Science.gov

Sample records for intermolecular dipole-dipole interactions

  1. Visualizing coherent intermolecular dipole-dipole coupling in real space

    NASA Astrophysics Data System (ADS)

    Zhang, Yang; Luo, Yang; Zhang, Yao; Yu, Yun-Jie; Kuang, Yan-Min; Zhang, Li; Meng, Qiu-Shi; Luo, Yi; Yang, Jin-Long; Dong, Zhen-Chao; Hou, J. G.

    2016-03-01

    Many important energy-transfer and optical processes, in both biological and artificial systems, depend crucially on excitonic coupling that spans several chromophores. Such coupling can in principle be described in a straightforward manner by considering the coherent intermolecular dipole-dipole interactions involved. However, in practice, it is challenging to directly observe in real space the coherent dipole coupling and the related exciton delocalizations, owing to the diffraction limit in conventional optics. Here we demonstrate that the highly localized excitations that are produced by electrons tunnelling from the tip of a scanning tunnelling microscope, in conjunction with imaging of the resultant luminescence, can be used to map the spatial distribution of the excitonic coupling in well-defined arrangements of a few zinc-phthalocyanine molecules. The luminescence patterns obtained for excitons in a dimer, which are recorded for different energy states and found to resemble σ and π molecular orbitals, reveal the local optical response of the system and the dependence of the local optical response on the relative orientation and phase of the transition dipoles of the individual molecules in the dimer. We generate an in-line arrangement up to four zinc-phthalocyanine molecules, with a larger total transition dipole, and show that this results in enhanced ‘single-molecule’ superradiance from the oligomer upon site-selective excitation. These findings demonstrate that our experimental approach provides detailed spatial information about coherent dipole-dipole coupling in molecular systems, which should enable a greater understanding and rational engineering of light-harvesting structures and quantum light sources.

  2. Self-assembly polymorphism of 2,7-bis-nonyloxy-9-fluorenone: solvent induced the diversity of intermolecular dipole-dipole interactions.

    PubMed

    Cui, Lihua; Miao, Xinrui; Xu, Li; Hu, Yi; Deng, Wenli

    2015-02-01

    In this present work, a scanning tunneling microscope (STM) operated under ambient conditions was utilized to probe the self-assembly behavior of 2,7-bis-nonyloxy-9-fluorenone (F-OC9) at the liquid-solid (l/s) interface. On the highly oriented pyrolytic graphite (HOPG) surface, two-dimensional (2D) polymorphism with diversity of intermolecular dipole interactions induced by solvent was found. Solvents ranged from hydrophilic solvating properties with high polarity, such as viscous alkylated acids, to nonpolar alkylated aromatics and alkanes. 1-Octanol and dichloromethane were used to detect the assembly of F-OC9 at the gas-solid (g/s) interface. The opto-electronic properties of F-OC9 were determined by UV-vis and fluorescence spectroscopy in solution. Our results showed that there were tremendous solvent-dependent self-assemblies in 2D ordering for the surface-confined target molecules. When a homologous series of alkanoic acids ranging from heptanoic to nonanoic acid were employed as solvents, the self-assembled monolayer evolved from low-density coadsorbed linear lamellae to a semi-circle-like pattern at relatively high concentrations, which was proven to be the thermodynamic state as it was the sole phase observed at the g/s interface after the evaporation of solvent. Moreover, by increasing the chain length of the alkylated acids, the weight of the carboxylic group, also being the group responsible for the dielectric properties, diminished from heptanoic to nonanoic acid, which could make the easier/earlier appearance of a linear coadsorption effect. However, this was not the case for nonpolar 1-phenyloctane and n-tetradecane: no concentration effect was detected. It showed a strong tendency to aggregate to generate coexistence of separate domains of different phases due to the fast nucleation sites. Furthermore, thermodynamic calculations indicated that the stable structural coexistence of the fluorenone derivative was attributed to synergistic intermolecular

  3. Self-assembly polymorphism of 2,7-bis-nonyloxy-9-fluorenone: solvent induced the diversity of intermolecular dipole-dipole interactions.

    PubMed

    Cui, Lihua; Miao, Xinrui; Xu, Li; Hu, Yi; Deng, Wenli

    2015-02-01

    In this present work, a scanning tunneling microscope (STM) operated under ambient conditions was utilized to probe the self-assembly behavior of 2,7-bis-nonyloxy-9-fluorenone (F-OC9) at the liquid-solid (l/s) interface. On the highly oriented pyrolytic graphite (HOPG) surface, two-dimensional (2D) polymorphism with diversity of intermolecular dipole interactions induced by solvent was found. Solvents ranged from hydrophilic solvating properties with high polarity, such as viscous alkylated acids, to nonpolar alkylated aromatics and alkanes. 1-Octanol and dichloromethane were used to detect the assembly of F-OC9 at the gas-solid (g/s) interface. The opto-electronic properties of F-OC9 were determined by UV-vis and fluorescence spectroscopy in solution. Our results showed that there were tremendous solvent-dependent self-assemblies in 2D ordering for the surface-confined target molecules. When a homologous series of alkanoic acids ranging from heptanoic to nonanoic acid were employed as solvents, the self-assembled monolayer evolved from low-density coadsorbed linear lamellae to a semi-circle-like pattern at relatively high concentrations, which was proven to be the thermodynamic state as it was the sole phase observed at the g/s interface after the evaporation of solvent. Moreover, by increasing the chain length of the alkylated acids, the weight of the carboxylic group, also being the group responsible for the dielectric properties, diminished from heptanoic to nonanoic acid, which could make the easier/earlier appearance of a linear coadsorption effect. However, this was not the case for nonpolar 1-phenyloctane and n-tetradecane: no concentration effect was detected. It showed a strong tendency to aggregate to generate coexistence of separate domains of different phases due to the fast nucleation sites. Furthermore, thermodynamic calculations indicated that the stable structural coexistence of the fluorenone derivative was attributed to synergistic intermolecular

  4. Molecular near-field antenna effect in resonance hyper-Raman scattering: Intermolecular vibronic intensity borrowing of solvent from solute through dipole-dipole and dipole-quadrupole interactions

    NASA Astrophysics Data System (ADS)

    Shimada, Rintaro; Hamaguchi, Hiro-o.

    2014-05-01

    We quantitatively interpret the recently discovered intriguing phenomenon related to resonance Hyper-Raman (HR) scattering. In resonance HR spectra of all-trans-β-carotene (β-carotene) in solution, vibrations of proximate solvent molecules are observed concomitantly with the solute β-carotene HR bands. It has been shown that these solvent bands are subject to marked intensity enhancements by more than 5 orders of magnitude under the presence of β-carotene. We have called this phenomenon the molecular-near field effect. Resonance HR spectra of β-carotene in benzene, deuterated benzene, cyclohexane, and deuterated cyclohexane have been measured precisely for a quantitative analysis of this effect. The assignments of the observed peaks are made by referring to the infrared, Raman, and HR spectra of neat solvents. It has been revealed that infrared active and some Raman active vibrations are active in the HR molecular near-field effect. The observed spectra in the form of difference spectra (between benzene/deuterated benzene and cyclohexane/deuterated cyclohexane) are quantitatively analyzed on the basis of the extended vibronic theory of resonance HR scattering. The theory incorporates the coupling of excited electronic states of β-carotene with the vibrations of a proximate solvent molecule through solute-solvent dipole-dipole and dipole-quadrupole interactions. It is shown that the infrared active modes arise from the dipole-dipole interaction, whereas Raman active modes from the dipole-quadrupole interaction. It is also shown that vibrations that give strongly polarized Raman bands are weak in the HR molecular near-field effect. The observed solvent HR spectra are simulated with the help of quantum chemical calculations for various orientations and distances of a solvent molecule with respect to the solute. The observed spectra are best simulated with random orientations of the solvent molecule at an intermolecular distance of 10 Å.

  5. Dipole-dipole interaction between nanolaser and external atom

    NASA Astrophysics Data System (ADS)

    Larionov, N. V.

    2016-03-01

    We consider the single-emitter nanolaser coupled through dipole-dipole interaction with the external atom placed into the coherent pump field. We show that varying of the coherent pump parameters allows to control the quantum fluctuations of the laser field.

  6. Spherical Rare Earth Magnets And The Dipole-Dipole Interaction

    NASA Astrophysics Data System (ADS)

    Adams, Al J.

    2006-12-01

    Spherical rare earth magnets (SREMs) are useful for teaching fundamental concepts in introductory physics. These applications include kinematics, force and motion, energy, momentum, and their conservation, as well as the traditional areas of basic magnetism, the magnetic field of the earth, and magnetic interactions. One application for upper level undergraduate physics majors is the dipole-dipole interaction. Previous studies have confirmed the validity of the dipole approximation for SREMs. Their spherical shape allows them to combine in ways that readily demonstrate local minima in the potential energy interaction function for multiple dipoles. The potential energy function for the dipole-dipole interaction will be given and will be shown to predict several of the basic stable configurations for 2 and 3 SREM spheres. The relative stability of several of these local potential energy minima will be discussed and the results of tests for their reliability in predicting preferred configurations presented. The use of commercial mathematical analysis software for modeling the dipole-dipole interaction will also be demonstrated.

  7. Dipole-dipole interaction between rubidium Rydberg atoms

    SciTech Connect

    Altiere, Emily; Fahey, Donald P.; Noel, Michael W.; Smith, Rachel J.; Carroll, Thomas J.

    2011-11-15

    Ultracold Rydberg atoms in a static electric field can exchange energy via the dipole-dipole interaction. The Stark effect shifts the energy levels of the atoms which tunes the energy exchange into resonance at specific values of the electric field (Foerster resonances). We excite rubidium atoms to Rydberg states by focusing either a 480 nm beam from a tunable dye laser or a pair of diode lasers into a magneto-optical trap. The trap lies at the center of a configuration of electrodes. We scan the electric field by controlling the voltage on the electrodes while measuring the fraction of atoms that interact. Dipole-dipole interaction spectra are presented for initially excited rubidium nd states for n=31 to 46 and for four different pairs of initially excited rubidium ns states. We also present the dipole-dipole interaction spectra for individual rubidium 32d (j, m{sub j}) fine structure levels that have been selectively excited. The data are compared to calculated spectra.

  8. Coherent and incoherent dipole-dipole interactions between atoms

    NASA Astrophysics Data System (ADS)

    Robicheaux, Francis

    2016-05-01

    Results will be presented on the collective interaction between atoms due to the electric dipole-dipole coupling between states of different parity on two different atoms. A canonical example of this effect is when the electronic state of one atom has S-character and the state of another atom has P-character. The energy difference between the two states plays an important role in the interaction since the change in energy determines the wave number of a photon that would cause a transition between the states. If the atoms are much closer than the wave length of this photon, then the dipole-dipole interaction is in the near field and has a 1 /r3 dependence on atomic separation. If the atoms are farther apart than the wave length, then the interaction is in the far field and has a 1 / r dependence. When many atoms interact, collective effects can dominate the system with the character of the collective effect depending on whether the atomic separation leads to near field or far field coupling. As an example of the case where the atoms are in the far field, the line broadening of transitions and strong deviations from the Beer-Lambert law in a diffuse gas will be presented. As an example of near field collective behavior, the radiative properties of a Rydberg gas will be presented. Based upon work supported by the National Science Foundation under Grant No. 1404419-PHY in collaboration with R.T. Sutherland.

  9. Dipole-dipole interactions in solution mixtures probed by two-dimensional synchronous spectroscopy based on orthogonal sample design scheme.

    PubMed

    Li, Hui-zhen; Tao, Dong-liang; Qi, Jian; Wu, Jin-guang; Xu, Yi-zhuang; Noda, Isao

    2014-04-24

    Two-dimensional (2D) synchronous spectroscopy together with a new approach called "Orthogonal Sample Design Scheme" was used to study the dipole-dipole interactions in two representative ternary chemical systems (N,N-dimethyllformamide (DMF)/CH3COOC2H5/CCl4 and C60/CH3COOC2H5/CCl4). For the first system, dipole-dipole interactions among carbonyl groups from DMF and CH3COOC2H5 are characterized by using the cross peak in 2D Fourier Transform Infrared Radiation (FT-IR) spectroscopy. For the second system, intermolecular interaction among π-π transition from C60 and vibration transition from the carbonyl band of ethyl acetate is probed by using 2D spectra. The experimental results demonstrate that "Orthogonal Sample Design Scheme" can effectively remove interfering part that is not relevant to intermolecular interaction. Additional procedures are carried out to preclude the possibilities of producing interfering cross peaks by other reasons, such as experimental errors. Dipole-dipole interactions that manifest in the form of deviation from the Beer-Lambert law generate distinct cross peaks visualized in the resultant 2D synchronous spectra of the two chemical systems. This work demonstrates that 2D synchronous spectra coupled with orthogonal sample design scheme provide us an applicable experimental approach to probing and characterizing dipole-dipole interactions in complex molecular systems. PMID:24582337

  10. Critical behavior of isotropic three-dimensional systems with dipole-dipole interactions

    SciTech Connect

    Belim, S. M.

    2013-06-15

    The critical behavior of Heisenberg magnets with dipole-dipole interactions near the line of second-order phase transitions directly in three-dimensional space is investigated in terms of a field-theoretic approach. The dependences of critical exponents on the dipole-dipole interaction parameter are derived. Comparison with experimental facts is made.

  11. Geometrical Simplification of the Dipole-Dipole Interaction Formula

    ERIC Educational Resources Information Center

    Kocbach, Ladislav; Lubbad, Suhail

    2010-01-01

    Many students meet dipole-dipole potential energy quite early on when they are taught electrostatics or magnetostatics and it is also a very popular formula, featured in encyclopedias. We show that by a simple rewriting of the formula it becomes apparent that, for example, by reorienting the two dipoles, their attraction can become exactly twice…

  12. Electrical dipole-dipole interaction effects on magnetocurrent in organic phosphorescent materials

    NASA Astrophysics Data System (ADS)

    Shao, Ming; Dai, Yanfeng; Ma, Dongge; Hu, Bin

    2011-08-01

    This letter reports the experimental studies on electrical dipole-dipole interaction effects on magnetocurrent (MC) and magneto-electroluminescence (MFEEL) based on two phosphorescent dyes: heavy-metal complex Ir(ppy)3 and Ir(ppy)2(acac) with strong spin-orbital coupling but different electrical dipole moments. We find that the Ir(ppy)3 with strong electrical dipole moment shows negligible MC and MFEEL. However, the Ir(ppy)2(acac) with weak dipole moment exhibits appreciable MC and MFEEL. The experimental results suggest that the electrical dipole-dipole interaction can change the MC and MFEEL from capture-based regime, where charge carriers are captured through spin-dependent process at short distance, to intersystem crossing-based regime, where charge carriers are captured through spin random process at long distance. As a result, changing electrical dipole-dipole interaction presents a new pathway to tune magnetic field effects in organic semiconductors.

  13. The Effect of Dipole-Dipole Interaction on Tripartite Entanglement in Different Cavities

    NASA Astrophysics Data System (ADS)

    Khan, Salman; Jan, Munsif

    2016-03-01

    The effect of dipole-dipole interaction, the initial relative phase and the coupling strength with the cavity on the dynamics of three two level atoms in the good and the bad cavity regime are investigated. It is found that the presence of strong dipole-dipole interaction not only ensures avoiding entanglement sudden death but also retains entanglement for long time. The choice of the phase in the initial state is crucial to the operational regime of the cavity. Under specific conditions, the entanglement can be frozen in time to its initial values through strong dipole-dipole interaction. This trait of tripartite entanglement may prove helpful in engineering multiparticle entanglement for the practical realization of quantum technology.

  14. Magnetic Field of a Dipole and the Dipole-Dipole Interaction

    ERIC Educational Resources Information Center

    Kraftmakher, Yaakov

    2007-01-01

    With a data-acquisition system and sensors commercially available, it is easy to determine magnetic fields produced by permanent magnets and to study the dipole-dipole interaction for different separations and angular positions of the magnets. For sufficiently large distances, the results confirm the 1/R[superscript 3] law for the magnetic field…

  15. Universal Behavior of Dielectric Responses of Glass Formers: Role of Dipole-Dipole Interactions

    NASA Astrophysics Data System (ADS)

    Paluch, M.; Knapik, J.; Wojnarowska, Z.; Grzybowski, A.; Ngai, K. L.

    2016-01-01

    From an exhaustive examination of the molecular dynamics in practically all van der Waals molecular glass formers ever probed by dielectric spectroscopy, we found that the width of the α -loss peak at or near the glass transition temperature Tg is strongly anticorrelated with the polarity of the molecule. The larger the dielectric relaxation strength Δ ɛ (Tg) of the system, the narrower is the α -loss peak. This remarkable property is explained by the contribution from the dipole-dipole interaction potential Vd d(r )=-D r-6 to the attractive part of the intermolecular potential, making the resultant potential more harmonic, and the effect increases rapidly with the dipole moment μ and Δ ɛ (Tg) in view of the relation, D ∝(μ4/k Tg)∝k Tg[Δɛ (Tg)] 2 . Since the novel correlation discovered encompasses practically all van der Waals molecular glass formers studied by dielectric spectroscopy, it impacts the large dielectric research community as well as those engaged in solving the glass transition problem.

  16. Probing dipole-dipole interaction in a rubidium gas via double-quantum 2D spectroscopy.

    PubMed

    Gao, Feng; Cundiff, Steven T; Li, Hebin

    2016-07-01

    We have implemented double-quantum 2D spectroscopy on a rubidium vapor and shown that this technique provides sensitive and background-free detection of the dipole-dipole interaction. The 2D spectra include signals from both individual atoms and interatomic interactions, allowing quantitative studies of the interaction. A theoretical model based on the optical Bloch equations is used to reproduce the experimental spectrum and confirm the origin of double-quantum signals. PMID:27367074

  17. Dipole-dipole interactions in optical lattices do not follow an inverse cube power law

    NASA Astrophysics Data System (ADS)

    Wall, M. L.; Carr, L. D.

    2013-12-01

    We study the effective dipole-dipole interactions in ultracold quantum gases on optical lattices as a function of asymmetry in confinement along the principal axes of the lattice. In particular, we study the matrix elements of the dipole-dipole interaction in the basis of lowest band Wannier functions which serve as a set of low-energy states for many-body physics on the lattice. We demonstrate that, for shallow lattices in quasi-reduced dimensional scenarios, the effective interaction between dipoles in an optical lattice is non-algebraic in the inter-particle separation at short to medium distance on the lattice scale and has a long-range power-law tail, in contrast to the pure power-law behavior of the dipole-dipole interaction in free space. The modifications to the free-space interaction can be sizable; we identify differences of up to 36% from the free-space interaction at the nearest-neighbor distance in quasi-one-dimensional arrangements. The interaction difference depends essentially on asymmetry in confinement, due to the d-wave anisotropy of the dipole-dipole interaction. Our results do not depend on statistics, applying to both dipolar Bose-Einstein condensates and degenerate Fermi gases. Using matrix product state simulations, we demonstrate that use of the correct lattice dipolar interaction leads to significant deviations from many-body predictions using the free-space interaction. Our results are relevant to up and coming experiments with ultracold heteronuclear molecules, Rydberg atoms and strongly magnetic atoms in optical lattices.

  18. Effect of dipole-dipole interaction on self-control magnetization oscillation in double-domain nanomagnets

    NASA Astrophysics Data System (ADS)

    Gao, Y. J.; Guo, Y. J.; Liu, J.-M.

    2012-03-01

    A double-domain model with long-range dipole-dipole interaction is proposed to investigate the self-oscillation of magnetization in nano-magnetic systems driven by self-controlled spin-polarized current. The dynamic behavior of magnetization oscillation is calculated by a modified Landau-Lifshitz-Gilbert equation in order to evaluate the effects of the long-range dipole-dipole interaction. While the self-oscillation of magnetization can be maintained substantially, several self-oscillation regions are experienced as the dipole-dipole interaction increases gradually.

  19. Molecular near-field antenna effect in resonance hyper-Raman scattering: Intermolecular vibronic intensity borrowing of solvent from solute through dipole-dipole and dipole-quadrupole interactions

    SciTech Connect

    Shimada, Rintaro; Hamaguchi, Hiro-o

    2014-05-28

    We quantitatively interpret the recently discovered intriguing phenomenon related to resonance Hyper-Raman (HR) scattering. In resonance HR spectra of all-trans-β-carotene (β-carotene) in solution, vibrations of proximate solvent molecules are observed concomitantly with the solute β-carotene HR bands. It has been shown that these solvent bands are subject to marked intensity enhancements by more than 5 orders of magnitude under the presence of β-carotene. We have called this phenomenon the molecular-near field effect. Resonance HR spectra of β-carotene in benzene, deuterated benzene, cyclohexane, and deuterated cyclohexane have been measured precisely for a quantitative analysis of this effect. The assignments of the observed peaks are made by referring to the infrared, Raman, and HR spectra of neat solvents. It has been revealed that infrared active and some Raman active vibrations are active in the HR molecular near-field effect. The observed spectra in the form of difference spectra (between benzene/deuterated benzene and cyclohexane/deuterated cyclohexane) are quantitatively analyzed on the basis of the extended vibronic theory of resonance HR scattering. The theory incorporates the coupling of excited electronic states of β-carotene with the vibrations of a proximate solvent molecule through solute–solvent dipole–dipole and dipole–quadrupole interactions. It is shown that the infrared active modes arise from the dipole–dipole interaction, whereas Raman active modes from the dipole–quadrupole interaction. It is also shown that vibrations that give strongly polarized Raman bands are weak in the HR molecular near-field effect. The observed solvent HR spectra are simulated with the help of quantum chemical calculations for various orientations and distances of a solvent molecule with respect to the solute. The observed spectra are best simulated with random orientations of the solvent molecule at an intermolecular distance of 10 Å.

  20. Effects of hydrophobic and dipole-dipole interactions on the conformational transitions of a model polypeptide

    NASA Astrophysics Data System (ADS)

    Mu, Yan; Gao, Yi Qin

    2007-09-01

    We studied the effects of hydrophobicity and dipole-dipole interactions between the nearest-neighbor amide planes on the secondary structures of a model polypeptide by calculating the free energy differences between different peptide structures. The free energy calculations were performed with low computational costs using the accelerated Monte Carlo simulation (umbrella sampling) method, with a bias-potential method used earlier in our accelerated molecular dynamics simulations. It was found that the hydrophobic interaction enhances the stability of α helices at both low and high temperatures but stabilizes β structures only at high temperatures at which α helices are not stable. The nearest-neighbor dipole-dipole interaction stabilizes β structures under all conditions, especially in the low temperature region where α helices are the stable structures. Our results indicate clearly that the dipole-dipole interaction between the nearest neighboring amide planes plays an important role in determining the peptide structures. Current research provides a more unified and quantitative picture for understanding the effects of different forms of interactions on polypeptide structures. In addition, the present model can be extended to describe DNA/RNA, polymer, copolymer, and other chain systems.

  1. Study of atomic dipole-dipole interactions via measurement of atom-pair kinetics

    NASA Astrophysics Data System (ADS)

    Thaicharoen, Nithiwadee; Gonçalves, Luís Felipe; Raithel, Georg

    2016-05-01

    We observe atom-pair kinetics due to binary dipolar forces by direct imaging of the center-of-mass positions of the individual Rydberg atoms and pair-correlation analysis. To prepare a highly dipolar quantum state, Rydberg-atom ensembles are switched from a weakly- into a strongly-interacting regime via adiabatic state transformation. The transformed atoms exhibit a large permanent electric dipole moment that is locked to the direction of an applied electric field. The resultant electric dipole-dipole forces reveal dumbbell-shaped pair correlation images that demonstrate the anisotropy of the binary dipolar force. The dipole-dipole interaction coefficient C3, derived from the time dependence of the images, agrees with the value calculated from the known permanent electric-dipole moment of the atoms. The observations also show the dynamics reminiscent of disorder-induced heating in strongly coupled particle systems.

  2. Simulations of the angular dependence of the dipole-dipole interaction among Rydberg atoms

    NASA Astrophysics Data System (ADS)

    Bigelow, Jacob L.; Paul, Jacob T.; Peleg, Matan; Sanford, Veronica L.; Carroll, Thomas J.; Noel, Michael W.

    2016-08-01

    The dipole-dipole interaction between two Rydberg atoms depends on the relative orientation of the atoms and on the change in the magnetic quantum number. We simulate the effect of this anisotropy on the energy transport in an amorphous many atom system subject to a homogeneous applied electric field. We consider two experimentally feasible geometries and find that the effects should be measurable in current generation imaging experiments. In both geometries atoms of p character are localized to a small region of space which is immersed in a larger region that is filled with atoms of s character. Energy transfer due to the dipole-dipole interaction can lead to a spread of p character into the region initially occupied by s atoms. Over long timescales the energy transport is confined to the volume near the border of the p region which suggests Anderson localization. We calculate a correlation length of 6.3 μm for one particular geometry.

  3. Controlling the dipole-dipole interactions between terbium(III) phthalocyaninato triple-decker moieties through spatial control using a fused phthalocyaninato ligand.

    PubMed

    Morita, Takaumi; Katoh, Keiichi; Breedlove, Brian K; Yamashita, Masahiro

    2013-12-01

    Using a fused phthalocyaninato ligand to control the spatial arrangement of Tb(III) moieties in Tb(III) single-molecule magnets (SMMs), we could control the dipole-dipole interactions in the molecules and prepared the first tetranuclear Tb(III) SMM complex. [Tb(obPc)2]Tb(Fused-Pc)Tb[Tb(obPc)2] (abbreviated as [Tb4]; obPc = 2,3,9,10,16,17,23,24-octabutoxyphthalocyaninato, Fused-Pc = bis{7(2),8(2),12(2),13(2),17(2),18(2)-hexabutoxytribenzo[g,l,q]-5,10,15,20-tetraazaporphirino}[b,e]benzenato). In direct-current magnetic susceptibility measurements, ferromagnetic interactions among the four Tb(3+) ions were observed. In [Tb4], there are two kinds of magnetic dipole-dipole interactions. One is strong interactions in the triple-decker moieties, which dominate the magnetic relaxations, and the other is the weak one through the fused phthalocyaninato (Pc) ligand linking the two triple-decker complexes. In other words, [Tb4] can be described as a weakly ferromagnetically coupled dimer of triple-decker Tb2(obPc)3 complexes with strong dipole-dipole interactions in the triple-decker moieties and weak ones through the fused phthalocyaninato ligand linking the two triple-decker complexes. For [Tb4], dual magnetic relaxation processes were observed similar to other dinuclear Tb(III)Pc complexes. The relaxation processes are due to the anisotropic centers. This is clear evidence that the magnetic relaxation mechanism depends heavily on the dipole-dipole (f-f) interactions between the Tb(3+) ions in the systems. Through a better understanding of the magnetic dipole-dipole interactions obtained in these studies, we have developed a new strategy for preparing Tb(III) SMMs. Our work shows that the SMM properties can be fine-tuned by introducing weak intermolecular magnetic interactions in a controlled SMM spatial arrangement.

  4. Probing dipole-dipole interactions in a frozen Rydberg gas with millimeter waves

    NASA Astrophysics Data System (ADS)

    Li, Wenhui

    2005-11-01

    Frozen Rydberg gases are currently of interest for two reasons. First, the atoms in such cold samples only move roughly 3% of the average interatomic spacing during the 1mus time scale of experimental interest, so the interactions between them are almost static, as in a disordered solid. Second, a frozen Rydberg gas can spontaneously evolve into an ultracold plasma, and the ultracold plasma can recombine to form Rydberg atoms. In this dissertation, I present experimental studies of these collective phenomena of cold Rydberg gases, with emphasis on the experiments done using millimeter waves. The many-body nature of the dipole-dipole interactions in a cold gas of Rydberg atoms is clearly demonstrated in the resonant energy transfer experiment by adding an additional state to the system using a microwave transition. Moreover, the microwave spectroscopy studies show that the attractive dipole-dipole interaction provides the initial ionization mechanism responsible for producing the free ions for trapping the electrons. This suggests an intimate connection between dipole-dipole interaction and plasma formation.

  5. Master equation with quantized atomic motion including dipole-dipole interactions

    NASA Astrophysics Data System (ADS)

    Damanet, François; Braun, Daniel; Martin, John

    2016-05-01

    We derive a markovian master equation for the internal dynamics of an ensemble of two-level atoms including all effects related to the quantization of their motion. Our equation provides a unifying picture of the consequences of recoil and indistinguishability of atoms beyond the Lamb-Dicke regime on both their dissipative and conservative dynamics, and is relevant for experiments with ultracold trapped atoms. We give general expressions for the decay rates and the dipole-dipole shifts for any motional states, and we find analytical formulas for a number of relevant states (Gaussian states, Fock states and thermal states). In particular, we show that the dipole-dipole interactions and cooperative photon emission can be modulated through the external state of motion. The effects predicted should be experimentally observable with Rydberg atoms. FD would like to thank the F.R.S.-FNRS for financial support. FD is a FRIA Grant holder of the Fonds de la Recherche Scientifique-FNRS.

  6. Entanglement between two atoms in the presence of dipole-dipole interaction and atomic coherence

    NASA Astrophysics Data System (ADS)

    Bashkirov, Eugene K.; Litvinova, Darya V.

    2015-03-01

    We have investigated the influence of dipole-dipole interaction and initial atomic coherence on dynamics of two-atom systems. We have considered a model, in which only one atom is trapped in a cavity, and the other one can be spatially moved freely outside the cavity. We have shown the possibility of disappearance of the entanglement sudden death effect in the presence of the dipole interaction of atoms. We have also derived that the initial atomic coherence can be used for effective control of the degree of the atom-atom entanglement.

  7. Induced dipole-dipole interactions in light diffusion from point dipoles

    NASA Astrophysics Data System (ADS)

    Cherroret, Nicolas; Delande, Dominique; van Tiggelen, Bart A.

    2016-07-01

    We develop a perturbative treatment of induced dipole-dipole interactions in the diffusive transport of electromagnetic waves through disordered atomic clouds. The approach is exact at order 2 in the atomic density and accounts for the vector character of light. It is applied to the calculations of the electromagnetic energy stored in the atomic cloud, which modifies the energy transport velocity, and of the light scattering and transport mean free paths. Results are compared to those obtained from a purely scalar model for light.

  8. Controlling the dipole-dipole interaction using NMR composite rf pulses

    SciTech Connect

    Baudin, Emmanuel

    2014-08-07

    New composite rf pulses are proposed during which the average dipole-dipole interactions within a spin ensemble are controlled, while a global rotation is achieved. The method used to tailor the pulses is based on the average Hamiltonian theory and relies on the geometrical properties of the spin-spin dipolar interaction. I describe several such composite pulses and analyze quantitatively the improvement brought on the control of the NMR dynamics. Numerical simulations show that the magic sandwich pulse sequence, during which the average dipolar field is effectively reversed, is plagued by defects originating from the finite initial and final π/2 rf pulses. A numerical test based on a classical description of nuclear magnetic resonance is used to check that, when these pulses are replaced by magic composite pulses, the efficiency of the magic sandwich is improved.

  9. Three-body bound states in dipole-dipole interacting Rydberg atoms.

    PubMed

    Kiffner, Martin; Li, Wenhui; Jaksch, Dieter

    2013-12-01

    We show that the dipole-dipole interaction between three identical Rydberg atoms can give rise to bound trimer states. The microscopic origin of these states is fundamentally different from Efimov physics. Two stable trimer configurations exist where the atoms form the vertices of an equilateral triangle in a plane perpendicular to a static electric field. The triangle edge length typically exceeds R≈2 μm, and each configuration is twofold degenerate due to Kramers degeneracy. The depth of the potential wells and the triangle edge length can be controlled by external parameters. We establish the Borromean nature of the trimer states, analyze the quantum dynamics in the potential wells, and describe methods for their production and detection.

  10. Simulations of the angular dependence of the dipole-dipole interaction among Rydberg atoms

    NASA Astrophysics Data System (ADS)

    Bigelow, Jacob L.; Hollingsworth, Jacob; Paul, Jacob T.; Peleg, Matan; Sanford, Veronica L.; Carroll, Thomas J.; Noel, Michael W.

    2016-05-01

    The dipole-dipole interaction between two Rydberg atoms depends on the relative orientation of the atoms and on the change in the magnetic quantum number. We simulate the effect of this anisotropy on the energy transport in an amorphous many atom system of ultracold Rydberg atoms subject to a homogeneous applied electric field. We consider two experimentally feasible geometries and find that the effects should be measurable in current generation imaging experiments. We also examine evidence for Anderson localization. This work was supported by the National Science Foundation under Grants No. 1205895 and No. 1205897 and used the Extreme Science and Engineering Discovery Environment (XSEDE), which is supported by National Science Foundation Grant Number OCI-1053575.

  11. Self-assembled microspheres driven by dipole-dipole interactions: UCST-type transition in water.

    PubMed

    Morimoto, Nobuyuki; Muramatsu, Kanna; Wazawa, Tetsuichi; Inoue, Yuichi; Suzuki, Makoto

    2014-01-01

    A double hydrophilic block copolymer, poly(ethylene glycol)-poly(3-dimethyl (methacryloyloxyethyl) ammonium propane sulfonate) (PEG-SB), is synthesized by reversible addition-fragmentation transfer (RAFT) polymerization using PEG methyl ether (4-cyano-4-pentanoate dodecyl trithiocarbonate) as a chain transfer agent. PEG-SB forms multi-layered microspheres with dipole-dipole interactions of the SB side chains as the driving force. The PEG-SB polymers show an upper critical solution temperature (UCST) and the UCST is controllable by the polymerization degree. The PEG-SB microspheres are dissociated above the UCST and then monodispersed microspheres (∼1 μm) are obtained when the solution temperature is decreased below the UCST again. The disassociation/association of the microspheres is also controllable using the concentration of NaCl. These multi-responsive microspheres could be a powerful tool in the field of nano-biotechnology.

  12. Microwave pump-probe spectroscopy of the dipole-dipole interaction in a cold Rydberg gas

    NASA Astrophysics Data System (ADS)

    Park, Hyunwook; Gallagher, T. F.; Pillet, P.

    2016-05-01

    Microwave pump-probe experiments starting with a cold gas of Rb 34 s atoms confirm that cusped line shapes observed in dipole-dipole broadened microwave transitions are due to atoms which are widely separated and exhibit small dipole-dipole energy shifts. When the experiments are interpreted in terms of a nearest-neighbor model, they demonstrate that it is possible to select pairs of atoms based on their separation and orientation.

  13. Entangling Dipole-Dipole Interactions for Quantum Logic in Optical Lattices

    NASA Astrophysics Data System (ADS)

    Deutsch, Ivan

    2000-06-01

    The ability to engineer the quantum state of a many-body system represents the ``holy grail" of coherent control and opens the door to a host of new applications and fundamental studies ranging from improvements in precision measurement to quantum computation. At the heart of these quantum-information processing tasks are entangled states. These can be created through a ``quantum-circuit" consisting of a series of simple quantum logic gates acting only on single or pairs of qubits. Any physical implementation of a quantum circuit must contend with an inherent conflict. Qubits must strongly couple to one another and to an external classical field which drives the algorithm, while simultaneously coupling very weakly to the noisy environment which decoheres the quantum superpositions. We have identified a new system for quantum-information processing: ultra-cold trapped neutral atoms (G. K. Brennen et al. ), Phys. Rev. Lett. 82 , 1060 (1999); see also eprint quant- ph/9910031. Neutrals interact very weakly with the environment and coupling between them can be induced on demand through resonant excitation or elastic collisions via direct overlap between wavepackets(D. Jaksch et al.), Phys. Rev. Lett. 82 1975 (1999).. The ability to turn interactions on and off reduces decoherence and the spread of errors amongst qubits. In the implementation presented here I will discuss entangling atoms with electric dipole-dipole interactions in optical lattices (P.S. Jessen and I. H. Deutsch, Adv. At. Mol. Phys. 36), 91 (1996).. These traps provide an extremely flexible environment for coherent control of both internal and external degrees of freedom of atom wave packets as in ion traps(D. Wineland et al.), Fortschr. Phys. 46, 363 (1998).. Dipole-dipole interactions can be coherent when atoms are tightly localized at a distance small compared to the optical wavelength. By inducing dipoles conditional on the logical state of the

  14. Tailored electronic structure and optical properties of conjugated systems through aggregates and dipole-dipole interactions.

    PubMed

    Park, Young Il; Kuo, Cheng-Yu; Martinez, Jennifer S; Park, Young-Shin; Postupna, Olena; Zhugayevych, Andriy; Kim, Seungho; Park, Jongwook; Tretiak, Sergei; Wang, Hsing-Lin

    2013-06-12

    A series of PPVO (p-phenylene vinylene oligomer) derivatives with functional groups of varying electronegativity were synthesized via the Horner-Wadsworth-Emmons reaction. Subtle changes in the end group functionality significantly impact the molecular electronic and optical properties of the PPVOs, resulting in broadly tunable and efficient UV absorption and photoluminescence spectra. Of particular interest is the NO2-substituted PPVO which exhibits photoluminescence color ranging from the blue to the red, thus encompassing the entire visible spectrum. Our experimental study and electronic structure calculations suggest that the formation of aggregates and strong dipole-dipole solute-solvent interactions are responsible for the observed strong solvatochromism. Experimental and theoretical results for the NH2-, H-, and NO2-substituted PPVOs suggest that the stabilization of ground or excited state dipoles leads to the blue or red shift of the optical spectra. The electroluminescence (EL) spectra of H-, COOH-, and NO2-PPVO have maxima at 487, 518, and 587 nm, respectively, in the OLED device. This trend in the EL spectra is in excellent agreement with the end group-dependent PL spectra of the PPVO thin-films. PMID:23607446

  15. Modeling Barkhausen Noise in magnetic glasses with dipole-dipole interactions

    NASA Astrophysics Data System (ADS)

    Dubey, Awadhesh K.; Hentschel, H. George E.; Jaiswal, Prabhat K.; Mondal, Chandana; Procaccia, Itamar; Gupta, Bhaskar Sen

    2015-10-01

    Long-ranged dipole-dipole interactions in magnetic glasses give rise to magnetic domains having labyrinthine patterns on the scale of about 1 micron. Barkhausen Noise then results from the movement of domain boundaries which is modeled by the motion of elastic membranes with random pinning. Here we propose that on the nanoscale new sources of Barkhausen Noise can arise. We propose an atomistic model of magnetic glasses in which we measure the Barkhausen Noise which results from the creation of new domains and the movement of domain boundaries on the nanoscale. The statistics of the Barkhausen Noise found in our simulations is in striking disagreement with the expectations in the literature. In fact we find exponential statistics without any power law, stressing the fact that Barkhausen Noise can belong to very different universality classes. In the present model the essence of the phenomenon is the fact that the spin response Green's function is decaying too rapidly for having sufficiently large magnetic jumps. A theory is offered in excellent agreement with the measured data without any free parameter.

  16. Dipole-Dipole Interactions of High-spin Paramagnetic Centers in Disordered Systems

    SciTech Connect

    Maryasov, Alexander G.; Bowman, Michael K.; Tsvetkov, Yuri D.

    2007-09-13

    Dipole-dipole interactions between distant paramagnetic centers (PCs) where at least one PC has spin S>1/2 are examined. The results provide a basis for the application of pulsed DEER or PELDOR methods to the measurement of distances between PC involving high-spin species. A projection operator technique based on spectral decomposition of the secular Hamiltonian is used to calculate EPR line splitting caused by the dipole coupling. This allows calculation of operators projecting arbitrary wavefunction onto high PC eigenstates when the eigenvectors of the Hamiltonian are not known. The effective spin vectors-that is, the expectation values for vector spin operators in the PC eigenstates-are calculated. The dependence of these effective spin vectors on the external magnetic field is calculated. There is a qualitative difference between pairs having at least one integer spin (non Karmers PC) and pairs of two half-integer (Kramers PC) spins. With the help of these effective spin vectors, the dipolar lineshape of EPR lines is calculated. Analytical relations are obtained for PCs with spin S=1/2 and 1. The dependence of Pake patterns on variations of zero field splitting, Zeeman energy, temperature and dipolar coupling are illustrated.

  17. Radio-frequency-driven dipole-dipole interactions in spatially separated volumes

    NASA Astrophysics Data System (ADS)

    Tauschinsky, Atreju; van Ditzhuijzen, C. S. E.; Noordam, L. D.; van den Heuvell, H. B. Van Linden

    2008-12-01

    Radio-frequency (rf) fields in the MHz range are used to induce resonant energy transfer between cold Rydberg atoms in spatially separated volumes. After laser preparation of the Rydberg atoms, dipole-dipole coupling excites the 49s atoms in one cylinder to the 49p state while the 41d atoms in the second cylinder are transferred down to the 42p state. The energy exchanged between the atoms in this process is 33GHz . An external rf field brings this energy transfer into resonance. The strength of the interaction has been investigated as a function of amplitude (0-1V/cm) and frequency (1-30MHz) of the rf field and as a function of a static-field offset. Multiphoton transitions up to fifth order as well as selection rules prohibiting the process at certain fields have been observed. The width of the resonances has been reduced compared to earlier results by switching off external magnetic fields of the magneto-optical trap, making sub-MHz spectroscopy possible. All features are well reproduced by theoretical calculations taking the strong ac Stark shift due to the rf field into account.

  18. Many particle magnetic dipole-dipole and hydrodynamic interactions in magnetizable stent assisted magnetic drug targeting

    NASA Astrophysics Data System (ADS)

    Cregg, P. J.; Murphy, Kieran; Mardinoglu, Adil; Prina-Mello, Adriele

    2010-08-01

    The implant assisted magnetic targeted drug delivery system of Avilés, Ebner and Ritter is considered both experimentally ( in vitro) and theoretically. The results of a 2D mathematical model are compared with 3D experimental results for a magnetizable wire stent. In this experiment a ferromagnetic, coiled wire stent is implanted to aid collection of particles which consist of single domain magnetic nanoparticles (radius ≈10 nm). In order to model the agglomeration of particles known to occur in this system, the magnetic dipole-dipole and hydrodynamic interactions for multiple particles are included. Simulations based on this mathematical model were performed using open source C++ code. Different initial positions are considered and the system performance is assessed in terms of collection efficiency. The results of this model show closer agreement with the measured in vitro experimental results and with the literature. The implications in nanotechnology and nanomedicine are based on the prediction of the particle efficiency, in conjunction with the magnetizable stent, for targeted drug delivery.

  19. Teaching Ion-Ion, Ion-Dipole, and Dipole-Dipole Interactions

    ERIC Educational Resources Information Center

    Yoder, Claude H.

    1977-01-01

    Discusses how electrostatic interactions can be taught quantitatively through Coulomb's Law at a variety of points in a chemistry curriculum. Each type of interaction is shown at both the intramolecular and the inter-"molecular" levels. (MR)

  20. Dipole-dipole interaction and its concentration dependence of magnetic fluid evaluated by alternating current hysteresis measurement

    NASA Astrophysics Data System (ADS)

    Ota, Satoshi; Yamada, Tsutomu; Takemura, Yasushi

    2015-05-01

    Magnetic nanoparticles (MNPs) are used as therapeutic and diagnostic tools, such as for treating hyperthermia and in magnetic particle imaging, respectively. Magnetic relaxation is one of the heating mechanisms of MNPs. Brownian and Néel relaxation times are calculated conventional theories; however, the influence of dipole-dipole interactions has not been considered in conventional models. In this study, water-dispersed MNPs of different concentrations and MNPs fixed with an epoxy bond were prepared. dc and ac hysteresis loops for each sample were measured. With respect to both dc and ac hysteresis loops, magnetization decreased with the increase in MNP concentration because of inhibition of magnetic moment rotation due to dipole-dipole interactions. Moreover, intrinsic loss power (ILP) was estimated from the areas of the ac hysteresis loops. The dependence of ILP on the frequency of the magnetic field was evaluated for each MNP concentration. The peak frequency of ILP increased with the decrease in MNP concentration. These peaks were due to Brownian relaxation, as they were not seen with the fixed sample. This indicates that the Brownian relaxation time became shorter with lower MNP concentration, because the weaker dipole-dipole interactions with lower concentrations suggested that the magnetic moments could rotate more freely.

  1. Role of dipole-dipole interaction on enhancing Brownian coagulation of charge-neutral nanoparticles in the free molecular regime

    NASA Astrophysics Data System (ADS)

    Zhang, Yiyang; Li, Shuiqing; Yan, Wen; Yao, Qiang; Tse, Stephen D.

    2011-02-01

    In contrast to van der Waals (vdW) forces, Coulombic dipolar forces may play a significant role in the coagulation of nanoparticles (NPs) but has received little or no attention. In this work, the effect of dipole-dipole interaction on the enhancement of the coagulation of two spherically shaped charge-neutral TiO2 NPs, in the free molecular regime, is studied using classical molecular dynamics (MD) simulation. The enhancement factor is evaluated by determining the critical capture radius of two approaching NPs for different cases of initial dipole direction with respect to path (parallel/perpendicular) and orientation with respect to each other (co-orientated/counterorientated). As particle diameter decreases, the enhancement of coagulation is augmented as the ratio of dipole-dipole force to vdW force becomes larger. For 2-nm TiO2 NPs at 273 K, the MD simulation predicts an average enhancement factor of about 8.59, which is much greater than the value of 3.78 when only the vdW force is considered. Nevertheless, as temperature increases, the enhancement factor due to dipole-dipole interaction drops quickly because the time-averaged dipole moment becomes small due to increased thermal fluctuations (in both magnitude and direction) of the instantaneous dipole moment.

  2. Effects of dipole-dipole interaction on the single-photon transport in a hybrid atom-optomechanical system coupling to a single-mode waveguide

    NASA Astrophysics Data System (ADS)

    Zhang, Yu-Qing; Zhu, Zhong-Hua; Peng, Zhao-Hui; Jiang, Chun-Lei; Tan, Lei

    2016-07-01

    We theoretically investigate the single-photon transport in a hybrid atom-optomechanical system embedded with two dipole-coupled two-level atoms, interacting with a single-mode optical waveguide. The transmission amplitudes for the single-photon propagation in such a hybrid system are obtained via a real-space approach. It is shown that the dipole-dipole interaction can significantly change the amplitudes and symmetries of the single-photon spectra. Interestingly, we find that the dipole-dipole interaction plays a similar role as does the positive atom-cavity detuning. In addition, the influence from the atomic dissipation can be weakened by increasing the dipole-dipole interaction.

  3. Long-range dipole-dipole interaction and anomalous Förster energy transfer across a hyperbolic metamaterial

    NASA Astrophysics Data System (ADS)

    Biehs, S.-A.; Menon, Vinod M.; Agarwal, G. S.

    2016-06-01

    We study radiative energy transfer between a donor-acceptor pair across a hyperbolic metamaterial slab. We show that similar to a perfect lens a hyperbolic lens allows for giant energy transfer rates. For a realistic realization of a hyperbolic multilayer metamaterial we find an enhancement of up to three orders of magnitude with respect to the transfer rates across a plasmonic silver film of the same size especially for frequencies which coincide with the epsilon-near zero and the epsilon-near pole frequencies. Furthermore, we compare exact results based on the S -matrix method with results obtained from effective medium theory. Our finding of very large dipole-dipole interaction at distances of the order of a wavelength has important consequences for producing radiative heat transfer, quantum entanglement, etc.

  4. Comparison of double-quantum NMR normalization schemes to measure homonuclear dipole-dipole interactions

    SciTech Connect

    Saalwächter, Kay

    2014-08-14

    A recent implementation of a double-quantum (DQ) recoupling solid-state NMR experiment, dubbed DQ-DRENAR, provides a quantitative measure of homonuclear dipole-dipole coupling constants in multispin-1/2 systems. It was claimed to be more robust than another, previously known experiment relying on the recording of point-by-point normalized DQ build-up curves. Focusing on the POST-C7 and BaBa-xy16 DQ pulse sequences, I here present an in-depth comparison of both approaches based upon spin-dynamics simulations, stressing that they are based upon very similar principles and that they are largely equivalent when no imperfections are present. With imperfections, it is found that DQ-DRENAR/POST-C7 does not fully compensate for additional signal dephasing related to chemical shifts (CS) and their anisotropy (CSA), which over-compensates the intrinsic CS(A)-related efficiency loss of the DQ Hamiltonian and leads to an apparent cancellation effect. The simulations further show that the CS(A)-related dephasing in DQ-DRENAR can be removed by another phase cycle step or an improved super-cycled wideband version. Only the latter, or the normalized DQ build-up, are unaffected by CS(A)-related signal loss and yield clean pure dipolar-coupling information subject to unavoidable, pulse sequence specific performance reduction related to higher-order corrections of the dipolar DQ Hamiltonian. The intrinsically super-cycled BaBa-xy16 is shown to exhibit virtually no CS(A) related imperfection terms, but its dipolar performance is somewhat more challenged by CS(A) effects than POST-C7, which can however be compensated when applied at very fast MAS (>50 kHz). Practically, DQ-DRENAR uses a clever phase cycle separation to achieve a significantly shorter experimental time, which can also be beneficially employed in normalized DQ build-up experiments.

  5. Comparison of double-quantum NMR normalization schemes to measure homonuclear dipole-dipole interactions

    NASA Astrophysics Data System (ADS)

    Saalwächter, Kay

    2014-08-01

    A recent implementation of a double-quantum (DQ) recoupling solid-state NMR experiment, dubbed DQ-DRENAR, provides a quantitative measure of homonuclear dipole-dipole coupling constants in multispin-1/2 systems. It was claimed to be more robust than another, previously known experiment relying on the recording of point-by-point normalized DQ build-up curves. Focusing on the POST-C7 and BaBa-xy16 DQ pulse sequences, I here present an in-depth comparison of both approaches based upon spin-dynamics simulations, stressing that they are based upon very similar principles and that they are largely equivalent when no imperfections are present. With imperfections, it is found that DQ-DRENAR/POST-C7 does not fully compensate for additional signal dephasing related to chemical shifts (CS) and their anisotropy (CSA), which over-compensates the intrinsic CS(A)-related efficiency loss of the DQ Hamiltonian and leads to an apparent cancellation effect. The simulations further show that the CS(A)-related dephasing in DQ-DRENAR can be removed by another phase cycle step or an improved super-cycled wideband version. Only the latter, or the normalized DQ build-up, are unaffected by CS(A)-related signal loss and yield clean pure dipolar-coupling information subject to unavoidable, pulse sequence specific performance reduction related to higher-order corrections of the dipolar DQ Hamiltonian. The intrinsically super-cycled BaBa-xy16 is shown to exhibit virtually no CS(A) related imperfection terms, but its dipolar performance is somewhat more challenged by CS(A) effects than POST-C7, which can however be compensated when applied at very fast MAS (>50 kHz). Practically, DQ-DRENAR uses a clever phase cycle separation to achieve a significantly shorter experimental time, which can also be beneficially employed in normalized DQ build-up experiments.

  6. Creation of entanglement in a scalable spin quantum computer with long-range dipole-dipole interaction between qubits

    SciTech Connect

    Kamenev, D. I.; Berman, G. P.; Tsifrinovich, V. I.

    2006-06-15

    Creation of entanglement is considered theoretically and numerically in an ensemble of spin chains with dipole-dipole interaction between the spins. The unwanted effect of the long-range dipole interaction is compensated by the optimal choice of the parameters of radio-frequency pulses implementing the protocol. The errors caused by (i) the influence of the environment, (ii) nonselective excitations (iii) influence of different spin chains on each other, (iv) displacements of qubits from their perfect locations, and (v) fluctuations of the external magnetic field are estimated analytically and calculated numerically. For the perfectly entangled state the z component M of the magnetization of the whole system is equal to zero. The errors lead to a finite value of M. If the number of qubits in the system is large, M can be detected experimentally. Using the fact that M depends differently on the parameters of the system for each kind of error, varying these parameters would allow one to experimentally determine the most significant source of errors and to optimize correspondingly the quantum computer design in order to decrease the errors and |M|. Using our approach one can benchmark the quantum computer, decrease the errors, and prepare the quantum computer for implementation of more complex quantum algorithms.

  7. Effect of the dipole-dipole interaction of particles in an active medium on the character of superradiation

    SciTech Connect

    Berezovsky, V. V.; Men'shikov, L. I.; Oberg, S.; Latham, C. D.

    2008-07-15

    The motion of a system of interacting nonlinear charged oscillators is investigated numerically. Because of nonlinearity, the total collective electric field gives rise to a phasing effect-correlations in the phases of the oscillators. The consequence is superradiation-the enhanced spontaneous short-term emission of the energy stored in the oscillators. It is shown that the oscillations of the oscillators become stochastic because of the dipole-dipole interaction between them and their nearest neighbors. As a result, as the density of the oscillators increases, distant collective correlations are suppressed, superradiation ceases to be generated, and radiation is shielded in the medium. The phenomena considered in the present paper can play an important role in cyclotron emission from a plasma and thus should be taken into account in emission calculations. The process whereby the energy of the transverse electron motion in electron cooling devices decreases is analyzed as an example. This process occurs as a result of the development of cyclotron maser instability and has the nature of superradiation. The onset of correlations between individual electrons moving in their Larmor circles is the initial, linear stage of instability developing in the plasma. Superradiation is the final, nonlinear instability stage.

  8. A polarizable dipole-dipole interaction model for evaluation of the interaction energies for N-H···O=C and C-H···O=C hydrogen-bonded complexes.

    PubMed

    Li, Shu-Shi; Huang, Cui-Ying; Hao, Jiao-Jiao; Wang, Chang-Sheng

    2014-03-01

    In this article, a polarizable dipole-dipole interaction model is established to estimate the equilibrium hydrogen bond distances and the interaction energies for hydrogen-bonded complexes containing peptide amides and nucleic acid bases. We regard the chemical bonds N-H, C=O, and C-H as bond dipoles. The magnitude of the bond dipole moment varies according to its environment. We apply this polarizable dipole-dipole interaction model to a series of hydrogen-bonded complexes containing the N-H···O=C and C-H···O=C hydrogen bonds, such as simple amide-amide dimers, base-base dimers, peptide-base dimers, and β-sheet models. We find that a simple two-term function, only containing the permanent dipole-dipole interactions and the van der Waals interactions, can produce the equilibrium hydrogen bond distances compared favorably with those produced by the MP2/6-31G(d) method, whereas the high-quality counterpoise-corrected (CP-corrected) MP2/aug-cc-pVTZ interaction energies for the hydrogen-bonded complexes can be well-reproduced by a four-term function which involves the permanent dipole-dipole interactions, the van der Waals interactions, the polarization contributions, and a corrected term. Based on the calculation results obtained from this polarizable dipole-dipole interaction model, the natures of the hydrogen bonding interactions in these hydrogen-bonded complexes are further discussed. PMID:24497309

  9. An exact analytical solution for the evolution of a dipole-dipole interacting system under spherical diffusion in magnetic resonance experiments

    NASA Astrophysics Data System (ADS)

    Sturniolo, Simone; Pieruccini, Marco

    2012-10-01

    A model system consisting of an isotropic ensemble of spin pairs, where dipole-dipole interaction is assumed to be effective only within each pair, is considered. The ideal segment connecting the spins in a couple has a fixed length but is free to rotate following a diffusion dynamics. This allows the free induction decay (FID) to be derived non-perturbatively by solving the appropriate Dyson equation associated to the problem. Motional narrowing can be described analytically in terms of only two parameters, i.e. the coupling constant of the interaction hamiltonian, b, and the orientational diffusion coefficient D. Salient features of the transverse correlation function thus obtained are discussed, and a comparison with numerical simulations performed with the software SPINEVOLUTION is presented. Interpreting b and D as effective parameters describing multiple interactions of a single spin with its neighbors in a real system, the analysis of published experimental data on poly(ethyl acrylate) has been carried out. It is found that for temperatures higher than and not too close to the glass transition, the results are the same as those found within the Anderson-Weiss approach by assuming a single time exponential decay of the average dipole-dipole interaction. On the other hand, as D tends to zero, FID oscillations characteristic of a rigid lattice show up.

  10. Trapping and chaining self-assembly of colloidal polystyrene particles over a floating electrode by using combined induced-charge electroosmosis and attractive dipole-dipole interactions.

    PubMed

    Liu, Weiyu; Shao, Jinyou; Jia, Yankai; Tao, Ye; Ding, Yucheng; Jiang, Hongyuan; Ren, Yukun

    2015-11-01

    We propose a novel low-frequency strategy to trap 10 μm colloidal polystyrene (PS) particles of small buoyancy velocity on the surface of a floating electrode, on the basis of combined induced-charge electroosmotic (ICEO) flow and dipole-dipole chaining phenomenon. For field frequencies of 5-50 Hz, much lower than the reciprocal RC time scale, double-layer polarization makes electric field lines pass around the 'insulating' surface of the ideally polarizable floating electrode. Once the long-range ICEO convective micro-vortexes transport particles quickly from the bulk fluid to the electrode surface, neighbouring particles aligned along the local horizontal electric field attract one another by attractive dipolar interactions, and form arrays of particle chains that are almost parallel with the applied electric field. Most importantly, this low-frequency trapping method takes advantage of the dielectrophoretic (DEP) particle-particle interaction to enhance the downward buoyancy force of this dipolar chaining assembly structure, in order to overcome the upward ICEO fluidic drag and realize stable particle trapping around the flow stagnation region. For the sake of comparison, the field frequency is further raised far above the DC limit. At the intermediate frequencies of 200 Hz-2 kHz, this trapping method fails to work, since the normal electric field component emanates from the conducting electrode surface. Besides, at high field frequencies (>3 kHz), particles can be once again effectively trapped at the electrode center, though with a compact (3 kHz) or disordered (10 kHz) 2D packing state on the electrode surface and mainly governed by the short-range negative DEP force field, resulting in requiring a much longer trapping time. To gain a better interpretation of the various particle behaviours observed in experiments, we develop a theoretical framework that takes into account both Maxwell-Wagner interfacial charge relaxation at the particle

  11. Trapping and chaining self-assembly of colloidal polystyrene particles over a floating electrode by using combined induced-charge electroosmosis and attractive dipole-dipole interactions.

    PubMed

    Liu, Weiyu; Shao, Jinyou; Jia, Yankai; Tao, Ye; Ding, Yucheng; Jiang, Hongyuan; Ren, Yukun

    2015-11-01

    We propose a novel low-frequency strategy to trap 10 μm colloidal polystyrene (PS) particles of small buoyancy velocity on the surface of a floating electrode, on the basis of combined induced-charge electroosmotic (ICEO) flow and dipole-dipole chaining phenomenon. For field frequencies of 5-50 Hz, much lower than the reciprocal RC time scale, double-layer polarization makes electric field lines pass around the 'insulating' surface of the ideally polarizable floating electrode. Once the long-range ICEO convective micro-vortexes transport particles quickly from the bulk fluid to the electrode surface, neighbouring particles aligned along the local horizontal electric field attract one another by attractive dipolar interactions, and form arrays of particle chains that are almost parallel with the applied electric field. Most importantly, this low-frequency trapping method takes advantage of the dielectrophoretic (DEP) particle-particle interaction to enhance the downward buoyancy force of this dipolar chaining assembly structure, in order to overcome the upward ICEO fluidic drag and realize stable particle trapping around the flow stagnation region. For the sake of comparison, the field frequency is further raised far above the DC limit. At the intermediate frequencies of 200 Hz-2 kHz, this trapping method fails to work, since the normal electric field component emanates from the conducting electrode surface. Besides, at high field frequencies (>3 kHz), particles can be once again effectively trapped at the electrode center, though with a compact (3 kHz) or disordered (10 kHz) 2D packing state on the electrode surface and mainly governed by the short-range negative DEP force field, resulting in requiring a much longer trapping time. To gain a better interpretation of the various particle behaviours observed in experiments, we develop a theoretical framework that takes into account both Maxwell-Wagner interfacial charge relaxation at the particle

  12. Measurement of homonuclear magnetic dipole-dipole interactions in multiple 1/2-spin systems using constant-time DQ-DRENAR NMR

    NASA Astrophysics Data System (ADS)

    Ren, Jinjun; Eckert, Hellmut

    2015-11-01

    A new pulse sequence entitled DQ-DRENAR (Double-Quantum based Dipolar Recoupling Effects Nuclear Alignment Reduction) was recently described for the quantitative measurement of magnetic dipole-dipole interactions in homonuclear spin-1/2 systems involving multiple nuclei. As described in the present manuscript, the efficiency and performance of this sequence can be significantly improved, if the measurement is done in the constant-time mode. We describe both the theoretical analysis of this method and its experimental validation of a number of crystalline model compounds, considering both symmetry-based and back-to-back (BABA) DQ-coherence excitation schemes. Based on the combination of theoretical analysis and experimental results we discuss the effect of experimental parameters such as the chemical shift anisotropy (CSA), the spinning rate, and the radio frequency field inhomogeneity upon its performance. Our results indicate that constant-time (CT-) DRENAR is a method of high efficiency and accuracy for compounds with multiple homonuclear spin systems with particular promise for the analysis of stronger-coupled and short T2 spin systems.

  13. The effect of dipole-dipole interactions on coercivity, anisotropy constant, and blocking temperature of MnFe2O4 nanoparticles

    NASA Astrophysics Data System (ADS)

    Aslibeiki, B.; Kameli, P.; Salamati, H.

    2016-02-01

    Superparamagnetic manganese ferrite nanoparticles with mean size of = 6.5(±1.5) nm were synthesized through a solvothermal method using Tri-ethylene glycol as a solvent. The peak temperature of zero field cooled measurements of magnetization and AC magnetic susceptibility curves shifted toward higher temperatures by applying different pressures from 0 to 1 kbar and increasing the powders compaction. The frequency dependence of AC susceptibility measurements indicated the presence of weak dipole-dipole interactions between nanoparticles. By increasing the powders compaction and interactions strength, the coercive field (Hc) increased and squareness (Mr/Ms) decreased. The obtained effective anisotropy constant (Keff), by susceptibility measurements, was from 1.72 × 106 to 2.36 × 106 ergs/cm3 for pressure of 0 to 1 kbar. These values are larger than those obtained from hysteresis loops at 5 K (0.14 × 106 to 0.34 × 106 erg/cm3). Also, the Keff was two orders of magnitude greater than that of bulk MnFe2O4. Size, surface effects, and total energy barrier between equilibrium states were reported as the main causes of large anisotropy. Below 75 K, a signature of weak surface spin glass was observed. However, memory effect experiment indicated that there is no collective superspin glass state in the samples. This study suggests the role of powders compaction on properties of a magnetic nanoparticles system. Furthermore, the coercivity, the anisotropy constant, and the blocking temperature are affected by changing nanoparticles compaction.

  14. Microscopic theory of dipole-dipole interaction in ensembles of impurity atoms in a Fabry-Perot cavity

    NASA Astrophysics Data System (ADS)

    Kuraptsev, A. S.; Sokolov, I. M.

    2016-08-01

    We develop a consistent quantum theory of the collective effects that take place when electromagnetic radiation interacts with a dense ensemble of impurity centers embedded in a transparent dielectric and placed in a Fabry-Perot cavity. We have calculated the spontaneous decay dynamics of an excited impurity atom as a specific example of applying the developed general theory. We analyze the dependence of the decay rate on the density of impurity centers and the sample sizes as well as on the characteristic level shifts of impurity atoms caused by the internal fields of the dielectric. We show that a cavity can affect significantly the pattern of collective processes, in particular, the lifetimes of collective states.

  15. Dipole-Dipole Interaction Driven Self-Assembly of Merocyanine Dyes: From Dimers to Nanoscale Objects and Supramolecular Materials.

    PubMed

    Würthner, Frank

    2016-05-17

    π-Conjugation between heterocyclic donor (D) and acceptor (A) groups via a polymethine chain leads to dyes with dipole moments greater than 10 D. These dipole moments direct the self-assembly of the dyes into antiparallel dimer aggregates, even in dilute solution, with binding strengths that are far beyond those observed for other π-scaffolds whose self-assembly is driven primarily by dispersion forces. The combination of directionality and exceptional binding strength of dipolar interactions between D-π-A dyes indeed resembles the situation of the hydrogen bond. Thus, similar to the latter, dipolar interactions between merocyanine dyes, a unique class of D-π-A chromophores, can be utilized to construct sophisticated supramolecular architectures of predictable geometry, particularly in low polarity environments. For bis(merocyanine) dyes it has been demonstrated that the self-assembly pathway is encoded in the tether between the two constituent merocyanine chromophores. If the tether enables the antiparallel stacking of the two appended dyes, folding takes place, which may be followed by further self-assembly into extended H-aggregate π-stacks at higher concentrations in solvents of low polarity. For tethers that do not support folding, the formation of bimolecular complexes of four merocyanine units, cyclic oligomers, and supramolecular polymers has been observed. For the former case, that is, formation of a bimolecular stack of four merocyanine units from tweezer-type molecules, association constants >10(9) M(-1) were measured in chloroform. On the other hand, because only one π-face is utilized in the formation of supramolecular polymers from bis(merocyanine) dyes, higher hierarchical structures typically originate in which the other π-face is surrounded by an antiparallel π-stacked neighbor molecule. Among the observed self-assembled structures, nanorods in particular have attracted considerable attention because their self-assembly into well-defined H

  16. Dipole-Dipole Interaction Driven Self-Assembly of Merocyanine Dyes: From Dimers to Nanoscale Objects and Supramolecular Materials.

    PubMed

    Würthner, Frank

    2016-05-17

    π-Conjugation between heterocyclic donor (D) and acceptor (A) groups via a polymethine chain leads to dyes with dipole moments greater than 10 D. These dipole moments direct the self-assembly of the dyes into antiparallel dimer aggregates, even in dilute solution, with binding strengths that are far beyond those observed for other π-scaffolds whose self-assembly is driven primarily by dispersion forces. The combination of directionality and exceptional binding strength of dipolar interactions between D-π-A dyes indeed resembles the situation of the hydrogen bond. Thus, similar to the latter, dipolar interactions between merocyanine dyes, a unique class of D-π-A chromophores, can be utilized to construct sophisticated supramolecular architectures of predictable geometry, particularly in low polarity environments. For bis(merocyanine) dyes it has been demonstrated that the self-assembly pathway is encoded in the tether between the two constituent merocyanine chromophores. If the tether enables the antiparallel stacking of the two appended dyes, folding takes place, which may be followed by further self-assembly into extended H-aggregate π-stacks at higher concentrations in solvents of low polarity. For tethers that do not support folding, the formation of bimolecular complexes of four merocyanine units, cyclic oligomers, and supramolecular polymers has been observed. For the former case, that is, formation of a bimolecular stack of four merocyanine units from tweezer-type molecules, association constants >10(9) M(-1) were measured in chloroform. On the other hand, because only one π-face is utilized in the formation of supramolecular polymers from bis(merocyanine) dyes, higher hierarchical structures typically originate in which the other π-face is surrounded by an antiparallel π-stacked neighbor molecule. Among the observed self-assembled structures, nanorods in particular have attracted considerable attention because their self-assembly into well-defined H

  17. DQ-DRENAR: A new NMR technique to measure site-resolved magnetic dipole-dipole interactions in multispin-1/2 systems: Theory and validation on crystalline phosphates

    NASA Astrophysics Data System (ADS)

    Ren, Jinjun; Eckert, Hellmut

    2013-04-01

    A new solid state NMR technique is described for measuring homonuclear dipole-dipole interactions in multi-spin-1/2 systems under magic-angle spinning conditions. Re-coupling is accomplished in the form of an effective double quantum (DQ) Hamiltonian created by a symmetry-based POST-C7 sequence consisting of two excitation blocks, attenuating the signal (intensity S'). For comparison, a reference signal S0 with the dipolar re-coupling absent is generated by shifting the phase of the second block by 90° relative to the first block. As in rotational echo double resonance, the homonuclear dipole-dipole coupling constant can then be extracted from a plot of the normalized difference signal (S0 - S')/S0 versus dipolar mixing time. The method is given the acronym DQ-DRENAR ("Double-Quantum-based Dipolar Re-coupling effects Nuclear Alignment Reduction"). The method is analyzed mathematically, and on the basis of detailed simulations, with respect to the order and the geometry of the spin system, the dipolar truncation phenomenon, and the influence of the chemical shift anisotropy on experimental curves. Within the range of (S0 - S')/S0 ≤0.3-0.5 such DRENAR curves can be approximated by simple parabolae, yielding effective squared dipole-dipole coupling constants summed over all the pairwise interactions present. The method has been successfully validated for 31P-31P distance determinations of numerous crystalline model compounds representing a wide range of dipolar coupling strengths.

  18. A basic program to transform continuous polar dipole-dipole resistivity soundings to half-Schlumberger soundings

    USGS Publications Warehouse

    Zerilli, A.; Bisdorf, R.J.

    1990-01-01

    An interactive HP 9845B BASIC program transforms continuous polar dipole-dipole resistivity soundings to half-Schlumberger soundings. The program features graphic presentation of the field dipole-dipole data as well as the transformed half-Schlumberger data. An example of the transformation and its effectiveness in smoothing "high-frequency" noise is given. ?? 1990.

  19. Perturbation analyses of intermolecular interactions.

    PubMed

    Koyama, Yohei M; Kobayashi, Tetsuya J; Ueda, Hiroki R

    2011-08-01

    Conformational fluctuations of a protein molecule are important to its function, and it is known that environmental molecules, such as water molecules, ions, and ligand molecules, significantly affect the function by changing the conformational fluctuations. However, it is difficult to systematically understand the role of environmental molecules because intermolecular interactions related to the conformational fluctuations are complicated. To identify important intermolecular interactions with regard to the conformational fluctuations, we develop herein (i) distance-independent and (ii) distance-dependent perturbation analyses of the intermolecular interactions. We show that these perturbation analyses can be realized by performing (i) a principal component analysis using conditional expectations of truncated and shifted intermolecular potential energy terms and (ii) a functional principal component analysis using products of intermolecular forces and conditional cumulative densities. We refer to these analyses as intermolecular perturbation analysis (IPA) and distance-dependent intermolecular perturbation analysis (DIPA), respectively. For comparison of the IPA and the DIPA, we apply them to the alanine dipeptide isomerization in explicit water. Although the first IPA principal components discriminate two states (the α state and PPII (polyproline II) + β states) for larger cutoff length, the separation between the PPII state and the β state is unclear in the second IPA principal components. On the other hand, in the large cutoff value, DIPA eigenvalues converge faster than that for IPA and the top two DIPA principal components clearly identify the three states. By using the DIPA biplot, the contributions of the dipeptide-water interactions to each state are analyzed systematically. Since the DIPA improves the state identification and the convergence rate with retaining distance information, we conclude that the DIPA is a more practical method compared with the

  20. Perturbation analyses of intermolecular interactions

    NASA Astrophysics Data System (ADS)

    Koyama, Yohei M.; Kobayashi, Tetsuya J.; Ueda, Hiroki R.

    2011-08-01

    Conformational fluctuations of a protein molecule are important to its function, and it is known that environmental molecules, such as water molecules, ions, and ligand molecules, significantly affect the function by changing the conformational fluctuations. However, it is difficult to systematically understand the role of environmental molecules because intermolecular interactions related to the conformational fluctuations are complicated. To identify important intermolecular interactions with regard to the conformational fluctuations, we develop herein (i) distance-independent and (ii) distance-dependent perturbation analyses of the intermolecular interactions. We show that these perturbation analyses can be realized by performing (i) a principal component analysis using conditional expectations of truncated and shifted intermolecular potential energy terms and (ii) a functional principal component analysis using products of intermolecular forces and conditional cumulative densities. We refer to these analyses as intermolecular perturbation analysis (IPA) and distance-dependent intermolecular perturbation analysis (DIPA), respectively. For comparison of the IPA and the DIPA, we apply them to the alanine dipeptide isomerization in explicit water. Although the first IPA principal components discriminate two states (the α state and PPII (polyproline II) + β states) for larger cutoff length, the separation between the PPII state and the β state is unclear in the second IPA principal components. On the other hand, in the large cutoff value, DIPA eigenvalues converge faster than that for IPA and the top two DIPA principal components clearly identify the three states. By using the DIPA biplot, the contributions of the dipeptide-water interactions to each state are analyzed systematically. Since the DIPA improves the state identification and the convergence rate with retaining distance information, we conclude that the DIPA is a more practical method compared with the

  1. Helping Students Assess the Relative Importance of Different Intermolecular Interactions

    ERIC Educational Resources Information Center

    Jasien, Paul G.

    2008-01-01

    A semi-quantitative model has been developed to estimate the relative effects of dispersion, dipole-dipole interactions, and H-bonding on the normal boiling points ("T[subscript b]") for a subset of simple organic systems. The model is based upon a statistical analysis using multiple linear regression on a series of straight-chain organic…

  2. Constraints on exotic dipole-dipole couplings between electrons at the micron scale

    NASA Astrophysics Data System (ADS)

    Kotler, Shlomi; Ozeri, Roee; Jackson Kimball, Derek

    2015-05-01

    Until recently, the magnetic dipole-dipole coupling between electrons had not been directly observed experimentally. This is because at the atomic scale dipole-dipole coupling is dominated by the exchange interaction and at larger distances the dipole-dipole coupling is overwhelmed by ambient magnetic field noise. In spite of these challenges, the magnetic dipole-dipole interaction between two electron spins separated by 2.4 microns was recently measured using the valence electrons of trapped Strontium ions [S. Kotler, N. Akerman, N. Navon, Y. Glickman, and R. Ozeri, Nature 510, 376 (2014)]. We have used this measurement to directly constrain exotic dipole-dipole interactions between electrons at the micron scale. For light bosons (mass 0.1 eV), we find that coupling constants describing pseudoscalar and axial-vector mediated interactions must be | gPegPe/4 πℏc | <= 1 . 5 × 10-3 and | gAegAe/4 πℏc | <= 1 . 2 × 10-17 , respectively, at the 90% confidence level. These bounds significantly improve on previous constraints in this mass range: for example, the constraints on axial-vector interactions are six orders of magnitude stronger than electron-positron constraints based on positronium spectroscopy. Supported by the National Science Foundation, I-Core: the Israeli excellence center, and the European Research Council.

  3. Energy-driven pattern formation in planar dipole-dipole systems in the presence of weak noise

    NASA Astrophysics Data System (ADS)

    Kent-Dobias, Jaron; Bernoff, Andrew J.

    2015-03-01

    We study pattern formation in planar fluid systems driven by intermolecular cohesion (which manifests as a line tension) and dipole-dipole repulsion, which are observed in physical systems including ferrofluids in Hele-Shaw cells and Langmuir layers. When the dipolar repulsion is sufficiently strong, domains undergo forked branching reminiscent of viscous fingering. A known difficulty with these models is that the energy associated with dipole-dipole interactions is singular at small distances. Following previous work, we demonstrate how to ameliorate this singularity and show that in the macroscopic limit only the scale of the microscopic details relative to the macroscopic extent of a system is relevant and develop an expression for the system energy that depends only on a generalized line tension Λ that in turn depends logarithmically on that scale. We conduct numerical studies that use energy minimization to find equilibrium states. Following the subcritical bifurcations from the circle, we find a few highly symmetric stable shapes, but nothing that resembles the observed diversity of experimental and dynamically simulated domains. The application of a weak random background to the energy landscape stabilizes a wide range of domain morphologies recovering the diversity observed experimentally. With this technique, we generate a large sample of qualitatively realistic shapes and use them to create an empirical model for extracting Λ with high accuracy using only a shape's perimeter and morphology.

  4. Energy-driven pattern formation in planar dipole-dipole systems in the presence of weak noise.

    PubMed

    Kent-Dobias, Jaron; Bernoff, Andrew J

    2015-03-01

    We study pattern formation in planar fluid systems driven by intermolecular cohesion (which manifests as a line tension) and dipole-dipole repulsion, which are observed in physical systems including ferrofluids in Hele-Shaw cells and Langmuir layers. When the dipolar repulsion is sufficiently strong, domains undergo forked branching reminiscent of viscous fingering. A known difficulty with these models is that the energy associated with dipole-dipole interactions is singular at small distances. Following previous work, we demonstrate how to ameliorate this singularity and show that in the macroscopic limit only the scale of the microscopic details relative to the macroscopic extent of a system is relevant and develop an expression for the system energy that depends only on a generalized line tension Λ that in turn depends logarithmically on that scale. We conduct numerical studies that use energy minimization to find equilibrium states. Following the subcritical bifurcations from the circle, we find a few highly symmetric stable shapes, but nothing that resembles the observed diversity of experimental and dynamically simulated domains. The application of a weak random background to the energy landscape stabilizes a wide range of domain morphologies recovering the diversity observed experimentally. With this technique, we generate a large sample of qualitatively realistic shapes and use them to create an empirical model for extracting Λ with high accuracy using only a shape's perimeter and morphology. PMID:25871184

  5. Electron paramagnetic resonance line shifts and line shape changes due to heisenberg spin exchange and dipole-dipole interactions of nitroxide free radicals in liquids 8. Further experimental and theoretical efforts to separate the effects of the two interactions.

    PubMed

    Peric, Mirna; Bales, Barney L; Peric, Miroslav

    2012-03-22

    The work in part 6 of this series (J. Phys. Chem. A 2009, 113, 4930), addressing the task of separating the effects of Heisenberg spin exchange (HSE) and dipole-dipole interactions (DD) on electron paramagnetic resonance (EPR) spectra of nitroxide spin probes in solution, is extended experimentally and theoretically. Comprehensive measurements of perdeuterated 2,2,6,6-tetramethyl-4-oxopiperidine-1-oxyl (pDT) in squalane, a viscous alkane, paying special attention to lower temperatures and lower concentrations, were carried out in an attempt to focus on DD, the lesser understood of the two interactions. Theoretically, the analysis has been extended to include the recent comprehensive treatment by Salikhov (Appl. Magn. Reson. 2010, 38, 237). In dilute solutions, both interactions (1) introduce a dispersion component, (2) broaden the lines, and (3) shift the lines. DD introduces a dispersion component proportional to the concentration and of opposite sign to that of HSE. Equations relating the EPR spectral parameters to the rate constants due to HSE and DD have been derived. By employing nonlinear least-squares fitting of theoretical spectra to a simple analytical function and the proposed equations, the contributions of the two interactions to items 1-3 may be quantified and compared with the same parameters obtained by fitting experimental spectra. This comparison supports the theory in its broad predictions; however, at low temperatures, the DD contribution to the experimental dispersion amplitude does not increase linearly with concentration. We are unable to deduce whether this discrepancy is due to inadequate analysis of the experimental data or an incomplete theory. A new key aspect of the more comprehensive theory is that there is enough information in the experimental spectra to find items 1-3 due to both interactions; however, in principle, appeal must be made to a model of molecular diffusion to separate the two. The permanent diffusion model is used to

  6. Electrostatic charge-charge and dipole-dipole interactions near the surface of a medium with screening non-locality (Review Article)

    NASA Astrophysics Data System (ADS)

    Gabovich, Alexander M.; Voitenko, Alexander I.

    2016-08-01

    Interaction energy between two point charges, WQQ', or two point dipoles, WPP', located in a medium with a constant dielectric permittivity near the plane surface of a metallic or semiconducting substrate with the spatial dispersion of its dielectric function has been revisited. The calculations were made on the basis of the Green's function method for layered systems. Long-range lateral asymptotics were found. The non-local character of screening in the substrates was shown to substantially modify the dependences of WQQ' and WPP' on the distance between the objects concerned. Thus, the purported conventional electrostatic interactions between adsorbed atoms and molecules (modeled by point charges and point dipoles) should be reconsidered making allowance for the substrate polarization. In particular, this factor may significantly influence the structure of electrostatic dipole lattices arising near the surfaces of solids, as well as the kinetics of charge or dipole motion over the surface.

  7. Dipole-dipole broadening of Rb ns-np microwave transitions

    SciTech Connect

    Park, Hyunwook; Tanner, P. J.; Claessens, B. J.; Shuman, E. S.; Gallagher, T. F.

    2011-08-15

    The dipole-dipole broadening of ns-np microwave transitions of cold Rb Rydberg atoms in a magneto-optical trap has been recorded for 28{<=}n{<=}51. Since the electric dipole transition matrix elements scale as n{sup 2}, a broadening rate scaling as n{sup 4} is expected and a broadening rate of 8.2x10{sup -15}n{sup 4} MHz cm{sup 3} is observed. The observed broadening is smaller than expected from a classical picture due to the spin-orbit interaction in the np atoms. The broadened resonances are asymmetric and cusp shaped, and their line shapes can be reproduced by a diatomic model which takes into account the dipole-dipole interaction, including the spin-orbit interaction, the strengths of the allowed microwave transitions, and the distribution of the atomic spacings in the trap.

  8. Dipole-dipole-induced giant Goos-Hänchen shift in a photonic crystal doped with quantum dot nanostructures

    NASA Astrophysics Data System (ADS)

    Panahi, M.; Solookinejad, G.; Ahmadi Sangachin, E.; Hossein Asadpour, Seyyed

    2016-07-01

    The impact of the dipole-dipole interaction on the Goo-Hänchen (GH) shifts in reflected and transmitted lights is investigated. A weak probe beam is incident on a cavity containing the donor and acceptor quantum dots embedded in a nonlinear photonic crystal. We deduced that the GH shifts can be easily adjusted via controlling the corresponding parameters of the system in the presence or absence of dipole-dipole interaction. Our proposed model may be useful to developing the all-optical devices based on photonic materials doped with nanoparticles.

  9. Estimation of intermolecular interactions in polymer networks

    SciTech Connect

    Subrananian, P.R.; Galiatsatos, V.

    1993-12-31

    Strain-birefringence measurements have been used to estimate intermolecular interactions in polymer networks. The intensity of the interaction has been quantified through a theoretical scheme recently proposed by Erman. The results show that these interactions diminish with decreasing molecular weight between cross-links and decreasing cross-link functionality.

  10. On the effect of a radiation field in modifying the intermolecular interaction between two chiral molecules

    SciTech Connect

    Salam, A.

    2006-01-07

    The change in the mutual energy of interaction between a pair of chiral molecules coupled via the exchange of a single virtual photon and in the presence of an electromagnetic field is calculated using nonrelativistic quantum electrodynamics. The particular viewpoint adopted is one that has an intuitive physical appeal and resembles a classical treatment. It involves the coupling of electric and magnetic dipole moments induced at each center by the incident radiation field to the resonant dipole-dipole interaction tensor. The energy shift is evaluated for fixed as well as random orientations of the molecular pair with respect to the direction of propagation of the field. A complete polarization analysis is carried out for the former situation by examining the effect of incident radiation that is linearly or circularly polarized and traveling in a direction that is parallel or perpendicular to the intermolecular distance vector. After tumble averaging, all polarization dependence of the energy shift vanishes. In both cases the interaction energy is directly proportional to the irradiance of the applied field, and is discriminatory, changing sign when one optically active species is replaced by its enantiomer. The asymptotic behavior of the energy shift at the limits of large and small separations is also studied.

  11. Controlling dipole-dipole frequency shifts in a lattice-based optical atomic clock

    SciTech Connect

    Chang, D.E.; Lukin, M.D.; Ye Jun

    2004-02-01

    Motivated by the ideas of using cold alkaline-earth atoms trapped in an optical lattice for realization of optical atomic clocks, we investigate theoretically the perturbative effects of atom-atom interactions on a clock transition frequency. These interactions are mediated by the dipole fields associated with the optically excited atoms. We predict resonancelike features in the frequency shifts when constructive interference among atomic dipoles occur. We theoretically demonstrate that by fine tuning the coherent dipole-dipole couplings in appropriately designed lattice geometries, the undesirable frequency shifts can be greatly suppressed.

  12. Computational studies on intermolecular interactions in solvation

    NASA Astrophysics Data System (ADS)

    Song, Weiping

    This thesis presents the results of computational studies of intermolecular interactions in various contexts. We first investigated the relation between solute-solvent intermolecular interactions and local density augmentation in supercritical solvation. The phenomenon of interest is the excess density that exists in the neighborhood of an attractive solute in a supercritical solvent in the vicinity of the critical point. In Chapter 2, we examined the ability of various measures of the strength of solute-solvent interactions, calculated from all-atom potential functions, to correlate the extent of local density augmentation in both experimental and model solvents. The Gibbs Ensemble Monte Carlo (GEMC) method enables us to calculate phase equilibrium in pure substances and mixtures. It provides a convenient way to test and develop model potentials. In Chapter 3 we present some methodological aspects of such calculations, the issues related to approach to critical points and finite-size effects and applications to simple fluids. Chapter 4 then describes a simplified 2-site potential model for simulating supercritical fluoroform. The GEMC method was used to simulate the vapor-liquid coexistence curve of the model fluid and the dynamic properties were studied by performing NVT molecular dynamics (MD) simulations. The results show that despite its simplicity, this model is able to reproduce many important properties of supercritical fluoroform, making it useful in molecular simulations of supercritical solvation. In the above two studies, the intermolecular interactions are described by a sum of pair-wise additive Lennard-Jones + Coulomb terms. The standard Lorentz-Berthelot combining rules (geometric mean rule for well depth and arithmetic mean rule for collision diameter) are commonly applied to account for the unlike pair Lennard-Jones parameters. In Chapter 5, we examined the applicability of the combining rules for modeling alkane-perfluoroalkane interactions. It

  13. The diversity of physical forces and mechanisms in intermolecular interactions.

    PubMed

    Berezovsky, Igor N

    2011-06-01

    Intermolecular interactions became an inherent part of the structure-function paradigm. Therefore, the generalized concept of protein stability and interactions should consider the balance of stabilizing forces working in different types of intermolecular interactions. We consider here two 'extremes' of protein interactions, viral protein with high intrinsic disorder and hyperthermostable protein complexes. Intermolecular interactions provide folding upon binding as a part of function in the viral case, while they secure and stabilize specific native interfaces as a prerequisite for function in hyperthermostable complexes. We propose a generalized concept of protein stability and interactions, which includes intermolecular interactions comprising distinct combinations of stabilizing forces depending on the types of interacting partners.

  14. Intermolecular interactions in a radiation field via the method of induced moments

    SciTech Connect

    Salam, A.

    2006-01-15

    Molecular quantum electrodynamics is employed to calculate a generalized formula for the energy shift between a pair of molecules that have electric polarizability of arbitrary multipole order and are in the presence of an intense electromagnetic field. In contrast to a previous calculation of the dipole-dipole contribution, which required fourth-order time-dependent perturbation theory for its evaluation, the present approach involves calculating the interaction between the multipole moments induced at each center by the incident beam and the resonant multipole-multipole coupling tensor together with the average value of the spatial correlation function of the displacement field for an N-photon state. The theory developed applies to the situation where the molecular pair is held fixed relative to the direction of propagation of the radiation field or is allowed to be completely randomly oriented. Explicit results are obtained for dipole-quadrupole and quadrupole-quadrupole polarizable molecules. For oriented systems the energy shift for linear and circular polarizations is examined for incident radiation propagating in directions parallel and perpendicular to the intermolecular join, and the asymptotic behavior is obtained at the limits of short and large separation distance. After performing a pair orientation average, the energy shift in the near zone is found to exhibit an R{sup -1} power-law behavior with separation distance, while the far zone has a modulated R{sup -2} dependence in all of the cases considered. None of the energy shifts obtained display discriminatory characteristics, with respect to either the handedness of the incident beam or the individual species.

  15. Collective dipole-dipole interactions in an atomic array

    NASA Astrophysics Data System (ADS)

    Sutherland, R. T.; Robicheaux, F.

    2016-07-01

    The coherent photon scattering of atoms in an atomic array is studied. It is found that due to cooperative photon exchanges, the excitation probability of an atom in an array parallel to the direction of laser propagation (k ̂ ) will either grow or decay along k ̂ , depending on the detuning of the laser. The symmetry of the system for atomic separations of a =j λ /2 causes the excitation distribution and scattered radiation to abruptly become symmetric about the center of the array, where j is an integer and λ is the transition wavelength. For atomic separations of a <λ /2 , a collection of nonradiating states (Γ ˜0 ) disrupts the described trend. In order to interpret this surprising result, a band-structure calculation in the N →∞ limit is conducted, where the decay rates and the collective Lamb shifts of the eigenmodes versus quasimomentum are obtained. This calculation shows that the collective exchange of photons in an array strongly affects its scattered radiation, allowing one to easily manipulate the collective Lamb shift and directly excite either superradiant or subradiant eigenmodes by correctly choosing the angle of the driving laser.

  16. Constraints on Exotic Dipole-Dipole Couplings between Electrons at the Micrometer Scale

    NASA Astrophysics Data System (ADS)

    Kotler, Shlomi; Ozeri, Roee; Kimball, Derek F. Jackson

    2015-08-01

    New constraints on exotic dipole-dipole interactions between electrons at the micrometer scale are established, based on a recent measurement of the magnetic interaction between two trapped 88Sr+ ions. For light bosons (mass≤0.1 eV ) we obtain a 90% confidence interval for an axial-vector-mediated interaction strength of |gAegAe/4 π ℏc | ≤1.2 ×10-17 . Assuming C P T invariance, this constraint is compared to that on anomalous electron-positron interactions, derived from positronium hyperfine spectroscopy. We find that the electron-electron constraint is 6 orders of magnitude more stringent than the electron-positron counterpart. Bounds on pseudoscalar-mediated interaction as well as on torsion gravity are also derived and compared with previous work performed at different length scales. Our constraints benefit from the high controllability of the experimental system which contained only two trapped particles. It therefore suggests a useful new platform for exotic particle searches, complementing other experimental efforts.

  17. Magnetic dipole-dipole sensing at atomic scale using electron spin resonance STM

    NASA Astrophysics Data System (ADS)

    Choi, T.; Paul, W.; Rolf-Pissarczyk, S.; MacDonald, A.; Yang, K.; Natterer, F. D.; Lutz, C. P.; Heinrich, A. J.

    Magnetometry having both high magnetic field sensitivity and atomic resolution has been an important goal for applications in diverse fields covering physics, material science, and biomedical science. Recent development of electron spin resonance STM (ESR-STM) promises coherent manipulation of spins and studies on magnetic interaction of artificially built nanostructures, leading toward quantum computation, simulation, and sensors In ESR-STM experiments, we find that the ESR signal from an Fe atom underneath a STM tip splits into two different frequencies when we position an additional Fe atom nearby. We measure an ESR energy splitting that decays as 1/r3 (r is the separation of the two Fe atoms), indicating that the atoms are coupled through magnetic dipole-dipole interaction. This energy and distance relation enables us to determine magnetic moments of atoms and molecules on a surface with high precision in energy. Unique and advantageous aspects of ESR-STM are the atom manipulation capabilities, which allow us to build atomically precise nanostructures and examine their interactions. For instance, we construct a dice cinque arrangement of five Fe atoms, and probe their interaction and energy degeneracy. We demonstrate the ESR-STM technique can be utilized for quantum magnetic sensors.

  18. Coherent dipole-dipole coupling between two single Rydberg atoms at an electrically-tuned Förster resonance

    NASA Astrophysics Data System (ADS)

    Ravets, Sylvain; Labuhn, Henning; Barredo, Daniel; Béguin, Lucas; Lahaye, Thierry; Browaeys, Antoine

    2014-12-01

    Resonant energy transfers, the non-radiative redistribution of an electronic excitation between two particles coupled by the dipole-dipole interaction, lie at the heart of a variety of phenomena, notably photosynthesis. In 1948, Förster established the theory of fluorescence resonant energy transfer (FRET) between broadband, nearly-resonant donors and acceptors. The 1/R6 scaling of the energy transfer rate, where R is the distance between particles, enabled widespread use of FRET as a `spectroscopic ruler’ for determining nanometric distances in biomolecules. The underlying mechanism is a coherent dipolar coupling between particles, as recognized in the early days of quantum mechanics, but this coherence has not been directly observed so far. Here we study, spectroscopically and in the time domain, the coherent, dipolar-induced exchange of excitations between two Rydberg atoms separated by up to 15 μm, and brought into resonance by applying an electric field. Coherent oscillation of the system between two degenerate pair states then occurs at a frequency scaling as 1/R3, the hallmark of resonant dipole-dipole interactions. Our results not only demonstrate, at the fundamental level of two atoms, the basic mechanism underlying FRET, but also open exciting prospects for active tuning of strong, coherent interactions in quantum many-body systems.

  19. Learning about Intermolecular Interactions from the Cambridge Structural Database

    ERIC Educational Resources Information Center

    Battle, Gary M.; Allen, Frank H.

    2012-01-01

    A clear understanding and appreciation of noncovalent interactions, especially hydrogen bonding, are vitally important to students of chemistry and the life sciences, including biochemistry, molecular biology, pharmacology, and medicine. The opportunities afforded by the IsoStar knowledge base of intermolecular interactions to enhance the…

  20. Angle-dependent quantum Otto heat engine based on coherent dipole-dipole coupling

    NASA Astrophysics Data System (ADS)

    Su, Shan-He; Luo, Xiao-Qing; Chen, Jin-Can; Sun, Chang-Pu

    2016-08-01

    Electromagnetic interactions between molecules or within a molecule have been widely observed in biological systems and exhibit broad application for molecular structural studies. Quantum delocalization of molecular dipole moments has inspired researchers to explore new avenues to utilize this physical effect for energy harvesting devices. Herein, we propose a simple model of the angle-dependent quantum Otto heat engine which seeks to facilitate the conversion of heat to work. Unlike previous studies, the adiabatic processes are accomplished by varying only the directions of the magnetic field. We show that the heat engine continues to generate power when the angle relative to the vector r joining the centres of coupled dipoles departs from the magic angle θm where the static coupling vanishes. A significant improvement in the device performance has to be attributed to the presence of the quantum delocalized levels associated with the coherent dipole-dipole coupling. These results obtained may provide a promising model for the biomimetic design and fabrication of quantum energy generators.

  1. Connecting Protein Structure to Intermolecular Interactions: A Computer Modeling Laboratory

    ERIC Educational Resources Information Center

    Abualia, Mohammed; Schroeder, Lianne; Garcia, Megan; Daubenmire, Patrick L.; Wink, Donald J.; Clark, Ginevra A.

    2016-01-01

    An understanding of protein folding relies on a solid foundation of a number of critical chemical concepts, such as molecular structure, intra-/intermolecular interactions, and relating structure to function. Recent reports show that students struggle on all levels to achieve these understandings and use them in meaningful ways. Further, several…

  2. Intermolecular forces: a solution to dispersion interactions.

    PubMed

    Shimizu, Ken D

    2013-12-01

    London dispersion forces have been cited as an important factor in protein folding, drug–receptor interactions, and catalyst selectivities. However, careful analysis of a model system finds that the dispersion interactions are only minor contributors to the formation of complexes in solution.

  3. Direct observation of intermolecular interactions mediated by hydrogen bonding

    NASA Astrophysics Data System (ADS)

    De Marco, Luigi; Thämer, Martin; Reppert, Mike; Tokmakoff, Andrei

    2014-07-01

    Although intermolecular interactions are ubiquitous in physicochemical phenomena, their dynamics have proven difficult to observe directly, and most experiments rely on indirect measurements. Using broadband two-dimensional infrared spectroscopy (2DIR), we have measured the influence of hydrogen bonding on the intermolecular vibrational coupling between dimerized N-methylacetamide molecules. In addition to strong intramolecular coupling between N-H and C=O oscillators, cross-peaks in the broadband 2DIR spectrum appearing upon dimerization reveal strong intermolecular coupling that changes the character of the vibrations. In addition, dimerization changes the effects of intramolecular coupling, resulting in Fermi resonances between high and low-frequency modes. These results illustrate how hydrogen bonding influences the interplay of inter- and intramolecular vibrations, giving rise to correlated nuclear motions and significant changes in the vibrational structure of the amide group. These observations have direct impact on modeling and interpreting the IR spectra of proteins. In addition, they illustrate a general approach to direct molecular characterization of intermolecular interactions.

  4. Direct observation of intermolecular interactions mediated by hydrogen bonding

    SciTech Connect

    De Marco, Luigi; Reppert, Mike; Thämer, Martin; Tokmakoff, Andrei

    2014-07-21

    Although intermolecular interactions are ubiquitous in physicochemical phenomena, their dynamics have proven difficult to observe directly, and most experiments rely on indirect measurements. Using broadband two-dimensional infrared spectroscopy (2DIR), we have measured the influence of hydrogen bonding on the intermolecular vibrational coupling between dimerized N-methylacetamide molecules. In addition to strong intramolecular coupling between N–H and C=O oscillators, cross-peaks in the broadband 2DIR spectrum appearing upon dimerization reveal strong intermolecular coupling that changes the character of the vibrations. In addition, dimerization changes the effects of intramolecular coupling, resulting in Fermi resonances between high and low-frequency modes. These results illustrate how hydrogen bonding influences the interplay of inter- and intramolecular vibrations, giving rise to correlated nuclear motions and significant changes in the vibrational structure of the amide group. These observations have direct impact on modeling and interpreting the IR spectra of proteins. In addition, they illustrate a general approach to direct molecular characterization of intermolecular interactions.

  5. Covalent intermolecular interaction of the nitric oxide dimer (NO)2

    NASA Astrophysics Data System (ADS)

    Zhang, Hui; Zheng, Gui-Li; Lv, Gang; Geng, Yi-Zhao; Ji, Qing

    2015-09-01

    Covalent bonds arise from the overlap of the electronic clouds in the internucleus region, which is a pure quantum effect and cannot be obtained in any classical way. If the intermolecular interaction is of covalent character, the result from direct applications of classical simulation methods to the molecular system would be questionable. Here, we analyze the special intermolecular interaction between two NO molecules based on quantum chemical calculation. This weak intermolecular interaction, which is of covalent character, is responsible for the formation of the NO dimer, (NO)2, in its most stable conformation, a cis conformation. The natural bond orbital (NBO) analysis gives an intuitive illustration of the formation of the dimer bonding and antibonding orbitals concomitant with the breaking of the π bonds with bond order 0.5 of the monomers. The dimer bonding is counteracted by partially filling the antibonding dimer orbital and the repulsion between those fully or nearly fully occupied nonbonding dimer orbitals that make the dimer binding rather weak. The direct molecular mechanics (MM) calculation with the UFF force fields predicts a trans conformation as the most stable state, which contradicts the result of quantum mechanics (QM). The lesson from the investigation of this special system is that for the case where intermolecular interaction is of covalent character, a specific modification of the force fields of the molecular simulation method is necessary. Project supported by the National Natural Science Foundation of China (Grant Nos. 90403007 and 10975044), the Key Subject Construction Project of Hebei Provincial Universities, China, the Research Project of Hebei Education Department, China (Grant Nos. Z2012067 and Z2011133), the National Natural Science Foundation of China (Grant No. 11147103), and the Open Project Program of State Key Laboratory of Theoretical Physics, Institute of Theoretical Physics, Chinese Academy of Sciences, China (Grant No. Y5

  6. Quantitative analysis of intermolecular interactions in orthorhombic rubrene

    SciTech Connect

    Hathwar, Venkatesha R.; Sist, Mattia; Jørgensen, Mads R. V.; Mamakhel, Aref H.; Wang, Xiaoping; Hoffmann, Christina M.; Sugimoto, Kunihisa; Overgaard, Jacob; Iversen, Bo Brummerstedt

    2015-08-14

    Rubrene is one of the most studied organic semiconductors to date due to its high charge carrier mobility which makes it a potentially applicable compound in modern electronic devices. Previous electronic device characterizations and first principles theoretical calculations assigned the semiconducting properties of rubrene to the presence of a large overlap of the extended π-conjugated core between molecules. We present here the electron density distribution in rubrene at 20 K and at 100 K obtained using a combination of high-resolution X-ray and neutron diffraction data. The topology of the electron density and energies of intermolecular interactions are studied quantitatively. Specifically, the presence of Cπ...Cπinteractions between neighbouring tetracene backbones of the rubrene molecules is experimentally confirmed from a topological analysis of the electron density, Non-Covalent Interaction (NCI) analysis and the calculated interaction energy of molecular dimers. A significant contribution to the lattice energy of the crystal is provided by H—H interactions. The electron density features of H—H bonding, and the interaction energy of molecular dimers connected by H—H interaction clearly demonstrate an importance of these weak interactions in the stabilization of the crystal structure. Finally, the quantitative nature of the intermolecular interactions is virtually unchanged between 20 K and 100 K suggesting that any changes in carrier transport at these low temperatures would have a different origin. The obtained experimental results are further supported by theoretical calculations.

  7. Quantitative analysis of intermolecular interactions in orthorhombic rubrene

    PubMed Central

    Hathwar, Venkatesha R.; Sist, Mattia; Jørgensen, Mads R. V.; Mamakhel, Aref H.; Wang, Xiaoping; Hoffmann, Christina M.; Sugimoto, Kunihisa; Overgaard, Jacob; Iversen, Bo Brummerstedt

    2015-01-01

    Rubrene is one of the most studied organic semiconductors to date due to its high charge carrier mobility which makes it a potentially applicable compound in modern electronic devices. Previous electronic device characterizations and first principles theoretical calculations assigned the semiconducting properties of rubrene to the presence of a large overlap of the extended π-conjugated core between molecules. We present here the electron density distribution in rubrene at 20 K and at 100 K obtained using a combination of high-resolution X-ray and neutron diffraction data. The topology of the electron density and energies of intermolecular interactions are studied quantitatively. Specifically, the presence of Cπ⋯Cπ interactions between neighbouring tetracene backbones of the rubrene molecules is experimentally confirmed from a topological analysis of the electron density, Non-Covalent Interaction (NCI) analysis and the calculated interaction energy of molecular dimers. A significant contribution to the lattice energy of the crystal is provided by H—H interactions. The electron density features of H—H bonding, and the interaction energy of molecular dimers connected by H—H interaction clearly demonstrate an importance of these weak interactions in the stabilization of the crystal structure. The quantitative nature of the intermolecular interactions is virtually unchanged between 20 K and 100 K suggesting that any changes in carrier transport at these low temperatures would have a different origin. The obtained experimental results are further supported by theoretical calculations. PMID:26306198

  8. Quantitative analysis of intermolecular interactions in orthorhombic rubrene

    DOE PAGES

    Hathwar, Venkatesha R.; Sist, Mattia; Jørgensen, Mads R. V.; Mamakhel, Aref H.; Wang, Xiaoping; Hoffmann, Christina M.; Sugimoto, Kunihisa; Overgaard, Jacob; Iversen, Bo Brummerstedt

    2015-08-14

    Rubrene is one of the most studied organic semiconductors to date due to its high charge carrier mobility which makes it a potentially applicable compound in modern electronic devices. Previous electronic device characterizations and first principles theoretical calculations assigned the semiconducting properties of rubrene to the presence of a large overlap of the extended π-conjugated core between molecules. We present here the electron density distribution in rubrene at 20 K and at 100 K obtained using a combination of high-resolution X-ray and neutron diffraction data. The topology of the electron density and energies of intermolecular interactions are studied quantitatively. Specifically,more » the presence of Cπ...Cπinteractions between neighbouring tetracene backbones of the rubrene molecules is experimentally confirmed from a topological analysis of the electron density, Non-Covalent Interaction (NCI) analysis and the calculated interaction energy of molecular dimers. A significant contribution to the lattice energy of the crystal is provided by H—H interactions. The electron density features of H—H bonding, and the interaction energy of molecular dimers connected by H—H interaction clearly demonstrate an importance of these weak interactions in the stabilization of the crystal structure. Finally, the quantitative nature of the intermolecular interactions is virtually unchanged between 20 K and 100 K suggesting that any changes in carrier transport at these low temperatures would have a different origin. The obtained experimental results are further supported by theoretical calculations.« less

  9. Quantitative analysis of intermolecular interactions in orthorhombic rubrene.

    PubMed

    Hathwar, Venkatesha R; Sist, Mattia; Jørgensen, Mads R V; Mamakhel, Aref H; Wang, Xiaoping; Hoffmann, Christina M; Sugimoto, Kunihisa; Overgaard, Jacob; Iversen, Bo Brummerstedt

    2015-09-01

    Rubrene is one of the most studied organic semiconductors to date due to its high charge carrier mobility which makes it a potentially applicable compound in modern electronic devices. Previous electronic device characterizations and first principles theoretical calculations assigned the semiconducting properties of rubrene to the presence of a large overlap of the extended π-conjugated core between molecules. We present here the electron density distribution in rubrene at 20 K and at 100 K obtained using a combination of high-resolution X-ray and neutron diffraction data. The topology of the electron density and energies of intermolecular interactions are studied quantitatively. Specifically, the presence of Cπ⋯Cπ interactions between neighbouring tetracene backbones of the rubrene molecules is experimentally confirmed from a topological analysis of the electron density, Non-Covalent Interaction (NCI) analysis and the calculated interaction energy of molecular dimers. A significant contribution to the lattice energy of the crystal is provided by H-H interactions. The electron density features of H-H bonding, and the interaction energy of molecular dimers connected by H-H interaction clearly demonstrate an importance of these weak interactions in the stabilization of the crystal structure. The quantitative nature of the intermolecular interactions is virtually unchanged between 20 K and 100 K suggesting that any changes in carrier transport at these low temperatures would have a different origin. The obtained experimental results are further supported by theoretical calculations. PMID:26306198

  10. Morphology development in polymer blends exhibiting strong intermolecular interactions

    SciTech Connect

    Weiss, R.A.; Feng, Y.; Han, C.C.; Karim, A.

    1996-12-31

    He et al. measured the spinodal decomposition (SD) kinetics of a blend of poly(butyl methacrylate) with a polystyrene modified with 1.5 mol% of a hydroxy-containing comonomer that exhibited intermolecular hydrogen bonding, who studied blends. For small excursions into the spinodal region, multiple structures developed in the blend, which suggested that multiple mechanisms may be involved in the phase separation process. For most cases, however, the kinetics of phase separation followed Cahn-Hilliard theory in the early stage of spinodal decomposition and a self-similar mechanism in the later stages, similar to non-associating polymer blends such as PS/PVME. The failure to observe an effect of a specific intermolecular interaction on SD kinetics may be a consequence of the low concentration of hydroxyl groups on the polystyrene, ca. five per chain, and the weakening of the hydrogen bond at the elevated temperatures used to study phase separation where the crosslink effect of hydrogen bonding may not be significant. At elevated temperatures, the association-dissociation equilibrium shifts towards non-associated hydroxyl and ester groups. An objective of the present study was to use a polymer blend having a relatively higher degree of intermolecular association at the phase separation temperature and to investigate how physical crosslinks affect the phase separation kinetics accompanying spinodal decomposition.

  11. Van der Waals Interactions in Density Functional Theory: Intermolecular Complexes

    NASA Astrophysics Data System (ADS)

    Kannemann, Felix; Becke, Axel

    2010-03-01

    Conventional density functional theory (GGA and hybrid functionals) fails to account for dispersion interactions and is therefore not applicable to systems where van der Waals interactions play a dominant role, such as intermolecular complexes and biomolecules. The exchange-hole dipole moment (XDM) dispersion model of Becke and Johnson [A. D. Becke and E. R. Johnson, J. Chem. Phys. 127, 154108 (2007)] corrects for this deficiency. We have previously shown that the XDM dispersion model can be combined with standard GGA functionals (PW86 for exchange and PBE for correlation) to give accurate binding energy curves for rare-gas diatomics [F. O. Kannemann and A. D. Becke, J. Chem. Theory Comput. 5, 719 (2009)]. Here we present further tests of the GGA-XDM method using benchmark sets including hydrogen bonding, electrostatic, dispersion and stacking interactions, and systems ranging from rare-gas diatomics to biomolecular complexes.

  12. Problem-Based Learning in 9th Grade Chemistry Class: "Intermolecular Forces"

    ERIC Educational Resources Information Center

    Tarhan, Leman; Ayar-Kayali, Hulya; Urek, Raziye Ozturk; Acar, Burcin

    2008-01-01

    This research study aims to examine the effectiveness of a problem-based learning (PBL) on 9th grade students' understanding of intermolecular forces (dipole-dipole forces, London dispersion forces and hydrogen bonding). The student's alternate conceptions about intermolecular bonding and their beliefs about PBL were also measured. Seventy-eight…

  13. Evolutionary meandering of intermolecular interactions along the drift barrier.

    PubMed

    Lynch, Michael; Hagner, Kyle

    2015-01-01

    Many cellular functions depend on highly specific intermolecular interactions, for example transcription factors and their DNA binding sites, microRNAs and their RNA binding sites, the interfaces between heterodimeric protein molecules, the stems in RNA molecules, and kinases and their response regulators in signal-transduction systems. Despite the need for complementarity between interacting partners, such pairwise systems seem to be capable of high levels of evolutionary divergence, even when subject to strong selection. Such behavior is a consequence of the diminishing advantages of increasing binding affinity between partners, the multiplicity of evolutionary pathways between selectively equivalent alternatives, and the stochastic nature of evolutionary processes. Because mutation pressure toward reduced affinity conflicts with selective pressure for greater interaction, situations can arise in which the expected distribution of the degree of matching between interacting partners is bimodal, even in the face of constant selection. Although biomolecules with larger numbers of interacting partners are subject to increased levels of evolutionary conservation, their more numerous partners need not converge on a single sequence motif or be increasingly constrained in more complex systems. These results suggest that most phylogenetic differences in the sequences of binding interfaces are not the result of adaptive fine tuning but a simple consequence of random genetic drift. PMID:25535374

  14. The origins of the directionality of noncovalent intermolecular interactions.

    PubMed

    Wang, Changwei; Guan, Liangyu; Danovich, David; Shaik, Sason; Mo, Yirong

    2016-01-01

    The recent σ-hole concept emphasizes the contribution of electrostatic attraction to noncovalent bonds, and implies that the electrostatic force has an angular dependency. Here a set of clusters, which includes hydrogen bonding, halogen bonding, chalcogen bonding, and pnicogen bonding systems, is investigated to probe the magnitude of covalency and its contribution to the directionality in noncovalent bonding. The study is based on the block-localized wavefunction (BLW) method that decomposes the binding energy into the steric and the charge transfer (CT) (hyperconjugation) contributions. One unique feature of the BLW method is its capability to derive optimal geometries with only steric effect taken into account, while excluding the CT interaction. The results reveal that the overall steric energy exhibits angular dependency notably in halogen bonding, chalcogen bonding, and pnicogen bonding systems. Turning on the CT interactions further shortens the intermolecular distances. This bond shortening enhances the Pauli repulsion, which in turn offsets the electrostatic attraction, such that in the final sum, the contribution of the steric effect to bonding is diminished, leaving the CT to dominate the binding energy. In several other systems particularly hydrogen bonding systems, the steric effect nevertheless still plays the major role whereas the CT interaction is minor. However, in all cases, the CT exhibits strong directionality, suggesting that the linearity or near linearity of noncovalent bonds is largely governed by the charge-transfer interaction whose magnitude determines the covalency in noncovalent bonds. PMID:26010349

  15. Intermolecular interactions, nucleation, and thermodynamics of crystallization of hemoglobin C.

    PubMed Central

    Vekilov, Peter G; Feeling-Taylor, Angela R; Petsev, Dimiter N; Galkin, Oleg; Nagel, Ronald L; Hirsch, Rhoda Elison

    2002-01-01

    The mutated hemoglobin HbC (beta 6 Glu-->Lys), in the oxygenated (R) liganded state, forms crystals inside red blood cells of patients with CC and SC diseases. Static and dynamic light scattering characterization of the interactions between the R-state (CO) HbC, HbA, and HbS molecules in low-ionic-strength solutions showed that electrostatics is unimportant and that the interactions are dominated by the specific binding of solutions' ions to the proteins. Microscopic observations and determinations of the nucleation statistics showed that the crystals of HbC nucleate and grow by the attachment of native molecules from the solution and that concurrent amorphous phases, spherulites, and microfibers are not building blocks for the crystal. Using a novel miniaturized light-scintillation technique, we quantified a strong retrograde solubility dependence on temperature. Thermodynamic analyses of HbC crystallization yielded a high positive enthalpy of 155 kJ mol(-1), i.e., the specific interactions favor HbC molecules in the solute state. Then, HbC crystallization is only possible because of the huge entropy gain of 610 J mol(-1) K(-1), likely stemming from the release of up to 10 water molecules per protein intermolecular contact-hydrophobic interaction. Thus, the higher crystallization propensity of R-state HbC is attributable to increased hydrophobicity resulting from the conformational changes that accompany the HbC beta 6 mutation. PMID:12124294

  16. The origins of the directionality of noncovalent intermolecular interactions.

    PubMed

    Wang, Changwei; Guan, Liangyu; Danovich, David; Shaik, Sason; Mo, Yirong

    2016-01-01

    The recent σ-hole concept emphasizes the contribution of electrostatic attraction to noncovalent bonds, and implies that the electrostatic force has an angular dependency. Here a set of clusters, which includes hydrogen bonding, halogen bonding, chalcogen bonding, and pnicogen bonding systems, is investigated to probe the magnitude of covalency and its contribution to the directionality in noncovalent bonding. The study is based on the block-localized wavefunction (BLW) method that decomposes the binding energy into the steric and the charge transfer (CT) (hyperconjugation) contributions. One unique feature of the BLW method is its capability to derive optimal geometries with only steric effect taken into account, while excluding the CT interaction. The results reveal that the overall steric energy exhibits angular dependency notably in halogen bonding, chalcogen bonding, and pnicogen bonding systems. Turning on the CT interactions further shortens the intermolecular distances. This bond shortening enhances the Pauli repulsion, which in turn offsets the electrostatic attraction, such that in the final sum, the contribution of the steric effect to bonding is diminished, leaving the CT to dominate the binding energy. In several other systems particularly hydrogen bonding systems, the steric effect nevertheless still plays the major role whereas the CT interaction is minor. However, in all cases, the CT exhibits strong directionality, suggesting that the linearity or near linearity of noncovalent bonds is largely governed by the charge-transfer interaction whose magnitude determines the covalency in noncovalent bonds.

  17. Long-term dipole-dipole resistivity monitoring at the Cerro Prieto geothermal field

    SciTech Connect

    Wilt, M.; Goldstein, N.E.; Sasaki, Y.

    1984-04-01

    Dipole-dipole resistivity measurements for the combined purposes of reservoir delineation and reservoir monitoring were first made at Cerro Prieto in 1978 and have continued on approximately an annual basis since then. Two 20 km-long dipole-dipole lines with permanently emplaced electrodes at 1-km spacings were established over the field area. Resistivity remeasurements have been made on one line at 6- to 18-month intervals using a 25 kW generator capable of up to 80A output and a microprocessor-controlled signal-averaging receiver. This high-power, low-noise system provides highly accurate measurements even at large transmitter receiver separations. Standard error calculations for collected data indicate errors less than 5% for all points. Results from four years of monitoring (1979-1983) indicate a 5% average annual increase in apparent resistivity over the present production area, and larger decreases in apparent resistivity in the region to the east. The increase in resistivity in the production zone is most likely due to dilution of reservoir fluids with fresher water, as evidenced by a drop in chloride content of produced waters. The area of decreasing resistivity east of the reservoir is associated with a steeply dipping conductive body, a zone of higher thermal gradients and an increase in shale thickness in the section. Decreasing resistivity in this area may be caused by an influx of high temperature, saline water from depths of 3/sup +/ km through a sandy gap in the shales.

  18. Synergy between twisted conformation and effective intermolecular interactions: strategy for efficient mechanochromic luminogens with high contrast.

    PubMed

    Yuan, Wang Zhang; Tan, Yeqiang; Gong, Yongyang; Lu, Ping; Lam, Jacky W Y; Shen, Xiao Yuan; Feng, Cunfang; Sung, Herman H-Y; Lu, Yawei; Williams, Ian D; Sun, Jing Zhi; Zhang, Yongming; Tang, Ben Zhong

    2013-05-28

    A strategy towards efficient mechanochromic luminogens with high contrast is developed. The twisted propeller-like conformations and effective intermolecular interactions not only endow the luminogens with AIE characteristics and high efficiency in the crystalline state, but also render them to undergo conformational planarization and disruption in intermolecular interactions upon mechanical stimuli, resulting in remarkable changes in emission wavelength and efficiency.

  19. Electronic Structure Theory for Radicaloid Systems and Intermolecular Interactions

    NASA Astrophysics Data System (ADS)

    Kurlancheek, Westin

    associated with unrestriction. Second, the relaxed density matrix itself fails to be N-representable, with natural orbital occupation numbers less than zero and greater than one. Therefore, it is desirable to use a method that is not dependent on the inverse of the Hessian like orbital optimized MP2 (O2). Another system which requires the use of orbital optimization is a neutral soliton on a polyacetylene chain. In this system, the Hartree-Fock reference suffers from severe spin-polarization making the wavefunction physically unreasonable unless a very sophisticated treatment of electron correlation is used to correct this problem. Originally, it was found that computationally expensive methods like CCSD(T) and CASSCF could adequately describe small model chain but not the full system. The O2 method is found to be an dramatic improvement over traditional MP2 which can be feasibly applied to polyenyl chains long enough to characterize the soliton. It is also discovered that density functionals are generally inadequate in describing the half-width of the soliton. Finally, the last chapter takes a slightly different perspective and focuses on the addition of correlation energy to a successful energy decomposition analysis based on absolutely localized molecular orbitals. It is discovered that the resulting new method can adequately describe systems with dispersive intermolecular interactions and large amounts of charge transfer. This scheme is then applied to the water dimer systems and it is found that all of the intermolecular interactions similar in size with the electrostatic interaction being the largest and the dispersive interaction being the smallest. This method is also contrasted with other EDA schemes.

  20. The ``primitive'' wave function in the theory of intermolecular interactions

    NASA Astrophysics Data System (ADS)

    Kutzelnigg, Werner

    1980-07-01

    The concept of the primitive wave function for a supermolecule consisting of interacting subsystems is critically analyzed. The distinction between formal and genuine primitive functions is stressed. The concept of uniformly complete basis sets as contrasted to simply complete basis is introduced. Primitive basis sets are defined and shown not to be uniformly complete for the expansion of the supersystem wave function while 'full supersystem basis sets' are. The conditions are specified under which a supersystem wave function can be decomposed into its 'primitive components' corresponding to different partitions of the electrons among the subsystems. These primitive components satisfy the Schrödinger equation asymptotically. The matrix representation of the Hamiltonian (both the full supersystem Hamiltonian H and the zeroth order Hamiltonian Ho) in terms of these partitions is analyzed. It is shown that in the standard application of RS-perturbation theory to intermolecular forces (the polarization approximation) the limiting processes λ→1 and R→∞ do not commute, that the λ-series is not uniformly convergent with respect to R and that the wave function to any finite order in λ is genuinely primitive. The symmetrized polarization approximation is justified for the 'coasymptotic ground state' in certain cases and a 'symmetrized polarization approximation with shifted eigenvalues' is proposed that connects the lowest eigenvalue of Ho with the physical ground state. A justification of simplified schemes in the region of 'small exchange' is given and alternative perturbation schemes are discussed. Finally the use of the primitive function in variational treatments is outlined. One advantage is that a genuinely (not a formally) primitive function is uniformly expandable in a primitive basis set.

  1. Identification and measurement of intermolecular interaction in polyester/polystyrene blends by FTIR-photoacoustic spectrometry

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Fourier transform infrared photoacoustic spectrometry was used to reveal and identify n-p type intermolecular interaction formed in plastic comprising binary blends of polystyrene and a biodegradable polymer, either polylactic acid, polycaprolactone or poly(tetramethyleneadipate-co-terephthalate)....

  2. Investigation on intermolecular interaction between two solutes where one solute occurs in two states

    NASA Astrophysics Data System (ADS)

    Kang, Xiaoyan; He, Anqi; Guo, Ran; Chen, Jing; Zhai, Yanjun; Xu, Yizhuang; Noda, Isao; Wu, Jinguang

    2016-11-01

    The spectral behavior of a pair of 2D asynchronous spectra generated by using the double asynchronous orthogonal sample design (DAOSD) approach on a chemical system is investigated. Two solutes (P and Q) are dissolved in the solution and intermolecular interaction between P and Q is characterized. In this particular system, P occurs in two exchangeable states when it is dissolved in the solutions. Results on mathematical analysis and computer simulation demonstrated that interference unrelated to the intermolecular interaction can be completely removed. Hence the resultant 2D asynchronous spectra generated by using the DAOSD approach can reflect intermolecular interaction reliably. Moreover, properties of cross peaks in different regions of the pair of asynchronous spectra are discussed. In our previous works, cross peaks generated by using the DAOSD and relevant techniques reflect variations on peak position, bandwidth or absorptivity of the characteristic peaks of solutes caused by intermolecular interaction. However, we find that cross peak can still be produced even if intermolecular interaction do not bring about any changes on the characteristic peaks of solutes. Mathematical analysis demonstrates that cross peaks are related to the variations of chemical systems caused by intermolecular interaction at a network level.

  3. High-energy hadron-hadron (dipole-dipole) scattering from lattice QCD

    SciTech Connect

    Giordano, Matteo; Meggiolaro, Enrico

    2008-10-01

    In this paper the problem of high-energy hadron-hadron (dipole-dipole) scattering is approached (for the first time) from the point of view of lattice QCD, by means of Monte Carlo numerical simulations. In the first part, we give a brief review of how high-energy scattering amplitudes can be reconstructed, using a functional-integral approach, in terms of certain correlation functions of two Wilson loops, and we also briefly recall some relevant analyticity and crossing-symmetry properties of these loop-loop correlation functions, when going from Euclidean to Minkowskian theory. In the second part, we shall see how these (Euclidean) loop-loop correlation functions can be evaluated in lattice QCD, and we shall compare our numerical results with some nonperturbative analytical estimates that appeared in the literature, discussing, in particular, the question of the analytic continuation from Euclidean to Minkowskian theory and its relation to the still unsolved problem of the asymptotic s dependence of the hadron-hadron total cross sections.

  4. Dipole-dipole resistivity monitoring at the Cerro Prieto geothermal field

    SciTech Connect

    Wilt, M.J.; Goldstein, N.E.

    1983-03-01

    Two 20 km-long dipole-dipole lines with permanently emplaced electronics at 1-km spacings were established over the field area; one of these lines is remeasured annually. Resistivity measurements are taken using a 25 kW generator capable of up to 80A output and a microprocessor-controlled signal-averaging receiver; this high power-low noise system is capable of highly accurate measurements even at large transmitter-receiver separations. Standard error calculations for collected data indicate errors less than 5% for all points, but 95% confidence intervals show error limits about 2 to 4 times higher. Data indicate little change of apparent resistivity within the upper 300 m over the field. However, apparent resistivity increases are observed over the producing zone at depths of 1 km and greater. Large zones of decreasing apparent resistivity are observed flanking the zone of increases on both sides. To explain the resistivity changes observed, simple two-dimensional reservoir simulations were performed in which cooler, less saline recharge water enters the reservoir from above through a leaky caprock and laterally through a more permeable vertical boundary. The calculated magnitude of a resistivity change after 3 years of simulated production fits the observed data, but the anomaly shapes differ. It is concluded that the rapidly moving hydraulic front produces a salinity change large enough to explain the resistivity increase, but that our recharge assumptions were probably oversimplified.

  5. Rational targeting of subclasses of intermolecular interactions: elimination of nonspecific binding for analyte sensing.

    PubMed

    Lane, Jordan S; Richens, Joanna L; Vere, Kelly-Ann; O'Shea, Paul

    2014-08-12

    The ability to target and control intermolecular interactions is crucial in the development of several different technologies. Here we offer a tool to rationally design liquid media systems that can modulate specific intermolecular interactions. This has broad implications in deciphering the nature of intermolecular forces in complex solutions and offers insight into the forces that govern both specific and nonspecific binding in a given system. Nonspecific binding still continues to be a problem when dealing with analyte detection across a range of different detection technologies. Here, we exemplify the problem of nonspecific binding on model membrane systems and when dealing with low-abundance protein detection on commercially available SPR technology. A range of different soluble reagents that target specific subclasses of intermolecular interactions have been tested and optimized to virtually eliminate nonspecific binding while leaving specific interactions unperturbed. Thiocyanate ions are used to target nonpolar interactions, and small reagents such as glycylglycylglycine are used to modulate the dielectric constant, which targets charge-charge and dipole interactions. We show that with rational design and careful modulation these reagents offer a step forward in dissecting the intermolecular forces that govern binding, alongside offering nonspecific binding elimination in detection systems.

  6. X-ray Intermolecular Structure Factor (XISF): separation of intra- and intermolecular interactions from total X-ray scattering data

    SciTech Connect

    Mou, Q.; Benmore, C. J.; Yarger, J. L.

    2015-06-01

    XISF is a MATLAB program developed to separate intermolecular structure factors from total X-ray scattering structure factors for molecular liquids and amorphous solids. The program is built on a trust-region-reflective optimization routine with the r.m.s. deviations of atoms physically constrained. XISF has been optimized for performance and can separate intermolecular structure factors of complex molecules.

  7. Comment on 'Intermolecular interaction potentials of the methane dimer from the local density approximation'

    SciTech Connect

    Li, Arvin H.-T.; Chao, S.D.

    2006-01-15

    To verify the recently calculated intermolecular interaction potentials of the methane dimer within the density functional theory using the (Perdew) local density approximation (LDA) [Chen et al., Phys. Rev. A 69, 034701 (2004)], we have performed a parallel series of calculations using the LDA/6-311++G (3df, 3pd) level of theory with selected exchange functionals (B, G96, MPW, O, PBE, PW91, S, and XA). None of the above calculated intermolecular interaction potentials from the local density approximation reproduce the results reported in the commented paper. In addition, we point out the inappropriateness of using the Lennard-Jones function to model the long-range parts of the calculated intermolecular interaction potentials, as suggested positively by Chen et al.

  8. Aspecific and specific intermolecular interactions in aqueous media.

    PubMed

    van Oss, C J

    1990-06-01

    Aspecific as well as specific interactions involve the same noncovalent forces, consisting of Lifshitz-van der Waals, Lewis acid/base, electrostatic, and thermal or Brownian movement interactions. In vivo, aspecific interactions between, e.g., cells and/or biopolymers usually are repulsive, while specific interactions are always attractive. The differences between the two classes of interactions can be shown to lie in the fact that aspecifically interacting bodies are large, while specifically interacting sites are small, or have a small radius of curvature, and in the fact that aspecifically interacting surfaces are homogeneous, whereas specific sites have a heterogeneous composition.

  9. Theoretical study on intermolecular interactions in BrF/H nX adducts

    NASA Astrophysics Data System (ADS)

    Wu, Junyong; Zhang, Jingchang; Wang, Zhaoxu; Cao, Weiliang

    2007-09-01

    Equilibrium geometries, interaction energies, and charge transfer for the intermolecular interactions between BrF and H nX (HF, H 2O, and NH 3) were studied at the MP2/6-311++G(3d,3p) level. The halogen-bonded geometry and hydrogen-bonded geometry are observed in these interactions. The calculated interaction energies show that the halogen-bonded structures are more stable than the corresponding hydrogen-bonded structures. To study the nature of the intermolecular interactions, symmetry-adapted perturbation theory (SAPT) calculations were carried out and the results indicate that the halogen bonding interactions are dominantly inductive energy in nature, while electrostatic energy governs the hydrogen bonding interactions.

  10. Intermolecular interactions of the malate synthase of Paracoccidioides spp

    PubMed Central

    2013-01-01

    Background The fungus Paracoccidioides spp is the agent of paracoccidioidomycosis (PCM), a pulmonary mycosis acquired by the inhalation of fungal propagules. Paracoccidioides malate synthase (PbMLS) is important in the infectious process of Paracoccidioides spp because the transcript is up-regulated during the transition from mycelium to yeast and in yeast cells during phagocytosis by murine macrophages. In addition, PbMLS acts as an adhesin in Paracoccidioides spp. The evidence for the multifunctionality of PbMLS indicates that it could interact with other proteins from the fungus and host. The objective of this study was to identify and analyze proteins that possibly bind to PbMLS (PbMLS-interacting proteins) because protein interactions are intrinsic to cell processes, and it might be possible to infer the function of a protein through the identification of its ligands. Results The search for interactions was performed using an in vivo assay with a two-hybrid library constructed in S. cerevisiae; the transcripts were sequenced and identified. In addition, an in vitro assay using pull-down GST methodology with different protein extracts (yeast, mycelium, yeast-secreted proteins and macrophage) was performed, and the resulting interactions were identified by mass spectrometry (MS). Some of the protein interactions were confirmed by Far-Western blotting using specific antibodies, and the interaction of PbMLS with macrophages was validated by indirect immunofluorescence and confocal microscopy. In silico analysis using molecular modeling, dynamics and docking identified the amino acids that were involved in the interactions between PbMLS and PbMLS-interacting proteins. Finally, the interactions were visualized graphically using Osprey software. Conclusion These observations indicate that PbMLS interacts with proteins that are in different functional categories, such as cellular transport, protein biosynthesis, modification and degradation of proteins and signal

  11. Intermolecular forces and nonbonded interactions: Superoperator nonlinear time-dependent density-functional-theory response approach

    SciTech Connect

    Harbola, Upendra; Mukamel, Shaul

    2004-11-01

    Electrostatic and dispersive interactions of polarizable molecules are expressed in terms of generalized (nonretarded) charge-density response functions of the isolated molecules, which in turn are expanded using the collective electronic oscillator (CEO) eigenmodes of linearized time-dependent density-functional theory. Closed expressions for the intermolecular energy are derived to sixth order in charge fluctuation amplitudes.

  12. Evidence for a noncovalent intermolecular interaction of opiates with thiamine.

    PubMed

    Misra, A L; Vadlamani, N L; Pontani, R B

    1977-11-01

    Opiate agonists and antagonists formed reversible molecular complexes with thiamine. The absorption maxima of these complexes were at wavelengths longer than those of the individual components and their intensities depended on the concentration and nature of the opiate component. The possible implications of such an interaction are discussed. PMID:928957

  13. Blind test of density-functional-based methods on intermolecular interaction energies

    NASA Astrophysics Data System (ADS)

    Taylor, DeCarlos E.; Ángyán, János G.; Galli, Giulia; Zhang, Cui; Gygi, Francois; Hirao, Kimihiko; Song, Jong Won; Rahul, Kar; Anatole von Lilienfeld, O.; Podeszwa, Rafał; Bulik, Ireneusz W.; Henderson, Thomas M.; Scuseria, Gustavo E.; Toulouse, Julien; Peverati, Roberto; Truhlar, Donald G.; Szalewicz, Krzysztof

    2016-09-01

    In the past decade, a number of approaches have been developed to fix the failure of (semi)local density-functional theory (DFT) in describing intermolecular interactions. The performance of several such approaches with respect to highly accurate benchmarks is compared here on a set of separation-dependent interaction energies for ten dimers. Since the benchmarks were unknown before the DFT-based results were collected, this comparison constitutes a blind test of these methods.

  14. Intermolecular interactions in the bilirubin-cholate-silica system

    NASA Astrophysics Data System (ADS)

    Vlasova, N. N.; Golovkova, L. P.; Severinovskaya, O. V.

    2007-06-01

    Bilirubin-cholate interactions in aqueous solutions were studied. The constants of binding of bilirubin with taurocholate dimers and taurodeoxycholate trimers were calculated. The adsorption of bilirubin and cholates on the surface of highly dispersed silica was studied. It was shown that taurine-conjugated cholates are poorly adsorbed from micellar solutions on the silica surface, the specific amount of bilirubin adsorbed decreases with increasing concentration of cholates in the solution, the affinity of free bilirubin for the silica surface is independent of the nature of the cholic acid, and that the affinity of cholate-bilirubin complexes for the silica surface is lower than the affinity of free bilirubin.

  15. Probing Intermolecular Interaction through Thermal-Lens Spectroscopy

    PubMed Central

    Bhattacharyya, Indrajit; Kumar, Pardeep; Goswami, Debabrata

    2013-01-01

    Binary liquid mixtures are studied using femtosecond pump–probe thermal-lens (TL) spectroscopy. Changes in the measured TL signals as a function of relative concentration of binary mixtures show that these result from a combined effect of physical and molecular properties of the constituent binary liquids. The experimental TL values deviate from the ones calculated from phenomenological equations. These, we argue, are due to an underestimation of the influence of molecular interactions when the TL signals are calculated by using physical parameters only. PMID:21166402

  16. Cation-π interactions: accurate intermolecular potential from symmetry-adapted perturbation theory.

    PubMed

    Ansorg, Kay; Tafipolsky, Maxim; Engels, Bernd

    2013-09-01

    Symmetry-adapted perturbation theory (SAPT) is used to decompose the total intermolecular interaction energy between the ammonium cation and a benzene molecule into four physically motivated individual contributions: electrostatics, exchange, dispersion, and induction. Based on this rigorous decomposition, it is shown unambiguously that both the electrostatic and the induction energy components contribute almost equally to the attractive forces stabilizing the dimer with a nonnegligible contribution coming from the dispersion term. A polarizable potential model for the interaction of ammonium cation with benzene is parametrized by fitting these four energy components separately using the functional forms of the AMOEBA force field augmented with the missing charge penetration energy term calculated as a sum over pairwise electrostatic energies between spherical atoms. It is shown that the proposed model is able to produce accurate intermolecular interaction energies as compared to ab initio results, thus avoiding error compensation to a large extent.

  17. Distinguishability and chiral stability in solution: Effects of decoherence and intermolecular interactions

    SciTech Connect

    Han, Heekyung; Wardlaw, David M.; Frolov, Alexei M.

    2014-05-28

    We examine the effect of decoherence and intermolecular interactions (chiral discrimination energies) on the chiral stability and the distinguishability of initially pure versus mixed states in an open chiral system. Under a two-level approximation for a system, intermolecular interactions are introduced by a mean-field theory, and interaction between a system and an environment is modeled by a continuous measurement of a population difference between the two chiral states. The resultant equations are explored for various parameters, with emphasis on the combined effects of the initial condition of the system, the chiral discrimination energies, and the decoherence in determining: the distinguishability as measured by a population difference between the initially pure and mixed states, and the decoherence process; the chiral stability as measured by the purity decay; and the stationary state of the system at times long relative to the time scales of the system dynamics and of the environmental effects.

  18. Accurate first principles model potentials for intermolecular interactions.

    PubMed

    Gordon, Mark S; Smith, Quentin A; Xu, Peng; Slipchenko, Lyudmila V

    2013-01-01

    The general effective fragment potential (EFP) method provides model potentials for any molecule that is derived from first principles, with no empirically fitted parameters. The EFP method has been interfaced with most currently used ab initio single-reference and multireference quantum mechanics (QM) methods, ranging from Hartree-Fock and coupled cluster theory to multireference perturbation theory. The most recent innovations in the EFP model have been to make the computationally expensive charge transfer term much more efficient and to interface the general EFP dispersion and exchange repulsion interactions with QM methods. Following a summary of the method and its implementation in generally available computer programs, these most recent new developments are discussed.

  19. Avoiding bias effects in NMR experiments for heteronuclear dipole-dipole coupling determinations: principles and application to organic semiconductor materials.

    PubMed

    Kurz, Ricardo; Cobo, Marcio Fernando; de Azevedo, Eduardo Ribeiro; Sommer, Michael; Wicklein, André; Thelakkat, Mukundan; Hempel, Günter; Saalwächter, Kay

    2013-09-16

    Carbon-proton dipole-dipole couplings between bonded atoms represent a popular probe of molecular dynamics in soft materials or biomolecules. Their site-resolved determination, for example, by using the popular DIPSHIFT experiment, can be challenged by spectral overlap with nonbonded carbon atoms. The problem can be solved by using very short cross-polarization (CP) contact times, however, the measured modulation curves then deviate strongly from the theoretically predicted shape, which is caused by the dependence of the CP efficiency on the orientation of the CH vector, leading to an anisotropic magnetization distribution even for isotropic samples. Herein, we present a detailed demonstration and explanation of this problem, as well as providing a solution. We combine DIPSHIFT experiments with the rotor-directed exchange of orientations (RODEO) method, and modifications of it, to redistribute the magnetization and obtain undistorted modulation curves. Our strategy is general in that it can also be applied to other types of experiments for heteronuclear dipole-dipole coupling determinations that rely on dipolar polarization transfer. It is demonstrated with perylene-bisimide-based organic semiconductor materials, as an example, in which measurements of dynamic order parameters reveal correlations of the molecular dynamics with the phase structure and functional properties.

  20. Changes of microstructure characteristics and intermolecular interactions of preserved egg white gel during pickling.

    PubMed

    Zhao, Yan; Chen, Zhangyi; Li, Jianke; Xu, Mingsheng; Shao, Yaoyao; Tu, Yonggang

    2016-07-15

    Changes in gel microstructure characteristics and in intermolecular interactions of preserved egg whites during pickling were investigated. Spin-spin relaxation times of preserved egg whites significantly decreased in the first 8 days and remained unchanged after the 16th day. SEM images revealed a three-dimensional gel network, interwoven with a loose linear fibrous mesh structure. The protein gel mesh structure became more regular, smaller, and compacted with pickling time. Free sulfhydryl contents in the egg whites increased significantly, while total sulfhydryl contents dramatically decreased during pickling. The primary intermolecular forces in the preserved egg white gels were ionic and disulfide bonds. Secondary forces included hydrophobic interaction and relatively few hydrogen bonds. During the first 8 days, the proportion of ionic bonds sharply decreased, and that of disulfide bonds increased over the first 24 days.

  1. A quantitative analysis of weak intermolecular interactions & quantum chemical calculations (DFT) of novel chalcone derivatives

    NASA Astrophysics Data System (ADS)

    Chavda, Bhavin R.; Gandhi, Sahaj A.; Dubey, Rahul P.; Patel, Urmila H.; Barot, Vijay M.

    2016-05-01

    The novel chalcone derivatives have widespread applications in material science and medicinal industries. The density functional theory (DFT) is used to optimized the molecular structure of the three chalcone derivatives (M-I, II, III). The observed discrepancies between the theoretical and experimental (X-ray data) results attributed to different environments of the molecules, the experimental values are of the molecule in solid state there by subjected to the intermolecular forces, like non-bonded hydrogen bond interactions, where as isolated state in gas phase for theoretical studies. The lattice energy of all the molecules have been calculated using PIXELC module in Coulomb -London -Pauli (CLP) package and is partitioned into corresponding coulombic, polarization, dispersion and repulsion contributions. Lattice energy data confirm and strengthen the finding of the X-ray results that the weak but significant intermolecular interactions like C-H…O, Π- Π and C-H… Π plays an important role in the stabilization of crystal packing.

  2. Changes of microstructure characteristics and intermolecular interactions of preserved egg white gel during pickling.

    PubMed

    Zhao, Yan; Chen, Zhangyi; Li, Jianke; Xu, Mingsheng; Shao, Yaoyao; Tu, Yonggang

    2016-07-15

    Changes in gel microstructure characteristics and in intermolecular interactions of preserved egg whites during pickling were investigated. Spin-spin relaxation times of preserved egg whites significantly decreased in the first 8 days and remained unchanged after the 16th day. SEM images revealed a three-dimensional gel network, interwoven with a loose linear fibrous mesh structure. The protein gel mesh structure became more regular, smaller, and compacted with pickling time. Free sulfhydryl contents in the egg whites increased significantly, while total sulfhydryl contents dramatically decreased during pickling. The primary intermolecular forces in the preserved egg white gels were ionic and disulfide bonds. Secondary forces included hydrophobic interaction and relatively few hydrogen bonds. During the first 8 days, the proportion of ionic bonds sharply decreased, and that of disulfide bonds increased over the first 24 days. PMID:26948621

  3. Intermolecular Interactions and Cooperative Effects from Electronic Structure Calculations: An Effective Means for Developing Interaction Potentials for Condensed Phase Simulations

    SciTech Connect

    Xantheas, Sotiris S.

    2004-05-01

    The modeling of the macroscopic properties of homogeneous and inhomogeneous systems via atomistic simulations such as molecular dynamics (MD) or Monte Carlo (MC) techniques is based on the accurate description of the relevant solvent-solute and solvent-solvent intermolecular interactions. The total energy (U) of an n-body molecular system can be formally written as [1,2,3

  4. Intermolecular interactions in multi-component crystals of acridinone/thioacridinone derivatives: Structural and energetics investigations

    NASA Astrophysics Data System (ADS)

    Wera, Michał; Storoniak, Piotr; Trzybiński, Damian; Zadykowicz, Beata

    2016-12-01

    A single crystal X-ray analysis of two multi-component crystals consisting of an acridinone/thioacridinone moiety and a solvent moiety - water and ammonia (1 and 2), respectively, was carried out to determine the crystal structures of obtained crystals. A theoretical approach was undertaken - using the DFT method, lattice energies calculations and Hirshfeld surfaces (HS) - to qualitatively and quantitatively assess the intermolecular interactions within the crystal. HS analysis was showed that the H⋯H, C⋯H/H⋯C and C⋯C contacts for both structures (altogether 81.6% of total Hirshfeld surface area for 1 and 79.3% for 2) and the O⋯H/H⋯O (14.3%) for 1 and the S⋯H/H⋯S (15.2%) contacts for 2 were the characteristic intermolecular contacts in the related crystal structures. Using a computational methods were confirmed that the main contribution to the stabilization of the crystal lattice of compound 1 comes from the Coulombic interactions, whereas in compound 2 electrostatic and van der Waals appear to have similar contribution to the crystal lattice energy. Theoretical calculations of the investigated compounds have also allowed to determine the energy of a single specific intermolecular interaction.

  5. Intermolecular interactions between imidazole derivatives intercalated in layered solids. Substituent group effect

    SciTech Connect

    González, M.; Lemus-Santana, A.A.; Rodríguez-Hernández, J.; Aguirre-Velez, C.I.; Knobel, M.; Reguera, E.

    2013-08-15

    This study sheds light on the intermolecular interactions between imidazole derive molecules (2-methyl-imidazole, 2-ethyl-imidazole and benzimidazole) intercalated in T[Ni(CN){sub 4}] layers to form a solid of formula unit T(ImD){sub 2}[Ni(CN){sub 4}]. These hybrid inorganic–organic solids were prepared by soft chemical routes and their crystal structures solved and refined from X-ray powder diffraction data. The involved imidazole derivative molecules were found coordinated through the pyridinic N atom to the axial positions for the metal T in the T[Ni(CN){sub 4}] layer. In the interlayers region ligand molecules from neighboring layers remain stacked in a face-to-face configuration through dipole–dipole and quadrupole–quadrupole interactions. These intermolecular interactions show a pronounced dependence on the substituent group and are responsible for an ImD-pillaring concatenation of adjacent layers. This is supported by the structural information and the recorded magnetic data in the 2–300 K temperature range. The samples containing Co and Ni are characterized by presence of spin–orbit coupling and pronounced temperature dependence for the effective magnetic moment except for 2-ethyl-imidazole related to the local distortion for the metal coordination environment. For this last one ligand a weak ferromagnetic ordering ascribed to a super-exchange interaction between T metals from neighboring layers through the ligands π–π interaction was detected. - Graphical abstract: In the interlayers region imidazole derivative molecules are oriented according to their dipolar and quadrupolar interactions and minimizing the steric impediment. Highlights: • Imidazole derivatives intercalation compounds. • Intermolecular interaction between intercalated imidazole derivatives. • Hybrid inorganic–organic solids. • Pi–pi interactions and ferromagnetic coupling. • Dipolar and quadrupolar interactions between intercalated imidazole derivatives.

  6. Profile of the intermolecular forces governing the interaction of drugs with mucin.

    PubMed

    Caron, Giulia; Visentin, Sonja; Pontremoli, Carlotta; Ermondi, Giuseppe

    2015-07-01

    The study highlights the balance of the intermolecular forces governing the interaction between drugs and mucin. The interaction strength is expressed as a retention factor k (data retrieved from the literature (Gargano et al., 2014)) obtained by a new bio-affinity chromatographic method in which the stationary phase is based on covalently immobilized mucin (porcine gastric mucin, PGM). A quantitative structure-property relationship (QSPR) between logk and 82 VolSurf+ descriptors was established and mechanistically interpreted. Results evidence that all blocks contribute similarly to the model; moreover, hydrogen bonding donor (HBD) properties of solutes favor the interaction with mucin; and thus, support their detrimental role on drug permeability.

  7. Interplay between molecular conformation and intermolecular interactions in conformational polymorphism: a molecular perspective from electronic calculations of tolfenamic acid.

    PubMed

    Mattei, Alessandra; Li, Tonglei

    2011-10-14

    Tolfenamic acid exhibits conformational polymorphism. The molecules in its two commonly occurred crystal structures form similar hydrogen-bonded dimers but differ in conformation. The conformational variance was analyzed by electronic calculation methods with the aim to unravel intrinsic connection between the conformational flexibility and intermolecular interactions in the polymorphs. The study was conducted mainly by conceptual density functional theory (DFT) and natural bond orbital (NBO) analysis. It is found that the conformational polymorphism is resulted from the energy competition between intramolecular π-conjugation and intermolecular hydrogen bonding. By adapting conformation that departs from being the most energetically stable, tolfenamic acid molecules can strengthen the intermolecular hydrogen-bonding interactions in the crystals. The study illustrates how the molecule's electronic properties are influenced by conformational variation and, inherently, how the intermolecular interactions become regulated. Moreover, understanding molecular interaction and crystal packing necessitates electronic structure calculation and analysis, which can be further facilitated by utilizing DFT and NBO concepts.

  8. Insights into the Complexity of Weak Intermolecular Interactions Interfering in Host-Guest Systems.

    PubMed

    Zhang, Dawei; Chatelet, Bastien; Serrano, Eloisa; Perraud, Olivier; Dutasta, Jean-Pierre; Robert, Vincent; Martinez, Alexandre

    2015-10-01

    The recognition properties of heteroditopic hemicryptophane hosts towards anions, cations, and neutral pairs, combining both cation-π and anion-π interaction sites, were investigated to probe the complexity of interfering weak intermolecular interactions. It is suggested from NMR experiments, and supported by CASSCF/CASPT2 calculations, that the binding constants of anions can be modulated by a factor of up to 100 by varying the fluorination sites on the electron-poor aromatic rings. Interestingly, this subtle chemical modification can also reverse the sign of cooperativity in ion-pair recognition. Wavefunction calculations highlight how short- and long-range interactions interfere in this recognition process, suggesting that a disruption of anion-π interactions can occur in the presence of a co-bound cation. Such molecules can be viewed as prototypes for examining complex processes controlled by the competition of weak interactions.

  9. Intermolecular Interactions between Eosin Y and Caffeine Using 1H-NMR Spectroscopy

    PubMed Central

    Okuom, Macduff O.; Wilson, Mark V.; Jackson, Abby; Holmes, Andrea E.

    2014-01-01

    DETECHIP has been used in testing analytes including caffeine, cocaine, and tetrahydrocannabinol (THC) from marijuana, as well as date rape and club drugs such as flunitrazepam, gamma-hydroxybutyric acid (GHB), and methamphetamine. This study investigates the intermolecular interaction between DETECHIP sensor eosin Y (DC1) and the analyte (caffeine) that is responsible for the fluorescence and color changes observed in the actual array. Using 1H-NMR, 1H-COSY, and 1H-DOSY NMR methods, a proton exchange from C-8 of caffeine to eosin Y is proposed. PMID:25018772

  10. Intermolecular Interactions between Eosin Y and Caffeine Using (1)H-NMR Spectroscopy.

    PubMed

    Okuom, Macduff O; Wilson, Mark V; Jackson, Abby; Holmes, Andrea E

    2013-12-31

    DETECHIP has been used in testing analytes including caffeine, cocaine, and tetrahydrocannabinol (THC) from marijuana, as well as date rape and club drugs such as flunitrazepam, gamma-hydroxybutyric acid (GHB), and methamphetamine. This study investigates the intermolecular interaction between DETECHIP sensor eosin Y (DC1) and the analyte (caffeine) that is responsible for the fluorescence and color changes observed in the actual array. Using (1)H-NMR, (1)H-COSY, and (1)H-DOSY NMR methods, a proton exchange from C-8 of caffeine to eosin Y is proposed. PMID:25018772

  11. Electric Field Effects on the Intermolecular Interactions in Water Whiskers: Insight from Structures, Energetics, and Properties

    SciTech Connect

    Bai, Yang; He, Hui-Min; Li, Ying; Zhou, Zhong-Jun; Wang, Jia-Jun; Wu, Di; Chen, Wei; Gu, Feng-Long; Sumpter, Bobby G.; Huang, Jingsong

    2015-02-19

    Modulation of intermolecular interactions in response to external electric fields could be fundamental to the formation of unusual forms of water, such as water whiskers. However, a detailed understanding of the nature of intermolecular interactions in such systems is lacking. In this study, we present novel theoretical results based on electron correlation calculations regarding the nature of H-bonds in water whiskers, which is revealed by studying their evolution under external electric fields with various field strengths. We find that the water whiskers consisting of 2-7 water molecules all have a chain-length dependent critical electric field. Under the critical electric field, the most compact chain structures are obtained, featuring very strong H-bonds, herein referred to as covalent H-bonds. In the case of a water dimer whisker, the bond length of the novel covalent H-bond shortens by 25%, the covalent bond order increases by 9 times, and accordingly the H-bond energy is strengthened by 5 times compared to the normal H-bond in a (H2O)2 cluster. Below the critical electric field, it is observed that with increasing field strength, H-bonding orbitals display gradual evolutions in the orbital energy, orbital ordering, and orbital nature (i.e., from typical -style orbital to unusual -style double H-bonding orbital). We also show that beyond the critical electric field, a single water whisker may disintegrate to form a loosely bound zwitterionic chain due to a relay-style proton transfer, whereas two water whiskers may undergo intermolecular cross-linking to form a quasi-two-dimensional water network. In conclusion, these results help shed new insight on the effects of electric fields on water whisker formation.

  12. Electric Field Effects on the Intermolecular Interactions in Water Whiskers: Insight from Structures, Energetics, and Properties

    DOE PAGES

    Bai, Yang; He, Hui-Min; Li, Ying; Zhou, Zhong-Jun; Wang, Jia-Jun; Wu, Di; Chen, Wei; Gu, Feng-Long; Sumpter, Bobby G.; Huang, Jingsong

    2015-02-19

    Modulation of intermolecular interactions in response to external electric fields could be fundamental to the formation of unusual forms of water, such as water whiskers. However, a detailed understanding of the nature of intermolecular interactions in such systems is lacking. In this study, we present novel theoretical results based on electron correlation calculations regarding the nature of H-bonds in water whiskers, which is revealed by studying their evolution under external electric fields with various field strengths. We find that the water whiskers consisting of 2-7 water molecules all have a chain-length dependent critical electric field. Under the critical electric field,more » the most compact chain structures are obtained, featuring very strong H-bonds, herein referred to as covalent H-bonds. In the case of a water dimer whisker, the bond length of the novel covalent H-bond shortens by 25%, the covalent bond order increases by 9 times, and accordingly the H-bond energy is strengthened by 5 times compared to the normal H-bond in a (H2O)2 cluster. Below the critical electric field, it is observed that with increasing field strength, H-bonding orbitals display gradual evolutions in the orbital energy, orbital ordering, and orbital nature (i.e., from typical -style orbital to unusual -style double H-bonding orbital). We also show that beyond the critical electric field, a single water whisker may disintegrate to form a loosely bound zwitterionic chain due to a relay-style proton transfer, whereas two water whiskers may undergo intermolecular cross-linking to form a quasi-two-dimensional water network. In conclusion, these results help shed new insight on the effects of electric fields on water whisker formation.« less

  13. Improving intermolecular interactions in DFTB3 using extended polarization from chemical-potential equalization

    SciTech Connect

    Christensen, Anders S. E-mail: cui@chem.wisc.edu; Cui, Qiang E-mail: cui@chem.wisc.edu; Elstner, Marcus

    2015-08-28

    Semi-empirical quantum mechanical methods traditionally expand the electron density in a minimal, valence-only electron basis set. The minimal-basis approximation causes molecular polarization to be underestimated, and hence intermolecular interaction energies are also underestimated, especially for intermolecular interactions involving charged species. In this work, the third-order self-consistent charge density functional tight-binding method (DFTB3) is augmented with an auxiliary response density using the chemical-potential equalization (CPE) method and an empirical dispersion correction (D3). The parameters in the CPE and D3 models are fitted to high-level CCSD(T) reference interaction energies for a broad range of chemical species, as well as dipole moments calculated at the DFT level; the impact of including polarizabilities of molecules in the parameterization is also considered. Parameters for the elements H, C, N, O, and S are presented. The Root Mean Square Deviation (RMSD) interaction energy is improved from 6.07 kcal/mol to 1.49 kcal/mol for interactions with one charged species, whereas the RMSD is improved from 5.60 kcal/mol to 1.73 for a set of 9 salt bridges, compared to uncorrected DFTB3. For large water clusters and complexes that are dominated by dispersion interactions, the already satisfactory performance of the DFTB3-D3 model is retained; polarizabilities of neutral molecules are also notably improved. Overall, the CPE extension of DFTB3-D3 provides a more balanced description of different types of non-covalent interactions than Neglect of Diatomic Differential Overlap type of semi-empirical methods (e.g., PM6-D3H4) and PBE-D3 with modest basis sets.

  14. Improving intermolecular interactions in DFTB3 using extended polarization from chemical-potential equalization

    PubMed Central

    Christensen, Anders S.; Elstner, Marcus; Cui, Qiang

    2015-01-01

    Semi-empirical quantum mechanical methods traditionally expand the electron density in a minimal, valence-only electron basis set. The minimal-basis approximation causes molecular polarization to be underestimated, and hence intermolecular interaction energies are also underestimated, especially for intermolecular interactions involving charged species. In this work, the third-order self-consistent charge density functional tight-binding method (DFTB3) is augmented with an auxiliary response density using the chemical-potential equalization (CPE) method and an empirical dispersion correction (D3). The parameters in the CPE and D3 models are fitted to high-level CCSD(T) reference interaction energies for a broad range of chemical species, as well as dipole moments calculated at the DFT level; the impact of including polarizabilities of molecules in the parameterization is also considered. Parameters for the elements H, C, N, O, and S are presented. The Root Mean Square Deviation (RMSD) interaction energy is improved from 6.07 kcal/mol to 1.49 kcal/mol for interactions with one charged species, whereas the RMSD is improved from 5.60 kcal/mol to 1.73 for a set of 9 salt bridges, compared to uncorrected DFTB3. For large water clusters and complexes that are dominated by dispersion interactions, the already satisfactory performance of the DFTB3-D3 model is retained; polarizabilities of neutral molecules are also notably improved. Overall, the CPE extension of DFTB3-D3 provides a more balanced description of different types of non-covalent interactions than Neglect of Diatomic Differential Overlap type of semi-empirical methods (e.g., PM6-D3H4) and PBE-D3 with modest basis sets. PMID:26328834

  15. Graphene-enhanced intermolecular interaction at interface between copper- and cobalt-phthalocyanines

    SciTech Connect

    Dou, Wei-Dong; Huang, Shu-Ping; Lee, Chun-Sing

    2015-10-07

    Interfacial electronic structures of copper-phthalocyanine (CuPc), cobalt-phthalocyanine (CoPc), and graphene were investigated experimentally by using photoelectron spectroscopy. While the CuPc/graphene interface shows flat band structure and negligible interfacial dipole indicating quite weak molecule-substrate interaction, the CuPc/CoPc/graphene interface shows a large interfacial dipole and obvious energy level bending. Controlled experiments ruled out possible influences from the change in film structure of CuPc and pure π–π interaction between CoPc and CuPc. Analysis based on X-ray photoelectron spectroscopy and density functional theory reveals that the decrease in the work function for the CuPc/CoPc/graphene system is induced by the intermolecular interaction between CuPc and CoPc which is enhanced owning to the peculiar electronic properties at the CoPc-graphene interface.

  16. Experimental evolution of complexity: in vitro emergence of intermolecular ribozyme interactions.

    PubMed Central

    Hanczyc, M M; Dorit, R L

    1998-01-01

    In the course of evolving variants of the Tetrahymena thermophila Group I ribozyme for improved DNA cleavage in vitro, we witnessed the unexpected emergence of a derived molecular species, capable of acting as a partner for the ribozyme, but no longer autocatalytic. This new RNA species exhibits a deletion in the catalytic core and participates in a productive intermolecular interaction with an active ribozyme, thus insuring its survival in the population. These novel RNA molecules have evolved a precise catalytic interaction with the Group I ribozyme and depend for their survival on the continued presence of active catalysts. This interaction hints at the complexity that may inevitably arise even in simple evolving systems. PMID:9510329

  17. Graphene-enhanced intermolecular interaction at interface between copper- and cobalt-phthalocyanines.

    PubMed

    Dou, Wei-Dong; Huang, Shu-Ping; Lee, Chun-Sing

    2015-10-01

    Interfacial electronic structures of copper-phthalocyanine (CuPc), cobalt-phthalocyanine (CoPc), and graphene were investigated experimentally by using photoelectron spectroscopy. While the CuPc/graphene interface shows flat band structure and negligible interfacial dipole indicating quite weak molecule-substrate interaction, the CuPc/CoPc/graphene interface shows a large interfacial dipole and obvious energy level bending. Controlled experiments ruled out possible influences from the change in film structure of CuPc and pure π-π interaction between CoPc and CuPc. Analysis based on X-ray photoelectron spectroscopy and density functional theory reveals that the decrease in the work function for the CuPc/CoPc/graphene system is induced by the intermolecular interaction between CuPc and CoPc which is enhanced owning to the peculiar electronic properties at the CoPc-graphene interface. PMID:26450327

  18. Graphene-enhanced intermolecular interaction at interface between copper- and cobalt-phthalocyanines

    NASA Astrophysics Data System (ADS)

    Dou, Wei-Dong; Huang, Shu-Ping; Lee, Chun-Sing

    2015-10-01

    Interfacial electronic structures of copper-phthalocyanine (CuPc), cobalt-phthalocyanine (CoPc), and graphene were investigated experimentally by using photoelectron spectroscopy. While the CuPc/graphene interface shows flat band structure and negligible interfacial dipole indicating quite weak molecule-substrate interaction, the CuPc/CoPc/graphene interface shows a large interfacial dipole and obvious energy level bending. Controlled experiments ruled out possible influences from the change in film structure of CuPc and pure π-π interaction between CoPc and CuPc. Analysis based on X-ray photoelectron spectroscopy and density functional theory reveals that the decrease in the work function for the CuPc/CoPc/graphene system is induced by the intermolecular interaction between CuPc and CoPc which is enhanced owning to the peculiar electronic properties at the CoPc-graphene interface.

  19. Pressure Effects on the Intermolecular Interaction Potential of Condensed Protein Solutions.

    PubMed

    Winter, Roland

    2015-01-01

    Knowledge of the intermolecular interaction potential of proteins as a function of their solution conditions is essential for understanding protein aggregation, crystallization, and the phase behavior of proteins in general. Here, we report on a combined small-angle X-ray scattering and liquid-state theoretical approach to study dense lysozyme solutions as a function of temperature and pressure, but also in the presence of salts and osmolytes of different nature. We show that the pressure-dependent interaction potential of lysozyme changes in a nonlinear fashion over a wide range of temperatures, salt and protein concentrations, indicating that changes of the bulk water structure mediate the pressure dependence of the intermolecular forces. We present also results on the effect of high hydrostatic pressure on the phase behavior of dense lysozyme solutions in the liquid-liquid phase-coexistence region. As also shown in this study, the application of pressure can be used to fine-tune the second virial coefficient of protein solutions, which can be used to control nucleation rates and hence protein crystallization, or to prevent protein aggregation. Moreover, these results are also important for understanding the hydration behavior of biological matter under extreme environmental conditions, and the high stability of dense protein solutions (as they occur intracellularly) in organisms thriving under hydrostatic pressure conditions such as in the deep sea, where pressures up to the 100 MPa-level are reached.

  20. Effect of the electronic structure of quinoline and its derivatives on the capacity for intermolecular interactions

    SciTech Connect

    Privalova, N.Yu.; Sokolova, I.V.

    1985-05-01

    Calculations of the ground and excited states of quinoline and its 20H-, 70H-, 7NH2-, 7N(CH3)2-, and 7N(C2H5)2- substituted derivatives were undertaken by the INDO method, and the effect of intramolecular proton transfer (IPT) on their electronic structure was studied. The proton-accepting capacity of the compounds for intermolecular interactions was estimated by the molecular electrostatic potential method. It was shown that the proton-accepting capacity with respect to intermolecular interactions increases during the tautomeric transformation of the enolic form of 2-OH-quinoline to its keto form. The change in the basicity of the two forms of the molecules is affected by the orbital nature, and the multiplicity of the state is also important for the keto form. Substitution by electron-donating groups leads to increase in the proton-accepting capacity of both forms of the compounds in the S0, S/sub */, and T/sub */ states.

  1. Squeezing water clusters between graphene sheets: energetics, structure, and intermolecular interactions.

    PubMed

    McKenzie, S; Kang, H C

    2014-12-21

    The behavior of water confined at the nanoscale between graphene sheets has attracted much theoretical and experimental attention recently. However, the interactions, structure, and energy of water at the molecular scale underpinning the behavior of confined water have not been characterized by first-principles calculations. In this work we consider small water clusters up to the hexamer adsorbed between graphene sheets using density functional theory calculations with van der Waals corrections. We investigate the effects on structure, energy, and intermolecular interactions due to confinement between graphene sheets. For interlayer distances of about one nanometer or more, the cluster adsorption energy increases approximately linearly with the cluster size by 0.1 eV per molecule in the cluster. As the interlayer distance decreases, the cluster adsorption energy reaches a maximum at 6 to 7 Å with approximately 0.16 eV stabilization energy relative to large interlayer distances. This suggests the possibility of controlling the amount of adsorption in graphene nanomaterials by varying the interlayer distance. We also quantify the intermolecular hydrogen bonding in the clusters by calculating the dissociation energy required to remove one molecule from each cluster. For each cluster size, this is constant for interlayer distances larger than approximately 6 to 8 Å. For smaller distances the intermolecular interaction decreases rapidly thus leading to weaker cohesion between molecules in a squeezed cluster. We expect a mechanism of concerted motion for hydrogen-bonded water molecules confined between graphene sheets, as has been observed for water confined within the carbon nanotubes. Thus, the decrease in the dissociation energy we observed here is consistent with experimental results for water transport through graphene and related membranes that are of interest in nanofiltration. We also calculate the corrugation in the interaction potential between graphene

  2. Structural and functional investigation of the intermolecular interaction between NRPS adenylation and carrier protein domains

    PubMed Central

    Sundlov, Jesse A.; Shi, Ce; Wilson, Daniel J.; Aldrich, Courtney C.; Gulick, Andrew M.

    2012-01-01

    Summary Non-ribosomal peptide synthetases (NRPSs) are modular proteins that produce peptide antibiotics and siderophores. These enzymes act as catalytic assembly lines where substrates, covalently bound to integrated carrier domains, are delivered to adjacent catalytic domains. The carrier domains are initially loaded by adenylation domains, which use two distinct conformations to catalyze sequentially the adenylation of the substrate and the thioesterification of the pantetheine cofactor. We have used a mechanism-based inhibitor to determine the crystal structure of an engineered adenylation-carrier domain protein illustrating the intermolecular interaction between the adenylation and carrier domains. This structure enabled directed mutations to improve the interaction between non-native partner proteins. Comparison with prior NRPS adenylation domain structures provides insights into the assembly line dynamics of these modular enzymes. PMID:22365602

  3. A Colloidal Description of Intermolecular Interactions Driving Fibril-Fibril Aggregation of a Model Amphiphilic Peptide.

    PubMed

    Owczarz, Marta; Motta, Anna C; Morbidelli, Massimo; Arosio, Paolo

    2015-07-14

    We apply a kinetic analysis platform to study the intermolecular interactions underlying the colloidal stability of dispersions of charged amyloid fibrils consisting of a model amphiphilic peptide (RADA 16-I). In contrast to the aggregation mechanisms observed in the large majority of proteins and peptides, where several elementary reactions involving both monomers and fibrils are present simultaneously, the system selected in this work allows the specific investigation of the fibril-fibril aggregation process. We examine the intermolecular interactions driving the aggregation reaction at pH 2.0 by changing the buffer composition in terms of salt concentration, type of ion as well as type and concentration of organic solvent. The aggregation kinetics are followed by dynamic light scattering, and the experimental data are simulated by Smoluchowski population balance equations, which allow to estimate the energy barrier between two colliding fibrils in terms of the Fuchs stability ratio (W). When normalized on a dimensionless time weighted on the Fuchs stability ratio, the aggregation profiles under a broad range of conditions collapse on a single master curve, indicating that the buffer composition modifies the aggregation kinetics without affecting the aggregation mechanism. Our results show that the aggregation process does not occur under diffusion-limited conditions. Rather, the reaction rate is limited by the presence of an activation energy barrier that is largely dominated by electrostatic repulsive interactions. Such interactions could be reduced by increasing the concentration of salt, which induces charge screening, or the concentration of organic solvent, which affects the dielectric constant. It is remarkable that the dependence of the activation energy on the ionic strength can be described quantitatively in terms of charge screening effects in the frame of the DLVO theory, although specific anion and cation effects are also observed. While anion

  4. Local modification of intermolecular interactions at a sub-molecule level.

    PubMed

    Song, Sang Yong; Jeong, Yong Chan; Kim, Youngjae; Kang, Joongoo; Seo, Jungpil

    2016-10-14

    The local modification of intermolecular interactions in nickel-phthalocyanine molecules (NiPCs) is investigated on an Au(111) substrate using scanning tunneling microscopy. When the molecules are physisorbed on the substrate, they repel each other due to induced charge dipole moments. However, when the NiPC is chemisorbed on the substrate through the dehydrogenation of one of its ligands by a bias pulse, we find that a nearby physisorbed NiPC is attracted to the dehydrogenated ligand and trapped. Using our experimental results in combination with density functional theory calculations, we show that the observed attraction can be ascribed to the local charge redistribution around the dehydrogenated ligand of the chemisorbed NiPC. Furthermore, we demonstrate that desorption of the attracted NiPC from the trapped site can be readily controlled by changing the density of NiPCs around the dehydrogenated ligand. PMID:27609354

  5. Crystal structures and intermolecular interactions of two novel antioxidant triazolyl-benzimidazole compounds

    NASA Astrophysics Data System (ADS)

    Karayel, A.; Özbey, S.; Ayhan-Kılcıgil, G.; Kuş, C.

    2015-12-01

    The crystal structures of 5-(2-( p-chlorophenylbenzimidazol-1-yl-methyl)-4-(3-fluorophenyl)-2,4-dihydro-[1,2,4]-triazole-3-thione (G6C) and 5-(2-( p-chlorophenylbenzimidazol-1-yl-methyl)-4-(2-methylphenyl)-2,4-dihydro-[1,2,4]-triazole-3-thione (G4C) have been determined by single-crystal X-ray diffraction. Benzimidazole ring systems in both molecules are planar. The triazole part is almost perpendicular to the phenyl and the benzimidazole parts of the molecules in order to avoid steric interactions between the rings. The crystal structures are stabilized by intermolecular hydrogen bonds between the amino group of the triazole and the nitrogen atom of benzimidazole of a neighboring molecule.

  6. Crystal structures and intermolecular interactions of two novel antioxidant triazolyl-benzimidazole compounds

    SciTech Connect

    Karayel, A. E-mail: yccaoh@hotmail.com; Özbey, S.; Ayhan-Kılcıgil, G.; Kuş, C.

    2015-12-15

    The crystal structures of 5-(2-(p-chlorophenylbenzimidazol-1-yl-methyl)-4-(3-fluorophenyl)-2, 4-dihydro-[1,2,4]-triazole-3-thione (G6C) and 5-(2-(p-chlorophenylbenzimidazol-1-yl-methyl)-4-(2-methylphenyl)-2, 4-dihydro-[1,2,4]-triazole-3-thione (G4C) have been determined by single-crystal X-ray diffraction. Benzimidazole ring systems in both molecules are planar. The triazole part is almost perpendicular to the phenyl and the benzimidazole parts of the molecules in order to avoid steric interactions between the rings. The crystal structures are stabilized by intermolecular hydrogen bonds between the amino group of the triazole and the nitrogen atom of benzimidazole of a neighboring molecule.

  7. Local modification of intermolecular interactions at a sub-molecule level

    NASA Astrophysics Data System (ADS)

    Song, Sang Yong; Jeong, Yong Chan; Kim, Youngjae; Kang, Joongoo; Seo, Jungpil

    2016-10-01

    The local modification of intermolecular interactions in nickel-phthalocyanine molecules (NiPCs) is investigated on an Au(111) substrate using scanning tunneling microscopy. When the molecules are physisorbed on the substrate, they repel each other due to induced charge dipole moments. However, when the NiPC is chemisorbed on the substrate through the dehydrogenation of one of its ligands by a bias pulse, we find that a nearby physisorbed NiPC is attracted to the dehydrogenated ligand and trapped. Using our experimental results in combination with density functional theory calculations, we show that the observed attraction can be ascribed to the local charge redistribution around the dehydrogenated ligand of the chemisorbed NiPC. Furthermore, we demonstrate that desorption of the attracted NiPC from the trapped site can be readily controlled by changing the density of NiPCs around the dehydrogenated ligand.

  8. Local modification of intermolecular interactions at a sub-molecule level.

    PubMed

    Song, Sang Yong; Jeong, Yong Chan; Kim, Youngjae; Kang, Joongoo; Seo, Jungpil

    2016-10-14

    The local modification of intermolecular interactions in nickel-phthalocyanine molecules (NiPCs) is investigated on an Au(111) substrate using scanning tunneling microscopy. When the molecules are physisorbed on the substrate, they repel each other due to induced charge dipole moments. However, when the NiPC is chemisorbed on the substrate through the dehydrogenation of one of its ligands by a bias pulse, we find that a nearby physisorbed NiPC is attracted to the dehydrogenated ligand and trapped. Using our experimental results in combination with density functional theory calculations, we show that the observed attraction can be ascribed to the local charge redistribution around the dehydrogenated ligand of the chemisorbed NiPC. Furthermore, we demonstrate that desorption of the attracted NiPC from the trapped site can be readily controlled by changing the density of NiPCs around the dehydrogenated ligand.

  9. Manifestation of structure and intermolecular interactions of biologically active brassinosteroids in infrared spectra

    NASA Astrophysics Data System (ADS)

    Borisevich, N. A.; Skornyakov, I. V.; Khripach, V. A.; Tolstorozhev, G. B.; Zhabinskii, V. N.

    2007-09-01

    We have analyzed the IR spectra obtained for steroidal phytohormones 24-epibrassinolide, 24-epicastasterone, 28-homobrassinolide, and 28-homocastasterone. The characteristic frequencies of the stretching vibrations of the hydrocarbon groups CH3, CH2, and CH and also the C=O groups in the spectra of brassinolides are higher than in the spectra of castasterones, which makes it possible to identify them from the IR spectra. Study of the spectra of these brassinosteroids in different media (pressed samples in KBr, films, solutions in CHCl3 and CDCl3) allowed us to establish the presence of intermolecular interactions in which C=O and OH groups, OH-OH groups participate, and also the possible formation of intramolecular hydrogen bonds between the OH groups of the molecules.

  10. Application of atomic force microscopy for characteristics of single intermolecular interactions.

    PubMed

    Safenkova, I V; Zherdev, A V; Dzantievf, B B

    2012-12-01

    Atomic force microscopy (AFM) can be used to make measurements in vacuum, air, and water. The method is able to gather information about intermolecular interaction forces at the level of single molecules. This review encompasses experimental and theoretical data on the characterization of ligand-receptor interactions by AFM. The advantage of AFM in comparison with other methods developed for the characterization of single molecular interactions is its ability to estimate not only rupture forces, but also thermodynamic and kinetic parameters of the rupture of a complex. The specific features of force spectroscopy applied to ligand-receptor interactions are examined in this review from the stage of the modification of the substrate and the cantilever up to the processing and interpretation of the data. We show the specificities of the statistical analysis of the array of data based on the results of AFM measurements, and we discuss transformation of data into thermodynamic and kinetic parameters (kinetic dissociation constant, Gibbs free energy, enthalpy, and entropy). Particular attention is paid to the study of polyvalent interactions, where the definition of the constants is hampered due to the complex stoichiometry of the reactions.

  11. Biaxial Dielectrophoresis Force Spectroscopy: A Stoichiometric Approach for Examining Intermolecular Weak Binding Interactions.

    PubMed

    Park, In Soo; Kwak, Tae Joon; Lee, Gyudo; Son, Myeonggu; Choi, Jeong Woo; Choi, Seungyeop; Nam, Kihwan; Lee, Sei-Young; Chang, Woo-Jin; Eom, Kilho; Yoon, Dae Sung; Lee, Sangyoup; Bashir, Rashid; Lee, Sang Woo

    2016-04-26

    The direct quantification of weak intermolecular binding interactions is very important for many applications in biology and medicine. Techniques that can be used to investigate such interactions under a controlled environment, while varying different parameters such as loading rate, pulling direction, rupture event measurements, and the use of different functionalized probes, are still lacking. Herein, we demonstrate a biaxial dielectrophoresis force spectroscopy (BDFS) method that can be used to investigate weak unbinding events in a high-throughput manner under controlled environments and by varying the pulling direction (i.e., transverse and/or vertical axes) as well as the loading rate. With the BDFS system, we can quantitatively analyze binding interactions related to hydrogen bonding or ionic attractions between functionalized microbeads and a surface within a microfluidic device. Our BDFS system allowed for the characterization of the number of bonds involved in an interaction, bond affinity, kinetic rates, and energy barrier heights and widths from different regimes of the energy landscape. PMID:27007455

  12. Intermolecular interactions and 3D structure in cellulose-NaOH-urea aqueous system.

    PubMed

    Jiang, Zhiwei; Fang, Yan; Xiang, Junfeng; Ma, Yanping; Lu, Ang; Kang, Hongliang; Huang, Yong; Guo, Hongxia; Liu, Ruigang; Zhang, Lina

    2014-08-28

    The dissolution of cellulose in NaOH/urea aqueous solution at low temperature is a key finding in cellulose science and technology. In this paper, (15)N and (23)Na NMR experiments were carried out to clarify the intermolecular interactions in cellulose/NaOH/urea aqueous solution. It was found that there are direct interactions between OH(-) anions and amino groups of urea through hydrogen bonds and no direct interaction between urea and cellulose. Moreover, Na(+) ions can interact with both cellulose and urea in an aqueous system. These interactions lead to the formation of cellulose-NaOH-urea-H2O inclusion complexes (ICs). (23)Na relaxation results confirmed that the formation of urea-OH(-) clusters can effectively enhance the stability of Na(+) ions that attracted to cellulose chains. Low temperature can enhance the hydrogen bonding interaction between OH(-) ions and urea and improve the binding ability of the NaOH/urea/H2O clusters that attached to cellulose chains. Cryo-TEM observation confirmed the formation of cellulose-NaOH-urea-H2O ICs, which is in extended conformation with mean diameter of about 3.6 nm and mean length of about 300 nm. Possible 3D structure of the ICs was proposed by the M06-2X/6-31+G(d) theoretical calculation, revealing the O3H···O5 intramolecular hydrogen bonds could remain in the ICs. This work clarified the interactions in cellulose/NaOH/urea aqueous solution and the 3D structure of the cellulose chain in dilute cellulose/NaOH/urea aqueous solution.

  13. Intermolecular interaction of prednisolone with bovine serum albumin: spectroscopic and molecular docking methods.

    PubMed

    Shi, Jie-hua; Zhu, Ying-Yao; Wang, Jing; Chen, Jun; Shen, Ya-Jing

    2013-02-15

    The intermolecular interaction of prednisolone with bovine serum albumin (BSA) was studied using fluorescence, circular dichroism (CD) and molecular docking methods. The experimental results showed that the fluorescence quenching of the BSA at 338 nm by prednisolone resulted from the formation of prednisolone-BSA complex. The number of binding sites (n) for prednisolone binding on BSA was approximately equal to 1. Base on the sign and magnitude of the enthalpy and entropy changes (ΔH(0)=-149.6 kJ mol(-1) and ΔS(0)=-370.7 J mol(-1)K(-1)) and the results of molecular docking, it could be suggested that the interaction forces were mainly Van der Waals and hydrogen bonding interactions. Moreover, in the binding process of BSA with prednisolone, prednisolone molecule can be inserted into the hydrophobic cavity of subdomain IIIA (site II) of BSA. The distance between prednisolone and Trp residue of BSA was calculated as 2.264 nm according to Forster's non-radiative energy transfer theory.

  14. Modeling intermolecular interactions of physisorbed organic molecules using pair potential calculations

    SciTech Connect

    Kroeger, Ingo; Stadtmueller, Benjamin; Wagner, Christian; Weiss, Christian; Temirov, Ruslan; Tautz, F. Stefan; Kumpf, Christian

    2011-12-21

    The understanding and control of epitaxial growth of organic thin films is of crucial importance in order to optimize the performance of future electronic devices. In particular, the start of the submonolayer growth plays an important role since it often determines the structure of the first layer and subsequently of the entire molecular film. We have investigated the structure formation of 3,4,9,10-perylene-tetracarboxylic dianhydride and copper-phthalocyanine molecules on Au(111) using pair-potential calculations based on van der Waals and electrostatic intermolecular interactions. The results are compared with the fundamental lateral structures known from experiment and an excellent agreement was found for these weakly interacting systems. Furthermore, the calculations are even suitable for chemisorptive adsorption as demonstrated for copper-phthalocyanine/Cu(111), if the influence of charge transfer between substrate and molecules is known and the corresponding charge redistribution in the molecules can be estimated. The calculations are of general applicability for molecular adsorbate systems which are dominated by electrostatic and van der Waals interaction.

  15. Isolating the non-polar contributions to the intermolecular potential for water-alkane interactions.

    PubMed

    Ballal, Deepti; Venkataraman, Pradeep; Fouad, Wael A; Cox, Kenneth R; Chapman, Walter G

    2014-08-14

    Intermolecular potential models for water and alkanes describe pure component properties fairly well, but fail to reproduce properties of water-alkane mixtures. Understanding interactions between water and non-polar molecules like alkanes is important not only for the hydrocarbon industry but has implications to biological processes as well. Although non-polar solutes in water have been widely studied, much less work has focused on water in non-polar solvents. In this study we calculate the solubility of water in different alkanes (methane to dodecane) at ambient conditions where the water content in alkanes is very low so that the non-polar water-alkane interactions determine solubility. Only the alkane-rich phase is simulated since the fugacity of water in the water rich phase is calculated from an accurate equation of state. Using the SPC/E model for water and TraPPE model for alkanes along with Lorentz-Berthelot mixing rules for the cross parameters produces a water solubility that is an order of magnitude lower than the experimental value. It is found that an effective water Lennard-Jones energy ε(W)/k = 220 K is required to match the experimental water solubility in TraPPE alkanes. This number is much higher than used in most simulation water models (SPC/E-ε(W)/k = 78.2 K). It is surprising that the interaction energy obtained here is also higher than the water-alkane interaction energy predicted by studies on solubility of alkanes in water. The reason for this high water-alkane interaction energy is not completely understood. Some factors that might contribute to the large interaction energy, such as polarizability of alkanes, octupole moment of methane, and clustering of water at low concentrations in alkanes, are examined. It is found that, though important, these factors do not completely explain the anomalously strong attraction between alkanes and water observed experimentally. PMID:25134597

  16. Isolating the non-polar contributions to the intermolecular potential for water-alkane interactions.

    PubMed

    Ballal, Deepti; Venkataraman, Pradeep; Fouad, Wael A; Cox, Kenneth R; Chapman, Walter G

    2014-08-14

    Intermolecular potential models for water and alkanes describe pure component properties fairly well, but fail to reproduce properties of water-alkane mixtures. Understanding interactions between water and non-polar molecules like alkanes is important not only for the hydrocarbon industry but has implications to biological processes as well. Although non-polar solutes in water have been widely studied, much less work has focused on water in non-polar solvents. In this study we calculate the solubility of water in different alkanes (methane to dodecane) at ambient conditions where the water content in alkanes is very low so that the non-polar water-alkane interactions determine solubility. Only the alkane-rich phase is simulated since the fugacity of water in the water rich phase is calculated from an accurate equation of state. Using the SPC/E model for water and TraPPE model for alkanes along with Lorentz-Berthelot mixing rules for the cross parameters produces a water solubility that is an order of magnitude lower than the experimental value. It is found that an effective water Lennard-Jones energy ε(W)/k = 220 K is required to match the experimental water solubility in TraPPE alkanes. This number is much higher than used in most simulation water models (SPC/E-ε(W)/k = 78.2 K). It is surprising that the interaction energy obtained here is also higher than the water-alkane interaction energy predicted by studies on solubility of alkanes in water. The reason for this high water-alkane interaction energy is not completely understood. Some factors that might contribute to the large interaction energy, such as polarizability of alkanes, octupole moment of methane, and clustering of water at low concentrations in alkanes, are examined. It is found that, though important, these factors do not completely explain the anomalously strong attraction between alkanes and water observed experimentally.

  17. Quantum phase transitions for two coupled cavities with dipole-interaction atoms

    SciTech Connect

    Tan Lei; Zhang Yuqing; Liu Wuming

    2011-12-15

    We investigate the quantum phase transitions for two weakly coupled atom-cavity sites. The interatomic dipole-dipole interaction is considered. Our numerical results show that the dipole-dipole interaction is a crucial parameter for the quantum phase transition. For small atom-cavity detuning, the ''superfluid'' becomes more and more obvious with the increase of the dipole-dipole interaction. In addition, the strong dipole-dipole interaction can lead the atomic excitation to be suppressed completely, and only the photonic excitation exists for the ground states. When the atom-cavity detuning is comparable with the dipole-dipole interaction, the dipole-dipole interaction enlarges the positive detunings, which is in favor of exhibiting superfluid photonic states. While for the negative detuning, the dipole-dipole interaction will reduce it, and contribute to the formation of the polaritonic insulator states. The cases for extended models have also been briefly analyzed. We also discuss how to find these novel phenomena in future experiments.

  18. Intercalation of organic molecules in 2D copper (II) nitroprusside: Intermolecular interactions and magnetic properties

    SciTech Connect

    Osiry, H.; Cano, A.; Lemus-Santana, A.A.; Rodríguez, A.; Carbonio, R.E.; Reguera, E.

    2015-10-15

    This contribution discusses the intercalation of imidazole and its 2-ethyl derivative, and pyridine in 2D copper nitroprusside. In the interlayer region, neighboring molecules remain interacting throu gh their dipole and quadrupole moments, which supports the solid 3D crystal structure. The crystal structure of this series of intercalation compounds was solved and refined from powder X-ray diffraction patterns complemented with spectroscopic information. The intermolecular interactions were studied from the refined crystal structures and low temperature magnetic measurements. Due to strong attractive forces between neighboring molecules, the resulting π–π cloud overlapping enables the ferromagnetic coupling between metal centers on neighboring layers, which was actually observed for the solids containing imidazole and pyridine as intercalated molecules. For these two solids, the magnetic data were properly described with a model of six neighbors. For the solid containing 2-ethylimidazole and for 2D copper nitroprusside, a model of four neighbors in a plane is sufficient to obtain a reliable data fitting. - Highlights: • Intercalation of organic molecules in 2D copper (II) nitroprusside. • Molecular properties of intercalation compounds of 2D copper (II) nitroprusside. • Magnetic properties of hybrid inorganic–organic solids. • Hybrid inorganic–organic 3D framework.

  19. Hydrogen versus fluorine: effects on molecular structure and intermolecular interactions in a platinum isocyanate complex.

    PubMed

    Raven, William; Joschko, Thomas; Kalf, Irmgard; Englert, Ulli

    2016-03-01

    At the molecular level, the enantiomerically pure square-planar organoplatinum complex (SP-4-4)-(R)-[2-(1-aminoethyl)-5-fluorophenyl-κ(2)C(1),N][(R)-1-(4-fluorophenyl)ethylamine-κN](isocyanato-κN)platinum(II), [Pt(C8H9FN)(NCO)(C8H10FN)], and its congener without fluorine substituents on the aryl rings adopt the same structure within error. The similarities between the compounds extend to the most relevant intermolecular interactions, i.e. N-H...O and N-H...N hydrogen bonds link neighbouring molecules into chains along the shortest lattice parameter in each structure. Differences between the crystal structures of the fluoro-substituted and parent complex become obvious with respect to secondary interactions perpendicular to the classical hydrogen bonds; the fluorinated compound features short C-H...F contacts with an F...H distance of ca 2.6 Å. The fluorine substitution is also reflected in reduced backbonding from the metal cation to the isocyanate ligand. PMID:26942427

  20. Hydrogen versus fluorine: effects on molecular structure and intermolecular interactions in a platinum isocyanate complex.

    PubMed

    Raven, William; Joschko, Thomas; Kalf, Irmgard; Englert, Ulli

    2016-03-01

    At the molecular level, the enantiomerically pure square-planar organoplatinum complex (SP-4-4)-(R)-[2-(1-aminoethyl)-5-fluorophenyl-κ(2)C(1),N][(R)-1-(4-fluorophenyl)ethylamine-κN](isocyanato-κN)platinum(II), [Pt(C8H9FN)(NCO)(C8H10FN)], and its congener without fluorine substituents on the aryl rings adopt the same structure within error. The similarities between the compounds extend to the most relevant intermolecular interactions, i.e. N-H...O and N-H...N hydrogen bonds link neighbouring molecules into chains along the shortest lattice parameter in each structure. Differences between the crystal structures of the fluoro-substituted and parent complex become obvious with respect to secondary interactions perpendicular to the classical hydrogen bonds; the fluorinated compound features short C-H...F contacts with an F...H distance of ca 2.6 Å. The fluorine substitution is also reflected in reduced backbonding from the metal cation to the isocyanate ligand.

  1. Liquid chloroform structure from computer simulation with a full ab initio intermolecular interaction potential

    SciTech Connect

    Yin, Chih-Chien; Li, Arvin Huang-Te; Chao, Sheng D.

    2013-11-21

    We have calculated the intermolecular interaction energies of the chloroform dimer in 12 orientations using the second-order Møller-Plesset perturbation theory. Single point energies of important geometries were calibrated by the coupled cluster with single and double and perturbative triple excitation method. Dunning's correlation consistent basis sets up to aug-cc-pVQZ have been employed in extrapolating the interaction energies to the complete basis set limit values. With the ab initio potential data we constructed a 5-site force field model for molecular dynamics simulations. We compared the simulation results with recent experiments and obtained quantitative agreements for the detailed atomwise radial distribution functions. Our results were also consistent with previous results using empirical force fields with polarization effects. Moreover, the calculated diffusion coefficients reproduced the experimental data over a wide range of thermodynamic conditions. To the best of our knowledge, this is the first ab initio force field which is capable of competing with existing empirical force fields for liquid chloroform.

  2. Intercalation of organic molecules in 2D copper (II) nitroprusside: Intermolecular interactions and magnetic properties

    NASA Astrophysics Data System (ADS)

    Osiry, H.; Cano, A.; Lemus-Santana, A. A.; Rodríguez, A.; Carbonio, R. E.; Reguera, E.

    2015-10-01

    This contribution discusses the intercalation of imidazole and its 2-ethyl derivative, and pyridine in 2D copper nitroprusside. In the interlayer region, neighboring molecules remain interacting throu gh their dipole and quadrupole moments, which supports the solid 3D crystal structure. The crystal structure of this series of intercalation compounds was solved and refined from powder X-ray diffraction patterns complemented with spectroscopic information. The intermolecular interactions were studied from the refined crystal structures and low temperature magnetic measurements. Due to strong attractive forces between neighboring molecules, the resulting π-π cloud overlapping enables the ferromagnetic coupling between metal centers on neighboring layers, which was actually observed for the solids containing imidazole and pyridine as intercalated molecules. For these two solids, the magnetic data were properly described with a model of six neighbors. For the solid containing 2-ethylimidazole and for 2D copper nitroprusside, a model of four neighbors in a plane is sufficient to obtain a reliable data fitting.

  3. Modeling the intermolecular interactions: molecular structure of N-3-hydroxyphenyl-4-methoxybenzamide.

    PubMed

    Karabulut, Sedat; Namli, Hilmi; Kurtaran, Raif; Yildirim, Leyla Tatar; Leszczynski, Jerzy

    2014-03-01

    The title compound, N-3-hydroxyphenyl-4-methoxybenzamide (3) was prepared by the acylation reaction of 3-aminophenol (1) and 4-metoxybenzoylchloride (2) in THF and characterized by ¹H NMR, ¹³C NMR and elemental analysis. Molecular structure of the crystal was determined by single crystal X-ray diffraction and DFT calculations. 3 crystallizes in monoclinic P2₁/c space group. The influence of intermolecular interactions (dimerization and crystal packing) on molecular geometry has been evaluated by calculations performed for three different models; monomer (3), dimer (4) and dimer with added unit cell contacts (5). Molecular structure of 3, 4 and 5 was optimized by applying B3LYP method with 6-31G+(d,p) basis set in gas phase and compared with X-ray crystallographic data including bond lengths, bond angles and selected dihedral angles. It has been concluded that although the crystal packing and dimerization have a minor effect on bond lengths and angles, however, these interactions are important for the dihedral angles and the rotational conformation of aromatic rings.

  4. Anti-plasticizing effect of amorphous indomethacin induced by specific intermolecular interactions with PVA copolymer.

    PubMed

    Ueda, Hiroshi; Aikawa, Shohei; Kashima, Yousuke; Kikuchi, Junko; Ida, Yasuo; Tanino, Tadatsugu; Kadota, Kazunori; Tozuka, Yuichi

    2014-09-01

    The mechanism of how poly(vinyl alcohol-co-acrylic acid-co-methyl methacrylate) (PVA copolymer) stabilizes an amorphous drug was investigated. Solid dispersions of PVA copolymer, poly(vinyl pyrrolidone) (PVP), and poly(vinyl pyrrolidone-co-vinyl acetate) (PVPVA) with indomethacin (IMC) were prepared. The glass transition temperature (Tg)-proportion profiles were evaluated by differential scanning calorimetry (DSC). General Tg profiles decreasing with the IMC ratio were observed for IMC-PVP and IMC-PVPVA samples. An interesting antiplasticizing effect of IMC on PVA copolymer was observed; Tg increased up to 20% IMC ratio. Further addition of IMC caused moderate reduction with positive deviation from theoretical values. Specific hydrophilic and hydrophobic interactions between IMC and PVA copolymer were revealed by infrared spectra. The indole amide of IMC played an important role in hydrogen bonding with PVA copolymer, but not with PVP and PVPVA. X-ray diffraction findings and the endotherm on DSC profiles suggested that PVA copolymer could form a semicrystalline structure and a possibility of correlation of the crystallographic nature with its low hygroscopicity was suggested. PVA copolymer was able to prevent crystallization of amorphous IMC through both low hygroscopicity and the formation of a specific intermolecular interaction compared with that with PVP and PVPVA.

  5. Density-based Energy Decomposition Analysis for Intermolecular Interactions with Variationally Determined Intermediate State Energies

    SciTech Connect

    Wu, Q.; Ayers, P.W.; Zhang, Y.

    2009-10-28

    The first purely density-based energy decomposition analysis (EDA) for intermolecular binding is developed within the density functional theory. The most important feature of this scheme is to variationally determine the frozen density energy, based on a constrained search formalism and implemented with the Wu-Yang algorithm [Q. Wu and W. Yang, J. Chem. Phys. 118, 2498 (2003) ]. This variational process dispenses with the Heitler-London antisymmetrization of wave functions used in most previous methods and calculates the electrostatic and Pauli repulsion energies together without any distortion of the frozen density, an important fact that enables a clean separation of these two terms from the relaxation (i.e., polarization and charge transfer) terms. The new EDA also employs the constrained density functional theory approach [Q. Wu and T. Van Voorhis, Phys. Rev. A 72, 24502 (2005)] to separate out charge transfer effects. Because the charge transfer energy is based on the density flow in real space, it has a small basis set dependence. Applications of this decomposition to hydrogen bonding in the water dimer and the formamide dimer show that the frozen density energy dominates the binding in these systems, consistent with the noncovalent nature of the interactions. A more detailed examination reveals how the interplay of electrostatics and the Pauli repulsion determines the distance and angular dependence of these hydrogen bonds.

  6. Intermolecular interactions and solvent diffusion in ordered nanostructures formed by self-assembly of block copolymers

    NASA Astrophysics Data System (ADS)

    Gu, Zhiyong

    Hydrogels formed by Poloxamer poly(ethylene oxide)-poly(propylene oxide) (PEO-PPO) block copolymers find various pharmaceutical and biomedical applications. A variety of ordered structures can be exhibited by Poloxamer block copolymers in selective solvents such as water, for example, micellar cubic phase, hexagonal phase, lamellar phase, etc. We are interested in the thermodynamic and transport properties of water in such hydrogels that have an ordered (lyotropic liquid crystalline) structure. We have investigated the time evolution of water loss from Poloxamer gel films under a driving force of known water vapor pressure in the air in contact with the film. The experimental data on the drying process have been fitted to the diffusion equation for water in the film, under a boundary condition that includes the water concentration in the gel at infinite time; the water diffusion coefficient and other parameters have thus been obtained. The water chemical potential and osmotic pressure in the gel have been obtained from osmotic stress measurements. The osmotic pressure (force), together with data on the corresponding lyotropic liquid crystal spacing (distance) that we obtained from Small Angle X-Ray Scattering (SAXS) measurements, have been analyzed to provide information on the prevailing intermolecular (inter-assembly) forces in the gel. The forces in the gel reveal interactions that occur at two levels, that of the PEO coil and that of the PEO segment.

  7. Polarization contributions to intermolecular interactions revisited with fragment electric-field response functions

    SciTech Connect

    Horn, Paul R. E-mail: mhg@cchem.berkeley.edu; Head-Gordon, Martin E-mail: mhg@cchem.berkeley.edu

    2015-09-21

    The polarization energy in intermolecular interactions treated by self-consistent field electronic structure theory is often evaluated using a constraint that the atomic orbital (AO) to molecular orbital transformation is blocked by fragments. This approach is tied to AO basis sets, overestimates polarization energies in the overlapping regime, particularly in large AO basis sets, and lacks a useful complete basis set limit. These problems are addressed by the construction of polarization subspaces based on the responses of isolated fragments to weak electric fields. These subspaces are spanned by fragment electric-field response functions, which can capture effects up to the dipole (D), or quadrupole (DQ) level, or beyond. Schemes are presented for the creation of both non-orthogonal and orthogonal fragment subspaces, and the basis set convergence of the polarization energies computed using these spaces is assessed. Numerical calculations for the water dimer, water–Na{sup +}, water–Mg{sup 2+}, water–F{sup −}, and water–Cl{sup −} show that the non-orthogonal DQ model is very satisfactory, with small differences relative to the orthogonalized model. Additionally, we prove a fundamental difference between the polarization degrees of freedom in the fragment-blocked approaches and in constrained density schemes. Only the former are capable of properly prohibiting charge delocalization during polarization.

  8. Dynamics of intermolecular interactions in CCl4via the isotope effect by femtosecond time-resolved spectroscopy.

    PubMed

    Konarska, Jadwiga; Gadomski, Wojciech; Ratajska-Gadomska, Bożena; Polok, Kamil; Pudłowski, Grzegorz; Kardaś, Tomasz M

    2016-06-21

    We report our study on the ultrafast dynamics of intermolecular interactions in liquid CCl4. A transient transmission time domain signal, obtained in the 40 ps delay range, exhibits beating at the difference frequency of the totally symmetric stretching vibrations of the tetrachloride isotopologues. We show that the spectra obtained as the windowed Fourier transform of different parts of the time domain signal in the range of this totally symmetric vibration, split due to the isotope effect, carry the information about the dynamics of the coherently excited, coupled molecules. We use a simple theoretical model in order to prove that the intermolecular interaction influences the relative amplitudes of the isotopologue peaks in the spectrum. Moreover, we demonstrate that the pump induced coherence in the system leads to additional strengthening of the interaction, which can be observed in the spectra obtained from the experimental time domain signal. PMID:27244535

  9. Intermolecular vs molecule–substrate interactions: A combined STM and theoretical study of supramolecular phases on graphene/Ru(0001)

    PubMed Central

    Roos, Michael; Uhl, Benedikt; Künzel, Daniela; Hoster, Harry E; Groß, Axel

    2011-01-01

    Summary The competition between intermolecular interactions and long-range lateral variations in the substrate–adsorbate interaction was studied by scanning tunnelling microscopy (STM) and force field based calculations, by comparing the phase formation of (sub-) monolayers of the organic molecules (i) 2-phenyl-4,6-bis(6-(pyridin-3-yl)-4-(pyridin-3-yl)pyridin-2-yl)pyrimidine (3,3'-BTP) and (ii) 3,4,9,10-perylene tetracarboxylic-dianhydride (PTCDA) on graphene/Ru(0001). For PTCDA adsorption, a 2D adlayer phase was formed, which extended over large areas, while for 3,3'-BTP adsorption linear or ring like structures were formed, which exclusively populated the areas between the maxima of the moiré structure of the buckled graphene layer. The consequences for the competing intermolecular interactions and corrugation in the adsorption potential are discussed and compared with the theoretical results. PMID:22003444

  10. Intermolecular vs molecule-substrate interactions: A combined STM and theoretical study of supramolecular phases on graphene/Ru(0001).

    PubMed

    Roos, Michael; Uhl, Benedikt; Künzel, Daniela; Hoster, Harry E; Groß, Axel; Behm, R Jürgen

    2011-01-01

    The competition between intermolecular interactions and long-range lateral variations in the substrate-adsorbate interaction was studied by scanning tunnelling microscopy (STM) and force field based calculations, by comparing the phase formation of (sub-) monolayers of the organic molecules (i) 2-phenyl-4,6-bis(6-(pyridin-3-yl)-4-(pyridin-3-yl)pyridin-2-yl)pyrimidine (3,3'-BTP) and (ii) 3,4,9,10-perylene tetracarboxylic-dianhydride (PTCDA) on graphene/Ru(0001). For PTCDA adsorption, a 2D adlayer phase was formed, which extended over large areas, while for 3,3'-BTP adsorption linear or ring like structures were formed, which exclusively populated the areas between the maxima of the moiré structure of the buckled graphene layer. The consequences for the competing intermolecular interactions and corrugation in the adsorption potential are discussed and compared with the theoretical results.

  11. α- And β Pahases of oxalic acid, H 2C 2O 4: Vibrational spectra, normal-coordinate calculations, and intermolecular forces

    NASA Astrophysics Data System (ADS)

    De Villepin, J.; Novak, A.; Bougeard, D.

    1982-12-01

    Infrared (4000-30 cm -1) and Raman (4000-0 cm -) spectra of single crystals of α-oxalic acid (Pcab, Z=4) have been investigated at 100 and 300 K. A complete assignment of all modes in terms of symmetry species and to internal, librational, translational, and hydrogen bond motions is given. In order to interpret the spectra and to determine the crystal field, several normal-coordinate calculations (free molecule, rigid body model, unit cell as a supermolecule) have been carried out. The calculations are in good agreement with the experimental results and show the importance of different intermolecular forces: OH … O hydrogen bonds and very short C … O interactions lead to both unusually strong correlation field splitting and high lattice frequencies while quadrupole-quadrupole and CO dipole-dipole interactions influence lattice and some internal vibrations, respectively. The intermolecular potentials obtained for α-oxalic acid are transferable to the β form having a different crystal structure (P2 1/c, Z = 2) and stronger hydrogen bonds.

  12. Intermolecular Interactions and Electrostatic Properties of the [beta]-Hydroquinone Apohost: Implications for Supramolecular Chemistry

    SciTech Connect

    Clausen, Henrik F.; Chen, Yu-Sheng; Jayatilaka, Dylan; Overgaard, Jacob; Koutsantonis, George A.; Spackman, Mark A.; Iversen, Bo B.

    2012-02-07

    The crystal structure of the {beta}-polymorph of hydroquinone ({beta}-HQ), the apohost of a large family of clathrates, is reported with a specific focus on intermolecular interactions and the electrostatic nature of its cavity. Hirshfeld surface analysis reveals subtle close contacts between two interconnecting HQ networks, and the local packing and related close contacts were examined by breakdown of the fingerprint plot. An experimental multipole model containing anisotropic thermal parameters for hydrogen atoms has been successfully refined against 15(2) K single microcrystal synchrotron X-ray diffraction data. The experimental electron density model has been compared with a theoretical electron density calculated with the molecule embedded in its own crystal field. Hirshfeld charges, interaction energies and the electrostatic potential calculated for both models are qualitatively in good agreement, but small differences in the electrostatic potential persist due to charge transfer from all hydrogen atoms to the oxygen atoms in the theoretical model. The electrostatic potential in the center of the cavity is positive, very shallow and highly symmetric, suggesting that the inclusion of polar molecules in the void will involve a balance between opposing effects. The electric field is by symmetry zero in the center of the cavity, increasing to a value of 0.0185 e/{angstrom}{sup 2} (0.27 V/{angstrom}) 1 {angstrom} along the 3-fold axis and 0.0105 e/{angstrom}{sup 2} (0.15 V/{angstrom}) 1 {angstrom} along the perpendicular direction. While these values are substantial in a macroscopic context, they are quite small for a molecular cavity and are not expected to strongly polarize a guest molecule.

  13. Intermolecular interactions and electrostatic properties of the β-hydroquinone apohost: implications for supramolecular chemistry.

    PubMed

    Clausen, Henrik F; Chen, Yu-Sheng; Jayatilaka, Dylan; Overgaard, Jacob; Koutsantonis, George A; Spackman, Mark A; Iversen, Bo B

    2011-11-17

    The crystal structure of the β-polymorph of hydroquinone (β-HQ), the apohost of a large family of clathrates, is reported with a specific focus on intermolecular interactions and the electrostatic nature of its cavity. Hirshfeld surface analysis reveals subtle close contacts between two interconnecting HQ networks, and the local packing and related close contacts were examined by breakdown of the fingerprint plot. An experimental multipole model containing anisotropic thermal parameters for hydrogen atoms has been successfully refined against 15(2) K single microcrystal synchrotron X-ray diffraction data. The experimental electron density model has been compared with a theoretical electron density calculated with the molecule embedded in its own crystal field. Hirshfeld charges, interaction energies and the electrostatic potential calculated for both models are qualitatively in good agreement, but small differences in the electrostatic potential persist due to charge transfer from all hydrogen atoms to the oxygen atoms in the theoretical model. The electrostatic potential in the center of the cavity is positive, very shallow and highly symmetric, suggesting that the inclusion of polar molecules in the void will involve a balance between opposing effects. The electric field is by symmetry zero in the center of the cavity, increasing to a value of 0.0185 e/Å(2) (0.27 V/Å) 1 Å along the 3-fold axis and 0.0105 e/Å(2) (0.15 V/Å) 1 Å along the perpendicular direction. While these values are substantial in a macroscopic context, they are quite small for a molecular cavity and are not expected to strongly polarize a guest molecule. PMID:21809888

  14. Effect of intermolecular interactions on the nucleation, growth, and propagation of like-spin domains in spin-crossover materials

    NASA Astrophysics Data System (ADS)

    Slimani, A.; Boukheddaden, K.; Yamashita, K.

    2015-07-01

    The nucleation, growth, and propagation of like-spin domains in spin-crossover materials was investigated during the relaxation process of a metastable HS state at low temperature using an electroelastic model running on a deformable two-dimensional square lattice. We distinguish the onset of patterns formation of low-spin domain as the intermolecular interaction is increased, passing successively through random dispersion to clustering pattern and ending up with an impressive single macroscopic domain growth. Attaining and maintaining a single-domain configuration through the transition is attributed to the long-range character of interactions. Qualitative investigation of the elastic energy, of the propagation of the low-spin domain, and of the displacement field are presented. We demonstrate that as the intermolecular interaction increases the propagation of the like-spin domain slowdown. The deformations are believed as the prolonged effect of the intermolecular interactions that are at the origin of the onset of dispersed, poly-, and single-domain nucleation. Spatial autocorrelation of the deformations analysis based on Moran's I index is used. We demonstrate that at short distance significant spatially autocorrelated patterns are detected, and the extent of the autocorrelation decreases with the distance.

  15. Similarity-transformed perturbation theory on top of truncated local coupled cluster solutions: Theory and applications to intermolecular interactions

    SciTech Connect

    Azar, Richard Julian Head-Gordon, Martin

    2015-05-28

    Your correspondents develop and apply fully nonorthogonal, local-reference perturbation theories describing non-covalent interactions. Our formulations are based on a Löwdin partitioning of the similarity-transformed Hamiltonian into a zeroth-order intramonomer piece (taking local CCSD solutions as its zeroth-order eigenfunction) plus a first-order piece coupling the fragments. If considerations are limited to a single molecule, the proposed intermolecular similarity-transformed perturbation theory represents a frozen-orbital variant of the “(2)”-type theories shown to be competitive with CCSD(T) and of similar cost if all terms are retained. Different restrictions on the zeroth- and first-order amplitudes are explored in the context of large-computation tractability and elucidation of non-local effects in the space of singles and doubles. To accurately approximate CCSD intermolecular interaction energies, a quadratically growing number of variables must be included at zeroth-order.

  16. Crystallization force--a density functional theory concept for revealing intermolecular interactions and molecular packing in organic crystals.

    PubMed

    Li, Tonglei; Ayers, Paul W; Liu, Shubin; Swadley, Matthew J; Aubrey-Medendorp, Clare

    2009-01-01

    Organic molecules are prone to polymorphic formation in the solid state due to the rich diversity of functional groups that results in comparable intermolecular interactions, which can be greatly affected by the selection of solvent and other crystallization conditions. Intermolecular interactions are typically weak forces, such as van der Waals and stronger short-range ones including hydrogen bonding, that are believed to determine the packing of organic molecules during the crystal-growth process. A different packing of the same molecules leads to the formation of a new crystal structure. To disclose the underlying causes that drive the molecule to have various packing motifs in the solid state, an electronic concept or function within the framework of conceptual density functional theory has been developed, namely, crystallization force. The concept aims to describe the local change in electronic structure as a result of the self-assembly process of crystallization and may likely quantify the locality of intermolecular interactions that directs the molecular packing in a crystal. To assess the applicability of the concept, 5-methyl-2-[(2-nitrophenyl)amino]-3-thiophenecarbonitrile, so-called ROY, which is known to have the largest number of solved polymorphs, has been examined. Electronic calculations were conducted on the seven available crystal structures as well as on the single molecule. The electronic structures were analyzed and crystallization force values were obtained. The results indicate that the crystallization forces are able to reveal intermolecular interactions in the crystals, in particular, the close contacts that are formed between molecules. Strong correlations exist between the total crystallization force and lattice energy of a crystal structure, further suggesting the underlying connection between the crystallization force and molecular packing.

  17. Universal scaling of potential energy functions describing intermolecular interactions. II. The halide-water and alkali metal-water interactions

    SciTech Connect

    Werhahn, Jasper C.; Akase, Dai; Xantheas, Sotiris S.

    2014-08-14

    The scaled versions of the newly introduced [S. S. Xantheas and J. C. Werhahn, J. Chem. Phys.141, 064117 (2014)] generalized forms of some popular potential energy functions (PEFs) describing intermolecular interactions – Mie, Lennard-Jones, Morse, and Buckingham exponential-6 – have been used to fit the ab initio relaxed approach paths and fixed approach paths for the halide-water, X-(H2O), X = F, Cl, Br, I, and alkali metal-water, M+(H2O), M = Li, Na, K, Rb, Cs, interactions. The generalized forms of those PEFs have an additional parameter with respect to the original forms and produce fits to the ab initio data that are between one and two orders of magnitude better in the χ2 than the original PEFs. They were found to describe both the long-range, minimum and repulsive wall of the respective potential energy surfaces quite accurately. Overall the 4-parameter extended Morse (eM) and generalized Buckingham exponential-6 (gBe-6) potentials were found to best fit the ab initio data for these two classes of ion-water interactions. Finally, the fitted values of the parameter of the (eM) and (gBe-6) PEFs that control the repulsive wall of the potential correlate remarkably well with the ionic radii of the halide and alkali metal ions.

  18. Photo-induced spin transition of Iron(III) compounds with pi-pi intermolecular interactions.

    PubMed

    Hayami, Shinya; Hiki, Kenji; Kawahara, Takayoshi; Maeda, Yonezo; Urakami, Daisuke; Inoue, Katsuya; Ohama, Mitsuo; Kawata, Satoshi; Sato, Osamu

    2009-01-01

    Iron(III) spin-crossover compounds [Fe(pap)(2)]ClO(4) (1), [Fe(pap)(2)]BF(4) (2), [Fe(pap)(2)]PF(6) (3), [Fe(qsal)(2)]NCS (4), and [Fe(qsal)(2)]NCSe (5) (Hpap=2-(2-pyridylmethyleneamino)phenol and Hqsal=2-[(8-quinolinylimino)methyl]phenol) were prepared and their spin-transition properties investigated by magnetic susceptibility and Mössbauer spectroscopy measurements. The iron(III) compounds exhibited spin transition with thermal hysteresis. Single crystals of the iron(III) compounds were obtained as suitable solvent adducts for X-ray analysis, and structures in high-spin (HS) and low-spin (LS) states were revealed. Light-induced excited-spin-state trapping (LIESST) effects of the iron(III) compounds were induced by light irradiation at 532 nm for 1-3 and at 800 nm for 4 and 5. The activation energy E(a) and the low-temperature tunneling rate k(HL)(T-->0) of iron(III) LIESST compound 1 were estimated to be 1079 cm(-1) and 2.4x10(-8) s(-1), respectively, by HS-->LS relaxation experiments. The Huang-Rhys factor S of 1 was also estimated to be 50, which was similar to that expected for iron(II) complexes. It is thought that the slow relaxation in iron(III) systems is achieved by the large structural distortion between HS and LS states. Introduction of strong intermolecular interactions, such as pi-pi stacking, can also play an important role in the relaxation behavior, because it can enhance the structural distortion of the LIESST complex. PMID:19191246

  19. Subunit–subunit interactions are critical for proton sensitivity of ROMK: Evidence in support of an intermolecular gating mechanism

    PubMed Central

    Leng, Qiang; MacGregor, Gordon G.; Dong, Ke; Giebisch, Gerhard; Hebert, Steven C.

    2006-01-01

    The tetrameric K channel ROMK provides an important pathway for K secretion by the mammalian kidney, and the gating of this channel is highly sensitive to changes in cytosolic pH. Although charge–charge interactions have been implicated in pH sensing by this K channel tetramer, the molecular mechanism linking pH sensing and the gating of ion channels is poorly understood. The x-ray crystal structure KirBac1.1, a prokaryotic ortholog of ROMK, has suggested that channel gating involves intermolecular interactions of the N- and C-terminal domains of adjacent subunits. Here we studied channel gating behavior to changes in pH using giant patch clamping of Xenopus laevis oocytes expressing WT or mutant ROMK, and we present evidence that no single charged residue provides the pH sensor. Instead, we show that N–C- and C–C-terminal subunit–subunit interactions form salt bridges, which function to stabilize ROMK in the open state and which are modified by protons. We identify a highly conserved C–C-terminal arginine–glutamate (R-E) ion pair that forms an intermolecular salt bridge and responds to changes in proton concentration. Our results support the intermolecular model for pH gating of inward rectifier K channels. PMID:16446432

  20. Rubrene: The Interplay between Intramolecular and Intermolecular Interactions Determines the Planarization of Its Tetracene Core in the Solid State.

    PubMed

    Sutton, Christopher; Marshall, Michael S; Sherrill, C David; Risko, Chad; Brédas, Jean-Luc

    2015-07-15

    Rubrene is one of the most studied molecular semiconductors; its chemical structure consists of a tetracene backbone with four phenyl rings appended to the two central fused rings. Derivatization of these phenyl rings can lead to two very different solid-state molecular conformations and packings: One in which the tetracene core is planar and there exists substantive overlap among neighboring π-conjugated backbones; and another where the tetracene core is twisted and the overlap of neighboring π-conjugated backbones is completely disrupted. State-of-the-art electronic structure calculations show for all isolated rubrene derivatives that the twisted conformation is more favorable (by -1.7 to -4.1 kcal mol(-1)), which is a consequence of energetically unfavorable exchange-repulsion interactions among the phenyl side groups. Calculations based on available crystallographic structures reveal that planar conformations of the tetracene core in the solid state result from intermolecular interactions that can be tuned through well-chosen functionalization of the phenyl side groups and lead to improved intermolecular electronic couplings. Understanding the interplay of these intramolecular and intermolecular interactions provides insight into how to chemically modify rubrene and similar molecular semiconductors to improve the intrinsic materials electronic properties. PMID:26075966

  1. Noncovalent intermolecular interactions between dehydroepiandrosterone and the active site of human dehydroepiandrosterone sulphotransferase: A density functional theory based treatment

    NASA Astrophysics Data System (ADS)

    Astani, Elahe; Heshmati, Emran; Chen, Chun-Jung; Hadipour, Nasser L.; Shekarsaraei, Setareh

    2016-04-01

    A theoretical study was performed to characterize noncovalent intermolecular interactions, especially hydrogen bond (HB), in the active site of enzyme human dehydroepiandrosterone sulphotransferase (SULT2A1/DHEA) using the local (M06-L) and hybrid (M06, M06-2X) meta-GGA functionals of density functional theory (DFT). Results revealed that DHEA is able to form HBs with residues His99, Tyr231, Met137 and Met16 in the active site of the SULT2A1/DHEA. It was found that DHEA interacts with the other residues through electrostatic and Van der Waals interactions.

  2. Intermolecular interactions of trifluorohalomethanes with Lewis bases in the gas phase: An ab initio study

    SciTech Connect

    Wang, Yi-Siang; Yin, Chih-Chien; Chao, Sheng D.

    2014-10-07

    We perform an ab initio computational study of molecular complexes with the general formula CF{sub 3}X—B that involve one trifluorohalomethane CF{sub 3}X (X = Cl or Br) and one of a series of Lewis bases B in the gas phase. The Lewis bases are so chosen that they provide a range of electron-donating abilities for comparison. Based on the characteristics of their electron pairs, we consider the Lewis bases with a single n-pair (NH{sub 3} and PH{sub 3}), two n-pairs (H{sub 2}O and H{sub 2}S), two n-pairs with an unsaturated bond (H{sub 2}CO and H{sub 2}CS), and a single π-pair (C{sub 2}H{sub 4}) and two π-pairs (C{sub 2}H{sub 2}). The aim is to systematically investigate the influence of the electron pair characteristics and the central atom substitution effects on the geometries and energetics of the formed complexes. The counterpoise-corrected supermolecule MP2 and coupled-cluster single double with perturbative triple [CCSD(T)] levels of theory have been employed, together with a series of basis sets up to aug-cc-pVTZ. The angular and radial configurations, the binding energies, and the electrostatic potentials of the stable complexes have been compared and discussed as the Lewis base varies. For those complexes where halogen bonding plays a significant role, the calculated geometries and energetics are consistent with the σ-hole model. Upon formation of stable complexes, the C–X bond lengths shorten, while the C–X vibrational frequencies increase, thus rendering blueshifting halogen bonds. The central atom substitution usually enlarges the intermolecular bond distances while it reduces the net charge transfers, thus weakening the bond strengths. The analysis based on the σ-hole model is grossly reliable but requires suitable modifications incorporating the central atom substitution effects, in particular, when interaction components other than electrostatic contributions are involved.

  3. Intermolecular interactions in rifabutin-2-hydroxypropyl-β-cyclodextrin-water solutions, according to solubility data

    NASA Astrophysics Data System (ADS)

    Anshakova, A. V.; Vinogradov, E. V.; Sedush, N. G.; Kurtikyan, T. S.; Zhokhov, S. S.; Polshakov, V. I.; Ermolenko, Yu. V.; Konyukhov, V. Yu.; Maksimenko, O. O.; Gelperin, S. E.

    2016-05-01

    The formulations of rifabutin (RB) and 2-hydroxypropyl-β-cyclodextrin (HP-β-CD), obtained using different preparation techniques, are studied by means of differential scanning calorimetry and molecular spectroscopy (FTIR, NMR, Raman scattering, and photon correlation light scattering). It is established that molecules of RB do not form inclusion complexes with the molecules of HP-β-CD, and an increase in the solubility of RB determined earlier is caused by the formation of weak intermolecular associates.

  4. Intermolecular Interactions in Crystalline Theobromine as Reflected in Electron Deformation Density and (13)C NMR Chemical Shift Tensors.

    PubMed

    Bouzková, Kateřina; Babinský, Martin; Novosadová, Lucie; Marek, Radek

    2013-06-11

    An understanding of the role of intermolecular interactions in crystal formation is essential to control the generation of diverse crystalline forms which is an important concern for pharmaceutical industry. Very recently, we reported a new approach to interpret the relationships between intermolecular hydrogen bonding, redistribution of electron density in the system, and NMR chemical shifts (Babinský et al. J. Phys. Chem. A, 2013, 117, 497). Here, we employ this approach to characterize a full set of crystal interactions in a sample of anhydrous theobromine as reflected in (13)C NMR chemical shift tensors (CSTs). The important intermolecular contacts are identified by comparing the DFT-calculated NMR CSTs for an isolated theobromine molecule and for clusters composed of several molecules as selected from the available X-ray diffraction data. Furthermore, electron deformation density (EDD) and shielding deformation density (SDD) in the proximity of the nuclei involved in the proposed interactions are calculated and visualized. In addition to the recently reported observations for hydrogen bonding, we focus here particularly on the stacking interactions. Although the principal relations between the EDD and CST for hydrogen bonding (HB) and stacking interactions are similar, the real-space consequences are rather different. Whereas the C-H···X hydrogen bonding influences predominantly and significantly the in-plane principal component of the (13)C CST perpendicular to the HB path and the C═O···H hydrogen bonding modulates both in-plane components of the carbonyl (13)C CST, the stacking modulates the out-of-plane electron density resulting in weak deshielding (2-8 ppm) of both in-plane principal components of the CST and weak shielding (∼ 5 ppm) of the out-of-plane component. The hydrogen-bonding and stacking interactions may add to or subtract from one another to produce total values observed experimentally. On the example of theobromine, we demonstrate

  5. Intermolecular interactions at early stage of protein/detergent particle association induced by salt/polyethylene glycol mixtures.

    PubMed

    Odahara, Takayuki; Odahara, Koji

    2016-04-01

    Mixtures of neutral salts and polyethylene glycol are used for various purposes in biological studies. Although the effects of each component of the mixtures are theoretically well investigated, comprehension of their integrated effects remains insufficient. In this work, their roles and effects as a precipitant were clarified by studying dependence of precipitation curves on salt concentration for integral membrane protein/detergent particles of different physicochemical properties. The dependence of precipitation curves was reasonably related to intermolecular interactions among relevant molecules such as protein, detergent and polyethylene glycol by considering their physicochemical properties. The obtained relationships are useful as basic information to learn the early stage of biological macromolecular associations.

  6. Intermolecular interactions in aqueous solutions of gallic acid at 296-306 K according to spectrofluorimetry and densimetry data

    NASA Astrophysics Data System (ADS)

    Grigoryan, K. R.; Sargsyan, L. S.

    2015-12-01

    Features of intermolecular interactions in aqueous solutions of gallic acid (GA) are studied by means of densimetry and fluorescence spectroscopy (intrinsic fluorescence, 2D spectra, and excitation/ emission matrix fluorescence spectra, 3D) at 296.15, 301.15, and 306.15 K in the concentration range of 5.88 × 10-4-5.88 × 10-2 mol L-1. It is shown by analyzing the concentration and temperature dependences of the apparent molar volumes and fluorescence parameters of GA that the equilibrium between nonassociated and associated species in the solution and the hydration of these species undergo changes.

  7. Ethyl 4-dodecyl-3,5-dimethyl-1H-pyrrole-2-carboxylate: intermolecular interactions in an amphiphilic pyrrole.

    PubMed

    Ramos Silva, Manuela; Matos Beja, Ana; Paixão, Jose Antonio; Sobral, Abilio J F N; Lopes, Susana H; Rocha Gonsalves, A M d'A

    2002-09-01

    The title compound, C(21)H(37)NO(2), is a new amphiphilic pyrrole with a long hydrocarbon chain, which will be used as a precursor for the synthesis of Langmuir-Blodgett films of porphyrins. Molecules related by an inversion centre are joined head-to-head into dimers by strong N-H.O hydrogen bonds. The dimers pack in the structure with their carbon chains parallel to one another, thereby forming alternating layers of carbon chains and pyrrole heads. The structure is further stabilized by two weak C-H.pi intermolecular interactions, thereby saturating the hydrogen-bonding capability of the aromatic pi-electron clouds.

  8. Coordination compounds of tetravalent silicon, germanium and tin: the structure, chemical bonding and intermolecular interactions in them

    NASA Astrophysics Data System (ADS)

    Korlyukov, A. A.

    2015-04-01

    The review is devoted to analysis and generalization of the results of (i) quantum chemical studies on the structure, chemical bonding and intermolecular interactions in coordination compounds of tetravalent silicon, germanium and tin in crystals, in solutions and in the gas phase and (ii) experimental investigations of the electron density distribution in these systems. The bibliography includes 147 references. In memoriam of Corresponding Member of the Russian Academy of Sciences M Yu Antipin (1951 - 2013), Academician of the Russian Academy of Sciences M G Voronkov (1921 - 2014) and Dr. S P Knyazev, Lomonosov Moscow University of Fine Chemical Technology (1949 - 2012).

  9. Intermolecular interactions in mixtures of ethyl formate with methanol, ethanol, and 1-propanol on density, viscosity, and ultrasonic data

    NASA Astrophysics Data System (ADS)

    Elangovan, S.; Mullainathan, S.

    2014-12-01

    Density (ρ), viscosity (η), and ultrasonic velocity ( U) have been measured for binary mixtures of ethyl formate with methanol, ethanol, and 1-propanol at 303 K. From the experimental data, adiabatic compressibility (β), acoustic impedance ( Z), viscous relaxation time (τ), free length ( L f), free volume ( V f), internal pressure (πi), and Gibbs free energy (Δ G) have been deduced. It is shown that strength of intermolecular interactions between ethyl formate with selected 1-alcohols were in the order of methanol < ethanol < 1-propanol.

  10. Intermolecular Tl···H-C anagostic interactions in luminescent pyridyl functionalized thallium(I) dithiocarbamates.

    PubMed

    Kumar, Vinod; Singh, Vikram; Gupta, Ajit N; Drew, Michael G B; Singh, Nanhai

    2015-01-28

    Crystal structures of novel pyridyl functionalised [Tl(L)]∞ (L = (N-benzyl-N-methylpyridyl) dithiocarbamate(L1) 1, bis(N-methylpyridyl) dithiocarbamate(L2) 2, (N-methyl(1,4-benzodioxane-6-yl)-N-methylpyridyl)dithiocarbamate(L3) 3, (N-ferrocenyl-N-methylpyridyl) dithiocarbamate(L4) 4) complexes revealed rare intermolecular C-H···Tl anagostic and C-S···Tl interactions forming a six-membered chelate ring about the metal center, which have been assessed by DFT calculations. The strong thallophilic bonding is responsible for the strong luminescent characteristics of the complexes in the solid phase. PMID:25461980

  11. Experimental and theoretical electron-density study of three isoindole derivatives: topological and Hirshfeld surface analysis of weak intermolecular interactions.

    PubMed

    Chęcińska, Lilianna; Grabowsky, Simon; Małecka, Magdalena; Rybarczyk-Pirek, Agnieszka J; Jóźwiak, Andrzej; Paulmann, Carsten; Luger, Peter

    2011-12-01

    A combined experimental and theoretical study of three isoindole derivatives was made on the basis of a topological analysis of their electron-density distributions. Experimental electron densities were determined from high-resolution X-ray diffraction data sets measured with synchrotron radiation at 100 K, whereas theoretical calculations were performed using DFT methods at the B3LYP\\6-311++G(3df,3pd) level of approximation. Both experimental and theoretical models are in good agreement with each other. Since the analysed structures possess a variety of hydrogen-bonding interactions, weak intermolecular contacts of C-H···C(π), C,N(π)···C,N(π) and H···H types were subject to our special interest and are discussed in detail. They were characterized quantitatively and qualitatively by topological properties using Bader's Atoms in Molecules theory and by mapping the electron-density distribution, electrostatic potential and a geometric function on the Hirshfeld surface. This way the forces and directions of intermolecular interactions as present on the molecular surfaces were depicted and described. These interactions not only guide crystal packing, but are likewise important for recognition processes involving (aza)isoindole fragments in a biological environment.

  12. First-order exchange energy of intermolecular interactions from coupled cluster density matrices and their cumulants.

    PubMed

    Korona, Tatiana

    2008-06-14

    A new method for the calculation of the first-order intermolecular exchange energy is proposed. It is based on the partition of two-particle density matrices of monomers into the antisymmetrized product of one-particle density matrices and the remaining cumulant part. This partition is used to modify the formula for the first-order exchange energy developed by Moszynski et al. [J. Chem. Phys. 100, 5080 (1994)]. The new expression has been applied for the case of monomer density matrices derived from the expectation value expression for the coupled cluster singles and doubles wave function. In this way an accurate method of calculation of the first-order exchange energy for many-electron systems has been obtained, where both monomers are described on the coupled cluster level. Numerical results are presented for several benchmark van der Waals systems to illustrate the performance of the new approach.

  13. Circular dichroism studies on intermolecular interactions of amphotericin B in ionic liquid-rich environments.

    PubMed

    Jameson, Laramie P; Dzyuba, Sergei V

    2013-07-01

    Aggregation of amphotericin B (AmB) in an ionic liquid-rich environment was investigated using circular dichroism (CD) spectroscopy. It was found that nature of the ionic liquids' anion had a strong impact not only on the aggregation of AmB, but more importantly on the nature of AmB aggregates, as observed in the asymmetry of the exciton couplet of the aggregate in CD spectra. Unique CD signals for AmB aggregates were observed in three different 1-butyl-3-methylimidazolium ionic liquid solutions: [C4 -mim]Br favored the formation of AmB aggregates that were similar to those found in water, whereas [C4 -mim]BF4 and [C4 -mim]NO3 produced AmB aggregates that were different from each other and those found in water. The obtained results suggest that the designer solvent ability of ionic liquids could be expanded to address numerous intermolecular processes.

  14. Structure and intermolecular interactions in selected binary solutions studied by X-ray methods

    NASA Astrophysics Data System (ADS)

    Drozdowski, Henryk; Romaniuk, Anna; Błaszczak, Zdzisław

    2013-12-01

    The results of X-ray structural studies of liquid chloroanisole C6H4OCH3Cl and 10% solutions of chloroanisole in 1,4-dimethylbenzene C8H10 are presented. It is the first paper on an X-ray diffraction study of the liquid solutions of chloroanisole. The X-ray measurements were made at 293 K for the scattering angle range 2Θ varying from 6° to 120°. Averaged scattered X-ray angular distributions I¯(S) were determined. The angular distributions of the intensity of X-ray scattered by 10% solutions of chloroanisole in 1,4-dimethylbenzene were compared to the angular distributions obtained for liquid ortho-, meta- and para-chloroanisole. The differential radial distribution functions of electron density 4πr∑j,knK[ρk(r)-ρ0] were numerically found using the Fourier analysis from a modified Warren, Krutter and Morningstar equation. To the maxima of DRDFs, interatomic and intermolecular distances were assigned. The use of short-wave radiation from an X-ray tube with a molybdenum anode permitted determination of the spheres of intermolecular ordering in the studied liquids and their solutions. The experimental results were used to plot models of the most highly probable mutual disposition of the molecules in liquid chloroanisole and their solutions. The benzene rings of two molecules are situated in parallel plane what results in antiparallel setting of the dipole moments of the chloroanisole molecules. X-ray structural analysis was applied to determine the packing coefficients of chloroanisole molecules. The results obtained in this paper confirm the specific structural properties of the solutions studied.

  15. Novel aromatic N-oxyl radical based on the benzo[ g]quinoline skeleton: synthesis and intermolecular ferromagnetic interaction

    NASA Astrophysics Data System (ADS)

    Yao, Masaru; Inoue, Hidenari; Yoshioka, Naoki

    2005-01-01

    A novel stable organic radical, 2,2-diphenyl-1,2-dihydrobenzo[ g]quinoline- N-oxyl ( 2), has been synthesized and structurally characterized in order to examine the ring extension effect on the known derivative, 2,2-diphenyl-1,2-dihydroquinoline- N-oxyl ( 1). Based on SQUID measurement, 2 exhibited a ferromagnetic interaction obeying the Bleaney-Bowers equation with 2 J = +4.6 cm -1. The X-ray analysis revealed an intermolecular edge-edge association of the aryl ring and N-oxyl moiety in the crystal of 2. The bifurcated edge-edge contacts between the α-spin site (nitroxyl O atom) and the β-spin site (aryl-H atoms) are responsible for the ferromagnetic interaction of 2.

  16. Role of Intramolecular Aromatic π-π Interactions in the Self-Assembly of Di-l-Phenylalanine Dipeptide Driven by Intermolecular Interactions: Effect of Alanine Substitution.

    PubMed

    Reddy, Samala Murali Mohan; Shanmugam, Ganesh

    2016-09-19

    Although the role of intermolecular aromatic π-π interactions in the self-assembly of di-l-phenylalanine (l-Phe-l-Phe, FF), a peptide that is known for hierarchical structure, is well established, the influence of intramolecular π-π interactions on the morphology of the self-assembled structure of FF has not been studied. Herein, the role of intramolecular aromatic π-π interactions is investigated for FF and analogous alanine (Ala)-containing dipeptides, namely, l-Phe-l-Ala (FA) and l-Ala-l-Phe (AF). The results reveal that these dipeptides not only form self-assemblies, but also exhibit remarkable differences in structural morphology. The morphological differences between FF and the analogues indicate the importance of intramolecular π-π interactions, and the structural difference between FA and AF demonstrates the crucial role of the nature of intramolecular side-chain interactions (aromatic-aliphatic or aliphatic-aromatic), in addition to intermolecular interactions, in deciding the final morphology of the self-assembled structure. The current results emphasise that intramolecular aromatic π-π interaction may not be essential to induce self-assembly in smaller peptides, and π (aromatic)-alkyl or alkyl-π (aromatic) interactions may be sufficient. This work also illustrates the versatility of aromatic and a combination of aromatic and aliphatic residues in dipeptides in the formation of structurally diverse self-assembled structures.

  17. Nonlinearity of cationic aromatic amine sorption to aluminosilicates and soils: role of intermolecular cation-π interactions.

    PubMed

    Vasudevan, Dharni; Arey, Teresa A; Dickstein, Daniel R; Newman, Mark H; Zhang, Tina Y; Kinnear, Heather M; Bader, Mohammad M

    2013-12-17

    Through the study of substituted anilines and benzylamines, we demonstrated that cooperative cation-π, π-π, and van der Waals interactions can increase aromatic cationic amine sorption to Na/Ca-montmorillonite well beyond the extent expected by cation exchange alone. Cationic amines exhibiting cooperative interactions displayed nonlinear S-shaped isotherms and increased affinity for the sorbent at low surface coverage; parallel cation exchange and cooperative interactions were noted above a sorption threshold of 0.3-2.3% of exchange sites occupied. Our experiments revealed the predominance of intermolecular cation-π interactions, which occurred between the π system of a compound retained on the surface via cation exchange and the cationic amine group of an adjacent molecule. Compounds with greater amine charge/area and electron-donating substituents that allowed for greater electron density at the center of the aromatic ring showed a greater potential for cation-π interactions on montmorillonite surfaces. However, benzylamine sorption to nine soils, at charge loadings comparable to the experiments with montmorillonite, revealed no significant cooperative interactions. It appears that cation-π interactions may be likely in soils with exceptionally high cation exchange capacities (>0.7 mol charge/kg) and low organic matter contents, abundant in montmorillonite and other expanding clay minerals.

  18. Formation of intermolecular crosslinks by the actinocin derivatives with DNA in interaction under conditions of semidilute solution

    NASA Astrophysics Data System (ADS)

    Osinnikova, D. N.; Moroshkina, E. B.

    2014-12-01

    Interaction of native calf thymus DNA (ctDNA) with the actinocin derivatives containing protonated diethylamino groups, dimethylamino groups and unsubstituted amino groups and having different length of the alkyl chain have been studied by the method of viscometry. An anomalous hydrodynamic behavior of solutions of DNA with very low amount of ligands prepared under conditions of semidilute solution was revealed. We assumed that such an anomalous behavior of solutions of DNA complexes with actinocin derivatives associated with the formation of intermolecular crosslinks while the preparation of the complex was in terms of overlapping of macromolecular coils in solution. Comparative study of the hydrodynamic behavior of the DNA complexes with various actinocin structures lead us to the conclusion of the formation of crosslinks by the compounds containing protonated diethylamino groups.

  19. Rational design of viscosity reducing mutants of a monoclonal antibody: hydrophobic versus electrostatic inter-molecular interactions.

    PubMed

    Nichols, Pilarin; Li, Li; Kumar, Sandeep; Buck, Patrick M; Singh, Satish K; Goswami, Sumit; Balthazor, Bryan; Conley, Tami R; Sek, David; Allen, Martin J

    2015-01-01

    High viscosity of monoclonal antibody formulations at concentrations ≥100 mg/mL can impede their development as products suitable for subcutaneous delivery. The effects of hydrophobic and electrostatic intermolecular interactions on the solution behavior of MAB 1, which becomes unacceptably viscous at high concentrations, was studied by testing 5 single point mutants. The mutations were designed to reduce viscosity by disrupting either an aggregation prone region (APR), which also participates in 2 hydrophobic surface patches, or a negatively charged surface patch in the variable region. The disruption of an APR that lies at the interface of light and heavy chain variable domains, VH and VL, via L45K mutation destabilized MAB 1 and abolished antigen binding. However, mutation at the preceding residue (V44K), which also lies in the same APR, increased apparent solubility and reduced viscosity of MAB 1 without sacrificing antigen binding or thermal stability. Neutralizing the negatively charged surface patch (E59Y) also increased apparent solubility and reduced viscosity of MAB 1, but charge reversal at the same position (E59K/R) caused destabilization, decreased solubility and led to difficulties in sample manipulation that precluded their viscosity measurements at high concentrations. Both V44K and E59Y mutations showed similar increase in apparent solubility. However, the viscosity profile of E59Y was considerably better than that of the V44K, providing evidence that inter-molecular interactions in MAB 1 are electrostatically driven. In conclusion, neutralizing negatively charged surface patches may be more beneficial toward reducing viscosity of highly concentrated antibody solutions than charge reversal or aggregation prone motif disruption.

  20. Rational design of viscosity reducing mutants of a monoclonal antibody: Hydrophobic versus electrostatic inter-molecular interactions

    PubMed Central

    Nichols, Pilarin; Li, Li; Kumar, Sandeep; Buck, Patrick M; Singh, Satish K; Goswami, Sumit; Balthazor, Bryan; Conley, Tami R; Sek, David; Allen, Martin J

    2015-01-01

    High viscosity of monoclonal antibody formulations at concentrations ≥100 mg/mL can impede their development as products suitable for subcutaneous delivery. The effects of hydrophobic and electrostatic intermolecular interactions on the solution behavior of MAB 1, which becomes unacceptably viscous at high concentrations, was studied by testing 5 single point mutants. The mutations were designed to reduce viscosity by disrupting either an aggregation prone region (APR), which also participates in 2 hydrophobic surface patches, or a negatively charged surface patch in the variable region. The disruption of an APR that lies at the interface of light and heavy chain variable domains, VH and VL, via L45K mutation destabilized MAB 1 and abolished antigen binding. However, mutation at the preceding residue (V44K), which also lies in the same APR, increased apparent solubility and reduced viscosity of MAB 1 without sacrificing antigen binding or thermal stability. Neutralizing the negatively charged surface patch (E59Y) also increased apparent solubility and reduced viscosity of MAB 1, but charge reversal at the same position (E59K/R) caused destabilization, decreased solubility and led to difficulties in sample manipulation that precluded their viscosity measurements at high concentrations. Both V44K and E59Y mutations showed similar increase in apparent solubility. However, the viscosity profile of E59Y was considerably better than that of the V44K, providing evidence that inter-molecular interactions in MAB 1 are electrostatically driven. In conclusion, neutralizing negatively charged surface patches may be more beneficial toward reducing viscosity of highly concentrated antibody solutions than charge reversal or aggregation prone motif disruption. PMID:25559441

  1. Characterization of intermolecular interaction between cyanidin-3-glucoside and bovine serum albumin: spectroscopic and molecular docking methods.

    PubMed

    Shi, Jie-hua; Wang, Jing; Zhu, Ying-yao; Chen, Jun

    2014-08-01

    The intermolecular interaction between cyanidin-3-glucoside (Cy-3-G) and bovine serum albumin (BSA) was investigated using fluorescence, circular dichroism and molecular docking methods. The experimental results revealed that the fluorescence quenching of BSA at 338 nm by Cy-3-G resulted from the formation of Cy-3-G-BSA complex. The number of binding sites (n) for Cy-3-G binding on BSA was approximately equal to 1. The experimental and molecular docking results revealed that after binding Cy-3-G to BSA, Cy-3-G is closer to the Tyr residue than the Trp residue, the secondary structure of BSA almost not change, the binding process of Cy-3-G with BSA is spontaneous, and Cy-3-G can be inserted into the hydrophobic cavity of BSA (site II') in the binding process of Cy-3-G with BSA. Moreover, based on the sign and magnitude of the enthalpy and entropy changes (ΔH(0)  = - 29.64 kcal/mol and ΔS(0)  = - 69.51 cal/mol K) and the molecular docking results, it can be suggested that the main interaction forces of Cy-3-G with BSA are Van der Waals and hydrogen bonding interactions.

  2. Investigation of intermolecular interactions between single walled nanotubes and conjugated oligomers using the dispersion-corrected DFT methods

    NASA Astrophysics Data System (ADS)

    Lagowski, Jolanta B.; Aljohani, Suad; Khan, M. Zahidul H.; Zhao, Yuming

    The area of carbon nanotubes (CNT)-polymer composites has been progressing rapidly in recent years. Pure CNT and CNT-polymer composites have many useful (industry related) properties: ranging from electronic electrical conductivity to superior strength. However the full potential of using CNTs as reinforcements (in say a polymer matrix) has been severely limited because of complications associated with the dispersion of CNTs. CNTs tend to entangle with each other forming materials that have properties that fall short of the expectations. The goal of this work is to identify the type of conjugated oligomers that are best suited for the dispersion of single walled CNT (SWCNT). For this purpose, various methods of dispersion corrected density functional theory (DFT-D/B97D, /WB97XD, /CAM-B3LYP) have been used to investigate the interaction between the SWCNT and the organic conjugated oligomers with different end groups (aldehyde (ALD) and dithiafulvenyl (DTF)). We investigate the effect of intermolecular interactions on the structure, polarity and energetics of the oligomers and SWCNT combinations. The comparison of results obtained using different DFT approximations is made. Our results show that DFT-endcapped oligomer interact more strongly with CNT than ALD-endcapped oligomer. The financial support from NSERC, SACBC and Memorial University and the computational resources from Compute Canada were received.

  3. An intermolecular electrostatic interaction controls the prepore-to-pore transition in a cholesterol-dependent cytolysin

    PubMed Central

    Wade, Kristin R.; Hotze, Eileen M.; Kuiper, Michael J.; Morton, Craig J.; Parker, Michael W.; Tweten, Rodney K.

    2015-01-01

    β-Barrel pore-forming toxins (βPFTs) form an obligatory oligomeric prepore intermediate before the formation of the β-barrel pore. The molecular components that control the critical prepore-to-pore transition remain unknown for βPFTs. Using the archetype βPFT perfringolysin O, we show that E183 of each monomer within the prepore complex forms an intermolecular electrostatic interaction with K336 of the adjacent monomer on completion of the prepore complex. The signal generated throughout the prepore complex by this interaction irrevocably commits it to the formation of the membrane-inserted giant β-barrel pore. This interaction supplies the free energy to overcome the energy barrier (determined here to be ∼19 kcal/mol) to the prepore-to-pore transition by the coordinated disruption of a critical interface within each monomer. These studies provide the first insight to our knowledge into the molecular mechanism that controls the prepore-to-pore transition for a βPFT. PMID:25646411

  4. Intermolecular interactions in ternary solutions of some 1,2,4-triazolium ylids studied by spectral means

    NASA Astrophysics Data System (ADS)

    Closca, Valentina; Melniciuc-Puica, Nicoleta; Dorohoi, Dana Ortansa; Benchea, A. C.

    2014-08-01

    Triazolium ylids are dipolar molecules with separated charges in their ground electronic state; the positive charge is located on one Nitrogen atom belonging to the heterocycle and the negative charge is located near the ylid carbanion. The intramolecular charge transfer from the carbanion to heterocycle gives a visible electronic absorption band, very sensitive to the solvent nature. Its position in the wavenumber scale offers information about the intermolecular interactions in which the ylid molecules are engaged. The spectral study revealed the presence of both universal and specific interactions in solutions of 1,2,4-triazolium ylids with protic solvents. By choosing adequate binary solvents, the contribution of the specific interaction of the weak hydrogen bond between the -OH atomic group of the protic solvents and the ylid carbanion can be estimated. Ternary solutions of the studied ylids achieved with Methanol +Benzene, Water + Ethanol and 1,3 Propanediol + Dimethyl formamide binary solvents are analyzed from spectral point of view and the difference between the potential energies in molecular pairs of the types: 1,2,4-triazolium ylid-protic solvent and 1,2,4-triazolium ylid-non protic were estimated on the basis of the statistic cell model of ternary solutions.

  5. Reliable prediction of three-body intermolecular interactions using dispersion-corrected second-order Møller-Plesset perturbation theory

    SciTech Connect

    Huang, Yuanhang; Beran, Gregory J. O.

    2015-07-28

    Three-body and higher intermolecular interactions can play an important role in molecular condensed phases. Recent benchmark calculations found problematic behavior for many widely used density functional approximations in treating 3-body intermolecular interactions. Here, we demonstrate that the combination of second-order Møller-Plesset (MP2) perturbation theory plus short-range damped Axilrod-Teller-Muto (ATM) dispersion accurately describes 3-body interactions with reasonable computational cost. The empirical damping function used in the ATM dispersion term compensates both for the absence of higher-order dispersion contributions beyond the triple-dipole ATM term and non-additive short-range exchange terms which arise in third-order perturbation theory and beyond. Empirical damping enables this simple model to out-perform a non-expanded coupled Kohn-Sham dispersion correction for 3-body intermolecular dispersion. The MP2 plus ATM dispersion model approaches the accuracy of O(N{sup 6}) methods like MP2.5 or even spin-component-scaled coupled cluster models for 3-body intermolecular interactions with only O(N{sup 5}) computational cost.

  6. Intermolecular interaction of thiosemicarbazone derivatives to solvents and a potential Aedes aegypti target

    NASA Astrophysics Data System (ADS)

    da Silva, João Bosco P.; Hallwass, Fernando; da Silva, Aluizio G.; Moreira, Diogo Rodrigo; Ramos, Mozart N.; Espíndola, José Wanderlan P.; de Oliveira, Ana Daura T.; Brondani, Dalci José; Leite, Ana Cristina L.; Merz, Kenneth M.

    2015-08-01

    DFT calculations were used to access information about structure, energy and electronic properties of series of phenyl- and phenoxymethyl-(thio)semicarbazone derivatives with demonstrated activity against the larvae of Aedes aegypti in stage L4. The way as the thiosemicarbazone derivatives can interact with solvents like DMSO and water were analyzed from the comparison between calculated and experimental 1H NMR chemical shifts. The evidences of thiosemicarbazone derivatives making H-bond interaction to solvent have provide us insights on how they can interact with a potential A. aegypti's biological target, the Sterol Carrier Protein-2.

  7. Intermolecular and Intramolecular Interactions Regulate Catalytic Activity of Myotonic Dystrophy Kinase-Related Cdc42-Binding Kinase α

    PubMed Central

    Tan, Ivan; Seow, Kah Tong; Lim, Louis; Leung, Thomas

    2001-01-01

    Myotonic dystrophy kinase-related Cdc42-binding kinase (MRCK) is a Cdc42-binding serine/threonine kinase with multiple functional domains. We had previously shown MRCKα to be implicated in Cdc42-mediated peripheral actin formation and neurite outgrowth in HeLa and PC12 cells, respectively. Here we demonstrate that native MRCK exists in high-molecular-weight complexes. We further show that the three independent coiled-coil (CC) domains and the N-terminal region preceding the kinase domain are responsible for intermolecular interactions leading to MRCKα multimerization. N terminus-mediated dimerization and consequent transautophosphorylation are critical processes regulating MRCKα catalytic activities. A region containing the two distal CC domains (CC2 and CC3; residues 658 to 930) was found to interact intramolecularly with the kinase domain and negatively regulates its activity. Its deletion also resulted in an active kinase, confirming a negative autoregulatory role. We provide evidence that the N terminus-mediated dimerization and activation of MRCK and the negative autoregulatory kinase–distal CC interaction are two mutually exclusive events that tightly regulate the catalytic state of the kinase. Disruption of this interaction by a mutant kinase domain resulted in increased kinase activity. MRCK kinase activity was also elevated when cells were treated with phorbol ester, which can interact directly with a cysteine-rich domain next to the distal CC domain. We therefore suggest that binding of phorbol ester to MRCK releases its autoinhibition, allowing N-terminal dimerization and subsequent kinase activation. PMID:11283256

  8. Intra- and intermolecular dispersion interactions in [N]cycloparaphenylenes: do they influence their structural and electronic properties?

    PubMed

    Climent-Medina, José-Vicente; Pérez-Jiménez, Ángel-José; Moral, Mónica; San-Fabián, Emilio; Sancho-García, Juan-Carlos

    2015-05-18

    Cycloparaphenylenes (CPPs) are nanosized structures with unique isolated and bulk properties, and are synthetic targets for the template-driven bottom-up synthesis of carbon nanotubes. Thus, a systematic understanding of the supramolecular order at the nanoscale is of utmost relevance for molecular engineering. In this study, it is found that intramolecular noncovalent (dispersion) interactions must be taken into account for obtaining accurate estimates of the structural and optoelectronic properties of [n]CPP compounds, and their influence as the number of repeat units increases from n=4 to n=12 is also analyzed, both in the gas phase and in solution. The supramolecular self-assembly, for which both intra- and intermolecular noncovalent interactions are relevant, of [6]CPP is also investigated by calculating the binding energies of dimers taken along several crystal directions. These are also used to estimate the cohesive energy of the crystal, which is compared to the value obtained by means of dispersion-corrected DFT calculations using periodic boundary conditions. The reasonable agreement between both computational strategies points towards a first estimate of the [6]CPP cohesive energy of around 50 kcal mol(-1) . PMID:25787110

  9. [Intermolecular Interactions between Cytisine and Bovine Serum Albumin A Synchronous Fluorescence Spectroscopic Analysis and Molecular Docking Research].

    PubMed

    Wu, Yu-hang; Han, Zhong-bao; Ma, Jia-ze; He, Yan; Liu, Li-yan; Xin, Shi-gang; Yu, Zhan

    2016-03-01

    Cytisine (Cy) is one of the alkaloids that exist naturally in the plant genera Laburnum of the family Fabaceae. With strong bioactivities, Cy is commercialized for smoking cessation for years. In this work, the study of intermolecular interactions between Cy and bovine serum albumin (BSA) was performed by applying fluorescence spectroscopic methods under simulated physiological conditions. The mechanism of fluorescence quenching of BSA by Cy was also studied. Parameters such as bathing temperature, time and solution pH were investigated to optimize the fluorescence quenching. The binding type, binding ratio and binding constant between BSA and Cy were calculated by using the Stem-Volmer equation. Experimental results indicated that Cy can quench the fluorescent emission of BSA statically by forming a 1 : 1 type non-covalent complex and the binding constant is 5.6 x 10(3) L x mol(-1). Synchronous fluorescence spectral research shows Cy may affect the fluorescence emission of Trp residues of BSA. Furthermore, molecular docking is utilized to model the complex and probe the plausible quenching mechanism. It can be noted that the hydrogen bindings and hydrophobic interactions between Cy and BSA change the micro-environment of Trp213, which leads to the fluorescence quenching of BSA. PMID:27400521

  10. Synthesis and description of intermolecular interactions in new sulfonamide derivatives of tranexamic acid

    NASA Astrophysics Data System (ADS)

    Ashfaq, Muhammad; Arshad, Muhammad Nadeem; Danish, Muhammad; Asiri, Abdullah M.; Khatoon, Sadia; Mustafa, Ghulam; Zolotarev, Pavel N.; Butt, Rabia Ayub; Şahin, Onur

    2016-01-01

    Tranexamic acid (4-aminomethyl-cyclohexanecarboxylic acid) was reacted with sulfonyl chlorides to produce structurally related four sulfonamide derivatives using simple and environmental friendly method to check out their three-dimensional behavior and van der Walls interactions. The molecules were crystallized in different possibilities, as it is/after alkylation at its O and N atoms/along with a co-molecule. All molecules were crystallized in monoclinic crystal system with space group P21/n, P21/c and P21/a. X-ray studies reveal that the molecules stabilized themselves by different kinds of hydrogen bonding interactions. The molecules are getting connected through O-H⋯O hydrogen bonds to form inversion dimers which are further connected through N-H⋯O interactions. The molecules in which N and O atoms were alkylated showed non-classical interaction and generated centro-symmetric R22(24) ring motif. The co-crystallized host and guest molecules are connected to each other via O-H⋯O interactions to generate different ring motifs. By means of the ToposPro software an analysis of the topologies of underlying nets that correspond to molecular packings and hydrogen-bonded networks in structures under consideration was carried out.

  11. The role of intermolecular interactions in the prediction of the phase equilibria of carbon dioxide hydrates.

    PubMed

    Costandy, Joseph; Michalis, Vasileios K; Tsimpanogiannis, Ioannis N; Stubos, Athanassios K; Economou, Ioannis G

    2015-09-01

    The direct phase coexistence methodology was used to predict the three-phase equilibrium conditions of carbon dioxide hydrates. Molecular dynamics simulations were performed in the isobaric-isothermal ensemble for the determination of the three-phase coexistence temperature (T3) of the carbon dioxide-water system, at pressures in the range of 200-5000 bar. The relative importance of the water-water and water-guest interactions in the prediction of T3 is investigated. The water-water interactions were modeled through the use of TIP4P/Ice and TIP4P/2005 force fields. The TraPPE force field was used for carbon dioxide, and the water-guest interactions were probed through the modification of the cross-interaction Lennard-Jones energy parameter between the oxygens of the unlike molecules. It was found that when using the classic Lorentz-Berthelot combining rules, both models fail to predict T3 accurately. In order to rectify this problem, the water-guest interaction parameters were optimized, based on the solubility of carbon dioxide in water. In this case, it is shown that the prediction of T3 is limited only by the accuracy of the water model in predicting the melting temperature of ice. PMID:26342376

  12. The role of intermolecular interactions in the prediction of the phase equilibria of carbon dioxide hydrates.

    PubMed

    Costandy, Joseph; Michalis, Vasileios K; Tsimpanogiannis, Ioannis N; Stubos, Athanassios K; Economou, Ioannis G

    2015-09-01

    The direct phase coexistence methodology was used to predict the three-phase equilibrium conditions of carbon dioxide hydrates. Molecular dynamics simulations were performed in the isobaric-isothermal ensemble for the determination of the three-phase coexistence temperature (T3) of the carbon dioxide-water system, at pressures in the range of 200-5000 bar. The relative importance of the water-water and water-guest interactions in the prediction of T3 is investigated. The water-water interactions were modeled through the use of TIP4P/Ice and TIP4P/2005 force fields. The TraPPE force field was used for carbon dioxide, and the water-guest interactions were probed through the modification of the cross-interaction Lennard-Jones energy parameter between the oxygens of the unlike molecules. It was found that when using the classic Lorentz-Berthelot combining rules, both models fail to predict T3 accurately. In order to rectify this problem, the water-guest interaction parameters were optimized, based on the solubility of carbon dioxide in water. In this case, it is shown that the prediction of T3 is limited only by the accuracy of the water model in predicting the melting temperature of ice.

  13. The role of intermolecular interactions in the prediction of the phase equilibria of carbon dioxide hydrates

    NASA Astrophysics Data System (ADS)

    Costandy, Joseph; Michalis, Vasileios K.; Tsimpanogiannis, Ioannis N.; Stubos, Athanassios K.; Economou, Ioannis G.

    2015-09-01

    The direct phase coexistence methodology was used to predict the three-phase equilibrium conditions of carbon dioxide hydrates. Molecular dynamics simulations were performed in the isobaric-isothermal ensemble for the determination of the three-phase coexistence temperature (T3) of the carbon dioxide-water system, at pressures in the range of 200-5000 bar. The relative importance of the water-water and water-guest interactions in the prediction of T3 is investigated. The water-water interactions were modeled through the use of TIP4P/Ice and TIP4P/2005 force fields. The TraPPE force field was used for carbon dioxide, and the water-guest interactions were probed through the modification of the cross-interaction Lennard-Jones energy parameter between the oxygens of the unlike molecules. It was found that when using the classic Lorentz-Berthelot combining rules, both models fail to predict T3 accurately. In order to rectify this problem, the water-guest interaction parameters were optimized, based on the solubility of carbon dioxide in water. In this case, it is shown that the prediction of T3 is limited only by the accuracy of the water model in predicting the melting temperature of ice.

  14. Substrate-mediated interactions and intermolecular forces between molecules adsorbed on surfaces.

    PubMed

    Sykes, E Charles H; Han, Patrick; Kandel, S Alex; Kelly, Kevin F; McCarty, Gregory S; Weiss, Paul S

    2003-12-01

    Adsorbate interactions and reactions on metal surfaces have been investigated using scanning tunneling microscopy. The manners in which adsorbates perturb the surface electronic structure in their vicinity are discussed. The effects these perturbations have on other molecules are shown to be important in overlayer growth. Interactions of molecules with surface steps are addressed, and each molecule's electron affinity is shown to dictate its adsorption sites at step edges. Standing waves emanating from steps are demonstrated to effect transient molecular adsorption up to 40 A away from the step edge. Halobenzene derivatives are used to demonstrate how the surface is important in aligning reactive intermediates.

  15. Opalescence in monoclonal antibody solutions and its correlation with intermolecular interactions in dilute and concentrated solutions.

    PubMed

    Raut, Ashlesha S; Kalonia, Devendra S

    2015-04-01

    Opalescence indicates physical instability of a formulation because of the presence of aggregates or liquid-liquid phase separation in solution and has been reported for monoclonal antibody (mAb) formulations. Increased solution opalescence can be attributed to attractive protein-protein interactions (PPIs). Techniques including light scattering, AUC, or membrane osmometry are routinely employed to measure PPIs in dilute solutions, whereas opalescence is seen at relatively higher concentrations, where both long- and short-range forces contribute to overall PPIs. The mAb molecule studied here shows a unique property of high opalescence because of liquid-liquid phase separation. In this study, opalescence measurements are correlated to PPIs measured in diluted and concentrated solutions using light scattering (kD ) and high-frequency rheology (G'), respectively. Charges on the molecules were calculated using zeta potential measurements. Results indicate that high opalescence and phase separation are a result of the attractive interactions in solution; however, the presence of attractive interactions do not always imply phase separation. Temperature dependence of opalescence suggests that thermodynamic contribution to opalescence is significant and Tcloud can be utilized as a potential tool to assess attractive interactions in solution.

  16. Intermolecular Headgroup Interaction and Hydration as Driving Forces for Lipid Transmembrane Asymmetry.

    PubMed

    Smolentsev, Nikolay; Lütgebaucks, Cornelis; Okur, Halil I; de Beer, Alex G F; Roke, Sylvie

    2016-03-30

    Variations between the inner and outer leaflets of cell membranes are crucial for cell functioning and signaling, drug-membrane interactions, and the formation of lipid domains. Transmembrane asymmetry can in principle be comprised of an asymmetric charge distribution, differences in hydration, specific headgroup/H-bonding interactions, or a difference in the number of lipids per leaflet. Here, we characterize the transmembrane asymmetry of small unilamellar liposomes consisting of zwitterionic and charged lipids in aqueous solution using vibrational sum frequency scattering and second harmonic scattering, label-free methods, specifically sensitive to lipid and water asymmetries. For single component liposomes, transmembrane asymmetry is present for the charge distribution and lipid hydration, but the leaflets are not detectably asymmetric in terms of the number of lipids per leaflet, even though geometrical packing arguments would predict so. Such a lipid transmembrane asymmetry can, however, be induced in binary lipid mixtures under conditions that enable H-bonding interactions between phosphate and amine groups. In this case, the measured asymmetry consists of a different number of lipids in the outer and inner leaflet, a difference in transmembrane headgroup hydration, and a different headgroup orientation for the interacting phosphate groups.

  17. The effects of intermolecular interactions on the physical properties of organogels in edible oils.

    PubMed

    Lupi, Francesca R; Greco, Valeria; Baldino, Noemi; de Cindio, Bruno; Fischer, Peter; Gabriele, Domenico

    2016-12-01

    The microstructure of organogels based on monoglycerides of fatty acids (MAGs) and policosanol and on different edible oils was investigated by using different techniques (calorimetry, nuclear magnetic resonance, infrared spectroscopy, rheology, polarized light microscopy) towards a better understanding and control of the oil gelation phenomena. Dynamic moduli were related via a fractal model to microstructural information such as solid content and fractal dimension. Infrared spectroscopy evidenced that network structure in MAGs gel is mainly due to hydrogen bonding, whereas in policosanol system is mainly given by van der Waals interactions. Because of the different relative contribution of molecular interactions, the investigated organogelators exhibit a distinguished macroscopic behavior. MAGs are sensitive to the utilized oil and structuration occurs quickly, even though at a temperature lower than policosanol. Policosanol organogels exhibit a behavior independent of the used oil and a slower gelation rate, as a result of the weaker van der Waals interactions. Nevertheless, at lower concentration a stronger final gel is obtained, probably due to of the large number of interactions arising among the long alkyl chains of the fatty alcohols. Obtained results evidenced that policosanol is very effective in gelation of different oils and seems promising for potential commercial uses.

  18. The effects of intermolecular interactions on the physical properties of organogels in edible oils.

    PubMed

    Lupi, Francesca R; Greco, Valeria; Baldino, Noemi; de Cindio, Bruno; Fischer, Peter; Gabriele, Domenico

    2016-12-01

    The microstructure of organogels based on monoglycerides of fatty acids (MAGs) and policosanol and on different edible oils was investigated by using different techniques (calorimetry, nuclear magnetic resonance, infrared spectroscopy, rheology, polarized light microscopy) towards a better understanding and control of the oil gelation phenomena. Dynamic moduli were related via a fractal model to microstructural information such as solid content and fractal dimension. Infrared spectroscopy evidenced that network structure in MAGs gel is mainly due to hydrogen bonding, whereas in policosanol system is mainly given by van der Waals interactions. Because of the different relative contribution of molecular interactions, the investigated organogelators exhibit a distinguished macroscopic behavior. MAGs are sensitive to the utilized oil and structuration occurs quickly, even though at a temperature lower than policosanol. Policosanol organogels exhibit a behavior independent of the used oil and a slower gelation rate, as a result of the weaker van der Waals interactions. Nevertheless, at lower concentration a stronger final gel is obtained, probably due to of the large number of interactions arising among the long alkyl chains of the fatty alcohols. Obtained results evidenced that policosanol is very effective in gelation of different oils and seems promising for potential commercial uses. PMID:27552424

  19. Investigating Intermolecular Interactions via Scanning Tunneling Microscopy: An Experiment for the Physical Chemistry Laboratory

    ERIC Educational Resources Information Center

    Pullman, David; Peterson, Karen I.

    2004-01-01

    A scanning tunneling microscope (STM) project designed as a module for the undergraduate physical chemistry laboratory is described. The effects of van der Waals interactions on the condensed-phase structure are examined by the analysis of the pattern of the monolayer structures.

  20. De novo design of protein-protein interactions through modification of inter-molecular helix-helix interface residues.

    PubMed

    Yagi, Sota; Akanuma, Satoshi; Yamagishi, Manami; Uchida, Tatsuya; Yamagishi, Akihiko

    2016-05-01

    For de novo design of protein-protein interactions (PPIs), information on the shape and chemical complementarity of their interfaces is generally required. Recent advances in computational PPI design have allowed for de novo design of protein complexes, and several successful examples have been reported. In addition, a simple and easy-to-use approach has also been reported that arranges leucines on a solvent-accessible region of an α-helix and places charged residues around the leucine patch to induce interactions between the two helical peptides. For this study, we adopted this approach to de novo design a new PPI between the helical bundle proteins sulerythrin and LARFH. A non-polar patch was created on an α-helix of LARFH around which arginine residues were introduced to retain its solubility. The strongest interaction found was for the LARFH variant cysLARFH-IV-3L3R and the sulerythrin mutant 6L6D (KD=0.16 μM). This artificial protein complex is maintained by hydrophobic and ionic interactions formed by the inter-molecular helical bundle structure. Therefore, by the simple and easy-to-use approach to create de novo interfaces on the α-helices, we successfully generated an artificial PPI. We also created a second LARFH variant with the non-polar patch surrounded by positively charged residues at each end. Upon mixing this LARFH variant with 6L6D, mesh-like fibrous nanostructures were observed by atomic force microscopy. Our method may, therefore, also be applicable to the de novo design of protein nanostructures.

  1. Synovial Fluid Response to Extensional Flow: Effects of Dilution and Intermolecular Interactions

    PubMed Central

    Haward, Simon J.

    2014-01-01

    In this study, a microfluidic cross-slot device is used to examine the extensional flow response of diluted porcine synovial fluid (PSF) samples using flow-induced birefringence (FIB) measurements. The PSF sample is diluted to 10× 20× and 30× its original mass in a phosphate-buffered saline and its FIB response measured as a function of the strain rate at the stagnation point of the cross-slots. Equivalent experiments are also carried out using trypsin-treated PSF (t-PSF) in which the protein content is digested away using an enzyme. The results show that, at the synovial fluid concentrations tested, the protein content plays a negligible role in either the fluid's bulk shear or extensional flow behaviour. This helps support the validity of the analysis of synovial fluid HA content, either by microfluidic or by other techniques where the synovial fluid is first diluted, and suggests that the HA and protein content in synovial fluid must be higher than a certain minimum threshold concentration before HA-protein or protein-protein interactions become significant. However a systematic shift in the FIB response as the PSF and t-PSF samples are progressively diluted indicates that HA-HA interactions remain significant at the concentrations tested. These interactions influence FIB-derived macromolecular parameters such as the relaxation time and the molecular weight distribution and therefore must be minimized for the best validity of this method as an analytical technique, in which non-interaction between molecules is assumed. PMID:24651529

  2. Synovial fluid response to extensional flow: effects of dilution and intermolecular interactions.

    PubMed

    Haward, Simon J

    2014-01-01

    In this study, a microfluidic cross-slot device is used to examine the extensional flow response of diluted porcine synovial fluid (PSF) samples using flow-induced birefringence (FIB) measurements. The PSF sample is diluted to 10× 20× and 30× its original mass in a phosphate-buffered saline and its FIB response measured as a function of the strain rate at the stagnation point of the cross-slots. Equivalent experiments are also carried out using trypsin-treated PSF (t-PSF) in which the protein content is digested away using an enzyme. The results show that, at the synovial fluid concentrations tested, the protein content plays a negligible role in either the fluid's bulk shear or extensional flow behaviour. This helps support the validity of the analysis of synovial fluid HA content, either by microfluidic or by other techniques where the synovial fluid is first diluted, and suggests that the HA and protein content in synovial fluid must be higher than a certain minimum threshold concentration before HA-protein or protein-protein interactions become significant. However a systematic shift in the FIB response as the PSF and t-PSF samples are progressively diluted indicates that HA-HA interactions remain significant at the concentrations tested. These interactions influence FIB-derived macromolecular parameters such as the relaxation time and the molecular weight distribution and therefore must be minimized for the best validity of this method as an analytical technique, in which non-interaction between molecules is assumed.

  3. Intermolecular interactions in highly concentrated protein solutions upon compression and the role of the solvent.

    PubMed

    Grobelny, S; Erlkamp, M; Möller, J; Tolan, M; Winter, R

    2014-12-14

    The influence of high hydrostatic pressure on the structure and protein-protein interaction potential of highly concentrated lysozyme solutions up to about 370 mg ml(-1) was studied and analyzed using small-angle X-ray scattering in combination with a liquid-state theoretical approach. In the concentration region below 200 mg ml(-1), the interaction parameters of lysozyme solutions are affected by pressure in a nonlinear way, which is probably due to significant changes in the structural properties of bulk water, i.e., due to a solvent-mediated effect. Conversely, for higher concentrated protein solutions, where hydration layers below ∼4 water molecules are reached, the interaction potential turns rather insensitive to compression. The onset of transient (dynamic) clustering is envisaged in this concentration range. Our results also show that pressure suppresses protein nucleation, aggregation and finally crystallization in supersaturated condensed protein solutions. These findings are of importance for controlling and fine-tuning protein crystallization. Moreover, these results are also important for understanding the high stability of highly concentrated protein solutions (as they occur intracellularly) in organisms thriving under hydrostatic pressure conditions such as in the deep sea, where pressures up to the kbar-level are reached.

  4. Intermolecular interactions in highly concentrated protein solutions upon compression and the role of the solvent.

    PubMed

    Grobelny, S; Erlkamp, M; Möller, J; Tolan, M; Winter, R

    2014-12-14

    The influence of high hydrostatic pressure on the structure and protein-protein interaction potential of highly concentrated lysozyme solutions up to about 370 mg ml(-1) was studied and analyzed using small-angle X-ray scattering in combination with a liquid-state theoretical approach. In the concentration region below 200 mg ml(-1), the interaction parameters of lysozyme solutions are affected by pressure in a nonlinear way, which is probably due to significant changes in the structural properties of bulk water, i.e., due to a solvent-mediated effect. Conversely, for higher concentrated protein solutions, where hydration layers below ∼4 water molecules are reached, the interaction potential turns rather insensitive to compression. The onset of transient (dynamic) clustering is envisaged in this concentration range. Our results also show that pressure suppresses protein nucleation, aggregation and finally crystallization in supersaturated condensed protein solutions. These findings are of importance for controlling and fine-tuning protein crystallization. Moreover, these results are also important for understanding the high stability of highly concentrated protein solutions (as they occur intracellularly) in organisms thriving under hydrostatic pressure conditions such as in the deep sea, where pressures up to the kbar-level are reached. PMID:25494777

  5. Rational Design and Tuning of Functional RNA Switch to Control an Allosteric Intermolecular Interaction.

    PubMed

    Endoh, Tamaki; Sugimoto, Naoki

    2015-08-01

    Conformational transitions of biomolecules in response to specific stimuli control many biological processes. In natural functional RNA switches, often called riboswitches, a particular RNA structure that has a suppressive or facilitative effect on gene expression transitions to an alternative structure with the opposite effect upon binding of a specific metabolite to the aptamer region. Stability of RNA secondary structure (-ΔG°) can be predicted based on thermodynamic parameters and is easily tuned by changes in nucleobases. We envisioned that tuning of a functional RNA switch that causes an allosteric interaction between an RNA and a peptide would be possible based on a predicted switching energy (ΔΔG°) that corresponds to the energy difference between the RNA secondary structure before (-ΔG°before) and after (-ΔG°after) the RNA conformational transition. We first selected functional RNA switches responsive to neomycin with predicted ΔΔG° values ranging from 5.6 to 12.2 kcal mol(-1). We then demonstrated a simple strategy to rationally convert the functional RNA switch to switches responsive to natural metabolites thiamine pyrophosphate, S-adenosyl methionine, and adenine based on the predicted ΔΔG° values. The ΔΔG° values of the designed RNA switches proportionally correlated with interaction energy (ΔG°interaction) between the RNA and peptide, and we were able to tune the sensitivity of the RNA switches for the trigger molecule. The strategy demonstrated here will be generally applicable for construction of functional RNA switches and biosensors in which mechanisms are based on conformational transition of nucleic acids.

  6. Intermolecular interactions and proton transfer in the hydrogen halide-superoxide anion complexes.

    PubMed

    Lee, Sebastian J R; Mullinax, J Wayne; Schaefer, Henry F

    2016-02-17

    The superoxide radical anion O2(-) is involved in many important chemical processes spanning different scientific disciplines (e.g., environmental and biological sciences). Characterizing its interaction with various substrates to help elucidate its rich chemistry may have far reaching implications. Herein, we investigate the interaction between O2(-) (X[combining tilde] (2)Πg) and the hydrogen halides (X[combining tilde] (1)Σ) with coupled-cluster theory. In contrast to the short (1.324 Å) hydrogen bond formed between the HF and O2(-) monomers, a barrierless proton transfer occurs for the heavier hydrogen halides with the resulting complexes characterized as long (>1.89 Å) hydrogen bonds between halide anions and the HO2 radical. The dissociation energy with harmonic zero-point vibrational energy (ZPVE) for FHO2(-) (X[combining tilde] (2)A'') → HF (X[combining tilde] (1)Σ) + O2(-) (X[combining tilde] (2)Πg) is 31.2 kcal mol(-1). The other dissociation energies with ZPVE for X(-)HO2 (X[combining tilde] (2)A'') → X(-) (X[combining tilde] (1)Σ) + HO2 (X[combining tilde] (2)A'') are 25.7 kcal mol(-1) for X = Cl, 21.9 kcal mol(-1) for X = Br, and 17.9 kcal mol(-1) for X = I. Additionally, the heavier hydrogen halides can form weak halogen bonds H-XO2(-) (X[combining tilde] (2)A'') with interaction energies including ZPVE of -2.3 kcal mol(-1) for HCl, -8.3 kcal mol(-1) for HBr, and -16.7 kcal mol(-1) for HI. PMID:26852733

  7. Ferromagnetic intermolecular interactions in a series of organic mixed crystals of galvinoxyl radical and its precursory closed shell compound

    NASA Astrophysics Data System (ADS)

    Awaga, Kunio; Sugano, Tadashi; Kinoshita, Minoru

    1986-08-01

    The magnetic properties of the 4:1, 6:1, 9:1, and 19:1 mixed crystals of galvinoxyl (4-[[3,5-bis(1,1-dimethylethyl)-4-oxo-2,5-cyclohexadien-1-ylidene]methyl]-2,6 -bis(1,1-dimethylethyl) phenoxy) radical and its precursory closed shell compound, hydrogalvinoxyl, have been studied. From the measurements of the temperature dependence of the magnetic susceptibility, it is found that the ferromagnetic intermolecular interactions, which are lost below about 85 K in pure galvinoxyl because of the phase transition, are maintained down to 2 K in these mixed crystals, and that the number of galvinoxyl radicals keeping the ferromagnetically coupled structure at low temperature increases as the concentration of hydrogalvinoxyl increases. The magnetic behavior of the mixed crystals at low temperature depends on the thermal history of the sample and is well interpreted by assuming the presence of a glassy state into which the high-temperature, ferromagnetically coupled phase is quenched. The magnetization curves show the spin multiplicity to be almost in proportion to the radical concentration in the mixed crystal and may be qualitatively understood by assuming that the mixed crystal is an assembly of one-dimensional chain segments partitioned by hydrogalvinoxyl within which the galvinoxyl radicals are coupled ferromagnetically.

  8. Influence of π-Iodide Intermolecular Interactions on Electronic Properties of Tin(IV) Iodide Semiconducting Complexes.

    PubMed

    Wlaźlak, Ewelina; Macyk, Wojciech; Nitek, Wojciech; Szaciłowski, Konrad

    2016-06-20

    Coordination compounds with a tin center surrounded by both organic and inorganic ligands ([SnI4{(C6H5)3PO}2], [SnI4{(C6H5)2SO}2], and [SnI4(C5H5NO)2]) acting as molecular semiconductors are in the spotlight of this article. This is a new class of hybrid semiconducting materials where optoelectronic properties of inorganic core (SnI4) were tuned by organic ligands. The valence band is located at the inorganic portion of the molecule while the conduction band is made of carbon-based orbitals. This suggests the great importance of hydrogen bonds where iodine atoms play the role of an acceptor. Weak intermolecular interactions between iodine atoms and aromatic rings are essential in a band structure formation. These materials form orange-red crystals soluble in most of organic solvents. Their semiconducting properties are addressed experimentally via photovoltage measurements, as well as theoretically, using DFT and semiempirical approaches. PMID:27248520

  9. Quantifying intermolecular interactions in solid state indapamide and other popular diuretic drugs: Insights from Hirshfeld surface study

    NASA Astrophysics Data System (ADS)

    Bojarska, Joanna; Fruziński, Andrzej; Maniukiewicz, Waldemar

    2016-07-01

    Hirshfeld surfaces (HS) and two-dimensional fingerprint plots are used to analyze the intermolecular interactions in indapamide and other popular thiazide diuretic derivatives. The crystal structure of indapamide (INDP) at 100 K determined by single-crystal X-ray analysis, is also reported. The title compound crystallizes in the centrosymmetric I2/a space group with one indapamide and half water molecule (lying on the glide plane) in the asymmetric unit. An interplay of N-H⋯O hydrogen bonds connects the indapamide molecules generating chains with the graph-set motifs: C (8) and C23 (16), and together with C-H⋯O and π⋯π stacking interactions create a 3D net. The Hirshfeld surface study facilitates comparison of diverse and numerous intercontacts, such as H⋯H, O⋯H, Cl⋯H, C⋯C (π⋯π), C⋯O (π⋯lone pair), O⋯O (lone pair⋯lone pair), Cl⋯O, Cl⋯Cl, N⋯N, C⋯H (C-H⋯π) with regard to building self-assembled framework of indapamide and related thiazide derivatives retrieved from the Cambridge Structural Database. The HS analysis highlights that H⋯H, O⋯H/H⋯O and C⋯H/H⋯C contacts play an influential role contributing to about 80% of the HS areas in this class of compounds. Nevertheless, in the case of INDP the H⋯H interactions, while in hydrochlorothiazide (HCTZ) O⋯H/H⋯O are dominant amongst all intercontacts towards the HS. Notably, indapamide has the highest proportion of C⋯C contacts.

  10. Intermolecular interaction between Cry2Aa and Cyt1Aa and its effect on larvicidal activity against Culex quinquefasciatus.

    PubMed

    Bideshi, Dennis K; Waldrop, Greer; Fernandez-Luna, Maria Teresa; Diaz-Mendoza, Mercedes; Wirth, Margaret C; Johnson, Jeffrey J; Park, Hyun-Woo; Federici, Brian A

    2013-08-01

    The Cyt1Aa protein of Bacillus thuringiensis susbp. israelensis elaborates demonstrable toxicity to mosquito larvae, but more importantly, it enhances the larvicidal activity of this species Cry proteins (Cry11Aa, Cry4Aa, and Cry4Ba) and delays the phenotypic expression of resistance to these that has evolved in Culex quinquefasciatus. It is also known that Cyt1Aa, which is highly lipophilic, synergizes Cry11Aa by functioning as a surrogate membrane-bound receptor for the latter protein. Little is known, however, about whether Cyt1Aa can interact similarly with other Cry proteins not primarily mosquitocidal; for example, Cry2Aa, which is active against lepidopteran larvae, but essentially inactive or has very low toxicity to mosquito larvae. Here we demonstrate by ligand binding and enzyme-linked immunosorbent assays that Cyt1Aa and Cry2Aa form intermolecular complexes in vitro, and in addition show that Cyt1Aa facilitates binding of Cry2Aa throughout the midgut of C. quinquefasciatus larvae. As Cry2Aa and Cry11Aa share structural similarity in domain II, the interaction between Cyt1Aa and Cry2Aa could be a result of a similar mechanism previously proposed for Cry11Aa and Cyt1Aa. Finally, despite the observed interaction between Cry2Aa and Cyt1Aa, only a 2-fold enhancement in toxicity resulted against C. quinquefasciatus. Regardless, our results suggest that Cry2Aa could be a useful component of mosquitocidal endotoxin complements being developed for recombinant strains of B. thuringiensis subsp. israelensis and B. sphaericus aimed at improving the efficacy of commercial products and avoiding resistance. PMID:23727800

  11. Investigation of intermolecular interactions in finasteride drug crystals in view of X-ray and Hirshfeld surface analysis

    NASA Astrophysics Data System (ADS)

    Bojarska, Joanna; Maniukiewicz, Waldemar

    2015-11-01

    The N,N-dimethylformamide (DMF) solvate hemihydrate (1) of finasteride, has been structurally characterized by single-crystal X-ray diffraction at 100 K and compared with previously reported finasteride crystalline forms. In addition, in order to resolve ambiguity concerning H-bond interactions, the crystal structure of finasteride hemihydrate, (2), originally reported by Schultheiss et al. in 2009, has been redetermined with higher precision. The (1) and (2) pseudopolymorphs of finasteride crystallize as orthorhombic in chiral P212121 space group with two very similar host molecules in the asymmetric unit. The conformation of fused 6-membered rings are screw-boat, chair and chair for both molecules, while 5-membered rings assume chair in (1), and half-chair in (2). There is a fairly close resemblance of the molecular geometry for all analyzed compounds, arising due to the rigid host molecule. Inter- and intramolecular host-host, host-guest strong O-H⋯O, N-H⋯O hydrogen bonds and weak C-H⋯O interactions form 3D net conferring stability to the crystal packing. Finasterides can be classified as synthon pseudopolymorphs. Isostructural solvates crystallizing in the orthorhombic space group P212121, with Z‧ = 2, exhibit R22(8) C22(15) network, monoclinic solvate (Z‧ = 1) possess D11(2), while both orthorhombic and monoclinic polymorphs have C(4) motifs, respectively. The structural similarities and subtle differences have been interpreted in view of the 3D Hirshfeld surface analysis and associated 2D fingerprint plots, which enabled detailed qualitative and quantitative insight into the intermolecular interactions. The 97-100% of Hirshfeld surface areas are due to H···H, O···H/H⋯O, C···H/H⋯C and N⋯H/H⋯N contacts. Furthermore, the electrostatic potential has been mapped over the Hirshfeld surfaces to decode the electrostatic complementarities, which exist in the crystal packing.

  12. Predicting the sites and energies of noncovalent intermolecular interactions using local properties.

    PubMed

    El Kerdawy, Ahmed; Wick, Christian R; Hennemann, Matthias; Clark, Timothy

    2012-04-23

    Feed-forward artificial neural nets have been used to recognize H-bond donor and acceptor sites on drug-like molecules based on local properties (electron density, molecular electrostatic potential and local ionization energy, electron affinity, and polarizability) calculated at grid points around the molecule. Interaction energies for training were obtained from B97-D and ωB97X-D/aug-cc-pVDZ density-functional theory calculations on a series of model central molecules and H-bond acceptor and donor probes constrained to the grid points used for training. The resulting models provide maps of both classical and unusual H- and halogen-bonding sites. Note that these reactions result even though only classical H-bond donors and acceptors were used as probes around the central molecules. Some examples demonstrate the ability of the models to take the electronics of the central molecule into consideration and to provide semiquantitative estimates of interaction energies at low computational cost.

  13. Theoretical Studies on the Intermolecular Interactions of Potentially Primordial Base-Pair Analogues

    SciTech Connect

    Leszczynski, Jerzy; Sponer, Judit; Sponer, Jiri; Sumpter, Bobby G; Fuentes-Cabrera, Miguel A; Vazquez-Mayagoitia, Alvaro

    2010-01-01

    Recent experimental studies on the Watson Crick type base pairing of triazine and aminopyrimidine derivatives suggest that acid/base properties of the constituent bases might be related to the duplex stabilities measured in solution. Herein we use high-level quantum chemical calculations and molecular dynamics simulations to evaluate the base pairing and stacking interactions of seven selected base pairs, which are common in that they are stabilized by two NH O hydrogen bonds separated by one NH N hydrogen bond. We show that neither the base pairing nor the base stacking interaction energies correlate with the reported pKa data of the bases and the melting points of the duplexes. This suggests that the experimentally observed correlation between the melting point data of the duplexes and the pKa values of the constituent bases is not rooted in the intrinsic base pairing and stacking properties. The physical chemistry origin of the observed experimental correlation thus remains unexplained and requires further investigations. In addition, since our calculations are carried out with extrapolation to the complete basis set of atomic orbitals and with inclusion of higher electron correlation effects, they provide reference data for stacking and base pairing energies of non-natural bases.

  14. Intermolecular Interactions and Protein Dynamics by Solid‐State NMR Spectroscopy

    PubMed Central

    Lamley, Jonathan M.; Öster, Carl; Stevens, Rebecca A.

    2015-01-01

    Abstract Understanding the dynamics of interacting proteins is a crucial step toward describing many biophysical processes. Here we investigate the backbone dynamics for protein GB1 in two different assemblies: crystalline GB1 and the precipitated GB1–antibody complex with a molecular weight of more than 300 kDa. We perform these measurements on samples containing as little as eight nanomoles of GB1. From measurements of site‐specific 15N relaxation rates including relaxation dispersion we obtain snapshots of dynamics spanning nine orders of magnitude in terms of the time scale. A comparison of measurements for GB1 in either environment reveals that while many of the dynamic features of the protein are conserved between them (in particular for the fast picosecond–nanosecond motions), much greater differences occur for slow motions with motions in the >500 ns range being more prevalent in the complex. The data suggest that GB1 can potentially undergo a small‐amplitude overall anisotropic motion sampling the interaction interface in the complex. PMID:27478273

  15. Intermolecular Interactions and Protein Dynamics by Solid‐State NMR Spectroscopy

    PubMed Central

    Lamley, Jonathan M.; Öster, Carl; Stevens, Rebecca A.

    2015-01-01

    Abstract Understanding the dynamics of interacting proteins is a crucial step toward describing many biophysical processes. Here we investigate the backbone dynamics for protein GB1 in two different assemblies: crystalline GB1 and the precipitated GB1–antibody complex with a molecular weight of more than 300 kDa. We perform these measurements on samples containing as little as eight nanomoles of GB1. From measurements of site‐specific 15N relaxation rates including relaxation dispersion we obtain snapshots of dynamics spanning nine orders of magnitude in terms of the time scale. A comparison of measurements for GB1 in either environment reveals that while many of the dynamic features of the protein are conserved between them (in particular for the fast picosecond–nanosecond motions), much greater differences occur for slow motions with motions in the >500 ns range being more prevalent in the complex. The data suggest that GB1 can potentially undergo a small‐amplitude overall anisotropic motion sampling the interaction interface in the complex. PMID:26537742

  16. Theoretical analysis of the intermolecular interactions in naphthalene diimide and pyrene complexes.

    PubMed

    Yeh, Mei-Yu; Lin, Hsin-Chieh

    2014-11-28

    Supramolecular assembly of donor-acceptor complexes as the key component in organic functional nanomaterials is a promising approach for future electronic devices. One representative example of the donor-acceptor complexes is the naphthalene diimide-pyrene (NDI-Py) system, which shows fascinating photoelectric properties. Herein, the analysis of the π-π interactions between NDI and Py has been investigated using the DFT/M06-2X and reduced density gradient methods. According to the calculations, the attractive forces for the stabilization of the NDI-Py dimer are dependent on the rotation angles, which provide physical insight into the experimental data reported by Wilson and co-workers (Langmuir, 2011, 27, 6554). Our results not only provide computational evidence for the origin of the rotation in the crystal structure of the NDI-Py but also address the role of the charge-transfer attractions in the complexes.

  17. Interaction of red blood cells with a polarized electrode: evidence of long-range intermolecular forces.

    PubMed Central

    Gingell, D; Fornes, J A

    1976-01-01

    We have investigated the electrostatic interaction of glutaraldehyde-fixed human red cells with a polarizable electrode carrying a defined surface charge density which can be varied continuously through a wide range. Cells in a dilute salt solution are unable to adhere to the electrode at high negative charge, but at lower negative charge densities they are reversibly adherent and can be forced off by increasing the negative polarization. Near zero electrode charge they become irreversibly stuck to the electrode and cannot be evicted even at maximum electrode polarization. Calculation of the electrostatic repulsive force using measured charge densities indicates the existence of an attractive force which may be acting over several hundred angstroms. PMID:822894

  18. EPR studies of intermolecular interactions and competitive binding of drugs in a drug-BSA binding model.

    PubMed

    Akdogan, Y; Emrullahoglu, M; Tatlidil, D; Ucuncu, M; Cakan-Akdogan, G

    2016-08-10

    Understanding intermolecular interactions between drugs and proteins is very important in drug delivery studies. Here, we studied different binding interactions between salicylic acid and bovine serum albumin (BSA) using electron paramagnetic resonance (EPR) spectroscopy. Salicylic acid was labeled with a stable radical (spin label) in order to monitor its mobilized (free) or immobilized (bound to BSA) states. In addition to spin labeled salicylic acid (SL-salicylic acid), its derivatives including SL-benzoic acid, SL-phenol, SL-benzene, SL-cyclohexane and SL-hexane were synthesized to reveal the effects of various drug binding interactions. EPR results of these SL-molecules showed that hydrophobic interaction is the main driving force. Whereas each of the two functional groups (-COOH and -OH) on the benzene ring has a minute but detectable effect on the drug-protein complex formation. In order to investigate the effect of electrostatic interaction on drug binding, cationic BSA (cBSA) was synthesized, altering the negative net charge of BSA to positive. The salicylic acid loading capacity of cBSA is significantly higher compared to that of BSA, indicating the importance of electrostatic interaction in drug binding. Moreover, the competitive binding properties of salicylic acid, ibuprofen and aspirin to BSA were studied. The combined EPR results of SL-salicylic acid/ibuprofen and SL-ibuprofen/salicylic acid showed that ibuprofen is able to replace up to ∼83% of bound SL-salicylic acid, and salicylic acid can replace only ∼14% of the bound SL-ibuprofen. This indicates that ∼97% of all salicylic acid and ibuprofen binding sites are shared. On the other hand, aspirin replaces only ∼23% of bound SL-salicylic acid, and salicylic acid replaces ∼50% of bound SL-aspirin, indicating that ∼73% of all salicylic acid and aspirin binding sites are shared. These results show that EPR spectroscopy in combination with the spin labeling technique is a very powerful

  19. EPR studies of intermolecular interactions and competitive binding of drugs in a drug-BSA binding model.

    PubMed

    Akdogan, Y; Emrullahoglu, M; Tatlidil, D; Ucuncu, M; Cakan-Akdogan, G

    2016-08-10

    Understanding intermolecular interactions between drugs and proteins is very important in drug delivery studies. Here, we studied different binding interactions between salicylic acid and bovine serum albumin (BSA) using electron paramagnetic resonance (EPR) spectroscopy. Salicylic acid was labeled with a stable radical (spin label) in order to monitor its mobilized (free) or immobilized (bound to BSA) states. In addition to spin labeled salicylic acid (SL-salicylic acid), its derivatives including SL-benzoic acid, SL-phenol, SL-benzene, SL-cyclohexane and SL-hexane were synthesized to reveal the effects of various drug binding interactions. EPR results of these SL-molecules showed that hydrophobic interaction is the main driving force. Whereas each of the two functional groups (-COOH and -OH) on the benzene ring has a minute but detectable effect on the drug-protein complex formation. In order to investigate the effect of electrostatic interaction on drug binding, cationic BSA (cBSA) was synthesized, altering the negative net charge of BSA to positive. The salicylic acid loading capacity of cBSA is significantly higher compared to that of BSA, indicating the importance of electrostatic interaction in drug binding. Moreover, the competitive binding properties of salicylic acid, ibuprofen and aspirin to BSA were studied. The combined EPR results of SL-salicylic acid/ibuprofen and SL-ibuprofen/salicylic acid showed that ibuprofen is able to replace up to ∼83% of bound SL-salicylic acid, and salicylic acid can replace only ∼14% of the bound SL-ibuprofen. This indicates that ∼97% of all salicylic acid and ibuprofen binding sites are shared. On the other hand, aspirin replaces only ∼23% of bound SL-salicylic acid, and salicylic acid replaces ∼50% of bound SL-aspirin, indicating that ∼73% of all salicylic acid and aspirin binding sites are shared. These results show that EPR spectroscopy in combination with the spin labeling technique is a very powerful

  20. Redetermined structure, inter-molecular inter-actions and absolute configuration of royleanone.

    PubMed

    Fun, Hoong-Kun; Chantrapromma, Suchada; Salae, Abdul Wahab; Razak, Ibrahim Abdul; Karalai, Chatchanok

    2011-05-01

    The structure of the title diterpenoid, C(20)H(28)O(3), {systematic name: (4bS,8aS)-3-hy-droxy-2-isopropyl-4b,8,8-trimethyl-4b,5,6,7,8,8a,9,10-octa-hydro-phenanthrene-1,4-dione} is confirmed [Eugster et al. (1993 ▶). Private communication (refcode HACGUN). CCDC, Union Road, Cambridge] and its packing is now described. Its absolute structure was established by refinement against data collected with Cu radiation: the two stereogenic centres both have S configurations. One cyclo-hexane ring adopts a chair conformation whereas the other cyclo-hexane ring is in a half-chair conformation and the benzoquinone ring is slightly twisted. An intra-molecular O-H⋯O hydrogen bond generates an S(5) ring motif. In the crystal, mol-ecules are linked into chains along [010] by O-H⋯O hydrogen bonds and weak C-H⋯O inter-actions. The packing also features C⋯O [3.131 (3) Å] short contacts.

  1. Tuning intermolecular interactions in dioctyl-substituted polyfluorene via hydrostatic pressure.

    PubMed

    Paudel, K; Knoll, H; Chandrasekhar, M; Guha, S

    2010-04-01

    Polyfluorenes (PFs) represent a unique class of poly-para-phenylene-based blue-emitting polymers with intriguing structure-property relationships. Slight variations in the choice of functionalizing side chains result in dramatic differences in the inter- and intrachain structures in PFs. Dioctyl-substituted PF (PF8) is characterized by different backbone conformations that depend upon the torsion angle between the monomers. We present photoluminescence (PL) and Raman scattering studies of bulk samples and thin films of dioctyl-substituted PF (PF8) under hydrostatic pressure. The bulk sample was further thermally annealed and studied as a function of pressure. The PL energies of the as-is and thermally annealed samples both red shift but at very different rates, and the difference between their pressure coefficients elucidates the role of the backbone torsional angle. This is further corroborated by density functional theoretical calculations of a fluorene oligomer, where the energy gap is calculated as a function of both the torsion angle as well as compression. The Raman peaks harden with increasing pressures; the intraring C-C stretch frequency at 1600 cm(-1) has a pressure coefficient of 7.2 cm(-1)/GPa and exhibits asymmetric line shapes at higher pressures, characteristic of a strong electron-phonon interaction. PMID:20235499

  2. Redetermined structure, inter-molecular inter-actions and absolute configuration of royleanone.

    PubMed

    Fun, Hoong-Kun; Chantrapromma, Suchada; Salae, Abdul Wahab; Razak, Ibrahim Abdul; Karalai, Chatchanok

    2011-05-01

    The structure of the title diterpenoid, C(20)H(28)O(3), {systematic name: (4bS,8aS)-3-hy-droxy-2-isopropyl-4b,8,8-trimethyl-4b,5,6,7,8,8a,9,10-octa-hydro-phenanthrene-1,4-dione} is confirmed [Eugster et al. (1993 ▶). Private communication (refcode HACGUN). CCDC, Union Road, Cambridge] and its packing is now described. Its absolute structure was established by refinement against data collected with Cu radiation: the two stereogenic centres both have S configurations. One cyclo-hexane ring adopts a chair conformation whereas the other cyclo-hexane ring is in a half-chair conformation and the benzoquinone ring is slightly twisted. An intra-molecular O-H⋯O hydrogen bond generates an S(5) ring motif. In the crystal, mol-ecules are linked into chains along [010] by O-H⋯O hydrogen bonds and weak C-H⋯O inter-actions. The packing also features C⋯O [3.131 (3) Å] short contacts. PMID:21754362

  3. Superalkali atoms bonding to the phenalenyl radical: structures, intermolecular interaction and nonlinear optical properties.

    PubMed

    Chen, Sa; Xu, Hong-Liang; Sun, Shi-Ling; Zhao, Liang; Su, Zhong-Min

    2015-08-01

    Due to unpaired electrons, both radicals and superalkali are investigated widely. In this work, two interesting complexes (Li3O-PLY and Li3-PLY) were constructed by phenalenyl radical and superalkali atoms. Why are they interesting? Firstly, for Li3O-PLY and Li3-PLY, although the charge transfer between superalkali atoms and PLY is similar, the sandwich-like charge distribution for Li3O-PLY causes a smaller dipole moment than that of Li3-PLY. Secondly, their UV-vis absorption show that the maximum wavelengths for Li3O-PLY and Li3-PLY display a bathochromic shift compared to PLY. Moreover, Li3-PLY has two new peaks at 482 and 633 nm. Significantly, the β 0 values of Li3-PLY (4943-5691 a.u.) are much larger than that of Li3O-PLY (225-347 a.u.). Further, the β HRS values of Li3O-PLY decrease slightly while β HRS of Li3-PLY increase dramatically with increasing frequency. It is our expectation that these results might provide beneficial information for theoretical and experimental studies on complexes with superalkali and PLY radicals. Graphical Abstract Two interesting complexes (Li3O-PLY and Li3-PLY) were constructed by phenalenyl radical and superalkali atoms. We explore their structures, Wiberg bond indices, interaction energies and the static first hyperpolarizabilities (β 0). The β 0 values of Li3-PLY (4943-5691 a.u.) were much larger than those of Li3O-PLY (225-347 a.u.).

  4. Intermolecular Interaction between a Synthetic Pseudoceramide and a Sterol-Combined Fatty Acid

    PubMed

    Mizushima; Fukasawa; Suzuki

    1997-11-01

    To better understand the phase behavior of a pseudoceramide (SLE), a potential skin moisturizer and/or a drug carrier, we investigated the lipid-lipid interaction between SLE and a sterol-combined fatty acid (CEOS), which has a sterol ring and a carboxyl group in a molecule. X-ray analysis showed that a hexagonal packing (4.15 A spacing) and a liquid-like packing (4.5 A spacing) coexisted within the hydrocarbon chains of the SLE/CEOS (1/1 mole) lipid mixture. The structural characteristics were very similar to those of the SLE/stearic acid/cholesterol (1/1/1 mole) system, which was in a stable lamellar alpha-phase. However, in the SLE/stearic acid (1/1 mole) system, there was only a strong hexagonal reflection in the wide-angle X-ray profile. The melting enthalpy (23.9 kJ mol-1) and entropy (75.0 J mol-1 K-1) of the SLE/CEOS system were also smaller than those (DeltaHm = 43.9 kJ mol-1, DeltaSm = 131.6 J mol-1 K-1) of the SLE/stearic acid system. The X-ray data along with the DSC results suggested that the sterol ring of CEOS molecule contributed to the enhancement of molecular motion or the decrease in the molecular packing of lipids. A strong hydrogen bond between the carboxyl group of CEOS and the amide group of SLE molecule was also considered to be important for the formation of the stable alpha-phase, as suggested by FT-IR spectroscopy. Further, in the presence of water, the three artificial SC lipids, SLE/CEOS (1/1 mole), SLE/stearic acid/cholesterol (1/1/1 mole), and SLE/stearic acid (1/1 mole), were all capable of forming lamellar structures. Copyright 1997 Academic Press. Copyright 1997Academic Press

  5. A quantum chemical insight to intermolecular hydrogen bonding interaction between cytosine and nitrosamine: Structural and energetic investigations

    NASA Astrophysics Data System (ADS)

    Khalili, Behzad

    2016-03-01

    Hydrogen bond interactions which are formed during complex formation between cytosine and nitrosamine have been fully investigated using B3LYP, B3PW91 and MP2 methods in conjunction with various basis sets including 6-311++G (d,p), 6-311++G (2d,2p), 6-311++G (df,pd) and AUG-cc-pVDZ. Three regions around the most stable conformer of cytosine in the gas phase with six possible double H-bonded interactions were considered. Two intermolecular hydrogen bonds of type NC-N-HNA and O-H(N-H)C-ONA were found on the potential energy surface in a cyclic system with 8-member in CN1, CN3, CN5 and 7-member in CN2, CN4, CN6 systems. Results of binding energy calculation at all applied methods reveal that the CN1 structure is the most stable one which is formed by interaction of nitrosamine with cytosine in S1 region. The BSSE-corrected binding energy for six complex system is ranging from -23.8 to -43.6 kJ/mol at MP2/6-311++G (df,pd) level and the stability order is as CN1 > CN2 > CN3 > CN4 > CN5 > CN6 in all studied levels of theories. The NBO results reveal that the charge transfer occurred from cytosine to nitrosamine in CN1, CN3, CN5 and CN6 whereas this matter in the case of CN2 and CN4 was reversed. The relationship between BEs with red shift of H-bond involved bonds vibrational frequencies, charge transfer energies during complex formation and electron densities at H-bond BCPs were discussed. In addition activation energetic properties related to the proton transfer process between cytosine and nitrosamine have been calculated at MP2/6-311++G (df,pd) level. AIM results imply that H-bond interactions are electrostatic with partially covalent characteristic in nature.

  6. Exploring the inter-molecular interactions in amyloid-β protofibril with molecular dynamics simulations and molecular mechanics Poisson-Boltzmann surface area free energy calculations

    NASA Astrophysics Data System (ADS)

    Liu, Fu-Feng; Liu, Zhen; Bai, Shu; Dong, Xiao-Yan; Sun, Yan

    2012-04-01

    Aggregation of amyloid-β (Aβ) peptides correlates with the pathology of Alzheimer's disease. However, the inter-molecular interactions between Aβ protofibril remain elusive. Herein, molecular mechanics Poisson-Boltzmann surface area analysis based on all-atom molecular dynamics simulations was performed to study the inter-molecular interactions in Aβ17-42 protofibril. It is found that the nonpolar interactions are the important forces to stabilize the Aβ17-42 protofibril, while electrostatic interactions play a minor role. Through free energy decomposition, 18 residues of the Aβ17-42 are identified to provide interaction energy lower than -2.5 kcal/mol. The nonpolar interactions are mainly provided by the main chain of the peptide and the side chains of nine hydrophobic residues (Leu17, Phe19, Phe20, Leu32, Leu34, Met35, Val36, Val40, and Ile41). However, the electrostatic interactions are mainly supplied by the main chains of six hydrophobic residues (Phe19, Phe20, Val24, Met35, Val36, and Val40) and the side chains of the charged residues (Glu22, Asp23, and Lys28). In the electrostatic interactions, the overwhelming majority of hydrogen bonds involve the main chains of Aβ as well as the guanidinium group of the charged side chain of Lys28. The work has thus elucidated the molecular mechanism of the inter-molecular interactions between Aβ monomers in Aβ17-42 protofibril, and the findings are considered critical for exploring effective agents for the inhibition of Aβ aggregation.

  7. Synthesis, X-Ray Structure, Magnetic Properties, and a Study of Intra/Intermolecular Radical-Radical Interactions of a Triradical TEMPO Compound.

    PubMed

    Lloveras, Vega; Badetti, Elena; Wurst, Klaus; Vidal-Gancedo, José

    2015-10-26

    A novel triradical compound with a P=S core and three branches functionalized with 2,2,6,6-tetramethylpiperidine-1-oxyl (TEMPO) radicals is synthesized and characterized by IR, (1) H NMR, (31) P NMR, and EPR spectroscopy and MALDI-TOF mass spectrometry, and its chemical structure is confirmed by X-ray diffraction analysis. The triradical shows neither spin exchange interactions between its radical units nor detectable dipolar interactions. This is consistent with the separation between the radical units found in its X-ray diffraction structure, and discounts the existence of intramolecular interactions. This conclusion is confirmed by an EPR concentration study. The concentration at which intermolecular interactions start to appear is determined (5×10(-3)  m) and this concentration should be taken into account as a higher concentration limit when studies on intramolecular radical-radical interactions in polyradicals with similar structure are required. SQUID magnetometry analysis of the compound shows antiferromagnetic interactions between the spin carriers of different molecules; that is, antiferromagnetic intermolecular interactions.

  8. An energy decomposition analysis for intermolecular interactions from an absolutely localized molecular orbital reference at the coupled-cluster singles and doubles level

    SciTech Connect

    Azar, R. Julian; Head-Gordon, Martin

    2012-01-14

    We propose a wave function-based method for the decomposition of intermolecular interaction energies into chemically-intuitive components, isolating both mean-field- and explicit correlation-level contributions. We begin by solving the locally-projected self-consistent field for molecular interactions equations for a molecular complex, obtaining an intramolecularly polarized reference of self-consistently optimized, absolutely-localized molecular orbitals (ALMOs), determined with the constraint that each fragment MO be composed only of atomic basis functions belonging to its own fragment. As explicit inter-electronic correlation is integral to an accurate description of weak forces underlying intermolecular interaction potentials, namely, coordinated fluctuations in weakly interacting electronic densities, we add dynamical correlation to the ALMO polarized reference at the coupled-cluster singles and doubles level, accounting for explicit dispersion and charge-transfer effects, which map naturally onto the cluster operator. We demonstrate the stability of energy components with basis set extension, follow the hydrogen bond-breaking coordinate in the C{sub s}-symmetry water dimer, decompose the interaction energies of dispersion-bound rare gas dimers and other van der Waals complexes, and examine charge transfer-dominated donor-acceptor interactions in borane adducts. We compare our results with high-level calculations and experiment when possible.

  9. An energy decomposition analysis for intermolecular interactions from an absolutely localized molecular orbital reference at the coupled-cluster singles and doubles level.

    PubMed

    Azar, R Julian; Head-Gordon, Martin

    2012-01-14

    We propose a wave function-based method for the decomposition of intermolecular interaction energies into chemically-intuitive components, isolating both mean-field- and explicit correlation-level contributions. We begin by solving the locally-projected self-consistent field for molecular interactions equations for a molecular complex, obtaining an intramolecularly polarized reference of self-consistently optimized, absolutely-localized molecular orbitals (ALMOs), determined with the constraint that each fragment MO be composed only of atomic basis functions belonging to its own fragment. As explicit inter-electronic correlation is integral to an accurate description of weak forces underlying intermolecular interaction potentials, namely, coordinated fluctuations in weakly interacting electronic densities, we add dynamical correlation to the ALMO polarized reference at the coupled-cluster singles and doubles level, accounting for explicit dispersion and charge-transfer effects, which map naturally onto the cluster operator. We demonstrate the stability of energy components with basis set extension, follow the hydrogen bond-breaking coordinate in the C(s)-symmetry water dimer, decompose the interaction energies of dispersion-bound rare gas dimers and other van der Waals complexes, and examine charge transfer-dominated donor-acceptor interactions in borane adducts. We compare our results with high-level calculations and experiment when possible.

  10. Bose condensates with strong anisotropic interaction

    NASA Astrophysics Data System (ADS)

    Avdeenkov, Alexander; Bohn, John L.; Bortolotti, Daniele C. E.

    2004-05-01

    We theoretically investigate trapped Bose condensates with strong dipolar interactions, in the presence of an external electrostatic field. As a prototype we consider polar OH molecules. Previously such systems have been studied in the case of a very strong external field that aligns all the dipoles along the field axis[1,2]. Here we relax this assumption and investigate the influence of finite external field, also taking into account the internal fine structure of the molecules. As a first approximation we treat the intermolecular coordinates as adiabatic and construct an effective potential by diagonalizing Stark and dipole-dipole hamiltonians. The anisotropy of these adiabatic surfaces is a function of an external field, and does not always resemble the interaction between polarized dipoles. We discuss the implications of finite electric field on the stability and geometry of the condensate. [1] K.Goral, K.Rzazewski, and T.Pfau, Phys.Rev.A 61, 051601/1(2000) [2] L.Santos, G.V.Shlyapnikov, P.Zoller and M.Lewenstein, Phys.Rev.Lett.85,1791(2000)

  11. Structure of an acidic phospholipase A2 from Indian saw-scaled viper (Echis carinatus) at 2.6 A resolution reveals a novel intermolecular interaction.

    PubMed

    Jasti, Jayasankar; Paramasivam, M; Srinivasan, A; Singh, T P

    2004-01-01

    The crystal structure of an acidic phospholipase A(2) from the venom of Echis carinatus (saw-scaled viper; scPLA(2)) has been determined at 2.6 A resolution and refined to a crystallographic R factor of 0.192. Although the overall structure of scPLA(2) is essentially similar to those of other group II acidic PLA(2)s from different species, it shows unique features in several parts. Particularly noteworthy is the C-terminal part, which folds differently to those of other group II PLA(2)s. This part is considered to be responsible for inhibition of the platelet-aggregation activity. The calcium-binding loop is tightly organized with sevenfold coordination. Another striking feature of scPLA(2) is the involvement of Asn79 O(delta1) of a symmetry-related molecule in a coordination linkage with Ca(2+) of the calcium-binding loop. This is the first observation of an internal metal ion participating in an intermolecular interaction. The beta-wing of a molecule is deeply inserted into the hydrophobic channel of another molecule and forms several intermolecular interactions. This results in the formation of an infinite chain of molecules. These chains are stacked in an antiparallel arrangement in the crystals. PMID:14684894

  12. Intermolecular interactions of liquid dichloromethane and equilibrium properties of liquid{endash}vapor and liquid{endash}liquid interfaces: A molecular dynamics study

    SciTech Connect

    Dang, L.X.

    1999-05-01

    Extensive molecular dynamics simulations are carried out to study the molecular interactions, liquid states, and liquid/vapor properties of dichloromethane. The study is also extended to the equilibrium properties of the liquid/liquid interface of water-dichloromethane. The intermolecular interactions among water, dichloromethane, and water-dichloromethane are described using our polarizable potential models. The equilibrium properties of liquid dichloromethane, including the radial distribution functions, the intermolecular structural factor, the self-diffusion coefficient, and the dielectric constant, are evaluated. The dielectric constant is computed using Ewald summation techniques and the computed result compared reasonably well with the available experimental data. Properties such as surface tensions and density profiles of liquid/vapor dichloromethane are evaluated. We found that the computed surface tensions for several temperatures are in excellent agreement with experimental data. The computed density profile of the liquid/liquid interface of water-dichloromethane is averaged over 1 ns and we found the computed profile to be quite smooth and stable. The effect of polarization on the liquid/liquid interfacial equilibrium properties is evaluated by computing the dipole moments of water and dichloromethane molecules as a function of the distance normal to the interface. We found that these values deviated significantly from the simulations that are based on nonpolarizable potential models. We attribute these observations to the changes in the electric fields around the water and dichloromethane molecules near the interface. {copyright} {ital 1999 American Institute of Physics.}

  13. Mutational analysis of the Src SH3 domain: the same residues of the ligand binding surface are important for intra- and intermolecular interactions.

    PubMed Central

    Erpel, T; Superti-Furga, G; Courtneidge, S A

    1995-01-01

    The protein tyrosine kinase c-Src is negatively regulated by phosphorylation of Tyr527 in its C-terminal tail. The repressed state is achieved through intramolecular interactions involving the phosphorylated tail, the Src homology 2 (SH2) domain and the SH3 domain. Both the SH2 and SH3 domains have also been shown to mediate the intermolecular interaction of Src with several proteins. To test which amino acids of the Src SH3 domain are important for these interactions, and whether the intra- and intermolecular associations involve the same residues, we carried out a detailed mutational analysis of the presumptive interaction surface. All mutations of conserved hydrophobic residues had an effect on both inter- and intramolecular interactions of the Src SH3 domain, although not all amino acids were equally important. Chimeric molecules in which the Src SH3 domain was replaced with those of spectrin or Lck showed derepressed kinase activity, whereas a chimera containing the Fyn SH3 domain was fully regulated. Since spectrin and Lck SH3 domains share the conserved hydrophobic residues characteristic of SH3 domains, other amino acids must be important for specificity. Mutational analysis of non- or semi-conserved residues in the RT and n-Src loops showed that some of these were also involved in inter- and intramolecular interactions. Stable transfection of selected SH3 domain mutants into NIH-3T3 cells showed that despite elevated levels of phosphotyrosine, the cells were morphologically normal, indicating that the SH3 domain was required for efficient transformation of NIH-3T3 cells by Src. Images PMID:7534229

  14. Trading polymeric microspheres: exchanging DNA molecules via microsphere interaction.

    PubMed

    Morimoto, Nobuyuki; Muramatsu, Kanna; Nomura, Shin-ichiro M; Suzuki, Makoto

    2015-04-01

    A new class of artificial molecular transport system is constructed by polymeric microspheres. The microspheres are prepared by self-assembly of poly(ethylene glycol)-block-poly(3-dimethyl(methacryloyloxyethyl)ammonium propane sulfonate), PEG-b-PDMAPS, by intermolecular dipole-dipole interaction of sulfobetaine side chains in water. Below the upper critical solution temperature (UCST) of PEG-b-PDMAPS, the microspheres (∼1μm) interact with other microspheres by partial and transit fusion. In order to apply the interaction between microspheres, a 3'-TAMRA-labeled single-stranded DNA oligomer (ssDNA) is encapsulated into a PEG-b-PDMAPS microsphere by thermal treatment. The exchange of ssDNA between microspheres is confirmed by fluorescence resonance energy transfer (FRET) quenching derived from double-stranded formation with complementary 5'-BHQ-2-labeled ssDNA encapsulated in PEG-b-PDMAPS microspheres. The exchange rate of ssDNA is controllable by tuning the composition of the polymer. The contact-dependent transport of molecules can be applied in the areas of microreactors, sensor devices, etc. PMID:25731098

  15. Trading polymeric microspheres: exchanging DNA molecules via microsphere interaction.

    PubMed

    Morimoto, Nobuyuki; Muramatsu, Kanna; Nomura, Shin-ichiro M; Suzuki, Makoto

    2015-04-01

    A new class of artificial molecular transport system is constructed by polymeric microspheres. The microspheres are prepared by self-assembly of poly(ethylene glycol)-block-poly(3-dimethyl(methacryloyloxyethyl)ammonium propane sulfonate), PEG-b-PDMAPS, by intermolecular dipole-dipole interaction of sulfobetaine side chains in water. Below the upper critical solution temperature (UCST) of PEG-b-PDMAPS, the microspheres (∼1μm) interact with other microspheres by partial and transit fusion. In order to apply the interaction between microspheres, a 3'-TAMRA-labeled single-stranded DNA oligomer (ssDNA) is encapsulated into a PEG-b-PDMAPS microsphere by thermal treatment. The exchange of ssDNA between microspheres is confirmed by fluorescence resonance energy transfer (FRET) quenching derived from double-stranded formation with complementary 5'-BHQ-2-labeled ssDNA encapsulated in PEG-b-PDMAPS microspheres. The exchange rate of ssDNA is controllable by tuning the composition of the polymer. The contact-dependent transport of molecules can be applied in the areas of microreactors, sensor devices, etc.

  16. Structural elucidation, density functional calculations and contribution of intermolecular interactions in cholest-4-en-3-one crystals: Insights from X-ray and Hirshfeld surface analysis

    NASA Astrophysics Data System (ADS)

    Khanam, Hena; Mashrai, Ashraf; Siddiqui, Nazish; Ahmad, Musheer; Alam, Mohammad Jane; Ahmad, Shabbir; Shamsuzzaman

    2015-03-01

    The foremost objective of the present work is systematic analysis of intermolecular interactions in crystal structure of cholest-4-en-3-one (2) molecule. It is accomplished by Hirshfeld surface analysis and fingerprint plot. Hirshfeld surface analysis has been used to visualize the fidelity of the crystal structure. This method permitted for the identification of individual types of intermolecular contacts and their impact on the complete packing. Molecules are linked by a combination of Cdbnd O---H, Csbnd H---H, and C---H contacts, which have clear signatures in the fingerprint plots. The theoretical study was attempted to predict the optimized geometry and computed spectra by the Density Functional Theory (DFT) using the B3LYP function with the 6-311++G(d,p) basis set. Atomic charges, MEP mapping, HOMO-LUMO, various thermodynamic and molecular properties have been reported. In addition thermal stability, optical, morphological, and microstructral properties of the title compound (2) have also been explored.

  17. A theoretical study on the characteristics of the intermolecular interactions in the active site of human androsterone sulphotransferase: DFT calculations of NQR and NMR parameters and QTAIM analysis.

    PubMed

    Astani, Elahe K; Heshmati, Emran; Chen, Chun-Jung; Hadipour, Nasser L

    2016-07-01

    A theoretical study at the level of density functional theory (DFT) was performed to characterize noncovalent intermolecular interactions, especially hydrogen bond interactions, in the active site of enzyme human androsterone sulphotransferase (SULT2A1/ADT). Geometry optimization, interaction energy, (2)H, (14)N, and (17)O electric field gradient (EFG) tensors, (1)H, (13)C, (17)O, and (15)N chemical shielding (CS) tensors, Natural Bonding Orbital (NBO) analysis, and quantum theory of atoms in molecules (QTAIM) analysis of this active site were investigated. It was found that androsterone (ADT) is able to form hydrogen bonds with residues Ser80, Ile82, and His99 of the active site. The interaction energy calculations and NBO analysis revealed that the ADT molecule forms the strongest hydrogen bond with Ser80. Results revealed that ADT interacts with the other residues through electrostatic and Van der Waals interactions. Results showed that these hydrogen bonds influence on the calculated (2)H, (14)N, and (17)O quadrupole coupling constants (QCCs), as well as (1)H, (13)C, (17)O, and (15)N CS tensors. The magnitude of the QCC and CS changes at each nucleus depends directly on its amount of contribution to the hydrogen bond interaction. PMID:27337388

  18. Small and efficient basis sets for the evaluation of accurate interaction energies: aromatic molecule-argon ground-state intermolecular potentials and rovibrational states.

    PubMed

    Cybulski, Hubert; Baranowska-Łączkowska, Angelika; Henriksen, Christian; Fernández, Berta

    2014-11-01

    By evaluating a representative set of CCSD(T) ground state interaction energies for van der Waals dimers formed by aromatic molecules and the argon atom, we test the performance of the polarized basis sets of Sadlej et al. (J. Comput. Chem. 2005, 26, 145; Collect. Czech. Chem. Commun. 1988, 53, 1995) and the augmented polarization-consistent bases of Jensen (J. Chem. Phys. 2002, 117, 9234) in providing accurate intermolecular potentials for the benzene-, naphthalene-, and anthracene-argon complexes. The basis sets are extended by addition of midbond functions. As reference we consider CCSD(T) results obtained with Dunning's bases. For the benzene complex a systematic basis set study resulted in the selection of the (Z)Pol-33211 and the aug-pc-1-33321 bases to obtain the intermolecular potential energy surface. The interaction energy values and the shape of the CCSD(T)/(Z)Pol-33211 calculated potential are very close to the best available CCSD(T)/aug-cc-pVTZ-33211 potential with the former basis set being considerably smaller. The corresponding differences for the CCSD(T)/aug-pc-1-33321 potential are larger. In the case of the naphthalene-argon complex, following a similar study, we selected the (Z)Pol-3322 and aug-pc-1-333221 bases. The potentials show four symmetric absolute minima with energies of -483.2 cm(-1) for the (Z)Pol-3322 and -486.7 cm(-1) for the aug-pc-1-333221 basis set. To further check the performance of the selected basis sets, we evaluate intermolecular bound states of the complexes. The differences between calculated vibrational levels using the CCSD(T)/(Z)Pol-33211 and CCSD(T)/aug-cc-pVTZ-33211 benzene-argon potentials are small and for the lowest energy levels do not exceed 0.70 cm(-1). Such differences are substantially larger for the CCSD(T)/aug-pc-1-33321 calculated potential. For naphthalene-argon, bound state calculations demonstrate that the (Z)Pol-3322 and aug-pc-1-333221 potentials are of similar quality. The results show that these

  19. Intermolecular interactions and high dielectric energy storage density in poly(vinylidene fluoride-hexafluoropropylene)/poly(vinylidene fluoride) blend thin films

    NASA Astrophysics Data System (ADS)

    Rahimabady, Mojtaba; Yao, Kui; Arabnejad, Saeid; Lu, Li; Shim, Victor P. W.; Cheong Wun Chet, Davy

    2012-06-01

    Homogeneous poly(vinylidene fluoride-hexafluoropropylene) and poly (vinylidene fluoride) (P(VDF-HFP)/PVDF) blend films were prepared via a chemical solution approach, followed by quenching, annealing, and hot pressing. The intermolecular interactions of the blends were investigated through atomic simulation. Higher melting temperature, higher crystallinity, larger elastic modulus, and improved breakdown strength (>850 MV/m) were observed in the optimized polymer blends, in comparison with either of the two constituent polymers, PVDF or P(VDF-HFP). In addition, the P(VDF-HFP)/PVDF blend film also showed larger dielectric constant. As a result, an extremely high energy density of 30.1 J/cm3 was achieved in P(VDF-HFP)/PVDF (50:50 by weight) blend films.

  20. Universal scaling of potential energy functions describing intermolecular interactions. I. Foundations and scalable forms of new generalized Mie, Lennard-Jones, Morse, and Buckingham exponential-6 potentials

    SciTech Connect

    Xantheas, Sotiris S.; Werhahn, Jasper C.

    2014-08-14

    Based on the formulation of the analytical expression of the potential V(r) describing intermolecular interactions in terms of the dimensionless variables r*=r/rm and !*=V/!, where rm is the separation at the minimum and ! the well depth, we propose more generalized scalable forms for the commonly used Lennard-Jones, Mie, Morse and Buckingham exponential-6 potential energy functions (PEFs). These new generalized forms have an additional parameter from and revert to the original ones for some choice of that parameter. In this respect, the original forms can be considered as special cases of the more general forms that are introduced. We also propose a scalable, but nonrevertible to the original one, 4-parameter extended Morse potential.

  1. Ligand field and intermolecular interactions tuning the magnetic properties of spin-crossover Fe(II) polymer with 4,4′-bipyridine

    SciTech Connect

    Luo, Yang-Hui; Liu, Qing-Ling; Yang, Li-Jing; Ling, Yang; Wang, Wei; Sun, Bai-Wang

    2015-02-15

    A new spin crossover coordination polymer (SCO-CPs) of Fe(II)-4,4′-bipyridine (4,4′-bipy) family: (Fe(4,4′-bipy){sub 2}(H{sub 2}O){sub 2})·(4,4′-bipy)· 8(H{sub 2}O)·2(ClO{sub 4}) (3), which displays half spin transitions between 100 and 300 K, has been synthesized and structurally characterized. Compound 3 featured with two-dimensional (2-D) grids connected by hydrogen bonds and π…π packing between one-dimensional (1-D) chains, the 2-D grids expand to three-dimensional (3-D) architecture supported by a “S-shaped holder” involving lattice 4-4′-bipy, water molecules and perchlorate anion. We compared 3 with the other two analogous complexes: ((Fe(4,4′-bipy) (H{sub 2}O){sub 2} (NCS){sub 2})·4,4′-bipy, 1 and (Fe(4,4′-bipy){sub 2}(NCS){sub 2})·mSolv, 2) through Hirshfeld surfaces analysis, which revealed that the low ligand field strength (NCS{sup −}) and lone-pair…H contacts contribute to the stabilization of HS (high-spin) state of the Fe(II) ion, while the high ligand field strength (4,4′-bipy) and strong intermolecular contacts (hydrogen bonds and π…π packing interactions) make for the LS (low-spin) state. - Highlights: ●A new member of Fe(||)-4,4′-bipy family has been prepared. ●It displays half spin transitions tuned by ligand field and intermolecular interactions. ●We have made a detailed comparison of this new member with two other analogous complexes.

  2. Character of intermolecular interaction in pyridine-argon complex: Ab initio potential energy surface, internal dynamics, and interrelations between SAPT energy components.

    PubMed

    Makarewicz, Jan; Shirkov, Leonid

    2016-05-28

    The pyridine-Ar (PAr) van der Waals (vdW) complex is studied using a high level ab initio method. Its structure, binding energy, and intermolecular vibrational states are determined from the analytical potential energy surface constructed from interaction energy (IE) values computed at the coupled cluster level of theory with single, double, and perturbatively included triple excitations with the augmented correlation consistent polarized valence double-ζ (aug-cc-pVDZ) basis set complemented by midbond functions. The structure of the complex at its global minimum with Ar at a distance of 3.509 Å from the pyridine plane and shifted by 0.218 Å from the center of mass towards nitrogen agrees well with the corresponding equilibrium structure derived previously from the rotational spectrum of PAr. The PAr binding energy De of 392 cm(-1) is close to that of 387 cm(-1) calculated earlier at the same ab initio level for the prototypical benzene-Ar (BAr) complex. However, under an extension of the basis set, De for PAr becomes slightly lower than De for BAr. The ab initio vdW vibrational energy levels allow us to estimate the reliability of the methods for the determination of the vdW fundamentals from the rotational spectra. To disclose the character of the intermolecular interaction in PAr, the symmetry-adapted perturbation theory (SAPT) is employed for the analysis of different physical contributions to IE. It is found that SAPT components of IE can be approximately expressed in the binding region by only two of them: the exchange repulsion and dispersion energy. The total induction effect is negligible. The interrelations between various SAPT components found for PAr are fulfilled for a few other complexes involving aromatic molecules and Ar or Ne, which indicates that they are valid for all rare gas (Rg) atoms and aromatics.

  3. Character of intermolecular interaction in pyridine-argon complex: Ab initio potential energy surface, internal dynamics, and interrelations between SAPT energy components

    NASA Astrophysics Data System (ADS)

    Makarewicz, Jan; Shirkov, Leonid

    2016-05-01

    The pyridine-Ar (PAr) van der Waals (vdW) complex is studied using a high level ab initio method. Its structure, binding energy, and intermolecular vibrational states are determined from the analytical potential energy surface constructed from interaction energy (IE) values computed at the coupled cluster level of theory with single, double, and perturbatively included triple excitations with the augmented correlation consistent polarized valence double-ζ (aug-cc-pVDZ) basis set complemented by midbond functions. The structure of the complex at its global minimum with Ar at a distance of 3.509 Å from the pyridine plane and shifted by 0.218 Å from the center of mass towards nitrogen agrees well with the corresponding equilibrium structure derived previously from the rotational spectrum of PAr. The PAr binding energy De of 392 cm-1 is close to that of 387 cm-1 calculated earlier at the same ab initio level for the prototypical benzene-Ar (BAr) complex. However, under an extension of the basis set, De for PAr becomes slightly lower than De for BAr. The ab initio vdW vibrational energy levels allow us to estimate the reliability of the methods for the determination of the vdW fundamentals from the rotational spectra. To disclose the character of the intermolecular interaction in PAr, the symmetry-adapted perturbation theory (SAPT) is employed for the analysis of different physical contributions to IE. It is found that SAPT components of IE can be approximately expressed in the binding region by only two of them: the exchange repulsion and dispersion energy. The total induction effect is negligible. The interrelations between various SAPT components found for PAr are fulfilled for a few other complexes involving aromatic molecules and Ar or Ne, which indicates that they are valid for all rare gas (Rg) atoms and aromatics.

  4. An isotopic mass effect on the intermolecular potential

    SciTech Connect

    Herman, Michael F.; Currier, Robert Patrick; Clegg, Samuel M.

    2015-09-28

    The impact of isotopic variation on the electronic energy and intermolecular potentials is often suppressed when calculating isotopologue thermodynamics. Intramolecular potential energy surfaces for distinct isotopologues are in fact equivalent under the Born–Oppenheimer approximation, which is sometimes used to imply that the intermolecular interactions are independent of isotopic mass. In this paper, the intermolecular dipole–dipole interaction between hetero-nuclear diatomic molecules is considered. It is shown that the intermolecular potential contains mass-dependent terms even though each nucleus moves on a Born–Oppenheimer surface. Finally, the analysis suggests that mass dependent variations in intermolecular potentials should be included in comprehensive descriptions of isotopologue thermodynamics.

  5. Structural analysis of intermolecular interactions in the kinesin adaptor complex fasciculation and elongation protein zeta 1/ short coiled-coil protein (FEZ1/SCOCO).

    PubMed

    Alborghetti, Marcos Rodrigo; Furlan, Ariane da Silva; da Silva, Júlio César; Sforça, Maurício Luís; Honorato, Rodrigo Vargas; Granato, Daniela Campos; dos Santos Migueleti, Deivid Lucas; Neves, Jorge L; de Oliveira, Paulo Sergio Lopes; Paes-Leme, Adriana Franco; Zeri, Ana Carolina de Mattos; de Torriani, Iris Concepcion Linares; Kobarg, Jörg

    2013-01-01

    Cytoskeleton and protein trafficking processes, including vesicle transport to synapses, are key processes in neuronal differentiation and axon outgrowth. The human protein FEZ1 (fasciculation and elongation protein zeta 1 / UNC-76, in C. elegans), SCOCO (short coiled-coil protein / UNC-69) and kinesins (e.g. kinesin heavy chain / UNC116) are involved in these processes. Exploiting the feature of FEZ1 protein as a bivalent adapter of transport mediated by kinesins and FEZ1 protein interaction with SCOCO (proteins involved in the same path of axonal growth), we investigated the structural aspects of intermolecular interactions involved in this complex formation by NMR (Nuclear Magnetic Resonance), cross-linking coupled with mass spectrometry (MS), SAXS (Small Angle X-ray Scattering) and molecular modelling. The topology of homodimerization was accessed through NMR (Nuclear Magnetic Resonance) studies of the region involved in this process, corresponding to FEZ1 (92-194). Through studies involving the protein in its monomeric configuration (reduced) and dimeric state, we propose that homodimerization occurs with FEZ1 chains oriented in an anti-parallel topology. We demonstrate that the interaction interface of FEZ1 and SCOCO defined by MS and computational modelling is in accordance with that previously demonstrated for UNC-76 and UNC-69. SAXS and literature data support a heterotetrameric complex model. These data provide details about the interaction interfaces probably involved in the transport machinery assembly and open perspectives to understand and interfere in this assembly and its involvement in neuronal differentiation and axon outgrowth.

  6. Diverse supramolecular arrangement of substituted oxopyrrolidine analogues influenced by weak intermolecular interactions (Csbnd H⋯O/Csbnd H⋯π/H⋯H)

    NASA Astrophysics Data System (ADS)

    Samipillai, Marivel; Bhatt, Nilay; Kruger, Hendrik G.; Govender, Thavendran; Naicker, Tricia

    2016-10-01

    Three analogues of 3-oxopyrrolidines; (S)-1-tert-butyl 2-ethyl-2-((S)-2-nitro-1-p-tolylethyl)-3-oxopyrrolidine-1,2-dicarboxylate, 1, (S)-1-tert-butyl 2-ethyl 2-((S)-1-(4-methoxyphenyl)-2-nitroethyl)-3-oxopyrrolidine-1,2-dicarboxylate 2, and Ethyl 1-((S)-2-(((benzyloxy)carbonyl)amino)-3-phenylpropanoyl)-2-(2-nitro-1-phenylethyl)-3-oxopyrrolidine-2-carboxylate 3, were synthesized and crystallized in suitable solvents. Crystal structure analysis was carried out by single crystal X-ray diffraction to provide a detailed investigation of the packing and supramolecular arrangement of these analogues. The weak interactions such as Csbnd H⋯O/Csbnd H⋯π present in the crystal structure of all these analogues (1-3) played a vital role in controlling the conformation of the molecules and construction of dissimilar supramolecular assemblies. This study provides some insight; that even though these oxopyrrolidine analogues, lack a hydrogen bond donor and acceptor system, that upon bulky substitutions, this scaffold can still form fascinating supramolecular assemblies through various weak interactions. The surface interaction was carried out by means of Hirshfeld surface analysis, which depicted the significant intermolecular interactions of a molecule with its neighbor within the structures.

  7. Tailored donor-acceptor polymers with an A-D1-A-D2 structure: controlling intermolecular interactions to enable enhanced polymer photovoltaic devices.

    PubMed

    Qin, Tianshi; Zajaczkowski, Wojciech; Pisula, Wojciech; Baumgarten, Martin; Chen, Ming; Gao, Mei; Wilson, Gerry; Easton, Christopher D; Müllen, Klaus; Watkins, Scott E

    2014-04-23

    Extensive efforts have been made to develop novel conjugated polymers that give improved performance in organic photovoltaic devices. The use of polymers based on alternating electron-donating and electron-accepting units not only allows the frontier molecular orbitals to be tuned to maximize the open-circuit voltage of the devices but also controls the optical band gap to increase the number of photons absorbed and thus modifies the other critical device parameter-the short circuit current. In fact, varying the nonchromophoric components of a polymer is often secondary to the efforts to adjust the intermolecular aggregates and improve the charge-carrier mobility. Here, we introduce an approach to polymer synthesis that facilitates simultaneous control over both the structural and electronic properties of the polymers. Through the use of a tailored multicomponent acceptor-donor-acceptor (A-D-A) intermediate, polymers with the unique structure A-D1-A-D2 can be prepared. This approach enables variations in the donor fragment substituents such that control over both the polymer regiochemistry and solubility is possible. This control results in improved intermolecular π-stacking interactions and therefore enhanced charge-carrier mobility. Solar cells using the A-D1-A-D2 structural polymer show short-circuit current densities that are twice that of the simple, random analogue while still maintaining an identical open-circuit voltage. The key finding of this work is that polymers with an A-D1-A-D2 structure offer significant performance benefits over both regioregular and random A-D polymers. The chemical synthesis approach that enables the preparation of A-D1-A-D2 polymers therefore represents a promising new route to materials for high-efficiency organic photovoltaic devices.

  8. A programmable optimization environment using the GAMESS-US and MERLIN/MCL packages. Applications on intermolecular interaction energies

    NASA Astrophysics Data System (ADS)

    Kalatzis, Fanis G.; Papageorgiou, Dimitrios G.; Demetropoulos, Ioannis N.

    2006-09-01

    The Merlin/MCL optimization environment and the GAMESS-US package were combined so as to offer an extended and efficient quantum chemistry optimization system, capable of implementing complex optimization strategies for generic molecular modeling problems. A communication and data exchange interface was established between the two packages exploiting all Merlin features such as multiple optimizers, box constraints, user extensions and a high level programming language. An important feature of the interface is its ability to perform dimer computations by eliminating the basis set superposition error using the counterpoise (CP) method of Boys and Bernardi. Furthermore it offers CP-corrected geometry optimizations using analytic derivatives. The unified optimization environment was applied to construct portions of the intermolecular potential energy surface of the weakly bound H-bonded complex C 6H 6-H 2O by utilizing the high level Merlin Control Language. The H-bonded dimer HF-H 2O was also studied by CP-corrected geometry optimization. The ab initio electronic structure energies were calculated using the 6-31G ** basis set at the Restricted Hartree-Fock and second-order Moller-Plesset levels, while all geometry optimizations were carried out using a quasi-Newton algorithm provided by Merlin. Program summaryTitle of program: MERGAM Catalogue identifier:ADYB_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/ADYB_v1_0 Program obtainable from: CPC Program Library, Queen's University of Belfast, N. Ireland Computer for which the program is designed and others on which it has been tested: The program is designed for machines running the UNIX operating system. It has been tested on the following architectures: IA32 (Linux with gcc/g77 v.3.2.3), AMD64 (Linux with the Portland group compilers v.6.0), SUN64 (SunOS 5.8 with the Sun Workshop compilers v.5.2) and SGI64 (IRIX 6.5 with the MIPSpro compilers v.7.4) Installations: University of Ioannina, Greece Operating

  9. The experimental charge-density approach in the evaluation of intermolecular interactions. Application of a new module of the XD programming package to several solids including a pentapeptide.

    PubMed

    Abramov, Y A; Volkov, A; Wu, G; Coppens, P

    2000-11-01

    A new module interfaced to the XD programming package has been used in the evaluation of intermolecular interactions and lattice energies of the crystals of p-nitroaniline, L-asparagine monohydrate and the pentapeptide Boc-Gln-D-Iva-Hyp-Ala-Phol (Boc = butoxycarbonyl, Iva = isovaline = ethylalanine, Phol = phenylalaninol). The electrostatic interactions are evaluated with the atom-centered distributed multipoles from KRMM (kappa'-restricted multipole model) refinements, using the Buckingham expression for non-overlapping charge densities. Results for p-nitroaniline are compared with Hartree-Fock (HF), density functional (DFT) and Moller-Plesset (MP2) supermolecular calculations and with HF and DFT periodic calculations. The HF and DFT methods fail to predict the stability of the p-nitroaniline crystal but the results of the experimental charge-density approach (ECDA) are in good agreement with both MP2 interaction energies and the experimental lattice energy. ECDA results for L-asparagine monohydrate compare well with those from DFT supermolecular and periodic HF calculations. The disorder of the terminal group in the pentapeptide, which persists at the experimental temperature of 20 K, corresponds to an energy difference of only 0.35 kJ mol(-1), which is too small to be reproduced with current methods. PMID:11058845

  10. Problem-Based Learning in 9th Grade Chemistry Class: `Intermolecular Forces'

    NASA Astrophysics Data System (ADS)

    Tarhan, Leman; Ayar-Kayali, Hulya; Urek, Raziye Ozturk; Acar, Burcin

    2008-05-01

    This research study aims to examine the effectiveness of a problem-based learning (PBL) on 9th grade students’ understanding of intermolecular forces (dipole-dipole forces, London dispersion forces and hydrogen bonding). The student’s alternate conceptions about intermolecular bonding and their beliefs about PBL were also measured. Seventy-eight 9th grade students were stratified by cognitive levels and then randomly assigned to experimental (PBL, 40 students) and control (lecture-style teaching, 38 students) groups. Following a preparatory lesson where activation and remediation of existing knowledge occur, a pre-test was given, and no significant difference was found between the two groups of students ( p > .05). After the instruction was completed, a post-test and also a questionnaire related to the quality of the problem, the teacher’s role and group functioning were administered. Results from the post-test of both groups ( p < .05) and questionnaire showed that PBL is affective on students’ achievement, remedying formation of alternate conceptions and also social skills.

  11. Relationship between molecular weight of poly(ethylene)glycol and intermolecular interaction of Taka-amylase A monomers

    NASA Astrophysics Data System (ADS)

    Onuma, Kazuo; Furubayashi, Naoki; Shibata, Fujiko; Kobayashi, Yoshiko; Kaito, Sachiko; Ohnishi, Yuki; Inaka, Koji

    2010-04-01

    Dynamic and static light scattering investigations of Taka-amylase A (TAA) protein monomers were done using solutions containing poly(ethylene)glycol (PEG) with molecular weights of 1500, 4000, 8000, and 20 000. The anomalies observed in a previous study using a weight of 8000, in which the hydrodynamic TAA monomer radius at a zero protein concentration and the molecular weight of the monomers decreased when the PEG concentration was increased, were observed for all four weights. These anomalies became more pronounced as the PEG molecular weight was increased. The overall interaction parameter did not move further in the direction of the attractive force despite an increase in the PEG concentration from 6% to 12.5% for the PEG 8000 and 20 000 solutions. This was due to the change in the relative contributions of the static structure factor (direct interaction) and the hydrodynamic interaction factor (indirect interaction) against the overall interaction parameter. For the PEG 1500 and 4000 solutions, the change in the overall interaction parameter with an increase in the PEG concentration was controlled by changing the static structure factor. For the PEG 8000 and 20 000 solutions, a change in the hydrodynamic interaction factor with an increase in the PEG concentration offset the change in the static structure factor, unexpectedly resulting in the overall interaction parameter being independent of the PEG concentration. This suggests that the scale and density of a PEG network structure, which are thought to be the origin of the observed anomalies, change nonlinearly with the PEG molecular weight.

  12. Surface activity at the planar interface in relation to the thermodynamics of intermolecular interactions in the ternary system: maltodextrin-small-molecule surfactant-legumin.

    PubMed

    Myasoedova, M S.; Semenova, M G.; Belyakova, L E.; Antipova, A S.

    2001-07-01

    We report on the effect of potato maltodextrins with variable dextrose equivalent (Paselli SA-2, SA-6 and SA-10) on the surface behavior at the air-water interface of the mixture: legumin+small-molecule surfactant. Distinct in nature small-molecule surfactants (model: sodium salt of capric acid, Na-caprate; and commercially important: a citric acid ester of monoglyceride, CITREM) have been under our consideration. The role of the structure of both of the maltodextrins and the small-molecule surfactants in the effect studied has been elucidated by measurements in a bulk aqueous medium of the enthalpy of their interaction from mixing calorimetry, value of weight average molecular weight of the maltodextrins and the thermodynamics of the pair maltodextrin-solvent and maltodextrin-protein interactions from laser static light scattering. The combined data of mixing calorimetry and light scattering suggest some complex formation between the small-molecule surfactants and the maltodextrins. Predominantly hydrophobic interactions along with hydrogen bonding form the basis of the complexes. The effect of the maltodextrins on the thermodynamics of the protein heat denaturation and thereby on the protein conformational stability in the presence of the small-molecule surfactants has been studied by differential scanning calorimetry. The interrelation between the thermodynamics of intermolecular interactions in a bulk and the surface behavior at the planar air-water interface of the ternary systems (maltodextrin+legumin+small-molecule surfactant) has been elucidated by tensiometry. The effect of the maltodextrins on the surface activity of mixtures of legumin with the small-molecule surfactants is governed by the competitive in relation to the protein interactions with the small-molecule surfactants and a subsequent change in the thermodynamic properties of the both biopolymers, which are favorable to the ternary complex formation.

  13. Push it to the limit: Characterizing the convergence of common sequences of basis sets for intermolecular interactions as described by density functional theory.

    PubMed

    Witte, Jonathon; Neaton, Jeffrey B; Head-Gordon, Martin

    2016-05-21

    With the aim of systematically characterizing the convergence of common families of basis sets such that general recommendations for basis sets can be made, we have tested a wide variety of basis sets against complete-basis binding energies across the S22 set of intermolecular interactions-noncovalent interactions of small and medium-sized molecules consisting of first- and second-row atoms-with three distinct density functional approximations: SPW92, a form of local-density approximation; B3LYP, a global hybrid generalized gradient approximation; and B97M-V, a meta-generalized gradient approximation with nonlocal correlation. We have found that it is remarkably difficult to reach the basis set limit; for the methods and systems examined, the most complete basis is Jensen's pc-4. The Dunning correlation-consistent sequence of basis sets converges slowly relative to the Jensen sequence. The Karlsruhe basis sets are quite cost effective, particularly when a correction for basis set superposition error is applied: counterpoise-corrected def2-SVPD binding energies are better than corresponding energies computed in comparably sized Dunning and Jensen bases, and on par with uncorrected results in basis sets 3-4 times larger. These trends are exhibited regardless of the level of density functional approximation employed. A sense of the magnitude of the intrinsic incompleteness error of each basis set not only provides a foundation for guiding basis set choice in future studies but also facilitates quantitative comparison of existing studies on similar types of systems.

  14. Enhanced fullerene–Au(111) coupling in (2√3 × 2√3)R30° superstructures with intermolecular interactions

    PubMed Central

    Paßens, Michael; Waser, Rainer

    2015-01-01

    Summary Disordered and uniform (2√3 × 2√3)R30° superstructures of fullerenes on the Au(111) surface have been studied using scanning tunneling microscopy and spectroscopy. It is shown that the deposition and growth process of a fullerene monolayer on the Au(111) surface determine the resulting superstructure. The supply of thermal energy is of importance for the activation of a Au vacancy forming process and thus, one criterion for the selection of the respective superstructure. However, here it is depicted that a vacancy–adatom pair can be formed even at room temperature. This latter process results in C60 molecules that appear slightly more bright in scanning tunnelling microscopy images and are identified in disordered (2√3 x 2√3)R30° superstructures based on a detailed structure analysis. In addition, these slightly more bright C60 molecules form uniform (2√3 x 2√3)R30° superstructures, which exhibit intermolecular interactions, likely mediated by Au adatoms. Thus, vacancy–adatom pairs forming at room temperature directly affect the resulting C60 superstructure. Differential conductivity spectra reveal a lifting of the degeneracy of the LUMO and LUMO+1 orbitals in the uniform (2√3 x 2√3)R30° superstructure and in addition, hybrid fullerene–Au(111) surface states suggest partly covalent interactions. PMID:26199846

  15. Synthesis, crystal structures and intermolecular interactions of two Mn(II) complexes with 4,4‧-bipy and methyl benzoates

    NASA Astrophysics Data System (ADS)

    Xin-Jian, Wu; Yi-Ping, Chen; Ze-Min, Xia; Su-Zhi, Ge; Feng, Chai; Ling-Yan, Zhao; Jian-Zhong, Chen

    2013-03-01

    Two manganese complexes containing 4,4'-bipyridine and methyl benzoate as ligands have been prepared and crystallized by solvent evaporation method in DMF. The single crystal X-ray crystallographic analyses reveal that the complexes crystallize in monoclinic system. Crystal of 1 [Mn2(4,4'-bipy)2 (o-MBA)4]n has space group of P21/c with unit cell parameters of a = 17.508 (Å), b = 11.6229 (Å), c = 27.983 (Å), β = 128.123°, V = 4.4797 nm3, empirical formula: C52H44Mn2N4O8, Mr = 962.79, Z = 4, Dc = 1.428 g/cm3, μ = 0.625 mm-1, and F(000) = 1992. The crystal of 2 [Mn (4,4'-bipy)(m-MBA)2]n belongs to space group C2/c with a = 16.079 (Å), b = 11.652 (Å), c = 24.887 (Å), β = 92.02°, V = 4.660 nm3, empirical formula: C26H22MnN2O4, Mr = 481.40, Z = 8, Dc = 1.372 g/cm3, μ = 1.179 mm-1, F(000) = 1992. The weak interactions in structures are observed from the X-ray crystallographic data. These include the Csbnd H⋯O hydrogen bonds, π-π stacking and Csbnd H⋯π interactions found in 1. The different strength of intermolecular interaction in the structures is reflected on their different thermal stability of the two complexes measured by thermal gravimetric analysis and the 2D-IR correlation spectroscopy. The study of weak interactions is meaningful to provide supporting data for potential application in molecular biology.

  16. Comparison of Cluster, Slab, and Analytic Potential Models for the Dimethyl Methylphosphonate (DMMP)/TiO2 (110) Intermolecular Interaction

    SciTech Connect

    Yang, Li; Tunega, Daniel; Xu, Lai; Govind, Niranjan; Sun, Rui; Taylor, Ramona; Lischka, Hans; De Jong, Wibe A.; Hase, William L.

    2013-08-29

    In a previous study (J. Phys. Chem. C 2011, 115, 12403) cluster models for the TiO2 rutile (110) surface and MP2 calculations were used to develop an analytic potential energy function for dimethyl methylphosphonate (DMMP) interacting with this surface. In the work presented here, this analytic potential and MP2 cluster models are compared with DFT "slab" calculations for DMMP interacting with the TiO2 (110) surface and with DFT cluster models for the TiO2 (110) surface. The DFT slab calculations were performed with the PW91 and PBE functionals. The analytic potential gives DMMP/ TiO2 (110) potential energy curves in excellent agreement with those obtained from the slab calculations. The cluster models for the TiO2 (110) surface, used for the MP2 calculations, were extended to DFT calculations with the B3LYP, PW91, and PBE functional. These DFT calculations do not give DMMP/TiO2 (110) interaction energies which agree with those from the DFT slab calculations. Analyses of the wave functions for these cluster models show that they do not accurately represent the HOMO and LUMO for the surface, which should be 2p and 3d orbitals, respectively, and the models also do not give an accurate band gap. The MP2 cluster models do not accurately represent the LUMO and that they give accurate DMMP/TiO2 (110) interaction energies is apparently fortuitous, arising from their highly inaccurate band gaps. Accurate cluster models, consisting of 7, 10, and 15 Ti-atoms and which have the correct HOMO and LUMO properties, are proposed. The work presented here illustrates the care that must be taken in "constructing" cluster models which accurately model surfaces.

  17. Accurate Intermolecular Interactions at Dramatically Reduced Cost and a Many-Body Energy Decomposition Scheme for XPol+SAPT

    NASA Astrophysics Data System (ADS)

    Lao, Ka Un; Herbert, John M.

    2013-06-01

    An efficient, monomer-based electronic structure method is introduced for computing non-covalent interactions in molecular and ionic clusters. It builds upon our ``explicit polarization" (XPol) with pairwise-additive symmetry-adapted perturbation theory (SAPT) using the Kohn-Sham (KS) version of SAPT, but replaces the problematic and expensive sum-over-states dispersion terms with empirical potentials. This modification reduces the scaling from {O}(N^5) to {O}(N^3) and also facilitates the use of Kohn-Sham density functional theory (KS-DFT) as a low-cost means to capture intramolecular electron correlation. Accurate binding energies are obtained for benchmark databases of dimer binding energies, and potential energy curves are also captured accurately, for a variety of challenging systems. As compared to traditional DFT-SAPT or SAPT(DFT) methods, it removes the limitation to dimers and extends SAPT-based methodology to many-body systems. For many-body systems such as water clusters and halide-water cluster anions, the new method is superior to established density-functional methods for non-covalent interactions. We suggest that using different asymptotic corrections for different monomers is necessary to get good binding energies in general, as DFT-SAPT or SAPT(DFT), especially for hydrogen-bonded complexes. We also introduce a decomposition scheme for the interaction energy that extends traditional SAPT energy decomposition analysis to systems containing more than two monomers, and we find that the various energy components (electrostatic, exchange, induction, and dispersion) are in very good agreement with high-level SAPT benchmarks for dimers. For (H_2O)_6, the many-body contribution to the interaction energy agrees well with that obtained from traditional Kitaura-Morokuma energy decomposition analysis.

  18. The explicitly correlated same number of optimized parameters (SNOOP-F12) scheme for calculating intermolecular interaction energies

    NASA Astrophysics Data System (ADS)

    Rasmussen, Troels Hels; Wang, Yang Min; Kjærgaard, Thomas; Kristensen, Kasper

    2016-05-01

    We augment the recently introduced same number of optimized parameters (SNOOP) scheme [K. Kristensen et al., J. Chem. Phys. 142, 114116 (2015)] for calculating interaction energies of molecular dimers with an F12 correction and generalize the method to enable the determination of interaction energies of general molecular clusters. The SNOOP, uncorrected (UC), and counterpoise (CP) schemes with/without an F12 correction are compared for the S22 test set of Jurečka et al. [Phys. Chem. Chem. Phys. 8, 1985 (2006)]—which consists of 22 molecular dimers of biological importance—and for water and methane molecular clusters. The calculations have been performed using the Resolution of the Identity second-order Møller-Plesset perturbation theory method. We conclude from the results that the SNOOP scheme generally yields interaction energies closer to the complete basis set limit value than the UC and CP approaches, regardless of whether the F12 correction is applied or not. Specifically, using the SNOOP scheme with an F12 correction yields the computationally most efficient way of achieving accurate results at low basis set levels. These conclusions hold both for molecular dimers and more general molecular clusters.

  19. Restricted mobility of side chains on concave surfaces of solenoid proteins may impart heightened potential for intermolecular interactions.

    PubMed

    Ramya, L; Gautham, N; Chaloin, Laurent; Kajava, Andrey V

    2015-09-01

    Significant progress has been made in the determination of the protein structures with their number today passing over a hundred thousand structures. The next challenge is the understanding and prediction of protein-protein and protein-ligand interactions. In this work we address this problem by analyzing curved solenoid proteins. Many of these proteins are considered as "hub molecules" for their high potential to interact with many different molecules and to be a scaffold for multisubunit protein machineries. Our analysis of these structures through molecular dynamics simulations reveals that the mobility of the side-chains on the concave surfaces of the solenoids is lower than on the convex ones. This result provides an explanation to the observed preferential binding of the ligands, including small and flexible ligands, to the concave surface of the curved solenoid proteins. The relationship between the landscapes and dynamic properties of the protein surfaces can be further generalized to the other types of protein structures and eventually used in the computer algorithms, allowing prediction of protein-ligand interactions by analysis of protein surfaces.

  20. Mixed layers of β-lactoglobulin and SDS at air-water interfaces with tunable intermolecular interactions.

    PubMed

    Engelhardt, Kathrin; Weichsel, Ulrike; Kraft, Elena; Segets, Doris; Peukert, Wolfgang; Braunschweig, Björn

    2014-04-17

    Mixtures of β-lactoglobulin (BLG) and sodium dodecyl sulfate (SDS) were studied at pH 3.8 and 6.7 under equilibrium conditions. At these pH conditions, BLG carries either a positive or a negative net charge, respectively, which enables tunable electrostatic interactions between anionic SDS surfactants and BLG proteins. For pH 3.8, vibrational sum-frequency generation (SFG) and ellipsometry indicate strong BLG-SDS complex formation at air-water interfaces that is caused by attractive electrostatic interactions. The latter complexes are already formed in the bulk solution which was confirmed by a thermodynamic study of BLG-SDS mixtures using isothermal titration calorimetry (ITC). For acidic conditions we determine from our ITC data an exothermal binding enthalpy of -40 kJ mol(-1). Increasing SDS/BLG molar ratios above 10 leads to a surface excess of SDS and thus to a charge reversal from a positive net charge with BLG as the dominating surface adsorbed species to a negatively charged layer with SDS as the dominating surface species. The latter is evidenced by a pronounced minimum in SFG intensities that is also accompanied by a phase change of O-H stretching bands due to a reorientation of H2O within the local electric field. This phase change which occurs at SDS/BLG molar ratio between 1 and 10 causes a polarity change in SFG intensities from BLG aromatic C-H stretching vibrations. Conclusions from SFG spectra are corroborated by ellipsometry which shows a dramatic increase in layer thicknesses at molar ratios where a charge reversal occurs. The formation of interfacial multilayers comprising SDS-BLG complexes is, thus, caused by cancellation of electrostatic interactions which leads to agglomeration at the interface. In contrast to pH 3.8, behavior of BLG-SDS mixtures at pH 6.7 is different due to repulsive electrostatic interactions between SDS and BLG which lead to a significantly reduced binding enthalpy of -17 kJ mol(-1). Finally, it has to be mentioned that

  1. Push it to the limit: Characterizing the convergence of common sequences of basis sets for intermolecular interactions as described by density functional theory

    NASA Astrophysics Data System (ADS)

    Witte, Jonathon; Neaton, Jeffrey B.; Head-Gordon, Martin

    2016-05-01

    With the aim of systematically characterizing the convergence of common families of basis sets such that general recommendations for basis sets can be made, we have tested a wide variety of basis sets against complete-basis binding energies across the S22 set of intermolecular interactions—noncovalent interactions of small and medium-sized molecules consisting of first- and second-row atoms—with three distinct density functional approximations: SPW92, a form of local-density approximation; B3LYP, a global hybrid generalized gradient approximation; and B97M-V, a meta-generalized gradient approximation with nonlocal correlation. We have found that it is remarkably difficult to reach the basis set limit; for the methods and systems examined, the most complete basis is Jensen's pc-4. The Dunning correlation-consistent sequence of basis sets converges slowly relative to the Jensen sequence. The Karlsruhe basis sets are quite cost effective, particularly when a correction for basis set superposition error is applied: counterpoise-corrected def2-SVPD binding energies are better than corresponding energies computed in comparably sized Dunning and Jensen bases, and on par with uncorrected results in basis sets 3-4 times larger. These trends are exhibited regardless of the level of density functional approximation employed. A sense of the magnitude of the intrinsic incompleteness error of each basis set not only provides a foundation for guiding basis set choice in future studies but also facilitates quantitative comparison of existing studies on similar types of systems.

  2. Intermolecular interaction of voriconazole analogues with model membrane by DSC and NMR, and their antifungal activity using NMR based metabolic profiling.

    PubMed

    Kalamkar, Vaibhav; Joshi, Mamata; Borkar, Varsha; Srivastava, Sudha; Kanyalkar, Meena

    2013-11-01

    The development of novel antifungal agents with high susceptibility and increased potency can be achieved by increasing their overall lipophilicity. To enhance the lipophilicity of voriconazole, a second generation azole antifungal agent, we have synthesized its carboxylic acid ester analogues, namely p-methoxybenzoate (Vpmb), toluate (Vtol), benzoate (Vbz) and p-nitrobenzoate (Vpnb). The intermolecular interactions of these analogues with model membrane have been investigated using nuclear magnetic resonance (NMR) and differential scanning calorimetric (DSC) techniques. The results indicate varying degree of changes in the membrane bilayer's structural architecture and physico-chemical characteristics which possibly can be correlated with the antifungal effects via fungal membrane. Rapid metabolite profiling of chemical entities using cell preparations is one of the most important steps in drug discovery. We have evaluated the effect of synthesized analogues on Candida albicans. The method involves real time (1)H NMR measurement of intact cells monitoring NMR signals from fungal metabolites which gives Metabolic End Point (MEP). This is then compared with Minimum Inhibitory Concentration (MIC) determined using conventional methods. Results indicate that one of the synthesized analogues, Vpmb shows reasonably good activity.

  3. Simulations of molecular self-assembled monolayers on surfaces: packing structures, formation processes and functions tuned by intermolecular and interfacial interactions.

    PubMed

    Wen, Jin; Li, Wei; Chen, Shuang; Ma, Jing

    2016-08-17

    Surfaces modified with a functional molecular monolayer are essential for the fabrication of nano-scale electronics or machines with novel physical, chemical, and/or biological properties. Theoretical simulation based on advanced quantum chemical and classical models is at present a necessary tool in the development, design, and understanding of the interfacial nanostructure. The nanoscale surface morphology, growth processes, and functions are controlled by not only the electronic structures (molecular energy levels, dipole moments, polarizabilities, and optical properties) of building units but also the subtle balance between intermolecular and interfacial interactions. The switchable surfaces are also constructed by introducing stimuli-responsive units like azobenzene derivatives. To bridge the gap between experiments and theoretical models, opportunities and challenges for future development of modelling of ferroelectricity, entropy, and chemical reactions of surface-supported monolayers are also addressed. Theoretical simulations will allow us to obtain important and detailed information about the structure and dynamics of monolayer modified interfaces, which will guide the rational design and optimization of dynamic interfaces to meet challenges of controlling optical, electrical, and biological functions. PMID:27138016

  4. Collecting high-order interactions in an effective pairwise intermolecular potential using the hydrated ion concept: The hydration of Cf{sup 3+}

    SciTech Connect

    Galbis, Elsa; Pappalardo, Rafael R.; Marcos, Enrique Sánchez; Hernández-Cobos, Jorge

    2014-06-07

    This work proposes a new methodology to build interaction potentials between a highly charged metal cation and water molecules. These potentials, which can be used in classical computer simulations, have been fitted to reproduce quantum mechanical interaction energies (MP2 and BP86) for a wide range of [M(H{sub 2}O){sub n}]{sup m+}(H{sub 2}O){sub ℓ} clusters (n going from 6 to 10 and ℓ from 0 to 18). A flexible and polarizable water shell model (Mobile Charge Density of Harmonic Oscillator) has been coupled to the cation-water potential. The simultaneous consideration of poly-hydrated clusters and the polarizability of the interacting particles allows the inclusion of the most important many-body effects in the new polarizable potential. Applications have been centered on the californium, Cf(III) the heaviest actinoid experimentally studied in solution. Two different strategies to select a set of about 2000 structures which are used for the potential building were checked. Monte Carlo simulations of Cf(III)+500 H{sub 2}O for three of the intermolecular potentials predict an aquaion structure with coordination number close to 8 and average R{sub Cf−−O} in the range 2.43–2.48 Å, whereas the fourth one is closer to 9 with R{sub Cf−−O} = 2.54 Å. Simulated EXAFS spectra derived from the structural Monte Carlo distribution compares fairly well with the available experimental spectrum for the simulations bearing 8 water molecules. An angular distribution similar to that of a square antiprism is found for the octa-coordination.

  5. Collecting high-order interactions in an effective pairwise intermolecular potential using the hydrated ion concept: The hydration of Cf3+

    NASA Astrophysics Data System (ADS)

    Galbis, Elsa; Hernández-Cobos, Jorge; Pappalardo, Rafael R.; Marcos, Enrique Sánchez

    2014-06-01

    This work proposes a new methodology to build interaction potentials between a highly charged metal cation and water molecules. These potentials, which can be used in classical computer simulations, have been fitted to reproduce quantum mechanical interaction energies (MP2 and BP86) for a wide range of [M(H2O)n]m+(H2O)ℓ clusters (n going from 6 to 10 and ℓ from 0 to 18). A flexible and polarizable water shell model (Mobile Charge Density of Harmonic Oscillator) has been coupled to the cation-water potential. The simultaneous consideration of poly-hydrated clusters and the polarizability of the interacting particles allows the inclusion of the most important many-body effects in the new polarizable potential. Applications have been centered on the californium, Cf(III) the heaviest actinoid experimentally studied in solution. Two different strategies to select a set of about 2000 structures which are used for the potential building were checked. Monte Carlo simulations of Cf(III)+500 H2O for three of the intermolecular potentials predict an aquaion structure with coordination number close to 8 and average R_{{Cf-O}} in the range 2.43-2.48 Å, whereas the fourth one is closer to 9 with R_{{Cf-O}} = 2.54 Å. Simulated EXAFS spectra derived from the structural Monte Carlo distribution compares fairly well with the available experimental spectrum for the simulations bearing 8 water molecules. An angular distribution similar to that of a square antiprism is found for the octa-coordination.

  6. Collecting high-order interactions in an effective pairwise intermolecular potential using the hydrated ion concept: the hydration of Cf³⁺.

    PubMed

    Galbis, Elsa; Hernández-Cobos, Jorge; Pappalardo, Rafael R; Sánchez Marcos, Enrique

    2014-06-01

    This work proposes a new methodology to build interaction potentials between a highly charged metal cation and water molecules. These potentials, which can be used in classical computer simulations, have been fitted to reproduce quantum mechanical interaction energies (MP2 and BP86) for a wide range of [M(H2O)n](m+)(H2O)ℓ clusters (n going from 6 to 10 and ℓ from 0 to 18). A flexible and polarizable water shell model (Mobile Charge Density of Harmonic Oscillator) has been coupled to the cation-water potential. The simultaneous consideration of poly-hydrated clusters and the polarizability of the interacting particles allows the inclusion of the most important many-body effects in the new polarizable potential. Applications have been centered on the californium, Cf(III) the heaviest actinoid experimentally studied in solution. Two different strategies to select a set of about 2000 structures which are used for the potential building were checked. Monte Carlo simulations of Cf(III)+500 H2O for three of the intermolecular potentials predict an aquaion structure with coordination number close to 8 and average R(Cf-O) in the range 2.43-2.48 Å, whereas the fourth one is closer to 9 with R(Cf-O) = 2.54 Å. Simulated EXAFS spectra derived from the structural Monte Carlo distribution compares fairly well with the available experimental spectrum for the simulations bearing 8 water molecules. An angular distribution similar to that of a square antiprism is found for the octa-coordination.

  7. Defining the contributions of permanent electrostatics, Pauli repulsion, and dispersion in density functional theory calculations of intermolecular interaction energies.

    PubMed

    Horn, Paul R; Mao, Yuezhi; Head-Gordon, Martin

    2016-03-21

    In energy decomposition analysis of Kohn-Sham density functional theory calculations, the so-called frozen (or pre-polarization) interaction energy contains contributions from permanent electrostatics, dispersion, and Pauli repulsion. The standard classical approach to separate them suffers from several well-known limitations. We introduce an alternative scheme that employs valid antisymmetric electronic wavefunctions throughout and is based on the identification of individual fragment contributions to the initial supersystem wavefunction as determined by an energetic optimality criterion. The density deformations identified with individual fragments upon formation of the initial supersystem wavefunction are analyzed along with the distance dependence of the new and classical terms for test cases that include the neon dimer, ammonia borane, water-Na(+), water-Cl(-), and the naphthalene dimer. PMID:27004862

  8. Defining the contributions of permanent electrostatics, Pauli repulsion, and dispersion in density functional theory calculations of intermolecular interaction energies

    NASA Astrophysics Data System (ADS)

    Horn, Paul R.; Mao, Yuezhi; Head-Gordon, Martin

    2016-03-01

    In energy decomposition analysis of Kohn-Sham density functional theory calculations, the so-called frozen (or pre-polarization) interaction energy contains contributions from permanent electrostatics, dispersion, and Pauli repulsion. The standard classical approach to separate them suffers from several well-known limitations. We introduce an alternative scheme that employs valid antisymmetric electronic wavefunctions throughout and is based on the identification of individual fragment contributions to the initial supersystem wavefunction as determined by an energetic optimality criterion. The density deformations identified with individual fragments upon formation of the initial supersystem wavefunction are analyzed along with the distance dependence of the new and classical terms for test cases that include the neon dimer, ammonia borane, water-Na+, water-Cl-, and the naphthalene dimer.

  9. Competing interactions in semiconductor quantum dots

    SciTech Connect

    van den Berg, R.; Brandino, G. P.; El Araby, O.; Konik, R. M.; Gritsev, V.; Caux, J. -S.

    2014-10-14

    In this study, we introduce an integrability-based method enabling the study of semiconductor quantum dot models incorporating both the full hyperfine interaction as well as a mean-field treatment of dipole-dipole interactions in the nuclear spin bath. By performing free induction decay and spin echo simulations we characterize the combined effect of both types of interactions on the decoherence of the electron spin, for external fields ranging from low to high values. We show that for spin echo simulations the hyperfine interaction is the dominant source of decoherence at short times for low fields, and competes with the dipole-dipole interactions at longer times. On the contrary, at high fields the main source of decay is due to the dipole-dipole interactions. In the latter regime an asymmetry in the echo is observed. Furthermore, the non-decaying fraction previously observed for zero field free induction decay simulations in quantum dots with only hyperfine interactions, is destroyed for longer times by the mean-field treatment of the dipolar interactions.

  10. Competing interactions in semiconductor quantum dots

    DOE PAGES

    van den Berg, R.; Brandino, G. P.; El Araby, O.; Konik, R. M.; Gritsev, V.; Caux, J. -S.

    2014-10-14

    In this study, we introduce an integrability-based method enabling the study of semiconductor quantum dot models incorporating both the full hyperfine interaction as well as a mean-field treatment of dipole-dipole interactions in the nuclear spin bath. By performing free induction decay and spin echo simulations we characterize the combined effect of both types of interactions on the decoherence of the electron spin, for external fields ranging from low to high values. We show that for spin echo simulations the hyperfine interaction is the dominant source of decoherence at short times for low fields, and competes with the dipole-dipole interactions atmore » longer times. On the contrary, at high fields the main source of decay is due to the dipole-dipole interactions. In the latter regime an asymmetry in the echo is observed. Furthermore, the non-decaying fraction previously observed for zero field free induction decay simulations in quantum dots with only hyperfine interactions, is destroyed for longer times by the mean-field treatment of the dipolar interactions.« less

  11. In-Plane Intermolecular Interaction Assisted Assembly and Modified Electronic States of Metallofullerene Gd@C₈₂.

    PubMed

    Chen, Jian; Qin, Zhihui; Pan, Jinbo; Huang, Min; Du, Shixuan; Cao, Gengyu

    2015-10-27

    Orientational configuration and electronic states of Gd@C82 bonding to Cu(111) have been thoroughly investigated by low-temperature scanning tunneling microscopy/spectroscopy (LT-STM/S) and differential conductance mapping complemented by first-principles calculations. We clarify that individual Gd@C82 energetically adopts tilting adsorption configuration with the scanning tunneling spectroscopy (STS) states readily assigned to the C82 cage/Cu(111) hybrid states and the Gd/cage hybrid states, respectively. Moreover, upon assembling and sufficient thermal activation, Gd@C82 fullerenes are inclined to restore the energetically favored tilting orientational configuration similar to an individual one. This suggests the feasibility of high-level integration of single-Gd@C82 based moletronic device with the performances almost unchanged by two-dimensional arrangement. Furthermore, by rationalizing the inter-Gd@C82 interaction induced slight energy offset of the electronic states, we qualitatively confirm the shown electronic hybrid states as Cu(111)-, C82 cage- and Gd-dominant hybrid states, respectively. PMID:26457573

  12. In-Plane Intermolecular Interaction Assisted Assembly and Modified Electronic States of Metallofullerene Gd@C₈₂.

    PubMed

    Chen, Jian; Qin, Zhihui; Pan, Jinbo; Huang, Min; Du, Shixuan; Cao, Gengyu

    2015-10-27

    Orientational configuration and electronic states of Gd@C82 bonding to Cu(111) have been thoroughly investigated by low-temperature scanning tunneling microscopy/spectroscopy (LT-STM/S) and differential conductance mapping complemented by first-principles calculations. We clarify that individual Gd@C82 energetically adopts tilting adsorption configuration with the scanning tunneling spectroscopy (STS) states readily assigned to the C82 cage/Cu(111) hybrid states and the Gd/cage hybrid states, respectively. Moreover, upon assembling and sufficient thermal activation, Gd@C82 fullerenes are inclined to restore the energetically favored tilting orientational configuration similar to an individual one. This suggests the feasibility of high-level integration of single-Gd@C82 based moletronic device with the performances almost unchanged by two-dimensional arrangement. Furthermore, by rationalizing the inter-Gd@C82 interaction induced slight energy offset of the electronic states, we qualitatively confirm the shown electronic hybrid states as Cu(111)-, C82 cage- and Gd-dominant hybrid states, respectively.

  13. Effect of chromophore-chromophore electrostatic interactions in the NLO response of functionalized organic-inorganic sol-gel materials

    NASA Astrophysics Data System (ADS)

    Reyes-Esqueda, J.; Darracq, B.; García-Macedo, J.; Canva, M.; Blanchard-Desce, M.; Chaput, F.; Lahlil, K.; Boilot, J. P.; Brun, A.; Lévy, Y.

    2001-10-01

    In the last years, important non-linear optical (NLO) results on sol-gel and polymeric materials have been reported, with values comparable to those found in crystals. These new materials contain push-pull chromophores either incorporated as guest in a high Tg polymeric matrix (doped polymers) or grafted onto the polymeric matrix. These systems present several advantages, however they require significant improvement at the molecular level—by designing optimized chromophores with very large molecular figure of merit, specific to each application targeted. Besides, it was recently stated in polymers that the chromophore-chromophore electrostatic interactions, which are dependent of chromophore concentration, have a strong effect into their NLO properties. This has not been explored at all in sol-gel systems. In this work, the sol-gel route was used to prepare hybrid organic-inorganic thin films with different NLO chromophores grafted into the skeleton matrix. Combining a molecular engineering strategy for getting a larger molecular figure of merit and by controlling the intermolecular dipole-dipole interactions through both: the tuning of the push-pull chromophore concentration and the control of tetraethoxysilane concentration, we have obtained a r33 coefficient around 15 pm/V at 633 nm for the classical DR1 azo-chromophore and a r33 around 50 pm/V at 831 nm for a new optimized chromophore structure.

  14. Intermolecular Interaction between Anchoring Subunits Specify Subcellular Targeting and Function of RGS Proteins in Retina ON-Bipolar Neurons.

    PubMed

    Sarria, Ignacio; Orlandi, Cesare; McCall, Maureen A; Gregg, Ronald G; Martemyanov, Kirill A

    2016-03-01

    In vertebrate retina, light responses generated by the rod photoreceptors are transmitted to the second-order neurons, the ON-bipolar cells (ON-BC), and this communication is indispensible for vision in dim light. In ON-BCs, synaptic transmission is initiated by the metabotropic glutamate receptor, mGluR6, that signals via the G-protein Go to control opening of the effector ion channel, TRPM1. A key role in this process belongs to the GTPase Activating Protein (GAP) complex that catalyzes Go inactivation upon light-induced suppression of glutamate release in rod photoreceptors, thereby driving ON-BC depolarization to changes in synaptic input. The GAP complex has a striking molecular complexity. It contains two Regulator of G-protein Signaling (RGS) proteins RGS7 and RGS11 that directly act on Go and two adaptor subunits: RGS Anchor Protein (R9AP) and the orphan receptor, GPR179. Here we examined the organizational principles of the GAP complex in ON-BCs. Biochemical experiments revealed that RGS7 binds to a conserved site in GPR179 and that RGS11 in vivo forms a complex only with R9AP. R9AP and GPR179 are further integrated via direct protein-protein interactions involving their cytoplasmic domains. Elimination of GPR179 prevents postsynaptic accumulation of R9AP. Furthermore, concurrent knock-out of both R9AP and RGS7 does not reconfigure the GAP complex and completely abolishes synaptic transmission, resulting in a novel mouse model of night blindness. Based on these results, we propose a model of hierarchical assembly and function of the GAP complex that supports ON-BCs visual signaling.

  15. Intermolecular Interaction between Anchoring Subunits Specify Subcellular Targeting and Function of RGS Proteins in Retina ON-Bipolar Neurons.

    PubMed

    Sarria, Ignacio; Orlandi, Cesare; McCall, Maureen A; Gregg, Ronald G; Martemyanov, Kirill A

    2016-03-01

    In vertebrate retina, light responses generated by the rod photoreceptors are transmitted to the second-order neurons, the ON-bipolar cells (ON-BC), and this communication is indispensible for vision in dim light. In ON-BCs, synaptic transmission is initiated by the metabotropic glutamate receptor, mGluR6, that signals via the G-protein Go to control opening of the effector ion channel, TRPM1. A key role in this process belongs to the GTPase Activating Protein (GAP) complex that catalyzes Go inactivation upon light-induced suppression of glutamate release in rod photoreceptors, thereby driving ON-BC depolarization to changes in synaptic input. The GAP complex has a striking molecular complexity. It contains two Regulator of G-protein Signaling (RGS) proteins RGS7 and RGS11 that directly act on Go and two adaptor subunits: RGS Anchor Protein (R9AP) and the orphan receptor, GPR179. Here we examined the organizational principles of the GAP complex in ON-BCs. Biochemical experiments revealed that RGS7 binds to a conserved site in GPR179 and that RGS11 in vivo forms a complex only with R9AP. R9AP and GPR179 are further integrated via direct protein-protein interactions involving their cytoplasmic domains. Elimination of GPR179 prevents postsynaptic accumulation of R9AP. Furthermore, concurrent knock-out of both R9AP and RGS7 does not reconfigure the GAP complex and completely abolishes synaptic transmission, resulting in a novel mouse model of night blindness. Based on these results, we propose a model of hierarchical assembly and function of the GAP complex that supports ON-BCs visual signaling. PMID:26961947

  16. Push it to the limit: Characterizing the convergence of common sequences of basis sets for intermolecular interactions as described by density functional theory.

    PubMed

    Witte, Jonathon; Neaton, Jeffrey B; Head-Gordon, Martin

    2016-05-21

    With the aim of systematically characterizing the convergence of common families of basis sets such that general recommendations for basis sets can be made, we have tested a wide variety of basis sets against complete-basis binding energies across the S22 set of intermolecular interactions-noncovalent interactions of small and medium-sized molecules consisting of first- and second-row atoms-with three distinct density functional approximations: SPW92, a form of local-density approximation; B3LYP, a global hybrid generalized gradient approximation; and B97M-V, a meta-generalized gradient approximation with nonlocal correlation. We have found that it is remarkably difficult to reach the basis set limit; for the methods and systems examined, the most complete basis is Jensen's pc-4. The Dunning correlation-consistent sequence of basis sets converges slowly relative to the Jensen sequence. The Karlsruhe basis sets are quite cost effective, particularly when a correction for basis set superposition error is applied: counterpoise-corrected def2-SVPD binding energies are better than corresponding energies computed in comparably sized Dunning and Jensen bases, and on par with uncorrected results in basis sets 3-4 times larger. These trends are exhibited regardless of the level of density functional approximation employed. A sense of the magnitude of the intrinsic incompleteness error of each basis set not only provides a foundation for guiding basis set choice in future studies but also facilitates quantitative comparison of existing studies on similar types of systems. PMID:27208948

  17. Intermolecular Interaction between Anchoring Subunits Specify Subcellular Targeting and Function of RGS Proteins in Retina ON-Bipolar Neurons

    PubMed Central

    Sarria, Ignacio; Orlandi, Cesare; McCall, Maureen A.; Gregg, Ronald G.

    2016-01-01

    In vertebrate retina, light responses generated by the rod photoreceptors are transmitted to the second-order neurons, the ON-bipolar cells (ON-BC), and this communication is indispensible for vision in dim light. In ON-BCs, synaptic transmission is initiated by the metabotropic glutamate receptor, mGluR6, that signals via the G-protein Go to control opening of the effector ion channel, TRPM1. A key role in this process belongs to the GTPase Activating Protein (GAP) complex that catalyzes Go inactivation upon light-induced suppression of glutamate release in rod photoreceptors, thereby driving ON-BC depolarization to changes in synaptic input. The GAP complex has a striking molecular complexity. It contains two Regulator of G-protein Signaling (RGS) proteins RGS7 and RGS11 that directly act on Go and two adaptor subunits: RGS Anchor Protein (R9AP) and the orphan receptor, GPR179. Here we examined the organizational principles of the GAP complex in ON-BCs. Biochemical experiments revealed that RGS7 binds to a conserved site in GPR179 and that RGS11 in vivo forms a complex only with R9AP. R9AP and GPR179 are further integrated via direct protein–protein interactions involving their cytoplasmic domains. Elimination of GPR179 prevents postsynaptic accumulation of R9AP. Furthermore, concurrent knock-out of both R9AP and RGS7 does not reconfigure the GAP complex and completely abolishes synaptic transmission, resulting in a novel mouse model of night blindness. Based on these results, we propose a model of hierarchical assembly and function of the GAP complex that supports ON-BCs visual signaling. SIGNIFICANCE STATEMENT The ability of photoreceptors to transmit signals to the downstream ON-bipolar neurons in the retina is indispensible for vision. In this study, we delineate the molecular organization of the central regulatory complex, the GTPase Activating Protein (GAP) complex, that drives postsynaptic responses in ON-bipolar cells. Here, we identify an unexpected

  18. Intermolecular interactions between salmon calcitonin, hyaluronate, and chitosan and their impact on the process of formation and properties of peptide-loaded nanoparticles.

    PubMed

    Umerska, Anita; Corrigan, Owen I; Tajber, Lidia

    2014-12-30

    The principal aim of this work was to study the formulation of a ternary complex comprising salmon calcitonin (sCT), hyaluronate (HA), and chitosan (CS) in a nanoparticle (NP) format. As interactions between the constituents are possible, their presence and component mass mixing ratio (MMR) and charge mixing ratio (CMR) were investigated to tune the properties of NPs. Intermolecular interactions between sCT and HA as well as sCT and CS were studied by infrared spectroscopy (FTIR) and dynamic viscosity. The impact of MMR, CMR, and HA molecular weight on the sCT loading capacity in NPs and in vitro release properties was determined. sCT complexes to HA via electrostatic interactions and a support for hydrophobic interactions between sCT and HA as well as sCT and CS was found by FTIR. The sCT/HA complex is soluble but, depending on the mass mixing ratio between sCT and HA, NPs and microparticles were also formed indicative of associative phase separation between HA and sCT. The negatively charged HA/CS/sCT NPs were characterized by very high values (above 90%) of peptide association for the systems tested. Also, high sCT loading up to 50% were achieved. The peptide loading capacity and in vitro release properties were dependent on the NP composition. The zeta potential of the NPs without sCT was negative and ranging from -136 to -36 mV, but increased to -84 to -19 mV when the peptide was loaded. The particle size was found to be smaller and ranging 150-230 nm for sCT/NPs in comparison to NPs without sCT (170-260 nm). Short-term storage studies in liquid dispersions showed that the colloidal stability of NPs was acceptable and no release of sCT was observed for up to 3 days. In conclusion, a range of NP systems comprising sCT, HA, and CS was successfully developed and characterized. Such NPs may be considered as a suitable nanoparticulate format for the delivery of sCT. PMID:25447822

  19. Copper(II) complexes with tridentate N-(benzoyl)-N‧-(salicylidine)-hydrazine and monodentate N-heterocycles: Investigations of intermolecular interactions in the solid state

    NASA Astrophysics Data System (ADS)

    Das, Sunirban; Pal, Samudranil

    2005-10-01

    Ternary copper(II) complexes having the general formula [Cu(bhs)(hc)], with a tridentate Schiff base, N-(benzoyl)- N'-(salicylidine)-hydrazine (H 2bhs) and monodentate N-heterocycles (hc=3,5-dimethylpyrazole, pyrazole, imidazole, and pyridine), are described. The complexes were characterized by elemental analysis, spectroscopic and cryomagnetic measurements and X-ray crystallography. Analytical data, infrared and electronic spectral features and molar conductivity values are consistent with the proposed molecular formula and the +2 oxidation state of the metal ion in these complexes. Cryomagnetic and EPR spectral measurements showed weak antiferromagnetic spin-exchange in all four complexes. In each complex, the metal ion is in N 2O 2 square-plane constituted by the phenolate-O, the imine-N, and the deprotonated amide-O donor bhs 2- and the sp 2 N-donor neutral heterocycle. In the solid state, the complexes having 3,5-dimethylpyrazole, imidazole, and pyridine as the heterocyclic ligand, exist as centrosymmetric dimeric species due to weak apical coordination of the metal bound phenolate-O. On the other hand, only one of the two molecules present in the asymmetric unit of the complex containing pyrazole forms the centrosymmetric dimeric species due to weak apical coordination of the metal bound amide-O. In the crystal lattice, intermolecular π-π, C-H⋯π, C-H⋯N, O-H⋯N and N-H⋯O interactions involving the complex and the solvent molecules lead to one- and two-dimensional supramolecular structures.

  20. The long-range non-additive three-body dispersion interactions for the rare gases, alkali, and alkaline-earth atoms.

    PubMed

    Tang, Li-Yan; Yan, Zong-Chao; Shi, Ting-Yun; Babb, James F; Mitroy, J

    2012-03-14

    The long-range non-additive three-body dispersion interaction coefficients Z(111), Z(112), Z(113), and Z(122) are computed for many atomic combinations using standard expressions. The atoms considered include hydrogen, the rare gases, the alkali atoms (up to Rb), and the alkaline-earth atoms (up to Sr). The term Z(111) arising from three mutual dipole interactions is known as the Axilrod-Teller-Muto coefficient or the DDD (dipole-dipole-dipole) coefficient. Similarly, the terms Z(112), Z(113), and Z(122) arise from the mutual combinations of dipole (1), quadrupole (2), and octupole (3) interactions between atoms and they are sometimes known, respectively, as dipole-dipole-quadrupole, dipole-dipole-octupole, and dipole-quadrupole-quadrupole coefficients. Results for the four Z coefficients are given for the homonuclear trimers, for the trimers involving two like-rare-gas atoms, and for the trimers with all combinations of the H, He, and Li atoms. An exhaustive compilation of all coefficients between all possible atomic combinations is presented as supplementary data.

  1. How resonance assists hydrogen bonding interactions: an energy decomposition analysis.

    PubMed

    Beck, John Frederick; Mo, Yirong

    2007-01-15

    Block-localized wave function (BLW) method, which is a variant of the ab initio valence bond (VB) theory, was employed to explore the nature of resonance-assisted hydrogen bonds (RAHBs) and to investigate the mechanism of synergistic interplay between pi delocalization and hydrogen-bonding interactions. We examined the dimers of formic acid, formamide, 4-pyrimidinone, 2-pyridinone, 2-hydroxpyridine, and 2-hydroxycyclopenta-2,4-dien-1-one. In addition, we studied the interactions in beta-diketone enols with a simplified model, namely the hydrogen bonds of 3-hydroxypropenal with both ethenol and formaldehyde. The intermolecular interaction energies, either with or without the involvement of pi resonance, were decomposed into the Hitler-London energy (DeltaEHL), polarization energy (DeltaEpol), charge transfer energy (DeltaECT), and electron correlation energy (DeltaEcor) terms. This allows for the examination of the character of hydrogen bonds and the impact of pi conjugation on hydrogen bonding interactions. Although it has been proposed that resonance-assisted hydrogen bonds are accompanied with an increasing of covalency character, our analyses showed that the enhanced interactions mostly originate from the classical dipole-dipole (i.e., electrostatic) attraction, as resonance redistributes the electron density and increases the dipole moments in monomers. The covalency of hydrogen bonds, however, changes very little. This disputes the belief that RAHB is primarily covalent in nature. Accordingly, we recommend the term "resonance-assisted binding (RAB)" instead of "resonance-assisted hydrogen bonding (RHAB)" to highlight the electrostatic, which is a long-range effect, rather than the electron transfer nature of the enhanced stabilization in RAHBs. PMID:17143867

  2. Thermal diffusion factors and intermolecular potentials for noble gas-SF sub 6 systems

    SciTech Connect

    Taylor, W.L.; Hurly, J.J. Cincinnati Univ., OH . Dept. of Chemistry)

    1990-01-01

    Experimental thermal diffusion factors for equimolar mixtures of He-, Ne-, Ar-, Kr-, and Xe-SF{sub 6} have been measured in the temperature range from 225 to 500 K. The data were obtained in a 20-tube trennschaukel, or swing separator.'' The systems containing the four lighter noble gases all exhibited a normal'' thermal diffusion factor, {alpha}{sub T}, that is concentration of the heavy species, SF{sub 6}, in the cold region of the apparatus and increase of {alpha}{sub T} with temperature. Xe-SF{sub 6}, the system with the smallest mass difference, exhibited abnormal'' behavior. The spherically symmetric Pack potentials were used to calculate the thermal diffusion factor with reasonable success. Recently published dipole-dipole dispersion coefficients were used to construct intermolecular potentials of the Hartree-Fock-Dispersion functional form with individually damped attractive terms. The potentials, when tested against the available transport and thermodynamic data, improved the fit to experiment in almost all cases. 35 refs., 7 figs., 2 tabs.

  3. Intermolecular Interactions in the Mechanism of Skeletal Muscle Sarcoplasmic Reticulum Ca2+-ATPase (SERCA1): Evidence for a Tri-protomer*

    PubMed Central

    Mahaney, James E.; Thomas, David D.; Farrance, Iain K.; Froehlich, Jeffrey P.

    2013-01-01

    Native membrane sarcoplasmic reticulum (SR) Ca2+-ATPase isolated from skeletal muscle (SERCA1) exhibits oligomeric kinetic behavior (Mahaney, J.E., Thomas, D.D., and Froehlich, J.P. (2004) Biochemistry 43:4400–4416). In the present study we used quenched-flow mixing, electron paramagnetic resonance (EPR) and chemical cross-linking to probe for intermolecular interactions at physiological (0.1M) and high (0.4 M) KCl. Exposure SR membranes to water- and lipid-soluble cross-linking reagents revealed a mixture of SERCA1 oligomeric species consisting mainly of dimers and trimers. Titration of iodoacetamide spin labeled-SERCA1 with AMPPCP in the presence of 10 µM Ca2+ and 0.1 M KCl revealed high (KD = 45 µM) and low affinity (KD = 315 µM) nucleotide binding sites in a 2:1 ratio, respectively. Raising the [KCl] to 0.4 M increased the fraction of weak binding sites and lowered the KD of the high affinity component (20 µM). Phosphorylation by 10 µM ATP at 21°C and 0.1 M KCl produced an early burst of Pi production without a corresponding decline in the steady state phosphoenzyme (EP) level. The steady state EP level was twice as large as the Pi burst and received equal contributions from E1P and E2P. Chasing the phosphoenzyme at 0.4 M KCl and 2°C with ADP revealed a biphasic time course of E1P formation with a slow phase that matched the kinetics of the transient EPR signal from the spin-labeled Ca2+-ATPase. The absence of a fast component in the EPR signal excludes E1P as its source. Instead, it arises from the slow, KCl-dependent transformation at the start of the cycle which controls the formation of downstream intermediates with an increased mole fraction of rotationally restricted probes. We modeled this behavior with a SERCA1 trimer in which the formation of E1P/E2/E2P from E1ATP/E2P/E1P results from concerted transformations in the subunits coupling phosphorylation (E1ATP → E1P + ADP) to dephosphorylation (E2P → E2 + Pi) and the conversion of E1P to E2P

  4. An isotopic mass effect on the intermolecular potential

    DOE PAGES

    Herman, Michael F.; Currier, Robert Patrick; Clegg, Samuel M.

    2015-09-28

    The impact of isotopic variation on the electronic energy and intermolecular potentials is often suppressed when calculating isotopologue thermodynamics. Intramolecular potential energy surfaces for distinct isotopologues are in fact equivalent under the Born–Oppenheimer approximation, which is sometimes used to imply that the intermolecular interactions are independent of isotopic mass. In this paper, the intermolecular dipole–dipole interaction between hetero-nuclear diatomic molecules is considered. It is shown that the intermolecular potential contains mass-dependent terms even though each nucleus moves on a Born–Oppenheimer surface. Finally, the analysis suggests that mass dependent variations in intermolecular potentials should be included in comprehensive descriptions of isotopologuemore » thermodynamics.« less

  5. Two body and multibody interaction in a cold Rydberg gas

    NASA Astrophysics Data System (ADS)

    Han, Jianing; Gallagher, Tom

    2009-05-01

    Cold Rydberg atoms trapped in a Magneto Optical Trap (MOT) are not isolated and they tend to bond through dipole-dipole and multiple-multiple interactions between Rydberg atoms. The dipole-dipole interaction and van der Waals interaction between two atoms have been intensively studied. However, the fact that the dipole-dipole interaction and van der Waals interaction show the same size of broadening, studied by Raithel's group, and there is transition between two molecular states, studied by Farooqi and Overstreet, can not be explained by the two atom picture. The purpose of this paper is to show the multibody nature of a dense cold Rydberg gas by studying the molecular state microwave spectrum. Specifically, single body, two body and three body interaction regions are separated. Moreover, the multibody energy levels for selected geometries are calculated. In addition, multibody blockade will be discussed. [3pt] [1] A. Reinhard, K. C. Younge, T. Cubel Liebisch, B. Knuffman, P. R. Berman, and G. Raithel, Phys. Rev. Lett. 100, 233201 (2008).[0pt] [2] S.M. Farooqi, D. Tong, S. Krishnan, J. Stanojevic,Y.P. Zhang, J.R. Ensher, A.S. Estrin, C. Boisseau, R. Cote, E.E. Eyler, and P.L. Gould, Phys. Rev. Lett. 91, 183002 (2003).[0pt] [3] K. Richard Overstreet, Arne Schwettmann, Jonathan Tallant, and James P. Shaffer, Phys. Rev. A 76, 011403 (2007).

  6. The intermolecular interaction in D2 - CX4 and O2 - CX4 (X = F, Cl) systems: Molecular beam scattering experiments as a sensitive probe of the selectivity of charge transfer component

    NASA Astrophysics Data System (ADS)

    Cappelletti, David; Falcinelli, Stefano; Pirani, Fernando

    2016-10-01

    Gas phase collisions of a D2 projectile by CF4 and by CCl4 targets have been investigated with the molecular beam technique. The integral cross section, Q, has been measured for both collisional systems in the thermal energy range and oscillations due to the quantum "glory" interference have been resolved in the velocity dependence of Q. The analysis of the measured Q(v) data provided novel information on the anisotropic potential energy surfaces of the studied systems at intermediate and large separation distances. The relative role of the most relevant types of contributions to the global interaction has been characterized. Extending the phenomenology of a weak intermolecular halogen bond, the present work demonstrates that while D2 - CF4 is basically bound through the balance between size (Pauli) repulsion and dispersion attraction, an appreciable intermolecular bond stabilization by charge transfer is operative in D2 - CCl4. We also demonstrated that the present analysis is consistent with that carried out for the F(2P)-D2 and Cl(2P)-D2 systems, previously characterized by scattering experiments performed with state-selected halogen atom beams. A detailed comparison of the present and previous results on O2-CF4 and O2-CCl4 systems pinpointed striking differences in the behavior of hydrogen and oxygen molecules when they interact with the same partner, mainly due to the selectivity of the charge transfer component. The present work contributes to cast light on the nature and role of the intermolecular interaction in prototype systems, involving homo-nuclear diatoms and symmetric halogenated molecules.

  7. Intermolecular interactions involving C-H bonds, 3, Structure and energetics of the interaction between CH{sub 4} and CN{sup {minus}}

    SciTech Connect

    Novoa, J.J.; Whangbo, Myung-Hwan; Williams, J.M.

    1991-12-31

    On the basis of SCF and single reference MP2 calculations, the full potential energy surface of the interaction between CH{sub 4} and CN{sup {minus}} was studied using extended basis sets of up to near Hartree-Fock limit quality. Colinear arrangements C-N{sup {minus}}{hor_ellipsis}H-CH{sub 3} and N-C{sup {minus}}{hor_ellipsis}H-CH{sub 3} are found to be the only two energy minima. The binding energies of these two structures are calculated to be 2.5 and 2.1 kcal/mol, respectively, at the MP2 level. The full vibrational analyses of two structures show a red shift of about 30 cm{sup {minus}1} for the v{sub s} C-H stretching.

  8. Interaction mechanism for energy transfer from Ce to Tb ions in silica

    NASA Astrophysics Data System (ADS)

    Seed Ahmed, H. A. A.; Chae, W. S.; Ntwaeaborwa, O. M.; Kroon, R. E.

    2016-01-01

    Energy transfer phenomena can play an important role in the development of luminescent materials. In this study, numerical simulations based on theoretical models of non-radiative energy transfer are compared to experimental results for Ce, Tb co-doped silica. Energy transfer from the donor (Ce) to the acceptor (Tb) resulted in a decrease in the Ce luminescence intensity and lifetime. The decrease in intensity corresponded best with the energy transfer models based on the exchange interaction and the dipole-dipole interaction. The critical transfer distance obtained from the fitting using both these models is around 2 nm. Since the exchange interaction requires a distance shorter than 1 nm to occur, the mechanism most likely to account for the energy transfer is concluded to be the dipole-dipole interaction. This is supported by an analysis of the lifetime data.

  9. Nuclear magnetic resonance, fluorescence correlation spectroscopy and time-resolved fluorescence anisotropy studies of intermolecular interactions in bis(1-methyl-1H-imidazol-3-ium-3-yl)dihydroborate bis(trifluoromethylsulfonyl)amide and its mixtures with various cosolvents

    NASA Astrophysics Data System (ADS)

    Sahu, Prabhat Kumar; Nanda, Raju; Seth, Sudipta; Ghosh, Arindam; Sarkar, Moloy

    2016-09-01

    Keeping in mind the potential usefulness of mixed ionic liquid (IL)-cosolvents systems in several industrial applications, intermolecular interactions between a borate-based IL, bis(1-methyl-1H-imidazol-3-ium-3-yl)dihydroborate bis(trifluoromethylsulfonyl)amide ([BIMIMDBA][TF2N]), and its binary mixtures with several molecular solvents has been investigated through NMR and fluorescence spectroscopy. Analysis of the 1H chemical shifts (δ/ppm) and translational diffusion coefficients (D) of the IL in different solvent mixtures demonstrate interplay of nonspecific (ion-dipole) and specific (hydrogen bonding) interactions in governing the properties of these mixtures. Fluorescence correlation spectroscopy (FCS) and time-resolved fluorescence anisotropy data provide evidence in favour of different IL-solvent interaction for different IL-cosolvent systems.

  10. Desensitization of metastable intermolecular composites

    DOEpatents

    Busse, James R.; Dye, Robert C.; Foley, Timothy J.; Higa, Kelvin T.; Jorgensen, Betty S.; Sanders, Victor E.; Son, Steven F.

    2011-04-26

    A method to substantially desensitize a metastable intermolecular composite material to electrostatic discharge and friction comprising mixing the composite material with an organic diluent and removing enough organic diluent from the mixture to form a mixture with a substantially putty-like consistency, as well as a concomitant method of recovering the metastable intermolecular composite material.

  11. Molecular structure, spectral studies, intra and intermolecular interactions analyses in a novel ethyl 4-[3-(2-chloro-phenyl)-acryloyl]-3,5-dimethyl-1H-pyrrole-2-carboxylate and its dimer: A combined DFT and AIM approach

    NASA Astrophysics Data System (ADS)

    Singh, R. N.; Baboo, Vikas; Rawat, Poonam; Kumar, Amit; Verma, Divya

    A newly synthesized chalcone, Ethyl 4-[3-(2-chloro-phenyl)-acryloyl]-3,5-dimethyl-1H-pyrrole-2-carboxylate (ECPADMPC) has been characterized by 1H NMR, 13C NMR, UV-Vis, FT-IR, Mass spectroscopy and elemental analysis. Quantum chemical calculations have been performed by DFT level of theory using B3LYP functional and 6-31G(d,p) as basis set. The time dependent density functional theory (TD-DFT) is used to find the various electronic transitions within molecule. A combined theoretical and experimental wavenumber analysis confirms the existence of dimer. Topological parameters-electron density (ρBCP), Laplacian of electron density (▿2ρBCP), energetic parameters-kinetic electron energy density (GBCP), potential electron density (VBCP) and the total electron energy density (HBCP) at the bond critical points (BCP) have been analyzed by 'Atoms in molecules' AIM theory in detail. The intermolecular hydrogen bond energy of dimer is calculated as -12.3 kcal/mol using AIM calculations. AIM ellipticity analysis is carried out to confirm the presence of resonance assisted intermolecular hydrogen bonds in stabilization of dimer. The analysis clearly depicts the presence of different kind of interactions in dimer. This dimer may work as model system to understand the H-bonding interaction in biomolecules. The local reactivity descriptor analysis is performed to find the reactive sites within molecule.

  12. Entanglement dynamics of three interacting two-level atoms within a common structured environment

    SciTech Connect

    An, Nguyen Ba; Kim, Jaewan; Kim, Kisik

    2011-08-15

    We derive exact time evolution of three two-level atoms coupled to a common environment. The environment is structured and is modeled by a leaky cavity with Lorentzian spectral density. The atoms are initially prepared in a generalized W state and later on experience pairwise dipole-dipole interactions and couplings to the cavity. We study tripartite disentangling and entangling dynamics as well as protecting bipartite entanglement with both atom-atom interactions and atom-cavity couplings taken simultaneously into account.

  13. Photoswitchable Adsorption in Metal-Organic Frameworks Based on Polar Guest-Host Interactions.

    PubMed

    Wang, Zhengbang; Grosjean, Sylvain; Bräse, Stefan; Heinke, Lars

    2015-12-21

    Reversible remote-controlled switching of the properties of nanoporous metal-organic frameworks (MOFs) is enabled by incorporating photoswitchable azobenzene. The interaction of the host material with different guest molecules, which is crucial for all applications, is precisely studied using thin MOF films of the type Cu2 (BDC)2 (AzoBipyB). A molecule-specific effect of the photoswitching, based on dipole-dipole interactions, is found.

  14. Quantum Correlations of Two Two-level Atoms Interacting with a Single Mode Vacuum Field

    NASA Astrophysics Data System (ADS)

    Zeng, Ke; Fang, Mao-Fa

    2015-04-01

    The quantum correlations (QC) of two two-level atoms interacting with a single mode vacuum field are investigated. The relationship between the quantum discord (QD) and the entanglement of formation (EOF), the influence of the atomic dipole-dipole interaction along with two-atom initial states on QC of two atoms are discussed. The results indicate that when two-atom is initially in an entangled state, QD is consistent with EOF. Compared with the quantumness of correlations, the latter is always larger than the former, and the larger the initial QE, the larger the QD. Meanwhile, there is no occurrence of sudden death phenomenon of QC throughout the temporal evolution. Moreover, QD is more robust than QE under strong dipole-dipole interaction, and then the relative stable QC resources can be achieved.

  15. The photoactivatable NAD+ analogue [32P]2-azido-NAD+ defines intra- and inter-molecular interactions of the C-terminal domain of the G-protein G alpha t.

    PubMed Central

    Vaillancourt, R R; Dhanasekaran, N; Ruoho, A E

    1995-01-01

    Recently, we reported the synthesis and use of [32P]2-azido-NAD+ as a probe to study the structural organization of G-proteins. Pertussis toxin was used to 'tether' [32P]2-azido-ADP-ribose of [32P]2-azido-NAD+ to Cys347 of the alpha subunit of the G-protein Gt. Light activation of the azide moiety covalently cross-linked the domain containing Cys347 at the C-terminus of alpha t with neighbouring intra- and inter-molecular domains of holo-transducin. The radiolabel from [32P]2-azido-ADP-ribose was then transferred to the 'acceptor' domain by cleaving the thioglycosidic bond between Cys347 and [32P]2-azido-ADP- ribose with mercuric acetate. ADP-ribosylation followed by photocross-linking of holo-transducin indicated intramolecular interactions of the C-terminal domain with other alpha t domains and intermolecular interactions with holotransducin alpha and gamma subunits. The radiolabelled peptides, which were radiolabelled because of the transfer of the photoactive moiety, were identified by utilizing 2-(2'-nitrophenylsulphenyl)-3-methyl-3'- bromoindolenine ('BNPS-skatole') and CNBr. The results indicate that the C-terminus of alpha t interacts with both N-terminal and C-terminal domains within the alpha t molecular. Mapping the interacting sites between cross-linked alpha dimers and alpha trimers indicates that the C-terminal domain of alpha t is involved in the formation of alpha t homopolymers in solution. In addition, our studies place the beta gamma subunit in close proximity to Cys347 of alpha t, as indicated by the transfer of [32P]2-azido-ADP-ribose from Cys347 to the gamma subunit, which was further localized to the C-terminal half of gamma t. The studies presented here identify the C-terminal intra- and inter-molecular interactions of the alpha subunit of holo-transducin. Images Figure 2 Figure 3 Figure 4 Figure 5 PMID:7487961

  16. Intermolecular electrostatic energies using density fitting.

    PubMed

    Cisneros, G Andrés; Piquemal, Jean-Philip; Darden, Thomas A

    2005-07-22

    A method is presented to calculate the electron-electron and nuclear-electron intermolecular Coulomb interaction energy between two molecules by separately fitting the unperturbed molecular electron density of each monomer. This method is based on the variational Coulomb fitting method which relies on the expansion of the ab initio molecular electron density in site-centered auxiliary basis sets. By expanding the electron density of each monomer in this way the integral expressions for the intermolecular electrostatic calculations are simplified, lowering the operation count as well as the memory usage. Furthermore, this method allows the calculation of intermolecular Coulomb interactions with any level of theory from which a one-electron density matrix can be obtained. Our implementation is initially tested by calculating molecular properties with the density fitting method using three different auxiliary basis sets and comparing them to results obtained from ab initio calculations. These properties include dipoles for a series of molecules, as well as the molecular electrostatic potential and electric field for water. Subsequently, the intermolecular electrostatic energy is tested by calculating ten stationary points on the water dimer potential-energy surface. Results are presented for electron densities obtained at four different levels of theory using two different basis sets, fitted with three auxiliary basis sets. Additionally, a one-dimensional electrostatic energy surface scan is performed for four different systems (H2O dimer, Mg2+-H2O, Cu+-H2O, and n-methyl-formamide dimer). Our results show a very good agreement with ab initio calculations for all properties as well as interaction energies.

  17. Strongly Correlated 2D Quantum Phases with Cold Polar Molecules: Controlling the Shape of the Interaction Potential

    SciTech Connect

    Buechler, H. P.; Micheli, A.; Pupillo, G.; Zoller, P.; Demler, E.; Lukin, M.; Prokof'ev, N.

    2007-02-09

    We discuss techniques to tune and shape the long-range part of the interaction potentials in quantum gases of bosonic polar molecules by dressing rotational excitations with static and microwave fields. This provides a novel tool towards engineering strongly correlated quantum phases in combination with low-dimensional trapping geometries. As an illustration, we discuss the 2D superfluid-crystal quantum phase transition for polar molecules interacting via an electric-field-induced dipole-dipole potential.

  18. Use of x-ray charge densities in the calculation of intermolecular interactions and lattice energies: Application to glycylglycine, DL-histidine, and DL-proline and comparison with theory

    SciTech Connect

    Abramov, Y.A.; Volkov, A.; Wu, G.; Coppens, P.

    2000-03-09

    Experimental X-ray charge densities from low-temperature data are used in the evaluation of the intermolecular interactions and lattice energies of crystals of glycylglycine, DL-histidine, and DL-proline. The X-ray analysis leads to a set of atom-centered distributed multipoles, from which electrostatic interactions are calculated. Nonempirical exp-6 atom-atom potentials are used to calculate the smaller contributions of van der Waals interactions. For comparison, parallel theoretical calculations are performed on the molecular dimers (B3LYP) and the periodic crystals (Periodic Hartree-Fock, PHF). The dimer interactions show good agreement with experimental values, except for the strongest interactions in the glycylglycine crystal. The experimental charge density results correlate well with those based on the PHF calculations, but quantitative agreement for the interaction energies is only obtained after application of a scaling factor of {approximately}0.76 to the PHF values. The discrepancy is attributed to the well-known overestimate of molecular polarity in the HF method, resulting from neglect of electron correlation. The agreement between lattice energies derived from the experimental charge density and theoretical values from the PHF calculations is within 10 kJ/mol for the crystals examined in this study. The study provides the basis for use of experimental electrostatic moments in molecular modeling calculations of more complex systems.

  19. Intermolecular modulation of IR intensities in the solid state. The role of weak interactions in polyethylene crystal: A computational DFT study

    NASA Astrophysics Data System (ADS)

    Galimberti, Daria; Milani, Alberto; Maschio, Lorenzo; Castiglioni, Chiara

    2016-10-01

    Density functional theory calculations with periodic boundary conditions are exploited to study the infrared spectrum of crystalline polyethylene. Spectral changes lead by the intermolecular packing in the orthorhombic three-dimensional crystal are discussed by means of a careful comparison with calculations carried out for an isolated polymer chain in the all-trans conformation, described as an ideal one-dimensional crystal. The results are analyzed in the framework of the "oligomer approach" through the modelling of the IR spectrum of n-alkanes of different lengths. The study demonstrates that a relevant absorption intensity modulation of CH2 deformation transitions takes place in the solid state. This finding suggests a new interpretation for the experimental evidences collected in the past by means of IR intensity measurement during thermal treatment. Moreover, the comparison between calculations for 3-D crystal and for the isolated polyethylene chain (1-D crystal) allows to put in evidence the effect of the local electric field on the computed infrared intensities. This observation provides guidelines for the comparison between infrared absorption intensities predicted for an isolated unit and for a molecule belonging to a crystal, through the introduction of suitable correction factors based on the refraction index of the material and depending on the dimensionality of such units (0D—molecule; 1D—polymer; 2D—slab).

  20. Platelet activating factor antagonist design. 3. X-ray crystal structure and intermolecular crystal lattice interactions of methyl trans-4-acetoxymethyl-4,5-dihydro-2,5-bis(3,4-methylenedioxyphenyl)- 3-furancarboxylate.

    PubMed

    Peterson, J R; Horsley, D B; Brozik, J A; Rogers, R D

    1989-08-15

    C23H20O9, Mr = 440.41, monoclinic, P21/c, a = 11.433 (1), b = 7.808 (2), c = 23.313 (3) A, beta = 99.67 (1) degree, V = 2052 A3, Z = 4, Dx = 1.43 g cm-3, lambda(MoK alpha) = 0.71073 A, mu = 0.69 cm-1, F(000) = 920, T = 293 K, final R = 0.048 for 1645 observed [Fo greater than or equal to 5 sigma(Fo)] reflections. The observed structure reveals a trans relationship for the 4-acetoxymethyl and 5-aryl substituents. The 4,5-dihydrofuran ring system adopts an envelope conformation. There is no crystallographically imposed symmetry. Several intermolecular van der Waals interactions occur in the cell lattice of this compound. PMID:2604943

  1. Platelet activating factor antagonist design. 3. X-ray crystal structure and intermolecular crystal lattice interactions of methyl trans-4-acetoxymethyl-4,5-dihydro-2,5-bis(3,4-methylenedioxyphenyl)- 3-furancarboxylate.

    PubMed

    Peterson, J R; Horsley, D B; Brozik, J A; Rogers, R D

    1989-08-15

    C23H20O9, Mr = 440.41, monoclinic, P21/c, a = 11.433 (1), b = 7.808 (2), c = 23.313 (3) A, beta = 99.67 (1) degree, V = 2052 A3, Z = 4, Dx = 1.43 g cm-3, lambda(MoK alpha) = 0.71073 A, mu = 0.69 cm-1, F(000) = 920, T = 293 K, final R = 0.048 for 1645 observed [Fo greater than or equal to 5 sigma(Fo)] reflections. The observed structure reveals a trans relationship for the 4-acetoxymethyl and 5-aryl substituents. The 4,5-dihydrofuran ring system adopts an envelope conformation. There is no crystallographically imposed symmetry. Several intermolecular van der Waals interactions occur in the cell lattice of this compound.

  2. Time displacement rotational echo double resonance: Heteronuclear dipolar recoupling with suppression of homonuclear interaction under fast magic-angle spinning

    NASA Astrophysics Data System (ADS)

    Tsai, Tim W. T.; Mou, Yun; Chan, Jerry C. C.

    2012-01-01

    We have developed a novel variant of REDOR which is applicable to multiple-spin systems without proton decoupling. The pulse sequence is constructed based on a systematic time displacement of the pi pulses of the conventional REDOR sequence. This so-called time displacement REDOR (td-REDOR) is insensitive to the effect of homonuclear dipole-dipole interaction when the higher order effects are negligible. The validity of td-REDOR has been verified experimentally by the P-31{C-13} measurements on glyphosate at a spinning frequency of 25 kHz. The experimental dephasing curve is in favorable agreement with the simulation data without considering the homonuclear dipole-dipole interactions.

  3. Interfacial charge rearrangement and intermolecular interactions: Density-functional theory study of free-base porphine adsorbed on Ag(111) and Cu(111).

    PubMed

    Müller, Moritz; Diller, Katharina; Maurer, Reinhard J; Reuter, Karsten

    2016-01-14

    We employ dispersion-corrected density-functional theory to study the adsorption of tetrapyrrole 2H-porphine (2H-P) at Cu(111) and Ag(111). Various contributions to adsorbate-substrate and adsorbate-adsorbate interactions are systematically extracted to analyze the self-assembly behavior of this basic building block to porphyrin-based metal-organic nanostructures. This analysis reveals a surprising importance of substrate-mediated van der Waals interactions between 2H-P molecules, in contrast to negligible direct dispersive interactions. The resulting net repulsive interactions rationalize the experimentally observed tendency for single molecule adsorption. PMID:26772581

  4. Interfacial charge rearrangement and intermolecular interactions: Density-functional theory study of free-base porphine adsorbed on Ag(111) and Cu(111)

    NASA Astrophysics Data System (ADS)

    Müller, Moritz; Diller, Katharina; Maurer, Reinhard J.; Reuter, Karsten

    2016-01-01

    We employ dispersion-corrected density-functional theory to study the adsorption of tetrapyrrole 2H-porphine (2H-P) at Cu(111) and Ag(111). Various contributions to adsorbate-substrate and adsorbate-adsorbate interactions are systematically extracted to analyze the self-assembly behavior of this basic building block to porphyrin-based metal-organic nanostructures. This analysis reveals a surprising importance of substrate-mediated van der Waals interactions between 2H-P molecules, in contrast to negligible direct dispersive interactions. The resulting net repulsive interactions rationalize the experimentally observed tendency for single molecule adsorption.

  5. A (U)MP2(full) and (U)CCSD(T) theoretical investigation into the substituent effects on the intermolecular T-shaped F-H...π interactions between HF and LBBL (L = -H, : CO, :NN, -Cl, -CN and -NC).

    PubMed

    Yang, Zhao-ming; Zhang, Lin; Chen, Li-zhen; Ren, Fu-de; Du, Shan; Yang, Lei

    2012-07-01

    The substituent effects on the intermolecular T-shaped F-H...π interactions are investigated between HF and LBBL (L = -H, : CO, :NN, -Cl, -CN and -NC) using the (U)MP2(full) and (U)CCSD(T) methods with the 6-311++G(2 d,p) basis set. The B ≡ B triple-bond contraction is found in the complexes with lone-pair-electron donors while the B = B double-bond is lengthened in the systems with the single-electron substituents upon complexation. The T-shaped F-H...π interaction energies follow the order of ClB = BCl...HF>HB = BH...HF>NNB ≡ BNN...HF>OCB ≡ BCO...HF>CNB = BNC...HF>NCB = BCN...HF. The electron-donating substituents : CO and :NN increases electron density of the B ≡ B triple bond by the delocalization interaction E ((2)) π ((CO/NN) → Lp(B)) while the electron-withdrawing substituents -CN and -NC decrease electron density of the B = B double bond by means of the π-π conjugative effect. The analyses of the APT atomic charge, "truncated" model, natural bond orbital (NBO), atoms in molecules (AIM) and electron density shifts reveal the nature of the substituent effect and explain the origin of the B ≡ B bond contraction.

  6. Intramolecular screening of intermolecular forces

    NASA Astrophysics Data System (ADS)

    Liang, Ying Q.; Hunt, K. L. C.

    1993-03-01

    By use of nonlocal polarizability densities, we analyze the intramolecular screening of intermolecular fields. For two interacting molecules A and B with weak or negligible charge overlap, we show that the reaction field and the field due to the unperturbed charge distribution of the neighboring molecule are screened identically via the Sternheimer shielding tensor and its generalizations to nonuniform fields and nonlinear response. The induction force on nucleus I in molecule A, derived from perturbation theory, results from linear screening of the reaction field due to B and nonlinear screening of the field from the permanent charge distribution of B. In general, at first or second order in the molecular interaction, the screening-tensor expressions for the force on nucleus I involve susceptibilities of one order higher than the expressions derived from perturbation theory. The first-order force from perturbation theory involves permanent charge moments, while the first-order screened force involves linear response tensors; and the second-order screened force depends on hyperpolarizabilities, while second-order induction effects are specified in terms of static, lowest-order susceptibilities. The equivalence of the two formulations for these forces, order by order, is a new illustration of the interrelations we have found among permanent moments, linear-response tensors, and nonlinear response. This work also provides new insight into the dispersion forces on an individual nucleus I in molecule A by separating the forces into two distinct terms—the first term results from changes in the reaction of A to the fluctuating charge distribution of the neighboring molecule B, when nucleus I shifts infinitesimally, and the second term stems from changes in correlations of the fluctuating charge distribution of A itself. Changes in the fluctuation correlations are determined by changes in the classical Coulomb field of nucleus I and by the imaginary part of the

  7. Roles of intramolecular and intermolecular interactions in functional regulation of the Hsp70 J-protein co-chaperone sis1

    SciTech Connect

    Yu, Hyun Young; Ziegelhoffer, Thomas; Osipiuk, Jerzy; Ciesielski, Szymon J.; Baranowski, Maciej; Zhou, Min; Joachimiak, Andrzej; Craig, Elizabeth A.

    2015-02-13

    Unlike other Hsp70 molecular chaperones, those of the eukaryotic cytosol have four residues, EEVD, at their C-termini. EEVD(Hsp70) binds adaptor proteins of the Hsp90 chaperone system and mitochondrial membrane preprotein receptors, thereby facilitating processing of Hsp70-bound clients through protein folding and translocation pathways. Among J-protein co-chaperones functioning in these pathways Sis1 is unique, as it also binds the EEVD(Hsp70) motif. However, little is known about the role of the Sis1:EEVD(Hsp70) interaction. We found that deletion of EEVD(Hsp70) abolished the ability of Sis1, but not the ubiquitous J-protein Ydj1, to partner with Hsp70 in in vitro protein refolding. Sis1 co-chaperone activity with Hsp70ΔEEVD was restored upon substitution of a glutamic acid of the J-domain. Structural analysis revealed that this key glutamic acid, which is not present in Ydj1, forms a salt bridge with an arginine of the immediately adjacent glycine-rich region. Thus, restoration of Sis1 in vitro activity suggests that intramolecular interaction(s) between the J-domain and glycine-rich region controls co-chaperone activity, which is optimal only when Sis1 interacts with the EEVD(Hsp70) motif. Yet, we found that disruption of the Sis1:EEVD(Hsp70) interaction enhances the ability of Sis1 to substitute for Ydj1 in vivo. Our results are consistent with the idea that interaction of Sis1 with EEVD(Hsp70) minimizes transfer of Sis1-bound clients to Hsp70s that are primed for client transfer to folding and translocation pathways by their preassociation with EEVD-binding adaptor proteins. Finally, these interactions may be one means by which cells triage Ydj1- and Sis1-bound clients to productive and quality control pathways, respectively.

  8. Roles of intramolecular and intermolecular interactions in functional regulation of the Hsp70 J-protein co-chaperone sis1

    DOE PAGES

    Yu, Hyun Young; Ziegelhoffer, Thomas; Osipiuk, Jerzy; Ciesielski, Szymon J.; Baranowski, Maciej; Zhou, Min; Joachimiak, Andrzej; Craig, Elizabeth A.

    2015-02-13

    Unlike other Hsp70 molecular chaperones, those of the eukaryotic cytosol have four residues, EEVD, at their C-termini. EEVD(Hsp70) binds adaptor proteins of the Hsp90 chaperone system and mitochondrial membrane preprotein receptors, thereby facilitating processing of Hsp70-bound clients through protein folding and translocation pathways. Among J-protein co-chaperones functioning in these pathways Sis1 is unique, as it also binds the EEVD(Hsp70) motif. However, little is known about the role of the Sis1:EEVD(Hsp70) interaction. We found that deletion of EEVD(Hsp70) abolished the ability of Sis1, but not the ubiquitous J-protein Ydj1, to partner with Hsp70 in in vitro protein refolding. Sis1 co-chaperone activitymore » with Hsp70ΔEEVD was restored upon substitution of a glutamic acid of the J-domain. Structural analysis revealed that this key glutamic acid, which is not present in Ydj1, forms a salt bridge with an arginine of the immediately adjacent glycine-rich region. Thus, restoration of Sis1 in vitro activity suggests that intramolecular interaction(s) between the J-domain and glycine-rich region controls co-chaperone activity, which is optimal only when Sis1 interacts with the EEVD(Hsp70) motif. Yet, we found that disruption of the Sis1:EEVD(Hsp70) interaction enhances the ability of Sis1 to substitute for Ydj1 in vivo. Our results are consistent with the idea that interaction of Sis1 with EEVD(Hsp70) minimizes transfer of Sis1-bound clients to Hsp70s that are primed for client transfer to folding and translocation pathways by their preassociation with EEVD-binding adaptor proteins. Finally, these interactions may be one means by which cells triage Ydj1- and Sis1-bound clients to productive and quality control pathways, respectively.« less

  9. Does a Second Halogen Atom Affect the Nature of Intermolecular Interactions in Protic Acid-Haloethylene Complexes? in (E)-1-CHLORO-2-FLUOROETHYLENE-HYDROGEN Chloride it Depends on how you Look at it

    NASA Astrophysics Data System (ADS)

    Leung, Helen O.; Marshall, Mark D.

    2016-06-01

    As part of a systematic study of the effect of chlorine substitution on the structures of protic acid haloethylene complexes, the structure of the (E)-1-chloro-2-fluoroethylene-hydrogen chloride complex has been investigated using ab initio quantum chemistry calculations and microwave spectroscopy. Although theory predicts a non-planar equilibrium structure for this species, it is only 7 cm-1 lower in energy than the planar geometry connecting the two equivalent minima on either side of the haloethylene plane, and the observed spectrum is consistent with a planar, average structure, likely the result of zero-point averaging. The geometry is very similar to the fluorine binding, vinyl fluoride-hydrogen chloride complex, suggesting that the substitution of chlorine for a hydrogen trans to the fluorine atom has very little effect on intermolecular interactions in this case. On the other hand, vinyl chloride-hydrogen chloride adopts a non-planar, chlorine binding configuration so that alternatively one could say that the presence of fluorine has a large effect on protic acid-chlorine interactions.

  10. Intermolecular Pb...N interactions in lead(II) dimers producing a supramolecular two-dimensional metal-organic compound: bis[μ2-N'-(2-oxidobenzylidene)benzohydrazidato-κ(4)O:O,N',O']dilead(II).

    PubMed

    Schwade, Vânia Denise; Faoro, Eliandro; Schulz Lang, Ernesto

    2016-07-01

    Aroylhydrazones of ortho-hydroxy aldehydes are Schiff base ligands that typically coordinate as a chelate in an O,N,O'-manner. Dinuclear complexes are normally observed, with the phenolate O atom acting as the bridging atom. The switchable protonation state of the tridentate N'-(2-hydroxybenzylidene)benzohydrazide (H2sabhz) ligand can lead to variations in the resulting supramolecular structure. The title compound, [Pb2(C14H10N2O2)2], was prepared by the reaction of [Pb(OAc)2]·3H2O (OAc is acetate) with the benzoylhydrazone derivative of salicylaldehyde, i.e. H2sabhz, in the presence of triethylamine in methanol. In the crystal structure, each Pb(II) atom of the dimer has an NO3 coordination environment, with one sabhz ligand coordinating in an O,N,O'-manner and with the second sabhz ligand coordinating via the bridging phenolate O atom, since the dimers are located on a centre of inversion. It has been found that the dimers are connected by Pb...N interactions, resulting in a two-dimensional supramolecular network which shows the [3(2).5(2),3.5(3)] net topology. The s(2) electron pair of the Pb(II) ion clearly influences the observed intermolecular interactions.

  11. Roles of intramolecular and intermolecular interactions in functional regulation of the Hsp70 J-protein co-chaperone Sis1.

    PubMed

    Yu, Hyun Young; Ziegelhoffer, Thomas; Osipiuk, Jerzy; Ciesielski, Szymon J; Baranowski, Maciej; Zhou, Min; Joachimiak, Andrzej; Craig, Elizabeth A

    2015-04-10

    Unlike other Hsp70 molecular chaperones, those of the eukaryotic cytosol have four residues, EEVD, at their C-termini. EEVD(Hsp70) binds adaptor proteins of the Hsp90 chaperone system and mitochondrial membrane preprotein receptors, thereby facilitating processing of Hsp70-bound clients through protein folding and translocation pathways. Among J-protein co-chaperones functioning in these pathways, Sis1 is unique, as it also binds the EEVD(Hsp70) motif. However, little is known about the role of the Sis1:EEVD(Hsp70) interaction. We found that deletion of EEVD(Hsp70) abolished the ability of Sis1, but not the ubiquitous J-protein Ydj1, to partner with Hsp70 in in vitro protein refolding. Sis1 co-chaperone activity with Hsp70∆EEVD was restored upon substitution of a glutamic acid of the J-domain. Structural analysis revealed that this key glutamic acid, which is not present in Ydj1, forms a salt bridge with an arginine of the immediately adjacent glycine-rich region. Thus, restoration of Sis1 in vitro activity suggests that intramolecular interactions between the J-domain and glycine-rich region control co-chaperone activity, which is optimal only when Sis1 interacts with the EEVD(Hsp70) motif. However, we found that disruption of the Sis1:EEVD(Hsp70) interaction enhances the ability of Sis1 to substitute for Ydj1 in vivo. Our results are consistent with the idea that interaction of Sis1 with EEVD(Hsp70) minimizes transfer of Sis1-bound clients to Hsp70s that are primed for client transfer to folding and translocation pathways by their preassociation with EEVD binding adaptor proteins. These interactions may be one means by which cells triage Ydj1- and Sis1-bound clients to productive and quality control pathways, respectively. PMID:25687964

  12. Application of charge density methods to a protein model compound: Calculation of Coulombic intermolecular interaction energies from the experimental charge density

    PubMed Central

    Li, Xue; Wu, Guang; Abramov, Yuriy A.; Volkov, Anatoliy V.; Coppens, Philip

    2002-01-01

    A combined experimental and theoretical charge density study of the pentapeptide Boc-Gln-d-Iva-Hyp-Ala-Phol (Boc, butoxycarbonyl; Gln, glutamine; Iva, isovaline; Hyp, hydroxyproline; Ala, ethylalanine; Phol, phenylalaninol) is described. The experimental analysis, based on synchrotron x-ray data collected at 20 K, is combined with ab initio theoretical calculations. The topologies of the experimental and theoretical densities are analyzed in terms of the atoms in molecules quantum theory. Topological parameters, including atomic charges and higher moments integrated over the atomic basins, have been evaluated with the program topxd and are used to calculate the electrostatic interactions between the molecules in the crystal. The interaction energies obtained after adding dispersive and repulsive van der Waals contributions agree quite well with those based on M-B3LYP/6–31G** dimer calculations for two of the three dimers in the crystal, whereas for the third a larger stabilization is obtained than predicted by the calculation. The agreement with theory is significantly better than that obtained with multipole moments derived directly from the aspherical atom refinement. The convergence of the interaction as a function of addition of successively higher moments up to and including hexadecapoles (l = 4) is found to be within 2–3 kJ/mol. Although shortcomings of both the theoretical and experimental procedures are pointed out, the agreement obtained supports the potential of the experimental method for the evaluation of interactions in larger biologically relevant molecules. PMID:12221293

  13. Application of charge density methods to a protein model compound: calculation of Coulombic intermolecular interaction energies from the experimental charge density.

    PubMed

    Li, Xue; Wu, Guang; Abramov, Yuriy A; Volkov, Anatoliy V; Coppens, Philip

    2002-09-17

    A combined experimental and theoretical charge density study of the pentapeptide Boc-Gln-d-Iva-Hyp-Ala-Phol (Boc, butoxycarbonyl; Gln, glutamine; Iva, isovaline; Hyp, hydroxyproline; Ala, ethylalanine; Phol, phenylalaninol) is described. The experimental analysis, based on synchrotron x-ray data collected at 20 K, is combined with ab initio theoretical calculations. The topologies of the experimental and theoretical densities are analyzed in terms of the atoms in molecules quantum theory. Topological parameters, including atomic charges and higher moments integrated over the atomic basins, have been evaluated with the program topxd and are used to calculate the electrostatic interactions between the molecules in the crystal. The interaction energies obtained after adding dispersive and repulsive van der Waals contributions agree quite well with those based on M-B3LYP/6-31G** dimer calculations for two of the three dimers in the crystal, whereas for the third a larger stabilization is obtained than predicted by the calculation. The agreement with theory is significantly better than that obtained with multipole moments derived directly from the aspherical atom refinement. The convergence of the interaction as a function of addition of successively higher moments up to and including hexadecapoles (l = 4) is found to be within 2-3 kJ/mol. Although shortcomings of both the theoretical and experimental procedures are pointed out, the agreement obtained supports the potential of the experimental method for the evaluation of interactions in larger biologically relevant molecules. PMID:12221293

  14. DNA annealing by Redβ is insufficient for homologous recombination and the additional requirements involve intra- and inter-molecular interactions

    PubMed Central

    Subramaniam, Sivaraman; Erler, Axel; Fu, Jun; Kranz, Andrea; Tang, Jing; Gopalswamy, Mohanraj; Ramakrishnan, Saminathan; Keller, Adrian; Grundmeier, Guido; Müller, Daniel; Sattler, Michael; Stewart, A. Francis

    2016-01-01

    Single strand annealing proteins (SSAPs) like Redβ initiate homologous recombination by annealing complementary DNA strands. We show that C-terminally truncated Redβ, whilst still able to promote annealing and nucleoprotein filament formation, is unable to mediate homologous recombination. Mutations of the C-terminal domain were evaluated using both single- and double stranded (ss and ds) substrates in recombination assays. Mutations of critical amino acids affected either dsDNA recombination or both ssDNA and dsDNA recombination indicating two separable functions, one of which is critical for dsDNA recombination and the second for recombination per se. As evaluated by co-immunoprecipitation experiments, the dsDNA recombination function relates to the Redα-Redβ protein-protein interaction, which requires not only contacts in the C-terminal domain but also a region near the N-terminus. Because the nucleoprotein filament formed with C-terminally truncated Redβ has altered properties, the second C-terminal function could be due to an interaction required for functional filaments. Alternatively the second C-terminal function could indicate a requirement for a Redβ-host factor interaction. These data further advance the model for Red recombination and the proposition that Redβ and RAD52 SSAPs share ancestral and mechanistic roots. PMID:27708411

  15. Interactions of Hydrogen Molecules with Halogen-Containing Diatomics from Ab Initio Calculations: Spherical-Harmonics Representation and Characterization of the Intermolecular Potentials.

    PubMed

    Albernaz, Alessandra F; Aquilanti, Vincenzo; Barreto, Patricia R P; Caglioti, Concetta; Cruz, Ana Claudia P S; Grossi, Gaia; Lombardi, Andrea; Palazzetti, Federico

    2016-07-14

    For the prototypical diatomic-molecule-diatomic-molecule interactions H2-HX and H2-X2, where X = F, Cl, Br, quantum-chemical ab initio calculations are carried out on grids of the configuration space, which permit a spherical-harmonics representation of the potential energy surfaces (PESs). Dimer geometries are considered for sets of representative leading configurations, and the PESs are analyzed in terms of isotropic and anisotropic contributions. The leading configurations are individuated by selecting a minimal set of mutual orientations of molecules needed to build the spherical-harmonic expansion on geometrical and symmetry grounds. The terms of the PESs corresponding to repulsive and bonding dimer geometries and the averaged isotropic term, for each pair of interacting molecules, are compared with representations in terms of a potential function proposed by Pirani et al. (see Chem. Phys. Lett. 2004, 394, 37-44 and references therein). Connections of the involved parameters with molecular properties provide insight into the nature of the interactions.

  16. Pulse propagation in the interacting one-dimensional Bose liquid

    NASA Astrophysics Data System (ADS)

    Sarishvili, A. D.; Protopopov, I. V.; Gutman, D. B.

    2016-07-01

    We study wave propagation in interacting Bose liquid, where the short-range part of the interaction between atoms is of a hard-core type, and its long-range part scales with a distance as a power law. The cases of Coulomb, dipole-dipole and van der Waals interaction are considered. We employ a hydrodynamic approach, based on the exact solution of the Lieb-Liniger model, and study the evolution of a density pulse instantly released from a potential trap. We analyze semiclassical Euler and continuity equations and construct the corresponding Riemann invariants. We supplement our analysis with numerical calculations and discuss experimental applications for ultracold atom experiments.

  17. Metal–Arene Complexes with Indolo[3,2-c]-quinolines: Effects of Ruthenium vs Osmium and Modifications of the Lactam Unit on Intermolecular Interactions, Anticancer Activity, Cell Cycle, and Cellular Accumulation

    PubMed Central

    2013-01-01

    Six novel ruthenium(II)– and osmium(II)–arene complexes with three modified indolo[3,2-c]quinolines have been synthesized in situ starting from 2-aminoindoloquinolines and 2-pyridinecarboxaldehyde in the presence of [M(p-cymene)Cl2]2 (M = Ru, Os) in ethanol. All complexes have been characterized by elemental analysis, spectroscopic techniques (1H, 13C NMR, IR, UV–vis), and ESI mass spectrometry, while four complexes were investigated by X-ray diffraction. The complexes have been tested for antiproliferative activity in vitro in A549 (non-small cell lung), SW480 (colon), and CH1 (ovarian) human cancer cell lines and showed IC50 values between 1.3 and >80 μM. The effects of Ru vs Os and modifications of the lactam unit on intermolecular interactions, antiproliferative activity, and cell cycle are reported. One ruthenium complex and its osmium analogue have been studied for anticancer activity in vivo applied both intraperitoneally and orally against the murine colon carcinoma model CT-26. Interestingly, the osmium(II) complex displayed significant growth-inhibitory activity in contrast to its ruthenium counterpart, providing stimuli for further investigation of this class of compounds as potential antitumor drugs. PMID:23431223

  18. Important role of molecular packing and intermolecular interactions in two polymorphs of (Z)-2-phenyl-3-(4-(pyridin-2-yl)phenyl)acrylonitrile. Preparation, structures, and optical properties

    NASA Astrophysics Data System (ADS)

    Percino, M. Judith; Cerón, Margarita; Ceballos, Paulina; Soriano-Moro, Guillermo; Castro, M. Eugenia; Chapela, Víctor M.; Bonilla-Cruz, José; Reyes-Reyes, Marisol; López-Sandoval, Román; Siegler, Maxime A.

    2014-12-01

    The novel compound Z-2-phenyl-3-(4-(pyridin-2-yl)phenyl)acrylonitrile (PPyPAN) was synthesized from the condensation reaction between phenylacetonitrile and 4-(pyridin-2-yl)benzaldehyde. This compound crystallizes in two forms: polymorph I (triclinic, P - 1, Z‧ = 2) and polymorph II (orthorhombic, Pbc21, Z‧ = 2). The molecular structures and optical properties of the two polymorphs have been characterized via1H NMR, EI, FTIR, UV-Vis spectroscopy, DSC, single-crystal and XRPD. The molecular structure, packing properties, and intermolecular interactions were examined for both polymorphs of PPyPAN in order to interpret the emission properties. A subtle change in the molecular conformation (e.g., a rotation around single Csbnd C bonds) found for both polymorph plays an important role in their solid-state properties. The structure and optical properties of the new structures were well characterized and showed unique features for both polymorphic phases. For phase I, we observed an excitation spectrum with an λex at 325-346 nm, which is the maximum excitation or absorption wavelength for the lowest So → S1 transition, which is characteristic to the π-π* transition, and an emission spectrum with an λemmax at 454 nm. For phase II, the excitation spectrum showed an λexmax at 325 nm, whereas the λemmax showed a red-shift to 492 nm.

  19. Student Understanding of Intermolecular Forces: A Multimodal Study

    ERIC Educational Resources Information Center

    Cooper, Melanie M.; Williams, Leah C.; Underwood, Sonia M.

    2015-01-01

    The ability to use representations of molecular structure to predict the macroscopic properties of a substance is central to the development of a robust understanding of chemistry. Intermolecular forces (IMFs) play an important role in this process because they provide a mechanism for how and why molecules interact. In this study, we investigate…

  20. Intermolecular artifacts in probe microscope images of C60 assemblies

    NASA Astrophysics Data System (ADS)

    Jarvis, Samuel Paul; Rashid, Mohammad Abdur; Sweetman, Adam; Leaf, Jeremy; Taylor, Simon; Moriarty, Philip; Dunn, Janette

    2015-12-01

    Claims that dynamic force microscopy has the capability to resolve intermolecular bonds in real space continue to be vigorously debated. To date, studies have been restricted to planar molecular assemblies with small separations between neighboring molecules. Here we report the observation of intermolecular artifacts over much larger distances in 2D assemblies of C60 molecules, with compelling evidence that in our case the tip apex is terminated by a C60 molecule (rather than the CO termination typically exploited in ultrahigh resolution force microscopy). The complete absence of directional interactions such as hydrogen or halogen bonding, the nonplanar structure of C60, and the fullerene termination of the tip apex in our case highlight that intermolecular artifacts are ubiquitous in dynamic force microscopy.

  1. Stacked and H-Bonded Cytosine Dimers. Analysis of the Intermolecular Interaction Energies by Parallel Quantum Chemistry and Polarizable Molecular Mechanics.

    PubMed

    Gresh, Nohad; Sponer, Judit E; Devereux, Mike; Gkionis, Konstantinos; de Courcy, Benoit; Piquemal, Jean-Philip; Sponer, Jiri

    2015-07-30

    Until now, atomistic simulations of DNA and RNA and their complexes have been executed using well calibrated but conceptually simple pair-additive empirical potentials (force fields). Although such simulations provided many valuable results, it is well established that simple force fields also introduce errors into the description, underlying the need for development of alternative anisotropic, polarizable molecular mechanics (APMM) potentials. One of the most abundant forces in all kinds of nucleic acids topologies is base stacking. Intra- and interstrand stacking is assumed to be the most essential factor affecting local conformational variations of B-DNA. However, stacking also contributes to formation of all kinds of noncanonical nucleic acids structures, such as quadruplexes or folded RNAs. The present study focuses on 14 stacked cytosine (Cyt) dimers and the doubly H-bonded dimer. We evaluate the extent to which an APMM procedure, SIBFA, could account quantitatively for the results of high-level quantum chemistry (QC) on the total interaction energies, and the individual energy contributions and their nonisotropic behaviors. Good agreements are found at both uncorrelated HF and correlated DFT and CCSD(T) levels. Resorting in SIBFA to distributed QC multipoles and to an explicit representation of the lone pairs is essential to respectively account for the anisotropies of the Coulomb and of the exchange-repulsion QC contributions.

  2. The Role of Weak Interactions in Strong Intermolecular M···Cl Complexes of Coinage Metal Pyrazolates: Spectroscopic and DFT Study.

    PubMed

    Titov, Aleksei A; Guseva, Ekaterina A; Filippov, Oleg A; Babakhina, Galina M; Godovikov, Ivan A; Belkova, Natalia V; Epstein, Lina M; Shubina, Elena S

    2016-09-01

    The nondestructive reversible complexation of the macrocyclic group 11 metal pyrazolates {[3,5-(CF3)2Pz]M}3 (M = Cu(I), Ag(I)) to the halogen atom X = Cl, Br of η(3)-allyliron tricarbonyl halides (η(3)-2-R-C3H4)Fe(CO)3X is revealed by the variable-temperature spectroscopic (IR, NMR) study combined with density functional theory calculations. The composition of all complexes at room temperature is determined as 1:1. In the case of the [AgL]3 macrocycle, complexes 1:2 are observed at low temperature (<260 K). The complex's stability depends on the substituents in the allyl fragment and halide ligand as well as on the metal atom (Ag(I), Cu(I)) in the macrocycle. For bulky substituents (Me and Ph) the endo/exo equilibrium of the parent (η(3)-2-R-C3H4)Fe(CO)3X shifts upon the complex formation in favor of the exo isomer due to additional noncovalent interactions of the substituent with macrocycle. PMID:27529380

  3. Strongly interacting ultracold polar molecules

    NASA Astrophysics Data System (ADS)

    Gadway, Bryce; Yan, Bo

    2016-08-01

    This paper reviews recent advances in the study of strongly interacting systems of dipolar molecules. Heteronuclear molecules feature large and tunable electric dipole moments, which give rise to long-range and anisotropic dipole-dipole interactions. Ultracold samples of dipolar molecules with long-range interactions offer a unique platform for quantum simulations and the study of correlated many-body physics. We provide an introduction to the physics of dipolar quantum gases, both electric and magnetic, and summarize the multipronged efforts to bring dipolar molecules into the quantum regime. We discuss in detail the recent experimental progress in realizing and studying strongly interacting systems of polar molecules trapped in optical lattices, with particular emphasis on the study of interacting spin systems and non-equilibrium quantum magnetism. Finally, we conclude with a brief discussion of the future prospects for studies of strongly interacting dipolar molecules.

  4. Morphology and the Strength of Intermolecular Contact in Protein Crystals

    NASA Technical Reports Server (NTRS)

    Matsuura, Yoshiki; Chernov, Alexander A.

    2002-01-01

    The strengths of intermolecular contacts (macrobonds) in four lysozyme crystals were estimated based on the strengths of individual intermolecular interatomic interaction pairs. The periodic bond chain of these macrobonds accounts for the morphology of protein crystals as shown previously. Further in this paper, the surface area of contact, polar coordinate representation of contact site, Coulombic contribution on the macrobond strength, and the surface energy of the crystal have been evaluated. Comparing location of intermolecular contacts in different polymorphic crystal modifications, we show that these contacts can form a wide variety of patches on the molecular surface. The patches are located practically everywhere on this surface except for the concave active site. The contacts frequently include water molecules, with specific intermolecular hydrogen-bonds on the background of non-specific attractive interactions. The strengths of macrobonds are also compared to those of other protein complex systems. Making use of the contact strengths and taking into account bond hydration we also estimated crystal-water interfacial energies for different crystal faces.

  5. Exploring the complexity of supramolecular interactions for patterning at the liquid-solid interface.

    PubMed

    Mali, Kunal S; Adisoejoso, Jinne; Ghijsens, Elke; De Cat, Inge; De Feyter, Steven

    2012-08-21

    The use of self-assembly to fabricate surface-confined adsorbed layers (adlayers) from molecular components provides a simple means of producing complex functional surfaces. The molecular self-assembly process relies on supramolecular interactions sustained by noncovalent forces such as van der Waals, electrostatic, dipole-dipole, and hydrogen bonding interactions. Researchers have exploited these noncovalent bonding motifs to construct well-defined two-dimensional (2D) architectures at the liquid-solid interface. Despite myriad examples of 2D molecular assembly, most of these early findings were serendipitous because the intermolecular interactions involved in the process are often numerous, subtle, cooperative, and multifaceted. As a consequence, the ability to tailor supramolecular patterns has evolved slowly. Insight gained from various studies over the years has contributed significantly to the knowledge of supramolecular interactions, and the stage is now set to systematically engineer the 2D supramolecular networks in a "preprogrammed" fashion. The control over 2D self-assembly of molecules has many important implications. Through appropriate manipulation of supramolecular interactions, one can "encode" the information at the molecular level via structural features such as functional groups, substitution patterns, and chiral centers which could then be retrieved, transferred, or amplified at the supramolecular level through well-defined molecular recognition processes. This ability allows for precise control over the nanoscale structure and function of patterned surfaces. A clearer understanding and effective use of these interactions could lead to the development of functional surfaces with potential applications in molecular electronics, chiral separations, sensors based on host-guest systems, and thin film materials for lubrication. In this Account, we portray our various attempts to achieve rational design of self-assembled adlayers by exploiting the

  6. New Type of Dual Solid-State Thermochromism: Modulation of Intramolecular Charge Transfer by Intermolecular π-π Interactions, Kinetic Trapping of the Aci-Nitro Group, and Reversible Molecular Locking

    NASA Astrophysics Data System (ADS)

    Naumov, Panče; Lee, Sang Cheol; Ishizawa, Nobuo; Jeong, Young Gyu; Chung, Ihn Hee; Fukuzumi, Shunichi

    2009-09-01

    intramolecular proton transfer of one amino proton to the nitro group, whereupon an aci-nitro form is thermally populated. Contrary to the numerous examples of solid thermochromic molecules based on either pericyclic reactions or keto-enol tautomerism, this system appears to be the first organic thermochromic family where the thermochromic change appears as an effect of intermolecular π-π interactions and thermal intramolecular proton transfer to aromatic nitro group.

  7. Direct evidence of three-body interactions in a cold {sup 85}Rb Rydberg gas

    SciTech Connect

    Han Jianing

    2010-11-15

    Cold Rydberg atoms trapped in a magneto-optical trap (MOT) are not isolated and they interact through dipole-dipole and multipole-multipole interactions. First-order dipole-dipole interactions and van der Waals interactions between two atoms have been intensively studied. However, the facts that the first-order dipole-dipole interactions and van der Waals interactions show the same size of broadening [A. Reinhard, K. C. Younge, T. C. Liebisch, B. Knuffman, P. R. Berman, and G. Raithel, Phys. Rev. Lett. 100, 233201 (2008)] and there are transitions between two dimer states [S. M. Farooqi, D. Tong, S. Krishnan, J. Stanojevic, Y. P. Zhang, J. R. Ensher, A. S. Estrin, C. Boisseau, R. Cote, E. E. Eyler, and P. L. Gould, Phys. Rev. Lett. 91, 183002 (2003); K. R. Overstreet, Arne Schwettmann, Jonathan Tallant, and James P. Shaffer, Phys. Rev. A 76, 011403(R) (2007)] cannot be explained by the two-atom picture. The purpose of this article is to show the few-body nature of a dense cold Rydberg gas by studying the molecular-state microwave spectra. Specifically, three-body energy levels have been calculated. Moreover, the transition from three-body energy levels to two-body coupled molecular energy levels and to isolated atomic energy levels as a function of the internuclear spacing is studied. Finally, single-body, two-body, and three-body interaction regions are estimated according to the experimental data. The results reported here provides useful information for plasma formation, further cooling, and superfluid formation.

  8. Direct evidence of three-body interactions in a cold Rb85 Rydberg gas

    NASA Astrophysics Data System (ADS)

    Han, Jianing

    2010-11-01

    Cold Rydberg atoms trapped in a magneto-optical trap (MOT) are not isolated and they interact through dipole-dipole and multipole-multipole interactions. First-order dipole-dipole interactions and van der Waals interactions between two atoms have been intensively studied. However, the facts that the first-order dipole-dipole interactions and van der Waals interactions show the same size of broadening [A. Reinhard, K. C. Younge, T. C. Liebisch, B. Knuffman, P. R. Berman, and G. Raithel, Phys. Rev. Lett.PRLTAO0031-900710.1103/PhysRevLett.100.233201 100, 233201 (2008)] and there are transitions between two dimer states [S. M. Farooqi, D. Tong, S. Krishnan, J. Stanojevic, Y. P. Zhang, J. R. Ensher, A. S. Estrin, C. Boisseau, R. Cote, E. E. Eyler, and P. L. Gould, Phys. Rev. Lett.PRLTAO0031-900710.1103/PhysRevLett.91.183002 91, 183002 (2003); K. R. Overstreet, Arne Schwettmann, Jonathan Tallant, and James P. Shaffer, Phys. Rev. APLRAAN1050-294710.1103/PhysRevA.76.011403 76, 011403(R) (2007)] cannot be explained by the two-atom picture. The purpose of this article is to show the few-body nature of a dense cold Rydberg gas by studying the molecular-state microwave spectra. Specifically, three-body energy levels have been calculated. Moreover, the transition from three-body energy levels to two-body coupled molecular energy levels and to isolated atomic energy levels as a function of the internuclear spacing is studied. Finally, single-body, two-body, and three-body interaction regions are estimated according to the experimental data. The results reported here provides useful information for plasma formation, further cooling, and superfluid formation.

  9. Desensitization and recovery of metastable intermolecular composites

    DOEpatents

    Busse, James R.; Dye, Robert C.; Foley, Timothy J.; Higa, Kelvin T.; Jorgensen, Betty S.; Sanders, Victor E.; Son, Steven F.

    2010-09-07

    A method to substantially desensitize a metastable intermolecular composite material to electrostatic discharge and friction comprising mixing the composite material with an organic diluent and removing enough organic diluent from the mixture to form a mixture with a substantially putty-like consistency, as well as a concomitant method of recovering the metastable intermolecular composite material.

  10. Interpretation of intermolecular geometric isotope effect in hydrogen bonds: nuclear orbital plus molecular orbital study.

    PubMed

    Ikabata, Yasuhiro; Imamura, Yutaka; Nakai, Hiromi

    2011-03-01

    The intermolecular geometric isotope effect (GIE) in hydrogen bond A-X···B (X = H and D) is investigated theoretically using the nuclear orbital plus molecular orbital (NOMO) theory. To interpret the GIE in terms of physically meaningful energy components such as electrostatic and exchange-repulsion interactions, the reduced variational space self-consistent-field method is extended to the NOMO scheme. The intermolecular GIE is analyzed as a two-stage process: the intramolecular bond shrinkage and the intermolecular bond elongation. According to the isotopic shifts of energy components described by the NOMO/MP2 method, the intermolecular GIE is approximately interpreted as a process reducing the exchange-repulsion interaction after the decrease of electrostatic interaction. PMID:21306139

  11. Intermolecular domain docking in the hairpin ribozyme

    PubMed Central

    Sumita, Minako; White, Neil A.; Julien, Kristine R.; Hoogstraten, Charles G.

    2013-01-01

    The hairpin ribozyme is a prototype small, self-cleaving RNA motif. It exists naturally as a four-way RNA junction containing two internal loops on adjoining arms. These two loops interact in a cation-driven docking step prior to chemical catalysis to form a tightly integrated structure, with dramatic changes occurring in the conformation of each loop upon docking. We investigate the thermodynamics and kinetics of the docking process using constructs in which loop A and loop B reside on separate molecules. Using a novel CD difference assay to isolate the effects of metal ions linked to domain docking, we find the intermolecular docking process to be driven by sub-millimolar concentrations of the exchange-inert Co(NH3)63+. RNA self-cleavage requires binding of lower-affinity ions with greater apparent cooperativity than the docking process itself, implying that, even in the absence of direct coordination to RNA, metal ions play a catalytic role in hairpin ribozyme function beyond simply driving loop-loop docking. Surface plasmon resonance assays reveal remarkably slow molecular association, given the relatively tight loop-loop interaction. This observation is consistent with a “double conformational capture” model in which only collisions between loop A and loop B molecules that are simultaneously in minor, docking-competent conformations are productive for binding. PMID:23324606

  12. Interaction-driven Lifshitz transition with dipolar fermions in optical lattices

    NASA Astrophysics Data System (ADS)

    van Loon, E. G. C. P.; Katsnelson, M. I.; Chomaz, L.; Lemeshko, M.

    2016-05-01

    Anisotropic dipole-dipole interactions between ultracold dipolar fermions break the symmetry of the Fermi surface and thereby deform it. Here we demonstrate that such a Fermi surface deformation induces a topological phase transition—the so-called Lifshitz transition—in the regime accessible to present-day experiments. We describe the impact of the Lifshitz transition on observable quantities such as the Fermi surface topology, the density-density correlation function, and the excitation spectrum of the system. The Lifshitz transition in ultracold atoms can be controlled by tuning the dipole orientation and, in contrast to the transition studied in crystalline solids, is completely interaction driven.

  13. Topological magnetic dipolar interaction and nonlocal electric magnetization control in topological insulator heterostructures

    NASA Astrophysics Data System (ADS)

    Rex, Stefan; Nogueira, Flavio S.; Sudbø, Asle

    2016-07-01

    The magnetoelectric effect predicted in topological insulators makes heterostructures that combine magnetic materials and such insulators promising candidates for spintronics applications. Here, we theoretically consider a setup that exhibits two well-separated interfaces between a topological insulator and a ferromagnetic insulator. We show that there is a topological magnetic dipole-dipole interaction stemming from long-range Coulomb interactions. We analytically derive the magnetization dynamics at the two interfaces and discuss how the long-range coupling can be applied to nonlocally induce the formation of a magnetic texture at one interface by suitably gating the other interface.

  14. Theoretical study on the effect of solvent and intermolecular fluctuations in proton transfer reactions: General theory

    SciTech Connect

    Kato, Nobuhiko; Ida, Tomonori; Endo, Kazunaka

    2004-04-30

    We present a theory of proton transfer reactions which incorporate the modulation of the proton's potential surface by intermolecular vibrations and the effect of coupling to solvent degree of freedom. The proton tunnels between states corresponding to it being localized in the wells of a double minimum potential. The resulting tunnel splitting depends on the intermolecular separation. The solvent response to the proton's charge is modeled as that of a continuous distribution of harmonic oscillators and the intermolecular stretching mode is also damped because of the interaction with solvent degree of freedom. The transition rate is given by the Fermi Gorlden Rule expression.

  15. Competing Intramolecular vs. Intermolecular Hydrogen Bonds in Solution

    PubMed Central

    Nagy, Peter I.

    2014-01-01

    A hydrogen bond for a local-minimum-energy structure can be identified according to the definition of the International Union of Pure and Applied Chemistry (IUPAC recommendation 2011) or by finding a special bond critical point on the density map of the structure in the framework of the atoms-in-molecules theory. Nonetheless, a given structural conformation may be simply favored by electrostatic interactions. The present review surveys the in-solution competition of the conformations with intramolecular vs. intermolecular hydrogen bonds for different types of small organic molecules. In their most stable gas-phase structure, an intramolecular hydrogen bond is possible. In a protic solution, the intramolecular hydrogen bond may disrupt in favor of two solute-solvent intermolecular hydrogen bonds. The balance of the increased internal energy and the stabilizing effect of the solute-solvent interactions regulates the new conformer composition in the liquid phase. The review additionally considers the solvent effects on the stability of simple dimeric systems as revealed from molecular dynamics simulations or on the basis of the calculated potential of mean force curves. Finally, studies of the solvent effects on the type of the intermolecular hydrogen bond (neutral or ionic) in acid-base complexes have been surveyed. PMID:25353178

  16. Intermolecular vibrations in hydrophobic amino acid crystals: experiments and calculations.

    PubMed

    Williams, Michael R C; Aschaffenburg, Daniel J; Ofori-Okai, Benjamin K; Schmuttenmaer, Charles A

    2013-09-12

    Intermolecular vibrations of amino acid crystals occur in the THz, or far-infrared, region of the electromagnetic spectrum. We have measured the THz and Raman spectra of DL-leucine as well as two polymorphs of DL-valine, the spectroscopic properties of which have not previously been compared. Theoretical modeling of intermolecular vibrations in hydrophobic amino acids is challenging because the van der Waals interactions between molecules are not accounted for in standard density functional theory. Therefore, to calculate the vibrational modes, we used a recently developed approach that includes these nonlocal electron correlation forces. We discuss methods for comparing results from different theoretical models using metrics other than calculated vibrational frequency and intensity, and we also report a new approach enabling concise comparison of vibrational modes that involve complicated mixtures of inter- and intramolecular displacements.

  17. Separation of intra- and intermolecular contributions to the PELDOR signal

    NASA Astrophysics Data System (ADS)

    Schöps, Philipp; Plackmeyer, Jörn; Marko, Andriy

    2016-08-01

    Pulsed Electron-electron Double Resonance (PELDOR) is commonly used to measure distances between native paramagnetic centers or spin labels attached to complex biological macromolecules. In PELDOR the energies of electron magnetic dipolar interactions are measured by analyzing the oscillation frequencies of the recorded time resolved signal. Since PELDOR is an ensemble method, the detected signal contains contributions from intramolecular, as well as intermolecular electron spin interactions. The intramolecular part of the signal contains the information about the structure of the studied molecules, thus it is very important to accurately separate intra- and intermolecular contributions to the total signal. This separation can become ambiguous, when the length of the PELDOR signal is not much longer than twice the oscillation period of the signal. In this work we suggest a modulation depth scaling method, which can use short PELDOR signals in order to extract the intermolecular contribution. Using synthetic data we demonstrate the advantages of the new approach and analyze its stability with regard to signal noise. The method was also successfully tested on experimental data of three systems measured at Q-Band frequencies, two model compounds in deuterated and protonated solvents and one biological sample, namely BetP. The application of the new method with an assigned value of the signal modulation depth enables us to determine the interspin distances in all cases. This is especially interesting for the model compound with an interspin distance of 5.2 nm in the protonated solvent and the biological sample, since an accurate separation of the intra- and intermolecular PELDOR signal contributions would be difficult with the standard approach in those cases.

  18. Stability and magnetic interactions between magnetite nanoparticles dispersed in zeolite as studied using Mössbauer spectroscopy

    NASA Astrophysics Data System (ADS)

    Herojit singh, L.; Govindaraj, R.; Mythili, R.; Amarendra, G.

    2016-11-01

    Stability of superparamagnetic magnetite nanoparticles as formed in Zeolite has been addressed in a detailed manner based on isochronal annealing studies using Mössbauer spectroscopy. A strong binding of these nanoparticles in Zeolite has been deduced as the coarsening of the nanoparticles is observed following annealing treatments beyond 825 K. In addition, the magnetic interactions between these superparamagnetic magnetite nanoparticles in the as dispersed condition in Zeolite have been elucidated by means of low temperature Mössbauer studies. A strong dependence of the dipole-dipole interactions between superparamagnetic particles of cubic iron oxides is deduced based on this study.

  19. Kinetic theory for flows of nonhomogeneous rodlike liquid crystalline polymers with a nonlocal intermolecular potential.

    PubMed

    Wang, Qi; E, Weinan; Liu, Chun; Zhang, Pingwen

    2002-05-01

    The Doi kinetic theory for flows of homogeneous, rodlike liquid crystalline polymers (LCPs) is extended to model flows of nonhomogeneous, rodlike LCPs through a nonlocal (long-range) intermolecular potential. The theory features (i) a nonlocal, anisotropic, effective intermolecular potential in an integral form that is consistent with the chemical potential, (ii) short-range elasticity as well as long-range isotropic and anisotropic elasticity, (iii) a closed-form stress expression accounting for the nonlocal molecular interaction, and (iv) an extra elastic body force exclusively associated with the integral form of the intermolecular potential. With the effective intermolecular potential, the theory is proven to be well posed in that it warrants a positive entropy production and thereby the second law of thermodynamics. Approximate theories are obtained by gradient expansions of the number density function in the free energy density.

  20. Kinetic theory for flows of nonhomogeneous rodlike liquid crystalline polymers with a nonlocal intermolecular potential.

    PubMed

    Wang, Qi; E, Weinan; Liu, Chun; Zhang, Pingwen

    2002-05-01

    The Doi kinetic theory for flows of homogeneous, rodlike liquid crystalline polymers (LCPs) is extended to model flows of nonhomogeneous, rodlike LCPs through a nonlocal (long-range) intermolecular potential. The theory features (i) a nonlocal, anisotropic, effective intermolecular potential in an integral form that is consistent with the chemical potential, (ii) short-range elasticity as well as long-range isotropic and anisotropic elasticity, (iii) a closed-form stress expression accounting for the nonlocal molecular interaction, and (iv) an extra elastic body force exclusively associated with the integral form of the intermolecular potential. With the effective intermolecular potential, the theory is proven to be well posed in that it warrants a positive entropy production and thereby the second law of thermodynamics. Approximate theories are obtained by gradient expansions of the number density function in the free energy density. PMID:12059561

  1. Intermolecular Vibrations of Hydrophobic Amino Acids

    NASA Astrophysics Data System (ADS)

    Williams, Michael Roy Casselman

    Hydrophobic amino acids interact with their chemical environment through a combination of electrostatic, hydrogen bonding, dipole, induced dipole, and dispersion forces. These interactions all have their own characteristic energy scale and distance dependence. The low-frequency (0.1-5 THz, 5-150 cm-1) vibrational modes of amino acids in the solid state are a direct indicator of the interactions between the molecules, which include interactions between an amino acid functional group and its surroundings. This information is central to understanding the dynamics and morphology of proteins. The alpha-carbon is a chiral center for all of the hydrophobic amino acids, meaning that they exist in two forms, traditionally referred to as L- and D-enantiomers. This nomenclature indicates which direction the molecule rotates plane-polarized visible light (levorotory and dextrorotory). Chiral a-amino acids in proteins are exclusively the L-variety In the solid state, the crystal lattice of the pure L-enantiomer is the mirror image of the D-enantiomer crystal lattice. These solids are energetically identical. Enantiomers also have identical spectroscopic properties except when the measurement is polarization sensitive. A mixture of equal amounts D- and L-amino acid enantiomers can crystallize into a racemic (DL-) structure that is different from that of the pure enantiomers. Whether a solution of both enantiomers will crystallize into a racemic form or spontaneously resolve into a mixture of separate D- and L-crystals largely depends on the interactions between molecules available in the various possible configurations. This is an active area of research. Low-frequency vibrations with intermolecular character are very sensitive to changes in lattice geometry, and consequently the vibrational spectra of racemic crystals are usually quite distinct from the spectra of the crystals of the corresponding pure enantiomers in the far-infrared (far-IR). THz time-domain spectroscopy (THz

  2. Transient grating study of the intermolecular dynamics of liquid nitrobenzene

    NASA Astrophysics Data System (ADS)

    Wu, Hong-Lin; Song, Yun-Fei; Yu, Guo-Yang; Yang, Yan-Qiang

    2016-10-01

    Femtosecond time-resolved transient grating (TG) technique is used to study the intermolecular dynamics in liquid phase. Non-resonant excitation of the sample by two crossing laser pulses results in a transient Kerr grating, and the molecular motion of liquid can be detected by monitoring the diffraction of a third time-delayed probe pulse. In liquid nitrobenzene (NB), three intermolecular processes are observed with lifetimes of 37.9±1.4 ps, 3.28±0.11 ps, and 0.44±0.03 ps, respectively. These relaxations are assigned to molecular orientational diffusion, dipole/induced dipole interaction, and libration in liquid cage, respectively. Such a result is slightly different from that obtained from OKE experiment in which the lifetime of the intermediate process is measured to be 1.9 ps. The effects of electric field on matter are different in TG and optical Kerr effect (OKE) experiments, which should be responsible for the difference between the results of these two types of experiments. The present work demonstrates that TG technique is a useful alternative in the study of intermolecular dynamics. Project supported by the National Natural Science Foundation of China (Grant Nos. 11304058 and 11404307) and NSAF (Grant No. U1330106).

  3. Van der Waals Interactions and Dipole Blockade in a Cold Rydberg Gas Probed by Microwave Spectroscopy

    NASA Astrophysics Data System (ADS)

    Nguyen, Thanh Long; Celistrino Teixeira, Raul; Hermann Avigliano, Carla; Cantat Moltrecht, Tigrane; Raimond, Jean Michel; Haroche, Serge; Gleyzes, Sebastiens; Brune, Michel

    2016-05-01

    Dipole-dipole interactions between Rydberg atoms are a flourishing tool for quantum information processing and for quantum simulation of complex many-body problems. Microwave spectroscopy of a dense Rydberg gas trapped close to a superconducting atom chip in the strong dipole blockade regime reveals directly the many-body atomic interaction spectrum. We present here a direct measurement of the interaction energy distribution in the strong dipole blockade regime, based on microwave spectroscopy. We first apply this method to the observation of the excitation dynamics of the Rydberg gas, conditioned by dipole-dipole interactions, in either the strong blockade regime or the so-called facilitation regime. We also observe with this method the atomic cloud expansion driven by the repulsive Van der Waals interaction after excitation. This measurement, in good agreement with Monte Carlo simulations of the excitation process and of the cloud dynamics, reveals the limits of the frozen gas approximation. This method can help investigate self-organization and dynamical phase transitions in Rydberg-atom based quantum simulators. This study thus opens a promising route for quantum simulation of many-body systems and quantum information transport in chains of strongly interacting Rydberg atom.

  4. Study of gelatin-agar intermolecular aggregates in the supernatant of its coacervate.

    PubMed

    Singh, S Santinath; Bohidar, H B; Bandyopadhyay, S

    2007-05-15

    Intermolecular interaction leading to formation of aggregates between gelatin, a polyampholyte, and agar, a polysaccharide was studied in the supernatant of the complex coacervate formed by these biopolymers. Electrophoresis, laser light scattering and viscometry data were used to determine the interaction and the physical structure of these intermolecular soluble complexes by modeling these to be prolate ellipsoids of revolution (rod-like structures with well defined axial ratio and Perrin's factor). Solution ionic strength was found to reduce the axial ratio of these complexes implying the presence of screened polarization-induced electrostatic interaction between the two biopolymers.

  5. Intermolecular and intramolecular contributions to the relaxation process in sorbitol and maltitol

    NASA Astrophysics Data System (ADS)

    Sixou, B.; Faivre, A.; David, L.; Vigier, G.

    Molecular mobility in sorbitol and maltitol is studied with spectroscopic techniques and molecular dynamics simulations in order to evaluate the relative contributions of the intermolecular and intramolecular interactions involved in the relaxation processes. The results of the molecular dynamics simulations performed on the polyols in the bulk or in vacuum compares well with the results of the analysis of the relaxation diagrams in the framework of the Perez et al . model. They both imply that the difference in the relative contributions of the intermolecular and intramolecular interactions associated with the different chemical architectures of the two polyols must be taken into account. The intermolecular interactions cannot be neglected and they are stronger in sorbitol than in maltitol in relation with the linear structure of this polyol. The intramolecular barrier, higher in the maltitol molecule with a more complex structure, could be at the origin of the higher junction temperature between the αand βrelaxation processes.

  6. Visualizing the orientational dependence of an intermolecular potential

    NASA Astrophysics Data System (ADS)

    Sweetman, Adam; Rashid, Mohammad A.; Jarvis, Samuel P.; Dunn, Janette L.; Rahe, Philipp; Moriarty, Philip

    2016-02-01

    Scanning probe microscopy can now be used to map the properties of single molecules with intramolecular precision by functionalization of the apex of the scanning probe tip with a single atom or molecule. Here we report on the mapping of the three-dimensional potential between fullerene (C60) molecules in different relative orientations, with sub-Angstrom resolution, using dynamic force microscopy (DFM). We introduce a visualization method which is capable of directly imaging the variation in equilibrium binding energy of different molecular orientations. We model the interaction using both a simple approach based around analytical Lennard-Jones potentials, and with dispersion-force-corrected density functional theory (DFT), and show that the positional variation in the binding energy between the molecules is dominated by the onset of repulsive interactions. Our modelling suggests that variations in the dispersion interaction are masked by repulsive interactions even at displacements significantly larger than the equilibrium intermolecular separation.

  7. Visualizing the orientational dependence of an intermolecular potential

    PubMed Central

    Sweetman, Adam; Rashid, Mohammad A.; Jarvis, Samuel P.; Dunn, Janette L.; Rahe, Philipp; Moriarty, Philip

    2016-01-01

    Scanning probe microscopy can now be used to map the properties of single molecules with intramolecular precision by functionalization of the apex of the scanning probe tip with a single atom or molecule. Here we report on the mapping of the three-dimensional potential between fullerene (C60) molecules in different relative orientations, with sub-Angstrom resolution, using dynamic force microscopy (DFM). We introduce a visualization method which is capable of directly imaging the variation in equilibrium binding energy of different molecular orientations. We model the interaction using both a simple approach based around analytical Lennard–Jones potentials, and with dispersion-force-corrected density functional theory (DFT), and show that the positional variation in the binding energy between the molecules is dominated by the onset of repulsive interactions. Our modelling suggests that variations in the dispersion interaction are masked by repulsive interactions even at displacements significantly larger than the equilibrium intermolecular separation. PMID:26879386

  8. Measurement of untruncated nuclear spin interactions via zero- to ultralow-field nuclear magnetic resonance

    NASA Astrophysics Data System (ADS)

    Blanchard, J. W.; Sjolander, T. F.; King, J. P.; Ledbetter, M. P.; Levine, E. H.; Bajaj, V. S.; Budker, D.; Pines, A.

    2015-12-01

    Zero- to ultralow-field nuclear magnetic resonance (ZULF NMR) provides a new regime for the measurement of nuclear spin-spin interactions free from the effects of large magnetic fields, such as truncation of terms that do not commute with the Zeeman Hamiltonian. One such interaction, the magnetic dipole-dipole coupling, is a valuable source of spatial information in NMR, though many terms are unobservable in high-field NMR, and the coupling averages to zero under isotropic molecular tumbling. Under partial alignment, this information is retained in the form of so-called residual dipolar couplings. We report zero- to ultralow-field NMR measurements of residual dipolar couplings in acetonitrile-2-13C aligned in stretched polyvinyl acetate gels. This permits the investigation of dipolar couplings as a perturbation on the indirect spin-spin J coupling in the absence of an applied magnetic field. As a consequence of working at zero magnetic field, we observe terms of the dipole-dipole coupling Hamiltonian that are invisible in conventional high-field NMR. This technique expands the capabilities of zero- to ultralow-field NMR and has potential applications in precision measurement of subtle physical interactions, chemical analysis, and characterization of local mesoscale structure in materials.

  9. Motile Microbots from Dynamically Interacting and Self-Reconfiguring Assemblies of Metallo-Dielectric Janus Microcubes

    NASA Astrophysics Data System (ADS)

    Han, Koohee; Shields, C. Wyatt, IV; Bharti, Bhuvnesh; Lopez, Gabriel P.; Velev, Orlin D.

    A new class of dynamically and reversibly reconfigurable active matter made by magnetic assembly and actuation of metallo-dielectric microcubes will be presented. We describe how magnetically responsive Janus microcubes can be assembled hierarchically into dynamically reconfiguring microclusters. Ferromagnetic cobalt patches of the cubes act as assembly directors. The residual magnetic polarization of the metal-coated facets leads to directional dipole-dipole and field-dipole interactions and reconfiguration of the neighboring cubic particles, which is directed by the conformational restrictions. Dynamic reconfiguration of assembled clusters can be achieved by on-demand switching between the dipole-field interaction and the residual dipole-dipole interaction when the field is turned on and off. We show how pre-assembled Janus microcube clusters can be directionally motile in non-Newtonian fluids by applying asymmetric magnetic fields. The modulation of the viscosity of non-Newtonian fluids upon varying the shear rate allowed demonstrating directional motion, resulting from time-asymmetric stroke patterns (e.g., rapid opening and slow closing). These motile clusters can serve as early prototypes of self-propelling microswimmers capable of in-situ assembly. NSF Grant #DMR-1121107.

  10. Vibrational assignments, spectroscopic investigation (FT-IR and FT-Raman), NBO, MEP, HOMO‒LUMO analysis and intermolecular hydrogen bonding interactions of 7-fluoroisatin, 7-bromoisatin and 1-methylisatin ‒ A comparative study

    NASA Astrophysics Data System (ADS)

    Polat, Turgay; Bulut, Fatih; Arıcan, Ilknur; Kandemirli, Fatma; Yildirim, Gürcan

    2015-12-01

    In this comprehensive study, theoretical and experimental studies were carried out on 7-fluoroisatin, 7-bromoisatin and 1-methylisatin using FT-Raman and FT-IR spectra. The optimized geometrical parameters and theoretical vibrational frequencies were calculated by means of density functional theory (DFT/B3LYP) with 6-311++G(d,p) basis set based on scaled quantum mechanical (SQM) method for the first time. The relative abundances of the possible tautomers or conformers found were calculated with respect to the Boltzmann distribution. Moreover, the harmonic vibrational frequencies including IR and Raman intensities, thermodynamic and electronic parameters were computed in detail. The effects of substituents -F, ‒Br and -CH3 on the crucial characteristics pertaining to the title compound of isatin were investigated, and the obtained data were compared with each other. Natural bond orbital (NBO) analysis was applied to study the stability arising from charge delocalization along with the compound. The chemical reactivity parameters (chemical hardness and softness, electronegativity, chemical potential and electrophilicity index) were discussed clearly. The HOMO and LUMO energies determined showed that the serious charge transfer occurs in the title molecules studied. Furthermore, the size, shape, charge density distributions and chemical reactivity sites belonging to the molecules were obtained by mapping electron density isosurface with electrostatic potential surfaces (ESP). Additionally, the hydrogen-bonded complexes were simulated to describe the roles of intermolecular hydrogen bonding on the molecular structures and vibrational frequencies.

  11. Thermodynamic curvature for attractive and repulsive intermolecular forces.

    PubMed

    May, Helge-Otmar; Mausbach, Peter; Ruppeiner, George

    2013-09-01

    The thermodynamic curvature scalar R for the Lennard-Jones system is evaluated in phase space, including vapor, liquid, and solid state. We paid special attention to the investigation of R along vapor-liquid, liquid-solid, and vapor-solid equilibria. Because R is a measure of interaction strength, we traced out the line R=0 dividing the phase space into regions with effectively attractive (R<0) or repulsive (R>0) interactions. Furthermore, we analyzed the dependence of R on the strength of attraction applying a perturbation ansatz proposed by Weeks-Chandler-Anderson. Our results show clearly a transition from R>0 (for poorly repulsive interaction) to R<0 when loading attraction in the intermolecular potential.

  12. Computing free energy hypersurfaces for anisotropic intermolecular associations.

    PubMed

    Strümpfer, Johan; Naidoo, Kevin J

    2010-01-30

    We previously used an adaptive reaction coordinate force biasing method for calculating the free energy of conformation (Naidoo and Brady, J Am Chem Soc 1999, 121, 2244) and chemical reactions (Rajamani et al., J Comput Chem 2003, 24, 1775) amongst others. Here, we describe a generalized version able to produce free energies in multiple dimensions, descriptively named the free energies from adaptive reaction coordinate forces method. To illustrate it, we describe how we calculate a multidimensional intermolecular orientational free energy, which can be used to investigate complex systems such as protein conformation and liquids. This multidimensional intermolecular free energy W(r, theta(1), theta(2), phi) provides a measure of orientationally dependent interactions that are appropriate for applications in systems that inherently have molecular anisotropic features. It is a highly informative free energy volume, which can be used to parameterize key terms such as the Gay-Berne intermolecular potential in coarse grain simulations. To demonstrate the value of the information gained from the W(r, theta(1), theta(2), phi) hypersurfaces we calculated them for TIP3P, TIP4P, and TIP5P dimer water models in vacuum. A comparison with a commonly used one-dimensional distance free energy profile is made to illustrate the significant increase in configurational information. The W(r) plots show little difference between the three models while the W(r, theta(1), theta(2), phi) hypersurfaces reveal the underlying energetic reasons why these potentials reproduce tetrahedrality in the condensed phase so differently from each.

  13. Effect of intermolecular hydrogen bonding and proton transfer on fluorescence of salicylic acid

    NASA Astrophysics Data System (ADS)

    Denisov, G. S.; Golubev, N. S.; Schreiber, V. M.; Shajakhmedov, Sh. S.; Shurukhina, A. V.

    1997-12-01

    Effects of intermolecular interactions, in particular the influence of intermolecular hydrogen bonds formed by salicylic acid (SA) as a proton donor with proton acceptors of different strength, on fluorescence spectra of SA in non-aqueous solutions have been investigated. Infrared spectra of studied systems have been analyzed in order to elucidate the ground state structure of the complexes formed. It has been found that at the room temperature in dilute solutions in non-polar or slightly polar aprotic solvents, where the SA molecule is not involved in intermolecular hydrogen bonding, the position of the main (blue) fluorescence component is determined by the excited state intramolecular proton transfer (ESIPT) in the lowest singlet excited state S 1. With increasing proton acceptor ability of the environment, when formation of weak or middle strength intermolecular H-bonds is possible, the emission band shifts gradually to lower frequency, the quantum yield falls and poorly resolved doublet structure becomes more pronounced, especially in the solvents containing heavy bromine atoms. As a possible reason for these effects, coupling between the S 1 and closely lying triplet term is considered. With the strongest proton acceptors like aliphatic amines, intermolecular proton transfer with ionic pair formation in the ground state and double (intra- and intermolecular) proton transfer in the excited state take place, resulting in a blue shift of the emission band. Similar emission is typical for the SA anion in aqueous solutions. The p Ka value of SA in S 1 state has been found to be 3.1. Such a small value can be explained taking into account the ESIPT reaction following the excitation. The SA complex with pyridine exhibits emission spectrum containing both molecular-like and anion-like bands with relative intensities strongly dependent on the temperature and solvent properties. The most probable origin of this dual emission is the molecular-ionic tautomerism caused by

  14. Cooperativity between various types of polar solute-solvent interactions in aqueous media.

    PubMed

    Madeira, Pedro P; Bessa, Ana; Loureiro, Joana A; Álvares-Ribeiro, Luís; Rodrigues, Alírio E; Zaslavsky, Boris Y

    2015-08-21

    Partition coefficients of seven low molecular weight compounds were measured in multiple aqueous two-phase systems (ATPSs) formed by pairs of different polymers. The ionic composition of each ATPS was varied to include 0.01M sodium phosphate buffer (NaPB), pH 7.4 and 0.1M Na2SO4, 0.15M NaCl, and 0.15M NaClO4 all in 0.01M NaPB, pH 7.4. The differences between the solvent features of the coexisting phases in all the ATPSs were estimated from partitioning of a homologous series of dinitrophenylated-amino acids and by the solvatochromic method. The solute-specific coefficients for the compounds examined were determined by the multiple linear regression analysis using the modified linear solvation energy relationship equation. It is established that the solute specific coefficients characterizing different types of the solute-water interactions (dipole-dipole, dipole-ion, and H-bonding) for a given solute change in the presence of different salt additives in the solute specific manner. It is also found that these characteristics are linearly interrelated. It is suggested that there is a cooperativity between various types of solute-water interactions governed by the solute structure.

  15. Intermolecular dimerization with pillared layered clay templates.

    SciTech Connect

    Wiederrecht, G. P.; Sandi, G.; Carrado, K. A.; Seifert, S.; Chemistry

    2001-11-19

    Solutions of pyrene in the presence of a pillared, layered montmorillonite clay produce hybrid organic-inorganic materials with substantial molecular loading in the gallery regions between the clay layers. The results are in sharp contrast to other aromatics, such as benzene, naphthalene, or perylene, which show minimal incorporation of the molecules into the gallery regions of the clay. We present evidence that the unusual affinity for pyrene to form intermolecular dimers is the reason for the high loading. Pyrene monomers are easily introduced to the layers. Through steric hindrance, subsequent intermolecular dimer formation is allowed, and they are captured by the pillared, layered structure. CW and time-resolved emission spectra strongly indicate the presence of face-to-face intermolecular dimers (excimers) within the clay galleries. The combination of the ease of high molecular loading into an inorganic, high aspect ratio template and the collective optical properties of the organic layer may be useful as a new means to create hybrid structures.

  16. Intermolecular potential functions and high resolution molecular spectroscopy of weakly bound complexes. Final progress report

    SciTech Connect

    Muenter, J.S.

    1997-04-01

    This report describes accomplishments over the past year in research supported by this grant. Two papers published in this period are briefly discussed. The general goal of the work is to consolidate the understanding of experimental results through a theoretical model of intermolecular potential energy surfaces. Progress in the experimental and theoretical phases of the program are presented and immediate goals outlined. The ability to construct analytic intermolecular potential functions that accurately predict the energy of interaction between small molecules will have great impact in many areas of chemistry, biochemistry, and biology.

  17. Superfluidity and solid order in a two-component Bose gas with dipolar interactions in an optical lattice

    NASA Astrophysics Data System (ADS)

    Kuno, Yoshihito; Suzuki, Keita; Ichinose, Ikuo

    2014-12-01

    In this paper, we study an extended bosonic t-J model in an optical lattice, which describes two-component hard-core bosons with nearest-neighbor pseudospin interactions and, also, inter- and intraspecies dipole-dipole interactions. In particular, we focus on the case in which two-component hard-core bosons have antiparallel polarized dipoles with each other. The global phase diagram is studied by means of the Gutzwiller variational method and also quantum Monte Carlo (QMC) simulations. Both calculations show that a striped solid order, besides a checkerboard one, appears as a result of the dipole-dipole interactions. By QMC, we find that two kinds of supersolids (SSs) form, i.e., checkerboard SS and striped SS, and we also verify the existence of an exotic phase between the striped solid and the checkerboard SS. Finally, by QMC, we study the t-J-like model, which was recently realized experimentally by A. de Paz et al. [Phys. Rev. Lett. 111, 185305 (2013), 10.1103/PhysRevLett.111.185305].

  18. Evaluation of intermolecular forces in a circulating system.

    PubMed

    Guo, Qiuquan; Liu, Mei; Yang, Jun

    2011-11-01

    Intercellular interactions, which are mediated by a variety of complex intercellular molecules through the processes of formation and dissociation of molecular bonds, play a critical role in regulating cellular functions in biological systems. Various approaches are applied to evaluate intercellular or molecular bonding forces. To quantify the intermolecular interaction forces, flow chamber has become a meaningful technique as it can ultimately mimic the cellular microenvironment in vivo under physiological flow conditions. Hydrodynamic forces are usually used to predict the intercellular forces down to the single molecular level. However, results show that only using hydrodynamic force will overestimate up to 30% of the receptor-ligand strength when the non-specific forces such as Derjaguin-Landau-Verway-Overbeek (DLVO) forces become un-neglected. Due to the nature of high ion concentration in the physiological condition, electrostatic force is largely screened which will cause DLVO force unbalanced. In this study, we propose to take account of the DLVO force, including van der Waals (VDW) force and electrostatic force, to predict the intermolecular forces of a cell doublet and cell-substrate model in a circulating system. Results also show that the DLVO force has a nonlinear effect as the cell-cell or cell-substrate distance changes. In addition, we used the framework of high accuracy hydrodynamic theories proved in colloidal systems. It is concluded that DLVO force could not be ignored in quantitative studies of molecular interaction forces in circulating system. More accurate prediction of intercellular forces needs to take account of both hydrodynamic force and DLVO force.

  19. Simulations of the THz spectrum of liquid water incorporating the effects of intermolecular charge fluxes through hydrogen bonds

    SciTech Connect

    Torii, Hajime

    2015-12-31

    The intensity of the band at ∼200 cm{sup −1} (∼6 THz) in the Terahertz spectrum of liquid water mainly arises from the modulations of the extent of intermolecular charge transfer through hydrogen bonds, called intermolecular charge fluxes, occurring upon molecular translations along the O…H hydrogen bonds. To obtain reasonable spectral profiles from simulations, it is necessary to effectively incorporate the effects of those intermolecular charge fluxes, but apparently it is not possible by simple classical molecular dynamics simulations with fixed atomic partial charges even if they are amended by molecular induced dipoles due to intermolecular electrostatic interactions. The present paper shows how we can do reasonably correct spectral simulations, without resorting to fully ab initio molecular dynamics.

  20. Coupled effects of substrate adhesion and intermolecular forces on polymer thin film glass-transition behavior.

    PubMed

    Xia, Wenjie; Keten, Sinan

    2013-10-15

    Intermolecular noncovalent forces between polymer chains influence the mobility and glass-transition temperature (Tg), where weaker interchain interactions, all else being the same, typically results in lower bulk polymer Tg. Using molecular dynamics simulations, here we show that this relation can become invalid for supported ultrathin films when the substrate-polymer interaction is extremely strong and the polymer-polymer interactions are much weaker. This contrasting trend is found to be due to a more pronounced substrate-induced appreciation of the film Tg for polymers with weaker intermolecular interactions and low bulk Tg. We show that optimizing this coupling between substrate adhesion and bulk Tg maximizes thin film Tg, paving the way for tuning film properties through interface nanoengineering.

  1. Atomic force microscopy measurements of intermolecular binding forces.

    PubMed

    Misevic, Gradimir N; Karamanos, Yannis; Misevic, Nikola J

    2009-01-01

    Atomic force microscopy (AFM) measurements of intermolecular binding strength between a single pair of complementary cell adhesion molecules in physiological solutions provided the first quantitative evidence for their cohesive function. This novel AFM-based nanobiotechnology opens a molecular mechanic approach for studying structure- to function-related properties of any type of individual biological macromolecules. The presented example of Porifera cell adhesion glyconectin proteoglycans showed that homotypic carbohydrate to carbohydrate interactions between two primordial proteoglycans can hold the weight of 1,600 cells. Thus, glyconectin type carbohydrates, as the most peripheral cell surface molecules of sponges (today's simplest living Metazoa), are proposed to be the primary cell adhesive molecules essential for the evolution of the multicellularity.

  2. An assay for intermolecular exchange of alpha crystallin

    NASA Technical Reports Server (NTRS)

    Gopalakrishnan, S.; Takemoto, L.; Spooner, B. S. (Principal Investigator)

    1992-01-01

    An affinity column of alpha crystallin linked to cyanogen bromide-activated Sepharose was developed to study the exchange of alpha subunits. Alpha crystallin bound to the Sepharose-alpha complex was dissociated with 8 mol/l urea, followed by quantitation using high-performance reverse-phase liquid chromatography. The time course of binding at 37 degrees C showed a hyperbolic binding pattern reaching equilibrium between 6-18 hr. Under these conditions, binding of beta and gamma crystallins to the same matrix was less than 10% of the alpha values, as was binding of alpha to glycine-coupled Sepharose. This assay was used to demonstrate changes in the subunit exchange of alpha crystallins present in high molecular weight versus lower molecular weight aggregates of the human lens. These results show that this binding procedure was a specific reproducible assay that might be used to study intermolecular interactions of the alpha crystallins.

  3. Raman Line Imaging of Poly(ε-caprolactone)/Carbon Dioxide Solutions at High Pressures: A Combined Experimental and Computational Study for Interpreting Intermolecular Interactions and Free-Volume Effects.

    PubMed

    Pastore Carbone, Maria Giovanna; Musto, Pellegrino; Pannico, Marianna; Braeuer, Andreas; Scherillo, Giuseppe; Mensitieri, Giuseppe; Di Maio, Ernesto

    2016-09-01

    In the present study, a Raman line-imaging setup was employed to monitor in situ the CO2 sorption at elevated pressures (from 0.62 to 7.10 MPa) in molten PCL. The method allowed the quantitative measurement of gas concentration in both the time-resolved and the space-resolved modes. The combined experimental and theoretical approach allowed a molecular level characterization of the system. The dissolved CO2 was found to occupy a volume essentially coincident with its van der Waals volume and the estimated partial molar volume of the probe did not change with pressure. Lewis acid-Lewis base interactions with the PCL carbonyls was confirmed to be the main interaction mechanism. The geometry of the supramolecular complex and the preferential interaction site were controlled more by steric than electronic effects. On the basis of the indications emerging from Raman spectroscopy, an equation of state thermodynamic model for the PCL-CO2 system, based upon a compressible lattice fluid theory endowed with specific interactions, has been tailored to account for the interaction types detected spectroscopically. The predictions of the thermodynamic model in terms of molar volume of solution have been compared with available volumetric measurements while predictions for CO2 partial molar volume have been compared with the values estimated on the basis of Raman spectroscopy. PMID:27454947

  4. Rydberg atom interactions from 300 K to 300 K

    NASA Astrophysics Data System (ADS)

    Pillet, P.; Gallagher, T. F.

    2016-09-01

    Cold Rydberg atoms provide novel approaches to many-body problems and quantum simulation. To introduce the recent work presented in this special issue, we present here a quick history of a half-century research activity in the Rydberg-atom field, focusing our attention on the giant interactions between Rydberg atoms and other atoms. These interactions are the origin of many effects observed with Rydberg atoms: pressure shifts, dipole-dipole energy transfer, and avalanche-ionization. These effects have led to evidence of new bound chemical states, such as trilobites states, many-body effects in frozen Rydberg gases, and the spontaneous formation of ultra-cold plasmas. They open exciting new prospects at the intersection of atomic physics, condensed matter physics, and plasma physics.

  5. Atom-Pair Kinetics with Strong Electric-Dipole Interactions.

    PubMed

    Thaicharoen, N; Gonçalves, L F; Raithel, G

    2016-05-27

    Rydberg-atom ensembles are switched from a weakly to a strongly interacting regime via adiabatic transformation of the atoms from an approximately nonpolar into a highly dipolar quantum state. The resultant electric dipole-dipole forces are probed using a device akin to a field ion microscope. Ion imaging and pair-correlation analysis reveal the kinetics of the interacting atoms. Dumbbell-shaped pair-correlation images demonstrate the anisotropy of the binary dipolar force. The dipolar C_{3} coefficient, derived from the time dependence of the images, agrees with the value calculated from the permanent electric-dipole moment of the atoms. The results indicate many-body dynamics akin to disorder-induced heating in strongly coupled particle systems. PMID:27284655

  6. Atom-Pair Kinetics with Strong Electric-Dipole Interactions

    NASA Astrophysics Data System (ADS)

    Thaicharoen, N.; Gonçalves, L. F.; Raithel, G.

    2016-05-01

    Rydberg-atom ensembles are switched from a weakly to a strongly interacting regime via adiabatic transformation of the atoms from an approximately nonpolar into a highly dipolar quantum state. The resultant electric dipole-dipole forces are probed using a device akin to a field ion microscope. Ion imaging and pair-correlation analysis reveal the kinetics of the interacting atoms. Dumbbell-shaped pair-correlation images demonstrate the anisotropy of the binary dipolar force. The dipolar C3 coefficient, derived from the time dependence of the images, agrees with the value calculated from the permanent electric-dipole moment of the atoms. The results indicate many-body dynamics akin to disorder-induced heating in strongly coupled particle systems.

  7. Higher-order electric multipole contributions to retarded non-additive three-body dispersion interaction energies between atoms: equilateral triangle and collinear configurations.

    PubMed

    Salam, A

    2013-12-28

    The theory of molecular quantum electrodynamics (QED) is used to calculate higher electric multipole contributions to the dispersion energy shift between three atoms or molecules arranged in a straight line or in an equilateral triangle configuration. As in two-body potentials, three-body dispersion interactions are viewed in the QED formalism to arise from exchange of virtual photons between coupled pairs of particles. By employing an interaction Hamiltonian that is quadratic in the electric displacement field means that third-order perturbation theory can be used to yield the energy shift for a particular combination of electric multipole polarizable species, with only six time-ordered diagrams needing to be summed over. Specific potentials evaluated include dipole-dipole-quadrupole (DDQ), dipole-quadrupole-quadrupole (DQQ), and dipole-dipole-octupole (DDO) terms. For the geometries of interest, near-zone limiting forms are found to exhibit an R(-11) dependence on separation distance for the DDQ interaction, and an R(-13) behaviour for DQQ and DDO shifts, agreeing with an earlier semi-classical computation. Retardation weakens the potential in each case by R(-1) in the far-zone. It is found that by decomposing the octupole moment into its irreducible components of weights-1 and -3 that the former contribution to the DDO potential may be taken to be a higher-order correction to the leading triple dipole energy shift. PMID:24387355

  8. Higher-order electric multipole contributions to retarded non-additive three-body dispersion interaction energies between atoms: Equilateral triangle and collinear configurations

    SciTech Connect

    Salam, A.

    2013-12-28

    The theory of molecular quantum electrodynamics (QED) is used to calculate higher electric multipole contributions to the dispersion energy shift between three atoms or molecules arranged in a straight line or in an equilateral triangle configuration. As in two-body potentials, three-body dispersion interactions are viewed in the QED formalism to arise from exchange of virtual photons between coupled pairs of particles. By employing an interaction Hamiltonian that is quadratic in the electric displacement field means that third-order perturbation theory can be used to yield the energy shift for a particular combination of electric multipole polarizable species, with only six time-ordered diagrams needing to be summed over. Specific potentials evaluated include dipole-dipole-quadrupole (DDQ), dipole-quadrupole-quadrupole (DQQ), and dipole-dipole-octupole (DDO) terms. For the geometries of interest, near-zone limiting forms are found to exhibit an R{sup −11} dependence on separation distance for the DDQ interaction, and an R{sup −13} behaviour for DQQ and DDO shifts, agreeing with an earlier semi-classical computation. Retardation weakens the potential in each case by R{sup −1} in the far-zone. It is found that by decomposing the octupole moment into its irreducible components of weights-1 and -3 that the former contribution to the DDO potential may be taken to be a higher-order correction to the leading triple dipole energy shift.

  9. Interaction between two spherical particles in a nematic liquid crystal.

    PubMed

    Fukuda, Jun-ichi; Stark, Holger; Yoneya, Makoto; Yokoyama, Hiroshi

    2004-04-01

    We numerically investigate the interaction between two spherical particles in a nematic liquid crystal mediated by elastic distortions in the orientational order. We pay attention to the cases where two particles with equal radii R0 impose rigid normal anchoring on their surfaces and carry a pointlike topological defect referred to as a hyperbolic hedgehog. To describe the geometry of our system, we use bispherical coordinates, which prove useful in the implementation of boundary conditions at the particle surfaces and at infinity. We adopt the Landau-de Gennes continuum theory in terms of a second-rank tensor order parameter Q(ij) for the description of the orientational order of a nematic liquid crystal. We also utilize an adaptive mesh refinement scheme that has proven to be an efficient way of dealing with topological defects whose core size is much smaller than the particle size. When the two "dipoles," composed of a particle and a hyperbolic hedgehog, are in parallel directions, the two-particle interaction potential is attractive for large interparticle distances D and proportional to D-3 as expected from the form of the dipole-dipole interaction, until the well-defined potential minimum at D approximately 2.46 R0 is reached. For the antiparallel configuration with no hedgehogs between the two particles, the interaction potential is repulsive and behaves as D-2 for D less than or approximately equal 10R0, which is stronger than the dipole-dipole repulsion (approximately D-3 ) expected theoretically as an asymptotic behavior for large D.

  10. Does a Second Halogen Atom Affect the Nature of Intermolecular Interactions in Protic Acid-Haloethylene Complexes? in (Z)-1-CHLORO-2-FLUOROETHYLENE-HYDROGEN Chloride it Most Certainly DOES!

    NASA Astrophysics Data System (ADS)

    Tandon, Hannah K.; Leung, Helen O.; Marshall, Mark D.

    2016-06-01

    As part of a systematic study of the effect of chlorine substitution on the structures of protic acid-haloethylene complexes, the structure of the (Z)-1-chloro-2-fluoroethylene-hydrogen chloride complex has been investigated using ab initio quantum chemistry calculations and microwave spectroscopy. Although theory predicts a non-planar equilibrium structure for this species, it is only 6 cm-1 lower in energy than the planar geometry connecting the two equivalent minima on either side of the haloethylene plane, and the observed spectrum is consistent with a planar, average structure, likely the result of zero-point averaging. The geometry is unlike that of any previously characterized protic acid-haloethylene complex with a bifurcated primary interaction in which the hydrogen of the acid interacts with both the fluorine and the chlorine atoms on the haloethylene and there is no evidence for a secondary interaction involving the electron rich region of the acid. This structure can be contrasted to those of vinyl fluoride-hydrogen chloride (fluorine bound, planar ``top-binding,'' across the double bond), vinyl chloride-hydrogen chloride (chlorine bound, non-planar) and (Z)-1-chloro-2-fluoroethylene-acetylene (chlorine bound, planar ``side-binding,'' at one end of the double bond).

  11. Nonlinear Dynamics of Bose-Einstein Condensates with Long-Range Interactions

    SciTech Connect

    Wunner, G.; Cartarius, H.; Fabcic, T.; Koeberle, P.; Main, J.; Schwidder, T.

    2008-11-13

    The motto of this paper is: Let's face Bose-Einstein condensation through nonlinear dynamics. We do this by choosing variational forms of the condensate wave functions (of given symmetry classes), which convert the Bose-Einstein condensates via the time-dependent Gross-Pitaevskii equation into Hamiltonian systems that can be studied using the methods of nonlinear dynamics. We consider in particular cold quantum gases where long-range interactions between the neutral atoms are present, in addition to the conventional short-range contact interaction, viz. gravity-like interactions, and dipole-dipole interactions. The results obtained serve as a useful guide in the search for nonlinear dynamics effects in numerically exact quantum calculations for Bose-Einstein condensates. A main result is the prediction of the existence of stable islands as well as chaotic regions for excited states of dipolar condensates, which could be checked experimentally.

  12. Dipole-moment-driven cooperative supramolecular polymerization.

    PubMed

    Kulkarni, Chidambar; Bejagam, Karteek K; Senanayak, Satyaprasad P; Narayan, K S; Balasubramanian, S; George, Subi J

    2015-03-25

    While the mechanism of self-assembly of π-conjugated molecules has been well studied to gain control over the structure and functionality of supramolecular polymers, the intermolecular interactions underpinning it are poorly understood. Here, we study the mechanism of self-assembly of perylene bisimide derivatives possessing dipolar carbonate groups as linkers. It was observed that the combination of carbonate linkers and cholesterol/dihydrocholesterol self-assembling moieties led to a cooperative mechanism of self-assembly. Atomistic molecular dynamics simulations of an assembly in explicit solvent strongly suggest that the dipole-dipole interaction between the carbonate groups imparts a macro-dipolar character to the assembly. This is confirmed experimentally through the observation of a significant polarization in the bulk phase for molecules following a cooperative mechanism. The cooperativity is attributed to the presence of dipole-dipole interaction in the assembly. Thus, anisotropic long-range intermolecular interactions such as dipole-dipole interaction can serve as a way to obtain cooperative self-assembly and aid in rationalizing and predicting the mechanisms in various synthetic supramolecular polymers. PMID:25756951

  13. Intermolecular potential functions from spectroscopic properties of weakly bound complexes

    SciTech Connect

    Muenter, J.S.

    1992-01-01

    Goal is to consolidate the information from high resolution spectroscopy of weakly bound cluster molecules through a theoretical model of intermolecular potential energy surfaces. The ability to construct analytic intermolecular potential functions that accurately predict the interaction energy between small molecules will have a major impact in chemistry, biochemistry, and biology. This document presents the evolution and capabilities of a potential function model developed here, and then describes plans for future developments and applications. This potential energy surface (PES) model was first used on (HCCH){sub 2}, (CO{sub 2}){sub 2}, HCCH - CO{sub 2}; it had to be modified to work with HX dimers and CO{sub 2}-HX complexes. Potential functions have been calculated for 15 different molecular complexes containing 7 different monomer molecules. Current questions, logical extensions and new applications of the model are discussed. The questions are those raised by changing the repulsion and dispersion terms. A major extension of the PES model will be the inclusion of induction effects. Projects in progress include PES calculations on (HCCH){sub 3}, CO{sub 2} containing complexes, (HX){sub 2}, HX - CO{sub 2}, CO{sub 2} - CO, (CO{sub 2}){sub 3}, and (OCS){sub 2}. The first PES calculation for a nonlinear molecule will be for water and ammonia complexes. Possible long-term applications for biological molecules are discussed. Differences between computer programs used for molecular mechanics and dynamics in biological systems are discussed, as is the problem of errors. 12 figs, 74 refs. (DLC)

  14. Some mathematical models of intermolecular autophosphorylation.

    PubMed

    Doherty, Kevin; Meere, Martin; Piiroinen, Petri T

    2015-04-01

    Intermolecular autophosphorylation refers to the process whereby a molecule of an enzyme phosphorylates another molecule of the same enzyme. The enzyme thereby catalyses its own phosphorylation. In the present paper, we develop two generic models of intermolecular autophosphorylation that also include dephosphorylation by a phosphatase of constant concentration. The first of these, a solely time-dependent model, is written as one ordinary differential equation that relies upon mass-action and Michaelis-Menten kinetics. Beginning with the enzyme in its dephosphorylated state, it predicts a lag before the enzyme becomes significantly phosphorylated, for suitable parameter values. It also predicts that there exists a threshold concentration for the phosphorylation of enzyme and that for suitable parameter values, a continuous or discontinuous switch in the phosphorylation of enzyme are possible. The model developed here has the advantage that it is relatively easy to analyse compared with most existing models for autophosphorylation and can qualitatively describe many different systems. We also extend our time-dependent model of autophosphorylation to include a spatial dependence, as well as localised binding reactions. This spatio-temporal model consists of a system of partial differential equations that describe a soluble autophosphorylating enzyme in a spherical geometry. We use the spatio-temporal model to describe the phosphorylation of an enzyme throughout the cell due to an increase in local concentration by binding. Using physically realistic values for model parameters, our results provide a proof-of-concept of the process of activation by local concentration and suggest that, in the presence of a phosphatase, this activation can be irreversible.

  15. Resolving Intra- and Inter-Molecular Structure with Non-Contact Atomic Force Microscopy

    PubMed Central

    Jarvis, Samuel Paul

    2015-01-01

    A major challenge in molecular investigations at surfaces has been to image individual molecules, and the assemblies they form, with single-bond resolution. Scanning probe microscopy, with its exceptionally high resolution, is ideally suited to this goal. With the introduction of methods exploiting molecularly-terminated tips, where the apex of the probe is, for example, terminated with a single CO, Xe or H2 molecule, scanning probe methods can now achieve higher resolution than ever before. In this review, some of the landmark results related to attaining intramolecular resolution with non-contact atomic force microscopy (NC-AFM) are summarised before focussing on recent reports probing molecular assemblies where apparent intermolecular features have been observed. Several groups have now highlighted the critical role that flexure in the tip-sample junction plays in producing the exceptionally sharp images of both intra- and apparent inter-molecular structure. In the latter case, the features have been identified as imaging artefacts, rather than real intermolecular bonds. This review discusses the potential for NC-AFM to provide exceptional resolution of supramolecular assemblies stabilised via a variety of intermolecular forces and highlights the potential challenges and pitfalls involved in interpreting bonding interactions. PMID:26307976

  16. Resolving Intra- and Inter-Molecular Structure with Non-Contact Atomic Force Microscopy.

    PubMed

    Jarvis, Samuel Paul

    2015-08-21

    A major challenge in molecular investigations at surfaces has been to image individual molecules, and the assemblies they form, with single-bond resolution. Scanning probe microscopy, with its exceptionally high resolution, is ideally suited to this goal. With the introduction of methods exploiting molecularly-terminated tips, where the apex of the probe is, for example, terminated with a single CO, Xe or H2 molecule, scanning probe methods can now achieve higher resolution than ever before. In this review, some of the landmark results related to attaining intramolecular resolution with non-contact atomic force microscopy (NC-AFM) are summarised before focussing on recent reports probing molecular assemblies where apparent intermolecular features have been observed. Several groups have now highlighted the critical role that flexure in the tip-sample junction plays in producing the exceptionally sharp images of both intra- and apparent inter-molecular structure. In the latter case, the features have been identified as imaging artefacts, rather than real intermolecular bonds. This review discusses the potential for NC-AFM to provide exceptional resolution of supramolecular assemblies stabilised via a variety of intermolecular forces and highlights the potential challenges and pitfalls involved in interpreting bonding interactions.

  17. The role of intermolecular interactions in the assemblies of Fe{sup II} and Co{sup II} tetrakis-isothiocyanatometalates with tris(1,10-phenanthroline)-Ru{sup II}: Crystal structures of two dual-metal assemblies featuring octahedral cationic and tetrahedral anionic modules

    SciTech Connect

    Ghazzali, Mohamed Langer, Vratislav; Ohrstroem, Lars

    2008-09-15

    Two new dual-metal assemblies: 2[Ru(phen){sub 3}]{sup 2+}.[Fe(SCN){sub 4}]{sup 2-}.2SCN{sup -}.4H{sub 2}O 1 and [Ru(phen){sub 3}]{sup 2+}.[Co(SCN){sub 4}]{sup 2-}2, (phen:1,10-phenanthroline), have been prepared and their structures were characterized by X-ray diffraction. In 1, the cationic octahedral enantiomers are arranged with a {lambda}{delta}{lambda}{delta}{lambda} sequence supported by {pi}-{pi} stacking and the anionic inorganic tetrahedral units are oriented between these stacks by interacting with the nearby water molecules through strong O-H...O and O-H...S hydrogen bonds. In 2, homochiral double helices in the b-direction are revealed, with tetrakis-isothiocyanate Co{sup II} anions arranged in the crystal to furnish one-dimensional (1D)-helical chains with S...S intermolecular interactions at 3.512(2) and 3.966(2) A supporting [Ru(phen){sub 3}]{sup 2+}{lambda}- and {delta}-helices with Ru...Ru shortest distance of 8.676(7) A. In both 1 and 2, the supramolecular assembly is maintained by C-H...S hydrogen bonds extending between the phenanthroline aromatic carbons in the cationic nodes and the sulphur atoms of the isothiocyanates anions. Analysis of S...S interactions in isothiocyanate containing compounds using Cambridge structural database (CSD) showed an angle dependence categorizing these interactions into 'type-I' and 'type-II'. - Graphical abstract: Side projection in 2 showing the crankshaft caused by S...S interactions in [Co(NCS){sub 4}]{sup 2-} in-between [Ru{sup II}(phen){sub 3}]{sup 2+} helices. Only isothiocyanates arms of [Co(NCS){sub 4}]{sup 2-} that are part of S...S interactions are shown and [Ru{sup II}(phen){sub 3}]{sup 2+} are presented as polyhedra.

  18. Inelastic x-ray scattering of dense solid oxygen: Evidence for intermolecular bonding

    SciTech Connect

    Meng, Yue; Eng, Peter J.; Tse, John S.; Shaw, Dawn M.; Hu, Michael Y.; Shu, Jinfu; Gramsch, Stephen A.; Kao, Chichang; Hemley, Russell J.; Mao, Ho-kwang

    2008-08-14

    The detailing of the intermolecular interactions in dense solid oxygen is essential for an understanding of the rich polymorphism and remarkable properties of this element at high pressure. Synchrotron inelastic x-ray scattering measurements of oxygen K-edge excitations to 38 GPa reveal changes in electronic structure and bonding on compression of the molecular solid. The measurements show that O{sub 2} molecules interact predominantly through the half-filled 1{pi}{sub g}* orbital <10 GPa. Enhanced intermolecular interactions develop because of increasing overlap of the 1{pi}{sub g}* orbital in the low-pressure phases, leading to electron delocalization and ultimately intermolecular bonding between O{sub 2} molecules at the transition to the {epsilon}-phase. The {epsilon}-phase, which consists of (O{sub 2}){sub 4} clusters, displays the bonding characteristics of a closed-shell system. Increasing interactions between (O{sub 2}){sub 4} clusters develop upon compression of the {epsilon}-phase, and provide a potential mechanism for intercluster bonding in still higher-pressure phases.

  19. Structure, vibrational spectra and DFT characterization of the intra- and inter-molecular interactions in 2-hydroxy-5-methylpyridine-3-carboxylic acid--normal modes of the eight-membered HB ring.

    PubMed

    Godlewska, P; Jańczak, J; Kucharska, E; Hanuza, J; Lorenc, J; Michalski, J; Dymińska, L; Węgliński, Z

    2014-01-01

    Fourier transform IR and Raman spectra, XRD studies and DFT quantum chemical calculations have been used to characterize the structural and vibrational properties of 2-hydroxy-5-methylpyridine-3-carboxylic acid. In the unit-cell of this compound two molecules related by the inversion center interact via OH⋯N hydrogen bonds. The double hydrogen bridge system is spaced parallel to the (102) crystallographic plane forming eight-membered arrangement characteristic for pyridine derivatives. The six-membered ring is the second characteristic unit formed via the intramolecular OH⋯O hydrogen bond. The geometry optimization of the monomer and dimer have been performed applying the Gaussian03 program package. All calculations were performed in the B3LYP/6-31G(d,p) basis set using the XRD data as input parameters. The relation between the molecular and crystal structures has been discussed in terms of the hydrogen bonds formed in the unit cell. The vibrations of the dimer have been discussed in terms of the resonance inside the system built of five rings coupled via hydrogen bonds.

  20. Comparison of the local binding motifs in the imidazolium-based ionic liquids [EMIM][BF{sub 4}] and [EMMIM][BF{sub 4}] through cryogenic ion vibrational predissociation spectroscopy: Unraveling the roles of anharmonicity and intermolecular interactions

    SciTech Connect

    Fournier, Joseph A.; Wolke, Conrad T.; Johnson, Christopher J.; Johnson, Mark A. E-mail: mccoy@chemistry.ohio-state.edu; McCoy, Anne B. E-mail: mccoy@chemistry.ohio-state.edu

    2015-02-14

    We clarify the role of the critical imidazolium C{sub (2)}H position (the central C between N atoms in the heterocycle) in the assembly motif of the [EMIM][BF{sub 4}] ionic liquid by analyzing the vibrational spectra of the bare EMIM{sup +} ion as well as that of the cationic [EMIM]{sub 2}[BF{sub 4}]{sup +} (EMIM{sup +} = 1-ethyl-3-methylimidazolium, C{sub 6}H{sub 11}N{sub 2}{sup +}) cluster. Vibrational spectra of the cold, mass-selected ions are obtained using cryogenic ion vibrational predissociation of weakly bound D{sub 2} molecules formed in a 10 K ion trap. The C{sub (2)}H behavior is isolated by following the evolution of key vibrational features when the C{sub (2)} hydrogen, the proposed binding location of the anion to the imidazolium ring, is replaced by either deuterium or a methyl group (i.e., in the EMMIM{sup +} analogue). Strong features in the ring CH stretching region of the bare ion are traced to Fermi resonances with overtones of lower frequency modes. Upon incorporation into the EMIM{sup +} ⋅ ⋅ ⋅ BF{sub 4}{sup −} ⋅ ⋅ ⋅ EMIM{sup +} ternary complex, the C{sub (2)}H oscillator strength is dramatically increased, accounting for the much more complicated patterns derived from the EMIM{sup +} ring CH stretches in the light isotopomer, which are strongly suppressed in the deuterated analogue. Further changes in the spectra that occur when the C{sub (2)}H is replaced by a methyl group are consistent with BF{sub 4}{sup −} attachment directly to the imidazolium ring in an arrangement that maximizes the electrostatic interaction between the molecular ions.

  1. Blocking temperature of interacting magnetic nanoparticles with uniaxial and cubic anisotropies from Monte Carlo simulations

    NASA Astrophysics Data System (ADS)

    Russier, V.

    2016-07-01

    The low temperature behavior of densely packed interacting spherical single domain nanoparticles (MNP) is investigated by Monte Carlo simulations in the framework of an effective one spin model. The particles are distributed through a hard sphere like distribution with periodic boundary conditions and interact through the dipole dipole interaction (DDI) with an anisotropy energy including both cubic and uniaxial symmetry components. The cubic component is shown to play a sizable role on the value of the blocking temperature Tb only when the MNP easy axes are parallel to the cubic easy direction ([111] direction for a negative cubic anisotropy constant). The nature of the collective low temperature state, either ferromagnetic or spin glass like, is found to depend on the ratio of the anisotropy to the dipolar energies characterizing partly the disorder in the system.

  2. 1H NMR Relaxation Investigation of Inhibitors Interacting with Torpedo californica Acetylcholinesterase

    NASA Astrophysics Data System (ADS)

    Delfini, Maurizio; Gianferri, Raffaella; Dubbini, Veronica; Manetti, Cesare; Gaggelli, Elena; Valensin, Gianni

    2000-05-01

    Two naphthyridines interacting with Torpedo californica acetylcholinesterase (AChE) were investigated. 1H NMR spectra were recorded and nonselective, selective, and double-selective spin-lattice relaxation rates were measured. The enhancement of selective relaxation rates could be titrated by different ligand concentrations at constant AChE (yielding 0.22 and 1.53 mM for the dissociation constants) and was providing evidence of a diverse mode of interaction. The double-selective relaxation rates were used to evaluate the motional correlation times of bound ligands at 34.9 and 36.5 ns at 300 K. Selective relaxation rates of bound inhibitors could be interpreted also in terms of dipole-dipole interactions with protons in the enzyme active site.

  3. The interaction of colloidal particles with weak homeotropic anchoring energy in homogeneous nematic liquid crystal cells.

    PubMed

    Kim, Sung-Jo; Kim, Jong-Hyun

    2014-04-21

    We have investigated interactions of colloidal particles with weak homeotropic anchoring energy in homogeneous nematic liquid crystal cells. Particle-wall and inter-particle interactions were observed experimentally and analyzed using typical dipole-dipole and quadrupole-quadrupole interactions, including substrate effects as the image charges. Both experimental results matched well with the calculated results for the effective particle radius reflecting the weak anchoring. The effective radius is reduced by the amount of extrapolation length than the actual particle radius. The effective radii of polyethylene micro-particles were reduced to a coefficient ζ (0.78 ≥ ζ ≥ 0.52) times the actual radius with anchoring coefficients in the range of 3.8 × 10(-6) to 1.4 × 10(-6) J m(-2). The anchoring energy of the particles is, therefore, a key component for explaining liquid crystal colloidal systems.

  4. Quantitative tomographic imaging of intermolecular FRET in small animals

    PubMed Central

    Venugopal, Vivek; Chen, Jin; Barroso, Margarida; Intes, Xavier

    2012-01-01

    Forster resonance energy transfer (FRET) is a nonradiative transfer of energy between two fluorescent molecules (a donor and an acceptor) in nanometer range proximity. FRET imaging methods have been applied to proteomic studies and drug discovery applications based on intermolecular FRET efficiency measurements and stoichiometric measurements of FRET interaction as quantitative parameters of interest. Importantly, FRET provides information about biomolecular interactions at a molecular level, well beyond the diffraction limits of standard microscopy techniques. The application of FRET to small animal imaging will allow biomedical researchers to investigate physiological processes occurring at nanometer range in vivo as well as in situ. In this work a new method for the quantitative reconstruction of FRET measurements in small animals, incorporating a full-field tomographic acquisition system with a Monte Carlo based hierarchical reconstruction scheme, is described and validated in murine models. Our main objective is to estimate the relative concentration of two forms of donor species, i.e., a donor molecule involved in FRETing to an acceptor close by and a nonFRETing donor molecule. PMID:23243567

  5. When do we need attractive-repulsive intermolecular potentials?

    SciTech Connect

    Venkattraman, Ayyaswamy

    2014-12-09

    The role of attractive-repulsive interactions in direct simulation Monte Carlo (DSMC) simulations is studied by comparing with traditional purely repulsive interactions. The larger collision cross section of the long-range LJ potential is shown to result in a higher collision frequency and hence a lower mean free path, by at least a factor of two, for given conditions. This results in a faster relaxation to equilibrium as is shown by comparing the fourth and sixth moments of the molecular velocity distribution obtained using 0-D DSMC simulations. A 1-D Fourier-Couette flow with a large temperature and velocity difference between the walls is used to show that matching transport properties will result in identical solutions using both LJPA and VSS models in the near-continuum regime. However, flows in the transitional regime with Knudsen number, Kn ∼ 0.5 show a dependence on the intermolecular potential in spite of matching the viscosity coefficient due to differences in the collision frequency. Attractive-repulsive potentials should be used when both transport coefficients and collision frequencies should be matched.

  6. Mechanism of Intermolecular Electron Transfer in Bionanostructures

    NASA Astrophysics Data System (ADS)

    Gruodis, A.; Galikova, N.; Šarka, K.; Saulė, R.; Batiuškaitė, D.; Saulis, G.

    Hepatocellular carcinoma (HCC) is one of the most common malignant tumors worldwide. Most patients are inoperable and hepatoma cells are resistant to conventional chemotherapies. Thus, the development of novel therapies for HCC treatment is of paramount importance. Amongst different alimentary factors, vitamin C and vitamin K3 In the present work, it has been shown that the treatment of mouse hepatoma MH-22A cells by vitamin C and vitamin K3 at the ratio of 100:1 greatly enhanced their cytotoxicity. When cells were subjected to vitamin C at 200 μM or to vitamin K3 at 2 μM separately, their viability reduced by only about 10%. However, when vitamins C and K3 were combined at the same concentrations, they killed more than 90% of cells. To elucidate the mechanism of the synergistic cytotoxicity of the C&K3 mixture, theoretical quantum-chemical analysis of the dynamics of intermolecular electron transfer (IET) processes within the complexes containing C (five forms) and K3 (one form) has been carried out. Optimization of the ground state complex geometry has been provided by means of GAUSSIAN03 package. Simulation of the IET has been carried out using NUVOLA package, in the framework of molecular orbitals (MO). The rate of IET has been calculated using Fermi Golden rule. The results of simulations allow us to create the preliminary model of the reaction pathway.

  7. Propagation studies of metastable intermolecular composites (MIC).

    SciTech Connect

    Son, S. F.; Busse, J. R.; Asay, B. W.; Peterson, P. D.; Mang, J. T.; Bockmon, B.; Pantoya, M.

    2002-01-01

    Thermite materials are attractive energetic materials because the reactions are highly exothermic, have high energy densities, and high temperatures of combustion. However, the application of thermite materials has been limited because of the relative slow release of energy compared to other energetic materials. Engineered nano-scale composite energetic materials, such as Al/MoO{sub 3}, show promise for additional energetic material applications because they can react very rapidly. The composite material studied in this work consists of tailored, ultra-fine grain (30-200 nm diameter) aluminum particles that dramatically increase energy release rates of these thermite materials. These reactant clusters of fuel and oxidizer particles are in nearly atomic scale proximity to each other but are constrained from reaction until triggered. Despite the growing importance of nano-scale energetic materials, even the most basic combustion characteristics of these materials have not been thoroughly studied. This paper reports initial studies of the ignition and combustion of metastable intermolecular composites (MIC) materials. The goals were lo obtain an improved understanding of flame propagation mechanisms and combustion behaviors associated with nano-structured energetic materials. Information on issues such as reaction rate and behavior as a function of composition (mixture ratio), initial static charge, and particle size are essential and will allow scientists to design applications incorporating the benefits of these compounds. The materials have been characterized, specifically focusing on particle size, shape, distribution and morphology.

  8. Fluorescence photoactivation by intermolecular proton transfer.

    PubMed

    Swaminathan, Subramani; Petriella, Marco; Deniz, Erhan; Cusido, Janet; Baker, James D; Bossi, Mariano L; Raymo, Françisco M

    2012-10-11

    We designed a strategy to activate fluorescence under the influence of optical stimulations based on the intermolecular transfer of protons. Specifically, the illumination of a 2-nitrobenzyl derivative at an activating wavelength is accompanied by the release of hydrogen bromide. In turn, the photogenerated acid encourages the opening of an oxazine ring embedded within a halochromic compound. This structural transformation extends the conjugation of an adjacent coumarin fluorophore and enables its absorption at an appropriate excitation wavelength. Indeed, this bimolecular system offers the opportunity to activate fluorescence in liquid solutions, within rigid matrixes and inside micellar assemblies, relying on the interplay of activating and exciting beams. Furthermore, this strategy permits the permanent imprinting of fluorescent patterns on polymer films, the monitoring of proton diffusion within such materials in real time on a millisecond time scale, and the acquisition of images with spatial resolution at the nanometer level. Thus, our operating principles for fluorescence activation can eventually lead to the development of valuable photoswitchable probes for imaging applications and versatile mechanisms for the investigation of proton transport. PMID:22994311

  9. Dielectric spectra broadening as the signature of dipole-matrix interaction. II. Water in ionic solutions.

    PubMed

    Levy, Evgeniya; Puzenko, Alexander; Kaatze, Udo; Ben Ishai, Paul; Feldman, Yuri

    2012-03-21

    In this, the second part of our series on the dielectric spectrum symmetrical broadening of water, we consider ionic aqueous solutions. If in Part I, dipole-dipole interaction was the dominant feature, now ion-dipole interplay is shown to be the critical element in the dipole-matrix interaction. We present the results of high-frequency dielectric measurements of different concentrations of NaCl/KCl aqueous solutions. We observed Cole-Cole broadening of the main relaxation peak of the solvent in the both electrolytes. The 3D trajectory approach (described in detail in Part I) is applied in order to highlight the differences between the dynamics and structure of solutions of salts on one hand and dipolar solutes on the other hand.

  10. Quantum Correlation of Two Entangled Atoms Interacting with the Binomial Optical Field

    NASA Astrophysics Data System (ADS)

    Liu, Tang-Kun; Tao, Yu; Shan, Chuan-Jia; Liu, Ji-bing

    2016-10-01

    Quantum correlations of two atoms in a system of two entangled atoms interacting with the binomial optical field are investigated. In eight different initial states of the two atoms, the influence of the strength of the dipole-dipole interaction, probabilities of a the Bernoulli trial and particle number of the binomial optical field on the temporal evolution of the geometrical quantum discord between two atoms are discussed. The result shows that two atoms always exist the correlation for different parameters. In addition, when and only when the two atoms are initially in the maximally entangled state, the temporal evolution of geometrical quantum discord is not affected by the parameters, and always keep in the degree of geometrical quantum discord that is a fixed value.

  11. Intermolecular interaction in plant oils from refractive and density measurements

    NASA Astrophysics Data System (ADS)

    Andriyevsky, B.; Andriyevska, L.; Piecuch, T.

    2010-12-01

    Refractive indices n and density ρ of three plant oils (Anise, Nigelle, and Juniper berries) have been measured in the temperature range of 10-60°C. The model of the effective electric field E' acting on a molecule in the material, E' = E + x4π P, with the unlimited value of the coefficient of polarization input x has been applied to the analysis of the results obtained. The value x of the oils studied have been found to be in the range of 0.193-0.269, which is smaller than a similar value for water ( x water > 0.3), known as a strong polar liquid.

  12. Probing acid-amide intermolecular hydrogen bonding by NMR spectroscopy and DFT calculations

    NASA Astrophysics Data System (ADS)

    Chaudhari, Sachin Rama; Suryaprakash, N.

    2012-05-01

    Benzene carboxylic acids and benzamide act as their self-complement in molecular recognition to form inter-molecular hydrogen bonded dimers between amide and carboxylic acid groups, which have been investigated by 1H, 13C and 15N NMR spectroscopy. Extensive NMR studies using diffusion ordered spectroscopy (DOSY), variable temperature 1D, 2D NMR, established the formation of heterodimers of benzamide with benzoic acid, salicylic acid and phenyl acetic acid in deuterated chloroform solution. Association constants for the complex formation in the solution state have been determined. The results are ascertained by X-ray diffraction in the solid state. Intermolecular interactions in solution and in solid state were found to be similar. The structural parameters obtained by X-ray diffraction studies are compared with those obtained by DFT calculations.

  13. Role of silver ions in destabilization of intermolecular adhesion forces measured by atomic force microscopy in Staphylococcus epidermidis biofilms.

    PubMed

    Chaw, K C; Manimaran, M; Tay, Francis E H

    2005-12-01

    In this paper, we report on the potential use of atomic force microscopy (AFM) as a tool to measure the intermolecular forces in biofilm structures and to study the effect of silver ions on sessile Staphylococcus epidermidis cell viability and stability. We propose a strategy of destabilizing the biofilm matrix by reducing the intermolecular forces within the extracellular polymeric substances (EPSs) using a low concentration (50 ppb) of silver ions. Our AFM studies on the intermolecular forces within the EPSs of S. epidermidis RP62A and S.epidermidis 1457 biofilms suggest that the silver ions can destabilize the biofilm matrix by binding to electron donor groups of the biological molecules. This leads to reductions in the number of binding sites for hydrogen bonds and electrostatic and hydrophobic interactions and, hence, the destabilization of the biofilm structure.

  14. Carbon dioxide-methanol intermolecular complexes in interstellar grain mantles

    NASA Astrophysics Data System (ADS)

    Dartois, E.; Demyk, K.; d'Hendecourt, L.; Ehrenfreund, P.

    1999-11-01

    We present new laboratory data to interpret the Infrared Space Observatory (ISO) spectra of protostellar objects, and particularly RAFGL7009S. Our experimental results show that solid methanol and carbon dioxide exhibit specific intermolecular interactions. We propose the formation of a Lewis acid-base complex between carbon dioxide and methanol molecules to explain specific substructure of the 15.2 mu m CO_2 bending mode observed in different objects. The various CO_2 bending mode patterns observed in many lines of sight can be interpreted as a combination of both this complex formation and the temperature evolution of the ices. The temperature induced segregation of ice mantles containing CO_2 can be monitored by the 13CO_2 stretching mode shift toward the pure CO_2 ice position. The large width observed for this mode towards interstellar sources partly results from the different temperatures sampled along the line of sight. Given the amount of methanol involved in RAFGL7009S, on the basis of ground based observations, we derive that about half of the so called ``6.85 mu m'' band and a quarter of the 4.9 mu m bands can be accounted for by the deformation modes and 2nu_8 transitions of CH_3OH. Based on observations with ISO, an ESA project with instruments funded by ESA Member States (especially the PI countries: France, Germany, the Netherlands and the United Kingdom) and with the participation of ISAS and NASA

  15. Interatomic (Intermolecular) Decay Processes in Clusters: Current Status and Outlook

    SciTech Connect

    Averbukh, V.; Cederbaum, L. S.

    2007-11-29

    Since their theoretical prediction a decade ago, interatomic (intermolecular) Coulombic decay (ICD) and related processes have been in the focus of intensive theoretical and experimental research. The spectacular progress in this direction has been stimulated both by the fundamental importance of the new electronic decay phenomena and by the exciting possibility of their practical application, for example in spectroscopy. We review the current status of the research of interatomic (intermolecular) decay phenomena in clusters and discuss some perspectives of this new field.

  16. Frontier orbital symmetry control of intermolecular electron transfer

    SciTech Connect

    Stevens, B.

    1990-11-01

    Research continued on the study of intermolecular electron transfer. This report discusses the following topics: fluorescence quenching by electron transfer and the modification of quenching dynamics by solvent properties and net free energy change; transient absorption measurements following selective excitation of 1:1 EDA complex isomers; selective quenching of dual fluorescence from linked EDA systems; electron-transfer sensitized cycloreversion of rubrene endoperoxide; and vibronic modification of adiabatic requirements for intermolecular electron transfer. (CBS)

  17. Dielectric spectra broadening as a signature for dipole-matrix interaction. III. Water in adenosine monophosphate/adenosine-5'-triphosphate solutions.

    PubMed

    Puzenko, Alexander; Levy, Evgeniya; Shendrik, Andrey; Talary, Mark S; Caduff, Andreas; Feldman, Yuri

    2012-11-21

    In this, the third part of our series on the dielectric spectrum symmetrical broadening of water, we consider the nucleotide aqueous solutions. Where in Parts I [E. Levy et al., J. Chem. Phys. 136, 114502 (2012)] and II [E. Levy et al., J. Chem. Phys. 136, 114503 (2012)], the dipole-dipole or ion-dipole interaction had a dominant feature, now the interplay between these two types of dipole-matrix interactions will be considered. We present the results of high frequency dielectric measurements of different concentrations of adenosine monophosphate/adenosine-5'-triphosphate aqueous solutions. We observed the Cole-Cole broadening of the main relaxation peak of the solvent in the solutions. Moreover, depending on the nucleotide concentration, we observed both types of dipole-matrix interaction. The 3D trajectory approach (described in detail in Part I) is applied in order to highlight the differences between the two types of interaction.

  18. Boiling points of halogenated ethanes: an explanatory model implicating weak intermolecular hydrogen-halogen bonding.

    PubMed

    Beauchamp, Guy

    2008-10-23

    This study explores via structural clues the influence of weak intermolecular hydrogen-halogen bonds on the boiling point of halogenated ethanes. The plot of boiling points of 86 halogenated ethanes versus the molar refraction (linked to polarizability) reveals a series of straight lines, each corresponding to one of nine possible arrangements of hydrogen and halogen atoms on the two-carbon skeleton. A multiple linear regression model of the boiling points could be designed based on molar refraction and subgroup structure as independent variables (R(2) = 0.995, standard error of boiling point 4.2 degrees C). The model is discussed in view of the fact that molar refraction can account for approximately 83.0% of the observed variation in boiling point, while 16.5% could be ascribed to weak C-X...H-C intermolecular interactions. The difference in the observed boiling point of molecules having similar molar refraction values but differing in hydrogen-halogen intermolecular bonds can reach as much as 90 degrees C.

  19. Temperature dependence of magnetic moments of nanoparticles and their dipole interaction in magnetic fluids

    NASA Astrophysics Data System (ADS)

    Lebedev, A. V.

    2015-01-01

    Magnetic susceptibility measurements were carried out for magnetite-based fluids over a wide temperature range. The fluids were stabilized with commonly used surfactants (fatty acids) and new surfactants (polypropylene glycol and tallow acids). The coefficients of temperature dependence of the particle magnetic moments were determined by fitting of the measured and calculated values of magnetic susceptibility. The influence of the inter-particle dipole-dipole interaction on the susceptibility was taken into account in the framework of A.O. Ivanov's model. The corrections for thermal expansion were determined by density measurements of the carrier fluid. The obtained values of temperature coefficients correlate to the solidification temperature of the fluid samples. For fluids with a low solidification temperature the value of the temperature coefficient of particle magnetization coincides with its value for bulk magnetite.

  20. Amino acid/water interactions study: a new amino acid scale.

    PubMed

    Madeira, Pedro P; Bessa, Ana; Álvares-Ribeiro, Luís; Raquel Aires-Barros, M; Rodrigues, Alírio E; Uversky, Vladimir N; Zaslavsky, Boris Y

    2014-01-01

    Partition ratios of 8 free l-amino acids (Gln, Glu, His, Lys, Met, Ser, Thr, and Tyr) were measured in 10 different polymer/polymer aqueous two-phase systems containing 0.15 M NaCl in 0.01 M phosphate buffer, pH 7.4. The solute-specific coefficients representing the solute dipole/dipole, hydrogen-bonding and electrostatic interactions with the aqueous environment of the amino acids were determined by multiple linear regression analysis using a modified linear solvation energy relationship. The solute-specific coefficients determined in this study together with the solute-specific coefficients reported previously for amino acids with non-polar side-chains where used in a Quantitative Structure/Property Relationship analysis. It is shown that linear combinations of these solute-specific coefficients are correlated well with various physicochemical, structural, and biological properties of amino acids.

  1. Role of long-range intermolecular forces in the formation of inorganic nanoparticle clusters.

    PubMed

    Gibbs, G V; Crawford, T D; Wallace, A F; Cox, D F; Parrish, R M; Hohenstein, E G; Sherrill, C D

    2011-11-17

    An understanding of the role played by intermolecular forces in terms of the electron density distribution is fundamental to the understanding of the self-assembly of molecules in the formation of a molecular crystal. Using ab initio methods capable of describing both short-range intramolecular interactions and long-range London dispersion interactions arising from electron correlation, analyses of inorganic dimers of As(4)S(4) and As(4)O(6) molecules cut from the structures of realgar and arsenolite, respectively, reveal that the molecules adopt a configuration that closely matches that observed for the crystal. Decomposition of the interaction energies using symmetry-adapted perturbation theory reveals that both model dimers feature significant stabilization from electrostatic forces as anticipated by a Lewis acid/Lewis base picture of the interaction. London dispersion forces also contribute significantly to the interaction, although they play a greater role in the realgar structure near equilibrium than in arsenolite.

  2. Visualizing coherent intermolecular dipole–dipole coupling in real space

    NASA Astrophysics Data System (ADS)

    Zhang, Yang; Luo, Yang; Zhang, Yao; Yu, Yun-Jie; Kuang, Yan-Min; Zhang, Li; Meng, Qiu-Shi; Luo, Yi; Yang, Jin-Long; Dong, Zhen-Chao; Hou, J. G.

    2016-03-01

    Many important energy-transfer and optical processes, in both biological and artificial systems, depend crucially on excitonic coupling that spans several chromophores. Such coupling can in principle be described in a straightforward manner by considering the coherent intermolecular dipole–dipole interactions involved. However, in practice, it is challenging to directly observe in real space the coherent dipole coupling and the related exciton delocalizations, owing to the diffraction limit in conventional optics. Here we demonstrate that the highly localized excitations that are produced by electrons tunnelling from the tip of a scanning tunnelling microscope, in conjunction with imaging of the resultant luminescence, can be used to map the spatial distribution of the excitonic coupling in well-defined arrangements of a few zinc-phthalocyanine molecules. The luminescence patterns obtained for excitons in a dimer, which are recorded for different energy states and found to resemble σ and π molecular orbitals, reveal the local optical response of the system and the dependence of the local optical response on the relative orientation and phase of the transition dipoles of the individual molecules in the dimer. We generate an in-line arrangement up to four zinc-phthalocyanine molecules, with a larger total transition dipole, and show that this results in enhanced ‘single-molecule’ superradiance from the oligomer upon site-selective excitation. These findings demonstrate that our experimental approach provides detailed spatial information about coherent dipole–dipole coupling in molecular systems, which should enable a greater understanding and rational engineering of light-harvesting structures and quantum light sources.

  3. Optimization of intermolecular potential parameters for the CO2/H2O mixture.

    PubMed

    Orozco, Gustavo A; Economou, Ioannis G; Panagiotopoulos, Athanassios Z

    2014-10-01

    Monte Carlo simulations in the Gibbs ensemble were used to obtain optimized intermolecular potential parameters to describe the phase behavior of the mixture CO2/H2O, over a range of temperatures and pressures relevant for carbon capture and sequestration processes. Commonly used fixed-point-charge force fields that include Lennard-Jones 12-6 (LJ) or exponential-6 (Exp-6) terms were used to describe CO2 and H2O intermolecular interactions. For force fields based on the LJ functional form, changes of the unlike interactions produced higher variations in the H2O-rich phase than in the CO2-rich phase. A major finding of the present study is that for these potentials, no combination of unlike interaction parameters is able to adequately represent properties of both phases. Changes to the partial charges of H2O were found to produce significant variations in both phases and are able to fit experimental data in both phases, at the cost of inaccuracies for the pure H2O properties. By contrast, for the Exp-6 case, optimization of a single parameter, the oxygen-oxygen unlike-pair interaction, was found sufficient to give accurate predictions of the solubilities in both phases while preserving accuracy in the pure component properties. These models are thus recommended for future molecular simulation studies of CO2/H2O mixtures. PMID:25198539

  4. Effect of spatial confinement on magnetic hyperthermia via dipolar interactions in Fe₃O₄ nanoparticles for biomedical applications.

    PubMed

    Sadat, M E; Patel, Ronak; Sookoor, Jason; Bud'ko, Sergey L; Ewing, Rodney C; Zhang, Jiaming; Xu, Hong; Wang, Yilong; Pauletti, Giovanni M; Mast, David B; Shi, Donglu

    2014-09-01

    In this work, the effect of nanoparticle confinement on the magnetic relaxation of iron oxide (Fe3O4) nanoparticles (NP) was investigated by measuring the hyperthermia heating behavior in high frequency alternating magnetic field. Three different Fe3O4 nanoparticle systems having distinct nanoparticle configurations were studied in terms of magnetic hyperthermia heating rate and DC magnetization. All magnetic nanoparticle (MNP) systems were constructed using equivalent ~10nm diameter NP that were structured differently in terms of configuration, physical confinement, and interparticle spacing. The spatial confinement was achieved by embedding the Fe3O4 nanoparticles in the matrices of the polystyrene spheres of 100 nm, while the unconfined was the free Fe3O4 nanoparticles well-dispersed in the liquid via PAA surface coating. Assuming the identical core MNPs in each system, the heating behavior was analyzed in terms of particle freedom (or confinement), interparticle spacing, and magnetic coupling (or dipole-dipole interaction). DC magnetization data were correlated to the heating behavior with different material properties. Analysis of DC magnetization measurements showed deviation from classical Langevin behavior near saturation due to dipole interaction modification of the MNPs resulting in a high magnetic anisotropy. It was found that the Specific Absorption Rate (SAR) of the unconfined nanoparticle systems were significantly higher than those of confined (the MNPs embedded in the polystyrene matrix). This increase of SAR was found to be attributable to high Néel relaxation rate and hysteresis loss of the unconfined MNPs. It was also found that the dipole-dipole interactions can significantly reduce the global magnetic response of the MNPs and thereby decrease the SAR of the nanoparticle systems. PMID:25063092

  5. Effect of spatial confinement on magnetic hyperthermia via dipolar interactions in Fe3O4 nanoparticles for biomedical applications

    SciTech Connect

    Sadat, M E; Patel, Ronak; Sookoor, Jason; Bud'ko, Sergey L; Ewing, Rodney C; Zhang, Jiaming; Xu, Hong; Wang, Yilong; Pauletti, Giovanni M; Mast, David B; Shi, Donglu

    2014-09-01

    In this work, the effect of nanoparticle confinement on the magnetic relaxation of iron oxide (Fe3O4) nanoparticles (NP) was investigated by measuring the hyperthermia heating behavior in high frequency alternating magnetic field. Three different Fe3O4 nanoparticle systems having distinct nanoparticle configurations were studied in terms of magnetic hyperthermia heating rate and DC magnetization. All magnetic nanoparticle (MNP) systems were constructed using equivalent ~10nm diameter NP that were structured differently in terms of configuration, physical confinement, and interparticle spacing. The spatial confinement was achieved by embedding the Fe3O4 nanoparticles in the matrices of the polystyrene spheres of 100 nm, while the unconfined was the free Fe3O4 nanoparticles well-dispersed in the liquid via PAA surface coating. Assuming the identical core MNPs in each system, the heating behavior was analyzed in terms of particle freedom (or confinement), interparticle spacing, and magnetic coupling (or dipole-dipole interaction). DC magnetization data were correlated to the heating behavior with different material properties. Analysis of DC magnetization measurements showed deviation from classical Langevin behavior near saturation due to dipole interaction modification of the MNPs resulting in a high magnetic anisotropy. It was found that the Specific Absorption Rate (SAR) of the unconfined nanoparticle systems were significantly higher than those of confined (the MNPs embedded in the polystyrene matrix). This increase of SAR was found to be attributable to high Néel relaxation rate and hysteresis loss of the unconfined MNPs. It was also found that the dipole-dipole interactions can significantly reduce the global magnetic response of the MNPs and thereby decrease the SAR of the nanoparticle systems.

  6. Intermolecular symmetry-adapted perturbation theory study of large organic complexes

    SciTech Connect

    Heßelmann, Andreas; Korona, Tatiana

    2014-09-07

    Binding energies for the complexes of the S12L database by Grimme [Chem. Eur. J. 18, 9955 (2012)] were calculated using intermolecular symmetry-adapted perturbation theory combined with a density-functional theory description of the interacting molecules. The individual interaction energy decompositions revealed no particular change in the stabilisation pattern as compared to smaller dimer systems at equilibrium structures. This demonstrates that, to some extent, the qualitative description of the interaction of small dimer systems may be extrapolated to larger systems, a method that is widely used in force-fields in which the total interaction energy is decomposed into atom-atom contributions. A comparison of the binding energies with accurate experimental reference values from Grimme, the latter including thermodynamic corrections from semiempirical calculations, has shown a fairly good agreement to within the error range of the reference binding energies.

  7. Short-range, spin-dependent interactions of electrons: a sensitive probe for exotic pseudo-Goldstone bosons

    NASA Astrophysics Data System (ADS)

    Terrano, William; Adelberger, Eric; Lee, John; Heckel, Blayne

    2016-03-01

    We used a torsion pendulum and rotating attractor with 20-pole electron-spin distributions to probe dipole-dipole interactions mediated by exotic pseudo-Goldstone bosons with mbc2 <= 500 μ eV and coupling strengths up to 14 orders of magnitude weaker than electromagnetism. Our 95% confidence result indicates that any hidden global symmetry involving electrons must have a symmetry-breaking scale F >= 70 TeV, the highest reached in any laboratory experiment. We used an attractor with a 20-pole unpolarized mass distribution to improve laboratory bounds on CP -violating monopole-dipole forces with 1 . 5 μ eV

  8. Dancing Crystals: A Dramatic Illustration of Intermolecular Forces

    ERIC Educational Resources Information Center

    Mundell, Donald W.

    2007-01-01

    Crystals of naphthalene form on the surface of an acetone solution and dance about in an animated fashion illustrating surface tension, crystallization, and intermolecular forces. Additional experiments reveal the properties of the solution. Flows within the solutions can be visualized by various means. Previous demonstrations of surface motion…

  9. Ionic strength and intermolecular contacts in protein crystals

    NASA Astrophysics Data System (ADS)

    Iyer, Ganesh H.; Dasgupta, Swagata; Bell, Jeffrey A.

    2000-08-01

    The ionic strengths of crystallization solutions for 206 proteins were observed to form a bimodal distribution. The data was divided into two sets at an ionic strength of 4.4 M, and knowledge-based potentials were calculated to determine contact preferences at intermolecular crystal interfaces. Consistent with previous observations over all ionic strengths, intermolecular crystal contacts tend to exclude nonpolar amino acids; lysine is the least favored polar amino acid at crystal contacts; and arginine and glutamine are the two most favored amino acid at crystal contacts. However, some aspects of intermolecular contact preferences within protein crystals are significantly dependent on ionic strength. Arginine is the most favored residue at low ionic strength, but it takes second place to glutamine at high ionic strength. Other major ionic strength-dependent differences in protein crystal contacts can be explained by the binding of cations or anions. While others have shown the importance of ion binding experimentally in selected protein crystals, these statistical results indicate that intermolecular interface formation must involve ion-mediated contacts in a large number of protein crystals.

  10. Intermolecular atom-atom bonds in crystals - a chemical perspective.

    PubMed

    Thakur, Tejender S; Dubey, Ritesh; Desiraju, Gautam R

    2015-03-01

    Short atom-atom distances between molecules are almost always indicative of specific intermolecular bonding. These distances may be used to assess the significance of all hydrogen bonds, including the C-H⋯O and even weaker C-H⋯F varieties.

  11. Hydrogen-hydrogen intermolecular structure of polyethylene in the melt

    NASA Astrophysics Data System (ADS)

    Londono, J. D.; Annis, B. K.; Habenschuss, A.; Smith, G. D.; Borodin, O.; Tso, C.; Hsieh, E. T.; Soper, A. K.

    1999-05-01

    Three polyethylene samples, which differed in their degree of deuteration, were studied in neutron diffraction isotopic substitution (NDIS) experiments at 428 K. These results were complemented at small wavevectors by small angle neutron measurements. The intermolecular hydrogen-hydrogen (HH) structure function, hHH(Q), was obtained without recourse to intramolecular structure models, as demonstrated in a prior report. The PE experimental results are compared to computer simulation results for the alkanes C100 at 509 K and C44 at 350, 400, and 450 K. The small temperature dependence of the HH intermolecular radial distribution functions, gHH(r) for C44 indicates that the differences observed between the PE, C100, and C44 (450 K) results are, for the most part, not due to just temperature differences. It is shown that the string model, an analytic result from an integral equation theory of polymers (PRISM), can account approximately for the overall shape of the gHH(r) functions, and that this overall shape is dependent on the radius of gyration of the molecule. Further analysis shows that there are two other contributions to gHH(r), both of which are independent of chain length to first order. The first is due to chain-chain packing, and the second is due to local HH intermolecular correlations. These results are significant because they demonstrate that hHH(Q) is a useful function for studying intermolecular polymer structure, which has been shown to underpin phase behavior in polyolefin blends.

  12. Intermolecular G-quadruplex-based universal quencher free molecular beacon.

    PubMed

    Zhou, Hui; Xie, Su-Jin; Li, Ji-Shan; Wu, Zai-Sheng; Shen, Guo-Li

    2012-11-11

    A simple and universal quencher-free molecular beacon (MB) with low background fluorescence is developed based on an intermolecular G-quadruplex signaling probe. Unlike previous fluorescent MB strategies, it can function without any fluorophore and quencher modifications on its hairpin sequence.

  13. Copper-catalyzed intermolecular asymmetric propargylic dearomatization of indoles.

    PubMed

    Shao, Wen; Li, He; Liu, Chuan; Liu, Chen-Jiang; You, Shu-Li

    2015-06-22

    The first copper-catalyzed intermolecular dearomatization of indoles by an asymmetric propargylic substitution reaction was developed. This method provides a highly efficient synthesis of versatile furoindoline and pyrroloindoline derivatives containing a quaternary carbon stereogenic center and a terminal alkyne moiety with up to 86 % yield and 98 % ee. PMID:25968474

  14. Quantifying the anisotropy of intermolecular potential energy surfaces: a critical assessment of available N2-N2 potentials.

    PubMed

    Karimi-Jafari, M H; Ashouri, M

    2011-05-28

    Based on definition of angular central moments, a quantitative measure is proposed for comparative assessment of the anisotropy of different intermolecular potential energy surfaces at different intermolecular distances. Angular spreadness, skewness and peakedness are three features of anisotropy that are used here to describe the distribution of values of interaction energy around its isotropic component. In agreement with qualitative interpretations, the proposed measure exhibits a sharp change in the R-dependent pattern of anisotropy at an intermediate distance where the repulsive forces on the average overcome the attractive ones. The R-dependence of anisotropy of available N(2)-N(2) potentials is examined in comparison with bare ab initio data and considerable discrepancies are found at distances shorter than the onset of repulsion. It is shown that the full experimentally derived potentials with simplified functional forms do not reproduce the correct anisotropy of interaction energy.

  15. Ideality contours and thermodynamic regularities in supercritical molecular fluids

    NASA Astrophysics Data System (ADS)

    Desgranges, Caroline; Margo, Abigail; Delhommelle, Jerome

    2016-08-01

    Using Expanded Wang-Landau simulations, we calculate the ideality contours for 3 molecular fluids (SF6, CO2 and H2O). We analyze how the increase in polarity, and thus, in the strength of the intermolecular interactions, impacts the contours and thermodynamic regularities. This effect results in the increase in the Boyle and H parameters, that underlie the Zeno line and the curve of ideal enthalpy. Furthermore, a detailed analysis reveals that dipole-dipole interactions lead to much larger enthalpic contributions to the Gibbs free energy. This accounts for the much higher temperatures and pressures that are necessary for supercritical H2O to achieve ideal-like thermodynamic properties.

  16. Vibrational nano-spectroscopic imaging correlating structure with intermolecular coupling and dynamics

    PubMed Central

    Pollard, Benjamin; Muller, Eric A.; Hinrichs, Karsten; Raschke, Markus B.

    2014-01-01

    Molecular self-assembly, the function of biomembranes and the performance of organic solar cells rely on nanoscale molecular interactions. Understanding and control of such materials have been impeded by difficulties in imaging their properties with the desired nanometre spatial resolution, attomolar sensitivity and intermolecular spectroscopic specificity. Here we implement vibrational scattering-scanning near-field optical microscopy with high spectral precision to investigate the structure–function relationship in nano-phase separated block copolymers. A vibrational resonance is used as a sensitive reporter of the local chemical environment and we image, with few nanometre spatial resolution and 0.2 cm−1 spectral precision, solvatochromic Stark shifts and line broadening correlated with molecular-scale morphologies. We discriminate local variations in electric fields between nano-domains with quantitative agreement with dielectric continuum models. This ability to directly resolve nanoscale morphology and associated intermolecular interactions can form a basis for the systematic control of functionality in multicomponent soft matter systems. PMID:24721995

  17. Spatio-spectral infrared vibrational nano-imaging of intermolecular coupling

    NASA Astrophysics Data System (ADS)

    Pollard, Benjamin; Muller, Eric; Raschke, Markus

    2014-03-01

    Molecular self-assembly, the function of biomembranes, and the performance of organic solar cells rely on molecular interactions on the nanoscale. The understanding and design of such heterogeneous functional soft matter has long been impeded by a lack of spectroscopic tools with sufficient nanometer spatial resolution, attomolar sensitivity, and intermolecular spectroscopic specificity. We implement vibrational scattering-scanning near-field optical microscopy (s-SNOM) in a multi-spectral modality to investigate the structure-function relationship in PS- b-PMMA block copolymers. Using a vibrational resonance as a sensitive reporter of local structure, coupling, and dynamics, we resolve spectral Stark shifts and line broadening correlated with molecular-scale morphologies. By creating images of solvatochromic vibrational shifts we discriminate local variations in electric fields between nanoscale bulk and interface regions, with quantitative agreement to dielectric continuum models. This new nano-chemometric ability to directly resolve nanoscale morphology and associated intermolecular interactions can form a basis for the systematic control of functionality in multicomponent soft matter systems.

  18. Topological defects and interactions in nematic emulsions

    NASA Astrophysics Data System (ADS)

    Lubensky, T. C.; Pettey, David; Currier, Nathan; Stark, Holger

    1998-01-01

    Inverse nematic emulsions, in which surfactant-coated water droplets are dispersed in a nematic host fluid, have distinctive properties that set them apart from dispersions of two isotropic fluids or of nematic droplets in an isotropic fluid. We present a comprehensive theoretical study of the distortions produced in the nematic host by the dispersed droplets and of solvent-mediated dipolar interactions between droplets that lead to their experimentally observed chaining. A single droplet in a nematic host acts like a macroscopic hedgehog defect. Global boundary conditions force the nucleation of compensating topological defects in the nematic host. Using variational techniques, we show that in the lowest energy configuration, a single water droplet draws a single hedgehog out of the nematic host to form a tightly bound dipole. Configurations in which the water droplet is encircled by a disclination ring have higher energy. The droplet dipole induces distortions in the nematic host that lead to an effective dipole-dipole interaction between droplets, and hence to chaining.

  19. Intermolecular forces and the glass transition.

    PubMed

    Hall, Randall W; Wolynes, Peter G

    2008-01-17

    Random first-order transition theory is used to determine the role of attractive and repulsive interactions in the dynamics of supercooled liquids. Self-consistent phonon theory, an approximate mean field treatment consistent with random first-order transition theory, is used to treat individual glassy configurations, whereas the liquid phase is treated using common liquid-state approximations. Free energies are calculated using liquid-state perturbation theory. The transition temperature, T*A, the temperature where the onset of activated behavior is predicted by mean field theory; the lower crossover temperature, T*C, where barrierless motions actually occur through fractal or stringy motions (corresponding to the phenomenological mode coupling transition temperature); and T*K, the Kauzmann temperature (corresponding to an extrapolated entropy crisis), are calculated in addition to T*g, the glass transition temperature that corresponds to laboratory cooling rates. Relationships between these quantities agree well with existing experimental and simulation data on van der Waals liquids. Both the isobaric and isochoric behavior in the supercooled regime are studied, providing results for DeltaCV and DeltaCp that can be used to calculate the fragility as a function of density and pressure, respectively. The predicted variations in the alpha-relaxation time with temperature and density conform to the empirical density-temperature scaling relations found by Casalini and Roland. We thereby demonstrate the microscopic origin of their observations. Finally, the relationship first suggested by Sastry between the spinodal temperature and the Kauzmann temperatures, as a function of density, is examined. The present microscopic calculations support the existence of an intersection of these two temperatures at sufficiently low temperatures.

  20. Intermolecular disulfide bond formation promotes immunoglobulin aggregation: investigation by fluorescence correlation spectroscopy.

    PubMed

    Nag, Moupriya; Bera, Kallol; Basak, Soumen

    2015-01-01

    Protein aggregation generally results from association between hydrophobic regions of individual monomers. However, additional mechanisms arising from specific interactions, such as intermolecular disulfide bond formation, may also contribute to the process. The latter is proposed to be the initiating pathway for aggregation of immunoglobulin (IgG), which is essential for triggering its immune response. To test the veracity of this hypothesis, we have employed fluorescence correlation spectroscopy to measure the kinetics of aggregation of IgG in separate experiments either allowing or inhibiting disulfide formation. Fluorescence correlation spectroscopy measurements yielded a diffusion time (τ(D)) of ∼200 µsec for Rhodamine-labeled IgG, corresponding to a hydrodynamic radius (R(H)) of 56 Å for the IgG monomer. The aggregation kinetics of the protein was followed by monitoring the time evolution of τ(D) under conditions in which its cysteine residues were either free or blocked. In both cases, the progress curves confirmed that aggregation proceeded via the nucleation-dependent polymerization pathway. However, for aggregation in the presence of free cysteines, the lag times were shorter, and the aggregate sizes bigger, than their respective counterparts for aggregation in the presence of blocked cysteines. This result clearly demonstrates that formation of intermolecular disulfide bonds represents a preferred pathway in the aggregation process of IgG. Fluorescence spectroscopy showed that aggregates formed in experiments where disulfide formation was prevented denatured at lower concentration of guanidine hydrochloride than those obtained in experiments where the disulfides were free to form, indicating that intermolecular disulfide bridging is a valid pathway for IgG aggregation. PMID:25371040

  1. The effect of intermolecular hydrogen bonding on the planarity of amides.

    PubMed

    Platts, James A; Maarof, Hasmerya; Harris, Kenneth D M; Lim, Gin Keat; Willock, David J

    2012-09-14

    Ab initio and density functional theory (DFT) calculations on some model systems are presented to assess the extent to which intermolecular hydrogen bonding can affect the planarity of amide groups. Formamide and urea are examined as archetypes of planar and non-planar amides, respectively. DFT optimisations suggest that appropriately disposed hydrogen-bond donor or acceptor molecules can induce non-planarity in formamide, with OCNH dihedral angles deviating by up to ca. 20° from planarity. Ab initio energy calculations demonstrate that the energy required to deform an amide molecule from the preferred geometry of the isolated molecule is more than compensated by the stabilisation due to hydrogen bonding. Similarly, the NH(2) group in urea can be made effectively planar by the presence of appropriately positioned hydrogen-bond acceptors, whereas hydrogen-bond donors increase the non-planarity of the NH(2) group. Small clusters (a dimer, two trimers and a pentamer) extracted from the crystal structure of urea indicate that the crystal field acts to force planarity of the urea molecule; however, the interaction with nearest neighbours alone is insufficient to induce the molecule to become completely planar, and longer-range effects are required. Finally, the potential for intermolecular hydrogen bonding to induce non-planarity in a model of a peptide is explored. Inter alia, the insights obtained in the present work on the extent to which the geometry of amide groups may be deformed under the influence of intermolecular hydrogen bonding provide structural guidelines that can assist the interpretation of the geometries of such groups in structure determination from powder X-ray diffraction data. PMID:22847473

  2. Intramolecular versus intermolecular disulfide bonds in prion proteins.

    PubMed

    Welker, Ervin; Raymond, Lynne D; Scheraga, Harold A; Caughey, Byron

    2002-09-01

    Prion protein (PrP) is the major component of the partially protease-resistant aggregate that accumulates in mammals with transmissible spongiform encephalopathies. The two cysteines of the scrapie form, PrP(Sc), were found to be in their oxidized (i.e. disulfide) form (Turk, E., Teplow, D. B., Hood, L. E., and Prusiner, S. B. (1988) Eur. J. Biochem. 176, 21-30); however, uncertainty remains as to whether the disulfide bonds are intra- or intermolecular. It is demonstrated here that the monomers of PrP(Sc) are not linked by intermolecular disulfide bonds. Furthermore, evidence is provided that PrP(Sc) can induce the conversion of the oxidized, disulfide-intact form of the monomeric cellular prion protein to its protease-resistant form without the temporary breakage and subsequent re-formation of the disulfide bonds in cell-free reactions.

  3. Ab initio intermolecular potential energy surface and thermophysical properties of nitrous oxide

    SciTech Connect

    Crusius, Johann-Philipp Hassel, Egon; Hellmann, Robert Bich, Eckard

    2015-06-28

    We present an analytical intermolecular potential energy surface (PES) for two rigid nitrous oxide (N{sub 2}O) molecules derived from high-level quantum-chemical ab initio calculations. Interaction energies for 2018 N{sub 2}O–N{sub 2}O configurations were computed utilizing the counterpoise-corrected supermolecular approach at the CCSD(T) level of theory using basis sets up to aug-cc-pVQZ supplemented with bond functions. A site-site potential function with seven sites per N{sub 2}O molecule was fitted to the pair interaction energies. We validated our PES by computing the second virial coefficient as well as shear viscosity and thermal conductivity in the dilute-gas limit. The values of these properties are substantiated by the best experimental data.

  4. Oriented covalent immobilization of antibodies for measurement of intermolecular binding forces between zipper-like contact surfaces of split inteins.

    PubMed

    Sorci, Mirco; Dassa, Bareket; Liu, Hongwei; Anand, Gaurav; Dutta, Amit K; Pietrokovski, Shmuel; Belfort, Marlene; Belfort, Georges

    2013-06-18

    In order to measure the intermolecular binding forces between two halves (or partners) of naturally split protein splicing elements called inteins, a novel thiol-hydrazide linker was designed and used to orient immobilized antibodies specific for each partner. Activation of the surfaces was achieved in one step, allowing direct intermolecular force measurement of the binding of the two partners of the split intein (called protein trans-splicing). Through this binding process, a whole functional intein is formed resulting in subsequent splicing. Atomic force microscopy (AFM) was used to directly measure the split intein partner binding at 1 μm/s between native (wild-type) and mixed pairs of C- and N-terminal partners of naturally occurring split inteins from three cyanobacteria. Native and mixed pairs exhibit similar binding forces within the error of the measurement technique (~52 pN). Bioinformatic sequence analysis and computational structural analysis discovered a zipper-like contact between the two partners with electrostatic and nonpolar attraction between multiple aligned ion pairs and hydrophobic residues. Also, we tested the Jarzynski's equality and demonstrated, as expected, that nonequilibrium dissipative measurements obtained here gave larger energies of interaction as compared with those for equilibrium. Hence, AFM coupled with our immobilization strategy and computational studies provides a useful analytical tool for the direct measurement of intermolecular association of split inteins and could be extended to any interacting protein pair.

  5. Theoretical study on electromagnetically induced transparency in molecular aggregate models using quantum Liouville equation method

    SciTech Connect

    Minami, Takuya; Nakano, Masayoshi

    2015-01-22

    Electromagnetically induced transparency (EIT), which is known as an efficient control method of optical absorption property, is investigated using the polarizability spectra and population dynamics obtained by solving the quantum Liouville equation. In order to clarify the intermolecular interaction effect on EIT, we examine several molecular aggregate models composed of three-state monomers with the dipole-dipole coupling. On the basis of the present results, we discuss the applicability of EIT in molecular aggregate systems to a new type of optical switch.

  6. Nonlinear dynamics of globular proteins

    SciTech Connect

    Lomdahl, P.S.

    1983-01-01

    Some ongoing work aimed at generalizing DAVYDOV's ideas to a real globular protein is described. So far, a computer code, GLOP, which calculates amide-I bond energy evolution on a globular protein has been developed and tested. The code is quite versatile and takes as input the coordinates of a protein. The full geometry of the molecule is then taken into account when the dipole-dipole interaction between peptide groups is calculated. The amide-I energy is coupled to one intramolecular excitation, but can without difficulty be extended to more or to include intermolecular excitations.

  7. Intra- and intermolecular hydrogen bonding in acetylacetone and benzoylacetone derived enaminone derivatives

    NASA Astrophysics Data System (ADS)

    Lazić, Vedrana; Jurković, Mihaela; Jednačak, Tomislav; Hrenar, Tomica; Vuković, Jelena Parlov; Novak, Predrag

    2015-01-01

    The structure and hydrogen bonding in solution of acetylacetone and benzoylacetone derived enaminone derivatives, 1a-1d and 2a-2d, have been studied by a combination of experimental (NMR and UV spectroscopies) and theoretical (PM6 and DFT) methods. It has been shown that all studied compounds predominantly existed in the localised keto-amine tautomeric form in solution as found also in the solid state. Significant line-broadening and down-field chemical shifts of NH and OH protons have strongly indicated that both groups formed hydrogen bonds, which has further been supported by quantum chemical calculations. Temperature and concentration dependent NMR measurements have pointed towards the fact that NH protons are engaged in strong intramolecular hydrogen bonds of the NH⋯Odbnd C type in both solvents. On the other hand, OH protons are involved in weaker intermolecular hydrogen bonding with solvent molecules in DMSO, while in chloroform intermolecular interactions between two molecules dominate. The results presented in this paper can be used for better understanding and further exploiting properties these ligands possess, especially their bioactivity.

  8. Probing the contribution of different intermolecular forces to the adsorption of spheroproteins onto hydrophilic surfaces.

    PubMed

    Borges, João; Campiña, José M; Silva, A Fernando

    2013-12-27

    Protein adsorption is a delicate process, which results from the balance between the properties of proteins and their solid supports. Although the relevance of some of these parameters has been already unveiled, the precise involvement of electrostatics and other weaker intermolecular forces requires further comprehension. Aiming to contribute to this task, this work explores the attachment, rearrangement, and surface aggregation of a model spheroprotein, such as bovine β-lactoglobulin (β-LG), onto hydrophilic substrates prefunctionalized with different alkylthiol films. Thereby, a variety of electrostatic scenarios for the adsorption of β-LG could be recreated through the variation of the pH and the functional chemistry of the surfaces. The changes in surface mass density (plus associated water) and film flexibility were followed in situ with quartz crystal microbalance with dissipation monitoring. Film packing and aggregation were assessed by faradaic electrochemical measurements and ex situ atomic force microscopy and field effect scanning electron microscopy. In contrast to previous hypotheses arguing that electrostatic interactions between charged substrates and proteins would be the only driving force, a complex interplay between Coulombic and non-Coulombic intermolecular forces (which would depend upon the experimental conditions) has been suggested to explain the results.

  9. Intermolecular stabilization of 3,3'-diamino-4,4'-azoxyfurazan (DAAF) compressed to 20 GPa.

    PubMed

    Chellappa, Raja S; Dattelbaum, Dana M; Coe, Joshua D; Velisavljevic, Nenad; Stevens, Lewis L; Liu, Zhenxian

    2014-08-01

    The room temperature stability of 3,3'-diamino-4,4'-azoxyfurazan (DAAF) has been investigated using synchrotron far-infrared, mid-infrared, Raman spectroscopy, and synchrotron X-ray diffraction (XRD) up to 20 GPa. The as-loaded DAAF samples exhibited subtle pressure-induced ordering phenomena (associated with positional disorder of the azoxy "O" atom) resulting in doubling of the a-axis, to form a superlattice similar to the low-temperature polymorph. Neither high pressure synchrotron XRD, nor high pressure infrared or Raman spectroscopies indicated the presence of structural phase transitions up to 20 GPa. Compression was accommodated in the unit cell by a reduction of the c-axis between the planar DAAF layers, distortion of the β-angle of the monoclinic lattice, and an increase in intermolecular hydrogen bonding. Changes in the ring and -NH2 deformation modes and increased intermolecular hydrogen bonding interactions with compression suggest molecular reorganizations and electronic transitions at ∼ 5 GPa and ∼ 10 GPa that are accompanied by a shifting of the absorption band edge into the visible. A fourth-order Birch-Murnaghan fit to the room temperature isotherm afforded an estimate of the zero-pressure isothermal bulk modulus, K0 = 12.4 ± 0.6 GPa and its pressure derivative K0' = 7.7 ± 0.3. PMID:25011055

  10. An optimized intermolecular force field for hydrogen-bonded organic molecular crystals using atomic multipole electrostatics

    PubMed Central

    Pyzer-Knapp, Edward O.; Thompson, Hugh P. G.; Day, Graeme M.

    2016-01-01

    We present a re-parameterization of a popular intermolecular force field for describing intermolecular interactions in the organic solid state. Specifically we optimize the performance of the exp-6 force field when used in conjunction with atomic multipole electrostatics. We also parameterize force fields that are optimized for use with multipoles derived from polarized molecular electron densities, to account for induction effects in molecular crystals. Parameterization is performed against a set of 186 experimentally determined, low-temperature crystal structures and 53 measured sublimation enthalpies of hydrogen-bonding organic molecules. The resulting force fields are tested on a validation set of 129 crystal structures and show improved reproduction of the structures and lattice energies of a range of organic molecular crystals compared with the original force field with atomic partial charge electrostatics. Unit-cell dimensions of the validation set are typically reproduced to within 3% with the re-parameterized force fields. Lattice energies, which were all included during parameterization, are systematically underestimated when compared with measured sublimation enthalpies, with mean absolute errors of between 7.4 and 9.0%. PMID:27484370

  11. An optimized intermolecular force field for hydrogen-bonded organic molecular crystals using atomic multipole electrostatics.

    PubMed

    Pyzer-Knapp, Edward O; Thompson, Hugh P G; Day, Graeme M

    2016-08-01

    We present a re-parameterization of a popular intermolecular force field for describing intermolecular interactions in the organic solid state. Specifically we optimize the performance of the exp-6 force field when used in conjunction with atomic multipole electrostatics. We also parameterize force fields that are optimized for use with multipoles derived from polarized molecular electron densities, to account for induction effects in molecular crystals. Parameterization is performed against a set of 186 experimentally determined, low-temperature crystal structures and 53 measured sublimation enthalpies of hydrogen-bonding organic molecules. The resulting force fields are tested on a validation set of 129 crystal structures and show improved reproduction of the structures and lattice energies of a range of organic molecular crystals compared with the original force field with atomic partial charge electrostatics. Unit-cell dimensions of the validation set are typically reproduced to within 3% with the re-parameterized force fields. Lattice energies, which were all included during parameterization, are systematically underestimated when compared with measured sublimation enthalpies, with mean absolute errors of between 7.4 and 9.0%. PMID:27484370

  12. Intra- and intermolecular forces dependent main chain conformations of esters of α,β-dehydroamino acids

    NASA Astrophysics Data System (ADS)

    Siodłak, Dawid; Bujak, Maciej; Staś, Monika

    2013-09-01

    Esters of dehydroamino acids occur in nature. To investigate their conformational properties, the low-temperature structures of Ac-ΔAla-OMe, Ac-ΔVal-OMe, Z-(Z)-ΔAbu-OMe, and Z-(Z)-ΔAbu-NHMe were studied by single-crystal X-ray diffraction. The ΔAla ester prefers the fully extended conformation C5. Both the ΔVal and (Z)-ΔAbu esters assume the conformation β, whereas the amide analogue of the latter prefers the conformation α. For the conformations found, DFT calculations using B3LYP/6-311++G(d,p) with the SCRF-PCM and M062X/6-311++G(d,p) with the SCRF-SMD method were applied to mimicking chloroform and water environment. The tendency of the ΔVal and (Z)-ΔAbu esters towards the conformation β, and their amide analogues towards the conformation α, with increase of the polarity of environment was found. The analysis of both intra- and intermolecular interactions including hydrogen bonds, carbonyl dipole attraction, and π-electron conjugation, enabled to understand and elucidate the conformational preferences of studied compounds. The studies show how the molecular structure, and in consequence, the conformation adopted by molecules is influenced by the different intra- and intermolecular forces.

  13. Intermolecular stabilization of 3,3'-diamino-4,4'-azoxyfurazan (DAAF) compressed to 20 GPa.

    PubMed

    Chellappa, Raja S; Dattelbaum, Dana M; Coe, Joshua D; Velisavljevic, Nenad; Stevens, Lewis L; Liu, Zhenxian

    2014-08-01

    The room temperature stability of 3,3'-diamino-4,4'-azoxyfurazan (DAAF) has been investigated using synchrotron far-infrared, mid-infrared, Raman spectroscopy, and synchrotron X-ray diffraction (XRD) up to 20 GPa. The as-loaded DAAF samples exhibited subtle pressure-induced ordering phenomena (associated with positional disorder of the azoxy "O" atom) resulting in doubling of the a-axis, to form a superlattice similar to the low-temperature polymorph. Neither high pressure synchrotron XRD, nor high pressure infrared or Raman spectroscopies indicated the presence of structural phase transitions up to 20 GPa. Compression was accommodated in the unit cell by a reduction of the c-axis between the planar DAAF layers, distortion of the β-angle of the monoclinic lattice, and an increase in intermolecular hydrogen bonding. Changes in the ring and -NH2 deformation modes and increased intermolecular hydrogen bonding interactions with compression suggest molecular reorganizations and electronic transitions at ∼ 5 GPa and ∼ 10 GPa that are accompanied by a shifting of the absorption band edge into the visible. A fourth-order Birch-Murnaghan fit to the room temperature isotherm afforded an estimate of the zero-pressure isothermal bulk modulus, K0 = 12.4 ± 0.6 GPa and its pressure derivative K0' = 7.7 ± 0.3.

  14. A unique quinolineboronic acid-based supramolecular structure that relies on double intermolecular B-N bonds for self-assembly in solid state and in solution.

    PubMed

    Zhang, Yanling; Li, Minyong; Chandrasekaran, Sekar; Gao, Xingming; Fang, Xikui; Lee, Hsiau-Wei; Hardcastle, Kenneth; Yang, Jenny; Wang, Binghe

    2007-04-16

    The boronic acid functional group plays very important roles in sugar recognition, catalysis, organic synthesis, and supramolecular assembly. Therefore, understanding the unique properties of this functional group is very important. 8-Quinolineboronic acid (8-QBA) is found to be capable of self-assembling in solid state through a unique intermolecular B-N bond mechanism reinforced by intermolecular boronic anhydride formation, π-π stacking, and hydrogen bond formation. NMR NOE and diffusion studies indicate that intermolecular B-N interaction also exists in solution with 8-QBA. In contrast, a positional isomer of 8-QBA, 5-quinolineboronic acid (5-QBA) showed very different behaviors in crystal packing and in solution and therefore different supramolecular network. Understanding the structural features of this unique 8-QBA assembly could be very helpful for the future design of new sugar sensors, molecular catalysts, and supramolecular assemblies. PMID:18414645

  15. A unique quinolineboronic acid-based supramolecular structure that relies on double intermolecular B-N bonds for self-assembly in solid state and in solution

    PubMed Central

    Zhang, Yanling; Li, Minyong; Chandrasekaran, Sekar; Gao, Xingming; Fang, Xikui; Lee, Hsiau-Wei; Hardcastle, Kenneth; Yang, Jenny; Wang, Binghe

    2007-01-01

    The boronic acid functional group plays very important roles in sugar recognition, catalysis, organic synthesis, and supramolecular assembly. Therefore, understanding the unique properties of this functional group is very important. 8-Quinolineboronic acid (8-QBA) is found to be capable of self-assembling in solid state through a unique intermolecular B-N bond mechanism reinforced by intermolecular boronic anhydride formation, π-π stacking, and hydrogen bond formation. NMR NOE and diffusion studies indicate that intermolecular B-N interaction also exists in solution with 8-QBA. In contrast, a positional isomer of 8-QBA, 5-quinolineboronic acid (5-QBA) showed very different behaviors in crystal packing and in solution and therefore different supramolecular network. Understanding the structural features of this unique 8-QBA assembly could be very helpful for the future design of new sugar sensors, molecular catalysts, and supramolecular assemblies. PMID:18414645

  16. The Interaction between Steroid Hormones and Lipid Monolayers on Water

    PubMed Central

    Gershfeld, N. L.; Muramatsu, M.

    1971-01-01

    The interaction of progesterone, testosterone, androsterone, and etiocholanolone with insoluble lipid films (cholesterol and saturated hydrocarbons containing either alcohol, ester, acetamide, phosphate, amine, or carboxyl groups) was studied. In addition to surface pressure and surface potential measurements of the surface films, radioactive tracers were used to measure the concentration of adsorbed steroid in the lipid films. In general, steroids form mixed films with the insoluble lipid films. Compression of the insoluble lipid films to their most condensed state leads to complete ejection of adsorbed steroid from the surface in all cases except with the amine, for which a small amount of steroid is still retained in the surface. Interactions between the steroids and insoluble lipids are primarily due to van der Waals or dispersion forces; there were no significant contributions from dipole-dipole interactions (except possibly with the amine). Specific interactions between cholesterol and the soluble steroids were not observed. Evidence suggests that low steroid concentrations influence structure of lipid films by altering the hydration layer in the surface film. In contrast to a specific site of action, it is proposed that steroid hormones initiate structural changes in a variety of biological sites; this model of steroid action is consistent with the ubiquity of many steroid hormones. PMID:5120392

  17. Van der Waals interactions: evaluations by use of a statistical mechanical method.

    PubMed

    Høye, Johan S

    2011-10-01

    In this work the induced van der Waals interaction between a pair of neutral atoms or molecules is considered by use of a statistical mechanical method. With use of the Schrödinger equation this interaction can be obtained by standard quantum mechanical perturbation theory to second order. However, the latter is restricted to electrostatic interactions between dipole moments. So with radiating dipole-dipole interaction where retardation effects are important for large separations of the particles, other methods are needed, and the resulting induced interaction is the Casimir-Polder interaction usually obtained by field theory. It can also be evaluated, however, by a statistical mechanical method that utilizes the path integral representation. We here show explicitly by use of this method the equivalence of the Casimir-Polder interaction and the van der Waals interaction based upon the Schrödinger equation. The equivalence is to leading order for short separations where retardation effects can be neglected. In recent works [J. S. Høye, Physica A 389, 1380 (2010); Phys. Rev. E 81, 061114 (2010)], the Casimir-Polder or Casimir energy was added as a correction to calculations of systems like the electron clouds of molecules. The equivalence to van der Waals interactions indicates that the added Casimir energy will improve the accuracy of calculated molecular energies. Thus, we give numerical estimates of this energy including analysis and estimates for the uniform electron gas.

  18. Importance of the donor:fullerene intermolecular arrangement for high-efficiency organic photovoltaics.

    PubMed

    Graham, Kenneth R; Cabanetos, Clement; Jahnke, Justin P; Idso, Matthew N; El Labban, Abdulrahman; Ngongang Ndjawa, Guy O; Heumueller, Thomas; Vandewal, Koen; Salleo, Alberto; Chmelka, Bradley F; Amassian, Aram; Beaujuge, Pierre M; McGehee, Michael D

    2014-07-01

    The performance of organic photovoltaic (OPV) material systems are hypothesized to depend strongly on the intermolecular arrangements at the donor:fullerene interfaces. A review of some of the most efficient polymers utilized in polymer:fullerene PV devices, combined with an analysis of reported polymer donor materials wherein the same conjugated backbone was used with varying alkyl substituents, supports this hypothesis. Specifically, the literature shows that higher-performing donor-acceptor type polymers generally have acceptor moieties that are sterically accessible for interactions with the fullerene derivative, whereas the corresponding donor moieties tend to have branched alkyl substituents that sterically hinder interactions with the fullerene. To further explore the idea that the most beneficial polymer:fullerene arrangement involves the fullerene docking with the acceptor moiety, a family of benzo[1,2-b:4,5-b']dithiophene-thieno[3,4-c]pyrrole-4,6-dione polymers (PBDTTPD derivatives) was synthesized and tested in a variety of PV device types with vastly different aggregation states of the polymer. In agreement with our hypothesis, the PBDTTPD derivative with a more sterically accessible acceptor moiety and a more sterically hindered donor moiety shows the highest performance in bulk-heterojunction, bilayer, and low-polymer concentration PV devices where fullerene derivatives serve as the electron-accepting materials. Furthermore, external quantum efficiency measurements of the charge-transfer state and solid-state two-dimensional (2D) (13)C{(1)H} heteronuclear correlation (HETCOR) NMR analyses support that a specific polymer:fullerene arrangement is present for the highest performing PBDTTPD derivative, in which the fullerene is in closer proximity to the acceptor moiety of the polymer. This work demonstrates that the polymer:fullerene arrangement and resulting intermolecular interactions may be key factors in determining the performance of OPV material

  19. Combination Bands of the Nonpolar OCS Dimer Involving Intermolecular Modes

    NASA Astrophysics Data System (ADS)

    Rezaei, M.; Oliaee, J. Norooz; Moazzen-Ahmadi, N.; McKellar, A. R. W.

    2012-06-01

    Spectra of the nonpolar carbonyl sulfide in the region of the OCS ν_1 fundamental band were observed in a supersonic slit-jet apparatus. The expansion gas was probed using radiation from a tunable diode laser employed in a rapid-scan signal averaging mode. Three bands centered at 2085.906, 2103.504, and 2114.979 cm-1 were observed and anlysed. The rotational assignment and fitting of the bands were made by fixing the lower state parameters to those for the ground state of nonpolar (OCS)_2, thus confirming that they were indeed combination bands of the of the most stable isomer of OCS dimer. The band centered at 2085.906 cm-1 is a combination of the forbidden A_g intramolecular mode plus the geared bend intermolecular mode and that centered at 2114.979 cm-1 is a combination of the allowed B_u intramolecular mode plus the intermolecular van der Waals stretch. The combination at 2103.504 cm-1 can be assigned as a band whose upper state involves four quanta of the intramolecular bend or the B_u intramolecular mode plus two quanta of the intermolecular torsional mode. Isotopic work is needed to conclusively identify the vibrational assignment of this band. Our experimental frequencies for the geared bend and van der Waals modes are in good agreement with a recent high level ab initio calculation by Brown et al. J. Brown, Xiao-Gang Wang, T. Carrington Jr. and Richard Dawes, Journal of Chemical Physics, submitted.

  20. Intermolecular detergent-membrane protein noes for the characterization of the dynamics of membrane protein-detergent complexes.

    PubMed

    Eichmann, Cédric; Orts, Julien; Tzitzilonis, Christos; Vögeli, Beat; Smrt, Sean; Lorieau, Justin; Riek, Roland

    2014-12-11

    The interaction between membrane proteins and lipids or lipid mimetics such as detergents is key for the three-dimensional structure and dynamics of membrane proteins. In NMR-based structural studies of membrane proteins, qualitative analysis of intermolecular nuclear Overhauser enhancements (NOEs) or paramagnetic resonance enhancement are used in general to identify the transmembrane segments of a membrane protein. Here, we employed a quantitative characterization of intermolecular NOEs between (1)H of the detergent and (1)H(N) of (2)H-perdeuterated, (15)N-labeled α-helical membrane protein-detergent complexes following the exact NOE (eNOE) approach. Structural considerations suggest that these intermolecular NOEs should show a helical-wheel-type behavior along a transmembrane helix or a membrane-attached helix within a membrane protein as experimentally demonstrated for the complete influenza hemagglutinin fusion domain HAfp23. The partial absence of such a NOE pattern along the amino acid sequence as shown for a truncated variant of HAfp23 and for the Escherichia coli inner membrane protein YidH indicates the presence of large tertiary structure fluctuations such as an opening between helices or the presence of large rotational dynamics of the helices. Detergent-protein NOEs thus appear to be a straightforward probe for a qualitative characterization of structural and dynamical properties of membrane proteins embedded in detergent micelles.

  1. Nonadditive intermolecular forces from the spectroscopy of van der Waals trimers: A theoretical study of Ar[sub 2]-HF

    SciTech Connect

    Ernesti, A.; Hutson, J.M. )

    1995-01-01

    Calculations of vibrational energies and rotational constants are carried out for the van der Waals trimer Ar[sub 2]-HF. The calculations include all five intermolecular degrees of freedom. The different intramolecular vibrational states [ital v] of the HF molecule are separated out adiabatically, so that the calculations are carried out on effective intermolecular potentials for each HF vibrational state separately. Calculations are performed both on pairwise-additive potentials, derived from the well-known Ar-Ar and Ar-HF potentials, and on nonadditive potentials, incorporating various different contributions to the three-body forces. The results are compared with experimental results from high-resolution spectroscopy, and provide detailed information on the anisotropy of the nonadditive intermolecular forces. As in previous work on Ar[sub 2]-HCl, it is found that a very important nonadditive term arises from the interaction between the permanent multipoles of the HF molecule and the exchange quadrupole caused by distortion of the two Ar atoms as they overlap. An improved model of this term is described.

  2. Permutationally invariant fitting of intermolecular potential energy surfaces: A case study of the Ne-C2H2 system

    NASA Astrophysics Data System (ADS)

    Li, Jun; Guo, Hua

    2015-12-01

    The permutation invariant polynomial-neural network (PIP-NN) approach is extended to fit intermolecular potential energy surfaces (PESs). Specifically, three PESs were constructed for the Ne-C2H2 system. PES1 is a full nine-dimensional PIP-NN PES directly fitted to ˜42 000 ab initio points calculated at the level of CCSD(T)-F12a/cc-pCVTZ-F12, while the other two consist of the six-dimensional PES for C2H2 [H. Han, A. Li, and H. Guo, J. Chem. Phys. 141, 244312 (2014)] and an intermolecular PES represented in either the PIP (PES2) or PIP-NN (PES3) form. The comparison of fitting errors and their distributions, one-dimensional cuts and two-dimensional contour plots of the PESs, as well as classical trajectory collisional energy transfer dynamics calculations shows that the three PESs are very similar. We conclude that full-dimensional PESs for non-covalent interacting molecular systems can be constructed efficiently and accurately by the PIP-NN approach for both the constituent molecules and intermolecular parts.

  3. Photon Antibunching in Complex Intermolecular Fluorescence Quenching Kinetics.

    PubMed

    Sharma, Arjun; Enderlein, Jörg; Kumbhakar, Manoj

    2016-08-18

    We present a novel fluorescence spectroscopic method, which combines fluorescence antibunching, time-correlated single-photon counting (TCSPC), and steady-state emission spectroscopy, to study chemical reactions at the single molecule level. We exemplify our method on investigating intermolecular fluorescence quenching of Rhodamine110 by aniline. We demonstrate that the combination of measurements of fluorescence antibunching, fluorescence lifetime, and fluorescence steady state intensity, captures the full picture of the complex quenching kinetics, which involves static and dynamics quenching, and which cannot be seen by steady-state or lifetime measurements alone. PMID:27468007

  4. Structurally Defined Molecular Hypervalent Iodine Catalysts for Intermolecular Enantioselective Reactions

    PubMed Central

    Haubenreisser, Stefan; Wöste, Thorsten H.; Martínez, Claudio; Ishihara, Kazuaki

    2015-01-01

    Abstract Molecular structures of the most prominent chiral non‐racemic hypervalent iodine(III) reagents to date have been elucidated for the first time. The formation of a chirally induced supramolecular scaffold based on a selective hydrogen‐bonding arrangement provides an explanation for the consistently high asymmetric induction with these reagents. As an exploratory example, their scope as chiral catalysts was extended to the enantioselective dioxygenation of alkenes. A series of terminal styrenes are converted into the corresponding vicinal diacetoxylation products under mild conditions and provide the proof of principle for a truly intermolecular asymmetric alkene oxidation under iodine(I/III) catalysis. PMID:26596513

  5. Effects of dipolar interactions in magnetic nanoparticle systems

    NASA Astrophysics Data System (ADS)

    Ruta, Sergiu; Hovorka, Ondrej; Chantrell, Roy

    2014-03-01

    Understanding the effects of magnetostatic interactions in magnetic nanoparticle systems is of importance in magnetic recording, biomedical applications such as in hyperthermia cancer treatment, or for sensing approaches in biology and chemistry, for example. In this talk we discuss the macroscopic and microscopic effects of dipole-dipole interactions in three-dimensional assemblies of magnetic nanoparticles in various spatial arrangements, including the BCC, FCC, or randomized lattices. Our study is based on the kinetic Monte-Carlo modelling and concentrates on exploring the effect of the particle arrangement, distributions of particle volumes and anisotropy axes, and the role of thermal effects on the overall behaviour of hysteresis loops, ZFC/FC temperature scans and the magnetization decay data computed during the relaxation to equilibrium. In the case of the FCC lattice we find a counter-intuitive effect where increasing the interaction strength enhances/suppresses the hysteresis loop coercivity at high/low temperatures. The analysis of the domain pattern formation and pair correlation functions suggests for the observed behaviour to be a result of the phenomenon of frustration. We also discuss the possibility of observing the super-ferromagnetic phases on similar syste

  6. Quantum dynamics and topological excitations in interacting dipolar particles

    NASA Astrophysics Data System (ADS)

    Rey, Ana

    2016-05-01

    Dipole-dipole interactions, long-range and anisotropic interactions that arise due to the virtual exchange of photons, are of fundamental importance in optical physics, and are enabling a range of new quantum technologies including quantum networks and optical lattice atomic clocks. In this talk I will first discuss how arrays of dipolar particles with a simple J = 0- J = 1 internal level structure can naturally host topological and chiral excitations including Weyl quasi-particles. Weyl fermions were first predicted to exist in the context of high energy physics but only recently have been observed in solid state systems. I will discuss a proposal of using Mott insulators of Sr atoms to observe and probe the Weyl excitation spectrum and its non-trivial chirality. Finally I will report on a recent experiment done at JILA which validates the underlying microscopic model that predicts the existence of these excitations. The experiment measured the collective emission from a coherently driven gas of ultracold 88 Sr atoms and observed a highly directional and anisotropic emission intensity and a substantial broadening of the atomic spectral lines. All of the measurements are well reproduced by the theoretical model. These investigations open the door for the exploration of novel quantum many-body systems involving strongly interacting atoms and photons, and are useful guides for further developments of optical atomic clocks and other applications involving dense atomic ensembles. AFOSR, MURI-AFOSR, ARO,NSF-PHY-1521080, JILA-NSF-PFC-1125844.

  7. CO2 Dimer: Four Intermolecular Modes Observed via Infrared Combination Bands

    NASA Astrophysics Data System (ADS)

    Norooz Oliaee, Jalal; Dehghany, Mehdi; Rezaei, Mojtaba; McKellar, Bob; Moazzen-Ahmadi, Nasser

    2016-06-01

    Study of the carbon dioxide dimer has a long history, but there is only one previous observation of an intermolecular vibration [1]. Here we analyze four new combination bands of (CO2)2 in the CO2 νb{3} region (˜2350 wn), observed using tunable infrared lasers and a pulsed slit-jet supersonic expansion. The previous combination band at 2382.2 wn was simple to assign [1]. A much more complicated band (˜2370 wn) turns out to involve two upper states, one at 2369.0 wn (Bu symmetry), and the other at 2370.0 wn (Au). The spectrum can be nicely fit by including the Coriolis interactions between these states. Another complicated band around 2443 wn also involves two nearby upper states which are highly perturbed in so-far unexplained ways (possibly related to tunneling shifts). With the help of new ab initio calculations [2], we assign the results as follows. The 2369.0 wn band is the combination of the forbidden Ag intramolecular fundamental (probably [1] at about 2346.76 wn) and the intermolecular geared bend (Bu). The 2370.0 wn band is the combination of the same Ag fundamental and the intermolecular torsion (Au). This gives about 22.3 and 23.2 wn for the geared bend and torsion. The previous 2382.2 wn band [1] is the allowed Bu fundamental (2350.771 wn) plus two quanta of the geared bend (Bu), giving 31.509 wn for this overtone. The highly perturbed 2442.7 wn band is the Bu fundamental plus the antigeared bend (Ag), giving about 91.9 wn for the antigeared bend. Finally, the perturbed 2442.1 wn band is due to an unknown combination of modes which gains intensity from the antigeared bend by a Fermi-type interaction. Calculated values [2] are: 20.64 (geared bend), 24.44 (torsion), 32.34 (geared bend overtone), and 92.30 wn (antigeared bend), in good agreement with experiment. \\vskip 0.2 truecm [1] M. Dehghany, A.R.W. McKellar, Mahin Afshari, and N. Moazzen-Ahmadi, Mol. Phys. 108, 2195 (2010). [2] X.-G. Wang, T. Carrington, Jr., and R. Dawes, private communication.

  8. Multi-curvature liquid meniscus in a nanochannel: evidence of interplay between intermolecular and surface forces.

    PubMed

    Kim, Pilnam; Kim, Ho-Young; Kim, Jae Kwan; Reiter, Günter; Suh, Kahp Y

    2009-11-21

    We examined the formation of a multiply curved meniscus inside rectangular nanochannels, whose width ranges from 50 to 800 nm at a constant height of 200 nm. When the channel width is smaller than approximately 400 nm under partial wetting conditions, a distinct multi-curvature meniscus was observed at the advancing front with an edge disjoined from the wall. In contrast, a typical pre-wetting film was observed at the front regardless of the channel size for complete wetting conditions. Our theoretical analysis demonstrated that the multi-curvature meniscus is generated from the increased contribution of an extra pressure due to intermolecular interactions near the wall. In particular, a plug-like meniscus profile was observed at the advancing liquid front for the 50 nm wide channel owing to an overlap between convex curvatures at the channel walls. Finally, we showed that the filling velocity of liquid can be decreased by decreasing the channel size due to the reduced wettability.

  9. Spectroscopic determination of intermolecular potentials of gas laser components and of major atmospheric constituents. Final report

    SciTech Connect

    Klemperer, W.

    1982-01-01

    A systematic study of the structure of weakly bound complexes of hydrogen fluoride has been accomplished. This research provides a broad account of the interaction of hydrogen fluoride with a variety of laser components and atmospheric constituents. Precision structures are now available for the species ArHF, CO/sub 2/HF, N/sub 2/OHF and SCOHF as a result of the present research program. In addition, precision structures have been obtained for ArCO2 and ArN/sub 2/0. This research provides the basic information necessary for reliable modelling of intermolecular forces between HF and Ar, CO/sub 2/, N/sub 2/0 and OCS as well as between Ar and CO/sub 2/ and N/sub 2/0.

  10. Intramolecular and intermolecular vibrational energy relaxation of CH 2I 2 dissolved in supercritical fluid

    NASA Astrophysics Data System (ADS)

    Sekiguchi, K.; Shimojima, A.; Kajimoto, O.

    2002-04-01

    A pump-probe experiment was performed to examine vibrational population relaxation of diiodomethane (CH 2I 2) molecule dissolved in supercritical CO 2. Using an apparatus with femtosecond time resolution, we observed the contributions of intramolecular vibrational energy redistribution (IVR) and intermolecular vibrational energy transfer (VET) separately. IVR and VET rates were measured with varying solvent densities at a constant temperature. It is shown that the IVR rate is not density dependent while the VET rate increases with increasing density from 0.4 to 0.8 g cm-3. This observation suggests that the rate of the VET process is determined by solute-solvent collisions whereas the IVR rate is not much affected by solute-solvent interaction.

  11. On the influence of the intermolecular potential on the wetting properties of water on silica surfaces

    NASA Astrophysics Data System (ADS)

    Pafong, E.; Geske, J.; Drossel, B.

    2016-09-01

    We study the wetting properties of water on silica surfaces using molecular dynamics (MD) simulations. To describe the intermolecular interaction between water and silica atoms, two types of interaction potential models are used: the standard BródkA and Zerda (BZ) model and the Gulmen and Thompson (GT) model. We perform an in-depth analysis of the influence of the choice of the potential on the arrangement of the water molecules in partially filled pores and on top of silica slabs. We find that at moderate pore filling ratios, the GT silica surface is completely wetted by water molecules, which agrees well with experimental findings, while the commonly used BZ surface is less hydrophilic and is only partially wetted. We interpret our simulation results using an analytical calculation of the phase diagram of water in partially filled pores. Moreover, an evaluation of the contact angle of the water droplet on top of the silica slab reveals that the interaction becomes more hydrophilic with increasing slab thickness and saturates around 2.5-3 nm, in agreement with the experimentally found value. Our analysis also shows that the hydroaffinity of the surface is mainly determined by the electrostatic interaction, but the van der Waals interaction nevertheless is strong enough that it can turn a hydrophobic surface into a hydrophilic surface.

  12. Intermolecular Hybridization Creating Nanopore Orbital in a Supramolecular Hydrocarbon Sheet.

    PubMed

    Zhang, Yi-Qi; Björk, Jonas; Barth, Johannes V; Klappenberger, Florian

    2016-07-13

    Molecular orbital engineering is a key ingredient for the design of organic devices. Intermolecular hybridization promises efficient charge carrier transport but usually requires dense packing for significant wave function overlap. Here we use scanning tunneling spectroscopy to spatially resolve the electronic structure of a surface-confined nanoporous supramolecular sheet of a prototypical hydrocarbon compound featuring terminal alkyne (-CCH) groups. Surprisingly, localized nanopore orbitals are observed, with their electron density centered in the cavities surrounded by the functional moieties. Density functional theory calculations reveal that these new electronic states originate from the intermolecular hybridization of six in-plane π-orbitals of the carbon-carbon triple bonds, exhibiting significant electronic splitting and an energy downshift of approximately 1 eV. Importantly, these nanopore states are distinct from previously reported interfacial states. We unravel the underlying connection between the formation of nanopore orbital and geometric arrangements of functional groups, thus demonstrating the generality of applying related orbital engineering concepts in various types of porous organic structures.

  13. Supramolecular interactions in the solid state

    PubMed Central

    Resnati, Giuseppe; Boldyreva, Elena; Bombicz, Petra; Kawano, Masaki

    2015-01-01

    In the last few decades, supramolecular chemistry has been at the forefront of chemical research, with the aim of understanding chemistry beyond the covalent bond. Since the long-range periodicity in crystals is a product of the directionally specific short-range intermolecular interactions that are responsible for molecular assembly, analysis of crystalline solids provides a primary means to investigate intermolecular interactions and recognition phenomena. This article discusses some areas of contemporary research involving supramolecular interactions in the solid state. The topics covered are: (1) an overview and historical review of halogen bonding; (2) exploring non-ambient conditions to investigate intermolecular interactions in crystals; (3) the role of intermolecular interactions in morphotropy, being the link between isostructurality and polymorphism; (4) strategic realisation of kinetic coordination polymers by exploiting multi-interactive linker molecules. The discussion touches upon many of the prerequisites for controlled preparation and characterization of crystalline materials. PMID:26594375

  14. Supramolecular interactions in the solid state.

    PubMed

    Resnati, Giuseppe; Boldyreva, Elena; Bombicz, Petra; Kawano, Masaki

    2015-11-01

    In the last few decades, supramolecular chemistry has been at the forefront of chemical research, with the aim of understanding chemistry beyond the covalent bond. Since the long-range periodicity in crystals is a product of the directionally specific short-range intermolecular interactions that are responsible for molecular assembly, analysis of crystalline solids provides a primary means to investigate intermolecular interactions and recognition phenomena. This article discusses some areas of contemporary research involving supramolecular interactions in the solid state. The topics covered are: (1) an overview and historical review of halogen bonding; (2) exploring non-ambient conditions to investigate intermolecular interactions in crystals; (3) the role of intermolecular interactions in morphotropy, being the link between isostructurality and polymorphism; (4) strategic realisation of kinetic coordination polymers by exploiting multi-interactive linker molecules. The discussion touches upon many of the prerequisites for controlled preparation and characterization of crystalline materials.

  15. Photoinduced intermolecular cross-linking of gas phase triacylglycerol lipid ions.

    PubMed

    Nie, Shuai; Pham, Huong T; Blanksby, Stephen J; Reid, Gavin E

    2015-01-01

    ,4-substituted) was found to significantly affect the distribution of these two types of product ions. Importantly, owing to the observed propensity for cross-linking to occur via H-abstraction-initiated processes, this novel gas-phase cross-linking reaction provides a convenient method to link two molecules covalently without the requirement of any specific functional group, and therefore could be applied to examine the gas-phase intermolecular interactions and cross-linking of a wide range of biomolecular classes. PMID:26307708

  16. Supramolecular step in design of nonlinear optical materials: Effect of π...π stacking aggregation on hyperpolarizability.

    PubMed

    Suponitsky, Kyrill Yu; Masunov, Artëm E

    2013-09-01

    Theoretical estimation of nonlinear optical (NLO) properties is an important step in systematic search for optoelectronic materials. Density functional theory methods are often used to predict first molecular hyperpolarizability for compounds in advance of their synthesis. However, design of molecular NLO materials require an estimation of the bulk properties, which are often approximated as additive superposition of molecular tensors. It is therefore important to evaluate the accuracy of this additive approximation and estimate the extent by which intermolecular interactions influence the first molecular hyperpolarizability β. Here we focused on the stacking aggregates, including up to 12 model molecules (pNA and ANS) and observed enhancement and suppression of molecular hyperpolarizability relative to the additive sum. We found that degree of nonadditivity depends on relative orientation of the molecular dipole moments and does not correlate with intermolecular interaction energy. Frenkel exciton model, based on dipole-dipole approximation can be used for qualitative prediction of intermolecular effects. We report on inaccuracy of this model for the molecules with long π-systems that are significantly shifted relative to each other, when dipole-dipole approximation becomes inaccurate. To obtain more detailed information on the effect of intermolecular interactions on β we proposed electrostatic approach which accounts for the mutual polarization of the molecules by each other. We measure the induced polarization of each molecule in the aggregate by the charge of its donor (or acceptor) group. The proposed approach demonstrates linear correlation β(FF) vs β(elm) (estimated by finite field theory and electrostatic model, respectively) and allows decomposition of the hyperpolarizability for a molecular aggregate into separate molecular contributions. We used this decomposition to analyze the reasons of deviation of aggregate β from additivity, as well as the

  17. Supramolecular step in design of nonlinear optical materials: Effect of π…π stacking aggregation on hyperpolarizability

    NASA Astrophysics Data System (ADS)

    Suponitsky, Kyrill Yu; Masunov, Artëm E.

    2013-09-01

    Theoretical estimation of nonlinear optical (NLO) properties is an important step in systematic search for optoelectronic materials. Density functional theory methods are often used to predict first molecular hyperpolarizability for compounds in advance of their synthesis. However, design of molecular NLO materials require an estimation of the bulk properties, which are often approximated as additive superposition of molecular tensors. It is therefore important to evaluate the accuracy of this additive approximation and estimate the extent by which intermolecular interactions influence the first molecular hyperpolarizability β. Here we focused on the stacking aggregates, including up to 12 model molecules (pNA and ANS) and observed enhancement and suppression of molecular hyperpolarizability relative to the additive sum. We found that degree of nonadditivity depends on relative orientation of the molecular dipole moments and does not correlate with intermolecular interaction energy. Frenkel exciton model, based on dipole-dipole approximation can be used for qualitative prediction of intermolecular effects. We report on inaccuracy of this model for the molecules with long π-systems that are significantly shifted relative to each other, when dipole-dipole approximation becomes inaccurate. To obtain more detailed information on the effect of intermolecular interactions on β we proposed electrostatic approach which accounts for the mutual polarization of the molecules by each other. We measure the induced polarization of each molecule in the aggregate by the charge of its donor (or acceptor) group. The proposed approach demonstrates linear correlation βFF vs βelm (estimated by finite field theory and electrostatic model, respectively) and allows decomposition of the hyperpolarizability for a molecular aggregate into separate molecular contributions. We used this decomposition to analyze the reasons of deviation of aggregate β from additivity, as well as the

  18. Shear viscosity of quasi-2D dipolar Bose-Fermi mixtures with long-range 1/r interactions

    NASA Astrophysics Data System (ADS)

    Darsheshdar, E.; Yavari, H.; Moniri, S. M.

    2016-05-01

    Low-temperature shear viscosity of a spin polarized two-component quasi-2D dipolar Fermi gas with long-range 1/ r interaction in the Bose-Einstein condensation (BEC) limit, where the system can be considered as dimers and the unpaired fermions, is calculated by means of the Kubo formalism. By taking into account the dimer-atom, dimer-dimer, and atom-atom interactions in the self-energies the viscous relaxation time (τ_{η}= (τ_{DA}^{-1}+τ_{DD}^{-1}+ τ_{AA}^{-1})^{-1}) is determined. Since the relaxation rates due to these interactions τ_{DA}^{-1} , τ_{DD}^{ -1} and τ_{AA}^{-1} varies, respectively, as T , T2 , and T in the low-temperature limit T→0 , the dimer-atom and atom-atom interactions play the dominant role to the shear viscosity and the shear viscosity varies as T^{-1} . For small polarization the effect of dimer-dimer interaction is important (τ_{DA},τ_{AA}≫τ_{DD}) , and the shear viscosity changes as the standard T^{-2} behviour. In this case, the temperature behavior of the dimer relaxation rate unaffected by 1/ r interaction and the contact, dipole-dipole, and 1/ r interactions play the same role in the temperature dependence of the shear viscosity. Our results have important consequences for developing experiments and theoretical researches on the transport properties of ultracold gases with repulsive or attractive long range 1/ r interaction.

  19. The Origins of - and Inter-Molecular Vibrational Couplings: a Case Study of H_2O-Ar on Full and Reduced-Dimensional Potential Energy Surface

    NASA Astrophysics Data System (ADS)

    Hou, Dan; Ma, Yong-Tao; Zhang, Xiao-Long; Li, Hui

    2016-06-01

    The origin and strength of intra- and inter-molecular vibrational coupling is difficult to probe by direct experimental observations. However, explicitly including or not including some specific intramolecular vibrational modes to study intermolecular interaction provides a precise theoretical way to examine the effects of anharmonic coupling between modes. In this work, a full-dimension intra- and inter-molecular ab initio potential energy surface (PES) for H_2O-Ar, which explicitly incorporates interdependence on the intramolecular normal-mode coordinates of the H_2O monomer, has been calculated. In addition, four analytic vibrational-quantum-state-specific PESs are obtained by least-squares fitting vibrationally averaged interaction energies for the (νb{1},νb{2},νb{3})=(0,0,0),(0,0,1),(1,0,0),(0,1,0) states of H_2O to the three-dimensional Morse/long-range potential function. The resulting vibrationally averaged PESs provide good representations of the experimental infrared data, with RMS discrepancies smaller than 0.02 wn for all three rotational branches of the asymmetric stretch fundamental transitions. The infrared band origin shifts associated with three fundamental bands of H_2O in H_2O-Ar complex are predicted for the first time and are found to be in good agreement with the (extrapolated) experimental values. Upon introduction of additional intramolecular degrees of freedom into the intermolecular potential energy surface, there is clear spectroscopic evidence of intra- and intermolecular vibrational couplings. J. Chem. Phys., 144, 014301 (2016)

  20. Intermolecular-charge-transfer-induced fluorescence quenching in protic solvent

    NASA Astrophysics Data System (ADS)

    Lin, Tao; Liu, Xiaojun; Lou, Zhidong; Hou, Yanbing; Teng, Feng

    2016-11-01

    The fluorescence quenching of fluorenone in protic solvent has been extensively investigated, and the intermolecular hydrogen bond was found to play a crucial role. Unfortunately, the mechanism at atomic level is still not clear. In the present work, we theoretically put forward the charge transfer along the hydrogen bond in the excited states. The vertical excitation energies of the fluorenone-methanol complex as well as the potential energy profiles and surfaces of the vertical excited states and charge transfer states were calculated by using the ab initio electronic-structure methods. The photochemical reactions occurring in the diverse charge transfer states were compared and their decisiveness to the fluorescence quenching was discussed in the paper.

  1. Dissecting Anion Effects in Gold(I)-Catalyzed Intermolecular Cycloadditions

    PubMed Central

    Homs, Anna; Obradors, Carla; Lebœuf, David; Echavarren, Antonio M

    2014-01-01

    From a series of gold complexes of the type [t-BuXPhosAu(MeCN)]X (X=anion), the best results in intermolecular gold(I)-catalyzed reactions are obtained with the complex with the bulky and soft anion BAr4F− [BAr4F−=3,5-bis(trifluoromethyl)phenylborate] improving the original protocols by 10–30% yield. A kinetic study on the [2+2] cycloaddition reaction of alkynes with alkenes is consistent with an scenario in which the rate-determining step is the ligand exchange to generate the (η2-phenylacetylene)gold(I) complex. We have studied in detail the subtle differences that can be attributed to the anion in this formation, which result in a substantial decrease in the formation of unproductive σ,π-(alkyne)digold(I) complexes by destabilizing the conjugated acid formed. PMID:26190958

  2. Transetherification on Polyols by Intra- and Intermolecular Nucleophilic Substitutions

    PubMed Central

    Muraoka, Takahiro; Adachi, Kota; Chowdhury, Rainy; Kinbara, Kazushi

    2014-01-01

    Transetherification on polyols involving intra- and intermolecular nucleophilic substitutions is reported. Di- or trialkoxide formation of propane-1,3-diol or 2-(hydroxymethyl)propane-1,3-diol derivatives by NaH triggers the reaction via oxetanes formation, where the order to add NaH and a polyol significantly influences the yields of products. It was demonstrated that the protective group on the pentaerythritol skeleton is apparently transferred to the hydrophilic and hydrophobic chain molecules bearing a leaving group in one-step, and a protective group conversion from tosyl to benzyl was successful using a benzyl-appending triol to afford a desired product in 67% yield. PMID:24663293

  3. Molecular simulation of fluids with non-identical intermolecular potentials: Thermodynamic properties of 10-5 + 12-6 Mie potential binary mixtures

    SciTech Connect

    Stiegler, Thomas; Sadus, Richard J.

    2015-02-28

    General methods for combining interactions between particles characterised by non-identical intermolecular potentials are investigated. The combination methods are tested by performing molecular dynamics simulations to determine the pressure, energy, isochoric and isobaric heat capacities, thermal expansion coefficient, isothermal compressibility, Joule-Thomson coefficient, and speed of sound of 10-5 + 12-6 Mie potential binary mixtures. In addition to the two non-identical Mie potentials, mixtures are also studied with non-identical intermolecular parameters. The combination methods are compared with results obtained by simply averaging the Mie exponents. When either the energy or size parameters are non-identical, very significant differences emerge in the thermodynamic properties predicted by the alternative combination methods. The isobaric heat capacity is the thermodynamic property that is most affected by the relative magnitude of the intermolecular potential parameters and the method for combining non-identical potentials. Either the arithmetic or geometric combination of potentials provides a simple and effective way of performing simulations involving mixtures of components characterised by non-identical intermolecular potentials, which is independent of their functional form.

  4. Molecular simulation of fluids with non-identical intermolecular potentials: Thermodynamic properties of 10-5 + 12-6 Mie potential binary mixtures

    NASA Astrophysics Data System (ADS)

    Stiegler, Thomas; Sadus, Richard J.

    2015-02-01

    General methods for combining interactions between particles characterised by non-identical intermolecular potentials are investigated. The combination methods are tested by performing molecular dynamics simulations to determine the pressure, energy, isochoric and isobaric heat capacities, thermal expansion coefficient, isothermal compressibility, Joule-Thomson coefficient, and speed of sound of 10-5 + 12-6 Mie potential binary mixtures. In addition to the two non-identical Mie potentials, mixtures are also studied with non-identical intermolecular parameters. The combination methods are compared with results obtained by simply averaging the Mie exponents. When either the energy or size parameters are non-identical, very significant differences emerge in the thermodynamic properties predicted by the alternative combination methods. The isobaric heat capacity is the thermodynamic property that is most affected by the relative magnitude of the intermolecular potential parameters and the method for combining non-identical potentials. Either the arithmetic or geometric combination of potentials provides a simple and effective way of performing simulations involving mixtures of components characterised by non-identical intermolecular potentials, which is independent of their functional form.

  5. Understanding antibody-antigen associations by molecular dynamics simulations: detection of important intra- and inter-molecular salt bridges.

    PubMed

    Sinha, Neeti; Li, Yili; Lipschultz, Claudia A; Smith-Gill, Sandra J

    2007-01-01

    1 NSec molecular dynamics (MD) simulation of anti-hen egg white antibody, HyHEL63 (HH63), complexed with HEL reveals important molecular interactions, not revealed in its X-ray crystal structure. These molecular interactions were predicted to be critical for the complex formation, based on structure-function studies of this complex and 3-other anti-HEL antibodies, HH8, HH10 and HH26, HEL complexes. All four antibodies belong to the same structural family, referred to here as HH10 family. Ala scanning results show that they recognize 'coincident epitopes'. 1 NSec explicit, with periodic boundary condition, MD simulation of HH63- HEL reveals the presence of functionally important saltbridges. Around 200 ps in vacuo and an additional 20 ps explicit simulation agree with the observations from 1 Nsec simulation. Intra-molecular salt-bridges predicted to play significant roles in the complex formation, were revealed during MD simulation. A very stabilizing saltbridge network, and another intra-molecular salt-bridge, at the binding site of HEL, revealed during the MD simulation, is proposed to predipose binding site geometry for specific binding. All the revealed saltbridges are present in one or more of the other three complexes and/or involve \\"hot-spot\\" epitope and paratope residues. Most of these charged epitope residues make large contribution to the binding free energy. The "hot spot" epitope residue Lys97Y, which significantly contributes to the free energy of binding in all the complexes, forms an intermolecular salt-bridge in several MD conformers. Our earlier computations have shown that this inter-molecular salt-bridge plays a significant role in determining specificity and flexibility of binding in the HH8-HEL and HH26-HEL complexes. Using a robust criterion of salt-bridge detection, this intermolecular salt-bridge was detected in the native structures of the HH8-HEL and HH26-HEL complexes, but was not revealed in the crystal structure of HH63-HEL complex

  6. Ground state analytical ab initio intermolecular potential for the Cl{sub 2}-water system

    SciTech Connect

    Hormain, Laureline; Monnerville, Maurice Toubin, Céline; Duflot, Denis; Pouilly, Brigitte; Briquez, Stéphane; Bernal-Uruchurtu, Margarita I.; Hernández-Lamoneda, Ramón

    2015-04-14

    The chlorine/water interface is of crucial importance in the context of atmospheric chemistry. Modeling the structure and dynamics at this interface requires an accurate description of the interaction potential energy surfaces. We propose here an analytical intermolecular potential that reproduces the interaction between the Cl{sub 2} molecule and a water molecule. Our functional form is fitted to a set of high level ab initio data using the coupled-cluster single double (triple)/aug-cc-p-VTZ level of electronic structure theory for the Cl{sub 2} − H{sub 2}O complex. The potential fitted to reproduce the three minima structures of 1:1 complex is validated by the comparison of ab initio results of Cl{sub 2} interacting with an increasing number of water molecules. Finally, the model potential is used to study the physisorption of Cl{sub 2} on a perfectly ordered hexagonal ice slab. The calculated adsorption energy, in the range 0.27 eV, shows a good agreement with previous experimental results.

  7. Meeting the Challenge of Intermolecular Gold(I)-Catalyzed Cycloadditions of Alkynes and Allenes

    PubMed Central

    Muratore, Michael E; Homs, Anna; Obradors, Carla; Echavarren, Antonio M

    2014-01-01

    The development of gold(I)-catalyzed intermolecular carbo- and hetero-cycloadditions of alkynes and allenes has been more challenging than their intramolecular counterparts. Here we review, with a mechanistic perspective, the most fundamental intermolecular cycloadditions of alkynes and allenes with alkenes. PMID:25048645

  8. Strong orbital interaction in a weak CH-π hydrogen bonding system.

    PubMed

    Li, Jianfu; Zhang, Rui-Qin

    2016-03-01

    For the first time, the intermolecular orbital interaction between benzene and methane in the benzene-methane complex, a representative of weak interaction system, has been studied by us using ab initio calculations based on different methods and basis sets. Our results demonstrate obvious intermolecular orbital interaction between benzene and methane involving orbital overlaps including both occupied and unoccupied orbitals. Similar to interatomic orbital interaction, the intermolecular interaction of orbitals forms "bonding" and "antibonding" orbitals. In the interaction between occupied orbitals, the total energy of the complex increases because of the occupation of the antibonding orbital. The existence of the CH-π hydrogen bond between benzene and methane causes a decrease in rest energy level, leading to at least -1.51 kcal/mol intermolecular interaction energy. Our finding extends the concept of orbital interaction from the intramolecular to the intermolecular regime and gives a reliable explanation of the deep orbital reformation in the benzene-methane complex.

  9. Role of the Strength of Drug-Polymer Interactions on the Molecular Mobility and Crystallization Inhibition in Ketoconazole Solid Dispersions.

    PubMed

    Mistry, Pinal; Mohapatra, Sarat; Gopinath, Tata; Vogt, Frederick G; Suryanarayanan, Raj

    2015-09-01

    The effects of specific drug-polymer interactions (ionic or hydrogen-bonding) on the molecular mobility of model amorphous solid dispersions (ASDs) were investigated. ASDs of ketoconazole (KTZ), a weakly basic drug, with each of poly(acrylic acid) (PAA), poly(2-hydroxyethyl methacrylate) (PHEMA), and polyvinylpyrrolidone (PVP) were prepared. Drug-polymer interactions in the ASDs were evaluated by infrared and solid-state NMR, the molecular mobility quantified by dielectric spectroscopy, and crystallization onset monitored by differential scanning calorimetry (DSC) and variable temperature X-ray diffractometry (VTXRD). KTZ likely exhibited ionic interactions with PAA, hydrogen-bonding with PHEMA, and weaker dipole-dipole interactions with PVP. On the basis of dielectric spectroscopy, the α-relaxation times of the ASDs followed the order: PAA > PHEMA > PVP. In addition, the presence of ionic interactions also translated to a dramatic and disproportionate decrease in mobility as a function of polymer concentration. On the basis of both DSC and VTXRD, an increase in strength of interaction translated to higher crystallization onset temperature and a decrease in extent of crystallization. Stronger drug-polymer interactions, by reducing the molecular mobility, can potentially delay the crystallization onset temperature as well as crystallization extent.

  10. Rh-Catalyzed Intermolecular Reactions of α-Alkyl-α-Diazo Carbonyl Compounds with Selectivity over β-Hydride Migration.

    PubMed

    DeAngelis, Andrew; Panish, Robert; Fox, Joseph M

    2016-01-19

    Rh-carbenes derived from α-diazocarbonyl compounds have found broad utility across a remarkable range of reactivity, including cyclopropanation, cyclopropenation, C-H insertions, heteroatom-hydrogen insertions, and ylide forming reactions. However, in contrast to α-aryl or α-vinyl-α-diazocarbonyl compounds, the utility of α-alkyl-α-diazocarbonyl compounds had been moderated by the propensity of such compounds to undergo intramolecular β-hydride migration to give alkene products. Especially challenging had been intermolecular reactions involving α-alkyl-α-diazocarbonyl compounds. This Account discusses the historical context and prior limitations of Rh-catalyzed reactions involving α-alkyl-α-diazocarbonyl compounds. Early studies demonstrated that ligand and temperature effects could influence chemoselectivity over β-hydride migration. However, effects were modest and conflicting conclusions had been drawn about the influence of sterically demanding ligands on β-hydride migration. More recent advances have led to a more detailed understanding of the reaction conditions that can promote intermolecular reactivity in preference to β-hydride migration. In particular, the use of bulky carboxylate ligands and low reaction temperatures have been key to enabling intermolecular cyclopropenation, cyclopropanation, carbonyl ylide formation/dipolar cycloaddition, indole C-H functionalization, and intramolecular bicyclobutanation with high chemoselectivity over β-hydride migration. Cyclic α-diazocarbonyl compounds have been shown to be particularly resilient toward β-hydride migration and are the first class of compounds that can engage in intermolecular reactivity in the presence of tertiary β-hydrogens. DFT calculations were used to propose that for cyclic α-diazocarbonyl compounds, ring constraints relieve steric interaction for intermolecular reactions and thereby accelerate the rate of intermolecular reactivity relative to intramolecular

  11. Influence of intermolecular amide hydrogen bonding on the geometry, atomic charges, and spectral modes of acetanilide: An ab initio study

    NASA Astrophysics Data System (ADS)

    Binoy, J.; Prathima, N. B.; Murali Krishna, C.; Santhosh, C.; Hubert Joe, I.; Jayakumar, V. S.

    2006-08-01

    Acetanilide, a compound of pharmaceutical importance possessing pain-relieving properties due to its blocking the pulse dissipating along the nerve fiber, is subjected to vibrational spectral investigation using NIR FT Raman, FT-IR, and SERS. The geometry, Mulliken charges, and vibrational spectrum of acetanilide have been computed using the Hartree-Fock theory and density functional theory employing the 6-31G (d) basis set. To investigate the influence of intermolecular amide hydrogen bonding, the geometry, charge distribution, and vibrational spectrum of the acetanilide dimer have been computed at the HF/6-31G (d) level. The computed geometries reveal that the acetanilide molecule is planar, while twisting of the secondary amide group with respect to the phenyl ring is found upon hydrogen bonding. The trans isomerism and “amido” form of the secondary amide, hyperconjugation of the C=O group with the adjacent C-C bond, and donor-acceptor interaction have been investigated using computed geometry. The carbonyl stretching band position is found to be influenced by the tendency of the phenyl ring to withdraw nitrogen lone pair, intermolecular hydrogen bonding, conjugation, and hyperconjugation. A decrease in the NH and C=O bond orders and increase in the C-N bond orders due to donor-acceptor interaction can be observed in the vibrational spectra. The SERS spectral analysis reveals that the flat orientation of the molecule on the adsorption plane is preferred.

  12. Intermolecular electron transfer promoted by directional donor-acceptor attractions in self-assembled diketopyrrolopyrrole-thiophene films.

    PubMed

    Liu, Huiying; Jia, Hui; Wang, Lanfen; Wu, Yishi; Zhan, Chuanlang; Fu, Hongbing; Yao, Jiannian

    2012-11-01

    The photophysics of a symmetric triad consisting of two bithiophene (BT) units covalently linked to a central diketopyrrolopyrrole unit (DPP) has been investigated both in dichloromethane and in the thin film. The DPP-BT film exhibits a red-shifted low-energy absorption band compared to its solution, which is indicative of efficient π-π interactions in the solid-state phase. The steady-state and time-resolved fluorescence results revealed that the photoluminescence was subjected to severe emission quenching when DPP-BT changes from its solution phase to its film form. Further femtosecond transient absorption studies clarified that rapid intermolecular electron transfer accounts for the considerable fluorescence quenching event. The structural characterization of DPP-BT nanobelts, based on GIXRD and SAED patterns, suggested that the composite may be self-assembled into a slipped face-to-face configuration in the film, providing compact interlayer D-A interactions. As a result, intermolecular electron transfer is promoted by the favorable donor-acceptor attractions between the adjacent molecules. Moreover, this packing configuration provides a moderate channel for charge transportation. The hole mobility, which was measured based on a single-belt field-effect transistor, was found to be around 0.07 cm(2) V(-1) s(-1). Our observation reveals the role of spatial orientation in photophysical processes and the consequential semiconductor performance, providing guidance for the development and self-assembly of new opto-electronic molecules. PMID:22951990

  13. The assembly and intermolecular properties of the Hsp70-Tomm34-Hsp90 molecular chaperone complex.

    PubMed

    Trcka, Filip; Durech, Michal; Man, Petr; Hernychova, Lenka; Muller, Petr; Vojtesek, Borivoj

    2014-04-01

    Maintenance of protein homeostasis by molecular chaperones Hsp70 and Hsp90 requires their spatial and functional coordination. The cooperation of Hsp70 and Hsp90 is influenced by their interaction with the network of co-chaperone proteins, some of which contain tetratricopeptide repeat (TPR) domains. Critical to these interactions are TPR domains that target co-chaperone binding to the EEVD-COOH motif that terminates Hsp70/Hsp90. Recently, the two-TPR domain-containing protein, Tomm34, was reported to bind both Hsp70 and Hsp90. Here we characterize the structural basis of Tomm34-Hsp70/Hsp90 interactions. Using multiple methods, including pull-down assays, fluorescence polarization, hydrogen/deuterium exchange, and site-directed mutagenesis, we defined the binding activities and specificities of Tomm34 TPR domains toward Hsp70 and Hsp90. We found that Tomm34 TPR1 domain specifically binds Hsp70. This interaction is partly mediated by a non-canonical TPR1 two-carboxylate clamp and is strengthened by so far unidentified additional intermolecular contacts. The two-carboxylate clamp of the isolated TPR2 domain has affinity for both chaperones, but as part of the full-length Tomm34 protein, the TPR2 domain binds specifically Hsp90. These binding properties of Tomm34 TPR domains thus enable simultaneous binding of Hsp70 and Hsp90. Importantly, we provide evidence for the existence of an Hsp70-Tomm34-Hsp90 tripartite complex. In addition, we defined the basic conformational demands of the Tomm34-Hsp90 interaction. These results suggest that Tomm34 represents a novel scaffolding co-chaperone of Hsp70 and Hsp90, which may facilitate Hsp70/Hsp90 cooperation during protein folding.

  14. Determination of a silane intermolecular force field potential model from an ab initio calculation

    SciTech Connect

    Li, Arvin Huang-Te; Chao, Sheng D.; Chang, Chien-Cheng

    2010-12-15

    Intermolecular interaction potentials of the silane dimer in 12 orientations have been calculated by using the Hartree-Fock (HF) self-consistent theory and the second-order Moeller-Plesset (MP2) perturbation theory. We employed basis sets from Pople's medium-size basis sets [up to 6-311++G(3df, 3pd)] and Dunning's correlation consistent basis sets (up to the triply augmented correlation-consistent polarized valence quadruple-zeta basis set). We found that the minimum energy orientations were the G and H conformers. We have suggested that the Si-H attractions, the central silicon atom size, and electronegativity play essential roles in weakly binding of a silane dimer. The calculated MP2 potential data were employed to parametrize a five-site force field for molecular simulations. The Si-Si, Si-H, and H-H interaction parameters in a pairwise-additive, site-site potential model for silane molecules were regressed from the ab initio energies.

  15. Intermolecular forces in spread phospholipid monolayers at oil/water interfaces.

    PubMed

    Mingins, James; Pethica, Brian A

    2004-08-31

    The lateral intermolecular forces between phospholipids are of particular relevance to the behavior of biomembranes, and have been approached via studies of monolayer isotherms at aqueous interfaces, mostly restricted to air/water (A/W) systems. For thermodynamic properties, the oil/water (O/W) interface has major advantages but is experimentally more difficult and less studied. A comprehensive reanalysis of the available thermodynamic data on spread monolayers of phosphatidyl cholines (PC) and phosphatidyl ethanolamines (PE) at O/W interfaces is conducted to identify the secure key features that will underpin further development of molecular models. Relevant recourse is made to isotherms of single-chain molecules and of mixed monolayers to identify the contributions of chain-chain interactions and interionic forces. The emphasis is on the properties of the phase transitions for a range of oil phases. Apparent published discrepancies in thermodynamic properties are resolved and substantial agreement emerges on the main features of these phospholipid monolayer systems. In compression to low areas, the forces between the zwitterions of like phospholipids are repulsive. The molecular model for phospholipid headgroup interactions developed by Stigter et al. accounts well for the virial coefficients in expanded phospholipid O/W monolayers. Inclusion of the changes in configuration and orientation of the zwitterion headgroups on compression, which are indicated by the surface potentials in the phase transition region, and inclusion of the energy of chain demixing from the oil phase will be required for molecular modeling of the phase transitions.

  16. An intermolecular binding mechanism involving multiple LysM domains mediates carbohydrate recognition by an endopeptidase

    SciTech Connect

    Wong, Jaslyn E. M. M.; Midtgaard, Søren Roi; Gysel, Kira; Thygesen, Mikkel B.; Sørensen, Kasper K.; Jensen, Knud J.; Stougaard, Jens; Thirup, Søren; Blaise, Mickaël

    2015-03-01

    The crystal and solution structures of the T. thermophilus NlpC/P60 d, l-endopeptidase as well as the co-crystal structure of its N-terminal LysM domains bound to chitohexaose allow a proposal to be made regarding how the enzyme recognizes peptidoglycan. LysM domains, which are frequently present as repetitive entities in both bacterial and plant proteins, are known to interact with carbohydrates containing N-acetylglucosamine (GlcNAc) moieties, such as chitin and peptidoglycan. In bacteria, the functional significance of the involvement of multiple LysM domains in substrate binding has so far lacked support from high-resolution structures of ligand-bound complexes. Here, a structural study of the Thermus thermophilus NlpC/P60 endopeptidase containing two LysM domains is presented. The crystal structure and small-angle X-ray scattering solution studies of this endopeptidase revealed the presence of a homodimer. The structure of the two LysM domains co-crystallized with N-acetyl-chitohexaose revealed a new intermolecular binding mode that may explain the differential interaction between LysM domains and short or long chitin oligomers. By combining the structural information with the three-dimensional model of peptidoglycan, a model suggesting how protein dimerization enhances the recognition of peptidoglycan is proposed.

  17. Resonant Auger decay driving intermolecular Coulombic decay in molecular dimers

    NASA Astrophysics Data System (ADS)

    Trinter, F.; Schöffler, M. S.; Kim, H.-K.; Sturm, F. P.; Cole, K.; Neumann, N.; Vredenborg, A.; Williams, J.; Bocharova, I.; Guillemin, R.; Simon, M.; Belkacem, A.; Landers, A. L.; Weber, Th.; Schmidt-Böcking, H.; Dörner, R.; Jahnke, T.

    2014-01-01

    In 1997, it was predicted that an electronically excited atom or molecule placed in a loosely bound chemical system (such as a hydrogen-bonded or van-der-Waals-bonded cluster) could efficiently decay by transferring its excess energy to a neighbouring species that would then emit a low-energy electron. This intermolecular Coulombic decay (ICD) process has since been shown to be a common phenomenon, raising questions about its role in DNA damage induced by ionizing radiation, in which low-energy electrons are known to play an important part. It was recently suggested that ICD can be triggered efficiently and site-selectively by resonantly core-exciting a target atom, which then transforms through Auger decay into an ionic species with sufficiently high excitation energy to permit ICD to occur. Here we show experimentally that resonant Auger decay can indeed trigger ICD in dimers of both molecular nitrogen and carbon monoxide. By using ion and electron momentum spectroscopy to measure simultaneously the charged species created in the resonant-Auger-driven ICD cascade, we find that ICD occurs in less time than the 20femtoseconds it would take for individual molecules to undergo dissociation. Our experimental confirmation of this process and its efficiency may trigger renewed efforts to develop resonant X-ray excitation schemes for more localized and targeted cancer radiation therapy.

  18. Thermal selectivity of intermolecular versus intramolecular reactions on surfaces.

    PubMed

    Cirera, Borja; Giménez-Agulló, Nelson; Björk, Jonas; Martínez-Peña, Francisco; Martin-Jimenez, Alberto; Rodriguez-Fernandez, Jonathan; Pizarro, Ana M; Otero, Roberto; Gallego, José M; Ballester, Pablo; Galan-Mascaros, José R; Ecija, David

    2016-01-01

    On-surface synthesis is a promising strategy for engineering heteroatomic covalent nanoarchitectures with prospects in electronics, optoelectronics and photovoltaics. Here we report the thermal tunability of reaction pathways of a molecular precursor in order to select intramolecular versus intermolecular reactions, yielding monomeric or polymeric phthalocyanine derivatives, respectively. Deposition of tetra-aza-porphyrin species bearing ethyl termini on Au(111) held at room temperature results in a close-packed assembly. Upon annealing from room temperature to 275 °C, the molecular precursors undergo a series of covalent reactions via their ethyl termini, giving rise to phthalocyanine tapes. However, deposition of the tetra-aza-porphyrin derivatives on Au(111) held at 300 °C results in the formation and self-assembly of monomeric phthalocyanines. A systematic scanning tunnelling microscopy study of reaction intermediates, combined with density functional calculations, suggests a [2+2] cycloaddition as responsible for the initial linkage between molecular precursors, whereas the monomeric reaction is rationalized as an electrocyclic ring closure.

  19. Polyelectrolyte brushes in mixed ionic medium studied via intermolecular forces

    NASA Astrophysics Data System (ADS)

    Farina, Robert; Laugel, Nicolas; Pincus, Philip; Tirrell, Matthew

    2011-03-01

    The vast uses and applications of polyelectrolyte brushes make them an attractive field of research especially with the growing interest in responsive materials. Polymers which respond via changes in temperature, pH, and ionic strength are increasingly being used for applications in drug delivery, chemical gating, etc. When polyelectrolyte brushes are found in either nature (e.g., surfaces of cartilage and mammalian lung interiors) or commercially (e.g., skin care products, shampoo, and surfaces of medical devices) they are always surrounded by mixed ionic medium. This makes the study of these brushes in varying ionic environments extremely relevant for both current and future potential applications. The polyelectrolyte brushes in this work are diblock co-polymers of poly-styrene sulfonate (N=420) and poly-t-butyl styrene (N=20) which tethers to a hydrophobic surface allowing for a purely thermodynamic study of the polyelectrolyte chains. Intermolecular forces between two brushes are measured using the SFA. As multi-valent concentrations are increased, the brushes collapse internally and form strong adhesion between one another after contact (properties not seen in a purely mono-valent environment).

  20. Thermal selectivity of intermolecular versus intramolecular reactions on surfaces

    PubMed Central

    Cirera, Borja; Giménez-Agulló, Nelson; Björk, Jonas; Martínez-Peña, Francisco; Martin-Jimenez, Alberto; Rodriguez-Fernandez, Jonathan; Pizarro, Ana M.; Otero, Roberto; Gallego, José M.; Ballester, Pablo; Galan-Mascaros, José R.; Ecija, David

    2016-01-01

    On-surface synthesis is a promising strategy for engineering heteroatomic covalent nanoarchitectures with prospects in electronics, optoelectronics and photovoltaics. Here we report the thermal tunability of reaction pathways of a molecular precursor in order to select intramolecular versus intermolecular reactions, yielding monomeric or polymeric phthalocyanine derivatives, respectively. Deposition of tetra-aza-porphyrin species bearing ethyl termini on Au(111) held at room temperature results in a close-packed assembly. Upon annealing from room temperature to 275 °C, the molecular precursors undergo a series of covalent reactions via their ethyl termini, giving rise to phthalocyanine tapes. However, deposition of the tetra-aza-porphyrin derivatives on Au(111) held at 300 °C results in the formation and self-assembly of monomeric phthalocyanines. A systematic scanning tunnelling microscopy study of reaction intermediates, combined with density functional calculations, suggests a [2+2] cycloaddition as responsible for the initial linkage between molecular precursors, whereas the monomeric reaction is rationalized as an electrocyclic ring closure. PMID:26964764