Sample records for intermolecular potential surface

  1. An isotopic mass effect on the intermolecular potential

    DOE PAGES

    Herman, Michael F.; Currier, Robert Patrick; Clegg, Samuel M.

    2015-09-28

    The impact of isotopic variation on the electronic energy and intermolecular potentials is often suppressed when calculating isotopologue thermodynamics. Intramolecular potential energy surfaces for distinct isotopologues are in fact equivalent under the Born–Oppenheimer approximation, which is sometimes used to imply that the intermolecular interactions are independent of isotopic mass. In this paper, the intermolecular dipole–dipole interaction between hetero-nuclear diatomic molecules is considered. It is shown that the intermolecular potential contains mass-dependent terms even though each nucleus moves on a Born–Oppenheimer surface. Finally, the analysis suggests that mass dependent variations in intermolecular potentials should be included in comprehensive descriptions of isotopologuemore » thermodynamics.« less

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Herman, Michael F.; Currier, Robert Patrick; Clegg, Samuel M.

    The impact of isotopic variation on the electronic energy and intermolecular potentials is often suppressed when calculating isotopologue thermodynamics. Intramolecular potential energy surfaces for distinct isotopologues are in fact equivalent under the Born–Oppenheimer approximation, which is sometimes used to imply that the intermolecular interactions are independent of isotopic mass. In this paper, the intermolecular dipole–dipole interaction between hetero-nuclear diatomic molecules is considered. It is shown that the intermolecular potential contains mass-dependent terms even though each nucleus moves on a Born–Oppenheimer surface. Finally, the analysis suggests that mass dependent variations in intermolecular potentials should be included in comprehensive descriptions of isotopologuemore » thermodynamics.« less

  3. Effect of surface tension on the behavior of adhesive contact based on Lennard-Jones potential law

    NASA Astrophysics Data System (ADS)

    Zhu, Xinyao; Xu, Wei

    2018-02-01

    The present study explores the effect of surface tension on adhesive contact behavior where the adhesion is interpreted by long-range intermolecular forces. The adhesive contact is analyzed using the equivalent system of a rigid sphere and an elastic half space covered by a membrane with surface tension. The long-range intermolecular forces are modeled with the Lennard‒Jones (L‒J) potential law. The current adhesive contact issue can be represented by a nonlinear integral equation, which can be solved by Newton‒Raphson method. In contrast to previous studies which consider intermolecular forces as short-range, the present study reveals more details of the features of adhesive contact with surface tension, in terms of jump instabilities, pull-off forces, pressure distribution within the contact area, etc. The transition of the pull-off force is not only consistent with previous studies, but also presents some new interesting characteristics in the current situation.

  4. Multidimensional intermolecular dynamics from tunable far-infrared laser spectroscopy: Angular-radial coupling in the intermolecular potential of argon--H sub 2 O

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cohen, R.C.; Saykally, R.J.

    1991-12-01

    Five new vibration--rotation tunneling states of Ar--H{sub 2}O (the {Sigma} and {Pi}(1{sub 11}) and the {Sigma} and {Pi}(2{sub 12}) internal rotor states and the {ital n}=1, {Pi}(1{sub 01}) stretching-internal rotor combination level) have been accessed by tunable far-infrared laser spectroscopy. The measured vibrational band origins of transitions to these states are within 2% of predictions made from an anisotropic three-dimensional intermolecular potential surface (denoted AW1) derived from a nonlinear least-squares fit to previous far-infrared spectral data (J. Phys. Chem. {bold 94}, 7991(1990)). This provides strong evidence that the AW1 intermolecular potential surface incorporates much of the essential physics of themore » intermolecular forces which bind the cluster. However, larger deviations from the predictions are found in the observed rotational term values. A detailed analysis of these deviations clearly demonstrates the need for even stronger angular-radial coupling in the Ar--H{sub 2}O intermolecular potential than the already substantial coupling present in the AW1 surface. Specifically, the presently observed {Sigma}(1{sub 11}) state and the {ital n}=1, {Sigma}(0{sub 00}) state are found to be approximately 65:35 mixtures of the basis states which represent pure stretching and internal rotation. The {Sigma}(2{sub 12}) level is found to be mixed just as strongly with {ital n}=2, {Sigma}(1{sub 01}). The formalism for accurately deperturbing vibration--rotation--tunneling states coupled by Coriolis interactions used in the above analysis is presented.« less

  5. Weak competing interactions control assembly of strongly bonded TCNQ ionic acceptor molecules on silver surfaces

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Park, Changwon; Rojas, Geoffrey A.; Jeon, Seokmin

    2014-09-19

    The energy scales of interactions that control molecular adsorption and assembly on surfaces can vary by several orders of magnitude, yet the importance of each contributing interaction is not apparent a priori. Tetracyanoquinodimethane (TCNQ) is an archetypal electron acceptor molecule and it is a key component of organic metals. On metal surfaces, this molecule also acts as an electron acceptor, producing negatively charged adsorbates. It is therefore rather intriguing to observe attractive molecular interactions in this system that were reported previously for copper and silver surfaces. In this paper, our experiments compared TCNQ adsorption on noble metal surfaces of Ag(100)more » and Ag(111). In both cases we found net attractive interactions down to the lowest coverage. However, the morphology of the assemblies was strikingly different, with two-dimensional islands on Ag(100) and one-dimensional chains on Ag(111) surfaces. This observation suggests that the registry effect governed by the molecular interaction with the underlying lattice potential is critical in determining the dimensionality of the molecular assembly. Using first-principles density functional calculations with a van der Waals correction scheme, we revealed that the strengths of major interactions (i.e., lattice potential corrugation, intermolecular attraction, and charge-transfer-induced repulsion) are all similar in energy. The van der Waals interactions, in particular, almost double the strength of attractive interactions, making the intermolecular potential comparable in strength to the diffusion potential and promoting self-assembly. However, it is the anisotropy of local intermolecular interactions that is primarily responsible for the difference in the topology of the molecular islands on Ag(100) and Ag(111) surfaces. Finally, we anticipate that the intermolecular potential will become more attractive and dominant over the diffusion potential with increasing molecular size, providing new design strategies for the structure and charge transfer within molecular layers.« less

  6. Plucking a hydrogen bond: A near infrared study of all four intermolecular modes in (DF)2

    NASA Astrophysics Data System (ADS)

    Davis, Scott; Anderson, David T.; Nesbitt, David J.

    1996-10-01

    The near ir combination band spectra of supersonically cooled (DF)2 in the 2900 to 3300 cm-1 region have been recorded with a high resolution slit jet spectrometer. Twelve vibration-rotation-tunneling (VRT) bands are observed, representing each of the four intermolecular modes (van der Waals stretch ν4, geared bend ν5, out-of-plane torsion ν6, and antigeared bend ν3) built as combination bands on either the ν1 (free) or ν2 (bound) DF stretches. Analysis of the rotationally resolved spectra provide spectroscopic constants, intermolecular frequencies, tunneling splittings, and predissociation rates as a function of both intra- and intermolecular excitation. The intermolecular frequencies demonstrate a small but systematic dependence on intramolecular mode, which is exploited to yield frequency predictions relevant to far-ir studies, as well as facilitate direct comparison with full 6-D quantum calculations on trial potential surfaces. The tunneling splittings demonstrate a much stronger dependence upon intermolecular mode, increasing by as much as an order of magnitude for geared bend excitation. Conversely, high resolution line shape analysis reveals that vibrational predissociation broadening is only modestly affected by intermolecular excitation, and instead exhibits mode specific behavior controlled predominantly by intramolecular excitation. Detailed H/D isotopic vibrational shifts are obtained by comparison with previous combination band studies of all four intermolecular modes in (HF)2. In contrast to the strong state mixing previously observed for (HF)2, the van der Waals stretch and geared bend degrees of freedom are largely decoupled in (DF)2, due to isotopically ``detuning'' of resonances between bend-stretch intermolecular vibrations. Four-dimensional quantum calculations of the (HF)2 and (DF)2 eigenfunctions indicate that the isotopic dependence of this bend-stretch resonance behavior is incorrectly predicted by current hydrogen bond potential surfaces.

  7. The effect of the intermolecular potential formulation on the state-selected energy exchange rate coefficients in N2-N2 collisions.

    PubMed

    Kurnosov, Alexander; Cacciatore, Mario; Laganà, Antonio; Pirani, Fernando; Bartolomei, Massimiliano; Garcia, Ernesto

    2014-04-05

    The rate coefficients for N2-N2 collision-induced vibrational energy exchange (important for the enhancement of several modern innovative technologies) have been computed over a wide range of temperature. Potential energy surfaces based on different formulations of the intramolecular and intermolecular components of the interaction have been used to compute quasiclassically and semiclassically some vibrational to vibrational energy transfer rate coefficients. Related outcomes have been rationalized in terms of state-to-state probabilities and cross sections for quasi-resonant transitions and deexcitations from the first excited vibrational level (for which experimental information are available). On this ground, it has been possible to spot critical differences on the vibrational energy exchange mechanisms supported by the different surfaces (mainly by their intermolecular components) in the low collision energy regime, though still effective for temperatures as high as 10,000 K. It was found, in particular, that the most recently proposed intermolecular potential becomes the most effective in promoting vibrational energy exchange near threshold temperatures and has a behavior opposite to the previously proposed one when varying the coupling of vibration with the other degrees of freedom. Copyright © 2014 Wiley Periodicals, Inc.

  8. Development of a "First Principles" Water Potential with Flexible Monomers: Dimer Potential Energy Surface, VRT Spectrum, and Second Virial Coefficient.

    PubMed

    Babin, Volodymyr; Leforestier, Claude; Paesani, Francesco

    2013-12-10

    The development of a "first principles" water potential with flexible monomers (MB-pol) for molecular simulations of water systems from gas to condensed phases is described. MB-pol is built upon the many-body expansion of the intermolecular interactions, and the specific focus of this study is on the two-body term (V2B) representing the full-dimensional intermolecular part of the water dimer potential energy surface. V2B is constructed by fitting 40,000 dimer energies calculated at the CCSD(T)/CBS level of theory and imposing the correct asymptotic behavior at long-range as predicted from "first principles". The comparison of the calculated vibration-rotation tunneling (VRT) spectrum and second virial coefficient with the corresponding experimental results demonstrates the accuracy of the MB-pol dimer potential energy surface.

  9. The origins of intra- and inter-molecular vibrational couplings: A case study of H{sub 2}O-Ar on full and reduced-dimensional potential energy surface

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hou, Dan; Ma, Yong-Tao; Zhang, Xiao-Long

    2016-01-07

    The origin and strength of intra- and inter-molecular vibrational coupling is difficult to probe by direct experimental observations. However, explicitly including or not including some specific intramolecular vibrational modes to study intermolecular interaction provides a precise theoretical way to examine the effects of anharmonic coupling between modes. In this work, a full-dimension intra- and inter-molecular ab initio potential energy surface (PES) for H{sub 2}O–Ar, which explicitly incorporates interdependence on the intramolecular (Q{sub 1},  Q{sub 2},  Q{sub 3}) normal-mode coordinates of the H{sub 2}O monomer, has been calculated. In addition, four analytic vibrational-quantum-state-specific PESs are obtained by least-squares fitting vibrationally averagedmore » interaction energies for the (v{sub 1},  v{sub 2},  v{sub 3}) =  (0,  0,  0), (0,  0,  1), (1,  0,  0), (0,  1,  0) states of H{sub 2}O to the three-dimensional Morse/long-range potential function. Each vibrationally averaged PES fitted to 442 points has root-mean-square (rms) deviation smaller than 0.15 cm{sup −1}, and required only 58 parameters. With the 3D PESs of H{sub 2}O–Ar dimer system, we employed the combined radial discrete variable representation/angular finite basis representation method and Lanczos algorithm to calculate rovibrational energy levels. This showed that the resulting vibrationally averaged PESs provide good representations of the experimental infrared data, with rms discrepancies smaller than 0.02 cm{sup −1} for all three rotational branches of the asymmetric stretch fundamental transitions. The infrared band origin shifts associated with three fundamental bands of H{sub 2}O in H{sub 2}O–Ar complex are predicted for the first time and are found to be in good agreement with the (extrapolated) experimental values. Upon introduction of additional intramolecular degrees of freedom into the intermolecular potential energy surface, there is clear spectroscopic evidence of intra- and intermolecular vibrational couplings.« less

  10. Simulation studies for surfaces and materials strength

    NASA Technical Reports Server (NTRS)

    Halicioglu, T.

    1985-01-01

    From intermolecular force studies, it is now known that the overall non-additive contribution to the lattice enegy is positive so that analysis based on only pairwise additivity suggests a shallower intermolecular potential than the true value. Two body contributions alone are also known to be categorically unable to even qualitatively describe some configurations of molecular clusters in the gas phase or the general relaxation and reconstruction of fcc crystal surfaces. In addition, the many-body contribution was shown to play a key role in the stability of certain crystal structures. In these recent analyses, a relatively simple potential energy function (PEF), comprising only a two-body Mie-type potential plus a three-body Axilrod-Teller-type potential, was found to be extremely effective. This same parametric PEF is applied to describe the bulk stability and surface energy for the diamond cubic structure. To test the stability condition, the FCC, BCC, diamond cubic, graphite and beta-tin structures were considered.

  11. Ab Initio and Analytic Intermolecular Potentials for Ar–CH3OH

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tasic, Uros; Alexeev, Yuri; Vayner, Grigoriy

    2006-09-20

    Ab initio calculations at the CCSD(T)/aug-cc-pVTZ level of theory were used to characterize the Ar–CH₃y6tOH intermolecular potential energy surface (PES). Potential energy curves were calculated for four different Ar + CH₃OH orientations and used to derive an analytic function for the intermolecular PES. A sum of Ar–C, Ar–O, Ar–H(C), and Ar–H(O) two-body potentials gives an excellent fit to these potential energy curves up to 100 kcal mol¯¹, and adding an additional r¯¹n term to the Buckingham two-body potential results in only a minor improvement in the fit. Three Ar–CH₃OH van der Waals minima were found from the CCSD(T)/aug-cc-pVTZ//MP2/aug-cc-pVTZ calculations. Themore » structure of the global minimum is in overall good agreement with experiment (X.-C. Tan, L. Sun and R. L. Kuczkowski, J. Mol. Spectrosc., 1995, 171, 248). It is T-shaped with the hydroxyl H-atom syn with respect to Ar. Extrapolated to the complete basis set (CBS) limit, the global minimum has a well depth of 0.72 kcal mol¯¹ with basis set superposition error (BSSE) correction. The aug-cc-pVTZ basis set gives a well depth only 0.10 kcal mol¯¹ smaller than this value. The well depths of the other two minima are within 0.16 kcal mol¯¹ of the global minimum. The analytic Ar–CH₃OH intermolecular potential also identifies these three minima as the only van der Waals minima and the structures predicted by the analytic potential are similar to the ab initio structures. The analytic potential identifies the same global minimum and the predicted well depths for the minima are within 0.05 kcal mol¯1 of the ab initio values. Combining this Ar–CH₃OH intermolecular potential with a potential for a OH-terminated alkylthiolate self-assembled monolayer surface (i.e., HO-SAM) provides a potential to model Ar + HO-SAM collisions.« less

  12. Ab initio study of the CO-N2 complex: a new highly accurate intermolecular potential energy surface and rovibrational spectrum.

    PubMed

    Cybulski, Hubert; Henriksen, Christian; Dawes, Richard; Wang, Xiao-Gang; Bora, Neha; Avila, Gustavo; Carrington, Tucker; Fernández, Berta

    2018-05-09

    A new, highly accurate ab initio ground-state intermolecular potential-energy surface (IPES) for the CO-N2 complex is presented. Thousands of interaction energies calculated with the CCSD(T) method and Dunning's aug-cc-pVQZ basis set extended with midbond functions were fitted to an analytical function. The global minimum of the potential is characterized by an almost T-shaped structure and has an energy of -118.2 cm-1. The symmetry-adapted Lanczos algorithm was used to compute rovibrational energies (up to J = 20) on the new IPES. The RMSE with respect to experiment was found to be on the order of 0.038 cm-1 which confirms the very high accuracy of the potential. This level of agreement is among the best reported in the literature for weakly bound systems and considerably improves on those of previously published potentials.

  13. Modeling Adsorption-Desorption Processes at the Intermolecular Interactions Level

    NASA Astrophysics Data System (ADS)

    Varfolomeeva, Vera V.; Terentev, Alexey V.

    2018-01-01

    Modeling of the surface adsorption and desorption processes, as well as the diffusion, are of considerable interest for the physical phenomenon under study in ground tests conditions. When imitating physical processes and phenomena, it is important to choose the correct parameters to describe the adsorption of gases and the formation of films on the structural materials surface. In the present research the adsorption-desorption processes on the gas-solid interface are modeled with allowance for diffusion. Approaches are proposed to describe the adsorbate distribution on the solid body surface at the intermolecular interactions level. The potentials of the intermolecular interaction of water-water, water-methane and methane-methane were used to adequately modeling the real physical and chemical processes. The energies calculated by the B3LYP/aug-cc-pVDZ method. Computational algorithms for determining the average molecule area in a dense monolayer, are considered here. Differences in modeling approaches are also given: that of the proposed in this work and the previously approved probabilistic cellular automaton (PCA) method. It has been shown that the main difference is due to certain limitations of the PCA method. The importance of accounting the intermolecular interactions via hydrogen bonding has been indicated. Further development of the adsorption-desorption processes modeling will allow to find the conditions for of surface processes regulation by means of quantity adsorbed molecules control. The proposed approach to representing the molecular system significantly shortens the calculation time in comparison with the use of atom-atom potentials. In the future, this will allow to modeling the multilayer adsorption at a reasonable computational cost.

  14. Spectroscopic determination of the intermolecular potential energy surface for Ar-NH3

    NASA Astrophysics Data System (ADS)

    Schmuttenmaer, C. A.; Cohen, R. C.; Saykally, R. J.

    1994-07-01

    The three-dimensional intermolecular potential energy surface (IPS) for Ar-NH3 has been determined from a least-squares fit to 61 far infrared and microwave vibration-rotation-tunneling (VRT) measurements and to temperature-dependent second virial coefficients. The three intermolecular coordinates (R,θ,φ) are treated without invoking any approximations regarding their separability, and the NH3 inversion-tunneling motion is included adiabatically. A surface with 13 variable parameters has been optimized to accurately reproduce the spectroscopic observables, using the collocation method to treat the coupled multidimensional dynamics within a scattering formalism. Anisotropy in the IPS is found to significantly mix the free rotor basis functions. The 149.6 cm-1 global minimum on this surface occurs with the NH3 symmetry axis nearly perpendicular to the van der Waals bond axis (θ=96.6°), at a center-of-mass separation of 3.57 Å, and with the Ar atom midway between two of the NH3 hydrogen atoms (φ=60°). The position of the global minimum is very different from the center-of-mass distance extracted from microwave spectroscopic studies. Long-range (R≳3.8 Å) attractive interactions are greatest when either a N-H bond or the NH3 lone pair is directed toward the argon. Comparisons with ab initio surfaces for this molecule as well as the experimentally determined IPS for Ar-H2O are presented.

  15. Complete characterization of the water dimer vibrational ground state and testing the VRT(ASP-W)III, SAPT-5st, and VRT(MCY-5f) surfaces

    NASA Astrophysics Data System (ADS)

    Keutsch, Frank N.; Goldman, Nir; Harker, Heather A.; Leforestier, Claude; Saykally, Richard J.

    We report the observation of extensive a- and c-type rotation-tunnelling (RT) spectra of (H2O)2 for Ka =0-3, and (D2O)2 for Ka =0-4. These data allow a detailed characterization of the vibrational ground state to energies comparable to those of the low-lying (70-80 cm-1) intermolecular vibrations. We present a comparison of the experimentally determined molecular constants and tunnelling splittings with those calculated on the VRT(ASP-W)III, SAPT-5st, and VRT(MCY-5f) intermolecular potential energy surfaces. The SAPT-5st potential reproduces the vibrational ground state properties of the water dimer very well. The VRT(MCY-5f) and especially the VRT(ASP-W)III potentials show larger disagreements, in particular for the bifurcation tunnelling splitting.

  16. Theoretical studies of potential energy surface and rotational spectra of Xe -H2O van der Waals complex

    NASA Astrophysics Data System (ADS)

    Wang, Lin; Yang, Minghui

    2008-11-01

    In this work we report an ab initio intermolecular potential energy surface and theoretical spectroscopic studies for Xe -H2O complex. The ab initio energies are calculated with CCSD(T) method and large basis sets (aug-cc-pVQZ for H and O and aug-cc-pVQZ-PP for Xe) augmented by a {3s3p2d2f1g} set of bond functions. This potential energy surface has a global minimum corresponding to a planar and nearly linear hydrogen bonded configuration with a well depth of 192.5cm-1 at intermolecular distance of 4.0Å, which is consistent with the previous determined potential by Wen and Jäger [J. Phys. Chem. A 110, 7560 (2006)]. The bound state calculations have been performed for the complex by approximating the water molecule as a rigid rotor. The theoretical rotational transition frequencies, isotopic shifts, nuclear quadrupole coupling constants, and structure parameters are in good agreement with the experimental observed values. The wavefunctions are analyzed to understand the dynamics of the ground and the first excited states.

  17. Quantitative determination of the lateral density and intermolecular correlation between proteins anchored on the membrane surfaces using grazing incidence small-angle X-ray scattering and grazing incidence X-ray fluorescence.

    PubMed

    Abuillan, Wasim; Vorobiev, Alexei; Hartel, Andreas; Jones, Nicola G; Engstler, Markus; Tanaka, Motomu

    2012-11-28

    As a physical model of the surface of cells coated with densely packed, non-crystalline proteins coupled to lipid anchors, we functionalized the surface of phospholipid membranes by coupling of neutravidin to biotinylated lipid anchors. After the characterization of fine structures perpendicular to the plane of membrane using specular X-ray reflectivity, the same membrane was characterized by grazing incidence small angle X-ray scattering (GISAXS). Within the framework of distorted wave Born approximation and two-dimensional Percus-Yevick function, we can analyze the form and structure factors of the non-crystalline, membrane-anchored proteins for the first time. As a new experimental technique to quantify the surface density of proteins on the membrane surface, we utilized grazing incidence X-ray fluorescence (GIXF). Here, the mean intermolecular distance between proteins from the sulfur peak intensities can be calculated by applying Abelé's matrix formalism. The characteristic correlation distance between non-crystalline neutravidin obtained by the GISAXS analysis agrees well with the intermolecular distance calculated by GIXF, suggesting a large potential of the combination of GISAXS and GIXF in probing the lateral density and correlation of non-crystalline proteins displayed on the membrane surface.

  18. Do surfaces of positive electrostatic potential on different halogen derivatives in molecules attract? like attracting like!

    PubMed

    Varadwaj, Arpita; Varadwaj, Pradeep R; Yamashita, Koichi

    2018-03-15

    Coulomb's law states that like charges repel, and unlike charges attract. However, it has recently been theoretically revealed that two similarly charged conducting spheres will almost always attract each other when both are in close proximity. Using multiscale first principles calculations, we illustrate practical examples of several intermolecular complexes that are formed by the consequences of attraction between positive atomic sites of similar or dissimilar electrostatic surface potential on interacting molecules. The results of the quantum theory of atoms in molecules and symmetry adapted perturbation theory support the attraction between the positive sites, characterizing the F•••X (X = F, Cl, Br) intermolecular interactions in a series of 20 binary complexes as closed-shell type, although the molecular electrostatic surface potential approach does not (a failure!). Dispersion that has an r -6 dependence, where r is the equilibrium distance of separation, is found to be the sole driving force pushing the two positive sites to attract. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  19. On the influence of the intermolecular potential on the wetting properties of water on silica surfaces

    NASA Astrophysics Data System (ADS)

    Pafong, E.; Geske, J.; Drossel, B.

    2016-09-01

    We study the wetting properties of water on silica surfaces using molecular dynamics (MD) simulations. To describe the intermolecular interaction between water and silica atoms, two types of interaction potential models are used: the standard BródkA and Zerda (BZ) model and the Gulmen and Thompson (GT) model. We perform an in-depth analysis of the influence of the choice of the potential on the arrangement of the water molecules in partially filled pores and on top of silica slabs. We find that at moderate pore filling ratios, the GT silica surface is completely wetted by water molecules, which agrees well with experimental findings, while the commonly used BZ surface is less hydrophilic and is only partially wetted. We interpret our simulation results using an analytical calculation of the phase diagram of water in partially filled pores. Moreover, an evaluation of the contact angle of the water droplet on top of the silica slab reveals that the interaction becomes more hydrophilic with increasing slab thickness and saturates around 2.5-3 nm, in agreement with the experimentally found value. Our analysis also shows that the hydroaffinity of the surface is mainly determined by the electrostatic interaction, but the van der Waals interaction nevertheless is strong enough that it can turn a hydrophobic surface into a hydrophilic surface.

  20. Intermolecular configurations dominated by quadrupole-quadrupole electrostatic interactions: explicit correlation treatment of the five-dimensional potential energy surface and infrared spectra for the CO-N2 complex.

    PubMed

    Liu, Jing-Min; Zhai, Yu; Zhang, Xiao-Long; Li, Hui

    2018-01-17

    A thorough understanding of the intermolecular configurations of van der Waals complexes is a great challenge due to their weak interactions, floppiness and anharmonic nature. Although high-resolution microwave or infrared spectroscopy provides one of the most direct and precise pieces of experimental evidence, the origin and key role in determining such intermolecular configurations of a van der Waals system strongly depend on its highly accurate potential energy surface (PES) and a detailed analysis of its ro-vibrational wavefunctions. Here, a new five-dimensional potential energy surface for the van der Waals complex of CO-N 2 which explicitly incorporates the dependence on the stretch coordinate of the CO monomer is generated using the explicitly correlated couple cluster (CCSD(T)-F12) method in conjunction with a large basis set. Analytic four-dimensional PESs are obtained by the least-squares fitting of vibrationally averaged interaction energies for v = 0 and v = 1 to the Morse/Long-Range potential mode (V MLR ). These fits to 7966 points have root-mean-square deviations (RMSD) of 0.131 cm -1 and 0.129 cm -1 for v = 0 and v = 1, respectively, with only 315 parameters. Energy decomposition analysis is carried out, and it reveals that the dominant factor in controlling intermolecular configurations is quadrupole-quadrupole electrostatic interactions. Moreover, the rovibrational levels and wave functions are obtained for the first time. The predicted infrared transitions and intensities for the ortho-N 2 -CO complex as well as the calculated energy levels for para-N 2 -CO are in good agreement with the available experimental data with RMSD discrepancies smaller than 0.068 cm -1 . The calculated infrared band origin shift associated with the fundamental band frequency of CO is -0.721 cm -1 for ortho-N 2 -CO which is in excellent agreement with the experimental value of -0.739 cm -1 . The agreement with experimental values validates the high quality of the PESs and enhances our confidence to explain the observed mystery lines around 2163 cm -1 .

  1. Morphology and the Strength of Intermolecular Contact in Protein Crystals

    NASA Technical Reports Server (NTRS)

    Matsuura, Yoshiki; Chernov, Alexander A.

    2002-01-01

    The strengths of intermolecular contacts (macrobonds) in four lysozyme crystals were estimated based on the strengths of individual intermolecular interatomic interaction pairs. The periodic bond chain of these macrobonds accounts for the morphology of protein crystals as shown previously. Further in this paper, the surface area of contact, polar coordinate representation of contact site, Coulombic contribution on the macrobond strength, and the surface energy of the crystal have been evaluated. Comparing location of intermolecular contacts in different polymorphic crystal modifications, we show that these contacts can form a wide variety of patches on the molecular surface. The patches are located practically everywhere on this surface except for the concave active site. The contacts frequently include water molecules, with specific intermolecular hydrogen-bonds on the background of non-specific attractive interactions. The strengths of macrobonds are also compared to those of other protein complex systems. Making use of the contact strengths and taking into account bond hydration we also estimated crystal-water interfacial energies for different crystal faces.

  2. Communication: THz absorption spectrum of the CO2-H2O complex: observation and assignment of intermolecular van der Waals vibrations.

    PubMed

    Andersen, J; Heimdal, J; Mahler, D W; Nelander, B; Larsen, R Wugt

    2014-03-07

    Terahertz absorption spectra have been recorded for the weakly bound CO2-H2O complex embedded in cryogenic neon matrices at 2.8 K. The three high-frequency van der Waals vibrational transitions associated with out-of-plane wagging, in-plane rocking, and torsional motion of the isotopic H2O subunit have been assigned and provide crucial observables for benchmark theoretical descriptions of this systems' flat intermolecular potential energy surface. A (semi)-empirical value for the zero-point energy of 273 ± 15 cm(-1) from the class of intermolecular van der Waals vibrations is proposed and the combination with high-level quantum chemical calculations provides a value of 726 ± 15 cm(-1) for the dissociation energy D0.

  3. The 129Xe nuclear shielding surfaces for Xe interacting with linear molecules CO2, N2, and CO

    NASA Astrophysics Data System (ADS)

    de Dios, Angel C.; Jameson, Cynthia J.

    1997-09-01

    We have calculated the intermolecular nuclear magnetic shielding surfaces for 129Xe in the systems Xe-CO2, Xe-N2, and Xe-CO using a gauge-invariant ab initio method at the coupled Hartree-Fock level with gauge-including atomic orbitals (GIAO). Implementation of a large basis set (240 basis functions) on the Xe gives very small counterpoise corrections which indicates that the basis set superposition errors in the calculated shielding values are negligible. These are the first intermolecular shielding surfaces for Xe-molecule systems. The surfaces are highly anisotropic and can be described adequately by a sum of inverse even powers of the distance with explicit angle dependence in the coefficients expressed by Legendre polynomials P2n(cos θ), n=0-3, for Xe-CO2 and Xe-N2. The Xe-CO shielding surface is well described by a similar functional form, except that Pn(cos θ), n=0-4 were used. When averaged over the anisotropic potential function these shielding surfaces provide the second virial coefficient of the nuclear magnetic resonance (NMR) chemical shift observed in gas mixtures. The energies from the self-consistent field (SCF) calculations were used to construct potential surfaces, using a damped dispersion form. These potential functions are compared with existing potentials in their predictions of the second virial coefficients of NMR shielding, the pressure virial coefficients, the density coefficient of the mean-square torque from infrared absorption, and the rotational constants and other average properties of the van der Waals complexes. Average properties of the van der Waals complexes were obtained by quantum diffusion Monte Carlo solutions of the vibrational motion using the various potentials and compared with experiment.

  4. Dancing Crystals: A Dramatic Illustration of Intermolecular Forces

    ERIC Educational Resources Information Center

    Mundell, Donald W.

    2007-01-01

    Crystals of naphthalene form on the surface of an acetone solution and dance about in an animated fashion illustrating surface tension, crystallization, and intermolecular forces. Additional experiments reveal the properties of the solution. Flows within the solutions can be visualized by various means. Previous demonstrations of surface motion…

  5. Nature and potency interactions of the hydrogen bond through the NBO analysis for charge transfer complex between 2-amino-4-hydroxy-6-methylpyrimidine and 2,3-pyrazinedicarboxylic acid

    NASA Astrophysics Data System (ADS)

    Faizan, Mohd; Afroz, Ziya; Alam, Mohammad Jane; Bhat, Sheeraz Ahmad; Ahmad, Shabbir; Ahmad, Afaq

    2018-05-01

    The intermolecular interactions in complex formation between 2-amino-4-hydroxy-6-methylpyrimidine (AHMP) and 2,3-pyrazinedicarboxylicacid (PDCA) have been explored using density functional theory calculations. The isolated 1:1 molecular geometry of proton transfer (PT) complex between AHMP and PDCA has been optimized on a counterpoise corrected potential energy surface (PES) at DFT-B3LYP/6-31G(d,p) level of theory in the gaseous phase. Further, the formation of hydrogen bonded charge transfer (HBCT) complex between PDCA and AHMP has been also discussed. PT energy barrier between two extremes is calculated using potential energy surface (PES) scan by varying bond length. The intermolecular interactions have been analyzed from theoretical perspective of natural bond orbital (NBO) analysis. In addition, the interaction energy between molecular fragments involved in the complex formation has been also computed by counterpoise procedure at same level of theory.

  6. The interaction of MnH(X 7Σ+) with He: Ab initio potential energy surface and bound states

    NASA Astrophysics Data System (ADS)

    Turpin, Florence; Halvick, Philippe; Stoecklin, Thierry

    2010-06-01

    The potential energy surface of the ground state of the He-MnH(X Σ7+) van der Waals complex is presented. Within the supermolecular approach of intermolecular energy calculations, a grid of ab initio points was computed at the multireference configuration interaction level using the aug-cc-pVQZ basis set for helium and hydrogen and the relativistic aug-cc-pVQZ-DK basis set for manganese. The potential energy surface was then fitted to a global analytical form which main features are discussed. As a first application of this potential energy surface, we present accurate calculations of bound energy levels of the H3e-MnH and H4e-MnH complexes.

  7. The interaction of MnH(X 7Sigma+) with He: ab initio potential energy surface and bound states.

    PubMed

    Turpin, Florence; Halvick, Philippe; Stoecklin, Thierry

    2010-06-07

    The potential energy surface of the ground state of the He-MnH(X (7)Sigma(+)) van der Waals complex is presented. Within the supermolecular approach of intermolecular energy calculations, a grid of ab initio points was computed at the multireference configuration interaction level using the aug-cc-pVQZ basis set for helium and hydrogen and the relativistic aug-cc-pVQZ-DK basis set for manganese. The potential energy surface was then fitted to a global analytical form which main features are discussed. As a first application of this potential energy surface, we present accurate calculations of bound energy levels of the (3)He-MnH and (4)He-MnH complexes.

  8. Hydrogen bond spectroscopy in the near infrared: Out-of-plane torsion and antigeared bend combination bands in (HF)2

    NASA Astrophysics Data System (ADS)

    Anderson, David T.; Davis, Scott; Nesbitt, David J.

    1996-09-01

    High-resolution near infrared spectra of the two ``high'' frequency intermolecular modes of (HF)2 have been characterized in HF-stretch excited states using a slit jet spectrometer. In the spectral region between 4280 and 4480 cm-1, four vibration-rotation-tunneling (VRT) bands are observed and assigned to tunneling pairs of the out-of-plane torsion (ν6) and antigeared bend (ν3) intermolecular modes, in combination with the hydrogen bond donor (ν2) and acceptor (ν1) high-frequency intramolecular HF stretches, respectively. Analysis of the jet-cooled, rotationally resolved spectra provide intermolecular frequencies, rotational constants, tunneling splittings, and predissociation rates for the ν3/ν6 intermolecular excited states. The relatively small changes in the hydrogen bond interconversion tunneling splitting with either ν3 or ν6 excitation indicate that neither intermolecular mode is strongly coupled to the tunneling coordinate. The high-resolution VRT linewidths reveal mode specific predissociation broadening sensitive predominantly to intramolecular excitation, but with significant additional effects due to low-frequency intermolecular excitation as well. The intermolecular vibrational frequencies in the combination states display a systematic dependence on intramolecular redshift that allows all four intermolecular fundamental frequencies to be extrapolated from the near-ir data. Agreement between full 6-D quantum calculations and experiment for the out-of-plane torsion (ν6) vibration is remarkably good (0.5%). However, significant discrepancies (≳10%) between theory and experiment are obtained for the antigeared bend (ν3), indicating the need for further refinement of the HF dimer potential surface. Finally, the observation of all four intermolecular modes allows zero-point contributions to the binding energy to be reliably estimated. The revised value for the binding energy, De=1580(35) cm-1, is slightly higher than semiempirical estimates but now in excellent agreement with recent high level ab initio calculations.

  9. Molecular structure, Hirshfeld surface analysis, theoretical investigations and nonlinear optical properties of a novel crystalline chalcone derivative: (E)-1-(5-bromothiophen-2-yl)-3-(p-tolyl)prop-2-en-1-one

    NASA Astrophysics Data System (ADS)

    Pramodh, B.; Lokanath, N. K.; Naveen, S.; Naresh, P.; Ganguly, S.; Panda, J.

    2018-06-01

    In the present work, the crystal structure of a novel chalcone derivative, (E)-1-(5-bromothiophen-2-yl)-3-(p-tolyl) prop-2-en-1-one has been confirmed by X-ray diffraction studies. Hirshfeld surface analysis was carried out to explore the intermolecular interactions. From the Hirshfeld surface analysis it was observed that H⋯H (26.7%) and C⋯H (26.3%) are the major contributors to the intermolecular interactions which stabilizes the crystal structure. The coordinates were optimized using the density functional theory (DFT) calculations using B3LYP hybrid functions with 6-31G(d) basis set. The structural parameters obtained from XRD studies compliment with those calculated using DFT calculations. The HOMO and LUMO energy gap was found to be 4.1778 eV. The molecular electrostatic potential (MEP) was plotted to identify the possible reactions sites of the molecule. Further, non-linear optical (NLO) properties were investigated by calculating hyperpolarizabilities which indicate that the title compound would be a potential candidate for the NLO applications.

  10. Investigations of the Rg-BrCl (Rg = He, Ne, Ar, Kr, Xe) binary van der Waals complexes: ab initio intermolecular potential energy surfaces, vibrational states and predicted pure rotational transition frequencies

    NASA Astrophysics Data System (ADS)

    Li, Song; Zheng, Rui; Chen, Shan-Jun; Chen, Yan; Chen, Peng

    2017-03-01

    The intermolecular potential energy surfaces (PESs) of the ground electronic state for the Rg-BrCl (Rg = He, Ne, Ar, Kr, Xe) van der Waals complexes have been constructed by using the coupled-cluster method in combination with the augmented quadruple-zeta correlation-consistent basis sets supplemented with an additional set of bond functions. The features of the anisotropic PESs for these complexes are remarkably similar, which are characterized by three minima and two saddle points between them. The global minimum corresponds to a collinear Rg-Br-Cl configuration. Two local minima, correlate with an anti-linear Rg-Cl-Br geometry and a nearly T-shaped structure, can also be located on each PES. The quantum bound state calculations enable us to investigate intermolecular vibrational states and rotational energy levels of the complexes. The transition frequencies are predicted and are fitted to obtain their corresponding spectroscopic constants. In general, the periodic trends are observed for this complex family. Comparisons with available experimental data for the collinear isomer of Ar-BrCl demonstrate reliability of our theoretical predictions, and our results for the other two isomers of Ar-BrCl as well as for other members of the complex family are also anticipated to be trustable. Except for the collinear isomer of Ar-BrCl, the data presented in this paper would be beneficial to improve our knowledge for these experimentally unknown species.

  11. Thz Spectroscopy and DFT Modeling of Intermolecular Vibrations in Hydrophobic Amino Acids

    NASA Astrophysics Data System (ADS)

    Williams, michael R. C.; Aschaffenburg, Daniel J.; Schmuttenmaer, Charles A.

    2013-06-01

    Vibrations that involve intermolecular displacements occur in molecular crystals at frequencies in the 0.5-5 THz range (˜15-165 cm^{-1}), and these motions are direct indicators of the interaction potential between the molecules. The intermolecular potential energy surface of crystalline hydrophobic amino acids is inherently interesting simply because of the wide variety of forces (electrostatic, dipole-dipole, hydrogen-bonding, van der Waals) that are present. Furthermore, an understanding of these particular interactions is immediately relevant to important topics like protein conformation and pharmaceutical polymorphism. We measured the low-frequency absorption spectra of several polycrystalline hydrophobic amino acids using THz time-domain spectroscopy, and in addition we carried out DFT calculations using periodic boundary conditions and an exchange-correlation functional that accounts for van der Waals dispersion forces. We chose to investigate a series of similar amino acids with closely analogous unit cells (leucine, isoleucine, and allo-isoleucine, in racemic or pseudo-racemic mixtures). This allows us to consider trends in the vibrational spectra as a function of small changes in molecular arrangement and/or crystal geometry. In this way, we gain confidence that peak assignments are not based on serendipitous similarities between calculated and observed features.

  12. Molecular dynamics simulations of fluid methane properties using ab initio intermolecular interaction potentials.

    PubMed

    Chao, Shih-Wei; Li, Arvin Huang-Te; Chao, Sheng D

    2009-09-01

    Intermolecular interaction energy data for the methane dimer have been calculated at a spectroscopic accuracy and employed to construct an ab initio potential energy surface (PES) for molecular dynamics (MD) simulations of fluid methane properties. The full potential curves of the methane dimer at 12 symmetric conformations were calculated by the supermolecule counterpoise-corrected second-order Møller-Plesset (MP2) perturbation theory. Single-point coupled cluster with single and double and perturbative triple excitations [CCSD(T)] calculations were also carried out to calibrate the MP2 potentials. We employed Pople's medium size basis sets [up to 6-311++G(3df, 3pd)] and Dunning's correlation consistent basis sets (cc-pVXZ and aug-cc-pVXZ, X = D, T, Q). For each conformer, the intermolecular carbon-carbon separation was sampled in a step 0.1 A for a range of 3-9 A, resulting in a total of 732 configuration points calculated. The MP2 binding curves display significant anisotropy with respect to the relative orientations of the dimer. The potential curves at the complete basis set (CBS) limit were estimated using well-established analytical extrapolation schemes. A 4-site potential model with sites located at the hydrogen atoms was used to fit the ab initio potential data. This model stems from a hydrogen-hydrogen repulsion mechanism to explain the stability of the dimer structure. MD simulations using the ab initio PES show quantitative agreements on both the atom-wise radial distribution functions and the self-diffusion coefficients over a wide range of experimental conditions. Copyright 2008 Wiley Periodicals, Inc.

  13. Energy transfer dynamics and kinetics of elementary processes (promoted) by gas-phase CO2 -N2 collisions: Selectivity control by the anisotropy of the interaction.

    PubMed

    Lombardi, Andrea; Pirani, Fernando; Laganà, Antonio; Bartolomei, Massimiliano

    2016-06-15

    In this work, we exploit a new formulation of the potential energy and of the related computational procedures, which embodies the coupling between the intra and intermolecular components, to characterize possible propensities of the collision dynamics in energy transfer processes of interest for simulation and control of phenomena occurring in a variety of equilibrium and nonequilibrium environments. The investigation reported in the paper focuses on the prototype CO2 -N2 system, whose intramolecular component of the interaction is modeled in terms of a many body expansion while the intermolecular component is modeled in terms of a recently developed bonds-as-interacting-molecular-centers' approach. The main advantage of this formulation of the potential energy surface is that of being (a) truly full dimensional (i.e., all the variations of the coordinates associated with the molecular vibrations and rotations on the geometrical and electronic structure of the monomers, are explicitly taken into account without freezing any bonds or angles), (b) more flexible than other usual formulations of the interaction and (c) well suited for fitting procedures better adhering to accurate ab initio data and sensitive to experimental arrangement dependent information. Specific attention has been given to the fact that a variation of vibrational and rotational energy has a higher (both qualitative and quantitative) impact on the energy transfer when a more accurate formulation of the intermolecular interaction (with respect to that obtained when using rigid monomers) is adopted. This makes the potential energy surface better suited for the kinetic modeling of gaseous mixtures in plasma, combustion and atmospheric chemistry computational applications. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  14. Substitution effect on a hydroxylated chalcone: Conformational, topological and theoretical studies

    NASA Astrophysics Data System (ADS)

    Custodio, Jean M. F.; Vaz, Wesley F.; de Andrade, Fabiano M.; Camargo, Ademir J.; Oliveira, Guilherme R.; Napolitano, Hamilton B.

    2017-05-01

    The effect of substituents on two hydroxylated chalcones was studied in this work. The first chalcone, with a dimethylamine group (HY-DAC) and the second, with three methoxy groups (HY-TRI) were synthesized and crystallized from ethanol on centrosymmetric space group P21/c. The geometric parameters and supramolecular arrangement for both structures obtained from single crystal X-ray diffraction data were analyzed. The intermolecular interactions were investigated by Hirshfeld surfaces with their respective 2D plot for quantification of each type of contact. Additionally, the observed interactions were characterized by QTAIM analysis, and DFT calculations were applied for theoretical vibrational spectra, localization and quantification of frontier orbitals and potential electrostatic map. The flatness of both structures was affected by the substituents, which led to different monoclinic crystalline packing. The calculated harmonic vibrational frequencies and homo-lumo gap confirmed the stability of the structures, while intermolecular interactions were confirmed by potential electrostatic map and QTAIM analysis.

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stiegler, Thomas; Sadus, Richard J., E-mail: rsadus@swin.edu.au

    General methods for combining interactions between particles characterised by non-identical intermolecular potentials are investigated. The combination methods are tested by performing molecular dynamics simulations to determine the pressure, energy, isochoric and isobaric heat capacities, thermal expansion coefficient, isothermal compressibility, Joule-Thomson coefficient, and speed of sound of 10-5 + 12-6 Mie potential binary mixtures. In addition to the two non-identical Mie potentials, mixtures are also studied with non-identical intermolecular parameters. The combination methods are compared with results obtained by simply averaging the Mie exponents. When either the energy or size parameters are non-identical, very significant differences emerge in the thermodynamic propertiesmore » predicted by the alternative combination methods. The isobaric heat capacity is the thermodynamic property that is most affected by the relative magnitude of the intermolecular potential parameters and the method for combining non-identical potentials. Either the arithmetic or geometric combination of potentials provides a simple and effective way of performing simulations involving mixtures of components characterised by non-identical intermolecular potentials, which is independent of their functional form.« less

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mackeprang, Kasper; Kjaergaard, Henrik G., E-mail: hgk@chem.ku.dk; Salmi, Teemu

    We describe the vibrational transitions of the donor unit in water dimer with an approach that is based on a three-dimensional local mode model. We perform a perturbative treatment of the intermolecular vibrational modes to improve the transition wavenumber of the hydrogen bonded OH-stretching transition. The model accurately predicts the transition wavenumbers of the vibrations in water dimer compared to experimental values and provides a physical picture that explains the redshift of the hydrogen bonded OH-oscillator. We find that it is unnecessary to include all six intermolecular modes in the vibrational model and that their effect can, to a goodmore » approximation, be computed using a potential energy surface calculated at a lower level electronic structure method than that used for the unperturbed model.« less

  17. Exploring contribution of intermolecular interactions in supramolecular layered assembly of naphthyridine co-crystals: Insights from Hirshfeld surface analysis of their crystalline states

    NASA Astrophysics Data System (ADS)

    Seth, Saikat Kumar; Das, Nirmal Kumar; Aich, Krishnendu; Sen, Debabrata; Fun, Hoong-Kun; Goswami, Shyamaprasad

    2013-09-01

    Co-crystals of 1a and 1b have been prepared by slow evaporation of the solutions of mixtures of 2,7-dimethyl-1,8-naphthyridine (1), urea (a) and thiourea (b). The structures of the complexes are determined by the single crystal X-ray diffraction and a detailed investigation of the crystal packing and classification of intermolecular interactions is presented by means of Hirshfeld surface analysis which is of considerable current interest in crystal engineering. The X-ray study reveals that the co-crystal formers are envisioned to produce N-H⋯N hydrogen bond as well as N-H⋯O/N-H⋯S pair-wise hydrogen bonds and also the weaker aromatic π⋯π interactions which cooperatively take part in the crystal packing. The recurring feature of the self-assembly in the compounds is the appearance of the molecular ribbon through multiple hydrogen bonding which are further stacked into molecular layers by π⋯π stacking interactions. Hirshfeld surface analysis for visually analyzing intermolecular interactions in crystal structures employing molecular surface contours and 2D Fingerprint plots have been used to examine molecular shapes. Crystal structure analysis supported with the Hirshfeld surface and fingerprint plots enabled the identification of the significant intermolecular interactions.

  18. Investigations of the Rg-BrCl (Rg=He, Ne, Ar, Kr, Xe) binary van der Waals complexes: ab initio intermolecular potential energy surfaces, vibrational states and predicted pure rotational transition frequencies.

    PubMed

    Li, Song; Zheng, Rui; Chen, Shan-Jun; Chen, Yan; Chen, Peng

    2017-03-05

    The intermolecular potential energy surfaces (PESs) of the ground electronic state for the Rg-BrCl (Rg=He, Ne, Ar, Kr, Xe) van der Waals complexes have been constructed by using the coupled-cluster method in combination with the augmented quadruple-zeta correlation-consistent basis sets supplemented with an additional set of bond functions. The features of the anisotropic PESs for these complexes are remarkably similar, which are characterized by three minima and two saddle points between them. The global minimum corresponds to a collinear Rg-Br-Cl configuration. Two local minima, correlate with an anti-linear Rg-Cl-Br geometry and a nearly T-shaped structure, can also be located on each PES. The quantum bound state calculations enable us to investigate intermolecular vibrational states and rotational energy levels of the complexes. The transition frequencies are predicted and are fitted to obtain their corresponding spectroscopic constants. In general, the periodic trends are observed for this complex family. Comparisons with available experimental data for the collinear isomer of Ar-BrCl demonstrate reliability of our theoretical predictions, and our results for the other two isomers of Ar-BrCl as well as for other members of the complex family are also anticipated to be trustable. Except for the collinear isomer of Ar-BrCl, the data presented in this paper would be beneficial to improve our knowledge for these experimentally unknown species. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. Molecular dynamics of the water liquid-vapor interface

    NASA Technical Reports Server (NTRS)

    Wilson, M. A.; Pohorille, A.; Pratt, L. R.; MacElroy, R. D. (Principal Investigator)

    1987-01-01

    The results of molecular dynamics calculations on the equilibrium interface between liquid water and its vapor at 325 K are presented. For the TIP4P model of water intermolecular pair potentials, the average surface dipole density points from the vapor to the liquid. The most common orientations of water molecules have the C2 nu molecular axis roughly parallel to the interface. The distributions are quite broad and therefore compatible with the intermolecular correlations characteristic of bulk liquid water. All near-neighbor pairs in the outermost interfacial layers are hydrogen bonded according to the common definition adopted here. The orientational preferences of water molecules near a free surface differ from those near rigidly planar walls which can be interpreted in terms of patterns found in hexagonal ice 1. The mean electric field in the interfacial region is parallel to the mean polarization which indicates that attention cannot be limited to dipolar charge distributions in macroscopic descriptions of the electrical properties of this interface. The value of the surface tension obtained is 132 +/- 46 dyn/cm, significantly different from the value for experimental water of 68 dyn/cm at 325 K.

  20. Polyelectrolyte brushes in mixed ionic medium studied via intermolecular forces

    NASA Astrophysics Data System (ADS)

    Farina, Robert; Laugel, Nicolas; Pincus, Philip; Tirrell, Matthew

    2011-03-01

    The vast uses and applications of polyelectrolyte brushes make them an attractive field of research especially with the growing interest in responsive materials. Polymers which respond via changes in temperature, pH, and ionic strength are increasingly being used for applications in drug delivery, chemical gating, etc. When polyelectrolyte brushes are found in either nature (e.g., surfaces of cartilage and mammalian lung interiors) or commercially (e.g., skin care products, shampoo, and surfaces of medical devices) they are always surrounded by mixed ionic medium. This makes the study of these brushes in varying ionic environments extremely relevant for both current and future potential applications. The polyelectrolyte brushes in this work are diblock co-polymers of poly-styrene sulfonate (N=420) and poly-t-butyl styrene (N=20) which tethers to a hydrophobic surface allowing for a purely thermodynamic study of the polyelectrolyte chains. Intermolecular forces between two brushes are measured using the SFA. As multi-valent concentrations are increased, the brushes collapse internally and form strong adhesion between one another after contact (properties not seen in a purely mono-valent environment).

  1. A test of the significance of intermolecular vibrational coupling in isotopic fractionation

    DOE PAGES

    Herman, Michael F.; Currier, Robert P.; Peery, Travis B.; ...

    2017-07-15

    Intermolecular coupling of dipole moments is studied for a model system consisting of two diatomic molecules (AB monomers) arranged co-linearly and which can form non-covalently bound dimers. The dipolar coupling is a function of the bond length in each molecule as well as of the distance between the centers-of-mass of the two molecules. The calculations show that intermolecular coupling of the vibrations results in an isotope-dependent modification of the AB-AB intermolecular potential. This in turn alters the energies of the low-lying bound states of the dimers, producing isotope-dependent changes in the AB-AB dimer partition function. Explicit inclusion of intermolecular vibrationalmore » coupling then changes the predicted gas-dimer isotopic fractionation. In addition, a mass dependence in the intermolecular potential can also result in changes in the number of bound dimer states in an equilibrium mixture. This in turn leads to a significant dimer population shift in the model monomer-dimer equilibrium system considered here. Finally, the results suggest that intermolecular coupling terms should be considered when probing the origins of isotopic fractionation.« less

  2. Computer simulation study of the nematic-vapour interface in the Gay-Berne model

    NASA Astrophysics Data System (ADS)

    Rull, Luis F.; Romero-Enrique, José Manuel

    2017-06-01

    We present computer simulations of the vapour-nematic interface of the Gay-Berne model. We considered situations which correspond to either prolate or oblate molecules. We determine the anchoring of the nematic phase and correlate it with the intermolecular potential parameters. On the other hand, we evaluate the surface tension associated to this interface. We find a corresponding states law for the surface tension dependence on the temperature, valid for both prolate and oblate molecules.

  3. Determining the Intermolecular Potential Energy in a Gas: A Physical Chemistry Experiment

    ERIC Educational Resources Information Center

    Olbregts, J.; Walgraeve, J. P.

    1976-01-01

    Describes an experiment in which gas viscosity coefficients over a large temperature range are used to determine the parameters of the intermolecular potential energy and other properties such as virial coefficients. (MLH)

  4. Spherical and hyperspherical harmonics representation of van der Waals aggregates

    NASA Astrophysics Data System (ADS)

    Lombardi, Andrea; Palazzetti, Federico; Aquilanti, Vincenzo; Grossi, Gaia; Albernaz, Alessandra F.; Barreto, Patricia R. P.; Cruz, Ana Claudia P. S.

    2016-12-01

    The representation of the potential energy surfaces of atom-molecule or molecular dimers interactions should account faithfully for the symmetry properties of the systems, preserving at the same time a compact analytical form. To this aim, the choice of a proper set of coordinates is a necessary precondition. Here we illustrate a description in terms of hyperspherical coordinates and the expansion of the intermolecular interaction energy in terms of hypersherical harmonics, as a general method for building potential energy surfaces suitable for molecular dynamics simulations of van der Waals aggregates. Examples for the prototypical case diatomic-molecule-diatomic-molecule interactions are shown.

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zheng, Rui; School of Mathematics and Information Science, North China University of Water Resources and Electric Power, Zhengzhou 450011; Zheng, Limin

    Theoretical studies of the potential energy surface (PES) and bound states are performed for the N{sub 2}–N{sub 2}O van der Waals (vdW) complex. A four-dimensional intermolecular PES is constructed at the level of single and double excitation coupled-cluster method with a non-iterative perturbation treatment of triple excitations [CCSD(T)] with aug-cc-pVTZ basis set supplemented with bond functions. Two equivalent T-shaped global minima are located, in which the O atom of N{sub 2}O monomer is near the N{sub 2} monomer. The intermolecular fundamental vibrational states are assigned by inspecting the orientation of the nodal surface of the wavefunctions. The calculated frequency formore » intermolecular disrotation mode is 23.086 cm{sup −1}, which is in good agreement with the available experimental data of 22.334 cm{sup −1}. A negligible tunneling splitting with the value of 4.2 MHz is determined for the ground vibrational state and the tunneling splitting increases as the increment of the vibrational frequencies. Rotational levels and transition frequencies are calculated for both isotopomers {sup 14}N{sub 2}–N{sub 2}O and {sup 15}N{sub 2}–N{sub 2}O. The accuracy of the PES is validated by the good agreement between theoretical and experimental results for the transition frequencies and spectroscopic parameters.« less

  6. Decomposition of Intermolecular Interactions in the Crystal Structure of Some Diacetyl Platinum(II) Complexes: Combined Hirshfeld, AIM, and NBO Analyses.

    PubMed

    Soliman, Saied M; Barakat, Assem

    2016-12-06

    Intermolecular interactions play a vital role in crystal structures. Therefore, we conducted a topological study, using Hirshfeld surfaces and atom in molecules (AIM) analysis, to decompose and analyze, respectively, the different intermolecular interactions in six hydrazone-diacetyl platinum(II) complexes. Using AIM and natural bond orbital (NBO) analyses, we determined the type, nature, and strength of the interactions. All the studied complexes contain C-H⋯O interactions, and the presence of bond critical points along the intermolecular paths underlines their significance. The electron densities (ρ(r)) at the bond critical points (0.0031-0.0156 e/a₀³) fall within the typical range for H-bonding interactions. Also, the positive values of the Laplacian of the electron density (∇²ρ(r)) revealed the depletion of electronic charge on the interatomic path, another characteristic feature of closed-shell interactions. The ratios of the absolute potential energy density to the kinetic energy density (| V (r)|/ G (r)) and ρ(r) are highest for the O2⋯H15-N3 interaction in [Pt(COMe)₂(2-pyCMe=NNH₂)] (1); hence, this interaction has the highest covalent character of all the O⋯H intermolecular interactions. Interestingly, in [Pt(COMe)₂(H₂NN=CMe-CMe=NNH₂)] (3), there are significant N-H⋯Pt interactions. Using the NBO method, the second-order interaction energies, E (2) , of these interactions range from 3.894 to 4.061 kJ/mol. Furthermore, the hybrid Pt orbitals involved in these interactions are comprised of d xy , d xz , and s atomic orbitals.

  7. Breakdown of the single-exchange approximation in third-order symmetry-adapted perturbation theory.

    PubMed

    Lao, Ka Un; Herbert, John M

    2012-03-22

    We report third-order symmetry-adapted perturbation theory (SAPT) calculations for several dimers whose intermolecular interactions are dominated by induction. We demonstrate that the single-exchange approximation (SEA) employed to derive the third-order exchange-induction correction (E(exch-ind)((30))) fails to quench the attractive nature of the third-order induction (E(ind)((30))), leading to one-dimensional potential curves that become attractive rather than repulsive at short intermolecular separations. A scaling equation for (E(exch-ind)((30))), based on an exact formula for the first-order exchange correction, is introduced to approximate exchange effects beyond the SEA, and qualitatively correct potential energy curves that include third-order induction are thereby obtained. For induction-dominated systems, our results indicate that a "hybrid" SAPT approach, in which a dimer Hartree-Fock calculation is performed in order to obtain a correction for higher-order induction, is necessary not only to obtain quantitative binding energies but also to obtain qualitatively correct potential energy surfaces. These results underscore the need to develop higher-order exchange-induction formulas that go beyond the SEA. © 2012 American Chemical Society

  8. Insight into induced charges at metal surfaces and biointerfaces using a polarizable Lennard-Jones potential.

    PubMed

    Geada, Isidro Lorenzo; Ramezani-Dakhel, Hadi; Jamil, Tariq; Sulpizi, Marialore; Heinz, Hendrik

    2018-02-19

    Metallic nanostructures have become popular for applications in therapeutics, catalysts, imaging, and gene delivery. Molecular dynamics simulations are gaining influence to predict nanostructure assembly and performance; however, instantaneous polarization effects due to induced charges in the free electron gas are not routinely included. Here we present a simple, compatible, and accurate polarizable potential for gold that consists of a Lennard-Jones potential and a harmonically coupled core-shell charge pair for every metal atom. The model reproduces the classical image potential of adsorbed ions as well as surface, bulk, and aqueous interfacial properties in excellent agreement with experiment. Induced charges affect the adsorption of ions onto gold surfaces in the gas phase at a strength similar to chemical bonds while ions and charged peptides in solution are influenced at a strength similar to intermolecular bonds. The proposed model can be applied to complex gold interfaces, electrode processes, and extended to other metals.

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Herman, Michael F.; Currier, Robert P.; Peery, Travis B.

    Intermolecular coupling of dipole moments is studied for a model system consisting of two diatomic molecules (AB monomers) arranged co-linearly and which can form non-covalently bound dimers. The dipolar coupling is a function of the bond length in each molecule as well as of the distance between the centers-of-mass of the two molecules. The calculations show that intermolecular coupling of the vibrations results in an isotope-dependent modification of the AB-AB intermolecular potential. This in turn alters the energies of the low-lying bound states of the dimers, producing isotope-dependent changes in the AB-AB dimer partition function. Explicit inclusion of intermolecular vibrationalmore » coupling then changes the predicted gas-dimer isotopic fractionation. In addition, a mass dependence in the intermolecular potential can also result in changes in the number of bound dimer states in an equilibrium mixture. This in turn leads to a significant dimer population shift in the model monomer-dimer equilibrium system considered here. Finally, the results suggest that intermolecular coupling terms should be considered when probing the origins of isotopic fractionation.« less

  10. The study of intermolecular interactions in NLO crystal melaminium chloride hemihydrate using DFT simulation and Hirshfeld surface analysis

    NASA Astrophysics Data System (ADS)

    Sangeetha, K.; Kumar, V. R. Suresh; Marchewka, M. K.; Binoy, J.

    2018-05-01

    Since, the intermolecular interactions play a crucial role in the formation of crystalline network, its analysis throws light on structure dependent crystalline properties. In the present study, DFT based vibrational spectral investigation has been performed in the stretching region (3500 cm-1 - 2800 cm-1) of IR and Raman spectra of melaminium chloride hemihydrates. The intermolecular interaction has been investigated by analyzing the half width of the OH and NH stretching profile of the deconvoluted spectra. Correlation of vibrational spectra with Hirshfeld surface analysis and finger print plot has been contemplated and molecular docking studies has been performed on melaminium chloride hemihydrate to assess its role in the drug transport mechanism and toxicity to human body.

  11. Theoretical studies of charge transfer and proton transfer complex formation between 3,5-dinitrobenzic acid and 1,2-dimethylimidazole

    NASA Astrophysics Data System (ADS)

    Afroz, Ziya; Faizan, Mohd.; Alam, Mohammad Jane; Ahmad, Shabbir; Ahmad, Afaq

    2018-05-01

    Natural atomic charge analysis and molecular electrostatic potential (MEP) surface analysis of hydrogen bonded charge transfer (HBCT) and proton transfer (PT) complex of 3,5-dinitrobenzoic acid (DNBA) and 1,2-dimethylimidazole (DMI) have been investigated by theoretical modelling using widely employed DFT/B3LYP/6-311G(d,p) level of theory. Along with this analysis, Hirshfeld surface study of the intermolecular interactions and associated 2D finger plot for reported PT complex between DNBA and DMI have been explored.

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Yinshan; Zhu, Men; Laventure, Audrey

    Surface grating decay measurements have been performed on three closely related molecular glasses to study the effect of intermolecular hydrogen bonds on surface diffusion. The three molecules are derivatives of bis(3,5-dimethyl-phenylamino)-1,3,5-triazine and differ only in the functional group R at the 2-position, with R being C 2H 5, OCH 3, and NHCH 3, and referred to as “Et”, “OMe”, and “NHMe”, respectively. Of the three molecules, NHMe forms more extensive intermolecular hydrogen bonds than Et and OMe and was found to have slower surface diffusion. For Et and OMe, surface diffusion is so fast that it replaces viscous flow asmore » the mechanism of surface grating decay as temperature is lowered. In contrast, no such transition was observed for NHMe under the same conditions, indicating significantly slower surface diffusion. This result is consistent with the previous finding that extensive intermolecular hydrogen bonds slow down surface diffusion in molecular glasses and is attributed to the persistence of hydrogen bonds even in the surface environment. Here, this result is also consistent with the lower stability of the vapor-deposited glass of NHMe relative to those of Et and OMe and supports the view that surface mobility controls the stability of vapor-deposited glasses.« less

  13. Using Molecular Dynamics Simulation to Reinforce Student Understanding of Intermolecular Forces

    ERIC Educational Resources Information Center

    Burkholder, Phillip R.; Purser, Gordon H.; Cole, Renee S.

    2008-01-01

    Intermolecular forces play an important role in many aspects of chemistry ranging from inorganic to biological chemistry. These forces dictate molecular conformation, species aggregation (including self-assembly), trends in solubility and boiling points, adsorption characteristics, viscosity, phase changes, surface tension, capillary action, vapor…

  14. Room temperature ionic liquids: A simple model. Effect of chain length and size of intermolecular potential on critical temperature.

    PubMed

    Chapela, Gustavo A; Guzmán, Orlando; Díaz-Herrera, Enrique; del Río, Fernando

    2015-04-21

    A model of a room temperature ionic liquid can be represented as an ion attached to an aliphatic chain mixed with a counter ion. The simple model used in this work is based on a short rigid tangent square well chain with an ion, represented by a hard sphere interacting with a Yukawa potential at the head of the chain, mixed with a counter ion represented as well by a hard sphere interacting with a Yukawa potential of the opposite sign. The length of the chain and the depth of the intermolecular forces are investigated in order to understand which of these factors are responsible for the lowering of the critical temperature. It is the large difference between the ionic and the dispersion potentials which explains this lowering of the critical temperature. Calculation of liquid-vapor equilibrium orthobaric curves is used to estimate the critical points of the model. Vapor pressures are used to obtain an estimate of the triple point of the different models in order to calculate the span of temperatures where they remain a liquid. Surface tensions and interfacial thicknesses are also reported.

  15. Influence of Hydrogen Bonding on the Surface Diffusion of Molecular Glasses: Comparison of Three Triazines

    DOE PAGES

    Chen, Yinshan; Zhu, Men; Laventure, Audrey; ...

    2017-06-26

    Surface grating decay measurements have been performed on three closely related molecular glasses to study the effect of intermolecular hydrogen bonds on surface diffusion. The three molecules are derivatives of bis(3,5-dimethyl-phenylamino)-1,3,5-triazine and differ only in the functional group R at the 2-position, with R being C 2H 5, OCH 3, and NHCH 3, and referred to as “Et”, “OMe”, and “NHMe”, respectively. Of the three molecules, NHMe forms more extensive intermolecular hydrogen bonds than Et and OMe and was found to have slower surface diffusion. For Et and OMe, surface diffusion is so fast that it replaces viscous flow asmore » the mechanism of surface grating decay as temperature is lowered. In contrast, no such transition was observed for NHMe under the same conditions, indicating significantly slower surface diffusion. This result is consistent with the previous finding that extensive intermolecular hydrogen bonds slow down surface diffusion in molecular glasses and is attributed to the persistence of hydrogen bonds even in the surface environment. Here, this result is also consistent with the lower stability of the vapor-deposited glass of NHMe relative to those of Et and OMe and supports the view that surface mobility controls the stability of vapor-deposited glasses.« less

  16. Intermolecular Modes between LH2 Bacteriochlorophylls and Protein Residues: The Effect on the Excitation Energies.

    PubMed

    Anda, André; De Vico, Luca; Hansen, Thorsten

    2017-06-08

    Light-harvesting system 2 (LH2) executes the primary processes of photosynthesis in purple bacteria; photon absorption, and energy transportation to the reaction center. A detailed mechanistic insight into these operations is obscured by the complexity of the light-harvesting systems, particularly by the chromophore-environment interaction. In this work, we focus on the effects of the protein residues that are ligated to the bacteriochlorophylls (BChls) and construct potential energy surfaces of the ground and first optically excited state for the various BChl-residue systems where we in each case consider two degrees of freedom in the intermolecular region. We find that the excitation energies are only slightly affected by the considered modes. In addition, we see that axial ligands and hydrogen-bonded residues have opposite effects on both excitation energies and oscillator strengths by comparing to the isolated BChls. Our results indicate that only a small part of the chromophore-environment interaction can be associated with the intermolecular region between a BChl and an adjacent residue, but that it may be possible to selectively raise or lower the excitation energy at the axial and planar residue positions, respectively.

  17. Intermolecular cope-type hydroamination of alkenes and alkynes using hydroxylamines.

    PubMed

    Moran, Joseph; Gorelsky, Serge I; Dimitrijevic, Elena; Lebrun, Marie-Eve; Bédard, Anne-Catherine; Séguin, Catherine; Beauchemin, André M

    2008-12-31

    The development of the Cope-type hydroamination as a method for the metal- and acid-free intermolecular hydroamination of hydroxylamines with alkenes and alkynes is described. Aqueous hydroxylamine reacts efficiently with alkynes in a Markovnikov fashion to give oximes and with strained alkenes to give N-alkylhydroxylamines, while unstrained alkenes are more challenging. N-Alkylhydroxylamines also display similar reactivity with strained alkenes and give modest to good yields with vinylarenes. Electron-rich vinylarenes lead to branched products while electron-deficient vinylarenes give linear products. A beneficial additive effect is observed with sodium cyanoborohydride, the extent of which is dependent on the structure of the hydroxylamine. The reaction conditions are found to be compatible with common protecting groups, free OH and NH bonds, as well as bromoarenes. Both experimental and theoretical results suggest the proton transfer step of the N-oxide intermediate is of vital importance in the intermolecular reactions of alkenes. Details are disclosed concerning optimization, reaction scope, limitations, and theoretical analysis by DFT, which includes a detailed molecular orbital description for the concerted hydroamination process and an exhaustive set of calculated potential energy surfaces for the reactions of various alkenes, alkynes, and hydroxylamines.

  18. Resonance Raman spectra of organic molecules absorbed on inorganic semiconducting surfaces: Contribution from both localized intramolecular excitation and intermolecular charge transfer excitation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ye, ChuanXiang; Zhao, Yi, E-mail: yizhao@xmu.edu.cn, E-mail: liangwz@xmu.edu.cn; Liang, WanZhen, E-mail: yizhao@xmu.edu.cn, E-mail: liangwz@xmu.edu.cn

    2015-10-21

    The time-dependent correlation function approach for the calculations of absorption and resonance Raman spectra (RRS) of organic molecules absorbed on semiconductor surfaces [Y. Zhao and W. Z. Liang, J. Chem. Phys. 135, 044108 (2011)] is extended to include the contribution of the intermolecular charge transfer (CT) excitation from the absorbers to the semiconducting nanoparticles. The results demonstrate that the bidirectionally interfacial CT significantly modifies the spectral line shapes. Although the intermolecular CT excitation makes the absorption spectra red shift slightly, it essentially changes the relative intensities of mode-specific RRS and causes the oscillation behavior of surface enhanced Raman spectra withmore » respect to interfacial electronic couplings. Furthermore, the constructive and destructive interferences of RRS from the localized molecular excitation and CT excitation are observed with respect to the electronic coupling and the bottom position of conductor band. The interferences are determined by both excitation pathways and bidirectionally interfacial CT.« less

  19. Computational study of the rovibrational spectrum of CO₂-CS₂.

    PubMed

    Brown, James; Wang, Xiao-Gang; Carrington, Tucker; Grubbs, G S; Dawes, Richard

    2014-03-21

    A new intermolecular potential energy surface, rovibrational transition frequencies, and line strengths are computed for CO2-CS2. The potential is made by fitting energies obtained from explicitly correlated coupled-cluster calculations using an interpolating moving least squares method. The rovibrational Schrödinger equation is solved with a symmetry-adapted Lanczos algorithm and an uncoupled product basis set. All four intermolecular coordinates are included in the calculation. In agreement with previous experiments, the global minimum of the potential energy surface (PES) is cross shaped. The PES also has slipped-parallel minima. Rovibrational wavefunctions are localized in the cross minima and the slipped-parallel minima. Vibrational parent analysis was used to assign vibrational labels to rovibrational states. Tunneling occurs between the two cross minima. Because more than one symmetry operation interconverts the two wells, the symmetry (-oo) of the upper component of the tunneling doublet is different from the symmetry (-ee) of the tunneling coordinate. This unusual situation is due to the multidimensional nature of the double well tunneling. For the cross ground vibrational state, calculated rotational constants differ from their experimental counterparts by less than 0.0001 cm(-1). Most rovibrational states were found to be incompatible with the standard effective rotational Hamiltonian often used to fit spectra. This appears to be due to coupling between internal and overall rotation of the dimer. A simple 2D model accounting for internal rotation was used for two cross-shaped fundamentals to obtain good fits.

  20. Measurement of the. nu. sub 8 intermolecular vibration of (D sub 2 O) sub 2 by tunable far infrared laser spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pugliano, N.; Saykally, R.J.

    The first accurate measurement of an intermolecular vibration of the water dimer is reported. Five vibration--rotation-tunneling (VRT) bands of the perdeuterated isotope, located near 84 cm{sup {minus}1}, have been assigned to the {ital A}{sub 1}/{ital E}/{ital B}{sub 1} tunneling components of the {ital K}{sub {ital a}}=0{l arrow}0 and {ital K}{sub {ital a}}=1{l arrow}0 subbands. The vibration involves large amplitude motion of the hydrogen bond acceptor and is assigned as the {nu}{sub 8} acceptor wag. The spectra indicate strong coupling of both the donor--acceptor interconversion and donor tunneling motions to the excited vibrational coordinate. This measurement provides a benchmark for futuremore » efforts toward the determination of an accurate potential energy surface for the water dimer.« less

  1. Tunable far infrared laser spectroscopy of van der Waals bonds: The intermolecular stretching vibration and effective radial potentials for Ar--H sub 2 O

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cohen, R.C.; Busarow, K.L.; Lee, Y.T.

    1990-01-01

    Measurements of the fundamental van der Waals stretching vibration {Sigma}(0{sub 00},{ital v}{sub {ital s}}=1) {l arrow}{Sigma}(0{sub 00},{ital v}{sub {ital s}}=0) of Ar--H{sub 2}O ({nu}{sub 0}=907 322.08(94) MHz) and a transition from the lowest excited internal rotor state {Sigma}(1{sub 01},{ital v}{sub {ital s}}=0) to the {Sigma}(1{sub 01},{ital v}{sub {ital s}}=1) level ({nu}{sub 0}=1019 239.4(1.0) MHz) are presented. A simultaneous rotational analysis of the new stretching data with the internal rotor bands observed by us previously (J. Chem. Phys. {bold 89}, 4494 (1988)), including the effects of Coriolis interactions, provides experimental evidence for the new assignment of the internal rotor transitions suggestedmore » by Hutson in the accompanying paper. Fits to the rotational term values for the {ital v}{sub {ital s}}=0 states are used to derive effective radial potential energy surfaces for each of the {Sigma} internal rotor states. The results show the well depth (153.4 cm{sup {minus}1}) of the effective radial potential for the {Sigma}(1{sub 01},{ital v}{sub {ital s}}=0) level to be approximately 25 cm{sup {minus}1} deeper than that for the {Sigma}(0{sub 00},{ital v}{sub {ital s}}=0) ground state of the complex, indicating that the former is stabilized considerably more by the anisotropic intermolecular potential energy surface than is the ground state.« less

  2. Estimation of Some Parameters from Morse-Morse-Spline-Van Der Waals Intermolecular Potential

    NASA Astrophysics Data System (ADS)

    Coroiu, I.

    2007-04-01

    Some parameters such as transport cross-sections and isotopic thermal diffusion factor have been calculated from an improved intermolecular potential, Morse-Morse-Spline-van der Waals (MMSV) potential proposed by R.A. Aziz et al. The treatment was completely classical and no corrections for quantum effects were made. The results would be employed for isotope separations of different spherical and quasi-spherical molecules.

  3. Project SQUID: The Viscosity of the Isotopes of Hydrogen and Their Intermolecular Force Potentials

    DTIC Science & Technology

    1963-12-01

    values of the pseudo- Lennard - Jones potential for either hydrogen o- deuteriua. On the present evidence, and cn the present evidence alone, it would...W4drogesror deuterium forces the conclusion that neither gas obeys a lenrArd- Jones six- twelve potential , it is, nevertheless, useful to discuss the values...VISCOSITY OF THE ISOTOPES OF HYDROGEN AND THEIR INTERMOLECULAR FORCE POTENTIALS * by S. Kestir and A Nagashima Broow University December 1963 PROJECT SQUID

  4. Theoretical Models for Surface Forces and Adhesion and Their Measurement Using Atomic Force Microscopy

    PubMed Central

    Leite, Fabio L.; Bueno, Carolina C.; Da Róz, Alessandra L.; Ziemath, Ervino C.; Oliveira, Osvaldo N.

    2012-01-01

    The increasing importance of studies on soft matter and their impact on new technologies, including those associated with nanotechnology, has brought intermolecular and surface forces to the forefront of physics and materials science, for these are the prevailing forces in micro and nanosystems. With experimental methods such as the atomic force spectroscopy (AFS), it is now possible to measure these forces accurately, in addition to providing information on local material properties such as elasticity, hardness and adhesion. This review provides the theoretical and experimental background of AFS, adhesion forces, intermolecular interactions and surface forces in air, vacuum and in solution. PMID:23202925

  5. Terahertz laser spectroscopy of the water dimer intermolecular vibrations. I. (D2O)2

    NASA Astrophysics Data System (ADS)

    Braly, L. B.; Cruzan, J. D.; Liu, K.; Fellers, R. S.; Saykally, R. J.

    2000-06-01

    Terahertz laser VRT spectra of the water dimer consisting of 731 transitions measured with an average precision of 2 MHz and involving four (D2O)2 intermolecular vibrations (one previously published) have been measured between 65 and 104 cm-1. The precisely determined energy level patterns differ both qualitatively and quantitatively from the predictions of several dimer potentials tested, and reveal an ordering of the intermolecular vibrations which differs dramatically from that predicted by standard normal mode analysis. Strong coupling is indicated between the low barrier tunneling motions and the intermolecular vibrations as well as among different vibrations. Particularly, the 83 cm-1 (acceptor wag) and 90 cm-1 (D2O)2 (acceptor twist) vibrations interact through a Coriolis perturbation. These spectra provide the basis for our recent determination of the water pair potential. The corresponding data set for (H2O)2 is presented in an accompanying paper.

  6. Character of intermolecular interaction in pyridine-argon complex: Ab initio potential energy surface, internal dynamics, and interrelations between SAPT energy components.

    PubMed

    Makarewicz, Jan; Shirkov, Leonid

    2016-05-28

    The pyridine-Ar (PAr) van der Waals (vdW) complex is studied using a high level ab initio method. Its structure, binding energy, and intermolecular vibrational states are determined from the analytical potential energy surface constructed from interaction energy (IE) values computed at the coupled cluster level of theory with single, double, and perturbatively included triple excitations with the augmented correlation consistent polarized valence double-ζ (aug-cc-pVDZ) basis set complemented by midbond functions. The structure of the complex at its global minimum with Ar at a distance of 3.509 Å from the pyridine plane and shifted by 0.218 Å from the center of mass towards nitrogen agrees well with the corresponding equilibrium structure derived previously from the rotational spectrum of PAr. The PAr binding energy De of 392 cm(-1) is close to that of 387 cm(-1) calculated earlier at the same ab initio level for the prototypical benzene-Ar (BAr) complex. However, under an extension of the basis set, De for PAr becomes slightly lower than De for BAr. The ab initio vdW vibrational energy levels allow us to estimate the reliability of the methods for the determination of the vdW fundamentals from the rotational spectra. To disclose the character of the intermolecular interaction in PAr, the symmetry-adapted perturbation theory (SAPT) is employed for the analysis of different physical contributions to IE. It is found that SAPT components of IE can be approximately expressed in the binding region by only two of them: the exchange repulsion and dispersion energy. The total induction effect is negligible. The interrelations between various SAPT components found for PAr are fulfilled for a few other complexes involving aromatic molecules and Ar or Ne, which indicates that they are valid for all rare gas (Rg) atoms and aromatics.

  7. Universal scaling of potential energy functions describing intermolecular interactions. II. The halide-water and alkali metal-water interactions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Werhahn, Jasper C.; Akase, Dai; Xantheas, Sotiris S.

    2014-08-14

    The scaled versions of the newly introduced [S. S. Xantheas and J. C. Werhahn, J. Chem. Phys.141, 064117 (2014)] generalized forms of some popular potential energy functions (PEFs) describing intermolecular interactions – Mie, Lennard-Jones, Morse, and Buckingham exponential-6 – have been used to fit the ab initio relaxed approach paths and fixed approach paths for the halide-water, X -(H 2O), X = F, Cl, Br, I, and alkali metal-water, M +(H 2O), M = Li, Na, K, Rb, Cs, interactions. The generalized forms of those PEFs have an additional parameter with respect to the original forms and produce fits tomore » the ab initio data that are between one and two orders of magnitude better in the χ 2 than the original PEFs. They were found to describe both the long-range, minimum and repulsive wall of the respective potential energy surfaces quite accurately. Overall the 4-parameter extended Morse (eM) and generalized Buckingham exponential-6 (gBe-6) potentials were found to best fit the ab initio data for these two classes of ion-water interactions. Finally, the fitted values of the parameter of the (eM) and (gBe-6) PEFs that control the repulsive wall of the potential correlate remarkably well with the ionic radii of the halide and alkali metal ions.« less

  8. Signatures of Solvation Thermodynamics in Spectra of Intermolecular Vibrations

    PubMed Central

    2017-01-01

    This study explores the thermodynamic and vibrational properties of water in the three-dimensional environment of solvated ions and small molecules using molecular simulations. The spectrum of intermolecular vibrations in liquid solvents provides detailed information on the shape of the local potential energy surface, which in turn determines local thermodynamic properties such as the entropy. Here, we extract this information using a spatially resolved extension of the two-phase thermodynamics method to estimate hydration water entropies based on the local vibrational density of states (3D-2PT). Combined with an analysis of solute–water and water–water interaction energies, this allows us to resolve local contributions to the solvation enthalpy, entropy, and free energy. We use this approach to study effects of ions on their surrounding water hydrogen bond network, its spectrum of intermolecular vibrations, and resulting thermodynamic properties. In the three-dimensional environment of polar and nonpolar functional groups of molecular solutes, we identify distinct hydration water species and classify them by their characteristic vibrational density of states and molecular entropies. In each case, we are able to assign variations in local hydration water entropies to specific changes in the spectrum of intermolecular vibrations. This provides an important link for the thermodynamic interpretation of vibrational spectra that are accessible to far-infrared absorption and Raman spectroscopy experiments. Our analysis provides unique microscopic details regarding the hydration of hydrophobic and hydrophilic functional groups, which enable us to identify interactions and molecular degrees of freedom that determine relevant contributions to the solvation entropy and consequently the free energy. PMID:28783431

  9. Machine Learning Intermolecular Potentials for 1,3,5-Triamino-2,4,6-trinitrobenzene (TATB) Using Symmetry-Adapted Perturbation Theory

    DTIC Science & Technology

    2018-04-25

    unlimited. NOTICES Disclaimers The findings in this report are not to be construed as an official Department of the Army position unless so...this report, intermolecular potentials for 1,3,5-triamino-2,4,6-trinitrobenzene (TATB) are developed using machine learning techniques. Three...potentials based on support vector regression, kernel ridge regression, and a neural network are fit using symmetry-adapted perturbation theory. The

  10. Surface-enhanced Raman scattering on molecular self-assembly in nanoparticle-hydrogel composite.

    PubMed

    Miljanić, Snezana; Frkanec, Leo; Biljan, Tomislav; Meić, Zlatko; Zinić, Mladen

    2006-10-24

    Surface-enhanced Raman scattering has been applied to study weak intermolecular interactions between small organic gelling molecules involved in the silver nanoparticle-hydrogel composite formation. Assembly and disassembly of the gelator molecules in close vicinity to embedded silver nanoparticles were followed by changes in Raman intensity of the amide II and carboxyl vibrational bands, whereas the strength of the bands related to benzene modes remained constant. This implied that the gelator molecules were strongly attached to the silver particles through the benzene units, while participating in gel structure organization by intermolecular hydrogen bonding between oxalyl amide and carboxyl groups.

  11. Surface wettability of an atomically heterogeneous system and the resulting intermolecular forces

    NASA Astrophysics Data System (ADS)

    Chatterjee, Sanghamitro; Bhattacharjee, Sudeep; Maurya, Sanjeev K.; Srinivasan, Vyas; Khare, Krishnacharya; Khandekar, Sameer

    2017-06-01

    We present the effect of 0.5 keV Ar+ beam irradiation on the wetting properties of metallic thin films. Observations reveal a transition from hydrophilic to hydrophobic nature at higher beam fluences which can be attributed to a reduction in net surface free energy. In this low-energy regime, ion beams do not induce significant surface roughness and chemical heterogeneity. However, they cause implantation of atomic impurities in the near surface region of the target and thus form a heterogeneous system at atomic length scales. Interestingly, the presence of implanted Ar atoms in the near surface region modifies the dispersive intermolecular interaction near the surface but induces no chemical modification due to their inert nature. On this basis, we have developed a theoretical model consistent with the experimental observations that reproduces the effective Hamaker constant with a reasonable accuracy.

  12. Synthetic/Biosynthetic Phase Transfer Polymers for Pollution Minimization, Remediation, and Waste Management

    DTIC Science & Technology

    1994-01-01

    in the viscosity profile is observed. DAMAB induces strong intermolecular associations via hydrophobic interactions . When copolymers of comparable...techniques such as viscosity studies. The AM/DAMAB copolymer series also interacts with surfactants in an interesting manner.’ The surface tension of...in polymer dimensions as hydrophobe is added. The shape of the viscosity curves does not suggest intermolecular interactions , as in typical

  13. The water dimer II: Theoretical investigations

    NASA Astrophysics Data System (ADS)

    Mukhopadhyay, Anamika; Xantheas, Sotiris S.; Saykally, Richard J.

    2018-05-01

    As the archetype of aqueous hydrogen bonding, the water dimer has been extensively studied by both theory and experiment for nearly seven decades. In this article, we present a detailed chronological review of the theoretical advances made using electronic structure methods to address the structure, hydrogen bonding and vibrational spectroscopy of the water dimer, as well as the role of its potential energy surface in the development of classical force fields to describe intermolecular interactions in clusters and the condensed phases of water.

  14. The Water Dimer II: Theoretical Investigations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mukhopadhyay, Anamika; Xantheas, Sotiris S.; Saykally, Richard J.

    As the archetype of aqueous hydrogen bonding, the water dimer has been extensively studied by both theory and experiment for nearly seven decades. Here in this article, we present a detailed chronological review of the theoretical advances made using electronic structure methods to address the structure, hydrogen bonding and vibrational spectroscopy of the water dimer, as well as the role of its potential energy surface in the development of classical force fields to describe intermolecular interaction in clusters and the condensed phases of water.

  15. The Water Dimer II: Theoretical Investigations

    DOE PAGES

    Mukhopadhyay, Anamika; Xantheas, Sotiris S.; Saykally, Richard J.

    2018-03-29

    As the archetype of aqueous hydrogen bonding, the water dimer has been extensively studied by both theory and experiment for nearly seven decades. Here in this article, we present a detailed chronological review of the theoretical advances made using electronic structure methods to address the structure, hydrogen bonding and vibrational spectroscopy of the water dimer, as well as the role of its potential energy surface in the development of classical force fields to describe intermolecular interaction in clusters and the condensed phases of water.

  16. Engineering On-Surface Spin Crossover: Spin-State Switching in a Self-Assembled Film of Vacuum-Sublimable Functional Molecule.

    PubMed

    Kumar, Kuppusamy Senthil; Studniarek, Michał; Heinrich, Benoît; Arabski, Jacek; Schmerber, Guy; Bowen, Martin; Boukari, Samy; Beaurepaire, Eric; Dreiser, Jan; Ruben, Mario

    2018-03-01

    The realization of spin-crossover (SCO)-based applications requires study of the spin-state switching characteristics of SCO complex molecules within nanostructured environments, especially on surfaces. Except for a very few cases, the SCO of a surface-bound thin molecular film is either quenched or heavily altered due to: (i) molecule-surface interactions and (ii) differing intermolecular interactions in films relative to the bulk. By fabricating SCO complexes on a weakly interacting surface, the interfacial quenching problem is tackled. However, engineering intermolecular interactions in thin SCO active films is rather difficult. Here, a molecular self-assembly strategy is proposed to fabricate thin spin-switchable surface-bound films with programmable intermolecular interactions. Molecular engineering of the parent complex system [Fe(H 2 B(pz) 2 ) 2 (bpy)] (pz = pyrazole, bpy = 2,2'-bipyridine) with a dodecyl (C 12 ) alkyl chain yields a classical amphiphile-like functional and vacuum-sublimable charge-neutral Fe II complex, [Fe(H 2 B(pz) 2 ) 2 (C 12 -bpy)] (C 12 -bpy = dodecyl[2,2'-bipyridine]-5-carboxylate). Both the bulk powder and 10 nm thin films sublimed onto either quartz glass or SiO x surfaces of the complex show comparable spin-state switching characteristics mediated by similar lamellar bilayer like self-assembly/molecular interactions. This unprecedented observation augurs well for the development of SCO-based applications, especially in molecular spintronics. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Effects of sodium salt types on the intermolecular interaction of sodium alginate/antarctic krill protein composite fibers.

    PubMed

    Zhang, Rui; Guo, Jing; Liu, Yuanfa; Chen, Shuang; Zhang, Sen; Yu, Yue

    2018-06-01

    Sodium alginate (SA) and antarctic krill protein (AKP) were blended to fabricate the SA/AKP composite fibers by the conventional wet spinning method using 5% CaCl 2 as coagulation solution. The sodium salt was added to the SA/AKP solution to adjust the ionization degree and intermolecular interaction of composite system. The main purpose of this study is to investigate the influences of sodium salt types (NaCl, CH 3 COONa, Na 2 SO 4 ) on the intermolecular interaction of SA/AKP composite fibers. The intermolecular interaction, morphology, crystallinity, thermal stability and mechanical properties of SA/AKP composite fibers were analyzed by fourier transform infrared spectroscopy (FT-IR), scanning electron microscope (SEM), x-ray diffraction (XRD), thermogravimetric analysis (TGA). The results show that the types of sodium salt have obvious influences on the content of both β-sheet, intermolecular hydrogen bond, breaking strength and surface morphology in SA/AKP composite fibers, but have a negligible effect on the crystallinity and thermal stability. Copyright © 2018 Elsevier Ltd. All rights reserved.

  18. Characterization of Surface-Active Biofilm Protein BslA in Self-Assembling Langmuir Monolayer at the Air-Water Interface.

    PubMed

    Liu, Wei; Li, Shanghao; Wang, Zhuguang; Yan, Elsa C Y; Leblanc, Roger M

    2017-08-01

    Biofilm is an extracellular matrix of bacteria and serves as a protective shield of bacterial communities. It is crucial for microbial growth and one of the leading causes of human chronic infections as well. However, the structures and molecular mechanism of biofilm formation remain largely unknown. Here, we examined a protein, BslA, expressed in the biofilms of Bacillus subtilis. We characterized the Langmuir monolayers of BslA at the air/water interface. Using techniques in surface chemistry and spectroscopy, we found that BslA forms a stable and robust Langmuir monolayer at the air/water interface. Our results show that the BslA Langmuir monolayer underwent two-stage elasticity in the solid state phase upon mechanical compression: one is possibly due to the intermolecular interaction and the other is likely due to both the intermolecular compulsion and the intramolecular distortion. The Langmuir monolayer of BslA shows abrupt changes in rigidities and elasticities at ∼25 mN/m. This surface pressure is close to the one at which BlsA saturates the air/water interface as a self-assembled film without mechanical compression, corresponding to a mean molecular area of ∼700 Å 2 per molecule. Based on the results of surface UV-visible spectroscopy and infrared reflective-absorption spectroscopy, we propose that the BslA Langmuir monolayer carries intermolecular elasticity before ∼25 mN/m and both intermolecular and intramolecular elasticity after ∼25 mN/m. These results provide valuable insights into the understanding of biofilm-associated protein under high mechanical force, shedding light on further investigation of biofilm structure and functionalities.

  19. Probing hydrogen bond potentials via combination band spectroscopy: A near infrared study of the geared bend/van der Waals stretch intermolecular modes in (HF)2

    NASA Astrophysics Data System (ADS)

    Anderson, David T.; Davis, Scott; Nesbitt, David J.

    1996-04-01

    High resolution near infrared spectra of the two lowest frequency intermolecular modes in HF-stretch excited states of (HF)2 have been characterized using a slit-jet infrared spectrometer. In the spectral region surveyed, ten vibration-rotation-tunneling (VRT) bands are observed and assigned to the low frequency ``van der Waals stretch'' (ν4) and ``geared bend'' (ν5) intermolecular modes, in combination with either the hydrogen bond acceptor (ν1) or donor (ν2) high-frequency intramolecular HF stretches. Analysis of the rotationally resolved spectra provide intermolecular frequencies, rotational constants, tunneling splittings, and predissociation rates for the ν4/ν5 intermolecular excited states. The intermolecular vibrational frequencies in the combination states display a systematic dependence on intramolecular redshift that allows far-IR intermolecular frequencies to be reliably extrapolated from the near-IR data. Approximately tenfold increases in the hydrogen bond interconversion tunneling splittings with either ν4 or ν5 excitation indicate that both intermolecular modes correlate strongly to the tunneling coordinate. The high resolution VRT line shapes reveal mode specific predissociation broadening sensitive predominantly to intramolecular excitation, with weaker but significant additional effects due to low frequency intermolecular excitation. Analysis of the high resolution spectroscopic data for these ν4 and ν5 combination bands suggests strong state mixing between what has previously been considered van der Waals stretch and geared bend degrees of freedom.

  20. Computer modelling of the surface tension of the gas-liquid and liquid-liquid interface.

    PubMed

    Ghoufi, Aziz; Malfreyt, Patrice; Tildesley, Dominic J

    2016-03-07

    This review presents the state of the art in molecular simulations of interfacial systems and of the calculation of the surface tension from the underlying intermolecular potential. We provide a short account of different methodological factors (size-effects, truncation procedures, long-range corrections and potential models) that can affect the results of the simulations. Accurate calculations are presented for the calculation of the surface tension as a function of the temperature, pressure and composition by considering the planar gas-liquid interface of a range of molecular fluids. In particular, we consider the challenging problems of reproducing the interfacial tension of salt solutions as a function of the salt molality; the simulations of spherical interfaces including the calculation of the sign and size of the Tolman length for a spherical droplet; the use of coarse-grained models in the calculation of the interfacial tension of liquid-liquid surfaces and the mesoscopic simulations of oil-water-surfactant interfacial systems.

  1. Role of dbnd NOH intermolecular interactions in oxime derivatives via Crystal structure, Hirshfeld surface, PIXELC and DFT calculations

    NASA Astrophysics Data System (ADS)

    Purushothaman, Gayathri; Thiruvenkatam, Vijay

    2017-11-01

    Oximes are building block of organic synthesis and they have wide range applications in laboratories, industries, and pharmaceutical as antidotes. Herein we report the crystal structures of oxime derivative Beta-p-Dimethylaminodeoxybenzionoxime (I) and o-Chloro-p-dimethylaminodeoxybenzion (II) the precursor molecule of o-Chloro-p-dimethylaminodeoxybenzionoxime and their intermolecular interactions studies through Hirshfeld surface & 2D-fingerprint plot analysis along with PIXELC and DFT calculations. The packing arrangements in I and II are driven by Osbnd H⋯N and Osbnd H⋯C interactions respectively. The Osbnd H⋯N hydrogen bonding in I facilitates the formation of the dimer with the motif of R (22(6)), whereas in II absence of oxime moiety (dbnd NOH) restricts the dimer formation. The 2D-fingerprint plot shows the close contacts for the intermolecular interactions in I & II. The PIXELC calculation of II suggests Osbnd H⋯C contributes for intermolecular interaction that stabilizes the crystal packing with the total energy value of 60.4 kcal/mol. The DFT calculation using B3LYP with 6-311G (d, p) functional set for both the derivatives shows a small deviation in the benzene ring (I) and chlorobenzene ring (II) with the RMSD value of 0.5095 Å and 0.8472 Å respectively.

  2. A catalytic role of surface silanol groups in CO2 capture on the amine-anchored silica support.

    PubMed

    Cho, Moses; Park, Joonho; Yavuz, Cafer T; Jung, Yousung

    2018-05-03

    A new mechanism of CO2 capture on the amine-functionalized silica support is demonstrated using density functional theory calculations, in which the silica surface not only acts as a support to anchor amines, but also can actively participate in the CO2 capture process through a facile proton transfer reaction with the amine groups. The surface-mediated proton transfer mechanism in forming a carbamate-ammonium product has lower kinetic barrier (8.1 kcal mol-1) than the generally accepted intermolecular mechanism (12.7 kcal mol-1) under dry conditions, and comparable to that of the water-assisted intermolecular mechanism (6.0 kcal mol-1) under humid conditions. These findings suggest that the CO2 adsorption on the amine-anchored silica surface would mostly occur via the rate-determining proton transfer step that is catalyzed by the surface silanol groups.

  3. Molecular simulation of the thermodynamic, structural, and vapor-liquid equilibrium properties of neon

    NASA Astrophysics Data System (ADS)

    Vlasiuk, Maryna; Frascoli, Federico; Sadus, Richard J.

    2016-09-01

    The thermodynamic, structural, and vapor-liquid equilibrium properties of neon are comprehensively studied using ab initio, empirical, and semi-classical intermolecular potentials and classical Monte Carlo simulations. Path integral Monte Carlo simulations for isochoric heat capacity and structural properties are also reported for two empirical potentials and one ab initio potential. The isobaric and isochoric heat capacities, thermal expansion coefficient, thermal pressure coefficient, isothermal and adiabatic compressibilities, Joule-Thomson coefficient, and the speed of sound are reported and compared with experimental data for the entire range of liquid densities from the triple point to the critical point. Lustig's thermodynamic approach is formally extended for temperature-dependent intermolecular potentials. Quantum effects are incorporated using the Feynman-Hibbs quantum correction, which results in significant improvement in the accuracy of predicted thermodynamic properties. The new Feynman-Hibbs version of the Hellmann-Bich-Vogel potential predicts the isochoric heat capacity to an accuracy of 1.4% over the entire range of liquid densities. It also predicts other thermodynamic properties more accurately than alternative intermolecular potentials.

  4. Electronic structure, dielectric response, and surface charge distribution of RGD (1FUV) peptide.

    PubMed

    Adhikari, Puja; Wen, Amy M; French, Roger H; Parsegian, V Adrian; Steinmetz, Nicole F; Podgornik, Rudolf; Ching, Wai-Yim

    2014-07-08

    Long and short range molecular interactions govern molecular recognition and self-assembly of biological macromolecules. Microscopic parameters in the theories of these molecular interactions are either phenomenological or need to be calculated within a microscopic theory. We report a unified methodology for the ab initio quantum mechanical (QM) calculation that yields all the microscopic parameters, namely the partial charges as well as the frequency-dependent dielectric response function, that can then be taken as input for macroscopic theories of electrostatic, polar, and van der Waals-London dispersion intermolecular forces. We apply this methodology to obtain the electronic structure of the cyclic tripeptide RGD-4C (1FUV). This ab initio unified methodology yields the relevant parameters entering the long range interactions of biological macromolecules, providing accurate data for the partial charge distribution and the frequency-dependent dielectric response function of this peptide. These microscopic parameters determine the range and strength of the intricate intermolecular interactions between potential docking sites of the RGD-4C ligand and its integrin receptor.

  5. Supramolecular architecture of 5-bromo-7-methoxy-1-methyl-1H-benzoimidazole.3H2O: Synthesis, spectroscopic investigations, DFT computation, MD simulations and docking studies

    NASA Astrophysics Data System (ADS)

    Murthy, P. Krishna; Smitha, M.; Sheena Mary, Y.; Armaković, Stevan; Armaković, Sanja J.; Rao, R. Sreenivasa; Suchetan, P. A.; Giri, L.; Pavithran, Rani; Van Alsenoy, C.

    2017-12-01

    Crystal and molecular structure of newly synthesized compound 5-bromo-7-methoxy-1-methyl-1H-benzoimidazole (BMMBI) has been authenticated by single crystal X-ray diffraction, FT-IR, FT-Raman, 1H NMR, 13C NMR and UV-Visible spectroscopic techniques; compile both experimental and theoretical results which are performed by DFT/B3LYP/6-311++G(d,p) method at ground state in gas phase. Visualize nature and type of intermolecular interactions and crucial role of these interactions in supra-molecular architecture has been investigated by use of a set of graphical tools 3D-Hirshfeld surfaces and 2D-fingerprint plots analysis. The title compound stabilized by strong intermolecular hydrogen bonds N⋯Hsbnd O and O⋯Hsbnd O, which are envisaged by dark red spots on dnorm mapped surfaces and weak Br⋯Br contacts envisaged by red spot on dnorm mapped surface. The detailed fundamental vibrational assignments of wavenumbers were aid by with help of Potential Energy distribution (PED) analysis by using GAR2PED program and shows good agreement with experimental values. Besides frontier orbitals analysis, global reactivity descriptors, natural bond orbitals and Mullikan charges analysis were performed by same basic set at ground state in gas phase. Potential reactive sites of the title compound have been identified by ALIE, Fukui functions and MEP, which are mapped to the electron density surfaces. Stability of BMMBI have been investigated from autoxidation process and pronounced interaction with water (hydrolysis) by using bond dissociation energies (BDE) and radial distribution functions (RDF), respectively after MD simulations. In order to identify molecule's most important reactive spots we have used a combination of DFT calculations and MD simulations. Reactivity study encompassed calculations of a set of quantities such as: HOMO-LUMO gap, MEP and ALIE surfaces, Fukui functions, bond dissociation energies and radial distribution functions. To confirm the potential of title molecule in the area of pharmaceutics, we have also calculated a series of drug likeness parameters. Possibly important biological activity of BMMBI molecule was also confirmed by molecular docking study.

  6. The intermolecular interaction in D2 - CX4 and O2 - CX4 (X = F, Cl) systems: Molecular beam scattering experiments as a sensitive probe of the selectivity of charge transfer component.

    PubMed

    Cappelletti, David; Falcinelli, Stefano; Pirani, Fernando

    2016-10-07

    Gas phase collisions of a D 2 projectile by CF 4 and by CCl 4 targets have been investigated with the molecular beam technique. The integral cross section, Q, has been measured for both collisional systems in the thermal energy range and oscillations due to the quantum "glory" interference have been resolved in the velocity dependence of Q. The analysis of the measured Q(v) data provided novel information on the anisotropic potential energy surfaces of the studied systems at intermediate and large separation distances. The relative role of the most relevant types of contributions to the global interaction has been characterized. Extending the phenomenology of a weak intermolecular halogen bond, the present work demonstrates that while D 2 - CF 4 is basically bound through the balance between size (Pauli) repulsion and dispersion attraction, an appreciable intermolecular bond stabilization by charge transfer is operative in D 2 - CCl 4 . We also demonstrated that the present analysis is consistent with that carried out for the F( 2 P)-D 2 and Cl( 2 P)-D 2 systems, previously characterized by scattering experiments performed with state-selected halogen atom beams. A detailed comparison of the present and previous results on O 2 -CF 4 and O 2 -CCl 4 systems pinpointed striking differences in the behavior of hydrogen and oxygen molecules when they interact with the same partner, mainly due to the selectivity of the charge transfer component. The present work contributes to cast light on the nature and role of the intermolecular interaction in prototype systems, involving homo-nuclear diatoms and symmetric halogenated molecules.

  7. Far-infrared vibration--rotation-tunneling spectroscopy of Ar--NH sub 3 : Intermolecular vibrations and effective angular potential energy surface

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schmuttenmaer, C.A.; Cohen, R.C.; Loeser, J.G.

    Two new intermolecular vibration--rotation-tunneling (VRT) bands of Ar--NH{sub 3} have been measured using tunable far infrared laser spectroscopy. We have unambiguously assigned these and a previously measured FIR band (Gwo {ital et} {ital al}., Mol. Phys. {bold 71}, 453 (1990)) as {Pi}(1{sub 0}, {ital n}=0){l arrow}{Sigma}(0{sub 0}, {ital n}=0), {Sigma}(1{sub 0}, {ital n}=0){l arrow}{Sigma}(0{sub 0}, {ital n}=0), and {Sigma}(0{sub 0}, {ital n}=1){l arrow}{Sigma}(0{sub 0}, {ital n}=0). The three upper states of these are found to be strongly mixed by anisotropy and Coriolis effects. A simultaneous least squares fit of all transitions has yielded vibrational frequencies, rotational and centrifugal distortion constants,more » and a Coriolis parameter as well as quadrupole hyperfine coupling constants for the upper states. An effective angular potential energy surface for Ar--NH{sub 3} in its lowest stretching state has been determined from these data, after explicitly accounting for the effects of bend stretch interactions. Features of the surface include a global minimum at the near T-shaped configuration ({theta}=90{degree}), a 30 cm{sup {minus}1} to 60 cm{sup {minus}1} barrier to rotation at {theta}=180{degree} (or 0{degree}), and a very low barrier or possibly a secondary minimum at {theta}=0{degree} (or 180{degree}). Both attractive and repulsive interactions are shown to contribute significantly to the anisotropic forces in the complex. Comparison with {ital ab} {ital initio} calculations are presented.« less

  8. Chromosomal Expression of the Haemophilus influenzae Hap Autotransporter Allows Fine-Tuned Regulation of Adhesive Potential via Inhibition of Intermolecular Autoproteolysis

    PubMed Central

    Fink, Doran L.; St. Geme III, Joseph W.

    2003-01-01

    The Haemophilus influenzae Hap autotransporter is a nonpilus adhesin that promotes adherence to respiratory epithelial cells and selected extracellular matrix proteins and facilitates bacterial aggregation and microcolony formation. Hap consists of a 45-kDa outer membrane translocator domain called Hapβ and a 110-kDa extracellular passenger domain called HapS. All adhesive activity resides within HapS, which also contains protease activity and directs its own secretion from the bacterial cell surface via intermolecular autoproteolysis. In the present study, we sought to determine the relationship between the magnitude of Hap expression, the efficiency of Hap autoproteolysis, and the level of Hap-mediated adherence and aggregation. We found that a minimum threshold of Hap precursor was required for autoproteolysis and that this threshold approximated expression of Hap from a chromosomal allele, as occurs in H. influenzae clinical isolates. Chromosomal expression of wild-type Hap was sufficient to promote significant adherence to epithelial cells and extracellular matrix proteins, and adherence was enhanced substantially by inhibition of autoproteolysis. In contrast, chromosomal expression of Hap was sufficient to promote bacterial aggregation only when autoproteolysis was inhibited, indicating that the threshold for Hap-mediated aggregation is above the threshold for autoproteolysis. These results highlight the critical role of autoproteolysis and an intermolecular mechanism of cleavage in controlling the diverse adhesive activities of Hap. PMID:12591878

  9. Scanning probe microscopy of biomedical interfaces

    NASA Astrophysics Data System (ADS)

    Vansteenkiste, S. O.; Davies, M. C.; Roberts, C. J.; Tendler, S. J. B.; Williams, P. M.

    1998-02-01

    The development of the scanning probe microscopes over the past decade has provided a number of exciting new surface analytical techniques making a significant progress in the characterisation of biomedical interfaces. In this review, several examples are presented to illustrate that SPM is a powerful and promising tool for surface investigations including biomolecules, cell membranes, polymers and even living cells. The ability of the SPM instrument to monitor adhesion phenomena and provide quantitative information about intermolecular interactions is also described. Moreover, the huge potential of the scanning probe microscopes to study dynamic processes at interfaces under nearly physiological conditions is highlighted. Novel applications in the field of biochemistry, microbiology, biomaterial engineering, drug delivery and even medicine are discussed.

  10. Restricted mobility of side chains on concave surfaces of solenoid proteins may impart heightened potential for intermolecular interactions.

    PubMed

    Ramya, L; Gautham, N; Chaloin, Laurent; Kajava, Andrey V

    2015-09-01

    Significant progress has been made in the determination of the protein structures with their number today passing over a hundred thousand structures. The next challenge is the understanding and prediction of protein-protein and protein-ligand interactions. In this work we address this problem by analyzing curved solenoid proteins. Many of these proteins are considered as "hub molecules" for their high potential to interact with many different molecules and to be a scaffold for multisubunit protein machineries. Our analysis of these structures through molecular dynamics simulations reveals that the mobility of the side-chains on the concave surfaces of the solenoids is lower than on the convex ones. This result provides an explanation to the observed preferential binding of the ligands, including small and flexible ligands, to the concave surface of the curved solenoid proteins. The relationship between the landscapes and dynamic properties of the protein surfaces can be further generalized to the other types of protein structures and eventually used in the computer algorithms, allowing prediction of protein-ligand interactions by analysis of protein surfaces. © 2015 Wiley Periodicals, Inc.

  11. Transport properties in mixtures involving carbon dioxide at low and moderate density: test of several intermolecular potential energies and comparison with experiment

    NASA Astrophysics Data System (ADS)

    Moghadasi, Jalil; Yousefi, Fakhri; Papari, Mohammad Mehdi; Faghihi, Mohammad Ali; Mohsenipour, Ali Asghar

    2009-09-01

    It is the purpose of this paper to extract unlike intermolecular potential energies of five carbon dioxide-based binary gas mixtures including CO2-He, CO2-Ne, CO2-Ar, CO2-Kr, and CO2-Xe from viscosity data and compare the calculated potentials with other models potential energy reported in literature. Then, dilute transport properties consisting of viscosity, diffusion coefficient, thermal diffusion factor, and thermal conductivity of aforementioned mixtures are calculated from the calculated potential energies and compared with literature data. Rather accurate correlations for the viscosity coefficient of afore-cited mixtures embracing the temperature range 200 K < T < 3273.15 K is reproduced from the present unlike intermolecular potentials energy. Our estimated accuracies for the viscosity are to within ±2%. In addition, the calculated potential energies are used to present smooth correlations for other transport properties. The accuracies of the binary diffusion coefficients are of the order of ±3%. Finally, the unlike interaction energy and the calculated low density viscosity have been employed to calculate high density viscosities using Vesovic-Wakeham method.

  12. Terahertz laser spectroscopy of the water dimer intermolecular vibrations. I. (D{sub 2}O){sub 2}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Braly, L. B.; Cruzan, J. D.; Liu, K.

    Terahertz laser VRT spectra of the water dimer consisting of 731 transitions measured with an average precision of 2 MHz and involving four (D{sub 2}O){sub 2} intermolecular vibrations (one previously published) have been measured between 65 and 104 cm{sup -1}. The precisely determined energy level patterns differ both qualitatively and quantitatively from the predictions of several dimer potentials tested, and reveal an ordering of the intermolecular vibrations which differs dramatically from that predicted by standard normal mode analysis. Strong coupling is indicated between the low barrier tunneling motions and the intermolecular vibrations as well as among different vibrations. Particularly, themore » 83 cm{sup -1} (acceptor wag) and 90 cm{sup -1} (D{sub 2}O){sub 2} (acceptor twist) vibrations interact through a Coriolis perturbation. These spectra provide the basis for our recent determination of the water pair potential. The corresponding data set for (H{sub 2}O){sub 2} is presented in an accompanying paper. (c) 2000 American Institute of Physics.« less

  13. Crystal structure, Hirshfeld surfaces and DFT computation of NLO active (2E)-2-(ethoxycarbonyl)-3-[(1-methoxy-1-oxo-3-phenylpropan-2-yl)amino] prop-2-enoic acid.

    PubMed

    Venkatesan, Perumal; Thamotharan, Subbiah; Ilangovan, Andivelu; Liang, Hongze; Sundius, Tom

    2016-01-15

    Nonlinear optical (NLO) activity of the compound (2E)-2-(ethoxycarbonyl)-3-[(1-methoxy-1-oxo-3-phenylpropan-2-yl)amino] prop-2-enoic acid is investigated experimentally and theoretically using X-ray crystallography and quantum chemical calculations. The NLO activity is confirmed by both powder Second Harmonic Generation (SHG) experiment and first hyper polarizability calculation. The title compound displays 8 fold excess of SHG activity when compared with the standard compound KDP. The gas phase geometry optimization and vibrational frequencies calculations are performed using density functional theory (DFT) incorporated in B3LYP with 6-311G++(d,p) basis set. The title compound crystallizes in non-centrosymmetric space group P21. Moreover, the crystal structure is primarily stabilized through intramolecular N-H···O and O-H···O hydrogen bonds and intermolecular C-H···O and C-H···π interactions. These intermolecular interactions are analyzed and quantified using Hirshfeld surface analysis and PIXEL method. The detailed vibrational assignments are performed on the basis of the potential energy distributions (PED) of the vibrational modes. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. The intermolecular Pauson-Khand reaction.

    PubMed

    Gibson, Susan E; Mainolfi, Nello

    2005-05-13

    Five membered carbocycles are important building blocks for many biologically active molecules. Moreover, substituted cyclopentenones (e.g. cyclopentenone prostaglandins) exhibit characteristic biological activity. The efficiency and atom economy of the Pauson-Khand reaction render this process potentially one of the most attractive methods for the synthesis of such compounds. Although it was discovered in its intermolecular form, the scope of the intermolecular Pauson-Khand reaction has always been limited by the poor reactivity and selectivity of the alkene component. The past decade, especially the last three years, has seen concerted efforts to broaden the scope of this reaction. In this overview, we provide a comprehensive and critical coverage of the intermolecular Pauson-Khand reaction based on the reactivity characteristics of different classes of alkenes and a rationalization of successes and misfortunes in this area.

  15. The role of van der Waals interaction in the tilted binding of amine molecules to the Au(111) surface

    NASA Astrophysics Data System (ADS)

    Le, Duy; Aminpour, Maral; Kiejna, Adam; Rahman, Talat S.

    2012-06-01

    We present the results of ab initio electronic structure calculations for the adsorption characteristics of three amine molecules on Au(111), which show that the inclusion of van der Waals interactions between the isolated molecule and the surface leads in general to good agreement with experimental data on the binding energies. Each molecule, however, adsorbs with a small tilt angle (between -5 and 9°). For the specific case of 1,4-diaminobenzene (BDA) our calculations reproduce the larger tilt angle (close to 24°) measured by photoemission experiments, when intermolecular (van der Waals) interactions (for about 8% coverage) are included. These results point not only to the important contribution of van der Waals interactions to molecule-surface binding energy, but also that of intermolecular interactions, often considered secondary to that between the molecule and the surface, in determining the adsorption geometry and pattern formation.

  16. Aqueous heterogeneity at the air/water interface revealed by 2D-HD-SFG spectroscopy.

    PubMed

    Hsieh, Cho-Shuen; Okuno, Masanari; Hunger, Johannes; Backus, Ellen H G; Nagata, Yuki; Bonn, Mischa

    2014-07-28

    Water molecules interact strongly with each other through hydrogen bonds. This efficient intermolecular coupling causes strong delocalization of molecular vibrations in bulk water. We study intermolecular coupling at the air/water interface and find intermolecular coupling 1) to be significantly reduced and 2) to vary strongly for different water molecules at the interface--whereas in bulk water the coupling is homogeneous. For strongly hydrogen-bonded OH groups, coupling is roughly half of that of bulk water, due to the lower density in the near-surface region. For weakly hydrogen-bonded OH groups that absorb around 3500 cm(-1), which are assigned to the outermost, yet hydrogen-bonded OH groups pointing towards the liquid, coupling is further reduced by an additional factor of 2. Remarkably, despite the reduced structural constraints imposed by the interfacial hydrogen-bond environment, the structural relaxation is slow and the intermolecular coupling of these water molecules is weak. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. From intermolecular interactions to structures and properties of a novel cocrystal explosive: a first-principles study.

    PubMed

    Zhang, Lei; Wu, Ji-Zhou; Jiang, Sheng-Li; Yu, Yi; Chen, Jun

    2016-09-29

    By employing a first-principles method, we conducted a thorough study on a novel cocrystal explosive 1 : 1 NTO : TZTN and gained insight into the interaction-structure-property interrelationship. Mulliken bond orders, Hirshfeld surfaces, intermolecular binding energies, packing coefficients, and oxygen balance were calculated to analyze the intermolecular interactions and structures of the cocrystal explosive. The cocrystallization of NTO and TZTN molecules enhances the intermolecular binding force, which drives the synthesis of the cocrystal. However, the cocrystallization decreases the molecular packing density along the closest packed directions, which reduces the density by 10.5% and deteriorates the oxygen balance. All of these lead to a reduction in the detonation performance compared to NTO explosives. We have also proposed a new method to evaluate the impact sensitivity according to the lattice dynamics calculation. The cocrystal explosive has a lower impact sensitivity than TZTN but higher than NTO, which agrees well with experiments.

  18. The physics and chemistry of graphene-on-surfaces.

    PubMed

    Zhao, Guoke; Li, Xinming; Huang, Meirong; Zhen, Zhen; Zhong, Yujia; Chen, Qiao; Zhao, Xuanliang; He, Yijia; Hu, Ruirui; Yang, Tingting; Zhang, Rujing; Li, Changli; Kong, Jing; Xu, Jian-Bin; Ruoff, Rodney S; Zhu, Hongwei

    2017-07-31

    Graphene has demonstrated great potential in next-generation electronics due to its unique two-dimensional structure and properties including a zero-gap band structure, high electron mobility, and high electrical and thermal conductivity. The integration of atom-thick graphene into a device always involves its interaction with a supporting substrate by van der Waals forces and other intermolecular forces or even covalent bonding, and this is critical to its real applications. Graphene films on different surfaces are expected to exhibit significant differences in their properties, which lead to changes in their morphology, electronic structure, surface chemistry/physics, and surface/interface states. Therefore, a thorough understanding of the surface/interface properties is of great importance. In this review, we describe the major "graphene-on-surface" structures and examine the roles of their properties and related phenomena in governing the overall performance for specific applications including optoelectronics, surface catalysis, anti-friction and superlubricity, and coatings and composites. Finally, perspectives on the opportunities and challenges of graphene-on-surface systems are discussed.

  19. A theoretical investigation into the strength of N-NO2 bonds, ring strain and electrostatic potential upon formation of intermolecular H-bonds between HF and the nitro group in nitrogen heterocyclic rings C n H2n N-NO2 (n = 2-5), RDX and HMX.

    PubMed

    Wang, Bao-Guo; Ren, Fu-de; Shi, Wen-Jing

    2015-11-01

    Changes in N-NO2 bond strength, ring strain energy and electrostatic potential upon formation of intermolecular H-bonds between HF and the nitro group in nitrogen heterocyclic rings C n H2n N-NO2 (n = 2-5), RDX and HMX were investigated using DFT-B3LYP and MP2(full) methods with the 6-311++G(2df,2p) and aug-cc-pVTZ basis sets. Analysis of electron density shifts was also carried out. The results indicate that H-bonding energy correlates well with the increment of ring strain energy. Upon complex formation, the strength of the N-NO2 trigger-bond is enhanced, suggesting reduced sensitivity, while judged by the increased ring strain energy, sensitivity is increased. However, some features of the molecular surface electrostatic potential, such as a local maximum above the N-NO2 bond and ring, σ + (2) and electrostatic balance parameter ν, remain essentially unchanged upon complex formation, and only a small change in the impact sensitivity h 50 is suggested. It is not sufficient to determine sensitivity solely on the basis of trigger bond or ring strain; as a global feature of a molecule, the molecular surface electrostatic potential is available to help judge the change of sensitivity in H-bonded complexes. Graphical Abstract The strengthened N-NO2 bond suggests reduced sensitivity, while it is reverse by theincreased ring strain energy upon the complex formation. However, the molecular surfaceelectrostatic potential (V S) shows the little change of h 50. The V S should be taken into accountin the analysis of explosive sensitivity in the H-bonded complex.

  20. Rotational study of the NH{sub 3}–CO complex: Millimeter-wave measurements and ab initio calculations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Surin, L. A., E-mail: surin@ph1.uni-koeln.de; Institute of Spectroscopy, Russian Academy of Sciences, Fizicheskaya Str. 5, 142190 Troitsk, Moscow; Potapov, A.

    2015-03-21

    The rotational spectrum of the van der Waals complex NH{sub 3}–CO has been measured with the intracavity OROTRON jet spectrometer in the frequency range of 112–139 GHz. Newly observed and assigned transitions belong to the K = 0–0, K = 1–1, K = 1–0, and K = 2–1 subbands correlating with the rotationless (j{sub k}){sub NH3} = 0{sub 0} ground state of free ortho-NH{sub 3} and the K = 0–1 and K = 2–1 subbands correlating with the (j{sub k}){sub NH3} = 1{sub 1} ground state of free para-NH{sub 3}. The (approximate) quantum number K is the projection of themore » total angular momentum J on the intermolecular axis. Some of these transitions are continuations to higher J values of transition series observed previously [C. Xia et al., Mol. Phys. 99, 643 (2001)], the other transitions constitute newly detected subbands. The new data were analyzed together with the known millimeter-wave and microwave transitions in order to determine the molecular parameters of the ortho-NH{sub 3}–CO and para-NH{sub 3}–CO complexes. Accompanying ab initio calculations of the intermolecular potential energy surface (PES) of NH{sub 3}–CO has been carried out at the explicitly correlated coupled cluster level of theory with single, double, and perturbative triple excitations and an augmented correlation-consistent triple zeta basis set. The global minimum of the five-dimensional PES corresponds to an approximately T-shaped structure with the N atom closest to the CO subunit and binding energy D{sub e} = 359.21 cm{sup −1}. The bound rovibrational levels of the NH{sub 3}–CO complex were calculated for total angular momentum J = 0–6 on this intermolecular potential surface and compared with the experimental results. The calculated dissociation energies D{sub 0} are 210.43 and 218.66 cm{sup −1} for ortho-NH{sub 3}–CO and para-NH{sub 3}–CO, respectively.« less

  1. Using supramolecular binding motifs to provide precise control over the ratio and distribution of species in multiple component films grafted on surfaces: demonstration using electrochemical assembly from aryl diazonium salts.

    PubMed

    Gui, Alicia L; Yau, Hon Man; Thomas, Donald S; Chockalingam, Muthukumar; Harper, Jason B; Gooding, J Justin

    2013-04-16

    Supramolecular interactions between two surface modification species are explored to control the ratio and distribution of these species on the resultant surface. A binary mixture of aryl diazonium salts bearing oppositely charged para-substituents (either -SO3(-) or -N(+)(Me)3), which also reduce at different potentials, has been examined on glassy carbon surfaces using cyclic voltammetry and X-ray photoelectron spectroscopy (XPS). Striking features were observed: (1) the two aryl diazonium salts in the mixed solution undergo reductive adsorption at the same potential which is distinctively less negative than the potential required for the reduction of either of the two aryl diazonium salts alone; (2) the surface ratio of the two phenyl derivatives is consistently 1:1 regardless of the ratio of the two aryl diazonium salts in the modification solutions. Homogeneous distribution of the two oppositely charged phenyl species on the modified surface has also been suggested by XPS survey spectra. Diffusion coefficient measurements by DOSY NMR and DFT based computation have indicated the association of the two aryl diazonium species in the solution, which has led to changes in the molecular orbital energies of the two species. This study highlights the potential of using intermolecular interactions to control the assembly of multicomponent thin layers.

  2. Influence of semisynthetic modification of the scaffold of a contact domain of HbS on polymerization: role of flexible surface topology in polymerization inhibition.

    PubMed

    Sonati, Srinivasulu; Bhutoria, Savita; Prabhakaran, Muthuchidambaran; Acharya, Seetharama A

    2018-02-01

    A new variant of HbS, HbS-Einstein with a deletion of segment α 23-26 in the B-helix, has been assembled by semisynthetic approach. B-helix of the α chain of cis αβ-dimer of HbS plays dominant role in the quinary interactions of deoxy HbS dimer. This B-helix is the primary scaffold that provides the orientation for the side chains of contact residues of this intermolecular contact domain. The design of HbS-Einstein has been undertaken to map the influence of perturbation of molecular surface topology and the flexibility of surface residues in the polymerization. The internal deletion exerts a strong inhibitory influence on Val-6 (β)-dependent polymerization, comparable to single contact site mutations and not for complete neutralization of Val-6(β)-dependent polymerization. The scaffold modification in cis-dimer is inhibitory, and is without any effect when present on the trans dimer. The flexibility changes in the surface topology in the region of scaffold modification apparently counteracts the intrinsic polymerization potential of the molecule. The inhibition is close to that of Le Lamentin mutation [His-20 (α) → Gln] wherein a mutation engineered without much change in flexibility of the contact domain. Interestingly, the chimeric HbS with swine-human chimeric α chain with multiple non-conservative mutations completely inhibits the Val-6(β)-dependent polymerization. The deformabilities of surface topology of chimeric HbS are comparable to HbS in spite of the multiple contact site mutations in the α-chain. We conclude that the design of antisickling Hbs for gene therapy of sickle cell disease should involve multiple mutations of intermolecular contact sites.

  3. Conformational analysis of an acyclic tetrapeptide: ab-initio structure determination from X-ray powder diffraction, Hirshfeld surface analysis and electronic structure.

    PubMed

    Das, Uday; Naskar, Jishu; Mukherjee, Alok Kumar

    2015-12-01

    A terminally protected acyclic tetrapeptide has been synthesized, and the crystal structure of its hydrated form, Boc-Tyr-Aib-Tyr-Ile-OMe·2H2O (1), has been determined directly from powder X-ray diffraction data. The backbone conformation of tetrapeptide (1) exhibiting two consecutive β-turns is stabilized by two 4 → 1 intramolecular N-H · · · O hydrogen bonds. In the crystalline state, the tetrapeptide molecules are assembled through water-mediated O-H · · · O hydrogen bonds to form two-dimensional molecular sheets, which are further linked by intermolecular C-H · · · O hydrogen bonds into a three-dimensional supramolecular framework. The molecular electrostatic potential (MEP) surface of (1) has been used to supplement the crystallographic observations. The nature of intermolecular interactions in (1) has been analyzed quantitatively through the Hirshfeld surface and two-dimensional fingerprint plot. The DFT optimized molecular geometry of (1) agrees closely with that obtained from the X-ray structure analysis. The present structure analysis of Boc-Tyr-Aib-Tyr-Ile-OMe·2H2 O (1) represents a case where ab-initio crystal structure of an acyclic tetrapeptide with considerable molecular flexibility has been accomplished from laboratory X-ray powder diffraction data. Copyright © 2015 European Peptide Society and John Wiley & Sons, Ltd.

  4. Enhancing SERS by Means of Supramolecular Charge Transfer

    NASA Technical Reports Server (NTRS)

    Wong, Eric; Flood, Amar; Morales, Alfredo

    2009-01-01

    In a proposed method of sensing small quantities of molecules of interest, surface enhanced Raman scattering (SERS) spectroscopy would be further enhanced by means of intermolecular or supramolecular charge transfer. There is a very large potential market for sensors based on this method for rapid detection of chemical and biological hazards. In SERS, the Raman signals (vibrational spectra) of target molecules become enhanced by factors of the order of 108 when those molecules are in the vicinities of nanostructured substrate surfaces that have been engineered to have plasmon resonances that enhance local electric fields. SERS, as reported in several prior NASA Tech Briefs articles and elsewhere, has remained a research tool and has not yet been developed into a practical technique for sensing of target molecules: this is because the short range (5 to 20 nm) of the field enhancement necessitates engineering of receptor molecules to attract target molecules to the nanostructured substrate surfaces and to enable reliable identification of the target molecules in the presence of interferants. Intermolecular charge-transfer complexes have been used in fluorescence-, photoluminescence-, and electrochemistry-based techniques for sensing target molecules, but, until now, have not been considered for use in SERS-based sensing. The basic idea of the proposed method is to engineer receptor molecules that would be attached to nanostructured SERS substrates and that would interact with the target molecules to form receptor-target supramolecular charge-transfer complexes wherein the charge transfer could be photoexcited.

  5. Spin relaxation measurements of electrostatic bias in intermolecular exploration

    NASA Astrophysics Data System (ADS)

    Teng, Ching-Ling; Bryant, Robert G.

    2006-04-01

    We utilize the paramagnetic contribution to proton spin-lattice relaxation rate constants induced by freely diffusing charged paramagnetic centers to investigate the effect of charge on the intermolecular exploration of a protein by the small molecule. The proton NMR spectrum provided 255 resolved resonances that report how the explorer molecule local concentration varies with position on the surface. The measurements integrate over local dielectric constant variations, and, in principle, provide an experimental characterization of the surface free energy sampling biases introduced by the charge distribution on the protein. The experimental results for ribonuclease A obtained using positive, neutral, and negatively charged small nitroxide radicals are qualitatively similar to those expected from electrostatic calculations. However, while systematic electrostatic trends are apparent, the three different combinations of the data sets do not yield internally consistent values for the electrostatic contribution to the intermolecular free energy. We attribute this failure to the weakness of the electrostatic sampling bias for charged nitroxides in water and local variations in effective translational diffusion constant at the water-protein interface, which enters the nuclear spin relaxation equations for the nitroxide-proton dipolar coupling.

  6. Quantitative analysis of weak interactions by Lattice energy calculation, Hirshfeld surface and DFT studies of sulfamonomethoxine

    NASA Astrophysics Data System (ADS)

    Patel, Kinjal D.; Patel, Urmila H.

    2017-01-01

    Sulfamonomethoxine, 4-Amino-N-(6-methoxy-4-pyrimidinyl) benzenesulfonamide (C11H12N4O3S), is investigated by single crystal X-ray diffraction technique. Pair of N-H⋯N and C-H⋯O intermolecular interactions along with π···π interaction are responsible for the stability of the molecular packing of the structure. In order to understand the nature of the interactions and their quantitative contributions towards the crystal packing, the 3D Hirshfeld surface and 2D fingerprint plot analysis are carried out. PIXEL calculations are performed to determine the lattice energies correspond to intermolecular interactions in the crystal structure. Ab initio quantum chemical calculations of sulfamonomethoxine (SMM) have been performed by B3LYP method, using 6-31G** basis set with the help of Schrodinger software. The computed geometrical parameters are in good agreement with the experimental data. The Mulliken charge distribution, calculated using B3LYP method to confirm the presence of electron acceptor and electron donor atoms, responsible for intermolecular hydrogen bond interactions hence the molecular stability.

  7. Empirical solvent-mediated potentials hold for both intra-molecular and inter-molecular inter-residue interactions.

    PubMed Central

    Keskin, O.; Bahar, I.; Badretdinov, A. Y.; Ptitsyn, O. B.; Jernigan, R. L.

    1998-01-01

    Whether knowledge-based intra-molecular inter-residue potentials are valid to represent inter-molecular interactions taking place at protein-protein interfaces has been questioned in several studies. Differences in the chain connectivity effect and in residue packing geometry between interfaces and single chain monomers have been pointed out as possible sources of distinct energetics for the two cases. In the present study, the interfacial regions of protein-protein complexes are examined to extract inter-molecular inter-residue potentials, using the same statistical methods as those previously adopted for intra-molecular residue pairs. Two sets of energy parameters are derived, corresponding to solvent-mediation and "average residue" mediation. The former set is shown to be highly correlated (correlation coefficient 0.89) with that previously obtained for inter-residue interactions within single chain monomers, while the latter exhibits a weaker correlation (0.69) with its intra-molecular counterpart. In addition to the close similarity of intra- and inter-molecular solvent-mediated potentials, they are shown to be significantly more residue-specific and thereby discriminative compared to the residue-mediated ones, indicating that solvent-mediation plays a major role in controlling the effective inter-residue interactions, either at interfaces, or within single monomers. Based on this observation, a reduced set of energy parameters comprising 20 one-body and 3 two-body terms is proposed (as opposed to the 20 x 20 tables of inter-residue potentials), which reproduces the conventional 20 x 20 tables with a correlation coefficient of 0.99. PMID:9865952

  8. Constructing high-accuracy intermolecular potential energy surface with multi-dimension Morse/Long-Range model

    NASA Astrophysics Data System (ADS)

    Zhai, Yu; Li, Hui; Le Roy, Robert J.

    2018-04-01

    Spectroscopically accurate Potential Energy Surfaces (PESs) are fundamental for explaining and making predictions of the infrared and microwave spectra of van der Waals (vdW) complexes, and the model used for the potential energy function is critically important for providing accurate, robust and portable analytical PESs. The Morse/Long-Range (MLR) model has proved to be one of the most general, flexible and accurate one-dimensional (1D) model potentials, as it has physically meaningful parameters, is flexible, smooth and differentiable everywhere, to all orders and extrapolates sensibly at both long and short ranges. The Multi-Dimensional Morse/Long-Range (mdMLR) potential energy model described herein is based on that 1D MLR model, and has proved to be effective and accurate in the potentiology of various types of vdW complexes. In this paper, we review the current status of development of the mdMLR model and its application to vdW complexes. The future of the mdMLR model is also discussed. This review can serve as a tutorial for the construction of an mdMLR PES.

  9. Synthesis, Hirshfeld surface analysis, laser damage threshold, third-order nonlinear optical property and DFT computation studies of Dichlorobis(DL-valine)zinc(II): A spectroscopic approach

    NASA Astrophysics Data System (ADS)

    Chitrambalam, S.; Manimaran, D.; Hubert Joe, I.; Rastogi, V. K.; Ul Hassan, Israr

    2018-01-01

    The organometallic crystal of Dichlorobis(DL-valine)zinc(II) was grown by solution growth method. The computed structural geometry, vibrational wavenumbers and UV-visible spectra were compared with experimental results. Hirshfeld surface map was used to locate electron density and the fingerprint plots percentages are responsible for the stabilization of intermolecular interactions in molecular crystal. The second-order hyperpolarizability value of the molecule was also calculated at density functional theory method. The surface resistance and third-order nonlinear optical property of the crystal were studied by laser induced surface damage threshold and Z-scan techniques, respectively using Nd:YAG laser with wavelength 532 nm. The open aperture result exhibits the reverse saturation absorption, which indicate that this material has potential candidate for optical limiting and optoelectronic applications.

  10. Quantum dynamics of the vibrations of helium bound to the nanosurface of a large planar organic molecule: phthalocyanine . He van der Waals complex.

    PubMed

    Gibbons, Brittney R; Xu, Minzhong; Bacić, Zlatko

    2009-04-23

    We report rigorous quantum three-dimensional calculations of highly excited intermolecular vibrational states of the van der Waals (vdW) complex phthalocyanine.He (Pc.He). The Pc molecule was treated as rigid and the intermolecular potential energy surface (IPES) was represented as a sum of atom-atom Lennard-Jones pair potentials. The IPES has four equivalent global minima on the diagonals of the square-shaped Pc, inside its five-membered rings, and four slightly shallower local minima between them, creating a distinctive corrugation pattern of the molecular nanosurface. The vdW vibrational states analyzed in this work extend to about two-thirds of the well depth of the IPES. For the assignment of the in-plane (xy) vdW vibrational excitations it was necessary to resort to two sets of quantum numbers, the Cartesian quantum numbers [nu(x), nu(y)] and the quantum numbers (v, l) of the 2D isotropic oscillator, depending on the nodal structure and the symmetry of the wave functions. The delocalization of the He atom parallel to the molecular surface is large already in the ground vdW state. It increases rapidly with the number of quanta in the in-plane vdW vibrations, with the maximum root-mean-square amplitudes Deltax and Deltay of about 7 au at the excitation energies around 40 cm(-1). The wave functions of the highly excited states tend to be delocalized over the entire nanosurface and often have a square shape, reflecting that of the substrate.

  11. Subpiconewton intermolecular force microscopy.

    PubMed

    Tokunaga, M; Aoki, T; Hiroshima, M; Kitamura, K; Yanagida, T

    1997-02-24

    We refined scanning probe force microscopy to improve the sensitivity of force detection and control of probe position. Force sensitivity was increased by incorporating a cantilever with very low stiffness, 0.1 pN/ nm, which is over 1000-fold more flexible than is typically used in conventional atomic force microscopy. Thermal bending motions of the cantilever were reduced to less than 1 nm by exerting feed-back positioning with laser radiation pressure. The system was tested by measuring electrostatic repulsive forces or hydrophobic attractive forces in aqueous solutions. Subpiconewton intermolecular forces were resolved at controlled gaps in the nanometer range between the probe and a material surface. These levels of force and position sensitivity meet the requirements needed for future investigations of intermolecular forces between biological macromolecules such as proteins, lipids and DNA.

  12. Quantifying intermolecular interactions of ionic liquids using cohesive energy densities.

    PubMed

    Lovelock, Kevin R J

    2017-12-01

    For ionic liquids (ILs), both the large number of possible cation + anion combinations and their ionic nature provide a unique challenge for understanding intermolecular interactions. Cohesive energy density, ced , is used to quantify the strength of intermolecular interactions for molecular liquids, and is determined using the enthalpy of vaporization. A critical analysis of the experimental challenges and data to obtain ced for ILs is provided. For ILs there are two methods to judge the strength of intermolecular interactions, due to the presence of multiple constituents in the vapour phase of ILs. Firstly, ced IP , where the ionic vapour constituent is neutral ion pairs, the major constituent of the IL vapour. Secondly, ced C+A , where the ionic vapour constituents are isolated ions. A ced IP dataset is presented for 64 ILs. For the first time an experimental ced C+A , a measure of the strength of the total intermolecular interaction for an IL, is presented. ced C+A is significantly larger for ILs than ced for most molecular liquids, reflecting the need to break all of the relatively strong electrostatic interactions present in ILs. However, the van der Waals interactions contribute significantly to IL volatility due to the very strong electrostatic interaction in the neutral ion pair ionic vapour. An excellent linear correlation is found between ced IP and the inverse of the molecular volume. A good linear correlation is found between IL ced IP and IL Gordon parameter (which are dependent primarily on surface tension). ced values obtained through indirect methods gave similar magnitude values to ced IP . These findings show that ced IP is very important for understanding IL intermolecular interactions, in spite of ced IP not being a measure of the total intermolecular interactions of an IL. In the outlook section, remaining challenges for understanding IL intermolecular interactions are outlined.

  13. Quantifying intermolecular interactions of ionic liquids using cohesive energy densities

    PubMed Central

    2017-01-01

    For ionic liquids (ILs), both the large number of possible cation + anion combinations and their ionic nature provide a unique challenge for understanding intermolecular interactions. Cohesive energy density, ced, is used to quantify the strength of intermolecular interactions for molecular liquids, and is determined using the enthalpy of vaporization. A critical analysis of the experimental challenges and data to obtain ced for ILs is provided. For ILs there are two methods to judge the strength of intermolecular interactions, due to the presence of multiple constituents in the vapour phase of ILs. Firstly, cedIP, where the ionic vapour constituent is neutral ion pairs, the major constituent of the IL vapour. Secondly, cedC+A, where the ionic vapour constituents are isolated ions. A cedIP dataset is presented for 64 ILs. For the first time an experimental cedC+A, a measure of the strength of the total intermolecular interaction for an IL, is presented. cedC+A is significantly larger for ILs than ced for most molecular liquids, reflecting the need to break all of the relatively strong electrostatic interactions present in ILs. However, the van der Waals interactions contribute significantly to IL volatility due to the very strong electrostatic interaction in the neutral ion pair ionic vapour. An excellent linear correlation is found between cedIP and the inverse of the molecular volume. A good linear correlation is found between IL cedIP and IL Gordon parameter (which are dependent primarily on surface tension). ced values obtained through indirect methods gave similar magnitude values to cedIP. These findings show that cedIP is very important for understanding IL intermolecular interactions, in spite of cedIP not being a measure of the total intermolecular interactions of an IL. In the outlook section, remaining challenges for understanding IL intermolecular interactions are outlined. PMID:29308254

  14. Electrostatic properties of the pyrimethamine-2,4-dihydroxybenzoic acid cocrystal in methanol studied using transferred electron-density parameters.

    PubMed

    Faroque, Muhammad Umer; Noureen, Sajida; Ahmed, Maqsood; Tahir, Muhammad Nawaz

    2018-01-01

    The crystal structure of the cocrystal salt form of the antimalarial drug pyrimethamine with 2,4-dihydroxybenzoic acid in methanol [systematic name: 2,4-diamino-5-(4-chlorophenyl)-6-ethylpyrimidin-1-ium 2,4-dihydroxybenzoate methanol monosolvate, C 12 H 14 ClN 4 + ·C 7 H 5 O 4 - ·CH 3 OH] has been studied using X-ray diffraction data collected at room temperature. The crystal structure was refined using the classical Independent Atom Model (IAM) and the Multipolar Atom Model by transferring electron-density parameters from the ELMAM2 database. The Cl atom was refined anharmonically. The results of both refinement methods have been compared. The intermolecular interactions have been characterized on the basis of Hirshfeld surface analysis and topological analysis using Bader's theory of Atoms in Molecules. The results show that the molecular assembly is built primarily on the basis of charge transfer between 2,4-dihydroxybenzoic acid and pyrimethamine, which results in strong intermolecular hydrogen bonds. This fact is further validated by the calculation of the electrostatic potential based on transferred electron-density parameters.

  15. Electronic Structure, Dielectric Response, and Surface Charge Distribution of RGD (1FUV) Peptide

    PubMed Central

    Adhikari, Puja; Wen, Amy M.; French, Roger H.; Parsegian, V. Adrian; Steinmetz, Nicole F.; Podgornik, Rudolf; Ching, Wai-Yim

    2014-01-01

    Long and short range molecular interactions govern molecular recognition and self-assembly of biological macromolecules. Microscopic parameters in the theories of these molecular interactions are either phenomenological or need to be calculated within a microscopic theory. We report a unified methodology for the ab initio quantum mechanical (QM) calculation that yields all the microscopic parameters, namely the partial charges as well as the frequency-dependent dielectric response function, that can then be taken as input for macroscopic theories of electrostatic, polar, and van der Waals-London dispersion intermolecular forces. We apply this methodology to obtain the electronic structure of the cyclic tripeptide RGD-4C (1FUV). This ab initio unified methodology yields the relevant parameters entering the long range interactions of biological macromolecules, providing accurate data for the partial charge distribution and the frequency-dependent dielectric response function of this peptide. These microscopic parameters determine the range and strength of the intricate intermolecular interactions between potential docking sites of the RGD-4C ligand and its integrin receptor. PMID:25001596

  16. Oriented covalent immobilization of antibodies for measurement of intermolecular binding forces between zipper-like contact surfaces of split inteins.

    PubMed

    Sorci, Mirco; Dassa, Bareket; Liu, Hongwei; Anand, Gaurav; Dutta, Amit K; Pietrokovski, Shmuel; Belfort, Marlene; Belfort, Georges

    2013-06-18

    In order to measure the intermolecular binding forces between two halves (or partners) of naturally split protein splicing elements called inteins, a novel thiol-hydrazide linker was designed and used to orient immobilized antibodies specific for each partner. Activation of the surfaces was achieved in one step, allowing direct intermolecular force measurement of the binding of the two partners of the split intein (called protein trans-splicing). Through this binding process, a whole functional intein is formed resulting in subsequent splicing. Atomic force microscopy (AFM) was used to directly measure the split intein partner binding at 1 μm/s between native (wild-type) and mixed pairs of C- and N-terminal partners of naturally occurring split inteins from three cyanobacteria. Native and mixed pairs exhibit similar binding forces within the error of the measurement technique (~52 pN). Bioinformatic sequence analysis and computational structural analysis discovered a zipper-like contact between the two partners with electrostatic and nonpolar attraction between multiple aligned ion pairs and hydrophobic residues. Also, we tested the Jarzynski's equality and demonstrated, as expected, that nonequilibrium dissipative measurements obtained here gave larger energies of interaction as compared with those for equilibrium. Hence, AFM coupled with our immobilization strategy and computational studies provides a useful analytical tool for the direct measurement of intermolecular association of split inteins and could be extended to any interacting protein pair.

  17. Cooperativity of anion⋯π and π⋯π interactions regulates the self-assembly of a series of carbene proligands: Towards quantitative analysis of intermolecular interactions with Hirshfeld surface

    NASA Astrophysics Data System (ADS)

    Samanta, Tapastaru; Dey, Lingaraj; Dinda, Joydev; Chattopadhyay, Shyamal Kumar; Seth, Saikat Kumar

    2014-06-01

    The cooperative effect of weak non-covalent forces between anions and electron deficient aromatics by π⋯π stacking of a series of carbene proligands (1-3) have been thoroughly explored by crystallographic studies. Structural analysis revealed that the anion⋯π and π⋯π interactions along with intermolecular hydrogen bonding mutually cooperate to facilitate the assembling of the supramolecular framework. The π⋯π and corresponding anion⋯π interactions have been investigated in the title carbene proligands despite their association with counter ions. The presence of the anion in the vicinity of the π-system leads to the formation of anion⋯π/π⋯π/π⋯anion network for an inductive stabilization of the assemblies. To assess the dimensionality of the supramolecular framework consolidated by cooperative anion⋯π/π⋯π interactions and hydrogen bonding, different substituent effects in the carbene backbone have been considered to tune these interactions. These facts show that the supramolecular framework based on these cooperative weak forces may be robust enough for application in molecular recognition. The investigation of close intermolecular interactions between the molecules via Hirshfeld surface analyses is presented in order to reveal subtle differences and similarities in the crystal structures. The decomposition of the fingerprint plot area provides a percentage of each intermolecular interaction, allowing for a quantified analysis of close contacts within each crystal.

  18. Hydrogen bonds of sodium alginate/Antarctic krill protein composite material.

    PubMed

    Yang, Lijun; Guo, Jing; Yu, Yue; An, Qingda; Wang, Liyan; Li, Shenglin; Huang, Xuelin; Mu, Siyang; Qi, Shanwei

    2016-05-20

    Sodium alginate/Antarctic krill protein composite material (SA/AKP) was successfully obtained by blending method. The hydrogen bonds of SA/AKP composite material were analyzed by Fourier transform infrared spectroscopy (FT-IR) and Nuclear magnetic resonance hydrogen spectrum (HNMR). Experiment manifested the existence of intermolecular and intramolecular hydrogen bonds in SA/AKP system; strength of intermolecular hydrogen bond enhanced with the increase of AKP in the composite material and the interaction strength of hydrogen bonding followed the order: OH…Ether O>OH…π>OH…N. The percentage of intermolecular hydrogen bond decreased with increase of pH. At the same time, the effect of hydrogen bonds on properties of the composite material was discussed. The increase of intermolecular hydrogen bonding led to the decrease of crystallinity, increase of apparent viscosity and surface tension, as well as obvious decrease of heat resistance of SA/AKP composite material. SA/AKP fiber SEM images and energy spectrum showed that crystallized salt was separated from the fiber, which possibly led to the fibrillation of the composite fibers. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Effect of Intermolecular Distance on Surface-Plasmon-Assisted Catalysis.

    PubMed

    Wu, Shiwei; Liu, Yu; Ma, Caiqing; Wang, Jing; Zhang, Yao; Song, Peng; Xia, Lixin

    2018-06-26

    4-Aminothiophenol (PATP) and 4-aminophenyl disulfide (APDS) in contact with silver will form H 2 N-C 6 H 4 -S-Ag (PATP-Ag), and under the conditions of surface-enhanced Raman spectroscopy (SERS), a coupling reaction will generate 4,4-dimercaptoazobenzene (DMAB). DMAB is strongly Raman-active, showing strong peaks at ν ≈ 1140, 1390, and 1432 cm -1 , and is widely used in surface-plasmon-assisted catalysis. Using APDS, PATP, p-nitrothiophenol (PNTP), and p-nitrodiphenyl disulfide (NPDS) as probe molecules, Raman spectroscopy and imaging techniques have been used to study the effect of intermolecular distance on surface-plasmon-assisted catalysis. Theoretically, PATP-Ag formed from APDS will be bound at proximal Ag atoms on the Ag surface due to S-S bond cleavage. The results show that APDS is more prone to surface-plasmon-assisted catalytic coupling due to the smaller distance between surface PATP-Ag moieties than those derived from PATP. Therefore, APDS has a higher reaction efficiency, better Raman activity, and better Raman imaging than does PATP. Analogous experiments with PNTP and NPDS gave similar results. Thus, this technique has great application prospects in the fields of surface chemistry and materials chemistry.

  20. Theoretical predictions of vibration-rotation-tunneling dynamics of the weakly bound trimer (H 2O) 2HCl

    NASA Astrophysics Data System (ADS)

    Struniewicz, Cezary; Korona, Tatiana; Moszynski, Robert; Milet, Anne

    2001-08-01

    In this Letter we report a theoretical study of the vibration-rotation-tunneling (VRT) states of the (H 2O) 2HCl trimer. Five degrees of freedom are considered: two angles corresponding to the torsional (flipping) motions of the free, non-hydrogen-bonded, hydrogen atoms in the complex, and three angles describing the overall rotation of the trimer in the space. A two-dimensional potential energy surface is generated ab initio by symmetry-adapted perturbation theory (SAPT). Tunneling splittings, frequencies of the intermolecular vibrations, and vibrational line strengths of spectroscopic transitions are predicted.

  1. Marangoni Flowers and the Evil Eye: Overhead Presentations of Marangoni Flow

    ERIC Educational Resources Information Center

    Mundell, Donald W.

    2009-01-01

    Intermolecular forces and surface tension gradients in solutions lead to remarkable flows, known as Marangoni flows, where liquid flows from a region of low surface tension towards higher surface tension. Details of these flows, not visible to the naked eye, are made visible on an overhead projector owing to variation in the index of refraction.…

  2. Direct measurements of intermolecular forces by chemical force microscopy

    NASA Astrophysics Data System (ADS)

    Vezenov, Dmitri Vitalievich

    1999-12-01

    Detailed description of intermolecular forces is key to understanding a wide range of phenomena from molecular recognition to materials failure. The unique features of atomic force microscopy (AFM) to make point contact force measurements with ultra high sensitivity and to generate spatial maps of surface topography and forces have been extended to include measurements between well-defined organic molecular groups. Chemical modification of AFM probes with self-assembled monolayers (SAMs) was used to make them sensitive to specific molecular interactions. This novel chemical force microscopy (CFM) technique was used to probe forces between different molecular groups in a range of environments (vacuum, organic liquids and aqueous solutions); measure surface energetics on a nanometer scale; determine pK values of the surface acid and base groups; measure forces to stretch and unbind a short synthetic DNA duplex and map the spatial distribution of specific functional groups and their ionization state. Studies of adhesion forces demonstrated the important contribution of hydrogen bonding to interactions between simple organic functionalities. The chemical identity of the tip and substrate surfaces as well as the medium had a dramatic effect on adhesion between model monolayers. A direct correlation between surface free energy and adhesion forces was established. The adhesion between epoxy polymer and model mixed SAMs varied with the amount of hydrogen bonding component in the monolayers. A consistent interpretation of CFM measurements in polar solvents was provided by contact mechanics models and intermolecular force components theory. Forces between tips and surfaces functionalized with SAMs terminating in acid or base groups depended on their ionization state. A novel method of force titration was introduced for highly local characterization of the pK's of surface functional groups. The pH-dependent changes in friction forces were exploited to map spatially the changes in ionization state on SAM surfaces. The phase contrast in tapping mode AFM between chemically distinct monolayer regions and corresponding adhesion forces were found to be directly correlated. Thus, both friction and intermittent contact CFM images could be interpreted in terms of the strength of intermolecular interactions. CFM was also used to probe biomolecular interactions. Separation forces between complementary oligonucleotide strands were significantly larger than the forces measured between noncomplementary strands and were consistent with the unbinding of a single DNA duplex. CFM data provided a direct measure of the forces required to elastically deform, structurally-transform and separate well-defined, synthetic duplexes into single strand oligonucleotides.

  3. Improving rubber concrete by waste organic sulfur compounds.

    PubMed

    Chou, Liang-Hisng; Lin, Chun-Nan; Lu, Chun-Ku; Lee, Cheng-Haw; Lee, Maw-Tien

    2010-01-01

    In this study, the use of crumb tyres as additives to concrete was investigated. For some time, researchers have been studying the physical properties of concrete to determine why the inclusion of rubber particles causes the concrete to degrade. Several methods have been developed to improve the bonding between rubber particles and cement hydration products (C-S-H) with the hope of creating a product with an improvement in mechanical strength. In this study, the crumb tyres were treated with waste organic sulfur compounds from a petroleum refining factory in order to modify their surface properties. Organic sulfur compounds with amphiphilic properties can enhance the hydrophilic properties of the rubber and increase the intermolecular interaction forces between rubber and C-S-H. In the present study, a colloid probe of C-S-H was prepared to measure these intermolecular interaction forces by utilizing an atomic force microscope. Experimental results showed that rubber particles treated with waste organic sulfur compounds became more hydrophilic. In addition, the intermolecular interaction forces increased with the adsorption of waste organic sulfur compounds on the surface of the rubber particles. The compressive, tensile and flexural strengths of concrete samples that included rubber particles treated with organic sulfur compound also increased significantly.

  4. Simulations of molecular self-assembled monolayers on surfaces: packing structures, formation processes and functions tuned by intermolecular and interfacial interactions.

    PubMed

    Wen, Jin; Li, Wei; Chen, Shuang; Ma, Jing

    2016-08-17

    Surfaces modified with a functional molecular monolayer are essential for the fabrication of nano-scale electronics or machines with novel physical, chemical, and/or biological properties. Theoretical simulation based on advanced quantum chemical and classical models is at present a necessary tool in the development, design, and understanding of the interfacial nanostructure. The nanoscale surface morphology, growth processes, and functions are controlled by not only the electronic structures (molecular energy levels, dipole moments, polarizabilities, and optical properties) of building units but also the subtle balance between intermolecular and interfacial interactions. The switchable surfaces are also constructed by introducing stimuli-responsive units like azobenzene derivatives. To bridge the gap between experiments and theoretical models, opportunities and challenges for future development of modelling of ferroelectricity, entropy, and chemical reactions of surface-supported monolayers are also addressed. Theoretical simulations will allow us to obtain important and detailed information about the structure and dynamics of monolayer modified interfaces, which will guide the rational design and optimization of dynamic interfaces to meet challenges of controlling optical, electrical, and biological functions.

  5. Sorption of organic molecules on surfaces of a microporous polymer adsorbent modified with different quantities of uracil

    NASA Astrophysics Data System (ADS)

    Gus'kov, V. Yu.; Ganieva, A. G.; Kudasheva, F. Kh.

    2016-11-01

    The sorption of organic molecules on the surfaces of a number of adsorbents based on a microporous copolymer of styrene and divinylbenzene modified with different quantities of uracil is studied by means of inverse gas chromatography at infinite dilution. Samples containing 10-6, 10-5, 10-4, 10-3, 10-2, and 0.5 × 10‒1 weight parts of uracil (the pC of uracil ranges from 1.3 to 6) are studied. The contributions from different intermolecular interactions to the Helmholtz energy of sorption are calculated via the linear free energy relationship. It is found that as the concentration of uracil on the surface of the polymer adsorbent grows, the contributions from different intermolecular interactions and the conventional polarity of the surface have a bend at pC = 3, due probably to the formation of a supramolecular structure of uracil. Based on the obtained results, it is concluded that the formation of the supramolecular structure of uracil on the surface of the polymer adsorbent starts when pC < 3.

  6. Topography of the Dictyostelium discoideum plasma membrane: analysis of membrane asymmetry and intermolecular disulfide bonds.

    PubMed

    Shiozawa, J A; Jelenska, M M; Jacobson, B S

    1987-07-28

    Through the application of a unique method for isolating plasma membranes, it was possible to specifically iodinate cytoplasm-exposed plasma membrane proteins in vegetative cells of the cellular slime mold Dictyostelium discoideum. The original procedure [Chaney, L. K., & Jacobson, B. S. (1983) J. Biol. Chem. 258, 10062] which involved coating cells with colloidal silica has been modified to yield a more pure preparation. The presence of the continuous and dense silica pellicle on the outside surface of the isolated plasma membrane permitted the specific labeling of cytoplasm-exposed membrane proteins. Lactoperoxidase-catalyzed iodination was employed to label cell-surface and cytoplasm-exposed membrane proteins. The isolated and radioiodinated membranes were then compared and analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The cell-surface and cytoplasmic face labeling patterns were distinct. A total of 65 proteins were found to be accessible to at least one surface of the membrane. Sixteen intermolecular disulfide bond complexes were observed in the plasma membrane of Dictyostelium; most of these complexes involved glycoproteins and, hence, were exposed to the cell surface.

  7. Chirality of weakly bound complexes: The potential energy surfaces for the hydrogen-peroxide−noble-gas interactions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Roncaratti, L. F., E-mail: lz@fis.unb.br; Leal, L. A.; Silva, G. M. de

    2014-10-07

    We consider the analytical representation of the potential energy surfaces of relevance for the intermolecular dynamics of weakly bound complexes of chiral molecules. In this paper we study the H{sub 2}O{sub 2}−Ng (Ng=He, Ne, Ar, Kr, and Xe) systems providing the radial and the angular dependence of the potential energy surface on the relative position of the Ng atom. We accomplish this by introducing an analytical representation which is able to fit the ab initio energies of these complexes in a wide range of geometries. Our analysis sheds light on the role that the enantiomeric forms and the symmetry ofmore » the H{sub 2}O{sub 2} molecule play on the resulting barriers and equilibrium geometries. The proposed theoretical framework is useful to study the dynamics of the H{sub 2}O{sub 2} molecule, or other systems involving O–O and S–S bonds, interacting by non-covalent forces with atoms or molecules and to understand how the relative orientation of the O–H bonds changes along collisional events that may lead to a hydrogen bond formation or even to selectivity in chemical reactions.« less

  8. Multi-property isotropic intermolecular potentials and predicted spectral lineshapes of collision-induced absorption (CIA), collision-induced light scattering (CILS) and collision-induced hyper-Rayleigh scattering (CIHR) for H2sbnd Ne, -Kr and -Xe

    NASA Astrophysics Data System (ADS)

    El-Kader, M. S. A.; Godet, J.-L.; Gustafsson, M.; Maroulis, G.

    2018-04-01

    Quantum mechanical lineshapes of collision-induced absorption (CIA), collision-induced light scattering (CILS) and collision-induced hyper-Rayleigh scattering (CIHR) at room temperature (295 K) are computed for gaseous mixtures of molecular hydrogen with neon, krypton and xenon. The induced spectra are detected using theoretical values for induced dipole moment, pair-polarizability trace and anisotropy, hyper-polarizability and updated intermolecular potentials. Good agreement is observed for all spectra when the literature and the present potentials which are constructed from the transport and thermo-physical properties are used.

  9. Conformational changes of a calix[8]arene derivative at the air-water interface.

    PubMed

    de Miguel, Gustavo; Pedrosa, José M; Martín-Romero, María T; Muñoz, Eulogia; Richardson, Tim H; Camacho, Luis

    2005-03-10

    The particular behavior of a p-tert-butyl calix[8]arene derivative (C8A) has been studied at the air-water interface using surface pressure-area isotherms, surface potential-area isotherms, film relaxation measurements, Brewster angle microscopy (BAM), and infrared spectroscopy for Langmuir-Blodgett films. Thus, it is observed that the properties of the film, for example, isotherms, domain formation, and FTIR spectra, recorded during the first compression cycle differ appreciably from those during the second compression and following cycles. The results obtained are interpreted on the basis of the conformational changes of the C8A molecules by surface pressure, allowing us to inquire into the inter- and intramolecular interactions (hydrogen bonds) of those molecules. Thus, the compression induces changes in the kind of hydrogen bonds from intra- and intermolecular with other C8A molecules to hydrogen bonds with water molecules.

  10. Mechanism of anisotropic surface self-diffusivity at the prismatic ice-vapor interface.

    PubMed

    Gladich, Ivan; Oswald, Amrei; Bowens, Natalie; Naatz, Sam; Rowe, Penny; Roeselova, Martina; Neshyba, Steven

    2015-09-21

    Predictive theoretical models for mesoscopic roughening of ice require improved understanding of attachment kinetics occurring at the ice-vapor interface. Here, we use classical molecular dynamics to explore the generality and mechanics of a transition from anisotropic to isotropic self-diffusivity on exposed prismatic surfaces. We find that self-diffusion parallel to the crystallographic a-axis is favored over the c-axis at sub-melt temperatures below about -35 °C, for three different representations of the water-water intermolecular potential. In the low-temperature anisotropic regime, diffusion results from interstitial admolecules encountering entropically distinct barriers to diffusion in the two in-plane directions. At higher temperatures, isotropic self-diffusion occurring deeper within the quasi-liquid layer becomes the dominant mechanism, owing to its larger energy of activation.

  11. Identifying key descriptors in surface binding: interplay of surface anchoring and intermolecular interactions for carboxylates on Au(110)

    DOE PAGES

    O'Connor, Christopher R.; Hiebel, Fanny; Chen, Wei; ...

    2018-01-01

    The relative stability of carboxylates on Au(110) was investigated as part of a comprehensive study of adsorbate binding on Group IB metals that can be used to predict and understand how to control reactivity in heterogeneous catalysis.

  12. Exploring the inter-molecular interactions in amyloid-β protofibril with molecular dynamics simulations and molecular mechanics Poisson-Boltzmann surface area free energy calculations.

    PubMed

    Liu, Fu-Feng; Liu, Zhen; Bai, Shu; Dong, Xiao-Yan; Sun, Yan

    2012-04-14

    Aggregation of amyloid-β (Aβ) peptides correlates with the pathology of Alzheimer's disease. However, the inter-molecular interactions between Aβ protofibril remain elusive. Herein, molecular mechanics Poisson-Boltzmann surface area analysis based on all-atom molecular dynamics simulations was performed to study the inter-molecular interactions in Aβ(17-42) protofibril. It is found that the nonpolar interactions are the important forces to stabilize the Aβ(17-42) protofibril, while electrostatic interactions play a minor role. Through free energy decomposition, 18 residues of the Aβ(17-42) are identified to provide interaction energy lower than -2.5 kcal/mol. The nonpolar interactions are mainly provided by the main chain of the peptide and the side chains of nine hydrophobic residues (Leu17, Phe19, Phe20, Leu32, Leu34, Met35, Val36, Val40, and Ile41). However, the electrostatic interactions are mainly supplied by the main chains of six hydrophobic residues (Phe19, Phe20, Val24, Met35, Val36, and Val40) and the side chains of the charged residues (Glu22, Asp23, and Lys28). In the electrostatic interactions, the overwhelming majority of hydrogen bonds involve the main chains of Aβ as well as the guanidinium group of the charged side chain of Lys28. The work has thus elucidated the molecular mechanism of the inter-molecular interactions between Aβ monomers in Aβ(17-42) protofibril, and the findings are considered critical for exploring effective agents for the inhibition of Aβ aggregation.

  13. Exploring the inter-molecular interactions in amyloid-β protofibril with molecular dynamics simulations and molecular mechanics Poisson-Boltzmann surface area free energy calculations

    NASA Astrophysics Data System (ADS)

    Liu, Fu-Feng; Liu, Zhen; Bai, Shu; Dong, Xiao-Yan; Sun, Yan

    2012-04-01

    Aggregation of amyloid-β (Aβ) peptides correlates with the pathology of Alzheimer's disease. However, the inter-molecular interactions between Aβ protofibril remain elusive. Herein, molecular mechanics Poisson-Boltzmann surface area analysis based on all-atom molecular dynamics simulations was performed to study the inter-molecular interactions in Aβ17-42 protofibril. It is found that the nonpolar interactions are the important forces to stabilize the Aβ17-42 protofibril, while electrostatic interactions play a minor role. Through free energy decomposition, 18 residues of the Aβ17-42 are identified to provide interaction energy lower than -2.5 kcal/mol. The nonpolar interactions are mainly provided by the main chain of the peptide and the side chains of nine hydrophobic residues (Leu17, Phe19, Phe20, Leu32, Leu34, Met35, Val36, Val40, and Ile41). However, the electrostatic interactions are mainly supplied by the main chains of six hydrophobic residues (Phe19, Phe20, Val24, Met35, Val36, and Val40) and the side chains of the charged residues (Glu22, Asp23, and Lys28). In the electrostatic interactions, the overwhelming majority of hydrogen bonds involve the main chains of Aβ as well as the guanidinium group of the charged side chain of Lys28. The work has thus elucidated the molecular mechanism of the inter-molecular interactions between Aβ monomers in Aβ17-42 protofibril, and the findings are considered critical for exploring effective agents for the inhibition of Aβ aggregation.

  14. A Raman spectroscopy study on the effects of intermolecular hydrogen bonding on water molecules absorbed by borosilicate glass surface

    NASA Astrophysics Data System (ADS)

    Li, Fabing; Li, Zhanlong; Wang, Ying; Wang, Shenghan; Wang, Xiaojun; Sun, Chenglin; Men, Zhiwei

    2018-05-01

    The structural forms of water/deuterated water molecules located on the surface of borosilicate capillaries have been first investigated in this study on the basis of the Raman spectral data obtained at different temperatures and under atmospheric pressure for molecules in bulk and also for molecules absorbed by borosilicate glass surface. The strongest two fundamental bands locating at 3063 cm-1 (2438 cm-1) in the recorded Raman spectra are assigned here to the Osbnd H (Osbnd D) bond stretching vibrations and they are compared with the corresponding bands observed at 3124 cm-1 (2325 cm-1) in the Raman spectrum of ice Ih. Our spectroscopic observations have indicated that the structure of water and deuterated water molecules on borosilicate surface is similar to that of ice Ih (hexagonal phase of ice). These observations have also indicated that water molecules locate on the borosilicate surface so as to construct a bilayer structure and that strong and weak intermolecular hydrogen bonds are formed between water/deuterated molecules and silanol groups on borosilicate surface. In accordance with these findings, water and deuterated water molecules at the interface of capillary have a higher melting temperature.

  15. MULTIMODE quantum calculations of vibrational energies and IR spectrum of the NO⁺(H₂O) cluster using accurate potential energy and dipole moment surfaces.

    PubMed

    Homayoon, Zahra

    2014-09-28

    A new, full (nine)-dimensional potential energy surface and dipole moment surface to describe the NO(+)(H2O) cluster is reported. The PES is based on fitting of roughly 32,000 CCSD(T)-F12/aug-cc-pVTZ electronic energies. The surface is a linear least-squares fit using a permutationally invariant basis with Morse-type variables. The PES is used in a Diffusion Monte Carlo study of the zero-point energy and wavefunction of the NO(+)(H2O) and NO(+)(D2O) complexes. Using the calculated ZPE the dissociation energies of the clusters are reported. Vibrational configuration interaction calculations of NO(+)(H2O) and NO(+)(D2O) using the MULTIMODE program are performed. The fundamental, a number of overtone, and combination states of the clusters are reported. The IR spectrum of the NO(+)(H2O) cluster is calculated using 4, 5, 7, and 8 modes VSCF/CI calculations. The anharmonic, coupled vibrational calculations, and IR spectrum show very good agreement with experiment. Mode coupling of the water "antisymmetric" stretching mode with the low-frequency intermolecular modes results in intensity borrowing.

  16. MULTIMODE quantum calculations of vibrational energies and IR spectrum of the NO+(H2O) cluster using accurate potential energy and dipole moment surfaces

    NASA Astrophysics Data System (ADS)

    Homayoon, Zahra

    2014-09-01

    A new, full (nine)-dimensional potential energy surface and dipole moment surface to describe the NO+(H2O) cluster is reported. The PES is based on fitting of roughly 32 000 CCSD(T)-F12/aug-cc-pVTZ electronic energies. The surface is a linear least-squares fit using a permutationally invariant basis with Morse-type variables. The PES is used in a Diffusion Monte Carlo study of the zero-point energy and wavefunction of the NO+(H2O) and NO+(D2O) complexes. Using the calculated ZPE the dissociation energies of the clusters are reported. Vibrational configuration interaction calculations of NO+(H2O) and NO+(D2O) using the MULTIMODE program are performed. The fundamental, a number of overtone, and combination states of the clusters are reported. The IR spectrum of the NO+(H2O) cluster is calculated using 4, 5, 7, and 8 modes VSCF/CI calculations. The anharmonic, coupled vibrational calculations, and IR spectrum show very good agreement with experiment. Mode coupling of the water "antisymmetric" stretching mode with the low-frequency intermolecular modes results in intensity borrowing.

  17. Ab initio intermolecular potential energy surface for the CO2—N2 system and related thermophysical properties

    NASA Astrophysics Data System (ADS)

    Crusius, Johann-Philipp; Hellmann, Robert; Castro-Palacio, Juan Carlos; Vesovic, Velisa

    2018-06-01

    A four-dimensional potential energy surface (PES) for the interaction between a rigid carbon dioxide molecule and a rigid nitrogen molecule was constructed based on quantum-chemical ab initio calculations up to the coupled-cluster level with single, double, and perturbative triple excitations. Interaction energies for a total of 1893 points on the PES were calculated using the counterpoise-corrected supermolecular approach and basis sets of up to quintuple-zeta quality with bond functions. The interaction energies were extrapolated to the complete basis set limit, and an analytical site-site potential function with seven sites for carbon dioxide and five sites for nitrogen was fitted to the interaction energies. The CO2—N2 cross second virial coefficient as well as the dilute gas shear viscosity, thermal conductivity, and binary diffusion coefficient of CO2—N2 mixtures were calculated for temperatures up to 2000 K to validate the PES and to provide reliable reference values for these important properties. The calculated values are in very good agreement with the best experimental data.

  18. Roto-translational Raman spectra of pairs of hydrogen molecules from first principles.

    PubMed

    Gustafsson, Magnus; Frommhold, Lothar; Li, Xiaoping; Hunt, K L C

    2009-04-28

    We calculate the collision-induced, roto-translational, polarized, and depolarized Raman spectra of pairs of H(2) molecules. The Schrodinger equation of H(2)-H(2) scattering in the presence of a weak radiation field is integrated in the close-coupled scheme. This permits the accounting for the anisotropy of the intermolecular potential energy surface and thereby it includes mixing of polarizability components. The static polarizability invariants, trace and anisotropy, of two interacting H(2) molecules were obtained elsewhere [Li et al., J. Chem. Phys. 126, 214302 (2007)] from first principles. Here we report the associated spherical tensor components which, along with the potential surface, are input in the calculation of the supramolecular Raman spectra. Special attention is paid to the interferences in the wings of the rotational S(0)(0) and S(0)(1) lines of the H(2) molecule. The calculated Raman pair spectra show reasonable consistency with existing measurements of the polarized and depolarized Raman spectra of pairs of H(2) molecules.

  19. Perturbation analyses of intermolecular interactions

    NASA Astrophysics Data System (ADS)

    Koyama, Yohei M.; Kobayashi, Tetsuya J.; Ueda, Hiroki R.

    2011-08-01

    Conformational fluctuations of a protein molecule are important to its function, and it is known that environmental molecules, such as water molecules, ions, and ligand molecules, significantly affect the function by changing the conformational fluctuations. However, it is difficult to systematically understand the role of environmental molecules because intermolecular interactions related to the conformational fluctuations are complicated. To identify important intermolecular interactions with regard to the conformational fluctuations, we develop herein (i) distance-independent and (ii) distance-dependent perturbation analyses of the intermolecular interactions. We show that these perturbation analyses can be realized by performing (i) a principal component analysis using conditional expectations of truncated and shifted intermolecular potential energy terms and (ii) a functional principal component analysis using products of intermolecular forces and conditional cumulative densities. We refer to these analyses as intermolecular perturbation analysis (IPA) and distance-dependent intermolecular perturbation analysis (DIPA), respectively. For comparison of the IPA and the DIPA, we apply them to the alanine dipeptide isomerization in explicit water. Although the first IPA principal components discriminate two states (the α state and PPII (polyproline II) + β states) for larger cutoff length, the separation between the PPII state and the β state is unclear in the second IPA principal components. On the other hand, in the large cutoff value, DIPA eigenvalues converge faster than that for IPA and the top two DIPA principal components clearly identify the three states. By using the DIPA biplot, the contributions of the dipeptide-water interactions to each state are analyzed systematically. Since the DIPA improves the state identification and the convergence rate with retaining distance information, we conclude that the DIPA is a more practical method compared with the IPA. To test the feasibility of the DIPA for larger molecules, we apply the DIPA to the ten-residue chignolin folding in explicit water. The top three principal components identify the four states (native state, two misfolded states, and unfolded state) and their corresponding eigenfunctions identify important chignolin-water interactions to each state. Thus, the DIPA provides the practical method to identify conformational states and their corresponding important intermolecular interactions with distance information.

  20. Perturbation analyses of intermolecular interactions.

    PubMed

    Koyama, Yohei M; Kobayashi, Tetsuya J; Ueda, Hiroki R

    2011-08-01

    Conformational fluctuations of a protein molecule are important to its function, and it is known that environmental molecules, such as water molecules, ions, and ligand molecules, significantly affect the function by changing the conformational fluctuations. However, it is difficult to systematically understand the role of environmental molecules because intermolecular interactions related to the conformational fluctuations are complicated. To identify important intermolecular interactions with regard to the conformational fluctuations, we develop herein (i) distance-independent and (ii) distance-dependent perturbation analyses of the intermolecular interactions. We show that these perturbation analyses can be realized by performing (i) a principal component analysis using conditional expectations of truncated and shifted intermolecular potential energy terms and (ii) a functional principal component analysis using products of intermolecular forces and conditional cumulative densities. We refer to these analyses as intermolecular perturbation analysis (IPA) and distance-dependent intermolecular perturbation analysis (DIPA), respectively. For comparison of the IPA and the DIPA, we apply them to the alanine dipeptide isomerization in explicit water. Although the first IPA principal components discriminate two states (the α state and PPII (polyproline II) + β states) for larger cutoff length, the separation between the PPII state and the β state is unclear in the second IPA principal components. On the other hand, in the large cutoff value, DIPA eigenvalues converge faster than that for IPA and the top two DIPA principal components clearly identify the three states. By using the DIPA biplot, the contributions of the dipeptide-water interactions to each state are analyzed systematically. Since the DIPA improves the state identification and the convergence rate with retaining distance information, we conclude that the DIPA is a more practical method compared with the IPA. To test the feasibility of the DIPA for larger molecules, we apply the DIPA to the ten-residue chignolin folding in explicit water. The top three principal components identify the four states (native state, two misfolded states, and unfolded state) and their corresponding eigenfunctions identify important chignolin-water interactions to each state. Thus, the DIPA provides the practical method to identify conformational states and their corresponding important intermolecular interactions with distance information.

  1. Book Review: Near infrared surface-enhanced Raman spectroscopic study of antiretroviraly drugs hypericin and emodin in aqueous silver colloids

    NASA Astrophysics Data System (ADS)

    Sánchez-Cortés, S.; Jancura, D.; Miskovsky, P.; Bertoluzza, A.

    1997-05-01

    The near infrared surface-enhanced Raman spectra (NIR SERS) of antiretroviraly drugs hypericin and its analogs emodin and bianthrone were studied at different drug concentration, dimethylsulfoxide concentration, pH and time. The differences observed in the SERS spectra when varying some of these parameters are attributed to changes in the adsorbate coverage and orientation of these molecules on the silver colloids, and can be related to the monomeric drug concentration existing in the solution. Two different drug orientations on the metal surface can be deduced: perpendicular and planar, which can be characterized by two different SERS profiles. The drug reorientation on the surface is indicative of a change in the oligomer-monomer equilibrium in the solution, what implies that the SERS technique can be used as an indirect method to monitor the intermolecular interactions of these molecules in water. In addition the UV-visible absorption spectra of these drugs also reveals the existence of intermolecular interactions in water and the temperature dependence of these interactions.

  2. Hirshfeld surface analyses and crystal structures of supramolecular self-assembly thiourea derivatives directed by non-covalent interactions

    NASA Astrophysics Data System (ADS)

    Gumus, Ilkay; Solmaz, Ummuhan; Binzet, Gun; Keskin, Ebru; Arslan, Birdal; Arslan, Hakan

    2018-04-01

    The novel N-(bis(3,5-dimethoxybenzyl)carbamothioyl)-4-R-benzamide (R: H, Cl, CH3 and OCH3) compounds have been synthesized and characterized by FT-IR, 1H NMR and 13C NMR spectroscopy. Their crystal structures were also determined by single-crystal X-ray diffraction studies. Hirshfeld surfaces analysis and their associated two dimensional fingerprint plots of compounds were used as theoretical approach to assess driving force for crystal structure formation via the intermolecular interactions in the crystal lattices of synthesized compounds. The study of X-ray single crystal diffraction and Hirshfeld surfaces analysis of the prepared compounds shows that hydrogen bonding and other weaker interactions such as Nsbnd H⋯S, weak Csbnd H⋯S, Csbnd H⋯O, Csbnd H⋯N and Csbnd H···π intermolecular interactions and π-π stacking, among molecules of synthesized compounds participate in a cooperative way to stabilize the supramolecular structures.

  3. Structure, energetics and vibrational spectra of dimers, trimers, and tetramers of HX (X = Cl, Br, I)

    NASA Astrophysics Data System (ADS)

    Latajka, Zdzislaw; Scheiner, Steve

    1997-03-01

    The title complexes are studied by correlated ab initio methods using a pseudopotential double-ζ basis set, augmented by diffuse sp and two sets of polarization functions. The binding energies of the complexes decrease in the order HCl > HBr > HI. In the mixed HX…HX' dimers, the nature of the proton-donor molecule is more important than is the proton-acceptor with respect to the strength of the interaction. Only one minimum is found on the potential energy surface of the trimers and tetramers, which corresponds to the C nh cyclic structure. Enlargement of the complex leads to progressively greater individual H-bond energy and HX bond stretch, coupled with reduced intermolecular separation and smaller nonlinearity of each H-bond. Electron correlation makes a larger contribution as the atomic number of X increases. The highest degree of cooperativity is noted for oligomers of HCl and HBr, as compared to HI. The nonadditivity is dominated by terms present at the SCF level. The vibrational frequencies exhibit trends that generally parallel the energetics and geometry patterns, particularly the red shifts of the HX stretches and the intermolecular modes.

  4. Proton dynamics and surface heterogeneity of silica gel with adsorbed benzene below one monolayer coverage

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peterson, E.M.; O'Reilly, D.E.; Tsangb), T.

    1979-04-01

    Proton and deuteron NMR relaxation times of C/sub 6/H/sub 6/, C/sub 6/D/sub 6/, and mixtures of these molecules have been measured on a superpure silica gel (SPSG) and a sample of a Matheson silica gel (MSG) both dehydrated at 600/sup 0/ C and rotational (intramolecular) and translational (intermolecular) correlation times have been computed from the relaxation time data at a statistical coverage theta=0.6. Three kinds of adsorption sites have been observed: (1) A sites, which are probably oxygen vacancies on the surface, (2) B sites which are assigned to paired hydroxyl groups on the surface, and finally (3) C sitesmore » which comprise 80% of the occupied surface and are primarily isolated hydroxyl groups. Rotational and translational motions are highly correlated for the A and B site molecules. The mean number of molecules clustered at the A and B sites are inferred from the intermolecular second moments associated with each of these sites. The surface density of the A sites is 1.1 x 10/sup 12/ cm/sup -2/ for SPSG and 3.1 x 10/sup 12/ cm/sup -2/ for MSG.« less

  5. Polyimine and its potential significance for prebiotic chemistry on Titan

    NASA Astrophysics Data System (ADS)

    Rahm, Martin; Lunine, Jonathan I.; Usher, David; Shalloway, David

    2016-10-01

    Hydrogen cyanide (HCN), a key reagent in prebiotic chemistry, is being generated in large amounts in the atmosphere of Titan. Contradictions between Cassini-Huygens measurements of the atmosphere and the surface of Titan, suggest that HCN is undergoing reaction chemistry, despite the frigid temperatures of 90-94 K. We will discuss computational results [1] investigating polyimine as one potential explanation for this observation. Polyimine is a polymer identified as the major component of polymerized HCN in laboratory experiments. It is flexible, which aids low temperature mobility, and it is able to form intermolecular and intramolecular =N-H...N hydrogen bonds, allowing for different polymorphs. Polymorphs have been predicted and explored by density functional theory coupled with a structure-searching algorithm. We have calculated the thermodynamics of polymerization, and show that polyimine is capable of absorbing light in a window of relative transparency in Titan's atmosphere. Light absorption and the possible catalytic functions of polyimine are suggestive of it driving photochemistry on the surface, with potential prebiotic implications.References:[1] M. Rahm, J. I. Lunine, D. Usher, D. Shalloway, "Polymorphism and electronic structure of polyimine and its potential significance for prebiotic chemistry on Titan", PNAS, early view. doi: 10.1073/pnas.1606634113

  6. A general transformation to canonical form for potentials in pairwise interatomic interactions.

    PubMed

    Walton, Jay R; Rivera-Rivera, Luis A; Lucchese, Robert R; Bevan, John W

    2015-06-14

    A generalized formulation of explicit force-based transformations is introduced to investigate the concept of a canonical potential in both fundamental chemical and intermolecular bonding. Different classes of representative ground electronic state pairwise interatomic interactions are referenced to a chosen canonical potential illustrating application of such transformations. Specifically, accurately determined potentials of the diatomic molecules H2, H2(+), HF, LiH, argon dimer, and one-dimensional dissociative coordinates in Ar-HBr, OC-HF, and OC-Cl2 are investigated throughout their bound potentials. Advantages of the current formulation for accurately evaluating equilibrium dissociation energies and a fundamentally different unified perspective on nature of intermolecular interactions will be emphasized. In particular, this canonical approach has significance to previous assertions that there is no very fundamental distinction between van der Waals bonding and covalent bonding or for that matter hydrogen and halogen bonds.

  7. Protein Monolayer Formation at Air-Electrolyte Interface:. a Langmuir-Blodgett Study

    NASA Astrophysics Data System (ADS)

    Pal, Prabir; Kamilya, Tapanendu; Mahato, Mrityunjoy; Talapatra, G. B.

    The interfacial surface activity of a protein, ovalbumin (OVA) at bare air/water interface in presence and also in absence of electrolyte (KCl) in subphase has been investigated. The surface activity was measured as a function of time. It has been found that, the presence of KCl in aqueous subphase enhances the adsorption rate of the protein. The changes of area/molecule, compressibility, rigidity and unfolding of OVA are trivial up to 10 mM KCl concentration. These properties of OVA, above 10 mM KCl concentration are significant and have been explained in the perspective of DLVO theory and many-body ion-protein dispersion potentials. The presence of high concentration of electrolyte increases the β-structure of OVA, resulting into larger unfolding as well as larger intermolecular aggregates. The overall study indicates that KCl perturbs the OVA monolayer.

  8. Lattice dynamics of solid N2 with an ab initio intermolecular potential

    NASA Astrophysics Data System (ADS)

    Luty, T.; van der Avoird, A.; Berns, R. M.

    1980-11-01

    We have performed harmonic and self-consistent phonon lattice dynamics calculations for α and γ N2 crystals using an intermolecular potential from ab initio calculations. This potential contains electrostatic (multipole) interactions, up to all R-9 terms inclusive, anisotropic dispersion interactions up to all R-10 terms inclusive, and anisotropic overlap interactions caused by charge penetration and exchange between the molecules. The lattice constants, cohesion energy, the frequencies of the translational phonon modes and the Grüneisen parameters for the librational modes are in good agreement with experimental values, confirming the quality of the potential. The frequencies of the librational modes and those of the mixed modes are less well reproduced, especially at temperatures near the α-β phase transition. Probably, the self-consistent phonon method used does not fully account for the anharmonicity in the librations.

  9. Rational design of viscosity reducing mutants of a monoclonal antibody: Hydrophobic versus electrostatic inter-molecular interactions

    PubMed Central

    Nichols, Pilarin; Li, Li; Kumar, Sandeep; Buck, Patrick M; Singh, Satish K; Goswami, Sumit; Balthazor, Bryan; Conley, Tami R; Sek, David; Allen, Martin J

    2015-01-01

    High viscosity of monoclonal antibody formulations at concentrations ≥100 mg/mL can impede their development as products suitable for subcutaneous delivery. The effects of hydrophobic and electrostatic intermolecular interactions on the solution behavior of MAB 1, which becomes unacceptably viscous at high concentrations, was studied by testing 5 single point mutants. The mutations were designed to reduce viscosity by disrupting either an aggregation prone region (APR), which also participates in 2 hydrophobic surface patches, or a negatively charged surface patch in the variable region. The disruption of an APR that lies at the interface of light and heavy chain variable domains, VH and VL, via L45K mutation destabilized MAB 1 and abolished antigen binding. However, mutation at the preceding residue (V44K), which also lies in the same APR, increased apparent solubility and reduced viscosity of MAB 1 without sacrificing antigen binding or thermal stability. Neutralizing the negatively charged surface patch (E59Y) also increased apparent solubility and reduced viscosity of MAB 1, but charge reversal at the same position (E59K/R) caused destabilization, decreased solubility and led to difficulties in sample manipulation that precluded their viscosity measurements at high concentrations. Both V44K and E59Y mutations showed similar increase in apparent solubility. However, the viscosity profile of E59Y was considerably better than that of the V44K, providing evidence that inter-molecular interactions in MAB 1 are electrostatically driven. In conclusion, neutralizing negatively charged surface patches may be more beneficial toward reducing viscosity of highly concentrated antibody solutions than charge reversal or aggregation prone motif disruption. PMID:25559441

  10. Rational design of viscosity reducing mutants of a monoclonal antibody: hydrophobic versus electrostatic inter-molecular interactions.

    PubMed

    Nichols, Pilarin; Li, Li; Kumar, Sandeep; Buck, Patrick M; Singh, Satish K; Goswami, Sumit; Balthazor, Bryan; Conley, Tami R; Sek, David; Allen, Martin J

    2015-01-01

    High viscosity of monoclonal antibody formulations at concentrations ≥100 mg/mL can impede their development as products suitable for subcutaneous delivery. The effects of hydrophobic and electrostatic intermolecular interactions on the solution behavior of MAB 1, which becomes unacceptably viscous at high concentrations, was studied by testing 5 single point mutants. The mutations were designed to reduce viscosity by disrupting either an aggregation prone region (APR), which also participates in 2 hydrophobic surface patches, or a negatively charged surface patch in the variable region. The disruption of an APR that lies at the interface of light and heavy chain variable domains, VH and VL, via L45K mutation destabilized MAB 1 and abolished antigen binding. However, mutation at the preceding residue (V44K), which also lies in the same APR, increased apparent solubility and reduced viscosity of MAB 1 without sacrificing antigen binding or thermal stability. Neutralizing the negatively charged surface patch (E59Y) also increased apparent solubility and reduced viscosity of MAB 1, but charge reversal at the same position (E59K/R) caused destabilization, decreased solubility and led to difficulties in sample manipulation that precluded their viscosity measurements at high concentrations. Both V44K and E59Y mutations showed similar increase in apparent solubility. However, the viscosity profile of E59Y was considerably better than that of the V44K, providing evidence that inter-molecular interactions in MAB 1 are electrostatically driven. In conclusion, neutralizing negatively charged surface patches may be more beneficial toward reducing viscosity of highly concentrated antibody solutions than charge reversal or aggregation prone motif disruption.

  11. Controlled Self-Assembly of Low-Dimensional Alq3 Nanostructures from 1D Nanowires to 2D Plates via Intermolecular Interactions

    NASA Astrophysics Data System (ADS)

    Gu, Jianmin; Yin, Baipeng; Fu, Shaoyan; Jin, Cuihong; Liu, Xin; Bian, Zhenpan; Li, Jianjun; Wang, Lu; Li, Xiaoyu

    2018-03-01

    Due to the intense influence of the shape and size of the photon building blocks on the limitation and guidance of optical waves, an important strategy is the fabrication of different structures. Herein, organic semiconductor tris-(8-hydroxyquinoline)aluminium (Alq3) nanostructures with controllable morphology, ranging from one-dimensional nanowires to two-dimensional plates, have been prepared through altering intermolecular interactions with employing the anti-solvent diffusion cooperate with solvent-volatilization induced self-assembly method. The morphologies of the formed nanostructures, which are closely related to the stacking modes of the molecules, can be exactly controlled by altering the polarity of anti-solvents that can influence various intermolecular interactions. The synthesis strategy reported here can potentially be extended to other functional organic nanomaterials.

  12. Quantum calculations of the IR spectrum of liquid water using ab initio and model potential and dipole moment surfaces and comparison with experiment.

    PubMed

    Liu, Hanchao; Wang, Yimin; Bowman, Joel M

    2015-05-21

    The calculation and characterization of the IR spectrum of liquid water have remained a challenge for theory. In this paper, we address this challenge using a combination of ab initio approaches, namely, a quantum treatment of IR spectrum using the ab initio WHBB water potential energy surface and a refined ab initio dipole moment surface. The quantum treatment is based on the embedded local monomer method, in which the three intramolecular modes of each embedded H2O monomer are fully coupled and also coupled singly to each of six intermolecular modes. The new dipole moment surface consists of a previous spectroscopically accurate 1-body dipole moment surface and a newly fitted ab initio intrinsic 2-body dipole moment. A detailed analysis of the new dipole moment surface in terms of the coordinate dependence of the effective atomic charges is done along with tests of it for the water dimer and prism hexamer double-harmonic spectra against direct ab initio calculations. The liquid configurations are taken from previous molecular dynamics calculations of Skinner and co-workers, using the TIP4P plus E3B rigid monomer water potential. The IR spectrum of water at 300 K in the range of 0-4000 cm(-1) is calculated and compared with experiment, using the ab initio WHBB potential and new ab initio dipole moment, the q-TIP4P/F potential, which has a fixed-charged description of the dipole moment, and the TTM3-F potential and dipole moment surfaces. The newly calculated ab initio spectrum is in very good agreement with experiment throughout the above spectral range, both in band positions and intensities. This contrasts to results with the other potentials and dipole moments, especially the fixed-charge q-TIP4P/F model, which gives unrealistic intensities. The calculated ab initio spectrum is analyzed by examining the contribution of various transitions to each band.

  13. Quantum calculations of the IR spectrum of liquid water using ab initio and model potential and dipole moment surfaces and comparison with experiment

    NASA Astrophysics Data System (ADS)

    Liu, Hanchao; Wang, Yimin; Bowman, Joel M.

    2015-05-01

    The calculation and characterization of the IR spectrum of liquid water have remained a challenge for theory. In this paper, we address this challenge using a combination of ab initio approaches, namely, a quantum treatment of IR spectrum using the ab initio WHBB water potential energy surface and a refined ab initio dipole moment surface. The quantum treatment is based on the embedded local monomer method, in which the three intramolecular modes of each embedded H2O monomer are fully coupled and also coupled singly to each of six intermolecular modes. The new dipole moment surface consists of a previous spectroscopically accurate 1-body dipole moment surface and a newly fitted ab initio intrinsic 2-body dipole moment. A detailed analysis of the new dipole moment surface in terms of the coordinate dependence of the effective atomic charges is done along with tests of it for the water dimer and prism hexamer double-harmonic spectra against direct ab initio calculations. The liquid configurations are taken from previous molecular dynamics calculations of Skinner and co-workers, using the TIP4P plus E3B rigid monomer water potential. The IR spectrum of water at 300 K in the range of 0-4000 cm-1 is calculated and compared with experiment, using the ab initio WHBB potential and new ab initio dipole moment, the q-TIP4P/F potential, which has a fixed-charged description of the dipole moment, and the TTM3-F potential and dipole moment surfaces. The newly calculated ab initio spectrum is in very good agreement with experiment throughout the above spectral range, both in band positions and intensities. This contrasts to results with the other potentials and dipole moments, especially the fixed-charge q-TIP4P/F model, which gives unrealistic intensities. The calculated ab initio spectrum is analyzed by examining the contribution of various transitions to each band.

  14. Water organization between oppositely charged surfaces: Implications for protein sliding along DNA a)

    NASA Astrophysics Data System (ADS)

    Marcovitz, Amir; Naftaly, Aviv; Levy, Yaakov

    2015-02-01

    Water molecules are abundant in protein-DNA interfaces, especially in their nonspecific complexes. In this study, we investigated the organization and energetics of the interfacial water by simplifying the geometries of the proteins and the DNA to represent them as two equally and oppositely charged planar surfaces immersed in water. We found that the potential of mean force for bringing the two parallel surfaces into close proximity comprises energetic barriers whose properties strongly depend on the charge density of the surfaces. We demonstrated how the organization of the water molecules into discretized layers and the corresponding energetic barriers to dehydration can be modulated by the charge density on the surfaces, salt, and the structure of the surfaces. The 1-2 layers of ordered water are tightly bound to the charged surfaces representing the nonspecific protein-DNA complex. This suggests that water might mediate one-dimensional diffusion of proteins along DNA (sliding) by screening attractive electrostatic interactions between the positively charged molecular surface on the protein and the negatively charged DNA backbone and, in doing so, reduce intermolecular friction in a manner that smoothens the energetic landscape for sliding, and facilitates the 1D diffusion of the protein.

  15. A new ab initio potential energy surface for the collisional excitation of HCN by para- and ortho-H2

    NASA Astrophysics Data System (ADS)

    Denis-Alpizar, Otoniel; Kalugina, Yulia; Stoecklin, Thierry; Vera, Mario Hernández; Lique, François

    2013-12-01

    We present a new four-dimensional potential energy surface for the collisional excitation of HCN by H2. Ab initio calculations of the HCN-H2 van der Waals complex, considering both molecules as rigid rotors, were carried out at the explicitly correlated coupled cluster with single, double, and perturbative triple excitations [CCSD(T)-F12a] level of theory using an augmented correlation-consistent triple zeta (aVTZ) basis set. The equilibrium structure is linear HCN-H2 with the nitrogen pointing towards H2 at an intermolecular separation of 7.20 a0. The corresponding well depth is -195.20 cm-1. A secondary minimum of -183.59 cm-1 was found for a T-shape configuration with the H of HCN pointing to the center of mass of H2. We also determine the rovibrational energy levels of the HCN-para-H2 and HCN-ortho-H2 complexes. The calculated dissociation energies for the para and ortho complexes are 37.79 cm-1 and 60.26 cm-1, respectively. The calculated ro-vibrational transitions in the HCN-H2 complex are found to agree by more than 0.5% with the available experimental data, confirming the accuracy of the potential energy surface.

  16. Physisorption of three amine terminated molecules (TMBDA, BDA, TFBDA) on the Au(111) Surface: The Role of van der Waals Interaction

    NASA Astrophysics Data System (ADS)

    Aminpour, Maral; Le, Duy; Rahman, Talat S.

    2012-02-01

    Recently, the electronic properties and alignment of tetramethyl-1,4-benzenediamine (TMBDA), 1,4-benzenediamine (BDA) and tetrafluro-1,4-benzenediamine (TFBDA) molecules were studied experimentally. Discrepancies were found for both the binding energy and the molecule tilt angle with respect to the surface, when results were compared with density functional theory calculations [1]. We have included the effect of vdW interactions both between the molecules and the Au(111) surface and find binding energies which are in very good agreement with experiments. We also find that at low coverages each of these molecules would adsorb almost parallel to the surface. N-Au bond lengths and charge redistribution on adsorption of the molecules are also analyzed. Our calculations are based on DFT using vdW-DF exchange correlation functionals. For BDA (since we are aware of experimental data), we show that for higher coverage, inclusion of intermolecular van der Waals interaction leads to tilting of the molecules with respect to the surface and formation of line structures. Our results demonstrate the central role played by intermolecular interaction in pattern formation on this surface.[4pt] [1] M. Dell'Angela et al, Nano Lett. 2010, 10, 2470; M. Kamenetska et al, J. Phys. Chem. C, 2011, 115, 12625

  17. Study of interaction in silica glass via model potential approach

    NASA Astrophysics Data System (ADS)

    Mann, Sarita; Rani, Pooja

    2016-05-01

    Silica is one of the most commonly encountered substances in daily life and in electronics industry. Crystalline SiO2 (in several forms: quartz, cristobalite, tridymite) is an important constituent of many minerals and gemstones, both in pure form and mixed with related oxides. Cohesive energy of amorphous SiO2 has been investigated via intermolecular potentials i.e weak Van der Waals interaction and Morse type short-range interaction. We suggest a simple atom-atom based Van der Waals as well as Morse potential to find cohesive energy of glass. It has been found that the study of silica structure using two different model potentials is significantly different. Van der Waals potential is too weak (P.E =0.142eV/molecule) to describe the interaction between silica molecules. Morse potential is a strong potential, earlier given for intramolecular bonding, but if applied for intermolecular bonding, it gives a value of P.E (=-21.92eV/molecule) to appropriately describe the structure of silica.

  18. Greenhouse effect in planetary atmospheres caused by molecular symmetry breaking in intermolecular interactions

    NASA Astrophysics Data System (ADS)

    Vigasin, A. A.; Mokhov, I. I.

    2017-03-01

    It is believed that the greenhouse effect is related to the parameters of absorption spectra of polyatomic molecules, usually trace gases, in planetary atmospheres. The main components of all known atmospheres of celestial bodies are symmetrical molecules that do not possess the dipole-allowed purely rotational (and in the case of diatomic molecules, vibrational-rotational) absorption spectrum. Upon increased pressure, a weak absorption appears, induced by intermolecular interaction, which can lead to a greenhouse effect. The contribution of the induced absorption in radiative forcing of a dense atmosphere may amount to a few or even tens of W/m2. In conditions typical for the atmospheres of terrestrial planets (including paleoatmospheres), the collision-induced absorption and associated greenhouse effect may lead to an increase in surface temperature above the freezing point of water. There is a correlation between the temperature of an atmosphere and the intermolecular bonding energy of gases that dominate in planetary atmospheres of the Solar System.

  19. Theoretical insights into the structures and mechanical properties of HMX/NQ cocrystal explosives and their complexes, and the influence of molecular ratios on their bonding energies.

    PubMed

    Li, Yong-Xiang; Chen, Shu-Sen; Ren, Fu-de

    2015-09-01

    Molecular dynamics (MD) methods were employed to study the binding energies and mechanical properties of selected crystal planes of 1,3,5,7-tetranitro-1,3,5,7-tetrazacyclooctane (HMX)/nitroguanidine (NQ) cocrystals at different molecular molar ratios. The densities and detonation velocities of the cocrystals at different molar ratios were estimated. The intermolecular interaction and bond dissociation energy (BDE) of the N-NO2 bond in the HMX:NQ (1:1) complex were calculated using the B3LYP, MP2(full) and M06-2X methods with the 6-311++G(d,p) and 6-311++G(2df,2p) basis sets. The results indicated that the HMX/NQ cocrystal prefers cocrystalizing in a 1:1 molar ratio, and the cocrystallization is dominated by the (0 2 0) and (1 0 0) facets. The K, G, and E values of the ratio of 1:1 are smaller than those of the other ratios, and the 1:1 cocrystal has the best ductility. The N-NO2 bond becomes stronger upon the formation of the intermolecular H-bonding interaction and the sensitivity of HMX decreases in the cocrystal. This sensitivity change in the HMX/NQ cocrystal originates not only from the formation of the intermolecular interaction but also from the increment of the BDE of N-NO2 bond in comparison with isolated HMX. The HMX/NQ (1:1) cocrystal exhibits good detonation performance. Reduced density gradient (RDG) reveals the nature of cocrystallization. Analysis of the surface electrostatic potential further confirmed that the sensitivity decreases in complex (or cocrystal) in comparison with that in isolated HMX.

  20. Boron nitride nanotubes for delivery of 5-fluorouracil as anticancer drug: a theoretical study

    NASA Astrophysics Data System (ADS)

    Shayan, Kolsoom; Nowroozi, Alireza

    2018-01-01

    The electronic structure and properties of the armchair boron nitride nanotubes (BNNTs) interacted with the 5-FU drug, as an anticancer drug, are studied at the B3LYP/6-31G(d,p) level of theory. D3-Corrections were carried out for the treatment of intermolecular interactions in the hybrid complexes and encapsulated nanotubes, exactly. Results have shown that the encapsulation and adsorption of 5-FU molecule on the studied BNNTs surface are favorable processes, with a few exceptions. Also, it is found that the encapsulated nanotubes are stable than the hybrid complexes. Furthermore, we estimated the strengths of the intermolecular bonds of the benchmark systems by energetic, geometric, topological and molecular orbital descriptors. Some analyses have been made to explore any changes in the binding characteristics of the drug molecule after its attachment to the nanotubes. According to the NBO results, the charge transfer phenomenon is observed from the bonding or nonbonding orbitals of drug to the antibonding orbitals of BNNTs. Moreover, HOMO-LUMO analysis indicated that, after the adsorption process, the HOMO value slightly increased, while the LUMO value in these systems significantly reduced in the both of Drug@BNNTs groups. So, the energy gaps between HOMO and LUMO (Eg) are reduced, which emphasis on the greater intermolecular bond strength. Finally, the stability and reactivity of the Drug@BNNTs complexes have been examined from the magnitudes of the chemical reactivity descriptors such as chemical potential, global hardness, and electrophilicity index. As a consequence, BNNTs can be considered as a drug delivery vehicle for the transportation of 5-FU as anticancer drug within the biological systems.

  1. Theoretical studies on the coupling interactions in H2SO4···HOO˙···(H2O)n (n = 0-2) clusters: toward understanding the role of water molecules in the uptake of HOO˙ radical by sulfuric acid aerosols.

    PubMed

    Li, Ping; Ma, Zhiying; Wang, Weihua; Zhai, Yazhou; Sun, Haitao; Bi, Siwei; Bu, Yuxiang

    2011-01-21

    A detailed knowledge of coupling interactions among sulfuric acid (H(2)SO(4)), the hydroperoxyl radical (HOO˙), and water molecules (H(2)O) is crucial for the better understanding of the uptake of HOO˙ radicals by sulfuric acid aerosols at different atmospheric humidities. In the present study, the equilibrium structures, binding energies, equilibrium distributions, and the nature of the coupling interactions in H(2)SO(4)···HOO˙···(H(2)O)(n) (n = 0-2) clusters have been systematically investigated at the B3LYP/6-311++G(3df,3pd) level of theory in combination with the atoms in molecules (AIM) theory, natural bond orbital (NBO) method, energy decomposition analyses, and ab initio molecular dynamics. Two binary, five ternary, and twelve tetramer clusters possessing multiple intermolecular H-bonds have been located on their potential energy surfaces. Two different modes for water molecules have been observed to influence the coupling interactions between H(2)SO(4) and HOO˙ through the formations of intermolecular H-bonds with or without breaking the original intermolecular H-bonds in the binary H(2)SO(4)···HOO˙ cluster. It was found that the introduction of one or two water molecules can efficiently enhance the interactions between H(2)SO(4) and HOO˙, implying the positive role of water molecules in the uptake of the HOO˙ radical by sulfuric acid aerosols. Additionally, the coupling interaction modes of the most stable clusters under study have been verified by the ab initio molecular dynamics.

  2. Quantum mechanical force field for water with explicit electronic polarization.

    PubMed

    Han, Jaebeom; Mazack, Michael J M; Zhang, Peng; Truhlar, Donald G; Gao, Jiali

    2013-08-07

    A quantum mechanical force field (QMFF) for water is described. Unlike traditional approaches that use quantum mechanical results and experimental data to parameterize empirical potential energy functions, the present QMFF uses a quantum mechanical framework to represent intramolecular and intermolecular interactions in an entire condensed-phase system. In particular, the internal energy terms used in molecular mechanics are replaced by a quantum mechanical formalism that naturally includes electronic polarization due to intermolecular interactions and its effects on the force constants of the intramolecular force field. As a quantum mechanical force field, both intermolecular interactions and the Hamiltonian describing the individual molecular fragments can be parameterized to strive for accuracy and computational efficiency. In this work, we introduce a polarizable molecular orbital model Hamiltonian for water and for oxygen- and hydrogen-containing compounds, whereas the electrostatic potential responsible for intermolecular interactions in the liquid and in solution is modeled by a three-point charge representation that realistically reproduces the total molecular dipole moment and the local hybridization contributions. The present QMFF for water, which is called the XP3P (explicit polarization with three-point-charge potential) model, is suitable for modeling both gas-phase clusters and liquid water. The paper demonstrates the performance of the XP3P model for water and proton clusters and the properties of the pure liquid from about 900 × 10(6) self-consistent-field calculations on a periodic system consisting of 267 water molecules. The unusual dipole derivative behavior of water, which is incorrectly modeled in molecular mechanics, is naturally reproduced as a result of an electronic structural treatment of chemical bonding by XP3P. We anticipate that the XP3P model will be useful for studying proton transport in solution and solid phases as well as across biological ion channels through membranes.

  3. Bubble, Bubble, Toil and Trouble.

    ERIC Educational Resources Information Center

    Journal of Chemical Education, 2001

    2001-01-01

    Bubbles are a fun way to introduce the concepts of surface tension, intermolecular forces, and the use of surfactants. Presents two activities in which students add chemicals to liquid dishwashing detergent with water in order to create longer lasting bubbles. (ASK)

  4. Investigation of intermolecular interactions in finasteride drug crystals in view of X-ray and Hirshfeld surface analysis

    NASA Astrophysics Data System (ADS)

    Bojarska, Joanna; Maniukiewicz, Waldemar

    2015-11-01

    The N,N-dimethylformamide (DMF) solvate hemihydrate (1) of finasteride, has been structurally characterized by single-crystal X-ray diffraction at 100 K and compared with previously reported finasteride crystalline forms. In addition, in order to resolve ambiguity concerning H-bond interactions, the crystal structure of finasteride hemihydrate, (2), originally reported by Schultheiss et al. in 2009, has been redetermined with higher precision. The (1) and (2) pseudopolymorphs of finasteride crystallize as orthorhombic in chiral P212121 space group with two very similar host molecules in the asymmetric unit. The conformation of fused 6-membered rings are screw-boat, chair and chair for both molecules, while 5-membered rings assume chair in (1), and half-chair in (2). There is a fairly close resemblance of the molecular geometry for all analyzed compounds, arising due to the rigid host molecule. Inter- and intramolecular host-host, host-guest strong O-H⋯O, N-H⋯O hydrogen bonds and weak C-H⋯O interactions form 3D net conferring stability to the crystal packing. Finasterides can be classified as synthon pseudopolymorphs. Isostructural solvates crystallizing in the orthorhombic space group P212121, with Z‧ = 2, exhibit R22(8) C22(15) network, monoclinic solvate (Z‧ = 1) possess D11(2), while both orthorhombic and monoclinic polymorphs have C(4) motifs, respectively. The structural similarities and subtle differences have been interpreted in view of the 3D Hirshfeld surface analysis and associated 2D fingerprint plots, which enabled detailed qualitative and quantitative insight into the intermolecular interactions. The 97-100% of Hirshfeld surface areas are due to H···H, O···H/H⋯O, C···H/H⋯C and N⋯H/H⋯N contacts. Furthermore, the electrostatic potential has been mapped over the Hirshfeld surfaces to decode the electrostatic complementarities, which exist in the crystal packing.

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hormain, Laureline; Monnerville, Maurice, E-mail: maurice.monnerville@univ-lille1.fr; Toubin, Céline

    The chlorine/water interface is of crucial importance in the context of atmospheric chemistry. Modeling the structure and dynamics at this interface requires an accurate description of the interaction potential energy surfaces. We propose here an analytical intermolecular potential that reproduces the interaction between the Cl{sub 2} molecule and a water molecule. Our functional form is fitted to a set of high level ab initio data using the coupled-cluster single double (triple)/aug-cc-p-VTZ level of electronic structure theory for the Cl{sub 2} − H{sub 2}O complex. The potential fitted to reproduce the three minima structures of 1:1 complex is validated by themore » comparison of ab initio results of Cl{sub 2} interacting with an increasing number of water molecules. Finally, the model potential is used to study the physisorption of Cl{sub 2} on a perfectly ordered hexagonal ice slab. The calculated adsorption energy, in the range 0.27 eV, shows a good agreement with previous experimental results.« less

  6. Quaterrylene molecules on Ag(111): self-assembly behavior and voltage pulse induced trimer formation.

    PubMed

    He, Yangyong; Cai, Zeying; Shao, Jian; Xu, Li; She, Limin; Zheng, Yue; Zhong, Dingyong

    2018-05-03

    The self-assembly behavior of quaterrylene (QR) molecules on Ag(111) surfaces has been investigated by scanning tunneling microscopy (STM) and density functional theory (DFT) calculations. It is found that the QR molecules are highly mobile on the Ag(111) surface at 78 K. No ordered assembled structure is formed on the surface with a sub-monolayer coverage up to 0.8 monolayer due to the intermolecular repulsive interactions, whereas ordered molecular structures are observed at one monolayer coverage. According to our DFT calculations, charge transfer occurs between the substrate and the adsorbed QR molecule. As a result, out-of-plane dipoles appear at the interface, which are ascribed to the repulsive dipole-dipole interactions between the QR molecules. Furthermore, due to the planar geometry, the QR molecules exhibit relatively low diffusion barriers on Ag(111). By applying a voltage pulse between the tunneling gap, immobilization and aggregation of QR molecules take place, resulting in the formation of a triangle-shaped trimer. Our work demonstrates the ability of manipulating intermolecular repulsive and attractive interactions at the single molecular level.

  7. Structural characterization and Hirshfeld surface analysis of racemic baclofen

    NASA Astrophysics Data System (ADS)

    Maniukiewicz, Waldemar; Oracz, Monika; Sieroń, Lesław

    2016-11-01

    The crystal structure of baclofen, (R,S) [4-amino-3-(4-chlorophenyl)butanoic acid], (C10H12ClNO2, Mr = 213.66) has been determined by single crystal X-ray diffraction analysis. The title compound crystallizes in the orthorhombic space group Pbca (No. 61) with a = 9.2704(5), b = 7.0397(4), c = 30.4015(15) Å, V = 1984.0(2) Å3 and Z = 8. The molecules exist as zwitterions, adopting a gauche conformation with respect to the Cαsbnd Cβ bond, and held in a cross-linked chain arrangement by strong Nsbnd H⋯O hydrogen bonds and Csbnd Cl⋯π interactions. The electrostatic molecular potential as well as the intermolecular interactions of the title compound were analyzed by the Hirshfeld surfaces. The FT-IR spectrum is also reported. The DTA, TG and DTG results indicate that baclofen is stable up to 205 °C.

  8. Hydrogen bonding and interparticle forces in platelet alpha-Al2O3 dispersions: yield stress and zeta potential.

    PubMed

    Khoo, Kay-Sen; Teh, E-Jen; Leong, Yee-Kwong; Ong, Ban Choon

    2009-04-09

    Adsorbed phosphate on smooth platelet alpha-Al2O3 particles at saturation surface coverage gives rise to strong interparticle attractive forces in dispersion. The maximum yield stress at the point of zero charge was increased by 2-fold. This was attributed to a high density of intermolecular hydrogen bonding between the adsorbed phosphate layers of the interacting particles. Adsorbed citrate at saturation surface coverage, however, reduced the maximum yield stress by 50%. It adsorbed to form a very effective steric barrier as intramolecular hydrogen bonding between -OH and the free terminal carboxylic group prevented strong interactions with other adsorbed citrate molecules residing on the second interacting particle. This steric barrier kept the interacting platelet particles further apart, thereby weakening the van der Waals attraction. The platelet alpha-Al2O3 dispersions were flocculated at all pH level. These dispersions displayed a maximum yield stress at the point of zero zeta potential at the pH approximately 8.0. They also obeyed the yield stress-DLVO force model as characterized by a linear decrease in the yield stress with the square of the zeta potential.

  9. The interaction of an antiparasitic peptide active against African sleeping sickness with cell membrane models.

    PubMed

    Pascholati, Cauê P; Lopera, Esteban Parra; Pavinatto, Felippe J; Caseli, Luciano; Nobre, Thatyane M; Zaniquelli, Maria E D; Viitala, Tapani; D'Silva, Claudius; Oliveira, Osvaldo N

    2009-12-01

    Zwitterionic peptides with trypanocidal activity are promising lead compounds for the treatment of African Sleeping Sickness, and have motivated research into the design of compounds capable of disrupting the protozoan membrane. In this study, we use the Langmuir monolayer technique to investigate the surface properties of an antiparasitic peptide, namely S-(2,4-dinitrophenyl)glutathione di-2-propyl ester, and its interaction with a model membrane comprising a phospholipid monolayer. The drug formed stable Langmuir monolayers, whose main feature was a phase transition accompanied by a negative surface elasticity. This was attributed to aggregation upon compression due to intermolecular bond associations of the molecules, inferred from surface pressure and surface potential isotherms, Brewster angle microscopy (BAM) images, infrared spectroscopy and dynamic elasticity measurements. When co-spread with dipalmitoyl phosphatidyl choline (DPPC), the drug affected both the surface pressure and the monolayer morphology, even at high surface pressures and with low amounts of the drug. The results were interpreted by assuming a repulsive, cooperative interaction between the drug and DPPC molecules. Such repulsive interaction and the large changes in fluidity arising from drug aggregation may be related to the disruption of the membrane, which is key for the parasite killing property.

  10. Structural and spectroscopic characterization, reactivity study and charge transfer analysis of the newly synthetized 2-(6-hydroxy-1-benzofuran-3-yl) acetic acid

    NASA Astrophysics Data System (ADS)

    Murthy, P. Krishna; Krishnaswamy, G.; Armaković, Stevan; Armaković, Sanja J.; Suchetan, P. A.; Desai, Nivedita R.; Suneetha, V.; SreenivasaRao, R.; Bhargavi, G.; Aruna Kumar, D. B.

    2018-06-01

    The title compound 2-(6-hydroxy-1-benzofuran-3-yl) acetic acid (abbreviated as HBFAA) has been synthetized and characterized by FT-IR, FT-Raman and NMR spectroscopic techniques. Solid state crystal structure of HBFAA has been determined by single crystal X-ray diffraction technique. The crystal structure features O-H⋯O and C-H⋯O intermolecular interactions resulting in a two dimensional supramolecular architecture. The presence of various intermolecular interactions is well supported by the Hirshfeld surface analysis. The molecular properties of HBFAA were performed by Density functional theory (DFT) using B3LYP/6-311G++(d,p) method at ground state in gas phase, compile these results with experimental values and shows mutual agreement. The vibrational spectral analysis were carried out using FT-IR and FT-Raman spectroscopic techniques and assignment of each vibrational wavenumber made on the basis of potential energy distribution (PED). And also frontier orbital analysis (FMOs), global reactivity descriptors, non-linear optical properties (NLO) and natural bond orbital analysis (NBO) of HBFAA were computed with same method. Efforts were made in order to understand global and local reactivity properties of title compound by calculations of MEP, ALIE, BDE and Fukui function surfaces in gas phase, together with thermodynamic properties. Molecular dynamics simulation and radial distribution functions were also used in order to understand the influence of water to the stability of title compound. Charge transfer between molecules of HBFAA has been investigated thanks to the combination of MD simulations and DFT calculations.

  11. Gold(I)-Catalysed Hydroarylation of 1,3-Disubstituted Allenes with Efficient Axial-to-Point Chirality Transfer.

    PubMed

    Sutherland, Daniel R; Kinsman, Luke; Angiolini, Stuart M; Rosair, Georgina M; Lee, Ai-Lan

    2018-05-11

    Hydroarylation of enantioenriched 1,3-disubstituted allenes has the potential to proceed with axial-to-point chirality transfer to yield enantioenriched allylated (hetero)aryl compounds. However, the gold-catalysed intermolecular reaction was previously reported to occur with no chirality transfer owing to competing allene racemisation. Herein, we describe the development of the first intermolecular hydroarylations of allenes to proceed with efficient chirality transfer and summarise some of the key criteria for achieving high regio- and stereoselectivity. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. A catalytic tethering strategy: simple aldehydes catalyze intermolecular alkene hydroaminations.

    PubMed

    MacDonald, Melissa J; Schipper, Derek J; Ng, Peter J; Moran, Joseph; Beauchemin, André M

    2011-12-21

    Herein we describe a catalytic tethering strategy in which simple aldehyde precatalysts enable, through temporary intramolecularity, room-temperature intermolecular hydroamination reactivity and the synthesis of vicinal diamines. The catalyst allows the formation of a mixed aminal from an allylic amine and a hydroxylamine, resulting in a facile intramolecular hydroamination event. The promising enantioselectivities obtained with a chiral aldehyde also highlight the potential of this catalytic tethering approach in asymmetric catalysis and demonstrate that efficient enantioinduction relying only on temporary intramolecularity is possible. © 2011 American Chemical Society

  13. Field-Assisted Contact Line Motion in Thin Films.

    PubMed

    Ghosh, Udita Uday; DasGupta, Sunando

    2018-04-25

    The balance of intermolecular and surface forces plays a critical role in the transport phenomena near the contact line region of an extended meniscus in several technologically important processes. Externally applied fields can alter the equilibrium and stability of the meniscus with concomitant effects on its shape and spreading characteristics and may even lead to an oscillation. This feature article provides a detailed account of the present and past efforts in exploring the behavior of curved thin liquid films subjected to mild thermal perturbations, heat input, and electrical and magnetic fields for pure as well as colloidal suspensions, including the effects of particle charge and polarity. The shape-dependent intermolecular force field has been evaluated in situ by a nonobtrusive optical technique utilizing the interference phenomena and subsequent image processing. The critical role of disjoining pressure is identified along with the determination of the Hamaker constant. The spatial and temporal variations of the capillary forces are evaluated for the advancing and receding menisci. The Maxwell-stress-induced enhanced spreading during electrowetting, at relatively low voltages, and that due to the application of a magnetic field are discussed with respect to their distinctly different characteristics and application potentials. The use of the augmented Young-Laplace equation elicited additional insights into the fundamental physics for flow in ultrathin liquid films.

  14. Theoretical investigations on the structure and properties of p-n-alkoxy benzoic acid based liquid crystals

    NASA Astrophysics Data System (ADS)

    Subhapriya, P.; Dhanapal, V.; Sadasivam, K.; Vijayanand, P. S.

    2016-05-01

    The present study focused on the structural conformations, alkoxy chain lengths and mesogenic properties of two mole of alkoxy benzoic acid(nOBA) and one mole of suberic acid (SA) hydrogen bonded (nOBASA) complexes (n=8 to 10) by density functional theory (DFT) calculations and the Fourier Transform Infrared (FT-IR) spectrum. The intermolecular hydrogen bond formation was confirmed by the optimized geometric bond lengths and bond angles obtained by computation. Using the natural bond orbital (NBO) analysis, the stability of the molecule arising from hyper conjugative interactions and charge delocalization has been analyzed. Results obtained shows that the charge in electron density (ED) in σ*and π* antibonding orbital and second order delocalization energies E(2) authorizes the occurrence of intermolecular charge transfer. The molecular electrostatic potential (MEP) surface map is plotted over the optimized geometry of the molecule to obtain the chemical reactivity of the molecule. From the local charge distributions, the mesomorphic behavior and the nematic phase stabilities for each of the molecule have been predicted. Finally the calculated result is applied to simulated infrared spectra of 8OBASA mesogens which shows good agreement with the observed spectra. The comparison of the theoretical results obtained with the experimental ones shows the reliability of this DFT method.

  15. p-halo N4-phenyl substituted thiosemicarbazones: Crystal structure, supramolecular architecture, characterization and bio-assay of their Co(III) and Ni(II) complexes

    NASA Astrophysics Data System (ADS)

    Kotian, Avinash; Kumara, Karthik; Kamat, Vinayak; Naik, Krishna; Kokare, Dhoolesh G.; Nevrekar, Anupama; Lokanath, Neratur Krishnappagowda; Revankar, Vidyanand K.

    2018-03-01

    In the present work, three potential metal ion chelating ligands, p-halo N4-phenyl substituted thiosemicarbazones are synthesized and characterized. The molecular structure of all (E)-4-(4-halophenyl)-1-(3-hydroxyiminobutan-2-ylidene) thiosemicarbazones (halo = F/Cl/Br) are determined by single crystal X-ray diffraction method. All the molecules have crystallized in monoclinic crystal system with P21/n space group. The ligands show Csbnd H⋯S and Nsbnd H⋯S intermolecular interactions, which are responsible to form the supramolecular self-assemblies through R22(8), R22(12) and R22(14) ring motifs. Hirshfeld surface analysis is carried out to explore the intermolecular interactions. A series of Co(III) and Ni(II) mononuclear transition metal complexes derived from these ligands have been synthesized and characterized by various spectro-analytical methods. The metal to ligand stoichiometry has been found to be 1:2 in all the complexes. The synthesized compounds have been investigated for their in vitro antimicrobial potencies. The compounds are found to be more active than the standard used, in the case of E. coli and A. niger. Additionally, they are also screened for their in vitro antitubercular activity.

  16. Influence of pressure on the crystallization of systems characterized by different intermolecular attraction

    NASA Astrophysics Data System (ADS)

    Koperwas, K.; Affouard, F.; Gerges, J.; Valdes, L.-C.; Adrjanowicz, K.; Paluch, M.

    2017-12-01

    In this paper, we examine, in terms of the classical nucleation theory, how the strengthening of the attractive intermolecular interactions influences the crystallization process for systems like Lennard-Jones at different isobaric conditions. For this purpose, we modify the standard Lennard-Jones potential, and as a result, we obtain three different systems characterized by various strengths of attractive potentials occurring between molecules, which are in direct relationship to the physical quantities describing molecules, e.g., its polarizability or dipole moment. Based on performed analysis, we demonstrate that the molecular attraction primarily impacts the thermodynamics of the interface between liquid and crystal. This is reflected in the behavior of nucleation and overall crystallization rates during compression of the system.

  17. Intermolecular Interactions and Electrostatic Properties of the [beta]-Hydroquinone Apohost: Implications for Supramolecular Chemistry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Clausen, Henrik F.; Chen, Yu-Sheng; Jayatilaka, Dylan

    2012-02-07

    The crystal structure of the {beta}-polymorph of hydroquinone ({beta}-HQ), the apohost of a large family of clathrates, is reported with a specific focus on intermolecular interactions and the electrostatic nature of its cavity. Hirshfeld surface analysis reveals subtle close contacts between two interconnecting HQ networks, and the local packing and related close contacts were examined by breakdown of the fingerprint plot. An experimental multipole model containing anisotropic thermal parameters for hydrogen atoms has been successfully refined against 15(2) K single microcrystal synchrotron X-ray diffraction data. The experimental electron density model has been compared with a theoretical electron density calculated withmore » the molecule embedded in its own crystal field. Hirshfeld charges, interaction energies and the electrostatic potential calculated for both models are qualitatively in good agreement, but small differences in the electrostatic potential persist due to charge transfer from all hydrogen atoms to the oxygen atoms in the theoretical model. The electrostatic potential in the center of the cavity is positive, very shallow and highly symmetric, suggesting that the inclusion of polar molecules in the void will involve a balance between opposing effects. The electric field is by symmetry zero in the center of the cavity, increasing to a value of 0.0185 e/{angstrom}{sup 2} (0.27 V/{angstrom}) 1 {angstrom} along the 3-fold axis and 0.0105 e/{angstrom}{sup 2} (0.15 V/{angstrom}) 1 {angstrom} along the perpendicular direction. While these values are substantial in a macroscopic context, they are quite small for a molecular cavity and are not expected to strongly polarize a guest molecule.« less

  18. Comparison of Cluster, Slab, and Analytic Potential Models for the Dimethyl Methylphosphonate (DMMP)/TiO2 (110) Intermolecular Interaction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Li; Tunega, Daniel; Xu, Lai

    2013-08-29

    In a previous study (J. Phys. Chem. C 2011, 115, 12403) cluster models for the TiO2 rutile (110) surface and MP2 calculations were used to develop an analytic potential energy function for dimethyl methylphosphonate (DMMP) interacting with this surface. In the work presented here, this analytic potential and MP2 cluster models are compared with DFT "slab" calculations for DMMP interacting with the TiO2 (110) surface and with DFT cluster models for the TiO2 (110) surface. The DFT slab calculations were performed with the PW91 and PBE functionals. The analytic potential gives DMMP/ TiO2 (110) potential energy curves in excellent agreementmore » with those obtained from the slab calculations. The cluster models for the TiO2 (110) surface, used for the MP2 calculations, were extended to DFT calculations with the B3LYP, PW91, and PBE functional. These DFT calculations do not give DMMP/TiO2 (110) interaction energies which agree with those from the DFT slab calculations. Analyses of the wave functions for these cluster models show that they do not accurately represent the HOMO and LUMO for the surface, which should be 2p and 3d orbitals, respectively, and the models also do not give an accurate band gap. The MP2 cluster models do not accurately represent the LUMO and that they give accurate DMMP/TiO2 (110) interaction energies is apparently fortuitous, arising from their highly inaccurate band gaps. Accurate cluster models, consisting of 7, 10, and 15 Ti-atoms and which have the correct HOMO and LUMO properties, are proposed. The work presented here illustrates the care that must be taken in "constructing" cluster models which accurately model surfaces.« less

  19. Adsorption of 2 Chloroethyl Ethyl Sulfide on Silica: Binding Mechanism and Energy of a Bifunctional Hydrogen-Bond Acceptor at the Gas Surface Interface

    DTIC Science & Technology

    2014-11-19

    C. A. S.; Sumpter, K. B.; Wagner, G. W.; Rice, J. S. Degradation of the Blister Agent Sulfur Mustard, Bis(2-chloroethyl) Sulfide, on Concrete . J...SECURITY CLASSIFICATION OF: This work investigates the fundamental nature of sulfur mustard surface adsorption by characterizing interfacial hydrogen...nature of sulfur mustard surface adsorption by characterizing interfacial hydrogen bonding and other intermolecular forces for the surrogate molecule

  20. Intermolecular Casimir-Polder forces in water and near surfaces

    NASA Astrophysics Data System (ADS)

    Thiyam, Priyadarshini; Persson, Clas; Sernelius, Bo E.; Parsons, Drew F.; Malthe-Sørenssen, Anders; Boström, Mathias

    2014-09-01

    The Casimir-Polder force is an important long-range interaction involved in adsorption and desorption of molecules in fluids. We explore Casimir-Polder interactions between methane molecules in water, and between a molecule in water near SiO2 and hexane surfaces. Inclusion of the finite molecular size in the expression for the Casimir-Polder energy leads to estimates of the dispersion contribution to the binding energies between molecules and between one molecule and a planar surface.

  1. Competing Intramolecular vs. Intermolecular Hydrogen Bonds in Solution

    PubMed Central

    Nagy, Peter I.

    2014-01-01

    A hydrogen bond for a local-minimum-energy structure can be identified according to the definition of the International Union of Pure and Applied Chemistry (IUPAC recommendation 2011) or by finding a special bond critical point on the density map of the structure in the framework of the atoms-in-molecules theory. Nonetheless, a given structural conformation may be simply favored by electrostatic interactions. The present review surveys the in-solution competition of the conformations with intramolecular vs. intermolecular hydrogen bonds for different types of small organic molecules. In their most stable gas-phase structure, an intramolecular hydrogen bond is possible. In a protic solution, the intramolecular hydrogen bond may disrupt in favor of two solute-solvent intermolecular hydrogen bonds. The balance of the increased internal energy and the stabilizing effect of the solute-solvent interactions regulates the new conformer composition in the liquid phase. The review additionally considers the solvent effects on the stability of simple dimeric systems as revealed from molecular dynamics simulations or on the basis of the calculated potential of mean force curves. Finally, studies of the solvent effects on the type of the intermolecular hydrogen bond (neutral or ionic) in acid-base complexes have been surveyed. PMID:25353178

  2. Intermolecular vibrational modes and H-bond interactions in crystalline urea investigated by terahertz spectroscopy and theoretical calculation

    NASA Astrophysics Data System (ADS)

    Zhao, Yonghong; Li, Zhi; Liu, Jianjun; Hu, Cong; Zhang, Huo; Qin, Binyi; Wu, Yifang

    2018-01-01

    The characteristic absorption spectra of crystalline urea in 0.6-1.8 THz region have been measured by terahertz time-domain spectroscopy at room temperature experimentally. Five broad absorption peaks were observed at 0.69, 1.08, 1.27, 1.47 and 1.64 THz respectively. Moreover, density functional theory (DFT) calculation has been performed for the isolated urea molecule, and there is no infrared intensity in the region below 1.8 THz. This means that single molecule calculations are failure to predict the experimental spectra of urea crystals. To simulate these spectra, calculations on a cluster of seven urea molecules using M06-2X and B3LYP-D3 are performed, and we found that M06-2X perform better. The observed THz vibrational modes are assigned to bending and torsional modes related to the intermolecular H-bond interactions with the help of potential energy distribution (PED) method. Using the reduced-density-gradient (RDG) analysis, the positions and types of intermolecular H-bond interactions in urea crystals are visualized. Therefore, we can confirm that terahertz spectroscopy can be used as an effective means to detect intermolecular H-bond interactions in molecular crystals.

  3. Intermolecular vs molecule–substrate interactions: A combined STM and theoretical study of supramolecular phases on graphene/Ru(0001)

    PubMed Central

    Roos, Michael; Uhl, Benedikt; Künzel, Daniela; Hoster, Harry E; Groß, Axel

    2011-01-01

    Summary The competition between intermolecular interactions and long-range lateral variations in the substrate–adsorbate interaction was studied by scanning tunnelling microscopy (STM) and force field based calculations, by comparing the phase formation of (sub-) monolayers of the organic molecules (i) 2-phenyl-4,6-bis(6-(pyridin-3-yl)-4-(pyridin-3-yl)pyridin-2-yl)pyrimidine (3,3'-BTP) and (ii) 3,4,9,10-perylene tetracarboxylic-dianhydride (PTCDA) on graphene/Ru(0001). For PTCDA adsorption, a 2D adlayer phase was formed, which extended over large areas, while for 3,3'-BTP adsorption linear or ring like structures were formed, which exclusively populated the areas between the maxima of the moiré structure of the buckled graphene layer. The consequences for the competing intermolecular interactions and corrugation in the adsorption potential are discussed and compared with the theoretical results. PMID:22003444

  4. Theoretical investigations of two adamantane derivatives: A combined X-ray, DFT, QTAIM analysis and molecular docking

    NASA Astrophysics Data System (ADS)

    Al-Wahaibi, Lamya H.; Sujay, Subramaniam; Muthu, Gangadharan Ganesh; El-Emam, Ali A.; Venkataramanan, Natarajan S.; Al-Omary, Fatmah A. M.; Ghabbour, Hazem A.; Percino, Judith; Thamotharan, Subbiah

    2018-05-01

    A detailed structural analysis of two adamantane derivatives namely, ethyl 2-[(Z)-1-(adamantan-1-yl)-3-(phenyl)isothioureido]acetate I and ethyl 2-[(Z)-1-(adamantan-1-yl)-3-(4-fluorophenyl)isothioureido]acetate II is carried out to understand the effect of fluorine substitution. The introduction of fluorine atom alters the crystal packing and is completely different from its parent compound. The fluorine substitution drastically reduced the intermolecular H⋯H contacts and this reduction is compensated by intermolecular F⋯H and F⋯F contacts. The relative contributions of various intermolecular contacts present in these structures were quantified using Hirshfeld surface analysis. Energetically significant molecular pairs were identified from the crystal structures of these compounds using PIXEL method. The structures of I and II are optimized in gas and solvent phases using the B3LYP-D3/6-311++G(d,p) level of theory. The quantum theory of atoms-in-molecules (QTAIM) analysis was carried out to estimate the strengths of various intermolecular contacts present in these molecular dimers. The results suggest that the Hsbnd H bonding take part in the stabilization of crystal structures. The experimental and theoretical UV-Vis results show the variations in HOMO and LUMO energy levels. In silico docking analysis indicates that both compounds I and II may exhibit inhibitory activity against 11-β-hydroxysteroid dehydrogenase 1 (11-β-HSD1).

  5. Apparent dynamic contact angle of an advancing gas--liquid meniscus

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kalliadasis, S.; Chang, H.

    1994-01-01

    The steady motion of an advancing meniscus in a gas-filled capillary tube involves a delicate balance of capillary, viscous, and intermolecular forces. The limit of small capillary numbers Ca (dimensionless speeds) is analyzed here with a matched asymptotic analysis that links the outer capillary region to the precursor film in front of the meniscus through a lubricating film. The meniscus shape in the outer region is constructed and the apparent dynamic contact angle [Theta] that the meniscus forms with the solid surface is derived as a function of the capillary number, the capillary radius, and the Hamaker's constant for intermolecularmore » forces, under conditions of weak gas--solid interaction, which lead to fast spreading of the precursor film and weak intermolecular forces relative to viscous forces within the lubricating film. The dependence on intermolecular forces is very weak and the contact angle expression has a tight upper bound tan [Theta]=7.48 Ca[sup 1/3] for thick films, which is independent of the Hamaker constant. This upper bound is in very good agreement with existing experimental data for wetting fluids in any capillary and for partially wetting fluids in a prewetted capillary. Significant correction to the Ca[sup 1/3] dependence occurs only at very low Ca, where the intermolecular forces become more important and tan [Theta] diverges slightly from the above asymptotic behavior toward lower values.« less

  6. A general intermolecular force field based on tight-binding quantum chemical calculations

    NASA Astrophysics Data System (ADS)

    Grimme, Stefan; Bannwarth, Christoph; Caldeweyher, Eike; Pisarek, Jana; Hansen, Andreas

    2017-10-01

    A black-box type procedure is presented for the generation of a molecule-specific, intermolecular potential energy function. The method uses quantum chemical (QC) information from our recently published extended tight-binding semi-empirical scheme (GFN-xTB) and can treat non-covalently bound complexes and aggregates with almost arbitrary chemical structure. The necessary QC information consists of the equilibrium structure, Mulliken atomic charges, charge centers of localized molecular orbitals, and also of frontier orbitals and orbital energies. The molecular pair potential includes model density dependent Pauli repulsion, penetration, as well as point charge electrostatics, the newly developed D4 dispersion energy model, Drude oscillators for polarization, and a charge-transfer term. Only one element-specific and about 20 global empirical parameters are needed to cover systems with nuclear charges up to radon (Z = 86). The method is tested for standard small molecule interaction energy benchmark sets where it provides accurate intermolecular energies and equilibrium distances. Examples for structures with a few hundred atoms including charged systems demonstrate the versatility of the approach. The method is implemented in a stand-alone computer code which enables rigid-body, global minimum energy searches for molecular aggregation or alignment.

  7. Visualizing the orientational dependence of an intermolecular potential

    NASA Astrophysics Data System (ADS)

    Sweetman, Adam; Rashid, Mohammad A.; Jarvis, Samuel P.; Dunn, Janette L.; Rahe, Philipp; Moriarty, Philip

    2016-02-01

    Scanning probe microscopy can now be used to map the properties of single molecules with intramolecular precision by functionalization of the apex of the scanning probe tip with a single atom or molecule. Here we report on the mapping of the three-dimensional potential between fullerene (C60) molecules in different relative orientations, with sub-Angstrom resolution, using dynamic force microscopy (DFM). We introduce a visualization method which is capable of directly imaging the variation in equilibrium binding energy of different molecular orientations. We model the interaction using both a simple approach based around analytical Lennard-Jones potentials, and with dispersion-force-corrected density functional theory (DFT), and show that the positional variation in the binding energy between the molecules is dominated by the onset of repulsive interactions. Our modelling suggests that variations in the dispersion interaction are masked by repulsive interactions even at displacements significantly larger than the equilibrium intermolecular separation.

  8. Optimization of intermolecular potential parameters for the CO2/H2O mixture.

    PubMed

    Orozco, Gustavo A; Economou, Ioannis G; Panagiotopoulos, Athanassios Z

    2014-10-02

    Monte Carlo simulations in the Gibbs ensemble were used to obtain optimized intermolecular potential parameters to describe the phase behavior of the mixture CO2/H2O, over a range of temperatures and pressures relevant for carbon capture and sequestration processes. Commonly used fixed-point-charge force fields that include Lennard-Jones 12-6 (LJ) or exponential-6 (Exp-6) terms were used to describe CO2 and H2O intermolecular interactions. For force fields based on the LJ functional form, changes of the unlike interactions produced higher variations in the H2O-rich phase than in the CO2-rich phase. A major finding of the present study is that for these potentials, no combination of unlike interaction parameters is able to adequately represent properties of both phases. Changes to the partial charges of H2O were found to produce significant variations in both phases and are able to fit experimental data in both phases, at the cost of inaccuracies for the pure H2O properties. By contrast, for the Exp-6 case, optimization of a single parameter, the oxygen-oxygen unlike-pair interaction, was found sufficient to give accurate predictions of the solubilities in both phases while preserving accuracy in the pure component properties. These models are thus recommended for future molecular simulation studies of CO2/H2O mixtures.

  9. A detailed study of intermolecular interactions, electronic and vibrational properties of the metal complex bis(uracilato)diammine copper(ii) dihydrate

    NASA Astrophysics Data System (ADS)

    Gramajo Feijoo, M.; Fernández-Liencres, M. P.; Gil, D. M.; Gómez, M. I.; Ben Altabef, A.; Navarro, A.; Tuttolomondo, M. E.

    2018-03-01

    Density Functional Theory (DFT) calculations were performed with the aim of investigating the vibrational, electronic and structural properties of [Cu(uracilato-N1)2 (NH3)2]ṡ2H2O complex. The IR and Raman spectra were recorded leading to a complete analysis of the normal modes of vibration of the metal complex. A careful study of the intermolecular interactions observed in solid state was performed by using the Hirshfeld surface analysis and their associated 2D fingerprint plots. The results indicated that the crystal packing is stabilized by Nsbnd H⋯O hydrogen bonds and π-stacking interactions. In addition, Csbnd H···π interactions were also observed. Time-dependent density functional theory (TD-DFT) calculations revealed that all the low-lying electronic states correspond to a mixture of intraligand charge transfer (ILCT) and ligand-to-metal charge transfer (LMCT) transitions. Finally, Natural Bond Orbital (NBO) and Atoms in Molecules (AIM) analysis were performed to shed light on the intermolecular interactions in the coordination sphere.

  10. Thermodynamic balance of perylene self-assembly on Ag(110)

    NASA Astrophysics Data System (ADS)

    Bobrov, Kirill; Kalashnyk, Nataliya; Guillemot, Laurent

    2016-10-01

    We present a room temperature STM study of perylene adsorption on Ag(110) at the monolayer coverage regime. We found that structure and symmetry of the perylene monolayer are settled by thermodynamic balance of the three factors: (i) the ability of perylene molecules to recognize specific adsorption sites on the (110) lattice, (ii) the intermolecular interaction, and (iii) the accommodation of thermal motion of the molecules. The moderate strength of the site recognition and the intermolecular interaction, of the same order of magnitude as kT ˜ 25 meV, represents a key feature of the thermodynamic balance. It bestows to this system the unique quality to form the quasi-liquid monolayer of epitaxial as well as self-assembling character. The perylene monolayer accommodates the short-range motion of the molecules instead of quenching it. It precludes the formation of possible solid nuclei and maintains common registry of the included molecules. The surface registry of the quasi-liquid phase is provided by locking of a structure-related fraction of the perylene molecules into specific adsorption sites of the (110) lattice favorable in terms of intermolecular interaction.

  11. The validity of the potential model in predicting the structural, dynamical, thermodynamic properties of the unary and binary mixture of water-alcohol: Methanol-water case

    NASA Astrophysics Data System (ADS)

    Obeidat, Abdalla; Abu-Ghazleh, Hind

    2018-06-01

    Two intermolecular potential models of methanol (TraPPE-UA and OPLS-AA) have been used in order to examine their validity in reproducing the selected structural, dynamical, and thermodynamic properties in the unary and binary systems. These two models are combined with two water models (SPC/E and TIP4P). The temperature dependence of density, surface tension, diffusion and structural properties for the unary system has been computed over specific range of temperatures (200-300K). The very good performance of the TraPPE-UA potential model in predicting surface tension, diffusion, structure, and density of the unary system led us to examine its accuracy and performance in its aqueous solution. In the binary system the same properties were examined, using different mole fractions of methanol. The TraPPE-UA model combined with TIP4P-water shows a very good agreement with the experimental results for density and surface tension properties; whereas the OPLS-AA combined with SPCE-water shows a very agreement with experimental results regarding the diffusion coefficients. Two different approaches have been used in calculating the diffusion coefficient in the mixture, namely the Einstein equation (EE) and Green-Kubo (GK) method. Our results show the advantageous of applying GK over EE in reproducing the experimental results and in saving computer time.

  12. Ab Initio Calculations of Anharmonic Vibrational Spectroscopy for Hydrogen Fluoride (HF)n (n=3,4) and Mixed Hydrogen Fluoride/Water (HF)n(H20)n (n=1,2,4) Clusters

    NASA Technical Reports Server (NTRS)

    Chaban, Galina M.; Gerber, R. Benny; Kwak, Dochan (Technical Monitor)

    2001-01-01

    Anharmonic vibrational frequencies and intensities are computed for hydrogen fluoride clusters (HF)n with n=3,4 and mixed clusters of hydrogen fluoride with water (HF)n(H2O)n where n=1,2. For the (HF)4(H2O)4 complex, the vibrational spectra are calculated at the harmonic level, and anharmonic effects are estimated. Potential energy surfaces for these systems are obtained at the MP2/TZP level of electronic structure theory. Vibrational states are calculated from the potential surface points using the correlation-corrected vibrational self-consistent field (CC-VSCF) method. The method accounts for the anharmonicities and couplings between all vibrational modes and provides fairly accurate anharmonic vibrational spectra that can be directly compared with experimental results without a need for empirical scaling. For (HF)n, good agreement is found with experimental data. This agreement shows that the MP2 potential surfaces for these systems are reasonably reliable. The accuracy is best for the stiff intramolecular modes, which indicates the validity of MP2 in describing coupling between intramolecular and intermolecular degrees of freedom. For (HF)n(H2O)n experimental results are unavailable. The computed intramolecular frequencies show a strong dependence on cluster size. Intensity features are predicted for future experiments.

  13. Ab initio calculations of anharmonic vibrational spectroscopy for hydrogen fluoride (HF)n (n = 3, 4) and mixed hydrogen fluoride/water (HF)n(H2O)n (n = 1, 2, 4) clusters

    NASA Technical Reports Server (NTRS)

    Chaban, Galina M.; Gerber, R. Benny

    2002-01-01

    Anharmonic vibrational frequencies and intensities are computed for hydrogen fluoride clusters (HF)n, with n = 3, 4 and mixed clusters of hydrogen fluoride with water (HF)n(H2O)n where n = 1, 2. For the (HF)4(H2O)4 complex, the vibrational spectra are calculated at the harmonic level, and anharmonic effects are estimated. Potential energy surfaces for these systems are obtained at the MP2/TZP level of electronic structure theory. Vibrational states are calculated from the potential surface points using the correlation-corrected vibrational self-consistent field method. The method accounts for the anharmonicities and couplings between all vibrational modes and provides fairly accurate anharmonic vibrational spectra that can be directly compared with experimental results without a need for empirical scaling. For (HF)n, good agreement is found with experimental data. This agreement shows that the Moller-Plesset (MP2) potential surfaces for these systems are reasonably reliable. The accuracy is best for the stiff intramolecular modes, which indicates the validity of MP2 in describing coupling between intramolecular and intermolecular degrees of freedom. For (HF)n(H2O)n experimental results are unavailable. The computed intramolecular frequencies show a strong dependence on cluster size. Intensity features are predicted for future experiments.

  14. Molecular and supramolecular control of the work function of an inorganic electrode with self-assembled monolayer of umbrella-shaped fullerene derivatives.

    PubMed

    Lacher, Sebastian; Matsuo, Yutaka; Nakamura, Eiichi

    2011-10-26

    The surface properties of inorganic substrates can be altered by coating with organic molecules, which may result in the improvement of the properties suitable for electronic or biological applications. This article reports a systematic experimental study on the influence of the molecular and supramolecular properties of umbrella-shaped penta(organo)[60]fullerene derivatives, and on the work function and the water contact angle of indium-tin oxide (ITO) and gold surfaces. We could relate these macroscopic characteristics to single-molecular level properties, such as ionization potential and molecular dipole. The results led us to conclude that the formation of a SAM of a polar compound generates an electronic field through intermolecular interaction of the molecular charges, and this field makes the overall dipole of the SAM much smaller than the one expected from the simple sum of the dipoles of all molecules in the SAM. This effect, which was called depolarization and previously discussed theoretically, is now quantitatively probed by experiments. The important physical properties in surface science such as work function, ionization potential, and water contact angles have been mutually correlated at the level of molecular structures and molecular orientations on the substrate surface. We also found that the SAMs on ITO and gold operate under the same principle except that the "push-back" effect operates specifically for gold. The study also illustrates the ability of the photoelectron yield spectroscopy technique to rapidly measure the work function of a SAM-covered substrate and the ionization potential value of a molecule on the surface.

  15. Hydrogen-bonding behavior of various conformations of the HNO3…(CH3OH)2 ternary system.

    PubMed

    Özsoy, Hasan; Uras-Aytemiz, Nevin; Balcı, F Mine

    2017-12-21

    Nine minima were found on the intermolecular potential energy surface for the ternary system HNO 3 (CH 3 OH) 2 at the MP2/aug-cc-pVDZ level of theory. The cooperative effect, which is a measure of the hydrogen-bonding strength, was probed in these nine conformations of HNO 3 …(CH 3 OH) 2 . The results are discussed here in terms of structures, energetics, infrared vibrational frequencies, and topological parameters. The cooperative effect was observed to be an important contributor to the total interaction energies of the cyclic conformers of HNO 3 …(CH 3 OH) 2 , meaning that it cannot be neglected in simulations in which the pair-additive potential is applied. Graphical abstract The H-bonding behavior of various conformations of the HNO 3 (CH 3 OH) 2 trimer was investigated.

  16. Force field refinement from NMR scalar couplings

    NASA Astrophysics Data System (ADS)

    Huang, Jing; Meuwly, Markus

    2012-03-01

    NMR observables contain valuable information about the protein dynamics sampling a high-dimensional potential energy surface. Depending on the observable, the dynamics is sensitive to different time-windows. Scalar coupling constants hJ reflect the pico- to nanosecond motions associated with the intermolecular hydrogen bond network. Including an explicit H-bond in the molecular mechanics with proton transfer (MMPT) potential allows us to reproduce experimentally determined hJ couplings to within 0.02 Hz at best for ubiquitin and protein G. This is based on taking account of the chemically changing environment by grouping the H-bonds into up to seven classes. However, grouping them into two classes already reduces the RMSD between computed and observed hJ couplings by almost 50%. Thus, using ensemble-averaged data with two classes of H-bonds leads to substantially improved scalar couplings from simulations with accurate force fields.

  17. Ab Initio and Analytic Intermolecular Potentials for Ar-CF₄

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vayner, Grigoriy; Alexeev, Yuri; Wang, Jiangping

    2006-03-09

    Ab initio calculations at the CCSD(T) level of theory are performed to characterize the Ar + CF ₄ intermolecular potential. Extensive calculations, with and without a correction for basis set superposition error (BSSE), are performed with the cc-pVTZ basis set. Additional calculations are performed with other correlation consistent (cc) basis sets to extrapolate the Ar---CF₄potential energy minimum to the complete basis set (CBS) limit. Both the size of the basis set and BSSE have substantial effects on the Ar + CF₄ potential. Calculations with the cc-pVTZ basis set and without a BSSE correction, appear to give a good representation ofmore » the potential at the CBS limit and with a BSSE correction. In addition, MP2 theory is found to give potential energies in very good agreement with those determined by the much higher level CCSD(T) theory. Two analytic potential energy functions were determined for Ar + CF₄by fitting the cc-pVTZ calculations both with and without a BSSE correction. These analytic functions were written as a sum of two body potentials and excellent fits to the ab initio potentials were obtained by representing each two body interaction as a Buckingham potential.« less

  18. Thermal selectivity of intermolecular versus intramolecular reactions on surfaces

    PubMed Central

    Cirera, Borja; Giménez-Agulló, Nelson; Björk, Jonas; Martínez-Peña, Francisco; Martin-Jimenez, Alberto; Rodriguez-Fernandez, Jonathan; Pizarro, Ana M.; Otero, Roberto; Gallego, José M.; Ballester, Pablo; Galan-Mascaros, José R.; Ecija, David

    2016-01-01

    On-surface synthesis is a promising strategy for engineering heteroatomic covalent nanoarchitectures with prospects in electronics, optoelectronics and photovoltaics. Here we report the thermal tunability of reaction pathways of a molecular precursor in order to select intramolecular versus intermolecular reactions, yielding monomeric or polymeric phthalocyanine derivatives, respectively. Deposition of tetra-aza-porphyrin species bearing ethyl termini on Au(111) held at room temperature results in a close-packed assembly. Upon annealing from room temperature to 275 °C, the molecular precursors undergo a series of covalent reactions via their ethyl termini, giving rise to phthalocyanine tapes. However, deposition of the tetra-aza-porphyrin derivatives on Au(111) held at 300 °C results in the formation and self-assembly of monomeric phthalocyanines. A systematic scanning tunnelling microscopy study of reaction intermediates, combined with density functional calculations, suggests a [2+2] cycloaddition as responsible for the initial linkage between molecular precursors, whereas the monomeric reaction is rationalized as an electrocyclic ring closure. PMID:26964764

  19. Lithium ethylene dicarbonate identified as the primary product of chemical and electrochemical reduction of EC in 1.2 M LiPF6/EC:EMC electrolyte.

    PubMed

    Zhuang, Guorong V; Xu, Kang; Yang, Hui; Jow, T Richard; Ross, Philip N

    2005-09-22

    Lithium ethylene dicarbonate ((CH2OCO2Li)2) was chemically synthesized and its Fourier transform infrared (FTIR) spectrum was obtained and compared with that of surface films formed on Ni after cyclic voltammetry (CV) in 1.2 M lithium hexafluorophosphate (LiPF6)/ethylene carbonate (EC):ethyl methyl carbonate (EMC) (3:7, w/w) electrolyte and on metallic lithium cleaved in-situ in the same electrolyte. By comparison of IR experimental spectra with that of the synthesized compound, we established that the title compound is the predominant surface species in both instances. Detailed analysis of the IR spectrum utilizing quantum chemical (Hartree-Fock) calculations indicates that intermolecular association through O...Li...O interactions is very important in this compound. It is likely that the title compound in the passivation layer has a highly associated structure, but the exact intermolecular conformation could not be established on the basis of analysis of the IR spectrum.

  20. Quasi-2D Liquid State at Metal-Organic Interface and Adsorption State Manipulation

    NASA Astrophysics Data System (ADS)

    Mehdizadeh, Masih

    The metal/organic interface between noble metal close-packed (111) surfaces and organic semiconducting molecules is studied using Scanning tunneling microscopy and Photoelectron Spectroscopy, supplemented by first principles density functional theory calculations and Markov Chain Monte Carlo simulations. Copper Phthalocyanine molecules were shown to have dual adsorption states: a liquid state where intermolecular interactions were shown to be repulsive in nature and largely due to entropic effects, and a disordered immobilized state triggered by annealing or applying a tip-sample bias larger than a certain temperature or voltage respectively where intermolecular forces were demonstrated to be attractive. A methodology for altering molecular orientation on the aforementioned surfaces is also proposed through introduction of a Fullerene C60 buffer layer. Density functional theory calculations demonstrate orientation-switching of Copper Phthalocyanine molecules based on the amount of charges transferred to/from the substrate to the C60-CuPc layers; suggesting existence of critical substrate work functions that cause reorientation.

  1. Vibrational coherence in polar solutions of Zn(II) tetrakis(N-methylpyridyl)porphyrin with Soret-band excitation: rapidly damped intermolecular modes with clustered solvent molecules and slowly damped intramolecular modes from the porphyrin macrocycle.

    PubMed

    Dillman, Kevin L; Shelly, Katherine R; Beck, Warren F

    2009-04-30

    Ground-state coherent wavepacket motions arising from intermolecular modes with clustered, first-shell solvent molecules were observed using the femtosecond dynamic absorption technique in polar solutions of Zn(II) meso-tetrakis(N-methylpyridyl)porphyrin (ZnTMPyP) with excitation in the Soret absorption band. As was observed previously in bacteriochlorophyll a solution, the pump-probe transients in ZnTMPyP solutions are weakly modulated by slowly damped (effective damping time gamma > 1 ps) features that are assigned to intramolecular modes, the skeletal normal modes of vibration of the porphyrin. The 40 cm(-1) and 215 cm(-1) modes from the metal-doming and metal-solvent-ligand modes, respectively, are members of this set of modulation components. A slowly damped 2-4 cm(-1) component is assigned to the internal rotation of the N-methylpyridyl rings with respect to the porphyrin macrocycle; this mode obtains strong resonance Raman intensity enhancement from an extensive delocalization of pi-electron density from the porphyrin in the ground state onto the rings in the pi* excited states. The dominant features observed in the pump-probe transients are a pair of rapidly damped (gamma < 250 fs) modulation components arising from intermolecular modes with solvent molecules. This structural assignment is supported by an isotope-dependent shift of the average mode frequencies in methanol and perdeuterated methanol. The solvent dependence of the mean intermolecular mode frequency is consistent with a van der Waals intermolecular potential that has significant contributions only from the London dispersion and induction interactions; ion-dipole or ion-induced-dipole terms do not make large contributions because the pi-electron density is not extensively delocalized onto the N-methylpyridyl rings. The modulation depth associated with the intermolecular modes exhibits a marked dependence on the electronic structure of the solvent that is probably related to the degree of covalency; the strongest modulations are observed in acetonitrile and dimethylsulfoxide. The results strongly support a structural assignment of the low-frequency modes that are coupled to the primary and secondary electron-transfer reactions in photosynthetic reaction centers to intermolecular modes between the redox-active chromophores and first-solvation shell groups from the surrounding protein, and an important additional function of the intermolecular modes in the stabilization of charged intermediates is suggested.

  2. Intermolecular potentials and the accurate prediction of the thermodynamic properties of water

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shvab, I.; Sadus, Richard J., E-mail: rsadus@swin.edu.au

    2013-11-21

    The ability of intermolecular potentials to correctly predict the thermodynamic properties of liquid water at a density of 0.998 g/cm{sup 3} for a wide range of temperatures (298–650 K) and pressures (0.1–700 MPa) is investigated. Molecular dynamics simulations are reported for the pressure, thermal pressure coefficient, thermal expansion coefficient, isothermal and adiabatic compressibilities, isobaric and isochoric heat capacities, and Joule-Thomson coefficient of liquid water using the non-polarizable SPC/E and TIP4P/2005 potentials. The results are compared with both experiment data and results obtained from the ab initio-based Matsuoka-Clementi-Yoshimine non-additive (MCYna) [J. Li, Z. Zhou, and R. J. Sadus, J. Chem. Phys.more » 127, 154509 (2007)] potential, which includes polarization contributions. The data clearly indicate that both the SPC/E and TIP4P/2005 potentials are only in qualitative agreement with experiment, whereas the polarizable MCYna potential predicts some properties within experimental uncertainty. This highlights the importance of polarizability for the accurate prediction of the thermodynamic properties of water, particularly at temperatures beyond 298 K.« less

  3. Effective intermolecular potential and critical point for C60 molecule

    NASA Astrophysics Data System (ADS)

    Ramos, J. Eloy

    2017-07-01

    The approximate nonconformal (ANC) theory is applied to the C60 molecule. A new binary potential function is developed for C60, which has three parameters only and is obtained by averaging the site-site carbon interactions on the surface of two C60 molecules. It is shown that the C60 molecule follows, to a good approximation, the corresponding states principle with n-C8H18, n-C4F10 and n-C5F12. The critical point of C60 is estimated in two ways: first by applying the corresponding states principle under the framework of the ANC theory, and then by using previous computer simulations. The critical parameters obtained by applying the corresponding states principle, although very different from those reported in the literature, are consistent with the previous results of the ANC theory. It is shown that the Girifalco potential does not correspond to an average of the site-site carbon-carbon interaction.

  4. Broken symmetry phase transition in solid p-H 2, o-D 2 and HD: crystal field effects

    NASA Astrophysics Data System (ADS)

    Freiman, Yu. A.; Hemley, R. J.; Jezowski, A.; Tretyak, S. M.

    1999-04-01

    We report the effect of the crystal field (CF) on the broken symmetry phase transition (BSP) in solid parahydrogen, orthodeuterium, and hydrogen deuteride. The CF was calculated taking into account a distortion from the ideal HCP structure. We find that, in addition to the molecular field generated by the coupling terms in the intermolecular potential, the Hamiltonian of the system contains a crystal-field term, originating from single-molecular terms in the intermolecular potential. Ignoring the CF is the main cause of the systematic underestimation of the transition pressure, characteristic of published theories of the BSP transition. The distortion of the lattice that gives rise to the negative CF in response to the applied pressure is in accord with the general Le Chatelier-Braun principle.

  5. Quantum calculations of the IR spectrum of liquid water using ab initio and model potential and dipole moment surfaces and comparison with experiment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Hanchao; Wang, Yimin; Bowman, Joel M.

    2015-05-21

    The calculation and characterization of the IR spectrum of liquid water have remained a challenge for theory. In this paper, we address this challenge using a combination of ab initio approaches, namely, a quantum treatment of IR spectrum using the ab initio WHBB water potential energy surface and a refined ab initio dipole moment surface. The quantum treatment is based on the embedded local monomer method, in which the three intramolecular modes of each embedded H{sub 2}O monomer are fully coupled and also coupled singly to each of six intermolecular modes. The new dipole moment surface consists of a previousmore » spectroscopically accurate 1-body dipole moment surface and a newly fitted ab initio intrinsic 2-body dipole moment. A detailed analysis of the new dipole moment surface in terms of the coordinate dependence of the effective atomic charges is done along with tests of it for the water dimer and prism hexamer double-harmonic spectra against direct ab initio calculations. The liquid configurations are taken from previous molecular dynamics calculations of Skinner and co-workers, using the TIP4P plus E3B rigid monomer water potential. The IR spectrum of water at 300 K in the range of 0–4000 cm{sup −1} is calculated and compared with experiment, using the ab initio WHBB potential and new ab initio dipole moment, the q-TIP4P/F potential, which has a fixed-charged description of the dipole moment, and the TTM3-F potential and dipole moment surfaces. The newly calculated ab initio spectrum is in very good agreement with experiment throughout the above spectral range, both in band positions and intensities. This contrasts to results with the other potentials and dipole moments, especially the fixed-charge q-TIP4P/F model, which gives unrealistic intensities. The calculated ab initio spectrum is analyzed by examining the contribution of various transitions to each band.« less

  6. Dynamics of premelted liquid films

    NASA Astrophysics Data System (ADS)

    Worster, Grae

    2005-11-01

    On small scales, surface tension forces are enormously powerful. When such forces act on every grain of a fine soil, they can move mountains, quite literally, in a process called frost heave. In fact, it is not surface tension per se but the intermolecular forces that underlie surface tension that also cause frost heave in partially solidified soils. In detail, these forces cause the premelting of solids. For example, at temperatures below 0^oC, water is solid (ice) in bulk but remains liquid in thin films adjacent to surfaces in contact with many other materials, such as silica. The intermolecular forces, such as the van der Waals force, acting between the materials on either side of an interface can cause interfacial premelting and simultaneously produce a strong normal stress across the premelted film. Whether these stresses cause large-scale motions relies significantly on the fluid mechanics of the microscopic films. I shall introduce the fundamental thermodynamic principles of premelting and illustrate its fluid mechanical consequences with simple theoretical models and experimental results. Applications of these ideas include the rejection of particulate matter during solidification, with consequences for the fabrication of composite materials, the freezing of colloidal suspensions, with consequences for the cryopreservation of biological systems, and the evolution of grain boundaries, with consequences for the redistribution of climate proxies sequestered in the Earth's ice sheets.

  7. Effect of NaCl addition during diafiltration on the solubility, hydrophobicity, and disulfide bonds of 80% milk protein concentrate powder.

    PubMed

    Mao, X Y; Tong, P S; Gualco, S; Vink, S

    2012-07-01

    We investigated the surface hydrophobicity index based on different fluorescence probes [1-anilinonaphthalene-8-sulfonic acid (ANS) and 6-propionyl-2-(N,N-dimethylamino)-naphthalene (PRODAN)], free sulfhydryl and disulfide bond contents, and particle size of 80% milk protein concentrate (MPC80) powders prepared by adding various amounts of NaCl (0, 50, 100, and 150 mM) during the diafiltration process. The solubility of MPC80 powder was not strictly related to surface hydrophobicity. The MPC80 powder obtained by addition of 150 mM NaCl during diafiltration had the highest solubility but also the highest ANS-based surface hydrophobicity, the lowest PRODAN-based surface hydrophobicity, and the least aggregate formation. Intermolecular disulfide bonds caused by sulfhydryl-disulfide interchange reactions and hydrophobic interactions may be responsible for the lower solubility of the control MPC80 powder. The enhanced solubility of MPC80 powder with addition of NaCl during diafiltration may result from the modified surface hydrophobicity, the reduced intermolecular disulfide bonds, and the associated decrease in mean particle size. Addition of NaCl during the diafiltration process can modify the strength of hydrophobic interactions and sulfhydryl-disulfide interchange reactions and thereby affect protein aggregation and the solubility of MPC powders. Copyright © 2012 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  8. A scale-bridging modeling approach for anisotropic organic molecules at patterned semiconductor surfaces

    NASA Astrophysics Data System (ADS)

    Kleppmann, Nicola; Klapp, Sabine H. L.

    2015-02-01

    Hybrid systems consisting of organic molecules at inorganic semiconductor surfaces are gaining increasing importance as thin film devices for optoelectronics. The efficiency of such devices strongly depends on the collective behavior of the adsorbed molecules. In the present paper, we propose a novel, coarse-grained model addressing the condensed phases of a representative hybrid system, that is, para-sexiphenyl (6P) at zinc-oxide (ZnO). Within our model, intermolecular interactions are represented via a Gay-Berne potential (describing steric and van-der-Waals interactions) combined with the electrostatic potential between two linear quadrupoles. Similarly, the molecule-substrate interactions include a coupling between a linear molecular quadrupole to the electric field generated by the line charges characterizing ZnO(10-10). To validate our approach, we perform equilibrium Monte Carlo simulations, where the lateral positions are fixed to a 2D lattice, while the rotational degrees of freedom are continuous. We use these simulations to investigate orientational ordering in the condensed state. We reproduce various experimentally observed features such as the alignment of individual molecules with the line charges on the surface, the formation of a standing uniaxial phase with a herringbone structure, as well as the formation of a lying nematic phase.

  9. DEVELOPMENT OF A MODEL THAT CONTAINS BOTH MULTIPOLE MOMENTS AND GAUSSIANS FOR THE CALCULATION OF MOLECULAR ELECTROSTATIC POTENTIALS

    EPA Science Inventory

    The electrostatic interaction is a critical component of intermolecular interactions in biological processes. Rapid methods for the computation and characterization of the molecular electrostatic potential (MEP) that segment the molecular charge distribution and replace this cont...

  10. Electronic, structural and chemical effects of charge-transfer at organic/inorganic interfaces

    NASA Astrophysics Data System (ADS)

    Otero, R.; Vázquez de Parga, A. L.; Gallego, J. M.

    2017-07-01

    During the last decade, interest on the growth and self-assembly of organic molecular species on solid surfaces spread over the scientific community, largely motivated by the promise of cheap, flexible and tunable organic electronic and optoelectronic devices. These efforts lead to important advances in our understanding of the nature and strength of the non-bonding intermolecular interactions that control the assembly of the organic building blocks on solid surfaces, which have been recently reviewed in a number of excellent papers. To a large extent, such studies were possible because of a smart choice of model substrate-adsorbate systems where the molecule-substrate interactions were purposefully kept low, so that most of the observed supramolecular structures could be understood simply by considering intermolecular interactions, keeping the role of the surface always relatively small (although not completely negligible). On the other hand, the systems which are more relevant for the development of organic electronic devices include molecular species which are electron donors, acceptors or blends of donors and acceptors. Adsorption of such organic species on solid surfaces is bound to be accompanied by charge-transfer processes between the substrate and the adsorbates, and the physical and chemical properties of the molecules cannot be expected any longer to be the same as in solution phase. In recent years, a number of groups around the world have started tackling the problem of the adsorption, self- assembly and electronic and chemical properties of organic species which interact rather strongly with the surface, and for which charge-transfer must be considered. The picture that is emerging shows that charge transfer can lead to a plethora of new phenomena, from the development of delocalized band-like electron states at molecular overlayers, to the existence of new substrate-mediated intermolecular interactions or the strong modification of the chemical reactivity of the adsorbates. The aim of this review is to start drawing general conclusions and developing new concepts which will help the scientific community to proceed more efficiently towards the understanding of organic/inorganic interfaces in the strong interaction limit, where charge-transfer effects must be taken into consideration.

  11. Terahertz laser spectroscopy of the water dimer intermolecular vibrations. II. (H2O)2

    NASA Astrophysics Data System (ADS)

    Braly, L. B.; Liu, K.; Brown, M. G.; Keutsch, F. N.; Fellers, R. S.; Saykally, R. J.

    2000-06-01

    Terahertz VRT laser spectra of four (H2O)2 intermolecular vibrations consisting of 362 transitions have been measured between 87 and 108 cm-1 with ca. 2 MHz precision. The results differ both qualitatively and quantitatively from the predictions of dimer potentials tested. The spectra also reveal an ordering of the intermolecular vibrations which differs dramatically from that predicted by normal mode analysis. Strong coupling is indicated between the low barrier tunneling motions and the intermolecular vibrations as well as among different vibrations. In particular the 102.1 cm-1 (H2O)2 vibration assigned as the acceptor wag (ν8) exhibits two types of perturbations. In one of these a component of Ka=1 coupling with a tunneling component of Ka=0 in the 108 cm-1 acceptor twist (ν11) vibration. There is also an indication that the 103.1 cm-1 (H2O)2 band assigned as the donor in-plane bend (ν6) is coupled to the acceptor wag resulting in a lower of the in-plane bend frequency and a higher acceptor wag frequency. Detailed analysis of the VRT levels confirms the extreme nonrigidity of this complex, indicating that the use of approximate models with reduced dimensionality to calculate its properties are likely to fail.

  12. Intermolecular interactions between σ- and π-holes of bromopentafluorobenzene and pyridine: computational and experimental investigations.

    PubMed

    Yang, Fang-Ling; Yang, Xing; Wu, Rui-Zhi; Yan, Chao-Xian; Yang, Fan; Ye, Weichun; Zhang, Liang-Wei; Zhou, Pan-Pan

    2018-04-25

    The characters of σ- and π-holes of bromopentafluorobenzene (C6F5Br) enable it to interact with an electron-rich atom or group like pyridine which possesses an electron lone-pair N atom and a π ring. Theoretical studies of intermolecular interactions between C6F5Br and C5H5N have been carried out at the M06-2X/aug-cc-pVDZ level without and with the counterpoise method, together with single point calculations at M06-2X/TZVP, wB97-XD/aug-cc-pVDZ and CCSD(T)/aug-cc-pVDZ levels. The σ- and π-holes of C6F5Br exhibiting positive electrostatic potentials make these sites favorably interact with the N atom and the π ring of C5H5N with negative electrostatic potentials, leading to five different dimers connected by a σ-holen bond, a σ-holeπ bond or a π-holeπ bond. Their geometrical structures, characteristics, nature and spectroscopy behaviors were systematically investigated. EDA analyses reveal that the driving forces in these dimers are different. NCI, QTAIM and NBO analyses confirm the existence of intermolecular interactions formed via σ- and π-holes of C6F5Br and the N atom and the π ring of C5H5N. The experimental IR and Raman spectra gave us important information about the formation of molecular complexes between C6F5Br and C5H5N. We expect that the results could provide valuable insights into the investigation of intermolecular interactions involving σ- and π-holes.

  13. Structure of Poly(dialkylsiloxane) Melts:  Comparisons of Wide-Angle X-ray Scattering, Molecular Dynamics Simulations, and Integral Equation Theory

    DOE PAGES

    Habenschuss, Anton; Tsige, Mesfin; Curro, John G.; ...

    2007-08-21

    Here, wide-angle X-ray scattering, molecular dynamics (MD) simulations, and integral equation theory are used to study the structure of poly(diethylsiloxane) (PDES), poly(ethylmethylsiloxane) (PEMS), and poly(dimethylsiloxane) (PDMS) melts. The structure functions of PDES, PEMS, and PDMS are similar, but systematic trends in the intermolecular packing are observed. The local intramolecular structure is extracted from the experimental structure functions. The bond distances and bond angles obtained, including the large Si-O-Si angle, are in good agreement with the explicit atom (EA) and united atom (UA) potentials used in the simulations and theory and from other sources. Very good agreement is found between themore » MD simulations using the EA potentials and the experimental scattering results. Good agreement is also found between the polymer reference interaction site model (PRISM theory) and the UA MD simulations. The intermolecular structure is examined experimentally using an appropriately weighted radial distribution function and with theory and simulation using intermolecular site/site pair correlation functions. Finally, experiment, simulation, and theory show systematic increases in the chain/chain packing distances in the siloxanes as the number of sites in the pendant side chains is increased.« less

  14. Can we approach the gas-liquid critical point using slab simulations of two coexisting phases?

    PubMed

    Goujon, Florent; Ghoufi, Aziz; Malfreyt, Patrice; Tildesley, Dominic J

    2016-09-28

    In this paper, we demonstrate that it is possible to approach the gas-liquid critical point of the Lennard-Jones fluid by performing simulations in a slab geometry using a cut-off potential. In the slab simulation geometry, it is essential to apply an accurate tail correction to the potential energy, applied during the course of the simulation, to study the properties of states close to the critical point. Using the Janeček slab-based method developed for two-phase Monte Carlo simulations [J. Janec̆ek, J. Chem. Phys. 131, 6264 (2006)], the coexisting densities and surface tension in the critical region are reported as a function of the cutoff distance in the intermolecular potential. The results obtained using slab simulations are compared with those obtained using grand canonical Monte Carlo simulations of isotropic systems and the finite-size scaling techniques. There is a good agreement between these two approaches. The two-phase simulations can be used in approaching the critical point for temperatures up to 0.97 T C ∗ (T ∗ = 1.26). The critical-point exponents describing the dependence of the density, surface tension, and interfacial thickness on the temperature are calculated near the critical point.

  15. How Structure Defines Affinity in Protein-Protein Interactions

    PubMed Central

    Erijman, Ariel; Rosenthal, Eran; Shifman, Julia M.

    2014-01-01

    Protein-protein interactions (PPI) in nature are conveyed by a multitude of binding modes involving various surfaces, secondary structure elements and intermolecular interactions. This diversity results in PPI binding affinities that span more than nine orders of magnitude. Several early studies attempted to correlate PPI binding affinities to various structure-derived features with limited success. The growing number of high-resolution structures, the appearance of more precise methods for measuring binding affinities and the development of new computational algorithms enable more thorough investigations in this direction. Here, we use a large dataset of PPI structures with the documented binding affinities to calculate a number of structure-based features that could potentially define binding energetics. We explore how well each calculated biophysical feature alone correlates with binding affinity and determine the features that could be used to distinguish between high-, medium- and low- affinity PPIs. Furthermore, we test how various combinations of features could be applied to predict binding affinity and observe a slow improvement in correlation as more features are incorporated into the equation. In addition, we observe a considerable improvement in predictions if we exclude from our analysis low-resolution and NMR structures, revealing the importance of capturing exact intermolecular interactions in our calculations. Our analysis should facilitate prediction of new interactions on the genome scale, better characterization of signaling networks and design of novel binding partners for various target proteins. PMID:25329579

  16. The Far Infrared Vibration-Rotation Spectrum of the Ammonia Dimer.

    NASA Astrophysics Data System (ADS)

    Loeser, Jennifer Gertrud

    1995-11-01

    The ammonia dimer has been shown to exhibit unusual weak bonding properties relative to those of the other prototypical second row systems, the hydrogen fluoride dimer and the water dimer. The ultimate goal of the work initiated in this dissertation is to determine a complete intermolecular potential energy surface for the ammonia dimer. It is first necessary to observe its far infrared vibration-rotation-tunneling (VRT) spectrum and to develop a group theoretical model that explains this spectrum in terms of the internal dynamics of the ammonia dimer. These first steps are the subject of this dissertation. First, the current understanding of the ammonia dimer system is reviewed. Group theoretical descriptions of the nature of the ammonia dimer VRT states are explained in detail. An overview of the experimental and theoretical studies of the ammonia dimer made during the last decade is presented. Second, progress on the analysis of the microwave and far infrared spectrum of (ND_3)_2 below 13 cm^{-1} is reported. These spectra directly measure the 'donor -acceptor' interchange splittings in (ND_3) _2, and determine some of the monomer umbrella inversion tunneling splittings. Third, new 80-90 cm^{-1} far infrared spectra of (NH_3)_2 are presented and a preliminary analysis is proposed. Most of the new excited VRT states have been assigned as tunneling sublevels of an out-of-plane intermolecular vibration.

  17. Liquid-solid surface phase transformation of fluorinated fullerene on monolayer tungsten diselenide

    NASA Astrophysics Data System (ADS)

    Song, Zhibo; Wang, Qixing; Li, Ming-Yang; Li, Lain-Jong; Zheng, Yu Jie; Wang, Zhuo; Lin, Tingting; Chi, Dongzhi; Ding, Zijing; Huang, Yu Li; Thye Shen Wee, Andrew

    2018-04-01

    Hybrid van der Waals heterostructures constructed by the integration of organic molecules and two-dimensional (2D) transition metal dichalcogenide (TMD) materials have useful tunable properties for flexible electronic devices. Due to the chemically inert and atomically smooth nature of the TMD surface, well-defined crystalline organic films form atomically sharp interfaces facilitating optimal device performance. Here, the surface phase transformation of the supramolecular packing structure of fluorinated fullerene (C60F48 ) on single-layer tungsten diselenide (WSe2) is revealed by low-temperature scanning tunneling microscopy, from thermally stable liquid to solid phases as the coverage increases. Statistical analysis of the intermolecular interaction potential reveals that the repulsive dipole-dipole interaction induced by interfacial charge transfer and substrate-mediated interactions play important roles in stabilizing the liquid C60F48 phases. Theoretical calculations further suggest that the dipole moment per C60F48 molecule varies with the surface molecule density, and the liquid-solid transformation could be understood from the perspective of the thermodynamic free energy for open systems. This study offers insights into the growth behavior at 2D organic/TMD hybrid heterointerfaces.

  18. The Ammonia Dimer Revisited

    NASA Astrophysics Data System (ADS)

    Dawes, Richard; Van Der Avoird, Ad

    2012-06-01

    The conclusion from microwave spectra by Nelson, Fraser, and Klemperer that the ammonia dimer has a nearly cyclic structure led to much debate about the issue of whether (NH_3)_2 is hydrogen bonded. This structure was surprising because most {ab initio} calculations led to a classical, nearly linear, hydrogen-bonded structure. An obvious explanation of the discrepancy between the outcome of these calculations and the microwave data which led Nelson {et al.} to their ``surprising structure'' might be the effect of vibrational averaging: the electronic structure calculations focus on finding the minimum of the intermolecular potential, the experiment gives a vibrationally averaged structure. Isotope substitution studies seemed to indicate, however, that the complex is nearly rigid. Additional data became available from high-resolution molecular beam far-infrared spectroscopy in the Saykally group. These spectra, displaying large tunneling splittings, indicate that the complex is very floppy. The seemingly contradictory experimental data were explained when it became possible to calculate the vibration-rotation-tunneling (VRT) states of the complex on a six-dimensional intermolecular potential surface. The potential used was a simple model potential, with parameters fitted to the far-infrared data. Now, for the first time, a six-dimensional potential was computed by high level {ab initio} methods and this potential will be used in calculations of the VRT states of (NH_3)_2 and (ND_3)_2. So, we will finally be able to answer the question whether the conclusions from the model calculations are indeed a valid explanation of the experimental data. D. Nelson, G. T. Fraser, and W. Klemperer J. Chem. Phys. 83 6201 (1985) J. G. Loeser, C. A. Schmuttenmaer, R. C. Cohen, M. J. Elrod, D. W. Steyert, R. J. Saykally, R. E. Bumgarner, and G. A. Blake J. Chem. Phys. 97 4727 (1992) E. H. T. Olthof, A. van der Avoird, and P. E. S. Wormer J. Chem. Phys. 101 8430 (1994) E. H. T. Olthof, A. van der Avoird, P. E. S. Wormer, J. G. Loeser, and R. J. Saykally J. Chem. Phys. 101 8443 (1994)

  19. Origin of Vibrational Spectroscopic Response at Ice Surface.

    PubMed

    Ishiyama, Tatsuya; Takahashi, Hideaki; Morita, Akihiro

    2012-10-18

    Since the basal plane surface of ice was first observed by sum frequency generation, an extraordinarily intense band for the hydrogen(H)-bonded OH stretching vibration has been a matter of debate. We elucidate the remarkable spectral feature of the ice surface by quantum mechanics/molecular mechanics calculations. The intense H-bonded band is originated mostly from the "bilayer-stitching" modes of a few surface bilayers, through significant intermolecular charge transfer. The mechanism of enhanced signal is sensitive to the order of the tetrahedral ice structure, as the charge transfer is coupled to the vibrational delocalization.

  20. A quantum mechanical study of water adsorption on the (110) surfaces of rutile SnO₂ and TiO₂: investigating the effects of intermolecular interactions using hybrid-exchange density functional theory.

    PubMed

    Patel, M; Sanches, F F; Mallia, G; Harrison, N M

    2014-10-21

    Periodic hybrid-exchange density functional theory calculations are used to explore the first layer of water at model oxide surfaces, which is an important step for understanding the photocatalytic reactions involved in solar water splitting. By comparing the structure and properties of SnO2(110) and TiO2(110) surfaces in contact with water, the effects of structural and electronic differences on the water chemistry are examined. The dissociative adsorption mode at low coverage (1/7 ML) up to monolayer coverage (1 ML) on both SnO2 and TiO2(110) surfaces is analysed. To investigate further the intermolecular interactions between adjacent adsorbates, monolayer adsorption on each surface is explored in terms of binding energies and bond lengths. Analysis of the water adsorption geometry and energetics shows that the relative stability of water adsorption on SnO2(110) is governed largely by the strength of the chemisorption and hydrogen bonds at the surface of the adsorbate-substrate system. However on TiO2(110), a more complicated scenario of the first layer of water on its surface arises in which there is an interplay between chemisorption, hydrogen bonding and adsorbate-induced atomic displacements in the surface. Furthermore the projected density of states of each surface in contact with a mixture of adsorbed water molecules and adsorbed hydroxyls is presented and sheds some light on the nature of the crystalline chemical bonds as well as on why adsorbed water has often been reported to be unstable on rutile SnO2(110).

  1. Towards a Quantum Dynamical Study of the H_2O+H_2O Inelastic Collision: Representation of the Potential and Preliminary Results

    NASA Astrophysics Data System (ADS)

    Ndengue, Steve Alexandre; Dawes, Richard

    2017-06-01

    Water, an essential ingredient of life, is prevalent in space and various media. H_2O in the gas phase is the major polyatomic species in the interstellar medium (ISM) and a primary target of current studies of collisional dynamics. In recent years a number of theoretical and experimental studies have been devoted to H_2O-X (with X=He, H_2, D_2, Ar, ?) elastic and inelastic collisions in an effort to understand rotational distributions of H_2O in molecular clouds. Although those studies treated several abundant species, no quantum mechanical calculation has been reported to date for a nonlinear polyatomic collider. We present in this talk the preliminary steps toward this goal, using the H_2O molecule itself as our collider, the very accurate MB-Pol surface to describe the intermolecular interaction and the MultiConfiguration Time Dependent (MCTDH) algorithm to study the dynamics. One main challenge in this effort is the need to express the Potential Energy Surface (PES) in a sum-of-products form optimal for MCTDH calculations. We will describe how this was done and present preliminary results of state-to-state probabilities.

  2. Rotationally inelastic scattering of ND3 with H2 as a probe of the intermolecular potential energy surface

    NASA Astrophysics Data System (ADS)

    Tkáč, Ondřej; Saha, Ashim K.; Loreau, Jérôme; Ma, Qianli; Dagdigian, Paul J.; Parker, David H.; van der Avoird, Ad; Orr-Ewing, Andrew J.

    2015-12-01

    Differential cross sections (DCSs) are reported for rotationally inelastic scattering of ND3 with H2, measured using a crossed molecular beam apparatus with velocity map imaging (VMI). ND3 molecules were quantum-state selected in the ground electronic and vibrational levels and, optionally, in the j±k = 11- rotation-inversion level prior to collisions. Inelastic scattering of state-selected ND3 with H2 was measured at the mean collision energy of 580 cm-1 by resonance-enhanced multiphoton ionisation spectroscopy and VMI of ND3 in selected single final j'±k' levels. Comparison of experimental DCSs with close-coupling quantum-mechanical scattering calculations serves as a test of a recently reported ab initio potential energy surface. Calculated integral cross sections reveal the propensities for scattering into various final j'±k' levels of ND3 and differences between scattering by ortho and para H2. Integral and differential cross sections are also computed at a mean collision energy of 430 cm-1 and compared to our recent results for inelastic scattering of state-selected ND3 with He.

  3. Ro-vibrational spectrum of H2O-Ne in the ν2 H2O bending region: A combined ab initio and experimental investigation

    NASA Astrophysics Data System (ADS)

    Liu, Xunchen; Hou, Dan; Thomas, Javix; Li, Hui; Xu, Yunjie

    2016-12-01

    High resolution ro-vibrational transitions of the H2O-Ne complex in the ν2 bending region of H2O at 6 μm have been measured using a rapid scan infrared spectrometer based on an external cavity quantum cascade laser and an astigmatic multipass optical cell. To aid the spectral assignment, a four-dimension potential energy surface of H2O-Ne which depends on the intramolecular bending coordinate of the H2O monomer and the three intermolecular vibrational coordinates has been constructed and the rovibrational transitions have been calculated. Three ortho and two para H2O-20Ne bands have been identified from the experimental spectra. Some weaker transitions belonging to H2O-22Ne have also been identified experimentally. Spectroscopic fits have been performed for both the experimental and theoretical transition frequencies using a simple pseudo-diatomic Hamiltonian including both Coriolis coupling and Fermi resonance terms. The experimental and theoretical spectroscopic constants thus obtained have been compared. Further improvements needed in the potential energy surface and the related spectral simulation have been discussed.

  4. Accurate description of charged excitations in molecular solids from embedded many-body perturbation theory

    NASA Astrophysics Data System (ADS)

    Li, Jing; D'Avino, Gabriele; Duchemin, Ivan; Beljonne, David; Blase, Xavier

    2018-01-01

    We present a novel hybrid quantum/classical approach to the calculation of charged excitations in molecular solids based on the many-body Green's function G W formalism. Molecules described at the G W level are embedded into the crystalline environment modeled with an accurate classical polarizable scheme. This allows the calculation of electron addition and removal energies in the bulk and at crystal surfaces where charged excitations are probed in photoelectron experiments. By considering the paradigmatic case of pentacene and perfluoropentacene crystals, we discuss the different contributions from intermolecular interactions to electronic energy levels, distinguishing between polarization, which is accounted for combining quantum and classical polarizabilities, and crystal field effects, that can impact energy levels by up to ±0.6 eV. After introducing band dispersion, we achieve quantitative agreement (within 0.2 eV) on the ionization potential and electron affinity measured at pentacene and perfluoropentacene crystal surfaces characterized by standing molecules.

  5. Theoretical study of optical activity of 1:1 hydrogen bond complexes of water with S-warfarin

    NASA Astrophysics Data System (ADS)

    Dadsetani, Mehrdad; Abdolmaleki, Ahmad; Zabardasti, Abedin

    2016-11-01

    The molecular interaction between S-warfarin (SW) and a single water molecule was investigated using the B3LYP method at 6-311 ++G(d,p) basis set. The vibrational spectra of the optimized complexes have been investigated for stabilization checking. Quantum theories of atoms in molecules, natural bond orbitals, molecular electrostatic potentials and energy decomposition analysis methods have been applied to analyze the intermolecular interactions. The intermolecular charge transfer in the most stable complex is in the opposite direction from those in the other complexes. The optical spectra and the hyperpolarizabilities of SW-water hydrogen bond complexes have been computed.

  6. Long range intermolecular interactions between the alkali diatomics Na2, K2, and NaK

    NASA Astrophysics Data System (ADS)

    Zemke, Warren T.; Byrd, Jason N.; Michels, H. Harvey; Montgomery, John A.; Stwalley, William C.

    2010-06-01

    Long range interactions between the ground state alkali diatomics Na2-Na2, K2-K2, Na2-K2, and NaK-NaK are examined. Interaction energies are first determined from ab initio calculations at the coupled-cluster with singles, doubles, and perturbative triples [CCSD(T)] level of theory, including counterpoise corrections. Long range energies calculated from diatomic molecular properties (polarizabilities and dipole and quadrupole moments) are then compared with the ab initio energies. A simple asymptotic model potential ELR=Eelec+Edisp+Eind is shown to accurately represent the intermolecular interactions for these systems at long range.

  7. Long range intermolecular interactions between the alkali diatomics Na(2), K(2), and NaK.

    PubMed

    Zemke, Warren T; Byrd, Jason N; Michels, H Harvey; Montgomery, John A; Stwalley, William C

    2010-06-28

    Long range interactions between the ground state alkali diatomics Na(2)-Na(2), K(2)-K(2), Na(2)-K(2), and NaK-NaK are examined. Interaction energies are first determined from ab initio calculations at the coupled-cluster with singles, doubles, and perturbative triples [CCSD(T)] level of theory, including counterpoise corrections. Long range energies calculated from diatomic molecular properties (polarizabilities and dipole and quadrupole moments) are then compared with the ab initio energies. A simple asymptotic model potential E(LR)=E(elec)+E(disp)+E(ind) is shown to accurately represent the intermolecular interactions for these systems at long range.

  8. Hydrogen bonding pattern in N-benzoyl(- DL-)- L-phenylalanines as revealed by solid-state NMR spectroscopy

    NASA Astrophysics Data System (ADS)

    Potrzebowski, M. J.; Schneider, C.; Tekely, P.

    1999-11-01

    The nature of the hydrogen bonding pattern has been investigated in N-benzoyl- DL-phenylalanine ( 1) and N-benzoyl- L-phenylalanine ( 2) polymorphes by solid-state NMR spectroscopy. It has been shown that the multiple resonances of carboxyl carbon in 2 are directly connected to different types of hydrogen bonding. The differences in intermolecular distances of carboxyl groups involved in different types of hydrogen bonding have been visualized by the 2D exchange and 1D ODESSA experiments. Potential applications of such a new approach include the exploration of intermolecular distances in hydrogen bonded compounds with singly labeled biomolecules.

  9. High-energy, stable and recycled molecular solar thermal storage materials using AZO/graphene hybrids by optimizing hydrogen bonds.

    PubMed

    Luo, Wen; Feng, Yiyu; Qin, Chengqun; Li, Man; Li, Shipei; Cao, Chen; Long, Peng; Liu, Enzuo; Hu, Wenping; Yoshino, Katsumi; Feng, Wei

    2015-10-21

    An important method for establishing a high-energy, stable and recycled molecular solar heat system is by designing and preparing novel photo-isomerizable molecules with a high enthalpy and a long thermal life by controlling molecular interactions. A meta- and ortho-bis-substituted azobenzene chromophore (AZO) is covalently grafted onto reduced graphene oxide (RGO) for solar thermal storage materials. High grafting degree and close-packed molecules enable intermolecular hydrogen bonds (H-bonds) for both trans-(E) and cis-(Z) isomers of AZO on the surface of nanosheets, resulting in a dramatic increase in enthalpy and lifetime. The metastable Z-form of AZO on RGO is thermally stabilized with a half-life of 52 days by steric hindrance and intermolecular H-bonds calculated using density functional theory (DFT). The AZO-RGO fuel shows a high storage capacity of 138 Wh kg(-1) by optimizing intermolecular H-bonds with a good cycling stability for 50 cycles induced by visible light at 520 nm. Our work opens up a new method for making advanced molecular solar thermal storage materials by tuning molecular interactions on a nano-template.

  10. Conformation-based signal transfer and processing at the single-molecule level

    NASA Astrophysics Data System (ADS)

    Li, Chao; Wang, Zhongping; Lu, Yan; Liu, Xiaoqing; Wang, Li

    2017-11-01

    Building electronic components made of individual molecules is a promising strategy for the miniaturization and integration of electronic devices. However, the practical realization of molecular devices and circuits for signal transmission and processing at room temperature has proven challenging. Here, we present room-temperature intermolecular signal transfer and processing using SnCl2Pc molecules on a Cu(100) surface. The in-plane orientations of the molecules are effectively coupled via intermolecular interaction and serve as the information carrier. In the coupled molecular arrays, the signal can be transferred from one molecule to another in the in-plane direction along predesigned routes and processed to realize logical operations. These phenomena enable the use of molecules displaying intrinsic bistable states as complex molecular devices and circuits with novel functions.

  11. An Observation of Diamond-Shaped Particle Structure in a Soya Phosphatidylcohline and Bacteriorhodopsin Composite Langmuir Blodgett Film Fabricated by Multilayer Molecular Thin Film Method

    NASA Astrophysics Data System (ADS)

    Tsujiuchi, Y.; Makino, Y.

    A composite film of soya phosphatidylcohline (soya PC) and bacteriorhodopsin (BR) was fabricated by the multilayer molecular thin film method using fatty acid and lipid on a quartz substrate. Direct Force Microscopy (DFM), UV absorption spectra and IR absorption spectra of the film were characterized on the detail of surface structure of the film. The DFM data revealed that many rhombus (diamond-shaped) particles were observed in the film. The spectroscopic data exhibited the yield of M-intermediate of BR in the film. On our modelling of molecular configuration indicate that the coexistence of the strong inter-molecular interaction and the strong inter-molecular interaction between BR trimmers attributed to form the particles.

  12. Low-frequency collective dynamics in deep eutectic solvents of acetamide and electrolytes: a femtosecond Raman-induced Kerr effect spectroscopic study.

    PubMed

    Biswas, Ranjit; Das, Anuradha; Shirota, Hideaki

    2014-10-07

    In this study, we have investigated the ion concentration dependent collective dynamics in two series of deep eutectic solvent (DES) systems by femtosecond Raman-induced Kerr effect spectroscopy, as well as some physical properties, e.g., shear viscosity (η), density (ρ), and surface tension (γ). The DES systems studied here are [0.75CH3CONH2 + 0.25{f KSCN + (1 - f )NaSCN}] and [0.78CH3CONH2 + 0.22{f LiBr + (1 - f )LiNO3}] with f = 0, 0.2, 0.4, 0.6, 0.8, and 1.0. γ of these DES systems shows near insensitivity to f, while ρ shows a moderate dependence on f. Interestingly, η exhibits a strong dependence on f. In the low-frequency Kerr spectra, obtained via the Fourier transform of the collected Kerr transients, a characteristic band at ∼70 cm(-1) is clear in [0.78CH3CONH2 + 0.22{f LiBr + (1 - f )LiNO3}] DES especially at the larger f. The band is attributed to the intermolecular hydrogen bond of acetamide. Because of less depolarized Raman activities of intermolecular/interionic vibrational motions, which are mostly translational (collision-induced or interaction-induced) motions, of spherical ions, the intermolecular hydrogen-bonding band is clearly observed. In contrast, the intermolecular hydrogen-bonding band is buried in the other intermolecular/interionic vibrational motions, which includes translational and reorientational (librational) motions and their cross-terms, in [0.75CH3CONH2 + 0.25{f KSCN + (1 - f )NaSCN}] system. The first moment (M1) of the intermolecular/interionic vibrational band in these DES systems is much higher than that in typical neutral molecular liquids and shows a weak but contrasting dependence on the bulk parameter √γ/ρ. The time constants for picosecond overdamped Kerr transients in both the DES systems, which are obtained on the basis of the analysis fitted by a triexponential function, are rather insensitive to f for both the DES systems, but all the three time constants (fast: ∼1-3 ps; intermediate: ∼7-20 ps; and slow: ∼100 ps) are different between the [0.78CH3CONH2 + 0.22{f LiBr + (1 - f )LiNO3}] and [0.75CH3CONH2 + 0.25{f KSCN + (1 - f )NaSCN}] systems. These results indicate that the intermolecular/interionic interactions in DES systems is strongly influenced by the ionic species present in these DES systems.

  13. Survey of High-Pressure Effects in Solids.

    DTIC Science & Technology

    1979-11-01

    phenomenological Lennard - Jones and Morse potentials . The resulting study of the GrUneisen parameter is most illuminating. A more am- bitious program would to...the Gordon-Kim-Boyer scheme with our suggested modifications; use of the exchange-correlation potential in the local-density approximation i such an...Xenon Hugoniot Calculations and Experiments .......... 41 3.8. Xenon Intermolecular Potentials ...................... 42 3.9. Xenon Hugoniot Calculations

  14. Intermolecular Interaction between Phosphatidylcholine and Sulfobetaine Lipid: A Combination of Lipids with Antiparallel Arranged Headgroup Charge.

    PubMed

    Aikawa, Tatsuo; Yokota, Keisuke; Kondo, Takeshi; Yuasa, Makoto

    2016-10-05

    Intermolecular interactions between lipid molecules are important when designing lipid bilayer interfaces, which have many biomedical applications such as in drug delivery vehicles and biosensors. Phosphatidylcholine, a naturally occurring lipid, is the most common lipid found in organisms. Its chemical structure has a negatively charged phosphate linkage, adjacent to an ester linkage in a glycerol moiety, and a positively charged choline group, placed at the terminus of the molecule. Recently, several types of synthetic lipids that have headgroups with the opposite charge to that of phosphatidylcholine have emerged; that is, a positively charged ammonium group is present adjacent to the ester linkage in their glycerol moiety and a negatively charged group is placed at their terminus. These types of lipids constitute a new class of soft material. The aim of this study was to determine how such lipids, with antiparallel arranged headgroup charge, interact with naturally occurring phosphatidylcholines. We synthesized 1,2-dipalmitoyl-sn-glycero-3-sulfobetaine (DPSB) to represent a reversed-head lipid; 1,2-dipalmitoyl-sn-glycero-3-phosphatidylcholine (DPPC) was used to represent a naturally occurring phospholipid. The intermolecular interaction between these lipids was investigated using surface pressure-area (π-A) isotherms of the lipid monolayer at the air/water interface. We found that the extrapolated area and excess free energy of the mixed monolayer deviated negatively when compared with the ideal values from additivity. Moreover, differential scanning calorimetry of the lipid mixture in aqueous dispersion showed that the gel-to-liquid crystal transition temperature increased compared with that of each pure lipid composition. These results clearly indicate that DPSB preferably interacts with DPPC in the mixture. We believe that the attraction between the oppositely charged headgroups of these lipids reinforces the intermolecular interaction. Our results provide insight into the intermolecular interaction between phospholipids and reversed-head lipids, which may prove useful for the design of lipid-based materials in the future.

  15. A new ab initio potential energy surface for the collisional excitation of HCN by para- and ortho-H{sub 2}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Denis-Alpizar, Otoniel, E-mail: otonieldenisalpizar@gmail.com; Departamento de Física, Universidad de Matanzas, Matanzas 40100; Kalugina, Yulia

    We present a new four-dimensional potential energy surface for the collisional excitation of HCN by H{sub 2}. Ab initio calculations of the HCN–H{sub 2} van der Waals complex, considering both molecules as rigid rotors, were carried out at the explicitly correlated coupled cluster with single, double, and perturbative triple excitations [CCSD(T)-F12a] level of theory using an augmented correlation-consistent triple zeta (aVTZ) basis set. The equilibrium structure is linear HCN–H{sub 2} with the nitrogen pointing towards H{sub 2} at an intermolecular separation of 7.20 a{sub 0}. The corresponding well depth is −195.20 cm{sup −1}. A secondary minimum of −183.59 cm{sup −1}more » was found for a T-shape configuration with the H of HCN pointing to the center of mass of H{sub 2}. We also determine the rovibrational energy levels of the HCN–para-H{sub 2} and HCN–ortho-H{sub 2} complexes. The calculated dissociation energies for the para and ortho complexes are 37.79 cm{sup −1} and 60.26 cm{sup −1}, respectively. The calculated ro-vibrational transitions in the HCN–H{sub 2} complex are found to agree by more than 0.5% with the available experimental data, confirming the accuracy of the potential energy surface.« less

  16. Exponential 6 parameterization for the JCZ3-EOS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McGee, B.C.; Hobbs, M.L.; Baer, M.R.

    1998-07-01

    A database has been created for use with the Jacobs-Cowperthwaite-Zwisler-3 equation-of-state (JCZ3-EOS) to determine thermochemical equilibrium for detonation and expansion states of energetic materials. The JCZ3-EOS uses the exponential 6 intermolecular potential function to describe interactions between molecules. All product species are characterized by r*, the radius of the minimum pair potential energy, and {var_epsilon}/k, the well depth energy normalized by Boltzmann`s constant. These parameters constitute the JCZS (S for Sandia) EOS database describing 750 gases (including all the gases in the JANNAF tables), and have been obtained by using Lennard-Jones potential parameters, a corresponding states theory, pure liquid shockmore » Hugoniot data, and fit values using an empirical EOS. This database can be used with the CHEETAH 1.40 or CHEETAH 2.0 interface to the TIGER computer program that predicts the equilibrium state of gas- and condensed-phase product species. The large JCZS-EOS database permits intermolecular potential based equilibrium calculations of energetic materials with complex elemental composition.« less

  17. ReaxFF molecular dynamics simulation of intermolecular structure formation in acetic acid-water mixtures at elevated temperatures and pressures

    NASA Astrophysics Data System (ADS)

    Sengul, Mert Y.; Randall, Clive A.; van Duin, Adri C. T.

    2018-04-01

    The intermolecular structure formation in liquid and supercritical acetic acid-water mixtures was investigated using ReaxFF-based molecular dynamics simulations. The microscopic structures of acetic acid-water mixtures with different acetic acid mole fractions (1.0 ≥ xHAc ≥ 0.2) at ambient and critical conditions were examined. The potential energy surface associated with the dissociation of acetic acid molecules was calculated using a metadynamics procedure to optimize the dissociation energy of ReaxFF potential. At ambient conditions, depending on the acetic acid concentration, either acetic acid clusters or water clusters are dominant in the liquid mixture. When acetic acid is dominant (0.4 ≤ xHAc), cyclic dimers and chain structures between acetic acid molecules are present in the mixture. Both structures disappear at increased water content of the mixture. It was found by simulations that the acetic acid molecules released from these dimer and chain structures tend to stay in a dipole-dipole interaction. These structural changes are in agreement with the experimental results. When switched to critical conditions, the long-range interactions (e.g., second or fourth neighbor) disappear and the water-water and acetic acid-acetic acid structural formations become disordered. The simulated radial distribution function for water-water interactions is in agreement with experimental and computational studies. The first neighbor interactions between acetic acid and water molecules are preserved at relatively lower temperatures of the critical region. As higher temperatures are reached in the critical region, these interactions were observed to weaken. These simulations indicate that ReaxFF molecular dynamics simulations are an appropriate tool for studying supercritical water/organic acid mixtures.

  18. Infrared Spectra of He-, Ne-, and Ar-C_2D_2 Complexes

    NASA Astrophysics Data System (ADS)

    Rezai, M.; Moazzen-Ahmadi, N.; McKellar, A. R. W.; Fernandez, Berta; Farrelly, David

    2012-06-01

    Remarkably, there are no previously published experimental spectra of the helium-acetylene van der Waals complex. Apparently, infrared spectra of He-C_2H_2 were recorded around 1990 in Roger Miller's lab, but a detailed rotational assignment was not possible even with the help of two extensive sets of theoretical predictions. Here, we study rare gas-C_2D_2 complexes in the νb{3} region (˜2439 wn) using a rapid-scan tuneable diode laser spectrometer to probe a pulsed supersonic slit-jet expansion. The He-C_2D_2 assignment problem is readily apparent: most of the absorption is piled-up in a very narrow region around 2440.85 wn, close to the R(0) line of the C_2D_2 monomer. This pile-up is a signature of very weak anisotropy in the helium-acetylene intermolecular potential, leading to almost free internal rotation of the C_2D_2. We are able to achieve a convincing rotational assignment with the help of theoretical energy level calculations based on the intermolecular potential surface of Munteanu and Fernández. So far the results are limited to He-C_2D_2 transitions which correlate with the monomer R(0) transition. Ne-C_2D_2 also shows a free-rotation pile-up of lines near R(0) which makes assignment tricky. In contrast, Ar-C_2D_2 exhibits more conventional behavior and a normal asymmetric rotor analysis is possible. [1] T. Slee, R.J. Le Roy, and C.E. Chuaqui, Mol. Phys. 77, 111 (1992); R. Moszynski, P.E.S. Wormer, and A. van der Avoird, J. Chem. Phys. 102, 8385 (1995). [2] R. Munteanu and B. Fernández, J. Chem. Phys. 123, 014309 (2005).

  19. Combining density functional and incremental post-Hartree-Fock approaches for van der Waals dominated adsorbate-surface interactions: Ag{sub 2}/graphene

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lara-Castells, María Pilar de, E-mail: Pilar.deLara.Castells@csic.es; Mitrushchenkov, Alexander O.; Stoll, Hermann

    2015-09-14

    A combined density functional (DFT) and incremental post-Hartree-Fock (post-HF) approach, proven earlier to calculate He-surface potential energy surfaces [de Lara-Castells et al., J. Chem. Phys. 141, 151102 (2014)], is applied to describe the van der Waals dominated Ag{sub 2}/graphene interaction. It extends the dispersionless density functional theory developed by Pernal et al. [Phys. Rev. Lett. 103, 263201 (2009)] by including periodic boundary conditions while the dispersion is parametrized via the method of increments [H. Stoll, J. Chem. Phys. 97, 8449 (1992)]. Starting with the elementary cluster unit of the target surface (benzene), continuing through the realistic cluster model (coronene), andmore » ending with the periodic model of the extended system, modern ab initio methodologies for intermolecular interactions as well as state-of-the-art van der Waals-corrected density functional-based approaches are put together both to assess the accuracy of the composite scheme and to better characterize the Ag{sub 2}/graphene interaction. The present work illustrates how the combination of DFT and post-HF perspectives may be efficient to design simple and reliable ab initio-based schemes in extended systems for surface science applications.« less

  20. Programmable display of DNA-protein chimeras for controlling cell-hydrogel interactions via reversible intermolecular hybridization.

    PubMed

    Zhang, Zhaoyang; Li, Shihui; Chen, Niancao; Yang, Cheng; Wang, Yong

    2013-04-08

    Extensive studies have been recently carried out to achieve dynamic control of cell-material interactions primarily through physicochemical stimulation. The purpose of this study was to apply reversible intermolecular hybridization to program cell-hydrogel interactions in physiological conditions based on DNA-antibody chimeras and complementary oligonucleotides. The results showed that DNA oligonucleotides could be captured to and released from the immobilizing DNA-functionalized hydrogels with high specificity via DNA hybridization. Accordingly, DNA-antibody chimeras were captured to the hydrogels, successfully inducing specific cell attachment. The cell attachment to the hydrogels reached the plateau at approximately half an hour after the functionalized hydrogels and the cells were incubated together. The attached cells were rapidly released from the bound hydrogels when triggering complementary oligonucleotides were introduced to the system. However, the capability of the triggering complementary oligonucleotides in releasing cells was affected by the length of intermolecular hybridization. The length needed to be at least more than 20 base pairs in the current experimental setting. Notably, because the procedure of intermolecular hybridization did not involve any harsh condition, the released cells maintained the same viability as that of the cultured cells. The functionalized hydrogels also exhibited the potential to catch and release cells repeatedly. Therefore, this study demonstrates that it is promising to regulate cell-material interactions dynamically through the DNA-programmed display of DNA-protein chimeras.

  1. Dynamics of self-assembled cytosine nucleobases on graphene

    NASA Astrophysics Data System (ADS)

    Saikia, Nabanita; Johnson, Floyd; Waters, Kevin; Pandey, Ravindra

    2018-05-01

    Molecular self-assembly of cytosine (C n ) bases on graphene was investigated using molecular dynamics methods. For free-standing C n bases, simulation conditions (gas versus aqueous) determine the nature of self-assembly; the bases prefer to aggregate in the gas phase and are stabilized by intermolecular H-bonds, while in the aqueous phase, the water molecules disrupt base-base interactions, which facilitate the formation of π-stacked domains. The substrate-induced effects, on the other hand, find the polarity and donor-acceptor sites of the bases to govern the assembly process. For example, in the gas phase, the assembly of C n bases on graphene displays short-range ordered linear arrays stabilized by the intermolecular H-bonds. In the aqueous phase, however, there are two distinct configurations for the C n bases assembly on graphene. For the first case corresponding to low surface coverage, the bases are dispersed on graphene and are isolated. The second configuration archetype is disordered linear arrays assembled with medium and high surface coverage. The simulation results establish the role of H-bonding, vdW π-stacking, and the influence of graphene surface towards the self-assembly. The ability to regulate the assembly into well-defined patterns can aid in the design of self-assembled nanostructures for the next-generation DNA based biosensors and nanoelectronic devices.

  2. The Significance of Interfacial Water Structure in Soluble Salt Flotation Systems.

    PubMed

    Hancer, M.; Celik, M. S.; Miller, J. D.

    2001-03-01

    Flotation of soluble salts with dodecyl amine hydrochloride (DAH) and sodium dodecyl sulfate (SDS) collectors has demonstrated that the interfacial water structure and hydration states of soluble salt surfaces together with the precipitation tendency of the corresponding collector salts are of considerable importance in explaining their flotation behavior. In particular, the high concentration of ions in these soluble salt brines and their hydration appear to modify the bulk and interfacial structure of water as revealed by contact angle measurements and this effect is shown to be an important feature in the flotation chemistry of soluble salt minerals including alkali halide and alkali oxyanion salts. Depending on characteristic chemical features (salt type), the salt can serve either as a structure maker, in which intermolecular hydrogen bonding between water molecules is facilitated, or as a structure breaker, in which intermolecular hydrogen bonding between water molecules is disrupted. For structure making salts the brine completely wets the salt surface and no contact angle can be measured. For structure breaking salts the brine does not completely wet the salt surface and a finite contact angle is measured. In this regard it has been found that soluble salt flotation either with the cationic DAH or anionic SDS collector is possible only if the salt is a structure breaker. Copyright 2001 Academic Press.

  3. Imaging molecular interaction of NO on Cu(110) with a scanning tunneling microscope.

    PubMed

    Okuyama, Hiroshi

    2014-10-01

    Molecular interaction on metal surfaces is one of the central issues of surface science for the microscopic understanding of heterogeneous catalysis. In this Personal Account, I review the recent studies on NO/Cu(110) employing a scanning tunneling microscope (STM) to probe and control the molecule-molecule interaction on the surface. An individual NO molecule was observed as a characteristic dumbbell-shaped protrusion, visualizing the 2π* orbital. By manipulating the intermolecular distance with the STM, the overlap of the 2π* orbital between two NO molecules was controlled. The interaction causes the formation of the bonding and antibonding orbitals below and above the Fermi level, respectively, as a function of the intermolecular distance. The 2π* orbital also plays a role in the reaction of NO with water molecules. A water molecule donates a H-bond to NO, giving rise to the down-shift of the 2π* level below the Fermi level. This causes electron transfer from the substrate to NO, weakening, and eventually rupturing, the N-O bond. The facile bond cleavage by water molecules has implications for the catalytic reduction of NO under ambient conditions. Copyright © 2014 The Chemical Society of Japan and Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. A quantitative study of the clustering of polycyclic aromatic hydrocarbons at high temperatures.

    PubMed

    Totton, Tim S; Misquitta, Alston J; Kraft, Markus

    2012-03-28

    The clustering of polycyclic aromatic hydrocarbon (PAH) molecules is investigated in the context of soot particle inception and growth using an isotropic potential developed from the benchmark PAHAP potential. This potential is used to estimate equilibrium constants of dimerisation for five representative PAH molecules based on a statistical mechanics model. Molecular dynamics simulations are also performed to study the clustering of homomolecular systems at a range of temperatures. The results from both sets of calculations demonstrate that at flame temperatures pyrene (C(16)H(10)) dimerisation cannot be a key step in soot particle formation and that much larger molecules (e.g. circumcoronene, C(54)H(18)) are required to form small clusters at flame temperatures. The importance of using accurate descriptions of the intermolecular interactions is demonstrated by comparing results to those calculated with a popular literature potential with an order of magnitude variation in the level of clustering observed. By using an accurate intermolecular potential we are able to show that physical binding of PAH molecules based on van der Waals interactions alone can only be a viable soot inception mechanism if concentrations of large PAH molecules are significantly higher than currently thought.

  5. Intermolecular correlations are necessary to explain diffuse scattering from protein crystals

    DOE PAGES

    Peck, Ariana; Poitevin, Frederic; Lane, Thomas Joseph

    2018-02-21

    Conformational changes drive protein function, including catalysis, allostery, and signaling. X-ray diffuse scattering from protein crystals has frequently been cited as a probe of these correlated motions, with significant potential to advance our understanding of biological dynamics. However, recent work challenged this prevailing view, suggesting instead that diffuse scattering primarily originates from rigid body motions and could therefore be applied to improve structure determination. To investigate the nature of the disorder giving rise to diffuse scattering, and thus the potential applications of this signal, a diverse repertoire of disorder models was assessed for its ability to reproduce the diffuse signalmore » reconstructed from three protein crystals. This comparison revealed that multiple models of intramolecular conformational dynamics, including ensemble models inferred from the Bragg data, could not explain the signal. Models of rigid body or short-range liquid-like motions, in which dynamics are confined to the biological unit, showed modest agreement with the diffuse maps, but were unable to reproduce experimental features indicative of long-range correlations. Extending a model of liquid-like motions to include disorder across neighboring proteins in the crystal significantly improved agreement with all three systems and highlighted the contribution of intermolecular correlations to the observed signal. These findings anticipate a need to account for intermolecular disorder in order to advance the interpretation of diffuse scattering to either extract biological motions or aid structural inference.« less

  6. Factors affecting the viscosity in high concentration solutions of different monoclonal antibodies.

    PubMed

    Yadav, Sandeep; Shire, Steven J; Kalonia, Devendra S

    2010-12-01

    The viscosity profiles of four different IgG(1) molecules were studied as a function of concentration at pH 6.0. At high concentrations, MAb-H and -A showed significantly higher viscosities as compared to MAb-G and -E. Zeta Potential (ξ) measurements showed that all the IgG(1) molecules carried a net positive charge at this pH. MAb-G showed the highest positive zeta potential followed by MAb-E, -H, and -A. A consistent interpretation of the impact of net charge on viscosity for these MAbs is not possible, suggesting that electroviscous effects cannot explain the differences in viscosity. Values of k(D) (dynamic light scattering) indicated that the intermolecular interactions were repulsive for MAb-E and -G; and attractive for MAb-H and -A. Solution storage modulus (G') in high concentration solutions was consistent with attractive intermolecular interactions for MAb-H and -A, and repulsive interactions for MAb-G and -E. Effect of salt addition on solution G' and k(D) indicated that the interactions were primarily electrostatic in nature. The concentration dependent viscosity data were analyzed using a modified Ross and Minton equation. The analysis explicitly differentiates between the effect of molecular shape, size, self-crowding, and electrostatic intermolecular interactions in governing high concentration viscosity behavior. © 2010 Wiley-Liss, Inc. and the American Pharmacists Association

  7. Insights into intermolecular interactions, electrostatic properties and the stability of C646 in the binding pocket of p300 histone acetyltransferase enzyme: a combined molecular dynamics and charge density study.

    PubMed

    Sivanandam, Magudeeswaran; Saravanan, Kandasamy; Kumaradhas, Poomani

    2017-10-30

    Histone acetyltransferases (HATs) and histone deacetylases (HDACs) are enzymes that exhibit an important transcription activity. Dysfunction of these enzymes may lead to different diseases including cancer, cardiovascular, and other diseases. Therefore, these enzymes are the potential target for the generation of new therapeutics. C646 is a synthetic p300 HAT inhibitor; its structural and the electrostatic properties are the paradigm to understand its activity in the active site of p300 HAT enzyme. The docked C646 molecule in the active site forms expected key intermolecular interactions with the amino acid residues Trp1436, Tyr1467, and one water molecule (W1861); and these interactions are important for acetylation reaction. When compare the active site structure of C646 with the gas-phase structure, it is confirmed that the electron density distribution of polar bonds are highly altered, when the molecule present in the active site. In the gas-phase structure of C646, a large negative regions of electrostatic potential is found at the vicinity of O(4), O(5), and O(6) atoms; whereas, the negative region of these atoms are reduced in the active site. The molecular dynamics (MD) simulation also performed, it reveals the conformational stability and the intermolecular interactions of C646 molecule in the active site of p300.

  8. Intermolecular correlations are necessary to explain diffuse scattering from protein crystals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peck, Ariana; Poitevin, Frederic; Lane, Thomas Joseph

    Conformational changes drive protein function, including catalysis, allostery, and signaling. X-ray diffuse scattering from protein crystals has frequently been cited as a probe of these correlated motions, with significant potential to advance our understanding of biological dynamics. However, recent work challenged this prevailing view, suggesting instead that diffuse scattering primarily originates from rigid body motions and could therefore be applied to improve structure determination. To investigate the nature of the disorder giving rise to diffuse scattering, and thus the potential applications of this signal, a diverse repertoire of disorder models was assessed for its ability to reproduce the diffuse signalmore » reconstructed from three protein crystals. This comparison revealed that multiple models of intramolecular conformational dynamics, including ensemble models inferred from the Bragg data, could not explain the signal. Models of rigid body or short-range liquid-like motions, in which dynamics are confined to the biological unit, showed modest agreement with the diffuse maps, but were unable to reproduce experimental features indicative of long-range correlations. Extending a model of liquid-like motions to include disorder across neighboring proteins in the crystal significantly improved agreement with all three systems and highlighted the contribution of intermolecular correlations to the observed signal. These findings anticipate a need to account for intermolecular disorder in order to advance the interpretation of diffuse scattering to either extract biological motions or aid structural inference.« less

  9. A Theoretical Study of the Hydration of Methane, from the Aqueous Solution to the sI Hydrate-Liquid Water-Gas Coexistence

    PubMed Central

    Luis, Daniel Porfirio; García-González, Alcione; Saint-Martin, Humberto

    2016-01-01

    Monte Carlo and molecular dynamics simulations were done with three recent water models TIP4P/2005 (Transferable Intermolecular Potential with 4 Points/2005), TIP4P/Ice (Transferable Intermolecular Potential with 4 Points/ Ice) and TIP4Q (Transferable Intermolecular Potential with 4 charges) combined with two models for methane: an all-atom one OPLS-AA (Optimal Parametrization for the Liquid State) and a united-atom one (UA); a correction for the C–O interaction was applied to the latter and used in a third set of simulations. The models were validated by comparison to experimental values of the free energy of hydration at 280, 300, 330 and 370 K, all under a pressure of 1 bar, and to the experimental radial distribution functions at 277, 283 and 291 K, under a pressure of 145 bar. Regardless of the combination rules used for σC,O, good agreement was found, except when the correction to the UA model was applied. Thus, further simulations of the sI hydrate were performed with the united-atom model to compare the thermal expansivity to the experiment. A final set of simulations was done with the UA methane model and the three water models, to study the sI hydrate-liquid water-gas coexistence at 80, 230 and 400 bar. The melting temperatures were compared to the experimental values. The results show the need to perform simulations with various different models to attain a reliable and robust molecular image of the systems of interest. PMID:27240339

  10. Vibrational spectroscopic, structural and nonlinear optical activity studies on 2-amino-3-chloro-5-trifluoromethyl pyridine: A DFT approach

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Asath, R. Mohamed; Premkumar, S.; Mathavan, T.

    2016-05-23

    The conformational analysis was carried out for 2-amino-3-chloro-5-trifluoromethylpyridine using potential energy surface (PES) scan and the most stable optimized conformer was predicted. The theoretical vibrational frequencies were calculated for the optimized geometry using DFT/B3LYP cc-pVQZ basis set by Gaussian 09 Program. The vibrational frequencies were assigned on the basis of potential energy distribution calculation using VEDA 4.0 program package. The Mulliken atomic charge values were calculated. In the Frontier molecular orbitals analysis, the molecular reactivity, kinetic stability, intermolecular charge transfer studies and the calculation of ionization energy, electron affinity, global hardness, chemical potential, electrophilicity index and softness of the moleculemore » were carried out. The nonlinear optical (NLO) activity was studied and the first order hyperpolarizability value was computed, which was 3.48 times greater than the urea. The natural bond orbital analysis was also performed to confirm the NLO activity of the molecule. Hence, the ACTP molecule is a promising candidate for NLO materials.« less

  11. Vibrational spectroscopic, structural and nonlinear optical activity studies on 2-amino-3-chloro-5-trifluoromethyl pyridine: A DFT approach

    NASA Astrophysics Data System (ADS)

    Asath, R. Mohamed; Premkumar, S.; Rekha, T. N.; Jawahar, A.; Mathavan, T.; Benial, A. Milton Franklin

    2016-05-01

    The conformational analysis was carried out for 2-amino-3-chloro-5-trifluoromethylpyridine using potential energy surface (PES) scan and the most stable optimized conformer was predicted. The theoretical vibrational frequencies were calculated for the optimized geometry using DFT/B3LYP cc-pVQZ basis set by Gaussian 09 Program. The vibrational frequencies were assigned on the basis of potential energy distribution calculation using VEDA 4.0 program package. The Mulliken atomic charge values were calculated. In the Frontier molecular orbitals analysis, the molecular reactivity, kinetic stability, intermolecular charge transfer studies and the calculation of ionization energy, electron affinity, global hardness, chemical potential, electrophilicity index and softness of the molecule were carried out. The nonlinear optical (NLO) activity was studied and the first order hyperpolarizability value was computed, which was 3.48 times greater than the urea. The natural bond orbital analysis was also performed to confirm the NLO activity of the molecule. Hence, the ACTP molecule is a promising candidate for NLO materials.

  12. Conformational, vibrational spectroscopic and nonlinear optical activity studies on N,N-Di-Boc-2-amino pyridine : A DFT approach

    NASA Astrophysics Data System (ADS)

    Asath, R. Mohamed; Premkumar, R.; Mathavan, T.; Benial, A. Milton Franklin

    2017-05-01

    The conformational analysis was carried out for N,N-Di-Boc-2-amino pyridine using potential energy surface (PES) scan and the most stable optimized conformer was predicted. The theoretical vibrational frequencies were calculated for the optimized geometry using DFT/B3LYP cc-pVTZ basis set by Gaussian 09 Program. The vibrational frequencies were assigned on the basis of potential energy distribution calculation using VEDA 4.0 program package. The Mulliken atomic charge values were calculated. In the Frontier molecular orbitals analysis, the molecular reactivity, kinetic stability, intermolecular charge transfer studies and the calculation of ionization energy, electron affinity, global hardness, chemical potential, electrophilicity index and softness of the molecule were carried out. The nonlinear optical (NLO) activity was examined and the first order hyperpolarizability value was computed, which was 2.27 times greater than the urea. The natural bond orbital analysis was also performed to confirm the NLO activity of the molecule. Hence, the DBAP molecule is a promising candidate for NLO materials.

  13. Spectroscopic, quantum chemical calculation and molecular docking of dipfluzine

    NASA Astrophysics Data System (ADS)

    Srivastava, Karnica; Srivastava, Anubha; Tandon, Poonam; Sinha, Kirti; Wang, Jing

    2016-12-01

    Molecular structure and vibrational analysis of dipfluzine (C27H29FN2O) were presented using FT-IR and FT-Raman spectroscopy and quantum chemical calculations. The theoretical ground state geometry and electronic structure of dipfluzine are optimized by the DFT/B3LYP/6-311++G (d,p) method and compared with those of the crystal data. The 1D potential energy scan was performed by varying the dihedral angle using B3LYP functional at 6-31G(d,p) level of theory and thus the most stable conformer of the compound were determined. Molecular electrostatic potential surface (MEPS), frontier orbital analysis and electronic reactivity descriptor were used to predict the chemical reactivity of molecule. Energies of intra- and inter-molecular hydrogen bonds in molecule and their electronic aspects were investigated by natural bond orbital (NBO). To find out the anti-apoptotic activity of the title compound molecular docking studies have been performed against protein Fas.

  14. Competing Thermodynamic and Dynamic Factors Select Molecular Assemblies on a Gold Surface

    NASA Astrophysics Data System (ADS)

    Haxton, Thomas K.; Zhou, Hui; Tamblyn, Isaac; Eom, Daejin; Hu, Zonghai; Neaton, Jeffrey B.; Heinz, Tony F.; Whitelam, Stephen

    2013-12-01

    Controlling the self-assembly of surface-adsorbed molecules into nanostructures requires understanding physical mechanisms that act across multiple length and time scales. By combining scanning tunneling microscopy with hierarchical ab initio and statistical mechanical modeling of 1,4-substituted benzenediamine (BDA) molecules adsorbed on a gold (111) surface, we demonstrate that apparently simple nanostructures are selected by a subtle competition of thermodynamics and dynamics. Of the collection of possible BDA nanostructures mechanically stabilized by hydrogen bonding, the interplay of intermolecular forces, surface modulation, and assembly dynamics select at low temperature a particular subset: low free energy oriented linear chains of monomers and high free energy branched chains.

  15. Inhibition of thrombin by functionalized C60 nanoparticles revealed via in vitro assays and in silico studies.

    PubMed

    Liu, Yanyan; Fu, Jianjie; Pan, Wenxiao; Xue, Qiao; Liu, Xian; Zhang, Aiqian

    2018-01-01

    The studies on the human toxicity of nanoparticles (NPs) are far behind the rapid development of engineered functionalized NPs. Fullerene has been widely used as drug carrier skeleton due to its reported low risk. However, different from other kinds of NPs, fullerene-based NPs (C 60 NPs) have been found to have an anticoagulation effect, although the potential target is still unknown. In the study, both experimental and computational methods were adopted to gain mechanistic insight into the modulation of thrombin activity by nine kinds of C 60 NPs with diverse surface chemistry properties. In vitro enzyme activity assays showed that all tested surface-modified C 60 NPs exhibited thrombin inhibition ability. Kinetic studies coupled with competitive testing using 3 known inhibitors indicated that six of the C 60 NPs, of greater hydrophobicity and hydrogen bond (HB) donor acidity or acceptor basicity, acted as competitive inhibitors of thrombin by directly interacting with the active site of thrombin. A simple quantitative nanostructure-activity relationship model relating the surface substituent properties to the inhibition potential was then established for the six competitive inhibitors. Molecular docking analysis revealed that the intermolecular HB interactions were important for the specific binding of C 60 NPs to the active site canyon, while the additional stability provided by the surface groups through van der Waals interaction also play a key role in the thrombin binding affinity of the NPs. Our results suggest that thrombin is a possible target of the surface-functionalized C 60 NPs relevant to their anticoagulation effect. Copyright © 2017. Published by Elsevier B.V.

  16. Conformational changes of the amyloid beta-peptide (1-40) adsorbed on solid surfaces.

    PubMed

    Giacomelli, Carla E; Norde, Willem

    2005-05-23

    The conformational change of the 39-43 residues of the amyloid beta-peptide (Abeta) toward a beta-sheet enriched state promotes self-aggregation of the peptide molecules and constitutes the major peptide component of the amyloid plaques in Alzheimer patients. The crucial question behind the self-aggregation of Abeta is related to the different pathways the peptide may take after cleavage from the amyloid precursor proteins at cellular membranes. This work is aiming at determining the conformation of the Abeta (1-40) adsorbed on hydrophobic Teflon and hydrophilic silica particles, as model sorbent surfaces mimicking the apolar transmembrane environment and the polar, charged membrane surface, respectively. The mechanism by which the Abeta interacts with solid surfaces strongly depends on the hydrophobic/hydrophilic character of the particles. Hydrophobic and electrostatic interactions contribute differently in each case, causing a completely different conformational change of the adsorbed molecules on the two surfaces. When hydrophobic interactions between the peptide and the sorbent prevail, the adsorbed Abeta (1-40) mainly adopts an alpha-helix conformation due to H-bonding in the apolar part of the peptide that is oriented towards the surface. On the other hand, when the peptide adsorbs by electrostatic interactions beta-sheet formation is promoted due to intermolecular association between the apolar parts of the adsorbed peptide. Irrespective of the characteristics of the solid sorbent, crowding the surface results in intermolecular association between adsorbed molecules leading to a strong aggregation tendency of the Abeta (1-40). [Diagram: see text] CD spectra of Abeta (1-40) at pH 7: A) in solution ([Abeta]=0.2 mg.ml(-1)) freshly prepared (line) and after overnight incubation (symbols);B) on Teflon (Gamma=0.5 mg.m(-2)).

  17. Direct atomic force microscopic evidence of hydrogen bonding interaction in phosphatidic acid Langmuir-Blodgett bilayer

    NASA Astrophysics Data System (ADS)

    Chunbo, Yuan; Ying, Wu; Yueming, Sun; Zuhong, Lu; Juzheng, Liu

    1997-12-01

    Molecularly resolved atomic force microscopic images of phosphatidic acid Langmuir-Blodgett bilayers show that phosphate groups in polar region of the films are packing in a distorted hexagonal organization with long-range orientational and positional order. Intermolecular hydrogen bonding interactions, which should be responsible for the ordering and stability of bilayers, are visualized directly between adjacent phosphate groups in the polar region of the bilayer. Some adjacent phosphatidic acid molecules link each other through the formation of intermolecular hydrogen bonds between phosphate groups in polar region to form local supramolecules, which provide the bilayer's potential as a functionized film in the investigation on the lateral conductions of protons in the biological bilayers.

  18. Thermodynamic curvature for attractive and repulsive intermolecular forces

    NASA Astrophysics Data System (ADS)

    May, Helge-Otmar; Mausbach, Peter; Ruppeiner, George

    2013-09-01

    The thermodynamic curvature scalar R for the Lennard-Jones system is evaluated in phase space, including vapor, liquid, and solid state. We paid special attention to the investigation of R along vapor-liquid, liquid-solid, and vapor-solid equilibria. Because R is a measure of interaction strength, we traced out the line R=0 dividing the phase space into regions with effectively attractive (R<0) or repulsive (R>0) interactions. Furthermore, we analyzed the dependence of R on the strength of attraction applying a perturbation ansatz proposed by Weeks-Chandler-Anderson. Our results show clearly a transition from R>0 (for poorly repulsive interaction) to R<0 when loading attraction in the intermolecular potential.

  19. Advances in chemoselective intermolecular cross-benzoin-type condensation reactions.

    PubMed

    Gaggero, Nicoletta; Pandini, Stefano

    2017-08-23

    The intermolecular cross-benzoin and acyloin condensation reactions are powerful approaches to α-hydroxy carbonyls in a single step. However, their potentiality suffers from the occurrence of side reactions including self-condensation and the formation of the undesired cross-acyloin. The broad range of azolium salt precatalysts available confers high tunability to NHC mediated benzoin condensation, assuring a good level of selectivity to the direct coupling between two non-equivalent aldehydes. Many efforts have also been devoted to the design of strategies that expand the range of suitable reaction partners beyond the traditional aldehydes and to the discovery of novel umpolung catalytic systems. The synthesis of both racemic and enantiomerically enriched acyloins is reviewed.

  20. Rhodium(III)-Catalyzed Activation of C(sp3)-H Bonds and Subsequent Intermolecular Amidation at Room Temperature.

    PubMed

    Huang, Xiaolei; Wang, Yan; Lan, Jingbo; You, Jingsong

    2015-08-03

    Disclosed herein is a Rh(III)-catalyzed chelation-assisted activation of unreactive C(sp3)-H bonds, thus enabling an intermolecular amidation to provide a practical and step-economic route to 2-(pyridin-2-yl)ethanamine derivatives. Substrates with other N-donor groups are also compatible with the amidation. This protocol proceeds at room temperature, has a relatively broad functional-group tolerance and high selectivity, and demonstrates the potential of rhodium(III) in the promotive functionalization of unreactive C(sp3)-H bonds. A rhodacycle having a SbF6(-) counterion was identified as a plausible intermediate. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Structure and bonding in beta-HMX-characterization of a trans-annular N...N interaction.

    PubMed

    Zhurova, Elizabeth A; Zhurov, Vladimir V; Pinkerton, A Alan

    2007-11-14

    Chemical bonding in the beta-phase of the 1,3,5,7-tetranitro-1,3,5,7-tetraazacyclooctane (HMX) crystal based on the experimental electron density obtained from X-ray diffraction data at 20 K, and solid state theoretical calculations, has been analyzed in terms of the quantum theory of atoms in molecules. Features of the intra- and intermolecular bond critical points and the oxygen atom lone-pair locations are discussed. An unusual N...N bonding interaction across the 8-membered ring has been discovered and characterized. Hydrogen bonding, O...O and O...C intermolecular interactions are reported. Atomic charges and features of the electrostatic potential are discussed.

  2. Aerothermodynamics of Satellite During Atmospheric Reentry for the Whole Range of Gas Rarefaction: Influence of Inelastic Intermolecular Collisions

    NASA Astrophysics Data System (ADS)

    Kozak, Dalton Vinicius; Sharipov, Felix

    2012-08-01

    The aerothermodynamic characteristics of the Brazilian satellite Satélite de Reentrada Atmosférica were calculated for orbital-flight and atmospheric-reentry conditions with the direct simulation Monte Carlo method for a diatomic gas. The internal modes of molecule energy in the intermolecular interaction, such as the rotational energy, were taken into account. The numerical calculations cover a range of gas rarefactions wide enough to embrace the free-molecule and hydrodynamic regimes. Two Mach numbers were considered: 10 and 20. Numerical results include the drag force of the satellite, the energy flux, pressure coefficient, and skin friction coefficient over the satellite surface, the density and temperature distributions, and streamlines of the gas flow around the satellite. The influence of the satellite temperature upon these characteristics was evaluated at different satellite temperatures.

  3. Catching the role of anisotropic electronic distribution and charge transfer in halogen bonded complexes of noble gases

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bartocci, Alessio; Cappelletti, David; Pirani, Fernando

    2015-05-14

    The systems studied in this work are gas-phase weakly bound adducts of the noble-gas (Ng) atoms with CCl{sub 4} and CF{sub 4}. Their investigation was motivated by the widespread current interest for the intermolecular halogen bonding (XB), a structural motif recognized to play a role in fields ranging from elementary processes to biochemistry. The simulation of the static and dynamic behaviors of complex systems featuring XB requires the formulation of reliable and accurate model potentials, whose development relies on the detailed characterization of strength and nature of the interactions occurring in simple exemplary halogenated systems. We thus selected the prototypicalmore » Ng-CCl{sub 4} and Ng-CF{sub 4} and performed high-resolution molecular beam scattering experiments to measure the absolute scale of their intermolecular potentials, with high sensitivity. In general, we expected to probe typical van der Waals interactions, consisting of a combination of size (exchange) repulsion with dispersion/induction attraction. For the He/Ne-CF{sub 4}, the analysis of the glory quantum interference pattern, observable in the velocity dependence of the integral cross section, confirmed indeed this expectation. On the other hand, for the He/Ne/Ar-CCl{sub 4}, the scattering data unravelled much deeper potential wells, particularly for certain configurations of the interacting partners. The experimental data can be properly reproduced only including a shifting of the repulsive wall at shorter distances, accompanied by an increased role of the dispersion attraction, and an additional short-range stabilization component. To put these findings on a firmer ground, we performed, for selected geometries of the interacting complexes, accurate theoretical calculations aimed to evaluate the intermolecular interaction and the effects of the complex formation on the electron charge density of the constituting moieties. It was thus ascertained that the adjustments of the potential suggested by the analysis of the experiments actually reflect two chemically meaningful contributions, namely, a stabilizing interaction arising from the anisotropy of the charge distribution around the Cl atom in CCl{sub 4} and a stereospecific electron transfer that occurs at the intermolecular distances mainly probed by the experiments. Our model calculations suggest that the largest effect is for the vertex geometry of CCl{sub 4} while other geometries appear to play a minor to negligible role.« less

  4. Relaxation of exciton and photoinduced dimerization in crystalline C60

    NASA Astrophysics Data System (ADS)

    Suzuki, Masato; Iida, Takeshi; Nasu, Keiichiro

    2000-01-01

    We numerically investigate the lattice relaxation of photogenerated exciton in crystalline C60 so as to clarify the mechanism of the photoinduced dimerization processes in this material. In our theory, we deal with the π electrons together with the interatomic effective potentials. Calculations are mainly based on the mean-field theory for interelectron interactions but are also reinforced by taking the electron-hole correlation into account, so that we can obtain the exciton effect. Using a cluster model, we calculate the adiabatic potential energy surfaces of the excitons relevant to the photoinduced dimerization processes occurring in a face-centered-cubic crystal of C60. The potential surfaces of the Frenkel excitons turned out to be quite uneven with several energy minimum points during the structural changes from the Franck-Condon state to the dimerized state. This leads to the conclusion that various structural defects exist at low temperatures even in the single crystal, as an intrinsic property of this molecular crystal with a complicated intermolecular interaction. From the analysis of the potential surfaces of the charge-transfer (CT) excitons, it is confirmed that the CT exciton relaxes down to its self-trapped state, wherein the adjacent two molecules get close together. This implies that the CT between adjacent two molecules is one of mechanisms that triggers the photodimerization or the photopolymerization. The oscillator strength distributions are also calculated for various intermediate structures along the lattice relaxation path. As the dimerization reaction proceeds, the oscillator strength grows in the energy region below the fundamental absorption edge, and the lowest-energy peak, originally at about 1.9 eV, finally shifts down to about 1.7 eV in the final dimerized structure. These results clarify the electronic origins of the luminescence observed in the C60 single crystal. Moreover, the origins of the photoinduced absorption spectra observed by Bazhenov, Gorbunov, and Volkodav are elucidated by characteristics of the adiabatic potential energy surfaces obtained here.

  5. Summary Report for the CONSET Program at AEDC

    DTIC Science & Technology

    1980-09-01

    the Lennard - Jones 12-6 intermolecular potential function, reduced onset pressures (P;) and temperatures (T;) have been determined using (lo) 16 AEDC...different, and this illustrates the inadequacy of the two-parameter Lennard - Jones potential for describing the interaction of polar molecules. As is well...molecules well described by the 12-6 Lennard - Jones potential will have common onset loci depending upon the specific heat ratio. However, polar molecules

  6. MOLECULAR INTERACTION POTENTIALS FOR THE DEVELOPMENT OF STRUCTURE-ACTIVITY RELATIONSHIPS

    EPA Science Inventory

    Abstract
    One reasonable approach to the analysis of the relationships between molecular structure and toxic activity is through the investigation of the forces and intermolecular interactions responsible for chemical toxicity. The interaction between the xenobiotic and the bio...

  7. Learning that Prepares for More Learning: Symbolic Mathematics in Physical Chemistry

    ERIC Educational Resources Information Center

    Zielinski, Theresa Julia

    2004-01-01

    The well-crafted templates are useful to learn the new concepts of chemistry. The templates focus on pressure-volume work, the Boltzmann distribution, the Gibbs free energy function, intermolecular potentials, the second virial coefficient and quantum mechanical tunneling.

  8. Characterization of the glass transition of water predicted by molecular dynamics simulations using nonpolarizable intermolecular potentials.

    PubMed

    Kreck, Cara A; Mancera, Ricardo L

    2014-02-20

    Molecular dynamics simulations allow detailed study of the experimentally inaccessible liquid state of supercooled water below its homogeneous nucleation temperature and the characterization of the glass transition. Simple, nonpolarizable intermolecular potentials are commonly used in classical molecular dynamics simulations of water and aqueous systems due to their lower computational cost and their ability to reproduce a wide range of properties. Because the quality of these predictions varies between the potentials, the predicted glass transition of water is likely to be influenced by the choice of potential. We have thus conducted an extensive comparative investigation of various three-, four-, five-, and six-point water potentials in both the NPT and NVT ensembles. The T(g) predicted from NPT simulations is strongly correlated with the temperature of minimum density, whereas the maximum in the heat capacity plot corresponds to the minimum in the thermal expansion coefficient. In the NVT ensemble, these points are instead related to the maximum in the internal pressure and the minimum of its derivative, respectively. A detailed analysis of the hydrogen-bonding properties at the glass transition reveals that the extent of hydrogen-bonds lost upon the melting of the glassy state is related to the height of the heat capacity peak and varies between water potentials.

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    De Marco, Luigi; Department of Chemistry, James Frank Institute, and The Institute for Biophysical Dynamics, The University of Chicago, 929 E 57th Street, Chicago, Illinois 60637; Fournier, Joseph A.

    Water’s extended hydrogen-bond network results in rich and complex dynamics on the sub-picosecond time scale. In this paper, we present a comprehensive analysis of the two-dimensional infrared (2D IR) spectrum of O–H stretching vibrations in liquid H{sub 2}O and their interactions with bending and intermolecular vibrations. By exploring the dependence of the spectrum on waiting time, temperature, and laser polarization, we refine our molecular picture of water’s complex ultrafast dynamics. The spectral evolution following excitation of the O–H stretching resonance reveals vibrational dynamics on the 50–300 fs time scale that are dominated by intermolecular delocalization. These O–H stretch excitons aremore » a result of the anharmonicity of the nuclear potential energy surface that arises from the hydrogen-bonding interaction. The extent of O–H stretching excitons is characterized through 2D depolarization measurements that show spectrally dependent delocalization in agreement with theoretical predictions. Furthermore, we show that these dynamics are insensitive to temperature, indicating that the exciton dynamics alone set the important time scales in the system. Finally, we study the evolution of the O–H stretching mode, which shows highly non-adiabatic dynamics suggestive of vibrational conical intersections. We argue that the so-called heating, commonly observed within ∼1 ps in nonlinear IR spectroscopy of water, is a nonequilibrium state better described by a kinetic temperature rather than a Boltzmann distribution. Our conclusions imply that the collective nature of water vibrations should be considered in describing aqueous solvation.« less

  10. Understanding the conformational changes and molecular structure of furoyl thioureas upon substitution

    NASA Astrophysics Data System (ADS)

    Cairo, Raúl Ramos; Stevens, Ana María Plutín; de Oliveira, Tamires Donizeth; Batista, Alzir A.; Castellano, Eduardo E.; Duque, Julio; Soria, Delia B.; Fantoni, Adolfo C.; Corrêa, Rodrigo S.; Erben, Mauricio F.

    2017-04-01

    1-Acyl thioureas [R1C(O)NHC(S)NR2R3] are shown to display conformational flexibility depending on the degree of substitution at the nitrogen atom. The conformational landscape and structural features for two closely related thioureas having R1 = 2-furoyl have been studied. The un-substituted 2-furoyl thiourea (I) and its dimethyl analogue, i.e. 1-(2-furoyl)-3,3-dimethyl thiourea (II), have been synthesized and fully characterized by spectroscopic (FT-IR, 1H and 13C NMR) and elemental analysis. According to single crystal X-ray diffraction analysis, compounds I and II crystallize in the monoclinic space group P21/c. In the compound I, the trans-cis geometry of the almost planar thiourea unit is stabilized by intramolecular Nsbnd H ⋯ Odbnd C hydrogen bond between the H atom of the cis thioamide and the carbonyl O atom. In compound II, however, the acyl thiourea group is non-planar, in good agreement with the potential energy curve computed at the B3LYP/6-31 + G(d,p) level of approximation. Centrosymmetric dimers generated by intermolecular Nsbnd H ⋯ Sdbnd C hydrogen bond forming R22(8) motif are present in the crystals. Intermolecular interactions have been rationalized in terms of topological partitions of the electron distributions and Hirshfeld surface analysis, which showed the occurrence of S ⋯ H, O ⋯ H and H ⋯ H contacts that display an important role to crystal packing stabilization of both thiourea derivatives.

  11. Time-dependent wave-packet quantum dynamics study of the Ne + D2(+) (v0 = 0-2, j0 = 0) → NeD(+) + D reaction: including the coriolis coupling.

    PubMed

    Yao, Cui-Xia; Zhang, Pei-Yu

    2014-07-10

    The dynamics of the Ne + D2(+) (v0 = 0-2, j0 = 0) → NeD(+) + D reaction has been investigated in detail by using an accurate time-dependent wave-packet method on the ground 1(2)A' potential energy surface. Comparisons between the Coriolis coupling results and the centrifugal-sudden ones reveal that Coriolis coupling effect can influence reaction dynamics of the NeD2(+) system. Integral cross sections have been evaluated for the Ne + D2(+) reaction and its isotopic variant Ne + H2(+), and a considerable intermolecular isotopic effect has been found. Also obvious is the great enhancement of the reactivity due to the reagent vibrational excitation. Besides, a comparison with previous theoretical results is also presented and discussed.

  12. Far infrared vibration-rotation-tunneling spectroscopy and internal dynamics of methane-water: A prototypical hydrophobic system

    NASA Astrophysics Data System (ADS)

    Dore, L.; Cohen, R. C.; Schmuttenmaer, C. A.; Busarow, K. L.; Elrod, M. J.; Loeser, J. G.; Saykally, R. J.

    1994-01-01

    Thirteen vibration-rotation-tunneling (VRT) bands of the CH4-H2O complex have been measured in the range from 18 to 35.5 cm-1 using tunable far infrared laser spectroscopy. The ground state has an average center of mass separation of 3.70 Å and a stretching force constant of 1.52 N/m, indicating that this complex is more strongly bound than Ar-H2O. The eigenvalue spectrum has been calculated with a variational procedure using a spherical expansion of a site-site ab initio intermolecular potential energy surface [J. Chem. Phys. 93, 7808 (1991)]. The computed eigenvalues exhibit a similar pattern to the observed spectra but are not in quantitative agreement. These observations suggest that both monomers undergo nearly free internal rotation within the complex.

  13. High intensity ultrasound treatment of faba bean (Vicia faba L.) protein: Effect on surface properties, foaming ability and structural changes.

    PubMed

    Martínez-Velasco, Alejandro; Lobato-Calleros, Consuelo; Hernández-Rodríguez, Blanca E; Román-Guerrero, Angélica; Alvarez-Ramirez, Jose; Vernon-Carter, E Jaime

    2018-06-01

    Response surface methodology was used for establishing the amplitude (72.67%) and time (17.29 min) high-intensity ultrasound (HIUS) conditions leading to an optimized faba bean protein isolate (OFPI) with lower interfacial tension, zeta potential and viscosity, and higher solubility than native faba bean protein isolate (NFPI). OFPI showed significantly higher adsorption dynamics at the air-water interface, and produced foam with significant smaller bubble diameter, higher overrun, stability and yield stress, and lower liquid drainage than NFPI. Fourier Transform Spectroscopy (FT-IR) revealed that the secondary structure of OFPI deferred from NFPI in terms of increases in β conformations (6.61% β-sheet, 19.6% β-turn, 0.8% anti-parallel β-sheet) and decreases in inter-molecular aggregates (43.54%). Multienzyme study pinpointed that the structural changes could have induced a decrease on the relative protein digestibility of OFPI respect that of NFPI. The results of this work demonstrate that HIUS technology improves the surface and foaming properties of faba bean protein isolate, which may favour the revalorisation of this crop. Copyright © 2018 Elsevier B.V. All rights reserved.

  14. Analytic Morse/long-range potential energy surfaces and "adiabatic-hindered-rotor" treatment for a symmetric top-linear molecule dimer: A case study of CH3F-H2

    NASA Astrophysics Data System (ADS)

    Zhang, Xiao-Long; Ma, Yong-Tao; Zhai, Yu; Li, Hui

    2018-03-01

    A first effective six-dimensional ab initio potential energy surface (PES) for CH3F-H2 which explicitly includes the intramolecular Q3 stretching normal mode of the CH3F monomer is presented. The electronic structure computations have been carried out at the explicitly correlated coupled cluster level of theory [CCSD(T)-F12a] with an augmented correlation-consistent triple zeta basis set. Five-dimensional analytical intermolecular PESs for ν3(CH3F) = 0 and 1 are then obtained by fitting the vibrationally averaged potentials to the Morse/Long-Range (MLR) potential function form. The MLR function form is applied to the nonlinear molecule-linear molecule case for the first time. These fits to 25 015 points have root-mean-square deviations of 0.74 cm-1 and 0.082 cm-1 for interaction energies less than 0.0 cm-1. Using the adiabatic hindered-rotor approximation, three-dimensional PESs for CH3F-paraH2 are generated from the 5D PESs over all possible orientations of the hydrogen monomer. The infrared and microwave spectra for CH3F-paraH2 dimer are predicted for the first time. These analytic PESs can be used for modeling the dynamical behavior in CH3F-(H2)N clusters, including the possible appearance of microscopic superfluidity.

  15. Terahertz laser spectroscopy of the water dimer intermolecular vibrations. II. (H{sub 2}O){sub 2}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Braly, L. B.; Liu, K.; Brown, M. G.

    Terahertz VRT laser spectra of four (H{sub 2}O){sub 2} intermolecular vibrations consisting of 362 transitions have been measured between 87 and 108 cm{sup -1} with ca. 2 MHz precision. The results differ both qualitatively and quantitatively from the predictions of dimer potentials tested. The spectra also reveal an ordering of the intermolecular vibrations which differs dramatically from that predicted by normal mode analysis. Strong coupling is indicated between the low barrier tunneling motions and the intermolecular vibrations as well as among different vibrations. In particular the 102.1 cm{sup -1} (H{sub 2}O){sub 2} vibration assigned as the acceptor wag ({nu}{sub 8})more » exhibits two types of perturbations. In one of these a component of K{sub a}=1 coupling with a tunneling component of K{sub a}=0 in the 108 cm{sup -1} acceptor twist ({nu}{sub 11}) vibration. There is also an indication that the 103.1 cm{sup -1} (H{sub 2}O){sub 2} band assigned as the donor in-plane bend ({nu}{sub 6}) is coupled to the acceptor wag resulting in a lower of the in-plane bend frequency and a higher acceptor wag frequency. Detailed analysis of the VRT levels confirms the extreme nonrigidity of this complex, indicating that the use of approximate models with reduced dimensionality to calculate its properties are likely to fail. (c) 2000 American Institute of Physics.« less

  16. CO{sub 2} isolated line shapes by classical molecular dynamics simulations: Influence of the intermolecular potential and comparison with new measurements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Larcher, G.; Tran, H., E-mail: ha.tran@lisa.u-pec.fr; Schwell, M.

    2014-02-28

    Room temperature absorption spectra of various transitions of pure CO{sub 2} have been measured in a broad pressure range using a tunable diode-laser and a cavity ring-down spectrometer, respectively, in the 1.6 μm and 0.8 μm regions. Their spectral shapes have been calculated by requantized classical molecular dynamics simulations. From the time-dependent auto-correlation function of the molecular dipole, including Doppler and collisional effects, spectral shapes are directly computed without the use of any adjusted parameter. Analysis of the spectra calculated using three different anisotropic intermolecular potentials shows that the shapes of pure CO{sub 2} lines, in terms of both themore » Lorentz widths and non-Voigt effects, slightly depend on the used potential. Comparisons between these ab initio calculations and the measured spectra show satisfactory agreement for all considered transitions (from J = 6 to J = 46). They also show that non-Voigt effects on the shape of CO{sub 2} transitions are almost independent of the rotational quantum number of the considered lines.« less

  17. X-ray Intermolecular Structure Factor (XISF): separation of intra- and intermolecular interactions from total X-ray scattering data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mou, Q.; Benmore, C. J.; Yarger, J. L.

    2015-06-01

    XISF is a MATLAB program developed to separate intermolecular structure factors from total X-ray scattering structure factors for molecular liquids and amorphous solids. The program is built on a trust-region-reflective optimization routine with the r.m.s. deviations of atoms physically constrained. XISF has been optimized for performance and can separate intermolecular structure factors of complex molecules.

  18. X-ray Intermolecular Structure Factor ( XISF ): separation of intra- and intermolecular interactions from total X-ray scattering data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mou, Q.; Benmore, C. J.; Yarger, J. L.

    2015-05-09

    XISFis a MATLAB program developed to separate intermolecular structure factors from total X-ray scattering structure factors for molecular liquids and amorphous solids. The program is built on a trust-region-reflective optimization routine with the r.m.s. deviations of atoms physically constrained.XISFhas been optimized for performance and can separate intermolecular structure factors of complex molecules.

  19. An approach to the origin of self-replicating system. I - Intermolecular interactions

    NASA Technical Reports Server (NTRS)

    Macelroy, R. D.; Coeckelenbergh, Y.; Rein, R.

    1978-01-01

    The present paper deals with the characteristics and potentialities of a recently developed computer-based molecular modeling system. Some characteristics of current coding systems are examined and are extrapolated to the apparent requirements of primitive prebiological coding systems.

  20. TDDFT study of twisted intramolecular charge transfer and intermolecular double proton transfer in the excited state of 4‧-dimethylaminoflavonol in ethanol solvent

    NASA Astrophysics Data System (ADS)

    Wang, Ye; Shi, Ying; Cong, Lin; Li, Hui

    2015-02-01

    Time-dependent density functional theory method at the def-TZVP/B3LYP level was employed to investigate the intramolecular and intermolecular hydrogen bonding dynamics in the first excited (S1) state of 4‧-dimethylaminoflavonol (DMAF) monomer and in ethanol solution. In the DMAF monomer, we demonstrated that the intramolecular charge transfer (ICT) takes place in the S1 state. This excited state ICT process was followed by intramolecular proton transfer. Our calculated results are in good agreement with the mechanism proposed in experimental work. For the hydrogen-bonded DMAF-EtOH complex, it was demonstrated that the intermolecular hydrogen bonds can induce the formation of the twisted intramolecular charge transfer (TICT) state and the conformational twisting is along the C3-C4 bond. Moreover, the intermolecular hydrogen bonds can also facilitate the intermolecular double proton transfer in the TICT state. A stepwise intermolecular double proton transfer process was revealed. Therefore, the intermolecular hydrogen bonds can alter the mechanism of intramolecular charge transfer and proton transfer in the excited state for the DMAF molecule.

  1. Molecular Interactions at Marine Interfaces

    DTIC Science & Technology

    1994-09-20

    Microbial Attachment and Biofilm Formation 9:00 Michael Sinnott Structure of Extracellular Polysaccharides of Pseudomonas atlantica 9:30 Herb Waite...sit/ i u~ . Direct Measurements of the Intermolecular F~rccs Between Polysaccharide Exopolymers from marine Bacter"a and Solid Substrates Georges...aqueous medium of high ionic strength. Effect of Polysaccharide Surface Structurt on Microbial Attachment and Biofilm Formation David C. White and A

  2. Assessing the potential of atomistic molecular dynamics simulations to probe reversible protein-protein recognition and binding

    PubMed Central

    Abriata, Luciano A.; Dal Peraro, Matteo

    2015-01-01

    Protein-protein recognition and binding are governed by diffusion, noncovalent forces and conformational flexibility, entangled in a way that only molecular dynamics simulations can dissect at high resolution. Here we exploited ubiquitin’s noncovalent dimerization equilibrium to assess the potential of atomistic simulations to reproduce reversible protein-protein binding, by running submicrosecond simulations of systems with multiple copies of the protein at millimolar concentrations. The simulations essentially fail because they lead to aggregates, yet they reproduce some specificity in the binding interfaces as observed in known covalent and noncovalent ubiquitin dimers. Following similar observations in literature we hint at electrostatics and water descriptions as the main liable force field elements, and propose that their optimization should consider observables relevant to multi-protein systems and unfolded proteins. Within limitations, analysis of binding events suggests salient features of protein-protein recognition and binding, to be retested with improved force fields. Among them, that specific configurations of relative direction and orientation seem to trigger fast binding of two molecules, even over 50 Å distances; that conformational selection can take place within surface-to-surface distances of 10 to 40 Å i.e. well before actual intermolecular contact; and that establishment of contacts between molecules further locks their conformations and relative orientations. PMID:26023027

  3. Synthesis, characterization and computational study of the newly synthetized sulfonamide molecule

    NASA Astrophysics Data System (ADS)

    Murthy, P. Krishna; Suneetha, V.; Armaković, Stevan; Armaković, Sanja J.; Suchetan, P. A.; Giri, L.; Rao, R. Sreenivasa

    2018-02-01

    A new compound N-(2,5-dimethyl-4-nitrophenyl)-4-methylbenzenesulfonamide (NDMPMBS) has been derived from 2,5-dimethyl-4-nitroaniline and 4-methylbenzene-1-sulfonyl chloride. Structure was characterized by SCXRD studies and spectroscopic tools. Compound crystallized in the monoclinic crystal system with P21/c space group a = 10.0549, b = 18.967, c = 8.3087, β = 103.18 and Z = 4. Type and nature of intermolecular interaction in crystal state investigated by 3D-Hirshfeld surface and 2D-finger print plots revealed that title compound stabilized by several interactions. The structural and electronic properties of title compound have been calculated at DFT/B3LYP/6-311G++(d,p) level of theory. Computationally obtained spectral data was compared with experimental results, showing excellent mutual agreement. Assignment of each vibrational wave number was done on the basis of potential energy distribution (PED). Investigation of local reactivity descriptors encompassed visualization of molecular electrostatic potential (MEP) and average local ionization energy (ALIE) surfaces, visualization of Fukui functions, natural bond order (NBO) analysis, bond dissociation energies for hydrogen abstraction (H-BDE) and radial distribution functions (RDF) after molecular dynamics (MD) simulations. MD simulations were also used in order to investigate interaction of NDMPMBS molecule with 1WKR and 3ETT proteins protein.

  4. Intermolecular interactions and substrate effects for an adamantane monolayer on a Au(111) surface

    NASA Astrophysics Data System (ADS)

    Sakai, Yuki; Nguyen, Giang D.; Capaz, Rodrigo B.; Coh, Sinisa; Pechenezhskiy, Ivan V.; Hong, Xiaoping; Wang, Feng; Crommie, Michael F.; Saito, Susumu; Louie, Steven G.; Cohen, Marvin L.

    2013-12-01

    We study theoretically and experimentally the infrared (IR) spectrum of an adamantane monolayer on a Au(111) surface. Using a STM-based IR spectroscopy technique (IRSTM) we are able to measure both the nanoscale structure of an adamantane monolayer on Au(111) as well as its infrared spectrum, while DFT-based ab initio calculations allow us to interpret the microscopic vibrational dynamics revealed by our measurements. We find that the IR spectrum of an adamantane monolayer on Au(111) is substantially modified with respect to the gas-phase IR spectrum. The first modification is caused by the adamantane-adamantane interaction due to monolayer packing, and it reduces the IR intensity of the 2912 cm-1 peak (gas phase) by a factor of 3.5. The second modification originates from the adamantane-gold interaction, and it increases the IR intensity of the 2938 cm-1 peak (gas phase) by a factor of 2.6 and reduces its frequency by 276 cm-1. We expect that the techniques described here can be used for an independent estimate of substrate effects and intermolecular interactions in other diamondoid molecules and for other metallic substrates.

  5. A new 1D manganese(II) coordination polymer with end-to-end azide bridge and isonicotinoylhydrazone Schiff base ligand: Crystal structure, Hirshfeld surface, NBO and thermal analyses

    NASA Astrophysics Data System (ADS)

    Khani, S.; Montazerozohori, M.; Masoudiasl, A.; White, J. M.

    2018-02-01

    A new manganese (II) coordination polymer, [MnL2 (μ-1,3-N3)2]n, with co-ligands including azide anion and Schiff base based on isonicotinoylhydrazone has been synthesized and characterized. The crystal structure determination shows that the azide ligand acts as end-to-end (EE) bridging ligand and generates a one-dimensional coordination polymer. In this compound, each manganes (II) metal center is hexa-coordinated by four azide nitrogens and two pyridinic nitrogens for the formation of octahedral geometry. The analysis of crystal packing indicates that the 1D chain of [MnL2 (μ-1,3-N3)2]n, is stabilized as a 3D supramolecular network by intra- and inter-chain intermolecular interactions of X-H···Y (X = N and C, Y = O and N). Hirshfeld surface analysis and 2D fingerprint plots have been used for a more detailed investigation of intermolecular interactions. Also, natural bond orbital (NBO) analysis was performed to get information about atomic charge distributions, hybridizations and the strength of interactions. Finally, thermal analysis of compound showed its complete decomposition during three thermal steps.

  6. Nanoparticles in ionic liquids: interactions and organization.

    PubMed

    He, Zhiqi; Alexandridis, Paschalis

    2015-07-28

    Ionic liquids (ILs), defined as low-melting organic salts, are a novel class of compounds with unique properties and a combinatorially great chemical diversity. Ionic liquids are utilized as synthesis and dispersion media for nanoparticles as well as for surface functionalization. Ionic liquid and nanoparticle hybrid systems are governed by a combined effect of several intermolecular interactions between their constituents. For each interaction, including van der Waals, electrostatic, structural, solvophobic, steric, and hydrogen bonding, the characterization and quantitative calculation methods together with factors affecting these interactions are reviewed here. Various self-organized structures based on nanoparticles in ionic liquids are generated as a result of a balance of these intermolecular interactions. These structures, including colloidal glasses and gels, lyotropic liquid crystals, nanoparticle-stabilized ionic liquid-containing emulsions, ionic liquid surface-functionalized nanoparticles, and nanoscale ionic materials, possess properties of both ionic liquids and nanoparticles, which render them useful as novel materials especially in electrochemical and catalysis applications. This review of the interactions within nanoparticle dispersions in ionic liquids and of the structure of nanoparticle and ionic liquid hybrids provides guidance on the rational design of novel ionic liquid-based materials, enabling applications in broad areas.

  7. Synthesis, crystal structure, Hirshfeld surfaces analysis and anti-ischemic activity of cinnamide derivatives

    NASA Astrophysics Data System (ADS)

    Zhong, Jian-gang; Han, Jia-pei; Li, Xiao-feng; Xu, Yi; Zhong, Yan; Wu, Bin

    2018-02-01

    Two cinnamide derivatives, namely, (E)-1-(4-(bis(4-methylphenyl)- methyl)piperazin-1-yl)-3-(3,4-diethoxyphenyl)prop-2-en-1-one (5) and (E)-1-(4-(bis- (4-fluorophenyl)methyl)piperazin-1-yl)-3-(4-methoxyphenyl)prop-2-en-1-one (6), have been synthesized and characterized by IR spectra, High resolution mass spectra, 1H NMR spectra, 13C NMR spectra. The compound 5 is a novel compound and has never been reported in the literature. Their crystal structures were studied by single-crystal X-ray diffraction. They all crystallize in the monoclinic system. The single-crystal X-ray revealed that compound 5 has infinite X-shaped 1-D polymeric chains structure and compound 6 has a layered 3-D structure by intermolecular interactions. Hirshfeld surface analysis demonstrated the presence of H⋯H, O⋯H, C⋯H, F⋯H, Csbnd H⋯π and π⋯π intermolecular interactions. In addition, the MTT assay results indicated that the compounds 5 and 6 display effective activities against neurotoxicity which is induced by glutamine in PC12 cells. The in vivo experiment indicated that the compound 6 has a good protective effect on cerebral infarction.

  8. Conduction mechanism of nitronyl-nitroxide molecular magnetic compounds

    NASA Astrophysics Data System (ADS)

    Dotti, N.; Heintze, E.; Slota, M.; Hübner, R.; Wang, F.; Nuss, J.; Dressel, M.; Bogani, L.

    2016-04-01

    We investigate the conduction mechanisms of nitronyl-nitroxide (NIT) molecular radicals, as useful for the creation of nanoscopic molecular spintronic devices, finding that it does not correspond to standard Mott behavior, as previously postulated. We provide a complete investigation using transport measurements, low-energy, sub-THz spectroscopy and introducing differently substituted phenyl appendages. We show that a nontrivial surface-charge-limited regime is present in addition to the standard low-voltage Ohmic conductance. Scaling analysis allows one to determine all the main transport parameters for the compounds and highlights the presence of charge-trapping effects. Comparison among the different compounds shows the relevance of intermolecular stacking between the aromatic ring of the phenyl appendix and the NIT motif in the creation of useful electron transport channels. The importance of intermolecular pathways is further highlighted by electronic structure calculations, which clarify the nature of the electronic channels and their effect on the Mott character of the compounds.

  9. Adsorption of organic molecules on a porous polymer surface modified with the supramolecular structure of melamine-cyanuric acid

    NASA Astrophysics Data System (ADS)

    Gainullina, Yu. Yu.; Guskov, V. Yu.

    2017-10-01

    The adsorption of organic molecules on the surface of a porous polymeric sorbent modified with a mixed cyanuric acid-melamine supramolecular structure is studied. The parameters of thermodynamic adsorption are considered and the contributions from intermolecular interactions to the Helmholtz energy of adsorption are assessed. Analysis of the molar changes in internal energy and adsorption entropy shows that the supramolecular structure formed on the surface could not exhibit dimension effects, indicating there were no cavities. The contributions from nonspecific interactions to the Helmholtz energy of adsorption generally fall, while those of specific interactions increase, indicating an increase in the polarity of the sorbent surface.

  10. Synthesis, structural characterization, Hirshfeld surface analysis and spectroscopic studies of cadmium (II) chloride complex with 4-hydroxy-1-methylpiperidine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Soudani, S.; Ferretti, V.; Jelsch, C.

    The chemical preparation, crystal structure, Hirshfeld surface analysis and spectroscopic characterization of the novel cadmium (II) 4-hydroxy-1-methylpiperidine complex, Cd{sub 4}Cl{sub 10}(C{sub 6}H{sub 14}NO){sub 2}·2H{sub 2}O, have been reported. The atomic arrangement can be described as built up by an anionic framework, formed by edge sharing CdCl{sub 6} and CdCl{sub 5}O octahedral linear chains spreading along the a-axis. These chains are interconnected by water molecules via O–H⋯Cl and O–H⋯O hydrogen bonds to form layers parallel to (011) plane. The organic cations are inserted between layers through C–H⋯Cl hydrogen bonds. Investigation of intermolecular interactions and crystal packing via Hirshfeld surface analysis revealsmore » that the H{sub C}⋯Cl and H{sub C}⋯H{sub C} intermolecular interactions are the most abundant contacts of the organic cation in the crystal packing. The statistical analysis of crystal contacts reveals the driving forces in the packing formation. The {sup 13}C and {sup 15}N CP-MAS NMR spectra are in agreement with the X-ray structure. The vibrational absorption bands were identified by infrared spectroscopy. DFT calculations allowed the attribution of the NMR peaks and of the IR bands.« less

  11. Synthesis, crystal structures and Hirshfeld surface analyses of two new Salen type nickel/sodium heteronuclear complexes

    NASA Astrophysics Data System (ADS)

    Mahlooji, Niloofar; Behzad, Mahdi; Tarahhomi, Atekeh; Maroney, Michael; Rudbari, Hadi Amiri; Bruno, Giuseppe; Ghanbari, Bahram

    2016-04-01

    Two new heteronuclear Nickel(II)/Sodium(I) complexes of a side-off compartmental Schiff base ligand were synthesized and characterized by spectroscopic methods. Crystal structures of both of the complexes were also obtained. The Schiff base ligand was synthesized from the condensation of meso-1,2-diphenyl-1,2-ethylenediamine with 2-hydroxy-3-methoxybenzaldehyde. In both of the complexes the Ni(II) ion is coordinated to the inner N2O2 coordination sphere with square-planar geometry and the Na(I) ion is coordinated to the outer O2 O2‧ coordination sphere. In Complex (1) with general formula [Ni(L)Na(CH3OH)(ClO4)] the sodium ion is seven coordinated while in (2) with general formula [{Ni(L)Na(OH2)}2(μ-Ni(CN)4)] the sodium ion is six coordinated. Intermolecular interactions in two studied complexes were analyzed using 3D Hirshfeld surfaces and corresponding 2D fingerprint plots. This analysis showed that the H … H and C … H/H … C contacts for both structures (altogether 67.5% of total Hirshfeld surface area for (1) and 77.6% for (2)) and the O … H/H … O (24.2%) for (1) and the N … H/H … N (8.1%) contacts for (2) were the characteristic intermolecular contacts in the related crystal structures.

  12. Interactions of the α-subunits of heterotrimeric G-proteins with GPCRs, effectors and RGS proteins: a critical review and analysis of interacting surfaces, conformational shifts, structural diversity and electrostatic potentials.

    PubMed

    Baltoumas, Fotis A; Theodoropoulou, Margarita C; Hamodrakas, Stavros J

    2013-06-01

    G-protein coupled receptors (GPCRs) are one of the largest families of membrane receptors in eukaryotes. Heterotrimeric G-proteins, composed of α, β and γ subunits, are important molecular switches in the mediation of GPCR signaling. Receptor stimulation after the binding of a suitable ligand leads to G-protein heterotrimer activation and dissociation into the Gα subunit and Gβγ heterodimer. These subunits then interact with a large number of effectors, leading to several cell responses. We studied the interactions between Gα subunits and their binding partners, using information from structural, mutagenesis and Bioinformatics studies, and conducted a series of comparisons of sequence, structure, electrostatic properties and intermolecular energies among different Gα families and subfamilies. We identified a number of Gα surfaces that may, in several occasions, participate in interactions with receptors as well as effectors. The study of Gα interacting surfaces in terms of sequence, structure and electrostatic potential reveals features that may account for the Gα subunit's behavior towards its interacting partners. The electrostatic properties of the Gα subunits, which in some cases differ greatly not only between families but also between subfamilies, as well as the G-protein interacting surfaces of effectors and regulators of G-protein signaling (RGS) suggest that electrostatic complementarity may be an important factor in G-protein interactions. Energy calculations also support this notion. This information may be useful in future studies of G-protein interactions with GPCRs and effectors. Copyright © 2013 Elsevier Inc. All rights reserved.

  13. Monte Carlo simulations of liquid tetrahydrofuran including pseudorotationa)

    NASA Astrophysics Data System (ADS)

    Chandrasekhar, Jayaraman; Jorgensen, William L.

    1982-11-01

    Monte Carlo statistical mechanics simulations have been carried out for liquid tetrahydrofuran (THF) with and without pseudorotation at 1 atm and 25 °C. The intermolecular potential functions consisted of Lennard-Jones and Coulomb terms in the TIPS format reported previously for ethers. Pseudorotation of the ring was described using the generalized coordinates defined by Cremer and Pople, viz., the puckering amplitude and the phase angle of the ring. The corresponding intramolecular potential function was derived from molecular mechanics (MM2) calculations. Compared to the gas phase, the rings tend to be more flat and the population of the C2 twist geometry is slightly higher in liquid THF. However, pseudorotation has negligible effect on the calculated intermolecular structure and thermodynamic properties. The computed density, heat of vaporization, and heat capacity are in good agreement with experiment. The results are also compared with those from previous simulations of acyclic ethers. The present study provides the foundation for investigations of the solvating ability of THF.

  14. Transfer Printing Method to Obtain Polarized Light Emission in Organic Light-Emitting Device

    NASA Astrophysics Data System (ADS)

    Noh, Hee Yeon; Park, Chang-sub; Park, Ji-Sub; Kang, Shin-Won; Kim, Hak-Rin

    2012-06-01

    We demonstrate a transfer printing method to obtain polarized light emission in organic light-emitting devices (OLEDs). On a rubbed self-assembled monolayer (SAM), a spin-coated liquid crystalline light-emissive polymer is aligned along the rubbing direction because of the anisotropic interfacial intermolecular interaction. Owing to the low surface energy of the SAM surface, the light-emissive layer was easily transferred to a patterned poly(dimethylsiloxane) (PDMS) stamp surface without degrading the ordering. Finally, a polarized light-emissive OLED device was prepared by transferring the patterned light-emissive layer to the charge transport layer of the OLED structure.

  15. Separating the effects of repulsive and attractive forces on the phase diagram, interfacial, and critical properties of simple fluids

    NASA Astrophysics Data System (ADS)

    Fuentes-Herrera, M.; Moreno-Razo, J. A.; Guzmán, O.; López-Lemus, J.; Ibarra-Tandi, B.

    2016-06-01

    Molecular simulations in the canonical and isothermal-isobaric ensembles were performed to study the effect of varying the shape of the intermolecular potential on the phase diagram, critical, and interfacial properties of model fluids. The molecular interactions were modeled by the Approximate Non-Conformal (ANC) theory potentials. Unlike the Lennard-Jones or Morse potentials, the ANC interactions incorporate parameters (called softnesses) that modulate the steepness of the potential in their repulsive and attractive parts independently. This feature allowed us to separate unambiguously the role of each region of the potential on setting the thermophysical properties. In particular, we found positive linear correlation between all critical coordinates and the attractive and repulsive softness, except for the critical density and the attractive softness which are negatively correlated. Moreover, we found that the physical properties related to phase coexistence (such as span of the liquid phase between the critical and triple points, variations in the P-T vaporization curve, interface width, and surface tension) are more sensitive to changes in the attractive softness than to the repulsive one. Understanding the different roles of attractive and repulsive forces on phase coexistence may contribute to developing more accurate models of liquids and their mixtures.

  16. Separating the effects of repulsive and attractive forces on the phase diagram, interfacial, and critical properties of simple fluids.

    PubMed

    Fuentes-Herrera, M; Moreno-Razo, J A; Guzmán, O; López-Lemus, J; Ibarra-Tandi, B

    2016-06-07

    Molecular simulations in the canonical and isothermal-isobaric ensembles were performed to study the effect of varying the shape of the intermolecular potential on the phase diagram, critical, and interfacial properties of model fluids. The molecular interactions were modeled by the Approximate Non-Conformal (ANC) theory potentials. Unlike the Lennard-Jones or Morse potentials, the ANC interactions incorporate parameters (called softnesses) that modulate the steepness of the potential in their repulsive and attractive parts independently. This feature allowed us to separate unambiguously the role of each region of the potential on setting the thermophysical properties. In particular, we found positive linear correlation between all critical coordinates and the attractive and repulsive softness, except for the critical density and the attractive softness which are negatively correlated. Moreover, we found that the physical properties related to phase coexistence (such as span of the liquid phase between the critical and triple points, variations in the P-T vaporization curve, interface width, and surface tension) are more sensitive to changes in the attractive softness than to the repulsive one. Understanding the different roles of attractive and repulsive forces on phase coexistence may contribute to developing more accurate models of liquids and their mixtures.

  17. Observation of aggregation triggered by Resonance Energy Transfer (RET) induced intermolecular pairing force.

    PubMed

    Pan, Xiaoyong; Wang, Weizhi; Ke, Lin; Zhang, Nan

    2017-07-20

    In this report, we showed the existence of RET induced intermolecular pairing force by comparing their fluorescence behaviors under room illumination vs standing in dark area for either PFluAnt solution or PFluAnt&PFOBT mixture. Their prominent emission attenuation under room illumination brought out the critical role of photo, i.e. RET induced intermolecular pairing force in induction of polymer aggregation. Constant UV-Vis absorption and fluorescence spectra in terms of both peak shapes and maximum wavelengths implied no chemical decomposition was involved. Recoverable fluorescence intensity, fluorescence lifetime as well as NMR spectra further exclude photo induced decomposition. The controllable on/off state of RET induced intermolecular pairing force was verified by the masking effect of outside PFluAnt solution which function as filter to block the excitation of inside PFluAnt and thus off the RET induced intermolecular pairing force. Theoretical calculation suggest that magnitude of RET induced intermolecular pairing force is on the same scale as that of van der Waals interaction. Although the absolute magnitude of RET induced intermolecular pairing force was not tunable, its effect can be magnified by intentionally turn it "on", which was achieved by irradiance with 5 W desk lamp in this report.

  18. A molecular dynamics study on the role of attractive and repulsive forces in internal energy, internal pressure and structure of dense fluids

    NASA Astrophysics Data System (ADS)

    Goharshadi, Elaheh K.; Morsali, Ali; Mansoori, G. Ali

    2007-01-01

    Isotherms of experimental data of internal pressure of dense fluids versus molar volume, Vm are shown to have each a maximum point at a Vmax below the critical molar volume. In this study, we investigated the role of attractive and repulsive intermolecular energies on this behavior using a molecular dynamics simulation technique. In the simulation, we choose the Lennard-Jones (LJ) intermolecular potential energy function. The LJ potential is known to be an effective potential representing a statistical average of the true pair and many-body interactions in simple molecular systems. The LJ potential function is divided into attractive and repulsive parts. MD calculations have produced internal energy, potential energy, transitional kinetic energy, and radial distribution function (RDF) for argon at 180 K and 450 K using LJ potential, LJ repulsive, and LJ attractive parts. It is shown that the LJ potential function is well capable of predicting the inflection point in the internal energy-molar volume curve as well as maximum point in the internal pressure-molar volume curve. It is also shown that at molar volumes higher than Vmax, the attractive forces have strong influence on determination of internal energy and internal pressure. At volumes lower than Vmax, neither repulsive nor attractive forces are dominating. Also, the coincidence between RDFs resulting from LJ potential and repulsive parts of LJ potential improves as molar volume approaches Vmax from high molar volumes. The coincidence becomes complete at Vmax ⩾ V.

  19. On the possibility of singlet fission in crystalline quaterrylene

    NASA Astrophysics Data System (ADS)

    Wang, Xiaopeng; Liu, Xingyu; Cook, Cameron; Schatschneider, Bohdan; Marom, Noa

    2018-05-01

    Singlet fission (SF), the spontaneous down-conversion of a singlet exciton into two triplet excitons residing on neighboring molecules, is a promising route to improve organic photovoltaic (OPV) device efficiencies by harvesting two charge carriers from one photon. However, only a few materials have been discovered that exhibit intermolecular SF in the solid state, most of which are acene derivatives. Recently, there has been a growing interest in rylenes as potential SF materials. We use many-body perturbation theory in the GW approximation and the Bethe-Salpeter equation to investigate the possibility of intermolecular SF in crystalline perylene and quaterrylene. A new method is presented for determining the percent charge transfer (%CT) character of an exciton wave-function from double-Bader analysis. This enables relating exciton probability distributions to crystal packing. Based on comparison to known and predicted SF materials with respect to the energy conservation criterion (ES-2ET) and %CT, crystalline quaterrylene is a promising candidate for intermolecular SF. Furthermore, quaterrylene is attractive for OPV applications, thanks to its high stability and narrow optical gap. Perylene is not expected to exhibit SF; however, it is a promising candidate for harvesting sub-gap photons by triplet-triplet annihilation.

  20. On the possibility of singlet fission in crystalline quaterrylene.

    PubMed

    Wang, Xiaopeng; Liu, Xingyu; Cook, Cameron; Schatschneider, Bohdan; Marom, Noa

    2018-05-14

    Singlet fission (SF), the spontaneous down-conversion of a singlet exciton into two triplet excitons residing on neighboring molecules, is a promising route to improve organic photovoltaic (OPV) device efficiencies by harvesting two charge carriers from one photon. However, only a few materials have been discovered that exhibit intermolecular SF in the solid state, most of which are acene derivatives. Recently, there has been a growing interest in rylenes as potential SF materials. We use many-body perturbation theory in the GW approximation and the Bethe-Salpeter equation to investigate the possibility of intermolecular SF in crystalline perylene and quaterrylene. A new method is presented for determining the percent charge transfer (%CT) character of an exciton wave-function from double-Bader analysis. This enables relating exciton probability distributions to crystal packing. Based on comparison to known and predicted SF materials with respect to the energy conservation criterion (E S -2E T ) and %CT, crystalline quaterrylene is a promising candidate for intermolecular SF. Furthermore, quaterrylene is attractive for OPV applications, thanks to its high stability and narrow optical gap. Perylene is not expected to exhibit SF; however, it is a promising candidate for harvesting sub-gap photons by triplet-triplet annihilation.

  1. Effect of intermolecular hydrogen bonding, vibrational analysis and molecular structure of a biomolecule: 5-Hydroxymethyluracil

    NASA Astrophysics Data System (ADS)

    Çırak, Çağrı; Sert, Yusuf; Ucun, Fatih

    2014-06-01

    In the present work, the experimental and theoretical vibrational spectra of 5-hydroxymethyluracil were investigated. The FT-IR (4000-400 cm-1) spectrum of the molecule in the solid phase was recorded. The geometric parameters (bond lengths and bond angles), vibrational frequencies, Infrared intensities of the title molecule in the ground state were calculated using density functional B3LYP and M06-2X methods with the 6-311++G(d,p) basis set for the first time. The optimized geometric parameters and theoretical vibrational frequencies were found to be in good agreement with the corresponding experimental data, and with the results found in the literature. The vibrational frequencies were assigned based on the potential energy distribution using the VEDA 4 program. The dimeric form of 5-hydroxymethyluracil molecule was also simulated to evaluate the effect of intermolecular hydrogen bonding on its vibrational frequencies. It was observed that the Nsbnd H stretching modes shifted to lower frequencies, while its in-plane and out-of-plane bending modes shifted to higher frequencies due to the intermolecular Nsbnd H⋯O hydrogen bond. Also, the highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) energies and diagrams were presented.

  2. Production of low kinetic energy electrons and energetic ion pairs by Intermolecular Coulombic Decay.

    PubMed

    Hergenhahn, Uwe

    2012-12-01

    The paper gives an introduction into Interatomic and Intermolecular Coulombic Decay (ICD). ICD is an autoionization process, which contrary to Auger decay involves neighbouring sites of the initial vacancy as an integral part of the decay transition. As a result of ICD, slow electrons are produced which generally are known to be active in radiation damage. The author summarizes the properties of ICD and reviews a number of important experiments performed in recent years. Intermolecular Coulombic Decay can generally take place in weakly bonded aggregates in the presence of ionizing particles or ionizing radiation. Examples collected here mostly use soft X-rays produced by synchrotron radiation to ionize, and use rare-gas clusters, water clusters or solutes in a liquid jet to observe ICD after irradiation. Intermolecular Coulombic Decay is initiated by single ionization into an excited state. The subsequent relaxation proceeds via an ultra-fast energy transfer to a neighbouring site, where a second ionization occurs. Secondary electrons from ICD have clearly been identified in numerous systems. ICD can take place after primary ionization, as the second step of a decay cascade which also involves Auger decay, or after resonant excitation with an energy which exceeds the ionization potential of the system. ICD is expected to play a role whenever particles or radiation with photon energies above the ionization energies for inner valence electrons are present in weakly bonded matter, e.g., biological tissue. The process produces at the same time a slow electron and two charged atomic or molecular fragments, which will lead to structural changes around the ionized site.

  3. Evaluation of coupling terms between intra- and intermolecular vibrations in coarse-grained normal-mode analysis: does a stronger acid make a stiffer hydrogen bond?

    PubMed

    Houjou, Hirohiko

    2011-10-21

    Using theory of harmonic normal-mode vibration analysis, we developed a procedure for evaluating the anisotropic stiffness of intermolecular forces. Our scheme for coarse-graining of molecular motions is modified so as to account for intramolecular vibrations in addition to relative translational/rotational displacement. We applied this new analytical scheme to four carboxylic acid dimers, for which coupling between intra- and intermolecular vibrations is crucial for determining the apparent stiffness of the intermolecular double hydrogen bond. The apparent stiffness constant was analyzed on the basis of a conjunct spring model, which defines contributions from true intermolecular stiffness and molecular internal stiffness. Consequently, the true intermolecular stiffness was in the range of 43-48 N m(-1) for all carboxylic acids studied, regardless of the molecules' acidity. We concluded that the difference in the apparent stiffness can be attributed to differences in the internal stiffness of the respective molecules. © 2011 American Institute of Physics

  4. Evaluation of coupling terms between intra- and intermolecular vibrations in coarse-grained normal-mode analysis: Does a stronger acid make a stiffer hydrogen bond?

    NASA Astrophysics Data System (ADS)

    Houjou, Hirohiko

    2011-10-01

    Using theory of harmonic normal-mode vibration analysis, we developed a procedure for evaluating the anisotropic stiffness of intermolecular forces. Our scheme for coarse-graining of molecular motions is modified so as to account for intramolecular vibrations in addition to relative translational/rotational displacement. We applied this new analytical scheme to four carboxylic acid dimers, for which coupling between intra- and intermolecular vibrations is crucial for determining the apparent stiffness of the intermolecular double hydrogen bond. The apparent stiffness constant was analyzed on the basis of a conjunct spring model, which defines contributions from true intermolecular stiffness and molecular internal stiffness. Consequently, the true intermolecular stiffness was in the range of 43-48 N m-1 for all carboxylic acids studied, regardless of the molecules' acidity. We concluded that the difference in the apparent stiffness can be attributed to differences in the internal stiffness of the respective molecules.

  5. Non-rigid molecule of copper(II) diiminate Cu[CF3C(NH)C(F)C(NH)CF3]2, its conformational polymorphism in crystal and structure in solutions (Raman, UV-vis and quantum chemistry study)

    NASA Astrophysics Data System (ADS)

    Bukalov, Sergey S.; Aysin, Rinat R.; Leites, Larissa A.; Kurykin, Mikhail A.; Khrustalev, Victor N.

    2015-10-01

    Calculation of potential energy surface (PES) of isolated molecule of copper(II) diiminate Cu[CF3С(NH)C(F)C(NH)CF3]2 (1) resulted a double-well curve with the minima corresponding to equivalent screwed conformations. The low barrier leads to molecular non-rigidity which seems to be the reason of conformational polymorphism in crystals, reported in [1]. For one of newly found polymorphs, the X-ray structure was determined. The differences in the Raman and UV-vis spectra between differently colored species and their solutions were revealed, they are determined by different geometries of Cu(II) coordination polyhedron and different systems of intermolecular interactions in crystals. Transformations of the polymorphs under thermal, mechanical and photo exposures were studied.

  6. Hydration of AN Acid Anhydride: the Water Complex of Acetic Sulfuric Anhydride

    NASA Astrophysics Data System (ADS)

    Smith, CJ; Huff, Anna; Mackenzie, Becca; Leopold, Ken

    2017-06-01

    The water complex of acetic sulfuric anhydride (ASA, CH_{3}COOSO_{2}OH) has been observed by pulsed nozzle Fourier transform microwave spectroscopy. ASA is formed in situ in the supersonic jet via the reaction of SO_{3} and acetic acid and subsequently forms a complex with water during the expansion. Spectra of the parent and fully deuterated form, as well as those of the species derived from CH_{3}^{13}COOH, have been observed. The fitted internal rotation barrier of the methyl group is 219.599(21), \\wn indicating the complexation with water lowers the internal rotation barrier of the methyl group by 9% relative to that of free ASA. The observed species is one of several isomers identified theoretically in which the water inserts into the intramolecular hydrogen bond of the ASA. Aspects of the intermolecular potential energy surface are discussed.

  7. Terahertz vibration-rotation-tunneling (VRT) spectroscopy of the d6-water trimer: Complete characterization of the 2.94 THz torsional band ( kn = ±2 1 ← 0 0)

    NASA Astrophysics Data System (ADS)

    Han, Jia-xiang; Takahashi, Lynelle K.; Lin, Wei; Lee, Eddy; Keutsch, Frank N.; Saykally, Richard J.

    2006-06-01

    We report the measurement and analysis of the complete perpendicular kn = ±2 1 ← 0 0 (D 2O) 3 torsional band (origin 2940.9376(3) GHz), the upper state of which is the highest-energy (98.09912 cm -1) torsional state yet observed. All known torsional transitions were included in a new global analysis of the six observed torsional bands, using the effective Hamiltonians derived by van der Avoird et al. [M. R. Viant, M. G. Brown, J. D. Cruzan, R. J. Saykally, M. Geleijns, A. van der Avoird, J. Chem. Phys. 110 (1999) 4369; A. van der Avoird, E. H. T. Olthof, P. E. S. Wormer, J. Chem. Phys. 105 (1996) 8034]. The experimental results will facilitate the descriptions of three-body interactions in water intermolecular potential energy surfaces (IPSs).

  8. Structural investigation of (2E)-2-(ethoxycarbonyl)-3-[(4-methoxyphenyl)amino]prop-2-enoic acid: X-ray crystal structure, spectroscopy and DFT

    NASA Astrophysics Data System (ADS)

    Venkatesan, Perumal; Rajakannan, Venkatachalam; Venkataramanan, Natarajan S.; Ilangovan, Andivelu; Sundius, Tom; Thamotharan, Subbiah

    2016-09-01

    The title compound, (2E)-2-(ethoxycarbonyl)-3-[(4-methoxyphenyl)amino]prop-2-enoic acid is characterized by means of X-ray crystallography, spectroscopic methods and quantum chemical calculations. The title compound crystallizes in centrosymmetric space group P21/c. Moreover, the crystal structure is primarily stabilized through intramolecular Nsbnd H⋯O and Osbnd H⋯O and intermolecular Nsbnd H⋯O and Csbnd H⋯O interactions along with carbonyl⋯carbonyl and Csbnd H⋯C contacts. These intermolecular interactions are analysed and quantified by using Hirshfeld surface analysis, PIXEL energy, NBO, AIM and DFT calculations. The overall lattice energies of the title and parent compounds suggest that the title compound is stabilized by a 4.5 kcal mol-1 higher energy than the parent compound. The additional stabilization force comes from the methoxy substitution on the title molecule, which is evident since the methoxy group is involved in the intermolecular Csbnd H⋯O interaction as an acceptor. The vibrational modes of the interacting groups are investigated using both experimental and theoretical FT-IR and FT-Raman spectra. The experimental and theoretical UV-Vis spectra agree well. The time dependent DFT spectra show that the ligand-to-ligand charge transfer is responsible for the intense absorbance of the compound.

  9. Crystal growth, structure and morphology of hydrocortisone methanol solvate

    NASA Astrophysics Data System (ADS)

    Chen, Jianxin; Wang, Jiangkang; Zhang, Ying; Wu, Hong; Chen, Wei; Guo, Zhichao

    2004-04-01

    Hydrocortisone (HC), an important grucocorticoid, was crystallized from methanol solvent in the form of its methanol solvate. Its crystal structure belongs to orthorhombic, space group P2 12 12 1, with the unit cell parameters a=7.712(3) Å, b=14.392(5) Å, c=18.408(6) Å, Z=4. The methanol takes part in intermolecular hydrogen bonding, so if we change the solvent, the crystal habit of HC maybe different. The long parallelepiped morphology was also predicted by Cerius 2TM simulation program. The influence of intermolecular interaction was taken into account in the attachment energy model. The morphology calculation performed on the potential energy minimized model using a generic DREIDING 2.21 force field and developed minimization protocol with derived partial charges fits the experimental crystal shape well.

  10. Trajectory dynamics study of the Ar + CH4 dissociation reaction at high temperatures: the importance of zero-point-energy effects.

    PubMed

    Marques, J M C; Martínez-Núñez, E; Fernandez-Ramos, A; Vazquez, S A

    2005-06-23

    Large-scale classical trajectory calculations have been performed to study the reaction Ar + CH4--> CH3 +H + Ar in the temperature range 2500 < or = T/K < or = 4500. The potential energy surface used for ArCH4 is the sum of the nonbonding pairwise potentials of Hase and collaborators (J. Chem. Phys. 2001, 114, 535) that models the intermolecular interaction and the CH4 intramolecular potential of Duchovic et al. (J. Phys. Chem. 1984, 88, 1339), which has been modified to account for the H-H repulsion at small bending angles. The thermal rate coefficient has been calculated, and the zero-point energy (ZPE) of the CH3 product molecule has been taken into account in the analysis of the results; also, two approaches have been applied for discarding predissociative trajectories. In both cases, good agreement is observed between the experimental and trajectory results after imposing the ZPE of CH3. The energy-transfer parameters have also been obtained from trajectory calculations and compared with available values estimated from experiment using the master equation formalism; in general, the agreement is good.

  11. Surface active complexes formed between keratin polypeptides and ionic surfactants.

    PubMed

    Pan, Fang; Lu, Zhiming; Tucker, Ian; Hosking, Sarah; Petkov, Jordan; Lu, Jian R

    2016-12-15

    Keratins are a group of important proteins in skin and hair and as biomaterials they can provide desirable properties such as strength, biocompatibility, and moisture regaining and retaining. The aim of this work is to develop water-soluble keratin polypeptides from sheep wool and then explore how their surface adsorption behaves with and without surfactants. Successful preparation of keratin samples was demonstrated by identification of the key components from gel electrophoresis and the reproducible production of gram scale samples with and without SDS (sodium dodecylsulphate) during wool fibre dissolution. SDS micelles could reduce the formation of disulphide bonds between keratins during extraction, reducing inter-molecular crosslinking and improving keratin polypeptide solubility. However, Zeta potential measurements of the two polypeptide batches demonstrated almost identical pH dependent surface charge distributions with isoelectric points around pH 3.5, showing complete removal of SDS during purification by dialysis. In spite of different solubility from the two batches of keratin samples prepared, very similar adsorption and aggregation behavior was revealed from surface tension measurements and dynamic light scattering. Mixing of keratin polypeptides with SDS and C 12 TAB (dodecyltrimethylammonium bromide) led to the formation of keratin-surfactant complexes that were substantially more effective at reducing surface tension than the polypeptides alone, showing great promise in the delivery of keratin polypeptides via the surface active complexes. Neutron reflection measurements revealed the coexistence of surfactant and keratin polypeptides at the interface, thus providing the structural support to the observed surface tension changes associated with the formation of the surface active complexes. Copyright © 2016. Published by Elsevier Inc.

  12. Self-assembly of acetate adsorbates drives atomic rearrangement on the Au(110) surface

    DOE PAGES

    Hiebel, Fanny; Shong, Bonggeun; Chen, Wei; ...

    2016-10-12

    Weak inter-adsorbate interactions are shown to play a crucial role in determining surface structure, with major implications for its catalytic reactivity. This is exemplified here in the case of acetate bound to Au(110), where the small extra energy of the van der Waals interactions among the surface-bound groups drives massive restructuring of the underlying Au. Acetate is a key intermediate in electro-oxidation of CO 2 and a poison in partial oxidation reactions. Metal atom migration originates at surface defects and is likely facilitated by weakened Au–Au interactions due to bonding with the acetate. Even though the acetate is a relativelymore » small molecule, weak intermolecular interaction provides the energy required for molecular self-assembly and reorganization of the metal surface.« less

  13. Self-assembly of acetate adsorbates drives atomic rearrangement on the Au(110) surface

    PubMed Central

    Hiebel, Fanny; Shong, Bonggeun; Chen, Wei; Madix, Robert J.; Kaxiras, Efthimios; Friend, Cynthia M.

    2016-01-01

    Weak inter-adsorbate interactions are shown to play a crucial role in determining surface structure, with major implications for its catalytic reactivity. This is exemplified here in the case of acetate bound to Au(110), where the small extra energy of the van der Waals interactions among the surface-bound groups drives massive restructuring of the underlying Au. Acetate is a key intermediate in electro-oxidation of CO2 and a poison in partial oxidation reactions. Metal atom migration originates at surface defects and is likely facilitated by weakened Au–Au interactions due to bonding with the acetate. Even though the acetate is a relatively small molecule, weak intermolecular interaction provides the energy required for molecular self-assembly and reorganization of the metal surface. PMID:27731407

  14. Quantum effects and anharmonicity in the H2-Li+-benzene complex: A model for hydrogen storage materials

    NASA Astrophysics Data System (ADS)

    Kolmann, Stephen J.; D'Arcy, Jordan H.; Jordan, Meredith J. T.

    2013-12-01

    Quantum and anharmonic effects are investigated in H2-Li+-benzene, a model for hydrogen adsorption in metal-organic frameworks and carbon-based materials. Three- and 8-dimensional quantum diffusion Monte Carlo (QDMC) and rigid-body diffusion Monte Carlo (RBDMC) simulations are performed on potential energy surfaces interpolated from electronic structure calculations at the M05-2X/6-31+G(d,p) and M05-2X/6-311+G(2df,p) levels of theory using a three-dimensional spline or a modified Shepard interpolation. These calculations investigate the intermolecular interactions in this system, with three- and 8-dimensional 0 K H2 binding enthalpy estimates, ΔHbind (0 K), being 16.5 kJ mol-1 and 12.4 kJ mol-1, respectively: 0.1 and 0.6 kJ mol-1 higher than harmonic values. Zero-point energy effects are 35% of the value of ΔHbind (0 K) at M05-2X/6-311+G(2df,p) and cannot be neglected; uncorrected electronic binding energies overestimate ΔHbind (0 K) by at least 6 kJ mol-1. Harmonic intermolecular binding enthalpies can be corrected by treating the H2 "helicopter" and "ferris wheel" rotations as free and hindered rotations, respectively. These simple corrections yield results within 2% of the 8-dimensional anharmonic calculations. Nuclear ground state probability density histograms obtained from the QDMC and RBDMC simulations indicate the H2 molecule is delocalized above the Li+-benzene system at 0 K.

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kolmann, Stephen J.; D'Arcy, Jordan H.; Jordan, Meredith J. T., E-mail: m.jordan@chem.usyd.edu.au

    Quantum and anharmonic effects are investigated in H{sub 2}-Li{sup +}-benzene, a model for hydrogen adsorption in metal-organic frameworks and carbon-based materials. Three- and 8-dimensional quantum diffusion Monte Carlo (QDMC) and rigid-body diffusion Monte Carlo (RBDMC) simulations are performed on potential energy surfaces interpolated from electronic structure calculations at the M05-2X/6-31+G(d,p) and M05-2X/6-311+G(2df,p) levels of theory using a three-dimensional spline or a modified Shepard interpolation. These calculations investigate the intermolecular interactions in this system, with three- and 8-dimensional 0 K H{sub 2} binding enthalpy estimates, ΔH{sub bind} (0 K), being 16.5 kJ mol{sup −1} and 12.4 kJ mol{sup −1}, respectively: 0.1 and 0.6more » kJ mol{sup −1} higher than harmonic values. Zero-point energy effects are 35% of the value of ΔH{sub bind} (0 K) at M05-2X/6-311+G(2df,p) and cannot be neglected; uncorrected electronic binding energies overestimate ΔH{sub bind} (0 K) by at least 6 kJ mol{sup −1}. Harmonic intermolecular binding enthalpies can be corrected by treating the H{sub 2} “helicopter” and “ferris wheel” rotations as free and hindered rotations, respectively. These simple corrections yield results within 2% of the 8-dimensional anharmonic calculations. Nuclear ground state probability density histograms obtained from the QDMC and RBDMC simulations indicate the H{sub 2} molecule is delocalized above the Li{sup +}-benzene system at 0 K.« less

  16. Forward and inverse functional variations in rotationally inelastic scattering

    NASA Astrophysics Data System (ADS)

    Guzman, Robert; Rabitz, Herschel

    1986-09-01

    This paper considers the response of various rotational energy transfer processes to functional variations about an assumed model intermolecular potential. Attention is focused on the scattering of an atom and a linear rigid rotor. The collision dynamics are approximated by employing both the infinite order sudden (IOS) and exponential distorted wave (EDW) methods to describe Ar-N2 and He-H2, respectively. The following cross sections are considered: state-to-state differential and integral, final state summed differential and integral, and effective diffusion and viscosity cross sections. Attention is first given to the forward sensitivity densities δ0/δV(R,r) where 0 denotes any of the aforementioned cross sections, R is the intermolecular distance, and r is the internal coordinates. These forward sensitivity densities (functional derivatives) offer a quantitative measure of the importance of different regions of the potential surface to a chosen cross section. Via knowledge of the forward sensitivities and a particular variation δV(R,r) the concomitant response δ0 is generated. It was found that locally a variation in the potential can give rise to a large response in the cross sections as measured by these forward densities. In contrast, a unit percent change in the overall potential produced a 1%-10% change in the cross sections studied indicating that the large + and - responses to local variations tend to cancel. In addition, inverse sensitivity densities δV(R,r)/δ0 are obtained. These inverse densities are of interest since they are the exact solution to the infinitesimal inverse scattering problem. Although the inverse sensitivity densities do not in themselves form an inversion algorithm, they do offer a quantitative measure of the importance of performing particular measurements for the ultimate purpose of inversion. Using a set of state-to-state integral cross sections we found that the resultant responses from the infinitesimal inversion were typically small such that ‖δV(R,r)‖≪‖V(R,r)‖. From the viewpoint of an actual inversion, these results indicate that only through an extensive effort will significant knowledge of the potential be gained from the cross sections. All of these calculations serve to illustrate the methodology, and other observables as well as dynamical schemes could be explored as desired.

  17. Structural Design and Photochemical Preparation of Ultrathin Molecular Film Materials

    DTIC Science & Technology

    2006-12-01

    tetracene and pentacene that have great potential as organic semiconducting materials, have been determined. Overall, we have gained to great extend a...layer of linear acenes, molecules such as tetracene and pentacene that have great potential as organic semiconducting materials, have been determined...intermolecular interaction of mono- and multi-layer linear acenes on metal A systematic study of adsorption of linear acenes, from benzene to pentacene , on metal

  18. Perspectives on NMR in drug discovery: a technique comes of age

    PubMed Central

    Pellecchia, Maurizio; Bertini, Ivano; Cowburn, David; Dalvit, Claudio; Giralt, Ernest; Jahnke, Wolfgang; James, Thomas L.; Homans, Steve W.; Kessler, Horst; Luchinat, Claudio; Meyer, Bernd; Oschkinat, Hartmut; Peng, Jeff; Schwalbe, Harald; Siegal, Gregg

    2009-01-01

    In the past decade, the potential of harnessing the ability of nuclear magnetic resonance (NMR) spectroscopy to monitor intermolecular interactions as a tool for drug discovery has been increasingly appreciated in academia and industry. In this Perspective, we highlight some of the major applications of NMR in drug discovery, focusing on hit and lead generation, and provide a critical analysis of its current and potential utility. PMID:19172689

  19. Vibrational spectroscopic, structural and nonlinear optical activity studies on 6-aminonicotinamide: A DFT approach

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Asath, R. Mohamed; Premkumar, S.; Mathavan, T.

    2016-05-23

    The conformational analysis was carried out for 6-aminonicotinamide (ANA) using potential energy surface scan method and the most stable optimized conformer was predicted. The theoretical vibrational frequencies were calculated for the optimized geometry using DFT/B3LYP cc-pVQZ basis set by Gaussian 09 Program. The vibrational frequencies were assigned on the basis of potential energy distribution calculation using VEDA 4.0 program. The Mulliken atomic charge values were calculated. In the Frontier molecular orbitals analysis, the molecular reactivity, kinetic stability, intermolecular charge transfer studies and the related molecular properties were calculated. The ultraviolet-visible spectrum was simulated for both in the gas phase andmore » liquid phase (ethanol) and the π to π* electronic transition was predicted. The nonlinear optical (NLO) activity was studied by means of the first order hyperpolarizability value, which was 8.61 times greater than the urea and the natural bond orbital analysis was also performed to confirm the NLO activity of the molecule. Hence, the ANA molecule is a promising candidate for the NLO materials.« less

  20. Vibrational spectroscopic, structural and nonlinear optical activity studies on 6-aminonicotinamide: A DFT approach

    NASA Astrophysics Data System (ADS)

    Asath, R. Mohamed; Premkumar, S.; Rekha, T. N.; Jawahar, A.; Mathavan, T.; Benial, A. Milton Franklin

    2016-05-01

    The conformational analysis was carried out for 6-aminonicotinamide (ANA) using potential energy surface scan method and the most stable optimized conformer was predicted. The theoretical vibrational frequencies were calculated for the optimized geometry using DFT/B3LYP cc-pVQZ basis set by Gaussian 09 Program. The vibrational frequencies were assigned on the basis of potential energy distribution calculation using VEDA 4.0 program. The Mulliken atomic charge values were calculated. In the Frontier molecular orbitals analysis, the molecular reactivity, kinetic stability, intermolecular charge transfer studies and the related molecular properties were calculated. The ultraviolet-visible spectrum was simulated for both in the gas phase and liquid phase (ethanol) and the л to л* electronic transition was predicted. The nonlinear optical (NLO) activity was studied by means of the first order hyperpolarizability value, which was 8.61 times greater than the urea and the natural bond orbital analysis was also performed to confirm the NLO activity of the molecule. Hence, the ANA molecule is a promising candidate for the NLO materials.

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shirkov, Leonid; Makarewicz, Jan, E-mail: jama@amu.edu.pl

    An ab initio intermolecular potential energy surface (PES) has been constructed for the benzene-krypton (BKr) van der Waals (vdW) complex. The interaction energy has been calculated at the coupled cluster level of theory with single, double, and perturbatively included triple excitations using different basis sets. As a result, a few analytical PESs of the complex have been determined. They allowed a prediction of the complex structure and its vibrational vdW states. The vibrational energy level pattern exhibits a distinct polyad structure. Comparison of the equilibrium structure, the dipole moment, and vibrational levels of BKr with their experimental counterparts has allowedmore » us to design an optimal basis set composed of a small Dunning’s basis set for the benzene monomer, a larger effective core potential adapted basis set for Kr and additional midbond functions. Such a basis set yields vibrational energy levels that agree very well with the experimental ones as well as with those calculated from the available empirical PES derived from the microwave spectra of the BKr complex. The basis proposed can be applied to larger complexes including Kr because of a reasonable computational cost and accurate results.« less

  2. Electrostatic orientation of the electron-transfer complex between plastocyanin and cytochrome c.

    PubMed

    Roberts, V A; Freeman, H C; Olson, A J; Tainer, J A; Getzoff, E D

    1991-07-15

    To understand the specificity and efficiency of protein-protein interactions promoting electron transfer, we evaluated the role of electrostatic forces in precollision orientation by the development of two new methods, computer graphics alignment of protein electrostatic fields and a systematic orientational search of intermolecular electrostatic energies for two proteins at present separation distances. We applied these methods to the plastocyanin/cytochrome c interaction, which is faster than random collision, but too slow for study by molecular dynamics techniques. Significant electrostatic potentials were concentrated on one-fourth (969 A2) of the plastocyanin surface, with the greatest negative potential centered on the Tyr-83 hydroxyl within the acidic patch, and on one-eighth (632 A2) of the cytochrome c surface, with the greatest positive potential centered near the exposed heme edge. Coherent electrostatic fields occurred only over these regions, suggesting that local, rather than global, charge complementarity controls productive recognition. The three energetically favored families of pre-collision orientations all directed the positive region surrounding the heme edge of cytochrome c toward the acidic patch of plastocyanin but differed in heme plane orientation. Analysis of electrostatic fields, electrostatic energies of precollision orientations with 12 and 6 A separation distances, and surface topographies suggested that the favored orientations should converge to productive complexes promoting a single electron-transfer pathway from the cytochrome c heme edge to Tyr-83 of plastocyanin. Direct interactions of the exposed Cu ligand in plastocyanin with the cytochrome c heme edge are not unfavorable sterically or electrostatically but should occur no faster than randomly, indicating that this is not the primary pathway for electron transfer.

  3. Wave function delocalization and large-amplitude vibrations of helium on corrugated aromatic microsurfaces: tetracene.He and pentacene.He van der Waals complexes.

    PubMed

    Xu, Minzhong; Bacić, Zlatko

    2007-08-09

    We report accurate quantum three-dimensional calculations of highly excited intermolecular vibrational states of the van der Waals (vdW) complexes tetracene.He and pentacene.He in the S1 excited electronic state. The aromatic molecules were taken to be rigid and the intermolecular potential energy surfaces (IPESs) were modeled as a sum of atom-atom Lennard-Jones pair potentials. The IPESs are corrugated in the direction of the long (x) axis of the aromatic molecules, due to the presence of the symmetrically equivalent global double minimum for tetracene.He, and a triple minimum (central global minimum and two equivalent local minima) for pentacene.He, on each side of the aromatic plane. Both IPESs have two additional minor equivalent local minima further away from the center of the molecule. The vdW vibrational states analyzed in this work cover about 80% of the well depths of the IPESs. The mode coupling is generally weak for those states whose out-of-plane (z) mode is unexcited. However, the z-mode fundamental is strongly coupled to the short-axis (y) in-plane mode, so that the pure z-mode excitation could not be identified. The He atom exhibits large in-plane spatial delocalizaton already in the ground vdW vibrational state, which increases rapidly upon the excitation of the in-plane x and y modes, with little hindrance by the corrugation of the aromatic microsurfaces. For the vdW vibrational energies considered, the He atom spatial delocalization reaches Deltax and Deltay values of approximately 5 and 4 A, respectively, and is limited only by the finite size of the aromatic substrates. Side-crossing delocalization of the wave functions on both sides of the molecular plane is found at excitation energies >30 cm(-1), giving rise to the energy splittings of the pairs of states symmetric/antisymmetric with respect to the aromatic plane; the splittings show strong vdW vibrational mode specificity.

  4. The development of novel simulation methodologies and intermolecular potential models for real fluids

    NASA Astrophysics Data System (ADS)

    Errington, Jeffrey Richard

    This work focuses on the development of intermolecular potential models for real fluids. United-atom models have been developed for both non-polar and polar fluids. The models have been optimized to the vapor-liquid coexistence properties. Histogram reweighting techniques were used to calculate phase behavior. The Hamiltonian scaling grand canonical Monte Carlo method was developed to enable the determination of thermodynamic properties of several related Hamiltonians from a single simulation. With this method, the phase behavior of variations of the Buckingham exponential-6 potential was determined. Reservoir grand canonical Monte Carlo simulations were developed to simulate molecules with complex architectures and/or stiff intramolecular constraints. The scheme is based on the creation of a reservoir of ideal chains from which structures are selected for insertion during a simulation. New intermolecular potential models have been developed for water, the n-alkane homologous series, benzene, cyclohexane, carbon dioxide, ammonia and methanol. The models utilize the Buckingham exponential-6 potential to model non-polar interactions and point charges to describe polar interactions. With the exception of water, the new models reproduce experimental saturated densities, vapor pressures and critical parameters to within a few percent. In the case of water, we found a set of parameters that describes the phase behavior better than other available point charge models while giving a reasonable description of the liquid structure. The mixture behavior of water-hydrocarbon mixtures has also been examined. The Henry's law constants of methane, ethane, benzene and cyclohexane in water were determined using Widom insertion and expanded ensemble techniques. In addition the high-pressure phase behavior of water-methane and water-ethane systems was studied using the Gibbs ensemble method. The results from this study indicate that it is possible to obtain a good description of the phase behavior of pure components using united-atom models. The mixture behavior of non-polar systems, including highly asymmetric components, was in good agreement with experiment. The calculations for the highly non-ideal water-hydrocarbon mixtures reproduced experimental behavior with varying degrees of success. The results indicate that multibody effects, such as polarizability, must be taken into account when modeling mixtures of polar and non-polar components.

  5. Towards the modeling of nanoindentation of virus shells: Do substrate adhesion and geometry matter?

    NASA Astrophysics Data System (ADS)

    Bousquet, Arthur; Dragnea, Bogdan; Tayachi, Manel; Temam, Roger

    2016-12-01

    Soft nanoparticles adsorbing at surfaces undergo deformation and buildup of elastic strain as a consequence of interfacial adhesion of similar magnitude with constitutive interactions. An example is the adsorption of virus particles at surfaces, a phenomenon of central importance for experiments in virus nanoindentation and for understanding of virus entry. The influence of adhesion forces and substrate corrugation on the mechanical response to indentation has not been studied. This is somewhat surprising considering that many single-stranded RNA icosahedral viruses are organized by soft intermolecular interactions while relatively strong adhesion forces are required for virus immobilization for nanoindentation. This article presents numerical simulations via finite elements discretization investigating the deformation of a thick shell in the context of slow evolution linear elasticity and in presence of adhesion interactions with the substrate. We study the influence of the adhesion forces in the deformation of the virus model under axial compression on a flat substrate by comparing the force-displacement curves for a shell having elastic constants relevant to virus capsids with and without adhesion forces derived from the Lennard-Jones potential. Finally, we study the influence of the geometry of the substrate in two-dimensions by comparing deformation of the virus model adsorbed at the cusp between two cylinders with that on a flat surface.

  6. Early steroid sulfurization in surface sediments of a permanently stratified lake (Ace Lake, Antarctica)

    NASA Astrophysics Data System (ADS)

    Kok, Marika D.; Rijpstra, W. Irene C.; Robertson, Lisette; Volkman, John K.; Sinninghe Damstéé, Jaap S.

    2000-04-01

    Surface sediments (0-25 cm) from Ace Lake (eastern Antarctica), a saline euxinic lake, were analyzed to study the early incorporation of reduced inorganic sulfur species into organic matter. The apolar fractions were shown to consist predominantly of dimeric (poly)sulfide linked C 27-C 29 steroids. These steroid moieties were identified by GC-MS analysis of the apolar fractions after cleavage of polysulfide linkages using MeLi and MeI and after desulfurisation. The polar fractions contained the oligomeric analogues. The S-bound steroids are most likely formed by sulfur incorporation into steroidal ketones formed from Δ 5 sterols by biohydrogenation by anaerobic bacteria. The concentrations of these sulfurised steroids increased with depth in the sediment. The sulfurisation reaction is completed in 1000-3000 years. Despite a wide range of functionalised lipids present in these sediments that are potentially available for sulfurisation, there is a very strong preference for the incorporation of sulfur into steroidal compounds. A predominance of sulfurised C 27 steroids contrasted with the distribution of free sterols, which showed a strong predominance of C 29 sterols. This indicates that the incorporation of sulfur is biased towards C 27 sterols. The results demonstrate that intermolecular sulfurisation of organic matter can occur in surface sediments at low temperatures and in the absence of light.

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Martínez-Ruiz, F. J.; Blas, F. J., E-mail: felipe@uhu.es; Centro de Investigación de Física Teórica y Matemática, Universidad de Huelva, 21071 Huelva

    We propose an extension of the improved version of the inhomogeneous long-range corrections of Janeček [J. Phys. Chem. B 110, 6264–6269 (2006)], presented recently by MacDowell and Blas [J. Chem. Phys. 131, 074705 (2009)] to account for the intermolecular potential energy of spherical, rigid, and flexible molecular systems, to deal with the contributions to the microscopic components of the pressure tensor due to the dispersive long-range corrections. We have performed Monte Carlo simulations in the canonical ensemble to obtain the interfacial properties of spherical Lennard-Jones molecules with different cutoff distances, r{sub c} = 2.5, 3, 4, and 5σ. In addition,more » we have also considered cutoff distances r{sub c} = 2.5 and 3σ in combination with the inhomogeneous long-range corrections proposed in this work. The normal and tangential microscopic components of the pressure tensor are obtained using the mechanical or virial route in combination with the recipe of Irving and Kirkwood, while the macroscopic components are calculated using the Volume Perturbation thermodynamic route proposed by de Miguel and Jackson [J. Chem. Phys. 125, 164109 (2006)]. The vapour-liquid interfacial tension is evaluated using three different procedures, the Irving-Kirkwood method, the difference between the macroscopic components of the pressure tensor, and the Test-Area methodology. In addition to the pressure tensor and the surface tension, we also obtain density profiles, coexistence densities, vapour pressure, critical temperature and density, and interfacial thickness as functions of temperature, paying particular attention to the effect of the cutoff distance and the long-range corrections on these properties. According to our results, the main effect of increasing the cutoff distance (at fixed temperature) is to sharpen the vapour-liquid interface, to decrease the vapour pressure, and to increase the width of the biphasic coexistence region. As a result, the interfacial thickness decreases, the width of the tangential microscopic component of the pressure tensor profile increases, and the surface tension increases as the cutoff distance is larger. We have also checked the effect of the impulsive contribution to the pressure due to the discontinuity of the intermolecular interaction potential when it is cut. If this contribution is not accounted for in the calculation of the microscopic components of the pressure tensor, incorrect values of both components as well as a wrong structure along the vapour-liquid interface are obtained.« less

  8. Desensitization of metastable intermolecular composites

    DOEpatents

    Busse, James R [South Fork, CO; Dye, Robert C [Los Alamos, NM; Foley, Timothy J [Los Alamos, NM; Higa, Kelvin T [Ridgecrest, CA; Jorgensen, Betty S [Jemez Springs, NM; Sanders, Victor E [White Rock, NM; Son, Steven F [Los Alamos, NM

    2011-04-26

    A method to substantially desensitize a metastable intermolecular composite material to electrostatic discharge and friction comprising mixing the composite material with an organic diluent and removing enough organic diluent from the mixture to form a mixture with a substantially putty-like consistency, as well as a concomitant method of recovering the metastable intermolecular composite material.

  9. Desensitization and recovery of metastable intermolecular composites

    DOEpatents

    Busse, James R [South Fork, CO; Dye, Robert C [Los Alamos, NM; Foley, Timothy J [Los Alamos, NM; Higa, Kelvin T [Ridgecrest, CA; Jorgensen, Betty S [Jemez Springs, NM; Sanders, Victor E [White Rock, NM; Son, Steven F [Los Alamos, NM

    2010-09-07

    A method to substantially desensitize a metastable intermolecular composite material to electrostatic discharge and friction comprising mixing the composite material with an organic diluent and removing enough organic diluent from the mixture to form a mixture with a substantially putty-like consistency, as well as a concomitant method of recovering the metastable intermolecular composite material.

  10. Phosphorescence quenching of fac-tris(2-phenylpyridyl)iridium(iii) complexes in thin films on dielectric surfaces.

    PubMed

    Ribierre, J C; Ruseckas, A; Staton, S V; Knights, K; Cumpstey, N; Burn, P L; Samuel, I D W

    2016-02-07

    We study the influence of the film thickness on the time-resolved phosphorescence and the luminescence quantum yield of fac-tris(2-phenylpyridyl)iridium(iii) [Ir(ppy)3]-cored dendrimers deposited on dielectric substrates. A correlation is observed between the surface quenching velocity and the quenching rate by intermolecular interactions in the bulk film, which suggests that both processes are controlled by dipole-dipole interactions between Ir(ppy)3 complexes at the core of the dendrimers. It is also found that the surface quenching velocity decreases as the refractive index of the substrate is increased. This can be explained by partial screening of dipole-dipole interactions by the dielectric environment.

  11. Evolving nucleotide binding surfaces

    NASA Technical Reports Server (NTRS)

    Kieber-Emmons, T.; Rein, R.

    1981-01-01

    An analysis is presented of the stability and nature of binding of a nucleotide to several known dehydrogenases. The employed approach includes calculation of hydrophobic stabilization of the binding motif and its intermolecular interaction with the ligand. The evolutionary changes of the binding motif are studied by calculating the Euclidean deviation of the respective dehydrogenases. Attention is given to the possible structural elements involved in the origin of nucleotide recognition by non-coded primordial polypeptides.

  12. Molecular self-assembly in substituted alanine derivatives: XRD, Hirshfeld surfaces and DFT studies

    NASA Astrophysics Data System (ADS)

    Rajalakshmi, Periasamy; Srinivasan, Navaneethakrishnan; Sivaraman, Gandhi; Razak, Ibrahim Abdul; Rosli, Mohd Mustaqim; Krishnakumar, Rajaputi Venkatraman

    2014-06-01

    The molecular assemblage in the crystal structures of three modified chiral amino acids, two of which are isomeric D- and L-pairs boc-L-benzothienylalanine (BLA), boc-D-benzothienylalanine (BDA) and the other boc-D-naphthylalanine (NDA) differing from this pair very slightly in the chemical modification introduced, is accurately described. The aggregation of amino acid molecules is similar in all the crystals and may be described as a twisted double helical ladder in which two complementary long helical chains formed through O-H⋯O hydrogen bonds are interconnected through the characteristic head-to-tail N-H⋯O hydrogen bonds. Thus the molecular aggregation enabled through classical hydrogen bonds may be regarded as a mimic of the characteristic double helical structure of DNA. Also, precise structural information involving these amino acid molecules with lower symmetry exhibiting higher trigonal symmetry in their self-assembly is expected to throw light on the nature and strength of intermolecular interactions and their role in self-assembly of molecular aggregates, which are crucial in developing new or at least supplement existing crystal engineering strategies. Single crystal X-ray analysis and their electronic structures were calculated at the DFT level with a detailed analysis of Hirshfeld surfaces and fingerprint plots facilitating a comparison of intermolecular interactions in building different supramolecular architectures.

  13. Thickness-dependent spontaneous dewetting morphology of ultrathin Ag films.

    PubMed

    Krishna, H; Sachan, R; Strader, J; Favazza, C; Khenner, M; Kalyanaraman, R

    2010-04-16

    We show here that the morphological pathway of spontaneous dewetting of ultrathin Ag films on SiO2 under nanosecond laser melting is dependent on film thickness. For films with thickness h of 2 nm < or = h < or = 9.5 nm, the morphology during the intermediate stages of dewetting consisted of bicontinuous structures. For films with 11.5 nm < or = h < or = 20 nm, the intermediate stages consisted of regularly sized holes. Measurement of the characteristic length scales for different stages of dewetting as a function of film thickness showed a systematic increase, which is consistent with the spinodal dewetting instability over the entire thickness range investigated. This change in morphology with thickness is consistent with observations made previously for polymer films (Sharma and Khanna 1998 Phys. Rev. Lett. 81 3463-6; Seemann et al 2001 J. Phys.: Condens. Matter 13 4925-38). Based on the behavior of free energy curvature that incorporates intermolecular forces, we have estimated the morphological transition thickness for the intermolecular forces for Ag on SiO2. The theory predictions agree well with observations for Ag. These results show that it is possible to form a variety of complex Ag nanomorphologies in a consistent manner, which could be useful in optical applications of Ag surfaces, such as in surface enhanced Raman sensing.

  14. Adhesion of protein residues to substituted (111) diamond surfaces: an insight from density functional theory and classical molecular dynamics simulations.

    PubMed

    Borisenko, Konstantin B; Reavy, Helen J; Zhao, Qi; Abel, Eric W

    2008-09-15

    Protein-repellent diamond coatings have great potential value for surface coatings on implants and surgical instruments. The design of these coatings relies on a fundamental understanding of the intermolecular interactions involved in the adhesion of proteins to surfaces. To get insight into these interactions, adhesion energies of glycine to pure and Si and N-doped (111) diamond surfaces represented as clusters were calculated in the gas phase, using density functional theory (DFT) at the B3LYP/6-31G* level. The computed adhesion energies indicated that adhesion of glycine to diamond surface may be modified by introducing additional elements into the surface. The adhesion was also found to induce considerable change in the conformation of glycine when compared with the lowest-energy conformer of the free molecule. In the Si and N-substituted diamond clusters, notable changes in the structures involving the substituents atoms when compared with smaller parent molecules, such as 1-methyl-1-silaadamantane and 1-azaadamantane, were detected. Adhesion free energy differences were estimated for a series of representative peptides (hydrophobic Phe-Gly-Phe, amphiphilic Arg-Gly-Phe, and hydrophilic Arg-Gly-Arg) to a (111) diamond surface substituted with different amounts of N, Si, or F, using molecular dynamics simulations in an explicit water environment employing a Dreiding force field. The calculations were in agreement with the DFT results in that adsorption of the studied peptides to diamond surface is influenced by introducing additional elements to the surface. It has been shown that, in general, substitution will enhance electrostatic interactions between a surface and surrounding water, leading to a weaker adhesion of the studied peptides.

  15. Cycloaddition Reactions of Cobalt-Complexed Macrocyclic Alkynes: The Transannular Pauson-Khand Reaction.

    PubMed

    Karabiyikoglu, Sedef; Boon, Byron A; Merlic, Craig A

    2017-08-04

    The Pauson-Khand reaction is a powerful tool for the synthesis of cyclopentenones through the efficient [2 + 2 + 1] cycloaddition of dicobalt alkyne complexes with alkenes. While intermolecular and intramolecular variants are widely known, transannular versions of this reaction are unknown and the basis of this study. Macrocyclic enyne and dienyne complexes were readily synthesized by palladium(II)-catalyzed oxidative macrocyclizations of bis(vinyl boronate esters) or ring-closing metathesis reactions followed by complexation with dicobalt octacarbonyl. Several reaction modalities of these macrocyclic complexes were uncovered. In addition to the first successful transannular Pauson-Khand reactions, other intermolecular and transannular cycloaddition reactions included intermolecular Pauson-Khand reactions, transannular [4 + 2] cycloaddition reactions, intermolecular [2 + 2 + 2] cycloaddition reactions, and intermolecular [2 + 2 + 1 + 1] cycloaddition reactions. The structural and reaction requirements for each process are presented.

  16. Surface pressure affects B-hordein network formation at the air-water interface in relation to gastric digestibility.

    PubMed

    Yang, Jingqi; Huang, Jun; Zeng, Hongbo; Chen, Lingyun

    2015-11-01

    Protein interfacial network formation under mechanical pressure and its influence on degradation was investigated at molecular level using Langmuir-Blodgett B-hordein monolayer as a 2D model. Surface properties, such as surface pressure, dilatational and shear rheology and the surface pressure--area (π-A) isotherm, of B-hordein at air-water interface were analyzed by tensiometer, rheometer and a Langmuir-Blodgett trough respectively. B-Hordein conformation and orientation under different surface pressures were determined by polarization modulation-infrared reflection absorption spectroscopy (PM-IRRAS). The interfacial network morphology was observed by atomic force microscopy (AFM). B-Hordein could reduce the air-water surface tension rapidly to ∼ 45 mN/m and form a solid-like network with high rheological elasticity and compressibility at interface, which could be a result of interactions developed by intermolecular β-sheets. The results also revealed that B-hordein interfacial network switched from an expanded liquid phase to a solid-like film with increasing compression pressure. The orientation of B-hordein was parallel to the surface when in expended liquid phase, whereas upon compression, the hydrophobic repetitive region tilted away from water phase. When compressed to 30 mN/m, a strong elastic network was formed at the interface, and it was resistant to a harsh gastric-like environment of low pH and pepsin. This work generated fundamental knowledge, which suggested the potential to design B-hordein stabilized emulsions and encapsulations with controllable digestibility for small intestine targeted delivery of bioactive compounds. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. Intermolecular dynamics of substitued benzene and cyclohexane liquids, studied by femtosecond nonlinear-optical polarization spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chang, Y.J.; Castner, E.W. Jr.

    Femtosecond time-resolved optical-heterodyne detected Raman-induced Kerr effect spectroscopy (OHD-RIKES) is shown to be a powerful and comprehensive tool for studying the intermolecular dynamics occurring in liquids. The observed dynamics include both the underdamped or coherent inertial motions, and the longer time scale diffusive relaxation. The inertial dynamics include phonon-like intermolecular vibrations, intermolecular collisions, and librational caging motions. Data are presented and analyzed for a series of five liquids: cyclohexane, methylcyclohexane, toluene, benzyl alcohol, and benzonitrile, listed in order of increasing polarity. We explore the effects of aromaticity (e.g., methylcyclohexane vs toluene), symmetry reduction (cyclohexane vs methylcyclohexane), and substitution effects (e.g.,more » substituted benzene series) on the ultrafast intermolecular dynamics, for a group of molecular liquids of similar size and volume. We analyze the intermolecular dynamics in both the time and frequency domains by means of Fourier transformations. When Fourier-transformed into the frequency domain, the OHD-RIKES ultrafast transients of the intermolecular dynamics can be directly compared with the frequency domain spectra obtained from the far-infrared absorption and depolarized Raman techniques. This is done using the Gaussian librational caging model of Lynden-Bell and Steele, which results in a power-law scaling relation between dipole and polarizability time correlation functions. 122 refs., 7 figs., 7 tabs.« less

  18. An ab initio study of intermolecular interactions of nitromethane dimer and nitromethane trimer.

    PubMed

    Li, Jinshan; Zhao, Feng; Jing, Fuqian

    2003-02-01

    Different geometries of nitromethane dimer and nitromethane trimer have been fully optimized employing the density functional theory B3LYP method and the 6-31++G** basis set. Three-body interaction energy has been obtained with the ab initio supermolecular approach at the levels of MP2/6-31++G**//B3LYP/6-31++G** and MP2/aug-cc-pVDZ//B3LYP/6-31++G**. The internal rotation of methyl group induced by intermolecular interaction has been observed theoretically. For the optimized structures of nitromethane dimer, the strength of C--H...O--N H-bond ranges from -9.0 to -12.4 kJ mol(-1) at the MP2/aug-cc-pVDZ//B3LYP/6-31++G** level, and the B3LYP method underestimates the interaction strength compared with the MP2 method, while MP2/6-31++G**//B3LYP/6-31++G** calculated DeltaE(C) is within 2.5 kJ mol(-1) of the corresponding value at the MP4(SDTQ)/6-31G**//B3LYP/6-31++G** level. The analytic atom-atom intermolecular potential has been successfully regressed by using the MP2/6-31++G**//B3LYP/6-31++G** calculated interaction energies of nitromethane dimer. For the optimized structures of nitromethane trimer the three-body interaction energies occupy small percentage of corresponding total binding energies, but become important for the compressed nitromethane explosive. In addition, it has been discovered that the three-body interaction energy in the cyclic nitromethane trimer is more and more negative as intermolecular distances decrease from 2.2 to 1.7 A. Copyright 2003 Wiley Periodicals, Inc. J Comput Chem 24: 345-352, 2003

  19. The effect of cesium carbonate on 1-(3-methoxycarbonyl)propyl-1-phenyl[6,6]C{sub 61} aggregation in films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lindemann, William R.; Wang, Wenjie; Shinar, Joseph

    2014-11-10

    Surface-pressure versus molecular area isotherms, X-ray reflectivity, and X-ray near-total reflection fluorescence were used to study the properties of 1-(3-methoxycarbonyl)propyl-1-phenyl[6,6]C{sub 61} (PCBM) that was pre-mixed with cesium carbonate and spread as a film at the air-water interface. The pre-mixed PCBM with cesium carbonate demonstrated a strikingly strong effect on the organization of the film. Whereas films formed from pure PCBM solution were rough due to strong inter-molecular interactions, the films formed from the mixture were much smoother. This indicates that the cesium carbonate moderates the inter-molecular interactions among PCBM molecules, hinting that the cesium diffusion observed in inverted organic photovoltaicmore » structures and the likely ensuing ionic Cs-PCBM interaction decrease aggregation tendency of PCBM. This implies that the use of cesium salts affects the morphology of the organic layer and consequently improves the efficiency of these devices.« less

  20. The effect of cesium carbonate on 1-(3-methoxycarbonyl)propyl-1-phenyl[6,6]C 61 aggregation in films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lindemann, William R.; Wang, Wenjie; Fungura, Fadzai

    2014-11-11

    Surface-pressure isotherms, X-ray reflectivity, and X-ray near-total reflection fluorescence were used to study the properties of 1-(3-methoxycarbonyl)propyl-1-phenyl[6,6]C 61 (PCBM) that was pre-mixed with cesium carbonate and spread as a film at the air-water interface. The pre-mixed PCBM with cesium carbonate demonstrated a strikingly strong effect on the organization of the film. Whereas films formed from pure PCBM solution were rough due to strong inter-molecular interactions, the films formed from the mixture were much smoother. This indicates that the cesium carbonate moderates the inter-molecular interactions among PCBM molecules, hinting that the cesium diffusion observed in inverted organic photovoltaics and the likelymore » ensuing ionic Cs-PCBM interaction decrease aggregation tendency of PCBM. As a result, this implies that the use of cesium salts affects the morphology of the organic layer and consequently improves the efficiency of these devices.« less

  1. A high-throughput assay for DNA topoisomerases and other enzymes, based on DNA triplex formation.

    PubMed

    Burrell, Matthew R; Burton, Nicolas P; Maxwell, Anthony

    2010-01-01

    We have developed a rapid, high-throughput assay for measuring the catalytic activity (DNA supercoiling or relaxation) of topoisomerase enzymes that is also capable of monitoring the activity of other enzymes that alter the topology of DNA. The assay utilises intermolecular triplex formation to resolve supercoiled and relaxed forms of DNA, the principle being the greater efficiency of a negatively supercoiled plasmid to form an intermolecular triplex with an immobilised oligonucleotide than the relaxed form. The assay provides a number of advantages over the standard gel-based methods, including greater speed of analysis, reduced sample handling, better quantitation and improved reliability and accuracy of output data. The assay is performed in microtitre plates and can be adapted to high-throughput screening of libraries of potential inhibitors of topoisomerases including bacterial DNA gyrase.

  2. Theoretical study on interaction of cytochrome f and plastocyanin complex by a simple coarse-grained model with molecular crowding effect

    NASA Astrophysics Data System (ADS)

    Nakagawa, Satoshi; Kurniawan, Isman; Kodama, Koichi; Arwansyah, Muhammad Saleh; Kawaguchi, Kazutomo; Nagao, Hidemi

    2018-03-01

    We present a simple coarse-grained model with the molecular crowding effect in solvent to investigate the structure and dynamics of protein complexes including association and/or dissociation processes and investigate some physical properties such as the structure and the reaction rate from the viewpoint of the hydrophobic intermolecular interactions of protein complex. In the present coarse-grained model, a function depending upon the density of hydrophobic amino acid residues in a binding area of the complex is introduced, and the function involves the molecular crowding effect for the intermolecular interactions of hydrophobic amino acid residues between proteins. We propose a hydrophobic intermolecular potential energy between proteins by using the density-dependent function. The present coarse-grained model is applied to the complex of cytochrome f and plastocyanin by using the Langevin dynamics simulation to investigate some physical properties such as the complex structure, the electron transfer reaction rate constant from plastocyanin to cytochrome f and so on. We find that for proceeding the electron transfer reaction, the distance between metals in their active sites is necessary within about 18 Å. We discuss some typical complex structures formed in the present simulation in relation to the molecular crowding effect on hydrophobic interactions.

  3. Effect of intermolecular hydrogen bonding, vibrational analysis and molecular structure of a biomolecule: 5-Hydroxymethyluracil.

    PubMed

    Çırak, Çağrı; Sert, Yusuf; Ucun, Fatih

    2014-06-05

    In the present work, the experimental and theoretical vibrational spectra of 5-hydroxymethyluracil were investigated. The FT-IR (4000-400cm(-1)) spectrum of the molecule in the solid phase was recorded. The geometric parameters (bond lengths and bond angles), vibrational frequencies, Infrared intensities of the title molecule in the ground state were calculated using density functional B3LYP and M06-2X methods with the 6-311++G(d,p) basis set for the first time. The optimized geometric parameters and theoretical vibrational frequencies were found to be in good agreement with the corresponding experimental data, and with the results found in the literature. The vibrational frequencies were assigned based on the potential energy distribution using the VEDA 4 program. The dimeric form of 5-hydroxymethyluracil molecule was also simulated to evaluate the effect of intermolecular hydrogen bonding on its vibrational frequencies. It was observed that the NH stretching modes shifted to lower frequencies, while its in-plane and out-of-plane bending modes shifted to higher frequencies due to the intermolecular NH⋯O hydrogen bond. Also, the highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) energies and diagrams were presented. Copyright © 2014 Elsevier B.V. All rights reserved.

  4. Effect of intermolecular hydrogen bonding, vibrational analysis and molecular structure of 4-chlorobenzothioamide

    NASA Astrophysics Data System (ADS)

    Çırak, Çağrı; Sert, Yusuf; Ucun, Fatih

    2013-09-01

    In the present work, the experimental and theoretical vibrational spectra of 4-chlorobenzothioamide were investigated. The FT-IR (400-4000 cm-1) and μ-Raman spectra (100-4000 cm-1) of 4-chlorobenzothioamide in the solid phase were recorded. The geometric parameters (bond lengths and bond angles), vibrational frequencies, Infrared and Raman intensities of the title molecule in the ground state were calculated using ab initio Hartree-Fock and density functional theory (B3LYP) methods with the 6-311++G(d,p) basis set for the first time. The optimized geometric parameters and the theoretical vibrational frequencies were found to be in good agreement with the corresponding experimental data and with the results found in the literature. The vibrational frequencies were assigned based on the potential energy distribution using the VEDA 4 program. The dimeric form of 4-chlorobenzothioamide was also simulated to evaluate the effect of intermolecular hydrogen bonding on the vibrational frequencies. It was observed that the Nsbnd H stretching modes shifted to lower frequencies, while the in-plane and out-of-plane bending modes shifted to higher frequencies due to the intermolecular Nsbnd H⋯S hydrogen bond. Also, the highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) energies and diagrams were presented.

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bereau, Tristan, E-mail: bereau@mpip-mainz.mpg.de; Lilienfeld, O. Anatole von

    We estimate polarizabilities of atoms in molecules without electron density, using a Voronoi tesselation approach instead of conventional density partitioning schemes. The resulting atomic dispersion coefficients are calculated, as well as many-body dispersion effects on intermolecular potential energies. We also estimate contributions from multipole electrostatics and compare them to dispersion. We assess the performance of the resulting intermolecular interaction model from dispersion and electrostatics for more than 1300 neutral and charged, small organic molecular dimers. Applications to water clusters, the benzene crystal, the anti-cancer drug ellipticine—intercalated between two Watson-Crick DNA base pairs, as well as six macro-molecular host-guest complexes highlightmore » the potential of this method and help to identify points of future improvement. The mean absolute error made by the combination of static electrostatics with many-body dispersion reduces at larger distances, while it plateaus for two-body dispersion, in conflict with the common assumption that the simple 1/R{sup 6} correction will yield proper dissociative tails. Overall, the method achieves an accuracy well within conventional molecular force fields while exhibiting a simple parametrization protocol.« less

  6. Polymorphism and electronic structure of polyimine and its potential significance for prebiotic chemistry on Titan.

    PubMed

    Rahm, Martin; Lunine, Jonathan I; Usher, David A; Shalloway, David

    2016-07-19

    The chemistry of hydrogen cyanide (HCN) is believed to be central to the origin of life question. Contradictions between Cassini-Huygens mission measurements of the atmosphere and the surface of Saturn's moon Titan suggest that HCN-based polymers may have formed on the surface from products of atmospheric chemistry. This makes Titan a valuable "natural laboratory" for exploring potential nonterrestrial forms of prebiotic chemistry. We have used theoretical calculations to investigate the chain conformations of polyimine (pI), a polymer identified as one major component of polymerized HCN in laboratory experiments. Thanks to its flexible backbone, the polymer can exist in several different polymorphs, which are relatively close in energy. The electronic and structural variability among them is extraordinary. The band gap changes over a 3-eV range when moving from a planar sheet-like structure to increasingly coiled conformations. The primary photon absorption is predicted to occur in a window of relative transparency in Titan's atmosphere, indicating that pI could be photochemically active and drive chemistry on the surface. The thermodynamics for adding and removing HCN from pI under Titan conditions suggests that such dynamics is plausible, provided that catalysis or photochemistry is available to sufficiently lower reaction barriers. We speculate that the directionality of pI's intermolecular and intramolecular =N-H(…)N hydrogen bonds may drive the formation of partially ordered structures, some of which may synergize with photon absorption and act catalytically. Future detailed studies on proposed mechanisms and the solubility and density of the polymers will aid in the design of future missions to Titan.

  7. Molecular Characteristics and Biological Functions of Surface-Active and Surfactant Proteins.

    PubMed

    Sunde, Margaret; Pham, Chi L L; Kwan, Ann H

    2017-06-20

    Many critical biological processes take place at hydrophobic:hydrophilic interfaces, and a wide range of organisms produce surface-active proteins and peptides that reduce surface and interfacial tension and mediate growth and development at these boundaries. Microorganisms produce both small lipid-associated peptides and amphipathic proteins that allow growth across water:air boundaries, attachment to surfaces, predation, and improved bioavailability of hydrophobic substrates. Higher-order organisms produce surface-active proteins with a wide variety of functions, including the provision of protective foam environments for vulnerable reproductive stages, evaporative cooling, and gas exchange across airway membranes. In general, the biological functions supported by these diverse polypeptides require them to have an amphipathic nature, and this is achieved by a diverse range of molecular structures, with some proteins undergoing significant conformational change or intermolecular association to generate the structures that are surface active.

  8. Space shuttle contamination due to backflow from control motor exhaust

    NASA Technical Reports Server (NTRS)

    Robertson, S. J.; Chan, S. T. K.; Lee, A. L.

    1976-01-01

    Spacecraft contamination of the space shuttle orbiter and accompanying Spacelab payloads is studied. The scattering of molecules from the vernier engines and flash evaporator nozzle after impingement on the orbiter wing surfaces, and the backflow of molecules out of the flash evaporator nozzle plume flow field due to intermolecular collisions in the plume are the problems discussed. A method was formulated for dealing with these problems, and detailed results are given.

  9. New biocomposites based on bioplastic flax fibers and biodegradable polymers.

    PubMed

    Wróbel-Kwiatkowska, Magdalena; Czemplik, Magdalena; Kulma, Anna; Zuk, Magdalena; Kaczmar, Jacek; Dymińska, Lucyna; Hanuza, Jerzy; Ptak, Maciej; Szopa, Jan

    2012-01-01

    A new generation of entirely biodegradable and bioactive composites with polylactic acid (PLA) or poly-ε-caprolactone (PCL) as the matrix and bioplastic flax fibers as reinforcement were analyzed. Bioplastic fibers contain polyhydroxybutyrate and were obtained from transgenic flax. Biochemical analysis of fibers revealed presence of several antioxidative compounds of hydrophilic (phenolics) and hydrophobic [cannabidiol (CBD), lutein] nature, indicating their high antioxidant potential. The presence of CBD and lutein in flax fibers is reported for the first time. FTIR analysis showed intermolecular hydrogen bonds between the constituents in composite PLA+flax fibers which were not detected in PCL-based composite. Mechanical analysis of prepared composites revealed improved stiffness and a decrease in tensile strength. The viability of human dermal fibroblasts on the surface of composites made of PLA and transgenic flax fibers was the same as for cells cultured without composites and only slightly lower (to 9%) for PCL-based composites. The amount of platelets and Escherichia coli cells aggregated on the surface of the PLA based composites was significantly lower than for pure polymer. Thus, composites made of PLA and transgenic flax fibers seem to have bacteriostatic, platelet anti-aggregated, and non-cytotoxic effect. Copyright © 2012 American Institute of Chemical Engineers (AIChE).

  10. High-resolution AFM structure of DNA G-wires in aqueous solution.

    PubMed

    Bose, Krishnashish; Lech, Christopher J; Heddi, Brahim; Phan, Anh Tuân

    2018-05-17

    We investigate the self-assembly of short pieces of the Tetrahymena telomeric DNA sequence d[G 4 T 2 G 4 ] in physiologically relevant aqueous solution using atomic force microscopy (AFM). Wire-like structures (G-wires) of 3.0 nm height with well-defined surface periodic features were observed. Analysis of high-resolution AFM images allowed their classification based on the periodicity of these features. A major species is identified with periodic features of 4.3 nm displaying left-handed ridges or zigzag features on the molecular surface. A minor species shows primarily left-handed periodic features of 2.2 nm. In addition to 4.3 and 2.2 nm ridges, background features with periodicity of 0.9 nm are also observed. Using molecular modeling and simulation, we identify a molecular structure that can explain both the periodicity and handedness of the major G-wire species. Our results demonstrate the potential structural diversity of G-wire formation and provide valuable insight into the structure of higher-order intermolecular G-quadruplexes. Our results also demonstrate how AFM can be combined with simulation to gain insight into biomolecular structure.

  11. PAMAM-Based Dendrimers with Different Alkyl Chains Self-Assemble on Silica Surfaces: Controllable Layer Structure and Molecular Aggregation.

    PubMed

    Zhang, Minghui; Yang, Hui; Wang, Shujuan; Zhang, Wei; Hou, Qingfeng; Guo, Donghong; Liu, Fanghui; Chen, Ting; Wu, Xu; Wang, Jinben

    2018-06-20

    Amphiphilic poly(amidoamine) (PAMAM) dendrimers are a well-known dendritic family due to their remarkable ability to self-assemble on solid surface. However, the relationship between molecular conformation (or adsorption kinetics) of a self-assembled layer and molecular amphiphilicity of such kind of dendrimer is still lacking, which limits the development of modulating self-assembling structures and surface functionality. With this in mind, we synthesized a series of amphiphilic PAMAM-based dendrimers, denoted as G 1 C n , with different alkyl chains ( n = 8, 12, and 16), and investigated the molecular aggregation on silica surfaces by means of quartz crystal microbalance with dissipation, atomic force microscopy, and contact angle. After rinsing, remaining adsorption amounts of G 1 C 12 were higher than those of G 1 C 8 at high concentrations, suggesting that G 1 C 12 adlayers were more stable due to the stronger intermolecular hydrophobic interactions, whereas it preferred to adopt the intramolecular hydrophobic interactions for G 1 C 16 , with low adsorption amounts and unstable adlayers. Bilayer-like structures were inferred in G 1 C 8 and G 1 C 12 adlayers with loose conformation, whereas monolayer structures were likely to exist in the sparse adsorption film of G 1 C 16 . Our results provided more detailed understanding of the effect of molecular structure on the self-assembled structures of amphiphilic dendrimers on solid surfaces, shedding light on the controlled microstructure and wettability of functional surface by modulating the length of hydrophobic chains of dendrimers and a potential application of dendrimer-substrate combinations.

  12. Self-organized porphyrin nanomaterials for solar energy harvesting

    NASA Astrophysics Data System (ADS)

    Radivojevic, Ivana

    New concepts in the design and function of organic dyes as sensitizers for solar energy harvesting are needed. Commercial viability constrains these designs: (a) cost effective synthesis, (b) long-term stability, and (c) an important goal is to reduce the environmental impact of the product at the end of its life cycle. Simple porphyrinoid dyes meet these constraints, but new modes of incorporation into devices are needed to increase the efficiency of charge separation that drives any photonic device designed to harvest light. In this thesis, we will show how complex material architectures on surfaces need not to be the result of complex molecular structures or strong intermolecular forces that form in solution and deposit intact onto surfaces. Varying environmental conditions we can dictate morphology of self-organized structures on surfaces. These studies provide further insights into the design principles, processing, and extent of electron and energy transfer in supramolecular porphyrin materials. We are also developing a new strategy to couple porphyrinoid dyes to oxide surfaces using hafnium and zirconium metalloporphyrins and metallophthalocyanines.The mode of dye attachment to oxide surfaces is a key parameter for the construction of efficient dye sensitized solar cells. Porphyrinoid dyes containing oxophylic group (IV) metal ions that protrude from on face of the macrocycle allow connections directly to oxide surfaces, wherein the metal ion serves as the conduit. Since the charge transport efficiency is mediated by appropriate matching of molecular HOMO-LUMO gaps to semiconductor band gaps, we will show characterized solution phase ground and excited redox potentials of these dyes, and also photophysical properties of dye excited state using transient absorbance spectroscopy.

  13. Intermolecular Potentials of Methane Assessed by Second Virial Coefficients, ab Initio Dimer Interaction Energies, and Aggregate Cohesive Energies.

    PubMed

    Ribeiro, Douglas S

    2017-06-01

    This study presents computations of three energy related properties for 26 previously published multisite intermolecular potentials of methane: MM2, MM3, MM2en, MM3en, MM2mc, MM3mc, MM3envir, RMK, OPLS all-atom, MUB-2, AMBER, BOYD, Williams, Sheikh, MG, Tsuzuki, E2-Gay, E4-Gay, MP4exp-6(iii), MP4exp-6(iv), Rowley-A, Rowley-B, TraPPE-EH, Ouyang, CLC, and Chao and three united atom potentials: Saager-Fischer (SF), OPLS united atom, and HFD. The three properties analyzed are the second virial coefficients for 14 temperature points in the range of 110 to 623.15 K, the interaction energies for 12 orientations of the methane dimer as a function of distance followed by a comparison to three ab initio data sets and the cohesive energy of the aggregate of 512 methane molecules. The latter computed energies are correlated to latent heat of evaporation of 11 potentials and are proposed as surrogate approximate parameters for ΔH vap for the studied potentials. The 10 best performing potentials are selected by rms order in each one of the properties and three of them are found to be present simultaneously in the three sets: Tsuzuki, MM3mc, and MM2mc. On the basis of the cohesive energy of the aggregate, a quantitative measure of the anisotropy of the potentials is proposed. The results are discussed on the basis of anisotropy, nonadditivity and ability of the potentials to reproduce ab initio data. It is concluded that the nonadditivity of the pair potentials holds and the available ab initio data did not lead to pair potentials that are cohesive enough to reproduce accurately the second virial coefficients.

  14. Improving intermolecular interactions in DFTB3 using extended polarization from chemical-potential equalization

    PubMed Central

    Christensen, Anders S.; Elstner, Marcus; Cui, Qiang

    2015-01-01

    Semi-empirical quantum mechanical methods traditionally expand the electron density in a minimal, valence-only electron basis set. The minimal-basis approximation causes molecular polarization to be underestimated, and hence intermolecular interaction energies are also underestimated, especially for intermolecular interactions involving charged species. In this work, the third-order self-consistent charge density functional tight-binding method (DFTB3) is augmented with an auxiliary response density using the chemical-potential equalization (CPE) method and an empirical dispersion correction (D3). The parameters in the CPE and D3 models are fitted to high-level CCSD(T) reference interaction energies for a broad range of chemical species, as well as dipole moments calculated at the DFT level; the impact of including polarizabilities of molecules in the parameterization is also considered. Parameters for the elements H, C, N, O, and S are presented. The Root Mean Square Deviation (RMSD) interaction energy is improved from 6.07 kcal/mol to 1.49 kcal/mol for interactions with one charged species, whereas the RMSD is improved from 5.60 kcal/mol to 1.73 for a set of 9 salt bridges, compared to uncorrected DFTB3. For large water clusters and complexes that are dominated by dispersion interactions, the already satisfactory performance of the DFTB3-D3 model is retained; polarizabilities of neutral molecules are also notably improved. Overall, the CPE extension of DFTB3-D3 provides a more balanced description of different types of non-covalent interactions than Neglect of Diatomic Differential Overlap type of semi-empirical methods (e.g., PM6-D3H4) and PBE-D3 with modest basis sets. PMID:26328834

  15. Improving intermolecular interactions in DFTB3 using extended polarization from chemical-potential equalization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Christensen, Anders S., E-mail: andersx@chem.wisc.edu, E-mail: cui@chem.wisc.edu; Cui, Qiang, E-mail: andersx@chem.wisc.edu, E-mail: cui@chem.wisc.edu; Elstner, Marcus

    Semi-empirical quantum mechanical methods traditionally expand the electron density in a minimal, valence-only electron basis set. The minimal-basis approximation causes molecular polarization to be underestimated, and hence intermolecular interaction energies are also underestimated, especially for intermolecular interactions involving charged species. In this work, the third-order self-consistent charge density functional tight-binding method (DFTB3) is augmented with an auxiliary response density using the chemical-potential equalization (CPE) method and an empirical dispersion correction (D3). The parameters in the CPE and D3 models are fitted to high-level CCSD(T) reference interaction energies for a broad range of chemical species, as well as dipole moments calculatedmore » at the DFT level; the impact of including polarizabilities of molecules in the parameterization is also considered. Parameters for the elements H, C, N, O, and S are presented. The Root Mean Square Deviation (RMSD) interaction energy is improved from 6.07 kcal/mol to 1.49 kcal/mol for interactions with one charged species, whereas the RMSD is improved from 5.60 kcal/mol to 1.73 for a set of 9 salt bridges, compared to uncorrected DFTB3. For large water clusters and complexes that are dominated by dispersion interactions, the already satisfactory performance of the DFTB3-D3 model is retained; polarizabilities of neutral molecules are also notably improved. Overall, the CPE extension of DFTB3-D3 provides a more balanced description of different types of non-covalent interactions than Neglect of Diatomic Differential Overlap type of semi-empirical methods (e.g., PM6-D3H4) and PBE-D3 with modest basis sets.« less

  16. Characterization of Intermolecular Interactions at Play in the 2,2,2-TRIFLUOROETHANOL Trimers Using Cavity and Chirped-Pulse Microwave Spectroscopy

    NASA Astrophysics Data System (ADS)

    Seifert, Nathan A.; Thomas, Javix; Jäger, Wolfgang; Xu, Yunjie

    2017-06-01

    2,2,2-trifluoroethanol (TFE) is a common aqueous co-solvent in biological chemistry which may induce or destabilize secondary structures of proteins and polypeptides, thanks to its diverse intermolecular linkages originating from the hydrogen bonding potential of both the hydroxyl and perfluoro groups. Theoretically, the TFE monomer is predicted to have two stable gauche (gauche^{+}/gauche^{-}) conformations whereas the trans form is unstable or is supported only by a very shallow potential. Only the gauche conformers have been identified in the gas phase, whereas liquid phase studies suggest a trans:gauche ratio of 2:3. The question at which sample (cluster) size the trans form of TFE would appear was one major motivation for our study. Here, we report the detection of three trimers of TFE using Balle-Flygare cavity and chirped-pulse Fourier transform microwave spectroscopy (CP-FTMW) techniques. The most stable observed trimer features one trans- and two gauche-TFE subunits. The other two trimers, observed using a newly constructed 2-6 GHz CP-FTMW spectrometer, consist of only the two gauche conformers of TFE. Quantum Theory of Atoms in Molecules (QTAIM) and non-covalent interactions (NCI) analyses give detailed insights into which intermolecular interactions are at play to stabilize the trans form of TFE in the most stable trimer. M. Buck, Q. Rev. Biophys. 1998, 31, 297-335. I. Bakó, T. Radnai, M. Claire, B. Funel, J. Chem. Phys. 2004, 121, 12472-12480. R. F. W. Bader, Chem. Rev. 1991, 91, 893-928. E. R. Johnson, S. Keinan, P. Mori-Sánchez, J. Contreras-Garcia, A. J. Cohen, W. Yang, J. Am. Chem. Soc., 2010, 132, 6498-6506.

  17. Corresponding-states laws for protein solutions.

    PubMed

    Katsonis, Panagiotis; Brandon, Simon; Vekilov, Peter G

    2006-09-07

    The solvent around protein molecules in solutions is structured and this structuring introduces a repulsion in the intermolecular interaction potential at intermediate separations. We use Monte Carlo simulations with isotropic, pair-additive systems interacting with such potentials. We test if the liquid-liquid and liquid-solid phase lines in model protein solutions can be predicted from universal curves and a pair of experimentally determined parameters, as done for atomic and colloid materials using several laws of corresponding states. As predictors, we test three properties at the critical point for liquid-liquid separation: temperature, as in the original van der Waals law, the second virial coefficient, and a modified second virial coefficient, all paired with the critical volume fraction. We find that the van der Waals law is best obeyed and appears more general than its original formulation: A single universal curve describes all tested nonconformal isotropic pair-additive systems. Published experimental data for the liquid-liquid equilibrium for several proteins at various conditions follow a single van der Waals curve. For the solid-liquid equilibrium, we find that no single system property serves as its predictor. We go beyond corresponding-states correlations and put forth semiempirical laws, which allow prediction of the critical temperature and volume fraction solely based on the range of attraction of the intermolecular interaction potential.

  18. MOLSIM: A modular molecular simulation software

    PubMed Central

    Jurij, Reščič

    2015-01-01

    The modular software MOLSIM for all‐atom molecular and coarse‐grained simulations is presented with focus on the underlying concepts used. The software possesses four unique features: (1) it is an integrated software for molecular dynamic, Monte Carlo, and Brownian dynamics simulations; (2) simulated objects are constructed in a hierarchical fashion representing atoms, rigid molecules and colloids, flexible chains, hierarchical polymers, and cross‐linked networks; (3) long‐range interactions involving charges, dipoles and/or anisotropic dipole polarizabilities are handled either with the standard Ewald sum, the smooth particle mesh Ewald sum, or the reaction‐field technique; (4) statistical uncertainties are provided for all calculated observables. In addition, MOLSIM supports various statistical ensembles, and several types of simulation cells and boundary conditions are available. Intermolecular interactions comprise tabulated pairwise potentials for speed and uniformity and many‐body interactions involve anisotropic polarizabilities. Intramolecular interactions include bond, angle, and crosslink potentials. A very large set of analyses of static and dynamic properties is provided. The capability of MOLSIM can be extended by user‐providing routines controlling, for example, start conditions, intermolecular potentials, and analyses. An extensive set of case studies in the field of soft matter is presented covering colloids, polymers, and crosslinked networks. © 2015 The Authors. Journal of Computational Chemistry Published by Wiley Periodicals, Inc. PMID:25994597

  19. Synthesis, crystal structure, spectroscopic characterization, docking simulation and density functional studies of 1-(3,4-dimethoxyphenyl) -3-(4-flurophenyl)-propan-1-one

    NASA Astrophysics Data System (ADS)

    Khamees, Hussien Ahmed; Jyothi, Mahima; Khanum, Shaukath Ara; Madegowda, Mahendra

    2018-06-01

    The compound 1-(3,4-dimethoxyphenyl)-3-(4-flurophenyl)-propan-1-one (DFPO) was synthesized by Claisen-Schmidt condensation reaction and the single crystals were obtained by slow evaporation method. Three-dimensional structure was confirmed by single crystal X-ray diffraction method and exhibiting the triclinic crystal system with space group P-1. The crystal structure is stabilized by Csbnd H⋯O intermolecular and weak interactions. Computed molecular geometry has been obtained by density functional theory (DFT) and compared with experimental results. The spectra of both FT-IR in the range (4000-400 cm-1) and FT- Raman (3500-50 cm-1) of DFPO were recorded experimentally and computed by (DFT) using B3LYP/6-311G (d,p) as basis sets. Intramolecular charge transfer has been scanned using natural bond orbital (NBO) analysis and revealed the various contribution of bonding and lone pair to the stabilization of molecule. Nonlinear optical activity (NLO) of the title compound has been determined by second harmonic generation (SHG) and computed using DFT method. Hyperpolarizability, HOMO-LUMO energy gap, hardness, softness electronegativity and others Global reactivity descriptors of DFPO has been calculated and revealed complete picture of chemical reactivity of DFPO. Hirshfeld surface analyses were applied to investigate the intermolecular interactions and revealed that more than two-thirds of the inter contacts are associated with O⋯H, C⋯H and H⋯H interactions. Docking studies of DFPO showed inhibition of Vascular endothelial growth Factor human receptor (VEGFR-2) signalling pathway, which indicates DFPO as anti-angiogenesis, that play pivotal role in cancer, so we suggest it for clinical studies to evaluate its potential to treat human cancers.

  20. Emergence of chirality in hexagonally packed monolayers of hexapentyloxytriphenylene on Au(111): a joint experimental and theoretical study.

    PubMed

    Sleczkowski, Piotr; Katsonis, Nathalie; Kapitanchuk, Oleksiy; Marchenko, Alexandr; Mathevet, Fabrice; Croset, Bernard; Lacaze, Emmanuelle

    2014-11-11

    We investigate the expression of chirality in a monolayer formed spontaneously by 2,3,6,7,10,11-pentyloxytriphenylene (H5T) on Au(111). We resolve its interface morphology by combining scanning tunneling microscopy (STM) with theoretical calculations of intermolecular and interfacial interaction potentials. We observe two commensurate structures. While both of them belong to a hexagonal space group, analogical to the triangular symmetry of the molecule and the hexagonal symmetry of the substrate surface, they surprisingly reveal a 2D chiral character. The corresponding breaking of symmetry arises for two reasons. First it is due to the establishment of a large molecular density on the substrate, which leads to a rotation of the molecules with respect to the molecular network crystallographic axes to avoid steric repulsion between neighboring alkoxy chains. Second it is due to the molecule-substrate interactions, leading to commensurable large crystallographic cells associated with the large size of the molecule. As a consequence, molecular networks disoriented with respect to the high symmetry directions of the substrate are induced. The high simplicity of the intermolecular and molecule-substrate van der Waals interactions leading to these observations suggests a generic character for this kind of symmetry breaking. We demonstrate that, for similar molecular densities, only two kinds of molecular networks are stabilized by the molecule-substrate interactions. The most stable network favors the interfacial interactions between terminal alkoxy tails and Au(111). The metastable one favors a specific orientation of the triphenylene core with its symmetry axes collinear to the Au⟨110⟩. This specific orientation of the triphenylene cores with respect to Au(111) appears associated with an energy advantage larger by at least 0.26 eV with respect to the disoriented core.

  1. Path integral Monte Carlo simulations of H2 adsorbed to lithium-doped benzene: A model for hydrogen storage materials

    NASA Astrophysics Data System (ADS)

    Lindoy, Lachlan P.; Kolmann, Stephen J.; D'Arcy, Jordan H.; Crittenden, Deborah L.; Jordan, Meredith J. T.

    2015-11-01

    Finite temperature quantum and anharmonic effects are studied in H2-Li+-benzene, a model hydrogen storage material, using path integral Monte Carlo (PIMC) simulations on an interpolated potential energy surface refined over the eight intermolecular degrees of freedom based upon M05-2X/6-311+G(2df,p) density functional theory calculations. Rigid-body PIMC simulations are performed at temperatures ranging from 77 K to 150 K, producing both quantum and classical probability density histograms describing the adsorbed H2. Quantum effects broaden the histograms with respect to their classical analogues and increase the expectation values of the radial and angular polar coordinates describing the location of the center-of-mass of the H2 molecule. The rigid-body PIMC simulations also provide estimates of the change in internal energy, ΔUads, and enthalpy, ΔHads, for H2 adsorption onto Li+-benzene, as a function of temperature. These estimates indicate that quantum effects are important even at room temperature and classical results should be interpreted with caution. Our results also show that anharmonicity is more important in the calculation of U and H than coupling—coupling between the intermolecular degrees of freedom becomes less important as temperature increases whereas anharmonicity becomes more important. The most anharmonic motions in H2-Li+-benzene are the "helicopter" and "ferris wheel" H2 rotations. Treating these motions as one-dimensional free and hindered rotors, respectively, provides simple corrections to standard harmonic oscillator, rigid rotor thermochemical expressions for internal energy and enthalpy that encapsulate the majority of the anharmonicity. At 150 K, our best rigid-body PIMC estimates for ΔUads and ΔHads are -13.3 ± 0.1 and -14.5 ± 0.1 kJ mol-1, respectively.

  2. Optical Measurements in Non-Equilibrium Plasmas and Flows

    DTIC Science & Technology

    2009-09-01

    collision model, the exponent x is equal to 0.5, from simple kinetic theory. For most realistic inter-molecular potentials, the exponent x is in the range...Chemical Physics, Vol. 89, p. 5568 (1988). 9. Rosasco, G.J., Lempert, W., Hurst , W.S., and Fein, A., in “Spectral Line Shapes, Vol 2, Walter de Gruyter

  3. a Strange Combination Band of the Cross-Shaped Complex CO_2-CS_2

    NASA Astrophysics Data System (ADS)

    Moazzen-Ahmadi, Nasser; McKellar, Bob

    2015-06-01

    The spectrum of the weakly-bound CO_2-CS_2 complex was originally studied by the USC group, using a pulsed supersonic expansion and a tunable diode laser in the CO_2 νb{3} region. Their derived structure was nonplanar X-shaped (C2v symmetry), a relatively unusual geometry among linear molecule dimers. Very recently, there has been a detailed theoretical study of this complex based on a high-level ab initio potential surface. The theoretical ground state is X-shaped, in good agreement with experiment, and a very low-lying (3 wn at equilibrium, or 8 wn zero-point) slipped-parallel isomer is also found. We report here two new combination bands of X-shaped CO_2-CS_2 which involve the same νb{3} fundamental (2346.546 wn) plus a low-frequency intermolecular vibration. The first band has b-type rotational selection rules (the fundamental is c-type). This, and its location (2361.838 wn), clearly identify it as being due to the intermolecular torsional mode. The second band (2388.426 wn) is a-type and can be assigned to the CO_2 rocking mode. Both observed intermolecular frequencies (15.29 and 41.88 wn) are in extremely good agreement with theory (15.26 and 41.92 wn).b The torsional band is well-behaved, but the 2388 wn band is bizarre, with its Ka = 2 ← 2 and 4 ← 4 components displaced upward by 2.03 and 2.62 wn relative to the K_a = 0 ← 0 origin (odd K_a values are nuclear spin forbidden). A qualitatively similar shift (+2.4 wn) was noted for the (forbidden) Ka = 1 level of this mode by Brown et al.,b but the calculation was limited to J = 0 and 1. These huge shifts are presumably due to hindered internal rotation effects. C.C. Dutton, D.A. Dows, R. Eikey. S. Evans, R.A. Beaudet, J. Phys. Chem. A 102, 6904 (1998). J. Brown, X.-G. Wang, T. Carrington, Jr., G.S. Grubbs II, and R. Dawes, J. Chem. Phys. 140, 114303 (2014). J. Brown, X.-G. Wang, T. Carrington, Jr., G.S. Grubbs II, and R. Dawes, J. Chem. Phys. 140, 114303 (2014).

  4. Altering intra- to inter-molecular hydrogen bonding by dimethylsulfoxide: A TDDFT study of charge transfer for coumarin 343

    NASA Astrophysics Data System (ADS)

    Liu, Xiaochun; Yin, Hang; Li, Hui; Shi, Ying

    2017-04-01

    DFT and TDDFT methods were carried out to investigate the influences of intramolecular and intermolecular hydrogen bonding on excited state charge transfer for coumarin 343 (C343). Intramolecular hydrogen bonding is formed between carboxylic acid group and carbonyl group in C343 monomer. However, in dimethylsulfoxide (DMSO) solution, DMSO 'opens up' the intramolecular hydrogen bonding and forms solute-solvent intermolecular hydrogen bonded C343-DMSO complex. Analysis of frontier molecular orbitals reveals that intramolecular charge transfer (ICT) occurs in the first excited state both for C343 monomer and complex. The results of optimized geometric structures indicate that the intramolecular hydrogen bonding interaction is strengthened while the intermolecular hydrogen bonding is weakened in excited state, which is confirmed again by monitoring the shifts of characteristic peaks of infrared spectra. We demonstrated that DMSO solvent can not only break the intramolecular hydrogen bonding to form intermolecular hydrogen bonding with C343 but also alter the mechanism of excited state hydrogen bonding strengthening.

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Van Vleet, Mary J.; Misquitta, Alston J.; Stone, Anthony J.

    Short-range repulsion within inter-molecular force fields is conventionally described by either Lennard-Jones or Born-Mayer forms. Despite their widespread use, these simple functional forms are often unable to describe the interaction energy accurately over a broad range of inter-molecular distances, thus creating challenges in the development of ab initio force fields and potentially leading to decreased accuracy and transferability. Herein, we derive a novel short-range functional form based on a simple Slater-like model of overlapping atomic densities and an iterated stockholder atom (ISA) partitioning of the molecular electron density. We demonstrate that this Slater-ISA methodology yields a more accurate, transferable, andmore » robust description of the short-range interactions at minimal additional computational cost compared to standard Lennard-Jones or Born-Mayer approaches. Lastly, we show how this methodology can be adapted to yield the standard Born-Mayer functional form while still retaining many of the advantages of the Slater-ISA approach.« less

  6. Infrared and Ultraviolet Spectroscopy of Gas-Phase Imidazolium and Pyridinium Ionic Liquids.

    NASA Astrophysics Data System (ADS)

    Young, Justin W.; Booth, Ryan S.; Annesley, Christopher; Stearns, Jaime A.

    2015-06-01

    Ionic liquids (ILs) are a highly variable and potentially game-changing class of molecules for a number of Air Force applications such as satellite propulsion, but the complex nature of IL structure and intermolecular interactions makes it difficult to adequately predict structure-property relationships in order to make new IL-based technology a reality. For example, methylation of imidazolium ionic liquids leads to a substantial increase in viscosity but the underlying physical mechanism is not understood. In addition, the role of hydrogen bonding in ILs, and especially its relationship to macroscopic properties, is a matter of ongoing research. Here we describe the gas-phase spectroscopy of a series of imidazolium- and pyridinium-based ILs, using a combination of infrared spectroscopy and density functional theory to establish the intermolecular interactions present in various ILs, to assess how well they are described by theory, and to relate microscopic structure to macroscopic properties.

  7. Coarse-Grained Simulation of Solvated Cellulose Ib Microfibril

    NASA Astrophysics Data System (ADS)

    Fan, Bingxin; Maranas, Janna; Zhong, Linghao; Zhen Zhao Collaboration

    2013-03-01

    We construct a coarse-grained (CG) model of cellulose microfibrils in water. The force field is derived from atomistic simulation of a 40 glucose-unit-long microfibril by requiring consistency between the chain configuration, intermolecular packing and hydrogen bonding of the two levels of modeling. Intermolecular interactions such as hydrogen bonding are added sequentially until the force field holds the microfibril crystal structure. This stepwise process enables us to evaluate the importance of each potential and provides insight to ordered and disordered regions. We simulate cellulose microfibrils with 100 to 400 residues, comparable to the smallest observed microfibrils. Microfibrils longer than 100nm would form a bending region along their longitudinal direction. Multiple bends are observed in the microfibril containing 400 residues. Although the cause is not clear, the bending regions may provide us insights about the periodicity and the behavior of the disordered regions in the microfibril.

  8. Effect of dynamic disorder on charge transport along a pentacene chain

    NASA Astrophysics Data System (ADS)

    Böhlin, J.; Linares, M.; Stafström, S.

    2011-02-01

    The lattice equation of motion and a numerical solution of the time-dependent Schrödinger equation provide us with a microscopic picture of charge transport in highly ordered molecular crystals. We have chosen the pentacene single crystal as a model system, and we study charge transport as a function of phonon-mode time-dependent fluctuations in the intermolecular electron transfer integral. For comparison, we include similar fluctuations also in the intramolecular potentials. The variance in these energy quantities is closely related to the temperature of the system. The pentacene system is shown to be very sensitive to fluctuation in the intermolecular transfer integral, revealing a transition from adiabatic to nonadiabatic polaron transport for increasing temperatures. The extension of the polaron at temperatures above 200 K is limited by the electron localization length rather than the interplay between the electron transfer integral and the electron-phonon coupling strength.

  9. Selective adsorption of a supramolecular structure on flat and stepped gold surfaces

    NASA Astrophysics Data System (ADS)

    Peköz, Rengin; Donadio, Davide

    2018-04-01

    Halogenated aromatic molecules assemble on surfaces forming both hydrogen and halogen bonds. Even though these systems have been intensively studied on flat metal surfaces, high-index vicinal surfaces remain challenging, as they may induce complex adsorbate structures. The adsorption of 2,6-dibromoanthraquinone (2,6-DBAQ) on flat and stepped gold surfaces is studied by means of van der Waals corrected density functional theory. Equilibrium geometries and corresponding adsorption energies are systematically investigated for various different adsorption configurations. It is shown that bridge sites and step edges are the preferred adsorption sites for single molecules on flat and stepped surfaces, respectively. The role of van der Waals interactions, halogen bonds and hydrogen bonds are explored for a monolayer coverage of 2,6-DBAQ molecules, revealing that molecular flexibility and intermolecular interactions stabilize two-dimensional networks on both flat and stepped surfaces. Our results provide a rationale for experimental observation of molecular carpeting on high-index vicinal surfaces of transition metals.

  10. The Action of a Magnetic Field on Water,

    DTIC Science & Technology

    The effect of a low intensity magnetic field on water as a flotation medium with the enrichment of coal and dressing of copper sulfied ore is studied...magnetic field with flotation is expressed. The imposition of an external magnetic field disturbs the energy state of water, which leads to a change in...intermolecular interaction, stability of hydrogen bonds, deterioration in the wettability of rigid surfaces, and a change in the technological indices of flotation enrichment. (Author)

  11. The adsorption properties of titanium dioxide

    NASA Astrophysics Data System (ADS)

    Lanin, S. N.; Vlasenko, E. V.; Kovaleva, N. V.; Zung, Fam Tien

    2008-12-01

    The adsorption properties of titanium dioxide were studied by gas chromatography. We used organic compounds from different classes, namely, n-alkanes, n-alkenes (C6-C8), and polar compounds (electron donors and acceptors) as test adsorbates. The differential heats of adsorption and the contributions of dispersion and specific intermolecular interaction energies were determined for the systems from the experimental retention data. The electron-donor and electron-acceptor characteristics of the ultimately hydroxylated surface of TiO2 were evaluated.

  12. Seamless growth of a supramolecular carpet

    PubMed Central

    Kim, Ju-Hyung; Ribierre, Jean-Charles; Yang, Yu Seok; Adachi, Chihaya; Kawai, Maki; Jung, Jaehoon; Fukushima, Takanori; Kim, Yousoo

    2016-01-01

    Organic/metal interfaces play crucial roles in the formation of intermolecular networks on metal surfaces and the performance of organic devices. Although their purity and uniformity have profound effects on the operation of organic devices, the formation of organic thin films with high interfacial uniformity on metal surfaces has suffered from the intrinsic limitation of molecular ordering imposed by irregular surface structures. Here we demonstrate a supramolecular carpet with widely uniform interfacial structure and high adaptability on a metal surface via a one-step process. The high uniformity is achieved with well-balanced interfacial interactions and site-specific molecular rearrangements, even on a pre-annealed amorphous gold surface. Co-existing electronic structures show selective availability corresponding to the energy region and the local position of the system. These findings provide not only a deeper insight into organic thin films with high structural integrity, but also a new way to tailor interfacial geometric and electronic structures. PMID:26839053

  13. Theoretical Exploration of Exponential Heat Source and Thermal Stratification Effects on The Motion of 3-Dimensional Flow of Casson Fluid Over a Low Heat Energy Surface at Initial Unsteady Stage

    NASA Astrophysics Data System (ADS)

    Sandeep, N.; Animasaun, I. L.

    2017-06-01

    Within the last few decades, experts and scientists dealing with the flow of non-Newtonian fluids (most especially Casson fluid) have confirmed the existence of such flow on a stretchable surface with low heat energy (i.e. absolute zero of temperature). This article presents the motion of a three-dimensional of such fluid. Influence of uniform space dependent internal heat source on the intermolecular forces holding the molecules of Casson fluid is investigated. It is assumed that the stagnation flow was induced by an external force (pressure gradient) together with impulsive. Based on these assumptions, variable thermophysical properties are most suitable; hence modified kinematic viscosity model is presented. The system of governing equations of 3-dimensional unsteady Casson fluid was non-dimensionalized using suitable similarity transformation which unravels the behavior of the flow at full fledge short period. The numerical solution of the corresponding boundary value problem (ODE) was obtained using Runge-Kutta fourth order along with shooting technique. The intermolecular forces holding the molecules of Casson fluid flow in both horizontal directions when magnitude of velocity ratio parameters are greater than unity breaks continuously with an increase in Casson parameter and this leads to an increase in velocity profiles in both directions.

  14. Structural, crystal structure, Hirshfeld surface analysis and physicochemical studies of a new chlorocadmate template by 1-(2-hydroxyethyl)piperazine

    NASA Astrophysics Data System (ADS)

    Soudani, S.; Jeanneau, E.; Jelsch, C.; Lefebvre, F.; Ben Nasr, C.

    2016-11-01

    The synthesis, crystal structure and spectroscopic characterization of a new chlorocadmate template by the 1-(2-hydroxyethyl)piperazine ligand are reported. In the atomic arrangement, the CdCl5O entities are deployed in corrugated rows along the a-axis at y = 1/4 and y = 3/4 to form layers parallel to the (a,b) plane. In these crystals, piperazinediium cations are in a chair conformation and are inserted between these layers through Nsbnd H⋯Cl, Csbnd H⋯Cl, Osbnd H⋯Cl and Nsbnd H⋯O hydrogen bonds to form infinite three-dimensional network. Investigation of intermolecular interactions and crystal packing via Hirshfeld surface analysis reveals that H⋯Cl and Csbnd H⋯Hsbnd C intermolecular interactions are the most abundant contacts of the organic cation in the crystal packing. The crystal contacts enrichments reveals that, the Cd++ … Cl- salt bridges, the Cd⋯O complexation and Osbnd H⋯Cl- and Nsbnd H⋯Cl-strong H-bonds are the driving forces in the packing formation. The presence of twelve independent chloride anions and four organic cation in the asymmetric unit allowed comparing their contact propensities. The 13C and 15N CP-MAS NMR spectra are in agreement with the X-ray structure. Additional characterization of this compound has also been performed by IR spectroscopy.

  15. A surface plasmon resonance study of the intermolecular interaction between Escherichia coli topoisomerase I and pBAD/Thio supercoiled plasmid DNA

    PubMed Central

    Tiwari, Purushottam Babu; Annamalai, Thirunavukkarasu; Cheng, Bokun; Narula, Gagandeep; Wang, Xuewen; Tse-Dinh, Yuk-Ching; He, Jin; Darici, Yesim

    2014-01-01

    To date, the bacterial DNA topoisomerases are one of the major target biomolecules for the discovery of new antibacterial drugs. DNA topoisomerase regulates the topological state of DNA, which is very important for replication, transcription and recombination. The relaxation of negatively supercoiled DNA is catalyzed by bacterial DNA topoisomerase I (topoI) and this reaction requires Mg2+. In this report, we first quantitatively studied the intermolecular interactions between Escherichia coli topoisomerase I (EctopoI) and pBAD/Thio supercoiled plasmid DNA using surface plasmon resonance (SPR) technique. The equilibrium dissociation constant (Kd) for EctopoI-pBAD/Thio interactions is determined to be about 8 nM. We then studied the effect of Mg2+ on the catalysis of EctopoI-pBAD/Thio reaction. A slightly higher equilibrium dissociation constant (~15 nM) was obtained for Mg2+ coordinated EctopoI (Mg2+EctopoI)-pBAD/Thio interactions. In addition, we observed a larger dissociation rate constant (kd) for Mg2+EctopoI-pBAD/Thio interactions (~0.043 s−1), compared to EctopoI-pBAD/Thio interactions (~0.017 s−1). These results suggest that enzyme turnover during plasmid DNA relaxation is enhanced due to the presence of Mg2+ and furthers the understanding of importance of the Mg2+ ion for bacterial topoisomerase I catalytic activity. PMID:24530905

  16. The Odd Power of Dispersion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, Peng

    2014-12-01

    In ancient China, water has been regarded as one of the five vital components of life. It has been observed that water has many fascinating properties: water is ‘soft’ yet it can penetrate a hard rock; water is ‘pure’ yet it can tolerate other beings. Because of its unique properties, water is often associated with good quality and has been given the highest praise by Laozi in his book Tao Te Ching saying: the highest/best quality that one can have is being like water. However, little did people understand why and how water possesses such fascinating properties. Modern scientific developmentsmore » made people realize that the macroscopic liquid water is made of a large number of water molecules held together via a network of hydrogen bonds. And those wonderful properties of water are merely the macroscopic manifestations of the interactions between water molecules and other molecules. For example, the dissolving ability of water is due to the fact that the interaction between a water molecule and the other molecular species is stronger than the interactions among their own molecular species. In fact the interactions between any two molecules are governed by the same physics and are termed intermolecular interaction (or intermolecular forces in some literature, although technically ‘force’ is incorrect usage here). Although the very existence of the intermolecular interactions is easily proved, e.g. the mere presence of the solid phase of matter, and scientists today have recognized that the seemingly weak intermolecular interactions essentially hold the world together through a delicate and cooperative process, the theoretical understanding of various intermolecular interactions is still far from satisfactory. On the practical side, theoreticians need to balance computational cost and accuracy. Because of the relatively small magnitudes of the intermolecular interactions, errors that appear tiny compared to the usual chemical (covalent) bonding may change conclusions qualitatively. High-level ab initio methods including explicit description of electron correlation can achieve the desired accuracy at very high computational cost. (Chapter 5 and 6) However the cooperative network of hundreds of thousands of molecules that reflects the true power of intermolecular interactions cannot be modeled easily by ab initio methods. Deeper understanding of intermolecular interactions yields better theoretical models; better theoretical models facilitate and even deepen the understanding of intermolecular interactions. With the aforementioned motivation in mind, a significant portion of this dissertation is dedicated to developing a method to describe the intermolecular interactions accurately with affordable computational resources.« less

  17. The Twinkling Fractal Theory of the Glass Transition: Applications to Soft Matter

    NASA Astrophysics Data System (ADS)

    Wool, Richard

    2012-02-01

    The Twinkling Fractal Theory (TFT) of the glass transition has recently been demonstrated experimentally [J.F. Stanzione et al., J. Non Cryst. Sol., (2011, 357,311]. The hard to-soft matter transition is characterized by the presence of solid fractal clusters with liquid-like pools that are dynamically interchanging via their anharmonic intermolecular potentials with Boltzmann energy populations with a characteristic temperature dependent vibrational density of states g(φ) ˜ φ^df . The twinkling fractal frequencies φ cover a range of 10^12 Hz to 10-10Hz and the fractal solid clusters of size R have a lifetime τ ˜ R^Df/df, where the fractal dimension Df 2.4 and the fracton dimension df = 4/3. Here we explore its application to a number of soft matter issues. These include (a) Confinement effects on Tg reduction in thin films of thickness h, where by virtue of large cluster exclusion, δTg ˜ 1/h^Df/df; (b) Tg gradients near bulk surfaces, where the smaller clusters on the surface have a faster relaxation time; (c) Effect of twinkling surfaces on cell growth, where at T Tg + 20 C, there exists a twinkling fractal range that leads to bell-shaped enhancement of cell growth and chemical up-regulation via the twinkling surfaces ``communicating `` with the cells through their vibrations; and (d) adhesion above and below Tg where topological fluctuations associated with g(φ) promotes the development of nano-nails at the interface.

  18. Hotspots for allosteric regulation on protein surfaces

    PubMed Central

    Reynolds, Kimberly A.; McLaughlin, Richard N.; Ranganathan, Rama

    2012-01-01

    Recent work indicates a general architecture for proteins in which sparse networks of physically contiguous and co-evolving amino acids underlie basic aspects of structure and function. These networks, termed sectors, are spatially organized such that active sites are linked to many surface sites distributed throughout the structure. Using the metabolic enzyme dihydrofolate reductase as a model system, we show that (1) the sector is strongly correlated to a network of residues undergoing millisecond conformational fluctuations associated with enzyme catalysis and (2) sector-connected surface sites are statistically preferred locations for the emergence of allosteric control in vivo. Thus, sectors represent an evolutionarily conserved “wiring” mechanism that can enable perturbations at specific surface positions to rapidly initiate conformational control over protein function. These findings suggest that sectors enable the evolution of intermolecular communication and regulation. PMID:22196731

  19. Density functional description of size-dependent effects at nucleation on neutral and charged nanoparticles

    NASA Astrophysics Data System (ADS)

    Shchekin, Alexander K.; Lebedeva, Tatiana S.

    2017-03-01

    A numerical study of size-dependent effects in the thermodynamics of a small droplet formed around a solid nanoparticle has been performed within the square-gradient density functional theory. The Lennard-Jones fluid with the Carnahan-Starling model for the hard-sphere contribution to intermolecular interaction in liquid and vapor phases and interfaces has been used for description of the condensate. The intermolecular forces between the solid core and condensate molecules have been taken into account with the help of the Lennard-Jones part of the total molecular potential of the core. The influence of the electric charge of the particle has been considered under assumption of the central Coulomb potential in the medium with dielectric permittivity depending on local condensate density. The condensate density profiles and equimolecular radii for equilibrium droplets at different values of the condensate chemical potential have been computed in the cases of an uncharged solid core with the molecular potential, a charged core without molecular potential, and a core with joint action of the Coulomb and molecular potentials. The appearance of stable equilibrium droplets even in the absence of the electric charge has been commented. As a next step, the capillary, disjoining pressure, and electrostatic contributions to the condensate chemical potential have been considered and compared with the predictions of classical thermodynamics in a wide range of values of the droplet and the particle equimolecular radii. With the help of the found dependence of the condensate chemical potential in droplet on the droplet size, the activation barrier for nucleation on uncharged and charged particles has been computed as a function of the vapor supersaturation. Finally, the work of droplet formation and the work of wetting the particle have been found as functions of the droplet size.

  20. Asymmetric intermolecular cobalt-catalyzed Pauson-Khand reaction using a P-stereogenic bis-phosphane.

    PubMed

    Orgué, Sílvia; León, Thierry; Riera, Antoni; Verdaguer, Xavier

    2015-01-16

    The asymmetric intermolecular and catalytic Pauson-Khand reaction has remained an elusive goal since Khand and Pauson discovered this transformation. Using a novel family of P-stereogenic phosphanes, we developed the first catalytic system with useful levels of enantioselection for the reaction of norbornadiene and trimethylsilylacetylene. The results demonstrate that Co-bisphosphane systems are sufficiently reactive and that they lead to high selectivity in the intermolecular process.

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Torii, Hajime, E-mail: torii.hajime@shizuoka.ac.jp

    The intensity of the band at ∼200 cm{sup −1} (∼6 THz) in the Terahertz spectrum of liquid water mainly arises from the modulations of the extent of intermolecular charge transfer through hydrogen bonds, called intermolecular charge fluxes, occurring upon molecular translations along the O…H hydrogen bonds. To obtain reasonable spectral profiles from simulations, it is necessary to effectively incorporate the effects of those intermolecular charge fluxes, but apparently it is not possible by simple classical molecular dynamics simulations with fixed atomic partial charges even if they are amended by molecular induced dipoles due to intermolecular electrostatic interactions. The present paper showsmore » how we can do reasonably correct spectral simulations, without resorting to fully ab initio molecular dynamics.« less

  2. Intermolecular artifacts in probe microscope images of C60 assemblies

    NASA Astrophysics Data System (ADS)

    Jarvis, Samuel Paul; Rashid, Mohammad Abdur; Sweetman, Adam; Leaf, Jeremy; Taylor, Simon; Moriarty, Philip; Dunn, Janette

    2015-12-01

    Claims that dynamic force microscopy has the capability to resolve intermolecular bonds in real space continue to be vigorously debated. To date, studies have been restricted to planar molecular assemblies with small separations between neighboring molecules. Here we report the observation of intermolecular artifacts over much larger distances in 2D assemblies of C60 molecules, with compelling evidence that in our case the tip apex is terminated by a C60 molecule (rather than the CO termination typically exploited in ultrahigh resolution force microscopy). The complete absence of directional interactions such as hydrogen or halogen bonding, the nonplanar structure of C60, and the fullerene termination of the tip apex in our case highlight that intermolecular artifacts are ubiquitous in dynamic force microscopy.

  3. Intermolecular interactions and the thermodynamic properties of supercritical fluids.

    PubMed

    Yigzawe, Tesfaye M; Sadus, Richard J

    2013-05-21

    The role of different contributions to intermolecular interactions on the thermodynamic properties of supercritical fluids is investigated. Molecular dynamics simulation results are reported for the energy, pressure, thermal pressure coefficient, thermal expansion coefficient, isothermal and adiabatic compressibilities, isobaric and isochoric heat capacities, Joule-Thomson coefficient, and speed of sound of fluids interacting via both the Lennard-Jones and Weeks-Chandler-Andersen potentials. These properties were obtained for a wide range of temperatures, pressures, and densities. For each thermodynamic property, an excess value is determined to distinguish between attraction and repulsion. It is found that the contributions of intermolecular interactions have varying effects depending on the thermodynamic property. The maxima exhibited by the isochoric and isobaric heat capacities, isothermal compressibilities, and thermal expansion coefficient are attributed to interactions in the Lennard-Jones well. Repulsion is required to obtain physically realistic speeds of sound and both repulsion and attraction are necessary to observe a Joule-Thomson inversion curve. Significantly, both maxima and minima are observed for the isobaric and isochoric heat capacities of the supercritical Lennard-Jones fluid. It is postulated that the loci of these maxima and minima converge to a common point via the same power law relationship as the phase coexistence curve with an exponent of β = 0.32. This provides an explanation for the terminal isobaric heat capacity maximum in supercritical fluids.

  4. Effect of intermolecular hydrogen bonding, vibrational analysis and molecular structure of 4-chlorobenzothioamide.

    PubMed

    Çırak, Çağrı; Sert, Yusuf; Ucun, Fatih

    2013-09-01

    In the present work, the experimental and theoretical vibrational spectra of 4-chlorobenzothioamide were investigated. The FT-IR (400-4000 cm(-1)) and μ-Raman spectra (100-4000 cm(-1)) of 4-chlorobenzothioamide in the solid phase were recorded. The geometric parameters (bond lengths and bond angles), vibrational frequencies, Infrared and Raman intensities of the title molecule in the ground state were calculated using ab initio Hartree-Fock and density functional theory (B3LYP) methods with the 6-311++G(d,p) basis set for the first time. The optimized geometric parameters and the theoretical vibrational frequencies were found to be in good agreement with the corresponding experimental data and with the results found in the literature. The vibrational frequencies were assigned based on the potential energy distribution using the VEDA 4 program. The dimeric form of 4-chlorobenzothioamide was also simulated to evaluate the effect of intermolecular hydrogen bonding on the vibrational frequencies. It was observed that the N-H stretching modes shifted to lower frequencies, while the in-plane and out-of-plane bending modes shifted to higher frequencies due to the intermolecular N-H···S hydrogen bond. Also, the highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) energies and diagrams were presented. Copyright © 2013 Elsevier B.V. All rights reserved.

  5. Molecular structure of hybrid imino-chalcone in the solid state: X-ray diffraction, spectroscopy study and third-order nonlinear optical properties

    NASA Astrophysics Data System (ADS)

    Custodio, J. M. F.; Santos, F. G.; Vaz, W. F.; Cunha, C. E. P.; Silveira, R. G.; Anjos, M. M.; Campos, C. E. M.; Oliveira, G. R.; Martins, F. T.; da Silva, C. C.; Valverde, C.; Baseia, B.; Napolitano, H. B.

    2018-04-01

    A comprehensive structural study of the compound (2E)-1-((E)-4-(4-methoxybenzylideneamino)phenyl)-3-(4-methoxyphenyl)prop-2-en-1-one was carried out in this work. Single crystal X-ray diffraction (SCXRD), X-ray powder diffraction (XRPD), NMR, Raman and Infrared spectroscopies, and DFT calculations were performed for characterization of this iminochalcone hybrid. Intermolecular interactions were described by Hirshfeld surface analysis derived from crystal structure. Reactivity and intramolecular charge transfer were investigated using the frontier molecular orbitals and molecular electrostatic potential. In addition, we have calculated the Nonlinear Optical Properties at the CAM-B3LYP/6-311+g(d) level of theory in the presence of different solvents (gas-phase, acetone, chloroform, dichloromethane, dimethyl sulfoxide, ethanol, methanol, and water), being found meaningful NLO parameters for our compound. At last, there is a good agreement between calculated and experimental IR spectrum, allowing the assignment of some of normal vibrational modes of the iminochalcone hybrid.

  6. Spectral investigations and DFT studies of 3,7-dihydro-1,3,7-trimethyl-1H-purine-2,6-dione (caffeine) interaction and recognition by single amino acid derived self-assembled nanostructures

    NASA Astrophysics Data System (ADS)

    Govindhan, R.; Karthikeyan, B.

    2018-03-01

    Recognition of xanthine alkaloid caffeine with 3,5-bis(trifluoromethyl)benzylamine derived peptide nanotubes (BTTPNTs) through chemical interaction have been achieved through the host-guest like interaction. DFT simulation is carried out for caffeine interacted with BTTPNTs system and also experimentally characterized by ultraviolet-visible (UV-vis) absorbance, confocal Raman spectra (CRS) with microscopic imaging (CRM), FT-Raman, surface enhanced Raman scattering (SERS), UV-diffuse reflectance spectra (UV-DRS), high resolution transmission electron microscopy (HR-TEM) and cyclic voltammetry (CV) studies. The results are used to examine the morphologies, size of the nanostructure and study of its interaction with the caffeine molecule. The results show that BTTPNTs is having potential for sensing the caffeine molecules through the binding occurred from the NH2 of tyrosine moiety of the BTTPNTs. This intermolecular association through face-to-face stacking of BTTPNTs is explained by detailed DFT calculations.

  7. Long-Range Repulsion Between Spatially Confined van der Waals Dimers

    NASA Astrophysics Data System (ADS)

    Sadhukhan, Mainak; Tkatchenko, Alexandre

    2017-05-01

    It is an undisputed textbook fact that nonretarded van der Waals (vdW) interactions between isotropic dimers are attractive, regardless of the polarizability of the interacting systems or spatial dimensionality. The universality of vdW attraction is attributed to the dipolar coupling between fluctuating electron charge densities. Here, we demonstrate that the long-range interaction between spatially confined vdW dimers becomes repulsive when accounting for the full Coulomb interaction between charge fluctuations. Our analytic results are obtained by using the Coulomb potential as a perturbation over dipole-correlated states for two quantum harmonic oscillators embedded in spaces with reduced dimensionality; however, the long-range repulsion is expected to be a general phenomenon for spatially confined quantum systems. We suggest optical experiments to test our predictions, analyze their relevance in the context of intermolecular interactions in nanoscale environments, and rationalize the recent observation of anomalously strong screening of the lateral vdW interactions between aromatic hydrocarbons adsorbed on metal surfaces.

  8. Classical density-functional theory of inhomogeneous water including explicit molecular structure and nonlinear dielectric response.

    PubMed

    Lischner, Johannes; Arias, T A

    2010-02-11

    We present an accurate free-energy functional for liquid water written in terms of a set of effective potential fields in which fictitious noninteracting water molecules move. The functional contains an exact expression of the entropy of noninteracting molecules and thus provides an ideal starting point for the inclusion of complex intermolecular interactions which depend on the orientation of the interacting molecules. We show how an excess free-energy functional can be constructed to reproduce the following properties of water: the dielectric response; the experimental site-site correlation functions; the surface tension; the bulk modulus of the liquid and the variation of this modulus with pressure; the density of the liquid and the vapor phase; and liquid-vapor coexistence. As a demonstration, we present results for the application of this theory to the behavior of liquid water in a parallel plate capacitor. In particular, we make predictions for the dielectric response of water in the nonlinear regime, finding excellent agreement with known data.

  9. Conformational dimorphism in o-nitrobenzoic acid: alternative ways to avoid the O...O clash.

    PubMed

    Ibragimov, Aziz; Ashurov, Jamshid; Ibragimov, Bakhtiyar; Wang, Ai; Mouhib, Halima; Englert, Ulli

    2016-07-01

    Polymorphism is a challenging phenomenon and the competitive packing alternatives which are characteristic for polymorphs may be encountered for essentially rigid molecules. A second crystal form of the well known compound o-nitrobenzoic acid, C7H5NO4, an important intermediate in the production of dyes, pharmaceuticals and agrochemicals, is described. Although obtained serendipitously, its intra- and intermolecular features match expectations from database searches and theoretical calculations. O-H...O hydrogen-bonded carboxylic acid dimers represent the building blocks in both polymorphs. For steric reasons and in agreement with a calculated potential energy surface, the carboxylic acid and nitro groups cannot simultaneously be coplanar with the benzene ring but have to tilt. In the well established crystal form, this out-of-plane torsion is more pronounced for the nitro substituent. In contrast, the new polymorph is characterized by a major tilt of the carboxylic acid group. The molecules in both alternative crystal forms achieve a similar compromise with respect to acceptable intramolecular O...O contacts.

  10. Structural Properties of Silk Electro-Gels

    NASA Astrophysics Data System (ADS)

    Tabatabai, A. P.; Urbach, J. S.; Blair, D. L.; Kaplan, D. L.

    2013-03-01

    The interest in Bombyx Mori silk emerges from its biocompatibility and its structural superiority to synthetic polymers. Our particular interest lies in understanding the capabilities of silk electro-gels because of their reversibility and tunable adhesion. We create an electro-gel by applying a DC electric potential across a reconstituted silk fibroin solution derived directly from Bombyx Mori cocoons. This process leads to the intermolecular self-assembly of fibroin proteins into a weak gel. In this talk we will present our results on the effects of applied shear on electro-gels. We quantify the structural properties while dynamically imaging shear induced fiber formation; known as fibrillogenesis. It is observed that the mechanical properties and microstructure of these materials are highly dependent on shear history. We will also discuss the role of surface modification, through micro-patterning, on the observed gel structure. Our results provide an understanding of both the viscoelastiticity and microstucture of reconstituted silks that are being utilized as tissue scaffolds. This work is supported by a grant from the AFOSR FA9550-07-1-0130.

  11. Rotational Spectroscopy of the NH3-H2 Molecular Complex

    NASA Astrophysics Data System (ADS)

    Surin, L. A.; Tarabukin, I. V.; Schlemmer, S.; Breier, A. A.; Giesen, T. F.; McCarthy, M. C.; van der Avoird, A.

    2017-03-01

    We report the first high resolution spectroscopic study of the NH3-H2 van der Waals molecular complex. Three different experimental techniques, a molecular beam Fourier transform microwave spectrometer, a millimeter-wave intracavity jet OROTRON spectrometer, and a submillimeter-wave jet spectrometer with multipass cell, were used to detect pure rotational transitions of NH3-H2 in the wide frequency range from 39 to 230 GHz. Two nuclear spin species, (o)-NH3-(o)-H2 and (p)-NH3-(o)-H2, have been assigned as carriers of the observed lines on the basis of accompanying rovibrational calculations performed using the ab initio intermolecular potential energy surface (PES) of Maret et al. The experimental spectra were compared with the theoretical bound state results, thus providing a critical test of the quality of the NH3-H2 PES, which is a key issue for reliable computations of the collisional excitation and de-excitation of ammonia in the dense interstellar medium.

  12. An in silico high-throughput screen identifies potential selective inhibitors for the non-receptor tyrosine kinase Pyk2

    PubMed Central

    Meirson, Tomer; Samson, Abraham O; Gil-Henn, Hava

    2017-01-01

    The non-receptor tyrosine kinase proline-rich tyrosine kinase 2 (Pyk2) is a critical mediator of signaling from cell surface growth factor and adhesion receptors to cell migration, proliferation, and survival. Emerging evidence indicates that signaling by Pyk2 regulates hematopoietic cell response, bone density, neuronal degeneration, angiogenesis, and cancer. These physiological and pathological roles of Pyk2 warrant it as a valuable therapeutic target for invasive cancers, osteoporosis, Alzheimer’s disease, and inflammatory cellular response. Despite its potential as a therapeutic target, no potent and selective inhibitor of Pyk2 is available at present. As a first step toward discovering specific potential inhibitors of Pyk2, we used an in silico high-throughput screening approach. A virtual library of six million lead-like compounds was docked against four different high-resolution Pyk2 kinase domain crystal structures and further selected for predicted potency and ligand efficiency. Ligand selectivity for Pyk2 over focal adhesion kinase (FAK) was evaluated by comparative docking of ligands and measurement of binding free energy so as to obtain 40 potential candidates. Finally, the structural flexibility of a subset of the docking complexes was evaluated by molecular dynamics simulation, followed by intermolecular interaction analysis. These compounds may be considered as promising leads for further development of highly selective Pyk2 inhibitors. PMID:28572720

  13. Study on structures and properties of ammonia clusters (NH3)n (n=1-5) and liquid ammonia in terms of ab initio method and atom-bond electronegativity equalization method ammonia-8P fluctuating charge potential model.

    PubMed

    Yu, Ling; Yang, Zhong-Zhi

    2010-05-07

    Structures, binding energies, and vibrational frequencies of (NH(3))(n) (n=2-5) isomers and dynamical properties of liquid ammonia have been explored using a transferable intermolecular potential eight point model including fluctuating charges and flexible body based on a combination of the atom-bond electronegativity equalization and molecular (ABEEM) mechanics (ABEEM ammonia-8P) in this paper. The important feature of this model is to divide the charge sites of one ammonia molecule into eight points region containing four atoms, three sigma bonds, and a lone pair, and allows the charges in system to fluctuate responding to the ambient environment. Due to the explicit descriptions of charges and special treatment of hydrogen bonds, the results of equilibrium geometries, dipole moments, cluster interaction energies, vibrational frequencies for the gas phase of small ammonia clusters, and radial distribution function for liquid ammonia calculated with the ABEEM ammonia-8P potential model are in good agreement with those measured by available experiments and those obtained from high level ab initio calculations. The properties of ammonia dimer are studied in detail involving the structure and one-dimensional, two-dimensional potential energy surface. As for interaction energies, the root mean square deviation is 0.27 kcal/mol, and the linear correlation coefficient reaches 0.994.

  14. Reactivity of 12-tungstophosphoric acid and its inhibitor potency toward Na+/K+-ATPase: A combined 31P NMR study, ab initio calculations and crystallographic analysis.

    PubMed

    Bošnjaković-Pavlović, Nada; Bajuk-Bogdanović, Danica; Zakrzewska, Joanna; Yan, Zeyin; Holclajtner-Antunović, Ivanka; Gillet, Jean-Michel; Spasojević-de Biré, Anne

    2017-11-01

    Influence of 12-tungstophosphoric acid (WPA) on conversion of adenosine triphosphate (ATP) to adenosine diphosphate (ADP) in the presence of Na + /K + -ATPase was monitored by 31 P NMR spectroscopy. It was shown that WPA exhibits inhibitory effect on Na + /K + -ATPase activity. In order to study WPA reactivity and intermolecular interactions between WPA oxygen atoms and different proton donor types (D=O, N, C), we have considered data for WPA based compounds from the Cambridge Structural Database (CSD), the Crystallographic Open Database (COD) and the Inorganic Crystal Structure Database (ICSD). Binding properties of Keggin's anion in biological systems are illustrated using Protein Data Bank (PDB). This work constitutes the first determination of theoretical Bader charges on polyoxotungstate compound via the Atom In Molecule theory. An analysis of electrostatic potential maps at the molecular surface and charge of WPA, resulting from DFT calculations, suggests that the preferred protonation site corresponds to WPA bridging oxygen. These results enlightened WPA chemical reactivity and its potential biological applications such as the inhibition of the ATPase activity. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. A corresponding-states framework for the description of the Mie family of intermolecular potentials

    NASA Astrophysics Data System (ADS)

    Ramrattan, N. S.; Avendaño, C.; Müller, E. A.; Galindo, A.

    2015-05-01

    The Mie (λr, λa) intermolecular pair potential has been suggested as an alternative to the traditional Lennard-Jones (12-6) potential for modelling real systems both via simulation and theory as its implementation leads to an accuracy and flexibility in the determination of thermophysical properties that cannot be obtained when potentials of fixed range are considered. An additional advantage of using variable-range potentials is noted in the development of coarse-grained models where, as the superatoms become larger, the effective potentials are seen to become softer. However, the larger number of parameters that characterise the Mie potential (λr, λa, σ, ɛ) can hinder a rational study of the particular effects that each individual parameter have on the observed thermodynamic properties and phase equilibria, and higher degeneracy of models is observed. Here a three-parameter corresponding states model is presented in which a cohesive third parameter α is proposed following a perturbation expansion and assuming a mean-field limit. It is shown that in this approximation the free energy of any two Mie systems sharing the same value of α will be the same. The parameter α is an explicit function of the repulsive and attractive exponents and consequently dictates the form of the intermolecular pair potential. Molecular dynamics simulations of a variety of Mie systems over a range of values of α are carried out and the solid-liquid, liquid-vapour and vapour-solid phase boundaries for the systems considered are presented. Using the simulation data, we confirm that systems of the same α exhibit conformal phase behaviour for the fluid-phase properties as well as for the solid-fluid boundary, although larger differences are noted in the solid region; these can be related to the approximations in the definition of the parameter. Furthermore, it is found that the temperature range over which the vapour-liquid envelope of a given Mie system is stable follows a linear dependency with α when expressed as the ratio of the critical-point temperature to the triple-point temperature. The limit where potentials of the Mie family will not present a stable fluid envelope is predicted in terms of the parameter α and the result is found to be in excellent agreement with previous studies. This unique relation between the fluid range and the cohesive parameter α is shown to be useful to limit the pairs of Mie exponents that can be used in coarse-grained potentials to treat real systems in order to obtain temperature ranges of stability for the fluid envelope consistent with experiment.

  16. Hydration and distance dependence of intermolecular shearing between collagen molecules in a model microfibril.

    PubMed

    Gautieri, Alfonso; Pate, Monica I; Vesentini, Simone; Redaelli, Alberto; Buehler, Markus J

    2012-08-09

    In vertebrates, collagen tissues are the main component responsible for force transmission. In spite of the physiological importance of these phenomena, force transmission mechanisms are still not fully understood, especially at smaller scales, including in particular collagen molecules and fibrils. Here we investigate the mechanism of molecular sliding between collagen molecules within a fibril, by shearing a central molecule in a hexagonally packed bundle mimicking the collagen microfibril environment, using varied lateral distance between the molecules in both dry and solvated conditions. In vacuum, the central molecule slides under a stick-slip mechanism that is due to the characteristic surface profile of collagen molecules, enhanced by the breaking and reformation of H-bonds between neighboring collagen molecules. This mechanism is consistently observed for varied lateral separations between molecules. The high shearing force (>7 nN) found for the experimentally observed intermolecular distance (≈1.1 nm) suggests that in dry samples the fibril elongation mechanism relies almost exclusively on molecular stretching, which may explain the higher stiffnesses found in dry fibrils. When hydrated, the slip-stick behavior is observed only below 1.3 nm of lateral distance, whereas above 1.3 nm the molecule shears smoothly, showing that the water layer has a strong lubricating effect. Moreover, the average force required to shear is approximately the same in solvated as in dry conditions (≈2.5 nN), which suggests that the role of water at the intermolecular level includes the transfer of load between molecules. Copyright © 2012 Elsevier Ltd. All rights reserved.

  17. Towards Development of a Super Ceramic Composite - Initial Investigation into Improvement of Strength and Toughness of Polycrystalline Ceramics

    DTIC Science & Technology

    2012-08-01

    sintering of SiC. James Lill (2010) evaluated the Reactive Empirical Bond Order potentials of Brenner (Brenner 1990); the Adaptive Intermolecular Reactive...Protection mechanisms of the iron-plated armor of a deep-sea hydrothermal vent gastropod . PNAS 107(3):987-997. Yu, J., S. B. Sinnott, and S. R. Phillpot

  18. H2O-CH4 and H2S-CH4 complexes: a direct comparison through molecular beam experiments and ab initio calculations.

    PubMed

    Cappelletti, David; Bartocci, Alessio; Frati, Federica; Roncaratti, Luiz F; Belpassi, Leonardo; Tarantelli, Francesco; Lakshmi, Prabha Aiswarya; Arunan, Elangannan; Pirani, Fernando

    2015-11-11

    New molecular beam scattering experiments have been performed to measure the total (elastic plus inelastic) cross sections as a function of the velocity in collisions between water and hydrogen sulfide projectile molecules and the methane target. Measured data have been exploited to characterize the range and strength of the intermolecular interaction in such systems, which are of relevance as they drive the gas phase molecular dynamics and the clathrate formation. Complementary information has been obtained by rotational spectra, recorded for the hydrogen sulfide-methane complex, with a pulsed nozzle Fourier transform microwave spectrometer. Extensive ab initio calculations have been performed to rationalize all the experimental findings. The combination of experimental and theoretical information has established the ground for the understanding of the nature of the interaction and allows for its basic components to be modelled, including charge transfer, in these weakly bound systems. The intermolecular potential for H2S-CH4 is significantly less anisotropic than for H2O-CH4, although both of them have potential minima that can be characterized as 'hydrogen bonded'.

  19. Phytochemical, spectroscopic and density functional theory study of Diospyrin, and non-bonding interactions of Diospyrin with atmospheric gases

    NASA Astrophysics Data System (ADS)

    Fazl-i-Sattar; Ullah, Zakir; Ata-ur-Rahman; Rauf, Abdur; Tariq, Muhammad; Tahir, Asif Ali; Ayub, Khurshid; Ullah, Habib

    2015-04-01

    Density functional theory (DFT) and phytochemical study of a natural product, Diospyrin (DO) have been carried out. A suitable level of theory was developed, based on correlating the experimental and theoretical data. Hybrid DFT method at B3LYP/6-31G (d,p) level of theory is employed for obtaining the electronic, spectroscopic, inter-molecular interaction and thermodynamic properties of DO. The exact structure of DO is confirmed from the nice validation of the theory and experiment. Non-covalent interactions of DO with different atmospheric gases such as NH3, CO2, CO, and H2O were studied to find out its electroactive nature. The experimental and predicted geometrical parameters, IR and UV-vis spectra (B3LYP/6-31+G (d,p) level of theory) show excellent correlation. Inter-molecular non-bonding interaction of DO with atmospheric gases is investigated through geometrical parameters, electronic properties, charge analysis, and thermodynamic parameters. Electronic properties include, ionization potential (I.P.), electron affinities (E.A.), electrostatic potential (ESP), density of states (DOS), HOMO, LUMO, and band gap. All these characterizations have corroborated each other and confirmed the presence of non-covalent nature in DO with the mentioned gases.

  20. The equation of state of Song and Mason applied to fluorine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eslami, H.; Boushehri, A.

    1999-03-01

    An analytical equation of state is applied to calculate the compressed and saturation thermodynamic properties of fluorine. The equation of state is that of Song and Mason. It is based on a statistical mechanical perturbation theory of hard convex bodies and is a fifth-order polynomial in the density. There exist three temperature-dependent parameters: the second virial coefficient, an effective molecular volume, and a scaling factor for the average contact pair distribution function of hard convex bodies. The temperature-dependent parameters can be calculated if the intermolecular pair potential is known. However, the equation is usable with much less input than themore » full intermolecular potential, since the scaling factor and effective volume are nearly universal functions when expressed in suitable reduced units. The equation of state has been applied to calculate thermodynamic parameters including the critical constants, the vapor pressure curve, the compressibility factor, the fugacity coefficient, the enthalpy, the entropy, the heat capacity at constant pressure, the ratio of heat capacities, the Joule-Thomson coefficient, the Joule-Thomson inversion curve, and the speed of sound for fluorine. The agreement with experiment is good.« less

  1. Static and dynamic investigations of poly(aspartic acid) and Pluronic F127 complex prepared by self-assembling in aqueous solution

    NASA Astrophysics Data System (ADS)

    Nita, Loredana E.; Chiriac, Aurica P.; Bercea, Maria; Nistor, Manuela T.

    2015-12-01

    The present investigation is focused on evaluation of self-assembling ability in aqueous solutions of two water soluble polymers: poly(aspartic acid) (PAS) and Pluronic F127 (PL). The intermolecular complexes, realized between polyacid and neutral copolymer surfactant in different ratios, have been studied by combining various characterization techniques as rheology, DLS, spectroscopy, microscopy, chemical imaging, and zeta potential determination, measurements performed in static and/or dynamic conditions. In static conditions, when the equilibrium state between PAS/PL polymeric pair was reached, and depending on the polymers mixture composition, and of experimental rheological conditions, positive or negative deviations from the additive rule are registered. Conformational changes of the macromolecular chains and correspondingly physical interactions are generated between PL and PAS for self-assembly and the formation of interpolymer complex as suprastructure with micellar configuration. The phenomenon was better evidenced in case of 1/1 wt ratio between the two polymers. In dynamic conditions of determination, during ;in situ; evaluation of the hydrodynamic diameter, zeta potential and conductivity, when the equilibrium state is not reached and as result either the intermolecular bonds are not achieved, the self-assembling process is not so obvious evidenced.

  2. Contrasting intermolecular and intramolecular exciplex formation of a 1,4-dicyano-2-methylnaphthalene-N,N-dimethyl-p-toluidine dyad.

    PubMed

    Imoto, Mitsutaka; Ikeda, Hiroshi; Fujii, Takayuki; Taniguchi, Hisaji; Tamaki, Akihiro; Takeda, Motonori; Mizuno, Kazuhiko

    2010-05-07

    An intramolecular exciplex is formed upon excitation of the cyclohexane solution of the 1,4-dicyano-2-methylnaphthalene-N,N-dimethyl-p-toluidine dyad, but little if any intramolecular CT complex exists in the ground state of this substance in solution. In contrast, in the crystalline state, the dyad forms an intermolecular mixed-stack CT complex in the ground state and an intermolecular exciplex when it is photoexcited.

  3. Ar(n)HF van der Waals clusters revisited: II. Energetics and HF vibrational frequency shifts from diffusion Monte Carlo calculations on additive and nonadditive potential-energy surfaces for n=1-12.

    PubMed

    Jiang, Hao; Xu, Minzhong; Hutson, Jeremy M; Bacić, Zlatko

    2005-08-01

    The ground-state energies and HF vibrational frequency shifts of Ar(n)HF clusters have been calculated on the nonadditive potential-energy surfaces (PESs) for n=2-7 and on the pairwise-additive PESs for the clusters with n=1-12, using the diffusion Monte Carlo (DMC) method. For n>3, the calculations have been performed for the lowest-energy isomer and several higher-lying isomers which are the closest in energy. They provide information about the isomer dependence of the HF redshift, and enable direct comparison with the experimental data recently obtained in helium nanodroplets. The agreement between theory and experiment is excellent, in particular, for the nonadditive DMC redshifts. The relative, incremental redshifts are reproduced accurately even at the lower level of theory, i.e., the DMC and quantum five-dimensional (rigid Ar(n)) calculations on the pairwise-additive PESs. The nonadditive interactions make a significant contribution to the frequency shift, on the order of 10%-12%, and have to be included in the PESs in order for the theory to yield accurate magnitude of the HF redshift. The energy gaps between the DMC ground states of the cluster isomers are very different from the energy separation of their respective minima on the PES, due to the considerable variations in the intermolecular zero-point energy of different Ar(n)HF isomers.

  4. Molecular Motions in Functional Self-Assembled Nanostructures

    PubMed Central

    Dhotel, Alexandre; Chen, Ziguang; Delbreilh, Laurent; Youssef, Boulos; Saiter, Jean-Marc; Tan, Li

    2013-01-01

    The construction of “smart” materials able to perform specific functions at the molecular scale through the application of various stimuli is highly attractive but still challenging. The most recent applications indicate that the outstanding flexibility of self-assembled architectures can be employed as a powerful tool for the development of innovative molecular devices, functional surfaces and smart nanomaterials. Structural flexibility of these materials is known to be conferred by weak intermolecular forces involved in self-assembly strategies. However, some fundamental mechanisms responsible for conformational lability remain unexplored. Furthermore, the role played by stronger bonds, such as coordination, ionic and covalent bonding, is sometimes neglected while they can be employed readily to produce mechanically robust but also chemically reversible structures. In this review, recent applications of structural flexibility and molecular motions in self-assembled nanostructures are discussed. Special focus is given to advanced materials exhibiting significant performance changes after an external stimulus is applied, such as light exposure, pH variation, heat treatment or electromagnetic field. The crucial role played by strong intra- and weak intermolecular interactions on structural lability and responsiveness is highlighted. PMID:23348927

  5. Structural basis of host recognition and biofilm formation by Salmonella Saf pili

    PubMed Central

    2017-01-01

    Pili are critical in host recognition, colonization and biofilm formation during bacterial infection. Here, we report the crystal structures of SafD-dsc and SafD-SafA-SafA (SafDAA-dsc) in Saf pili. Cell adherence assays show that SafD and SafA are both required for host recognition, suggesting a poly-adhesive mechanism for Saf pili. Moreover, the SafDAA-dsc structure, as well as SAXS characterization, reveals an unexpected inter-molecular oligomerization, prompting the investigation of Saf-driven self-association in biofilm formation. The bead/cell aggregation and biofilm formation assays are used to demonstrate the novel function of Saf pili. Structure-based mutants targeting the inter-molecular hydrogen bonds and complementary architecture/surfaces in SafDAA-dsc dimers significantly impaired the Saf self-association activity and biofilm formation. In summary, our results identify two novel functions of Saf pili: the poly-adhesive and self-associating activities. More importantly, Saf-Saf structures and functional characterizations help to define a pili-mediated inter-cellular oligomerizaiton mechanism for bacterial aggregation, colonization and ultimate biofilm formation. PMID:29125121

  6. The simulation study of protein-protein interfaces based on the 4-helix bundle structure

    NASA Astrophysics Data System (ADS)

    Fukuda, Masaki; Komatsu, Yu; Morikawa, Ryota; Miyakawa, Takeshi; Takasu, Masako; Akanuma, Satoshi; Yamagishi, Akihiko

    2013-02-01

    Docking of two protein molecules is induced by intermolecular interactions. Our purposes in this study are: designing binding interfaces on the two proteins, which specifically interact to each other; and inducing intermolecular interactions between the two proteins by mixing them. A 4-helix bundle structure was chosen as a scaffold on which binding interfaces were created. Based on this scaffold, we designed binding interfaces involving charged and nonpolar amino acid residues. We performed molecular dynamics (MD) simulation to identify suitable amino acid residues for the interfaces. We chose YciF protein as the scaffold for the protein-protein docking simulation. We observed the structure of two YciF protein molecules (I and II), and we calculated the distance between centroids (center of gravity) of the interfaces' surface planes of the molecules I and II. We found that the docking of the two protein molecules can be controlled by the number of hydrophobic and charged amino acid residues involved in the interfaces. Existence of six hydrophobic and five charged amino acid residues within an interface were most suitable for the protein-protein docking.

  7. Investigation of TNB/NNAP cocrystal synthesis, molecular interaction and formation process

    NASA Astrophysics Data System (ADS)

    Chen, Peng-Yuan; Zhang, Lin; Zhu, Shun-Guan; Cheng, Guang-Bin; Li, Ning-Rui

    2017-01-01

    A novel cocrystal of 1,3,5-trinitrobenzene (TNB) and 1-nitronaphthalene (NNAP) was synthesized by solution and mechanochemical method, respectively. The crystal structure was characterized by single crystal X-ray diffraction (SXRD). Then the intermolecular interaction was illustrated quantitatively by Hirshfeld surface analysis accordingly. Two other isostructural cocrystals, TNT (2,4,6-trinitrotoluene)/NNAP and TNP (2,4,6-trinitrophenol)/NNAP were also calculated for comparison. Among the three cocrystals, TNB/NNAP cocrystal has the largest proportion of π-π stacking interaction (12.7%). While TNP/NNAP cocrystal has a greater percentage of hydrogen bonding than the other two cocrystals, which is 43.2% of the total interactions. These results indicate electronic effect has an influence on the intermolecular interaction in the cocrystal. The IR spectra of the intermediate products provide more information about the formation process of hydrogen bonding and π-π stacking. We can tell from the differential scanning calorimetry (DSC) thermograms that a eutectic mixture was generated first after TNB and NNAP were physically mixed without grinding, and then turned into the cocrystal and finally transformed completely.

  8. Effects of protein engineering and rational mutagenesis on crystal lattice of single chain antibody fragments

    PubMed Central

    Kalyoncu, Sibel; Hyun, Jeongmin; Pai, Jennifer C.; Johnson, Jennifer L.; Entzminger, Kevin; Jain, Avni; Heaner, David P.; Morales, Ivan A.; Truskett, Thomas M.; Maynard, Jennifer A.; Lieberman, Raquel L.

    2014-01-01

    Protein crystallization is dependent upon, and sensitive to, the intermolecular contacts that assist in ordering proteins into a three dimensional lattice. Here we used protein engineering and mutagenesis to affect the crystallization of single chain antibody fragments (scFvs) that recognize the EE epitope (EYMPME) with high affinity. These hypercrystallizable scFvs are under development to assist difficult proteins, such as membrane proteins, in forming crystals, by acting as crystallization chaperones. Guided by analyses of intermolecular crystal lattice contacts, two second-generation anti-EE scFvs were produced, which bind to proteins with installed EE tags. Surprisingly, although non-complementarity determining region (CDR) lattice residues from the parent scFv framework remained unchanged through the processes of protein engineering and rational design, crystal lattices of the derivative scFvs differ. Comparison of energy calculations and the experimentally-determined lattice interactions for this basis set provides insight into the complexity of the forces driving crystal lattice choice and demonstrates the availability of multiple well-ordered surface features in our scFvs capable of forming versatile crystal contacts. PMID:24615866

  9. Reliable prediction of three-body intermolecular interactions using dispersion-corrected second-order Møller-Plesset perturbation theory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huang, Yuanhang; Beran, Gregory J. O., E-mail: gregory.beran@ucr.edu

    2015-07-28

    Three-body and higher intermolecular interactions can play an important role in molecular condensed phases. Recent benchmark calculations found problematic behavior for many widely used density functional approximations in treating 3-body intermolecular interactions. Here, we demonstrate that the combination of second-order Møller-Plesset (MP2) perturbation theory plus short-range damped Axilrod-Teller-Muto (ATM) dispersion accurately describes 3-body interactions with reasonable computational cost. The empirical damping function used in the ATM dispersion term compensates both for the absence of higher-order dispersion contributions beyond the triple-dipole ATM term and non-additive short-range exchange terms which arise in third-order perturbation theory and beyond. Empirical damping enables this simplemore » model to out-perform a non-expanded coupled Kohn-Sham dispersion correction for 3-body intermolecular dispersion. The MP2 plus ATM dispersion model approaches the accuracy of O(N{sup 6}) methods like MP2.5 or even spin-component-scaled coupled cluster models for 3-body intermolecular interactions with only O(N{sup 5}) computational cost.« less

  10. Chemical origin of blue- and redshifted hydrogen bonds: intramolecular hyperconjugation and its coupling with intermolecular hyperconjugation.

    PubMed

    Li, An Yong

    2007-04-21

    Upon formation of a H bond Y...H-XZ, intramolecular hyperconjugation n(Z)-->sigma*(X-H) of the proton donor plays a key role in red- and blueshift characters of H bonds and must be introduced in the concepts of hyperconjugation and rehybridization. Intermolecular hyperconjugation transfers electron density from Y to sigma*(X-H) and causes elongation and stretch frequency redshift of the X-H bond; intramolecular hyperconjugation couples with intermolecular hyperconjugation and can adjust electron density in sigma*(X-H); rehybridization causes contraction and stretch frequency blueshift of the X-H bond on complexation. The three factors--intra- and intermolecular hyperconjugations and rehybridization--determine commonly red- or blueshift of the formed H bond. A proton donor that has strong intramolecular hyperconjugation often forms blueshifted H bonds.

  11. 5-(1-Aryl-3-(thiophen-2-yl)-1H-pyrazol-4-yl)-1H-tetrazoles: Synthesis, structural characterization, Hirshfeld analysis, anti-inflammatory and anti-bacterial studies

    NASA Astrophysics Data System (ADS)

    Kumbar, Mahadev N.; Kamble, Ravindra R.; Dasappa, Jagadeesh Prasad; Bayannavar, Praveen K.; Khamees, Hussien Ahmed; Mahendra, M.; Joshi, Shrinivas D.; Dodamani, Suneel; Rasal, V. P.; Jalalpure, Sunil

    2018-05-01

    A series of novel 5-(1-aryl-3-(thiophen-2-yl)-1H-pyrazol-4-yl)-1H-tetrazoles 7(h-s) were designed and synthesized. Structural characterization was done by spectral and single crystal X-ray studies. The intermolecular interactions of compound 7n were quantified and visualized using Hirshfeld surface analysis. Structures of newly synthesized compounds were docked into active site of COX-2 enzyme PDB:

  12. Poly(aryloxyphosphazenes) with Phenylphenoxy and Related Bulky Side Groups, Synthesis, Thermal Transition Behavior, and Optical Properties

    DTIC Science & Technology

    1989-06-09

    revealed by differential scanning calorimetry. However, films of these polymers were not birefringent when viewed between crossed polarizers. Reports...C to 57*C. We intepret this to mean that the rigidity of the poly- mer and the intermolecular interactions are dominated by the one p-phenylphenoxy...of polymers 1-40 were measured at )-632nm using a modified critical angle method 32 (Figure 3). Films of the polymers were cast on one surface of a

  13. Polymorphism and electronic structure of polyimine and its potential significance for prebiotic chemistry on Titan

    NASA Astrophysics Data System (ADS)

    Rahm, Martin; Lunine, Jonathan I.; Usher, David A.; Shalloway, David

    2016-07-01

    The chemistry of hydrogen cyanide (HCN) is believed to be central to the origin of life question. Contradictions between Cassini-Huygens mission measurements of the atmosphere and the surface of Saturn’s moon Titan suggest that HCN-based polymers may have formed on the surface from products of atmospheric chemistry. This makes Titan a valuable “natural laboratory” for exploring potential nonterrestrial forms of prebiotic chemistry. We have used theoretical calculations to investigate the chain conformations of polyimine (pI), a polymer identified as one major component of polymerized HCN in laboratory experiments. Thanks to its flexible backbone, the polymer can exist in several different polymorphs, which are relatively close in energy. The electronic and structural variability among them is extraordinary. The band gap changes over a 3-eV range when moving from a planar sheet-like structure to increasingly coiled conformations. The primary photon absorption is predicted to occur in a window of relative transparency in Titan’s atmosphere, indicating that pI could be photochemically active and drive chemistry on the surface. The thermodynamics for adding and removing HCN from pI under Titan conditions suggests that such dynamics is plausible, provided that catalysis or photochemistry is available to sufficiently lower reaction barriers. We speculate that the directionality of pI’s intermolecular and intramolecular =N-H…N hydrogen bonds may drive the formation of partially ordered structures, some of which may synergize with photon absorption and act catalytically. Future detailed studies on proposed mechanisms and the solubility and density of the polymers will aid in the design of future missions to Titan.

  14. Polymorphism and electronic structure of polyimine and its potential significance for prebiotic chemistry on Titan

    PubMed Central

    Rahm, Martin; Lunine, Jonathan I.; Usher, David A.; Shalloway, David

    2016-01-01

    The chemistry of hydrogen cyanide (HCN) is believed to be central to the origin of life question. Contradictions between Cassini–Huygens mission measurements of the atmosphere and the surface of Saturn’s moon Titan suggest that HCN-based polymers may have formed on the surface from products of atmospheric chemistry. This makes Titan a valuable “natural laboratory” for exploring potential nonterrestrial forms of prebiotic chemistry. We have used theoretical calculations to investigate the chain conformations of polyimine (pI), a polymer identified as one major component of polymerized HCN in laboratory experiments. Thanks to its flexible backbone, the polymer can exist in several different polymorphs, which are relatively close in energy. The electronic and structural variability among them is extraordinary. The band gap changes over a 3-eV range when moving from a planar sheet-like structure to increasingly coiled conformations. The primary photon absorption is predicted to occur in a window of relative transparency in Titan’s atmosphere, indicating that pI could be photochemically active and drive chemistry on the surface. The thermodynamics for adding and removing HCN from pI under Titan conditions suggests that such dynamics is plausible, provided that catalysis or photochemistry is available to sufficiently lower reaction barriers. We speculate that the directionality of pI’s intermolecular and intramolecular =N–H…N hydrogen bonds may drive the formation of partially ordered structures, some of which may synergize with photon absorption and act catalytically. Future detailed studies on proposed mechanisms and the solubility and density of the polymers will aid in the design of future missions to Titan. PMID:27382167

  15. Structural variability and the nature of intermolecular interactions in Watson-Crick B-DNA base pairs.

    PubMed

    Czyznikowska, Z; Góra, R W; Zaleśny, R; Lipkowski, P; Jarzembska, K N; Dominiak, P M; Leszczynski, J

    2010-07-29

    A set of nearly 100 crystallographic structures was analyzed using ab initio methods in order to verify the effect of the conformational variability of Watson-Crick guanine-cytosine and adenine-thymine base pairs on the intermolecular interaction energy and its components. Furthermore, for the representative structures, a potential energy scan of the structural parameters describing mutual orientation of the base pairs was carried out. The results were obtained using the hybrid variational-perturbational interaction energy decomposition scheme. The electron correlation effects were estimated by means of the second-order Møller-Plesset perturbation theory and coupled clusters with singles and doubles method adopting AUG-cc-pVDZ basis set. Moreover, the characteristics of hydrogen bonds in complexes, mimicking those appearing in B-DNA, were evaluated using topological analysis of the electron density. Although the first-order electrostatic energy is usually the largest stabilizing component, it is canceled out by the associated exchange repulsion in majority of the studied crystallographic structures. Therefore, the analyzed complexes of the nucleic acid bases appeared to be stabilized mainly by the delocalization component of the intermolecular interaction energy which, in terms of symmetry adapted perturbation theory, encompasses the second- and higher-order induction and exchange-induction terms. Furthermore, it was found that the dispersion contribution, albeit much smaller in terms of magnitude, is also a vital stabilizing factor. It was also revealed that the intermolecular interaction energy and its components are strongly influenced by four (out of six) structural parameters describing mutual orientation of bases in Watson-Crick pairs, namely shear, stagger, stretch, and opening. Finally, as a part of a model study, much of the effort was devoted to an extensive testing of the UBDB databank. It was shown that the databank quite successfully reproduces the electrostatic energy determined with the aid of ab initio methods.

  16. Crystallization of amorphous solid dispersions of resveratrol during preparation and storage-Impact of different polymers.

    PubMed

    Wegiel, Lindsay A; Mauer, Lisa J; Edgar, Kevin J; Taylor, Lynne S

    2013-01-01

    The objective of this study was to investigate intermolecular interactions between resveratrol and polymers in amorphous blends and to study the potential correlations between compound-polymer interactions, manufacturability, and stability of the amorphous system to crystallization during storage. Polymers included two grades of poly (vinylpyrrolidone) (PVP), Eudragit E100 (E100), hydroxypropyl methylcellulose (HPMC), hydroxypropyl methylcellulose acetate succinate (HPMCAS), carboxymethyl cellulose acetate butyrate, and poly (acrylic acid) (PAA). Amorphous blends ("solid dispersions") were prepared by dissolving both resveratrol and polymer in a solvent followed by rotary evaporation. Crystallinity was evaluated using X-ray powder diffraction and was studied as a function of time. Mid-infrared (IR) spectroscopy was used to investigate resveratrol-polymer interactions. Polymer influence on the crystallization behavior of resveratrol varied and could be correlated to the polymer structure, whereby polymers with good hydrogen bond acceptor groups performed better as crystallization inhibitors. Resveratrol-polymer hydrogen bonding interactions could be inferred from the IR spectra. Somewhat surprisingly, E100 and resveratrol showed evidence of an acid-base reaction, in addition to intermolecular hydrogen bonding interactions. PVP K29/32 appeared to form stronger hydrogen bond interactions with resveratrol relative to HPMC, HPMCAS, and PAA, consistent with acceptor group chemistry. Long-term stability of the systems against crystallization suggested that stability is linked to the type and strength of intermolecular interactions present. whereby resveratrol blended with E100 and PVP K29/32 showed the greatest stability to crystallization. In conclusion, amorphous resveratrol is unstable and difficult to form, requiring the assistance of a polymeric crystallization inhibitor to facilitate the formation of an amorphous solid dispersion. Polymers effective at inhibiting crystallization were identified, and it is rationalized that their effectiveness is based on the type and strength of their intermolecular interactions with resveratrol. Copyright © 2012 Wiley Periodicals, Inc.

  17. L-Tryptophan on Cu(111): engineering a molecular labyrinth driven by indole groups

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yitamben, E. N.; Clayborne, A.; Darling, Seth B.

    2015-05-21

    The present article investigates the adsorption and molecular orientation of L-Tryptophan, which is both an essential amino acid important for protein synthesis and of particular interest for the development of chiral molecular electronics and biocompatible processes and devices, on Cu(111) using scanning tunneling microscopy and spectroscopy at 55 K and at room temperature. The arrangement of chemisorbed L-Tryptophan on the copper surface varies with both temperature and surface coverage. At low coverage, small clusters form on the surface irrespective of temperature, while at high coverage an ordered chain structure emerges at room temperature, and a tightly packed structure forms amore » molecular labyrinth at low temperature. The dominating superstructure of the adsorbates arises from intermolecular hydrogen bonding, and pi-bonding interactions between the indole groups of neighboring molecules and the Cu surface.« less

  18. Comprehensive characterization of chitosan/PEO/levan ternary blend films.

    PubMed

    Bostan, Muge Sennaroglu; Mutlu, Esra Cansever; Kazak, Hande; Sinan Keskin, S; Oner, Ebru Toksoy; Eroglu, Mehmet S

    2014-02-15

    Ternary blend films of chitosan, PEO (300,000) and levan were prepared by solution casting method and their phase behavior, miscibility, thermal and mechanical properties as well as their surface energy and morphology were characterized by different techniques. FT-IR analyses of blend films indicated intermolecular hydrogen bonding between blend components. Thermal and XRD analysis showed that chitosan and levan suppressed the crystallinity of PEO up to nearly 25% of PEO content in the blend, which resulted in more amorphous film structures at higher PEO/(chitosan+levan) ratios. At more than 30% of PEO concentration, contact angle (CA) measurements showed a surface enrichment of PEO whereas at lower PEO concentrations, chitosan and levan were enriched on the surfaces leading to more amorphous and homogenous surfaces. This result was further confirmed by atomic force microscopy (AFM) images. Cell proliferation and viability assay established the high biocompatibility of the blend films. Copyright © 2013 Elsevier Ltd. All rights reserved.

  19. Water interactions with hydrophobic groups: Assessment and recalibration of semiempirical molecular orbital methods

    NASA Astrophysics Data System (ADS)

    Marion, Antoine; Monard, Gérald; Ruiz-López, Manuel F.; Ingrosso, Francesca

    2014-07-01

    In this work, we present a study of the ability of different semiempirical methods to describe intermolecular interactions in water solution. In particular, we focus on methods based on the Neglect of Diatomic Differential Overlap approximation. Significant improvements of these methods have been reported in the literature in the past years regarding the description of non-covalent interactions. In particular, a broad range of methodologies has been developed to deal with the properties of hydrogen-bonded systems, with varying degrees of success. In contrast, the interactions between water and a molecule containing hydrophobic groups have been little analyzed. Indeed, by considering the potential energy surfaces obtained using different semiempirical Hamiltonians for the intermolecular interactions of model systems, we found that none of the available methods provides an entirely satisfactory description of both hydrophobic and hydrophilic interactions in water. In addition, a vibrational analysis carried out in a model system for these interactions, a methane clathrate cluster, showed that some recent methods cannot be used to carry out studies of vibrational properties. Following a procedure established in our group [M. I. Bernal-Uruchurtu, M. T. C. Martins-Costa, C. Millot, and M. F. Ruiz-López, J. Comput. Chem. 21, 572 (2000); W. Harb, M. I. Bernal-Uruchurtu, and M. F. Ruiz-López, Theor. Chem. Acc. 112, 204 (2004)], we developed new parameters for the core-core interaction terms based on fitting potential energy curves obtained at the MP2 level for our model system. We investigated the transferability of the new parameters to describe a system, having both hydrophilic and hydrophobic groups, interacting with water. We found that only by introducing two different sets of parameters for hydrophilic and hydrophobic hydrogen atom types we are able to match the features of the ab initio calculated properties. Once this assumption is made, a good agreement with the MP2 reference is achieved. The results reported in this work provide therefore a direction for future developments of semiempirical approaches that are still required to investigate chemical processes in biomolecules and in large disordered systems.

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marion, Antoine; Monard, Gérald; Ruiz-López, Manuel F., E-mail: Manuel.Ruiz@univ-lorraine.fr

    In this work, we present a study of the ability of different semiempirical methods to describe intermolecular interactions in water solution. In particular, we focus on methods based on the Neglect of Diatomic Differential Overlap approximation. Significant improvements of these methods have been reported in the literature in the past years regarding the description of non-covalent interactions. In particular, a broad range of methodologies has been developed to deal with the properties of hydrogen-bonded systems, with varying degrees of success. In contrast, the interactions between water and a molecule containing hydrophobic groups have been little analyzed. Indeed, by considering themore » potential energy surfaces obtained using different semiempirical Hamiltonians for the intermolecular interactions of model systems, we found that none of the available methods provides an entirely satisfactory description of both hydrophobic and hydrophilic interactions in water. In addition, a vibrational analysis carried out in a model system for these interactions, a methane clathrate cluster, showed that some recent methods cannot be used to carry out studies of vibrational properties. Following a procedure established in our group [M. I. Bernal-Uruchurtu, M. T. C. Martins-Costa, C. Millot, and M. F. Ruiz-López, J. Comput. Chem. 21, 572 (2000); W. Harb, M. I. Bernal-Uruchurtu, and M. F. Ruiz-López, Theor. Chem. Acc. 112, 204 (2004)], we developed new parameters for the core-core interaction terms based on fitting potential energy curves obtained at the MP2 level for our model system. We investigated the transferability of the new parameters to describe a system, having both hydrophilic and hydrophobic groups, interacting with water. We found that only by introducing two different sets of parameters for hydrophilic and hydrophobic hydrogen atom types we are able to match the features of the ab initio calculated properties. Once this assumption is made, a good agreement with the MP2 reference is achieved. The results reported in this work provide therefore a direction for future developments of semiempirical approaches that are still required to investigate chemical processes in biomolecules and in large disordered systems.« less

  1. STM imaging ortho- and para-fluorothiophenol self-assembled monolayers on Au(111).

    PubMed

    Jiang, Peng; Deng, Ke; Fichou, Denis; Xie, Si-Shen; Nion, Aymeric; Wang, Chen

    2009-05-05

    Self-assembled monolayers (SAMs) of para- and ortho-fluorothiophenol (p- and o-FTP) spontaneously formed on Au(111) substrate have been contrasted through investigation by a scanning tunneling microscope (STM) at room temperature. High-resolution STM imaging reveals that p-FTP adopts a 6 x radical3R30 degrees molecule arrangement containing six molecules. Two different kinds of p-FTP molecule dimer line structures have been formed on Au(111) by intermolecular pi-pi stacking along 112 substrate directions, besides a single p-FTP molecule line. In contrast, o-FTP molecules self-assemble into a much looser wave-like SAM, which can be described as a 5 x 3 radical3R30 degrees structure containing two molecules. Periodic density functional theory (DFT) calculations for the two systems suggest that these kinds of FTP molecules preferentially take the asymmetrical positions between 3-fold face-centered cubic (fcc) hollow and bridge sites on Au(111), tilting from the substrate surface. Theoretical simulation gives apparent average tilted angles of 58 degrees and 68 degrees for p-FTP and o-FTP with respect to the surface normal, respectively. This simulation shows that o-FTP is more inclined to lie down toward the Au(111) surface compared to p-FTP. The difference between p-FTP and o-FTP SAM structures can be qualitatively understood in terms of the variation of intermolecular dipole-dipole orientation. This suggests that, besides well-known Au-S and pi-pi interactions, electrostatic interactions including dipole-dipole, quadrupole-quadrupole, and dipole-quadrupole interactions might also play an important role in influencing the SAM structures formed by aromatic thiols with a permanent dipole moment.

  2. Quantifying intermolecular interactions in solid state indapamide and other popular diuretic drugs: Insights from Hirshfeld surface study

    NASA Astrophysics Data System (ADS)

    Bojarska, Joanna; Fruziński, Andrzej; Maniukiewicz, Waldemar

    2016-07-01

    Hirshfeld surfaces (HS) and two-dimensional fingerprint plots are used to analyze the intermolecular interactions in indapamide and other popular thiazide diuretic derivatives. The crystal structure of indapamide (INDP) at 100 K determined by single-crystal X-ray analysis, is also reported. The title compound crystallizes in the centrosymmetric I2/a space group with one indapamide and half water molecule (lying on the glide plane) in the asymmetric unit. An interplay of N-H⋯O hydrogen bonds connects the indapamide molecules generating chains with the graph-set motifs: C (8) and C23 (16), and together with C-H⋯O and π⋯π stacking interactions create a 3D net. The Hirshfeld surface study facilitates comparison of diverse and numerous intercontacts, such as H⋯H, O⋯H, Cl⋯H, C⋯C (π⋯π), C⋯O (π⋯lone pair), O⋯O (lone pair⋯lone pair), Cl⋯O, Cl⋯Cl, N⋯N, C⋯H (C-H⋯π) with regard to building self-assembled framework of indapamide and related thiazide derivatives retrieved from the Cambridge Structural Database. The HS analysis highlights that H⋯H, O⋯H/H⋯O and C⋯H/H⋯C contacts play an influential role contributing to about 80% of the HS areas in this class of compounds. Nevertheless, in the case of INDP the H⋯H interactions, while in hydrochlorothiazide (HCTZ) O⋯H/H⋯O are dominant amongst all intercontacts towards the HS. Notably, indapamide has the highest proportion of C⋯C contacts.

  3. Effect of homogenisation in formation of thermally induced aggregates in a non- and low- fat milk model system with microparticulated whey proteins.

    PubMed

    Torres, Isabel Celigueta; Nieto, Gema; Nylander, Tommy; Simonsen, Adam Cohen; Tolkach, Alexander; Ipsen, Richard

    2017-05-01

    The objective of the research presented in this paper was to investigate how different characteristics of whey protein microparticles (MWP) added to milk as fat replacers influence intermolecular interactions occurring with other milk proteins during homogenisation and heating. These interactions are responsible for the formation of heat-induced aggregates that influence the texture and sensory characteristics of the final product. The formation of heat-induced complexes was studied in non- and low-fat milk model systems, where microparticulated whey protein (MWP) was used as fat replacer. Five MWP types with different particle characteristics were utilised and three heat treatments used: 85 °C for 15 min, 90 °C for 5 min and 95 °C for 2 min. Surface characteristics of the protein aggregates were expressed as the number of available thiol groups and the surface net charge. Intermolecular interactions involved in the formation of protein aggregates were studied by polyacrylamide gel electrophoresis and the final complexes visualised by darkfield microscopy. Homogenisation of non-fat milk systems led to partial adsorption of caseins onto microparticles, independently of the type of microparticle. On the contrary, homogenisation of low-fat milk resulted in preferential adsorption of caseins onto fat globules, rather than onto microparticles. Further heating of the milk, led to the formation of heat induced complexes with different sizes and characteristics depending on the type of MWP and the presence or not of fat. The results highlight the importance of controlling homogenisation and heat processing in yoghurt manufacture in order to induce desired changes in the surface reactivity of the microparticles and thereby promote effective protein interactions.

  4. Characterization and kinetics of surface functionalization and binding of biologically and chemically significant molecules

    NASA Astrophysics Data System (ADS)

    Steiner, Rachel

    The purpose of this project is to investigate intermolecular interactions of organic molecular assemblies. By understanding the structure and physical interactions in these assemblies, we gain insights into practical applications for nanoscale systems built upon these surface structures. It is possible for organic chemists to create many forms of modified organic molecules, functionalizing them with specific reactive end groups. Through surface functionalization, enabling covalent or highly associative binding, it is possible to create ordered molecular assemblies of these molecules. Scientists can study the nature of this structure and the intermolecular interactions through spectroscopic, optical, and scattering experiments. To understand the self-assembly process in molecular systems, we preliminarily created monolayer films on silica substrates with a variety of organic molecules. In particular, we functionalized silica substrates with hydroxyl groups and covalently bound acid chloride functionalized aromatic compounds, with and without an underlying adhesion layer of 3-aminopropyltriethoxysilane. We characterized the monolayer assemblies with ellipsometry, UV-vis absorption spectroscopy, FTIR spectroscopy, and fluorescence/photoemission spectroscopy, obtaining a quantitative measure of the molecular surface coverage. In order to understand the nature of these molecular assemblies, we also pursued an in-depth kinetic study to control and optimize the monolayer formation process. Through use of UV-vis spectroscopy, we determined that the monolayer formation can best be modeled with diffusion-limited Langmuir kinetics. Specifically, we concluded that for anthracene acid chloride in dichloromethane the average diffusion coefficient was 1.6x10-7 cm2/sec. Additionally, we find we are able to achieve surface coverages of approximately 2x1014 molecules/cm2. Having established the ability to create ordered molecular assemblies, through surface functionalization, enabling covalent or highly associative binding, we continued to explore the field of molecular assemblies by studying the binding and structure of molecules to carbon nanostructures. Previous studies have shown that alkyl side chains and aromatic compounds, such as pyrene, will bind non-covalently to the sidewalls of carbon nanotubes through pi-pi interactions. We explored functionalization of carbon nanotubes and graphene by using microscopy to examine the adsorption of biomolecules onto nanotube sidewalls and graphene.

  5. Ultrasonic studies of intermolecular interactions in binary mixtures of 4-methoxy benzoin with various solvents: Excess molar functions of ultrasonic parameters at different concentrations and in different solvents.

    PubMed

    Thanuja, B; Nithya, G; Kanagam, Charles C

    2012-11-01

    Density (ρ), ultrasonic velocity (U), for the binary mixtures of 4-methoxy benzoin (4MB) with ethanol, chloroform, acetonitrile, benzene, and di-oxane were measured at 298K. The solute-solvent interactions and the effect of the polarity of the solvent on the type of intermolecular interactions are discussed here. From the above data, adiabatic compressibility (β), intermolecular free length (L(f)), acoustic impedance (Z), apparent molar volume (Ø), relative association (RA) have been calculated. Other useful parameters such as excess density, excess velocity and excess adiabatic compressibility have also been calculated. These parameters were used to study the nature and extent of intermolecular interactions between component molecules in the binary mixtures. Copyright © 2012 Elsevier B.V. All rights reserved.

  6. Variational Approach in the Theory of Liquid-Crystal State

    NASA Astrophysics Data System (ADS)

    Gevorkyan, E. V.

    2018-03-01

    The variational calculus by Leonhard Euler is the basis for modern mathematics and theoretical physics. The efficiency of variational approach in statistical theory of liquid-crystal state and in general case in condensed state theory is shown. The developed approach in particular allows us to introduce correctly effective pair interactions and optimize the simple models of liquid crystals with help of realistic intermolecular potentials.

  7. New Cu (II), Co(II) and Ni(II) complexes of chalcone derivatives: Synthesis, X-ray crystal structure, electrochemical properties and DFT computational studies

    NASA Astrophysics Data System (ADS)

    Tabti, Salima; Djedouani, Amel; Aggoun, Djouhra; Warad, Ismail; Rahmouni, Samra; Romdhane, Samir; Fouzi, Hosni

    2018-03-01

    The reaction of nickel(II), copper(II) and cobalt(II) with 4-hydroxy-3-[(2E)-3-(1H-indol-3-yl)prop-2-enoyl]-6-methyl-2H-pyran-2-one (HL) leads to a series of new complexes: Ni(L)2(NH3), Cu(L)2(DMF)2 and Co(L)2(H2O). The crystal structure of the Cu(L)2(DMF)2 complex have been determined by X-ray diffraction methods. The Cu(II) lying on an inversion centre is coordinated to six oxygen atoms forming an octahedral elongated. Additionally, the electrochemical behavior of the metal complexes were investigated by cyclic voltammetry at a glassy carbon electrode (GC) in CH3CN solutions, showing the quasi-reversible redox process ascribed to the reduction of the MII/MI couples. The X-ray single crystal structure data of the complex was matched excellently with the optimized monomer structure of the desired compound; Hirschfeld surface analysis supported the packed crystal lattice 3D network intermolecular forces. HOMO/LUMO energy level and the global reactivity descriptors quantum parameters are also calculated. The electrophilic and nucleophilic potions in the complex surface are theoretically evaluated by molecular electrostatic potential and Mulliken atomic charges analysis.

  8. Multi-scale strategies for dealing with moving contact lines

    NASA Astrophysics Data System (ADS)

    Smith, Edward R.; Theodorakis, Panagiotis; Craster, Richard V.; Matar, Omar K.

    2017-11-01

    Molecular dynamics (MD) has great potential to elucidate the dynamics of the moving contact line. As a more fundamental model, it can provide a priori results for fluid-liquid interfaces, surface tension, viscosity, phase change, and near wall stick-slip behaviour which typically show very good agreement to experimental results. However, modelling contact line motion combines all this complexity in a single problem. In this talk, MD simulations of the contact line are compared to the experimental results obtained from studying the dynamics of a sheared liquid bridge. The static contact angles are correctly matched to the experimental data for a range of different electro-wetting results. The moving contact line results are then compared for each of these electro-wetting values. Despite qualitative agreement, there are notable differences between the simulation and experiments. Many MD simulation have studied contact lines, and the sheared liquid bridge, so it is of interest to review the limitations of this setup in light of this discrepancy. A number of factors are discussed, including the inter-molecular interaction model, molecular-scale surface roughness, model of electro-wetting and, perhaps most importantly, the limited system sizes possible using MD simulation. EPSRC, UK, MEMPHIS program Grant (EP/K003976/1), RAEng Research Chair (OKM).

  9. Evaluating Activated Carbon Adsorption of Dissolved Organic Matter and Micropollutants Using Fluorescence Spectroscopy.

    PubMed

    Shimabuku, Kyle K; Kennedy, Anthony M; Mulhern, Riley E; Summers, R Scott

    2017-03-07

    Dissolved organic matter (DOM) negatively impacts granular activated carbon (GAC) adsorption of micropollutants and is a disinfection byproduct precursor. DOM from surface waters, wastewater effluent, and 1 kDa size fractions were adsorbed by GAC and characterized using fluorescence spectroscopy, UV-absorption, and size exclusion chromatography (SEC). Fluorescing DOM was preferentially adsorbed relative to UV-absorbing DOM. Humic-like fluorescence (peaks A and C) was selectively adsorbed relative to polyphenol-like fluorescence (peaks T and B) potentially due to size exclusion effects. In the surface waters and size fractions, peak C was preferentially removed relative to peak A, whereas the reverse was found in wastewater effluent, indicating that humic-like fluorescence is associated with different compounds depending on DOM source. Based on specific UV-absorption (SUVA), aromatic DOM was preferentially adsorbed. The fluorescence index (FI), if interpreted as an indicator of aromaticity, indicated the opposite but exhibited a strong relationship with average molecular weight, suggesting that FI might be a better indicator of DOM size than aromaticity. The influence of DOM intermolecular interactions on adsorption were minimal based on SEC analysis. Fluorescence parameters captured the impact of DOM size on the fouling of 2-methylisoborneol and warfarin adsorption and correlated with direct competition and pore blockage indicators.

  10. Methanol clusters (CH3OH)n: putative global minimum-energy structures from model potentials and dispersion-corrected density functional theory.

    PubMed

    Kazachenko, Sergey; Bulusu, Satya; Thakkar, Ajit J

    2013-06-14

    Putative global minima are reported for methanol clusters (CH3OH)n with n ≤ 15. The predictions are based on global optimization of three intermolecular potential energy models followed by local optimization and single-point energy calculations using two variants of dispersion-corrected density functional theory. Recurring structural motifs include folded and/or twisted rings, folded rings with a short branch, and stacked rings. Many of the larger structures are stabilized by weak C-H···O bonds.

  11. Insight into proton transfer in phosphotungstic acid functionalized mesoporous silica-based proton exchange membrane fuel cells.

    PubMed

    Zhou, Yuhua; Yang, Jing; Su, Haibin; Zeng, Jie; Jiang, San Ping; Goddard, William A

    2014-04-02

    We have developed for fuel cells a novel proton exchange membrane (PEM) using inorganic phosphotungstic acid (HPW) as proton carrier and mesoporous silica as matrix (HPW-meso-silica) . The proton conductivity measured by electrochemical impedance spectroscopy is 0.11 S cm(-1) at 90 °C and 100% relative humidity (RH) with a low activation energy of ∼14 kJ mol(-1). In order to determine the energetics associated with proton migration within the HPW-meso-silica PEM and to determine the mechanism of proton hopping, we report density functional theory (DFT) calculations using the generalized gradient approximation (GGA). These DFT calculations revealed that the proton transfer process involves both intramolecular and intermolecular proton transfer pathways. When the adjacent HPWs are close (less than 17.0 Å apart), the calculated activation energy for intramolecular proton transfer within a HPW molecule is higher (29.1-18.8 kJ/mol) than the barrier for intermolecular proton transfer along the hydrogen bond. We find that the overall barrier for proton movement within the HPW-meso-silica membranes is determined by the intramolecular proton transfer pathway, which explains why the proton conductivity remains unchanged when the weight percentage of HPW on meso-silica is above 67 wt %. In contrast, the activation energy of proton transfer on a clean SiO2 (111) surface is computed to be as high as ∼40 kJ mol(-1), confirming the very low proton conductivity on clean silica surfaces observed experimentally.

  12. Design and Conformational Analysis of Peptoids Containing N-Hydroxy Amides Reveals a Unique Sheet-Like Secondary Structure

    PubMed Central

    Crapster, J. Aaron; Stringer, Joseph R.; Guzei, Ilia A.; Blackwell, Helen E.

    2011-01-01

    N-hydroxy amides can be found in many naturally occurring and synthetic compounds and are known to act as both strong proton donors and chelators of metal cations. We have initiated studies of peptoids, or N-substituted glycines, that contain N-hydroxy amide side chains to investigate the potential effects of these functional groups on peptoid backbone amide rotamer equilibria and local conformations. We reasoned that the propensity of these functional groups to participate in hydrogen bonding could be exploited to enforce intramolecular or intermolecular interactions that yield new peptoid structures. Here, we report the design, synthesis, and detailed conformational analysis of a series of model N-hydroxy peptoids. These peptoids were readily synthesized, and their structures were analyzed in solution by 1D and 2D NMR and in the solid-state by X-ray crystallography. The N-hydroxy amides were found to strongly favor trans conformations with respect to the peptoid backbone in chloroform. More notably, unique sheet-like structures held together via intermolecular hydrogen bonds were observed in the X-ray crystal structures of an N-hydroxy amide peptoid dimer, which to our knowledge represent the first structure of this type reported for peptoids. These results suggest that the N-hydroxy amide can be utilized to control both local backbone geometries and longer-range intermolecular interactions in peptoids, and represents a new functional group in the peptoid design toolbox. PMID:22180908

  13. Nuclear spin relaxation in ligands outside of the first coordination sphere in a gadolinium (III) complex: Effects of intermolecular forces

    NASA Astrophysics Data System (ADS)

    Kruk, Danuta; Kowalewski, Jozef

    2002-07-01

    This article describes paramagnetic relaxation enhancement (PRE) in systems with high electron spin, S, where there is molecular interaction between a paramagnetic ion and a ligand outside of the first coordination sphere. The new feature of our treatment is an improved handling of the electron-spin relaxation, making use of the Redfield theory. Following a common approach, a well-defined second coordination sphere is assumed, and the PRE contribution from these more distant and shorter-lived ligands is treated in a way similar to that used for the first coordination sphere. This model is called "ordered second sphere," OSS. In addition, we develop here a formalism similar to that of Hwang and Freed [J. Chem. Phys. 63, 4017 (1975)], but accounting for the electron-spin relaxation effects. We denote this formalism "diffuse second sphere," DSS. The description of the dynamics of the intermolecular dipole-dipole interaction is based on the Smoluchowski equation, with a potential of mean force related to the radial distribution function. We have used a finite-difference method to calculate numerically a correlation function for translational motion, taking into account the intermolecular forces leading to an arbitrary radial distribution of the ligand protons. The OSS and DSS models, including the Redfield description of the electron-spin relaxation, were used to interpret the PRE in an aqueous solution of a slowly rotating gadolinium (III) complex (S=7/2) bound to a protein.

  14. Amino Acid Side Chain Interactions in the Presence of Salts

    PubMed Central

    Hassan, Sergio A.

    2005-01-01

    The effects of salt on the intermolecular interactions between polar/charged amino acids are investigated through molecular dynamics simulations. The mean forces and associated potentials are calculated for NaCl salt in the 0–2 M concentration range at 298 K. It is found that the addition of salt may stabilize or destabilize the interactions, depending on the nature of the interacting molecules. The degree of (de)stabilization is quantified, and the origin of the salt-dependent modulation is discussed based upon an analysis of solvent density profiles. To gain insight into the molecular origin of the salt modulation, spatial distribution functions (sdf’s) are calculated, revealing a high degree of solvent structuredness in all cases. The peaks in the sdf’s are consistent with long-range hydrogen-bonding networks connecting the solute hydrophilic groups, and that contribute to their intermolecular solvent-induced forces. The restructuring of water around the solutes as they dissociate from close contact is analyzed. This analysis offers clues on how the solvent structure modulates the effective intermolecular interactions in complex solutes. This modulation results from a critical balance between bulk electrostatic forces and those exerted by (i) the water molecules in the structured region between the monomers, which is disrupted by ions that transiently enter the hydration shells, and (ii) the ions in the hydration shells in direct interactions with the solutes. The implications of these findings in protein/ligand (noncovalent) association/dissociation mechanisms are briefly discussed. PMID:16479276

  15. Quantitative analysis of intermolecular interactions in orthorhombic rubrene

    DOE PAGES

    Hathwar, Venkatesha R.; Sist, Mattia; Jørgensen, Mads R. V.; ...

    2015-08-14

    Rubrene is one of the most studied organic semiconductors to date due to its high charge carrier mobility which makes it a potentially applicable compound in modern electronic devices. Previous electronic device characterizations and first principles theoretical calculations assigned the semiconducting properties of rubrene to the presence of a large overlap of the extended π-conjugated core between molecules. We present here the electron density distribution in rubrene at 20 K and at 100 K obtained using a combination of high-resolution X-ray and neutron diffraction data. The topology of the electron density and energies of intermolecular interactions are studied quantitatively. Specifically,more » the presence of C π...C πinteractions between neighbouring tetracene backbones of the rubrene molecules is experimentally confirmed from a topological analysis of the electron density, Non-Covalent Interaction (NCI) analysis and the calculated interaction energy of molecular dimers. A significant contribution to the lattice energy of the crystal is provided by H—H interactions. The electron density features of H—H bonding, and the interaction energy of molecular dimers connected by H—H interaction clearly demonstrate an importance of these weak interactions in the stabilization of the crystal structure. Finally, the quantitative nature of the intermolecular interactions is virtually unchanged between 20 K and 100 K suggesting that any changes in carrier transport at these low temperatures would have a different origin. The obtained experimental results are further supported by theoretical calculations.« less

  16. Asymmetric intermolecular Pauson-Khand reactions of unstrained olefins: the (o-dimethylamino)phenylsulfinyl group as an efficient chiral auxiliary.

    PubMed

    Rodríguez Rivero, Marta; De La Rosa, Juan Carlos; Carretero, Juan Carlos

    2003-12-10

    The first asymmetric version of intermolecular Pauson-Khand reactions of unstrained alkenes is described. Generally simple acyclic alkenes exhibit low reactivity and regioselectivity in intermolecular Pauson-Khand reactions; however, o-(dimethylamino)phenyl vinyl sulfoxide reacts under very mild conditions with a wide variety of terminal alkynes in a completely regioselective and highly stereoselective manner. The utility of the resulting 5-sulfinyl-2-cyclopentenones in asymmetric synthesis is illustrated by a very short enantioselective synthesis of the antibiotic (-)-pentenomycin I.

  17. Theory of gas hydrates: effect of the approximation of rigid water lattice.

    PubMed

    Pimpalgaonkar, Hrushikesh; Veesam, Shivanand K; Punnathanam, Sudeep N

    2011-08-25

    One of the assumptions of the van der Waals and Platteeuw theory for gas hydrates is that the host water lattice is rigid and not distorted by the presence of guest molecules. In this work, we study the effect of this approximation on the triple-point lines of the gas hydrates. We calculate the triple-point lines of methane and ethane hydrates via Monte Carlo molecular simulations and compare the simulation results with the predictions of van der Waals and Platteeuw theory. Our study shows that even if the exact intermolecular potential between the guest molecules and water is known, the dissociation temperatures predicted by the theory are significantly higher. This has serious implications to the modeling of gas hydrate thermodynamics, and in spite of the several impressive efforts made toward obtaining an accurate description of intermolecular interactions in gas hydrates, the theory will suffer from the problem of robustness if the issue of movement of water molecules is not adequately addressed. © 2011 American Chemical Society

  18. Programmable Assembly of Peptide Amphiphile via Noncovalent-to-Covalent Bond Conversion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sato, Kohei; Ji, Wei; Palmer, Liam C.

    Controlling the number of monomers in a supramolecular polymer has been a great challenge in programmable self-assembly of organic molecules. One approach has been to make use of frustrated growth of the supramolecular assembly by tuning the balance of attractive and repulsive intermolecular forces. We report here on the use of covalent bond formation among monomers, compensating for intermolecular electrostatic repulsion, as a mechanism to control the length of a supramolecular nanofiber formed by self-assembly of peptide amphiphiles. Circular dichroism spectroscopy in combination with dynamic light scattering, size-exclusion chromatography, and transmittance electron microscope analyses revealed that hydrogen bonds between peptidesmore » were reinforced by covalent bond formation, enabling the fiber elongation. To examine these materials for their potential biomedical applications, cytotoxicity of nanofibers against C2C12 premyoblast cells was tested. We demonstrated that cell viability increased with an increase in fiber length, presumably because of the suppressed disruption of cell membranes by the fiber end-caps.« less

  19. Structure and stability of clusters of β-alanine in the gas phase: importance of the nature of intermolecular interactions.

    PubMed

    Piekarski, Dariusz Grzegorz; Díaz-Tendero, Sergio

    2017-02-15

    We present a theoretical study of neutral clusters of β-alanine molecules in the gas phase, (β-ala) n n ≤ 5. Classical molecular dynamics simulations carried out with different internal excitation energies provide information on the clusters formation and their thermal decomposition limits. We also present an assessment study performed with different families of density functionals using the dimer, (β-ala) 2 , as a benchmark system. The M06-2X functional provides the best agreement in geometries and relative energies in comparison with the reference values computed with the MP2 and CCSD(T) methods. The structure, stability, dissociation energies and vertical ionization potentials of the studied clusters have been investigated using this functional in combination with the 6-311++G(d,p) basis set. An exhaustive analysis of intermolecular interactions is also presented. These results provide new insights into the stability, interaction nature and formation mechanisms of clusters of amino acids in the gas phase.

  20. A general approach to intermolecular carbonylation of arene C-H bonds to ketones through catalytic aroyl triflate formation

    NASA Astrophysics Data System (ADS)

    Garrison Kinney, R.; Tjutrins, Jevgenijs; Torres, Gerardo M.; Liu, Nina Jiabao; Kulkarni, Omkar; Arndtsen, Bruce A.

    2018-02-01

    The development of metal-catalysed methods to functionalize inert C-H bonds has become a dominant research theme in the past decade as an approach to efficient synthesis. However, the incorporation of carbon monoxide into such reactions to form valuable ketones has to date proved a challenge, despite its potential as a straightforward and green alternative to Friedel-Crafts reactions. Here we describe a new approach to palladium-catalysed C-H bond functionalization in which carbon monoxide is used to drive the generation of high-energy electrophiles. This offers a method to couple the useful features of metal-catalysed C-H functionalization (stable and available reagents) and electrophilic acylations (broad scope and selectivity), and synthesize ketones simply from aryl iodides, CO and arenes. Notably, the reaction proceeds in an intermolecular fashion, without directing groups and at very low palladium-catalyst loadings. Mechanistic studies show that the reaction proceeds through the catalytic build-up of potent aroyl triflate electrophiles.

  1. Terahertz spectroscopy and computational investigation of the flufenamic acid/nicotinamide cocrystal.

    PubMed

    Delaney, Sean P; Korter, Timothy M

    2015-04-02

    Terahertz spectroscopy probes the low-frequency vibrations that are sensitive to both the intermolecular and intramolecular interactions of molecules in the solid state. Thus, terahertz spectroscopy can be a useful tool in the investigation of crystalline pharmaceutical compounds, where slight changes in the packing arrangement can modify the overall effectiveness of a drug formulation. This is especially true for cases of polymorphic systems, hydrates/solvates, and cocrystals. In this work, the cocrystal of flufenamic acid with nicotinamide was investigated using terahertz spectroscopy and solid-state density functional theory. The solid-state simulations enable understanding of the low-frequency vibrations seen in the terahertz spectra, while also providing insight into the energetics involved in the formation of the cocrystal. The comparison of the cocrystal to the pure forms of the molecular components reveals that the cocrystal has better overall binding energy, driven by increased intermolecular hydrogen bond strength and greater London dispersion forces and that the trifluoromethyl torsional potential is significantly different between the studied solids.

  2. Beyond Born-Mayer: Improved models for short-range repulsion in ab initio force fields

    DOE PAGES

    Van Vleet, Mary J.; Misquitta, Alston J.; Stone, Anthony J.; ...

    2016-06-23

    Short-range repulsion within inter-molecular force fields is conventionally described by either Lennard-Jones or Born-Mayer forms. Despite their widespread use, these simple functional forms are often unable to describe the interaction energy accurately over a broad range of inter-molecular distances, thus creating challenges in the development of ab initio force fields and potentially leading to decreased accuracy and transferability. Herein, we derive a novel short-range functional form based on a simple Slater-like model of overlapping atomic densities and an iterated stockholder atom (ISA) partitioning of the molecular electron density. We demonstrate that this Slater-ISA methodology yields a more accurate, transferable, andmore » robust description of the short-range interactions at minimal additional computational cost compared to standard Lennard-Jones or Born-Mayer approaches. Lastly, we show how this methodology can be adapted to yield the standard Born-Mayer functional form while still retaining many of the advantages of the Slater-ISA approach.« less

  3. Programmable Assembly of Peptide Amphiphile via Noncovalent-to-Covalent Bond Conversion

    DOE PAGES

    Sato, Kohei; Ji, Wei; Palmer, Liam C.; ...

    2017-06-22

    Controlling the number of monomers in a supramolecular polymer has been a great challenge in programmable self-assembly of organic molecules. One approach has been to make use of frustrated growth of the supramolecular assembly by tuning the balance of attractive and repulsive intermolecular forces. We report here on the use of covalent bond formation among monomers, compensating for intermolecular electrostatic repulsion, as a mechanism to control the length of a supramolecular nanofiber formed by self-assembly of peptide amphiphiles. Circular dichroism spectroscopy in combination with dynamic light scattering, size-exclusion chromatography, and transmittance electron microscope analyses revealed that hydrogen bonds between peptidesmore » were reinforced by covalent bond formation, enabling the fiber elongation. To examine these materials for their potential biomedical applications, cytotoxicity of nanofibers against C2C12 premyoblast cells was tested. We demonstrated that cell viability increased with an increase in fiber length, presumably because of the suppressed disruption of cell membranes by the fiber end-caps.« less

  4. Temperature Dependence in the Terahertz Spectrum of Nicotinamide: Anharmonicity and Hydrogen-Bonded Network.

    PubMed

    Takahashi, Masae; Okamura, Nubuyuki; Fan, Xinyi; Shirakawa, Hitoshi; Minamide, Hiroaki

    2017-04-06

    We have investigated the terahertz-spectral property of nicotinamide focusing on the temperature dependence in the range of 14-300 K. We observed that almost all peaks in the terahertz spectrum of the nicotinamide crystal showed a remarkable shift with temperature, whereas the lowest-frequency peak at 34.8 cm -1 showed a negligible shift with temperature. By analyzing the terahertz spectrum with the dispersion-corrected density functional theory calculations, we found that the difference in the temperature dependence of the peak shift is well understood in terms of the presence/absence of stretching vibration of the intermolecular hydrogen bond in the mode and the change of cell parameters. The anharmonicity in the dissociation potential energy of very weak intermolecular hydrogen bonding causes the remarkable peak shift with temperature in the terahertz spectrum of nicotinamide. This finding suggests that the assignment and identification of peaks in the terahertz spectrum are systematically enabled by temperature-dependent measurements.

  5. Intermolecular Structural Change for Thermoswitchable Polymeric Photosensitizer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Park, Wooram; Park, Sin-Jung; Cho, Soojeong

    2016-08-17

    A switchable photosensitizer (PS), which can be activated at a spe-cific condition beside light, has tremendous advantages for photo-dynamic therapy (PDT). Herein, we developed a thermo-switchable polymeric photosensitizer (T-PPS) by conjugating PS (Pheophor-bide-a, PPb-a) to a temperature-responsive polymer backbone of biocompatible hydroxypropyl cellulose (HPC). Self-quenched PS molecules linked in close proximity by pi-pi stacking in T-PPS were easily transited to an active monomeric state by the tempera-ture induced phase transition of polymer backbones. The tempera-ture responsive inter-molecular interaction changes of PS molecules in T-PPS were demonstrated in synchrotron small-angle X-ray scattering (SAXS) and UV-Vis spectrophotometer analysis. The T-PPS allowed switchablemore » activation and synergistically enhanced cancer cell killing effect at the hyperthermia temperature (45 °C). Our developed T-PPS has the considerable potential not only as a new class of photomedicine in clinics but also as a biosensor based on temperature responsiveness.« less

  6. Intermolecular G-quadruplex structure-based fluorescent DNA detection system.

    PubMed

    Zhou, Hui; Wu, Zai-Sheng; Shen, Guo-Li; Yu, Ru-Qin

    2013-03-15

    Adopting multi-donors to pair with one acceptor could improve the performance of fluorogenic detection probes. However, common dyes (e.g., fluorescein) in close proximity to each other would self-quench the fluorescence, and the fluorescence is difficult to restore. In this contribution, we constructed a novel "multi-donors-to-one acceptor" fluorescent DNA detection system by means of the intermolecular G-quadruplex (IGQ) structure-based fluorescence signal enhancement combined with the hairpin oligonucleotide. The novel IGQ-hairpin system was characterized using the p53 gene as the model target DNA. The proposed system showed an improved assay performance due to the introduction of IGQ-structure into fluorescent signaling probes, which could inhibit the background fluorescence and increase fluorescence restoration amplitude of fluoresceins upon target DNA hybridization. The proof-of-concept scheme is expected to provide new insight into the potential of G-quadruplex structure and promote the application of fluorescent oligonucleotide probes in fundamental research, diagnosis, and treatment of genetic diseases. Copyright © 2012 Elsevier B.V. All rights reserved.

  7. Highlighting non-uniform temperatures close to liquid/solid surfaces

    NASA Astrophysics Data System (ADS)

    Noirez, L.; Baroni, P.; Bardeau, J. F.

    2017-05-01

    The present experimental measurements reveal that similar to external fields such as electric, magnetic, or flow fields, the vicinity of a solid surface can preclude the liquid molecules from relaxing to equilibrium, generating located non-uniform temperatures. The non-uniform temperature zone extends up to several millimeters within the liquid with a lower temperature near the solid wall (reaching ΔT = -0.15 °C ± 0.02 °C in the case of liquid water) counterbalanced at larger distances by a temperature rise. These effects highlighted by two independent methods (thermistor measurement and infra-red emissivity) are particularly pronounced for highly wetting surfaces. The scale over which non-uniform temperatures are extended indicates that the effect is assisted by intermolecular interactions, in agreement with recent developments showing that liquids possess finite shear elasticity and theoretical approaches integrating long range correlations.

  8. Tetragonal Lysozyme Interactions Studied by Site Directed Mutagenesis

    NASA Technical Reports Server (NTRS)

    Crawford, Lisa; Karr, Laurel J.; Nadarajah, Arunan; Pusey, Marc

    1999-01-01

    A number of recent experimental and theoretical studies have indicated that tetragonal lysozyme crystal growth proceeds by the addition of aggregates, formed by reversible self association of the solute molecules in the bulk solution. Periodic bond chain and atomic force microscopy studies have indicated that the probable growth unit is at minimum a 43 tetramer, and most likely an octamer composed of two complete turns about the 43 axis. If these results are correct, then there are intermolecular interactions which are only formed in the solution and others only formed at the joining of the growth unit to the crystal surface. We have set out to study these interactions, and the correctness of this hypothesis, using site directed mutagenesis of specific amino acid residues involved in the different bonds. We had initially expressed wild type lysozyme in S. cervasiae with yields of approximately 5 mg/L, which were eventually raised to approximately 40 mg/L. We are now moving the expression to the Pichia system, with anticipated yields of 300 to (3)500 mg/L, comparable to what can be obtained from egg whites. An additional advantage of using recombinant protein is the greater genetic homogeneity of the material obtained and the absence of any other contaminating egg proteins. The first mutation experiments are TYR 23 (Registered) PHE or ALA and ASN 113 (Registered) ALA or ASP. Both TYR 23 and ASN 113 form part of the postulated dimerization intermolecular binding site which lead to the formation of the 43 helix. Tyrosine also participates in an intermolecular hydrogen bond with ARG 114. The results of these and subsequent experiments will be discussed.

  9. Tetragonal Lysozyme Interactions Studied by Site Directed Mutagenesis

    NASA Technical Reports Server (NTRS)

    Crawford, Lisa; Karr, Laurel; Pusey, Marc

    1998-01-01

    A number of recent experimental and theoretical studies have indicated that tetragonal lysozyme crystal growth proceeds by the addition of aggregates, formed by reversible self association of the solute molecules in the bulk'solution. Periodic bond chain and atomic force microscopy studies have indicated that the probable growth unit is at minimum a 43 tetramer, and most likely an octamer composed of two complete turns about the 4(sub 3) axis. If these results are correct, then there are intermolecular interactions which are only formed in the solution and others only formed at the joining of the growth unit to the crystal surface. We have set out to study these interactions, and the correctness of this hypothesis, using site directed mutagenesis of specific amino acid residues involved in the different bonds. We had initially expressed wild type lysozyme in S. cervasiae with yields of approximately 5 mg/L, which were eventually raised to approximately 40 mg/L. We are now moving the expression to the Pichia system, with anticipated yields of 300 to greater than 500 mg/L, comparable to what can be obtained from egg whites. An additional advantage of using recombinant protein is the greater genetic homogeneity of the material obtained and the absence of any other contaminating egg proteins. The first mutation experiments are TYR 23 yields PHE or ALA and ASN 113 yields ALA or ASP. Both TYR 23 and ASN 113 form part of the postulated dimerization intermolecular binding site which lead to the formation of the 4(sub 3) helix. Tyrosine also participates in an intermolecular hydrogen bond with ARG 114. The results of these and subsequent experiments will be discussed.

  10. In silico approach to investigating the adsorption mechanisms of short chain perfluorinated sulfonic acids and perfluorooctane sulfonic acid on hydrated hematite surface.

    PubMed

    Feng, Hongru; Lin, Yuan; Sun, Yuzhen; Cao, Huiming; Fu, Jianjie; Gao, Ke; Zhang, Aiqian

    2017-05-01

    Short chain perfluorinated sulfonic acids (PFSAs) that were introduced as alternatives for perfluorooctane sulfonic acid (PFOS) have been widely produced and used. However, few studies have investigated the environmental process of short chain PFSAs, and the related adsorption mechanisms still need to be uncovered. The water-oxide interface is one of the major environmental interfaces that plays an important role in affecting the adsorption behaviour and transport potential of the environmental pollutant. In this study, we performed molecular dynamics simulations and quantum chemistry calculations to investigate the adsorption mechanisms of five PFSAs and their adsorption on hydrated hematite surface as well. Different to the vertical configuration reported for PFOS on titanium oxide, all PFSAs share the same adsorption configuration as the long carbon chains parallel to the surface. The formation of hydrogen bonds between F and inter-surface H helps to stabilize the unique configuration. As a result, the sorption capacity increases with increasing C-F chain length. Moreover, both calculated adsorption energy and partial density of states (PDOS) analysis demonstrate a PFSAs adsorption mechanism in between physical and chemical adsorption because the hydrogen bonds formed by the overlap of F (p) orbital and H (s) orbital are weak intermolecular interactions while the physical adsorption are mainly ascribed to the electrostatic interactions. This massive calculation provides a new insight into the pollutant adsorption behaviour, and in particular, may help to evaluate the environmental influence of pollutants. Copyright © 2017. Published by Elsevier Ltd.

  11. Intermolecular orbital interaction in π systems

    NASA Astrophysics Data System (ADS)

    Zhao, Rundong; Zhang, Rui-Qin

    2018-04-01

    Intermolecular interactions, in regard to which people tend to emphasise the noncovalent van der Waals (vdW) forces when conducting investigations throughout chemistry, can influence the structure, stability and function of molecules and materials. Despite the ubiquitous nature of vdW interactions, a simplified electrostatic model has been popularly adopted to explain common intermolecular interactions, especially those existing in π-involved systems. However, this classical model has come under fire in revealing specific issues such as substituent effects, due to its roughness; and it has been followed in past decades by sundry explanations which sometimes bring in nebulous descriptions. In this account, we try to summarise and present a unified model for describing and analysing the binding mechanism of such systems from the viewpoint of energy decomposition. We also emphasise a commonly ignored factor - orbital interaction, pointing out that the noncovalent intermolecular orbital interactions actually exhibit similar bonding and antibonding phenomena as those in covalent bonds.

  12. Study of intermolecular interactions in binary mixtures of 2'-chloro-4-methoxy-3-nitro benzil in various solvents and at different concentrations by the measurement of acoustic properties.

    PubMed

    Nithya, G; Thanuja, B; Kanagam, Charles C

    2013-01-01

    Density (ρ), ultrasonic velocity (u), adiabatic compressibility (β), apparent molar volume (Ø), acoustic impedance (Z), intermolecular free length (L(f)), relative association (RA) of binary mixtures of 2'-chloro-4-methoxy-3-nitro benzil (abbreviated as 2CBe) in ethanol, acetonitrile, chloroform, dioxane and benzene were measured at different concentrations at 298 K. Several useful parameters such as excess density, excess ultrasonic velocity, excess adiabatic compressibility, excess apparent molar volume, excess acoustic impedance and excess intermolecular free length have been calculated. These parameters are used to explain the nature of intermolecular interactions taking place in the binary mixture. The above study is useful in understanding the solute--solvent interactions occurring in different concentrations at room temperature. Copyright © 2012 Elsevier B.V. All rights reserved.

  13. Investigating the dynamics of surface-immobilized DNA nanomachines

    PubMed Central

    Dunn, Katherine E.; Trefzer, Martin A.; Johnson, Steven; Tyrrell, Andy M.

    2016-01-01

    Surface-immobilization of molecules can have a profound influence on their structure, function and dynamics. Toehold-mediated strand displacement is often used in solution to drive synthetic nanomachines made from DNA, but the effects of surface-immobilization on the mechanism and kinetics of this reaction have not yet been fully elucidated. Here we show that the kinetics of strand displacement in surface-immobilized nanomachines are significantly different to those of the solution phase reaction, and we attribute this to the effects of intermolecular interactions within the DNA layer. We demonstrate that the dynamics of strand displacement can be manipulated by changing strand length, concentration and G/C content. By inserting mismatched bases it is also possible to tune the rates of the constituent displacement processes (toehold-binding and branch migration) independently, and information can be encoded in the time-dependence of the overall reaction. Our findings will facilitate the rational design of surface-immobilized dynamic DNA nanomachines, including computing devices and track-based motors. PMID:27387252

  14. Investigating the dynamics of surface-immobilized DNA nanomachines

    NASA Astrophysics Data System (ADS)

    Dunn, Katherine E.; Trefzer, Martin A.; Johnson, Steven; Tyrrell, Andy M.

    2016-07-01

    Surface-immobilization of molecules can have a profound influence on their structure, function and dynamics. Toehold-mediated strand displacement is often used in solution to drive synthetic nanomachines made from DNA, but the effects of surface-immobilization on the mechanism and kinetics of this reaction have not yet been fully elucidated. Here we show that the kinetics of strand displacement in surface-immobilized nanomachines are significantly different to those of the solution phase reaction, and we attribute this to the effects of intermolecular interactions within the DNA layer. We demonstrate that the dynamics of strand displacement can be manipulated by changing strand length, concentration and G/C content. By inserting mismatched bases it is also possible to tune the rates of the constituent displacement processes (toehold-binding and branch migration) independently, and information can be encoded in the time-dependence of the overall reaction. Our findings will facilitate the rational design of surface-immobilized dynamic DNA nanomachines, including computing devices and track-based motors.

  15. Grid-based Continual Analysis of Molecular Interior for Drug Discovery, QSAR and QSPR.

    PubMed

    Potemkin, Andrey V; Grishina, Maria A; Potemkin, Vladimir A

    2017-01-01

    In 1979, R.D.Cramer and M.Milne made a first realization of 3D comparison of molecules by aligning them in space and by mapping their molecular fields to a 3D grid. Further, this approach was developed as the DYLOMMS (Dynamic Lattice- Oriented Molecular Modelling System) approach. In 1984, H.Wold and S.Wold proposed the use of partial least squares (PLS) analysis, instead of principal component analysis, to correlate the field values with biological activities. Then, in 1988, the method which was called CoMFA (Comparative Molecular Field Analysis) was introduced and the appropriate software became commercially available. Since 1988, a lot of 3D QSAR methods, algorithms and their modifications are introduced for solving of virtual drug discovery problems (e.g., CoMSIA, CoMMA, HINT, HASL, GOLPE, GRID, PARM, Raptor, BiS, CiS, ConGO,). All the methods can be divided into two groups (classes):1. Methods studying the exterior of molecules; 2) Methods studying the interior of molecules. A series of grid-based computational technologies for Continual Molecular Interior analysis (CoMIn) are invented in the current paper. The grid-based analysis is fulfilled by means of a lattice construction analogously to many other grid-based methods. The further continual elucidation of molecular structure is performed in various ways. (i) In terms of intermolecular interactions potentials. This can be represented as a superposition of Coulomb, Van der Waals interactions and hydrogen bonds. All the potentials are well known continual functions and their values can be determined in all lattice points for a molecule. (ii) In the terms of quantum functions such as electron density distribution, Laplacian and Hamiltonian of electron density distribution, potential energy distribution, the highest occupied and the lowest unoccupied molecular orbitals distribution and their superposition. To reduce time of calculations using quantum methods based on the first principles, an original quantum free-orbital approach AlteQ is proposed. All the functions can be calculated using a quantum approach at a sufficient level of theory and their values can be determined in all lattice points for a molecule. Then, the molecules of a dataset can be superimposed in the lattice for the maximal coincidence (or minimal deviations) of the potentials (i) or the quantum functions (ii). The methods and criteria of the superimposition are discussed. After that a functional relationship between biological activity or property and characteristics of potentials (i) or functions (ii) is created. The methods of the quantitative relationship construction are discussed. New approaches for rational virtual drug design based on the intermolecular potentials and quantum functions are invented. All the invented methods are realized at www.chemosophia.com web page. Therefore, a set of 3D QSAR approaches for continual molecular interior study giving a lot of opportunities for virtual drug discovery, virtual screening and ligand-based drug design are invented. The continual elucidation of molecular structure is performed in the terms of intermolecular interactions potentials and in the terms of quantum functions such as electron density distribution, Laplacian and Hamiltonian of electron density distribution, potential energy distribution, the highest occupied and the lowest unoccupied molecular orbitals distribution and their superposition. To reduce time of calculations using quantum methods based on the first principles, an original quantum free-orbital approach AlteQ is proposed. The methods of the quantitative relationship construction are discussed. New approaches for rational virtual drug design based on the intermolecular potentials and quantum functions are invented. All the invented methods are realized at www.chemosophia.com web page. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  16. A programmable optimization environment using the GAMESS-US and MERLIN/MCL packages. Applications on intermolecular interaction energies

    NASA Astrophysics Data System (ADS)

    Kalatzis, Fanis G.; Papageorgiou, Dimitrios G.; Demetropoulos, Ioannis N.

    2006-09-01

    The Merlin/MCL optimization environment and the GAMESS-US package were combined so as to offer an extended and efficient quantum chemistry optimization system, capable of implementing complex optimization strategies for generic molecular modeling problems. A communication and data exchange interface was established between the two packages exploiting all Merlin features such as multiple optimizers, box constraints, user extensions and a high level programming language. An important feature of the interface is its ability to perform dimer computations by eliminating the basis set superposition error using the counterpoise (CP) method of Boys and Bernardi. Furthermore it offers CP-corrected geometry optimizations using analytic derivatives. The unified optimization environment was applied to construct portions of the intermolecular potential energy surface of the weakly bound H-bonded complex C 6H 6-H 2O by utilizing the high level Merlin Control Language. The H-bonded dimer HF-H 2O was also studied by CP-corrected geometry optimization. The ab initio electronic structure energies were calculated using the 6-31G ** basis set at the Restricted Hartree-Fock and second-order Moller-Plesset levels, while all geometry optimizations were carried out using a quasi-Newton algorithm provided by Merlin. Program summaryTitle of program: MERGAM Catalogue identifier:ADYB_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/ADYB_v1_0 Program obtainable from: CPC Program Library, Queen's University of Belfast, N. Ireland Computer for which the program is designed and others on which it has been tested: The program is designed for machines running the UNIX operating system. It has been tested on the following architectures: IA32 (Linux with gcc/g77 v.3.2.3), AMD64 (Linux with the Portland group compilers v.6.0), SUN64 (SunOS 5.8 with the Sun Workshop compilers v.5.2) and SGI64 (IRIX 6.5 with the MIPSpro compilers v.7.4) Installations: University of Ioannina, Greece Operating systems or monitors under which the program has been tested: UNIX Programming language used: ANSI C, ANSI Fortran-77 No. of lines in distributed program, including test data, etc.:11 282 No. of bytes in distributed program, including test data, etc.: 49 458 Distribution format: tar.gz Memory required to execute with typical data: Memory requirements mainly depend on the selection of a GAMESS-US basis set and the number of atoms No. of bits in a word: 32 No. of processors used: 1 Has the code been vectorized or parallelized?: no Nature of physical problem: Multidimensional geometry optimization is of great importance in any ab initio calculation since it usually is one of the most CPU-intensive tasks, especially on large molecular systems. For example, the geometric and energetic description of van der Waals and weakly bound H-bonded complexes requires the construction of related important portions of the multidimensional intermolecular potential energy surface (IPES). So the various held views about the nature of these bonds can be quantitatively tested. Method of solution: The Merlin/MCL optimization environment was interconnected with the GAMESS-US package to facilitate geometry optimization in quantum chemistry problems. The important portions of the IPES require the capability to program optimization strategies. The Merlin/MCL environment was used for the implementation of such strategies. In this work, a CP-corrected geometry optimization was performed on the HF-H 2O complex and an MCL program was developed to study portions of the potential energy surface of the C 6H 6-H 2O complex. Restrictions on the complexity of the problem: The Merlin optimization environment and the GAMESS-US package must be installed. The MERGAM interface requires GAMESS-US input files that have been constructed in Cartesian coordinates. This restriction occurs from a design-time requirement to not allow reorientation of atomic coordinates; this rule holds always true when applying the COORD = UNIQUE keyword in a GAMESS-US input file. Typical running time: It depends on the size of the molecular system, the size of the basis set and the method of electron correlation. Execution of the test run took approximately 5 min on a 2.8 GHz Intel Pentium CPU.

  17. Generation of crystal structures using known crystal structures as analogues

    PubMed Central

    Cole, Jason C.; Groom, Colin R.; Read, Murray G.; Giangreco, Ilenia; McCabe, Patrick; Reilly, Anthony M.; Shields, Gregory P.

    2016-01-01

    This analysis attempts to answer the question of whether similar molecules crystallize in a similar manner. An analysis of structures in the Cambridge Structural Database shows that the answer is yes – sometimes they do, particularly for single-component structures. However, one does need to define what we mean by similar in both cases. Building on this observation we then demonstrate how this correlation between shape similarity and packing similarity can be used to generate potential lattices for molecules with no known crystal structure. Simple intermolecular interaction potentials can be used to minimize these potential lattices. Finally we discuss the many limitations of this approach. PMID:27484374

  18. Effective Fragment Potential Method for H-Bonding: How To Obtain Parameters for Nonrigid Fragments.

    PubMed

    Dubinets, Nikita; Slipchenko, Lyudmila V

    2017-07-20

    Accuracy of the effective fragment potential (EFP) method was explored for describing intermolecular interaction energies in three dimers with strong H-bonded interactions, formic acid, formamide, and formamidine dimers, which are a part of HBC6 database of noncovalent interactions. Monomer geometries in these dimers change significantly as a function of intermonomer separation. Several EFP schemes were considered, in which fragment parameters were prepared for a fragment in its gas-phase geometry or recomputed for each unique fragment geometry. Additionally, a scheme in which gas-phase fragment parameters are shifted according to relaxed fragment geometries is introduced and tested. EFP data are compared against the coupled cluster with single, double, and perturbative triple excitations (CCSD(T)) method in a complete basis set (CBS) and the symmetry adapted perturbation theory (SAPT). All considered EFP schemes provide a good agreement with CCSD(T)/CBS for binding energies at equilibrium separations, with discrepancies not exceeding 2 kcal/mol. However, only the schemes that utilize relaxed fragment geometries remain qualitatively correct at shorter than equilibrium intermolecular distances. The EFP scheme with shifted parameters behaves quantitatively similar to the scheme in which parameters are recomputed for each monomer geometry and thus is recommended as a computationally efficient approach for large-scale EFP simulations of flexible systems.

  19. Density functional theory and phytochemical study of 8-hydroxyisodiospyrin

    NASA Astrophysics Data System (ADS)

    Ullah, Zakir; Ata-ur-Rahman; Fazl-i-Sattar; Rauf, Abdur; Yaseen, Muhammad; Hassan, Waseem; Tariq, Muhammad; Ayub, Khurshid; Tahir, Asif Ali; Ullah, Habib

    2015-09-01

    Comprehensive theoretical and experimental studies of a natural product, 8-hydroxyisodiospyrin (HDO) have been carried out. Based on the correlation of experimental and theoretical data, an appropriate computational model was developed for obtaining the electronic, spectroscopic, and thermodynamic parameters of HDO. First of all, the exact structure of HDO is confirmed from the nice correlation of theory and experiment, prior to determination of its electroactive nature. Hybrid density functional theory (DFT) is employed for all theoretical simulations. The experimental and predicted IR and UV-vis spectra [B3LYP/6-31+G(d,p) level of theory] have excellent correlation. Inter-molecular non-covalent interaction of HDO with different gases such as NH3, CO2, CO, H2O is investigated through geometrical counterpoise (gCP) i.e., B3LYP-gCP-D3/6-31G∗ method. Furthermore, the inter-molecular interaction is also supported by geometrical parameters, electronic properties, thermodynamic parameters and charge analysis. All these characterizations have corroborated each other and confirmed the electroactive nature (non-covalent interaction ability) of HDO for the studied gases. Electronic properties such as Ionization Potential (IP), Electron Affinities (EA), electrostatic potential (ESP), density of states (DOS), HOMO, LUMO, and band gap of HDO have been estimated for the first time theoretically.

  20. Phytochemical, spectroscopic and density functional theory study of Diospyrin, and non-bonding interactions of Diospyrin with atmospheric gases.

    PubMed

    Fazl-i-Sattar; Ullah, Zakir; Ata-ur-Rahman; Rauf, Abdur; Tariq, Muhammad; Tahir, Asif Ali; Ayub, Khurshid; Ullah, Habib

    2015-04-15

    Density functional theory (DFT) and phytochemical study of a natural product, Diospyrin (DO) have been carried out. A suitable level of theory was developed, based on correlating the experimental and theoretical data. Hybrid DFT method at B3LYP/6-31G (d,p) level of theory is employed for obtaining the electronic, spectroscopic, inter-molecular interaction and thermodynamic properties of DO. The exact structure of DO is confirmed from the nice validation of the theory and experiment. Non-covalent interactions of DO with different atmospheric gases such as NH3, CO2, CO, and H2O were studied to find out its electroactive nature. The experimental and predicted geometrical parameters, IR and UV-vis spectra (B3LYP/6-31+G (d,p) level of theory) show excellent correlation. Inter-molecular non-bonding interaction of DO with atmospheric gases is investigated through geometrical parameters, electronic properties, charge analysis, and thermodynamic parameters. Electronic properties include, ionization potential (I.P.), electron affinities (E.A.), electrostatic potential (ESP), density of states (DOS), HOMO, LUMO, and band gap. All these characterizations have corroborated each other and confirmed the presence of non-covalent nature in DO with the mentioned gases. Copyright © 2015 Elsevier B.V. All rights reserved.

  1. Chemical Dynamics Simulations of Intermolecular Energy Transfer: Azulene + N2 Collisions.

    PubMed

    Kim, Hyunsik; Paul, Amit K; Pratihar, Subha; Hase, William L

    2016-07-14

    Chemical dynamics simulations were performed to investigate collisional energy transfer from highly vibrationally excited azulene (Az*) in a N2 bath. The intermolecular potential between Az and N2, used for the simulations, was determined from MP2/6-31+G* ab initio calculations. Az* is prepared with an 87.5 kcal/mol excitation energy by using quantum microcanonical sampling, including its 95.7 kcal/mol zero-point energy. The average energy of Az* versus time, obtained from the simulations, shows different rates of Az* deactivation depending on the N2 bath density. Using the N2 bath density and Lennard-Jones collision number, the average energy transfer per collision ⟨ΔEc⟩ was obtained for Az* as it is collisionally relaxed. By comparing ⟨ΔEc⟩ versus the bath density, the single collision limiting density was found for energy transfer. The resulting ⟨ΔEc⟩, for an 87.5 kcal/mol excitation energy, is 0.30 ± 0.01 and 0.32 ± 0.01 kcal/mol for harmonic and anharmonic Az potentials, respectively. For comparison, the experimental value is 0.57 ± 0.11 kcal/mol. During Az* relaxation there is no appreciable energy transfer to Az translation and rotation, and the energy transfer is to the N2 bath.

  2. The intermolecular vibrations of the water dimer

    NASA Astrophysics Data System (ADS)

    Braly, Linda Beth

    Terahertz laser spectra of water dimer intermolecular vibrations have yielded four (D2O)2 VRT bands (one previously published) and five (H2O)2 VRT bands measured with ca. 1 MHz precision and assigned between 65 and 142 cm-1. The results differ both qualitatively and quantitatively from the predictions of popular, effective pair potentials tested. The spectra also reveal an ordering of the intermolecular vibrations which differs dramatically from that predicted by a normal mode analysis. Strong coupling is indicated between the low barrier tunneling motions and the intermolecular vibrations as well as between different vibrations. In particular the 102.1 cm-1 (H2O) 2 band assigned as the acceptor wag has two types of perturbations. The first perturbation involves coupling of two of the tunneling components between the Ka = 0 and 1 levels similar to that occurring in ground state between Ka = 0 and 1 levels. This is treated with an effective Coriolis coupling constant. These seconded perturbation involves one tunneling component with Ka = 1 coupling with a tunneling component with Ka = 0 of the 108 cm-1 acceptor twist vibration. A more detailed Coriolis coupling scheme is required to deperturb these states. Also it is indicated that the 103.1 cm-1 (H2O) 2 band assigned as the donor in-plane bend is coupled to the acceptor wag resulting in a lowering of the in-plane bend frequency and raising the acceptor wag frequency. In addition the 141 cm-1 (H2O)2 band shows perturbations which could not be. resolved at this time. And the 83 cm-1 (acceptor wag) and 90 cm-1 (D2O)2 (acceptor twist) band are perturbing one another through a Coriolis interaction. A subset of the (D2O)2 data have been used in an ongoing effort to determine an accurate IPS via least-squares fitting to an analytical form. The results from the most recent fit which produced VRT(ASP- W)II are presented and compared with the experimental data. The IPS was used to calculate the eigenstates of the water dimer using the Split Wigner Psuedo Spectral (SWPS) method. The transitions could then be calculated from the eigenstates. This improved IPS reproduces the dominant features of the VRT spectra quite well. The ultimate goal of this water dimer research project is to determine the ``perfect'' water pair potential from the spectroscopic data.

  3. Non-covalent interactions across organic and biological subsets of chemical space: Physics-based potentials parametrized from machine learning

    NASA Astrophysics Data System (ADS)

    Bereau, Tristan; DiStasio, Robert A.; Tkatchenko, Alexandre; von Lilienfeld, O. Anatole

    2018-06-01

    Classical intermolecular potentials typically require an extensive parametrization procedure for any new compound considered. To do away with prior parametrization, we propose a combination of physics-based potentials with machine learning (ML), coined IPML, which is transferable across small neutral organic and biologically relevant molecules. ML models provide on-the-fly predictions for environment-dependent local atomic properties: electrostatic multipole coefficients (significant error reduction compared to previously reported), the population and decay rate of valence atomic densities, and polarizabilities across conformations and chemical compositions of H, C, N, and O atoms. These parameters enable accurate calculations of intermolecular contributions—electrostatics, charge penetration, repulsion, induction/polarization, and many-body dispersion. Unlike other potentials, this model is transferable in its ability to handle new molecules and conformations without explicit prior parametrization: All local atomic properties are predicted from ML, leaving only eight global parameters—optimized once and for all across compounds. We validate IPML on various gas-phase dimers at and away from equilibrium separation, where we obtain mean absolute errors between 0.4 and 0.7 kcal/mol for several chemically and conformationally diverse datasets representative of non-covalent interactions in biologically relevant molecules. We further focus on hydrogen-bonded complexes—essential but challenging due to their directional nature—where datasets of DNA base pairs and amino acids yield an extremely encouraging 1.4 kcal/mol error. Finally, and as a first look, we consider IPML for denser systems: water clusters, supramolecular host-guest complexes, and the benzene crystal.

  4. Comparison of Friction Characteristics on TN and VA Mode Alignment Films with Friction Force Microscopy

    NASA Astrophysics Data System (ADS)

    Kwak, Musun; Chung, Hanrok; Kwon, Hyukmin; Kim, Jehyun; Han, Daekyung; Yi, Yoonseon; Lee, Sangmun; Lee, Chulgu; Cha, Sooyoul

    Using frictional force microscopy (FFM), the friction surface characteristics were compared between twisted nematic (TN) mode and vertical alignment (VA) mode alignment films (AFs). The friction asymmetry was detected depending on temperature conditions on TN mode AF, but not on VA mode AF. The difference between two modes was explained by leaning intermolecular repulsion caused by the pre-tilt angle uniformity and the density of side chain. No level difference according to temperature conditions appeared when the pre-tilt angle were measured after liquid crystal (LC) injection.

  5. New methods for the analysis of the protein-solvent interface

    NASA Astrophysics Data System (ADS)

    Goodfellow, Julia M.; Pitt, William R.; Smart, Oliver S.; Williams, Mark A.

    1995-09-01

    The protein-solvent interface is complex and may include solvent channels and cavities as well as the normal surface water molecules. We describe several algorithms for investigating the intra- and inter-molecular interactions of proteins in general but with the aim of developing methods to accurately and definitively characterise the interactions of water and other small ligands with proteins. Specifically, we present the methods which underlie three programs (AQUARIUS2, HOLE and PRO_ACT) which can be used to to look at different aspects of these interactions.

  6. Multipole-Based Force Fields from ab Initio Interaction Energies and the Need for Jointly Refitting All Intermolecular Parameters.

    PubMed

    Kramer, Christian; Gedeck, Peter; Meuwly, Markus

    2013-03-12

    Distributed atomic multipole (MTP) moments promise significant improvements over point charges (PCs) in molecular force fields, as they (a) more realistically reproduce the ab initio electrostatic potential (ESP) and (b) allow to capture anisotropic atomic properties such as lone pairs, conjugated systems, and σ holes. The present work focuses on the question of whether multipolar electrostatics instead of PCs in standard force fields leads to quantitative improvements over point charges in reproducing intermolecular interactions. To this end, the interaction energies of two model systems, benzonitrile (BZN) and formamide (FAM) homodimers, are characterized over a wide range of dimer conformations. It is found that although with MTPs the monomer ab initio ESP can be captured better by about an order of magnitude compared to point charges (PCs), this does not directly translate into better describing ab initio interaction energies compared to PCs. Neither ESP-fitted MTPs nor refitted Lennard-Jones (LJ) parameters alone demonstrate a clear superiority of atomic MTPs. We show that only if both electrostatic and LJ parameters are jointly optimized in standard, nonpolarizable force fields, atomic are MTPs clearly beneficial for reproducing ab initio dimerization energies. After an exhaustive exponent scan, we find that for both BZN and FAM, atomic MTPs and a 9-6 LJ potential can reproduce ab initio interaction energies with ∼30% (RMSD 0.13 vs 0.18 kcal/mol) less error than point charges (PCs) and a 12-6 LJ potential. We also find that the improvement due to using MTPs with a 9-6 LJ potential is considerably more pronounced than with a 12-6 LJ potential (≈ 10%; RMSD 0.19 versus 0.21 kcal/mol).

  7. Homologous recombination occurs in a distinct retroviral subpopulation and exhibits high negative interference.

    PubMed Central

    Hu, W S; Bowman, E H; Delviks, K A; Pathak, V K

    1997-01-01

    Homologous recombination and deletions occur during retroviral replication when reverse transcriptase switches templates. While recombination occurs solely by intermolecular template switching (between copackaged RNAs), deletions can occur by an intermolecular or an intramolecular template switch (within the same RNA). To directly compare the rates of intramolecular and intermolecular template switching, two spleen necrosis virus-based vectors were constructed. Each vector contained a 110-bp direct repeat that was previously shown to delete at a high rate. The 110-bp direct repeat was flanked by two different sets of restriction site markers. These vectors were used to form heterozygotic virions containing RNAs of each parental vector, from which recombinant viruses were generated. By analyses of the markers flanking the direct repeats in recombinant and nonrecombinant proviruses, the rates of intramolecular and intermolecular template switching were determined. The results of these analyses indicate that intramolecular template switching is much more efficient than intermolecular template switching and that direct repeat deletions occur primarily through intramolecular template switching events. These studies also indicate that retroviral recombination occurs within a distinct viral subpopulation and exhibits high negative interference, whereby the selection of one recombination event increases the probability that a second recombination event will be observed. PMID:9223494

  8. Three oxime ether derivatives: Synthesis, crystallographic study, electronic structure and molecular electrostatic potential calculation

    NASA Astrophysics Data System (ADS)

    Dey, Tanusri; Praveena, Koduru Sri Shanthi; Pal, Sarbani; Mukherjee, Alok Kumar

    2017-06-01

    Three oxime ether derivatives, (E)-3-methoxy-4-(prop-2-ynyloxy)-benzaldehyde-O-prop-2-ynyl-oxime (C14H13NO3) (2), benzophenone-O-prop-2-ynyl-oxime (C16H13NO) (3) and (E)-2-chloro-6-methylquinoline-3-carbaldehyde-O-prop-2-ynyl-oxime (C14H11ClN2O) (4), have been synthesized and their crystal structures have been determined. The DFT optimized molecular geometries in 2-4 agree closely with those obtained from the crystallographic study. An interplay of intermolecular Csbnd H⋯O, Csbnd H⋯N, Csbnd H⋯Cl and Csbnd H···π(arene) hydrogen bonds and π···π interactions assembles molecules into a 2D columnar architecture in 2, a 1D molecular ribbon in 3 and a 3D framework in 4. Hirshfeld surface analysis showed that the structures of 2 and 3 are mainly characterized by H⋯H, H⋯C and H⋯O contacts but some contribution of H⋯N and H⋯Cl contacts is also observed in 4. Hydrogen-bond based interactions in 2-4 have been complemented by calculating molecular electrostatic potential (MEP) surfaces. The electronic structures of molecules reveal that the estimated band gap in 3, in which both aldehyde hydrogen atoms of formaldehyde-O-prop-2-ynyl-oxime (1) have been substituted by two benzene rings, is higher than that of 2 and 4 with only one aldehyde hydrogen atom replaced.

  9. Modeling the self-assembly of functionalized fullerenes on solid surfaces using Monte Carlo simulations

    NASA Astrophysics Data System (ADS)

    Bubnis, Gregory J.

    Since their discovery 25 years ago, carbon fullerenes have been widely studied for their unique physicochemical properties and for applications including organic electronics and photovoltaics. For these applications it is highly desirable for crystalline fullerene thin films to spontaneously self-assemble on surfaces. Accordingly, many studies have functionalized fullerenes with the aim of tailoring their intermolecular interactions and controlling interactions with the solid substrate. The success of these rational design approaches hinges on the subtle interplay of intermolecular forces and molecule-substrate interactions. Molecular modeling is well-suited to studying these interactions by directly simulating self-assembly. In this work, we consider three different fullerene functionalization approaches and for each approach we carry out Monte Carlo simulations of the self-assembly process. In all cases, we use a "coarse-grained" molecular representation that preserves the dominant physical interactions between molecules and maximizes computational efficiency. The first approach we consider is the traditional gold-thiolate SAM (self-assembled monolayer) strategy which tethers molecules to a gold substrate via covalent sulfur-gold bonds. For this we study an asymmetric fullerene thiolate bridged by a phenyl group. Clusters of 40 molecules are simulated on the Au(111) substrate at different temperatures and surface coverage densities. Fullerenes and S atoms are found to compete for Au(111) surface sites, and this competition prevents self-assembly of highly ordered monolayers. Next, we investigate self-assembled monolayers formed by fullerenes with hydrogen-bonding carboxylic acid substituents. We consider five molecules with different dimensions and symmetries. Monte Carlo cooling simulations are used to find the most stable solid structures of clusters adsorbed to Au(111). The results show cases where fullerene-Au(111) attraction, fullerene close-packing, and hydrogen-bonding interactions can cooperate to guide self-assembly or compete to hinder it. Finally, we consider three bis-fullerene molecules, each with a different "bridging group" covalently joining two fullerenes. To effectively study the competing "standing-up" and "lying-down" morphologies, we use Monte Carlo simulations in conjunction with replica exchange and force field biasing methods. For clusters adsorbed to smooth model surfaces, we determine free energy landscapes and demonstrate their utility for rationalizing and predicting self-assembly.

  10. Molecular dynamics simulation of the interactions between EHD1 EH domain and multiple peptides.

    PubMed

    Yu, Hua; Wang, Mao-jun; Xuan, Nan-xia; Shang, Zhi-cai; Wu, Jun

    2015-10-01

    To provide essential information for peptide inhibitor design, the interactions of Eps15 homology domain of Eps15 homology domain-containing protein 1 (EHD1 EH domain) with three peptides containing NPF (asparagine-proline-phenylalanine), DPF (aspartic acid-proline-phenylalanine), and GPF (glycine-proline-phenylalanine) motifs were deciphered at the atomic level. The binding affinities and the underlying structure basis were investigated. Molecular dynamics (MD) simulations were performed on EHD1 EH domain/peptide complexes for 60 ns using the GROMACS package. The binding free energies were calculated and decomposed by molecular mechanics/generalized Born surface area (MM/GBSA) method using the AMBER package. The alanine scanning was performed to evaluate the binding hot spot residues using FoldX software. The different binding affinities for the three peptides were affected dominantly by van der Waals interactions. Intermolecular hydrogen bonds provide the structural basis of contributions of van der Waals interactions of the flanking residues to the binding. van der Waals interactions should be the main consideration when we design peptide inhibitors of EHD1 EH domain with high affinities. The ability to form intermolecular hydrogen bonds with protein residues can be used as the factor for choosing the flanking residues.

  11. Molecular Self-Assembly Driven by London Dispersion Forces

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Guo; Cooper, Valentino R; Cho, Jun-Hyung

    2011-01-01

    The nature and strength of intermolecular interactions are crucial to a variety of kinetic and dynamic processes at surfaces. Whereas strong chemisorption bonds are known to facilitate molecular binding, the importance of the weaker yet ubiquitous van der Waals (vdW) interactions remains elusive in most cases. Here we use first-principles calculations combined with kinetic Monte Carlo simulations to unambiguously demonstrate the vital role that vdW interactions play in molecular self-assembly, using styrene nanowire growth on silicon as a prototypical example. We find that, only when the London dispersion forces are included, accounting for the attractive parts of vdW interactions, canmore » the effective intermolecular interaction be reversed from being repulsive to attractive. Such attractive interactions, in turn, ensure the preferred growth of long wires under physically realistic conditions as observed experimentally. We further propose a cooperative scheme, invoking the application of an electric field and the selective creation of Si dangling bonds, to drastically improve the ordered arrangement of the molecular structures. The present study represents a significant step forward in the fundamental understanding and precise control of molecular self-assembly guided by London dispersion forces.« less

  12. Moving contact lines in partial wetting: bridging the gap across the scales

    NASA Astrophysics Data System (ADS)

    Pahlavan, Amir; Cueto-Felgueroso, Luis; McKinley, Gareth; Juanes, Ruben

    2017-11-01

    The spreading and dewetting of liquid films on solid substrates is a common phenomenon in nature and industry from a snail secreting a mucosal film to printing and coating processes. A quantitative description of these phenomena, however, requires a detailed understanding of the flow physics at the nanoscale as the intermolecular interactions become important close to the contact line. Classical hydrodynamic theory describes wetting as an interplay between viscous and interfacial forces, neglecting the intermolecular interactions, leading to a paradox known as the moving contact line singularity. By contrast, molecular kinetic theory describes wetting as an activated process, neglecting the bulk hydrodynamics in the spreading viscous fluid film altogether. Here, we show that our recently developed model for thin liquid films in partial wetting, which properly incorporates the role of van der Waals interactions in a thin spreading fluid layer into a height-dependent surface tension, bridges the gap between these two approaches and leads to a unified framework for the description of wetting phenomena. We further use our model to investigate the instability and dewetting of nanometric liquid films, and show that it brings theoretical predictions closer to experimental observations.

  13. The breakup mechanism of biomolecular and colloidal aggregates in a shear flow

    NASA Astrophysics Data System (ADS)

    Ó Conchúir, Breanndán; Zaccone, Alessio

    2014-03-01

    The theory of self-assembly of colloidal particles in shear flow is incomplete. Previous analytical approaches have failed to capture the microscopic interplay between diffusion, shear and intermolecular interactions which controls the aggregates fate in shear. In this work we analytically solved the drift-diffusion equation for the breakup rate of a dimer in flow. Then applying rigidity percolation theory, we found that the lifetime of a generic cluster formed under shear is controlled by the typical lifetime of a single bond in its interior, which in turn depends on the efficiency of the stress transmitted from other bonds in the cluster. We showed that aggregate breakup is a thermally-activated process where the activation energy is controlled by the interplay between intermolecular forces and the shear drift, and where structural parameters determine whether cluster fragmentation or surface erosion prevails. In our latest work, we analyzed floppy modes and nonaffine deformations to derive a lower bound on the fractal dimension df below which aggregates are mechanically unstable, ie. for large aggregates df ~= 2.4. This theoretical framework is in quantitative agreement with experiments and can be used for population balance modeling of colloidal and protein aggregation.

  14. Free energies of binding from large-scale first-principles quantum mechanical calculations: application to ligand hydration energies.

    PubMed

    Fox, Stephen J; Pittock, Chris; Tautermann, Christofer S; Fox, Thomas; Christ, Clara; Malcolm, N O J; Essex, Jonathan W; Skylaris, Chris-Kriton

    2013-08-15

    Schemes of increasing sophistication for obtaining free energies of binding have been developed over the years, where configurational sampling is used to include the all-important entropic contributions to the free energies. However, the quality of the results will also depend on the accuracy with which the intermolecular interactions are computed at each molecular configuration. In this context, the energy change associated with the rearrangement of electrons (electronic polarization and charge transfer) upon binding is a very important effect. Classical molecular mechanics force fields do not take this effect into account explicitly, and polarizable force fields and semiempirical quantum or hybrid quantum-classical (QM/MM) calculations are increasingly employed (at higher computational cost) to compute intermolecular interactions in free-energy schemes. In this work, we investigate the use of large-scale quantum mechanical calculations from first-principles as a way of fully taking into account electronic effects in free-energy calculations. We employ a one-step free-energy perturbation (FEP) scheme from a molecular mechanical (MM) potential to a quantum mechanical (QM) potential as a correction to thermodynamic integration calculations within the MM potential. We use this approach to calculate relative free energies of hydration of small aromatic molecules. Our quantum calculations are performed on multiple configurations from classical molecular dynamics simulations. The quantum energy of each configuration is obtained from density functional theory calculations with a near-complete psinc basis set on over 600 atoms using the ONETEP program.

  15. Probing the global potential energy minimum of (CH2O)2: THz absorption spectrum of (CH2O)2 in solid neon and para-hydrogen.

    PubMed

    Andersen, J; Voute, A; Mihrin, D; Heimdal, J; Berg, R W; Torsson, M; Wugt Larsen, R

    2017-06-28

    The true global potential energy minimum configuration of the formaldehyde dimer (CH 2 O) 2 , including the presence of a single or a double weak intermolecular CH⋯O hydrogen bond motif, has been a long-standing subject among both experimentalists and theoreticians as two different energy minima conformations of C s and C 2h symmetry have almost identical energies. The present work demonstrates how the class of large-amplitude hydrogen bond vibrational motion probed in the THz region provides excellent direct spectroscopic observables for these weak intermolecular CH⋯O hydrogen bond motifs. The combination of concentration dependency measurements, observed isotopic spectral shifts associated with H/D substitutions and dedicated annealing procedures, enables the unambiguous assignment of three large-amplitude infrared active hydrogen bond vibrational modes for the non-planar C s configuration of (CH 2 O) 2 embedded in cryogenic neon and enriched para-hydrogen matrices. A (semi)-empirical value for the change of vibrational zero-point energy of 5.5 ± 0.3 kJ mol -1 is proposed for the dimerization process. These THz spectroscopic observations are complemented by CCSD(T)-F12/aug-cc-pV5Z (electronic energies) and MP2/aug-cc-pVQZ (force fields) electronic structure calculations yielding a (semi)-empirical value of 13.7 ± 0.3 kJ mol -1 for the dissociation energy D 0 of this global potential energy minimum.

  16. Prediction of thermodynamic properties of coal derivatives. Progress report, September 1, 1981-August 31, 1982

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Donohue, M.D.

    It is the purpose of this research program to develop a model to predict the thermodynamic properties of coal derivatives. Unlike natural gas and petroleum, coal and its gasification and liquefaction products are predominantly aromatic and have substantial quadrupole moments. Because of these quadrupole forces, the numerous correlational techniques that have been developed for petroleum products cannot be used to predict the thermodynamic properties of coal derivatives. We are presently developing a correlation that will be useful in predicting the thermodynamic properties of coal derivatives. This theory is based on the Perturbed-Hard-Chain theory, but is different from PHCT in twomore » respects. First, PHCT uses a square-well to describe the intermolecular potential energy between two molecules. In our new theory, the Lennard-Jones potential energy function is used. The second difference is that we take into account the effect of quadrupole forces on the intermolecular potential energy. In PHCT these forces were ignored. In PHCT the contributions to the partition function (or equation of state) that arise from the attractive forces between molecules (regardless of whether these forces are treated as a square-well or by Lennard-Jones) are calculated by assuming that they are perturbations on a hard sphere. In calculating the contributions to the partition function that arise from the quadrupole-quadrupole interactions, we use a second order perturbation about the Lennard-Jones. For aromatic molecules, the effect of this additional perturbation is significant.« less

  17. Probing the global potential energy minimum of (CH2O)2: THz absorption spectrum of (CH2O)2 in solid neon and para-hydrogen

    NASA Astrophysics Data System (ADS)

    Andersen, J.; Voute, A.; Mihrin, D.; Heimdal, J.; Berg, R. W.; Torsson, M.; Wugt Larsen, R.

    2017-06-01

    The true global potential energy minimum configuration of the formaldehyde dimer (CH2O)2, including the presence of a single or a double weak intermolecular CH⋯O hydrogen bond motif, has been a long-standing subject among both experimentalists and theoreticians as two different energy minima conformations of Cs and C2h symmetry have almost identical energies. The present work demonstrates how the class of large-amplitude hydrogen bond vibrational motion probed in the THz region provides excellent direct spectroscopic observables for these weak intermolecular CH⋯O hydrogen bond motifs. The combination of concentration dependency measurements, observed isotopic spectral shifts associated with H/D substitutions and dedicated annealing procedures, enables the unambiguous assignment of three large-amplitude infrared active hydrogen bond vibrational modes for the non-planar Cs configuration of (CH2O)2 embedded in cryogenic neon and enriched para-hydrogen matrices. A (semi)-empirical value for the change of vibrational zero-point energy of 5.5 ± 0.3 kJ mol-1 is proposed for the dimerization process. These THz spectroscopic observations are complemented by CCSD(T)-F12/aug-cc-pV5Z (electronic energies) and MP2/aug-cc-pVQZ (force fields) electronic structure calculations yielding a (semi)-empirical value of 13.7 ± 0.3 kJ mol-1 for the dissociation energy D0 of this global potential energy minimum.

  18. Reversing the stereoselectivity of the intermolecular Pauson-Khand reaction: formation of endo-fused norbornadiene adducts.

    PubMed

    Rios, Ramon; Pericàs, Miquel A; Moyano, Albert; Maestro, Miguel A; Mahía, José

    2002-04-04

    [reaction: see text] An unprecedented endo-selective and regioselective intermolecular Pauson-Khand reaction takes place when heterobimetallic (Mo-Co) complexes derived from N-(2-alkynoyl)oxazolidinones or sultams are heated in the presence of norbornadiene.

  19. Identification and measurement of intermolecular interaction in polyester/polystyrene blends by FTIR-photoacoustic spectrometry

    USDA-ARS?s Scientific Manuscript database

    Fourier transform infrared photoacoustic spectrometry was used to reveal and identify n-p type intermolecular interaction formed in plastic comprising binary blends of polystyrene and a biodegradable polymer, either polylactic acid, polycaprolactone or poly(tetramethyleneadipate-co-terephthalate)....

  20. Processing equipment for grinding of building powders

    NASA Astrophysics Data System (ADS)

    Fediuk, R. S.; Ibragimov, R. A.; Lesovik, V. S.; Pak, A. A.; Krylov, V. V.; Poleschuk, M. M.; Stoyushko, N. Y.; Gladkova, N. A.

    2018-03-01

    In the article questions of mechanical grinding up to nanosize of building powder materials are considered. In the process of mechanoactivation of the composite binder, active molecules of cement minerals arise when molecular packets are destroyed in the areas of defects and loosening of the metastable phase during decompensation of intermolecular forces. The process is accompanied by a change in the kinetics of hardening Portland cement. Mechanical processes in the grinding of mineral materials cause, together with an increase in their surface energy, the growth of the isobaric potential of the powders and, accordingly, their chemical activity, which also contributes to high adhesion strength when they come into contact with binders. Thus, a set of measures for mechanical activation allows more fully use the mass of components of the filled cement systems and regulate their properties. At relatively low costs, it is possible to provide an impressive and, importantly, easily repeatable in production conditions result. It is revealed that the use of a vario-planetary mill allows to achieve the best results on grinding the powder building materials.

  1. Iodinated Al(III)-based phthalocyanines are promising sensitizers for dye-sensitized solar cells; a theoretical comparison between Zn(II), Mg(II), and Al(III)-based phthalocyanine sensitizers.

    PubMed

    Yang, Li-Na; Sun, Zhu-Zhu; Chen, Shi-Lu; Li, Ze-Sheng

    2014-02-24

    To design efficient dyes for dye-sensitized solar cells (DSSCs), using a Zn-coordinated phthalocyanine (TT7) as the prototype, a series of phthalocyanine dyes (Pcs) with different metal ions and peripheral/axial groups have been investigated by means of density functional theory (DFT) and time-dependent DFT (TDDFT) methods. Computational results show that the iodinated Al-based dye with a peripheral amino group (Al-I-NH2-Pc) exhibits the largest redshift in the maximum absorbance (λ(max)). In addition, Al-based dyes have appropriate energy-level arrangements of frontier orbitals to keep excellent balance between electron injection and regeneration of oxidized dyes. Further, it has been found that the intermolecular π-staking interaction in Al-I-Pc molecules is weaker than the other metal-based Pcs, which may effectively reduce dye aggregation on the semi-conductor surface. All these results suggest iodinated Al-based Pcs (Al-I-Pcs) to be potentially promising sensitizers in DSSCs. Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. The effect of kinematic parameters on inelastic scattering of glyoxal.

    PubMed

    Duca, Mariana D

    2004-10-08

    The effect of kinematic parameters (relative velocity v(rel), relative momentum p(rel), and relative energy E(rel)) on the rotational and rovibrational inelastic scatterings of 0(0)K(0)S(1) trans-glyoxal has been investigated by colliding glyoxal seeded in He or Ar with target gases D2, He, or Ne at different scattering angles in crossed supersonic beams. The inelastic spectra for target gases He and D2 acquired with two different sets of kinematic parameters revealed no significant differences. This result shows that kinematic factors have the major influence in the inelastic scattering channel competition whereas the intermolecular potential energy surface plays only a secondary role. The well-defined exponential dependence of relative cross sections on exchanged angular momentum identifies angular momentum as the dominant kinematic factor in collision-induced rotationally and rovibrationally inelastic scatterings. This is supported by the behavior of the relative inelastic cross sections data in a "slope-p(rel)" representation. In this form, the data show a trend nearly independent of the target gas identity. Representations involving E(rel) and v(rel) show trends specific to the target gas.

  3. The Microwave Spectrum of Argon-Vinyl Chloride

    NASA Astrophysics Data System (ADS)

    Leung, Helen O.; Marshall, Mark D.

    2011-06-01

    Through the systematic comparison of the structures of a series of complexes formed between protic acid and fluorine substituted ethylenes, we have been able to observe how tuning the properties of the functional groups (F and H atoms) in ethylene using additional F atoms causes these groups to compete or cooperate with each other in intermolecular interactions. A necessary step for expanding our work in the next natural direction by examining the effects of the less electronegative, but more polarizable Cl atom is the determination of the structures of protic acid-vinyl chloride complexes. Since the rich microwave spectrum of Ar-vinyl chloride has not previously been reported, it is essential to first characterize this rare gas complex. We have observed strong b-type and weak a-type transitions for both 35Cl and 37Cl versions of this species, all of which appear to be doubled. Although ab initio calculations suggest a sufficiently large value of μ_c, c-type lines remain elusive. Indeed, these same calculations reveal the presence of several minima on the interaction potential energy surface, which may provide an explanation.

  4. Physicochemical characterization of 3,6-diHydroxyflavone binding BSA immobilized on PEG-coated silver nanoparticles

    NASA Astrophysics Data System (ADS)

    Voicescu, Mariana; Ionescu, Sorana; Calderon-Moreno, Jose M.; Nistor, Cristina L.

    2017-02-01

    Studies based on silver nanoparticles (SNPs) and polyethylene glycols (PEGs) are mainly in the pharmaceutical field, with PEG as good "vehicle" to transport protein-based drugs. In this work, physicochemical characteristics of 3,6-diHydroxyflavone (3,6-diHF) binding bovine serum albumin (BSA) on PEG (Tween20, L64, and Myrj52)-coated SNPs have been investigated by steady-state and time-resolved fluorescence spectroscopy. These interactions give rise to the formation of intermolecular and intramolecular H bonds. As a subject of interest, the effect of temperature (30-60 °C) on the H bonds was studied by steady-state fluorescence. The size distribution and zeta potential of SNPs were determined by dynamic light scattering (DLS). Scanning electron microscopy (SEM) analysis revealed the spherical nature of particles with average diameter 40-80 nm. The structure, stability, dynamics, and conformational changes in adsorbed BSA protein on the PEG-coated SNPs surface have been also investigated by steady-state/lifetime fluorescence and circular dichroism spectroscopy. The results have relevance in the oxidative stress and drug delivery processes.

  5. γ-Herringbone Polymorph of 6,13-Bis(trimethylsilylethynyl)pentacene: A Potential Material for Enhanced Hole Mobility.

    PubMed

    Bhat, Vinayak; Gopan, Gopika; Nair, Nanditha G; Hariharan, Mahesh

    2018-04-06

    The introduction of the trialkylsilylethynyl group to the acene core is known to predominantly transform the herringbone structure of pentacene to a slip-stacked packing. However, herein, the occurrence of an unforeseen polymorph of 6,13-bis(trimethylsilylethynyl)pentacene (TMS-pentacene), with an atypical γ-herringbone packing arrangement, is reported. Intermolecular noncovalent interactions in the γ-herringbone polymorph are determined from Hirshfeld surface and quantum theory of atoms-in-molecules (QTAIM) analyses. Furthermore, a comparative truncated symmetry-adapted perturbation theory (SAPT(0)) energy decomposition analysis discloses the role of exchange repulsions that govern molecular packing in the γ-herringbone polymorph. Moreover, the computationally predicted electronic coupling and anisotropic mobility reveal the possibility of enhanced hole transport (μ h =3.7 cm 2  V -1  s -1 ) in the γ-herringbone polymorph, in contrast to the reported polymorph with a hole mobility of μ h =0.1 cm 2  V -1  s -1 . © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. C60 fullerene binding to DNA

    NASA Astrophysics Data System (ADS)

    Alshehri, Mansoor H.; Cox, Barry J.; Hill, James M.

    2014-09-01

    Fullerenes have attracted considerable attention in various areas of science and technology. Owing to their exceptional physical, chemical, and biological properties, they have many applications, particularly in cosmetic and medical products. Using the Lennard-Jones 6-12 potential function and the continuum approximation, which assumes that intermolecular interactions can be approximated by average atomic surface densities, we determine the binding energies of a C60 fullerene with respect to both single-strand and double-strand DNA molecules. We assume that all configurations are in a vacuum and that the C60 fullerene is initially at rest. Double integrals are performed to determine the interaction energy of the system. We find that the C60 fullerene binds to the double-strand DNA molecule, at either the major or minor grooves, with binding energies of -4.7 eV or -2.3 eV, respectively, and that the C60 molecule binds to the single-strand DNA molecule with a binding energy of -1.6 eV. Our results suggest that the C60 molecule is most likely to be linked to the major groove of the dsDNA molecule.

  7. iview: an interactive WebGL visualizer for protein-ligand complex.

    PubMed

    Li, Hongjian; Leung, Kwong-Sak; Nakane, Takanori; Wong, Man-Hon

    2014-02-25

    Visualization of protein-ligand complex plays an important role in elaborating protein-ligand interactions and aiding novel drug design. Most existing web visualizers either rely on slow software rendering, or lack virtual reality support. The vital feature of macromolecular surface construction is also unavailable. We have developed iview, an easy-to-use interactive WebGL visualizer of protein-ligand complex. It exploits hardware acceleration rather than software rendering. It features three special effects in virtual reality settings, namely anaglyph, parallax barrier and oculus rift, resulting in visually appealing identification of intermolecular interactions. It supports four surface representations including Van der Waals surface, solvent excluded surface, solvent accessible surface and molecular surface. Moreover, based on the feature-rich version of iview, we have also developed a neat and tailor-made version specifically for our istar web platform for protein-ligand docking purpose. This demonstrates the excellent portability of iview. Using innovative 3D techniques, we provide a user friendly visualizer that is not intended to compete with professional visualizers, but to enable easy accessibility and platform independence.

  8. Surface Chirality of Gly-Pro Dipeptide Adsorbed on a Cu(110) Surface.

    PubMed

    Cruguel, Hervé; Méthivier, Christophe; Pradier, Claire-Marie; Humblot, Vincent

    2015-07-01

    The adsorption of chiral Gly-Pro dipeptide on Cu(110) has been characterized by combining in situ polarization modulation infrared reflection absorption spectroscopy (PM-RAIRS) and X-ray photoelectron spectroscopy (XPS). The chemical state of the dipeptide, and its anchoring points and adsorption geometry, were determined at various coverage values. Gly-Pro molecules are present on Cu(110) in their anionic form (NH2 /COO(-)) and adsorb under a 3-point binding via both oxygen atoms of the carboxylate group and via the nitrogen atom of the amine group. Low-energy electron diffraction (LEED) and scanning tunneling microscopy (STM) have shown the presence of an extended 2D chiral array, sustained via intermolecular H-bonds interactions. Furthermore, due to the particular shape of the molecule, only one homochiral domain is formed, creating thus a truly chiral surface. © 2015 Wiley Periodicals, Inc.

  9. On multiscale moving contact line theory.

    PubMed

    Li, Shaofan; Fan, Houfu

    2015-07-08

    In this paper, a multiscale moving contact line (MMCL) theory is presented and employed to simulate liquid droplet spreading and capillary motion. The proposed MMCL theory combines a coarse-grained adhesive contact model with a fluid interface membrane theory, so that it can couple molecular scale adhesive interaction and surface tension with hydrodynamics of microscale flow. By doing so, the intermolecular force, the van der Waals or double layer force, separates and levitates the liquid droplet from the supporting solid substrate, which avoids the shear stress singularity caused by the no-slip condition in conventional hydrodynamics theory of moving contact line. Thus, the MMCL allows the difference of the surface energies and surface stresses to drive droplet spreading naturally. To validate the proposed MMCL theory, we have employed it to simulate droplet spreading over various elastic substrates. The numerical simulation results obtained by using MMCL are in good agreement with the molecular dynamics results reported in the literature.

  10. Learning about Intermolecular Interactions from the Cambridge Structural Database

    ERIC Educational Resources Information Center

    Battle, Gary M.; Allen, Frank H.

    2012-01-01

    A clear understanding and appreciation of noncovalent interactions, especially hydrogen bonding, are vitally important to students of chemistry and the life sciences, including biochemistry, molecular biology, pharmacology, and medicine. The opportunities afforded by the IsoStar knowledge base of intermolecular interactions to enhance the…

  11. Boiling points of halogenated ethanes: an explanatory model implicating weak intermolecular hydrogen-halogen bonding.

    PubMed

    Beauchamp, Guy

    2008-10-23

    This study explores via structural clues the influence of weak intermolecular hydrogen-halogen bonds on the boiling point of halogenated ethanes. The plot of boiling points of 86 halogenated ethanes versus the molar refraction (linked to polarizability) reveals a series of straight lines, each corresponding to one of nine possible arrangements of hydrogen and halogen atoms on the two-carbon skeleton. A multiple linear regression model of the boiling points could be designed based on molar refraction and subgroup structure as independent variables (R(2) = 0.995, standard error of boiling point 4.2 degrees C). The model is discussed in view of the fact that molar refraction can account for approximately 83.0% of the observed variation in boiling point, while 16.5% could be ascribed to weak C-X...H-C intermolecular interactions. The difference in the observed boiling point of molecules having similar molar refraction values but differing in hydrogen-halogen intermolecular bonds can reach as much as 90 degrees C.

  12. Ferrocenylaniline based amide analogs of methoxybenzoic acids: Synthesis, structural characterization and butyrylcholinesterase (BChE) inhibition studies

    NASA Astrophysics Data System (ADS)

    Altaf, Ataf Ali; Kausar, Samia; Hamayun, Muhammad; Lal, Bhajan; Tahir, Muhammad Nawaz; Badshah, Amin

    2017-10-01

    Three new ferrocene based amides were synthesized with slight structural difference. The general formula of the amides is C5H5FeC5H4C6H4NHCOC6H4(OCH3). The synthesized compounds were characterized by instrumental techniques like elemental analysis, FTIR and NMR spectroscopy. Structure of the two compounds was also studied by single crystal X-rays diffraction analysis. Structural studies provide the evidence that pMeO (one of the synthesized compounds) is an example of amides having no intermolecular hydrogen bonding in solid structure. In the BChE inhibition assay, compound (oMeO) having strong intermolecular force in the solid structure is less active than the compound (pMeO) with weak intermolecular forces in the solid structure. The docking studies proved that hydrogen bonding between inhibitor and BChE enzyme is of more importance for the activity, rather than intermolecular hydrogen bonding in the solid structure of inhibitor.

  13. Empirical temperature-dependent intermolecular potentials determined by data mining from crystal data

    NASA Astrophysics Data System (ADS)

    Hofmann, D. W. M.; Kuleshova, L. N.

    2018-05-01

    Modern force fields are accurate enough to describe thermal effects in molecular crystals. Here, we have extended our earlier approach to discrete force fields for various temperatures to a force field with a continuous function. For the parametrisation of the force field, we used data mining on experimental structures with the temperature as an additional descriptor. The obtained force field can be used to minimise energy at a finite temperature and for molecular dynamics with zero-K potentials. The applicability of the method has been demonstrated for the prediction of crystal density, temperature density gradients and transition temperature.

  14. Intermolecular interaction of thiosemicarbazone derivatives to solvents and a potential Aedes aegypti target

    NASA Astrophysics Data System (ADS)

    da Silva, João Bosco P.; Hallwass, Fernando; da Silva, Aluizio G.; Moreira, Diogo Rodrigo; Ramos, Mozart N.; Espíndola, José Wanderlan P.; de Oliveira, Ana Daura T.; Brondani, Dalci José; Leite, Ana Cristina L.; Merz, Kenneth M.

    2015-08-01

    DFT calculations were used to access information about structure, energy and electronic properties of series of phenyl- and phenoxymethyl-(thio)semicarbazone derivatives with demonstrated activity against the larvae of Aedes aegypti in stage L4. The way as the thiosemicarbazone derivatives can interact with solvents like DMSO and water were analyzed from the comparison between calculated and experimental 1H NMR chemical shifts. The evidences of thiosemicarbazone derivatives making H-bond interaction to solvent have provide us insights on how they can interact with a potential A. aegypti's biological target, the Sterol Carrier Protein-2.

  15. A first principles prediction of the crystal structure of C6Br2ClFH2

    NASA Astrophysics Data System (ADS)

    Misquitta, Alston J.; Welch, Gareth W. A.; Stone, Anthony J.; Price, Sarah L.

    2008-04-01

    We have constructed an intermolecular potential for the 1,3-dibromo-2-chloro-5-fluorobenzene molecule from first principles using SAPT(DFT) interaction energy calculations and the Williams-Stone-Misquitta method for obtaining molecular properties in distributed form. This molecule was included in the fourth Blind Test of crystal structure prediction organised by the Cambridge Crystallographic Data Centre. Using our potential, we have predicted the crystal structure of CBrClFH and found the lowest energy solution to be in excellent agreement with the experimentally observed crystal when it was subsequently revealed.

  16. Conformation of the N-terminal ectodomain elicits different effects on DUOX function: a potential impact on congenital hypothyroidism caused by a H2O2 production defect.

    PubMed

    Louzada, Ruy Andrade; Corre, Raphaël; Ameziane-El-Hassani, Rabii; Hecht, Fabio; Cazarin de Menezes, Juliana; Buffet, Camille; Carvalho, Denise P; Dupuy, Corinne

    2018-05-30

    Dual oxidases (DUOX1 and DUOX2) were initially identified as H2O2 sources involved in thyroid hormone synthesis. Congenital hypothyroidism (CH) resulting essentially from inactivating mutations of the DUOX2 gene highlighted that DUOX2 is the major H2O2 provider to thyroperoxidase. The role of DUOX1 in the thyroid remains unknown. A recent study suggests that it could compensate for the DUOX2 deficiency in CH. Both DUOX and their maturation factors DUOXA form a stable complex at the cell surface, which is fundamental for their respective enzymatic activity. Recently, intra- and intermolecular disulfide bridges were identified that are essential for the structure and the function of the complex DUOX2-DUOXA2. In this study, we investigated the involvement of cysteine residues conserved in DUOX1 towards the formation of disulfide bridges, which could be important for the function of the DUOX1-DUOXA1 complex. To analyse the role of these cysteine residues in both the targeting and function of dual oxidase, different human DUOX1 mutants were constructed, where the cysteine residues were replaced with glycine. The effect of these mutations on the cell surface expression and H2O2-generating activity of the complex DUOX1-DUOXA1 was analysed. Mutations of two cysteine residues (cys-118 and cys-1165), involved in the formation of the intramolecular disulfide bridge between the N-terminal ectodomain and one of the extracellular loops, mildly altered the function and the targeting of DUOX1, while this bridge is crucial for DUOX2 function. Unlike DUOXA2, with respect to DUOX2, the stability of the maturation factor DUOXA1 is not dependent on the oxidative folding of DUOX1. Only mutation of cys-579 induced a strong alteration of both targeting and function of the oxidase by preventing the covalent interaction between DUOX1 and DUOXA1 Conclusion: It is an intermolecular disulfide bridge and not an intramolecular disulfide bridge that is important in both the trafficking and H2O2-generating activity of the DUOX1-DUOXA1 complex.

  17. Generalization of the Gaussian electrostatic model: Extension to arbitrary angular momentum, distributed multipoles, and speedup with reciprocal space methods

    NASA Astrophysics Data System (ADS)

    Cisneros, G. Andrés; Piquemal, Jean-Philip; Darden, Thomas A.

    2006-11-01

    The simulation of biological systems by means of current empirical force fields presents shortcomings due to their lack of accuracy, especially in the description of the nonbonded terms. We have previously introduced a force field based on density fitting termed the Gaussian electrostatic model-0 (GEM-0) J.-P. Piquemal et al. [J. Chem. Phys. 124, 104101 (2006)] that improves the description of the nonbonded interactions. GEM-0 relies on density fitting methodology to reproduce each contribution of the constrained space orbital variation (CSOV) energy decomposition scheme, by expanding the electronic density of the molecule in s-type Gaussian functions centered at specific sites. In the present contribution we extend the Coulomb and exchange components of the force field to auxiliary basis sets of arbitrary angular momentum. Since the basis functions with higher angular momentum have directionality, a reference molecular frame (local frame) formalism is employed for the rotation of the fitted expansion coefficients. In all cases the intermolecular interaction energies are calculated by means of Hermite Gaussian functions using the McMurchie-Davidson [J. Comput. Phys. 26, 218 (1978)] recursion to calculate all the required integrals. Furthermore, the use of Hermite Gaussian functions allows a point multipole decomposition determination at each expansion site. Additionally, the issue of computational speed is investigated by reciprocal space based formalisms which include the particle mesh Ewald (PME) and fast Fourier-Poisson (FFP) methods. Frozen-core (Coulomb and exchange-repulsion) intermolecular interaction results for ten stationary points on the water dimer potential-energy surface, as well as a one-dimensional surface scan for the canonical water dimer, formamide, stacked benzene, and benzene water dimers, are presented. All results show reasonable agreement with the corresponding CSOV calculated reference contributions, around 0.1 and 0.15kcal/mol error for Coulomb and exchange, respectively. Timing results for single Coulomb energy-force calculations for (H2O)n, n =64, 128, 256, 512, and 1024, in periodic boundary conditions with PME and FFP at two different rms force tolerances are also presented. For the small and intermediate auxiliaries, PME shows faster times than FFP at both accuracies and the advantage of PME widens at higher accuracy, while for the largest auxiliary, the opposite occurs.

  18. Generalization of the Gaussian electrostatic model: Extension to arbitrary angular momentum, distributed multipoles, and speedup with reciprocal space methods

    PubMed Central

    Cisneros, G. Andrés; Piquemal, Jean-Philip; Darden, Thomas A.

    2007-01-01

    The simulation of biological systems by means of current empirical force fields presents shortcomings due to their lack of accuracy, especially in the description of the nonbonded terms. We have previously introduced a force field based on density fitting termed the Gaussian electrostatic model-0 (GEM-0) J.-P. Piquemal et al. [J. Chem. Phys. 124, 104101 (2006)] that improves the description of the nonbonded interactions. GEM-0 relies on density fitting methodology to reproduce each contribution of the constrained space orbital variation (CSOV) energy decomposition scheme, by expanding the electronic density of the molecule in s-type Gaussian functions centered at specific sites. In the present contribution we extend the Coulomb and exchange components of the force field to auxiliary basis sets of arbitrary angular momentum. Since the basis functions with higher angular momentum have directionality, a reference molecular frame (local frame) formalism is employed for the rotation of the fitted expansion coefficients. In all cases the intermolecular interaction energies are calculated by means of Hermite Gaussian functions using the McMurchie-Davidson [J. Comput. Phys. 26, 218 (1978)] recursion to calculate all the required integrals. Furthermore, the use of Hermite Gaussian functions allows a point multipole decomposition determination at each expansion site. Additionally, the issue of computational speed is investigated by reciprocal space based formalisms which include the particle mesh Ewald (PME) and fast Fourier-Poisson (FFP) methods. Frozen-core (Coulomb and exchange-repulsion) intermolecular interaction results for ten stationary points on the water dimer potential-energy surface, as well as a one-dimensional surface scan for the canonical water dimer, formamide, stacked benzene, and benzene water dimers, are presented. All results show reasonable agreement with the corresponding CSOV calculated reference contributions, around 0.1 and 0.15 kcal/mol error for Coulomb and exchange, respectively. Timing results for single Coulomb energy-force calculations for (H2O)n, n=64, 128, 256, 512, and 1024, in periodic boundary conditions with PME and FFP at two different rms force tolerances are also presented. For the small and intermediate auxiliaries, PME shows faster times than FFP at both accuracies and the advantage of PME widens at higher accuracy, while for the largest auxiliary, the opposite occurs. PMID:17115732

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Makarewicz, Jan, E-mail: jama@amu.edu.pl; Shirkov, Leonid

    The pyridine-Ar (PAr) van der Waals (vdW) complex is studied using a high level ab initio method. Its structure, binding energy, and intermolecular vibrational states are determined from the analytical potential energy surface constructed from interaction energy (IE) values computed at the coupled cluster level of theory with single, double, and perturbatively included triple excitations with the augmented correlation consistent polarized valence double-ζ (aug-cc-pVDZ) basis set complemented by midbond functions. The structure of the complex at its global minimum with Ar at a distance of 3.509 Å from the pyridine plane and shifted by 0.218 Å from the center ofmore » mass towards nitrogen agrees well with the corresponding equilibrium structure derived previously from the rotational spectrum of PAr. The PAr binding energy D{sub e} of 392 cm{sup −1} is close to that of 387 cm{sup −1} calculated earlier at the same ab initio level for the prototypical benzene-Ar (BAr) complex. However, under an extension of the basis set, D{sub e} for PAr becomes slightly lower than D{sub e} for BAr. The ab initio vdW vibrational energy levels allow us to estimate the reliability of the methods for the determination of the vdW fundamentals from the rotational spectra. To disclose the character of the intermolecular interaction in PAr, the symmetry-adapted perturbation theory (SAPT) is employed for the analysis of different physical contributions to IE. It is found that SAPT components of IE can be approximately expressed in the binding region by only two of them: the exchange repulsion and dispersion energy. The total induction effect is negligible. The interrelations between various SAPT components found for PAr are fulfilled for a few other complexes involving aromatic molecules and Ar or Ne, which indicates that they are valid for all rare gas (Rg) atoms and aromatics.« less

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lindoy, Lachlan P.; Kolmann, Stephen J.; D’Arcy, Jordan H.

    Finite temperature quantum and anharmonic effects are studied in H{sub 2}–Li{sup +}-benzene, a model hydrogen storage material, using path integral Monte Carlo (PIMC) simulations on an interpolated potential energy surface refined over the eight intermolecular degrees of freedom based upon M05-2X/6-311+G(2df,p) density functional theory calculations. Rigid-body PIMC simulations are performed at temperatures ranging from 77 K to 150 K, producing both quantum and classical probability density histograms describing the adsorbed H{sub 2}. Quantum effects broaden the histograms with respect to their classical analogues and increase the expectation values of the radial and angular polar coordinates describing the location of themore » center-of-mass of the H{sub 2} molecule. The rigid-body PIMC simulations also provide estimates of the change in internal energy, ΔU{sub ads}, and enthalpy, ΔH{sub ads}, for H{sub 2} adsorption onto Li{sup +}-benzene, as a function of temperature. These estimates indicate that quantum effects are important even at room temperature and classical results should be interpreted with caution. Our results also show that anharmonicity is more important in the calculation of U and H than coupling—coupling between the intermolecular degrees of freedom becomes less important as temperature increases whereas anharmonicity becomes more important. The most anharmonic motions in H{sub 2}–Li{sup +}-benzene are the “helicopter” and “ferris wheel” H{sub 2} rotations. Treating these motions as one-dimensional free and hindered rotors, respectively, provides simple corrections to standard harmonic oscillator, rigid rotor thermochemical expressions for internal energy and enthalpy that encapsulate the majority of the anharmonicity. At 150 K, our best rigid-body PIMC estimates for ΔU{sub ads} and ΔH{sub ads} are −13.3 ± 0.1 and −14.5 ± 0.1 kJ mol{sup −1}, respectively.« less

Top