Watchi, J.; Weaver, B.; Wei, L.-W.; Weinert, M.; Weinstein, A. J.; Weiss, R.; Wen, L.; Wessel, E. K.; Weßels, P.; Westphal, T.; Wette, K.; Whelan, J. T.; Whiting, B. F.; Whittle, C.; Williams, D.; Williams, R. D.; Williamson, A. R.; Willis, J. L.; Willke, B.; Wimmer, M. H.; Winkler, W.; Wipf, C. C.; Wittel, H.; Woan, G.; Woehler, J.; Wofford, J.; Wong, K. W. K.; Worden, J.; Wright, J. L.; Wu, D. S.; Wu, G.; Yam, W.; Yamamoto, H.; Yancey, C. C.; Yap, M. J.; Yu, Hang; Yu, Haocun; Yvert, M.; ZadroŻny, A.; Zanolin, M.; Zelenova, T.; Zendri, J.-P.; Zevin, M.; Zhang, L.; Zhang, M.; Zhang, T.; Zhang, Y.-H.; Zhao, C.; Zhou, M.; Zhou, Z.; Zhu, X. J.; Zucker, M. E.; Zweizig, J.; LIGO Scientific Collaboration; Virgo Collaboration
2017-07-01
During their first observational run, the two Advanced LIGO detectors attained an unprecedented sensitivity, resulting in the first direct detections of gravitational-wave signals produced by stellar-mass binary black hole systems. This paper reports on an all-sky search for gravitational waves (GWs) from merging intermediate mass black hole binaries (IMBHBs). The combined results from two independent search techniques were used in this study: the first employs a matched-filter algorithm that uses a bank of filters covering the GW signal parameter space, while the second is a generic search for GW transients (bursts). No GWs from IMBHBs were detected; therefore, we constrain the rate of several classes of IMBHB mergers. The most stringent limit is obtained for black holes of individual mass 100 M⊙ , with spins aligned with the binary orbital angular momentum. For such systems, the merger rate is constrained to be less than 0.93 Gpc-3 yr-1 in comoving units at the 90% confidence level, an improvement of nearly 2 orders of magnitude over previous upper limits.
A stellar audit: the computation of encounter rates for 47 Tucanae and omega Centauri
NASA Astrophysics Data System (ADS)
Davies, Melvyn B.; Benz, Willy
1995-10-01
Using King-Mitchie models, we compute encounter rates between the various stellar species in the globular clusters omega Cen and 47 Tuc. We also compute event rates for encounters between single stars and a population of primordial binaries. Using these rates, and what we have learnt from hydrodynamical simulations of encounters performed earlier, we compute the production rates of objects such as low-mass X-ray binaries (LMXBs), smothered neutron stars and blue stragglers (massive main-sequence stars). If 10 per cent of the stars are contained in primordial binaries, the production rate of interesting objects from encounters involving these binaries is as large as that from encounters between single stars. For example, encounters involving binaries produce a significant number of blue stragglers in both globular cluster models. The number of smothered neutron stars may exceed the number of LMXBs by a factor of 5-20, which may help to explain why millisecond pulsars are observed to outnumber LMXBs in globular clusters.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stovall, K.; Dartez, L. P.; Ford, A. J.
We describe an ongoing search for pulsars and dispersed pulses of radio emission, such as those from rotating radio transients (RRATs) and fast radio bursts, at 350 MHz using the Green Bank Telescope. With the Green Bank Ultimate Pulsar Processing Instrument, we record 100 MHz of bandwidth divided into 4096 channels every 81.92 μs. This survey will cover the entire sky visible to the Green Bank Telescope (δ > –40°, or 82% of the sky) and outside of the Galactic Plane will be sensitive enough to detect slow pulsars and low dispersion measure (<30 pc cm{sup –3}) millisecond pulsars (MSPs)more » with a 0.08 duty cycle down to 1.1 mJy. For pulsars with a spectral index of –1.6, we will be 2.5 times more sensitive than previous and ongoing surveys over much of our survey region. Here we describe the survey, the data analysis pipeline, initial discovery parameters for 62 pulsars, and timing solutions for 5 new pulsars. PSR J0214+5222 is an MSP in a long-period (512 days) orbit and has an optical counterpart identified in archival data. PSR J0636+5129 is an MSP in a very short-period (96 minutes) orbit with a very low mass companion (8 M{sub J}). PSR J0645+5158 is an isolated MSP with a timing residual RMS of 500 ns and has been added to pulsar timing array experiments. PSR J1434+7257 is an isolated, intermediate-period pulsar that has been partially recycled. PSR J1816+4510 is an eclipsing MSP in a short-period orbit (8.7 hr) and may have recently completed its spin-up phase.« less
Revisiting the birth locations of pulsars B1929+10, B2020+28, and B2021+51
NASA Astrophysics Data System (ADS)
Kirsten, Franz; Vlemmings, Wouter; Campbell, Robert M.; Kramer, Michael; Chatterjee, Shami
2015-05-01
We present new proper motion and parallax measurements obtained with the European VLBI Network (EVN) at 5GHz for the three isolated pulsars B1929+10, B2020+28, and B2021+51. For B1929+10 we combined our data with earlier VLBI measurements and confirm the robustness of the astrometric parameters of this pulsar. For pulsars B2020+28 and B2021+51 our observations indicate that both stars are almost a factor of two closer to the solar system than previously thought, placing them at a distance of 1.39-0.06+0.05 and 1.25-0.17+ 0.14kpc. Using our new astrometry, we simulated the orbits of all three pulsars in the Galactic potential with the aim to confirm or reject previously proposed birth locations. Our observations ultimately rule out a claimed binary origin of B1929+10 and the runaway star ζ Ophiuchi in Upper Scorpius. A putative common binary origin of B2020+28 and B2021+51 in the Cygnus Superbubble is also very unlikely.
NASA Technical Reports Server (NTRS)
Will, C. M.
1977-01-01
The generation of gravitational radiation in several currently viable metric theories of gravitation (Brans-Dicke, Rosen, Ni, and Lightman-Lee) is analyzed, and it is shown that these theories predict the emission of dipole gravitational radiation from systems containing gravitationally bound objects. In the binary system PSR 1913 + 16, this radiation results in a secular change in the orbital period of the system with a nominal magnitude of 3 parts in 100,000 per year. The size of the effect is proportional to the reduced mass of the system, to the square of the difference in (self-gravitational energy)/(mass) between the two components of the system, and to a parameter, xi, whose value varies from theory to theory. In general relativity xi equals 0, in Rosen's (1973) theory xi equals -20/3, and in Ni's (1973) theory xi equals -400/3. The current upper limit on such a secular period change is one part in 1 million per year. It is shown that further observations of the binary system that tighten this limit and that establish the masses of the components and the identity of the companion may provide a crucial test of otherwise viable alternatives to general relativity.
Accreting Neutron Star and Black Hole Binaries with NICER
NASA Astrophysics Data System (ADS)
Chakrabarty, Deepto
2018-01-01
The NICER mission on the International Space Station has significant new capabilities for the study of accreting neutron stars and blackholes, including large effective area, low background, and excellent low-energy X-ray response. Both the NICER Burst and Accretion Working Group and the Observatory Science Working Group have designed observing programs that probe various aspects of accretion physics. I will present some early results from the first six months of the NICER mission, including observations of the black hole transients MAXI J1535-571 and GX 339-4, the high-mass X-ray binary pulsars GRO J1008-57 and Swift J02436+6124, and the X-ray burster 4U 1820-30.
Suzaku observation of the eclipsing high mass X-ray binary pulsar XTE J1855-026
NASA Astrophysics Data System (ADS)
Devasia, Jincy; Paul, Biswajit
2018-02-01
We report results from analysis performed on an eclipsing supergiant high mass X-ray binary pulsar XTE J1855-026 observed with the X-ray Imaging Spectrometer (XIS) on-board Suzaku Observatory in April 2015. Suzaku observed this source for a total effective exposure of ˜ 87 ks just before an eclipse. Pulsations are clearly observed and the pulse profiles of XTE J1855-026 did not show significant energy dependence during this observation consistent with previous reports. The time averaged energy spectrum of XTE J1855-026 in the 1.0-10.5 keV energy range can be well fitted with a partial covering power law model modified with interstellar absorption along with a black-body component for soft excess and a gaussian for iron fluorescence line emision. The hardness ratio evolution during this observation indicated significant absorption of soft X-rays in some segments of the observation. For better understanding of the reason behind this, we performed time-resolved spectroscopy in the 2.5-10.5 keV energy band which revealed significant variations in the spectral parameters, especially the hydrogen column density and iron line equivalent width with flux. The correlated variations in the spectral parameters indicate towards the presence of clumps in the stellar wind of the companion star accounting for the absorption of low energy X-rays in some time segments.
Observational properties of pulsars.
Manchester, R N
2004-04-23
Pulsars are remarkable clocklike celestial sources that are believed to be rotating neutron stars formed in supernova explosions. They are valuable tools for investigations into topics such as neutron star interiors, globular cluster dynamics, the structure of the interstellar medium, and gravitational physics. Searches at radio and x-ray wavelengths over the past 5 years have resulted in a large increase in the number of known pulsars and the discovery of new populations of pulsars, posing challenges to theories of binary and stellar evolution. Recent images at radio, optical, and x-ray wavelengths have revealed structures resulting from the interaction of pulsar winds with the surrounding interstellar medium, giving new insights into the physics of pulsars.
The High Time Resolution Universe
NASA Astrophysics Data System (ADS)
Bailes, Matthew; Possenti, Andrea; Johnston, Simon; Kramer, Michael; Burgay, Marta; Bhat, Ramesh; Keith, Michael; Burke-Spolaor, Sarah; van Straten, Willem; Stappers, Benjamin; Bates, Samuel
2008-04-01
The Parkes multibeam surveys heralded a new era in pulsar surveys, more than doubling the number of pulsars known. However, at high time resolution, they were severely limited by the analogue backend system, which limited the volume of sky they could effectively survey to just the local 2-3 kpc. Here we propose to use a new digital backend coupled with Australia's most powerful (16 Tflop) supercomputing cluster to conduct three ambitious surveys for millisecond and relativistic pulsars with the Parkes telescope. We hope to discover over 200 new millisecond and relativistic pulsars that will define the recycled pulsar period distribution, supply pulsars for the timing array and aid in our understanding of binary evolution.
High-Precision Timing of Several Millisecond Pulsars
NASA Astrophysics Data System (ADS)
Ferdman, R. D.; Stairs, I. H.; Backer, D. C.; Ramachandran, R.; Demorest, P.; Nice, D. J.; Lyne, A. G.; Kramer, M.; Lorimer, D.; McLaughlin, M.; Manchester, D.; Camilo, F.; D'Amico, N.; Possenti, A.; Burgay, M.; Joshi, B. C.; Freire, P. C.
2004-12-01
The highest precision pulsar timing is achieved by reproducing as accurately as possible the pulse profile as emitted by the pulsar, in high signal-to-noise observations. The best profile reconstruction can be accomplished with several-bit voltage sampling and coherent removal of the dispersion suffered by pulsar signals as they traverse the interstellar medium. The Arecibo Signal Processor (ASP) and its counterpart the Green Bank Astronomical Signal Processor (GASP) are flexible, state-of-the-art wide-bandwidth observing systems, built primarily for high-precision long-term timing of millisecond and binary pulsars. ASP and GASP are in use at the 300-m Arecibo telescope in Puerto Rico and the 100-m Green Bank Telescope in Green Bank, West Virginia, respectively, taking advantage of the enormous sensitivities of these telescopes. These instruments result in high-precision science through 4 and 8-bit sampling and perform coherent dedispersion on the incoming data stream in real or near-real time. This is done using a network of personal computers, over an observing bandwidth of 64 to 128 MHz, in each of two polarizations. We present preliminary results of timing and polarimetric observations with ASP/GASP for several pulsars, including the recently-discovered relativistic double-pulsar binary J0737-3039. These data are compared to simultaneous observations with other pulsar instruments, such as the new "spigot card" spectrometer on the GBT and the Princeton Mark IV instrument at Arecibo, the precursor timing system to ASP. We also briefly discuss several upcoming observations with ASP/GASP.
Chandra Reveals Nest of Tight Binaries in Dense Cluster
NASA Astrophysics Data System (ADS)
2001-05-01
Scientists have gazed into an incredibly dense star cluster with NASA's Chandra X-ray Observatory and identified a surprising bonanza of binary stars, including a large number of rapidly rotating neutron stars. The discovery may help explain how one of the oldest structures in our Galaxy evolved over its lifetime. By combining Chandra, Hubble Space Telescope, and ground-based radio data, the researchers conducted an important survey of the binary systems that dominate the dynamics of 47 Tucanae, a globular cluster about 12 billion years old located in our Milky Way galaxy. Most of the binaries in 47 Tucanae are systems in which a normal, Sun-like companion orbits a collapsed star, either a white dwarf or a neutron star. White dwarf stars are dense, burnt-out remnants of stars like the Sun, while neutron stars are even denser remains of a more massive star. When matter from a nearby star falls onto either a white dwarf or a neutron star, as in the case with the binaries in 47 Tucanae, X-rays are produced. 47 Tuc This composite image shows relation of the Chandra image of 47 Tucanae to ground-based, optical observations. "This Chandra image provides the first complete census of compact binaries in the core of a globular cluster," said Josh Grindlay of the Harvard-Smithsonian Center for Astrophysics (CfA) and lead author of the report that appears in the May 18 issue of Science. "The relative number of neutron stars versus white dwarfs in these binaries tell us about the development of the first stars in the cluster, and the binaries themselves are key to the evolution of the entire cluster core." Many of the binaries in 47 Tucanae are exotic systems never before seen in such large quantities. Perhaps the most intriguing are the "millisecond pulsars", which contain neutron stars that are rotating extremely rapidly, between 100 to nearly 1000 times a second. "The Chandra data, in conjunction with radio observations, indicate that there are many more millisecond pulsars than we would expect based on the number of their likely progenitors we found," said co-author Peter Edmonds, also of the CfA. "While there is a general consensus on how some of the millisecond pulsars form, these new data suggest that there need to be other methods to create them." In addition to the millisecond pulsars, Chandra also detected other important populations of binary systems, including those with white dwarf stars and normal stars, and others where pairs of normal stars undergo large flares induced by their close proximity. The Chandra data also indicate an apparent absence of a central black hole. Stellar-sized mass black holes -- those about five to ten times as massive as the Sun -- have apparently not coalesced to the center of the star cluster. All or most stellar-sized black holes that formed over the lifetime of the cluster have likely been ejected by their slingshot encounters with binaries deep in the cluster core. "These results show that binary star systems are a source of gravitational energy which ejects stellar mass black holes and prevents the collapse of the cluster’s core to a more massive, central black hole," said the CfA's Craig Heinke. "In other words, binary systems - not black holes - are the dynamical heat engines that drive the evolution of globular clusters." Chandra observed 47 Tucanae on March 16-17, 2000, for a period of 74,000 seconds with the Advanced CCD Imaging Spectrometer (ACIS). The ACIS X-ray camera was developed for NASA by Penn State and the Massachusetts Institute of Technology. The High Energy Transmission Grating Spectrometer was built by MIT. NASA's Marshall Space Flight Center in Huntsville, AL, manages the Chandra program. TRW, Inc., Redondo Beach, California, is the prime contractor for the spacecraft. The Smithsonian's Chandra X-ray Center controls science and flight operations from Cambridge, MA. Images associated with this release are available on the World Wide Web at: http://chandra.harvard.edu AND http://chandra.nasa.gov
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schmidt, Deborah; Crawford, Fronefield; Gilpin, Claire
2013-04-15
We have searched 75 unidentified radio sources selected from the NRAO VLA Sky Survey catalog for the presence of rapidly spinning pulsars and short, dispersed radio bursts. The sources are radio bright, have no identifications or optical source coincidences, are more than 5% linearly polarized, and are spatially unresolved in the catalog. If these sources are fast-spinning pulsars (e.g., sub-millisecond pulsars), previous large-scale pulsar surveys may have missed detection due to instrumental and computational limitations, eclipsing effects, or diffractive scintillation. The discovery of a sub-millisecond pulsar would significantly constrain the neutron star equation of state and would have implications formore » models predicting a rapid slowdown of highly recycled X-ray pulsars to millisecond periods from, e.g., accretion disk decoupling. These same sources were previously searched unsuccessfully for pulsations at 610 MHz with the Lovell Telescope at Jodrell Bank. This new search was conducted at a different epoch with a new 800 MHz backend on the NRAO 43 m Telescope at a center frequency of 1200 MHz. Our search was sensitive to sub-millisecond pulsars in highly accelerated binary systems and to short transient pulses. No periodic or transient signals were detected from any of the target sources. We conclude that diffractive scintillation, dispersive smearing, and binary acceleration are unlikely to have prevented detection of the large majority of the sources if they are pulsars, though we cannot rule out eclipsing, nulling or intermittent emission, or radio interference as possible factors for some non-detections. Other (speculative) possibilities for what these sources might include radio-emitting magnetic cataclysmic variables or older pulsars with aligned magnetic and spin axes.« less
An intermediate-mass black hole in the centre of the globular cluster 47 Tucanae.
Kızıltan, Bülent; Baumgardt, Holger; Loeb, Abraham
2017-02-08
Intermediate-mass black holes should help us to understand the evolutionary connection between stellar-mass and super-massive black holes. However, the existence of intermediate-mass black holes is still uncertain, and their formation process is therefore unknown. It has long been suspected that black holes with masses 100 to 10,000 times that of the Sun should form and reside in dense stellar systems. Therefore, dedicated observational campaigns have targeted globular clusters for many decades, searching for signatures of these elusive objects. All candidate signatures appear radio-dim and do not have the X-ray to radio flux ratios required for accreting black holes. Based on the lack of an electromagnetic counterpart, upper limits of 2,060 and 470 solar masses have been placed on the mass of a putative black hole in 47 Tucanae (NGC 104) from radio and X-ray observations, respectively. Here we show there is evidence for a central black hole in 47 Tucanae with a mass of solar masses when the dynamical state of the globular cluster is probed with pulsars. The existence of an intermediate-mass black hole in the centre of one of the densest clusters with no detectable electromagnetic counterpart suggests that the black hole is not accreting at a sufficient rate to make it electromagnetically bright and therefore, contrary to expectations, is gas-starved. This intermediate-mass black hole might be a member of an electromagnetically invisible population of black holes that grow into supermassive black holes in galaxies.
The 26.3-h orbit and multiwavelength properties of the `redback' millisecond pulsar PSR J1306-40
NASA Astrophysics Data System (ADS)
Linares, Manuel
2018-01-01
We present the discovery of the variable optical and X-ray counterparts to the radio millisecond pulsar (MSP) PSR J1306-40, recently discovered by Keane et al. We find that both the optical and X-ray fluxes are modulated with the same period, which allows us to measure for the first time the orbital period Porb = 1.097 16[6] d. The optical properties are consistent with a main-sequence companion with spectral type G to mid K and, together with the X-ray luminosity (8.8 × 1031 erg s-1 in the 0.5-10 keV band, for a distance of 1.2 kpc), confirm the redback classification of this pulsar. Our results establish the binary nature of PSR J1306-40, which has the longest Porb among all known compact binary MSPs in the Galactic disc. We briefly discuss these findings in the context of irradiation and intrabinary shock emission in compact binary MSPs.
Search for Millisecond Pulsars for the Pulsar Timing Array project
NASA Astrophysics Data System (ADS)
Milia, S.
2012-03-01
Pulsars are rapidly rotating highly magnetised neutron stars (i.e. ultra dense stars, where about one solar mass is concentrated in a sphere with a radius of ~ 10 km), which irradiate radio beams in a fashion similar to a lighthouse. As a consequence, whenever the beams cut our line of sight we perceive a radio pulses, one (or two) per pulsar rotation, with a frequency up to hundred of times a second. Owing to their compact nature, rapid spin and high inertia, pulsars are in general fairly stable rotators, hence the Times of Arrival (TOAs) of the pulses at a radio telescope can be used as the ticks of a clock. This holds true in particular for the subÂclass of the millisecond pulsars (MSPs), having a spin period smaller than the conventional limit of 30 ms, whose very rapid rotation and relatively older age provide better rotational stability than the ordinary pulsars. Indeed, some MSPs rotate so regularly that they can rival the best atomic clocks on Earth over timespan of few months or years.This feature allows us to use MSPs as tools in a cosmic laboratory, by exploiting a procedure called timing, which consists in the repeated and regular measurement of the TOAs from a pulsar and then in the search for trends in the series of the TOAs over various timespans, from fraction of seconds to decades.For example the study of pulsars in binary systems has already provided the most stringent tests to date of General Relativity in strong gravitational fields and has unambiguously showed the occurrence of the emission of gravitational waves from a binary system comprising two massive bodies in a close orbit. In last decades a new exciting perspective has been opened, i.e. to use pulsars also for a direct detection of the so far elusive gravitational waves and thereby applying the pulsar timing for cosmological studies. In fact, the gravitational waves (GWs) going across our Galaxy pass over all the Galactic pulsars and the Earth, perturbing the spaceÂtime at the pulsar and Earth locations, as well as anywhere along the lineÂofÂsight from the Earth and each of the pulsars. This in turn produces a modulation in the rhythm of the TOAs of the pulses from all the pulsars, with the variation in the TOAs having a strength which is proportional to the amplitude of the GW and a periodicity related to the frequency of the GW. Of course if they are caused by a common physical phenomenon (like a passingÂby GW), these variations of the TOAs are expected to be somehow correlated between the various pulsars, allowing us to disentangle this effect from other effects which could mimic the occurrence of such modulation, like intrinsic irregularities in the rotation of a pulsar, changing interstellar medium along the line of sight, error in the reference clocks used for determining the TOAs and so on.The consideration of the aforementioned possible sources of additional effects which could mask the signature of a genuine GW shows that a safe direct detection of a GW cannot involve the observation and timing of a single pulsar. Instead, it has been theoretically shown that high precision timing over a 5Â10 years dataÂspan of a network of suitable MSPs forming a so called Pulsar Timing Array (PTA)  in which the pulsars are used as the endpoints of arms of a huge cosmic GW detector  would allow us to overcome the previous problems and open the possibility of a direct detection of GWs. In particular such apparatus is able to detect GWs in the frequency range between 10 Â9 and 10Â7 Hz, with the best sensitivity around the nanoHz. Given the frequency range of operation, the most favorable source of GWs for a PTA appears to be the cosmological background of GWs produced by the coalescence of supermassive binary blackÂholes in the early stages of the Universe evolution, at redshift around 1Â2. In order to set up a suitable PTA it is necessary on one hand to search for new MSPs having the required clock stability and signal intensity, and on another hand to perform regular highÂprecision timing observations of the available sample, combining the results from all the pulsars with the use of a solid and well tested software, capable of revealing the genuine GW signal which is searched for. This work focuses on the first task, in an attempt to enlarge the number of suitable MSPs, in the framework of the High Time Resolution Universe (HTRU) survey for pulsars and fast radio transients, that is currently underway at the 64Âm Parkes Radio Telescope (NSW, Australia). This experiment has been designed in 2007 and started three years ago, with the main scope of largely increasing (possibly doubling) the total number of MSPs known in the Galactic Field (there were only about 40 of them until 2009). The enlarged sample may provide some very good MSPÂclocks to be added to the still relatively poor list of objects well suited for belonging to a PTA. In the first chapter of this thesis an overview of the pulsar phenomenon is given, with also a description of the timing technique and its physical applications. The search methods that can be used to analyse the data in order to find isolated and binary pulsars are reported in the second chapter. The third chapter describes part of the work performed by me in the framework of the HTRU survey; in particular the search for MSPs in the HTRU data with a data reduction pipeline sensitive also to highly relativistic systems (i.e. to binary pulsars in close orbits). While performing the aforementioned search, it emerged the issue of the inspection of the hundreds of thousands of pulsar candidates produced by the adopted pipeline, the vast majority of them being the result of radio interferences. Therefore, a new approach has been explored for making manageable the human intervention in the procedure of selection of the trustable candidates, namely the use of an Artificial Neural Network on the pulsar candidates. The fourth chapter is devoted to report on that. At the end, a brief summary of this thesis work is given, as well as a list of the publications, in preparation and resulting from the HTRU collaborative effort.
Einstein@Home Discovery of a Double Neutron Star Binary in the PALFA Survey
NASA Astrophysics Data System (ADS)
Lazarus, P.; Freire, P. C. C.; Allen, B.; Aulbert, C.; Bock, O.; Bogdanov, S.; Brazier, A.; Camilo, F.; Cardoso, F.; Chatterjee, S.; Cordes, J. M.; Crawford, F.; Deneva, J. S.; Eggenstein, H.-B.; Fehrmann, H.; Ferdman, R.; Hessels, J. W. T.; Jenet, F. A.; Karako-Argaman, C.; Kaspi, V. M.; Knispel, B.; Lynch, R.; van Leeuwen, J.; Machenschalk, B.; Madsen, E.; McLaughlin, M. A.; Patel, C.; Ransom, S. M.; Scholz, P.; Seymour, A.; Siemens, X.; Spitler, L. G.; Stairs, I. H.; Stovall, K.; Swiggum, J.; Venkataraman, A.; Zhu, W. W.
2016-11-01
We report here the Einstein@Home discovery of PSR J1913+1102, a 27.3 ms pulsar found in data from the ongoing Arecibo PALFA pulsar survey. The pulsar is in a 4.95 hr double neutron star (DNS) system with an eccentricity of 0.089. From radio timing with the Arecibo 305 m telescope, we measure the rate of advance of periastron to be \\dot{ω }=5.632(18)° yr-1. Assuming general relativity accurately models the orbital motion, this corresponds to a total system mass of M tot = 2.875(14) {M}⊙ , similar to the mass of the most massive DNS known to date, B1913+16, but with a much smaller eccentricity. The small eccentricity indicates that the second-formed neutron star (NS) (the companion of PSR J1913+1102) was born in a supernova with a very small associated kick and mass loss. In that case, this companion is likely, by analogy with other systems, to be a light (˜1.2 {M}⊙ ) NS; the system would then be highly asymmetric. A search for radio pulsations from the companion yielded no plausible detections, so we cannot yet confirm this mass asymmetry. By the end of 2016, timing observations should permit the detection of two additional post-Keplerian parameters: the Einstein delay (γ), which will enable precise mass measurements and a verification of the possible mass asymmetry of the system, and the orbital decay due to the emission of gravitational waves ({\\dot{P}}b), which will allow another test of the radiative properties of gravity. The latter effect will cause the system to coalesce in ˜0.5 Gyr.
Identifying Bright X-Ray Beasts
NASA Astrophysics Data System (ADS)
Kohler, Susanna
2017-10-01
Ultraluminous X-ray sources (ULXs) are astronomical sources of X-rays that, while dimmer than active galactic nuclei, are nonetheless brighter than any known stellar process. What are these beasts and why do they shine so brightly?Exceeding the LimitFirst discovered in the 1980s, ULXs are rare sources that have nonetheless been found in all types of galaxies. Though the bright X-ray radiation seems likely to be coming from compact objects accreting gas, theres a problem with this theory: ULXs outshine the Eddington luminosity for stellar-mass compact objects. This means that a stellar-mass object couldnt emit this much radiation isotropically without blowing itself apart.There are two alternative explanations commonly proposed for ULXs:Rather than being accreting stellar-mass compact objects, they are accreting intermediate-mass black holes. A hypothetical black hole of 100 solar masses or more would have a much higher Eddington luminosity than a stellar-mass black hole, making the luminosities that we observe from ULXs feasible.An example of one of the common routes the authors find for a binary system to become a ULX. In this case, the binary begins as two main sequence stars. As one star evolves off the main sequence, the binary undergoes a common envelope phase and a stage of mass transfer. The star ends its life as a supernova, and the resulting neutron star then accretes matter from the main sequence star as a ULX. [Wiktorowicz et al. 2017]They are ordinary X-ray binaries (a stellar-mass compact object accreting matter from a companion star), but they are undergoing a short phase of extreme accretion. During this time, their emission is beamed into jets, making them appear brighter than the Eddington luminosity.Clues from a New DiscoveryA few years ago, a new discovery shed some light on ULXs: M82 X-2, a pulsing ULX. Two more pulsing ULXs have been discovered since then, demonstrating that at least some ULXs contain pulsars i.e., neutron stars as the accreting object. This provided strong support for the second model of ULXs as X-ray binaries with super-Eddington luminosity.But could this model in fact account for all ULXs? A team of authors led by Grzegorz Wiktorowicz (Kavli Institute for Theoretical Physics, UC Santa Barbara and Warsaw University, Poland) says yes.Time evolution of the number of ULXs since the beginning of star formation, for a star formation burst (left panels) and continuous star formation (right panels), and for solar-metallicity (top panels) and low-metallicity (bottom panels) environments. The heavy solid line shows ULXs with black-hole accretors, the dashed line ULXs with neutron-star accretors, and the solid line the total. [Wiktorowicz et al. 2017]No Exotic Objects NeededWiktorowicz and collaborators performed a massive suite of simulations made possible by donated computer time from the Universe@Home project to examine how 20 million binary systems evolve into X-ray binaries. They then determined the number and nature of the ones that could appear as ULXs to us. The authors results show that the vast majority of the observed population of ULXs can be accounted for with super-Eddington compact binaries, without needing to invoke intermediate-mass black holes.Wiktorowicz and collaborators demonstrate that in environments with short star-formation bursts, black-hole accretors are the most common ULX source in the early periods after the burst, but neutron-star accretors dominate the ULX population after a few 100 Myr. In the case of prolonged and continuous star formation, neutron-star accretors dominate ULXs if the environment is solar metallicity, whereas black-hole accretors dominate in low-metallicity environments.The authors results present very clear and testable relations between the companion and donor star evolutionary stage and the age of the system, which we will hopefully be able to use to test this model with future observations of ULXs.CitationGrzegorz Wiktorowicz et al 2017 ApJ 846 17. doi:10.3847/1538-4357/aa821d
Chernyakova, M.; Abdo, A. A.; Neronov, A.; ...
2014-01-30
Here, we report on broad multiwavelength observations of the 2010–2011 periastron passage of the γ-ray loud binary system PSR B1259-63. High-resolution interferometric radio observations establish extended radio emission trailing the position of the pulsar. Observations with the FermiGamma-ray Space Telescope reveal GeV γ-ray flaring activity of the system, reaching the spin-down luminosity of the pulsar, around 30 d after periastron. Furthermore, there are no clear signatures of variability at radio, X-ray and TeV energies at the time of the GeV flare. Variability around periastron in the Hα emission line, can be interpreted as the gravitational interaction between the pulsar andmore » the circumstellar disc. The equivalent width of the Hα grows from a few days before periastron until a few days later, and decreases again between 18 and 46 d after periastron. In near-infrared we observe the similar decrease of the equivalent width of Brγ line between the 40th and 117th day after the periastron. For the idealized disc, the variability of the Hα line represents the variability of the mass and size of the disc. Finally, we discuss possible physical relations between the state of the disc and GeV emission under assumption that GeV flare is directly related to the decrease of the disc size.« less
The Peculiar Galactic Center Neutron Star X-Ray Binary XMM J174457-2850.3
NASA Technical Reports Server (NTRS)
Degenaar, N.; Wijnands, R.; Reynolds, M. T.; Miller, J. M.; Altamirano, D.; Kennea, J.; Gehrels, N.; Haggard, D.; Ponti, G.
2014-01-01
The recent discovery of a milli-second radio pulsar experiencing an accretion outburst similar to those seen in low mass X-ray binaries, has opened up a new opportunity to investigate the evolutionary link between these two different neutron star manifestations. The remarkable X-ray variability and hard X-ray spectrum of this object can potentially serve as a template to search for other X-ray binary radio pulsar transitional objects. Here we demonstrate that the transient X-ray source XMM J174457-2850.3 near the Galactic center displays similar X-ray properties. We report on the detection of an energetic thermonuclear burst with an estimated duration of 2 hr and a radiated energy output of 5E40 erg, which unambiguously demonstrates that the source harbors an accreting neutron star. It has a quiescent X-ray luminosity of Lx5E32 ergs and exhibits occasional accretion outbursts during which it brightens to Lx1E35-1E36 ergs for a few weeks (2-10 keV). However, the source often lingers in between outburst and quiescence at Lx1E33-1E34 ergs. This unusual X-ray flux behavior and its relatively hard X-ray spectrum, a power law with an index of 1.4, could possibly be explained in terms of the interaction between the accretion flow and the magnetic field of the neutron star.
NASA Astrophysics Data System (ADS)
Stappers, Benjamin W.
2012-04-01
Pulsars can be considered as the ultimate time-variable source. They show variations on time-scales ranging from nanoseconds to as long as years, and they emit over almost the entire electromagnetic spectrum. The dominant modulation is associated with the rotation period, which can vary from slighty more than a millisecond to upwards of ten seconds (if we include the magnetars). Variations on time-scales shorter than the pulse period are mostly associated with emission processes and are manifested as giant pulses, microstructure and sub-pulses (to name a few). On time-scales of a rotation to a few hundred rotations are other phenomena also associated with the emission, such as nulling, moding, drifting and intermittency. By probing these and slightly longer time-scales we find that pulsars exhibit ``glitches'', which are rapid variations in spin rates. They are believed to be related to the interaction between the superfluid interior of the neutron star and the outer crust. Detailed studies of glitches can reveal much about the properties of the constituents of neutron stars-the only way to probe the physics of material at such extreme densities. Time-scales of about an hour or longer reveal that some pulsars are in binary systems, in particular the most rapidly rotating systems. Discovering and studying those binary systems provides vital clues to the evolution of massive stars, while some of the systems are also the best probes of strong-field gravity theories; the elusive pulsar-black hole binary would be the ultimate system. Pulsars are tools that allow us to probe a range of phenomena and time-scales. It is possible to measure the time of arrival of pulses from some pulsars to better than a few tens of nanoseconds over years, making them some of the most accurate clocks known. Concerning their rotation, deviations from sphericity may cause pulsars to emit gravitational waves which might then be detected by next-generation gravitational-wave detectors. Pulsars themselves can be used as the arms of a Galactic-scale gravitational-wave detector. Measuring correlated deviations in the arrival times of pulses from a number of pulsars distributed throughout the Galaxy could give rise to a direct detection of the stochastic gravitational-wave background, which is associated with the astrophysics of the early Universe-most likely from supermassive black-hole binary systems, but potentially also from cosmic strings. While they are famed for their clock-like rotational stability, some pulsars-in particular the more youthful ones-exhibit modulation in pulse arrival times, often called timing noise. It was recently demonstrated that in at least some cases this variability is deterministic and is associated with modulations in the pulsar emission properties and the spin-down rate. This breakthrough may lead to further improvements in the precision which can be achieved with pulsar timing, and enhance still further the ability to test theories of gravity directly and to make a direct detection of gravitational waves. I presented some of the history of what is known about the variations in pulsars on all these time-scales and reviewed some of the recent achievements in our understanding of the phenomena. I also highlighted how new transients associated with radio-emitting neutron stars are being discovered, and how other transient sources are being identified by the same techniques. These continued improvements have come about without new telescopes, but the next generation of very sensitive wide-field instruments will permit observational cadences which will reveal many new manifestations and will further revolutionise our understanding of this class of objects which have such high astrophysical potential.
REVIEWS OF TOPICAL PROBLEMS: Masses of black holes in binary stellar systems
NASA Astrophysics Data System (ADS)
Cherepashchuk, Anatolii M.
1996-08-01
Mass determination methods and their results for ten black holes in X-ray binary systems are summarised. A unified interpretation of the radial velocity and optical light curves allows one to reliably justify the close binary system model and to prove the correctness of determination of the optical star mass function fv(m).The orbit plane inclination i can be estimated from an analysis of optical light curve of the system, which is due mainly to the ellipsoidal shape of the optical star (the so-called ellipticity effect). The component mass ratio q = mx/mv is obtained from information about the distance to the binary system as well as from data about rotational broadening of absorption lines in the spectrum of the optical star. These data allow one to obtain from the value of fv(m) a reliable value of the black hole mass mx or its low limit, as well as the optical star mass mv. An independent estimate of the optical star mass mv obtained from information about its spectral class and luminosity gives us test results. Additional test comes from information about the absence or presence of X-ray eclipses in the system. Effects of the non-zero dimension of the optical star, its pear-like shape, and X-ray heating on the absorption line profiles and the radial velocity curve are investigated. It is very significant that none of ten known massive (mx > 3M\\odot) X-ray sources considered as black hole candidates is an X-ray pulsar or an X-ray burster of the first kind.
Intermediate-mass-ratio black-hole binaries: numerical relativity meets perturbation theory.
Lousto, Carlos O; Nakano, Hiroyuki; Zlochower, Yosef; Campanelli, Manuela
2010-05-28
We study black-hole binaries in the intermediate-mass-ratio regime 0.01≲q≲0.1 with a new technique that makes use of nonlinear numerical trajectories and efficient perturbative evolutions to compute waveforms at large radii for the leading and nonleading (ℓ, m) modes. As a proof-of-concept, we compute waveforms for q=1/10. We discuss applications of these techniques for LIGO and VIRGO data analysis and the possibility that our technique can be extended to produce accurate waveform templates from a modest number of fully nonlinear numerical simulations.
2FGL J1311.7-3429 JOINS THE BLACK WIDOW CLUB
DOE Office of Scientific and Technical Information (OSTI.GOV)
Romani, Roger W.
2012-08-01
We have found an optical/X-ray counterpart candidate for the bright, but presently unidentified, Fermi source 2FGL J1311.7-3429. This counterpart undergoes large-amplitude quasi-sinusoidal optical modulation with a 1.56 hr (5626 s) period. The modulated flux is blue at peak, with T{sub eff} Almost-Equal-To 14, 000 K, and redder at minimum. Superimposed on this variation are dramatic optical flares. Archival X-ray data suggest modest binary modulation, but no eclipse. With the {gamma}-ray properties, this appears to be another black-widow-type millisecond pulsar. If confirmation pulses can be found in the GeV data, this binary will have the shortest orbital period of any knownmore » spin-powered pulsar. The flares may be magnetic events on the rapidly rotating companion or shocks in the companion-stripping wind. While this may be a radio-quiet millisecond pulsar, we show that such objects are a small subset of the {gamma}-ray pulsar population.« less
A density cusp of quiescent X-ray binaries in the central parsec of the Galaxy
NASA Astrophysics Data System (ADS)
Hailey, Charles J.; Mori, Kaya; Bauer, Franz E.; Berkowitz, Michael E.; Hong, Jaesub; Hord, Benjamin J.
2018-04-01
The existence of a ‘density cusp’—a localized increase in number—of stellar-mass black holes near a supermassive black hole is a fundamental prediction of galactic stellar dynamics. The best place to detect such a cusp is in the Galactic Centre, where the nearest supermassive black hole, Sagittarius A*, resides. As many as 20,000 black holes are predicted to settle into the central parsec of the Galaxy as a result of dynamical friction; however, so far no density cusp of black holes has been detected. Low-mass X-ray binary systems that contain a stellar-mass black hole are natural tracers of isolated black holes. Here we report observations of a dozen quiescent X-ray binaries in a density cusp within one parsec of Sagittarius A*. The lower-energy emission spectra that we observed in these binaries is distinct from the higher-energy spectra associated with the population of accreting white dwarfs that dominates the central eight parsecs of the Galaxy. The properties of these X-ray binaries, in particular their spatial distribution and luminosity function, suggest the existence of hundreds of binary systems in the central parsec of the Galaxy and many more isolated black holes. We cannot rule out a contribution to the observed emission from a population (of up to about one-half the number of X-ray binaries) of rotationally powered, millisecond pulsars. The spatial distribution of the binary systems is a relic of their formation history, either in the stellar disk around Sagittarius A* (ref. 7) or through in-fall from globular clusters, and constrains the number density of sources in the modelling of gravitational waves from massive stellar remnants, such as neutron stars and black holes.
A density cusp of quiescent X-ray binaries in the central parsec of the Galaxy.
Hailey, Charles J; Mori, Kaya; Bauer, Franz E; Berkowitz, Michael E; Hong, Jaesub; Hord, Benjamin J
2018-04-04
The existence of a 'density cusp'-a localized increase in number-of stellar-mass black holes near a supermassive black hole is a fundamental prediction of galactic stellar dynamics. The best place to detect such a cusp is in the Galactic Centre, where the nearest supermassive black hole, Sagittarius A*, resides. As many as 20,000 black holes are predicted to settle into the central parsec of the Galaxy as a result of dynamical friction; however, so far no density cusp of black holes has been detected. Low-mass X-ray binary systems that contain a stellar-mass black hole are natural tracers of isolated black holes. Here we report observations of a dozen quiescent X-ray binaries in a density cusp within one parsec of Sagittarius A*. The lower-energy emission spectra that we observed in these binaries is distinct from the higher-energy spectra associated with the population of accreting white dwarfs that dominates the central eight parsecs of the Galaxy. The properties of these X-ray binaries, in particular their spatial distribution and luminosity function, suggest the existence of hundreds of binary systems in the central parsec of the Galaxy and many more isolated black holes. We cannot rule out a contribution to the observed emission from a population (of up to about one-half the number of X-ray binaries) of rotationally powered, millisecond pulsars. The spatial distribution of the binary systems is a relic of their formation history, either in the stellar disk around Sagittarius A* (ref. 7) or through in-fall from globular clusters, and constrains the number density of sources in the modelling of gravitational waves from massive stellar remnants, such as neutron stars and black holes.
Taking the measure of neutron stars with NICER
NASA Astrophysics Data System (ADS)
Mahmoodifar, Simin
2018-01-01
The Neutron Star Interior Composition Explorer (NICER) is NASA's new X-ray timing instrument onboard the ISS that was launched in June 2017. With a large effective area, low background, very precise absolute timing and great low energy response, NICER has been doing a fantastic job in observing many interesting phenomena related to neutron stars and black holes. One of the main goals of the NICER mission is to constrain the equation of state of ultra-dense matter by measuring the masses and radii of several rotation-powered millisecond pulsars. This is being done by fitting pulse waveform models that incorporate all relevant relativistic effects and atmospheric radiation transfer processes to the periodic soft X-ray modulations produced by the rotation of hot spots located near the magnetic polar caps of these pulsars. Some of the other interesting topics that are being studied with NICER includes phenomena related to Type I X-ray bursts, which are thermonuclear flashes observed from the surfaces of accreting neutron stars in Low Mass X-ray Binaries, such as photospheric radius expansion and burst oscillations. NICER's large effective area and excellent low energy response enable new, detailed studies of these bursts in the soft X-ray band. In this talk I will present some of the early results from the first seven months of the NICERmission and will report on the progress being made by the NICER team in measuring the masses and radii of pulsars.
NANOGrav Constraints on Gravitational Wave Bursts with Memory
NASA Astrophysics Data System (ADS)
Arzoumanian, Z.; Brazier, A.; Burke-Spolaor, S.; Chamberlin, S. J.; Chatterjee, S.; Christy, B.; Cordes, J. M.; Cornish, N. J.; Demorest, P. B.; Deng, X.; Dolch, T.; Ellis, J. A.; Ferdman, R. D.; Fonseca, E.; Garver-Daniels, N.; Jenet, F.; Jones, G.; Kaspi, V. M.; Koop, M.; Lam, M. T.; Lazio, T. J. W.; Levin, L.; Lommen, A. N.; Lorimer, D. R.; Luo, J.; Lynch, R. S.; Madison, D. R.; McLaughlin, M. A.; McWilliams, S. T.; Nice, D. J.; Palliyaguru, N.; Pennucci, T. T.; Ransom, S. M.; Siemens, X.; Stairs, I. H.; Stinebring, D. R.; Stovall, K.; Swiggum, J.; Vallisneri, M.; van Haasteren, R.; Wang, Y.; Zhu, W. W.; NANOGrav Collaboration
2015-09-01
Among efforts to detect gravitational radiation, pulsar timing arrays are uniquely poised to detect “memory” signatures, permanent perturbations in spacetime from highly energetic astrophysical events such as mergers of supermassive black hole binaries. The North American Nanohertz Observatory for Gravitational Waves (NANOGrav) observes dozens of the most stable millisecond pulsars using the Arecibo and Green Bank radio telescopes in an effort to study, among other things, gravitational wave memory. We herein present the results of a search for gravitational wave bursts with memory (BWMs) using the first five years of NANOGrav observations. We develop original methods for dramatically speeding up searches for BWM signals. In the directions of the sky where our sensitivity to BWMs is best, we would detect mergers of binaries with reduced masses of {10}9 {M}⊙ out to distances of 30 Mpc; such massive mergers in the Virgo cluster would be marginally detectable. We find no evidence for BWMs. However, with our non-detection, we set upper limits on the rate at which BWMs of various amplitudes could have occurred during the time spanned by our data—e.g., BWMs with amplitudes greater than 10-13 must encounter the Earth at a rate less than 1.5 yr-1.
NASA Astrophysics Data System (ADS)
Oskinova, L. M.; Guerrero, M. A.; Hénault-Brunet, V.; Sun, W.; Chu, Y.-H.; Evans, C.; Gallagher, J. S.; Gruendl, R. A.; Reyes-Iturbide, J.
2013-03-01
SXP 1062 is an exceptional case of a young neutron star in a wind-fed high-mass X-ray binary associated with a supernova remnant. A unique combination of measured spin period, its derivative, luminosity and young age makes this source a key probe for the physics of accretion and neutron star evolution. Theoretical models proposed to explain the properties of SXP 1062 shall be tested with new data.
Taylor, Stephen R; Simon, Joseph; Sampson, Laura
2017-05-05
We introduce a technique for gravitational-wave analysis, where Gaussian process regression is used to emulate the strain spectrum of a stochastic background by training on population-synthesis simulations. This leads to direct Bayesian inference on astrophysical parameters. For pulsar timing arrays specifically, we interpolate over the parameter space of supermassive black-hole binary environments, including three-body stellar scattering, and evolving orbital eccentricity. We illustrate our approach on mock data, and assess the prospects for inference with data similar to the NANOGrav 9-yr data release.
Transitional millisecond pulsars in the low-level accretion state
NASA Astrophysics Data System (ADS)
Jaodard, Amruta D.; Hessels, Jason W. T.; Archibald, Anne; Bogdanov, Slavko; Deller, Adam; Hernandez Santisteban, Juan; Patruno, Alessandro; D'Angelo, Caroline; Bassa, Cees; Amruta Jaodand
2018-01-01
In the canonical pulsar recycling scenario, a slowly spinning neutron star can be rejuvenated to rapid spin rates by the transfer of angular momentum and mass from a binary companion star. Over the last decade, the discovery of three transitional millisecond pulsars (tMSPs) has allowed us to study recycling in detail. These systems transition between accretion-powered (X-ray) and rotation-powered (radio) pulsar states within just a few days, raising questions such as: what triggers the state transition, when does the recycling process truly end, and what will the radio pulsar’s final spin rate be? Systematic multi-wavelength campaigns over the last decade have provided critical insights: multi-year-long, low-level accretion states showing coherent X-ray pulsations; extremely stable, bi-modal X-ray light curves; outflows probed by radio continuum emission; a surprising gamma-ray brightening during accretion, etc. In my thesis I am trying to bring these clues together to understand the low-level accretion process that recycles a pulsar. For example, recently we timed PSR J1023+0038 in the accretion state and found it to be spinning down ~26% faster compared to the non-accreting radio pulsar state. We are currently conducting simultaneous multi-wavelength campaigns (XMM, HST, Kepler and VLA) to understand the global variability of the accretion flow, as well as high-energy Fermi-LAT observations to probe the gamma-ray emission mechanism. I will highlight these recent developments, while also presenting a broad overview of tMSPs as exciting new laboratories to test low-level accretion onto magnetized neutron stars.
General-relativistic Simulations of Four States of Accretion onto Millisecond Pulsars
NASA Astrophysics Data System (ADS)
Parfrey, Kyle; Tchekhovskoy, Alexander
2017-12-01
Accreting neutron stars can power a wide range of astrophysical phenomena including short- and long-duration gamma-ray bursts, ultra-luminous X-ray sources, and X-ray binaries. Numerical simulations are a valuable tool for studying the accretion-disk–magnetosphere interaction that is central to these problems, most clearly for the recently discovered transitional millisecond pulsars. However, magnetohydrodynamic (MHD) methods, widely used for simulating accretion, have difficulty in highly magnetized stellar magnetospheres, while force-free methods, suitable for such regions, cannot include the accreting gas. We present an MHD method that can stably evolve essentially force-free, highly magnetized regions, and describe the first time-dependent relativistic simulations of magnetized accretion onto millisecond pulsars. Our axisymmetric general-relativistic MHD simulations for the first time demonstrate how the interaction of a turbulent accretion flow with a pulsar’s electromagnetic wind can lead to the transition of an isolated pulsar to the accreting state. This transition naturally leads to the formation of relativistic jets, whose power can greatly exceed the power of the isolated pulsar’s wind. If the accretion rate is below a critical value, the pulsar instead expels the accretion stream. More generally, our simulations produce for the first time the four possible accretion regimes, in order of decreasing mass accretion rate: (a) crushed magnetosphere and direct accretion; (b) magnetically channeled accretion onto the stellar poles; (c) the propeller state, where material enters through the light cylinder but is prevented from accreting by the centrifugal barrier; (d) almost perfect exclusion of the accretion flow from the light cylinder by the pulsar wind.
The Ultracompact Nature of the Black Hole Candidate X-Ray Binary 47 Tuc X9
NASA Technical Reports Server (NTRS)
Bahramian, Arash; Heinke, Craig O.; Tudor, Vlad; Miller-Jones, James C. A.; Bogdanov, Slavko; Maccarone, Thomas J.; Knigge, Christian; Sivakoff, Gregory R.; Chomiuk, Laura; Strader, J.;
2017-01-01
47 Tuc X9 is a low-mass X-ray binary (LMXB) in the globular cluster 47 Tucanae, and was previously thought to be a cataclysmic variable. However, Miller-Jones et al. recently identified a radio counterpart to X9 (inferring a radio X-ray luminosity ratio consistent with black hole LMXBs), and suggested that the donor star might be a white dwarf. We report simultaneous observations of X9 performed by Chandra, NuSTAR and Australia Telescope Compact Array. We find a clear 28.18+/- 0.02-min periodic modulation in the Chandra data, which we identify as the orbital period, confirming this system as an ultracompact X-ray binary. Our X-ray spectral fitting provides evidence for photoionized gas having a high oxygen abundance in this system, which indicates a CO white dwarf donor. We also identify reflection features in the hard X-ray spectrum, making X9 the faintest LMXB to show X-ray reflection. We detect an approx. 6.8-d modulation in the X-ray brightness by a factor of 10, in archival Chandra, Swift and ROSAT data. The simultaneous radio X-ray flux ratio is consistent with either a black hole primary or a neutron star primary, if the neutron star is a transitional millisecond pulsar. Considering the measured orbital period (with other evidence of a white dwarf donor), and the lack of transitional millisecond pulsar features in the X-ray light curve, we suggest that this could be the first ultracompact black hole X-ray binary identified in our Galaxy.
Radio crickets: chirping jets from black hole binaries entering their gravitational wave inspiral
NASA Astrophysics Data System (ADS)
Kulkarni, Girish; Loeb, Abraham
2016-03-01
We study a novel electromagnetic signature of supermassive black hole (BH) binaries whose inspiral starts being dominated by gravitational wave (GW) emission. Recent simulations suggest that the binary's member BHs can continue to accrete gas from the circumbinary accretion disc in this phase of the binary's evolution, all the way until coalescence. If one of the binary members produces a radio jet as a result of accretion, the jet precesses along a biconical surface due to the binary's orbital motion. When the binary enters the GW phase of its evolution, the opening angle widens, the jet exhibits milliarcsecond-scale wiggles, and the conical surface of jet precession is twisted due to apparent superluminal motion. The rapidly increasing orbital velocity of the binary gives the jet an appearance of a `chirp'. This helical chirping morphology of the jet can be used to infer the binary parameters. For binaries with mass 107-1010 M⊙ at redshifts z < 0.5, monitoring these features in current and archival data will place a lower limit on sources that could be detected by Evolved Laser Interferometer Space Antenna and Pulsar Timing Arrays. In the future, microarcsecond interferometry with the Square Kilometre Array will increase the potential usefulness of this technique.
Separated before birth: pulsars B2020+28 and B2021+51 as the remnants of runaway stars
NASA Astrophysics Data System (ADS)
Gvaramadze, V. V.
2007-08-01
Astrometric data on the pulsars B2020+28 and B2021+51 suggest that they originated within several parsecs of each other in the direction of the Cyg OB2 association. It was proposed that the pulsars share their origin in a common massive binary and were separated at the birth of the second pulsar following the asymmetric supernova explosion. We consider a different scenario for the origin of the pulsar pair based on a possibility that the pulsars were separated before their birth and that they are the remnants of runaway stars ejected (with velocities similar to those of the pulsars) from the core of Cyg OB2 due to strong three- or four-body dynamical encounters. Our scenario does not require any asymmetry in supernova explosions.
NASA Technical Reports Server (NTRS)
Jenet, F. A.; Lommen, A.; Larson, S. L.; Wen, L.
2003-01-01
Data from long term timing observations of the radio pulsar PSR B1855+09 have been searched for the signature of Gravitational waves (G-waves) emitted by the proposed supermassive binary black hole system in 3C66B.
Evolution of Post-accretion-induced Collapse Binaries: The Effect of Evaporation
NASA Astrophysics Data System (ADS)
Liu, Wei-Min; Li, Xiang-Dong
2017-12-01
Accretion-induced collapse (AIC) is widely accepted to be one of the formation channels for millisecond pulsars (MSPs). Since the MSPs have high spin-down luminosities, they can immediately start to evaporate their companion stars after birth. In this paper, we present a detailed investigation on the evolution of the post-AIC binaries, taking into account the effect of evaporation both before and during the Roche-lobe overflow process. We discuss the possible influence of the input parameters including the evaporation efficiency, the initial spin period, and the initial surface magnetic field of the newborn neutron star. We compare the calculated results with the traditional low-mass X-ray binary evolution and suggest that they may reproduce at least part of the observed redbacks and black widows in the companion mass–orbital period plane depending on the mechanisms of angular momentum loss associated with evaporation.
Missing Link: Bayesian detection and measurement of intermediate-mass black-hole binaries
NASA Astrophysics Data System (ADS)
Graff, Philip B.; Buonanno, Alessandra; Sathyaprakash, B. S.
2015-07-01
We perform Bayesian analysis of gravitational-wave signals from nonspinning, intermediate-mass black-hole binaries (IMBHBs) with observed total mass, Mobs, from 50 M⊙ to 500 M⊙ and mass ratio 1-4 using advanced LIGO and Virgo detectors. We employ inspiral-merger-ringdown waveform models based on the effective-one-body formalism and include subleading modes of radiation beyond the leading (2,2) mode. The presence of subleading modes increases signal power for inclined binaries and allows for improved accuracy and precision in measurements of the masses as well as breaking of degeneracies in distance, orientation and polarization. For low total masses, Mobs≲50 M⊙ , for which the inspiral signal dominates, the observed chirp mass Mobs=Mobsη3 /5 (η being the symmetric mass ratio) is better measured. In contrast, as increasing power comes from merger and ringdown, we find that the total mass Mobs has better relative precision than Mobs. Indeed, at high Mobs (≥300 M⊙ ), the signal resembles a burst and the measurement thus extracts the dominant frequency of the signal that depends on Mobs. Depending on the binary's inclination, at signal-to-noise ratio (SNR) of 12, uncertainties in Mobs can be as large as ˜20 - 25 % while uncertainties in Mobs are ˜50 - 60 % in binaries with unequal masses (those numbers become ˜17 % vs. ˜22 % in more symmetric mass-ratio binaries). Although large, those uncertainties in Mobs will establish the existence of IMBHs. We find that effective-one-body waveforms with subleading modes are essential to confirm a signal's presence in the data, with calculated Bayesian evidences yielding a false alarm probability below 10-5 for SNR ≳9 in Gaussian noise. Our results show that gravitational-wave observations can offer a unique tool to observe and understand the formation, evolution and demographics of IMBHs, which are difficult to observe in the electromagnetic window.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lynch, Ryan S.; Kaspi, Victoria M.; Archibald, Anne M.
2013-02-15
We have completed a 350 MHz Drift-scan Survey using the Robert C. Byrd Green Bank Telescope with the goal of finding new radio pulsars, especially millisecond pulsars that can be timed to high precision. This survey covered {approx}10,300 deg{sup 2} and all of the data have now been fully processed. We have discovered a total of 31 new pulsars, 7 of which are recycled pulsars. A companion paper by Boyles et al. describes the survey strategy, sky coverage, and instrumental setup, and presents timing solutions for the first 13 pulsars. Here we describe the data analysis pipeline, survey sensitivity, andmore » follow-up observations of new pulsars, and present timing solutions for 10 other pulsars. We highlight several sources-two interesting nulling pulsars, an isolated millisecond pulsar with a measurement of proper motion, and a partially recycled pulsar, PSR J0348+0432, which has a white dwarf companion in a relativistic orbit. PSR J0348+0432 will enable unprecedented tests of theories of gravity.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jia, Kun; Li, Xiang-Dong, E-mail: lixd@nju.edu.cn
Millisecond pulsars (MSPs) are thought to originate from low-mass X-ray binaries (LMXBs). The discovery of eclipsing radio MSPs, including redbacks and black widows, indicates that evaporation of the donor star by the MSP’s irradiation takes place during the LMXB evolution. In this work, we investigate the effect of donor evaporation on the secular evolution of LMXBs, considering different evaporation efficiencies and related angular momentum loss. We find that for widening LMXBs, the donor star leaves a less massive white dwarf than without evaporation; for contracting systems, evaporation can speed up the evolution, resulting in dynamically unstable mass transfer and possiblymore » the formation of isolated MSPs.« less
A NEW CLASS OF NASCENT ECLIPSING BINARIES WITH EXTREME MASS RATIOS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moe, Maxwell; Stefano, Rosanne Di, E-mail: mmoe@cfa.harvard.edu
2015-03-10
Early B-type main-sequence (MS) stars (M {sub 1} ≈ 5-16 M {sub ☉}) with closely orbiting low-mass stellar companions (q = M {sub 2}/M {sub 1} < 0.25) can evolve to produce Type Ia supernovae, low-mass X-ray binaries, and millisecond pulsars. However, the formation mechanism and intrinsic frequency of such close extreme mass-ratio binaries have been debated, especially considering none have hitherto been detected. Utilizing observations of the Large Magellanic Cloud galaxy conducted by the Optical Gravitational Lensing Experiment, we have discovered a new class of eclipsing binaries in which a luminous B-type MS star irradiates a closely orbiting low-massmore » pre-MS companion that has not yet fully formed. The primordial pre-MS companions have large radii and discernibly reflect much of the light they intercept from the B-type MS primaries (ΔI {sub refl} ≈ 0.02-0.14 mag). For the 18 definitive MS + pre-MS eclipsing binaries in our sample with good model fits to the observed light-curves, we measure short orbital periods P = 3.0-8.5 days, young ages τ ≈ 0.6-8 Myr, and small secondary masses M {sub 2} ≈ 0.8-2.4 M {sub ☉} (q ≈ 0.07-0.36). The majority of these nascent eclipsing binaries are still associated with stellar nurseries, e.g., the system with the deepest eclipse ΔI {sub 1} = 2.8 mag and youngest age τ = 0.6 ± 0.4 Myr is embedded in the bright H II region 30 Doradus. After correcting for selection effects, we find that (2.0 ± 0.6)% of B-type MS stars have companions with short orbital periods P = 3.0-8.5 days and extreme mass ratios q ≈ 0.06-0.25. This is ≈10 times greater than that observed for solar-type MS primaries. We discuss how these new eclipsing binaries provide invaluable insights, diagnostics, and challenges for the formation and evolution of stars, binaries, and H II regions.« less
Multi-wavelength studies of Redback and Black Widow pulsars
NASA Astrophysics Data System (ADS)
Mignani, Roberto; Salvetti, David; Pallanca, Cristina; Marelli, Martino; De Luca, Andrea; Belfiore, Andrea Mario
2016-07-01
The unexpected Fermi discovery of more than 70 gamma-ray milli-second pulsars (MSPs) outside globular clusters, spurred the scientific interest on these objects, and opened new horizons in MSP astronomy and on the study of the evolution of neutron stars in compact binary systems, including the ablation process of the companion star in the so-called Black Widow (BW) and Redback (RB) systems. It is thought that an important fraction of the tens of unidentified pulsar-like Fermi sources at high latitude are MSPs, yet unidentified, owing to their extremely elusive radio emission. As shown in a few recent cases, optical observations have been instrumental to spot binary MSP candidates through the discovery of periodic modulations in the flux of their putative companions. In this contribution, we report on the recent follow-ups of several candidate binary MSPs carried out with optical and X-ray facilities, e.g. GROND and XMM-Newton, Swift. This program already lead to identification of the Fermi source 3FGL 2036.6-5618 as candidate RB system, through the detection of periodic (orbital) modulation of its X/optical flux (Salvetti et al. 2015).
Six New Millisecond Pulsars From Arecibo Searches Of Fermi Gamma-Ray Sources
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cromartie, H. T.; Camilo, F.; Kerr, M.
2016-02-25
We have discovered six radio millisecond pulsars (MSPs) in a search with the Arecibo telescope of 34 unidentified gamma-ray sources from the Fermi Large Area Telescope (LAT) 4-year point source catalog. Among the 34 sources, we also detected two MSPs previously discovered elsewhere. Each source was observed at a center frequency of 327 MHz, typically at three epochs with individual integration times of 15 minutes. The new MSP spin periods range from 1.99 to 4.66 ms. Five of the six pulsars are in interacting compact binaries (period ≤ 8.1 hr), while the sixth is a more typical neutron star-white dwarfmore » binary with an 83-day orbital period. This is a higher proportion of interacting binaries than for equivalent Fermi-LAT searches elsewhere. The reason is that Arecibo’s large gain afforded us the opportunity to limit integration times to 15 minutes, which significantly increased our sensitivity to these highly accelerated systems. Seventeen of the remaining 26 gamma-ray sources are still categorized as strong MSP candidates, and will be re-searched.« less
SIX NEW MILLISECOND PULSARS FROM ARECIBO SEARCHES OF FERMI GAMMA-RAY SOURCES
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cromartie, H. T.; Camilo, F.; Kerr, M.
2016-03-01
We have discovered six radio millisecond pulsars (MSPs) in a search with the Arecibo telescope of 34 unidentified gamma-ray sources from the Fermi Large Area Telescope (LAT) four year point source catalog. Among the 34 sources, we also detected two MSPs previously discovered elsewhere. Each source was observed at a center frequency of 327 MHz, typically at three epochs with individual integration times of 15 minutes. The new MSP spin periods range from 1.99 to 4.66 ms. Five of the six pulsars are in interacting compact binaries (period ≤ 8.1 hr), while the sixth is a more typical neutron star-whitemore » dwarf binary with an 83 day orbital period. This is a higher proportion of interacting binaries than for equivalent Fermi-LAT searches elsewhere. The reason is that Arecibo's large gain afforded us the opportunity to limit integration times to 15 minutes, which significantly increased our sensitivity to these highly accelerated systems. Seventeen of the remaining 26 gamma-ray sources are still categorized as strong MSP candidates, and will be re-searched.« less
The Discovery of an Eccentric Millisecond Pulsar in the Galactic Plane
NASA Astrophysics Data System (ADS)
Champion, David J.; Ransom, Scott M.; Lazarus, Patrick; Camilo, Fernando; Kaspi, Victoria M.; Nice, David J.; Freire, Paulo C. C.; Cordes, James M.; Hessels, Jason W. T.; Bassa, Cees; Lorimer, Duncan R.; Stairs, Ingrid H.; van Leeuwen, Joeri; Arzoumnian, Zaven; Backer, Don C.; Bhat, N. D. Ramesh; Chatterjee, Shami; Crawford, Fronefield; Deneva, Julia S.; Faucher-Giguère, Claude-André; Gaensler, B. M.; Han, Jinlin; Jenet, Fredrick A.; Kasian, Laura; Kondratiev, Vlad I.; Kramer, Michael; Lazio, Joseph; McLaughlin, Maura A.; Stappers, Ben W.; Venkataraman, Arun; Vlemmings, Wouter
2008-02-01
The evolution of binary systems is governed by their orbital properties and the stellar density of the local environment. Studies of neutron stars in binary star systems offer unique insights into both these issues. In an Arecibo survey of the Galactic disk, we have found PSR J1903+0327, a radio emitting neutron star (a ``pulsar'') with a 2.15 ms rotation period, in a 95-day orbit around a massive companion. Observations in the infra-red suggests that the companion may be a main-sequence star. Theories requiring an origin in the Galactic disk cannot account for the extraordinarily high orbital eccentricity observed (0.44) or a main-sequence companion of a pulsar that has spin properties suggesting a prolonged accretion history. The most likely formation mechanism is an exchange interaction in a globular star cluster. This requires that the binary was either ejected from its parent globular cluster as a result of a three-body interaction, or that that cluster was disrupted by repeated passages through the disk of the Milky Way.
Deep Chandra Survey of the Small Magellanic Cloud. II. Timing Analysis of X-Ray Pulsars
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hong, JaeSub; Antoniou, Vallia; Zezas, Andreas
We report the timing analysis results of X-ray pulsars from a recent deep Chandra survey of the Small Magellanic Cloud (SMC). We analyzed a total exposure of 1.4 Ms from 31 observations over a 1.2 deg{sup 2} region in the SMC under a Chandra X-ray Visionary Program. Using the Lomb–Scargle and epoch-folding techniques, we detected periodic modulations from 20 pulsars and a new candidate pulsar. The survey also covered 11 other pulsars with no clear sign of periodic modulation. The 0.5–8 keV X-ray luminosity ( L {sub X} ) of the pulsars ranges from 10{sup 34} to 10{sup 37} ergmore » s{sup −1} at 60 kpc. All of the Chandra sources with L {sub X} ≳ 4 × 10{sup 35} erg s{sup −1} exhibit X-ray pulsations. The X-ray spectra of the SMC pulsars (and high-mass X-ray binaries) are in general harder than those of the SMC field population. All but SXP 8.02 can be fitted by an absorbed power-law model with a photon index of Γ ≲ 1.5. The X-ray spectrum of the known magnetar SXP 8.02 is better fitted with a two-temperature blackbody model. Newly measured pulsation periods of SXP 51.0, SXP 214, and SXP 701, are significantly different from the previous XMM-Newton and RXTE measurements. This survey provides a rich data set for energy-dependent pulse profile modeling. Six pulsars show an almost eclipse-like dip in the pulse profile. Phase-resolved spectral analysis reveals diverse spectral variations during pulsation cycles: e.g., for an absorbed power-law model, some exhibit an (anti)-correlation between absorption and X-ray flux, while others show more intrinsic spectral variation (i.e., changes in photon indices).« less
The local nanohertz gravitational-wave landscape from supermassive black hole binaries
NASA Astrophysics Data System (ADS)
Mingarelli, Chiara M. F.; Lazio, T. Joseph W.; Sesana, Alberto; Greene, Jenny E.; Ellis, Justin A.; Ma, Chung-Pei; Croft, Steve; Burke-Spolaor, Sarah; Taylor, Stephen R.
2017-12-01
Supermassive black hole binary systems form in galaxy mergers and reside in galactic nuclei with large and poorly constrained concentrations of gas and stars. These systems emit nanohertz gravitational waves that will be detectable by pulsar timing arrays. Here we estimate the properties of the local nanohertz gravitational-wave landscape that includes individual supermassive black hole binaries emitting continuous gravitational waves and the gravitational-wave background that they generate. Using the 2 Micron All-Sky Survey, together with galaxy merger rates from the Illustris simulation project, we find that there are on average 91 ± 7 continuous nanohertz gravitational-wave sources, and 7 ± 2 binaries that will never merge, within 225 Mpc. These local unresolved gravitational-wave sources can generate a departure from an isotropic gravitational-wave background at a level of about 20 per cent, and if the cosmic gravitational-wave background can be successfully isolated, gravitational waves from at least one local supermassive black hole binary could be detected in 10 years with pulsar timing arrays.
The Orbit of X Persei and Its Neutron Star Companion
NASA Astrophysics Data System (ADS)
Delgado-Martí, Hugo; Levine, Alan M.; Pfahl, Eric; Rappaport, Saul A.
2001-01-01
We have observed the Be/X-ray pulsar binary system X Per/4U 0352+30 on 61 occasions spanning an interval of 600 days with the PCA instrument on board the Rossi X-Ray Timing Explorer (RXTE). Pulse timing analyses of the 837 s pulsations yield strong evidence for the presence of orbital Doppler delays. We confirm the Doppler delays by using measurements made with the All Sky Monitor (ASM) on RXTE. We infer that the orbit is characterized by a period Porb=250 days, a projected semimajor axis of the neutron star axsini=454 lt-s, a mass function f(M)=1.61 Msolar, and a modest eccentricity e=0.11. The measured orbital parameters, together with the known properties of the classical Be star X Per, imply a semimajor axis a=1.8-2.2 AU and an orbital inclination i~26deg-33deg. We discuss the formation of the system in the context of the standard evolutionary scenario for Be/X-ray binaries. We find that the system most likely formed from a pair of massive progenitor stars and probably involved a quasi-stable and nearly conservative transfer of mass from the primary to the secondary. We find that the He star remnant of the primary most likely had a mass <~6 Msolar after mass transfer. If the supernova explosion was completely symmetric, then the present orbital eccentricity indicates that <~4 Msolar was ejected from the binary. If, on the other hand, the neutron star received at birth a ``kick'' of the type often inferred from the velocity distribution of isolated radio pulsars, then the resultant orbital eccentricity would likely have been substantially larger than 0.11. We have carried out a Monte Carlo study of the effects of such natal kicks and find that there is less than a 1% probability of a system like that of X Per forming with an orbital eccentricity e<~0.11. We speculate that there may be a substantial population of neutron stars formed with little or no kick. Finally, we discuss the connected topics of the wide orbit and accretion by the neutron star from a stellar wind.
NASA Astrophysics Data System (ADS)
Thielemann, Friedrich-Karl; Isern, Jordi; Perego, Albino; von Ballmoos, Peter
2018-04-01
We present the status and open problems of nucleosynthesis in supernova explosions of both types, responsible for the production of the intermediate mass, Fe-group and heavier elements (with the exception of the main s-process). Constraints from observations can be provided through individual supernovae (SNe) or their remnants (e.g. via spectra and gamma-rays of decaying unstable isotopes) and through surface abundances of stars which witness the composition of the interstellar gas at their formation. With a changing fraction of elements heavier than He in these stars (known as metallicity) the evolution of the nucleosynthesis in galaxies over time can be determined. A complementary way, related to gamma-rays from radioactive decays, is the observation of positrons released in β+-decays, as e.g. from ^{26}Al, ^{44}Ti, ^{56,57}Ni and possibly further isotopes of their decay chains (in competition with the production of e+e- pairs in acceleration shocks from SN remnants, pulsars, magnetars or even of particle physics origin). We discuss (a) the role of the core-collapse supernova explosion mechanism for the composition of intermediate mass, Fe-group (and heavier?) ejecta, (b) the transition from neutron stars to black holes as the final result of the collapse of massive stars, and the relation of the latter to supernovae, faint supernovae, and gamma-ray bursts/hypernovae, (c) Type Ia supernovae and their nucleosynthesis (e.g. addressing the ^{55}Mn puzzle), plus (d) further constraints from galactic evolution, γ-ray and positron observations. This is complemented by the role of rare magneto-rotational supernovae (related to magnetars) in comparison with the nucleosynthesis of compact binary mergers, especially with respect to forming the heaviest r-process elements in galactic evolution.
Neutron star binaries, pulsars and burst sources
NASA Technical Reports Server (NTRS)
Lamb, F. K.
1981-01-01
Unresolved issues involving neutron star binaries, pulsars, and burst sources are described. Attention is drawn to the types of observations most likely to resolve them. Many of these observations are likely to be carried out during the next decade by one or more missions that have been approved or proposed. Flux measurements with an imaging detector and broad-band spectroscopic studies in the energy range 30-150 keV are discussed. The need for soft X-ray and X-ray observations with an instrument which has arcminute angular resolution and an effective area substantially greater than of ROSAT or EXOSAT is also discussed.
NASA Astrophysics Data System (ADS)
Yagi, Kent; Yang, Huan
2018-05-01
The recent discovery of gravitational-wave events has offered us unique test beds of gravity in the strong and dynamical field regime. One possible modification to General Relativity is the gravitational parity violation that arises naturally from quantum gravity. Such parity violation gives rise to the so-called amplitude birefringence in gravitational waves, in which one of the circularly polarized modes is amplified while the other one is suppressed during their propagation. In this paper, we study how well one can measure gravitational parity violation via the amplitude birefringence effect of gravitational waves sourced by stellar-mass black hole binaries. We choose Chern-Simons gravity as an example and work within an effective field theory formalism to ensure that the approximate theory is well posed. We consider gravitational waves from both individual sources and stochastic gravitational-wave backgrounds. Regarding bounds from individual sources, we estimate such bounds using a Fisher analysis and carry out Monte Carlo simulations by randomly distributing sources over their sky location and binary orientation. We find that the bounds on the scalar field evolution in Chern-Simons gravity from the recently discovered gravitational-wave events are too weak to satisfy the weak Chern-Simons approximation, while aLIGO with its design sensitivity can place meaningful bounds. Regarding bounds from stochastic gravitational-wave backgrounds, we set the threshold signal-to-noise ratio for detection of the parity-violation mode as 5 and estimate projected bounds with future detectors assuming that signals are consistent with no parity violation. In an ideal situation in which all the source parameters and binary black hole merger-rate history are known a priori, we find that a network of two third-generation detectors is able to place bounds that are comparable to or slightly stronger than binary pulsar bounds. In a more realistic situation in which one does not have such information beforehand, approximate bounds can be derived if the regular parity-insensitive mode is detected and the peak redshift of the merger-rate history is known theoretically. Since gravitational-wave observations probe either the difference in parity violation between the source and the detector (with individual sources) or the line-of-sight cosmological integration of the scalar field (with gravitational-wave backgrounds), such bounds are complementary to local measurements from solar system experiments and binary pulsar observations.
High-energy Variability of PSR J1311-3430
An, Hongjun; Romani, Roger W.; Johnson, Tyrel; ...
2017-11-21
Here, we have studied the variability of the black-widow-type binary millisecond pulsar PSR J1311–3430 from optical to gamma-ray energies. We confirm evidence for orbital modulation in the weak off-pulse ≳200 MeV emission, with a peak atmore » $${\\phi }_{B}\\approx 0.8$$, following pulsar inferior conjunction. The peak has a relatively hard spectrum, extending above ~1 GeV. XMM-Newton and Swift UV observations also show that this source's strong X-ray flaring activity is associated with optical/UV flares. With a duty cycle of ~7%–19%, this flaring is quite prominent with an apparent power-law intensity distribution. Flares are present at all orbital phases, with a slight preference for $${\\phi }_{B}=0.5\\mbox{--}0.7$$. We explore possible connections of these variabilities with the intrabinary shock and magnetic activity on the low-mass secondary.« less
NASA Astrophysics Data System (ADS)
Sugizaki, Mutsumi; Mihara, Tatehiro; Nakajima, Motoki; Makishima, Kazuo
2017-12-01
To study observationally the spin-period changes of accreting pulsars caused by the accretion torque, the present work analyzes X-ray light curves of 12 Be binary pulsars obtained by the MAXI Gas-Slit Camera all-sky survey and their pulse periods measured by the Fermi Gamma-ray Burst Monitor pulsar project, both covering more than six years, from 2009 August to 2016 March. The 12 objects were selected because they are accompanied by clear optical identification and accurate measurements of surface magnetic fields. The luminosity L and the spin-frequency derivatives \\dot{ν}, measured during large outbursts with L ≳ 1 × 1037 erg s-1, were found to follow approximately the theoretical relations in the accretion torque models, represented by \\dot{ν} ∝ L^{α} (α ≃ 1), and the coefficient of proportionality between \\dot{ν} and Lα agrees, within a factor of ˜3, with that proposed by Ghosh and Lamb (1979b, ApJ, 234, 296). In the course of the present study, the orbital elements of several sources were refined.
A high-frequency survey of the southern Galactic plane for pulsars
NASA Technical Reports Server (NTRS)
Johnston, Simon; Lyne, A. G.; Manchester, R. N.; Kniffen, D. A.; D'Amico, N.; Lim, J.; Ashworth, M.
1992-01-01
Results of an HF survey designed to detect young, distant, and short-period pulsars are presented. The survey detected a total of 100 pulsars, 46 of which were previously unknown. The periods of the newly discovered pulsars range between 47 ms and 2.5 ms. One of the new discoveries, PSR 1259-63, is a member of a long-period binary system. At least three of the pulsars have ages less than 30,000 yr, bringing the total number of such pulsars to 12. The majority of the new discoveries are distant objects with high dispersion measures, which are difficult to detect at low frequencies. This demonstrates that the survey has reduced the severe selection effects of pulse scattering, high Galactic background temperature, and dispersion broadening, which hamper the detection of such pulsars at low radio frequencies. The pulsar distribution in the southern Galaxy is found to extend much further from the Galactic center than that in the north, probably due to two prominent spiral arms in the southern Galaxy.
Observations of the Eclipsing Millisecond Pulsar
NASA Astrophysics Data System (ADS)
Bookbinder, Jay
1990-12-01
FRUCHTER et al. (1988a) HAVE RECENTLY DISCOVERED a 1.6 MSEC PULSAR (PSR 1957+20) IN A 9.2 HOUR ECLIPSING BINARY SYSTEM. THE UNUSUAL BEHAVIOR OF THE DISPERSION MEASURE AS A FUNCTION OF ORBITAL PHASE, AND THE DISAPPEARANCE OF THE PULSAR SIGNAL FOR 50 MINUTES DURING EACH ORBIT, IMPLIES THAT THE ECLIPSES ARE DUE TO A PULSAR-INDUCED WIND FLOWING OFF OF THE COMPANION. THE OPTICAL COUNTERPART IS A 21ST MAGNITUDE OBJECT WHICH VARIES IN INTENSITY OVER THE BINARY PERIOD; ACCURATE GROUND-BASED OBSERVATIONS ARE PREVENTED BY THE PROXIMITY (0.7") OF A 20TH MAGNITUDE K DWARF. WE PROPOSE TO OBSERVE THE OPTICAL COUNTERPART IN A TWO-PART STUDY. FIRST, THE WF/PC WILL PROVIDE ACCURATE MULTICOLOR PHOTOMETRY, ENABLING US TO DETERMINE UNCONTAMINATED MAGNITUDES AND COLORS BOTH AT MAXIMUM (ANTI-ECLIPSE) AS WELL AS AT MINIMUM (ECLIPSE). SECOND, WE PROPOSE TO OBSERVE THE EXPECTED UV LINE EMISSION WITH FOS, ALLOWING FOR AN INTIAL DETERMINATION OF THE TEMPERATURE AND DENSITY STRUCTURE AND ABUNDANCES OF THE WIND THAT IS BEING ABLATED FROM THE COMPANION. STUDY OF THIS UNIQUE SYSTEM HOLDS ENORMOUS POTENTIAL FOR THE UNDERSTANDING OF THE RADIATION FIELD OF A MILLISECOND PULSAR AND THE EVOLUTION OF LMXRBs AND MSPs IN GENERAL. WE EXPECT THESE OBSERVATIONS TO PLACE VERY SIGNIFICANT CONTRAINTS ON MODELS OF THIS UNIQUE OBJECT.
Detecting stochastic backgrounds of gravitational waves with pulsar timing arrays
NASA Astrophysics Data System (ADS)
Siemens, Xavier
2016-03-01
For the past decade the North American Nanohertz Observatory for Gravitational Waves (NANOGrav) has been using the Green Bank Telescope and the Arecibo Observatory to monitor millisecond pulsars. NANOGrav, along with two other international collaborations, the European Pulsar Timing Array and the Parkes Pulsar Timing Array in Australia, form a consortium of consortia: the International Pulsar Timing Array (IPTA). The goal of the IPTA is to directly detect low-frequency gravitational waves which cause small changes to the times of arrival of radio pulses from millisecond pulsars. In this talk I will discuss the work of NANOGrav and the IPTA, as well as our sensitivity to stochastic backgrounds of gravitational waves. I will show that a detection of the background produced by supermassive black hole binaries is possible by the end of the decade. Supported by the NANOGrav Physics Frontiers Center.
NASA Technical Reports Server (NTRS)
Clark, George W.; Woo, Jonathan W.; Nagase, Fumiaki; Makishima, Kazuo; Sakao, Taro
1990-01-01
A cyclotron absorption line near 20 keV has been found in the spectrum of the massive eclipsing binary X-ray pulsar 4U 1538 - 52 in observations with the Ginga observatory. The line is detected throughout the 529 s pulse cycle with a variable equivalent width that has its maximum value during the smaller peak of the two-peak pulse profile. It is found that the profile of the pulse and the phase-dependence of the cyclotron line can be explained qualitatively by a pulsar model based on recent theoretical results on the properties of pencil beams emitted by accretion-heated slabs of magnetized plasma at the magnetic poles of a neutron star. The indicated field at the surface of the neutron star is 1.7 (1 + z) x 10 to the 12th G, where z is the gravitational redshift.
Optimal Search for an Astrophysical Gravitational-Wave Background
NASA Astrophysics Data System (ADS)
Smith, Rory; Thrane, Eric
2018-04-01
Roughly every 2-10 min, a pair of stellar-mass black holes merge somewhere in the Universe. A small fraction of these mergers are detected as individually resolvable gravitational-wave events by advanced detectors such as LIGO and Virgo. The rest contribute to a stochastic background. We derive the statistically optimal search strategy (producing minimum credible intervals) for a background of unresolved binaries. Our method applies Bayesian parameter estimation to all available data. Using Monte Carlo simulations, we demonstrate that the search is both "safe" and effective: it is not fooled by instrumental artifacts such as glitches and it recovers simulated stochastic signals without bias. Given realistic assumptions, we estimate that the search can detect the binary black hole background with about 1 day of design sensitivity data versus ≈40 months using the traditional cross-correlation search. This framework independently constrains the merger rate and black hole mass distribution, breaking a degeneracy present in the cross-correlation approach. The search provides a unified framework for population studies of compact binaries, which is cast in terms of hyperparameter estimation. We discuss a number of extensions and generalizations, including application to other sources (such as binary neutron stars and continuous-wave sources), simultaneous estimation of a continuous Gaussian background, and applications to pulsar timing.
CONSTRAINING RELATIVISTIC BOW SHOCK PROPERTIES IN ROTATION-POWERED MILLISECOND PULSAR BINARIES.
Wadiasingh, Zorawar; Harding, Alice K; Venter, Christo; Böttcher, Markus; Baring, Matthew G
2017-04-20
Multiwavelength followup of unidentified Fermi sources has vastly expanded the number of known galactic-field "black widow" and "redback" millisecond pulsar binaries. Focusing on their rotation-powered state, we interpret the radio to X-ray phenomenology in a consistent framework. We advocate the existence of two distinct modes differing in their intrabinary shock orientation, distinguished by the phase-centering of the double-peaked X-ray orbital modulation originating from mildly-relativistic Doppler boosting. By constructing a geometric model for radio eclipses, we constrain the shock geometry as functions of binary inclination and shock stand-off R 0 . We develop synthetic X-ray synchrotron orbital light curves and explore the model parameter space allowed by radio eclipse constraints applied on archetypal systems B1957+20 and J1023+0038. For B1957+20, from radio eclipses the stand-off is R 0 ~ 0.15-0.3 fraction of binary separation from the companion center, depending on the orbit inclination. Constructed X-ray light curves for B1957+20 using these values are qualitatively consistent with those observed, and we find occultation of the shock by the companion as a minor influence, demanding significant Doppler factors to yield double peaks. For J1023+0038, radio eclipses imply R 0 ≲ 0.4 while X-ray light curves suggest 0.1 ≲ R 0 ≲ 0.3 (from the pulsar). Degeneracies in the model parameter space encourage further development to include transport considerations. Generically, the spatial variation along the shock of the underlying electron power-law index should yield energy-dependence in the shape of light curves motivating future X-ray phase-resolved spectroscopic studies to probe the unknown physics of pulsar winds and relativistic shock acceleration therein.
CONSTRAINING RELATIVISTIC BOW SHOCK PROPERTIES IN ROTATION-POWERED MILLISECOND PULSAR BINARIES
Wadiasingh, Zorawar; Harding, Alice K.; Venter, Christo; Böttcher, Markus; Baring, Matthew G.
2018-01-01
Multiwavelength followup of unidentified Fermi sources has vastly expanded the number of known galactic-field “black widow” and “redback” millisecond pulsar binaries. Focusing on their rotation-powered state, we interpret the radio to X-ray phenomenology in a consistent framework. We advocate the existence of two distinct modes differing in their intrabinary shock orientation, distinguished by the phase-centering of the double-peaked X-ray orbital modulation originating from mildly-relativistic Doppler boosting. By constructing a geometric model for radio eclipses, we constrain the shock geometry as functions of binary inclination and shock stand-off R0. We develop synthetic X-ray synchrotron orbital light curves and explore the model parameter space allowed by radio eclipse constraints applied on archetypal systems B1957+20 and J1023+0038. For B1957+20, from radio eclipses the stand-off is R0 ~ 0.15–0.3 fraction of binary separation from the companion center, depending on the orbit inclination. Constructed X-ray light curves for B1957+20 using these values are qualitatively consistent with those observed, and we find occultation of the shock by the companion as a minor influence, demanding significant Doppler factors to yield double peaks. For J1023+0038, radio eclipses imply R0 ≲ 0.4 while X-ray light curves suggest 0.1 ≲ R0 ≲ 0.3 (from the pulsar). Degeneracies in the model parameter space encourage further development to include transport considerations. Generically, the spatial variation along the shock of the underlying electron power-law index should yield energy-dependence in the shape of light curves motivating future X-ray phase-resolved spectroscopic studies to probe the unknown physics of pulsar winds and relativistic shock acceleration therein. PMID:29651167
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moldon, Javier; Ribo, Marc; Paredes, Josep M.
2011-05-01
PSR B1259-63 is a 48 ms pulsar in a highly eccentric 3.4 year orbit around the young massive star LS 2883. During the periastron passage the system displays transient non-thermal unpulsed emission from radio to very high energy gamma rays. It is one of the three galactic binary systems clearly detected at TeV energies, together with LS 5039 and LS I +61 303. We observed PSR B1259-63 after the 2007 periastron passage with the Australian Long Baseline Array at 2.3 GHz to trace the milliarcsecond (mas) structure of the source at three different epochs. We have discovered extended and variablemore » radio structure. The peak of the radio emission is detected outside the binary system near periastron, at projected distances of 10-20 mas (25-45 AU assuming a distance of 2.3 kpc). The total extent of the emission is {approx}50 mas ({approx}120 AU). This is the first observational evidence that non-accreting pulsars orbiting massive stars can produce variable extended radio emission at AU scales. Similar structures are also seen in LS 5039 and LS I +61 303, in which the nature of the compact object is unknown. The discovery presented here for the young non-accreting pulsar PSR B1259-63 reinforces the link with these two sources and supports the presence of pulsars in these systems as well. A simple kinematical model considering only a spherical stellar wind can approximately trace the extended structures if the binary system orbit has a longitude of the ascending node of {Omega} {approx} -40{sup 0} and a magnetization parameter of {sigma} {approx} 0.005.« less
Constraining Relativistic Bow Shock Properties in Rotation-Powered Millisecond Pulsar Binaries
NASA Technical Reports Server (NTRS)
Wadiasingh, Zorawar; Harding, Alice K.; Venter, Christo; Bottcher, Markus; Baring, Matthew G.
2017-01-01
Multiwavelength follow-up of unidentified Fermi sources has vastly expanded the number of known galactic-field "black widow" and "redback" millisecond pulsar binaries. Focusing on their rotation-powered state, we interpret the radio to X-ray phenomenology in a consistent framework. We advocate the existence of two distinct modes differing in their intrabinary shock orientation, distinguished by the phase-centering of the double-peaked X-ray orbital modulation originating from mildly-relativistic Doppler boosting. By constructing a geometric model for radio eclipses, we constrain the shock geometry as functions of binary inclination and shock stand-off R(sub 0). We develop synthetic X-ray synchrotron orbital light curves and explore the model parameter space allowed by radio eclipse constraints applied on archetypal systems B1957+20 and J1023+0038. For B1957+20, from radio eclipses the stand-off is R(sub 0) approximately 0:15 - 0:3 fraction of binary separation from the companion center, depending on the orbit inclination. Constructed X-ray light curves for B1957+20 using these values are qualitatively consistent with those observed, and we find occultation of the shock by the companion as a minor influence, demanding significant Doppler factors to yield double peaks. For J1023+0038, radio eclipses imply R(sub 0) is approximately less than 0:4 while X-ray light curves suggest 0:1 is approximately less than R(sub 0) is approximately less than 0:3 (from the pulsar). Degeneracies in the model parameter space encourage further development to include transport considerations. Generically, the spatial variation along the shock of the underlying electron power-law index should yield energy-dependence in the shape of light curves motivating future X-ray phase-resolved spectroscopic studies to probe the unknown physics of pulsar winds and relativistic shock acceleration therein.
Constraining Relativistic Bow Shock Properties in Rotation-powered Millisecond Pulsar Binaries
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wadiasingh, Zorawar; Venter, Christo; Böttcher, Markus
2017-04-20
Multiwavelength follow-up of unidentified Fermi sources has vastly expanded the number of known galactic-field “black widow” and “redback” millisecond pulsar binaries. Focusing on their rotation-powered state, we interpret the radio to X-ray phenomenology in a consistent framework. We advocate the existence of two distinct modes differing in their intrabinary shock orientation, distinguished by the phase centering of the double-peaked X-ray orbital modulation originating from mildly relativistic Doppler boosting. By constructing a geometric model for radio eclipses, we constrain the shock geometry as functions of binary inclination and shock standoff R {sub 0}. We develop synthetic X-ray synchrotron orbital light curvesmore » and explore the model parameter space allowed by radio eclipse constraints applied on archetypal systems B1957+20 and J1023+0038. For B1957+20, from radio eclipses the standoff is R {sub 0} ∼ 0.15–0.3 fraction of binary separation from the companion center, depending on the orbit inclination. Constructed X-ray light curves for B1957+20 using these values are qualitatively consistent with those observed, and we find occultation of the shock by the companion as a minor influence, demanding significant Doppler factors to yield double peaks. For J1023+0038, radio eclipses imply R {sub 0} ≲ 0.4, while X-ray light curves suggest 0.1 ≲ R {sub 0} ≲ 0.3 (from the pulsar). Degeneracies in the model parameter space encourage further development to include transport considerations. Generically, the spatial variation along the shock of the underlying electron power-law index should yield energy dependence in the shape of light curves, motivating future X-ray phase-resolved spectroscopic studies to probe the unknown physics of pulsar winds and relativistic shock acceleration therein.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Taylor, S. R.; Vallisneri, M.; Ellis, J. A.
2016-03-01
Decade-long timing observations of arrays of millisecond pulsars have placed highly constraining upper limits on the amplitude of the nanohertz gravitational-wave stochastic signal from the mergers of supermassive black hole binaries (∼10{sup −15} strain at f = 1 yr{sup −1}). These limits suggest that binary merger rates have been overestimated, or that environmental influences from nuclear gas or stars accelerate orbital decay, reducing the gravitational-wave signal at the lowest, most sensitive frequencies. This prompts the question whether nanohertz gravitational waves (GWs) are likely to be detected in the near future. In this Letter, we answer this question quantitatively using simple statistical estimates,more » deriving the range of true signal amplitudes that are compatible with current upper limits, and computing expected detection probabilities as a function of observation time. We conclude that small arrays consisting of the pulsars with the least timing noise, which yield the tightest upper limits, have discouraging prospects of making a detection in the next two decades. By contrast, we find large arrays are crucial to detection because the quadrupolar spatial correlations induced by GWs can be well sampled by many pulsar pairs. Indeed, timing programs that monitor a large and expanding set of pulsars have an ∼80% probability of detecting GWs within the next 10 years, under assumptions on merger rates and environmental influences ranging from optimistic to conservative. Even in the extreme case where 90% of binaries stall before merger and environmental coupling effects diminish low-frequency gravitational-wave power, detection is delayed by at most a few years.« less
Prospects for discovering pulsars in future continuum surveys using variance imaging
NASA Astrophysics Data System (ADS)
Dai, S.; Johnston, S.; Hobbs, G.
2017-12-01
In our previous paper, we developed a formalism for computing variance images from standard, interferometric radio images containing time and frequency information. Variance imaging with future radio continuum surveys allows us to identify radio pulsars and serves as a complement to conventional pulsar searches that are most sensitive to strictly periodic signals. Here, we carry out simulations to predict the number of pulsars that we can uncover with variance imaging in future continuum surveys. We show that the Australian SKA Pathfinder (ASKAP) Evolutionary Map of the Universe (EMU) survey can find ∼30 normal pulsars and ∼40 millisecond pulsars (MSPs) over and above the number known today, and similarly an all-sky continuum survey with SKA-MID can discover ∼140 normal pulsars and ∼110 MSPs with this technique. Variance imaging with EMU and SKA-MID will detect pulsars with large duty cycles and is therefore a potential tool for finding MSPs and pulsars in relativistic binary systems. Compared with current pulsar surveys at high Galactic latitudes in the Southern hemisphere, variance imaging with EMU and SKA-MID will be more sensitive, and will enable detection of pulsars with dispersion measures between ∼10 and 100 cm-3 pc.
Detection of long nulls in PSR B1706-16, a pulsar with large timing irregularities
NASA Astrophysics Data System (ADS)
Naidu, Arun; Joshi, Bhal Chandra; Manoharan, P. K.; Krishnakumar, M. A.
2018-04-01
Single pulse observations, characterizing in detail, the nulling behaviour of PSR B1706-16 are being reported for the first time in this paper. Our regular long duration monitoring of this pulsar reveals long nulls of 2-5 h with an overall nulling fraction of 31 ± 2 per cent. The pulsar shows two distinct phases of emission. It is usually in an active phase, characterized by pulsations interspersed with shorter nulls, with a nulling fraction of about 15 per cent, but it also rarely switches to an inactive phase, consisting of long nulls. The nulls in this pulsar are concurrent between 326.5 and 610 MHz. Profile mode changes accompanied by changes in fluctuation properties are seen in this pulsar, which switches from mode A before a null to mode B after the null. The distribution of null durations in this pulsar is bimodal. With its occasional long nulls, PSR B1706-16 joins the small group of intermediate nullers, which lie between the classical nullers and the intermittent pulsars. Similar to other intermediate nullers, PSR B1706-16 shows high timing noise, which could be due to its rare long nulls if one assumes that the slowdown rate during such nulls is different from that during the bursts.
A Search for Periodicity in the X-Ray Spectrum of Black Hole Candidate A0620-00
1991-06-01
They are observed as radio pulsars and as the X-ray emitting components of binary X-ray sources. The limits of stability of neutron stars are not...4 Lo ). The three candidates are CYG X-1, LMC X-3, and A0620. In this section all data such as mass functions, luminosities, distances, periods, etc...1.4. Finally, we discard data for which a/ lo > 1. Such a point is of little statistical significance since its error bars are so large. Figure 2.2d
Where Are the r-modes? Chandra Observations of Millisecond Pulsars
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mahmoodifar, Simin; Strohmayer, Tod
We present the results of Chandra observations of two non-accreting millisecond pulsars, PSRs J1640+2224 (J1640) and J1709+2313 (J1709), with low inferred magnetic fields and spin-down rates in order to constrain their surface temperatures, obtain limits on the amplitude of unstable r -modes in them, and make comparisons with similar limits obtained for a sample of accreting low-mass X-ray binary (LMXB) neutron stars. We detect both pulsars in the X-ray band for the first time. They are faint, with inferred soft X-ray fluxes (0.3–3 keV) of ≈6 × 10{sup −15} and 3 × 10{sup −15} erg cm{sup −2} s{sup −1} formore » J1640 and J1709, respectively. Spectral analysis assuming hydrogen atmosphere emission gives global effective temperature upper limits (90% confidence) of 3.3–4.3 × 10{sup 5} K for J1640 and 3.6–4.7 × 10{sup 5} K for J1709, where the low end of the range corresponds to canonical neutron stars ( M = 1.4 M {sub ⊙}), and the upper end corresponds to higher-mass stars ( M = 2.21 M {sub ⊙}). Under the assumption that r -mode heating provides the thermal support, we obtain dimensionless r -mode amplitude upper limits of 3.2–4.8 × 10{sup −8} and 1.8–2.8 × 10{sup −7} for J1640 and J1709, respectively, where again the low end of the range corresponds to lower-mass, canonical neutron stars ( M = 1.4 M {sub ⊙}). These limits are about an order of magnitude lower than those we derived previously for a sample of LMXBs, except for the accreting millisecond X-ray pulsar SAX J1808.4–3658, which has a comparable amplitude limit to J1640 and J1709.« less
Pulsar simulations for the Fermi Large Area Telescope
Razzano, M.; Harding, Alice K.; Baldini, L.; ...
2009-05-21
Pulsars are among the prime targets for the Large Area Telescope (LAT) aboard the recently launched Fermi observatory. The LAT will study the gamma-ray Universe between 20 MeV and 300 GeV with unprecedented detail. Increasing numbers of gamma-ray pulsars are being firmly identified, yet their emission mechanisms are far from being understood. To better investigate and exploit the LAT capabilities for pulsar science, a set of new detailed pulsar simulation tools have been developed within the LAT collaboration. The structure of the pulsar simulator package ( PulsarSpectrum) is presented here. Starting from photon distributions in energy and phase obtained frommore » theoretical calculations or phenomenological considerations, gamma-rays are generated and their arrival times at the spacecraft are determined by taking into account effects such as barycentric effects and timing noise. Pulsars in binary systems also can be simulated given orbital parameters. As a result, we present how simulations can be used for generating a realistic set of gamma-rays as observed by the LAT, focusing on some case studies that show the performance of the LAT for pulsar observations.« less
Orbital Parameters for Two "IGR" Sources
NASA Astrophysics Data System (ADS)
Thompson, Thomas; Tomsick, J.; Rothschild, R.; in't Zand, J.; Walter, R.
2006-09-01
With recent and archival Rossi X-ray Timing Explorer observations of the heavily absorbed X-ray pulsars IGR J17252-3616 (hereafter J17252) and IGR J16393-4643 (hereafter J16393), we carried out a pulse timing analysis to determine the orbital parameters of the two binary systems. We find that both INTEGRAL sources are High Mass X-ray Binary (HMXB) systems. The orbital solution to J17252 has a projected semi-major axis of 101 ± 3 lt-s and a period of 9.7403 ± 0.0004 days, implying a mass function of 11.7 ± 1.2 M_sun. The orbital solution to J16393, on the other hand, is not unambiguously known due to weaker and less-consistent pulsations. The most likely orbital solution has a projected semi-major axis of 43 ± 2 lt-s and an orbital period of 3.6875 ± 0.0006 days, yielding a mass function of 6.5 ± 1.1 M_sun. The orbits of both sources are consistent with circular, with e < 0.2-0.25 and the 90% confidence level. The orbital and pulse periods of each source place the systems in the region of the Corbet diagram populated by supergiant wind accretors. J17252 is an eclipsing binary system, and provides an exciting opportunity to obtain a neutron star mass measurement.
NASA Astrophysics Data System (ADS)
Parfrey, K.; Tchekhovskoy, A.
2017-10-01
I will present results from the first relativistic MHD simulations of accretion onto magnetized neutron stars, performed in general relativity in the Kerr spacetime. The accretion flow is geometrically thick with a relativistic-gas equation of state, appropriate for super-Eddington systems. Four regimes are recovered, in order of increasing stellar magnetic field strength (equivalently, decreasing mass accretion rate): (a) crushing of the stellar magnetosphere and direct accretion; (b) magnetically channeled accretion onto the stellar poles; (c) the propeller state, where material enters through the light cylinder but is prevented from accreting by the centrifugal barrier; (d) almost perfect exclusion of the accretion flow from the light cylinder by the pulsar's electromagnetic wind. A Poynting-flux-dominated relativistic jet, powered by stellar rotation, is produced when the intruding plasma succeeds in opening the pulsar's previously closed magnetic field lines. I will demonstrate the effect of changing the relative orientation of the stellar dipole and the large-scale magnetic field in the accreting plasma, and discuss our results in the context of the neutron-star-powered ULXs, as well as the transitional millisecond X-ray/radio pulsars and jet-launching neutron-star X-ray binaries.
Search for gravitational waves from intermediate mass binary black holes
NASA Astrophysics Data System (ADS)
Abadie, J.; Abbott, B. P.; Abbott, R.; Abbott, T. D.; Abernathy, M.; Accadia, T.; Acernese, F.; Adams, C.; Adhikari, R.; Affeldt, C.; Agathos, M.; Agatsuma, K.; Ajith, P.; Allen, B.; Amador Ceron, E.; Amariutei, D.; Anderson, S. B.; Anderson, W. G.; Arai, K.; Arain, M. A.; Araya, M. C.; Aston, S. M.; Astone, P.; Atkinson, D.; Aufmuth, P.; Aulbert, C.; Aylott, B. E.; Babak, S.; Baker, P.; Ballardin, G.; Ballmer, S.; Barayoga, J. C. B.; Barker, D.; Barone, F.; Barr, B.; Barsotti, L.; Barsuglia, M.; Barton, M. A.; Bartos, I.; Bassiri, R.; Bastarrika, M.; Basti, A.; Batch, J.; Bauchrowitz, J.; Bauer, Th. S.; Bebronne, M.; Beck, D.; Behnke, B.; Bejger, M.; Beker, M. G.; Bell, A. S.; Belletoile, A.; Belopolski, I.; Benacquista, M.; Berliner, J. M.; Bertolini, A.; Betzwieser, J.; Beveridge, N.; Beyersdorf, P. T.; Bilenko, I. A.; Billingsley, G.; Birch, J.; Biswas, R.; Bitossi, M.; Bizouard, M. A.; Black, E.; Blackburn, J. K.; Blackburn, L.; Blair, D.; Bland, B.; Blom, M.; Bock, O.; Bodiya, T. P.; Bogan, C.; Bondarescu, R.; Bondu, F.; Bonelli, L.; Bonnand, R.; Bork, R.; Born, M.; Boschi, V.; Bose, S.; Bosi, L.; Bouhou, B.; Braccini, S.; Bradaschia, C.; Brady, P. R.; Braginsky, V. B.; Branchesi, M.; Brau, J. E.; Breyer, J.; Briant, T.; Bridges, D. O.; Brillet, A.; Brinkmann, M.; Brisson, V.; Britzger, M.; Brooks, A. F.; Brown, D. A.; Bulik, T.; Bulten, H. J.; Buonanno, A.; Burguet-Castell, J.; Buskulic, D.; Buy, C.; Byer, R. L.; Cadonati, L.; Cagnoli, G.; Calloni, E.; Camp, J. B.; Campsie, P.; Cannizzo, J.; Cannon, K.; Canuel, B.; Cao, J.; Capano, C. D.; Carbognani, F.; Carbone, L.; Caride, S.; Caudill, S.; Cavaglià, M.; Cavalier, F.; Cavalieri, R.; Cella, G.; Cepeda, C.; Cesarini, E.; Chaibi, O.; Chalermsongsak, T.; Charlton, P.; Chassande-Mottin, E.; Chelkowski, S.; Chen, W.; Chen, X.; Chen, Y.; Chincarini, A.; Chiummo, A.; Cho, H.; Chow, J.; Christensen, N.; Chua, S. S. Y.; Chung, C. T. Y.; Chung, S.; Ciani, G.; Clara, F.; Clark, D. E.; Clark, J.; Clayton, J. H.; Cleva, F.; Coccia, E.; Cohadon, P.-F.; Colacino, C. N.; Colas, J.; Colla, A.; Colombini, M.; Conte, A.; Conte, R.; Cook, D.; Corbitt, T. R.; Cordier, M.; Cornish, N.; Corsi, A.; Costa, C. A.; Coughlin, M.; Coulon, J.-P.; Couvares, P.; Coward, D. M.; Cowart, M.; Coyne, D. C.; Creighton, J. D. E.; Creighton, T. D.; Cruise, A. M.; Cumming, A.; Cunningham, L.; Cuoco, E.; Cutler, R. M.; Dahl, K.; Danilishin, S. L.; Dannenberg, R.; D'Antonio, S.; Danzmann, K.; Dattilo, V.; Daudert, B.; Daveloza, H.; Davier, M.; Daw, E. J.; Day, R.; Dayanga, T.; De Rosa, R.; DeBra, D.; Debreczeni, G.; Del Pozzo, W.; del Prete, M.; Dent, T.; Dergachev, V.; DeRosa, R.; DeSalvo, R.; Dhurandhar, S.; Di Fiore, L.; Di Lieto, A.; Di Palma, I.; Di Paolo Emilio, M.; Di Virgilio, A.; Díaz, M.; Dietz, A.; Donovan, F.; Dooley, K. L.; Drago, M.; Drever, R. W. P.; Driggers, J. C.; Du, Z.; Dumas, J.-C.; Dwyer, S.; Eberle, T.; Edgar, M.; Edwards, M.; Effler, A.; Ehrens, P.; Endrőczi, G.; Engel, R.; Etzel, T.; Evans, K.; Evans, M.; Evans, T.; Factourovich, M.; Fafone, V.; Fairhurst, S.; Fan, Y.; Farr, B. F.; Fazi, D.; Fehrmann, H.; Feldbaum, D.; Feroz, F.; Ferrante, I.; Fidecaro, F.; Finn, L. S.; Fiori, I.; Fisher, R. P.; Flaminio, R.; Flanigan, M.; Foley, S.; Forsi, E.; Forte, L. A.; Fotopoulos, N.; Fournier, J.-D.; Franc, J.; Frasca, S.; Frasconi, F.; Frede, M.; Frei, M.; Frei, Z.; Freise, A.; Frey, R.; Fricke, T. T.; Friedrich, D.; Fritschel, P.; Frolov, V. V.; Fujimoto, M.-K.; Fulda, P. J.; Fyffe, M.; Gair, J.; Galimberti, M.; Gammaitoni, L.; Garcia, J.; Garufi, F.; Gáspár, M. E.; Gemme, G.; Geng, R.; Genin, E.; Gennai, A.; Gergely, L. Á.; Ghosh, S.; Giaime, J. A.; Giampanis, S.; Giardina, K. D.; Giazotto, A.; Gil, S.; Gill, C.; Gleason, J.; Goetz, E.; Goggin, L. M.; González, G.; Gorodetsky, M. L.; Goßler, S.; Gouaty, R.; Graef, C.; Graff, P. B.; Granata, M.; Grant, A.; Gras, S.; Gray, C.; Gray, N.; Greenhalgh, R. J. S.; Gretarsson, A. M.; Greverie, C.; Grosso, R.; Grote, H.; Grunewald, S.; Guidi, G. M.; Guido, C.; Gupta, R.; Gustafson, E. K.; Gustafson, R.; Ha, T.; Hallam, J. M.; Hammer, D.; Hammond, G.; Hanks, J.; Hanna, C.; Hanson, J.; Harms, J.; Harry, G. M.; Harry, I. W.; Harstad, E. D.; Hartman, M. T.; Haughian, K.; Hayama, K.; Hayau, J.-F.; Heefner, J.; Heidmann, A.; Heintze, M. C.; Heitmann, H.; Hello, P.; Hendry, M. A.; Heng, I. S.; Heptonstall, A. W.; Herrera, V.; Hewitson, M.; Hild, S.; Hoak, D.; Hodge, K. A.; Holt, K.; Holtrop, M.; Hong, T.; Hooper, S.; Hosken, D. J.; Hough, J.; Howell, E. J.; Hughey, B.; Husa, S.; Huttner, S. H.; Huynh-Dinh, T.; Ingram, D. R.; Inta, R.; Isogai, T.; Ivanov, A.; Izumi, K.; Jacobson, M.; James, E.; Jang, Y. J.; Jaranowski, P.; Jesse, E.; Johnson, W. W.; Jones, D. I.; Jones, G.; Jones, R.; Ju, L.; Kalmus, P.; Kalogera, V.; Kandhasamy, S.; Kang, G.; Kanner, J. B.; Kasturi, R.; Katsavounidis, E.; Katzman, W.; Kaufer, H.; Kawabe, K.; Kawamura, S.; Kawazoe, F.; Kelley, D.; Kells, W.; Keppel, D. G.; Keresztes, Z.; Khalaidovski, A.; Khalili, F. Y.; Khazanov, E. A.; Kim, B.; Kim, C.; Kim, H.; Kim, K.; Kim, N.; Kim, Y.-M.; King, P. J.; Kinzel, D. L.; Kissel, J. S.; Klimenko, S.; Kokeyama, K.; Kondrashov, V.; Koranda, S.; Korth, W. Z.; Kowalska, I.; Kozak, D.; Kranz, O.; Kringel, V.; Krishnamurthy, S.; Krishnan, B.; Królak, A.; Kuehn, G.; Kumar, R.; Kwee, P.; Lam, P. K.; Landry, M.; Lantz, B.; Lastzka, N.; Lawrie, C.; Lazzarini, A.; Leaci, P.; Lee, C. H.; Lee, H. K.; Lee, H. M.; Leong, J. R.; Leonor, I.; Leroy, N.; Letendre, N.; Li, J.; Li, T. G. F.; Liguori, N.; Lindquist, P. E.; Liu, Y.; Liu, Z.; Lockerbie, N. A.; Lodhia, D.; Lorenzini, M.; Loriette, V.; Lormand, M.; Losurdo, G.; Lough, J.; Luan, J.; Lubinski, M.; Lück, H.; Lundgren, A. P.; Macdonald, E.; Machenschalk, B.; MacInnis, M.; Macleod, D. M.; Mageswaran, M.; Mailand, K.; Majorana, E.; Maksimovic, I.; Man, N.; Mandel, I.; Mandic, V.; Mantovani, M.; Marandi, A.; Marchesoni, F.; Marion, F.; Márka, S.; Márka, Z.; Markosyan, A.; Maros, E.; Marque, J.; Martelli, F.; Martin, I. W.; Martin, R. M.; Marx, J. N.; Mason, K.; Masserot, A.; Matichard, F.; Matone, L.; Matzner, R. A.; Mavalvala, N.; Mazzolo, G.; McCarthy, R.; McClelland, D. E.; McGuire, S. C.; McIntyre, G.; McIver, J.; McKechan, D. J. A.; McWilliams, S.; Meadors, G. D.; Mehmet, M.; Meier, T.; Melatos, A.; Melissinos, A. C.; Mendell, G.; Mercer, R. A.; Meshkov, S.; Messenger, C.; Meyer, M. S.; Miao, H.; Michel, C.; Milano, L.; Miller, J.; Minenkov, Y.; Mitrofanov, V. P.; Mitselmakher, G.; Mittleman, R.; Miyakawa, O.; Moe, B.; Mohan, M.; Mohanty, S. D.; Mohapatra, S. R. P.; Moraru, D.; Moreno, G.; Morgado, N.; Morgia, A.; Mori, T.; Morriss, S. R.; Mosca, S.; Mossavi, K.; Mours, B.; Mow-Lowry, C. M.; Mueller, C. L.; Mueller, G.; Mukherjee, S.; Mullavey, A.; Müller-Ebhardt, H.; Munch, J.; Murphy, D.; Murray, P. G.; Mytidis, A.; Nash, T.; Naticchioni, L.; Necula, V.; Nelson, J.; Newton, G.; Nguyen, T.; Nishizawa, A.; Nitz, A.; Nocera, F.; Nolting, D.; Normandin, M. E.; Nuttall, L.; Ochsner, E.; O'Dell, J.; Oelker, E.; Ogin, G. H.; Oh, J. J.; Oh, S. H.; O'Reilly, B.; O'Shaughnessy, R.; Osthelder, C.; Ott, C. D.; Ottaway, D. J.; Ottens, R. S.; Overmier, H.; Owen, B. J.; Page, A.; Pagliaroli, G.; Palladino, L.; Palomba, C.; Pan, Y.; Pankow, C.; Paoletti, F.; Papa, M. A.; Parisi, M.; Pasqualetti, A.; Passaquieti, R.; Passuello, D.; Patel, P.; Pedraza, M.; Peiris, P.; Pekowsky, L.; Penn, S.; Perreca, A.; Persichetti, G.; Phelps, M.; Pickenpack, M.; Piergiovanni, F.; Pietka, M.; Pinard, L.; Pinto, I. M.; Pitkin, M.; Pletsch, H. J.; Plissi, M. V.; Poggiani, R.; Pöld, J.; Postiglione, F.; Prato, M.; Predoi, V.; Prestegard, T.; Price, L. R.; Prijatelj, M.; Principe, M.; Privitera, S.; Prix, R.; Prodi, G. A.; Prokhorov, L. G.; Puncken, O.; Punturo, M.; Puppo, P.; Quetschke, V.; Quitzow-James, R.; Raab, F. J.; Rabeling, D. S.; Rácz, I.; Radkins, H.; Raffai, P.; Rakhmanov, M.; Rankins, B.; Rapagnani, P.; Raymond, V.; Re, V.; Redwine, K.; Reed, C. M.; Reed, T.; Regimbau, T.; Reid, S.; Reitze, D. H.; Ricci, F.; Riesen, R.; Riles, K.; Robertson, N. A.; Robinet, F.; Robinson, C.; Robinson, E. L.; Rocchi, A.; Roddy, S.; Rodriguez, C.; Rodruck, M.; Rolland, L.; Rollins, J. G.; Romano, J. D.; Romano, R.; Romie, J. H.; Rosińska, D.; Röver, C.; Rowan, S.; Rüdiger, A.; Ruggi, P.; Ryan, K.; Sainathan, P.; Salemi, F.; Sammut, L.; Sandberg, V.; Sannibale, V.; Santamaría, L.; Santiago-Prieto, I.; Santostasi, G.; Sassolas, B.; Sathyaprakash, B. S.; Sato, S.; Saulson, P. R.; Savage, R. L.; Schilling, R.; Schnabel, R.; Schofield, R. M. S.; Schreiber, E.; Schulz, B.; Schutz, B. F.; Schwinberg, P.; Scott, J.; Scott, S. M.; Seifert, F.; Sellers, D.; Sentenac, D.; Sergeev, A.; Shaddock, D. A.; Shaltev, M.; Shapiro, B.; Shawhan, P.; Shoemaker, D. H.; Sibley, A.; Siemens, X.; Sigg, D.; Singer, A.; Singer, L.; Sintes, A. M.; Skelton, G. R.; Slagmolen, B. J. J.; Slutsky, J.; Smith, J. R.; Smith, M. R.; Smith, R. J. E.; Smith-Lefebvre, N. D.; Somiya, K.; Sorazu, B.; Soto, J.; Speirits, F. C.; Sperandio, L.; Stefszky, M.; Stein, A. J.; Stein, L. C.; Steinert, E.; Steinlechner, J.; Steinlechner, S.; Steplewski, S.; Stochino, A.; Stone, R.; Strain, K. A.; Strigin, S. E.; Stroeer, A. S.; Sturani, R.; Stuver, A. L.; Summerscales, T. Z.; Sung, M.; Susmithan, S.; Sutton, P. J.; Swinkels, B.; Tacca, M.; Taffarello, L.; Talukder, D.; Tanner, D. B.; Tarabrin, S. P.; Taylor, J. R.; Taylor, R.; Thomas, P.; Thorne, K. A.; Thorne, K. S.; Thrane, E.; Thüring, A.; Tokmakov, K. V.; Tomlinson, C.; Toncelli, A.; Tonelli, M.; Torre, O.; Torres, C.; Torrie, C. I.; Tournefier, E.; Travasso, F.; Traylor, G.; Tseng, K.; Ugolini, D.; Vahlbruch, H.; Vajente, G.; van den Brand, J. F. J.; Van Den Broeck, C.; van der Putten, S.; van Veggel, A. A.; Vass, S.; Vasuth, M.; Vaulin, R.; Vavoulidis, M.; Vecchio, A.; Vedovato, G.; Veitch, J.; Veitch, P. J.; Veltkamp, C.; Verkindt, D.; Vetrano, F.; Viceré, A.; Villar, A. E.; Vinet, J.-Y.; Vitale, S.; Vitale, S.; Vocca, H.; Vorvick, C.; Vyatchanin, S. P.; Wade, A.; Wade, L.; Wade, M.; Waldman, S. J.; Wallace, L.; Wan, Y.; Wang, M.; Wang, X.; Wang, Z.; Wanner, A.; Ward, R. L.; Was, M.; Weinert, M.; Weinstein, A. J.; Weiss, R.; Wen, L.; Wessels, P.; West, M.; Westphal, T.; Wette, K.; Whelan, J. T.; Whitcomb, S. E.; White, D. J.; Whiting, B. F.; Wilkinson, C.; Willems, P. A.; Williams, L.; Williams, R.; Willke, B.; Winkelmann, L.; Winkler, W.; Wipf, C. C.; Wiseman, A. G.; Wittel, H.; Woan, G.; Wooley, R.; Worden, J.; Yakushin, I.; Yamamoto, H.; Yamamoto, K.; Yancey, C. C.; Yang, H.; Yeaton-Massey, D.; Yoshida, S.; Yu, P.; Yvert, M.; Zadroźny, A.; Zanolin, M.; Zendri, J.-P.; Zhang, F.; Zhang, L.; Zhang, W.; Zhao, C.; Zotov, N.; Zucker, M. E.; Zweizig, J.
2012-05-01
We present the results of a weakly modeled burst search for gravitational waves from mergers of nonspinning intermediate mass black holes in the total mass range 100-450M⊙ and with the component mass ratios between 1∶1 and 4∶1. The search was conducted on data collected by the LIGO and Virgo detectors between November of 2005 and October of 2007. No plausible signals were observed by the search which constrains the astrophysical rates of the intermediate mass black holes mergers as a function of the component masses. In the most efficiently detected bin centered on 88+88M⊙, for nonspinning sources, the rate density upper limit is 0.13 per Mpc3 per Myr at the 90% confidence level.
X-ray and Optical Explorations of Spiders
NASA Astrophysics Data System (ADS)
Roberts, M.; Al Noori, H.; Torres, R.; Russell, D.; Mclaughlin, M.; Gentile, P.
2017-10-01
Black widows and redbacks are binary systems consisting of a millisecond pulsar in a close binary with a companion which is having matter driven off of its surface by the pulsar wind. X-rays due to an intrabinary shock have been observed from many of these systems, as well as orbital variations in the optical emission from the companion due to heating and tidal distortion. We have been systematically studying these systems in radio, optical and X-rays. Here we will present an overview of X-ray and optical studies of these systems, including new XMM-Newton data obtained from several of these systems, along with new optical photometry.
Quasi-spherical accretion in High Mass X-ray Binaries
NASA Astrophysics Data System (ADS)
Postnov, Konstantin
2016-07-01
Quasi-spherical accreion onto magnetized neutron stars from stellar winds in high-mass X-ray binaries is discussed. Depending on the X-ray luminosity of the neutron star, the accretion can proceed in two regimes (modes): at L_x ≳ 4× 10^{36} erg/s, Compton cooling of accreting matter near magnetosphere leads to a supersonic (Bondi) accretion, while at smaller X-ray luminosity the Compton cooling is ineffective, and subsonic settling accretion regime sets in. In this regime, a hot convective shell is formed around the magnetosphere, and the plasma entry rate into magnetosphere is controlled by less effective radiative plasma cooling. The shell mediates the angular momentum transfer from/to the neutron star magnetosphere. Observational evidences for the different accretion regimes in slowly rotating X-ray pulsars with moderate and low X-ray luminosity, as well as possible manifestations of non-stationary quasi-spherical settling accretion due to the magnetospheric shell instability in Supergiant Fast X-ray Transients will be presented.
Neutron Stars and Black Holes Seen with the Rossi X-Ray Timing Explorer (RXTE)
NASA Technical Reports Server (NTRS)
Swank, Jean
2008-01-01
Astrophysical X-rays bring information about location, energy, time, and polarization. X-rays from compact objects were seen in the first explorations to vary in time. Eclipses and pulsations have simple explanations that identified the importance of X-ray binaries and magnetic neutron stars in the first decade of X-ray astronomy. The dynamics of accretion onto stellar and supermassive black holes and onto neutron stars with relatively low magnetic fields shows up as more complex variations, quasi-periodic oscillations, noise with characteristic frequency spectra, broad-band changes in the energy spectra. To study these variations, RXTE instruments needed to have large area and operational flexibility to find transient activity and observe when it was present. Proportional counters and Phoswich scintillators provided it in a modest mission that has made textbook level contributions to understanding of compact objects. The first seen, and the brightest known, X-ray binary, Sco X-1 is one of a class of neutron stars with low mass companions. Before RXTE, none of these had been seen to show pulsations, though they were hypothesized to be the precursors of radio pulsars with millisecond periods and low magnetic fields. RXTE's large area led to identifying coherent millisecond pulsars in a subset which are relatively faint transients. It also led to identifying short episodes of pulsation during thermonuclear bursts, in sources where a steady signal is not seen. The X-ray stage verifies the evolution that produces millisecond radio pulsars.Masses and radii of neutron stars are being determined by various techniques, constraining the equation of state of matter at nuclear densities. Accretion should lead to a range of neutron star masses. An early stage of superstrong magnetic field neutron stars is now known to produce X-ray and gamma-ray bursts in crust quakes and magnetic field reconnection releases of energy. Soft Gamma Repeaters, Anomolous X-ray Pulsars, and high magnetic field rotation-powered pulsars are all now called magnetars, because they have pulse periods indicating they are slowing down as they would with magnetic dipole radiation for a surface field above 5x1013 gauss. The accretion disk has been connected to the launching of radio jets from black holes, and even from neutron stars. Estimates of the angular momenta of black holes are being made from different approaches, modelling a high frequency oscillation that may be related to how close the inner part of the accretion disk is to the black hole, modelling the continua spectra of the X-ray emission, and modeling the emission of red-shifted iron that may be emitted from the accretion disk. These investigations require early discovery of the black hole transient with the All Sky Monitor on RXTE or other monitoring information, frequent extended observations, and coordinated observations with missions that give higher energy resolution, or radio and infrared information.
NASA Astrophysics Data System (ADS)
Bhalerao, Varun
2012-05-01
My thesis centers around the study of neutron stars, especially those in massive binary systems. To this end, it has two distinct components: the observational study of neutron stars in massive binaries with a goal of measuring neutron star masses and participation in NuSTAR, the first imaging hard X-ray mission, one that is extremely well suited to the study of massive binaries and compact objects in our Galaxy. The Nuclear Spectroscopic Telescope Array (NuSTAR) is a NASA Small Explorer mission that will carry the first focusing high energy X-ray telescope to orbit. NuSTAR has an order-of-magnitude better angular resolution and has two orders of magnitude higher sensitivity than any currently orbiting hard X-ray telescope. I worked to develop, calibrate, and test CdZnTe detectors for NuSTAR. I describe the CdZnTe detectors in comprehensive detail here - from readout procedures to data analysis. Detailed calibration of detectors is necessary for analyzing astrophysical source data obtained by the NuSTAR. I discuss the design and implementation of an automated setup for calibrating flight detectors, followed by calibration procedures and results. Neutron stars are an excellent probe of fundamental physics. The maximum mass of a neutron star can put stringent constraints on the equation of state of matter at extreme pressures and densities. From an astrophysical perspective, there are several open questions in our understanding of neutron stars. What are the birth masses of neutron stars? How do they change in binary evolution? Are there multiple mechanisms for the formation of neutron stars? Measuring masses of neutron stars helps answer these questions. Neutron stars in high-mass X-ray binaries have masses close to their birth mass, providing an opportunity to disentangle the role of "nature" and "nurture" in the observed mass distributions. In 2006, masses had been measured for only six such objects, but this small sample showed the greatest diversity in masses among all classes of neutron star binaries. Intrigued by this diversity - which points to diverse birth masses - we undertook a systematic survey to measure the masses of neutron stars in nine high-mass X-ray binaries. In this thesis, I present results from this ongoing project. While neutron stars formed the primary focus of my work, I also explored other topics in compact objects. Appendix A describes the discovery and complete characterization of a 1RXS J173006.4+033813, a polar cataclysmic variable. Appendix B describes the discovery of a diamond planet orbiting a millisecond pulsar, and our search for its optical counterpart.
Modeling X-ray and gamma-ray emission in the intrabinary shock of pulsar binaries
NASA Astrophysics Data System (ADS)
An, H.
2017-10-01
We present broadband SED and light curve, and a wind interaction model for the gamma-ray binary 1FGL J1018.6-5856 (J1018) which exhibits double peaks in the X-ray light curve. Assuming that the X-ray to low-energy gamma-ray emission is produced by synchrotron radiation and high-energy gamma rays by inverse Compton scattering in the intrabinary shock (IBS), we model the broadband SED and light curve of J1018 using a two-component model having slow electrons in the shock and fast bulk-accelerated electrons at the skin of the shock. The model explains the broadband SED and light curve of J1018 qualitatively well. In particular, modeling the synchrotron emission constrains the orbital geometry. We discuss potential use of the model for other pulsar binaries.
Soft x-ray properties of the binary millisecond pulsar J0437-4715
NASA Technical Reports Server (NTRS)
Halpern, Jules P.; Martin, Christopher; Marshall, Herman L.
1995-01-01
We obtained a light curve for the 5.75 ms pulsar J0437-4715 in the 65-120 A range with 0.5 ms time resolution using the Deep Survey instrument on the EUVE satellite. The single-peaked profile has a pulsed fraction of 0. 27 +/- 0.05, similar to the ROSAT data in the overlapping energy band. A combined analysis of the EUVE and ROSAT data is consistent with a power-law spectrum of energy index alpha = 1.2-1.5, intervening column density NH = (5-8) x 10(exp 19)/sq cm, and luminosity 5.0 x 10(exp 30) ergs/s in the 0.1-2. 4 keV band. We also use a bright EUVE/ROSAT source only 4.3 deg from the pulsar, the Seyfert galaxy RX J0437.4-4711 (= EUVE J0437-471 = lES 0435-472), to obtain an independent upper limit on the intervening absorption to the pulsar, NH less than 1.2 x 10(exp 20)/sq cm. Although a blackbody spectrum fails to fit the ROSAT data, two-component spectral fits to the combined EUVE/ROSAT data are used to limit the temperatures and surface areas of thermal emission that might make partial contributions to the flux. A hot polar cap of radius 50-600 m and temperature (1.0-3.3) x 10(exp 6) K could be present. Alternatively, a larger region with T = (4-12) x 10(exp 5) K and area less than 200 sq km, might contribute most of the EUVE and soft X-ray flux, but only if a hotter component were present as well. Any of these temperatures would require some mechanism(s) of surface reheating to be operating in this old pulsar, the most plausible being the impact of accelerated electrons and positrons onto the polar caps. The kinematically corrected spin-down power of PSR J0437-4715 is only 4 x 10(exp 33) ergs/s, which is an order of magnitude less than that of the lowest-luminosity gamma-ray pulsars Geminga and PSR B1055-52. The absence of high-energy gamma-rays from PSR J0437-4715 might signify an inefficient or dead outer gap accelerator, which in turn accounts for the lack of a more luminous reheated surface such as those intermediate-age gamma-ray pulsars may have.
Soft X-Ray Properties of the Binary Millisecond Pulsar J0437-4715
NASA Technical Reports Server (NTRS)
Halpern, Jules P.; Martin, Christopher; Marshall, Herman, L.; Oliversen, Ronald (Technical Monitor)
2001-01-01
We obtained a light curve for the 5.75 ms pulsar J0437-4715 in the 65-120 A range with 0.5 ms time resolution using the Deep Survey instrument on the EUVE satellite. The single-peaked profile has a pulsed fraction of 0.27 +/- 0.05, similar to the ROSAT data in the overlapping energy band. A combined analysis of the EUVE and ROSAT data is consistent with a power-law spectrum of energy index alpha = 1.2 - 1.5, intervening column density N(sub H) = (5 - 8) x 10(exp 19)/sq cm, and luminosity 5.0 x 10(exp 30) ergs/s in the 0.1 - 2.4 keV band. We also use a bright EUVE/ROSAT source only 4.2 min. from the pulsar, the Seyfert galaxy RX J0437.4-4711 (= EUVE J0437-471 = IES 0435-472), to obtain an independent upper limit on the intervening absorption to the pulsar, N(sub H) less than 1.2 x 10(exp 20)/sq cm. Although a blackbody spectrum fails to fit the ROSAT data, two-component spectral fits to the combined EUVE/ROSAT data are used to limit the temperatures and surface areas of thermal emission that might make partial contributions to the flux. A hot polar cap of radius 50 - 600 m and temperature (1.0 - 3.3) x 10(exp 6) K could be present. Alternatively, a larger region with T = (4 - 12) x 10(exp 5) K and area less than 200 sq km, might contribute most of the EUVE and soft X-ray flux, but only if a hotter component were present as well. Any of these temperatures would require some mechanism(s) of surface reheating to be operating in this old pulsar, the most plausible being the impact of accelerated electrons and positrons onto the polar caps. The kinematically corrected spin-down power of PSR J0437-4715 is only 4 x 10(exp 33) ergs/s, which is an order of magnitude less than that of the lowest-luminosity gamma-ray pulsars Geminga and PSR B1055-52. The absence of high-energy gamma-rays from PSR J0437-4715 might signify an inefficient or dead outer gap accelerator, which in turn accounts for the lack of a more luminous reheated surface such as those intermediate-age gamma-ray pulsars may have.
Pulsar emission amplified and resolved by plasma lensing in an eclipsing binary.
Main, Robert; Yang, I-Sheng; Chan, Victor; Li, Dongzi; Lin, Fang Xi; Mahajan, Nikhil; Pen, Ue-Li; Vanderlinde, Keith; van Kerkwijk, Marten H
2018-05-01
Radio pulsars scintillate because their emission travels through the ionized interstellar medium along multiple paths, which interfere with each other. It has long been realized that, independent of their nature, the regions responsible for the scintillation could be used as 'interstellar lenses' to localize pulsar emission regions 1,2 . Most such lenses, however, resolve emission components only marginally, limiting results to statistical inferences and detections of small positional shifts 3-5 . As lenses situated close to their source offer better resolution, it should be easier to resolve emission regions of pulsars located in high-density environments such as supernova remnants 6 or binaries in which the pulsar's companion has an ionized outflow. Here we report observations of extreme plasma lensing in the 'black widow' pulsar, B1957+20, near the phase in its 9.2-hour orbit at which its emission is eclipsed by its companion's outflow 7-9 . During the lensing events, the observed radio flux is enhanced by factors of up to 70-80 at specific frequencies. The strongest events clearly resolve the emission regions: they affect the narrow main pulse and parts of the wider interpulse differently. We show that the events arise naturally from density fluctuations in the outer regions of the outflow, and we infer a resolution of our lenses that is comparable to the pulsar's radius, about 10 kilometres. Furthermore, the distinct frequency structures imparted by the lensing are reminiscent of what is observed for the repeating fast radio burst FRB 121102, providing observational support for the idea that this source is observed through, and thus at times strongly magnified by, plasma lenses 10 .
Pulsar emission amplified and resolved by plasma lensing in an eclipsing binary
NASA Astrophysics Data System (ADS)
Main, Robert; Yang, I.-Sheng; Chan, Victor; Li, Dongzi; Lin, Fang Xi; Mahajan, Nikhil; Pen, Ue-Li; Vanderlinde, Keith; van Kerkwijk, Marten H.
2018-05-01
Radio pulsars scintillate because their emission travels through the ionized interstellar medium along multiple paths, which interfere with each other. It has long been realized that, independent of their nature, the regions responsible for the scintillation could be used as `interstellar lenses' to localize pulsar emission regions1,2. Most such lenses, however, resolve emission components only marginally, limiting results to statistical inferences and detections of small positional shifts3-5. As lenses situated close to their source offer better resolution, it should be easier to resolve emission regions of pulsars located in high-density environments such as supernova remnants6 or binaries in which the pulsar's companion has an ionized outflow. Here we report observations of extreme plasma lensing in the `black widow' pulsar, B1957+20, near the phase in its 9.2-hour orbit at which its emission is eclipsed by its companion's outflow7-9. During the lensing events, the observed radio flux is enhanced by factors of up to 70-80 at specific frequencies. The strongest events clearly resolve the emission regions: they affect the narrow main pulse and parts of the wider interpulse differently. We show that the events arise naturally from density fluctuations in the outer regions of the outflow, and we infer a resolution of our lenses that is comparable to the pulsar's radius, about 10 kilometres. Furthermore, the distinct frequency structures imparted by the lensing are reminiscent of what is observed for the repeating fast radio burst FRB 121102, providing observational support for the idea that this source is observed through, and thus at times strongly magnified by, plasma lenses10.
Introductory Overview of Intermediate-luminosity X-ray Objects
NASA Astrophysics Data System (ADS)
Colbert, E. J. M.
2001-05-01
Intermediate-luminosity X-ray Objects (IXOs) are defined as compact objects having X-ray luminosities between those of X-ray binaries and low-luminosity AGNs (i.e., 1039.0 erg s-1 < ~ LX [IXOs] < ~ 1041.0 erg s-1). It is not currently known if these objects are intermediate-mass (M ~ 102-104 Msun) black holes accreting near the Eddington limit, near-solar-mass black holes in a super-Eddington state, or are, in some cases, just supermassive black holes accreting at very low rates. However, the first idea has been popularized by recent press coverage. IXOs are quite common (present in about half of spiral galaxies) and are typically found displaced from the optical nucleus, reducing the likelihood that they are low-luminosity AGN. Nearly all of our knowledge of these objects comes from X-ray observations, as observations of optical, NIR and radio counterparts are not widely known. In this session, we will address (1) the phenomenology of the objects, (2) possible geometry and accretion mechanisms for these objects (i.e., are they more similar to black hole X-ray binaries or AGNs), (3) the central black hole masses, and (4) the formation mechanism for these black holes, if they are of intermediate mass. In this talk, I will focus primarily on giving background information of these fascinating objects.
Discovery of a young, 267 millisecond pulsar in the supernova remnant W44
NASA Technical Reports Server (NTRS)
Wolszczan, A.; Cordes, J. M.; Dewey, R. J.
1991-01-01
This paper reports the discovery of a 267 msec pulsar, PSR 1853 + 01, in the SNR W44 (G34.7 - 0.4), located south of the W44, well within its radio shell and at the outher edge of the X-ray emission region which fills the SNR interior. The PSR 1853 + 01 is separated only 20 arcmin from the PSR 1854 + 00 pulsar discovered by Mohanty (1983). Results of timing observatons of PSR 1853 + 01 are presented, and a possible relationship between the two objects is examined. It is suggested that the two pulsars may have a common origin in a binary system disrupted by the explosion that produced W44.
Are Gravitational Waves Spinning Down PSR J1023+0038?
Haskell, B; Patruno, A
2017-10-20
The pulsar J1023+0038 rotates with a frequency ν≈592 Hz and has been observed to transition between a radio state, during which it is visible as a millisecond radio pulsar, and a low-mass x-ray binary (LMXB) state, during which accretion powered x-ray pulsations are visible. Timing during the two phases reveals that during the LMXB phase the neutron star is spinning down at a rate of ν[over ˙]≈-3×10^{-15} Hz/s, which is approximately 27% faster than the rate measured during the radio phase, ν[over ˙]≈-2.4×10^{-15} Hz/s, and is at odds with the predictions of accretion models. We suggest that the increase in spin-down rate is compatible with gravitational wave emission, particularly with the creation of a "mountain" during the accretion phase. We show that asymmetries in pycnonuclear reaction rates in the crust can lead to a large enough mass quadrupole to explain the observed spin-down rate, which thus far has no other self-consistent explanation. We also suggest two observational tests of this scenario, involving radio timing at the onset of the next millisecond radio pulsar phase, when the mountain should dissipate, and accurate timing during the next LMXB phase to track the increase in torque as the mountain builds up. Another possibility is that an unstable r mode with an amplitude α≈5×10^{-8} may be present in the system.
NASA Astrophysics Data System (ADS)
Hakala, Pasi; Kajava, Jari J. E.
2018-03-01
Transitional millisecond pulsars are systems that alternate between an accreting low-mass X-ray binary (LMXB) state and a non-accreting radio pulsar state. When at the LMXB state, their X-ray and optical light curves show rapid flares and dips, the origin of which is not well understood. We present results from our optical and NIR observing campaign of PSR J1023+0038, a transitional millisecond pulsar observed in an accretion state. Our wide-band optical photopolarimetry indicates that the system shows intrinsic linear polarisation, the degree of which is anticorrelated with optical emission, i.e. the polarisation could be diluted during the flares. However, the change in position angle during the flares suggests an additional emerging polarised component during the flares. We also find, based on our H α spectroscopy and Doppler tomography, that there is indication for change in the accretion disc structure/emission during the flares, possibly due to a change in accretion flow. This, together with changing polarisation during the flares, could mark the existence of magnetic propeller mass ejection process in the system. Furthermore, our analysis of flare profiles in both optical and NIR shows that NIR flares are at least as powerful as the optical ones and both can exhibit transition time-scales less than 3 s. The optical/NIR flares therefore seem to originate from a separate, polarised transient component, which might be due to Thomson scattering from propeller ejected matter.
Search for stellar collapse with the MACRO detector at Gran Sasso
NASA Technical Reports Server (NTRS)
Steinberg, R.
1985-01-01
It is viewed that in stellar evolution stars in the range of 8 to 12 solar masses evolve gradually as increasingly heavier nuclei are produced and then consumed in a series of exothermic thermonuclear processes ultimately leading to the formation of a core composed almost entirely of nickel and iron. When the mass of this hot iron-nickel core reaches the critical value of approximately 1.4 solar masses, electron degeneracy pressure is no longer able to support the outer layers of the star and a collapse process begins. Since the core has exhausted its thermonuclear fuel, further stages of thermonuclear burning cannot prevent a runaway collapse. As the density reaches 10 to the 10th power gm sub/cm at a temperature near 10 to the 10th power k, most of the heavy nuclei are dissociated into free nucleons and electron capture on free protons leads to a decrease in the degeneracy pressure and further acceleration of the collapse process. Although this general picture has received substantial confirmation over the past two decades with the discovery of radio pulsars (neutron stars), X-ray pulsars (accreting binary neutron stars) and Cyg X-1 (probably an accreting black hole), an actual neutrino burst is not yet convincingly detected.
GOALS, STRATEGIES AND FIRST DISCOVERIES OF AO327, THE ARECIBO ALL-SKY 327 MHz DRIFT PULSAR SURVEY
DOE Office of Scientific and Technical Information (OSTI.GOV)
Deneva, J. S.; Stovall, K.; Martinez, J. G.
2013-09-20
We report initial results from AO327, a drift survey for pulsars with the Arecibo telescope at 327 MHz. The first phase of AO327 will cover the sky at declinations of –1° to 28°, excluding the region within 5° of the Galactic plane, where high scattering and dispersion make low-frequency surveys sub-optimal. We record data from a 57 MHz bandwidth with 1024 channels and 125 μs sampling time. The 60 s transit time through the AO327 beam means that the survey is sensitive to very tight relativistic binaries even with no acceleration searches. To date we have detected 44 known pulsarsmore » with periods ranging from 3 ms to 2.21 s and discovered 24 new pulsars. The new discoveries include 3 ms pulsars, three objects with periods of a few tens of milliseconds typical of young as well as mildly recycled pulsars, a nuller, and a rotating radio transient. Five of the new discoveries are in binary systems. The second phase of AO327 will cover the sky at declinations of 28°-38°. We compare the sensitivity and search volume of AO327 to the Green Bank North Celestial Cap survey and the GBT350 drift survey, both of which operate at 350 MHz.« less
Hill, A. B.; Szostek, A.; Corbel, S.; ...
2011-07-08
We present an analysis of high energy (HE; 0.1–300 GeV) γ-ray observations of 1FGL J1227.9–4852 with the Fermi Gamma-ray Space Telescope, follow-up radio observations with the Australia Telescope Compact Array, Giant Metrewave Radio Telescope and Parkes radio telescopes of the same field and follow-up optical observations with the ESO VLT. We also examine archival XMM– Newton and INTEGRAL X-ray observations of the region around this source. The γ-ray spectrum of 1FGL J1227.9–4852 is best fitted with an exponentially cut-off power law, reminiscent of the population of pulsars observed by Fermi. A previously unknown, compact radio source within the 99.7 permore » cent error circle of 1FGL J1227.9–4852 is discovered and has a morphology consistent either with an AGN core/jet structure or with two roughly symmetric lobes of a distant radio galaxy. A single bright X-ray source XSS J12270–4859, a low-mass X-ray binary, also lies within the 1FGL J1227.9–4852 error circle and we report the first detection of radio emission from this source. The potential association of 1FGL J1227.9–4852 with each of these counterparts is discussed. Based upon the available data we find the association of the γ-ray source to the compact double radio source unlikely and suggest that XSS J12270–4859 is a more likely counterpart to the new HE source. As a result, we propose that XSS J12270–4859 may be a millisecond binary pulsar and draw comparisons with PSR J1023+0038.« less
Pulsars in the Classroom: Suggested Exercises for Lab or Homework
ERIC Educational Resources Information Center
Gordon, Kurtiss J.
1978-01-01
Exercises for introductory to intermediate level college students are proposed. Observations of pulsars can be used to illustrate the phenomena of dispersion and Faraday rotation of radio waves, and to illustrate the differential rotation of the galaxy. (BB)
Keck spectroscopy of millisecond pulsar J2215+5135: a moderate-M
Romani, Roger W.; Graham, Melissa L.; Filippenko, Alexei V.; ...
2015-08-07
We present Keck spectroscopic measurements of the millisecond pulsar binary J2215+5135. These data indicate a neutron-star (NS) massmore » $${M}_{\\mathrm{NS}}=1.6\\;{M}_{\\odot }$$, much less than previously estimated. The pulsar heats the companion face to $${T}_{D}\\approx 9000$$ K; the large heating efficiency may be mediated by the intrabinary shock dominating the X-ray light curve. At the best-fit inclination i = 88 $$^o\\atop{.}$$ 8, the pulsar should be eclipsed. Here, we find weak evidence for such eclipses in the pulsed gamma-rays; an improved radio ephemeris allows use of up to five times more Fermi-Large Area Telescope gamma-ray photons for a definitive test of this picture. If confirmed, the gamma-ray eclipse provides a novel probe of the dense companion wind and the pulsar magnetosphere.« less
Mass-Luminosity Relations for Rapid and Slow Rotators.
NASA Astrophysics Data System (ADS)
Malkov, O. Yu.
2006-08-01
Comparing the radii of eclipsing binaries components and single stars we have found a noticeable difference between observational parameters of B0V-G0V components of eclipsing binaries and those of single stars of the corresponding spectral type. This difference was confirmed by re-analysing the results of independent investigations published in the literature. Larger radii and higher temperatures of A-F eclipsing binaries can be explained by synchronization of such stars in close systems that prevents them to rotate rapidly. So, we have found that the mass-luminosity relation based on eclipsing binary data cannot be used to derive the initial mass function of single stars. While our current knowledge of the empirical mass-luminosity relation for intermediate-mass (1.5 to 10 m[*]) stars is based exclusively on data from eclipsing binaries, knowledge of the mass-luminosity relation should come from dynamical mass determinations of visual binaries, combined with spatially resolved precise photometry. Then the initial mass function should be revised for m>1.5m[*]. Data were collected on fundamental parameters of stars with masses m > 1.5.m [*]). They are components of binaries with P > 15^d and consequently are not synchronised with the orbital periods and presumably are rapid rotators. These stars are believed to evolve similarly with single stars, so these data allow us to construct mass-luminosity and other relations that can more confidently be used for statistical and astrophysical investigations of single stars than so called standard relations, based on data on detached main-sequence double-lined short-period eclipsing binaries. Mass-luminosity, mass-temperature and mass-radius relations of single stars are presented, as well as their HR diagram.
ON THE MASS DISTRIBUTION AND BIRTH MASSES OF NEUTRON STARS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Oezel, Feryal; Psaltis, Dimitrios; Santos Villarreal, Antonio
We investigate the distribution of neutron star masses in different populations of binaries, employing Bayesian statistical techniques. In particular, we explore the differences in neutron star masses between sources that have experienced distinct evolutionary paths and accretion episodes. We find that the distribution of neutron star masses in non-recycled eclipsing high-mass binaries as well as of slow pulsars, which are all believed to be near their birth masses, has a mean of 1.28 M{sub Sun} and a dispersion of 0.24 M{sub Sun }. These values are consistent with expectations for neutron star formation in core-collapse supernovae. On the other hand,more » double neutron stars, which are also believed to be near their birth masses, have a much narrower mass distribution, peaking at 1.33 M{sub Sun }, but with a dispersion of only 0.05 M{sub Sun }. Such a small dispersion cannot easily be understood and perhaps points to a particular and rare formation channel. The mass distribution of neutron stars that have been recycled has a mean of 1.48 M{sub Sun} and a dispersion of 0.2 M{sub Sun }, consistent with the expectation that they have experienced extended mass accretion episodes. The fact that only a very small fraction of recycled neutron stars in the inferred distribution have masses that exceed {approx}2 M{sub Sun} suggests that only a few of these neutron stars cross the mass threshold to form low-mass black holes.« less
Astrophysical parameters and orbital solution of the peculiar X-ray transient IGR J00370+6122
NASA Astrophysics Data System (ADS)
González-Galán, A.; Negueruela, I.; Castro, N.; Simón-Díaz, S.; Lorenzo, J.; Vilardell, F.
2014-06-01
Context. BD + 60° 73 is the optical counterpart of the X-ray source IGR J00370+6122, a probable accretion-powered X-ray pulsar. The X-ray light curve of this binary system shows clear periodicity at 15.7 d, which has been interpreted as repeated outbursts around the periastron of an eccentric orbit. Aims: We aim to characterise the binary system IGR J00370+6122 by deriving its orbital and physical parameters. Methods: We obtained high-resolution spectra of BD + 60° 73 at different epochs. We used the fastwind code to generate a stellar atmosphere model to fit the observed spectrum and obtain physical magnitudes. The synthetic spectrum was used as a template for cross-correlation with the observed spectra to measure radial velocities. The radial velocity curve provided an orbital solution for the system. We also analysed the RXTE/ASM and Swift/BAT light curves to confirm the stability of the periodicity. Results: BD + 60° 73 is a BN0.7 Ib low-luminosity supergiant located at a distance ~3.1 kpc, in the Cas OB4 association. We derive Teff = 24 000 K and log gc = 3.0, and chemical abundances consistent with a moderately high level of evolution. The spectroscopic and evolutionary masses are consistent at the 1-σ level with a mass M∗ ≈ 15 M⊙. The recurrence time of the X-ray flares is the orbital period of the system. The neutron star is in a high-eccentricity (e = 0.56 ± 0.07) orbit, and the X-ray emission is strongly peaked around orbital phase φ = 0.2, though the observations are consistent with some level of X-ray activity happening at all orbital phases. Conclusions: The X-ray behaviour of IGR J00370+6122 is reminiscent of "intermediate" supergiant X-ray transients, though its peak luminosity is rather low. The orbit is somewhat wider than those of classical persistent supergiant X-ray binaries, which when combined with the low luminosity of the mass donor, explains the low X-ray luminosity. IGR J00370+6122 will very likely evolve towards a persistent supergiant system, highlighting the evolutionary connection between different classes of wind-accreting X-ray sources.
Inestabilidad radiativa en un disco de acreción en sistemas binarios interactuantes
NASA Astrophysics Data System (ADS)
De Vito, M. A.; Benvenuto, O. G.; Horvath, J. E.
2016-08-01
Close binary systems are formed by a varied family of objects, in particular, the named redback systems, i.e. the donor star transfers material to the neutron star, putting it in an accretion disc surrounding this star. Later, this material falls on the neutron star. In the last years it was observed that some members of the redback family experienced transition from the state of low mass X-ray binary system to the pulsar state, and in the opposite way. The time scales associated with these transitions suggest that they are related to instabilities in the accretion disc. That fact motivates us to model the accretion disc around the neutron star in this kind of systems. We present our first results, associated with instabilities in the disc by irradiation of the neutron star.
A mysterious dust clump in a disk around an evolved binary star system.
Jura, M; Turner, J
1998-09-10
The discovery of planets in orbit around the pulsar PSR1257+12 shows that planets may form around post-main-sequence stars. Other evolved stars, such as HD44179 (an evolved star which is part of the binary system that has expelled the gas and dust that make the Red Rectangle nebula), possess gravitationally bound orbiting dust disks. It is possible that planets might form from gravitational collapse in such disks. Here we report high-angular-resolution observations at millimetre and submillimetre wavelengths of the dusk disk associated with the Red Rectangle. We find a dust clump with an estimated mass near that of Jupiter in the outer region of the disk. The clump is larger than our Solar System, and far beyond where planet formation would normally be expected, so its nature is at present unclear.
Orbital Parameters for the X-Ray Pulsar IGR J16393-4643
NASA Astrophysics Data System (ADS)
Thompson, Thomas W. J.; Tomsick, John A.; Rothschild, Richard E.; in't Zand, J. J. M.; Walter, Roland
2006-09-01
With recent and archival Rossi X-Ray Timing Explorer (RXTE) X-ray measurements of the heavily obscured X-ray pulsar IGR J16393-4643, we carried out a pulse timing analysis to determine the orbital parameters. Assuming a circular orbit, we phase-connected data spanning over 1.5 yr. The most likely orbital solution has a projected semimajor axis of 43+/-2 lt-s and an orbital period of 3.6875+/-0.0006 days. This implies a mass function of 6.5+/-1.1 Msolar and confirms that this INTEGRAL source is a high-mass X-ray binary (HMXB) system. By including eccentricity in the orbital model, we find e<0.25 at the 2 σ level. The 3.7 day orbital period and the previously known ~910 s pulse period place the system in the region of the Corbet diagram populated by supergiant wind accretors, and the low eccentricity is also consistent with this type of system. Finally, it should be noted that although the 3.7 day solution is the most likely one, we cannot completely rule out two other solutions with orbital periods of 50.2 and 8.1 days.
Approximation methods in gravitational-radiation theory
NASA Technical Reports Server (NTRS)
Will, C. M.
1986-01-01
The observation of gravitational-radiation damping in the binary pulsar PSR 1913 + 16 and the ongoing experimental search for gravitational waves of extraterrestrial origin have made the theory of gravitational radiation an active branch of classical general relativity. In calculations of gravitational radiation, approximation methods play a crucial role. Recent developments are summarized in two areas in which approximations are important: (a) the quadrupole approxiamtion, which determines the energy flux and the radiation reaction forces in weak-field, slow-motion, source-within-the-near-zone systems such as the binary pulsar; and (b) the normal modes of oscillation of black holes, where the Wentzel-Kramers-Brillouin approximation gives accurate estimates of the complex frequencies of the modes.
Millisecond Pulsars: The Gifts that Keep on Giving
NASA Astrophysics Data System (ADS)
Ransom, Scott M.
2011-01-01
There are about 2000 pulsars known, and while all of them as neutron stars are fascinating objects, the best and most exciting science comes from a very small percentage ( 1%) of exotic objects, most of which are millisecond pulsars (MSPs). These systems are notoriously hard to detect, yet their numbers have bloomed in the past 5-6 years via surveys using the world's largest radio telescopes and the Fermi Gamma-ray Space Telescope. Timing observations of these new MSPs as well as much improved monitoring of previously known MSPs are providing a wealth of science. In this talk I'll briefly cover 3 main areas in basic physics where systems like these are making an impact: strong-field tests of general relativity, the nature of matter at supra-nuclear densities, and the direct detection of gravitational waves (e.g. NANOGrav). In addition, several of the systems exhibit some very interesting astrophysics as well, including a transition from X-ray binary to MSP and a likely triple system that turned into an eccentric MSP binary.
A NuSTAR Observation of the Gamma-Ray Emitting Millisecond Pulsar PSR J1723–2837
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kong, A. K. H.; Hui, C. Y.; Takata, J.
We report on the first NuSTAR observation of the gamma-ray emitting millisecond pulsar binary PSR J1723–2837. X-ray radiation up to 79 keV is clearly detected, and the simultaneous NuSTAR and Swift spectrum is well described by an absorbed power law with a photon index of ∼1.3. We also find X-ray modulations in the 3–10, 10–20, 20–79, and 3–79 keV bands at the 14.8 hr binary orbital period. All of these are entirely consistent with previous X-ray observations below 10 keV. This new hard X-ray observation of PSR J1723–2837 provides strong evidence that the X-rays are from the intrabinary shock viamore » an interaction between the pulsar wind and the outflow from the companion star. We discuss how the NuSTAR observation constrains the physical parameters of the intrabinary shock model.« less
Gravitational-Wave Tests of General Relativity with Ground-Based Detectors and Pulsar-Timing Arrays.
Yunes, Nicolás; Siemens, Xavier
2013-01-01
This review is focused on tests of Einstein's theory of general relativity with gravitational waves that are detectable by ground-based interferometers and pulsar-timing experiments. Einstein's theory has been greatly constrained in the quasi-linear, quasi-stationary regime, where gravity is weak and velocities are small. Gravitational waves will allow us to probe a complimentary, yet previously unexplored regime: the non-linear and dynamical strong-field regime . Such a regime is, for example, applicable to compact binaries coalescing, where characteristic velocities can reach fifty percent the speed of light and gravitational fields are large and dynamical. This review begins with the theoretical basis and the predicted gravitational-wave observables of modified gravity theories. The review continues with a brief description of the detectors, including both gravitational-wave interferometers and pulsar-timing arrays, leading to a discussion of the data analysis formalism that is applicable for such tests. The review ends with a discussion of gravitational-wave tests for compact binary systems.
Prospects for gravitational wave astronomy with next generation large-scale pulsar timing arrays
NASA Astrophysics Data System (ADS)
Wang, Yan; Mohanty, Soumya D.
2018-02-01
Next generation radio telescopes, namely the Five-hundred-meter Aperture Spherical Telescope (FAST) and the Square Kilometer Array (SKA), will revolutionize the pulsar timing arrays (PTAs) based gravitational wave (GW) searches. We review some of the characteristics of FAST and SKA, and the resulting PTAs, that are pertinent to the detection of gravitational wave signals from individual supermassive black hole binaries.
Corrections and clarifications.
1994-01-21
The Research News article by Faye Flam about the 1993 physics Nobel Prize ("A prize for patient listening," 22 Oct., p. 507), awarded to Joseph Taylor and Russell Hulse for the discovery of a binary pulsar, incorrectly attributed key observations. The measurements implying that the pulsar is emitting gravitational waves were made by Taylor in collaboration with Joel Weisberg, Lee Fowler, and Peter McCulloch, not by Taylor and Hulse.
Pulsar searches of Fermi unassociated sources with the Effelsberg telescope
NASA Astrophysics Data System (ADS)
Barr, E. D.; Guillemot, L.; Champion, D. J.; Kramer, M.; Eatough, R. P.; Lee, K. J.; Verbiest, J. P. W.; Bassa, C. G.; Camilo, F.; Çelik, Ö.; Cognard, I.; Ferrara, E. C.; Freire, P. C. C.; Janssen, G. H.; Johnston, S.; Keith, M.; Lyne, A. G.; Michelson, P. F.; Parkinson, P. M. Saz; Ransom, S. M.; Ray, P. S.; Stappers, B. W.; Wood, K. S.
2013-02-01
Using the 100-m Effelsberg radio telescope operating at 1.36 GHz, we have performed a targeted radio pulsar survey of 289 unassociated γ-ray sources discovered by the Large Area Telescope (LAT) aboard the Fermi satellite and published in the 1FGL catalogue (Abdo et al. 2010a). This survey resulted in the discovery of millisecond pulsar J1745+1017, which resides in a short-period binary system with a low-mass companion, M_{c,{min}} ˜ 0.0137 M_{⊙}, indicative of `black widow' type systems. A 2-yr timing campaign has produced a refined radio ephemeris, accurate enough to allow for phase-folding of the LAT photons, resulting in the detection of a dual-peaked γ-ray light curve, proving that PSR J1745+1017 is the source responsible for the γ-ray emission seen in 1FGL J1745.5+1018 (2FGL J1745.6+1015; Nolan et al. 2012). We find the γ-ray spectrum of PSR J1745+1017 to be well modelled by an exponentially cut-off power law with cut-off energy 3.2 GeV and photon index 1.6. The observed sources are known to contain a further 10 newly discovered pulsars which were undetected in this survey. Our radio observations of these sources are discussed and in all cases limiting flux densities are calculated. The reasons behind the seemingly low yield of discoveries are also discussed.
Pulsar searches of Fermi unassociated sources with the Effelsberg telescope
Barr, E. D.; Guillemot, L.; Champion, D. J.; ...
2012-12-21
Using the 100-m Effelsberg radio telescope operating at 1.36 GHz, we have performed a targeted radio pulsar survey of 289 unassociated γ-ray sources discovered by the Large Area Telescope (LAT) aboard the Fermi satellite and published in the 1FGL catalogue (Abdo et al. 2010a). In addition, this survey resulted in the discovery of millisecond pulsar J1745+1017, which resides in a short-period binary system with a low-mass companion, M c,min~0.0137M⊙, indicative of ‘black widow’ type systems. A 2-yr timing campaign has produced a refined radio ephemeris, accurate enough to allow for phase-folding of the LAT photons, resulting in the detection ofmore » a dual-peaked γ-ray light curve, proving that PSR J1745+1017 is the source responsible for the γ-ray emission seen in 1FGL J1745.5+1018 (2FGL J1745.6+1015; Nolan et al. 2012). We find the γ-ray spectrum of PSR J1745+1017 to be well modelled by an exponentially cut-off power law with cut-off energy 3.2 GeV and photon index 1.6. The observed sources are known to contain a further 10 newly discovered pulsars which were undetected in this survey. Our radio observations of these sources are discussed and in all cases limiting flux densities are calculated. Lastly, the reasons behind the seemingly low yield of discoveries are also discussed.« less
Hiding in Plain Sight: The Low Mass Helium Star Companion of EL CVn
NASA Astrophysics Data System (ADS)
Gies, Douglas
2016-10-01
Binary stars with orbital periods of a decade or less are destined to interact during their evolution. The mass donor star among intermediate binaries may be stripped of its envelope by mass transfer to reveal its helium core. In cases that avoid merger, the low mass helium star will remain in a binary orbit but be lost in the glare of the mass gainer star.Thanks to photometric time series from Kepler and WASP, we now know of 27 such systems that are oriented to produce mutual eclipses. Althoughthe helium star companions are too small and faint in the optical bandfor spectroscopic detection, they contribute a larger fraction of the total flux in the ultraviolet. HST/COS measurements of one long period system, KOI-81, successfully detected the helium star's spectrum in the far-ultraviolet, leading to estimates of its mass and temperature. Here we propose to obtain new HST/COS FUV spectra of the prototype of this class of evolved binaries, EL CVn, and to determine the mass and physical properties of a star that barely escaped a merger.
Ho, Wynn C. G.; Ng, C. -Y.; Lyne, Andrew G.; ...
2016-09-22
The radio and gamma-ray pulsar PSR J2032+4127 was recently found to be in a decades-long orbit with the Be star MT91 213, with the pulsar moving rapidly towards periastron. This binary shares many similar characteristics with the previously unique binary system PSR B1259-63/LS 2883. Here in this paper, we describe radio, X-ray, and optical monitoring of PSR J2032+4127/MT91 213. Our extended orbital phase coverage in radio, supplemented with Fermi LAT gamma-ray data, allows us to update and refine the orbital period to 45–50 yr and time of periastron passage to 2017 November. We analyse archival and recent Chandra and Swiftmore » observations and show that PSR J2032+4127/MT91 213 is now brighter in X-rays by a factor of ~70 since 2002 and ~20 since 2010. While the pulsar is still far from periastron, this increase in X-rays is possibly due to collisions between pulsar and Be star winds. Optical observations of the Hα emission line of the Be star suggest that the size of its circumstellar disc may be varying by ~2 over time-scales as short as 1–2 months. In conclusion, multiwavelength monitoring of PSR J2032+4127/MT91 213 will continue through periastron passage, and the system should present an interesting test case and comparison to PSR B1259-63/LS 2883.« less
Initial Parameters of Neutron Stars
NASA Astrophysics Data System (ADS)
Popov, S. B.; Turolla, R.
2012-12-01
A subpopulation of neutron stars (NSs), known as central compact objects (CCOs) in supernova remnants, are suspected to be low-field objects basing on P - ṗ measurements for three of them. The birth rate of low-field NSs is probably comparable with the birth rate of normal radio pulsars. However, among compact objects in High-Mass X-ray Binaries (HMXBs) we do not see robust candidates for low-field NSs. We propose that this contradiction can be solved if magnetic fields of CCOs was buried due to strong fall-back, and then the field emerges on the time scale 104 -105 yrs.
High-Energy Astrophysics. American and Soviet Perspectives
NASA Technical Reports Server (NTRS)
Lewin, Walter H. G. (Editor); Clark, George W. (Editor); Sunyaev, Rashid A. (Editor); Trivers, Kathleen Kearney (Editor); Abramson, David M. (Editor)
1991-01-01
The proceedings of the American-Soviet high energy astrophysics workshop, which was held at the Institute for Space Research in Moscow and the Abastumani Laboratory and Observatory in the republic of Georgia from June 18 to July 1, 1989, is presented. Topics discussed at the workshop include the inflationary universe; the large scale structure of the universe, the diffuse x-ray background; gravitational lenses, quasars, and active galactic nuclei (AGNs); infrared galaxies (results from IRAS); Supernova 1987A; millisecond radio pulsars; quasi-periodic oscillations in the x-ray flux of low mass X-ray binaries; and gamma ray bursts.
Late evolution of very low mass X-ray binaries sustained by radiation from their primaries
NASA Technical Reports Server (NTRS)
Ruderman, M.; Shaham, J.; Tavani, M.; Eichler, D.
1989-01-01
The accretion-powered radiation from the X-ray pulsar system Her X-1 (McCray et al. 1982) is studied. The changes in the soft X-ray and gamma-ray flux and in the accompanying electron-positron wind are discussed. These are believed to be associated with the inward movement of the inner edge of the accretion disk corresponding to the boundary with the neutron star's corotating magnetosphere (Alfven radius). LMXB evolution which is self-sustained by secondary winds intercepting the radiation emitted near an LMXB neutron star is investigated as well.
Binary Populations and Stellar Dynamics in Young Clusters
NASA Astrophysics Data System (ADS)
Vanbeveren, D.; Belkus, H.; Van Bever, J.; Mennekens, N.
2008-06-01
We first summarize work that has been done on the effects of binaries on theoretical population synthesis of stars and stellar phenomena. Next, we highlight the influence of stellar dynamics in young clusters by discussing a few candidate UFOs (unconventionally formed objects) like intermediate mass black holes, η Car, ζ Pup, γ2 Velorum and WR 140.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Christodoulou, Dimitris M.; Laycock, Silas G. T.; Yang, Jun
We have combined the published observations of high-mass X-ray binary (HMXB) pulsars in the Magellanic Clouds with a new processing of the complete archival data sets from the XMM-Newton and Chandra observatories in an attempt to trace the lowest propeller line below which accretion to polar caps is inhibited by the centrifugal force and the pulsations from the most weakly magnetized pulsars cease. Previously published data reveal that some of the faster-spinning pulsars with spin periods of P {sub S} < 12 s, detected at relatively low X-ray luminosities L {sub X} , appear to define such a line inmore » the P {sub S} – L {sub X} diagram, characterized by a magnetic moment of μ = 3 × 10{sup 29} G cm{sup 3}. This value implies the presence of surface magnetic fields of B ≥ 3 × 10{sup 11} G in the compact objects of this class. Only a few quiescent HMXBs are found below the propeller line: LXP4.40 and SXP4.78, for which XMM-Newton and Chandra null detections respectively placed firm upper limits on their X-ray fluxes in deep quiescence; and A0538-66, for which many sub-Eddington detections have never measured any pulsations. On the other hand, the data from the XMM-Newton and Chandra archives show clearly that, during routine observation cycles, several sources have been detected below the propeller line in extremely faint, nonpulsating states that can be understood as the result of weak magnetospheric emission when accretion to the poles is centrifugally stalled or severely diminished. We also pay attention to the anomalous X-ray pulsar CXOU J010043.1-721134 that was reported in HMXB surveys. Its pulsations and locations near and above the propeller line indicate that this pulsar could be accreting from a fossil disk.« less
Regimes of Pulsar Pair Formation and Particle Energetics
NASA Technical Reports Server (NTRS)
Harding, Alice K.; Muslimov, Alexander G.; Zhang, Bing; White, Nicholas E. (Technical Monitor)
2002-01-01
We investigate the conditions required for the production of electron-positron pairs above a pulsar polar cap (PC) and the influence of pair production on the energetics of the primary particle acceleration. Assuming space-charge limited flow acceleration including the inertial frame-dragging effect, we allow both one-photon and two-photon pair production by either curvature radiation (CR) photons or photons resulting from inverse-Compton scattering of thermal photons from the PC by primary electrons. We find that,, while only the younger pulsars can produce pairs through CR, nearly all known radio pulsars are capable of producing pairs through non-resonant inverse-Compton scatterings. The effect of the neutron star equations of state on the pair death lines is explored. We show that pair production is facilitated in more compact stars and more a massive stars. Therefore accretion of mass by pulsars in binary systems may allow pair production in most of the millisecond purser population. We also find that two-photon pair production may be important in millisecond pursers if their surface temperatures are above approx. or equal to three million degrees K. Pursers that produce pairs through CRT wilt have their primary acceleration limited by the effect of screening of the electric field. In this regime, the high-energy luminosity should follow a L(sub HE) proportional to dot-E(sup 1/2, sub rot) dependence. The acceleration voltage drop in pursers that produce pairs only through inverse-Compton emission will not be limited by electric field screening. In this regime, the high-energy luminosity should follow a L(sub HE) proportional to dot-E(sub rot) dependence. Thus, older pursers will have significantly lower gamma-ray luminosity.
Identification of two new HMXBs in the LMC: an ˜2013 s pulsar and a probable SFXT
NASA Astrophysics Data System (ADS)
Vasilopoulos, G.; Maitra, C.; Haberl, F.; Hatzidimitriou, D.; Petropoulou, M.
2018-03-01
We report on the X-ray and optical properties of two high-mass X-ray binary systems located in the Large Magellanic Cloud (LMC). Based on the obtained optical spectra, we classify the massive companion as a supergiant star in both systems. Timing analysis of the X-ray events collected by XMM-Newton revealed the presence of coherent pulsations (spin period ˜2013 s) for XMMU J053108.3-690923 and fast flaring behaviour for XMMU J053320.8-684122. The X-ray spectra of both systems can be modelled sufficiently well by an absorbed power law, yielding hard spectra and high intrinsic absorption from the environment of the systems. Due to their combined X-ray and optical properties, we classify both systems as SgXRBs: the 19th confirmed X-ray pulsar and a probable supergiant fast X-ray transient in the LMC, the second such candidate outside our Galaxy.
IGR J170626143 is an Accreting Millisecond X-Ray Pulsar
NASA Technical Reports Server (NTRS)
Strohmayer, Tod E.; Keek, Laurens
2017-01-01
We present the discovery of 163.65 Hz X-ray pulsations from IGR J17062-6143 in the only observation obtained from the source with the Rossi X-ray Timing Explorer. This detection makes IGR J17062-6143 the lowest frequency accreting millisecond X-ray pulsar presently known. The pulsations are detected in the 2-12 keV band with an overall significance of 4.3sigma and an observed pulsed amplitude of 5.54% +/-0.67% (in this band). Both dynamic power spectral and coherent phase timing analysis indicate that the pulsation frequency is decreasing during the approx. =1.2 ks observation in a manner consistent with orbital motion of the neutron star. Because the observation interval is short, we cannot precisely measure the orbital period; however, periods shorter than 17 minutes are excluded at 90% confidence. For the range of acceptable circular orbits the inferred binary mass function substantially overlaps the observed range for the AMXP population as a whole.
Frequent bursts from the 11 Hz transient pulsar IGR J17480-2446
NASA Astrophysics Data System (ADS)
Chakraborty, Manoneeta; Mukherjee, Arunava; Bhattacharyya, S.
Accreted matter falling on the surface of the neutron star in a Low Mass X-ray Binary (LMXB) system gives rise to intense X-ray bursts originating from unstable thermonuclear conflagration and these bursts can be used as a tool to constrain the equation of state. A series of such X-ray bursts along with millihertz (mHz) quasi-periodic oscillations (QPOs) at the highest source luminosities were observed during the 2010 outburst of the transient LMXB pulsar IGR J17480--2446. The quite diverse burst properties compared to typical type-I bursts suggested them to be the type-II bursts originating from accretion disc instability. We show that the bursts are indeed of thermonuclear origin and thus confirm the quasi-stable burning model for mHz QPOs. Various properties of the bursts such as, peak flux, fluence, periodicity and duration, were highly dependent on the source spectral states and their variation over a large accretion rate range revealed the evolution of the burning process at different accretion rate regimes.
A SEARCH FOR VERY HIGH ENERGY GAMMA RAYS FROM THE MISSING LINK BINARY PULSAR J1023+0038 WITH VERITAS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aliu, E.; Archambault, S.; Archer, A.
2016-11-10
The binary millisecond radio pulsar PSR J1023+0038 exhibits many characteristics similar to the gamma-ray binary system PSR B1259–63/LS 2883, making it an ideal candidate for the study of high-energy nonthermal emission. It has been the subject of multiwavelength campaigns following the disappearance of the pulsed radio emission in 2013 June, which revealed the appearance of an accretion disk around the neutron star. We present the results of very high energy (VHE) gamma-ray observations carried out by the Very Energetic Radiation Imaging Telescope Array System before and after this change of state. Searches for steady and pulsed emission of both datamore » sets yield no significant gamma-ray signal above 100 GeV, and upper limits are given for both a steady and pulsed gamma-ray flux. These upper limits are used to constrain the magnetic field strength in the shock region of the PSR J1023+0038 system. Assuming that VHE gamma rays are produced via an inverse Compton mechanism in the shock region, we constrain the shock magnetic field to be greater than ∼2 G before the disappearance of the radio pulsar and greater than ∼10 G afterward.« less
NASA Astrophysics Data System (ADS)
Taylor, Stephen R.; Simon, Joseph; Sampson, Laura
2017-01-01
The final parsec of supermassive black-hole binary evolution is subject to the complex interplay of stellar loss-cone scattering, circumbinary disk accretion, and gravitational-wave emission, with binary eccentricity affected by all of these. The strain spectrum of gravitational-waves in the pulsar-timing band thus encodes rich information about the binary population's response to these various environmental mechanisms. Current spectral models have heretofore followed basic analytic prescriptions, and attempt to investigate these final-parsec mechanisms in an indirect fashion. Here we describe a new technique to directly probe the environmental properties of supermassive black-hole binaries through "Bayesian model-emulation". We perform black-hole binary population synthesis simulations at a restricted set of environmental parameter combinations, compute the strain spectra from these, then train a Gaussian process to learn the shape of the spectrum at any point in parameter space. We describe this technique, demonstrate its efficacy with a program of simulated datasets, then illustrate its power by directly constraining final-parsec physics in a Bayesian analysis of the NANOGrav 5-year dataset. The technique is fast, flexible, and robust.
NASA Astrophysics Data System (ADS)
Taylor, Stephen; Simon, Joseph; Sampson, Laura
2017-01-01
The final parsec of supermassive black-hole binary evolution is subject to the complex interplay of stellar loss-cone scattering, circumbinary disk accretion, and gravitational-wave emission, with binary eccentricity affected by all of these. The strain spectrum of gravitational-waves in the pulsar-timing band thus encodes rich information about the binary population's response to these various environmental mechanisms. Current spectral models have heretofore followed basic analytic prescriptions, and attempt to investigate these final-parsec mechanisms in an indirect fashion. Here we describe a new technique to directly probe the environmental properties of supermassive black-hole binaries through ``Bayesian model-emulation''. We perform black-hole binary population synthesis simulations at a restricted set of environmental parameter combinations, compute the strain spectra from these, then train a Gaussian process to learn the shape of spectrum at any point in parameter space. We describe this technique, demonstrate its efficacy with a program of simulated datasets, then illustrate its power by directly constraining final-parsec physics in a Bayesian analysis of the NANOGrav 5-year dataset. The technique is fast, flexible, and robust.
Coherent variability of GX 1+4
NASA Astrophysics Data System (ADS)
Nielsen, Ann-Sofie Bak; Patruno, Alessandro
2018-06-01
The accreting pulsar GX 1+4 is a symbiotic X-ray binary system with a M-type giant star companion. The system has a spin period of about 150 s and a proposed strong magnetic field of 1012-1014G. In this paper we study the coherent variability of the source and attempt to find a phase-coherent solution for the pulsar. We also test for the presence of a pulse phase - flux correlation, similar to what is observed for the accreting millisecond X-ray pulsars, in order to test whether this feature is dependent on the magnetic field strength. We find that no phase coherent solution exists which suggests that the pulsar is accreting plasma from a wind rather than an accretion disc. We also find evidence that the pulse phase is not correlated with the X-ray flux, which strengthens the idea that such relation might be present only in weak magnetic field sources like accreting millisecond pulsars.
In what sense a neutron star-black hole binary is the holy grail for testing gravity?
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bagchi, Manjari; Torres, Diego F., E-mail: manjari.bagchi@icts.res.in, E-mail: dtorres@ieec.uab.es
2014-08-01
Pulsars in binary systems have been very successful to test the validity of general relativity in the strong field regime [1-4]. So far, such binaries include neutron star-white dwarf (NS-WD) and neutron star-neutron star (NS-NS) systems. It is commonly believed that a neutron star-black hole (NS-BH) binary will be much superior for this purpose. But in what sense is this true? Does it apply to all possible deviations?.
Simultaneous X-Ray/Ultraviolet Timing of 4U 1626-67
NASA Technical Reports Server (NTRS)
Chakrabarty, Deepto
2003-01-01
The science results from our observation have been published (Chakrabarty et al. 2001, ApJ, 562, 985). We detected large-amplitude 0.3- 1.2 mHz quasi-periodic oscillations (QPOs) from the low-mass X-ray binary pulsar 4U 1626--67, using ultraviolet photometry from the Hubble Space Telescope and ground-based optical photometry. These 1 mHz QPOs, which have coherence (nu/Delta_nu) = 8, are entirely distinct from the 130 mHz pulsar spin frequency, a previously known 48 mHz QPO, and the 42 min binary period (independently confirmed here). Unlike the 48 mHz and 130 mHz oscillations which are present in both the optical/UV and the X-ray emission, the 1 mHz QPOs are not detected in simultaneous observations with the X-Ray Timing Explorer. The rms amplitude of the mHz QPO decreases from 15% in the far UV to 3% in the optical, while the upper limit on a corresponding X-ray QPO is as low as 0.8\\%. We suggest that the mHz oscillations are due to warping of the inner accretion disk. We also report the detection of coherent upper and lower sidebands of the 130 mHz optical pulsations, with unequal amplitude and a spacing of 1.93 mHz around the main pulsation. The origin of these sidebands remains unclear.
The core mass-radius relation for giants - A new test of stellar evolution theory
NASA Technical Reports Server (NTRS)
Joss, P. C.; Rappaport, S.; Lewis, W.
1987-01-01
It is demonstrated here that the measurable properties of systems containing degenerate dwarfs can be used as a direct test of the core mass-radius relation for moderate-mass giants if the final stages of the loss of the envelope of the progenitor giant occurred via stable critical lobe overflow. This relation directly probes the internal structure of stars at a relatively advanced evolutionary state and is only modestly influenced by adjustable parameters. The measured properties of six binary systems, including such diverse systems as Sirius and Procyon and two millisecond pulsars, are utilized to derive constraints on the empirical core mass-radius relation, and the constraints are compared to the theoretical relation. The possibility that the final stages of envelope ejection of the giant progenitor of Sirius B occurred via critical lobe overflow in historical times is considered.
Parkes radio searches of Fermi gamma-ray sources and millisecond pulsar discoveries
DOE Office of Scientific and Technical Information (OSTI.GOV)
Camilo, F.; Kerr, M.; Ray, P. S.
In a search with the Parkes radio telescope of 56 unidentified Fermi-Large Area Telescope (LAT) gamma-ray sources, we have detected 11 millisecond pulsars (MSPs), 10 of them discoveries, of which five were reported by Kerr et al. We did not detect radio pulsations from six other pulsars now known in these sources. We also describe the completed survey, which included multiple observations of many targets conducted to minimize the impact of interstellar scintillation, acceleration effects in binary systems, and eclipses. We consider that 23 of the 39 remaining sources may still be viable pulsar candidates. Furthermore, we present timing solutions and polarimetry for five of the MSPs and gamma-ray pulsations for PSR J1903–7051 (pulsations for five others were reported in the second Fermi-LAT catalog of gamma-ray pulsars). Two of the new MSPs are isolated and five are inmore » $$\\gt 1$$ day circular orbits with 0.2–0.3 $${M}_{\\odot }$$ presumed white dwarf companions. PSR J0955–6150, in a 24 day orbit with a $$\\approx 0.25$$ $${M}_{\\odot }$$ companion but eccentricity of 0.11, belongs to a recently identified class of eccentric MSPs. PSR J1036–8317 is in an 8 hr binary with a $$\\gt 0.14$$ $${M}_{\\odot }$$ companion that is probably a white dwarf. PSR J1946–5403 is in a 3 hr orbit with a $$\\gt 0.02$$ $${M}_{\\odot }$$ companion with no evidence of radio eclipses.« less
Parkes radio searches of Fermi gamma-ray sources and millisecond pulsar discoveries
Camilo, F.; Kerr, M.; Ray, P. S.; ...
2015-09-02
In a search with the Parkes radio telescope of 56 unidentified Fermi-Large Area Telescope (LAT) gamma-ray sources, we have detected 11 millisecond pulsars (MSPs), 10 of them discoveries, of which five were reported by Kerr et al. We did not detect radio pulsations from six other pulsars now known in these sources. We also describe the completed survey, which included multiple observations of many targets conducted to minimize the impact of interstellar scintillation, acceleration effects in binary systems, and eclipses. We consider that 23 of the 39 remaining sources may still be viable pulsar candidates. Furthermore, we present timing solutions and polarimetry for five of the MSPs and gamma-ray pulsations for PSR J1903–7051 (pulsations for five others were reported in the second Fermi-LAT catalog of gamma-ray pulsars). Two of the new MSPs are isolated and five are inmore » $$\\gt 1$$ day circular orbits with 0.2–0.3 $${M}_{\\odot }$$ presumed white dwarf companions. PSR J0955–6150, in a 24 day orbit with a $$\\approx 0.25$$ $${M}_{\\odot }$$ companion but eccentricity of 0.11, belongs to a recently identified class of eccentric MSPs. PSR J1036–8317 is in an 8 hr binary with a $$\\gt 0.14$$ $${M}_{\\odot }$$ companion that is probably a white dwarf. PSR J1946–5403 is in a 3 hr orbit with a $$\\gt 0.02$$ $${M}_{\\odot }$$ companion with no evidence of radio eclipses.« less
Evidence for a Variable Ultrafast Outflow in the Newly Discovered Ultraluminous Pulsar NGC 300 ULX-1
NASA Astrophysics Data System (ADS)
Kosec, P.; Pinto, C.; Walton, D. J.; Fabian, A. C.; Bachetti, M.; Brightman, M.; Fürst, F.; Grefenstette, B. W.
2018-06-01
Ultraluminous pulsars are a definite proof that persistent super-Eddington accretion occurs in nature. They support the scenario according to which most Ultraluminous X-ray Sources (ULXs) are super-Eddington accretors of stellar mass rather than sub-Eddington intermediate mass black holes. An important prediction of theories of supercritical accretion is the existence of powerful outflows of moderately ionized gas at mildly relativistic speeds. In practice, the spectral resolution of X-ray gratings such as RGS onboard XMM-Newton is required to resolve their observational signatures in ULXs. Using RGS, outflows have been discovered in the spectra of 3 ULXs (none of which are currently known to be pulsars). Most recently, the fourth ultraluminous pulsar was discovered in NGC 300. Here we report detection of an ultrafast outflow (UFO) in the X-ray spectrum of the object, with a significance of more than 3σ, during one of the two simultaneous observations of the source by XMM-Newton and NuSTAR in December 2016. The outflow has a projected velocity of 65000 km/s (0.22c) and a high ionisation factor with a log value of 3.9. This is the first direct evidence for a UFO in a neutron star ULX and also the first time that this its evidence in a ULX spectrum is seen in both soft and hard X-ray data simultaneously. We find no evidence of the UFO during the other observation of the object, which could be explained by either clumpy nature of the absorber or a slight change in our viewing angle of the accretion flow.
Solar System and stellar tests of a quantum-corrected gravity
NASA Astrophysics Data System (ADS)
Zhao, Shan-Shan; Xie, Yi
2015-09-01
The renormalization group running of the gravitational constant has a universal form and represents a possible extension of general relativity. These renormalization group effects on general relativity will cause the running of the gravitational constant, and there exists a scale of renormalization α ν , which depends on the mass of an astronomical system and needs to be determined by observations. We test renormalization group effects on general relativity and obtain the upper bounds of α ν in the low-mass scales: the Solar System and five systems of binary pulsars. Using the supplementary advances of the perihelia provided by INPOP10a (IMCCE, France) and EPM2011 (IAA RAS, Russia) ephemerides, we obtain new upper bounds on α ν in the Solar System when the Lense-Thirring effect due to the Sun's angular momentum and the uncertainty of the Sun's quadrupole moment are properly taken into account. These two factors were absent in the previous work. We find that INPOP10a yields the upper bound as α ν =(0.3 ±2.8 )×10-20 while EPM2011 gives α ν =(-2.5 ±8.3 )×10-21. Both of them are tighter than the previous result by 4 orders of magnitude. Furthermore, based on the observational data sets of five systems of binary pulsars: PSR J 0737 -3039 , PSR B 1534 +12 , PSR J 1756 -2251 , PSR B 1913 +16 , and PSR B 2127 +11 C , the upper bound is found as α ν =(-2.6 ±5.1 )×10-17. From the bounds of this work at a low-mass scale and the ones at the mass scale of galaxies, we might catch an updated glimpse of the mass dependence of α ν , and it is found that our improvement of the upper bounds in the Solar System can significantly change the possible pattern of the relation between log |α ν | and log m from a linear one to a power law, where m is the mass of an astronomical system. This suggests that |α ν | needs to be suppressed more rapidly with the decrease of the mass of low-mass systems. It also predicts that |α ν | might have an upper limit in high-mass astrophysical systems, which can be tested in the future.
MAXI J1957+032: An Accreting Neutron Star Possibly in a Triple System
NASA Astrophysics Data System (ADS)
Ravi, V.
2017-12-01
I present an optical characterization of the Galactic X-ray transient source MAXI J1957+032. This system flares by a factor of ≳104 every few hundred days, with each flare lasting ∼5 days. I identify its quiescent counterpart to be a late-K/early-M dwarf star at a distance of 5 ± 2 kpc. This implies that the peak 0.5{--}10 {keV} luminosity of the system is {10}36.4+/- 0.4 erg s‑1. As found by Mata Sanchez et al. the outburst properties of MAXI J1957+032 are most consistent with the sample of accreting millisecond pulsars. However, the low inferred accretion rate, and the lack of evidence for a hydrogen-rich accretion flow, are difficult to reconcile with the late-K/early-M dwarf counterpart being the mass donor. Instead, the observations are best described by a low-mass hydrogen- and possibly helium-poor mass donor, such as a carbon–oxygen white dwarf, forming a tight interacting binary with a neutron star. The observed main-sequence counterpart would then likely be in a wide orbit around the inner binary.
Observations of Accreting Pulsars
NASA Technical Reports Server (NTRS)
Bildsten, Lars; Chakrabarty, Deepto; Chiu, John; Finger, Mark H.; Koh, Danny T.; Nelson, Robert W.; Prince, Thomas A.; Rubin, Bradley C.; Scott, D. Matthew; Stollberg, Mark;
1997-01-01
We summarize 5 years of continuous monitoring of accretion-powered pulsars with the Burst and Transient Source Experiment (BATSE) on the Compton Gamma Ray Observatory. Our 20-70 keV observations have determined or refined the orbital parameters of 13 binaries, discovered five new transient accreting pulsars, measured the pulsed flux history during outbursts of 12 transients (GRO J1744-28, 4U 0115+634, GRO J1750-27, GS 0834-430, 2S 1417-624, GRO J1948+32, EXO 2030+375, GRO J1008-57, A0535+26, GRO J2058+42, 4U 1145-619, and A1118-616), and also measured the accretion torque history during outbursts of six of those transients whose orbital param- eters were also known. We have also continuously measured the pulsed flux and spin frequency for eiaht persistently accreting pulsars (Her X-1, Cen X-3, Vela X-1, OAO 1657-415, GX 301-2, 4U 1626-67, 4U 1538-52, and GX 1+4). Because of their continuity and uniformity over a long baseline, BATSE observations have provided new insights into the long-term behavior of accreting magnetic neutron stars. We have found that all accreting pulsars show stochastic variations in their spin frequencies and luminosities, including those displaying secular spin-up or spin-down on long timescales, which blurs the con- ventional distinction between disk-fed and wind-fed binaries. Pulsed flux and accretion torque are strongly correlated in outbursts of transient accreting pulsars but are uncorrelated, or even anti- correlated, in persistent sources. We describe daily folded pulse profiles, frequency, and flux measurements that are available through the Compton Observatory Science Support Center at NASA/Goddard Space Flight Center.
NASA Astrophysics Data System (ADS)
Perera, B. B. P.; Stappers, B. W.; Babak, S.; Keith, M. J.; Antoniadis, J.; Bassa, C. G.; Caballero, R. N.; Champion, D. J.; Cognard, I.; Desvignes, G.; Graikou, E.; Guillemot, L.; Janssen, G. H.; Karuppusamy, R.; Kramer, M.; Lazarus, P.; Lentati, L.; Liu, K.; Lyne, A. G.; McKee, J. W.; Osłowski, S.; Perrodin, D.; Sanidas, S. A.; Sesana, A.; Shaifullah, G.; Theureau, G.; Verbiest, J. P. W.; Taylor, S. R.
2018-07-01
We search for continuous gravitational waves (CGWs) produced by individual supermassive black hole binaries in circular orbits using high-cadence timing observations of PSR J1713+0747. We observe this millisecond pulsar using the telescopes in the European Pulsar Timing Array with an average cadence of approximately 1.6 d over the period between 2011 April and 2015 July, including an approximately daily average between 2013 February and 2014 April. The high-cadence observations are used to improve the pulsar timing sensitivity across the gravitational wave frequency range of 0.008-5μHz. We use two algorithms in the analysis, including a spectral fitting method and a Bayesian approach. For an independent comparison, we also use a previously published Bayesian algorithm. We find that the Bayesian approaches provide optimal results and the timing observations of the pulsar place a 95 per cent upper limit on the sky-averaged strain amplitude of CGWs to be ≲3.5 × 10-13 at a reference frequency of 1 μHz. We also find a 95 per cent upper limit on the sky-averaged strain amplitude of low-frequency CGWs to be ≲1.4 × 10-14 at a reference frequency of 20 nHz.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bogdanov, Slavko
I present a 40 ks Nuclear Spectroscopic Telescope Array observation of the recently identified low-luminosity X-ray binary and transitional millisecond pulsar (tMSP) candidate 1RXS J154439.4 112820, which is associated with the high-energy γ -ray source 3FGL J1544.6 1125. The system is detected up to ∼30 keV with an extension of the same power-law spectrum and rapid large-amplitude variability between two flux levels observed in soft X-rays. These findings provide further evidence that 1RXS J154439.4 112820 belongs to the same class of objects as the nearby bona fide tMSPs PSR J1023+0038 and XSS J12270 4859 and therefore almost certainly hosts amore » millisecond pulsar accreting at low luminosity. I also examine the long-term accretion history of 1RXS J154439.4 112820 based on archival optical, ultraviolet, X-ray, and γ -ray light curves covering approximately the past decade. Throughout this period, the source has maintained similar flux levels at all wavelengths, which is an indication that it has not experienced prolonged episodes of a non-accreting radio pulsar state but may spontaneously undergo such events in the future.« less
NASA Astrophysics Data System (ADS)
Perera, B. B. P.; Stappers, B. W.; Babak, S.; Keith, M. J.; Antoniadis, J.; Bassa, C. G.; Caballero, R. N.; Champion, D. J.; Cognard, I.; Desvignes, G.; Graikou, E.; Guillemot, L.; Janssen, G. H.; Karuppusamy, R.; Kramer, M.; Lazarus, P.; Lentati, L.; Liu, K.; Lyne, A. G.; McKee, J. W.; Osłowski, S.; Perrodin, D.; Sanidas, S. A.; Sesana, A.; Shaifullah, G.; Theureau, G.; Verbiest, J. P. W.; Taylor, S. R.
2018-05-01
We search for continuous gravitational waves (CGWs) produced by individual super-massive black-hole binaries (SMBHBs) in circular orbits using high-cadence timing observations of PSR J1713+0747. We observe this millisecond pulsar using the telescopes in the European Pulsar Timing Array (EPTA) with an average cadence of approximately 1.6 days over the period between April 2011 and July 2015, including an approximately daily average between February 2013 and April 2014. The high-cadence observations are used to improve the pulsar timing sensitivity across the GW frequency range of 0.008 - 5 μHz. We use two algorithms in the analysis, including a spectral fitting method and a Bayesian approach. For an independent comparison, we also use a previously published Bayesian algorithm. We find that the Bayesian approaches provide optimal results and the timing observations of the pulsar place a 95 per cent upper limit on the sky-averaged strain amplitude of CGWs to be ≲ 3.5 × 10-13 at a reference frequency of 1 μHz. We also find a 95 per cent upper limit on the sky-averaged strain amplitude of low-frequency CGWs to be ≲ 1.4 × 10-14 at a reference frequency of 20 nHz.
NASA Astrophysics Data System (ADS)
Swiggum, Joseph Karl
Using the ensemble of detections from pulsar surveys, we can learn about the sizes and characteristics of underlying populations. In this thesis, I analyze results from the Pulsar Arecibo L-band Feed Array (PALFA) precursor and Green Bank Telescope 350 MHz Drift Scan surveys; I examine survey sensitivity to see how detections can inform pulsar population models, I look at new ways of including young scientists -- high school students -- in the discovery process and I present timing solutions for students' discoveries (including a nearby millisecond pulsar and a pulsar in a wide-orbit double neutron star system). The PALFA survey is on-going and uses the ALFA 7-beam receiver at 1400 MHz to search both inner and outer Galactic sectors visible from Arecibo (32° ?£? 77° and 168° ?£? 214°) close to the Galactic plane (|b| ? 5°) for pulsars. The PALFA precursor survey observed a subset of this region, (|b| ? 1°) and detected 45 pulsars, including one known millisecond pulsar (MSP) and 11 previously unknown, long-period (normal) pulsars. I assess the sensitivity of the PALFA precursor survey and use the number of normal pulsar and MSP detections to infer the size of each underlying Galactic population. Based on 44 normal pulsar detections and one MSP, we constrain each population size to 107,000+36,000-25,000 and 15,000 +85,000-6,000 respectively with 95% confidence. Based on these constraints, we predict yields for the full PALFA survey and find a deficiency in normal pulsar detections, possibly due to radio frequency interference and/or scintillation, neither of which are currently accounted for in population simulations. The GBT 350 MHz Drift Scan survey collected data in the summer of 2007 while the GBT was stationary, undergoing track replacement. Results discussed here come from ~20% of the survey data, which were processed and donated to the Pulsar Search Collaboratory (PSC). The PSC is a joint outreach program between WVU and NRAO, involving high school students in the pulsar discovery process -- hands-on, cutting-edge research -- to foster their interest in pursuing Science, Technology, Engineering and Mathematics (STEM) related career paths. The PSC began in 2008; since then, over 100 teachers and 2,500 students from 18 states have participated and discovered seven pulsars. Of these seven, J1400--1431, a bright, nearby MSP shows promising characteristics for inclusion in pulsar timing arrays, which aim to detect gravitational waves by precisely timing an array of MSPs. Two others -- J1821+0155, a disrupted recycled pulsar and J1930--1852 show interesting properties due to interactions with binary companions. PSR J1930--1852 is a partially-recycled, first-to-evolve pulsar in a double neutron star (DNS) system with a high-eccentricity 45 day orbit. Its spin period and orbital period are factors of 2 and 3 higher, respectively, than any previously-known, primary DNS pulsars. We measure the relativistic advance of periastron o=0.00078(4), implying a total system mass of Mtot =2.59(4), which is consistent with other DNS systems. PSR J1930--1852's spin and orbital parameters, however, challenge current DNS evolution models, making it an important system for further investigation.
Thermal Timescale Mass Transfer In Binary Population Synthesis
NASA Astrophysics Data System (ADS)
Justham, S.; Kolb, U.
2004-07-01
Studies of binary evolution have, until recently, neglected thermal timescale mass transfer (TTMT). Recent work has suggested that this previously poorly studied area is crucial in the understanding of systems across the compact binary spectrum. We use the state-of-the-art binary population synthesis code BiSEPS (Willems and Kolb, 2002, MNRAS 337 1004-1016). However, the present treatment of TTMT is incomplete due to the nonlinear behaviour of stars in their departure from gravothermal `equilibrium'. Here we show work that should update the ultrafast stellar evolution algorithms within BiSEPS to make it the first pseudo-analytic code that can follow TTMT properly. We have generated fits to a set of over 300 Case B TTMT sequences with a range of intermediate-mass donors. These fits produce very good first approximations to both HR diagrams and mass-transfer rates (see figures 1 and 2), which we later hope to improve and extend. They are already a significant improvement over the previous fits.
NASA Astrophysics Data System (ADS)
Aasi, J.; Abbott, B. P.; Abbott, R.; Abbott, T.; Abernathy, M. R.; Accadia, T.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R. X.; Affeldt, C.; Agathos, M.; Aggarwal, N.; Aguiar, O. D.; Ain, A.; Ajith, P.; Alemic, A.; Allen, B.; Allocca, A.; Amariutei, D.; Andersen, M.; Anderson, R.; Anderson, S. B.; Anderson, W. G.; Arai, K.; Araya, M. C.; Arceneaux, C.; Areeda, J.; Aston, S. M.; Astone, P.; Aufmuth, P.; Aulbert, C.; Austin, L.; Aylott, B. E.; Babak, S.; Baker, P. T.; Ballardin, G.; Ballmer, S. W.; Barayoga, J. C.; Barbet, M.; Barish, B. C.; Barker, D.; Barone, F.; Barr, B.; Barsotti, L.; Barsuglia, M.; Barton, M. A.; Bartos, I.; Bassiri, R.; Basti, A.; Batch, J. C.; Bauchrowitz, J.; Bauer, Th. S.; Bavigadda, V.; Behnke, B.; Bejger, M.; Beker, M. G.; Belczynski, C.; Bell, A. S.; Bell, C.; Bergmann, G.; Bersanetti, D.; Bertolini, A.; Betzwieser, J.; Beyersdorf, P. T.; Bilenko, I. A.; Billingsley, G.; Birch, J.; Biscans, S.; Bitossi, M.; Bizouard, M. A.; Black, E.; Blackburn, J. K.; Blackburn, L.; Blair, D.; Bloemen, S.; Blom, M.; Bock, O.; Bodiya, T. P.; Boer, M.; Bogaert, G.; Bogan, C.; Bond, C.; Bondu, F.; Bonelli, L.; Bonnand, R.; Bork, R.; Born, M.; Boschi, V.; Bose, Sukanta; Bosi, L.; Bradaschia, C.; Brady, P. R.; Braginsky, V. B.; Branchesi, M.; Brau, J. E.; Briant, T.; Bridges, D. O.; Brillet, A.; Brinkmann, M.; Brisson, V.; Brooks, A. F.; Brown, D. A.; Brown, D. D.; Brückner, F.; Buchman, S.; Bulik, T.; Bulten, H. J.; Buonanno, A.; Burman, R.; Buskulic, D.; Buy, C.; Cadonati, L.; Cagnoli, G.; Calderón Bustillo, J.; Calloni, E.; Camp, J. B.; Campsie, P.; Cannon, K. C.; Canuel, B.; Cao, J.; Capano, C. D.; Carbognani, F.; Carbone, L.; Caride, S.; Castiglia, A.; Caudill, S.; Cavaglià, M.; Cavalier, F.; Cavalieri, R.; Celerier, C.; Cella, G.; Cepeda, C.; Cesarini, E.; Chakraborty, R.; Chalermsongsak, T.; Chamberlin, S. J.; Chao, S.; Charlton, P.; Chassande-Mottin, E.; Chen, X.; Chen, Y.; Chincarini, A.; Chiummo, A.; Cho, H. S.; Chow, J.; Christensen, N.; Chu, Q.; Chua, S. S. Y.; Chung, S.; Ciani, G.; Clara, F.; Clark, J. A.; Cleva, F.; Coccia, E.; Cohadon, P.-F.; Colla, A.; Collette, C.; Colombini, M.; Cominsky, L.; Constancio, M.; Conte, A.; Cook, D.; Corbitt, T. R.; Cordier, M.; Cornish, N.; Corpuz, A.; Corsi, A.; Costa, C. A.; Coughlin, M. W.; Coughlin, S.; Coulon, J.-P.; Countryman, S.; Couvares, P.; Coward, D. M.; Cowart, M.; Coyne, D. C.; Coyne, R.; Craig, K.; Creighton, J. D. E.; Crowder, S. G.; Cumming, A.; Cunningham, L.; Cuoco, E.; Dahl, K.; Canton, T. Dal; Damjanic, M.; Danilishin, S. L.; D'Antonio, S.; Danzmann, K.; Dattilo, V.; Daveloza, H.; Davier, M.; Davies, G. S.; Daw, E. J.; Day, R.; Dayanga, T.; Debreczeni, G.; Degallaix, J.; Deléglise, S.; Del Pozzo, W.; Denker, T.; Dent, T.; Dereli, H.; Dergachev, V.; De Rosa, R.; DeRosa, R. T.; DeSalvo, R.; Dhurandhar, S.; Díaz, M.; Di Fiore, L.; Di Lieto, A.; Di Palma, I.; Di Virgilio, A.; Donath, A.; Donovan, F.; Dooley, K. L.; Doravari, S.; Dossa, S.; Douglas, R.; Downes, T. P.; Drago, M.; Drever, R. W. P.; Driggers, J. C.; Du, Z.; Ducrot, M.; Dwyer, S.; Eberle, T.; Edo, T.; Edwards, M.; Effler, A.; Eggenstein, H.; Ehrens, P.; Eichholz, J.; Eikenberry, S. S.; Endrőczi, G.; Essick, R.; Etzel, T.; Evans, M.; Evans, T.; Factourovich, M.; Fafone, V.; Fairhurst, S.; Fang, Q.; Farinon, S.; Farr, B.; Farr, W. M.; Favata, M.; Fehrmann, H.; Fejer, M. M.; Feldbaum, D.; Feroz, F.; Ferrante, I.; Ferrini, F.; Fidecaro, F.; Finn, L. S.; Fiori, I.; Fisher, R. P.; Flaminio, R.; Fournier, J.-D.; Franco, S.; Frasca, S.; Frasconi, F.; Frede, M.; Frei, Z.; Freise, A.; Frey, R.; Fricke, T. T.; Fritschel, P.; Frolov, V. V.; Fulda, P.; Fyffe, M.; Gair, J.; Gammaitoni, L.; Gaonkar, S.; Garufi, F.; Gehrels, N.; Gemme, G.; Genin, E.; Gennai, A.; Ghosh, S.; Giaime, J. A.; Giardina, K. D.; Giazotto, A.; Gill, C.; Gleason, J.; Goetz, E.; Goetz, R.; Gondan, L.; González, G.; Gordon, N.; Gorodetsky, M. L.; Gossan, S.; Goßler, S.; Gouaty, R.; Gräf, C.; Graff, P. B.; Granata, M.; Grant, A.; Gras, S.; Gray, C.; Greenhalgh, R. J. S.; Gretarsson, A. M.; Groot, P.; Grote, H.; Grover, K.; Grunewald, S.; Guidi, G. M.; Guido, C.; Gushwa, K.; Gustafson, E. K.; Gustafson, R.; Hammer, D.; Hammond, G.; Hanke, M.; Hanks, J.; Hanna, C.; Hanson, J.; Harms, J.; Harry, G. M.; Harry, I. W.; Harstad, E. D.; Hart, M.; Hartman, M. T.; Haster, C.-J.; Haughian, K.; Heidmann, A.; Heintze, M.; Heitmann, H.; Hello, P.; Hemming, G.; Hendry, M.; Heng, I. S.; Heptonstall, A. W.; Heurs, M.; Hewitson, M.; Hild, S.; Hoak, D.; Hodge, K. A.; Holt, K.; Hooper, S.; Hopkins, P.; Hosken, D. J.; Hough, J.; Howell, E. J.; Hu, Y.; Huerta, E.; Hughey, B.; Husa, S.; Huttner, S. H.; Huynh, M.; Huynh-Dinh, T.; Ingram, D. R.; Inta, R.; Isogai, T.; Ivanov, A.; Iyer, B. R.; Izumi, K.; Jacobson, M.; James, E.; Jang, H.; Jaranowski, P.; Ji, Y.; Jiménez-Forteza, F.; Johnson, W. W.; Jones, D. I.; Jones, R.; Jonker, R. J. G.; Ju, L.; K, Haris; Kalmus, P.; Kalogera, V.; Kandhasamy, S.; Kang, G.; Kanner, J. B.; Karlen, J.; Kasprzack, M.; Katsavounidis, E.; Katzman, W.; Kaufer, H.; Kawabe, K.; Kawazoe, F.; Kéfélian, F.; Keiser, G. M.; Keitel, D.; Kelley, D. B.; Kells, W.; Khalaidovski, A.; Khalili, F. Y.; Khazanov, E. A.; Kim, C.; Kim, K.; Kim, N. G.; Kim, N.; Kim, Y.-M.; King, E. J.; King, P. J.; Kinzel, D. L.; Kissel, J. S.; Klimenko, S.; Kline, J.; Koehlenbeck, S.; Kokeyama, K.; Kondrashov, V.; Koranda, S.; Korth, W. Z.; Kowalska, I.; Kozak, D. B.; Kremin, A.; Kringel, V.; Krishnan, B.; Królak, A.; Kuehn, G.; Kumar, A.; Kumar, P.; Kumar, R.; Kuo, L.; Kutynia, A.; Kwee, P.; Landry, M.; Lantz, B.; Larson, S.; Lasky, P. D.; Lawrie, C.; Lazzarini, A.; Lazzaro, C.; Leaci, P.; Leavey, S.; Lebigot, E. O.; Lee, C.-H.; Lee, H. K.; Lee, H. M.; Lee, J.; Leonardi, M.; Leong, J. R.; Le Roux, A.; Leroy, N.; Letendre, N.; Levin, Y.; Levine, B.; Lewis, J.; Li, T. G. F.; Libbrecht, K.; Libson, A.; Lin, A. C.; Littenberg, T. B.; Litvine, V.; Lockerbie, N. A.; Lockett, V.; Lodhia, D.; Loew, K.; Logue, J.; Lombardi, A. L.; Lorenzini, M.; Loriette, V.; Lormand, M.; Losurdo, G.; Lough, J.; Lubinski, M. J.; Lück, H.; Luijten, E.; Lundgren, A. P.; Lynch, R.; Ma, Y.; Macarthur, J.; Macdonald, E. P.; MacDonald, T.; Machenschalk, B.; MacInnis, M.; Macleod, D. M.; Magana-Sandoval, F.; Mageswaran, M.; Maglione, C.; Mailand, K.; Majorana, E.; Maksimovic, I.; Malvezzi, V.; Man, N.; Manca, G. M.; Mandel, I.; Mandic, V.; Mangano, V.; Mangini, N.; Mantovani, M.; Marchesoni, F.; Marion, F.; Márka, S.; Márka, Z.; Markosyan, A.; Maros, E.; Marque, J.; Martelli, F.; Martin, I. W.; Martin, R. M.; Martinelli, L.; Martynov, D.; Marx, J. N.; Mason, K.; Masserot, A.; Massinger, T. J.; Matichard, F.; Matone, L.; Matzner, R. A.; Mavalvala, N.; Mazumder, N.; Mazzolo, G.; McCarthy, R.; McClelland, D. E.; McGuire, S. C.; McIntyre, G.; McIver, J.; McLin, K.; Meacher, D.; Meadors, G. D.; Mehmet, M.; Meidam, J.; Meinders, M.; Melatos, A.; Mendell, G.; Mercer, R. A.; Meshkov, S.; Messenger, C.; Meyers, P.; Miao, H.; Michel, C.; Mikhailov, E. E.; Milano, L.; Milde, S.; Miller, J.; Minenkov, Y.; Mingarelli, C. M. F.; Mishra, C.; Mitra, S.; Mitrofanov, V. P.; Mitselmakher, G.; Mittleman, R.; Moe, B.; Moesta, P.; Moggi, A.; Mohan, M.; Mohapatra, S. R. P.; Moraru, D.; Moreno, G.; Morgado, N.; Morriss, S. R.; Mossavi, K.; Mours, B.; Mow-Lowry, C. M.; Mueller, C. L.; Mueller, G.; Mukherjee, S.; Mullavey, A.; Munch, J.; Murphy, D.; Murray, P. G.; Mytidis, A.; Nagy, M. F.; Nanda Kumar, D.; Nardecchia, I.; Naticchioni, L.; Nayak, R. K.; Necula, V.; Nelemans, G.; Neri, I.; Neri, M.; Newton, G.; Nguyen, T.; Nitz, A.; Nocera, F.; Nolting, D.; Normandin, M. E. N.; Nuttall, L. K.; Ochsner, E.; O'Dell, J.; Oelker, E.; Oh, J. J.; Oh, S. H.; Ohme, F.; Oppermann, P.; O'Reilly, B.; O'Shaughnessy, R.; Osthelder, C.; Ottaway, D. J.; Ottens, R. S.; Overmier, H.; Owen, B. J.; Padilla, C.; Pai, A.; Palashov, O.; Palomba, C.; Pan, H.; Pan, Y.; Pankow, C.; Paoletti, F.; Papa, M. A.; Paris, H.; Pasqualetti, A.; Passaquieti, R.; Passuello, D.; Pedraza, M.; Penn, S.; Perreca, A.; Phelps, M.; Pichot, M.; Pickenpack, M.; Piergiovanni, F.; Pierro, V.; Pinard, L.; Pinto, I. M.; Pitkin, M.; Poeld, J.; Poggiani, R.; Poteomkin, A.; Powell, J.; Prasad, J.; Premachandra, S.; Prestegard, T.; Price, L. R.; Prijatelj, M.; Privitera, S.; Prodi, G. A.; Prokhorov, L.; Puncken, O.; Punturo, M.; Puppo, P.; Qin, J.; Quetschke, V.; Quintero, E.; Quiroga, G.; Quitzow-James, R.; Raab, F. J.; Rabeling, D. S.; Rácz, I.; Radkins, H.; Raffai, P.; Raja, S.; Rajalakshmi, G.; Rakhmanov, M.; Ramet, C.; Ramirez, K.; Rapagnani, P.; Raymond, V.; Re, V.; Read, J.; Reed, C. M.; Regimbau, T.; Reid, S.; Reitze, D. H.; Rhoades, E.; Ricci, F.; Riles, K.; Robertson, N. A.; Robinet, F.; Rocchi, A.; Rodruck, M.; Rolland, L.; Rollins, J. G.; Romano, R.; Romanov, G.; Romie, J. H.; Rosińska, D.; Rowan, S.; Rüdiger, A.; Ruggi, P.; Ryan, K.; Salemi, F.; Sammut, L.; Sandberg, V.; Sanders, J. R.; Sannibale, V.; Santiago-Prieto, I.; Saracco, E.; Sassolas, B.; Sathyaprakash, B. S.; Saulson, P. R.; Savage, R.; Scheuer, J.; Schilling, R.; Schnabel, R.; Schofield, R. M. S.; Schreiber, E.; Schuette, D.; Schutz, B. F.; Scott, J.; Scott, S. M.; Sellers, D.; Sengupta, A. S.; Sentenac, D.; Sequino, V.; Sergeev, A.; Shaddock, D.; Shah, S.; Shahriar, M. S.; Shaltev, M.; Shapiro, B.; Shawhan, P.; Shoemaker, D. H.; Sidery, T. L.; Siellez, K.; Siemens, X.; Sigg, D.; Simakov, D.; Singer, A.; Singer, L.; Singh, R.; Sintes, A. M.; Slagmolen, B. J. J.; Slutsky, J.; Smith, J. R.; Smith, M.; Smith, R. J. E.; Smith-Lefebvre, N. D.; Son, E. J.; Sorazu, B.; Souradeep, T.; Staley, A.; Stebbins, J.; Steinlechner, J.; Steinlechner, S.; Stephens, B. C.; Steplewski, S.; Stevenson, S.; Stone, R.; Stops, D.; Strain, K. A.; Straniero, N.; Strigin, S.; Sturani, R.; Stuver, A. L.; Summerscales, T. Z.; Susmithan, S.; Sutton, P. J.; Swinkels, B.; Tacca, M.; Talukder, D.; Tanner, D. B.; Tarabrin, S. P.; Taylor, R.; ter Braack, A. P. M.; Thirugnanasambandam, M. P.; Thomas, M.; Thomas, P.; Thorne, K. A.; Thorne, K. S.; Thrane, E.; Tiwari, V.; Tokmakov, K. V.; Tomlinson, C.; Tonelli, M.; Torres, C. V.; Torrie, C. I.; Travasso, F.; Traylor, G.; Tse, M.; Ugolini, D.; Unnikrishnan, C. S.; Urban, A. L.; Urbanek, K.; Vahlbruch, H.; Vajente, G.; Valdes, G.; Vallisneri, M.; van Beuzekom, M.; van den Brand, J. F. J.; Van Den Broeck, C.; van der Putten, S.; van der Sluys, M. V.; van Heijningen, J.; van Veggel, A. A.; Vass, S.; Vasúth, M.; Vaulin, R.; Vecchio, A.; Vedovato, G.; Veitch, J.; Veitch, P. J.; Venkateswara, K.; Verkindt, D.; Verma, S. S.; Vetrano, F.; Viceré, A.; Vincent-Finley, R.; Vinet, J.-Y.; Vitale, S.; Vo, T.; Vocca, H.; Vorvick, C.; Vousden, W. D.; Vyachanin, S. P.; Wade, A.; Wade, L.; Wade, M.; Walker, M.; Wallace, L.; Wang, M.; Wang, X.; Ward, R. L.; Was, M.; Weaver, B.; Wei, L.-W.; Weinert, M.; Weinstein, A. J.; Weiss, R.; Welborn, T.; Wen, L.; Wessels, P.; West, M.; Westphal, T.; Wette, K.; Whelan, J. T.; White, D. J.; Whiting, B. F.; Wiesner, K.; Wilkinson, C.; Williams, K.; Williams, L.; Williams, R.; Williams, T.; Williamson, A. R.; Willis, J. L.; Willke, B.; Wimmer, M.; Winkler, W.; Wipf, C. C.; Wiseman, A. G.; Wittel, H.; Woan, G.; Worden, J.; Yablon, J.; Yakushin, I.; Yamamoto, H.; Yancey, C. C.; Yang, H.; Yang, Z.; Yoshida, S.; Yvert, M.; ZadroŻny, A.; Zanolin, M.; Zendri, J.-P.; Zhang, Fan; Zhang, L.; Zhao, C.; Zhu, X. J.; Zucker, M. E.; Zuraw, S.; Zweizig, J.; LIGO Scientific Collaboration; Virgo Collaboration
2014-06-01
This paper reports on an unmodeled, all-sky search for gravitational waves from merging intermediate mass black hole binaries (IMBHB). The search was performed on data from the second joint science run of the LIGO and Virgo detectors (July 2009-October 2010) and was sensitive to IMBHBs with a range up to ˜200 Mpc, averaged over the possible sky positions and inclinations of the binaries with respect to the line of sight. No significant candidate was found. Upper limits on the coalescence-rate density of nonspinning IMBHBs with total masses between 100 and 450 M⊙ and mass ratios between 0.25 and 1 were placed by combining this analysis with an analogous search performed on data from the first LIGO-Virgo joint science run (November 2005-October 2007). The most stringent limit was set for systems consisting of two 88 M⊙ black holes and is equal to 0.12 Mpc-3 Myr-1 at the 90% confidence level. This paper also presents the first estimate, for the case of an unmodeled analysis, of the impact on the search range of IMBHB spin configurations: the visible volume for IMBHBs with nonspinning components is roughly doubled for a population of IMBHBs with spins aligned with the binary's orbital angular momentum and uniformly distributed in the dimensionless spin parameter up to 0.8, whereas an analogous population with antialigned spins decreases the visible volume by ˜20%.
A dynamical approach in exploring the unknown mass in the Solar system using pulsar timing arrays
NASA Astrophysics Data System (ADS)
Guo, Y. J.; Lee, K. J.; Caballero, R. N.
2018-04-01
The error in the Solar system ephemeris will lead to dipolar correlations in the residuals of pulsar timing array for widely separated pulsars. In this paper, we utilize such correlated signals, and construct a Bayesian data-analysis framework to detect the unknown mass in the Solar system and to measure the orbital parameters. The algorithm is designed to calculate the waveform of the induced pulsar-timing residuals due to the unmodelled objects following the Keplerian orbits in the Solar system. The algorithm incorporates a Bayesian-analysis suit used to simultaneously analyse the pulsar-timing data of multiple pulsars to search for coherent waveforms, evaluate the detection significance of unknown objects, and to measure their parameters. When the object is not detectable, our algorithm can be used to place upper limits on the mass. The algorithm is verified using simulated data sets, and cross-checked with analytical calculations. We also investigate the capability of future pulsar-timing-array experiments in detecting the unknown objects. We expect that the future pulsar-timing data can limit the unknown massive objects in the Solar system to be lighter than 10-11-10-12 M⊙, or measure the mass of Jovian system to a fractional precision of 10-8-10-9.
Astronomers Discover Fastest-Spinning Pulsar
NASA Astrophysics Data System (ADS)
2006-01-01
Astronomers using the National Science Foundation's Robert C. Byrd Green Bank Telescope have discovered the fastest-spinning neutron star ever found, a 20-mile-diameter superdense pulsar whirling faster than the blades of a kitchen blender. Their work yields important new information about the nature of one of the most exotic forms of matter known in the Universe. Pulsar Graphic Pulsars Are Spinning Neutron Stars CREDIT: Bill Saxton, NRAO/AUI/NSF (Click on image for larger version) "We believe that the matter in neutron stars is denser than an atomic nucleus, but it is unclear by how much. Our observations of such a rapidly rotating star set a hard upper limit on its size, and hence on how dense the star can be.," said Jason Hessels, a graduate student at McGill University in Montreal. Hessels and his colleagues presented their findings to the American Astronomical Society's meeting in Washington, DC. Pulsars are spinning neutron stars that sling "lighthouse beams" of radio waves or light around as they spin. A neutron star is what is left after a massive star explodes at the end of its "normal" life. With no nuclear fuel left to produce energy to offset the stellar remnant's weight, its material is compressed to extreme densities. The pressure squeezes together most of its protons and electrons to form neutrons; hence, the name "neutron star." "Neutron stars are incredible laboratories for learning about the physics of the fundamental particles of nature, and this pulsar has given us an important new limit," explained Scott Ransom, an astronomer at the National Radio Astronomy Observatory and one of Hessels' collaborators on this work. The scientists discovered the pulsar, named PSR J1748-2446ad, in a globular cluster of stars called Terzan 5, located some 28,000 light-years from Earth in the constellation Sagittarius. The newly-discovered pulsar is spinning 716 times per second, or at 716 Hertz (Hz), readily beating the previous record of 642 Hz from a pulsar discovered in 1982. For reference, the fastest speeds of common kitchen blenders are 250-500 Hz. The scientists say the object's fast rotation speed means that it cannot be any larger than about 20 miles across. According to Hessels, "If it were any larger, material from the surface would be flung into orbit around the star." The scientists' calculation assumed that the neutron star contains less than two times the mass of the Sun, an assumption that is consistent with the masses of all known neutron stars. The spinning pulsar has a companion star that orbits it once every 26 hours. The companion passes in front of the pulsar, eclipsing the pulsar about 40 percent of the time. The long eclipse period, probably due to bloating of the companion, makes it difficult for the astronomers to learn details of the orbital configuration that would allow them to precisely measure the masses of the pulsar and its companion. "If we could pin down these masses more precisely, we could then get a better limit on the size of the pulsar. That, in turn, would then give us a better figure for the true density inside the neutron star," explained Ingrid Stairs, an assistant professor at the University of British Columbia and another collaborator on the work. Competing theoretical models for the types and distributions of elementary particles inside neutron stars make widely different predictions about the pressure and density of such an object. "We want observational data that shows which models fit the reality of nature," Hessels said. If the scientists can't use PSR J1748-2446ad to do that, they are hopeful some of its near neighbors will yield the data they seek. Using the GBT, the astronomers so far have found 30 new fast "millisecond pulsars" in the cluster Terzan 5, making 33 pulsars known in the cluster in total. This is the largest number of such pulsars ever found in a single globular cluster. Dense globular clusters of stars are excellent places to find fast-rotating millisecond pulsars. Giant stars explode as supernovae and leave rotating pulsars which gradually slow down. However, if a pulsar has a companion star from which it can draw material, that incoming material imparts its spin, or angular momentum, to the pulsar. As a result, the pulsar spins faster. "In a dense cluster, interactions between the stars will create more binary pairs that can yield more fast-rotating pulsars," Ransom said. The great sensitivity of the giant, 100-meter diameter GBT, along with a special signal processor, called the Pulsar Spigot, made possible the discovery of so many millisecond pulsars in Terzan 5. "We think there are many more pulsars to be found in Terzan 5 and other clusters, and given that the fast ones are often hidden by eclipses, some of them may be spinning even faster than this new one," Ransom said. "We're excited about using this outstanding new telescope to answer some important questions about fundamental physics," he said. In addition to Hessels, Ransom and Stairs, the research team includes Paulo Freire of Arecibo Observatory in Puerto Rico, Victoria Kaspi, of McGill University, and Fernando Camilo, of Columbia University. Their report is being published in Science Express, the online version of the journal Science. The National Radio Astronomy Observatory is a facility of the National Science Foundation, operated under cooperative agreement by Associated Universities, Inc. The pulsar research also was supported by the Canada Foundation for Innovation, the Natural Sciences and Engineering Research Council of Canada, the Quebec Foundation for Research on Nature and Technology, the Canadian Institute for Advanced Research, the Canada Research Chairs Program, and the National Science Foundation..
NASA Astrophysics Data System (ADS)
De Vito, M. A.; Benvenuto, O. G.
In the last years, and thanks to advances in observational techniques, many astronomers have discovered in a great number of binary radio-pulsars the presence of a helium white dwarf resulting from a previous evolutionary state in which the progenitor of this star experienced one or more episodes of mass transfer to the compact component in the pair. That is the case for PSR B1855+09 (van Kerkwijk, M. H., Bell, J. F, Kaspi, V. M., & Kulkarni, S. R. 2000, ApJ 530, L37), where the mass for the white dwarf is known accurately from measurements of the Shapiro delay of the pulsar signal, MWD = 0.258+0.028-0.016 M⊙; for PSR J02018 + 4232 (Bassa, C. G., van Kerkwijk, M. H., & Kulkarni, S. R. 2003, A&A, 403, 1067), the spectra confirm that the companion is a helium-core white dwarf of ≈ 0.2 M⊙. On the other hand, there are several authors (Ferraro, F., Possenti, A., Sabbi, E., & D'Amico, N. 2003, ApJ, 596, L211; Bassa et al. 2003) that have identified the optical binary companion to the BMSP PSR J1911 - 5958A, located in the halo of the Galactic globular cluster NGC 6752, like a blue star whose position in the color-magnitude diagram is consistent with the cooling sequence of a low-mass, ≈ 0.17 - 0.20 M⊙, low metallicity helium white dwarf at the cluster distance. Finally, the color and magnitude of the stellar companion for B 1620-26 indicate that is a white dwarf of 0.34 ± 0.04 M⊙ (Sigurdson, S., Richer, H. B., Hansen, B. M., Stairs, I. H. & Thorset, S. E. 2003, Science, 301, 193S). This has motivated us to study the formation of low mass helium white dwarfs in the context of binary evolution. For that purpose, using the code of binary evolution, entirely developed in the Facultad de Ciencias Astronómicas y Geofísicas of the Universidad Nacional de La Plata, Argentina, we have investigated the effects of diffusive processes on the evolution of a star member of a close binary system. A similar study was performed for Althaus, L. G., Serenelli, A. M., & Benvenuto, O. G. (2001, MNRAS, 323, 471) but in that paper the mass transfer was mimicked by subtracting mass to a progenitor of 1 M⊙ to obtain the mass for the desired object. Actually, our binary code has a full nuclear reactions network for hydrogen and helium burning that allowed us to follow the abundances of fifteen isotopes throughout the entire evolution of the star. We have also included a detailed equation of state. The mass loss treatment is non conservative. We have modified the conditions for the beginning and end of mass transfer episodes. In our previous version, we assumed it to occur when the stellar radius was greater or smaller, respectively, that the Roche Lobe radius for the star. This introduced numerical problems, especially at the end of mass transfer phases. We adopted H. Ritter (1988, A&A, 202, 93) formulation that considers a finite scale height in the stellar atmosphere. The numerical behaviour in much more satisfactory, besides that it constitutes a more appropriate description for the physical problem. We perform the calculations for the evolution of the primary star in a close binary system of initial mass 2 M⊙, initial period of 1 day, initial mass ratio of 1.4142 and solar metallicity. We have done the calculations in four cases: A) with diffusion and all Roche Lobe overflows, B) with diffusion and only the first Roche Lobe overflow, C) without diffusion and all Roche Lobe overflows, D) without diffusion and only the first Roche Lobe overflow. Cases B) and D) where performed to compare with results obtained for Althaus et al. (2001). The main conclusion of this work is that the age of these objects is mainly determined by diffusive effects, and the late stages of mass transfer, not considered in Althaus et al. (2001), constituted a minor effect on the scales of cooling times.
HST images of the eclipsing pulsar B1957+20
NASA Technical Reports Server (NTRS)
Fruchter, Andrew S.; Bookbinder, Jay; Bailyn, Charles D.
1995-01-01
We have obtained images of the eclipsing pulsar binary PSR B1957+20 using the Planetary Camera of the Hubble Space Telescope (HST). The high spatial resolution of this instrument has allowed us to separate the pulsar system from a nearby background star which has confounded ground-based observations of this system near optical minimum. Our images limit the temperature of the backside of the companion to T less than or approximately = 2800 K, about a factor of 2 less than the average temperature of the side of the companion facing the pulsar, and provide a marginal detection of the companion at optical minimum. The magnitude of this detection is consistent with previous work which suggests that the companion nearly fills its Roche lobe and is supported through tidal dissipation.
The NANOGrav 11-year Data Set: High-precision Timing of 45 Millisecond Pulsars
NASA Astrophysics Data System (ADS)
Arzoumanian, Zaven; Brazier, Adam; Burke-Spolaor, Sarah; Chamberlin, Sydney; Chatterjee, Shami; Christy, Brian; Cordes, James M.; Cornish, Neil J.; Crawford, Fronefield; Thankful Cromartie, H.; Crowter, Kathryn; DeCesar, Megan E.; Demorest, Paul B.; Dolch, Timothy; Ellis, Justin A.; Ferdman, Robert D.; Ferrara, Elizabeth C.; Fonseca, Emmanuel; Garver-Daniels, Nathan; Gentile, Peter A.; Halmrast, Daniel; Huerta, E. A.; Jenet, Fredrick A.; Jessup, Cody; Jones, Glenn; Jones, Megan L.; Kaplan, David L.; Lam, Michael T.; Lazio, T. Joseph W.; Levin, Lina; Lommen, Andrea; Lorimer, Duncan R.; Luo, Jing; Lynch, Ryan S.; Madison, Dustin; Matthews, Allison M.; McLaughlin, Maura A.; McWilliams, Sean T.; Mingarelli, Chiara; Ng, Cherry; Nice, David J.; Pennucci, Timothy T.; Ransom, Scott M.; Ray, Paul S.; Siemens, Xavier; Simon, Joseph; Spiewak, Renée; Stairs, Ingrid H.; Stinebring, Daniel R.; Stovall, Kevin; Swiggum, Joseph K.; Taylor, Stephen R.; Vallisneri, Michele; van Haasteren, Rutger; Vigeland, Sarah J.; Zhu, Weiwei; The NANOGrav Collaboration
2018-04-01
We present high-precision timing data over time spans of up to 11 years for 45 millisecond pulsars observed as part of the North American Nanohertz Observatory for Gravitational Waves (NANOGrav) project, aimed at detecting and characterizing low-frequency gravitational waves. The pulsars were observed with the Arecibo Observatory and/or the Green Bank Telescope at frequencies ranging from 327 MHz to 2.3 GHz. Most pulsars were observed with approximately monthly cadence, and six high-timing-precision pulsars were observed weekly. All were observed at widely separated frequencies at each observing epoch in order to fit for time-variable dispersion delays. We describe our methods for data processing, time-of-arrival (TOA) calculation, and the implementation of a new, automated method for removing outlier TOAs. We fit a timing model for each pulsar that includes spin, astrometric, and (for binary pulsars) orbital parameters; time-variable dispersion delays; and parameters that quantify pulse-profile evolution with frequency. The timing solutions provide three new parallax measurements, two new Shapiro delay measurements, and two new measurements of significant orbital-period variations. We fit models that characterize sources of noise for each pulsar. We find that 11 pulsars show significant red noise, with generally smaller spectral indices than typically measured for non-recycled pulsars, possibly suggesting a different origin. A companion paper uses these data to constrain the strength of the gravitational-wave background.
Constraints on interquark interaction parameters with GW170817 in a binary strange star scenario
NASA Astrophysics Data System (ADS)
Zhou, En-Ping; Zhou, Xia; Li, Ang
2018-04-01
The LIGO/VIRGO detection of the gravitational waves from a binary merger system, GW170817, has put a clean and strong constraint on the tidal deformability of the merging objects. From this constraint, deep insights can be obtained in compact star equation of states, which has been one of the most puzzling problems for nuclear physicists and astrophysicists. Employing one of the most widely used quark star EOS models, we characterize the star properties by the strange quark mass (ms ), an effective bag constant (Beff), the perturbative QCD correction (a4), as well as the gap parameter (Δ ) when considering quark pairing, and investigate the dependences of the tidal deformablity on them. We find that the tidal deformability is dominated by Beff and insensitive to ms, a4. We discuss the correlation between the tidal deformability and the maximum mass (MTOV) of a static quark star, which allows the model possibility to rule out the existence of quark stars with future gravitational wave observations and mass measurements. The current tidal deformability measurement implies MTOV≤2.18 M⊙ (2.32 M⊙ when pairing is considered) for quark stars. Combining with two-solar-mass pulsar observations, we also make constraints on the poorly known gap parameter Δ for color-flavor-locked quark matter.
Massive Black Hole Binary Mergers and their Gravitational Waves
NASA Astrophysics Data System (ADS)
Kelley, Luke Zoltan; Blecha, Laura; Hernquist, Lars; Sesana, Alberto
2017-01-01
Gravitational Waves (GW) from stellar-mass BH binaries have recently been observed by LIGO, but GW from their supermassive counterparts have remained elusive. Recent upper limits from Pulsar Timing Arrays (PTA) have excluded significant portions of the predicted parameter space. Most previous studies, however, have assumed that most or all Massive Black Hole (MBH) Binaries merge effectively and quickly. I will present results derived—for the first time—from cosmological, hydrodynamic simulations with self-consistently coevolved populations of MBH particles. We perform post-processing simulations of the MBH merger process, using realistic galactic environments, including models of dynamical friction, stellar scattering, gas drag from a circumbinary disk, and GW emission—with no assumptions of merger fractions or timescales. We find that despite only the most massive systems merging effectively (and still on gigayear timescales), the GW Background is only just below current detection limits with PTA. Our models suggest that PTA should make detections within the next decade, and will provide information about MBH binary populations, environments, and even eccentricities. I’ll also briefly discuss prospects for observations of dual-AGN, and the possible importance of MBH triples in the merger process.
NASA Astrophysics Data System (ADS)
Aasi, J.; Abbott, B. P.; Abbott, R.; Abbott, T.; Abernathy, M. R.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R. X.; Affeldt, C.; Agathos, M.; Aggarwal, N.; Aguiar, O. D.; Ain, A.; Ajith, P.; Alemic, A.; Allen, B.; Allocca, A.; Amariutei, D.; Andersen, M.; Anderson, R.; Anderson, S. B.; Anderson, W. G.; Arai, K.; Araya, M. C.; Arceneaux, C.; Areeda, J.; Aston, S. M.; Astone, P.; Aufmuth, P.; Aulbert, C.; Austin, L.; Aylott, B. E.; Babak, S.; Baker, P. T.; Ballardin, G.; Ballmer, S. W.; Barayoga, J. C.; Barbet, M.; Barish, B. C.; Barker, D.; Barone, F.; Barr, B.; Barsotti, L.; Barsuglia, M.; Barton, M. A.; Bartos, I.; Bassiri, R.; Basti, A.; Batch, J. C.; Bauchrowitz, J.; Bauer, Th. S.; Bavigadda, V.; Behnke, B.; Bejger, M.; Beker, M. G.; Belczynski, C.; Bell, A. S.; Bell, C.; Benacquista, M.; Bergmann, G.; Bersanetti, D.; Bertolini, A.; Betzwieser, J.; Beyersdorf, P. T.; Bilenko, I. A.; Billingsley, G.; Birch, J.; Biscans, S.; Bitossi, M.; Bizouard, M. A.; Black, E.; Blackburn, J. K.; Blackburn, L.; Blair, D.; Bloemen, S.; Bock, O.; Bodiya, T. P.; Boer, M.; Bogaert, G.; Bogan, C.; Bond, C.; Bondu, F.; Bonelli, L.; Bonnand, R.; Bork, R.; Born, M.; Boschi, V.; Bose, Sukanta; Bosi, L.; Bradaschia, C.; Brady, P. R.; Braginsky, V. B.; Branchesi, M.; Brau, J. E.; Briant, T.; Bridges, D. O.; Brillet, A.; Brinkmann, M.; Brisson, V.; Brooks, A. F.; Brown, D. A.; Brown, D. D.; Brückner, F.; Buchman, S.; Bulik, T.; Bulten, H. J.; Buonanno, A.; Burman, R.; Buskulic, D.; Buy, C.; Cadonati, L.; Cagnoli, G.; Bustillo, J. Calderón; Calloni, E.; Camp, J. B.; Campsie, P.; Cannon, K. C.; Canuel, B.; Cao, J.; Capano, C. D.; Carbognani, F.; Carbone, L.; Caride, S.; Castiglia, A.; Caudill, S.; Cavaglià, M.; Cavalier, F.; Cavalieri, R.; Celerier, C.; Cella, G.; Cepeda, C.; Cesarini, E.; Chakraborty, R.; Chalermsongsak, T.; Chamberlin, S. J.; Chao, S.; Charlton, P.; Chassande-Mottin, E.; Chen, X.; Chen, Y.; Chincarini, A.; Chiummo, A.; Cho, H. S.; Chow, J.; Christensen, N.; Chu, Q.; Chua, S. S. Y.; Chung, S.; Ciani, G.; Clara, F.; Clark, J. A.; Cleva, F.; Coccia, E.; Cohadon, P.-F.; Colla, A.; Collette, C.; Colombini, M.; Cominsky, L.; Constancio, M.; Conte, A.; Cook, D.; Corbitt, T. R.; Cordier, M.; Cornish, N.; Corpuz, A.; Corsi, A.; Costa, C. A.; Coughlin, M. W.; Coughlin, S.; Coulon, J.-P.; Countryman, S.; Couvares, P.; Coward, D. M.; Cowart, M.; Coyne, D. C.; Coyne, R.; Craig, K.; Creighton, J. D. E.; Crowder, S. G.; Cumming, A.; Cunningham, L.; Cuoco, E.; Dahl, K.; Canton, T. Dal; Damjanic, M.; Danilishin, S. L.; D'Antonio, S.; Danzmann, K.; Dattilo, V.; Daveloza, H.; Davier, M.; Davies, G. S.; Daw, E. J.; Day, R.; Dayanga, T.; Debreczeni, G.; Degallaix, J.; Deléglise, S.; Del Pozzo, W.; Denker, T.; Dent, T.; Dereli, H.; Dergachev, V.; De Rosa, R.; DeRosa, R. T.; DeSalvo, R.; Dhurandhar, S.; Díaz, M.; Di Fiore, L.; Di Lieto, A.; Di Palma, I.; Di Virgilio, A.; Dolique, V.; Donath, A.; Donovan, F.; Dooley, K. L.; Doravari, S.; Dossa, S.; Douglas, R.; Downes, T. P.; Drago, M.; Drever, R. W. P.; Driggers, J. C.; Du, Z.; Ducrot, M.; Dwyer, S.; Eberle, T.; Edo, T.; Edwards, M.; Effler, A.; Eggenstein, H.; Ehrens, P.; Eichholz, J.; Eikenberry, S. S.; Endrőczi, G.; Essick, R.; Etzel, T.; Evans, M.; Evans, T.; Factourovich, M.; Fafone, V.; Fairhurst, S.; Fang, Q.; Farinon, S.; Farr, B.; Farr, W. M.; Favata, M.; Fehrmann, H.; Fejer, M. M.; Feldbaum, D.; Feroz, F.; Ferrante, I.; Ferrini, F.; Fidecaro, F.; Finn, L. S.; Fiori, I.; Fisher, R. P.; Flaminio, R.; Fournier, J.-D.; Franco, S.; Frasca, S.; Frasconi, F.; Frede, M.; Frei, Z.; Freise, A.; Frey, R.; Fricke, T. T.; Fritschel, P.; Frolov, V. V.; Fulda, P.; Fyffe, M.; Gair, J.; Gammaitoni, L.; Gaonkar, S.; Garufi, F.; Gehrels, N.; Gemme, G.; Gendre, B.; Genin, E.; Gennai, A.; Ghosh, S.; Giaime, J. A.; Giardina, K. D.; Giazotto, A.; Gill, C.; Gleason, J.; Goetz, E.; Goetz, R.; Goggin, L. M.; Gondan, L.; González, G.; Gordon, N.; Gorodetsky, M. L.; Gossan, S.; Goßler, S.; Gouaty, R.; Gräf, C.; Graff, P. B.; Granata, M.; Grant, A.; Gras, S.; Gray, C.; Greenhalgh, R. J. S.; Gretarsson, A. M.; Groot, P.; Grote, H.; Grover, K.; Grunewald, S.; Guidi, G. M.; Guido, C.; Gushwa, K.; Gustafson, E. K.; Gustafson, R.; Hammer, D.; Hammond, G.; Hanke, M.; Hanks, J.; Hanna, C.; Hanson, J.; Harms, J.; Harry, G. M.; Harry, I. W.; Harstad, E. D.; Hart, M.; Hartman, M. T.; Haster, C.-J.; Haughian, K.; Heidmann, A.; Heintze, M.; Heitmann, H.; Hello, P.; Hemming, G.; Hendry, M.; Heng, I. S.; Heptonstall, A. W.; Heurs, M.; Hewitson, M.; Hild, S.; Hoak, D.; Hodge, K. A.; Holt, K.; Hooper, S.; Hopkins, P.; Hosken, D. J.; Hough, J.; Howell, E. J.; Hu, Y.; Huerta, E.; Hughey, B.; Husa, S.; Huttner, S. H.; Huynh, M.; Huynh-Dinh, T.; Ingram, D. R.; Inta, R.; Isogai, T.; Ivanov, A.; Iyer, B. R.; Izumi, K.; Jacobson, M.; James, E.; Jang, H.; Jaranowski, P.; Ji, Y.; Jiménez-Forteza, F.; Johnson, W. W.; Jones, D. I.; Jones, R.; Jonker, R. J. G.; Ju, L.; K, Haris; Kalmus, P.; Kalogera, V.; Kandhasamy, S.; Kang, G.; Kanner, J. B.; Karlen, J.; Kasprzack, M.; Katsavounidis, E.; Katzman, W.; Kaufer, H.; Kawabe, K.; Kawazoe, F.; Kéfélian, F.; Keiser, G. M.; Keitel, D.; Kelley, D. B.; Kells, W.; Khalaidovski, A.; Khalili, F. Y.; Khazanov, E. A.; Kim, C.; Kim, K.; Kim, N.; Kim, N. G.; Kim, Y.-M.; King, E. J.; King, P. J.; Kinzel, D. L.; Kissel, J. S.; Klimenko, S.; Kline, J.; Koehlenbeck, S.; Kokeyama, K.; Kondrashov, V.; Koranda, S.; Korth, W. Z.; Kowalska, I.; Kozak, D. B.; Kremin, A.; Kringel, V.; Krishnan, B.; Królak, A.; Kuehn, G.; Kumar, A.; Kumar, D. Nanda; Kumar, P.; Kumar, R.; Kuo, L.; Kutynia, A.; Kwee, P.; Landry, M.; Lantz, B.; Larson, S.; Lasky, P. D.; Lawrie, C.; Lazzarini, A.; Lazzaro, C.; Leaci, P.; Leavey, S.; Lebigot, E. O.; Lee, C.-H.; Lee, H. K.; Lee, H. M.; Lee, J.; Leonardi, M.; Leong, J. R.; Le Roux, A.; Leroy, N.; Letendre, N.; Levin, Y.; Levine, B.; Lewis, J.; Li, T. G. F.; Libbrecht, K.; Libson, A.; Lin, A. C.; Littenberg, T. B.; Litvine, V.; Lockerbie, N. A.; Lockett, V.; Lodhia, D.; Loew, K.; Logue, J.; Lombardi, A. L.; Lorenzini, M.; Loriette, V.; Lormand, M.; Losurdo, G.; Lough, J.; Lubinski, M. J.; Lück, H.; Luijten, E.; Lundgren, A. P.; Lynch, R.; Ma, Y.; Macarthur, J.; Macdonald, E. P.; MacDonald, T.; Machenschalk, B.; MacInnis, M.; Macleod, D. M.; Magana-Sandoval, F.; Mageswaran, M.; Maglione, C.; Mailand, K.; Majorana, E.; Maksimovic, I.; Malvezzi, V.; Man, N.; Manca, G. M.; Mandel, I.; Mandic, V.; Mangano, V.; Mangini, N.; Mantovani, M.; Marchesoni, F.; Marion, F.; Márka, S.; Márka, Z.; Markosyan, A.; Maros, E.; Marque, J.; Martelli, F.; Martin, I. W.; Martin, R. M.; Martinelli, L.; Martynov, D.; Marx, J. N.; Mason, K.; Masserot, A.; Massinger, T. J.; Matichard, F.; Matone, L.; Matzner, R. A.; Mavalvala, N.; Mazumder, N.; Mazzolo, G.; McCarthy, R.; McClelland, D. E.; McGuire, S. C.; McIntyre, G.; McIver, J.; McLin, K.; Meacher, D.; Meadors, G. D.; Mehmet, M.; Meidam, J.; Meinders, M.; Melatos, A.; Mendell, G.; Mercer, R. A.; Meshkov, S.; Messenger, C.; Meyers, P.; Miao, H.; Michel, C.; Mikhailov, E. E.; Milano, L.; Milde, S.; Miller, J.; Minenkov, Y.; Mingarelli, C. M. F.; Mishra, C.; Mitra, S.; Mitrofanov, V. P.; Mitselmakher, G.; Mittleman, R.; Moe, B.; Moesta, P.; Moggi, A.; Mohan, M.; Mohapatra, S. R. P.; Moraru, D.; Moreno, G.; Morgado, N.; Morriss, S. R.; Mossavi, K.; Mours, B.; Mow-Lowry, C. M.; Mueller, C. L.; Mueller, G.; Mukherjee, S.; Mullavey, A.; Munch, J.; Murphy, D.; Murray, P. G.; Mytidis, A.; Nagy, M. F.; Nardecchia, I.; Naticchioni, L.; Nayak, R. K.; Necula, V.; Nelemans, G.; Neri, I.; Neri, M.; Newton, G.; Nguyen, T.; Nitz, A.; Nocera, F.; Nolting, D.; Normandin, M. E. N.; Nuttall, L. K.; Ochsner, E.; O'Dell, J.; Oelker, E.; Oh, J. J.; Oh, S. H.; Ohme, F.; Oppermann, P.; O'Reilly, B.; O'Shaughnessy, R.; Osthelder, C.; Ottaway, D. J.; Ottens, R. S.; Overmier, H.; Owen, B. J.; Padilla, C.; Pai, A.; Palashov, O.; Palomba, C.; Pan, H.; Pan, Y.; Pankow, C.; Paoletti, F.; Papa, M. A.; Paris, H.; Pasqualetti, A.; Passaquieti, R.; Passuello, D.; Pedraza, M.; Penn, S.; Perreca, A.; Phelps, M.; Pichot, M.; Pickenpack, M.; Piergiovanni, F.; Pierro, V.; Pinard, L.; Pinto, I. M.; Pitkin, M.; Poeld, J.; Poggiani, R.; Poteomkin, A.; Powell, J.; Prasad, J.; Premachandra, S.; Prestegard, T.; Price, L. R.; Prijatelj, M.; Privitera, S.; Prodi, G. A.; Prokhorov, L.; Puncken, O.; Punturo, M.; Puppo, P.; Qin, J.; Quetschke, V.; Quintero, E.; Quiroga, G.; Quitzow-James, R.; Raab, F. J.; Rabeling, D. S.; Rácz, I.; Radkins, H.; Raffai, P.; Raja, S.; Rajalakshmi, G.; Rakhmanov, M.; Ramet, C.; Ramirez, K.; Rapagnani, P.; Raymond, V.; Razzano, M.; Re, V.; Read, J.; Recchia, S.; Reed, C. M.; Regimbau, T.; Reid, S.; Reitze, D. H.; Rhoades, E.; Ricci, F.; Riles, K.; Robertson, N. A.; Robinet, F.; Rocchi, A.; Rodruck, M.; Rolland, L.; Rollins, J. G.; Romano, R.; Romanov, G.; Romie, J. H.; Rosińska, D.; Rowan, S.; Rüdiger, A.; Ruggi, P.; Ryan, K.; Salemi, F.; Sammut, L.; Sandberg, V.; Sanders, J. R.; Sannibale, V.; Santiago-Prieto, I.; Saracco, E.; Sassolas, B.; Sathyaprakash, B. S.; Saulson, P. R.; Savage, R.; Scheuer, J.; Schilling, R.; Schnabel, R.; Schofield, R. M. S.; Schreiber, E.; Schuette, D.; Schutz, B. F.; Scott, J.; Scott, S. M.; Sellers, D.; Sengupta, A. S.; Sentenac, D.; Sequino, V.; Sergeev, A.; Shaddock, D.; Shah, S.; Shahriar, M. S.; Shaltev, M.; Shapiro, B.; Shawhan, P.; Shoemaker, D. H.; Sidery, T. L.; Siellez, K.; Siemens, X.; Sigg, D.; Simakov, D.; Singer, A.; Singer, L.; Singh, R.; Sintes, A. M.; Slagmolen, B. J. J.; Slutsky, J.; Smith, J. R.; Smith, M.; Smith, R. J. E.; Smith-Lefebvre, N. D.; Son, E. J.; Sorazu, B.; Souradeep, T.; Staley, A.; Stebbins, J.; Steinlechner, J.; Steinlechner, S.; Stephens, B. C.; Steplewski, S.; Stevenson, S.; Stone, R.; Stops, D.; Strain, K. A.; Straniero, N.; Strigin, S.; Sturani, R.; Stuver, A. L.; Summerscales, T. Z.; Susmithan, S.; Sutton, P. J.; Swinkels, B.; Tacca, M.; Talukder, D.; Tanner, D. B.; Tarabrin, S. P.; Taylor, R.; Thirugnanasambandam, M. P.; Thomas, M.; Thomas, P.; Thorne, K. A.; Thorne, K. S.; Thrane, E.; Tiwari, V.; Tokmakov, K. V.; Tomlinson, C.; Tonelli, M.; Torres, C. V.; Torrie, C. I.; Travasso, F.; Traylor, G.; Tse, M.; Ugolini, D.; Unnikrishnan, C. S.; Urban, A. L.; Urbanek, K.; Vahlbruch, H.; Vajente, G.; Valdes, G.; Vallisneri, M.; van Beuzekom, M.; van den Brand, J. F. J.; Van Den Broeck, C.; van der Sluys, M. V.; van Heijningen, J.; van Veggel, A. A.; Vass, S.; Vasúth, M.; Vaulin, R.; Vecchio, A.; Vedovato, G.; Veitch, J.; Veitch, P. J.; Venkateswara, K.; Verkindt, D.; Verma, S. S.; Vetrano, F.; Viceré, A.; Vincent-Finley, R.; Vinet, J.-Y.; Vitale, S.; Vo, T.; Vocca, H.; Vorvick, C.; Vousden, W. D.; Vyachanin, S. P.; Wade, A.; Wade, L.; Wade, M.; Walker, M.; Wallace, L.; Wang, M.; Wang, X.; Ward, R. L.; Was, M.; Weaver, B.; Wei, L.-W.; Weinert, M.; Weinstein, A. J.; Weiss, R.; Welborn, T.; Wen, L.; Wessels, P.; West, M.; Westphal, T.; Wette, K.; Whelan, J. T.; Whitcomb, S. E.; White, D. J.; Whiting, B. F.; Wiesner, K.; Wilkinson, C.; Williams, K.; Williams, L.; Williams, R.; Williams, T.; Williamson, A. R.; Willis, J. L.; Willke, B.; Wimmer, M.; Winkler, W.; Wipf, C. C.; Wiseman, A. G.; Wittel, H.; Woan, G.; Worden, J.; Yablon, J.; Yakushin, I.; Yamamoto, H.; Yancey, C. C.; Yang, H.; Yang, Z.; Yoshida, S.; Yvert, M.; ZadroŻny, A.; Zanolin, M.; Zendri, J.-P.; Zhang, Fan; Zhang, L.; Zhao, C.; Zhu, X. J.; Zucker, M. E.; Zuraw, S.; Zweizig, J.; LIGO Scientific Collaboration; Virgo Collaboration
2014-05-01
We report results from a search for gravitational waves produced by perturbed intermediate mass black holes (IMBH) in data collected by LIGO and Virgo between 2005 and 2010. The search was sensitive to astrophysical sources that produced damped sinusoid gravitational wave signals, also known as ringdowns, with frequency 50≤f0/Hz≤2000 and decay timescale 0.0001≲τ/s≲0.1 characteristic of those produced in mergers of IMBH pairs. No significant gravitational wave candidate was detected. We report upper limits on the astrophysical coalescence rates of IMBHs with total binary mass 50≤M/M⊙≤450 and component mass ratios of either 1:1 or 4:1. For systems with total mass 100≤M/M⊙≤150, we report a 90% confidence upper limit on the rate of binary IMBH mergers with nonspinning and equal mass components of 6.9×10-8 Mpc-3 yr-1. We also report a rate upper limit for ringdown waveforms from perturbed IMBHs, radiating 1% of their mass as gravitational waves in the fundamental, ℓ=m =2, oscillation mode, that is nearly three orders of magnitude more stringent than previous results.
NASA Astrophysics Data System (ADS)
Tkachenko, Andrew
2017-10-01
The potential of the dynamical asteroseismology, the research area that builds upon the synergies between the asteroseismology and binary stars research fields, is discussed in this manuscript. We touch upon the following topics: i) the mass discrepancy observed in intermediate-to high-mass main-sequence and evolved binaries as well as in the low mass systems that are still in the pre-main sequence phase of their evolution; ii) the rotationally induced mixing in high-mass stars, in particular how the most recent theoretical predictions and spectroscopic findings compare to the results of asteroseismic investigations; iii) internal gravity waves and their potential role in the evolution of binary star systems and surface nitrogen enrichment in high-mass stars; iv) the tidal evolution theory, in particular how its predictions of spin-orbit synchronisation and orbital circularisation compare to the present-day high-quality observations; v) the tidally-induced pulsations and their role in the angular momentum transport within binary star systems; vi) the scaling relations between fundamental and seismic properties of stars across the entire HR-diagram.
Is magnetar a fact or fiction to us?
NASA Astrophysics Data System (ADS)
Tong, H.; Xu, R. X.
2013-03-01
The key point of studying AXPs/SGRs (anomalous X-ray pulsars/soft gamma-ray repeaters) is relevant to the energy budget. Historically, rotation was thought to be the only free energy of pulsar until the discovery of accretion power in X-ray binaries. AXPs/SGRs could be magnetars if they are magnetism-powered, but would alternatively be quark-star/fallback-disk systems if more and more observations would hardly be understood in the magnetar scenario.
New measurement of the period for the 4th ULX pulsar - the supernova impostor SN2010da in NGC 300
NASA Astrophysics Data System (ADS)
Grebenev, S. A.; Mereminskiy, I. A.
2018-01-01
Following the discovery (Atel #11158) of the new (fourth) ULX pulsar (in the peculiar supergiant X-ray binary known as the supernova impostor SN 2010da located in NGC 300, at a distance of 1.86 Mpc) we note that SWIFT/XRT observed this galaxy again on April 16, 2017, and detected the source still in a bright X-ray state.
Barausse, Enrico; Yunes, Nicolás; Chamberlain, Katie
2016-06-17
The aLIGO detection of the black-hole binary GW150914 opens a new era for probing extreme gravity. Many gravity theories predict the emission of dipole gravitational radiation by binaries. This is excluded to high accuracy in binary pulsars, but entire classes of theories predict this effect predominantly (or only) in binaries involving black holes. Joint observations of GW150914-like systems by aLIGO and eLISA will improve bounds on dipole emission from black-hole binaries by 6 orders of magnitude relative to current constraints, provided that eLISA is not dramatically descoped.
Neutron Star Population Dynamics. II. Three-dimensional Space Velocities of Young Pulsars
NASA Astrophysics Data System (ADS)
Cordes, J. M.; Chernoff, David F.
1998-09-01
We use astrometric, distance, and spindown data on pulsars to (1) estimate three-dimensional velocity components, birth distances from the Galactic plane, and ages of individual objects; (2) determine the distribution of space velocities and the scale height of pulsar progenitors; (3) test spindown laws for pulsars; (4) test for correlations between space velocities and other pulsar parameters; and (5) place empirical requirements on mechanisms than can produce high-velocity neutron stars. Our approach incorporates measurement errors, uncertainties in distances, deceleration in the Galactic potential, and differential Galactic rotation. We focus on a sample of proper motion measurements of young (<10 Myr) pulsars whose trajectories may be accurately and simply modeled. This sample of 49 pulsars excludes millisecond pulsars and other objects that may have undergone accretion-driven spinup. We estimate velocity components and birth z distance on a case-by-case basis assuming that the actual age equals the conventional spindown age for a braking index n = 3, no torque decay, and birth periods much shorter than present-day periods. Every sample member could have originated within 0.3 kpc of the Galactic plane while still having reasonable present-day peculiar radial velocities. For the 49 object sample, the scale height of the progenitors is ~0.13 kpc, and the three-dimensional velocities are distributed in two components with characteristic speeds of 175+19-24 km s-1 and 700+300-132 km s-1, representing ~86% and ~14% of the population, respectively. The sample velocities are inconsistent with a single-component Gaussian model and are well described by a two-component Gaussian model but do not require models of additional complexity. From the best-fit distribution, we estimate that about 20% of the known pulsars will escape the Galaxy, assuming an escape speed of 500 km s-1. The best-fit, dual-component model, if augmented by an additional, low-velocity (<50 km s-1) component, tolerates, at most, only a small extra contribution in number, less than 5%. The best three-component models do not show a preference for filling in the probability distribution at speeds intermediate to 175 and 700 km s-1 but are nearly degenerate with the best two-component models. We estimate that the high-velocity tail (>1000 km s-1) may be underrepresented (in the observed sample) by a factor ~2.3 owing to selection effects in pulsar surveys. The estimates of scale height and velocity parameters are insensitive to the explicit relation of chronological and spindown ages. A further analysis starting from our inferred velocity distribution allows us to test spindown laws and age estimates. There exist comparably good descriptions of the data involving different combinations of braking index and torque decay timescale. We find that a braking index of 2.5 is favored if torque decay occurs on a timescale of ~3 Myr, while braking indices ~4.5 +/- 0.5 are preferred if there is no torque decay. For the sample as a whole, the most probable chronological ages are typically smaller than conventional spindown ages by factors as large as 2. We have also searched for correlations between three-dimensional speeds of individual pulsars and combinations of spin period and period derivative. None appears to be significant. We argue that correlations identified previously between velocity and (apparent) magnetic moment reflect the different evolutionary paths taken by young, isolated (nonbinary), high-field pulsars and older, low-field pulsars that have undergone accretion-driven spinup. We conclude that any such correlation measures differences in spin and velocity selection in the evolution of the two populations and is not a measure of processes taking place in the core collapse that produces neutron stars in the first place. We assess mechanisms for producing high-velocity neutron stars, including disruption of binary systems by symmetric supernovae and neutrino, baryonic, or electromagnetic rocket effects during or shortly after the supernova. The largest velocities seen (~1600 km s-1), along with the paucity of low-velocity pulsars, suggest that disruption of binaries by symmetric explosions is insufficient. Rocket effects appear to be a necessary and general phenomenon. The required kick amplitudes and the absence of a magnetic field-velocity correlation do not yet rule out any of the rocket models. However, the required amplitudes suggest that the core collapse process in a supernova is highly dynamic and aspherical and that the impulse delivered to the neutron star is larger than existing simulations of core collapse have achieved.
The Velocity Distribution of Isolated Radio Pulsars
NASA Technical Reports Server (NTRS)
Arzoumanian, Z.; Chernoff, D. F.; Cordes, J. M.; White, Nicholas E. (Technical Monitor)
2002-01-01
We infer the velocity distribution of radio pulsars based on large-scale 0.4 GHz pulsar surveys. We do so by modelling evolution of the locations, velocities, spins, and radio luminosities of pulsars; calculating pulsed flux according to a beaming model and random orientation angles of spin and beam; applying selection effects of pulsar surveys; and comparing model distributions of measurable pulsar properties with survey data using a likelihood function. The surveys analyzed have well-defined characteristics and cover approx. 95% of the sky. We maximize the likelihood in a 6-dimensional space of observables P, dot-P, DM, absolute value of b, mu, F (period, period derivative, dispersion measure, Galactic latitude, proper motion, and flux density). The models we test are described by 12 parameters that characterize a population's birth rate, luminosity, shutoff of radio emission, birth locations, and birth velocities. We infer that the radio beam luminosity (i) is comparable to the energy flux of relativistic particles in models for spin-driven magnetospheres, signifying that radio emission losses reach nearly 100% for the oldest pulsars; and (ii) scales approximately as E(exp 1/2) which, in magnetosphere models, is proportional to the voltage drop available for acceleration of particles. We find that a two-component velocity distribution with characteristic velocities of 90 km/ s and 500 km/ s is greatly preferred to any one-component distribution; this preference is largely immune to variations in other population parameters, such as the luminosity or distance scale, or the assumed spin-down law. We explore some consequences of the preferred birth velocity distribution: (1) roughly 50% of pulsars in the solar neighborhood will escape the Galaxy, while approx. 15% have velocities greater than 1000 km/ s (2) observational bias against high velocity pulsars is relatively unimportant for surveys that reach high Galactic absolute value of z distances, but is severe for spatially bounded surveys; (3) an important low-velocity population exists that increases the fraction of neutron stars retained by globular clusters and is consistent with the number of old objects that accrete from the interstellar medium; (4) under standard assumptions for supernova remnant expansion and pulsar spin-down, approx. 10% of pulsars younger than 20 kyr will appear to lie outside of their host remnants. Finally, we comment on the ramifications of our birth velocity distribution for binary survival and the population of inspiraling binary neutron stars relevant to some GRB models and potential sources for LIGO.
NASA Astrophysics Data System (ADS)
Taylor, Stephen; Ellis, Justin; Gair, Jonathan
2014-11-01
We describe several new techniques which accelerate Bayesian searches for continuous gravitational-wave emission from supermassive black-hole binaries using pulsar-timing arrays. These techniques mitigate the problematic increase of search dimensionality with the size of the pulsar array which arises from having to include an extra parameter per pulsar as the array is expanded. This extra parameter corresponds to searching over the phase of the gravitational wave as it propagates past each pulsar so that we can coherently include the pulsar term in our search strategies. Our techniques make the analysis tractable with powerful evidence-evaluation packages like MultiNest. We find good agreement of our techniques with the parameter-estimation and Bayes factor evaluation performed with full signal templates and conclude that these techniques make excellent first-cut tools for detection and characterization of continuous gravitational-wave signals with pulsar-timing arrays. Crucially, at low to moderate signal-to-noise ratios the factor by which the analysis is sped up can be ≳100 , permitting rigorous programs of systematic injection and recovery of signals to establish robust detection criteria within a Bayesian formalism.
Search for Gravitational Waves from Intermediate Mass Binary Black Holes
NASA Technical Reports Server (NTRS)
Blackburn, L.; Camp, J. B.; Cannizzo, J.; Stroeer, A. S.
2012-01-01
We present the results of a weakly modeled burst search for gravitational waves from mergers of non-spinning intermediate mass black holes (IMBH) in the total mass range 100-450 solar Mass and with the component mass ratios between 1:1 and 4:1. The search was conducted on data collected by the LIGO and Virgo detectors between November of 2005 and October of 2007. No plausible signals were observed by the search which constrains the astrophysical rates of the IMBH mergers as a function of the component masses. In the most efficiently detected bin centered on 88 + 88 solar Mass , for non-spinning sources, the rate density upper limit is 0.13 per Mpc(exp 3) per Myr at the 90% confidence level.
Burst Oscillation Periods from 4U 1636-53: A Constraint on the Binary Doppler Modulation
NASA Technical Reports Server (NTRS)
Giles, A. B.; Hill, K. M.; Strohmayer, T. E.; Cummings, N.; White, Nicholas E. (Technical Monitor)
2002-01-01
The burst oscillations seen during Type 1 X-ray bursts from low mass X-ray binaries (LMXB) typically evolve in period towards an asymptotic limit that likely reflects the spin of the underlying neutron star. If the underlying period is stable enough, measurement of it at different orbital phases may allow a detection of the Doppler modulation caused by the motion of the neutron star with respect to the center of mass of the binary system. Testing this hypothesis requires enough X-ray bursts and an accurate optical ephemeris to determine the binary phases at which they occurred. We present here a study of the distribution of asymptotic burst oscillation periods for a sample of 26 bursts from 4U 1636-53 observed with the Rossi X-ray Timing Explorer (RXTE). The burst sample includes both archival and proprietary data and spans more than 4.5 years. We also present new optical light curves of V801 Arae, the optical counterpart of 4U 1636-53, obtained during 1998-2001. We use these optical data to refine the binary period measured by Augusteijn et al. to 3.7931206(152) hours. We show that a subset of approx. 70% of the bursts form a tightly clustered distribution of asymptotic periods consistent with a period stability of approx. 1 x 10(exp -4). The tightness of this distribution, made up of bursts spanning more than 4 years in time, suggests that the underlying period is highly stable, with a time to change the period of approx. 3 x 10(exp 4) yr. This is comparable to similar numbers derived for X-ray pulsars. We investigate the period and orbital phase data for our burst sample and show that it is consistent with binary motion of the neutron star with v(sub ns) sin i < 38 and 50 km/s at 90 and 99% confidence, respectively. We use this limit as well as previous radial velocity data to constrain the binary geometry and component masses in 4U 1636-53. Our results suggest that unless the neutron star is significantly more massive than 1.4 solar masses the secondary is unlikely to have a mass as large as 0.36 solar masses, the mass estimated assuming it is a main sequence star which fills its Roche lobe. We show that a factor of 3 increase in the number of bursts with asymptotic period measurements should allow a detection of the neutron star velocity.
Nova Scorpii and Coalescing Low-Mass Black Hole Binaries as LIGO Sources
NASA Astrophysics Data System (ADS)
Sipior, Michael S.; Sigurdsson, Steinn
2002-06-01
Double neutron star (NS-NS) binaries, analogous to the well-known Hulse-Taylor pulsar PSR 1913+16 (documented by Hulse & Taylor in 1974), are guaranteed-to-exist sources of high-frequency gravitational radiation detectable by LIGO. There is considerable uncertainty in the estimated rate of coalescence of such systems (see the work of Phinney in 1991, Narayan and coworkers in 1991, and Kalogera and coworkers in 2001), with conservative estimates of ~1 per 106 yr per galaxy, and optimistic theoretical estimates 1 or more mag larger. Formation rates of low-mass black hole (BH)-neutron star binaries may be higher than those of NS-NS binaries and may dominate the detectable LIGO signal rate. Rate estimates for such binaries are plagued by severe model uncertainties. Recent estimates by Portegies Zwart & Yungelson in 1998 and De Donder & Vanbeveren in 1998 suggest that BH-BH binaries do not coalesce at significant rates despite being formed at high rates. We estimate the enhanced coalescence rate for BH-BH binaries due to weak asymmetric kicks during the formation of low-mass black holes like Nova Sco (see the work of Brandt, Podsiadlowski, & Sigurdsson in 1995) and find they may contribute significantly to the LIGO signal rate, possibly dominating the phase I detectable signals if the range of black hole masses for which there is significant kick is broad enough. For a standard Salpeter initial mass function, assuming mild natal kicks, we project that the R6 merger rate (the rate of mergers per 106 yr in a Milky Way-like galaxy) of BH-BH systems is ~0.5, smaller than that of NS-NS systems. However, the higher chirp mass of these systems produces a signal nearly 4 times greater, on average, with a commensurate increase in search volume, hence, our claim that BH-BH mergers (and, to a lesser extent, BH-NS coalescence) should comprise a significant fraction of the signal seen by LIGO. The BH-BH coalescence channel considered here also predicts that a substantial fraction of BH-BH systems should have at least one component with near-maximal spin (a/M~1). This is from the spin-up provided by the fallback material after a supernova. If no mass transfer occurs between the two supernovae, both components could be spinning rapidly. The waveforms produced by the coalescence of such a system should produce a clear spin signature, so this hypothesis could be directly tested by LIGO.
Three millisecond pulsars in FERMI LAT unassociated bright sources
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ransom, S. M.; Ray, P. S.; Camilo, F.
2010-12-23
We searched for radio pulsars in 25 of the non-variable, unassociated sources in the Fermi LAT Bright Source List with the Green Bank Telescope at 820 MHz. Here, we report the discovery of three radio and γ-ray millisecond pulsars (MSPs) from a high Galactic latitude subset of these sources. All of the pulsars are in binary systems, which would have made them virtually impossible to detect in blind γ-ray pulsation searches. They seem to be relatively normal, nearby (≤2 kpc) MSPs. These observations, in combination with the Fermi detection of γ-rays from other known radio MSPs, imply that most, ifmore » not all, radio MSPs are efficient γ-ray producers. The γ-ray spectra of the pulsars are power law in nature with exponential cutoffs at a few GeV, as has been found with most other pulsars. The MSPs have all been detected as X-ray point sources. Finally, their soft X-ray luminosities of ~10 30-10 31 erg s –1 are typical of the rare radio MSPs seen in X-rays.« less
Three Millisecond Pulsars in Fermi LAT Unassociated Bright Sources
NASA Technical Reports Server (NTRS)
Ransom, S. M.; Ray, P. S.; Camilo, F.; Roberts, M. S. E.; Celik, O.; Wolff, M. T.; Cheung, C. C.; Kerr, M.; Pennucci, T.; DeCesar, M. E.;
2010-01-01
We searched for radio pulsars in 25 of the non-variable, unassociated sources in the Fermi LAT Bright Source List with the Green Bank Telescope at 820 MHz. We report the discovery of three radio and gamma-ray millisecond pulsar (MSPs) from a high Galactic latitude subset of these sources. All of the pulsars are in binary systems, which would have made them virtually impossible to detect in blind gamma-ray pulsation searches. They seem to be relatively normal, nearby (<= 2 kpc) MSPs. These observations, in combination with the Fermi detection of gamma-rays from other known radio MSPs, imply that most, if not all, radio MSPs are efficient gamma-ray producers. The gamma-ray spectra of the pulsars are power law in nature with exponential cutoffs at a few Ge V, as has been found with most other pulsars. The MSPs have all been detected as X-ray point sources. Their soft X-ray luminosities of approx 10(exp 30) - 10(exp 31) erg/s are typical of the rare radio MSPs seen in X-rays.
Three-body affairs in the outer solar system
NASA Astrophysics Data System (ADS)
Funato, Yoko; Makino, Junichiro; Hut, Piet; Kokubo, Eiichiro; Kinoshita, Daisuke
Recent observations have revealed an unexpectedly high binary fraction among the Trans-Neptunian Objects (TNOs) that populate the Kuiper Belt. The TNO binaries are strikingly different from asteroid binaries in four respects: their frequency is an order of magnitude larger, the mass ratio of their components is closer to unity, and their orbits are wider and highly eccentric. Two explanations have been proposed for their formation, one assuming large numbers of massive bodies, and one assuming large numbers of light bodies. We argue that both assumptions are unwarranted, and we show how TNO binaries can be produced from a modest number of intermediate-mass bodies of the type predicted by the gravitational instability theory for the formation of planetesimals. We start with a TNO binary population similar to the asteroid binary population, but subsequently modified by three-body exchange reactions, a process that is far more efficient in the Kuiper belt, because of the much smaller tidal perturbations by the Sun. Our mechanism can naturally account for all four characteristics that distinguish TNO binaries from main-belt asteroid binaries.
Regimes of high-energy shock emission from the Be star/pulsar system PSR 1259-63
NASA Technical Reports Server (NTRS)
Tavani, Marco; Arons, Jonathan; Kaspi, Victoria M.
1994-01-01
PSR B1259-63 is a 47 ms radio pulsar in a wide, eccentric orbit with a Be star. We study the shock interaction between the pulsar and the companion's mass outflow and investigate the time evolution of radiative shock regimes. We find that for small values of the Be star's mass-loss rate, inverse-Compton scattering is likely to dominate the shock emission. Alternately, for a large mass-loss rate, synchrotron emission will dominate. Multifrequency X-ray and gamma-ray observations near periastron can distinguish between these cases and yield unique constraints on the pulsar and Be star winds. The PSR B1259-63 system provides a unique laboratory to study the time-dependent interaction of a pulsar wind with the circumbinary material from its companion star.
THERMAL ABSORPTION AS THE CAUSE OF GIGAHERTZ-PEAKED SPECTRA IN PULSARS AND MAGNETARS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lewandowski, Wojciech; Rożko, Karolina; Kijak, Jarosław
2015-07-20
We present a model that explains the observed deviation of the spectra of some pulsars and magnetars from the power-law spectra that are seen in the bulk of the pulsar population. Our model is based on the assumption that the observed variety of pulsar spectra can be naturally explained by the thermal free–free absorption that takes place in the surroundings of the pulsars. In this context, the variety of the pulsar spectra can be explained according to the shape, density, and temperature of the absorbing media and the optical path of the line of sight across it. We have putmore » specific emphasis on the case of the radio magnetar SGR J1745–2900 (also known as the Sgr A* magnetar), modeling the rapid variations of the pulsar spectrum after the outburst of 2013 April as due to the free–free absorption of the radio emission in the electron material ejected during the magnetar outburst. The ejecta expands with time and consequently the absorption rate decreases and the shape of the spectrum changes in such a way that the peak frequency shifts toward the lower radio frequencies. In the hypothesis of an absorbing medium, we also discuss the similarity between the spectral behavior of the binary pulsar B1259–63 and the spectral peculiarities of isolated pulsars.« less
Improved Bounds on Violation of the Strong Equivalence Principle
NASA Technical Reports Server (NTRS)
Arzoumanian, Z.
2002-01-01
I describe a unique, 20-year-long timing program for the binary pulsar B0655+64, the stalwart control experiment for measurements of gravitational radiation damping in relativistic neutron-star binaries. Observed limits on evolution of the B0655+64 orbit provide new bounds on the existence of dipolar gravitational radiation, and hence on violation of the Strong Equivalence Principle.
Constraints on Yukawa parameters by double pulsars
NASA Astrophysics Data System (ADS)
Deng, Xue-Mei; Xie, Yi; Huang, Tian-Yi
2013-03-01
Although Einstein's general relativity has passed all the tests so far, alternative theories are still required for deeper understanding of the nature of gravity. Double pulsars provide us a significant opportunity to test them. In order to probe some modified gravities which try to explain some astrophysical phenomena without dark matter, we use periastron advance dot{ω} of four binary pulsars (PSR B1913+16, PSR B1534+12, PSR J0737-3039 and PSR B2127+11C) to constrain their Yukawa parameters: λ = (3.97 ± 0.01) × 108m and α = (2.40 ± 0.02) × 10-8. It might help us to distinguish different gravity theories and get closer to the new physics.
Probing Modified Gravity with Double Pulsars
NASA Astrophysics Data System (ADS)
Deng, Xue-Mei; Xie, Yi; Huang, Tian-Yi
2015-01-01
Although Einstein's general relativity has passed all the tests so far, alternative theories are still required for deeper understanding of the nature of gravity. Double pulsars provide us a significant opportunity to test them. In order to probe some modified gravities which try to explain some astrophysical phenomena without dark matter, we use periastron advance dot ω of four binary pulsars (PSR B1913+16, PSR B1534+12, PSR J0737-3039 and PSR B2127+11C) to constrain their Yukawa parameters: λ = (3.97 ± 0.01) × 108m and α = (2.40 ± 0.02) × 10-8. It might help us to distinguish different gravity theories and get closer to the new physics.
Gamma Rays at Very High Energies
NASA Astrophysics Data System (ADS)
Aharonian, Felix
This chapter presents the elaborated lecture notes on Gamma Rays at Very High Energies given by Felix Aharonian at the 40th Saas-Fee Advanced Course on "Astrophysics at Very High Energies". Any coherent description and interpretation of phenomena related to gammarays requires deep knowledge of many disciplines of physics like nuclear and particle physics, quantum and classical electrodynamics, special and general relativity, plasma physics, magnetohydrodynamics, etc. After giving an introduction to gamma-ray astronomy the author discusses the astrophysical potential of ground-based detectors, radiation mechanisms, supernova remnants and origin of the galactic cosmic rays, TeV emission of young supernova remnants, gamma-emission from the Galactic center, pulsars, pulsar winds, pulsar wind nebulae, and gamma-ray loud binaries.
Observational signatures of spherically-symmetric black hole spacetimes
NASA Astrophysics Data System (ADS)
De Laurentis, Mariafelicia; Younsi, Ziri; Porth, Oliver; Mizuno, Yosuke; Fromm, Christian; Rezzolla, Luciano; Olivares, Hector
2017-12-01
A binary system composed of a supermassive black hole and a pulsar orbiting around it is studied. The motivation for this study arises from the fact that pulsar timing observations have proven to be a powerful tool in identifying physical features of the orbiting companion. In this study, taking into account a general spherically-symmetric metric, we present analytic calculations of the geodesic motion, and the possible deviations with respect to the standard Schwarzschild case of General Relativity. In particular, the advance at periastron is studied with the aim of identifying corrections to General Relativity. A discussion of the motion of a pulsar very close the supermassive central black hole in our Galaxy (Sgr A*) is reported.
A new look at the origin of the 6.67 hr period X-ray pulsar 1E 161348-5055
NASA Astrophysics Data System (ADS)
Ikhsanov, N. R.; Kim, V. Y.; Beskrovnaya, N. G.; Pustil'nik, L. A.
2013-07-01
The point X-ray source 1E 161348-5055 is observed to display pulsations with the period 6.67 hr and |dot{P}| ≤1.6 ×10^{-9} s s^{-1}. It is associated with the supernova remnant RCW 103 and is widely believed to be a ˜2000 yr old neutron star. Observations give no evidence for the star to be a member of a binary system. Nevertheless, it resembles an accretion-powered pulsar with the magnetospheric radius ˜3000 km and the mass-accretion rate ˜ 10^{14} g s^{-1}. This situation could be described in terms of accretion from a (residual) fossil disk established from the material falling back towards the star after its birth. However, current fall-back accretion scenarios encounter major difficulties explaining an extremely long spin period of the young neutron star. We show that the problems can be avoided if the accreting material is magnetized. The star in this case is surrounded by a fossil magnetic slab in which the material is confined by the magnetic field of the accretion flow itself. We find that the surface magnetic field of the neutron star within this scenario is ˜1012 G and that a presence of ≳10^{-7} M_{⊙} magnetic slab would be sufficient to explain the origin and current state of the pulsar.
Swift J045106.8-694803: A Highly Magnetised Neutron Star in the Large Magellanic Cloud
NASA Technical Reports Server (NTRS)
Klus, H.; Bartlett, E. S.; Bird, A. J.; Coe, M.; Corbet, R. H. D.; Udalski, A.
2013-01-01
We report the analysis of a highly magnetised neutron star in the Large Magellanic Cloud (LMC). The high mass X-ray binary pulsar Swift J045106.8-694803 has been observed with Swift X-ray telescope (XRT) in 2008, The Rossi X-ray Timing Explorer (RXTE) in 2011 and the X-ray Multi-Mirror Mission - Newton (XMM-Newton) in 2012. The change in spin period over these four years indicates a spin-up rate of 5.010.06 s/yr, amongst the highest observed for an accreting pulsar. This spin-up rate can be accounted for using Ghosh and Lambs (1979) accretion theory assuming it has a magnetic field of (1.2 +/= 0.20/0.7) x 10(exp 14) Gauss. This is over the quantum critical field value. There are very few accreting pulsars with such high surface magnetic fields and this is the first of which to be discovered in the LMC. The large spin-up rate is consistent with Swift Burst Alert Telescope (BAT) observations which show that Swift J045106.8-694803 has had a consistently high X-ray luminosity for at least five years. Optical spectra have been used to classify the optical counterpart of Swift J045106.8-694803 as a B0-1 III-V star and a possible orbital period of 21.631 +/- 0.005 days has been found from MACHO optical photometry.
NASA Astrophysics Data System (ADS)
Papitto, A.; Rea, N.; Coti Zelati, F.; de Martino, D.; Scaringi, S.; Campana, S.; de Ońa Wilhelmi, E.; Knigge, C.; Serenelli, A.; Stella, L.; Torres, D. F.; D’Avanzo, P.; Israel, G. L.
2018-05-01
We report on the first continuous, 80-day optical monitoring of the transitional millisecond pulsar PSR J1023+0038 carried out in mid 2017 with Kepler in the K2 configuration, when an X-ray subluminous accretion disk was present in the binary. Flares lasting from minutes to 14 hr were observed for 15.6% of the time, which is a larger fraction than previously reported on the basis of X-ray and past optical observations, and more frequently when the companion was at superior conjunction of the orbit. A sinusoidal modulation at the binary orbital period was also present with an amplitude of ≃16%, which varied by a few percent over timescales of days, and with a maximum that took place 890 ± 85 s earlier than the superior conjunction of the donor. We interpret this phenomena in terms of reprocessing of the X-ray emission by an asymmetrically heated companion star surface and/or a non-axisymmetric outflow possibly launched close to the inner Lagrangian point. Furthermore, the non-flaring average emission varied by up to ≈40% over a timescale of days in the absence of correspondingly large variations of the irradiating X-ray flux. The latter suggests that the observed changes in the average optical luminosity might be due to variations of the geometry, size, and/or mass accretion rate in the outer regions of the accretion disk.
Star Cluster Buzzing With Pulsars
NASA Astrophysics Data System (ADS)
2005-01-01
A dense globular star cluster near the center of our Milky Way Galaxy holds a buzzing beehive of rapidly-spinning millisecond pulsars, according to astronomers who discovered 21 new pulsars in the cluster using the National Science Foundation's 100-meter Robert C. Byrd Green Bank Telescope (GBT) in West Virginia. The cluster, called Terzan 5, now holds the record for pulsars, with 24, including three known before the GBT observations. Pulsar Diagram Pulsar Diagram: Click on image for more detail. "We hit the jackpot when we looked at this cluster," said Scott Ransom, an astronomer at the National Radio Astronomy Observatory in Charlottesville, VA. "Not only does this cluster have a lot of pulsars -- and we still expect to find more in it -- but the pulsars in it are very interesting. They include at least 13 in binary systems, two of which are eclipsing, and the four fastest-rotating pulsars known in any globular cluster, with the fastest two rotating nearly 600 times per second, roughly as fast as a household blender," Ransom added. Ransom and his colleagues reported their findings to the American Astronomical Society's meeting in San Diego, CA, and in the online journal Science Express. The star cluster's numerous pulsars are expected to yield a bonanza of new information about not only the pulsars themselves, but also about the dense stellar environment in which they reside and probably even about nuclear physics, according to the scientists. For example, preliminary measurements indicate that two of the pulsars are more massive than some theoretical models would allow. "All these exotic pulsars will keep us busy for years to come," said Jason Hessels, a Ph.D student at McGill University in Montreal. Globular clusters are dense agglomerations of up to millions of stars, all of which formed at about the same time. Pulsars are spinning, superdense neutron stars that whirl "lighthouse beams" of radio waves or light around as they spin. A neutron star is what is left after a massive star explodes as a supernova at the end of its life. The pulsars in Terzan 5 are the product of a complex history. The stars in the cluster formed about 10 billion years ago, the astronomers say. Some of the most massive stars in the cluster exploded and left the neutron stars as their remnants after only a few million years. Normally, these neutron stars would no longer be seen as swiftly-rotating pulsars: their spin would have slowed because of the "drag" of their intense magnetic fields until the "lighthouse" effect is no longer observable. The Green Bank Telescope The Robert C. Byrd Green Bank Telescope CREDIT: NRAO/AUI/NSF (Click on image for GBT gallery) However, the dense concentration of stars in the cluster gave new life to the pulsars. In the core of a globular cluster, as many as a million stars may be packed into a volume that would fit easily between the Sun and our nearest neighbor star. In such close quarters, stars can pass near enough to form new binary pairs, split apart such pairs, and binary systems even can trade partners, like an elaborate cosmic square dance. When a neutron star pairs up with a "normal" companion star, its strong gravitational pull can draw material off the companion onto the neutron star. This also transfers some of the companion's spin, or angular momentum, to the neutron star, thereby "recycling" the neutron star into a rapidly-rotating millisecond pulsar. In Terzan 5, all the pulsars discovered are rotating rapidly as a result of this process. Astronomers previously had discovered three pulsars in Terzan 5, some 28,000 light-years distant in the constellation Sagittarius, but suspected there were more. On July 17, 2004, Ransom and his colleagues used the GBT, and, in a 6-hour observation, found 14 new pulsars, the most ever found in a single observation. "This was possible because of the great sensitivity of the GBT and the new capabilities of our backend processor," said Ingrid Stairs, a professor at the University of British Columbia in Vancouver. The processor, named, appropriately, the Pulsar Spigot, was built in a collaboration between the NRAO and the California Institute of Technology. The processor, which generates almost 100 GigaBytes of data per hour, allowed the astronomers to gather and analyze radio waves over a wide range of frequencies (1650-2250 MegaHertz), adding to the sensitivity of their system. Eight more observations between July and November of 2004 discovered seven additional pulsars in Terzan 5. In addition, the astronomers' data show evidence for several more pulsars that still need to be confirmed. Future studies of the pulsars in Terzan 5 will help scientists understand the nature of the cluster and the complex interactions of the stars at its dense core. Also, several of the pulsars offer a rich yield of new scientific information. The scientists suspect that one pulsar, which shows strange eclipses of its radio emission, has recently traded its original binary companion for another, and two others have white-dwarf companions that they believe may have been produced by the collision of a neutron star and a red-giant star. Subtle effects seen in these two systems can be explained by Einstein's general relativistic theory of gravity, and indicate that the neutron stars are more massive than some theories allow. The material in a neutron star is as dense as that in an atomic nucleus, so that fact has implications for nuclear physics as well as astrophysics. "Finding all these pulsars has been extremely exciting, but the excitement really has just begun," Ransom said. "Now we can start to use them as a rich and valuable cosmic laboratory," he added. In addition to Ransom, Hessels and Stairs, the research team included Paulo Freire of Arecibo Observatory in Puerto Rico, Fernando Camilo of Columbia University, Victoria Kaspi of McGill University, and David Kaplan of the Massachusetts Institute of Technology. The National Radio Astronomy Observatory is a facility of the National Science Foundation, operated under cooperative agreement by Associated Universities, Inc. The pulsar research also was supported by the Canada Foundation for Innovation, Science and Engineering Research Canada, the Quebec Foundation for Research on Nature and Technology, the Canadian Institute for Advanced Research, Canada Research Chairs Program, and the National Science Foundation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Martin, Rebecca G.; Livio, Mario; Palaniswamy, Divya
Pulsar timing observations have revealed planets around only a few pulsars. We suggest that the rarity of these planets is due mainly to two effects. First, we show that the most likely formation mechanism requires the destruction of a companion star. Only pulsars with a suitable companion (with an extreme mass ratio) are able to form planets. Second, while a dead zone (a region of low turbulence) in the disk is generally thought to be essential for planet formation, it is most probably rare in disks around pulsars, because of the irradiation from the pulsar. The irradiation strongly heats themore » inner parts of the disk, thus pushing the inner boundary of the dead zone out. We suggest that the rarity of pulsar planets can be explained by the low probability for these two requirements to be satisfied: a very low-mass companion and a dead zone.« less
X-ray Binaries in the Galaxy and the Magellanic Clouds
NASA Astrophysics Data System (ADS)
Cowley, Anne P.
1993-05-01
For more than two decades astronomers have been aware that the most X-ray luminous stellar sources (L_x > 10(35) erg s(-1) ) are interacting binaries where one component is a neutron star or black hole. While other types of single and multiple stars are known X-ray sources, none compare in X-ray luminosity with the ``classical" X-ray binaries. In these systems X-ray emission results from accretion of material from a non-degenerate companion onto the compact star through several alternate mechanisms including Roche lobe overflow, stellar winds, or periastron effects in non-circular orbits. It has been recognized for many years that X-ray binaries divide into two broad groups, characterized primarily by the mass of the non-degenerate star: 1) massive X-ray binaries (MXRB), in which the optical primary is a bright, early-type star, and 2) low-mass X-ray binaries (LMXB), where a lower main-sequence or subgiant star is the mass donor. A broad variety of observational characteristics further subdivide these classes. In the Galaxy these two groups appear to be spatially and kinematically associated with the disk and the halo populations, respectively. A few dozen MXRB are known in the Galaxy. A great deal of information about their physical properties has been learned from observational study. Their optical primaries can be investigated by conventional techniques. Furthermore, most MXRB contain X-ray pulsars, allowing accurate determination of their orbital parameters. From these data masses have been determined for the neutron stars, all of which are ~ 1.4 Msun, within measurement errors. By contrast, the LMXB have been much more difficult to study. Although there are ~ 150 LMXB in the Galaxy, most are distant and faint, requiring use of large telescopes for their study. Their optical light is almost always dominated by an accretion disk, rather than the mass-losing star, making interpretation of their spectral and photometric properties difficult. Their often uncertain distances further complicate our understanding. Thus, although the galactic LMXB greatly outnumber the MXRB, they are much less well understood. The X-ray binaries in the Magellanic Clouds in many ways make an ideal laboratory because they are all at the same, known distance. However, at the present time only a handful of X-ray binaries are known with certainty in these galaxies -- 7 in the LMC and 1 in the SMC. Only 3 of the LMC sources are low-mass X-ray binaries, and their properties are quite different from ``typical" galactic LMXB. In this review we will outline the general properties of X-ray binaries and summarize what types of information we have learned from their study over a wide range of wavelengths. An overall comparison of the global properties of X-ray binaries in the Galaxy and the Magellanic Clouds will be given.
NASA Astrophysics Data System (ADS)
Tetarenko, A. J.; Bahramian, A.; Wijnands, R.; Heinke, C. O.; Maccarone, T. J.; Miller-Jones, J. C. A.; Strader, J.; Chomiuk, L.; Degenaar, N.; Sivakoff, G. R.; Altamirano, D.; Deller, A. T.; Kennea, J. A.; Li, K. L.; Plotkin, R. M.; Russell, T. D.; Shaw, A. W.
2018-02-01
We present Karl G. Jansky Very Large Array radio frequency observations of the new accreting millisecond X-ray pulsar (AMXP), IGR J16597‑3704, located in the globular cluster NGC 6256. With these data, we detect a radio counterpart to IGR J16597‑3704, and determine an improved source position. Pairing our radio observations with quasi-simultaneous Swift/XRT X-ray observations, we place IGR J16597‑3704 on the radio–X-ray luminosity plane, where we find that IGR J16597‑3704 is one of the more radio-quiet neutron star low-mass X-ray binaries known to date. We discuss the mechanisms that may govern radio luminosity (and in turn jet production and evolution) in AMXPs. Furthermore, we use our derived radio position to search for a counterpart in archival Hubble Space Telescope and Chandra X-ray Observatory data, and estimate an upper limit on the X-ray luminosity of IGR J16597‑3704 during quiescence.
Studies of neutron star X-ray binaries
NASA Astrophysics Data System (ADS)
Thompson, Thomas W. J.
Neutron stars represent the endpoint in stellar evolution for stars with initial masses between ~3 and 8 solar masses. They are the densest non- singularities in the universe, cramming more than a solar mass of matter into a sphere with a radius of about 10 km. Such a large mass-to-radius ratio implies deep potential wells, so that when mass transfer is taking place ~10% of the rest-mass is liberated as gravitational binding energy, resulting in prodigious amounts of X-ray emission that contains valuable information on the physical characteristics in accreting binary systems. Much of my research in this dissertation focuses on the spectroscopic and timing properties of the canonical thermonuclear bursting source GS 1826-238. By measuring the relationship between the X-ray flux (which is assumed to trace the accretion rate onto the stellar surface) and the time intervals between subsequent bursts, I find that although the intervals usually decreased proportionately as the persistent flux increased, a few measurements of the flux-recurrence time relationship were significant outliers. Accompanying spectral and timing changes strongly suggest that the accretion disk extends down to smaller radial distances from the source during these atypical episodes. This result is important for understanding the nature of accretion flows around neutron stars because it indicates that accretion disks probably evaporate at some distance from the neutron star surface at lower accretion rates. I also contribute to our understanding of two newly discovered and heavily- absorbed pulsars (neutron stars with strong magnetic fields) by determining the orbital parameters of the systems through pulse timing analysis. Orbital phase- resolved spectroscopy of one source revealed evidence for an "accretion wake" trailing the pulsar through its orbit, showing that X-rays emanating from the surface can ionize the stellar wind in its vicinity. Finally, I develop an innovative application of dust scattering halos (diffuse emission surrounding X-ray sources, resulting from photons scattering from dust grains) to geometrically determine the distance and the distribution of dust along the line of sight to X-ray sources. The distance is clearly important for inferring the absolute luminosities of systems from measured fluxes, and knowledge of the distribution of dust can further understanding of the interstellar medium.
The NANOGrav Eleven-Year Data Set: High-precision timing of 48 Millisecond Pulsars
NASA Astrophysics Data System (ADS)
Nice, David J.; NANOGrav
2017-01-01
Gravitational waves from sources such as supermassive black hole binary systems perturb times-of-flight of signals traveling from pulsars to the Earth. The NANOGrav collaboration aims to measure these perturbations in high precision millisecond pulsar timing data and thus to directly detect gravitational waves and characterize the gravitational wave sources. By observing pulsars over time spans of many years, we are most sensitive to gravitational waves at nanohertz frequencies. This work is complimentary to ground based detectors such as LIGO, which are sensitive to gravitational waves with frequencies 10 orders of magnitude higher.In this presentation we describe the NANOGrav eleven-year data set. This includes pulsar time-of-arrival measurements from 48 millisecond pulsars made with the Arecibo Observatory (for pulsars with declinations between -1 and 39 degrees) and the Green Bank Telescope (for other pulsars, with two pulsars overlapping with Arecibo). The data set consists of more than 300,000 pulse time-of-arrival measurements made in nearly 7000 unique observations (a given pulsar observed with a given telescope receiver on a given day). In the best cases, measurement precision is better than 100 nanoseconds, and in nearly all cases it is better than 1 microsecond.All pulsars in our program are observed at intervals of 3 to 4 weeks. Observations use wideband data acquisition systems and are made at two receivers at widely separated frequencies at each epoch, allowing for characterization and mitigation of the effects of interstellar medium on the signal propagation. Observation of a large number of pulsars allows for searches for correlated perturbations among the pulsar signals, which is crucial for achieving high-significance detection of gravitational waves in the face of uncorrelated noise (from gravitational waves and rotation noise) in the individual pulsars. In addition, seven pulsars are observed at weekly intervals. This increases our sensitivity to individual gravitational wave sources.
Recent Developments in Radioastronomy--Part 2.
ERIC Educational Resources Information Center
Booth, R. S.
1980-01-01
Described are recent developments and discoveries in radioastronomy. Topics discussed include galactic structures, stellar evolution, the binary pulsar and general relativity, extragalactic radioastronomy, model of the source of radioactive emission and quasars. (DS)
On ternary species mixing and combustion in isotropic turbulence at high pressure
NASA Astrophysics Data System (ADS)
Lou, Hong; Miller, Richard S.
2004-05-01
Effects of Soret and Dufour cross-diffusion, whereby both concentration and thermal diffusion occur in the presence of mass fraction, temperature, and pressure gradients, are investigated in the context of both binary and ternary species mixing and combustion in isotropic turbulence at large pressure. The compressible flow formulation is based on a cubic real-gas state equation, and includes generalized forms for heat and mass diffusion derived from nonequilibrium thermodynamics and fluctuation theory. A previously derived formulation of the generalized binary species heat and mass fluxes is first extended to the case of ternary species, and appropriate treatment of the thermal and mass diffusion factors is described. Direct numerical simulations (DNS) are then conducted for both binary and ternary species mixing and combustion in stationary isotropic turbulence. Mean flow temperatures and pressures of
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rankin, Joanna M.; Mitra, Dipanjan; Archibald, Anne
The five-component profile of the 2.7 ms pulsar J0337+1715 appears to exhibit the best example to date of a core/double-cone emission-beam structure in a millisecond pulsar (MSP). Moreover, three other MSPs, the binary pulsars B1913+16, B1953+29, and J1022+1001, seem to exhibit core/single-cone profiles. These configurations are remarkable and important because it has not been clear whether MSPs and slow pulsars exhibit similar emission-beam configurations, given that they have considerably smaller magnetospheric sizes and magnetic field strengths. MSPs thus provide an extreme context for studying pulsar radio emission. Particle currents along the magnetic polar flux tube connect processes just above themore » polar cap through the radio-emission region to the light-cylinder and the external environment. In slow pulsars, radio-emission heights are typically about 500 km around where the magnetic field is nearly dipolar, and estimates of the physical conditions there point to radiation below the plasma frequency and emission from charged solitons by the curvature process. We are able to estimate emission heights for the four MSPs and carry out a similar estimation of physical conditions in their much lower emission regions. We find strong evidence that MSPs also radiate by curvature emission from charged solitons.« less
Espinoza, C. M.; Guillemot, L.; Celik, O.; ...
2013-01-25
In this work, we report on the discovery of gamma-ray pulsations from five millisecond pulsars (MSPs) using the Fermi Large Area Telescope (LAT) and timing ephemerides provided by various radio observatories. We also present confirmation of the gamma-ray pulsations from a sixth source, PSR J2051-0827. Five of these six MSPs are in binary systems: PSRs J1713+0747, J1741+1351, J1600-3053 and the two black widow binary pulsars PSRs J0610-2100 and J2051-0827. The only isolated MSP is the nearby PSR J1024-0719, which is also known to emit X-rays. We present X-ray observations in the direction of PSRs J1600-3053 and J2051-0827. While PSR J2051-0827more » is firmly detected, we can only give upper limits for the X-ray flux of PSR J1600-3053. There are no dedicated X-ray observations available for the other three objects. The MSPs mentioned above, together with most of the MSPs detected by Fermi, are used to put together a sample of 30 gamma-ray MSPs. This sample is used to study the morphology and phase connection of radio and gamma-ray pulse profiles. We show that MSPs with pulsed gamma-ray emission which is phase-aligned with the radio emission present the steepest radio spectra and the largest magnetic fields at the light cylinder among all MSPs. Also, we observe a trend towards very low, or undetectable, radio linear polarization levels. These properties could be attributed to caustic radio emission produced at a range of different altitudes in the magnetosphere. In conclusion, we note that most of these characteristics are also observed in the Crab pulsar, the only other radio pulsar known to exhibit phase-aligned radio and gamma-ray emission.« less
Discovery of the Millisecond Pulsar PSR J2043+1711 in a Fermi Source with the Nancay Radio Telescope
NASA Technical Reports Server (NTRS)
Guillemot, L.; Freire, P. C. C.; Cognard, I.; Johnson, T. J.; Takahashi, Y.; Kataoka, J.; Desvignes, G.; Camilo, F.; Ferrara, E. C.; Harding, A. K.;
2012-01-01
We report the discovery of the millisecond pulsar PSR J2043+1711 in a search of a Fermi Large Area Telescope (LAT) source with no known associations, with the Nancay Radio Telescope. The new pulsar, confirmed with the Green Bank Telescope, has a spin period of 2.38 ms, is relatively nearby (d approx. < 2 kpc) and is in a 1.48-d orbit around a low-mass companion, probably an He-type white dwarf. Using an ephemeris based on Arecibo, Nancay and Westerbork timing measurements, pulsed gamma-ray emission was detected in the data recorded by the Fermi LAT. The gamma-ray light curve and spectral properties are typical of other gamma-ray millisecond pulsars seen with Fermi. X-ray observations of the pulsar with Suzaku and the Swift X-ray Telescope yielded no detection. At 1.4 GHz, we observe strong flux density variations because of interstellar diffractive scintillation; however, a sharp peak can be observed at this frequency during bright scintillation states. At 327 MHz, the pulsar is detected with a much higher signal-to-noise ratio and its flux density is far more steady. However, at that frequency the Arecibo instrumentation cannot yet fully resolve the pulse profile. Despite that, our pulse time-of-arrival measurements have a post-fit residual rms of 2 micro s. This and the expected stability of this system have made PSR J2043+1711 one of the first new Fermi-selected millisecond pulsars to be added to pulsar gravitational wave timing arrays. It has also allowed a significant measurement of relativistic delays in the times of arrival of the pulses due to the curvature of space-time near the companion, but not yet with enough precision to derive useful masses for the pulsar and the companion. Nevertheless, a mass for the pulsar between 1.7 and 2.0 solar Mass can be derived if a standard millisecond pulsar formation model is assumed. In this paper, we also present a comprehensive summary of pulsar searches in Fermi LAT sources with the Nancay Radio Telescope to date.
Exploring the Physical Conditions in Millisecond Pulsar Emission Regions
NASA Astrophysics Data System (ADS)
Rankin, Joanna M.
2017-01-01
The five-component profile of the 2.7-ms pulsar J0337+1715 appears to exhibit the best example to date of a core/double-cone emission-beam structure in a millisecond pulsar (MSP). Moreover, three other MSPs, the Binary Pulsar B1913+16, B1953+29 and J1022+1001, seem to exhibit core/single-cone profiles. These configurations are remarkable and important because it has not been clear whether MSPs and slow pulsars exhibit similar emission-beam configurations despite having radically different magnetospheric sizes and magnetic field strengths. MSPs thus provide an extreme context for studying pulsar radio emission. Particle currents along the magnetic polar fluxtube connect processes just above the polar cap through the radio-emission region to the light-cylinder and the external environment. In slow pulsars radio-emission heights are typically about 500 km where the magnetic field is nearly dipolar, and estimates of the physical conditions there point to radiation below the plasma frequency and emission from charged solitons by the curvature process. We are able to estimate emission heights for the four MSPs and carry out a similar estimation of physical conditions in their much lower emission regions. We find strong evidence that MSPs also radiate by curvature emission from charged solitons.
Test-particle dynamics in general spherically symmetric black hole spacetimes
NASA Astrophysics Data System (ADS)
De Laurentis, Mariafelicia; Younsi, Ziri; Porth, Oliver; Mizuno, Yosuke; Rezzolla, Luciano
2018-05-01
To date, the most precise tests of general relativity have been achieved through pulsar timing, albeit in the weak-field regime. Since pulsars are some of the most precise and stable "clocks" in the Universe, present observational efforts are focused on detecting pulsars in the vicinity of supermassive black holes (most notably in the Galactic Centre), enabling pulsar timing to be used as an extremely precise probe of strong-field gravity. In this paper, a mathematical framework to describe test-particle dynamics in general black-hole spacetimes is presented and subsequently used to study a binary system comprising a pulsar orbiting a black hole. In particular, taking into account the parameterization of a general spherically symmetric black-hole metric, general analytic expressions for both the advance of the periastron and for the orbital period of a massive test particle are derived. Furthermore, these expressions are applied to four representative cases of solutions arising in both general relativity and in alternative theories of gravity. Finally, this framework is applied to the Galactic center S -stars and four distinct pulsar toy models. It is shown that by adopting a fully general-relativistic description of test-particle motion which is independent of any particular theory of gravity, observations of pulsars can help impose better constraints on alternative theories of gravity than is presently possible.
THE EINSTEIN-HOME SEARCH FOR RADIO PULSARS AND PSR J2007+2722 DISCOVERY
DOE Office of Scientific and Technical Information (OSTI.GOV)
Allen, B.; Knispel, B.; Aulbert, C.
Einstein-Home aggregates the computer power of hundreds of thousands of volunteers from 193 countries, to search for new neutron stars using data from electromagnetic and gravitational-wave detectors. This paper presents a detailed description of the search for new radio pulsars using Pulsar ALFA survey data from the Arecibo Observatory. The enormous computing power allows this search to cover a new region of parameter space; it can detect pulsars in binary systems with orbital periods as short as 11 minutes. We also describe the first Einstein-Home discovery, the 40.8 Hz isolated pulsar PSR J2007+2722, and provide a full timing model. PSRmore » J2007+2722's pulse profile is remarkably wide with emission over almost the entire spin period. This neutron star is most likely a disrupted recycled pulsar, about as old as its characteristic spin-down age of 404 Myr. However, there is a small chance that it was born recently, with a low magnetic field. If so, upper limits on the X-ray flux suggest but cannot prove that PSR J2007+2722 is at least {approx}100 kyr old. In the future, we expect that the massive computing power provided by volunteers should enable many additional radio pulsar discoveries.« less
European Pulsar Timing Array limits on an isotropic stochastic gravitational-wave background
NASA Astrophysics Data System (ADS)
Lentati, L.; Taylor, S. R.; Mingarelli, C. M. F.; Sesana, A.; Sanidas, S. A.; Vecchio, A.; Caballero, R. N.; Lee, K. J.; van Haasteren, R.; Babak, S.; Bassa, C. G.; Brem, P.; Burgay, M.; Champion, D. J.; Cognard, I.; Desvignes, G.; Gair, J. R.; Guillemot, L.; Hessels, J. W. T.; Janssen, G. H.; Karuppusamy, R.; Kramer, M.; Lassus, A.; Lazarus, P.; Liu, K.; Osłowski, S.; Perrodin, D.; Petiteau, A.; Possenti, A.; Purver, M. B.; Rosado, P. A.; Smits, R.; Stappers, B.; Theureau, G.; Tiburzi, C.; Verbiest, J. P. W.
2015-11-01
We present new limits on an isotropic stochastic gravitational-wave background (GWB) using a six pulsar data set spanning 18 yr of observations from the 2015 European Pulsar Timing Array data release. Performing a Bayesian analysis, we fit simultaneously for the intrinsic noise parameters for each pulsar, along with common correlated signals including clock, and Solar system ephemeris errors, obtaining a robust 95 per cent upper limit on the dimensionless strain amplitude A of the background of A < 3.0 × 10-15 at a reference frequency of 1 yr-1 and a spectral index of 13/3, corresponding to a background from inspiralling supermassive black hole binaries, constraining the GW energy density to Ωgw(f)h2 < 1.1 × 10-9 at 2.8 nHz. We also present limits on the correlated power spectrum at a series of discrete frequencies, and show that our sensitivity to a fiducial isotropic GWB is highest at a frequency of ˜5 × 10-9 Hz. Finally, we discuss the implications of our analysis for the astrophysics of supermassive black hole binaries, and present 95 per cent upper limits on the string tension, Gμ/c2, characterizing a background produced by a cosmic string network for a set of possible scenarios, and for a stochastic relic GWB. For a Nambu-Goto field theory cosmic string network, we set a limit Gμ/c2 < 1.3 × 10-7, identical to that set by the Planck Collaboration, when combining Planck and high-ℓ cosmic microwave background data from other experiments. For a stochastic relic background, we set a limit of Ω ^relic_gw(f)h^2<1.2 × 10^{-9}, a factor of 9 improvement over the most stringent limits previously set by a pulsar timing array.
Evidence for Neutron Star Formation from Accretion Induced Collapse of a White Dwarf
NASA Technical Reports Server (NTRS)
Paradijis, J. Van; VanDenHeuvel, E. P. J.; Kouveliotou, C.; Fishman, G. J.; Finger, M. H.; Lewin, W. H. G.
1997-01-01
The orbital parameters of the recently discovered transient burster/pulsar GRO J1744-28 indicate that this system is a low-mass X-ray binary in an advanced stage of its mass transfer, with several tenths of a solar mass already transferred from the donor to the compact star. All neutron stars known to have accreted such an amount have very weak magnetic fields, and this has led to the idea that the magnetic fields of neutron stars decay as a result of accretion. The observation of a strongly magnetized neutron star in GRO J1744-28 then suggests that this neutron star was formed recently as a result of the collapse of a white dwarf during an earlier stage of the current phase of mass transfer. It is shown that this model can consistently explain the observed characteristics of GRO J1744-28. Attractive progenitors for such an evolution are the luminous supersoft X-ray sources detected with ROSAT.
Could SXP 1062 be an Accreting Magnetar?
NASA Astrophysics Data System (ADS)
Fu, Lei; Li, Xiang-Dong
2012-10-01
In this work we explore the possible evolutionary track of the neutron star in the newly discovered Be/X-ray binary SXP 1062, which is believed to be the first X-ray pulsar associated with a supernova remnant. Although no cyclotron feature has been detected to indicate the strength of the neutron star's magnetic field, we show that it may be >~ 1014 G. If so, SXP 1062 may belong to the accreting magnetars in binary systems. We attempt to reconcile the short age and long spin period of the pulsar taking account of different initial parameters and spin-down mechanisms of the neutron star. Our calculated results show that to spin down to a period ~1000 s within 10-40 kyr requires efficient propeller mechanisms. In particular, the model for angular momentum loss under energy conservation seems to be ruled out.
NASA Astrophysics Data System (ADS)
Kelley, Luke Zoltan; Blecha, Laura; Hernquist, Lars; Sesana, Alberto; Taylor, Stephen R.
2018-06-01
We calculate the properties, occurrence rates and detection prospects of individually resolvable `single sources' in the low-frequency gravitational wave (GW) spectrum. Our simulations use the population of galaxies and massive black hole binaries from the Illustris cosmological hydrodynamic simulations, coupled to comprehensive semi-analytic models of the binary merger process. Using mock pulsar timing arrays (PTA) with, for the first time, varying red-noise models, we calculate plausible detection prospects for GW single sources and the stochastic GW background (GWB). Contrary to previous results, we find that single sources are at least as detectable as the GW background. Using mock PTA, we find that these `foreground' sources (also `deterministic'/`continuous') are likely to be detected with ˜20 yr total observing baselines. Detection prospects, and indeed the overall properties of single sources, are only moderately sensitive to binary evolution parameters - namely eccentricity and environmental coupling, which can lead to differences of ˜5 yr in times to detection. Red noise has a stronger effect, roughly doubling the time to detection of the foreground between a white-noise only model (˜10-15 yr) and severe red noise (˜20-30 yr). The effect of red noise on the GWB is even stronger, suggesting that single source detections may be more robust. We find that typical signal-to-noise ratios for the foreground peak near f = 0.1 yr-1, and are much less sensitive to the continued addition of new pulsars to PTA.
AR Sco: the first white dwarf pulsar?
NASA Astrophysics Data System (ADS)
Gaensicke, Boris
2015-10-01
AR Sco was mis-classified in 1971 as a pulsating delta-Scuti star, and has received little attention until now. In May this year, we became aware of the truly unique nature of this object: besides a two-magnitude modulation on the 3.56h orbital period, we detected a coherent 2min variability from the optical into the radio, and a spectacular infrared excess across the WISE bands. Our optical spectroscopy reveals a late-type companion star, clearly identifying AR Sco as a compact binary. While most of its observational characteristics are reminiscent of neutron star or black hole binaries, the 2min modulation is archetypical of the spin period of a strongly magnetic white dwarf. We believe that AR Sco is the first white dwarf radio pulsar, where the combination of a large field and rapid rotation results in the acceleration of relativisitic particles that blast the inner hemisphere of the M-dwarf companion, akin to the well-known milli-second pulsars. The ultimate proof of our hypothesis relies on the unambiguous identification of the white dwarf, which will be achieved through the detection of Zeeman-split Ly alpha absorption in the requested COS/G140L observations.
NASA Technical Reports Server (NTRS)
Aasi, J.; Abbott, B. P.; Abbott, R.; Abbott, T.; Abernathy, M. R.; Acernese, F.; Blackburn, Lindy L.; Camp, J. B.; Gehrels, N.; Graff, P. B.
2014-01-01
We report results from a search for gravitational waves produced by perturbed intermediate mass black holes (IMBH) in data collected by LIGO and Virgo between 2005 and 2010. The search was sensitive to astrophysical sources that produced damped sinusoid gravitational wave signals, also known as ringdowns, with frequency 50 less than or equal to italic f0/Hz less than or equal to 2000 and decay timescale 0.0001 approximately less than t/s approximately less than 0.1 characteristic of those produced in mergers of IMBH pairs. No significant gravitational wave candidate was detected. We report upper limits on the astrophysical coalescence rates of IMBHs with total binary mass 50 less than or equal to M/solar mass less than or equal to 450 and component mass ratios of either 1:1 or 4:1. For systems with total mass 100 less than or equal to M/solar mass 150, we report a 90%-confidence upper limit on the rate of binary IMBH mergers with non-spinning and equal mass components of 6:9 x 10(exp 8) Mpc(exp -3)yr(exp -1). We also report a rate upper limit for ringdown waveforms from perturbed IMBHs, radiating 1% of their mass as gravitational waves in the fundamental, l=m=2, oscillation mode, that is nearly three orders of magnitude more stringent than previous results.
The Frequency Evolution of Interstellar Pulse Broadening from Radio Pulsars
NASA Astrophysics Data System (ADS)
Löhmer, O.; Mitra, D.; Gupta, Y.; Kramer, M.; Ahuja, A.
2004-10-01
Using radio pulsars as probes of the interstellar medium (ISM) we study the frequency evolution of interstellar scattering. The frequency dependence of scatter broadening times, τsc, for most of the pulsars with low and intermediate dispersion measures (DM ≲ 400 pc cm-3) is consistent with the Kolmogorov spectrum of electron density fluctuations in a turbulent medium. In contrast, the measured τsc's for highly dispersed pulsars in the central region of the Galaxy are larger than expected and show a spectrum which is flatter than the Kolmogorov law. We analyse the first measurements of spectral indices of scatter broadening over the full known DM range and discuss possible explanations for the anomalous scattering behaviour along peculiar lines of sight (LOS).
On the timing properties of SAX J1808.4-3658 during its 2015 outburst
NASA Astrophysics Data System (ADS)
Sanna, A.; Di Salvo, T.; Burderi, L.; Riggio, A.; Pintore, F.; Gambino, A. F.; Iaria, R.; Tailo, M.; Scarano, F.; Papitto, A.
2017-10-01
We present a timing analysis of the 2015 outburst of the accreting millisecond X-ray pulsar SAX J1808.4-3658, using non-simultaneous XMM-Newton and NuSTAR observations. We estimate the pulsar spin frequency and update the system orbital solution. Combining the average spin frequency from the previous observed, we confirm the long-term spin-down at an average rate \\dot{ν }_{SD}=1.5(2)× 10^{-15} Hz s-1. We also discuss possible corrections to the spin-down rate accounting for mass accretion on to the compact object when the system is X-ray active. Finally, combining the updated ephemerides with those of the previous outbursts, we find a long-term orbital evolution compatible with a binary expansion at a mean rate \\dot{P}_{orb}=3.6(4)× 10^{-12} s s-1, in agreement with previously reported values. This fast evolution is incompatible with an evolution driven by angular momentum losses caused by gravitational radiation under the hypothesis of conservative mass transfer. We discuss the observed orbital expansion in terms of non-conservative mass transfer and gravitational quadrupole coupling mechanism. We find that the latter can explain, under certain conditions, small fluctuations (of the order of few seconds) of the orbital period around a global parabolic trend. At the same time, a non-conservative mass transfer is required to explain the observed fast orbital evolution, which likely reflects ejection of a large fraction of mass from the inner Lagrangian point caused by the irradiation of the donor by the magnetodipole rotator during quiescence (radio-ejection model). This strong outflow may power tidal dissipation in the companion star and be responsible of the gravitational quadrupole change oscillations.
Orbital Parameters and Spectroscopy of the Transient X-Ray Pulsar 4U 0115+63
NASA Technical Reports Server (NTRS)
Mueller, Sebastian; Obst,Maria; Kreykenbohm, Ingo; Fuerst, Felix; Kuehnel, Matthias; Wilms, Joern; Klochkov, Dmitry; Staubert, Ruediger; Santangelo, Andrea; Pottschmidt, Katja;
2011-01-01
We report on an outburst of the high mass X-ray binary 4U 0115+63 with a pulse period of 3.6s in spring 2008 as observed with INTEGRAL and RXTE. By analyzing the lightcurves we derive an updated orbital- and pulse period ephemeris of the neutron star. We also study the pulse profile variations as a function of time and energy as well as the variability of the spectral parameters. We find clear evidence for at least three cyclotron line features. In agreement with previous observations of 4U 0115+63, we detect an anti-correlation between the luminosity and the fundamental cyclotron line energy.
Spectroscopic observations of V443 Herculis - A symbiotic binary with a low mass white dwarf
NASA Technical Reports Server (NTRS)
Dobrzycka, Danuta; Kenyon, Scott J.; Mikolajewska, Joanna
1993-01-01
We present an analysis of new and existing photometric and spectroscopic observations of the symbiotic binary V443 Herculis. This binary system consists of a normal M5 giant and a hot compact star. These two objects have comparable luminosities: about 1500 solar for the M5 giant and about 1000 solar for the compact star. We identify three nebular regions in this binary: a small, highly ionized volume surrounding the hot component, a modestly ionized shell close to the red giant photosphere, and a less dense region of intermediate ionization encompassing both binary components. The system parameters for V443 Her suggest the hot component currently declines from a symbiotic nova eruption.
NASA Astrophysics Data System (ADS)
Ryu, Taeho; Perna, Rosalba; Haiman, Zoltán; Ostriker, Jeremiah P.; Stone, Nicholas C.
2018-01-01
Using few-body simulations, we investigate the evolution of supermassive black holes (SMBHs) in galaxies (M* = 1010-1012 M⊙ at z = 0) at 0 < z < 4. Following galaxy merger trees from the Millennium simulation, we model BH mergers with two extreme binary decay scenarios for the 'hard binary' stage: a full or an empty loss cone. These two models should bracket the true evolution, and allow us to separately explore the role of dynamical friction and that of multibody BH interactions on BH mergers. Using the computed merger rates, we infer the stochastic gravitational wave background (GWB). Our dynamical approach is a first attempt to study the dynamical evolution of multiple SMBHs in the host galaxies undergoing mergers with various mass ratios (10-4 < q* < 1). Our main result demonstrates that SMBH binaries are able to merge in both scenarios. In the empty loss cone case, we find that BHs merge via multibody interactions, avoiding the 'final parsec' problem, and entering the pulsar timing arrays band with substantial orbital eccentricity. Our full loss cone treatment, albeit more approximate, suggests that the eccentricity becomes even higher when GWs become dominant, leading to rapid coalescences (binary lifetime ≲1 Gyr). Despite the lower merger rates in the empty loss cone case, due to their higher mass ratios and lower redshifts, the GWB in the full/empty loss cone models are comparable (0.70 × 10-15 and 0.53 × 10-15 at a frequency of 1 yr-1, respectively). Finally, we compute the effects of high eccentricities on the GWB spectrum.
NASA Astrophysics Data System (ADS)
Jaisawal, Gaurava K.; Naik, Sachindra; Chenevez, Jérôme
2018-03-01
We present the results obtained from timing and spectral studies of the newly discovered accreting X-ray binary pulsar Swift J0243.6+6124 using Nuclear Spectroscopy Telescope Array observation in 2017 October at a flux level of ˜280 mCrab. Pulsations at 9.854 23(5) s were detected in the X-ray light curves of the pulsar. Pulse profiles of the pulsar were found to be strongly energy dependent. A broad profile at lower energies was found to evolve into a double-peaked profile in ≥ 30 keV. The 3-79 keV continuum spectrum of the pulsar was well described with a negative and positive exponential cutoff or high-energy cutoff power-law models modified with a hot blackbody at ˜3 keV. An iron emission line was also detected at 6.4 keV in the source spectrum. We did not find any signature of cyclotron absorption line in our study. Results obtained from phase-resolved and time-resolved spectroscopy are discussed in the paper.
Properties of the redback millisecond pulsar binary 3FGL J0212.1+5320
NASA Astrophysics Data System (ADS)
Shahbaz, T.; Linares, M.; Breton, R. P.
2017-12-01
Linares et al. obtained quasi-simultaneous g΄-, r΄- and i΄-band light curves and an absorption-line radial velocity curve of the secondary star in the redback system 3FGL J0212.1+5320. The light curves showed two maxima and minima primarily due to the secondary star's ellipsoidal modulation, but with unequal maxima and minima. We fit these light curves and radial velocities with our X-ray binary model including either a dark solar-type star spot or a hotspot due to off-centre heating from an intrabinary shock to account for the unequal maxima. Both models give a radial velocity semi-amplitude and rotational broadening that agree with the observations. The observed secondary star's effective temperature is best matched with the value obtained using the hotspot model, which gives a neutron star and secondary star mass of M1 = 1.85 ^{+0.32}_{-0.26} M⊙ and M2 = 0.50 ^{+0.22}_{-0.19} M⊙, respectively.
A Suzaku View of Cyclotron Line Sources and Candidates
NASA Technical Reports Server (NTRS)
Pottschmidt, K.; Suchy, S.; Rivers, E.; Rothschild, R. E.; Marcu, D. M.; Barragan, L.; Kuehnel, M.; Fuerst, F.; Schwarm, F.; Kreykenbohm, I.;
2012-01-01
Seventeen accreting neutron star pulsars, mostly high mass X-ray binaries with half of them Be-type transients, are known to exhibit Cyclotron Resonance Scattering Features (CRSFs) in their X-ray spectra, with characteristic line energies from 10 to 60 keY. To date about two thirds of them, plus a few similar systems without known CRSFs, have been observed with Suzaku. We present an overview of results from these observations, including the discovery of a CRSF in the transient IA1118-61 and pulse phase resolved spectroscopy of OX 301-2. These observations allow for the determination of cyclotron line parameters to an unprecedented degree of accuracy within a moderate amount of observing time. This is important since these parameters vary - e.g., with orbital phase, pulse phase, or luminosity - depending on the geometry of the magnetic field of the pulsar and the properties of the accretion column at the magnetic poles. We briefly introduce a spectral model for CRSFs that is currently being developed and that for the first time is based on these physical properties. In addition to cyclotron line measurements, selected highlights from the Suzaku analyses include dip and flare studies, e.g., of 4U 1907+09 and Vela X-I, which show clumpy wind effects (like partial absorption and/or a decrease in the mass accretion rate supplied by the wind) and may also display magnetospheric gating effects.
X-Ray Probes of Cosmic Star Formation History
NASA Technical Reports Server (NTRS)
Ghosh, Pranab; White, Nicholas E.
2001-01-01
We discuss the imprints left by a cosmological evolution of the star formation rate (SFR) on the evolution of X-ray luminosities Lx of normal galaxies, using the scheme earlier proposed by us, wherein the evolution of LX of a galaxy is driven by the evolution of its X-ray binary population. As indicated in our earlier work, the profile of Lx with redshift can both serve as a diagnostic probe of the SFR profile and constrain evolutionary models for X-ray binaries. We report here the first calculation of the expected evolution of X-ray luminosities of galaxies, updating our work by using a suite of more recently developed SFR profiles that span the currently plausible range. The first Chandra deep imaging results on Lx evolution are beginning to probe the SFR profile of bright spiral galaxies; the early results are consistent with predictions based on current SFR models. Using these new SFR profiles, the resolution of the "birthrate problem" of low-mass X-ray binaries and recycled, millisecond pulsars in terms of an evolving global SFR is more complete. We discuss the possible impact of the variations in the SFR profile of individual galaxies and galaxy types.
NASA Astrophysics Data System (ADS)
Liu, Tingting; Gezari, Suvi
Supermassive black hole binaries (SMBHBs) should be an inevitable consequence of the hierarchical growth of massive galaxies through mergers and the strongest sirens of gravitational waves (GWs) in the cosmos. Yet, their direct detection has remained elusive due to the compact (sub-parsec) orbital separations of gravitationally bound SMBHBs. Here we exploit a theoretically predicted signature of SMBHBs in the time domain. We have begun a systematic search for SMBHB candidates in the Pan-STARRS1 Medium Deep Survey (MDS) and reported our first significant detection of such a candidate from our pilot study of MD09 in Liu et al. (2015). Our candidate PSO J334.2028+01.4075 has a detected period of 542 days, varying persistently over the available baseline. From its archival spectrum, we estimated the black hole mass of the z = 2.06 quasar to be ~1010 M⊙. The inferred ~7 R s binary separation therefore puts this candidate in the regime of GW-dominated orbital decay, opening up the exciting possibility of finding GW sources detectable by pulsar timing arrays (PTAs) in a wide-field optical synoptic survey.
NASA Astrophysics Data System (ADS)
Caballero, R. N.; Lee, K. J.; Lentati, L.; Desvignes, G.; Champion, D. J.; Verbiest, J. P. W.; Janssen, G. H.; Stappers, B. W.; Kramer, M.; Lazarus, P.; Possenti, A.; Tiburzi, C.; Perrodin, D.; Osłowski, S.; Babak, S.; Bassa, C. G.; Brem, P.; Burgay, M.; Cognard, I.; Gair, J. R.; Graikou, E.; Guillemot, L.; Hessels, J. W. T.; Karuppusamy, R.; Lassus, A.; Liu, K.; McKee, J.; Mingarelli, C. M. F.; Petiteau, A.; Purver, M. B.; Rosado, P. A.; Sanidas, S.; Sesana, A.; Shaifullah, G.; Smits, R.; Taylor, S. R.; Theureau, G.; van Haasteren, R.; Vecchio, A.
2016-04-01
The sensitivity of Pulsar Timing Arrays to gravitational waves (GWs) depends on the noise present in the individual pulsar timing data. Noise may be either intrinsic or extrinsic to the pulsar. Intrinsic sources of noise will include rotational instabilities, for example. Extrinsic sources of noise include contributions from physical processes which are not sufficiently well modelled, for example, dispersion and scattering effects, analysis errors and instrumental instabilities. We present the results from a noise analysis for 42 millisecond pulsars (MSPs) observed with the European Pulsar Timing Array. For characterizing the low-frequency, stochastic and achromatic noise component, or `timing noise', we employ two methods, based on Bayesian and frequentist statistics. For 25 MSPs, we achieve statistically significant measurements of their timing noise parameters and find that the two methods give consistent results. For the remaining 17 MSPs, we place upper limits on the timing noise amplitude at the 95 per cent confidence level. We additionally place an upper limit on the contribution to the pulsar noise budget from errors in the reference terrestrial time standards (below 1 per cent), and we find evidence for a noise component which is present only in the data of one of the four used telescopes. Finally, we estimate that the timing noise of individual pulsars reduces the sensitivity of this data set to an isotropic, stochastic GW background by a factor of >9.1 and by a factor of >2.3 for continuous GWs from resolvable, inspiralling supermassive black hole binaries with circular orbits.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Yan; Mohanty, Soumya D.; Jenet, Fredrick A., E-mail: ywang12@hust.edu.cn
2015-12-20
Supermassive black hole binaries are one of the primary targets of gravitational wave (GW) searches using pulsar timing arrays (PTAs). GW signals from such systems are well represented by parameterized models, allowing the standard Generalized Likelihood Ratio Test (GLRT) to be used for their detection and estimation. However, there is a dichotomy in how the GLRT can be implemented for PTAs: there are two possible ways in which one can split the set of signal parameters for semi-analytical and numerical extremization. The straightforward extension of the method used for continuous signals in ground-based GW searches, where the so-called pulsar phasemore » parameters are maximized numerically, was addressed in an earlier paper. In this paper, we report the first study of the performance of the second approach where the pulsar phases are maximized semi-analytically. This approach is scalable since the number of parameters left over for numerical optimization does not depend on the size of the PTA. Our results show that for the same array size (9 pulsars), the new method performs somewhat worse in parameter estimation, but not in detection, than the previous method where the pulsar phases were maximized numerically. The origin of the performance discrepancy is likely to be in the ill-posedness that is intrinsic to any network analysis method. However, the scalability of the new method allows the ill-posedness to be mitigated by simply adding more pulsars to the array. This is shown explicitly by taking a larger array of pulsars.« less
The Confrontation between General Relativity and Experiment.
Will, Clifford M
2006-01-01
The status of experimental tests of general relativity and of theoretical frameworks for analyzing them is reviewed. Einstein's equivalence principle (EEP) is well supported by experiments such as the Eötvös experiment, tests of special relativity, and the gravitational redshift experiment. Ongoing tests of EEP and of the inverse square law are searching for new interactions arising from unification or quantum gravity. Tests of general relativity at the post-Newtonian level have reached high precision, including the light deflection, the Shapiro time delay, the perihelion advance of Mercury, and the Nordtvedt effect in lunar motion. Gravitational wave damping has been detected in an amount that agrees with general relativity to better than half a percent using the Hulse-Taylor binary pulsar, and other binary pulsar systems have yielded other tests, especially of strong-field effects. When direct observation of gravitational radiation from astrophysical sources begins, new tests of general relativity will be possible.
The Confrontation between General Relativity and Experiment.
Will, Clifford M
2001-01-01
The status of experimental tests of general relativity and of theoretical frameworks for analysing them are reviewed. Einstein's equivalence principle (EEP) is well supported by experiments such as the Eötvös experiment, tests of special relativity, and the gravitational redshift experiment. Future tests of EEP and of the inverse square law will search for new interactions arising from unification or quantum gravity. Tests of general relativity at the post-Newtonian level have reached high precision, including the light defl ection the Shapiro time delay, the perihelion advance of Mercury, and the Nordtvedt effect in lunar motion. Gravitational wave damping has been detected in an amount that agrees with general relativity to half a percent using the Hulse-Taylor binary pulsar, and new binary pulsar systems may yield further improvements. When direct observation of gravitational radiation from astrophysical sources begins, new tests of general relativity will be possible.
The Confrontation between General Relativity and Experiment.
Will, Clifford M
2014-01-01
The status of experimental tests of general relativity and of theoretical frameworks for analyzing them is reviewed and updated. Einstein's equivalence principle (EEP) is well supported by experiments such as the Eötvös experiment, tests of local Lorentz invariance and clock experiments. Ongoing tests of EEP and of the inverse square law are searching for new interactions arising from unification or quantum gravity. Tests of general relativity at the post-Newtonian level have reached high precision, including the light deflection, the Shapiro time delay, the perihelion advance of Mercury, the Nordtvedt effect in lunar motion, and frame-dragging. Gravitational wave damping has been detected in an amount that agrees with general relativity to better than half a percent using the Hulse-Taylor binary pulsar, and a growing family of other binary pulsar systems is yielding new tests, especially of strong-field effects. Current and future tests of relativity will center on strong gravity and gravitational waves.
NASA Astrophysics Data System (ADS)
Chennamangalam, Jayanth
The transient radio universe is a relatively unexplored area of astronomy, offering a variety of phenomena, from solar and Jovian bursts, to flare stars, pulsars, and bursts of Galactic and potentially even cosmological origin. Among these, perhaps the most widely studied radio transients, pulsars are fast-spinning neutron stars that emit radio beams from their magnetic poles. In spite of over 40 years of research on pulsars, we have more questions than answers on these exotic compact objects, chief among them the nature of their emission mechanism. Nevertheless, the wealth of phenomena exhibited by pulsars make them one of the most useful astrophysical tools. With their high densities, pulsars are probes of the nature of ultra-dense matter. Characterized by their high timing stability, pulsars can be used to verify the predictions of general relativity, discover planets around them, study bodies in the solar system, and even serve as an interplanetary (and possibly some day, interstellar) navigation aid. Pulsars are also used to study the nature of the interstellar medium, much like a flashlight illuminating airborne dust in a dark room. Studies of pulsars in the Galactic center can help answer questions about the massive black hole in the region and the star formation history in its vicinity. Millisecond pulsars in globular clusters are long-lived tracers of their progenitors, low-mass X-ray binaries, and can be used to study the dynamical history of those clusters. Another source of interest in radio transient astronomy is the hitherto undetected engineered signal from extraterrestrial intelligence. The Search for Extraterrestrial Intelligence (SETI) is an ongoing attempt at discovering the presence of technological life elsewhere in the Galaxy. In this work, I present my forays into two aspects of the study of the radio transient universe---pulsars and SETI. Firstly, I describe my work on the luminosity function and population size of pulsars in the globular clusters Terzan 5, 47 Tucanae, and M 28. Applying Bayesian statistics to our data set consisting of the number of detected pulsars, their flux densities, and the amount of diffuse radio emission from the direction of these clusters, we show that the number of potentially observable pulsars in Terzan 5 should be within a 95 per cent credible interval of 147+112-65 For 47 Tucanae and M 28, our results are 83+54-35 and 100+91-52 , spectively. We also constrain the luminosity function parameters for the pulsars in these clusters. The Galactic center pulsar population has been an interesting target for various studies, especially given that only one pulsar has been detected in the region, when we expect hundreds of pulsars to be present. In this work, we use the scattering measurements from recent observations of PSR J1745--2900, the Galactic center pulsar, and show that the size of the potentially observable pulsar population has a conservative upper limit of ~200. We show that the observational results so far are consistent with this number and make predictions for future radio pulsar surveys of the region. The Versatile GBT Astronomical Spectrometer (VEGAS) is a heterogeneous instrument used mainly for pulsar studies with the Green Bank Telescope. I describe our work on the GPU spectrometer that we developed as part of VEGAS. The GPU code supports a dual-polarization bandwidth of up to 600 MHz. In the field of SETI, I discuss two works. SERENDIP VI is a heterogeneous SETI spectrometer to be installed both at the Green Bank Telescope and at the Arecibo Observatory. In this work, we describe the design of the GPU spectrometer that forms part of SERENDIP VI. In the second work, we speculate on a novel search strategy for SETI, based on the idea that technological civilizations lacking the advancement required to build high-powered beacons may choose to build a modulator situated around a nearby pulsar, depending on whether it is energetically favorable. We discuss observational signatures to search for, using a model of artificially-nulled pulsars.
Hercules X-1: Pulsed gamma-rays detected above 150 GeV
NASA Technical Reports Server (NTRS)
Cawley, M. F.; Fegan, D. J.; Gibbs, K. G.; Gorham, P. W.; Kenny, S.; Lamb, R. C.; Liebing, D. F.; Porter, N. A.; Stenger, V. J.; Weekes, T. C.
1985-01-01
The 1.24 second binary pulsar Her X-1, first observed in X-rays in 1971 by UHURU has now been seen as a sporadic gamma ray source from 1 TeV up to at least 500 TeV. In addition, reprocessed optical and infrared pulses are seen from the companion star HZ Herculis. Thus measurements of the Her X-1/HZ Herculis system span 15 decades in energy, rivaling both the Crab pulsar and Cygnus X-3 in this respect for a discrete galactic source.
CVs and millisecond pulsar progenitors in globular clusters
NASA Technical Reports Server (NTRS)
Grindlay, J. E.; Cool, A. M.; Bailyn, C. D.
1991-01-01
The recent discovery of a large population of millisecond pulsars in globular clusters, together with earlier studies of both low luminosity X-ray sources and LMXBs in globulars, suggest there should be significant numbers of CVs in globulars. Although they have been searched for without success in selected cluster X-ray source fields, systematic surveys are lacking and would constrain binary production and both stellar and dynamical evolution in globular clusters. We describe the beginnings of such a search, using narrow band H-alpha imaging, and the sensitivities it might achieve.
The effect of vacuum birefringence on the polarization of X-ray binaries and pulsars
NASA Technical Reports Server (NTRS)
Novick, R.; Weisskopf, M. C.; Angel, J. R. P.; Sutherland, P. G.
1977-01-01
In a strong magnetic field the vacuum becomes birefringent. This effect is especially important for pulsars at X-ray wavelengths. Any polarized X-ray emission from the surface of a magnetic neutron star becomes depolarized as it propagates through the magnetic field. The soft X-ray emission from AM Her, believed to be a magnetic white dwarf, may show about one radian of phase retardation. In this case, circular polarization of the X-ray flux would be a characteristic signature of vacuum birefringence.
PSR J2322-2650 - a low-luminosity millisecond pulsar with a planetary-mass companion
NASA Astrophysics Data System (ADS)
Spiewak, R.; Bailes, M.; Barr, E. D.; Bhat, N. D. R.; Burgay, M.; Cameron, A. D.; Champion, D. J.; Flynn, C. M. L.; Jameson, A.; Johnston, S.; Keith, M. J.; Kramer, M.; Kulkarni, S. R.; Levin, L.; Lyne, A. G.; Morello, V.; Ng, C.; Possenti, A.; Ravi, V.; Stappers, B. W.; van Straten, W.; Tiburzi, C.
2018-03-01
We present the discovery of a binary millisecond pulsar (MSP), PSR J2322-2650, found in the southern section of the High Time Resolution Universe survey. This system contains a 3.5-ms pulsar with a ˜10-3 M⊙ companion in a 7.75-h circular orbit. Follow-up observations at the Parkes and Lovell telescopes have led to precise measurements of the astrometric and spin parameters, including the period derivative, timing parallax, and proper motion. PSR J2322-2650 has a parallax of 4.4 ± 1.2 mas, and is thus at an inferred distance of 230^{+90}_{-50} pc, making this system a candidate for optical studies. We have detected a source of R ≈ 26.4 mag at the radio position in a single R-band observation with the Keck telescope, and this is consistent with the blackbody temperature we would expect from the companion if it fills its Roche lobe. The intrinsic period derivative of PSR J2322-2650 is among the lowest known, 4.4(4) × 10-22 s s-1, implying a low surface magnetic field strength, 4.0(4) × 107 G. Its mean radio flux density of 160 μJy combined with the distance implies that its radio luminosity is the lowest ever measured, 0.008(5) mJy kpc2. The inferred population of these systems in the Galaxy may be very significant, suggesting that this is a common MSP evolutionary path.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Johnson, Tyrel J.; Ray, Paul S.; Roy, Jayanta
Here, the 1.69 ms spin period of PSR J1227–4853 was recently discovered in radio observations of the low-mass X-ray binary XSS J12270–4859 following the announcement of a possible transition to a rotation-powered millisecond pulsar state, inferred from decreases in optical, X-ray, and gamma-ray flux from the source. We report the detection of significant (5σ) gamma-ray pulsations after the transition, at the known spin period, using ~1 year of data from the Large Area Telescope (LAT) on board the Fermi Gamma-ray Space Telescope. The gamma-ray light curve of PSR J1227–4853 can be fit by one broad peak, which occurs at nearlymore » the same phase as the main peak in the 1.4 GHz radio profile. The partial alignment of light-curve peaks in different wavebands suggests that at least some of the radio emission may originate at high altitude in the pulsar magnetosphere, in extended regions co-located with the gamma-ray emission site. We folded the LAT data at the orbital period, both pre- and post-transition, but find no evidence for significant modulation of the gamma-ray flux. Analysis of the gamma-ray flux over the mission suggests an approximate transition time of 2012 November 30. Continued study of the pulsed emission and monitoring of PSR J1227–4853, and other known redback systems, for subsequent flux changes will increase our knowledge of the pulsar emission mechanism and transitioning systems.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Johnson, T. J.; Ray, P. S.; Cheung, C. C.
The 1.69 ms spin period of PSR J1227−4853 was recently discovered in radio observations of the low-mass X-ray binary XSS J12270−4859 following the announcement of a possible transition to a rotation-powered millisecond pulsar state, inferred from decreases in optical, X-ray, and gamma-ray flux from the source. We report the detection of significant (5σ) gamma-ray pulsations after the transition, at the known spin period, using ∼1 year of data from the Large Area Telescope (LAT) on board the Fermi Gamma-ray Space Telescope. The gamma-ray light curve of PSR J1227−4853 can be fit by one broad peak, which occurs at nearly themore » same phase as the main peak in the 1.4 GHz radio profile. The partial alignment of light-curve peaks in different wavebands suggests that at least some of the radio emission may originate at high altitude in the pulsar magnetosphere, in extended regions co-located with the gamma-ray emission site. We folded the LAT data at the orbital period, both pre- and post-transition, but find no evidence for significant modulation of the gamma-ray flux. Analysis of the gamma-ray flux over the mission suggests an approximate transition time of 2012 November 30. Continued study of the pulsed emission and monitoring of PSR J1227−4853, and other known redback systems, for subsequent flux changes will increase our knowledge of the pulsar emission mechanism and transitioning systems.« less
NASA Astrophysics Data System (ADS)
Pottschmidt, Katja; Hemphill, Paul B.; Wolff, Michael T.; Cheatham, Diana M.; Iwakiri, Wataru; Gottlieb, Amy M.; Falkner, Sebastian; Ballhausen, Ralf; Fuerst, Felix; Kuehnel, Matthias; Ferrigno, Carlo; Becker, Peter A.; Wood, Kent S.; Wilms, Joern
2018-01-01
A new window for better understanding the accretion onto strongly magnetized neutron stars in X-ray binaries is opening. In these systems the accreted material follows the magnetic field lines as it approaches the neutron star, forming accretion columns above the magnetic poles. The plasma falls toward the neutron star surface at near-relativistic speeds, losing energy by emitting X-rays. The X-ray spectral continua are commonly described using phenomenological models, i.e., power laws with different types of curved cut-offs at higher energies. Here we consider high luminosity pulsars. In these systems the mass transfer rate is high enough that the accreting plasma is thought to be decelerated in a radiation-dominated radiative shock in the accretion columns. While the theory of the emission from such shocks had already been developed by 2007, a model for direct comparison with X-ray continuum spectra in xspec or isis has only recently become available. Characteristic parameters of this model are the accretion column radius and the plasma temperature, among others. Here we analyze the broadband X-ray spectra of the accreting pulsars Centaurus X-3 and 4U 1626-67 obtained with NuSTAR. We present results from traditional empirical modeling as well as successfully apply the radiation-dominated radiative shock model. We also take the opportunity to compare to similar recent analyses of both sources using these and other observations.
NASA Astrophysics Data System (ADS)
Kalogera, Vassiliki; Webbink, Ronald F.
1998-01-01
We study the formation of low-mass X-ray binaries (LMXBs) through helium star supernovae in binary systems that have each emerged from a common envelope phase. LMXB progenitors must satisfy a large number of evolutionary and structural constraints, including survival through common envelope evolution, through the post-common envelope phase, where the precursor of the neutron star becomes a Wolf-Rayet star, and survival through the supernova event. Furthermore, the binaries that survive the explosion must reach interaction within a Hubble time and must satisfy stability criteria for mass transfer. These constraints, imposed under the assumption of a symmetric supernova explosion, prohibit the formation of short-period LMXBs transferring mass at sub-Eddington rates through any channel in which the intermediate progenitor of the neutron star is not completely degenerate. Barring accretion-induced collapse, the existence of such systems therefore requires that natal kicks be imparted to neutron stars. We use an analytical method to synthesize the distribution of nascent LMXBs over donor masses and orbital periods and evaluate their birthrate and systemic velocity dispersion. Within the limitations imposed by observational incompleteness and selection effects, and our neglect of secular evolution in the LMXB state, we compare our results with observations. However, our principal objective is to evaluate how basic model parameters (common envelope ejection efficiency, rms kick velocity, primordial mass ratio distribution) influence these results. We conclude that the characteristics of newborn LMXBs are primarily determined by age and stability constraints and the efficiency of magnetic braking and are largely independent of the primordial binary population and the evolutionary history of LMXB progenitors (except for extreme values of the average kick magnitude or of the common envelope ejection efficiency). Theoretical estimates of total LMXB birthrates are not credible, since they strongly depend on the observationally indeterminate frequency of primordial binaries with extreme mass ratios in long-period orbits.
A new transient pulsar in the Small Magellanic Cloud with an unusual x-ray spectrum
NASA Technical Reports Server (NTRS)
Hughes, John P.
1994-01-01
This article reports the discovery of a luminous (3.5 x 10(exp 37) ergs/sec over the 0.2 to 2 keV band) transient X-ray pulsar in the Small Magellanic Cloud (SMC) with an extremely soft component to its X-ray spectrum. This is the first time that a spectrum of this type has been seen in this class of X-ray source. The pulse period is 2.7632 s, and the pulse modulation appears to vary with energy from nearly unpulsed in the low-energy band of the ROSAT Position Sensitive Proportional Counter (PSPC) (0.07 to 0.4 keV) to about 50% in the high-energy band (1.0 to 2.4 keV). The object, RX J0059.2-7138, also shows flickering variability in its X-ray emission on timescales of 50 to 100s. The pulse-phase-averaged PSPC X-ray spectrum can be well described by a two-component source model seen through an absorbing column density of approximately 10(exp 21) atoms cm(exp -2). One spectral component is a power law with photon index 2.4. The other component is significantly softer and can be described by either a steeply falling power law or a blackbody with a temperature KT(sub BB) approximately 35 eV. Ths component is transient, but evidently upulsed, and, for the blackbody model fits, requires a large bolometric luminosity: near, or even several times greater than, the Eddington luminosity for a 1.4 solar mass object. When these characteristics of its soft emission are considered, RX J0059.2-7138 appears quite similar to other X-ray sources in the magellanic Clouds, such as CAL 83, CAL 87, and RX J0527.8-6954, which show only extreme ultrasoft (EUS) X-ray spectra. The discovery of RX J0059.2-7138, a probably high-mass X-ray binary, clearly indicates that EUS spectra may arise from accretion-powered neutron-star X-ray sources. This result lends support to the idea that some of the 'pure' EUS sources may be shrouded low-mass X-ray binaries rather than accreting white dwarfs.
Binary Systems as Test-Beds of Gravity Theories
NASA Astrophysics Data System (ADS)
Damour, Thibault
The discovery of binary pulsars in 1974 [1] opened up a new testing ground for relativistic gravity. Before this discovery, the only available testing ground for relativistic gravity was the solar system. As Einstein's theory of General Relativity (GR) is one of the basic pillars of modern science, it deserves to be tested, with the highest possible accuracy, in all its aspects. In the solar sys tem, the gravitational field is slowly varying and represents only a very small deformation of a flat spacetime. As a consequence, solar system tests can only probe the quasi-stationary (non-radiative) weak-field limit of relativis tic gravity. By contrast binary systems containing compact objects (neutron stars or black holes) involve spacetime domains (inside and near the compact objects) where the gravitational field is strong. Indeed, the surface relativistic gravitational field h 00 ≈ 2 GM/c 2 R of a neutron star is of order 0.4, which is close to the one of a black hole (2GM/c 2 R = 1) and much larger than the surface gravitational fields of solar system bodies: (2GM/c 2 R)Sun ˜ 10-6, (2GM/c 2 R)Earth ˜ 10-9. In addition, the high stability of “pulsar clocks” has made it possible to monitor the dynamics of its orbital motion down to a precision allowing one to measure the small (˜ (v/c)5) orbital effects linked to the propagation of the gravitational field at the velocity of light between the pulsar and its companion.
NASA Astrophysics Data System (ADS)
Kelley, Luke Zoltan; Blecha, Laura; Hernquist, Lars; Sesana, Alberto; Taylor, Stephen R.
2017-11-01
Pulsar timing arrays (PTAs) around the world are using the incredible consistency of millisecond pulsars to measure low-frequency gravitational waves from (super)massive black hole (MBH) binaries. We use comprehensive MBH merger models based on cosmological hydrodynamic simulations to predict the spectrum of the stochastic gravitational wave background (GWB). We use real time-of-arrival specifications from the European, NANOGrav, Parkes, and International PTA (IPTA) to calculate realistic times to detection of the GWB across a wide range of model parameters. In addition to exploring the parameter space of environmental hardening processes (in particular: stellar scattering efficiencies), we have expanded our models to include eccentric binary evolution which can have a strong effect on the GWB spectrum. Our models show that strong stellar scattering and high characteristic eccentricities enhance the GWB strain amplitude near the PTA-sensitive `sweet-spot' (near the frequency f = 1 yr-1), slightly improving detection prospects in these cases. While the GWB amplitude is degenerate between cosmological and environmental parameters, the location of a spectral turnover at low frequencies (f ≲ 0.1 yr-1) is strongly indicative of environmental coupling. At high frequencies (f ≳ 1 yr-1), the GWB spectral index can be used to infer the number density of sources and possibly their eccentricity distribution. Even with merger models that use pessimistic environmental and eccentricity parameters, if the current rate of PTA expansion continues, we find that the IPTA is highly likely to make a detection within about 10 yr.
X-Ray Pulsar Studies With RXTE
NASA Technical Reports Server (NTRS)
Rappaport, Saul
2004-01-01
Our activities here at MIT have largely concentrated on four different binary X-ray pulsars: LMC X-4; 4UO352+3O/XPer; 4U0115+63; and X1908+075. We have also recently initiated a search for millisecond X-ray pulsations in RXTE archival data for several bright LMXBs using a new technique. Since this study is just getting under way, we will not report any results here. Using RXTE timing observations of LMC X-4 we have definitively measured, for the first time, the orbital decay of this high-mass X-ray binary. The e-folding decay time scale is very close to lo6 years, comparable to, but somewhat longer than, the corresponding orbital decay times for SMC X-1 and Cen X-3. We find that the orbital decay in LMC X-4 is likely driven by tidal interactions, where the asynchronism between the orbital motion and the rotation of the companion star is maintained by the evolutionary expansion of the companion. Under NASA grant NAGS7479 we carried out RXTE observations of X Per/4U0352+30 in order to track the pulse phase over a one year interval. This effort was successful in tentatively identifying a N 250-day orbital period. However, due to the fact that the observing interval was only somewhat longer than the orbital period, we asked for the observations of X Per to continue as public, or non-proprietary observations. Dr. Jean Swank kindly agreed to the continuation of the observations and they were carried out on a less frequent basis over the next year and a half. After 72 separate observations of X Per, we have the orbital period and semimajor axis firmly determined. In addition, we were able to measure the orbital eccentricity-which turns out to be remarkably small (e = 0.10) for such a wide binary orbit. This has led us establish the birth of a neutron star with a very small (or zero) natal kick.
Unique Stellar System Gives Einstein a Thumbs-Up
NASA Astrophysics Data System (ADS)
2008-07-01
Taking advantage of a unique cosmic coincidence, astronomers have measured an effect predicted by Albert Einstein's theory of General Relativity in the extremely strong gravity of a pair of superdense neutron stars. The new data indicate that the famed physicist's 93-year-old theory has passed yet another test. Double Pulsar Graphic Artist's Conception of Double Pulsar System PSR J0737-3039A/B CREDIT: Daniel Cantin, DarwinDimensions, McGill University Click on image for more graphics. The scientists used the National Science Foundation's Robert C. Byrd Green Bank Telescope (GBT) to make a four-year study of a double-star system unlike any other known in the Universe. The system is a pair of neutron stars, both of which are seen as pulsars that emit lighthouse-like beams of radio waves. "Of about 1700 known pulsars, this is the only case where two pulsars are in orbit around each other," said Rene Breton, a graduate student at McGill University in Montreal, Canada. In addition, the stars' orbital plane is aligned nearly perfectly with their line of sight to the Earth, so that one passes behind a doughnut-shaped region of ionized gas surrounding the other, eclipsing the signal from the pulsar in back. "Those eclipses are the key to making a measurement that could never be done before," Breton said. Einstein's 1915 theory predicted that, in a close system of two very massive objects, such as neutron stars, one object's gravitational tug, along with an effect of its spinning around its axis, should cause the spin axis of the other to wobble, or precess. Studies of other pulsars in binary systems had indicated that such wobbling occurred, but could not produce precise measurements of the amount of wobbling. "Measuring the amount of wobbling is what tests the details of Einstein's theory and gives a benchmark that any alternative gravitational theories must meet," said Scott Ransom of the National Radio Astronomy Observatory. The eclipses allowed the astronomers to pin down the geometry of the double-pulsar system and track changes in the orientation of the spin axis of one of them. As one pulsar's spin axis slowly moved, the pattern of signal blockages as the other passed behind it also changed. The signal from the pulsar in back is absorbed by the ionized gas in the other's magnetosphere. Pulsars, first discovered in 1967, are the "corpses" of massive stars that have exploded as supernovae. What is left after the explosion is a superdense neutron star that packs more than the mass of our Sun into the size of an average city. Beams of radio waves stream outward from the poles of the star's intense magnetic field and sweep around as the star rotates, as often as hundreds of times a second. The pair of pulsars studied with the GBT is about 1700 light-years from Earth. The average distance between the two is only about twice the distance from the Earth to the Moon. The two orbit each other in just under two and a half hours. "A system like this, with two very massive objects very close to each other, is precisely the kind of extreme 'cosmic laboratory' needed to test Einstein's prediction," said Victoria Kaspi, leader of McGill University's Pulsar Group. Theories of gravity don't differ significantly in "ordinary" regions of space such as our own Solar System. In regions of extremely strong gravity fields, such as near a pair of close, massive objects, however, differences are expected to show up. In the binary-pulsar study, General Relativity "passed the test" provided by such an extreme environment, the scientists said. "It's not quite right to say that we have now 'proven' General Relativity," Breton said. "However, so far, Einstein's theory has passed all the tests that have been conducted, including ours." Breton, Kaspi and Ransom worked with Michael Kramer of the Jodrell Bank Observatory at the University of Manchester in Great Britain; Maura McLaughlin of West Virginia University and the NRAO; Maxim Lyutikov of Purdue University and other colleagues in Canada, the U.S., France and Italy. The researchers presented their work in an article in the July 4 issue of Science. The National Radio Astronomy Observatory is a facility of the National Science Foundation, operated under cooperative agreement by Associated Universities, Inc.
Discovery of two millisecond pulsars in Fermi sources with the Nancay Radio Telescope
Cognard, I.; Guillemot, L.; Johnson, Tyrel J.; ...
2011-04-14
Here, we report the discovery of two millisecond pulsars in a search for radio pulsations at the positions of Fermi-Large Area Telescope sources with no previously known counterparts, using the Nançay Radio Telescope. The two millisecond pulsars, PSRs J2017+0603 and J2302+4442, have rotational periods of 2.896 and 5.192 ms and are both in binary systems with low-eccentricity orbits and orbital periods of 2.2 and 125.9 days, respectively, suggesting long recycling processes. Gamma-ray pulsations were subsequently detected for both objects, indicating that they power the associated Fermi sources in which they were found. The gamma-ray light curves and spectral properties aremore » similar to those of previously detected gamma-ray millisecond pulsars. Detailed modeling of the observed radio and gamma-ray light curves shows that the gamma-ray emission seems to originate at high altitudes in their magnetospheres. Additionally, X-ray observations revealed the presence of an X-ray source at the position of PSR J2302+4442, consistent with thermal emission from a neutron star. These discoveries along with the numerous detections of radio-loud millisecond pulsars in gamma rays suggest that many Fermi sources with no known counterpart could be unknown millisecond pulsars.« less
Gravitational waves from rotating neutron stars and compact binary systems
NASA Astrophysics Data System (ADS)
Wade, Leslie E., IV
It is widely anticipated that the first direct detections of gravitational waves will be made by advanced gravitational-wave detectors, such as the two Laser Interferometer Gravitational-wave Observatories (LIGO) and the Virgo interferometer. In preparation for the advanced detector era, I have worked on both detection and post-detection efforts involving two gravitational wave sources: isolated rotating neutron stars (NSs) and compact binary coalescences (CBCs). My dissertation includes three main research projects: 1) a population synthesis study assessing the detectability of isolated NSs, 2) a CBC search for intermediate-mass black-hole binaries (IMBHBs), and 3) new methods for directly measuring the neutron-star (NS) equation of state (EOS). Direct detections of gravitational waves will enrich our current astrophysical knowledge. One such contribution will be through population synthesis of isolated NSs. My collaborators and I show that advanced gravitational-wave detectors can be used to constrain the properties of the Galactic NS population. Gravitational wave detections can also shine light on a currently mysterious astrophysical object: intermediate mass black holes. In developing the IMBHB search, we performed a mock data challenge where signals with total masses up to a few hundred solar masses were injected into recolored data from LIGO's sixth science run. Since this is the first time a matched filter search has been developed to search for IMBHBs, I discuss what was learned during the mock data challenge and how we plan to improve the search going forward. The final aspect of my dissertation focuses on important post-detection science. I present results for a new method of directly measuring the NS EOS. This is done by estimating the parameters of a 4-piece polytropic EOS model that matches theoretical EOS candidates to a few percent. We show that advanced detectors will be capable of measuring the NS radius to within a kilometer for stars with canonical masses. However, this can only be accomplished with binary NS waveform models that are accurate to the rich EOS physics that happens near merger. We show that the waveforms typically used to model binary NS systems result in unavoidable systematic error that can significantly bias the estimation of the NS EOS.
Searching for Intermediate Mass Black Holes in Ultraluminous X-ray Binaries
NASA Astrophysics Data System (ADS)
Fritze, Hannah; Wright, Simon; Kilgard, Roy
2018-01-01
X-ray observations of nearby galaxies provide one of the best laboratories in the universe for studying two exotic classes of object: black holes and neutron stars. These observations allow us to study the dramatic effect such objects have on their surroundings, as well as the high-energy physics involved in their emission. We conduct a volume-limited archival survey of X-ray sources in all galaxies observed with the Chandra X-ray observatory within 15 Mpc, and identify a set of ultraluminous X-ray sources for detailed spectral analysis. We perform this analysis with the aim of searching for signatures of spectral state transitions and super-Eddington accretion that could indicate the presence of an Intermediate Mass Black Hole (IMBH) binary system. Here, we identify 43 potential IMBH sources that have signatures of super-Eddington accretion. We plan to follow up this initial selection with a multiwavelength analysis of these sources, in order to place further constraints on their nature and surrounding environment.
A New Approach to the GeV Flare of PSR B1259-63/LS2883
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yi, Shu-Xu; Cheng, K. S., E-mail: yishuxu@hku.hk, E-mail: hrspksc@hku.hk
2017-08-01
PSR B1259-63/LS2883 is a binary system composed of a pulsar and a Be star. The Be star has an equatorial circumstellar disk (CD). The Fermi satellite discovered unexpected gamma-ray flares around 30 days after the last two periastron passages. The origin of the flares remains puzzling. In this work, we explore the possibility that the GeV flares are consequences of inverse Compton scattering of soft photons by the pulsar wind. The soft photons are from an accretion disk around the pulsar, which is composed of the matter from the CD captured by the pulsar’s gravity at disk-crossing before the periastron.more » At the other disk-crossing after the periastron, the density of the CD is not high enough, so accretion is prevented by the pulsar wind shock. This model can reproduce the observed spectrum energy distributions and light curves satisfactorily.« less
Decrease in the orbital period of Hercules X-1
NASA Technical Reports Server (NTRS)
Deeter, John E.; Boynton, Paul E.; Miyamoto, Sigenori; Kitamoto, Shunji; Nagase, Fumiaki; Kawai, Nobuyuki
1991-01-01
From a pulse-timing analysis of Ginga observations of the binary X-ray pulsar Her X-1 obtained during the interval 1989 April-June local orbital parameters are determined for a short high state. An orbital epoch is also determined in the adjacent main high state. By comparing these orbital solutions with previously published results, a decrease is detected in the orbital period for Her X-1 over the interval 1971-1989. The value is substantially larger than the value predicted from current estimates of the mass-transfer rate, and motivates consideration of other mechanisms of mass transfer and/or mass loss. A second result from these observations is a close agreement between orbital parameters determined separately in main high and short high states. This agreement places strong constraints on the obliquity of the stellar companion, HZ Her, if undergoing forced precession with a 35-day period. As a consequence further doubt is placed on the slaved-disk model as the underlying cause of the 35-day cycle in Her X-1.
Constraints on pulsar masses from the maximum observed glitch
NASA Astrophysics Data System (ADS)
Pizzochero, P. M.; Antonelli, M.; Haskell, B.; Seveso, S.
2017-07-01
Neutron stars are unique cosmic laboratories in which fundamental physics can be probed in extreme conditions not accessible to terrestrial experiments. In particular, the precise timing of rotating magnetized neutron stars (pulsars) reveals sudden jumps in rotational frequency in these otherwise steadily spinning-down objects. These 'glitches' are thought to be due to the presence of a superfluid component in the star, and offer a unique glimpse into the interior physics of neutron stars. In this paper we propose an innovative method to constrain the mass of glitching pulsars, using observations of the maximum glitch observed in a star, together with state-of-the-art microphysical models of the pinning interaction between superfluid vortices and ions in the crust. We study the properties of a physically consistent angular momentum reservoir of pinned vorticity, and we find a general inverse relation between the size of the maximum glitch and the pulsar mass. We are then able to estimate the mass of all the observed glitchers that have displayed at least two large events. Our procedure will allow current and future observations of glitching pulsars to constrain not only the physics of glitch models but also the superfluid properties of dense hadronic matter in neutron star interiors.
NASA Astrophysics Data System (ADS)
Kashi, Amit; Soker, Noam
2018-05-01
Contrary to recent claims, we argue that the orientation of the massive binary system Eta Carinae is such that the secondary star is closer to us at periastron passage, and it is on the far side during most of the time of the eccentric orbit. The binary orientation we dispute is based on problematic interpretations of recent observations. Among these are the radial velocity of the absorption component of He I P-Cyg lines, of the He II λ4686 emission line, and of the Br γ line emitted by clumps close to the binary system. We also base our orientation on observations of asymmetric molecular clumps that were recently observed by ALMA around the binary system, and were claimed to compose a torus with a missing segment. The orientation has implications for the modeling of the binary interaction during the nineteenth century Great Eruption (GE) of Eta Carinae that occurred close to periastron passage. The orientation where the secondary is closer to us at periastron leads us to suggest that the mass-missing side of the molecular clumps is a result of accretion onto the secondary star during periastron passage when the clumps were ejected, probably during the GE. The secondary star accreted a few solar masses during the GE and the energy from the accretion process consists of the majority of the GE energy. This in turn strengthens the more general model according to which many intermediate-luminosity optical transients (ILOTS) are powered by accretion onto a secondary star.
Limits on the mass, velocity and orbit of PSR J1933-6211
NASA Astrophysics Data System (ADS)
Graikou, E.; Verbiest, J. P. W.; Osłowski, S.; Champion, D. J.; Tauris, T. M.; Jankowski, F.; Kramer, M.
2017-11-01
We present a high-precision timing analysis of PSR J1933-6211, a millisecond pulsar with a 3.5 ms spin period and a white dwarf (WD) companion, using data from the Parkes radio telescope. Since we have accurately measured the polarization properties of this pulsar, we have applied the matrix template matching approach in which the times of arrival are measured using full polarimetric information. We achieved a weighted root-mean-square timing residuals of the timing residuals of 1.23 μs, 15.5 per cent improvement compared to the total intensity timing analysis. After studying the scintillation properties of this pulsar, we put constraints on the inclination angle of the system. Based on these measurements and on χ2 mapping we put a 2σ upper limit on the companion mass (0.44 M⊙). Since this mass limit cannot reveal the nature of the companion, we further investigate the possibility of the companion to be a He WD. Applying the orbital period-mass relation for such WDs, we conclude that the mass of a He WD companion would be about 0.26±0.01 M⊙, which combined with the measured mass function and orbital inclination limits, would lead to a light pulsar mass ≤ 1.0 M⊙. This result seems unlikely based on current neutron star formation models and we therefore conclude that PSR J1933-6211 most likely has a CO WD companion, which allows for a solution with a more massive pulsar.
Upper Bounds on r-Mode Amplitudes from Observations of Low-Mass X-Ray Binary Neutron Stars
NASA Technical Reports Server (NTRS)
Mahmoodifar, Simin; Strohmayer, Tod
2013-01-01
We present upper limits on the amplitude of r-mode oscillations and gravitational-radiation-induced spin-down rates in low-mass X-ray binary neutron stars, under the assumption that the quiescent neutron star luminosity is powered by dissipation from a steady-state r-mode. For masses <2M solar mass we find dimensionless r-mode amplitudes in the range from about 1×10(exp-8) to 1.5×10(exp-6). For the accreting millisecond X-ray pulsar sources with known quiescent spin-down rates, these limits suggest that approx. less than 1% of the observed rate can be due to an unstable r-mode. Interestingly, the source with the highest amplitude limit, NGC 6440, could have an r-mode spin-down rate comparable to the observed, quiescent rate for SAX J1808-3658. Thus, quiescent spin-down measurements for this source would be particularly interesting. For all sources considered here, our amplitude limits suggest that gravitational wave signals are likely too weak for detection with Advanced LIGO. Our highest mass model (2.21M solar mass) can support enhanced, direct Urca neutrino emission in the core and thus can have higher r-mode amplitudes. Indeed, the inferred r-mode spin-down rates at these higher amplitudes are inconsistent with the observed spin-down rates for some of the sources, such as IGR J00291+5934 and XTE J1751-305. In the absence of other significant sources of internal heat, these results could be used to place an upper limit on the masses of these sources if they were made of hadronic matter, or alternatively it could be used to probe the existence of exotic matter in them if their masses were known.