Recent advances in standards for collaborative Digital Anatomic Pathology
2011-01-01
Context Collaborative Digital Anatomic Pathology refers to the use of information technology that supports the creation and sharing or exchange of information, including data and images, during the complex workflow performed in an Anatomic Pathology department from specimen reception to report transmission and exploitation. Collaborative Digital Anatomic Pathology can only be fully achieved using medical informatics standards. The goal of the international integrating the Healthcare Enterprise (IHE) initiative is precisely specifying how medical informatics standards should be implemented to meet specific health care needs and making systems integration more efficient and less expensive. Objective To define the best use of medical informatics standards in order to share and exchange machine-readable structured reports and their evidences (including whole slide images) within hospitals and across healthcare facilities. Methods Specific working groups dedicated to Anatomy Pathology within multiple standards organizations defined standard-based data structures for Anatomic Pathology reports and images as well as informatic transactions in order to integrate Anatomic Pathology information into the electronic healthcare enterprise. Results The DICOM supplements 122 and 145 provide flexible object information definitions dedicated respectively to specimen description and Whole Slide Image acquisition, storage and display. The content profile “Anatomic Pathology Structured Report” (APSR) provides standard templates for structured reports in which textual observations may be bound to digital images or regions of interest. Anatomic Pathology observations are encoded using an international controlled vocabulary defined by the IHE Anatomic Pathology domain that is currently being mapped to SNOMED CT concepts. Conclusion Recent advances in standards for Collaborative Digital Anatomic Pathology are a unique opportunity to share or exchange Anatomic Pathology structured reports that are interoperable at an international level. The use of machine-readable format of APSR supports the development of decision support as well as secondary use of Anatomic Pathology information for epidemiology or clinical research. PMID:21489187
Anatomical influences on internally coupled ears in reptiles.
Young, Bruce A
2016-10-01
Many reptiles, and other vertebrates, have internally coupled ears in which a patent anatomical connection allows pressure waves generated by the displacement of one tympanic membrane to propagate (internally) through the head and, ultimately, influence the displacement of the contralateral tympanic membrane. The pattern of tympanic displacement caused by this internal coupling can give rise to novel sensory cues. The auditory mechanics of reptiles exhibit more anatomical variation than in any other vertebrate group. This variation includes structural features such as diverticula and septa, as well as coverings of the tympanic membrane. Many of these anatomical features would likely influence the functional significance of the internal coupling between the tympanic membranes. Several of the anatomical components of the reptilian internally coupled ear are under active motor control, suggesting that in some reptiles the auditory system may be more dynamic than previously recognized.
Historical evolution of anatomical terminology from ancient to modern.
Sakai, Tatsuo
2007-06-01
The historical development of anatomical terminology from the ancient to the modern can be divided into five stages. The initial stage is represented by the oldest extant anatomical treatises by Galen of Pergamon in the Roman Empire. The anatomical descriptions by Galen utilized only a limited number of anatomical terms, which were essentially colloquial words in the Greek of this period. In the second stage, Vesalius in the early 16th century described the anatomical structures in his Fabrica with the help of detailed magnificent illustrations. He coined substantially no anatomical terms, but devised a system that distinguished anatomical structures with ordinal numbers. The third stage of development in the late 16th century was marked by innovation of a large number of specific anatomical terms especially for the muscles, vessels and nerves. The main figures at this stage were Sylvius in Paris and Bauhin in Basel. In the fourth stage between Bauhin and the international anatomical terminology, many anatomical textbooks were written mainly in Latin in the 17th century, and in modern languages in the 18th and 19th centuries. Anatomical terms for the same structure were differently expressed by different authors. The last stage began at the end of the 19th century, when the first international anatomical terminology in Latin was published as Nomina anatomica. The anatomical terminology was revised repeatedly until the current Terminologia anatomica both in Latin and English.
From Vesalius to virtual reality: How embodied cognition facilitates the visualization of anatomy
NASA Astrophysics Data System (ADS)
Jang, Susan
This study examines the facilitative effects of embodiment of a complex internal anatomical structure through three-dimensional ("3-D") interactivity in a virtual reality ("VR") program. Since Shepard and Metzler's influential 1971 study, it has been known that 3-D objects (e.g., multiple-armed cube or external body parts) are visually and motorically embodied in our minds. For example, people take longer to rotate mentally an image of their hand not only when there is a greater degree of rotation, but also when the images are presented in a manner incompatible with their natural body movement (Parsons, 1987a, 1994; Cooper & Shepard, 1975; Sekiyama, 1983). Such findings confirm the notion that our mental images and rotations of those images are in fact confined by the laws of physics and biomechanics, because we perceive, think and reason in an embodied fashion. With the advancement of new technologies, virtual reality programs for medical education now enable users to interact directly in a 3-D environment with internal anatomical structures. Given that such structures are not readily viewable to users and thus not previously susceptible to embodiment, coupled with the VR environment also affording all possible degrees of rotation, how people learn from these programs raises new questions. If we embody external anatomical parts we can see, such as our hands and feet, can we embody internal anatomical parts we cannot see? Does manipulating the anatomical part in virtual space facilitate the user's embodiment of that structure and therefore the ability to visualize the structure mentally? Medical students grouped in yoked-pairs were tasked with mastering the spatial configuration of an internal anatomical structure; only one group was allowed to manipulate the images of this anatomical structure in a 3-D VR environment, whereas the other group could only view the manipulation. The manipulation group outperformed the visual group, suggesting that the interactivity that took place among the manipulation group promoted visual and motoric embodiment, which in turn enhanced learning. Moreover, when accounting for spatial ability, it was found that manipulation benefits students with low spatial ability more than students with high spatial ability.
Anatomical eponyms - unloved names in medical terminology.
Burdan, F; Dworzański, W; Cendrowska-Pinkosz, M; Burdan, M; Dworzańska, A
2016-01-01
Uniform international terminology is a fundamental issue of medicine. Names of various organs or structures have developed since early human history. The first proper anatomical books were written by Hippocrates, Aristotle and Galen. For this reason the modern terms originated from Latin or Greek. In a modern time the terminology was improved in particular by Vasalius, Fabricius and Harvey. Presently each known structure has internationally approved term that is explained in anatomical or histological terminology. However, some elements received eponyms, terms that incorporate the surname of the people that usually describe them for the first time or studied them (e.g., circle of Willis, follicle of Graff, fossa of Sylvious, foramen of Monro, Adamkiewicz artery). Literature and historical hero also influenced medical vocabulary (e.g. Achilles tendon and Atlas). According to various scientists, all the eponyms bring colour to medicine, embed medical traditions and culture to our history but lack accuracy, lead of confusion, and hamper scientific discussion. The current article presents a wide list of the anatomical eponyms with their proper anatomical term or description according to international anatomical terminology. However, since different eponyms are used in various countries, the list could be expanded.
Unger, Bertram J; Kraut, Jay; Rhodes, Charlotte; Hochman, Jordan
2014-01-01
Physical models of complex bony structures can be used for surgical skills training. Current models focus on surface rendering but suffer from a lack of internal accuracy due to limitations in the manufacturing process. We describe a technique for generating internally accurate rapid-prototyped anatomical models with solid and hollow structures from clinical and microCT data using a 3D printer. In a face validation experiment, otolaryngology residents drilled a cadaveric bone and its corresponding printed model. The printed bone models were deemed highly realistic representations across all measured parameters and the educational value of the models was strongly appreciated.
Ostrzenski, Adam; Krajewski, Pawel; Davis, Kern
2016-09-01
To determine whether there is any new anatomical structure present within the labia majora. A case serial study was executed on eleven consecutive fresh human female cadavers. Stratum-by-stratum dissections of the labia majora were performed. Twenty-two anatomic dissections of labia majora were completed. Eosin and Hematoxylin agents were used to stain newly discovered adipose sac's tissues of the labia majora and the cylinder-like structures, which cover condensed adipose tissues. The histology of these two structures was compared. All dissected labia majora demonstrated the presence of the anatomic existence of the adipose sac structure. Just under the dermis of the labia majora, the adipose sac was located, which was filled with lobules containing condensed fatty tissues in the form of cylinders. The histological investigation established that the well-organized fibro-connective-adipose tissues represented the adipose sac. The absence of descriptions of the adipose sac within the labia majora in traditional anatomic and gynecologic textbooks was noted. In this study group, the newly discovered adipose sac is consistently present within the anatomical structure of the labia majora. The well-organized fibro-connective-adipose tissue represents microscopic characteristic features of the adipose sac.
Image analysis of anatomical traits in stalk transections of maize and other grasses
DOE Office of Scientific and Technical Information (OSTI.GOV)
Heckwolf, Sven; Heckwolf, Marlies; Kaeppler, Shawn M.
Grass stalks architecturally support leaves and reproductive structures, functionally support the transport of water and nutrients, and are harvested for multiple agricultural uses. Research on these basic and applied aspects of grass stalks would benefit from improved capabilities for measuring internal anatomical features. In particular, methods suitable for phenotyping populations of plants are needed.
Image analysis of anatomical traits in stalk transections of maize and other grasses
Heckwolf, Sven; Heckwolf, Marlies; Kaeppler, Shawn M.; ...
2015-04-09
Grass stalks architecturally support leaves and reproductive structures, functionally support the transport of water and nutrients, and are harvested for multiple agricultural uses. Research on these basic and applied aspects of grass stalks would benefit from improved capabilities for measuring internal anatomical features. In particular, methods suitable for phenotyping populations of plants are needed.
Terminologia anatomica: new terminology for the new anatomist.
Whitmore, I
1999-04-15
Over many years, anatomical terminology has been the subject of much controversy and disagreement. Previously, the International Anatomical Nomenclature Committee has been responsible for the production of six editions of Nomina Anatomica. In 1989 a new committee, the Federative Committee on Anatomical Terminology (FCAT), was created by its parent body, the International Federation of Associations of Anatomists (IFAA). FCAT has worked for 9 years and published Terminologia Anatomica (TA) in 1998. FCAT's aim has been to democratize the terminology and make it the internationally accepted, living language of anatomy. The worldwide adoption of the same terminology would eliminate national differences, which were causing extreme confusion in instances where the same structure was known by several names. The new terminology is thus the result of worldwide consultation and contains Latin and equivalent English terms. It is indexed in Latin and English and contains an index of eponyms in order to find the correct non-eponymous term. The future goal of FCAT is to continue to improve the terminology-new structures are described, different terms come into use, and the terminology needs to be expanded to include terms used by clinicians for structures that currently do not appear in the list. Future versions of the terminology must accommodate the needs of all who use it, both in the clinical and scientific worlds.
Zhong, Qun; Wu, Xue-yin; Shen, Qing-yi; Shen, Qing-ping
2012-04-01
To compare the difference in oblique external ridge, oblique internal ridge and alveolar process crest of lower complete denture base made through functional impression and anatomic impression techniques. Fifteen patients were chosen to treat with two kinds of complete dentures through functional impression and anatomic impression technique respectively. 3D laser scanner was used to scan the three-dimensional model of the denture base and the differences of the surface structural between two techniques in alveolar process crest, external and internal oblique ridges were analyzed, using paired t test with SPSS 12.0 software package. Between the two techniques, there were significant differences in the areas of internal and external oblique ridge(P<0.01); there was no significant difference in the main support areas(P>0.05). The results explain why there is less tenderness when functional impression technique is applied. The differences measured also indicate that sufficient buffering should be made in external and internal oblique ridge areas in clinic.
Gemelli-obturator complex in the deep gluteal space: an anatomic and dynamic study.
Balius, Ramon; Susín, Antonio; Morros, Carles; Pujol, Montse; Pérez-Cuenca, Dolores; Sala-Blanch, Xavier
2018-06-01
To investigate the behavior of the sciatic nerve during hip rotation at subgluteal space. Sonographic examination (high-resolution ultrasound machine at 5.0-14 MHZ) of the gemelli-obturator internus complex following two approaches: (1) a study on cadavers and (2) a study on healthy volunteers. The cadavers were examined in pronation, pelvis-fixed position by forcing internal and external rotations of the hip with the knee in 90° flexion. Healthy volunteers were examined during passive internal and external hip rotation (prone position; lumbar and pelvic regions fixed). Subjects with a history of major trauma, surgery or pathologies affecting the examined regions were excluded. The analysis included eight hemipelvis from six fresh cadavers and 31 healthy volunteers. The anatomical study revealed the presence of connective tissue attaching the sciatic nerve to the structures of the gemellus-obturator system at deep subgluteal space. The amplitude of the nerve curvature during rotating position was significantly greater than during resting position. During passive internal rotation, the sciatic nerve of both cadavers and healthy volunteers transformed from a straight structure to a curved structure tethered at two points as the tendon of the obturator internus contracted downwards. Conversely, external hip rotation caused the nerve to relax. Anatomically, the sciatic nerve is closely related to the gemelli-obturator internus complex. This relationship results in a reproducible dynamic behavior of the sciatic nerve during passive hip rotation, which may contribute to explain the pathological mechanisms of the obturator internal gemellus syndrome.
Correlations of External Landmarks With Internal Structures of the Temporal Bone.
Piromchai, Patorn; Wijewickrema, Sudanthi; Smeds, Henrik; Kennedy, Gregor; O'Leary, Stephen
2015-09-01
The internal anatomy of a temporal bone could be inferred from external landmarks. Mastoid surgery is an important skill that ENT surgeons need to acquire. Surgeons commonly use CT scans as a guide to understanding anatomical variations before surgery. Conversely, in cases where CT scans are not available, or in the temporal bone laboratory where residents are usually not provided with CT scans, it would be beneficial if the internal anatomy of a temporal bone could be inferred from external landmarks. We explored correlations between internal anatomical variations and metrics established to quantify the position of external landmarks that are commonly exposed in the operating room, or the temporal bone laboratory, before commencement of drilling. Mathematical models were developed to predict internal anatomy based on external structures. From an operating room view, the distances between the following external landmarks were observed to have statistically significant correlations with the internal anatomy of a temporal bone: temporal line, external auditory canal, mastoid tip, occipitomastoid suture, and Henle's spine. These structures can be used to infer a low lying dura mater (p = 0.002), an anteriorly located sigmoid sinus (p = 0.006), and a more lateral course of the facial nerve (p < 0.001). In the temporal bone laboratory view, the mastoid tegmen and sigmoid sinus were also regarded as external landmarks. The distances between these two landmarks and the operating view external structures were able to further infer the laterality of the facial nerve (p < 0.001) and a sclerotic mastoid (p < 0.001). Two nonlinear models were developed that predicted the distances between the following internal structures with a high level of accuracy: the distance from the sigmoid sinus to the posterior external auditory canal (p < 0.001) and the diameter of the round window niche (p < 0.001). The prospect of encountering some of the more technically challenging anatomical variants encountered in temporal bone dissection can be inferred from the distance between external landmarks found on the temporal bone. These relationships could be used as a guideline to predict challenges during drilling and choosing appropriate temporal bones for dissection.
Schwermann, Achim H; Dos Santos Rolo, Tomy; Caterino, Michael S; Bechly, Günter; Schmied, Heiko; Baumbach, Tilo; van de Kamp, Thomas
2016-02-05
External and internal morphological characters of extant and fossil organisms are crucial to establishing their systematic position, ecological role and evolutionary trends. The lack of internal characters and soft-tissue preservation in many arthropod fossils, however, impedes comprehensive phylogenetic analyses and species descriptions according to taxonomic standards for Recent organisms. We found well-preserved three-dimensional anatomy in mineralized arthropods from Paleogene fissure fillings and demonstrate the value of these fossils by utilizing digitally reconstructed anatomical structure of a hister beetle. The new anatomical data facilitate a refinement of the species diagnosis and allowed us to reject a previous hypothesis of close phylogenetic relationship to an extant congeneric species. Our findings suggest that mineralized fossils, even those of macroscopically poor preservation, constitute a rich but yet largely unexploited source of anatomical data for fossil arthropods.
Jeppson, Peter C; Balgobin, Sunil; Washington, Blair B; Hill, Audra Jolyn; Lewicky-Gaupp, Christina; Wheeler, Thomas; Ridgeway, Beri; Mazloomdoost, Donna; Balk, Ethan M; Corton, Marlene M; DeLancey, John
2018-07-01
The use of imprecise and inaccurate terms leads to confusion amongst anatomists and medical professionals. We sought to create recommended standardized terminology to describe anatomic structures of the anterior female pelvis based on a structured review of published literature and selected text books. We searched MEDLINE from its inception until May 2, 2016, using 11 medical subject heading terms to identify studies reporting on anterior female pelvic anatomy; any study type published in English was accepted. Nine textbooks were also included. We screened 12,264 abstracts, identifying 200 eligible studies along with 13 textbook chapters from which we extracted all pertinent anatomic terms. In all, 67 unique structures in the anterior female pelvis were identified. A total of 59 of these have been previously recognized with accepted terms in Terminologia Anatomica, the international standard on anatomical terminology. We also identified and propose the adoption of 4 anatomic regional terms (lateral vaginal wall, pelvic sidewall, pelvic bones, and anterior compartment), and 2 structural terms not included in Terminologia Anatomica (vaginal sulcus and levator hiatus). In addition, we identified 2 controversial terms (pubourethral ligament and Grafenberg spot) that require additional research and consensus from the greater medical and scientific community prior to adoption or rejection of these terms. We propose standardized terminology that should be used when discussing anatomic structures in the anterior female pelvis to help improve communication among researchers, clinicians, and surgeons. Copyright © 2018 Elsevier Inc. All rights reserved.
[Functional anatomy of the male continence mechanism].
Schwalenberg, T; Neuhaus, J; Dartsch, M; Weissenfels, P; Löffler, S; Stolzenburg, J-U
2010-04-01
The basic structures and organs contributing to continence in men are far less well investigated than in women. This concerns anatomical and functional aspects as well. Especially the cooperation of single components and the dynamic anchoring in the pelvic floor require further investigation. An improved anatomical-functional interpretation is needed to generate therapeutic concepts orientated at the physiology of the bladder neck.Therefore, the focus of anatomical investigations should be on the external sphincter which is the main muscle responsible for urethral closure as well as on the connective tissue, smooth muscular and neuronal structures in the pelvis. The smooth muscular structures involved are the internal sphincter, the inner parts of the external sphincter, the urethral longitudinal musculature, and parts of the centrum perinei and of the ventral suspension apparatus which fixes the position of the bladder neck and seems to be vital for continence and initiation of micturition. These new findings imply an integral concept for men as was developed for women. A first step in this regard would be a consistent and updated anatomical nomenclature.
van der Jagt, M A; Brink, W M; Versluis, M J; Steens, S C A; Briaire, J J; Webb, A G; Frijns, J H M; Verbist, B M
2015-02-01
In many centers, MR imaging of the inner ear and auditory pathway performed on 1.5T or 3T systems is part of the preoperative work-up of cochlear implants. We investigated the applicability of clinical inner ear MR imaging at 7T and compared the visibility of inner ear structures and nerves within the internal auditory canal with images acquired at 3T. Thirteen patients with sensorineural hearing loss eligible for cochlear implantation underwent examinations on 3T and 7T scanners. Two experienced head and neck radiologists evaluated the 52 inner ear datasets. Twenty-four anatomic structures of the inner ear and 1 overall score for image quality were assessed by using a 4-point grading scale for the degree of visibility. The visibility of 11 of the 24 anatomic structures was rated higher on the 7T images. There was no significant difference in the visibility of 13 anatomic structures and the overall quality rating. A higher incidence of artifacts was observed in the 7T images. The gain in SNR at 7T yielded a more detailed visualization of many anatomic structures, especially delicate ones, despite the challenges accompanying MR imaging at a high magnetic field. © 2015 by American Journal of Neuroradiology.
Schwermann, Achim H; dos Santos Rolo, Tomy; Caterino, Michael S; Bechly, Günter; Schmied, Heiko; Baumbach, Tilo; van de Kamp, Thomas
2016-01-01
External and internal morphological characters of extant and fossil organisms are crucial to establishing their systematic position, ecological role and evolutionary trends. The lack of internal characters and soft-tissue preservation in many arthropod fossils, however, impedes comprehensive phylogenetic analyses and species descriptions according to taxonomic standards for Recent organisms. We found well-preserved three-dimensional anatomy in mineralized arthropods from Paleogene fissure fillings and demonstrate the value of these fossils by utilizing digitally reconstructed anatomical structure of a hister beetle. The new anatomical data facilitate a refinement of the species diagnosis and allowed us to reject a previous hypothesis of close phylogenetic relationship to an extant congeneric species. Our findings suggest that mineralized fossils, even those of macroscopically poor preservation, constitute a rich but yet largely unexploited source of anatomical data for fossil arthropods. DOI: http://dx.doi.org/10.7554/eLife.12129.001 PMID:26854367
Niccoli Asabella, A; Antonica, F; Renna, M A; Rubini, D; Notaristefano, A; Nicoletti, A; Rubini, G
2013-12-01
To develop a method to fuse lymphoscintigraphic images with an adaptable anatomical vector profile and to evaluate its role in the clinical practice. We used Adobe Illustrator CS6 to create different vector profiles, we fused those profiles, using Adobe Photoshop CS6, with lymphoscintigraphic images of the patient. We processed 197 lymphoscintigraphies performed in patients with cutaneous melanomas, breast cancer or delayed lymph drainage. Our models can be adapted to every patient attitude or position and contain different levels of anatomical details ranging from external body profiles to the internal anatomical structures like bones, muscles, vessels, and lymph nodes. If needed, more new anatomical details can be added and embedded in the profile without redrawing them, saving a lot of time. Details can also be easily hidden, allowing the physician to view only relevant information and structures. Fusion times are about 85 s. The diagnostic confidence of the observers increased significantly. The validation process showed a slight shift (mean 4.9 mm). We have created a new, practical, inexpensive digital technique based on commercial software for fusing lymphoscintigraphic images with built-in anatomical reference profiles. It is easily reproducible and does not alter the original scintigraphic image. Our method allows a more meaningful interpretation of lymphoscintigraphies, an easier recognition of the anatomical site and better lymph node dissection planning.
Lim, Hong-Chul; Yoon, Yong-Cheol; Wang, Joon-Ho; Bae, Ji-Hoon
2012-12-01
The purpose of this study was to compare the initial stability of anatomical and non-anatomical single bundle anterior cruciate ligament (ACL) reconstruction and to determine which would better restore intact knee kinematics. Our hypothesis was that the initial stability of anatomical single bundle ACL reconstruction would be superior to that of non-anatomical single bundle ACL reconstruction. Anterior tibial translation (ATT) and internal rotation of the tibia were measured with a computer navigation system in seven pairs of fresh-frozen cadaveric knees under two testing conditions (manual maximum anterior force, and a manual maximum anterior force combined with an internal rotational force). Tests were performed at 0, 30, 60, and 90 degrees of flexion with the ACL intact, the ACL transected, and after reconstruction of one side of a pair with either anatomical or non-anatomical single bundle ACL reconstruction. Under manual maximal anterior force, both reconstruction techniques showed no significant difference of ATT when compared to ACL intact knee state at 30° of knee flexion (p > 0.05). Under the combined anterior and internal rotatory force, non-anatomical single-bundle ACL reconstruction showed significant difference of ATT compared to those in ACL intact group (p < 0.05). In contrast, central anatomical single bundle ACL reconstruction showed no significant difference of ATT compared to those in ACL intact group (p > 0.05). Internal rotation of the tibia showed no significant difference in the ACL intact, the ACL transected, non-anatomical reconstructed and anatomical reconstructed knees. Anatomical single bundle ACL reconstruction restored the initial stability closer to the native ACL under combined anterior and internal rotational forces when compared to non-anatomical ACL single bundle reconstruction.
NASA Astrophysics Data System (ADS)
Kay, Paul A.; Robb, Richard A.; King, Bernard F.; Myers, R. P.; Camp, Jon J.
1995-04-01
Thousands of radical prostatectomies for prostate cancer are performed each year. Radical prostatectomy is a challenging procedure due to anatomical variability and the adjacency of critical structures, including the external urinary sphincter and neurovascular bundles that subserve erectile function. Because of this, there are significant risks of urinary incontinence and impotence following this procedure. Preoperative interaction with three-dimensional visualization of the important anatomical structures might allow the surgeon to understand important individual anatomical relationships of patients. Such understanding might decrease the rate of morbidities, especially for surgeons in training. Patient specific anatomic data can be obtained from preoperative 3D MRI diagnostic imaging examinations of the prostate gland utilizing endorectal coils and phased array multicoils. The volumes of the important structures can then be segmented using interactive image editing tools and then displayed using 3-D surface rendering algorithms on standard work stations. Anatomic relationships can be visualized using surface displays and 3-D colorwash and transparency to allow internal visualization of hidden structures. Preoperatively a surgeon and radiologist can interactively manipulate the 3-D visualizations. Important anatomical relationships can better be visualized and used to plan the surgery. Postoperatively the 3-D displays can be compared to actual surgical experience and pathologic data. Patients can then be followed to assess the incidence of morbidities. More advanced approaches to visualize these anatomical structures in support of surgical planning will be implemented on virtual reality (VR) display systems. Such realistic displays are `immersive,' and allow surgeons to simultaneously see and manipulate the anatomy, to plan the procedure and to rehearse it in a realistic way. Ultimately the VR systems will be implemented in the operating room (OR) to assist the surgeon in conducting the surgery. Such an implementation will bring to the OR all of the pre-surgical planning data and rehearsal experience in synchrony with the actual patient and operation to optimize the effectiveness and outcome of the procedure.
Betts, Aislinn M; McGoldrick, Matthew T; Dethlefs, Christopher R; Piotrowicz, Justin; Van Avermaete, Tony; Maki, Jeff; Gerstler, Steve; Leevy, W M
2017-04-25
Biomedical imaging modalities like computed tomography (CT) and magnetic resonance (MR) provide excellent platforms for collecting three-dimensional data sets of patient or specimen anatomy in clinical or preclinical settings. However, the use of a virtual, on-screen display limits the ability of these tomographic images to fully convey the anatomical information embedded within. One solution is to interface a biomedical imaging data set with 3D printing technology to generate a physical replica. Here we detail a complementary method to visualize tomographic imaging data with a hand-held model: Sub Surface Laser Engraving (SSLE) of crystal glass. SSLE offers several unique benefits including: the facile ability to include anatomical labels, as well as a scale bar; streamlined multipart assembly of complex structures in one medium; high resolution in the X, Y, and Z planes; and semi-transparent shells for visualization of internal anatomical substructures. Here we demonstrate the process of SSLE with CT data sets derived from pre-clinical and clinical sources. This protocol will serve as a powerful and inexpensive new tool with which to visualize complex anatomical structures for scientists and students in a number of educational and research settings.
Casha, Aaron R; Camilleri, Liberato; Manché, Alexander; Gatt, Ruben; Attard, Daphne; Gauci, Marilyn; Camilleri-Podesta, Marie-Therese; Mcdonald, Stuart; Grima, Joseph N
2015-11-01
The human rib cage resembles a masonry dome in shape. Masonry domes have a particular construction that mimics stress distribution. Rib cortical thickness and bone density were analyzed to determine whether the morphology of the rib cage is sufficiently similar to a shell dome for internal rib structure to be predicted mathematically. A finite element analysis (FEA) simulation was used to measure stresses on the internal and external surfaces of a chest-shaped dome. Inner and outer rib cortical thickness and bone density were measured in the mid-axillary lines of seven cadaveric rib cages using computerized tomography scanning. Paired t tests and Pearson correlation were used to relate cortical thickness and bone density to stress. FEA modeling showed that the stress was 82% higher on the internal than the external surface, with a gradual decrease in internal and external wall stresses from the base to the apex. The inner cortex was more radio-dense, P < 0.001, and thicker, P < 0.001, than the outer cortex. Inner cortical thickness was related to internal stress, r = 0.94, P < 0.001, inner cortical bone density to internal stress, r = 0.87, P = 0.003, and outer cortical thickness to external stress, r = 0.65, P = 0.035. Mathematical models were developed relating internal and external cortical thicknesses and bone densities to rib level. The internal anatomical features of ribs, including the inner and outer cortical thicknesses and bone densities, are similar to the stress distribution in dome-shaped structures modeled using FEA computer simulations of a thick-walled dome pressure vessel. Fixation of rib fractures should include the stronger internal cortex. © 2015 Wiley Periodicals, Inc.
G-spot anatomy: a new discovery.
Ostrzenski, Adam
2012-05-01
The anatomic existence of the G-spot has not been documented yet. To identify the anatomic structure of the G-spot. A stratum-by-stratum vaginal wall dissection on a fresh cadaver. Primary outcome is the identification of the G-spot and the secondary outcome is its measurements and anatomic description of the G-spot. The G-spot has a distinguishable anatomic structure that is located on the dorsal perineal membrane, 16.5 mm from the upper part of the urethral meatus, and creates a 35° angle with the lateral border of the urethra. The lower pole (tail) and the upper pole (head) were located 3 and 15 mm next to the lateral border of the urethra, respectively. Grossly, the G-spot appeared as a well-delineated sac with walls that resembled fibroconnective tissues and resembled erectile tissues. The superior surface of the sac had bluish irregularities visible through the coat. Upon opening the sac's upper coat, blue grape-like anatomic compositions of the G-spot emerged with dimensions of length (L) of 8.1 mm × width (W) of 3.6-1.5 mm × height (H) of 0.4 mm. The G-spot structure had three distinct areas: the proximal part (the head) L 3.4 mm × W 3.6 mm, the middle part L 3.1 mm × W 3.3 mm, and the distal part (tail) L 3.3 mm × W 3.0 mm. From the distal tail, a rope-like structure emerged, which was seen for approximately 1.6 mm and then disappeared into the surrounding tissue. The anatomic existence of the G-spot was documented with potential impact on the practice and clinical research in the field of female sexual function. © 2012 International Society for Sexual Medicine.
[Ten years after the latest revision International Anatomical Terminology].
Kachlík, D; Bozdechová, I; Cech, P; Musil, V; Báca, V
2008-01-01
Ten years ago, the latest revision of the Latin anatomical nomenclature was approved and published as Terminologia Anatomica (International Anatomical Terminology), and is acknowledged by the organization uniting national anatomical societies--International Federation of Associations of Anatomists. The authors concentrate on new terms included in the nomenclature and on the linguistic changes of terminology. The most frequent errors done by medical specialists in the usage of the Latin anatomical terminology are emphasized and the situation of eponyms in contemporary anatomy is discussed in detail as well. The last version of the nomenclature makes its way very slowly in the professional community and it is necessary to refer to positive changes and advantages it has brought. The usage of this Latin anatomical nomenclature version is suggested by the International Federation to follow in theoretical and clinical fields of medicine. The authors of the article strongly recommend using the recent revision of the Latin anatomical nomenclature both in the oral and written forms, when educating and publishing.
Correlation among ultrasound, cross-sectional anatomy, and histology of the sciatic nerve: a review.
Moayeri, Nizar; van Geffen, Geert J; Bruhn, Jörgen; Chan, Vincent W; Groen, Gerbrand J
2010-01-01
Efficient identification of the sciatic nerve (SN) requires a thorough knowledge of its topography in relation to the surrounding structures. Anatomic cross sections in similar oblique planes as observed during SN ultrasonography are lacking. A survey of sonoanatomy matched with ultrasound views of the major SN block sites will be helpful in pattern recognition, especially when combined with images that show the internal architecture of the nerve. From 1 cadaver, consecutive parts of the upper leg corresponding to the 4 major blocks sites were sectioned and deeply frozen. Using cryomicrotomy, consecutive transverse sections were acquired and photographed at 78-microm intervals, along with histologic sections at 5-mm intervals. Multiplanar reformatting was done to reconstruct the optimal planes for an accurate comparison of ultrasonography and gross anatomy. The anatomic and histologic images were matched with ultrasound images that were obtained from 2 healthy volunteers. By simulating the exact position and angulation as in the ultrasonographic images, detailed anatomic overviews of SN and adjacent structures were reconstructed in the gluteal, subgluteal, midfemoral, and popliteal regions. Throughout its trajectory, SN contains numerous fascicles with connective and adipose tissues. In this study, we provide an optimal matching between histology, anatomic cross sections, and short-axis ultrasound images of SN. Reconstructing ultrasonographic planes with this high-resolution digitized anatomy not only enables an overview but also shows detailed views of the architecture of internal SN. The undulating course of the nerve fascicles within SN may explain its varying echogenic appearance during probe manipulation.
NASA Astrophysics Data System (ADS)
Hacker, Silke; Handels, Heinz
2006-03-01
Computer-based 3D atlases allow an interactive exploration of the human body. However, in most cases such 3D atlases are derived from one single individual, and therefore do not regard the variability of anatomical structures concerning their shape and size. Since the geometric variability across humans plays an important role in many medical applications, our goal is to develop a framework of an anatomical atlas for representation and visualization of the variability of selected anatomical structures. The basis of the project presented is the VOXEL-MAN atlas of inner organs that was created from the Visible Human data set. For modeling anatomical shapes and their variability we utilize "m-reps" which allow a compact representation of anatomical objects on the basis of their skeletons. As an example we used a statistical model of the kidney that is based on 48 different variants. With the integration of a shape description into the VOXEL-MAN atlas it is now possible to query and visualize different shape variations of an organ, e.g. by specifying a person's age or gender. In addition to the representation of individual shape variants, the average shape of a population can be displayed. Besides a surface representation, a volume-based representation of the kidney's shape variants is also possible. It results from the deformation of the reference kidney of the volume-based model using the m-rep shape description. In this way a realistic visualization of the shape variants becomes possible, as well as the visualization of the organ's internal structures.
Dethlefs, Christopher R.; Piotrowicz, Justin; Van Avermaete, Tony; Maki, Jeff; Gerstler, Steve; Leevy, W. M.
2017-01-01
Biomedical imaging modalities like computed tomography (CT) and magnetic resonance (MR) provide excellent platforms for collecting three-dimensional data sets of patient or specimen anatomy in clinical or preclinical settings. However, the use of a virtual, on-screen display limits the ability of these tomographic images to fully convey the anatomical information embedded within. One solution is to interface a biomedical imaging data set with 3D printing technology to generate a physical replica. Here we detail a complementary method to visualize tomographic imaging data with a hand-held model: Sub Surface Laser Engraving (SSLE) of crystal glass. SSLE offers several unique benefits including: the facile ability to include anatomical labels, as well as a scale bar; streamlined multipart assembly of complex structures in one medium; high resolution in the X, Y, and Z planes; and semi-transparent shells for visualization of internal anatomical substructures. Here we demonstrate the process of SSLE with CT data sets derived from pre-clinical and clinical sources. This protocol will serve as a powerful and inexpensive new tool with which to visualize complex anatomical structures for scientists and students in a number of educational and research settings. PMID:28518066
Du, Dajiang; Asaoka, Teruo; Shinohara, Makoto; Kageyama, Tomonori; Ushida, Takashi; Furukawa, Katsuko Sakai
2015-01-01
Porous ceramic scaffolds with shapes matching the bone defects may result in more efficient grafting and healing than the ones with simple geometries. Using computer-assisted microstereolithography (MSTL), we have developed a novel gelcasting indirect MSTL technology and successfully fabricated two scaffolds according to CT images of rabbit femur. Negative resin molds with outer 3D dimensions conforming to the femur and an internal structure consisting of stacked meshes with uniform interconnecting struts, 0.5 mm in diameter, were fabricated by MSTL. The second mold type was designed for cortical bone formation. A ceramic slurry of beta-tricalcium phosphate (β-TCP) with room temperature vulcanization (RTV) silicone as binder was cast into the molds. After the RTV silicone was completely cured, the composite was sintered at 1500°C for 5 h. Both gross anatomical shape and the interpenetrating internal network were preserved after sintering. Even cortical structure could be introduced into the customized scaffolds, which resulted in enhanced strength. Biocompatibility was confirmed by vital staining of rabbit bone marrow mesenchymal stromal cells cultured on the customized scaffolds for 5 days. This fabrication method could be useful for constructing bone substitutes specifically designed according to local anatomical defects. PMID:26504839
Shkarubo, A N; Koval', K V; Dobrovol'skiy, G F; Shkarubo, M A; Karnaukhov, V V; Kadashev, B A; Andreev, D N; Chernov, I V; Gadzhieva, O A; Aleshkina, O Yu; Anisimova, E A; Kalinin, P L; Kutin, M A; Fomichev, D V; Sharipov, O I; Ismailov, D B; Selivanov, E S
to describe the main topographic and anatomical features of the clival region and its adjacent structures for improvement and optimization of the extended endoscopic endonasal posterior (transclival) approach for resection of tumors of the clival region and ventral posterior cranial fossa. We performed a craniometric study of 125 human skulls and a topographic anatomical study of heads of 25 cadavers, the arterial and venous bed of which was stained with colored silicone (the staining technique was developed by the authors) to visualize bed features and individual variability. Currently, we have clinical material from more than 120 surgical patients with various skull base tumors of the clival region and ventral posterior cranial fossa (chordomas, pituitary adenomas, meningiomas, cholesteatomas, etc.) who were operated on using the endoscopic transclival approach. We present the main anatomical landmarks and parameters of some anatomical structures that are required for performing the endoscopic endonasal posterior approach. The anatomical landmarks, such as the intradural openings of the abducens and glossopharyngeal nerves, may be used to arbitrarily divide the clival region into the superior, middle, and inferior thirds. The anatomical landmarks important for the surgeon, which are detected during a topographic anatomical study of the skull base, facilitate identification of the boundaries between the different clival portions and the C1 segments of the internal carotid arteries. The superior, middle, and inferior transclival approaches provide an access to the ventral surface of the upper, middle, and lower neurovascular complexes in the posterior cranial fossa. The endoscopic transclival approach may be used to access midline tumors of the posterior cranial fossa. The approach is an alternative to transcranial approaches in surgical treatment of clival region lesions. This approach provides results comparable (and sometimes better) to those of the transcranial and transfacial approaches.
Cheng, Ye; Zhang, Siwen; Chen, Yong; Zhao, Gang
2015-01-01
Purpose Penetration of the clivus is required for surgical access of the brain stem. The endoscopic transclivus approach is a difficult procedure with high risk of injury to important neurovascular structures. We undertook a novel anatomical and radiological investigation to understand the structure of the clivus and neurovascular structures relevant to the extended trans-nasal trans-sphenoid procedure and determine a safe corridor for the penetration of the clivus. Method We examined the clivus region in the computed tomographic angiography (CTA) images of 220 adults, magnetic resonance (MR) images of 50 adults, and dry skull specimens of 10 adults. Multiplanar reconstruction (MPR) of the CT images was performed, and the anatomical features of the clivus were studied in the coronal, sagittal, and axial planes. The data from the images were used to determine the anatomical parameters of the clivus and neurovascular structures, such as the internal carotid artery and inferior petrosal sinus. Results The examination of the CTA and MR images of the enrolled subjects revealed that the thickness of the clivus helped determine the depth of the penetration, while the distance from the sagittal midline to the important neurovascular structures determined the width of the penetration. Further, data from the CTA and MR images were consistent with those retrieved from the examination of the cadaveric specimens. Conclusion Our findings provided certain pointers that may be useful in guiding the surgery such that inadvertent injury to vital structures is avoided and also provided supportive information for the choice of the appropriate endoscopic equipment. PMID:26368821
The Science and Politics of Naming: Reforming Anatomical Nomenclature, ca. 1886-1955.
Buklijas, Tatjana
2017-04-01
Anatomical nomenclature is medicine's official language. Early in their medical studies, students are expected to memorize not only the bodily geography but also the names for all the structures that, by consensus, constitute the anatomical body. The making and uses of visual maps of the body have received considerable historiographical attention, yet the history of production, communication, and reception of anatomical names-a history as long as the history of anatomy itself-has been studied far less. My essay examines the reforms of anatomical naming between the first modern nomenclature, the 1895 Basel Nomina Anatomica (BNA), and the 1955 Nomina Anatomica Parisiensia (NAP, also known as PNA), which is the basis for current anatomical terminology. I focus on the controversial and ultimately failed attempt to reform anatomical nomenclature, known as Jena Nomina Anatomica (INA), of 1935. Discussions around nomenclature reveal not only how anatomical names are made and communicated, but also the relationship of anatomy with the clinic; disciplinary controversies within anatomy; national traditions in science; and the interplay between international and scientific disciplinary politics. I show how the current anatomical nomenclature, a successor to the NAP, is an outcome of both political and disciplinary tensions that reached their peak before 1945. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Atlas-based segmentation of 3D cerebral structures with competitive level sets and fuzzy control.
Ciofolo, Cybèle; Barillot, Christian
2009-06-01
We propose a novel approach for the simultaneous segmentation of multiple structures with competitive level sets driven by fuzzy control. To this end, several contours evolve simultaneously toward previously defined anatomical targets. A fuzzy decision system combines the a priori knowledge provided by an anatomical atlas with the intensity distribution of the image and the relative position of the contours. This combination automatically determines the directional term of the evolution equation of each level set. This leads to a local expansion or contraction of the contours, in order to match the boundaries of their respective targets. Two applications are presented: the segmentation of the brain hemispheres and the cerebellum, and the segmentation of deep internal structures. Experimental results on real magnetic resonance (MR) images are presented, quantitatively assessed and discussed.
Gielecki, J; Zurada, A; Osman, N
2008-05-01
Professional terminology is commonplace, particularly in the fields of mathematics, medicine, veterinary and natural sciences. The use of the terminology can be international, as it is with Anatomical Terminology (AT). In the early age of modern education, anatomists adopted Latin as the international language for AT. However, at the end of the 20th century, the English language became more predominant around the world. It can be said that the AT is a specific collection of scientific terms. One of the major flaws in early AT was that body structures were described by varying names, while some of the terms was irrational in nature, and confusing. At this time, different international committees were working on preparing a unified final version of the AT, which in the end consisted of 5,640 terms (4,286 originally from the Basle Nomina Anatomica, BNA). Also, each country wanted to have its own nomenclature. In order to accomplish this, each country based their nomenclature on the international AT, and then translated it into their own language. The history of the Polish Anatomical Terminology (PAT) is unique, and follows the events of history. It was first published in 1898, at a time when its neighbours partitioned the territory of Poland. During 150 years, the Polish culture and language was under the Russification and Germanization policy. It is important to note, that even with such difficult circumstances, the PAT was the first national AT in the world. The PAT was a union of the accepted first BNA in Latin and the original Polish anatomical equivalents. This union formed the basis for theoretical and clinical medicine in Poland.
Fayad, Hadi; Pan, Tinsu; Clément, Jean-François; Visvikis, Dimitris
2011-01-01
Purpose Current respiratory motion monitoring devices used for motion synchronization in medical imaging and radiotherapy provide either 1D respiratory signals over a specific region or 3D information based on few external or internal markers. On the other hand, newer technology may offer the potential to monitor the entire patient external surface in real time. The main objective of this study was to assess the motion correlation between such an external patient surface and internal anatomical landmarks motion. Methods Four dimensional Computed Tomography (4D CT) volumes for ten patients were used in this study. Anatomical landmarks were manually selected in the thoracic region across the 4D CT datasets by two experts. The landmarks included normal structures as well as the tumour location. In addition, a distance map representing the entire external patient surface, which corresponds to surfaces acquired by a Time of Flight (ToF) camera or similar devices, was created by segmenting the skin of all 4D CT volumes using a thresholding algorithm. Finally, the correlation between the internal landmarks and external surface motion was evaluated for different regions (placement and size) throughout a patient’s surface. Results Significant variability was observed in the motion of the different parts of the external patient surface. The larger motion magnitude was consistently measured in the central regions of the abdominal and the thoracic areas for the different patient datasets considered. The highest correlation coefficients were observed between the motion of these external surface areas and internal landmarks such as the diaphragm and mediastinum structures as well as the tumour location landmarks (0.8 ± 0.18 and 0.72 ± 0.12 for the abdominal and the thoracic regions respectively). Worse correlation was observed when one considered landmarks not significantly influenced by respiratory motion such as the apex and the sternum. Discussion and conclusions There were large differences in the motion correlation observed considering different regions of interest placed over a patients’ external surface and internal anatomical landmarks. The positioning of current devices used for respiratory motion synchronization may reduce such correlation by averaging the motion over correlated and poorly correlated external regions. The potential of capturing in real-time the motion of the complete external patient surface as well as choosing the area of the surface that correlates best with the internal motion should allow reducing such variability and associated errors in both respiratory motion synchronization and subsequent motion modeling processes. PMID:21815390
Guo, Wenbin; Song, Yan; Liu, Feng; Zhang, Zhikun; Zhang, Jian; Yu, Miaoyu; Liu, Jianrong; Xiao, Changqing; Liu, Guiying; Zhao, Jingping
2015-05-01
Schizophrenia patients and their unaffected siblings share similar brain functional and structural abnormalities. However, no study is engaged to investigate whether and how functional abnormalities are related to structural abnormalities in unaffected siblings. This study was undertaken to examine the association between functional and anatomical abnormalities in unaffected siblings. Forty-six unaffected siblings of schizophrenia patients and 46 age-, sex-, and education-matched healthy controls underwent structural and resting-state functional magnetic resonance imaging scanning. Voxel-based morphometry (VBM), amplitude of low-frequency fluctuation (ALFF) and fractional ALFF (fALFF) were utilized to analyze imaging data. The VBM analysis showed gray matter volume decreases in the fronto-temporal regions (the left middle temporal gyrus and right inferior frontal gyrus, orbital part) and increases in basal ganglia system (the left putamen). Functional abnormalities measured by ALFF and fALFF mainly involved in the fronto-limbic-sensorimotor circuit (decreased ALFF in bilateral middle frontal gyrus and the right middle cingulate gyrus, and decreased fALFF in the right inferior frontal gyrus, orbital part; and increased ALFF in the left fusiform gyrus and left lingual gyrus, and increased fALFF in bilateral calcarine cortex). No significant correlation was found between functional and anatomical abnormalities in the sibling group. A dissociation pattern of brain regions with functional and anatomical abnormalities is observed in unaffected siblings. Our findings suggest that brain functional and anatomical abnormalities might be present independently in unaffected siblings of schizophrenia patients. Copyright © 2014 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.
Anatomic and Histological Investigation of the Anterolateral Capsular Complex in the Fetal Knee.
Sabzevari, Soheil; Rahnemai-Azar, Amir Ata; Albers, Marcio; Linde, Monica; Smolinski, Patrick; Fu, Freddie H
2017-05-01
There is currently disagreement with regard to the presence of a distinct ligament in the anterolateral capsular complex of the knee and its role in the pivot-shift mechanism and rotatory laxity of the knee. To investigate the anatomic and histological properties of the anterolateral capsular complex of the fetal knee to determine whether there exists a distinct ligamentous structure running from the lateral femoral epicondyle inserting into the anterolateral tibia. Descriptive laboratory study. Twenty-one unpaired, fresh fetal lower limbs, gestational age 18 to 22 weeks, were used for anatomic investigation. Two experienced orthopaedic surgeons performed the anatomic dissection using loupes (magnification ×3.5). Attention was focused on the anterolateral and lateral structures of the knee. After the skin and superficial fascia were removed, the iliotibial band was carefully separated from underlying structures. The anterolateral capsule was then examined under internal and external rotation and varus-valgus manual loading and at different knee flexion angles for the presence of any ligamentous structures. Eight additional unpaired, fetal lower limbs, gestational age 11 to 23 weeks, were used for histological analysis. This study was not able to prove the presence of a distinct capsular or extracapsular ligamentous structure in the anterolateral capsular complex area. The presence of the fibular collateral ligament, a distal attachment of the biceps femoris, the entire lateral capsule, the iliotibial band, and the popliteus tendon in the anterolateral and lateral area of the knee was confirmed in all the samples. Histological analysis of the anterolateral capsule revealed a loose, hypocellular connective tissue with less organized collagen fibers compared with ligament and tendinous structures. The main finding of this study was that the presence of a distinct ligamentous structure in the anterolateral complex is not supported from a developmental point of view, while all other anatomic structures were present. The inability to prove the existence of a distinct ligamentous structure, called the anterolateral ligament, in the anterolateral knee capsule may indicate that the other components of the anterolateral complex, such as the lateral capsule, the iliotibial band, and its capsule-osseous layer, are more important for knee rotatory stability.
Standards to support information systems integration in anatomic pathology.
Daniel, Christel; García Rojo, Marcial; Bourquard, Karima; Henin, Dominique; Schrader, Thomas; Della Mea, Vincenzo; Gilbertson, John; Beckwith, Bruce A
2009-11-01
Integrating anatomic pathology information- text and images-into electronic health care records is a key challenge for enhancing clinical information exchange between anatomic pathologists and clinicians. The aim of the Integrating the Healthcare Enterprise (IHE) international initiative is precisely to ensure interoperability of clinical information systems by using existing widespread industry standards such as Digital Imaging and Communication in Medicine (DICOM) and Health Level Seven (HL7). To define standard-based informatics transactions to integrate anatomic pathology information to the Healthcare Enterprise. We used the methodology of the IHE initiative. Working groups from IHE, HL7, and DICOM, with special interest in anatomic pathology, defined consensual technical solutions to provide end-users with improved access to consistent information across multiple information systems. The IHE anatomic pathology technical framework describes a first integration profile, "Anatomic Pathology Workflow," dedicated to the diagnostic process including basic image acquisition and reporting solutions. This integration profile relies on 10 transactions based on HL7 or DICOM standards. A common specimen model was defined to consistently identify and describe specimens in both HL7 and DICOM transactions. The IHE anatomic pathology working group has defined standard-based informatics transactions to support the basic diagnostic workflow in anatomic pathology laboratories. In further stages, the technical framework will be completed to manage whole-slide images and semantically rich structured reports in the diagnostic workflow and to integrate systems used for patient care and those used for research activities (such as tissue bank databases or tissue microarrayers).
Kurabe, Satoshi; Okamoto, Kouichirou; Suzuki, Kiyotaka; Matsuzawa, Hisothi; Watanabe, Masaki; Suzuki, Yuji; Nakada, Tsutomu; Fujii, Yukihiko
2016-01-01
In patients with cerebral infarction, identifying the distribution of infarction and the relevant artery is essential for ascertaining the underlying vascular pathophysiological mechanisms and preventing subsequent stroke. However, visualization of the basal perforating arteries (BPAs) has had limited success, and simultaneous viewing of background anatomical structures has only rarely been attempted in living human brains. Our study aimed at identifying the BPAs with 7T MRI and evaluating their distribution in the subcortical structures, thereby showing the clinical significance of the technique. Twenty healthy subjects and 1 patient with cerebral infarction involving the posterior limb of the internal capsule (ICpost) and thalamus underwent 3-dimensional fast spoiled gradient-echo sequence as time-of-flight magnetic resonance angiography (MRA) at 7T with a submillimeter resolution. The MRA was modified to detect inflow signals from BPAs, while preserving the background anatomical signals. BPA stems and branches in the subcortical structures and their origins were identified on images, using partial maximum intensity projection in 3 dimensions. A branch of the left posterior cerebral artery (PCA) in the patient ran through both the infarcted thalamus and ICpost and was clearly the relevant artery. In 40 intact hemispheres in healthy subjects, 571 stems and 1,421 branches of BPAs were detected in the subcortical structures. No significant differences in the numbers of stems and branches were observed between the intact hemispheres. The numbers deviated even less across subjects. The distribution analysis showed that the subcortical structures of the telencephalon, such as the caudate nucleus, anterior limb of the internal capsule, and lenticular nucleus, were predominantly supplied by BPAs from the anterior circulation. In contrast, the thalamus, belonging to the diencephalon, was mostly fed by BPAs from the posterior circulation. However, compared with other subcortical structures, the ICpost, which marks the anatomical boundary between the telencephalon and the diencephalon, was supplied by BPAs with significantly more diverse origins. These BPAs originated from the internal carotid artery (23.1%), middle cerebral artery (38.5%), PCA (17.3%), and the posterior communicating artery (21.1%). The modified MRI method allowed the detection of the relevant BPA within the infarcted area in the stroke survivor as well as the BPAs in the subcortical structures of living human brains. Based on in vivo BPA distribution analyses, the ICpost is the transitional zone of the anterior and posterior cerebral circulations. © 2016 S. Karger AG, Basel.
Purevsuren, Tserenchimed; Batbaatar, Myagmarbayar; Khuyagbaatar, Batbayar; Kim, Kyungsoo; Kim, Yoon Hyuk
2018-03-12
Biomechanical studies have indicated that the conventional non-anatomic reconstruction techniques for lateral ankle sprain (LAS) tend to restrict subtalar joint motion compared to intact ankle joints. Excessive restriction in subtalar motion may lead to chronic pain, functional difficulties, and development of osteoarthritis. Therefore, various anatomic surgical techniques to reconstruct both the anterior talofibular and calcaneofibular ligaments have been introduced. In this study, ankle joint stability was evaluated using multibody computational ankle joint model to assess two new anatomic reconstruction and three popular non-anatomic reconstruction techniques. An LAS injury, three popular non-anatomic reconstruction models (Watson-Jones, Evans, and Chrisman-Snook), and two common types of anatomic reconstruction models were developed based on the intact ankle model. The stability of ankle in both talocrural and subtalar joint were evaluated under anterior drawer test (150 N anterior force), inversion test (3 Nm inversion moment), internal rotational test (3 Nm internal rotation moment), and the combined loading test (9 Nm inversion and internal moment as well as 1800 N compressive force). Our overall results show that the two anatomic reconstruction techniques were superior to the non-anatomic reconstruction techniques in stabilizing both talocrural and subtalar joints. Restricted subtalar joint motion, which mainly observed in Watson-Jones and Chrisman-Snook techniques, was not shown in the anatomical reconstructions. Evans technique was beneficial for subtalar joint as it does not restrict subtalar motion, though Evans technique was insufficient for restoring talocrural joint inversion. The anatomical reconstruction techniques best recovered ankle stability.
Saccol, Michele Forgiarini; Almeida, Gabriel Peixoto Leão; de Souza, Vivian Lima
2016-08-01
Beach volleyball is a sport with a high demand of shoulder structures that may lead to adaptations in range of motion (ROM) and strength like in other overhead sports. Despite of these possible alterations, no study evaluated the shoulder adaptations in young beach volleyball athletes. The aim of this study was to compare the bilateral ROM and rotation strength in the shoulders of young beach volleyball players. Goniometric passive shoulder ROM of motion and isometric rotational strength were evaluated in 19 male and 14 female asymptomatic athletes. External and internal ROM, total rotation motion, glenohumeral internal rotation deficit (GIRD), external rotation and internal rotation strength, bilateral deficits and external rotation to internal rotation ratio were measured. The statistical analysis included paired Student's t-test and analysis of variance with repeated measures. Significantly lower dominant GIRD was found in both groups (p<0.05), but only 6 athletes presented pathological GIRD. For strength variables, no significant differences for external or internal rotation were evident. Young beach volleyball athletes present symmetric rotational strength and shoulder ROM rotational adaptations that can be considered as anatomical. These results indicate that young practitioners of beach volleyball are subject to moderate adaptations compared to those reported for other overhead sports. Copyright © 2015 Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Kim, M. K.; Choi, J-W; Jeon, J-H; Franceschi, V. R.; Davin, L. B.; Lewis, N. G.
2002-01-01
A simple counter-staining procedure has been developed for comparative beta-glucuronidase (GUS) expression and anatomical localization in transgenic herbaceous arabidopsis and tobacco. This protocol provides good anatomical visualization for monitoring chimeric gene expression at both the organ and tissue levels. It can be used with different histochemical stains and can be extended to the study of woody species. The specimens are paraffin-embedded, the block is trimmed to reveal internal structure, safranin-O staining solution is briefly applied to the surface of the block, then washed off and, after drying, a drop of immersion oil is placed on the stained surface for subsequent photographic work. This gives tissue counter-staining with good structural preservation without loss of GUS staining product; moreover, sample observation is rapid and efficient compared to existing procedures.
Wagenlehner, Florian Martin Erich; Fröhlich, Oliver; Bschleipfer, Thomas; Weidner, Wolfgang; Perletti, Gianpaolo
2014-06-01
Anatomical damage to pelvic floor structures may cause multiple symptoms. The Integral Theory System Questionnaire (ITSQ) is a holistic questionnaire that uses symptoms to help locate damage in specific connective tissue structures as a guide to reconstructive surgery. It is based on the integral theory, which states that pelvic floor symptoms and prolapse are both caused by lax suspensory ligaments. The aim of the present study was to psychometrically validate the ITSQ. Established psychometric properties including validity, reliability, and responsiveness were considered for evaluation. Criterion validity was assessed in a cohort of 110 women with pelvic floor dysfunctions by analyzing the correlation of questionnaire responses with objective clinical data. Test-retest was performed with questionnaires from 47 patients. Cronbach's alpha and "split-half" reliability coefficients were calculated for inner consistency analysis. Psychometric properties of ITSQ were comparable to the ones of previously validated Pelvic Floor Questionnaires. Face validity and content validity were approved by an expert group of the International Collaboration of Pelvic Floor surgeons. Convergent validity assessed using Bayesian method was at least as accurate as the expert assessment of anatomical defects. Objective data measurement in patients demonstrated significant correlations with ITSQ domains fulfilling criterion validity. Internal consistency values ranked from 0.85 to 0.89 in different scenarios. The ITSQ proofed accurate and is able to serve as a holistic Pelvic Floor Questionnaire directing symptoms to site-specific pelvic floor reconstructive surgery.
From Vesalius to Virtual Reality: How Embodied Cognition Facilitates the Visualization of Anatomy
ERIC Educational Resources Information Center
Jang, Susan
2010-01-01
This study examines the facilitative effects of embodiment of a complex internal anatomical structure through three-dimensional ("3-D") interactivity in a virtual reality ("VR") program. Since Shepard and Metzler's influential 1971 study, it has been known that 3-D objects (e.g., multiple-armed cube or external body parts) are visually and…
[Anatomical rationale for lingual nerve injury prevention during mandibular block].
Semkin, V A; Dydikin, S S; Kuzin, A V; Sogacheva, V V
2015-01-01
The topographic and anatomical study of lingual nerve structural features was done. It was revealed that during mandibular anesthesia possible lingual nerve injury can occur if puncture needle is lower than 1 cm. of molars occlusal surface level. The position of the lingual nerve varies withmandible movements. At the maximum open mouth lingual nerve is not mobile and is pressed against the inner surface of the mandibular ramus by the medial pterygoid muscle and the temporal muscle tendon. When closing the mouth to 1.25±0.2 cmfrom the physiological maximum, lingual nerve is displaced posteriorly from the internal oblique line of the mandible and gets mobile. On the basis of topographic and anatomic features of the lingual nervestructure the authors recommend the re-do of inferior alveolar nerve block, a semi-closed mouth position or the use the "high block techniques" (Torus anesthesia, Gow-Gates, Vazirani-Akinozi).
Li, Baichuan
2014-05-01
To explore the effectiveness of open reduction and internal fixation through anterior and posterior approaches in treatment of open Tile type C pelvic fractures at early stage. Between January 2009 and April 2012, 12 patients with open Tile C pelvic fractures were treated. There were 7 males and 5 females, aged 6-53 years (median, 31 years). Of 12 cases, 4 were classified as Tile type C1, 6 as Tile type C2, and 2 as Tile type C3; 5 were rated as Gustilo type II and 7 as Gustilo type III. The injury severity score was 18-57 (mean, 37.2). The interval of injury and admission ranged from 15 minutes to 3 days (median, 50 minutes). The debridement and external fixation were performed at first stage; then open reduction and internal fixation were used through anterior approach (reconstruction plate) and posterior approach (cannulated lag screws). The vacuum sealing drainage was performed during treatment until the wounds healed. Delayed healing of incison was obtained in 12 cases because of wound infection. Anatomical reduction or approximate anatomical reduction was achieved in all 12 cases. The patients were followed up 3-39 months (median, 18 months). No loosening of internal fixation or fracture displacement was observed during follow-up. The fracture healing time was 7-13 weeks (mean, 9.7 weeks). At last follow-up, according to the Matta standard, the outcome was excellent in 10 cases and good in 2 cases; according to Majeed score, the results were excellent in 9 cases, good in 1, and poor in 2. Early internal fixation operation of open Tile type C pelvic fractures can effectively restore the pelvic anatomical structure and stability, reduce the complication, and achieve satisfactory effectiveness.
Anatomy of the Cervicomental Region: Insights From an Anatomy Laboratory and Roundtable Discussion.
Kenkel, Jeffrey M; Jones, Derek H; Fagien, Steven; Glaser, Dee Anna; Monheit, Gary D; Stauffer, Karen; Sykes, Jonathan M
2016-11-01
In 2015, ATX-101 (deoxycholic acid injection; Kybella in the United States and Belkyra in Canada; Kythera Biopharmaceuticals, Inc., Westlake Village, CA [an affiliate of Allergan plc, Dublin, Ireland]) was approved as a first-in-class injectable drug for reduction of submental fat. Use of a pharmacologic/injectable therapy within the submental region requires a thorough understanding of cervicomental anatomy to ensure proper injection technique and safe administration. To this end, an anatomy laboratory was conducted to review key external landmarks and important internal anatomic structures that characterize the lower face and anterior neck. External landmarks that define the boundaries of the cervicomental and submental regions were identified including the inferior mandibular border, the anterior border of the sternocleidomastoid muscle, the antegonial notch, the submental crease, the thyroid notch, and the hyoid bone. Relevant internal anatomic structures, including preplatysmal submental fat (the target tissue for ATX-101) and the platysma muscle as well as critical neurovascular and glandular tissues were revealed by dissection. Of particular interest was the marginal mandibular branch of the facial nerve because it typically courses along the inferior mandibular border near the proposed treatment area for ATX-101.
Samosky, Joseph T; Baillargeon, Emma; Bregman, Russell; Brown, Andrew; Chaya, Amy; Enders, Leah; Nelson, Douglas A; Robinson, Evan; Sukits, Alison L; Weaver, Robert A
2011-01-01
We have developed a prototype of a real-time, interactive projective overlay (IPO) system that creates augmented reality display of a medical procedure directly on the surface of a full-body mannequin human simulator. These images approximate the appearance of both anatomic structures and instrument activity occurring within the body. The key innovation of the current work is sensing the position and motion of an actual device (such as an endotracheal tube) inserted into the mannequin and using the sensed position to control projected video images portraying the internal appearance of the same devices and relevant anatomic structures. The images are projected in correct registration onto the surface of the simulated body. As an initial practical prototype to test this technique we have developed a system permitting real-time visualization of the intra-airway position of an endotracheal tube during simulated intubation training.
Zeng, Bowei; Meng, Fanle; Ding, Hui; Wang, Guangzhi
2017-08-01
Using existing stereoelectroencephalography (SEEG) electrode implantation surgical robot systems, it is difficult to intuitively validate registration accuracy and display the electrode entry points (EPs) and the anatomical structure around the electrode trajectories in the patient space to the surgeon. This paper proposes a prototype system that can realize video see-through augmented reality (VAR) and spatial augmented reality (SAR) for SEEG implantation. The system helps the surgeon quickly and intuitively confirm the registration accuracy, locate EPs and visualize the internal anatomical structure in the image space and patient space. We designed and developed a projector-camera system (PCS) attached to the distal flange of a robot arm. First, system calibration is performed. Second, the PCS is used to obtain the point clouds of the surface of the patient's head, which are utilized for patient-to-image registration. Finally, VAR is produced by merging the real-time video of the patient and the preoperative three-dimensional (3D) operational planning model. In addition, SAR is implemented by projecting the planning electrode trajectories and local anatomical structure onto the patient's scalp. The error of registration, the electrode EPs and the target points are evaluated on a phantom. The fiducial registration error is [Formula: see text] mm (max 1.22 mm), and the target registration error is [Formula: see text] mm (max 1.18 mm). The projection overlay error is [Formula: see text] mm, and the TP error after the pre-warped projection is [Formula: see text] mm. The TP error caused by a surgeon's viewpoint deviation is also evaluated. The presented system can help surgeons quickly verify registration accuracy during SEEG procedures and can provide accurate EP locations and internal structural information to the surgeon. With more intuitive surgical information, the surgeon may have more confidence and be able to perform surgeries with better outcomes.
NASA Astrophysics Data System (ADS)
Brecht, Hans P.; Ivanov, Vassili; Dumani, Diego S.; Emelianov, Stanislav Y.; Anastasio, Mark A.; Ermilov, Sergey A.
2018-03-01
We have developed a preclinical 3D imaging instrument integrating photoacoustic tomography and fluorescence (PAFT) addressing known deficiencies in sensitivity and spatial resolution of the individual imaging components. PAFT is designed for simultaneous acquisition of photoacoustic and fluorescence orthogonal projections at each rotational position of a biological object, enabling direct registration of the two imaging modalities. Orthogonal photoacoustic projections are utilized to reconstruct large (21 cm3 ) volumes showing vascularized anatomical structures and regions of induced optical contrast with spatial resolution exceeding 100 µm. The major advantage of orthogonal fluorescence projections is significant reduction of background noise associated with transmitted or backscattered photons. The fluorescence imaging component of PAFT is used to boost detection sensitivity by providing low-resolution spatial constraint for the fluorescent biomarkers. PAFT performance characteristics were assessed by imaging optical and fluorescent contrast agents in tissue mimicking phantoms and in vivo. The proposed PAFT technology will enable functional and molecular volumetric imaging using fluorescent biomarkers, nanoparticles, and other photosensitive constructs mapped with high fidelity over robust anatomical structures, such as skin, central and peripheral vasculature, and internal organs.
Duan, Da-Peng; You, Wu-Lin; Ji, Le; Zhang, Yong-Tao; Dang, Xiao-Qian; Wang, Kun-Zheng
2014-01-01
To analyze the effects of three surgical operations in the treatment of Pilon fracture of Rüedi-Allgower type III, and put forward the best therapeutic method. The clinical data of 33 patients with Pilon fracture who received surgical operations (plaster immobilization group, 10 cases; distal tibia anatomical plate group, 11 cases; external fixation with limited internal fixation group, 12 cases) from October 2009 to January 2012 were analyzed. There were 5 males and 5 females, ranging in age from 24 to 61 years in the plaster immobilization group. There were 7 males and 4 females, ranging in age from 21 to 64 years in the distal tibia anatomical plate group. There were 7 males and 5 females, ranging in age from 23 to 67 years in the external fixation with limited internal fixation group. The Ankle X-ray of Pilon fracture after operation, ankle score, early and late complications were collected. Bourne system was used to evaluate ankle joint function. After 8 months to 3 years follow-up, it was found that three kinds of treatment had significant differences in the outcomes and complications (P < 0.05): the external fixation with limited internal fixation group got the best results. The number of anatomic reduction cases in the external fixation with limited internal fixation group (7 cases) and the distal tibia anatomical plate group (8 cases) was more than the plaster immobilization group (2 cases). According to the ankle score, 8 patients got an excellent result, 3 good and 1 poor in the limited internal fixation group ,which was better than those of distal tibia anatomical plate group (5 excellent, 4 good and 2 poor) and the plaster immobilization group (3 excellent, 4 good and 3 poor). The number of early and late complications in the external fixation with limited internal fixation group was more than those in the plaster immobilization group and the distal tibia anatomical plate group (P< 0.05). Treatment of external fixation with limited internal fixation in the treatment of Pilon fracture of Rüedi-Allgower type III is effective and safe.
Ostrovsky, Andrew N; Grischenko, Andrei V; Taylor, Paul D; Bock, Phil; Mawatari, Shunsuke F
2006-06-01
The anatomical structure of internal sacs for embryonic incubation was studied using SEM and light microscopy in three cheilostome bryozoans-Nematoflustra flagellata (Waters,1904), Gontarella sp., and Biflustra perfragilis MacGillivray, 1881. In all these species the brood sac is located in the distal half of the maternal (egg-producing) autozooid, being a conspicuous invagination of the body wall. It consists of the main chamber and a passage (neck) to the outside that opens independently of the introvert. There are several groups of muscles attached to the thin walls of the brood sac and possibly expanding it during oviposition and larval release. Polypide recycling begins after oviposition in Gontarella sp., and the new polypide bud is formed by the beginning of incubation. Similarly, polypides in brooding zooids degenerate in N. flagellata and, sometimes, in B. perfragilis. In the evolution of brood chambers in the Cheilostomata, such internal sacs for embryonic incubation are considered a final step, being the result of immersion of the brooding cavity into the maternal zooid and reduction of the protecting fold (ooecium). Possible reasons for this transformation are discussed, and the hypothesis of Santagata and Banta (Santagata and Banta1996) that internal brooding evolved prior to incubation in ovicells is rejected. J. Morphol. (c) 2006 Wiley-Liss, Inc.
Nitri, Marco; Rasmussen, Matthew T; Williams, Brady T; Moulton, Samuel G; Cruz, Raphael Serra; Dornan, Grant J; Goldsmith, Mary T; LaPrade, Robert F
2016-03-01
Recent biomechanical studies have demonstrated that an extra-articular lateral knee structure, most recently referred to as the anterolateral ligament (ALL), contributes to overall rotational stability of the knee. However, the effect of anatomic ALL reconstruction (ALLR) in the setting of anterior cruciate ligament (ACL) reconstruction (ACLR) has not been biomechanically investigated or validated. The purpose of this study was to investigate the biomechanical function of anatomic ALLR in the setting of a combined ACL and ALL injury. More specifically, this investigation focused on the effect of ALLR on resultant rotatory stability when performed in combination with concomitant ACLR. It was hypothesized that ALLR would significantly reduce internal rotation and axial plane translation laxity during a simulated pivot-shift test compared with isolated ACLR. Controlled laboratory study. Ten fresh-frozen cadaveric knees were evaluated with a 6 degrees of freedom robotic system. Knee kinematics were evaluated with simulated clinical examinations including a simulated pivot-shift test consisting of coupled 10-N·m valgus and 5-N·m internal rotation torques, a 5-N·m internal rotation torque, and an 88-N anterior tibial load. Kinematic differences between ACLR with an intact ALL, ACLR with ALLR, and ACLR with a deficient ALL were compared with the intact state. Single-bundle ACLR tunnels and ALLR tunnels were placed anatomically according to previous quantitative anatomic attachment descriptions. Combined anatomic ALLR and ACLR significantly improved the rotatory stability of the knee compared with isolated ACLR in the face of a concurrent ALL deficiency. During a simulated pivot-shift test, ALLR significantly reduced internal rotation and axial plane tibial translation when compared with ACLR with an ALL deficiency. Isolated ACLR for the treatment of a combined ACL and ALL injury was not able to restore stability of the knee, resulting in a significant increase in residual internal rotation laxity. ALLR did not affect anterior tibial translation; no significant differences were observed between the varying ALL conditions with ACLR except between ACLR with an intact ALL and ACLR with a deficient ALL at 0° of flexion. In the face of a combined ACL and ALL deficiency, concurrent ACLR and ALLR significantly improved the rotatory stability of the knee compared with solely reconstructing the ACL. Significant increases in residual internal rotation and laxity during the pivot-shift test may exist in both acute and chronic settings of an ACL deficiency and in patients treated with isolated ACLR for a combined ACL and ALL deficiency. For this subset of patients, surgical treatment of the ALL, in addition to ACLR, should be considered to restore knee stability. © 2016 The Author(s).
The mandibular canal of the "old man" of Cro-Magnon: anatomical-radiological study.
Goudot, Patrick
2002-08-01
The radiological study of the 'old man' of Cro-Magnon mandible complements the one published about the mandibular canal of the "Neanderthal Man" of La Chapelle-aux-Saints with which it is compared. The purpose of this study was to explore the internal structure of this famous fossil. The mandible of the "old man" of Cro-Magnon (22,000 BC) was studied with panoramic radiography and CT scanning. The mandibular canal is similar to that of modern man. The images obtained are of a good quality and can be used for analysis of the internal structures of bony fossils. The mandible of the "old man" of Cro-Magnon belongs to the species Homo sapiens sapiens. Copyright 2002 Published by Elsevier Science Ltd.
Impact of Soft Tissue Heterogeneity on Augmented Reality for Liver Surgery.
Haouchine, Nazim; Cotin, Stephane; Peterlik, Igor; Dequidt, Jeremie; Lopez, Mario Sanz; Kerrien, Erwan; Berger, Marie-Odile
2015-05-01
This paper presents a method for real-time augmented reality of internal liver structures during minimally invasive hepatic surgery. Vessels and tumors computed from pre-operative CT scans can be overlaid onto the laparoscopic view for surgery guidance. Compared to current methods, our method is able to locate the in-depth positions of the tumors based on partial three-dimensional liver tissue motion using a real-time biomechanical model. This model permits to properly handle the motion of internal structures even in the case of anisotropic or heterogeneous tissues, as it is the case for the liver and many anatomical structures. Experimentations conducted on phantom liver permits to measure the accuracy of the augmentation while real-time augmentation on in vivo human liver during real surgery shows the benefits of such an approach for minimally invasive surgery.
Labeling for Big Data in radiation oncology: The Radiation Oncology Structures ontology.
Bibault, Jean-Emmanuel; Zapletal, Eric; Rance, Bastien; Giraud, Philippe; Burgun, Anita
2018-01-01
Leveraging Electronic Health Records (EHR) and Oncology Information Systems (OIS) has great potential to generate hypotheses for cancer treatment, since they directly provide medical data on a large scale. In order to gather a significant amount of patients with a high level of clinical details, multicenter studies are necessary. A challenge in creating high quality Big Data studies involving several treatment centers is the lack of semantic interoperability between data sources. We present the ontology we developed to address this issue. Radiation Oncology anatomical and target volumes were categorized in anatomical and treatment planning classes. International delineation guidelines specific to radiation oncology were used for lymph nodes areas and target volumes. Hierarchical classes were created to generate The Radiation Oncology Structures (ROS) Ontology. The ROS was then applied to the data from our institution. Four hundred and seventeen classes were created with a maximum of 14 children classes (average = 5). The ontology was then converted into a Web Ontology Language (.owl) format and made available online on Bioportal and GitHub under an Apache 2.0 License. We extracted all structures delineated in our department since the opening in 2001. 20,758 structures were exported from our "record-and-verify" system, demonstrating a significant heterogeneity within a single center. All structures were matched to the ROS ontology before integration into our clinical data warehouse (CDW). In this study we describe a new ontology, specific to radiation oncology, that reports all anatomical and treatment planning structures that can be delineated. This ontology will be used to integrate dosimetric data in the Assistance Publique-Hôpitaux de Paris CDW that stores data from 6.5 million patients (as of February 2017).
Labeling for Big Data in radiation oncology: The Radiation Oncology Structures ontology
Zapletal, Eric; Rance, Bastien; Giraud, Philippe; Burgun, Anita
2018-01-01
Purpose Leveraging Electronic Health Records (EHR) and Oncology Information Systems (OIS) has great potential to generate hypotheses for cancer treatment, since they directly provide medical data on a large scale. In order to gather a significant amount of patients with a high level of clinical details, multicenter studies are necessary. A challenge in creating high quality Big Data studies involving several treatment centers is the lack of semantic interoperability between data sources. We present the ontology we developed to address this issue. Methods Radiation Oncology anatomical and target volumes were categorized in anatomical and treatment planning classes. International delineation guidelines specific to radiation oncology were used for lymph nodes areas and target volumes. Hierarchical classes were created to generate The Radiation Oncology Structures (ROS) Ontology. The ROS was then applied to the data from our institution. Results Four hundred and seventeen classes were created with a maximum of 14 children classes (average = 5). The ontology was then converted into a Web Ontology Language (.owl) format and made available online on Bioportal and GitHub under an Apache 2.0 License. We extracted all structures delineated in our department since the opening in 2001. 20,758 structures were exported from our “record-and-verify” system, demonstrating a significant heterogeneity within a single center. All structures were matched to the ROS ontology before integration into our clinical data warehouse (CDW). Conclusion In this study we describe a new ontology, specific to radiation oncology, that reports all anatomical and treatment planning structures that can be delineated. This ontology will be used to integrate dosimetric data in the Assistance Publique—Hôpitaux de Paris CDW that stores data from 6.5 million patients (as of February 2017). PMID:29351341
Izadpanah, Kaywan; Jaeger, Martin; Ogon, Peter; Südkamp, Norbert P.; Maier, Dirk
2015-01-01
An arthroscopically assisted technique for the treatment of acute acromioclavicular joint dislocations is presented. This pathology-based procedure aims to achieve anatomic healing of both the acromioclavicular ligament complex (ACLC) and the coracoclavicular ligaments. First, the acromioclavicular joint is reduced anatomically under macroscopic and radiologic control and temporarily transfixed with a K-wire. A single-channel technique using 2 suture tapes provides secure coracoclavicular stabilization. The key step of the procedure consists of the anatomic repair of the ACLC (“AC-Reco”). Basically, we have observed 4 patterns of injury: clavicular-sided, acromial-sided, oblique, and midportion tears. Direct and/or transosseous ACLC repair is performed accordingly. Then, an X-configured acromioclavicular suture tape cerclage (“AC-Bridge”) is applied under arthroscopic assistance to limit horizontal clavicular translation to a physiological extent. The AC-Bridge follows the principle of internal bracing and protects healing of the ACLC repair. The AC-Bridge is tightened on top of the repair, creating an additional suture-bridge effect and promoting anatomic ACLC healing. We refer to this combined technique of anatomic ACLC repair and protective internal bracing as the “AC-RecoBridge.” A detailed stepwise description of the surgical technique, including indications, technical pearls and pitfalls, and potential complications, is given. PMID:26052493
Galen and his anatomic eponym: vein of Galen.
Ustun, Cagatay
2004-09-01
Galen or Galenus was born at Pergamum (now Bergama in Turkey) in 129 A.D., and died in the year 200 A.D. He was a 2nd century Greek philosopher-physician who switched to the medical profession after his father dreamt of this calling for his son. Galen's training and experiences brought him to Alexandria and Rome and he rose quickly to fame with public demonstrations of anatomical and surgical skills. He became physician to emperor Marcus Aurelius and the emperor's ambitious son, Commodus. He wrote prodigiously and was able to preserve his medical research in 22 volumes of printed text, representing half of all Greek medical literature that is available to us today. The structures, the great cerebral vein and the communicating branch of the internal laryngeal nerve, bear his eponym.
A topological multilayer model of the human body.
Barbeito, Antonio; Painho, Marco; Cabral, Pedro; O'Neill, João
2015-11-04
Geographical information systems deal with spatial databases in which topological models are described with alphanumeric information. Its graphical interfaces implement the multilayer concept and provide powerful interaction tools. In this study, we apply these concepts to the human body creating a representation that would allow an interactive, precise, and detailed anatomical study. A vector surface component of the human body is built using a three-dimensional (3-D) reconstruction methodology. This multilayer concept is implemented by associating raster components with the corresponding vector surfaces, which include neighbourhood topology enabling spatial analysis. A root mean square error of 0.18 mm validated the three-dimensional reconstruction technique of internal anatomical structures. The expansion of the identification and the development of a neighbourhood analysis function are the new tools provided in this model.
Inverted distal clavicle anatomic locking plate for displaced medial clavicle fracture.
Wang, Yong; Jiang, Jiannong; Dou, Bin; Zhang, Panjun
2015-09-01
Fractures of the medial clavicle are rare injuries. Recently, open reduction and internal fixation has been recommended for displaced medial clavicle fractures in order to prevent non-union and dysfunction. Because of the rarity of this injury, the optimal fixation device has not yet been established. In this report, we describe a case of a 40-year-old male patient who sustained a significantly displaced medial clavicle fracture treated by open reduction and internal fixation using an inverted distal clavicle anatomic locking plate. At the 12 months follow-up, the patient recovered well, had returned to pre-injury job, and was quite satisfied with the outcome. Internal fixation of medial clavicle fracture using an inverted distal clavicle anatomic locking plate of the ipsilateral side appears to be a good treatment option.
Different methods for anatomical targeting.
Iacopino, D G; Conti, A; Angileri, F F; Tomasello, F
2003-03-01
Several procedures are used in the different neurosurgical centers in order to perform stereotactic surgery for movement disorders. At the moment no procedure can really be considered superior to the other. We contribute with our experience of targeting method. Ten patients were selected, in accordance to the guidelines for the treatment of Parkinson disease, and operated by several methods including pallidotomy, bilateral insertion of chronic deep brain electrodes within the internal pallidum and in the subthalamic nucleus (18 procedures). in each patient an MR scan was performed the day before surgery. Scans were performed axially parallel to the intercommissural line. The operating day a contrast CT scan was performed under stereotactic conditions. after digitalization of the MRI images, it was possible to visualize the surgical target and to relate it to parenchimal and vascular anatomic structures readable at the CT examination. The CT scan obtained was confronted with the MR previously performed, the geometrical relation between the different parenchimal and vascular structures and the selected targets were obtained. Stereotactic coordinates were obtained on the CT examination. It was possible to calculate the position of the subthalamic nucleus and of the internal pallidum on the CT scan, not only relating to the intercommissural line, but considering also the neurovascular structures displayed both on the MRI and the CT scans. The technique that our group presents consist in an integration between information derived from the CT and the MR techniques, so that we can benefit from the advantages of both methods and overcome the disadvantages.
Wang, Yu-Tzu; Huang, Shao-Fu; Fang, Yu-Ting; Huang, Shou-Chieh; Cheng, Hwei-Fang; Chen, Chih-Hao; Wang, Po-Fang; Lin, Chun-Li
2018-01-01
This study performs a structural optimization of anatomical thin titanium mesh (ATTM) plate and optimal designed ATTM plate fabricated using additive manufacturing (AM) to verify its stabilization under fatigue testing. Finite element (FE) analysis was used to simulate the structural bending resistance of a regular ATTM plate. The Taguchi method was employed to identify the significance of each design factor in controlling the deflection and determine an optimal combination of designed factors. The optimal designed ATTM plate with patient-matched facial contour was fabricated using AM and applied to a ZMC comminuted fracture to evaluate the resting maxillary micromotion/strain under fatigue testing. The Taguchi analysis found that the ATTM plate required a designed internal hole distance to be 0.9 mm, internal hole diameter to be 1 mm, plate thickness to be 0.8 mm, and plate height to be 10 mm. The designed plate thickness factor primarily dominated the bending resistance up to 78% importance. The averaged micromotion (displacement) and strain of the maxillary bone showed that ZMC fracture fixation using the miniplate was significantly higher than those using the AM optimal designed ATTM plate. This study concluded that the optimal designed ATTM plate with enough strength to resist the bending effect can be obtained by combining FE and Taguchi analyses. The optimal designed ATTM plate with patient-matched facial contour fabricated using AM provides superior stabilization for ZMC comminuted fractured bone segments.
Reichel, Lee M; MacCormick, Lauren M; Dugarte, Anthony J; Rizkala, Amir R; Graves, Sara C; Cole, Peter A
2018-02-01
Anterior external fixation for pelvic ring fractures has shown to effectively improve stability and reduce mortality. However, these fixators can be associated with substantial morbidity such as pin tract infection, premature loss of fixation, and decreased quality of life in patients. Recently, two new methods of subcutaneous anterior pelvic internal fixation have been developed; the INFIX and the Pelvic Bridge. These methods have the purported advantages of lower wound complications, less surgical site pain, and improved quality of life. We sought to investigate the measured distances to critical anatomic structures, as well as the qualitative and topographic differences notable during implantation of both devices in the same cadaveric specimen. The Pelvic Bridge and INFIX were implanted in eleven fresh cadavers. Distances were then measured to: the superficial inguinal ring, round ligament, spermatic cord, lateral femoral cutaneous nerve (LFCN), femoral nerve, femoral artery, and femoral vein. Observations regarding implantation and topography were also recorded. The INFIX had greater measured distances from all structures except for the LFCN, in which its proximity placed this structure at risk. Neither device appears to put other critical structures at risk in the supine position. Significant implantation and topographic differences exist between the devices. The INFIX application lacked "safety margins" concerning the LFCN in 10/11 (90.9%) specimens, while Pelvic Bridge placement lacked "safety margins" with regard to the right superficial ring (1/11, 9%) and the right spermatic cord (1/11, 9%). Both the Pelvic Bridge and INFIX lie at safe distances from most critical pelvic structures in the supine position, though INFIX application places the LFCN at risk. Copyright © 2017 Elsevier Ltd. All rights reserved.
Axial and radial water transport and internal water storage in tropical forest canopy trees.
Shelley A. James; Frederick C. Meinzer; Guillermo Goldstein; David Woodruff; Timothy Jones; Teresa Restom; Monica Mejia; Michael Clearwater; Paula Campanello
2003-01-01
Heat and stable isotope tracers were used to study axial and radial water transport in relation to sapwood anatomical characteristics and internal water storage in four canopy tree species of a seasonally dry tropical forest in Panama. Anatomical characteristics of the wood and radial profiles of sap flow were measured at the base, upper trunk, and crown of a single...
Femoral anatomical frame: assessment of various definitions.
Della Croce, U; Camomilla, V; Leardini, A; Cappozzo, A
2003-06-01
The reliability of the estimate of joint kinematic variables and the relevant functional interpretation are affected by the uncertainty with which bony anatomical landmarks and underlying bony segment anatomical frames are determined. When a stereo-photogrammetric system is used for in vivo studies, minimising and compensating for this uncertainty is crucial. This paper deals with the propagation of the errors associated with the location of both internal and palpable femoral anatomical landmarks to the estimation of the orientation of the femoral anatomical frame and to the knee joint angles during movement. Given eight anatomical landmarks, and the precision with which they can be identified experimentally, 12 different rules were defined for the construction of the anatomical frame and submitted to comparative assessment. Results showed that using more than three landmarks allows for more repeatable anatomical frame orientation and knee joint kinematics estimation. Novel rules are proposed that use optimization algorithms. On the average, the femoral frame orientation dispersion had a standard deviation of 2, 2.5 and 1.5 degrees for the frontal, transverse, and sagittal plane, respectively. However, a proper choice of the relevant construction rule allowed for a reduction of these inaccuracies in selected planes to 1 degrees rms. The dispersion of the knee adduction-abduction and internal-external rotation angles could also be limited to 1 degrees rms irrespective of the flexion angle value.
[Project HRANAFINA--Croatian anatomical and physiological terminology].
Vodanović, Marin
2012-01-01
HRANAFINA--Croatian Anatomical and Physiological Terminology is a project of the University of Zagreb School of Dental Medicine funded by the Croatian Science Foundation. It is performed in cooperation with other Croatian universities with medical schools. This project has a two-pronged aim: firstly, building of Croatian anatomical and physiological terminology and secondly, Croatian anatomical and physiological terminology usage popularization between health professionals, medical students, scientists and translators. Internationally recognized experts from Croatian universities with medical faculties and linguistics experts are involved in the project. All project activities are coordinated in agreement with the National Coordinator for Development of Croatian Professional Terminology. The project enhances Croatian professional terminology and Croatian language in general, increases competitiveness of Croatian scientists on international level and facilitates the involvement of Croatian scientists, health care providers and medical students in European projects.
Reproducing the internal and external anatomy of fossil bones: Two new automatic digital tools.
Profico, Antonio; Schlager, Stefan; Valoriani, Veronica; Buzi, Costantino; Melchionna, Marina; Veneziano, Alessio; Raia, Pasquale; Moggi-Cecchi, Jacopo; Manzi, Giorgio
2018-04-21
We present two new automatic tools, developed under the R environment, to reproduce the internal and external structures of bony elements. The first method, Computer-Aided Laser Scanner Emulator (CA-LSE), provides the reconstruction of the external portions of a 3D mesh by simulating the action of a laser scanner. The second method, Automatic Segmentation Tool for 3D objects (AST-3D), performs the digital reconstruction of anatomical cavities. We present the application of CA-LSE and AST-3D methods to different anatomical remains, highly variable in terms of shape, size and structure: a modern human skull, a malleus bone, and a Neanderthal deciduous tooth. Both methods are developed in the R environment and embedded in the packages "Arothron" and "Morpho," where both the codes and the data are fully available. The application of CA-LSE and AST-3D allows the isolation and manipulation of the internal and external components of the 3D virtual representation of complex bony elements. In particular, we present the output of the four case studies: a complete modern human endocast and the right maxillary sinus, the dental pulp of the Neanderthal tooth and the inner network of blood vessels of the malleus. Both methods demonstrated to be much faster, cheaper, and more accurate than other conventional approaches. The tools we presented are available as add-ons in existing software within the R platform. Because of ease of application, and unrestrained availability of the methods proposed, these tools can be widely used by paleoanthropologists, paleontologists and anatomists. © 2018 Wiley Periodicals, Inc.
[Graphic reconstruction of anatomic surfaces].
Ciobanu, O
2004-01-01
The paper deals with the graphic reconstruction of anatomic surfaces in a virtual 3D setting. Scanning technologies and soft provides a greater flexibility in the digitization of surfaces and a higher resolution and accuracy. An alternative cheap method for the reconstruction of 3D anatomic surfaces is presented in connection with some studies and international projects developed by Medical Design research team.
Technical report on semiautomatic segmentation using the Adobe Photoshop.
Park, Jin Seo; Chung, Min Suk; Hwang, Sung Bae; Lee, Yong Sook; Har, Dong-Hwan
2005-12-01
The purpose of this research is to enable users to semiautomatically segment the anatomical structures in magnetic resonance images (MRIs), computerized tomographs (CTs), and other medical images on a personal computer. The segmented images are used for making 3D images, which are helpful to medical education and research. To achieve this purpose, the following trials were performed. The entire body of a volunteer was scanned to make 557 MRIs. On Adobe Photoshop, contours of 19 anatomical structures in the MRIs were semiautomatically drawn using MAGNETIC LASSO TOOL and manually corrected using either LASSO TOOL or DIRECT SELECTION TOOL to make 557 segmented images. In a similar manner, 13 anatomical structures in 8,590 anatomical images were segmented. Proper segmentation was verified by making 3D images from the segmented images. Semiautomatic segmentation using Adobe Photoshop is expected to be widely used for segmentation of anatomical structures in various medical images.
Greek language: analysis of the cardiologic anatomical etymology: past and present.
Bezas, Georges; Werneck, Alexandre Lins
2012-01-01
The Greek language, the root of most Latin anatomical terms, is deeply present in the Anatomical Terminology. Many studies seek to analyze etymologically the terms stemming from the Greek words. In most of these studies, the terms appear defined according to the etymological understanding of the respective authors at the time of its creation. Therefore, it is possible that the terms currently used are not consistent with its origin in ancient Greek words. We selected cardiologic anatomical terms derived from Greek words, which are included in the International Anatomical Terminology. We performed an etymological analysis using the Greek roots present in the earliest terms. We compared the cardiologic anatomical terms currently used in Greece and Brazil to the Greek roots originating from the ancient Greek language. We used morphological decomposition of Greek roots, prefixes, and suffixes. We also verified their use on the same lexicons and texts from the ancient Greek language. We provided a list comprising 30 cardiologic anatomical terms that have their origins in ancient Greek as well as their component parts in the International Anatomical Terminology. We included the terms in the way they were standardized in Portuguese, English, and Modern Greek as well as the roots of the ancient Greek words that originated them. Many works deal with the true origin of words (etymology) but most of them neither returns to the earliest roots nor relate them to their use in texts of ancient Greek language. By comparing the world's greatest studies on the etymology of Greek words, this paper tries to clarify the differences between the true origin of the Greek anatomical terms as well as the origins of the cardiologic anatomical terms more accepted today in Brazil by health professionals.
Gobée, O Paul; Jansma, Daniël; DeRuiter, Marco C
2011-10-01
The many synonyms for anatomical structures confuse medical students and complicate medical communication. Easily accessible translations would alleviate this problem. None of the presently available resources-Terminologia Anatomica (TA), digital terminologies such as the Foundational Model of Anatomy (FMA), and websites-are fully satisfactory to this aim. Internet technologies offer new possibilities to solve the problem. Several authors have called for an online TA. An online translation resource should be easily accessible, user-friendly, comprehensive, expandable, and its quality determinable. As first step towards this goal, we built a translation website that we named www.AnatomicalTerms.info, based on the database of the FMA. It translates between English, Latin, eponyms, and to a lesser extent other languages, and presently contains over 31,000 terms for 7,250 structures, covering 95% of TA. In addition, it automatically presents searches for images, documents and anatomical variations regarding the sought structure. Several terminological and conceptual issues were encountered in transferring data from TA and FMA into AnatomicalTerms.info, resultant from these resources' different set-ups (paper versus digital) and targets (machine versus human-user). To the best of our knowledge, AnatomicalTerms.info is unique in its combination of user-friendliness and comprehensiveness. As next step, wiki-like expandability will be added to enable open contribution of clinical synonyms and terms in different languages. Specific quality measures will be taken to strike a balance between open contribution and quality assurance. AnatomicalTerms.info's mechanism that "translates" terms to structures furthermore may enhance targeted searching by linking images, descriptions, and other anatomical resources to the structures. Copyright © 2011 Wiley-Liss, Inc.
Taschieri, S; Weinstein, T; Rosano, G; Del Fabbro, M
2012-05-01
The purpose of this study was to investigate the relationship between the root apex of the upper incisors and neighbouring anatomical structures as well as the morphology of the root-end foramen after apicoectomy. Fifty-seven patients requiring endodontic surgical treatment for a maxillary anterior root were enrolled. A preoperative diagnostic computed tomography (CT) scan was analysed to determine: the distance between the anterior wall of the nasopalatine duct and the central (CI-ND) incisor root 4mm from the apex; and the distance between the floor of the nasal cavity and the tip of either the central (CI-NF) or the lateral (LI-NF) incisor root. After apicoectomy, root-end foramen endoscopic pictures were taken in order to characterize their morphology. Fifty-nine central and 26 lateral incisors were evaluated. The average CI-ND was 4.71 ± 1.26 (SD) mm. The average CI-NF was 10.62 ± 2.25 mm. The average LI-NF was 13.05 ± 2.43 mm. The foramen shape after apicoectomy was ovoid to circular in about 90% of cases in both central and lateral incisors. A sound knowledge of the anatomical relationships at the surgical site is essential for the clinician to perform a safe endodontic surgical procedure. Copyright © 2011 International Association of Oral and Maxillofacial Surgeons. Published by Elsevier Ltd. All rights reserved.
3D Segmentation with an application of level set-method using MRI volumes for image guided surgery.
Bosnjak, A; Montilla, G; Villegas, R; Jara, I
2007-01-01
This paper proposes an innovation in the application for image guided surgery using a comparative study of three different method of segmentation. This segmentation method is faster than the manual segmentation of images, with the advantage that it allows to use the same patient as anatomical reference, which has more precision than a generic atlas. This new methodology for 3D information extraction is based on a processing chain structured of the following modules: 1) 3D Filtering: the purpose is to preserve the contours of the structures and to smooth the homogeneous areas; several filters were tested and finally an anisotropic diffusion filter was used. 2) 3D Segmentation. This module compares three different methods: Region growing Algorithm, Cubic spline hand assisted, and Level Set Method. It then proposes a Level Set-based on the front propagation method that allows the making of the reconstruction of the internal walls of the anatomical structures of the brain. 3) 3D visualization. The new contribution of this work consists on the visualization of the segmented model and its use in the pre-surgery planning.
Legendre, G; Sahmoune Rachedi, L; Descamps, P; Fernandez, H
2015-01-01
Medical and surgical simulation is in high demand. It is widely used in North America as a method of education and training of medical students and surgical residents. Learning anatomy and vaginal surgery are based on palpation recognition of different structures. The absence of visual control of actions learners is a limiting factor for the reproducibility of surgical techniques prolapse and urinary incontinenence. However, this reproducibility is the only guarantee of success and safety of these minimally invasive surgeries. We evaluated the contribution of an educational module perineal anatomy using a system combining anatomic mannequin and a computerized 3D virtual simulator (Pelvic Mentor®, Simbionix) in the knowledge of pelvic-perineal anatomical structures for eight residents of obstetrics and gynecology hospitals in Paris. The self-study training module has led to substantial improvements in internal rating with a proportion of structures recognized from 31.25 to 87.5 % (P<0.001) for the front compartment and 20 to 85 % (P<0.001) for the posterior compartment. The preliminary results suggest that the 3D virtual simulator enhances and facilitates learning the anatomy of the pelvic floor. Copyright © 2014 Elsevier Masson SAS. All rights reserved.
Gao, Shun-Yu; Zhang, Xiao-Peng; Cui, Yong; Sun, Ying-Shi; Tang, Lei; Li, Xiao-Ting; Zhang, Xiao-Yan; Shan, Jun
2014-08-01
To explore whether single and fused monochromatic images can improve liver tumor detection and delineation by single source dual energy CT (ssDECT) in patients with hepatocellular carcinoma (HCC) during arterial phase. Fifty-seven patients with HCC who underwent ssDECT scanning at Beijing Cancer Hospital were enrolled retrospectively. Twenty-one sets of monochromatic images from 40 to 140 keV were reconstructed at 5 keV intervals in arterial phase. The optimal contrast-noise ratio (CNR) monochromatic images of the liver tumor and the lowest-noise monochromatic images were selected for image fusion. We evaluated the image quality of the optimal-CNR monochromatic images, the lowest-noise monochromatic images and the fused monochromatic images, respectively. The evaluation indicators included the spatial resolution of the anatomical structure, the noise level, the contrast and CNR of the tumor. In arterial phase, the anatomical structure of the liver can be displayed most clearly in the 65-keV monochromatic images, with the lowest image noise. The optimal-CNR monochromatic images of HCC tumor were 50-keV monochromatic images in which the internal structural features of the liver tumors were displayed most clearly and meticulously. For tumor detection, the fused monochromatic images and the 50-keV monochromatic images had similar performances, and were more sensitive than 65-keV monochromatic images. We achieved good arterial phase images by fusing the optimal-CNR monochromatic images of the HCC tumor and the lowest-noise monochromatic images. The fused images displayed liver tumors and anatomical structures more clearly, which is potentially helpful for identifying more and smaller HCC tumors.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Jiamin; Hoffman, Joanne; Zhao, Jocelyn
2016-07-15
Purpose: To develop an automated system for mediastinal lymph node detection and station mapping for chest CT. Methods: The contextual organs, trachea, lungs, and spine are first automatically identified to locate the region of interest (ROI) (mediastinum). The authors employ shape features derived from Hessian analysis, local object scale, and circular transformation that are computed per voxel in the ROI. Eight more anatomical structures are simultaneously segmented by multiatlas label fusion. Spatial priors are defined as the relative multidimensional distance vectors corresponding to each structure. Intensity, shape, and spatial prior features are integrated and parsed by a random forest classifiermore » for lymph node detection. The detected candidates are then segmented by the following curve evolution process. Texture features are computed on the segmented lymph nodes and a support vector machine committee is used for final classification. For lymph node station labeling, based on the segmentation results of the above anatomical structures, the textual definitions of mediastinal lymph node map according to the International Association for the Study of Lung Cancer are converted into patient-specific color-coded CT image, where the lymph node station can be automatically assigned for each detected node. Results: The chest CT volumes from 70 patients with 316 enlarged mediastinal lymph nodes are used for validation. For lymph node detection, their system achieves 88% sensitivity at eight false positives per patient. For lymph node station labeling, 84.5% of lymph nodes are correctly assigned to their stations. Conclusions: Multiple-channel shape, intensity, and spatial prior features aggregated by a random forest classifier improve mediastinal lymph node detection on chest CT. Using the location information of segmented anatomic structures from the multiatlas formulation enables accurate identification of lymph node stations.« less
Temkin, Bharti; Acosta, Eric; Malvankar, Ameya; Vaidyanath, Sreeram
2006-04-01
The Visible Human digital datasets make it possible to develop computer-based anatomical training systems that use virtual anatomical models (virtual body structures-VBS). Medical schools are combining these virtual training systems and classical anatomy teaching methods that use labeled images and cadaver dissection. In this paper we present a customizable web-based three-dimensional anatomy training system, W3D-VBS. W3D-VBS uses National Library of Medicine's (NLM) Visible Human Male datasets to interactively locate, explore, select, extract, highlight, label, and visualize, realistic 2D (using axial, coronal, and sagittal views) and 3D virtual structures. A real-time self-guided virtual tour of the entire body is designed to provide detailed anatomical information about structures, substructures, and proximal structures. The system thus facilitates learning of visuospatial relationships at a level of detail that may not be possible by any other means. The use of volumetric structures allows for repeated real-time virtual dissections, from any angle, at the convenience of the user. Volumetric (3D) virtual dissections are performed by adding, removing, highlighting, and labeling individual structures (and/or entire anatomical systems). The resultant virtual explorations (consisting of anatomical 2D/3D illustrations and animations), with user selected highlighting colors and label positions, can be saved and used for generating lesson plans and evaluation systems. Tracking users' progress using the evaluation system helps customize the curriculum, making W3D-VBS a powerful learning tool. Our plan is to incorporate other Visible Human segmented datasets, especially datasets with higher resolutions, that make it possible to include finer anatomical structures such as nerves and small vessels. (c) 2006 Wiley-Liss, Inc.
Mohebbi, Saleh; Andrade, José; Nolte, Lena; Meyer, Heiko; Heisterkamp, Alexander; Majdani, Omid
2017-01-01
The present study focuses on the application of scanning laser optical tomography (SLOT) for visualization of anatomical structures inside the human cochlea ex vivo. SLOT is a laser-based highly efficient microscopy technique which allows for tomographic imaging of the internal structure of transparent specimens. Thus, in the field of otology this technique is best convenient for an ex vivo study of the inner ear anatomy. For this purpose, the preparation before imaging comprises decalcification, dehydration as well as optical clearing of the cochlea samples in toto. Here, we demonstrate results of SLOT imaging visualizing hard and soft tissue structures with an optical resolution of down to 15 μm using extinction and autofluorescence as contrast mechanisms. Furthermore, the internal structure can be analyzed nondestructively and quantitatively in detail by sectioning of the three-dimensional datasets. The method of X-ray Micro Computed Tomography (μCT) has been previously applied to explanted cochlea and is solely based on absorption contrast. An advantage of SLOT is that it uses visible light for image formation and thus provides a variety of contrast mechanisms known from other light microscopy techniques, such as fluorescence or scattering. We show that SLOT data is consistent with μCT anatomical data and provides additional information by using fluorescence. We demonstrate that SLOT is applicable for cochlea with metallic cochlear implants (CI) that would lead to significant artifacts in μCT imaging. In conclusion, the present study demonstrates the capability of SLOT for resolution visualization of cleared human cochleae ex vivo using multiple contrast mechanisms and lays the foundation for a broad variety of additional studies. PMID:28873437
Donati, Marco; Camomilla, Valentina; Vannozzi, Giuseppe; Cappozzo, Aurelio
2008-07-19
The quantitative description of joint mechanics during movement requires the reconstruction of the position and orientation of selected anatomical axes with respect to a laboratory reference frame. These anatomical axes are identified through an ad hoc anatomical calibration procedure and their position and orientation are reconstructed relative to bone-embedded frames normally derived from photogrammetric marker positions and used to describe movement. The repeatability of anatomical calibration, both within and between subjects, is crucial for kinematic and kinetic end results. This paper illustrates an anatomical calibration approach, which does not require anatomical landmark manual palpation, described in the literature to be prone to great indeterminacy. This approach allows for the estimate of subject-specific bone morphology and automatic anatomical frame identification. The experimental procedure consists of digitization through photogrammetry of superficial points selected over the areas of the bone covered with a thin layer of soft tissue. Information concerning the location of internal anatomical landmarks, such as a joint center obtained using a functional approach, may also be added. The data thus acquired are matched with the digital model of a deformable template bone. Consequently, the repeatability of pelvis, knee and hip joint angles is determined. Five volunteers, each of whom performed five walking trials, and six operators, with no specific knowledge of anatomy, participated in the study. Descriptive statistics analysis was performed during upright posture, showing a limited dispersion of all angles (less than 3 deg) except for hip and knee internal-external rotation (6 deg and 9 deg, respectively). During level walking, the ratio of inter-operator and inter-trial error and an absolute subject-specific repeatability were assessed. For pelvic and hip angles, and knee flexion-extension the inter-operator error was equal to the inter-trial error-the absolute error ranging from 0.1 deg to 0.9 deg. Knee internal-external rotation and ab-adduction showed, on average, inter-operator errors, which were 8% and 28% greater than the relevant inter-trial errors, respectively. The absolute error was in the range 0.9-2.9 deg.
Creation of anatomical models from CT data
NASA Astrophysics Data System (ADS)
Alaytsev, Innokentiy K.; Danilova, Tatyana V.; Manturov, Alexey O.; Mareev, Gleb O.; Mareev, Oleg V.
2018-04-01
Computed tomography is a great source of biomedical data because it allows a detailed exploration of complex anatomical structures. Some structures are not visible on CT scans, and some are hard to distinguish due to partial volume effect. CT datasets require preprocessing before using them as anatomical models in a simulation system. The work describes segmentation and data transformation methods for an anatomical model creation from the CT data. The result models may be used for visual and haptic rendering and drilling simulation in a virtual surgery system.
Lucas-Neto, Lia; Reimão, Sofia; Oliveira, Edson; Rainha-Campos, Alexandre; Sousa, João; Nunes, Rita G; Gonçalves-Ferreira, António; Campos, Jorge G
2015-07-01
The human nucleus accumbens (Acc) has become a target for deep brain stimulation (DBS) in some neuropsychiatric disorders. Nonetheless, even with the most recent advances in neuroimaging it remains difficult to accurately delineate the Acc and closely related subcortical structures, by conventional MRI sequences. It is our purpose to perform a MRI study of the human Acc and to determine whether there are reliable anatomical landmarks that enable the precise location and identification of the nucleus and its core/shell division. For the Acc identification and delineation, based on anatomical landmarks, T1WI, T1IR and STIR 3T-MR images were acquired in 10 healthy volunteers. Additionally, 32-direction DTI was obtained for Acc segmentation. Seed masks for the Acc were generated with FreeSurfer and probabilistic tractography was performed using FSL. The probability of connectivity between the seed voxels and distinct brain areas was determined and subjected to k-means clustering analysis, defining 2 different regions. With conventional T1WI, the Acc borders are better defined through its surrounding anatomical structures. The DTI color-coded vector maps and IR sequences add further detail in the Acc identification and delineation. Additionally, using probabilistic tractography it is possible to segment the Acc into a core and shell division and establish its structural connectivity with different brain areas. Advanced MRI techniques allow in vivo delineation and segmentation of the human Acc and represent an additional guiding tool in the precise and safe target definition for DBS. © 2015 International Neuromodulation Society.
Lisk, Kristina; Flannery, John F; Loh, Eldon Y; Richardson, Denyse; Agur, Anne M R; Woods, Nicole N
2014-01-01
To address the need for more clinical anatomy training in residency education, many postgraduate programs have implemented structured anatomy courses into their curriculum. Consensus often does not exist on specific content and level of detail of the content that should be included in such curricula. This article describes the use of the Delphi method to identify clinically relevant content to incorporate in a musculoskeletal anatomy curriculum for Physical Medicine and Rehabilitation (PM&R) residents. A two round modified Delphi involving PM&R experts was used to establish the curricular content. The anatomical structures and clinical conditions presented to the expert group were compiled using multiple sources: clinical musculoskeletal anatomy cases from the PM&R residency program at the University of Toronto; consultation with PM&R experts; and textbooks. In each round, experts rated the importance of each curricular item to PM&R residency education using a five-point Likert scale. Internal consistency (Cronbach's alpha) was used to determine consensus at the end of each round and agreement scores were used as an outcome measure to determine the content to include in the curriculum. The overall internal consistency in both rounds was 0.99. A total of 37 physiatrists from across Canada participated and the overall response rate over two rounds was 97%. The initial curricular list consisted of 361 items. After the second iteration, the list was reduced by 44%. By using a national consensus method we were able to objectively determine the relevant anatomical structures and clinical musculoskeletal conditions important in daily PM&R practice. © 2013 American Association of Anatomists.
Anatomical variations of the carpal tunnel structures
Mitchell, Ryan; Chesney, Amy; Seal, Shane; McKnight, Leslie; Thoma, Achilleas
2009-01-01
There are many anatomical variations in and around the carpal tunnel that affect the nerves, tendons and arteries in this area. Awareness of these variations is important both during the clinical examination and during carpal tunnel release. The purpose of the present review is to highlight recognized anatomical variations within the carpal tunnel including variation in nerve anatomy, tendon anatomical variants, vascular anatomical variations and muscle anatomical variations. PMID:20808747
Techniques on semiautomatic segmentation using the Adobe Photoshop
NASA Astrophysics Data System (ADS)
Park, Jin Seo; Chung, Min Suk; Hwang, Sung Bae
2005-04-01
The purpose of this research is to enable anybody to semiautomatically segment the anatomical structures in the MRIs, CTs, and other medical images on the personal computer. The segmented images are used for making three-dimensional images, which are helpful in medical education and research. To achieve this purpose, the following trials were performed. The entire body of a volunteer was MR scanned to make 557 MRIs, which were transferred to a personal computer. On Adobe Photoshop, contours of 19 anatomical structures in the MRIs were semiautomatically drawn using MAGNETIC LASSO TOOL; successively, manually corrected using either LASSO TOOL or DIRECT SELECTION TOOL to make 557 segmented images. In a likewise manner, 11 anatomical structures in the 8,500 anatomcial images were segmented. Also, 12 brain and 10 heart anatomical structures in anatomical images were segmented. Proper segmentation was verified by making and examining the coronal, sagittal, and three-dimensional images from the segmented images. During semiautomatic segmentation on Adobe Photoshop, suitable algorithm could be used, the extent of automatization could be regulated, convenient user interface could be used, and software bugs rarely occurred. The techniques of semiautomatic segmentation using Adobe Photoshop are expected to be widely used for segmentation of the anatomical structures in various medical images.
Anatomy of the sural nerve: cadaver study and literature review.
Riedl, Otto; Frey, Manfred
2013-04-01
The sural nerve is commonly used as donor for nerve grafting. Contrary to its constant retromalleolar position, formation and course of the proximal sural nerve show great variability. The coexistence of different and deceptive terminologies contributes to the complexity, and reviewing the international literature is confusing. Because detailed anatomical knowledge is essential for efficient and safe sural nerve harvesting, this study aims to bring clarity. Previous sural nerve reports listed in the PubMed database and established anatomical textbooks were reviewed. Different terminologies were compared and adjusted. Anatomical details and variations were noted. Subtle prospective anatomical dissections and comparison with actual data followed. Two hundred twenty-one relevant reports were identified and worked up going back to the nineteenth century. Fourteen established German and English language anatomical textbooks were reviewed. Thirty lower limbs were dissected. In total, this study pools the information of more than 2500 sural nerves. This study covers all information about the sural nerve anatomy published internationally. The coexistence of different and confusing terminologies is pinpointed and adjusted to allow comparison of previous reports and to gain a coordinated data pool of more than 2500 investigated sural nerves. Detailed features are clearly described and summarized, findings from the authors' own prospective dissections complete these data, and the prior existing anatomical confusion is resolved. Finally, clinical implications are described.
Toward knowledge-enhanced viewing using encyclopedias and model-based segmentation
NASA Astrophysics Data System (ADS)
Kneser, Reinhard; Lehmann, Helko; Geller, Dieter; Qian, Yue-Chen; Weese, Jürgen
2009-02-01
To make accurate decisions based on imaging data, radiologists must associate the viewed imaging data with the corresponding anatomical structures. Furthermore, given a disease hypothesis possible image findings which verify the hypothesis must be considered and where and how they are expressed in the viewed images. If rare anatomical variants, rare pathologies, unfamiliar protocols, or ambiguous findings are present, external knowledge sources such as medical encyclopedias are consulted. These sources are accessed using keywords typically describing anatomical structures, image findings, pathologies. In this paper we present our vision of how a patient's imaging data can be automatically enhanced with anatomical knowledge as well as knowledge about image findings. On one hand, we propose the automatic annotation of the images with labels from a standard anatomical ontology. These labels are used as keywords for a medical encyclopedia such as STATdx to access anatomical descriptions, information about pathologies and image findings. On the other hand we envision encyclopedias to contain links to region- and finding-specific image processing algorithms. Then a finding is evaluated on an image by applying the respective algorithm in the associated anatomical region. Towards realization of our vision, we present our method and results of automatic annotation of anatomical structures in 3D MRI brain images. Thereby we develop a complex surface mesh model incorporating major structures of the brain and a model-based segmentation method. We demonstrate the validity by analyzing the results of several training and segmentation experiments with clinical data focusing particularly on the visual pathway.
Flat-panel-detector chest radiography: effect of tube voltage on image quality.
Uffmann, Martin; Neitzel, Ulrich; Prokop, Mathias; Kabalan, Nahla; Weber, Michael; Herold, Christian J; Schaefer-Prokop, Cornelia
2005-05-01
To compare the visibility of anatomic structures in direct-detector chest radiographs acquired with different tube voltages at equal effective doses to the patient. The study protocol was approved by the institutional internal review board, and written informed consent was obtained from all patients. Posteroanterior chest radiographs of 48 consecutively selected patients were obtained at 90, 121, and 150 kVp by using a flat-panel-detector unit that was based on cesium iodide technology and automated exposure control. Monte Carlo simulations were used to verify that the effective dose for all kilovoltage settings was equal. Five radiologists subjectively and independently rated the delineation of anatomic structures on hard-copy images by using a five-point scale. They also ranked image quality in a blinded side-by-side comparison. Average ranking scores were compared by using one-way analysis of variance with repeated measures. Data were analyzed for the entire patient group and for two patient subgroups that were formed according to body mass index (BMI). The visibility scores of most anatomic structures were significantly superior with the 90-kVp images (mean score, 3.11), followed by the 121-kVp (mean score, 2.95) and 150-kVp images (mean score, 2.80). Differences did not reach significance (P > .05) only for the delineation of the peripheral vessels, the heart contours, and the carina. This was also true for the subgroup of patients (n = 24) with a BMI greater than and the subgroup of patients (n = 24) with a BMI less than the mean BMI (26.9 kg/m(2)). At side-by-side comparison, the readers rated 90-kVp images as having superior image quality in the majority of image triplets; the percentage of 90-kVp images rated as "first choice" ranged from 60% (29 of 48 patients) to 90% (43 of 48 patients), with a median of 88% (42 of 48 patients), among the readers. Delineation of most anatomic structures and overall image quality were ranked superior in digital radiographs acquired with lower kilovoltage at a constant effective patient dose. (c) RSNA, 2005.
A core syllabus for the teaching of embryology and teratology to medical students.
Fakoya, Francis A; Emmanouil-Nikoloussi, Elpida; Sharma, Deepak; Moxham, Bernard J
2017-03-01
Clinical relevance in the teaching of biomedical sciences within health care courses presupposes that there is internationally agreed core material within the curricula. However, with the exception of a syllabus for neuroanatomy and gross anatomy of the head and neck for medical students, core syllabuses within many of the specialized anatomical sciences have yet to be developed. The International Federation of Associations of Anatomists aims to formulate internationally accepted core syllabuses for all anatomical sciences disciplines initially using Delphi Panels that comprise anatomists, scientists, and clinicians who evaluate syllabus content. Here, the suggestions of a Delphi Panel for embryology and teratology are presented prior to their publication on the website of the International Federation of Associations of Anatomists. Hence, to obtain a more definitive syllabus, it is required that anatomical and embryological/teratological societies, as well as individual anatomists, embryologists and clinicians, freely comment upon, elaborate and amend, this draft syllabus. The goal is to set internationally recognized standards and thereby provide guidelines concerning embryological and teratological knowledge when involved with course development. Clin. Anat. 30:159-167, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
Information processing architecture of functionally defined clusters in the macaque cortex.
Shen, Kelly; Bezgin, Gleb; Hutchison, R Matthew; Gati, Joseph S; Menon, Ravi S; Everling, Stefan; McIntosh, Anthony R
2012-11-28
Computational and empirical neuroimaging studies have suggested that the anatomical connections between brain regions primarily constrain their functional interactions. Given that the large-scale organization of functional networks is determined by the temporal relationships between brain regions, the structural limitations may extend to the global characteristics of functional networks. Here, we explored the extent to which the functional network community structure is determined by the underlying anatomical architecture. We directly compared macaque (Macaca fascicularis) functional connectivity (FC) assessed using spontaneous blood oxygen level-dependent functional magnetic resonance imaging (BOLD-fMRI) to directed anatomical connectivity derived from macaque axonal tract tracing studies. Consistent with previous reports, FC increased with increasing strength of anatomical connection, and FC was also present between regions that had no direct anatomical connection. We observed moderate similarity between the FC of each region and its anatomical connectivity. Notably, anatomical connectivity patterns, as described by structural motifs, were different within and across functional modules: partitioning of the functional network was supported by dense bidirectional anatomical connections within clusters and unidirectional connections between clusters. Together, our data directly demonstrate that the FC patterns observed in resting-state BOLD-fMRI are dictated by the underlying neuroanatomical architecture. Importantly, we show how this architecture contributes to the global organizational principles of both functional specialization and integration.
Keiler, Jonas; Richter, Stefan; Wirkner, Christian S
2015-01-01
Porcelain crabs (Porcellanidae) are one of three taxa within anomuran crustaceans (Anomala) which possess a crab-like body form. Curiously, these three lineages evolved this shape independently from true crabs (Brachyura) in the course of the evolutionary process termed carcinization. The entire pleon in porcelain crabs is flexed under the cephalothorax and the carapace is approximately as broad as long. Despite their crab-like habitus, porcelain crabs are phylogenetically nested within squat lobsters (Munidopsidae, Munididae, Galatheidae). With a pleon which is only partly flexed under the cephalothorax and a cephalothorax which is longer than it is broad, squat lobsters represent morphologically intermediate forms between lobster-like and crab-like body shapes. Carcinization has so far mostly been studied with respect to outer morphology; however, it is evident that internal anatomical features are influenced through this change of body shape too. In this paper, the situation in Galatheoidea is elucidated by adding more taxa to existing descriptions of the hemolymph vascular systems and associated structures and organs. Micro-computer tomography and 3D reconstruction provide new insights. Autapomorphic states of various internal anatomical characters are present in nearly all the studied species, also reflecting some degree of anatomical disparity found within Galatheoidea. The ventral vessel system of porcelain crabs differs distinctly from that of squat lobsters. The differences in question are coherent (i.e. structural dependent) with morphological transformations in the integument, such as the shortening of the sternal plastron, which evolved in the course of carcinization. Shifts in the gonads and the pleonal neuromeres are coherent with the loss of the caridoid escape reaction, which in turn is a consequence of carcinization. The arterial transformations, however, are minor compared to other instances of carcinization in anomuran crustaceans since the last common ancestor of squat lobsters and porcelain crabs was already "half carcinized". © 2014 Wiley Periodicals, Inc.
The Rotator Interval – A Link Between Anatomy and Ultrasound
Tamborrini, Giorgio; Möller, Ingrid; Bong, David; Miguel, Maribel; Marx, Christian; Müller, Andreas Marc; Müller-Gerbl, Magdalena
2017-01-01
Shoulder pathologies of the rotator cuff of the shoulder are common in clinical practice. The focus of this pictorial essay is to discuss the anatomical details of the rotator interval of the shoulder, correlate the anatomy with normal ultrasound images and present selected pathologies. We focus on the imaging of the rotator interval that is actually the anterosuperior aspect of the glenohumeral joint capsule that is reinforced externally by the coracohumeral ligament, internally by the superior glenohumeral ligament and capsular fibers which blend together and insert medially and laterally to the bicipital groove. In this article we demonstrate the capability of high-resolution musculoskeletal ultrasound to visualize the detailed anatomy of the rotator interval. MSUS has a higher spatial resolution than other imaging techniques and the ability to examine these structures dynamically and to utilize the probe for precise anatomic localization of the patient’s pain by sono-palpation. PMID:28845477
The Rotator Interval - A Link Between Anatomy and Ultrasound.
Tamborrini, Giorgio; Möller, Ingrid; Bong, David; Miguel, Maribel; Marx, Christian; Müller, Andreas Marc; Müller-Gerbl, Magdalena
2017-06-01
Shoulder pathologies of the rotator cuff of the shoulder are common in clinical practice. The focus of this pictorial essay is to discuss the anatomical details of the rotator interval of the shoulder, correlate the anatomy with normal ultrasound images and present selected pathologies. We focus on the imaging of the rotator interval that is actually the anterosuperior aspect of the glenohumeral joint capsule that is reinforced externally by the coracohumeral ligament, internally by the superior glenohumeral ligament and capsular fibers which blend together and insert medially and laterally to the bicipital groove. In this article we demonstrate the capability of high-resolution musculoskeletal ultrasound to visualize the detailed anatomy of the rotator interval. MSUS has a higher spatial resolution than other imaging techniques and the ability to examine these structures dynamically and to utilize the probe for precise anatomic localization of the patient's pain by sono-palpation.
Philosophy and concepts of modern spine surgery.
José-Antonio, Soriano-Sánchez; Baabor-Aqueveque, Marcos; Silva-Morales, Francisco
2011-01-01
The main goal of improving pain and neurological deficit in the practice of spine surgery is changing for a more ambitious goal, namely to improve the overall quality of life and the future of patients through three major actions (1) preserving the vertebral anatomical structures; (2) preserving the paravertebral anatomical structures; and (3) preserving the functionality of the segment. Thus, three new concepts have emerged (a) minimal surgery; (b) minimal access surgery; and (c) motion preservation surgery. These concepts are covered in a new term, minimally invasive spine surgery (MISS) The term "MISS" is not about one or several particular surgical techniques, but a new way of thinking, a new philosophy. Although the development of minimally invasive spine surgery is recent, its application includes all spine segments and almost all the existing conditions, including deformities.Evidence-based medicine (EBM), a term coined by Alvan Feinstein in the 1960s (Feinstein A (1964) Annals of Internal Medicine 61: 564-579; Feinstein A (1964) Annals of Internal Medicine 61: 757-781; Feinstein A (1964) Annals of Internal Medicine 61: 944-965; Feinstein A (1964) Annals of Internal Medicine 61: 1162-1193.), emphasizes the possibility of combining art and science following the strict application of scientific methods in the treatment of patients (Feinstein A (1964) Annals of Internal Medicine 61: 944-965; Feinstein A (1964) Annals of Internal Medicine 61: 1162-1193.), which may represent the advantages of objectivity and rationality in the use of different treatments (Fig. 11). However, EBM has many obvious defects, especially in spine surgery it is almost impossible to develop double-blind protocols (Andersson G, Bridwell K, Danielsson A, et al (2007) Spine 32: S64-S65.). In most cases, the only evidence one can find in the literature is the lack of evidence (Resnick D (2007) Spine 32:S15-S19.), however, the lack of evidence does not mean its absence. Only then, with a rigorous self-analysis, we may take a clear path towards a new philosophy in spine surgery. Of course, feedback from patients through satisfaction and clinical scales can guide our direction and provide the energy needed to maintain the enthusiasm (Fig. 12).
Lin, Wei-Shao; Harris, Bryan T; Zandinejad, Amirali; Martin, William C; Morton, Dean
2014-03-01
This report describes the fabrication of customized abutments consisting of prefabricated 2-piece titanium abutments and customized anatomic lithium disilicate structures for cement-retained implant restorations in the esthetic zone. The heat-pressed lithium disilicate provides esthetic customized anatomic structures and crowns independently of the computer-aided design and computer-aided manufacturing process. Copyright © 2014 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.
Uberon, an integrative multi-species anatomy ontology
2012-01-01
We present Uberon, an integrated cross-species ontology consisting of over 6,500 classes representing a variety of anatomical entities, organized according to traditional anatomical classification criteria. The ontology represents structures in a species-neutral way and includes extensive associations to existing species-centric anatomical ontologies, allowing integration of model organism and human data. Uberon provides a necessary bridge between anatomical structures in different taxa for cross-species inference. It uses novel methods for representing taxonomic variation, and has proved to be essential for translational phenotype analyses. Uberon is available at http://uberon.org PMID:22293552
Radiological features for the approach in trans-sphenoidal pituitary surgery.
Twigg, Victoria; Carr, Simon D; Balakumar, Ramkishan; Sinha, Saurabh; Mirza, Showkat
2017-08-01
In order to perform trans-sphenoidal endoscopic pituitary surgery safely and efficiently it is important to identify anatomical and pituitary disease features on the pre-operative CT and MRI scans; thereby minimising the risk to surrounding structures and optimising outcomes. We aim to create a checklist to streamline pre-operative planning. We retrospectively reviewed pre-operative CT and MRI scans of 100 adults undergoing trans-sphenoidal endoscopic pituitary surgery. Radiological findings and their incidence included deviated nasal septum (62%), concha bullosa (32%), bony dehiscence of the carotid arteries (18%), sphenoid septation overlying the internal carotid artery (24% at the sella) and low lying CSF (32%). The mean distance of the sphenoid ostium to the skull base was 10 mm (range 2.7-17.6 mm). We also describe the 'teddy bear' sign which when present on an axial CT indicates the carotid arteries will be identifiable intra-operatively. There are significant variations in the anatomical and pituitary disease features between patients. We describe a number of features on pre-operative scans and have devised a checklist including a new 'teddy bear' sign to aid the surgeon in the anatomical assessment of patients undergoing trans-sphenoidal pituitary surgery.
Shih, Cheryl; Cold, Christopher J; Yang, Claire C
2013-06-01
The pars intermedia is an area of the vulva that has been inconsistently described in the literature. We conducted anatomic studies to better describe the tissues and vascular structures of the pars intermedia and proposed a functional rationale of the pars intermedia in the female sexual response. Nine cadaveric vulvectomy specimens were used. Each was serially sectioned and stained with hematoxylin and eosin and Masson's trichrome. Histologic ultrastructural description of the pars intermedia. The pars intermedia contains veins traveling longitudinally in the angle of the clitoris, supported by collagen-rich stromal tissues. These veins drain the different vascular compartments of the vulva, including the clitoris, the bulbs, and labia minora; also, the interconnecting veins link the different vascular compartments. The pars intermedia is not composed of erectile tissue, distinguishing it from the erectile tissues of the corpora cavernosa of the clitoris as well as the corpus spongiosum of the clitoral (vestibular) bulbs. The venous communications of the pars intermedia, linking the erectile tissues with the other vascular compartments of the vulva, appear to provide the anatomic basis for a coordinated vascular response during female sexual arousal. © 2012 International Society for Sexual Medicine.
Comparison of mechanical energy profiles of passive and active below-knee prostheses: a case study.
Takahashi, Kota Z; Horne, John R; Stanhope, Steven J
2015-04-01
With the recent technological advancements of prosthetic lower limbs, there is currently a great desire to objectively evaluate existing prostheses. Using a novel biomechanical analysis, the purpose of this case study was to compare the mechanical energy profiles of anatomical and two disparate prostheses: a passive prosthesis and an active prosthesis. An individual with a transtibial amputation who customarily wears a passive prosthesis (Elation, Össur) and an active prosthesis (BiOM, iWalk, Inc.) and 11 healthy subjects participated in an instrumented gait analysis. The total mechanical power and work of below-knee structures during stance were quantified using a unified deformable segment power analysis. Active prosthesis generated greater peak power and total positive work than passive prosthesis and healthy anatomical limbs. The case study will enhance future efforts to objectively evaluate prosthetic functions during gait in individuals with transtibial amputations. A prosthetic limb should closely replicate the mechanical energy profiles of anatomical limbs. The unified deformable (UD) analysis may be valuable to facilitate future clinical prescription and guide fine adjustments of prosthetic componentry to optimize gait outcomes. © The International Society for Prosthetics and Orthotics 2014.
Using 3D modeling techniques to enhance teaching of difficult anatomical concepts
Pujol, Sonia; Baldwin, Michael; Nassiri, Joshua; Kikinis, Ron; Shaffer, Kitt
2016-01-01
Rationale and Objectives Anatomy is an essential component of medical education as it is critical for the accurate diagnosis in organs and human systems. The mental representation of the shape and organization of different anatomical structures is a crucial step in the learning process. The purpose of this pilot study is to demonstrate the feasibility and benefits of developing innovative teaching modules for anatomy education of first-year medical students based on 3D reconstructions from actual patient data. Materials and Methods A total of 196 models of anatomical structures from 16 anonymized CT datasets were generated using the 3D Slicer open-source software platform. The models focused on three anatomical areas: the mediastinum, the upper abdomen and the pelvis. Online optional quizzes were offered to first-year medical students to assess their comprehension in the areas of interest. Specific tasks were designed for students to complete using the 3D models. Results Scores of the quizzes confirmed a lack of understanding of 3D spatial relationships of anatomical structures despite standard instruction including dissection. Written task material and qualitative review by students suggested that interaction with 3D models led to a better understanding of the shape and spatial relationships among structures, and helped illustrate anatomical variations from one body to another. Conclusion The study demonstrates the feasibility of one possible approach to the generation of 3D models of the anatomy from actual patient data. The educational materials developed have the potential to supplement the teaching of complex anatomical regions and help demonstrate the anatomic variation among patients. PMID:26897601
Baker, Robert L; Yarkhunova, Yulia; Vidal, Katherine; Ewers, Brent E; Weinig, Cynthia
2017-01-05
Polyploidy is well studied from a genetic and genomic perspective, but the morphological, anatomical, and physiological consequences of polyploidy remain relatively uncharacterized. Whether these potential changes bear on functional integration or are idiosyncratic remains an open question. Repeated allotetraploid events and multiple genomic combinations as well as overlapping targets of artificial selection make the Brassica triangle an excellent system for exploring variation in the connection between plant structure (anatomy and morphology) and function (physiology). We examine phenotypic integration among structural aspects of leaves including external morphology and internal anatomy with leaf-level physiology among several species of Brassica. We compare diploid and allotetraploid species to ascertain patterns of phenotypic correlations among structural and functional traits and test the hypothesis that allotetraploidy results in trait disintegration allowing for transgressive phenotypes and additional evolutionary and crop improvement potential. Among six Brassica species, we found significant effects of species and ploidy level for morphological, anatomical and physiological traits. We identified three suites of intercorrelated traits in both diploid parents and allotetraploids: Morphological traits (such as leaf area and perimeter) anatomic traits (including ab- and ad- axial epidermis) and aspects of physiology. In general, there were more correlations between structural and functional traits for allotetraploid hybrids than diploid parents. Parents and hybrids did not have any significant structure-function correlations in common. Of particular note, there were no significant correlations between morphological structure and physiological function in the diploid parents. Increased phenotypic integration in the allotetraploid hybrids may be due, in part, to increased trait ranges or simply different structure-function relationships. Genomic and chromosomal instability in early generation allotetraploids may allow Brassica species to explore new trait space and potentially reach higher adaptive peaks than their progenitor species could, despite temporary fitness costs associated with unstable genomes. The trait correlations that disappear after hybridization as well as the novel trait correlations observed in allotetraploid hybrids may represent relatively evolutionarily labile associations and therefore could be ideal targets for artificial selection and crop improvement.
Khalil, Mohammed K; Paas, Fred; Johnson, Tristan E; Su, Yung K; Payer, Andrew F
2008-01-01
This research is an effort to best utilize the interactive anatomical images for instructional purposes based on cognitive load theory. Three studies explored the differential effects of three computer-based instructional strategies that use anatomical cross-sections to enhance the interpretation of radiological images. These strategies include: (1) cross-sectional images of the head that can be superimposed on radiological images, (2) transparent highlighting of anatomical structures in radiological images, and (3) cross-sectional images of the head with radiological images presented side-by-side. Data collected included: (1) time spent on instruction and on solving test questions, (2) mental effort during instruction and test, and (3) students' performance to identify anatomical structures in radiological images. Participants were 28 freshmen medical students (15 males and 13 females) and 208 biology students (190 females and 18 males). All studies used posttest-only control group design, and the collected data were analyzed by either t test or ANOVA. In self-directed computer-based environments, the strategies that used cross sections to improve students' ability to recognize anatomic structures in radiological images showed no significant positive effects. However, when increasing the complexity of the instructional materials, cross-sectional images imposed a higher cognitive load, as indicated by higher investment of mental effort. There is not enough evidence to claim that the simultaneous combination of cross sections and radiological images has no effect on the identification of anatomical structures in radiological images for novices. Further research that control for students' learning and cognitive style is needed to reach an informative conclusion.
Park, Jin Seo; Shin, Dong Sun; Chung, Min Suk; Hwang, Sung Bae; Chung, Jinoh
2007-11-01
This article describes the technique of semiautomatic surface reconstruction of anatomic structures using widely available commercial software. This technique would enable researchers to promptly and objectively perform surface reconstruction, creating three-dimensional anatomic images without any assistance from computer engineers. To develop the technique, we used data from the Visible Korean Human project, which produced digitalized photographic serial images of an entire cadaver. We selected 114 anatomic structures (skin [1], bones [32], knee joint structures [7], muscles [60], arteries [7], and nerves [7]) from the 976 anatomic images which were generated from the left lower limb of the cadaver. Using Adobe Photoshop, the selected anatomic structures in each serial image were outlined, creating a segmented image. The Photoshop files were then converted into Adobe Illustrator files to prepare isolated segmented images, so that the contours of the structure could be viewed independent of the surrounding anatomy. Using Alias Maya, these isolated segmented images were then stacked to construct a contour image. Gaps between the contour lines were filled with surfaces, and three-dimensional surface reconstruction could be visualized with Rhinoceros. Surface imperfections were then corrected to complete the three-dimensional images in Alias Maya. We believe that the three-dimensional anatomic images created by these methods will have widespread application in both medical education and research. 2007 Wiley-Liss, Inc
NASA Astrophysics Data System (ADS)
Zhou, X.; Hayashi, T.; Han, M.; Chen, H.; Hara, T.; Fujita, H.; Yokoyama, R.; Kanematsu, M.; Hoshi, H.
2009-02-01
X-ray CT images have been widely used in clinical diagnosis in recent years. A modern CT scanner can generate about 1000 CT slices to show the details of all the human organs within 30 seconds. However, CT image interpretations (viewing 500-1000 slices of CT images manually in front of a screen or films for each patient) require a lot of time and energy. Therefore, computer-aided diagnosis (CAD) systems that can support CT image interpretations are strongly anticipated. Automated recognition of the anatomical structures in CT images is a basic pre-processing of the CAD system. The bone structure is a part of anatomical structures and very useful to act as the landmarks for predictions of the other different organ positions. However, the automated recognition of the bone structure is still a challenging issue. This research proposes an automated scheme for segmenting the bone regions and recognizing the bone structure in noncontrast torso CT images. The proposed scheme was applied to 48 torso CT cases and a subjective evaluation for the experimental results was carried out by an anatomical expert following the anatomical definition. The experimental results showed that the bone structure in 90% CT cases have been recognized correctly. For quantitative evaluation, automated recognition results were compared to manual inputs of bones of lower limb created by an anatomical expert on 10 randomly selected CT cases. The error (maximum distance in 3D) between the recognition results and manual inputs distributed from 3-8 mm in different parts of the bone regions.
Fernandez, J W; Hunter, P J
2005-08-01
A 3D anatomically based patient-specific finite element (FE) model of patello-femoral (PF) articulation is presented to analyse the main features of patella biomechanics, namely, patella tracking (kinematics), quadriceps extensor forces, surface contact and internal patella stresses. The generic geometries are a subset from the model database of the International Union of Physiological Sciences (IUPS) (http://www.physiome.org.nz) Physiome Project with soft tissue derived from the widely used visible human dataset, and the bones digitised from an anatomically accurate physical model with muscle attachment information. The models are customised to patient magnetic resonance images using a variant of free-form deformation, called 'host-mesh' fitting. The continuum was solved using the governing equation of finite elasticity, with the multibody problem coupled through contact mechanics. Additional constraints such as tissue incompressibility are also imposed. Passive material properties are taken from the literature and implemented for deformable tissue with a non-linear micro-structurally based constitutive law. Bone and cartilage are implemented using a 'St-Venant Kirchoff' model suitable for rigid body rotations. The surface fibre directions have been estimated from anatomy images of cadaver muscle dissections and active muscle contraction was based on a steady-state calcium-tension relation. The 3D continuum model of muscle, tendon and bone is compared with experimental results from the literature, and surgical simulations performed to illustrate its clinical assessment capabilities (a Maquet procedure for reducing patella stresses and a vastus lateralis release for a bipartite patella). Finally, the model limitations, issues and future improvements are discussed.
NASA Astrophysics Data System (ADS)
Lee, Choonsik; Lee, Choonik; Lee, Jai-Ki
2006-11-01
Distributions of radiation absorbed dose within human anatomy have been estimated through Monte Carlo radiation transport techniques implemented for two different classes of computational anthropomorphic phantoms: (1) mathematical equation-based stylized phantoms and (2) tomographic image-based voxel phantoms. Voxel phantoms constructed from tomographic images of real human anatomy have been actively developed since the late 1980s to overcome the anatomical approximations necessary with stylized phantoms, which themselves have been utilized since the mid 1960s. However, revisions of stylized phantoms have also been pursued in parallel to the development of voxel phantoms since voxel phantoms (1) are initially restricted to the individual-specific anatomy of the person originally imaged, (2) must be restructured on an organ-by-organ basis to conform to reference individual anatomy and (3) cannot easily represent very fine anatomical structures and tissue layers that are thinner than the voxel dimensions of the overall phantom. Although efforts have been made to improve the anatomic realism of stylized phantoms, most of these efforts have been limited to attempts to alter internal organ structures. Aside from the internal organs, the exterior shapes, and especially the arm structures, of stylized phantoms are also far from realistic descriptions of human anatomy, and may cause dosimetry errors in the calculation of organ-absorbed doses for external irradiation scenarios. The present study was intended to highlight the need to revise the existing arm structure within stylized phantoms by comparing organ doses of stylized adult phantoms with those from three adult voxel phantoms in the lateral photon irradiation geometry. The representative stylized phantom, the adult phantom of the Oak Ridge National Laboratory (ORNL) series and two adult male voxel phantoms, KTMAN-2 and VOXTISS8, were employed for Monte Carlo dose calculation, and data from another voxel phantom, VIP-Man, were obtained from literature sources. The absorbed doses for lungs, oesophagus, liver and kidneys that could be affected by arm structures in the lateral irradiation geometry were obtained for both classes of phantoms in lateral monoenergetic photon irradiation geometries. As expected, those organs in the ORNL phantoms received apparently higher absorbed doses than those in the voxel phantoms. The overestimation is mainly attributed to the relatively poor representation of the arm structure in the ORNL phantom in which the arm bones are embedded within the regions describing the phantom's torso. The results of this study suggest that the overestimation of organ doses, due to unrealistic arm representation, should be taken into account when stylized phantoms are employed for equivalent or effective dose estimates, especially in the case of an irradiation scenario with dominating lateral exposure. For such a reason, the stylized phantom arm structure definition should be revised in order to obtain more realistic evaluations.
Role of cerebellum in learning postural tasks.
Ioffe, M E; Chernikova, L A; Ustinova, K I
2007-01-01
For a long time, the cerebellum has been known to be a structure related to posture and equilibrium control. According to the anatomic structure of inputs and internal structure of the cerebellum, its role in learning was theoretically reasoned and experimentally proved. The hypothesis of an inverse internal model based on feedback-error learning mechanism combines feedforward control by the cerebellum and feedback control by the cerebral motor cortex. The cerebellar cortex is suggested to acquire internal models of the body and objects in the external world. During learning of a new tool the motor cortex receives feedback from the realized movement while the cerebellum produces only feedforward command. To realize a desired movement without feedback of the realized movement, the cerebellum needs to form an inverse model of the hand/arm system. This suggestion was supported by FMRi data. The role of cerebellum in learning new postural tasks mainly concerns reorganization of natural synergies. A learned postural pattern in dogs has been shown to be disturbed after lesions of the cerebral motor cortex or cerebellar nuclei. In humans, learning voluntary control of center of pressure position is greatly disturbed after cerebellar lesions. However, motor cortex and basal ganglia are also involved in the feedback learning postural tasks.
Young, Andrew L.
2015-01-01
Internal derangements of the temporomandibular joint are conditions in which the articular disc has become displaced from its original position the condylar head. Relevant anatomic structures and their functional relationships are briefly discussed. The displacement of the disc can result in numerous presentations, with the most common being disc displacement with reduction (with or without intermittent locking), and disc displacement without reduction (with or without limited opening). These are described in this article according to the standardized Diagnostic Criteria for Temporomandibular Disorders, as well as the less common posterior disc displacement. Appropriate management usually ranges from patient education and monitoring to splints, physical therapy, and medications. In rare and select cases, surgery may be necessary. However, in for the majority of internal derangements, the prognosis is good, particularly with conservative care. PMID:26929478
Young, Andrew L
2015-01-01
Internal derangements of the temporomandibular joint are conditions in which the articular disc has become displaced from its original position the condylar head. Relevant anatomic structures and their functional relationships are briefly discussed. The displacement of the disc can result in numerous presentations, with the most common being disc displacement with reduction (with or without intermittent locking), and disc displacement without reduction (with or without limited opening). These are described in this article according to the standardized Diagnostic Criteria for Temporomandibular Disorders, as well as the less common posterior disc displacement. Appropriate management usually ranges from patient education and monitoring to splints, physical therapy, and medications. In rare and select cases, surgery may be necessary. However, in for the majority of internal derangements, the prognosis is good, particularly with conservative care.
The "G-Spot" Is Not a Structure Evident on Macroscopic Anatomic Dissection of the Vaginal Wall.
Hoag, Nathan; Keast, Janet R; O'Connell, Helen E
2017-12-01
Controversy exists in the literature regarding the presence or absence of an anatomic "G-spot." However, few studies have examined the detailed topographic or histologic anatomy of the putative G-spot location. To determine the anatomy of the anterior vaginal wall and present detailed, systematic, accessible findings from female cadaveric dissections to provide anatomic clarity with respect to this location. Systematic anatomic dissections were performed on 13 female cadavers (32-97 years old, 8 fixed and 5 fresh) to characterize the gross anatomy of the anterior vaginal wall. Digital photography was used to document dissections. Dissection preserved the anterior vaginal wall, urethra, and clitoris. In 9 cadavers, the vaginal epithelial layer was reflected to expose the underlying urethral wall and associated tissues. In 4 cadavers, the vaginal wall was left intact before preservation. Once photographed, 8 specimens were transversely sectioned for macroscopic inspection and histologic examination. The presence or absence of a macroscopic anatomic structure at detailed cadaveric pelvis dissection that corresponds to the previously described G-spot and gross anatomic description of the anterior vaginal wall. Deep to the lining epithelium of the anterior vaginal wall is the urethra. There is no macroscopic structure other than the urethra and vaginal wall lining in the location of the putative G-spot. Specifically, there is no apparent erectile or "spongy" tissue in the anterior vaginal wall, except where the urethra abuts the clitoris distally. The absence of an anatomic structure corresponding to the putative G-spot helps clarify the controversy on this subject. Limitations to this study include limited access to specimens immediately after death and potential for observational bias. In addition, age, medical history, and cause of death are not publishable for privacy reasons. However, it is one of the most thorough and complete anatomic evaluations documenting the anatomic detail of the anterior vaginal wall. The G-spot, in its current description, is not identified as a discrete anatomic entity at macroscopic dissection of the urethra or vaginal wall. Further insights could be provided by histologic study. Hoag N, Keast JR, O'Connell HE. The "G-Spot" Is Not a Structure Evident on Macroscopic Anatomic Dissection of the Vaginal Wall. J Sex Med 2017;14:1524-1532. Copyright © 2017. Published by Elsevier Inc.
Construction of a 3-D anatomical model for teaching temporal lobectomy.
de Ribaupierre, Sandrine; Wilson, Timothy D
2012-06-01
Although we live and work in 3 dimensional space, most of the anatomical teaching during medical school is done on 2-D (books, TV and computer screens, etc). 3-D spatial abilities are essential for a surgeon but teaching spatial skills in a non-threatening and safe educational environment is a much more difficult pedagogical task. Currently, initial anatomical knowledge formation or specific surgical anatomy techniques, are taught either in the OR itself, or in cadaveric labs; which means that the trainee has only limited exposure. 3-D computer models incorporated into virtual learning environments may provide an intermediate and key step in a blended learning approach for spatially challenging anatomical knowledge formation. Specific anatomical structures and their spatial orientation can be further clinically contextualized through demonstrations of surgical procedures in the 3-D digital environments. Recordings of digital models enable learner reviews, taking as much time as they want, stopping the demonstration, and/or exploring the model to understand the anatomical relation of each structure. We present here how a temporal lobectomy virtual model has been developed to aid residents and fellows conceptualization of the anatomical relationships between different cerebral structures during that procedure. We suggest in comparison to cadaveric dissection, such virtual models represent a cost effective pedagogical methodology providing excellent support for anatomical learning and surgical technique training. Copyright © 2012 Elsevier Ltd. All rights reserved.
Hierarchical organization of brain functional networks during visual tasks.
Zhuo, Zhao; Cai, Shi-Min; Fu, Zhong-Qian; Zhang, Jie
2011-09-01
The functional network of the brain is known to demonstrate modular structure over different hierarchical scales. In this paper, we systematically investigated the hierarchical modular organizations of the brain functional networks that are derived from the extent of phase synchronization among high-resolution EEG time series during a visual task. In particular, we compare the modular structure of the functional network from EEG channels with that of the anatomical parcellation of the brain cortex. Our results show that the modular architectures of brain functional networks correspond well to those from the anatomical structures over different levels of hierarchy. Most importantly, we find that the consistency between the modular structures of the functional network and the anatomical network becomes more pronounced in terms of vision, sensory, vision-temporal, motor cortices during the visual task, which implies that the strong modularity in these areas forms the functional basis for the visual task. The structure-function relationship further reveals that the phase synchronization of EEG time series in the same anatomical group is much stronger than that of EEG time series from different anatomical groups during the task and that the hierarchical organization of functional brain network may be a consequence of functional segmentation of the brain cortex.
Drakos, Mark; Behrens, Steve B; Mulcahey, Mary K; Paller, David; Hoffman, Eve; DiGiovanni, Christopher W
2013-06-01
To examine the anatomy of the lateral ankle after arthroscopic repair of the lateral ligament complex (anterior talofibular ligament [ATFL] and calcaneofibular ligament [CFL]) with regard to structures at risk. Ten lower extremity cadaveric specimens were obtained and were screened for gross anatomic defects and pre-existing ankle laxity. The ATFL and CFL were sectioned from the fibula by an open technique. Standard anterolateral and anteromedial arthroscopy portals were made. An additional portal was created 2 cm distal to the anterolateral portal. The articular surface of the fibula was identified, and the ATFL and CFL were freed from the superficial and deeper tissues. Suture anchors were placed in the fibula at the ATFL and CFL origins and were used to repair the origin of the lateral collateral structures. The distance from the suture knot to several local anatomic structures was measured. Measurements were taken by 2 separate observers, and the results were averaged. Several anatomic structures lie in close proximity to the ATFL and CFL sutures. The ATFL sutures entrapped 9 of 55 structures, and no anatomic structures were inadvertently entrapped by the CFL sutures. The proximity of the peroneus tertius and the extensor tendons to the ATFL makes them at highest risk of entrapment, but the proximity of the intermediate branch of the superficial peroneal nerve (when present) is a risk with significant morbidity. Our results indicate that the peroneus tertius and extensor tendons have the highest risk for entrapment and show the smallest mean distances from the anchor knot to the identified structure. Careful attention to these structures, as well as the superficial peroneal nerve, is mandatory to prevent entrapment of tendons and nerves when one is attempting arthroscopic lateral ankle ligament reconstruction. Defining the anatomic location and proximity of the intervening structures adjacent to the lateral ligament complex of the ankle may help clarify the anatomic safe zone through which arthroscopic repair of the lateral ligament complex can be safely performed. Copyright © 2013 Arthroscopy Association of North America. Published by Elsevier Inc. All rights reserved.
ArthroBroström Lateral Ankle Stabilization Technique: An Anatomic Study.
Acevedo, Jorge I; Ortiz, Cristian; Golano, Pau; Nery, Caio
2015-10-01
Arthroscopic ankle lateral ligament repair techniques have recently been developed and biomechanically as well as clinically validated. Although there has been 1 anatomic study relating suture and anchor proximity to anatomic structures, none has evaluated the ArthroBroström procedure. To evaluate the proximity of anatomic structures for the ArthroBroström lateral ankle ligament stabilization technique and to define ideal landmarks and "safe zones" for this repair. Descriptive laboratory study. Ten human cadaveric ankle specimens (5 matched pairs) were screened for the study. All specimens underwent arthroscopic lateral ligament repair according to the previously described ArthroBroström technique with 2 suture anchors in the fibula. Three cadaveric specimens were used to test the protocol, and 7 were dissected to determine the proximity of anatomic structures. Several distances were measured, including those of different anatomic structures to the suture knots, to determine the "safe zones." Measurements were obtained by 2 separate observers, and statistical analysis was performed. None of the specimens revealed entrapment by either of the suture knots of the critical anatomic structures, including the superficial peroneal nerve (SPN), sural nerve, peroneus tertius tendon, peroneus brevis tendon, or peroneus longus tendon. The internervous safe zone between the intermediate branch of the SPN and sural nerve was a mean of 51 mm (range, 39-64 mm). The intertendinous safe zone between the peroneus tertius and peroneus brevis was a mean of 43 mm (range, 37-49 mm). On average, a 20-mm (range, 8-36 mm) safe distance was maintained from the most medial suture to the intermediate branch of the SPN. The amount of inferior extensor retinaculum (IER) grasped by either suture knot varied from 0 to 12 mm, with 86% of repairs including the retinaculum. The results indicate that there is a relatively wide internervous and intertendinous safe zone when performing the ArthroBroström technique for lateral ankle stabilization. While none of the critical anatomic structures was entrapped by the suture knots, it was evident that the IER was included in a majority of the repairs. This study further defines the proximity of adjacent anatomic structures and establishes the anatomic safe zones for the ArthroBroström lateral ankle stabilization procedure. By defining this relatively risk-free zone, surgeons who are not as experienced with arthroscopic lateral ligament repair techniques may approach arthroscopic suture passage with more confidence. © 2015 The Author(s).
Venous catheterization with ultrasound navigation
NASA Astrophysics Data System (ADS)
Kasatkin, A. A.; Urakov, A. L.; Nigmatullina, A. R.
2015-11-01
By ultrasound scanning it was determined that respiratory movements made by chest of healthy and sick person are accompanied by respiratory chest rise of internal jugular veins. During the exhalation of an individual diameter of his veins increases and during the breath it decreases down to the complete disappearing if their lumen. Change of the diameter of internal jugular veins in different phases can influence significantly the results of vein puncture and cauterization in patients. The purpose of this research is development of the method increasing the efficiency and safety of cannulation of internal jugular veins by the ultrasound visualization. We suggested the method of catheterization of internal jugular veins by the ultrasound navigation during the execution of which the puncture of venous wall by puncture needle and the following conduction of J-guide is carried out at the moment of patient's exhalation. This method decreases the risk of complications development during catheterization of internal jugular vein due to exclusion of perforating wound of vein and subjacent tissues and anatomical structures.
Venous catheterization with ultrasound navigation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kasatkin, A. A., E-mail: ant-kasatkin@yandex.ru; Nigmatullina, A. R.; Urakov, A. L., E-mail: ant-kasatkin@yandex.ru
By ultrasound scanning it was determined that respiratory movements made by chest of healthy and sick person are accompanied by respiratory chest rise of internal jugular veins. During the exhalation of an individual diameter of his veins increases and during the breath it decreases down to the complete disappearing if their lumen. Change of the diameter of internal jugular veins in different phases can influence significantly the results of vein puncture and cauterization in patients. The purpose of this research is development of the method increasing the efficiency and safety of cannulation of internal jugular veins by the ultrasound visualization.more » We suggested the method of catheterization of internal jugular veins by the ultrasound navigation during the execution of which the puncture of venous wall by puncture needle and the following conduction of J-guide is carried out at the moment of patient’s exhalation. This method decreases the risk of complications development during catheterization of internal jugular vein due to exclusion of perforating wound of vein and subjacent tissues and anatomical structures.« less
Paulina-Carabajal, Ariana; Lee, Yuong-Nam; Jacobs, Louis L.
2016-01-01
Background Ankylosaurs are one of the least explored clades of dinosaurs regarding endocranial anatomy, with few available descriptions of braincase anatomy and even less information on brain and inner ear morphologies. The main goal of this study is to provide a detailed description of the braincase and internal structures of the Early Cretaceous nodosaurid Pawpawsaurus campbelli, based on recently made CT scans. Methodology/Principal Findings The skull of Pawpawsaurus was CT scanned at University of Texas at Austin (UTCT). Three-dimensional models were constructed using Mimics 18.0 (Materialise). The digital data and further processed 3D models revealed inaccessible anatomic structures, allowing a detailed description of the lateral wall of the braincase (obscured by other bones in the articulated skull), and endocranial structures such as the cranial endocast, the most complete inner ear morphology for a nodosaurid, and the interpretation of the airflow system within the nasal cavities. Conslusions/Significance The new information on the endocranial morphology of Pawpawsaurus adds anatomical data to the poorly understand ankylosaur paleoneurology. The new set of data has potential use not only in taxonomy and phylogeny, but also in paleobiological interpretations based on the relative development of sense organs, such as olfaction, hearing and balance. PMID:27007950
A probabilistic framework to infer brain functional connectivity from anatomical connections.
Deligianni, Fani; Varoquaux, Gael; Thirion, Bertrand; Robinson, Emma; Sharp, David J; Edwards, A David; Rueckert, Daniel
2011-01-01
We present a novel probabilistic framework to learn across several subjects a mapping from brain anatomical connectivity to functional connectivity, i.e. the covariance structure of brain activity. This prediction problem must be formulated as a structured-output learning task, as the predicted parameters are strongly correlated. We introduce a model selection framework based on cross-validation with a parametrization-independent loss function suitable to the manifold of covariance matrices. Our model is based on constraining the conditional independence structure of functional activity by the anatomical connectivity. Subsequently, we learn a linear predictor of a stationary multivariate autoregressive model. This natural parameterization of functional connectivity also enforces the positive-definiteness of the predicted covariance and thus matches the structure of the output space. Our results show that functional connectivity can be explained by anatomical connectivity on a rigorous statistical basis, and that a proper model of functional connectivity is essential to assess this link.
Rochlen, Lauryn R.; Levine, Robert; Tait, Alan R.
2016-01-01
Introduction The value of simulation in medical education and procedural skills training is well recognized. Despite this, many mannequin-based trainers are limited by the inability of the trainee to view the internal anatomical structures. This study evaluates the usability and feasibility of a 1st person point of view (POV) augmented reality (AR) trainer on needle insertion as a component of central venous catheter (CVC) placement. Methods Forty subjects, including medical students and anesthesiology residents and faculty participated. AR glasses were provided through which the relevant internal anatomical landmarks were projected. Following a practice period, participants were asked to place the needle in the mannequin without the benefit of the AR projected internal anatomy. The ability of the trainees to correctly place the needle was documented. Participants also completed a short survey describing their perceptions of the AR technology. Results Participants reported that the AR technology was realistic (77.5%) and that the ability to view the internal anatomy was helpful (92.5%). Furthermore, 85% and 82.1%, respectively, believed that the AR technology promoted learning and should be incorporated into medical training. The ability to successfully place the needle was similar between experienced and non-experienced participants, however, less experienced participants were more likely to inadvertently puncture the carotid artery. Conclusions Results of this pilot study demonstrated the usability and feasibility of AR technology as a potentially important adjunct to simulated medical skills training. Further development and evaluation of this innovative technology under a variety of simulated medical training settings would be an important next step. PMID:27930431
Rochlen, Lauryn R; Levine, Robert; Tait, Alan R
2017-02-01
The value of simulation in medical education and procedural skills training is well recognized. Despite this, many mannequin-based trainers are limited by the inability of the trainee to view the internal anatomical structures. This study evaluates the usability and feasibility of a first-person point-of-view-augmented reality (AR) trainer on needle insertion as a component of central venous catheter placement. Forty subjects, including medical students and anesthesiology residents and faculty, participated. Augmented reality glasses were provided through which the relevant internal anatomical landmarks were projected. After a practice period, participants were asked to place the needle in the mannequin without the benefit of the AR-projected internal anatomy. The ability of the trainees to correctly place the needle was documented. Participants also completed a short survey describing their perceptions of the AR technology. Participants reported that the AR technology was realistic (77.5%) and that the ability to view the internal anatomy was helpful (92.5%). Furthermore, 85% and 82.1%, respectively, believed that the AR technology promoted learning and should be incorporated into medical training. The ability to successfully place the needle was similar between experienced and nonexperienced participants; however, less experienced participants were more likely to inadvertently puncture the carotid artery. Results of this pilot study demonstrated the usability and feasibility of AR technology as a potentially important adjunct to simulated medical skills training. Further development and evaluation of this innovative technology under a variety of simulated medical training settings would be an important next step.
Normal magnetic resonance imaging anatomy of the ankle & foot.
Arnold, George; Vohra, Saifuddin; Marcantonio, David; Doshi, Shashin
2011-08-01
This article discusses anatomic relationships, anatomic variants, and MRI protocols that pertain to the foot and ankle. MR images with detailed anatomic description form the cornerstone of this article. The superb image quality will facilitate learning normal imaging anatomy, as well as conceptualizing spatial relationships of anatomic structures. Copyright © 2011 Elsevier Inc. All rights reserved.
The Brain’s Default Network and its Adaptive Role in Internal Mentation
Andrews-Hanna, Jessica R.
2013-01-01
During the many idle moments that comprise daily life, the human brain increases its activity across a set of midline and lateral cortical brain regions known as the “default network.” Despite the robustness with which the brain defaults to this pattern of activity, surprisingly little is known about the network’s precise anatomical organization and adaptive functions. To provide insight into these questions, this article synthesizes recent literature from structural and functional imaging with a growing behavioral literature on mind wandering. Results characterize the default network as a set of interacting hubs and subsystems that play an important role in “internal mentation” – the introspective and adaptive mental activities in which humans spontaneously and deliberately engage in everyday. . PMID:21677128
Abdelnour, Farras; Voss, Henning U.; Raj, Ashish
2014-01-01
The relationship between anatomic connectivity of large-scale brain networks and their functional connectivity is of immense importance and an area of active research. Previous attempts have required complex simulations which model the dynamics of each cortical region, and explore the coupling between regions as derived by anatomic connections. While much insight is gained from these non-linear simulations, they can be computationally taxing tools for predicting functional from anatomic connectivities. Little attention has been paid to linear models. Here we show that a properly designed linear model appears to be superior to previous non-linear approaches in capturing the brain’s long-range second order correlation structure that governs the relationship between anatomic and functional connectivities. We derive a linear network of brain dynamics based on graph diffusion, whereby the diffusing quantity undergoes a random walk on a graph. We test our model using subjects who underwent diffusion MRI and resting state fMRI. The network diffusion model applied to the structural networks largely predicts the correlation structures derived from their fMRI data, to a greater extent than other approaches. The utility of the proposed approach is that it can routinely be used to infer functional correlation from anatomic connectivity. And since it is linear, anatomic connectivity can also be inferred from functional data. The success of our model confirms the linearity of ensemble average signals in the brain, and implies that their long-range correlation structure may percolate within the brain via purely mechanistic processes enacted on its structural connectivity pathways. PMID:24384152
2017-02-01
ARL-TR-7945 ● FEB 2017 US Army Research Laboratory Development of an Anatomically Accurate Finite Element Human Ocular Globe...ARL-TR-7945 ● FEB 2017 US Army Research Laboratory Development of an Anatomically Accurate Finite Element Human Ocular Globe Model... Finite Element Human Ocular Globe Model for Blast-Related Fluid-Structure Interaction Studies 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM
Ellis, D W; Srigley, J
2016-01-01
Key quality parameters in diagnostic pathology include timeliness, accuracy, completeness, conformance with current agreed standards, consistency and clarity in communication. In this review, we argue that with worldwide developments in eHealth and big data, generally, there are two further, often overlooked, parameters if our reports are to be fit for purpose. Firstly, population-level studies have clearly demonstrated the value of providing timely structured reporting data in standardised electronic format as part of system-wide quality improvement programmes. Moreover, when combined with multiple health data sources through eHealth and data linkage, structured pathology reports become central to population-level quality monitoring, benchmarking, interventions and benefit analyses in public health management. Secondly, population-level studies, particularly for benchmarking, require a single agreed international and evidence-based standard to ensure interoperability and comparability. This has been taken for granted in tumour classification and staging for many years, yet international standardisation of cancer datasets is only now underway through the International Collaboration on Cancer Reporting (ICCR). In this review, we present evidence supporting the role of structured pathology reporting in quality improvement for both clinical care and population-level health management. Although this review of available evidence largely relates to structured reporting of cancer, it is clear that the same principles can be applied throughout anatomical pathology generally, as they are elsewhere in the health system.
Nonlinear aspects of acoustic radiation force in biomedical applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ostrovsky, Lev, E-mail: Lev.A.Ostrovsky@noaa.gov; Tsyuryupa, Sergey; Sarvazyan, Armen, E-mail: armen@artannlabs.com
In the past decade acoustic radiation force (ARF) became a powerful tool in numerous biomedical applications. ARF from a focused ultrasound beam acts as a virtual “finger” for remote probing of internal anatomical structures and obtaining diagnostic information. This presentation deals with generation of shear waves by nonlinear focused beams. Albeit the ARF has intrinsically nonlinear origin, in most cases the primary ultrasonic wave was considered in the linear approximation. In this presentation, we consider the effects of nonlinearly distorted beams on generation of shear waves by such beams.
Nonlinear aspects of acoustic radiation force in biomedical applications
NASA Astrophysics Data System (ADS)
Ostrovsky, Lev; Tsyuryupa, Sergey; Sarvazyan, Armen
2015-10-01
In the past decade acoustic radiation force (ARF) became a powerful tool in numerous biomedical applications. ARF from a focused ultrasound beam acts as a virtual "finger" for remote probing of internal anatomical structures and obtaining diagnostic information. This presentation deals with generation of shear waves by nonlinear focused beams. Albeit the ARF has intrinsically nonlinear origin, in most cases the primary ultrasonic wave was considered in the linear approximation. In this presentation, we consider the effects of nonlinearly distorted beams on generation of shear waves by such beams.
Three-dimensional imaging of intracochlear tissue by scanning laser optical tomography (SLOT)
NASA Astrophysics Data System (ADS)
Tinne, N.; Nolte, L.; Antonopoulos, G. C.; Schulze, J.; Andrade, J.; Heisterkamp, A.; Meyer, H.; Warnecke, A.; Majdani, O.; Ripken, T.
2016-02-01
The presented study focuses on the application of scanning laser optical tomography (SLOT) for non-destructive visualization of anatomical structures inside the human cochlea ex vivo. SLOT is a laser-based highly efficient microscopy technique, which allows for tomographic imaging of the internal structure of transparent large-scale specimens (up to 1 cm3). Thus, in the field of otology this technique is best convenient for an ex vivo study of the inner ear anatomy. For this purpose, the preparation before imaging comprises mechanically assisted decalcification, dehydration as well as optical clearing of the cochlea samples. Here, we demonstrate results of SLOT visualizing hard and soft tissue structures of the human cochlea with an optical resolution in the micrometer range using absorption and autofluorescence as contrast mechanisms. Furthermore, we compare our results with the method of X-ray micro tomography (micro-CT, μCT) as clinical gold standard which is based only on absorption. In general, SLOT can provide the advantage of covering all contrast mechanisms known from other light microscopy techniques, such as fluorescence or scattering. For this reason, a protocol for antibody staining has been developed, which additionally enables selective mapping of cellular structures within the cochlea. Thus, we present results of SLOT imaging rodent cochleae showing specific anatomical structures such as hair cells and neurofilament via fluorescence. In conclusion, the presented study has shown that SLOT is an ideally suited tool in the field of otology for in toto visualization of the inner ear microstructure.
Margócsy, Dániel
2009-06-01
This paper sketches how late seventeenth-century Dutch anatomists used printed publications to advertise their anatomical preparations, inventions and instructional technologies to an international clientele. It focuses on anatomists Frederik Ruysch (1638-1732) and Lodewijk de Bils (1624-69), inventors of two separate anatomical preparation methods for preserving cadavers and body parts in a lifelike state for decades or centuries. Ruysch's and de Bils's publications functioned as an 'advertisement' for their preparations. These printed volumes informed potential customers that anatomical preparations were aesthetically pleasing and scientifically important but did not divulge the trade secrets of the method of production. Thanks to this strategy of non-disclosure and advertisement, de Bils and Ruysch could create a well-working monopoly market of anatomical preparations. The 'advertising' rhetorics of anatomical publications highlight the potential dangers of equating the growth of print culture with the development of an open system of knowledge exchange.
Mistakes in the usage of anatomical terminology in clinical practice.
Kachlik, David; Bozdechova, Ivana; Cech, Pavel; Musil, Vladimir; Baca, Vaclav
2009-06-01
Anatomical terminology serves as a basic communication tool in all the medical fields. Therefore Latin anatomical nomenclature has been repetitively issued and revised from 1895 (Basiliensia Nomina Anatomica) until 1998, when the last version was approved and published as the Terminologia Anatomica (International Anatomical Terminology) by the Federative Committee on Anatomical Terminology. A brief history of the terminology and nomenclature development is mentioned, along with the concept and contributions of the Terminologia Anatomica including the employed abbreviations. Examples of obsolete anatomical terms and their current synonyms are listed. Clinicians entered the process of the nomenclature revision and this aspect is demonstrated with several examples of terms used in clinical fields only, some already incorporated in the Terminologia Anatomica and a few obsolete terms still alive in non-theoretical communication. Frequent mistakes in grammar and orthography are stated as well. Authors of the article strongly recommend the use of the recent revision of the Latin anatomical nomenclature both in theoretical and clinical medicine.
Anatomical exploration of a dicephalous goat kid using sheet plastination (E12).
Elnady, Fawzy; Sora, Mircea-Constantin
2009-06-01
A dicephalous, 1-day-old, female goat kid was presented for anatomical study. Epoxy plastination slices (E12) were used successfully to explore this condition. They provided excellent anatomic and bone detail, demonstrating organ position, shared structures, and vascular anatomy. Sheet plastination (E12) was used as an optimal method to clarify how the two heads were united, especially the neuroanatomy. The plastinated transparent slices allowed detailed study of the anatomical structures, in a non-collapsed and non-dislocated state. Thus, we anatomically explored this rare condition without traditional dissection. The advantages of plastination extended to the preservation at room temperature of this case for further topographical investigation. To the authors' best knowledge, this is the first published report of plastination of a dicephalous goat.
Roessler, Philip P; Schüttler, Karl F; Heyse, Thomas J; Wirtz, Dieter C; Efe, Turgay
2016-03-01
The anterolateral ligament of the knee (ALL) has caused a lot of rumors in orthopaedics these days. The structure that was first described by Segond back in 1879 has experienced a long history of anatomic descriptions and speculations until its rediscovery by Claes in 2013. Its biomechanical properties and function have been examined recently, but are not yet fully understood. While the structure seems to act as a limiter of internal rotation and lateral meniscal extrusion its possible proprioceptive effect remains questionable. Its contribution to the pivot shift phenomenon has been uncovered in parts, therefore it has been recognized that a concomitant anterolateral stabilization together with ACL reconstruction may aid in prevention of postoperative instability after severe ligamentous knee damages. However, there are a lot of different methods to perform this procedure and the clinical outcome has yet to be examined. This concise review will give an overview on the present literature to outline the long history of the ALL under its different names, its anatomic variances and topography as well as on histologic examinations, imaging modalities, arthroscopic aspects and methods for a possible anterolateral stabilization of the knee joint.
[Anatomic foundation of the lateral portal for radiotherapy of nasopharyngeal cancer (NPC)].
Wei, B Q; Feng, P B; Li, J Z
1987-05-01
Basing on 31 normal skulls, the lateral projections of some points relative to the bony structure near the nasopharynx were located under the simulator, followed by drawing it on a sheet of paper with the aid of geometry and trigonometry. Thus, the relation between external and internal structures is shown on the drawn projection, which can serve as the anatomic basis for designing the routine field and improving radiotherapy technique. In the light of data informed by this study and clinical experiences of the authors and others, it was found logical, in radiotherapy of NPC, that large opposing lateral pre-auriculo-cervical portals with their posterior margin extending beyond the external auditory meatus posteriorly be used in order to avoid geographic miss of the uppermost deep cervical lymph nodes usually involved beneath the jugular foramen and posterior portion of the nasopharynx. In addition, the upper margin of the lateral portal must be parallel but superior to the cantho-auditory line, on which the foramen ovale is projected. Actual locating the upper margin should depend on the extent of the intracranial invasion of the tumor as shown by the CT scan.
Soft Tissue Structure Modelling for Use in Orthopaedic Applications and Musculoskeletal Biomechanics
NASA Astrophysics Data System (ADS)
Audenaert, E. A.; Mahieu, P.; van Hoof, T.; Pattyn, C.
2009-12-01
We present our methodology for the three-dimensional anatomical and geometrical description of soft tissues, relevant for orthopaedic surgical applications and musculoskeletal biomechanics. The technique involves the segmentation and geometrical description of muscles and neurovascular structures from high-resolution computer tomography scanning for the reconstruction of generic anatomical models. These models can be used for quantitative interpretation of anatomical and biomechanical aspects of different soft tissue structures. This approach should allow the use of these data in other application fields, such as musculoskeletal modelling, simulations for radiation therapy, and databases for use in minimally invasive, navigated and robotic surgery.
Functional brain networks reconstruction using group sparsity-regularized learning.
Zhao, Qinghua; Li, Will X Y; Jiang, Xi; Lv, Jinglei; Lu, Jianfeng; Liu, Tianming
2018-06-01
Investigating functional brain networks and patterns using sparse representation of fMRI data has received significant interests in the neuroimaging community. It has been reported that sparse representation is effective in reconstructing concurrent and interactive functional brain networks. To date, most of data-driven network reconstruction approaches rarely take consideration of anatomical structures, which are the substrate of brain function. Furthermore, it has been rarely explored whether structured sparse representation with anatomical guidance could facilitate functional networks reconstruction. To address this problem, in this paper, we propose to reconstruct brain networks utilizing the structure guided group sparse regression (S2GSR) in which 116 anatomical regions from the AAL template, as prior knowledge, are employed to guide the network reconstruction when performing sparse representation of whole-brain fMRI data. Specifically, we extract fMRI signals from standard space aligned with the AAL template. Then by learning a global over-complete dictionary, with the learned dictionary as a set of features (regressors), the group structured regression employs anatomical structures as group information to regress whole brain signals. Finally, the decomposition coefficients matrix is mapped back to the brain volume to represent functional brain networks and patterns. We use the publicly available Human Connectome Project (HCP) Q1 dataset as the test bed, and the experimental results indicate that the proposed anatomically guided structure sparse representation is effective in reconstructing concurrent functional brain networks.
SU-C-207B-02: Maximal Noise Reduction Filter with Anatomical Structures Preservation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Maitree, R; Guzman, G; Chundury, A
Purpose: All medical images contain noise, which can result in an undesirable appearance and can reduce the visibility of anatomical details. There are varieties of techniques utilized to reduce noise such as increasing the image acquisition time and using post-processing noise reduction algorithms. However, these techniques are increasing the imaging time and cost or reducing tissue contrast and effective spatial resolution which are useful diagnosis information. The three main focuses in this study are: 1) to develop a novel approach that can adaptively and maximally reduce noise while preserving valuable details of anatomical structures, 2) to evaluate the effectiveness ofmore » available noise reduction algorithms in comparison to the proposed algorithm, and 3) to demonstrate that the proposed noise reduction approach can be used clinically. Methods: To achieve a maximal noise reduction without destroying the anatomical details, the proposed approach automatically estimated the local image noise strength levels and detected the anatomical structures, i.e. tissue boundaries. Such information was used to adaptively adjust strength of the noise reduction filter. The proposed algorithm was tested on 34 repeating swine head datasets and 54 patients MRI and CT images. The performance was quantitatively evaluated by image quality metrics and manually validated for clinical usages by two radiation oncologists and one radiologist. Results: Qualitative measurements on repeated swine head images demonstrated that the proposed algorithm efficiently removed noise while preserving the structures and tissues boundaries. In comparisons, the proposed algorithm obtained competitive noise reduction performance and outperformed other filters in preserving anatomical structures. Assessments from the manual validation indicate that the proposed noise reduction algorithm is quite adequate for some clinical usages. Conclusion: According to both clinical evaluation (human expert ranking) and qualitative assessment, the proposed approach has superior noise reduction and anatomical structures preservation capabilities over existing noise removal methods. Senior Author Dr. Deshan Yang received research funding form ViewRay and Varian.« less
Automated selection of computed tomography display parameters using neural networks
NASA Astrophysics Data System (ADS)
Zhang, Di; Neu, Scott; Valentino, Daniel J.
2001-07-01
A collection of artificial neural networks (ANN's) was trained to identify simple anatomical structures in a set of x-ray computed tomography (CT) images. These neural networks learned to associate a point in an image with the anatomical structure containing the point by using the image pixels located on the horizontal and vertical lines that ran through the point. The neural networks were integrated into a computer software tool whose function is to select an index into a list of CT window/level values from the location of the user's mouse cursor. Based upon the anatomical structure selected by the user, the software tool automatically adjusts the image display to optimally view the structure.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, Eu Hyun, E-mail: doorihyun6@gmail.com; Oh, Jung Suk; Chun, Ho Jong
PurposeThe study aimed to introduce a monorail technique to overcome difficult anatomical course via left internal jugular vein in implantable port insertion.MethodsFrom 2007 to 2016, a total of 9346 patients were referred for implantable port insertion in our interventional unit, among which 79 cases were requested to insert on the left side. Our monorail technique was applied only when the technical challenge of the catheter tip entering the azygos vein instead of the superior vena cava occurred (n = 7). The technique consists of puncturing at the distal tip of the port catheter with a 21-gauge micropuncture needle and advancing a 0.018-in.more » hair-wire to guide and provide support for pre-assembled port.ResultsThe monorail technique was performed in seven patients and all but one case were technically successful, showing a technical success rate of 85.7%. There were no immediate or delayed complications.ConclusionsThe monorail technique is helpful to overcome the difficult anatomical course via left internal jugular vein in implantable port insertion.« less
A core syllabus for the teaching of neuroanatomy to medical students.
Moxham, Bernard; McHanwell, Stephen; Plaisant, Odile; Pais, Diogo
2015-09-01
There is increasingly a call for clinical relevance in the teaching of biomedical sciences within all health care courses. However, this presupposes that there is a clear understanding of what can be considered core material within the curricula. To date, the anatomical sciences have been relatively poorly served by the development of core syllabuses, particularly for specialized core syllabuses such as neuroanatomy. One of the aims of the International Federation of Associations of Anatomists (IFAA) and of the European Federation for Experimental Morphology (EFEM) is to formulate, on an international scale, core syllabuses for all branches of the anatomical sciences using Delphi Panels consisting of anatomists, scientists, and clinicians to initially evaluate syllabus content. In this article, the findings of a Delphi Panel for neuroanatomy are provided. These findings will subsequently be published on the IFAA website to enable anatomical (and other cognate learned) societies and individual anatomists, clinicians, and students to freely comment upon, and elaborate and amend, the syllabuses. The aim is to set internationally recognized standards and thus to provide guidelines concerning neuroanatomical knowledge when engaged in course development. © 2015 Wiley Periodicals, Inc.
Kim, Eu Hyun; Oh, Jung Suk; Chun, Ho Jong; Lee, Hae Giu; Choi, Byung Gil
2017-03-01
The study aimed to introduce a monorail technique to overcome difficult anatomical course via left internal jugular vein in implantable port insertion. From 2007 to 2016, a total of 9346 patients were referred for implantable port insertion in our interventional unit, among which 79 cases were requested to insert on the left side. Our monorail technique was applied only when the technical challenge of the catheter tip entering the azygos vein instead of the superior vena cava occurred (n = 7). The technique consists of puncturing at the distal tip of the port catheter with a 21-gauge micropuncture needle and advancing a 0.018-in. hair-wire to guide and provide support for pre-assembled port. The monorail technique was performed in seven patients and all but one case were technically successful, showing a technical success rate of 85.7%. There were no immediate or delayed complications. The monorail technique is helpful to overcome the difficult anatomical course via left internal jugular vein in implantable port insertion.
Fu, Feng; Qin, Zhe; Xu, Chao; Chen, Xu-yi; Li, Rui-xin; Wang, Li-na; Peng, Ding-wei; Sun, Hong-tao; Tu, Yue; Chen, Chong; Zhang, Sai; Zhao, Ming-liang; Li, Xiao-hong
2017-01-01
Conventional fabrication methods lack the ability to control both macro- and micro-structures of generated scaffolds. Three-dimensional printing is a solid free-form fabrication method that provides novel ways to create customized scaffolds with high precision and accuracy. In this study, an electrically controlled cortical impactor was used to induce randomized brain tissue defects. The overall shape of scaffolds was designed using rat-specific anatomical data obtained from magnetic resonance imaging, and the internal structure was created by computer-aided design. As the result of limitations arising from insufficient resolution of the manufacturing process, we magnified the size of the cavity model prototype five-fold to successfully fabricate customized collagen-chitosan scaffolds using three-dimensional printing. Results demonstrated that scaffolds have three-dimensional porous structures, high porosity, highly specific surface areas, pore connectivity and good internal characteristics. Neural stem cells co-cultured with scaffolds showed good viability, indicating good biocompatibility and biodegradability. This technique may be a promising new strategy for regenerating complex damaged brain tissues, and helps pave the way toward personalized medicine. PMID:28553343
Fluid Structural Analysis of Human Cerebral Aneurysm Using Their Own Wall Mechanical Properties
Valencia, Alvaro; Burdiles, Patricio; Ignat, Miguel; Mura, Jorge; Rivera, Rodrigo; Sordo, Juan
2013-01-01
Computational Structural Dynamics (CSD) simulations, Computational Fluid Dynamics (CFD) simulation, and Fluid Structure Interaction (FSI) simulations were carried out in an anatomically realistic model of a saccular cerebral aneurysm with the objective of quantifying the effects of type of simulation on principal fluid and solid mechanics results. Eight CSD simulations, one CFD simulation, and four FSI simulations were made. The results allowed the study of the influence of the type of material elements in the solid, the aneurism's wall thickness, and the type of simulation on the modeling of a human cerebral aneurysm. The simulations use their own wall mechanical properties of the aneurysm. The more complex simulation was the FSI simulation completely coupled with hyperelastic Mooney-Rivlin material, normal internal pressure, and normal variable thickness. The FSI simulation coupled in one direction using hyperelastic Mooney-Rivlin material, normal internal pressure, and normal variable thickness is the one that presents the most similar results with respect to the more complex FSI simulation, requiring one-fourth of the calculation time. PMID:24151523
Zhang, Xiaoyan; Kim, Daeseung; Shen, Shunyao; Yuan, Peng; Liu, Siting; Tang, Zhen; Zhang, Guangming; Zhou, Xiaobo; Gateno, Jaime
2017-01-01
Accurate surgical planning and prediction of craniomaxillofacial surgery outcome requires simulation of soft tissue changes following osteotomy. This can only be achieved by using an anatomically detailed facial soft tissue model. The current state-of-the-art of model generation is not appropriate to clinical applications due to the time-intensive nature of manual segmentation and volumetric mesh generation. The conventional patient-specific finite element (FE) mesh generation methods are to deform a template FE mesh to match the shape of a patient based on registration. However, these methods commonly produce element distortion. Additionally, the mesh density for patients depends on that of the template model. It could not be adjusted to conduct mesh density sensitivity analysis. In this study, we propose a new framework of patient-specific facial soft tissue FE mesh generation. The goal of the developed method is to efficiently generate a high-quality patient-specific hexahedral FE mesh with adjustable mesh density while preserving the accuracy in anatomical structure correspondence. Our FE mesh is generated by eFace template deformation followed by volumetric parametrization. First, the patient-specific anatomically detailed facial soft tissue model (including skin, mucosa, and muscles) is generated by deforming an eFace template model. The adaptation of the eFace template model is achieved by using a hybrid landmark-based morphing and dense surface fitting approach followed by a thin-plate spline interpolation. Then, high-quality hexahedral mesh is constructed by using volumetric parameterization. The user can control the resolution of hexahedron mesh to best reflect clinicians’ need. Our approach was validated using 30 patient models and 4 visible human datasets. The generated patient-specific FE mesh showed high surface matching accuracy, element quality, and internal structure matching accuracy. They can be directly and effectively used for clinical simulation of facial soft tissue change. PMID:29027022
Zhang, Xiaoyan; Kim, Daeseung; Shen, Shunyao; Yuan, Peng; Liu, Siting; Tang, Zhen; Zhang, Guangming; Zhou, Xiaobo; Gateno, Jaime; Liebschner, Michael A K; Xia, James J
2018-04-01
Accurate surgical planning and prediction of craniomaxillofacial surgery outcome requires simulation of soft tissue changes following osteotomy. This can only be achieved by using an anatomically detailed facial soft tissue model. The current state-of-the-art of model generation is not appropriate to clinical applications due to the time-intensive nature of manual segmentation and volumetric mesh generation. The conventional patient-specific finite element (FE) mesh generation methods are to deform a template FE mesh to match the shape of a patient based on registration. However, these methods commonly produce element distortion. Additionally, the mesh density for patients depends on that of the template model. It could not be adjusted to conduct mesh density sensitivity analysis. In this study, we propose a new framework of patient-specific facial soft tissue FE mesh generation. The goal of the developed method is to efficiently generate a high-quality patient-specific hexahedral FE mesh with adjustable mesh density while preserving the accuracy in anatomical structure correspondence. Our FE mesh is generated by eFace template deformation followed by volumetric parametrization. First, the patient-specific anatomically detailed facial soft tissue model (including skin, mucosa, and muscles) is generated by deforming an eFace template model. The adaptation of the eFace template model is achieved by using a hybrid landmark-based morphing and dense surface fitting approach followed by a thin-plate spline interpolation. Then, high-quality hexahedral mesh is constructed by using volumetric parameterization. The user can control the resolution of hexahedron mesh to best reflect clinicians' need. Our approach was validated using 30 patient models and 4 visible human datasets. The generated patient-specific FE mesh showed high surface matching accuracy, element quality, and internal structure matching accuracy. They can be directly and effectively used for clinical simulation of facial soft tissue change.
A structural review of foliar glands in Passiflora L. (Passifloraceae)
da Costa Silva, Delmira; Flavia de Albuquerque Melo-de-Pinna, Gladys
2017-01-01
Extrafloral glands in Passifloraceae species have aroused the interest of many researchers because of their wide morphological diversity. The present work analyzed the foliar glands on 34 species of Passiflora from samples containing glands in the petiole and foliar blade fixed in 50% solution of formaldehyde-ethanol-acetic acid and stored in a 70% ethanol solution. For anatomical analyses, part of the material was embedded in Paraplast, longitudinally sectioned and double stained with safranin and astra blue. Scanning electron microscopy analysis was also carried out. To analyze the presence of sugars in the secretion of foliar glands, a glucose strip test was used. Based on the results of morphological, anatomical and glucose strip tests, the foliar secretory glands in Passiflora can be grouped into two categories: Type I glands, defined as nectaries, can be elevated or flattened, and can have a sugar content high enough to be detected by the glucose strip test analysis. Type II glands are elevated and did not show a positive reaction to the glucose strip test. From an anatomical viewpoint, glands characterized as extrafloral nectaries show a multistratified secretory epidermis, typically followed by two flat layers of nectariferous parenchyma with dense content. Internal to these layers, vascular bundles are immersed in the subsecretory parenchyma and terminate in phloem cells. On the other hand, type II glands show a single layer of elongated secretory epidermal cells. Internal to this single layer, parenchyma and vascular tissue with both phloem and xylem elements can be observed. The analyzed species show a wide diversity of gland shape and distribution, and the combined analysis of morphology, anatomy and preliminary tests for the presence of glucose in the exudate in different Passiflora subgenera suggests the occurrence of two categories of glands: nectaries and resin glands. PMID:29136029
Tour of a labyrinth: exploring the vertebrate nose.
Van Valkenburgh, Blaire; Smith, Timothy D; Craven, Brent A
2014-11-01
This special issue of The Anatomical Record is the outcome of a symposium entitled "Inside the Vertebrate Nose: Evolution, Structure and Function." The skeletal framework of the nasal cavity is a complicated structure that often houses sinuses and comprises an internal skeleton of bone or cartilage that can vary greatly in architecture among species. The nose serves multiple functions, including olfaction and respiratory air-conditioning, and its morphology is constrained by evolution, development, and conflicting demands on cranial space, such as enlarged orbits. The nasal cavity of vertebrates has received much more attention in the last decade due to the emergence of nondestructive methods that allow improved visualization of the internal anatomy of the skull, such as high-resolution x-ray computed tomography and magnetic resonance imaging. The 17 articles included here represent a broad range of investigators, from paleontologists to engineers, who approach the nose from different perspectives. Key topics include the evolution and development of the nose, its comparative anatomy and function, and airflow through the nasal cavity of individual species. In addition, this special issue includes review articles on anatomical reduction of the olfactory apparatus in both cetaceans and primates (the vomeronasal system), as well as the molecular biology of olfaction in vertebrates. Together these articles provide an expansive summary of our current understanding of vertebrate nasal anatomy and function. In this introduction, we provide background information and an overview of each of the three primary topics, and place each article within the context of previous research and the major challenges that lie ahead. © 2014 Wiley Periodicals, Inc.
SAFE LOCALIZATION FOR PLACEMENT OF PERCUTANEOUS PINS IN THE CALCANEUS.
Labronici, Pedro José; Pereira, Diogo do Nascimento; Pilar, Pedro Henrique Vargas Moreira; Franco, José Sergio; Serra, Marcos Donato; Cohen, José Carlos; Bitar, Rogério Carneiro
2012-01-01
To determine the areas presenting risk in six zones of the calcaneus, and to quantify the risks of injury to the anatomical structures (artery, vein, nerve and tendon). Fifty-three calcanei from cadavers were used, divided into three zones and each subdivided in two areas (upper and lower) by means of a longitudinal line through the calcaneus. The risk of injury to the anatomical structures in relation to each Kirschner wire was determined using a graded system according to the Licht classification. The total risk of injury to the anatomical structures through placement of more than one wire was quantified using the additive law of probabilities and the product law for independent events. The injury risk calculation according to the Licht classification showed that the highest risk of injury to the artery or vein was in zone IA (43%), in relation to injuries to nerves and tendons (13% and 0%, respectively). This study made it possible to identify the most vulnerable anatomical structures and quantify the risk of injury to the calcaneus.
Anatomical relations of anterior and posterior ankle arthroscopy portals: a cadaveric study.
Oliva, Xavier Martin; Méndez López, José Manuel; Monzo Planella, Mariano; Bravo, Alex; Rodrigues-Pinto, Ricardo
2015-04-01
Ankle arthroscopy is an increasingly used technique. Knowledge of the anatomical structures in relation to its portals is paramount to avoid complications. Twenty cadaveric ankles were analysed to assess the distance between relevant neurovascular structures to the anteromedial, anterolateral, posteromedial, and posterolateral arthroscopy portals. The intermediate dorsal branch of the superficial peroneal nerve was the closest structure to any of the portals (4.8 mm from the anterolateral portal), followed by the posterior tibial nerve (7.3 mm from the posteromedial portal). All structures analysed but one (posterior tibial artery) were, at least in one specimen, <5 mm distant from one of the portals. This study provides information on the anatomical relations of ankle arthroscopy portals and relevant neurovascular structures, confirming previous studies identifying the superficial peroneal nerve as the structure at highest risk of injury, but also highlighting some important variations. Techniques to minimise the injury to these structures are discussed.
NASA Astrophysics Data System (ADS)
Maurer, Calvin R., Jr.; Sauer, Frank; Hu, Bo; Bascle, Benedicte; Geiger, Bernhard; Wenzel, Fabian; Recchi, Filippo; Rohlfing, Torsten; Brown, Christopher R.; Bakos, Robert J.; Maciunas, Robert J.; Bani-Hashemi, Ali R.
2001-05-01
We are developing a video see-through head-mounted display (HMD) augmented reality (AR) system for image-guided neurosurgical planning and navigation. The surgeon wears a HMD that presents him with the augmented stereo view. The HMD is custom fitted with two miniature color video cameras that capture a stereo view of the real-world scene. We are concentrating specifically at this point on cranial neurosurgery, so the images will be of the patient's head. A third video camera, operating in the near infrared, is also attached to the HMD and is used for head tracking. The pose (i.e., position and orientation) of the HMD is used to determine where to overlay anatomic structures segmented from preoperative tomographic images (e.g., CT, MR) on the intraoperative video images. Two SGI 540 Visual Workstation computers process the three video streams and render the augmented stereo views for display on the HMD. The AR system operates in real time at 30 frames/sec with a temporal latency of about three frames (100 ms) and zero relative lag between the virtual objects and the real-world scene. For an initial evaluation of the system, we created AR images using a head phantom with actual internal anatomic structures (segmented from CT and MR scans of a patient) realistically positioned inside the phantom. When using shaded renderings, many users had difficulty appreciating overlaid brain structures as being inside the head. When using wire frames, and texture-mapped dot patterns, most users correctly visualized brain anatomy as being internal and could generally appreciate spatial relationships among various objects. The 3D perception of these structures is based on both stereoscopic depth cues and kinetic depth cues, with the user looking at the head phantom from varying positions. The perception of the augmented visualization is natural and convincing. The brain structures appear rigidly anchored in the head, manifesting little or no apparent swimming or jitter. The initial evaluation of the system is encouraging, and we believe that AR visualization might become an important tool for image-guided neurosurgical planning and navigation.
On the nomenclature of coelom-derived body cavities.
Knospe, C
2008-06-01
A rationalization of terms about the body cavities is urgently needed. Students and practitioners have difficulty in understanding the contradictory terms prevalent at present. For many years, the International Committee on Veterinary Gross Anatomical Nomenclature has failed to bring it off; therefore some proposals for the anatomical instruction until the next edition of the Nomina Anatomica Veterinaria are made.
Oral and Maxillofacial Anatomy.
Sadrameli, Mitra; Mupparapu, Mel
2018-01-01
This article deals with identification and descriptions of intraoral and extraoral anatomy of the dental and maxillofacial structures. The anatomic landmarks are highlighted and described based on their radiographic appearance and their clinical significance is provided. Cone beam CT-based images are described in detail using the multiplanar reconstructions. The skull views are depicted via line diagrams in addition to their normal radiographic appearance to make identification of anatomic structures easier for clinicians. The authors cover most of the anatomic structures commonly noted via radiographs and their descriptions. This article serves as a clinician's guide to oral and maxillofacial radiographic anatomy. Copyright © 2017 Elsevier Inc. All rights reserved.
Estimate of Space Radiation-Induced Cancer Risks for International Space Station Orbits
NASA Technical Reports Server (NTRS)
Wu, Honglu; Atwell, William; Cucinotta, Francis A.; Yang, Chui-hsu
1996-01-01
Excess cancer risks from exposures to space radiation are estimated for various orbits of the International Space Station (ISS). Organ exposures are computed with the transport codes, BRYNTRN and HZETRN, and the computerized anatomical male and computerized anatomical female models. Cancer risk coefficients in the National Council on Radiation Protection and Measurements report No. 98 are used to generate lifetime excess cancer incidence and cancer mortality after a one-month mission to ISS. The generated data are tabulated to serve as a quick reference for assessment of radiation risk to astronauts on ISS missions.
Kortmann, H R; Wolter, D; Meinecke, F W; Eggers, C
1986-11-01
Sixty-five patients with cervical spine injuries and varied neurological deficits were treated operatively. Evaluation revealed an improvement in neurological findings dependent upon the promptness of anatomical reduction in patients with incomplete lesions. The more frequent neurological improvement seen with open reduction and internal fixation as compared with closed reduction was not statistically significant but was felt to justify the additional resources required for internal fixation. In complete lesions, there was no evidence that the time of anatomical reduction was related to improvement in neurological findings.
Farias, Nahuel E; Spivak, Eduardo D; Luppi, Tomas A
2017-07-01
We studied the functional morphology of the female reproductive system of the purple stone crab Danielethus crenulatus. The most remarkable feature is the relative storage capacity and extensibility of the seminal receptacles. These receptacles are a pair of simple sacs that lack internal structures dividing the internal lumen. Differences in seminal receptacle size and contents are accompanied by conspicuous changes in receptacle lining at a tissue level. Full seminal receptacles contain discrete sperm masses formed by hardened fluid and densely packed spermatophores. Different sperm masses are likely from different mates and their stratified disposition within the seminal receptacles is compatible with rival sperm displacement and last sperm precedence. Additionally, the anatomical structure of the vulva and vagina suggest active female control over copula. We discuss our results in the general context of sperm storage in brachyurans and the implications for the mating system of this species. © 2017 Wiley Periodicals, Inc.
Bone morphology of the hind limbs in two caviomorph rodents.
de Araújo, F A P; Sesoko, N F; Rahal, S C; Teixeira, C R; Müller, T R; Machado, M R F
2013-04-01
In order to evaluate the hind limbs of caviomorph rodents a descriptive analysis of the Cuniculus paca (Linnaeus, 1766) and Hydrochoerus hydrochaeris (Linnaeus, 1766) was performed using anatomical specimens, radiography, computed tomography (CT) and full-coloured prototype models to generate bone anatomy data. The appendicular skeleton of the two largest rodents of Neotropical America was compared with the previously reported anatomical features of Rattus norvegicus (Berkenhout, 1769) and domestic Cavia porcellus (Linnaeus, 1758). The structures were analyzed macroscopically and particular findings of each species reported. Features including the presence of articular fibular projection and lunulae were observed in the stifle joint of all rodents. Imaging aided in anatomical description and, specifically in the identification of bone structures in Cuniculus paca and Hydrochoerus hydrochaeris. The imaging findings were correlated with the anatomical structures observed. The data may be used in future studies comparing these animals to other rodents and mammalian species. © 2012 Blackwell Verlag GmbH.
Work domain constraints for modelling surgical performance.
Morineau, Thierry; Riffaud, Laurent; Morandi, Xavier; Villain, Jonathan; Jannin, Pierre
2015-10-01
Three main approaches can be identified for modelling surgical performance: a competency-based approach, a task-based approach, both largely explored in the literature, and a less known work domain-based approach. The work domain-based approach first describes the work domain properties that constrain the agent's actions and shape the performance. This paper presents a work domain-based approach for modelling performance during cervical spine surgery, based on the idea that anatomical structures delineate the surgical performance. This model was evaluated through an analysis of junior and senior surgeons' actions. Twenty-four cervical spine surgeries performed by two junior and two senior surgeons were recorded in real time by an expert surgeon. According to a work domain-based model describing an optimal progression through anatomical structures, the degree of adjustment of each surgical procedure to a statistical polynomial function was assessed. Each surgical procedure showed a significant suitability with the model and regression coefficient values around 0.9. However, the surgeries performed by senior surgeons fitted this model significantly better than those performed by junior surgeons. Analysis of the relative frequencies of actions on anatomical structures showed that some specific anatomical structures discriminate senior from junior performances. The work domain-based modelling approach can provide an overall statistical indicator of surgical performance, but in particular, it can highlight specific points of interest among anatomical structures that the surgeons dwelled on according to their level of expertise.
Hinton, Thomas J.; Jallerat, Quentin; Palchesko, Rachelle N.; Park, Joon Hyung; Grodzicki, Martin S.; Shue, Hao-Jan; Ramadan, Mohamed H.; Hudson, Andrew R.; Feinberg, Adam W.
2015-01-01
We demonstrate the additive manufacturing of complex three-dimensional (3D) biological structures using soft protein and polysaccharide hydrogels that are challenging or impossible to create using traditional fabrication approaches. These structures are built by embedding the printed hydrogel within a secondary hydrogel that serves as a temporary, thermoreversible, and biocompatible support. This process, termed freeform reversible embedding of suspended hydrogels, enables 3D printing of hydrated materials with an elastic modulus <500 kPa including alginate, collagen, and fibrin. Computer-aided design models of 3D optical, computed tomography, and magnetic resonance imaging data were 3D printed at a resolution of ~200 μm and at low cost by leveraging open-source hardware and software tools. Proof-of-concept structures based on femurs, branched coronary arteries, trabeculated embryonic hearts, and human brains were mechanically robust and recreated complex 3D internal and external anatomical architectures. PMID:26601312
Contribution to the anatomical nomenclature concerning upper limb anatomy.
Kachlik, David; Musil, Vladimir; Baca, Vaclav
2017-04-01
The aim of this article is to revise and extend the existing sections of Terminologia Anatomica dealing with the upper limb structures, which nomenclature belongs to its most neglected and not developing parts, and to justify the use of the proposed anatomical terms in the clinical practice, research, and education. A sample collected from own educational and research experience was matched in the main anatomical textbooks as well as old and recent anatomical journals and compared with four versions of the official Latin anatomical nomenclatures. The authors summarize here 145 terms, completed with their definitions or explanations, concerning both constant and variable (inconstant) morphological structures (bones, joints, muscles, vessels, and nerves) of the pectoral girdle, arm, cubital region, forearm, wrist, and hand, completed with some grammar remarks and several general terms. After a broad discussion on this topic, the Terminologia Anatomica should be revised and extend with the listed terms (or their equivalents).
Abdalla, Sala; Pierre, Sacha; Ellis, Harold
2013-05-01
Calot's triangle is an anatomical landmark of special value in cholecystectomy. First described by Jean-François Calot as an "isosceles" triangle in his doctoral thesis in 1891, this anatomical space requires careful dissection before the ligation and division of the cystic artery and cystic duct during cholecystectomy. The modern definition of the boundaries of Calot's triangle varies from Calot's original description, although the exact timing of this change is not entirely clear. The structures within Calot's triangle and their anatomical relationships can present the surgeon with difficulties, particularly when anatomical variations are encountered. Sound knowledge of the normal anatomy of the extrahepatic biliary tract and vasculature, as well as understanding of congenital variation, is thus essential in the prevention of iatrogenic injury. The authors describe the normal anatomy of Calot's triangle and common anatomical anomalies. The incidence of structural injury is discussed, and new techniques in surgery for enhancing the visualisation of Calot's triangle are reviewed. © . Copyright © 2012 Wiley Periodicals, Inc.
Quantitative evaluation of brain development using anatomical MRI and diffusion tensor imaging☆
Oishi, Kenichi; Faria, Andreia V.; Yoshida, Shoko; Chang, Linda; Mori, Susumu
2013-01-01
The development of the brain is structure-specific, and the growth rate of each structure differs depending on the age of the subject. Magnetic resonance imaging (MRI) is often used to evaluate brain development because of the high spatial resolution and contrast that enable the observation of structure-specific developmental status. Currently, most clinical MRIs are evaluated qualitatively to assist in the clinical decision-making and diagnosis. The clinical MRI report usually does not provide quantitative values that can be used to monitor developmental status. Recently, the importance of image quantification to detect and evaluate mild-to-moderate anatomical abnormalities has been emphasized because these alterations are possibly related to several psychiatric disorders and learning disabilities. In the research arena, structural MRI and diffusion tensor imaging (DTI) have been widely applied to quantify brain development of the pediatric population. To interpret the values from these MR modalities, a “growth percentile chart,” which describes the mean and standard deviation of the normal developmental curve for each anatomical structure, is required. Although efforts have been made to create such a growth percentile chart based on MRI and DTI, one of the greatest challenges is to standardize the anatomical boundaries of the measured anatomical structures. To avoid inter- and intra-reader variability about the anatomical boundary definition, and hence, to increase the precision of quantitative measurements, an automated structure parcellation method, customized for the neonatal and pediatric population, has been developed. This method enables quantification of multiple MR modalities using a common analytic framework. In this paper, the attempt to create an MRI- and a DTI-based growth percentile chart, followed by an application to investigate developmental abnormalities related to cerebral palsy, Williams syndrome, and Rett syndrome, have been introduced. Future directions include multimodal image analysis and personalization for clinical application. PMID:23796902
Anatomical variations and sinusitis.
Jorissen, M; Hermans, R; Bertrand, B; Eloy, P
1997-01-01
Paranasal sinus anatomy and variations have gained interest with the introduction of functional endoscopic sinus surgery and the concept of the ostiomeatal complex. Anatomical variations can be divided in structural abnormalities, (increased) pneumatization and supplementary openings. Most anatomical variations are equally found in control and sinusitis patients. The anatomical variations which are most commonly associated with sinus pathology are septal deviations, true conchae bullosae and supplementary maxillary ostia but the latter one only when recycling is present. The knowledge of anatomical variations is most important in the surgical management and specifically in the prevention of complications.
Paulus, Christoph J; Haouchine, Nazim; Kong, Seong-Ho; Soares, Renato Vianna; Cazier, David; Cotin, Stephane
2017-03-01
Locating the internal structures of an organ is a critical aspect of many surgical procedures. Minimally invasive surgery, associated with augmented reality techniques, offers the potential to visualize inner structures, allowing for improved analysis, depth perception or for supporting planning and decision systems. Most of the current methods dealing with rigid or non-rigid augmented reality make the assumption that the topology of the organ is not modified. As surgery relies essentially on cutting and dissection of anatomical structures, such methods are limited to the early stages of the surgery. We solve this shortcoming with the introduction of a method for physics-based elastic registration using a single view from a monocular camera. Singularities caused by topological changes are detected and propagated to the preoperative model. This significantly improves the coherence between the actual laparoscopic view and the model and provides added value in terms of navigation and decision-making, e.g., by overlaying the internal structures of an organ on the laparoscopic view. Our real-time augmentation method is assessed on several scenarios, using synthetic objects and real organs. In all cases, the impact of our approach is demonstrated, both qualitatively and quantitatively ( http://www.open-cas.org/?q=PaulusIJCARS16 ). The presented approach tackles the challenge of localizing internal structures throughout a complete surgical procedure, even after surgical cuts. This information is crucial for surgeons to improve the outcome for their surgical procedure and avoid complications.
Kapel, Gijsbert F L; Reichlin, Tobias; Wijnmaalen, Adrianus P; Piers, Sebastiaan R D; Holman, Eduard R; Tedrow, Usha B; Schalij, Martin J; Stevenson, William G; Zeppenfeld, Katja
2015-02-01
Ventricular tachycardia (VT) is an important cause of late morbidity and mortality in repaired congenital heart disease. The substrate often includes anatomic isthmuses that can be transected by radiofrequency catheter ablation similar to isthmus block for atrial flutter. This study evaluates the long-term efficacy of isthmus block for treatment of re-entry VT in adults with repaired congenital heart disease. Thirty-four patients (49±13 years; 74% male) with repaired congenital heart disease who underwent radiofrequency catheter ablation of VT in 2 centers were included. Twenty-two (65%) had a preserved left and right ventricular function. Patients were inducible for 1 (interquartile range, 1-2) VT, median cycle length: 295 ms (interquartile range, 242-346). Ablation aimed to transect anatomic isthmuses containing VT re-entry circuit isthmuses. Procedural success was defined as noninducibility of any VT and transection of the anatomic isthmus and was achieved in 25 (74%) patients. During long-term follow-up (46±29 months), all patients with procedural success (18/25 with internal cardiac defibrillators) were free of VT recurrence but 7 of 18 experienced internal cardiac defibrillator-related complications. One patient with procedural success and depressed cardiac function received an internal cardiac defibrillator shock for ventricular fibrillation. None of the 18 patients (12/18 with internal cardiac defibrillators) with complete success and preserved cardiac function experienced any ventricular arrhythmia. In contrast, VT recurred in 4 of 9 patients without procedural success. Four patients died from nonarrhythmic causes. In patients with repaired congenital heart disease with preserved ventricular function and isthmus-dependent re-entry, VT isthmus ablation can be curative. © 2014 American Heart Association, Inc.
Normal feline brain: clinical anatomy using magnetic resonance imaging.
Mogicato, G; Conchou, F; Layssol-Lamour, C; Raharison, F; Sautet, J
2012-04-01
The purpose of this study was to provide a clinical anatomy atlas of the feline brain using magnetic resonance imaging (MRI). Brains of twelve normal cats were imaged using a 1.5 T magnetic resonance unit and an inversion/recovery sequence (T1). Fourteen relevant MRI sections were chosen in transverse, dorsal, median and sagittal planes. Anatomic structures were identified and labelled using anatomical texts and Nomina Anatomica Veterinaria, sectioned specimen heads, and previously published articles. The MRI sections were stained according to the major embryological and anatomical subdivisions of the brain. The relevant anatomical structures seen on MRI will assist clinicians to better understand MR images and to relate this neuro-anatomy to clinical signs. © 2011 Blackwell Verlag GmbH.
NASA Astrophysics Data System (ADS)
Shidahara, M.; Tsoumpas, C.; McGinnity, C. J.; Kato, T.; Tamura, H.; Hammers, A.; Watabe, H.; Turkheimer, F. E.
2012-05-01
The objective of this study was to evaluate a resolution recovery (RR) method using a variety of simulated human brain [11C]raclopride positron emission tomography (PET) images. Simulated datasets of 15 numerical human phantoms were processed by a wavelet-based RR method using an anatomical prior. The anatomical prior was in the form of a hybrid segmented atlas, which combined an atlas for anatomical labelling and a PET image for functional labelling of each anatomical structure. We applied RR to both 60 min static and dynamic PET images. Recovery was quantified in 84 regions, comparing the typical ‘true’ value for the simulation, as obtained in normal subjects, simulated and RR PET images. The radioactivity concentration in the white matter, striatum and other cortical regions was successfully recovered for the 60 min static image of all 15 human phantoms; the dependence of the solution on accurate anatomical information was demonstrated by the difficulty of the technique to retrieve the subthalamic nuclei due to mismatch between the two atlases used for data simulation and recovery. Structural and functional synergy for resolution recovery (SFS-RR) improved quantification in the caudate and putamen, the main regions of interest, from -30.1% and -26.2% to -17.6% and -15.1%, respectively, for the 60 min static image and from -51.4% and -38.3% to -27.6% and -20.3% for the binding potential (BPND) image, respectively. The proposed methodology proved effective in the RR of small structures from brain [11C]raclopride PET images. The improvement is consistent across the anatomical variability of a simulated population as long as accurate anatomical segmentations are provided.
Anatomical terminology and nomenclature: past, present and highlights.
Kachlik, David; Baca, Vaclav; Bozdechova, Ivana; Cech, Pavel; Musil, Vladimir
2008-08-01
The anatomical terminology is a base for medical communication. It is elaborated into a nomenclature in Latin. Its history goes back to 1895, when the first Latin anatomical nomenclature was published as Basiliensia Nomina Anatomica. It was followed by seven revisions (Jenaiensia Nomina Anatomica 1935, Parisiensia Nomina Anatomica 1955, Nomina Anatomica 2nd to 6th edition 1960-1989). The last revision, Terminologia Anatomica, (TA) created by the Federative Committee on Anatomical Terminology and approved by the International Federation of Associations of Anatomists, was published in 1998. Apart from the official Latin anatomical terminology, it includes a list of recommended English equivalents. In this article, major changes and pitfalls of the nomenclature are discussed, as well as the clinical anatomy terms. The last revision (TA) is highly recommended to the attention of not only teachers, students and researchers, but also to clinicians, doctors, translators, editors and publishers to be followed in their activities.
Quantitative Wood Anatomy-Practical Guidelines.
von Arx, Georg; Crivellaro, Alan; Prendin, Angela L; Čufar, Katarina; Carrer, Marco
2016-01-01
Quantitative wood anatomy analyzes the variability of xylem anatomical features in trees, shrubs, and herbaceous species to address research questions related to plant functioning, growth, and environment. Among the more frequently considered anatomical features are lumen dimensions and wall thickness of conducting cells, fibers, and several ray properties. The structural properties of each xylem anatomical feature are mostly fixed once they are formed, and define to a large extent its functionality, including transport and storage of water, nutrients, sugars, and hormones, and providing mechanical support. The anatomical features can often be localized within an annual growth ring, which allows to establish intra-annual past and present structure-function relationships and its sensitivity to environmental variability. However, there are many methodological challenges to handle when aiming at producing (large) data sets of xylem anatomical data. Here we describe the different steps from wood sample collection to xylem anatomical data, provide guidance and identify pitfalls, and present different image-analysis tools for the quantification of anatomical features, in particular conducting cells. We show that each data production step from sample collection in the field, microslide preparation in the lab, image capturing through an optical microscope and image analysis with specific tools can readily introduce measurement errors between 5 and 30% and more, whereby the magnitude usually increases the smaller the anatomical features. Such measurement errors-if not avoided or corrected-may make it impossible to extract meaningful xylem anatomical data in light of the rather small range of variability in many anatomical features as observed, for example, within time series of individual plants. Following a rigid protocol and quality control as proposed in this paper is thus mandatory to use quantitative data of xylem anatomical features as a powerful source for many research topics.
Quantitative Wood Anatomy—Practical Guidelines
von Arx, Georg; Crivellaro, Alan; Prendin, Angela L.; Čufar, Katarina; Carrer, Marco
2016-01-01
Quantitative wood anatomy analyzes the variability of xylem anatomical features in trees, shrubs, and herbaceous species to address research questions related to plant functioning, growth, and environment. Among the more frequently considered anatomical features are lumen dimensions and wall thickness of conducting cells, fibers, and several ray properties. The structural properties of each xylem anatomical feature are mostly fixed once they are formed, and define to a large extent its functionality, including transport and storage of water, nutrients, sugars, and hormones, and providing mechanical support. The anatomical features can often be localized within an annual growth ring, which allows to establish intra-annual past and present structure-function relationships and its sensitivity to environmental variability. However, there are many methodological challenges to handle when aiming at producing (large) data sets of xylem anatomical data. Here we describe the different steps from wood sample collection to xylem anatomical data, provide guidance and identify pitfalls, and present different image-analysis tools for the quantification of anatomical features, in particular conducting cells. We show that each data production step from sample collection in the field, microslide preparation in the lab, image capturing through an optical microscope and image analysis with specific tools can readily introduce measurement errors between 5 and 30% and more, whereby the magnitude usually increases the smaller the anatomical features. Such measurement errors—if not avoided or corrected—may make it impossible to extract meaningful xylem anatomical data in light of the rather small range of variability in many anatomical features as observed, for example, within time series of individual plants. Following a rigid protocol and quality control as proposed in this paper is thus mandatory to use quantitative data of xylem anatomical features as a powerful source for many research topics. PMID:27375641
NASA Astrophysics Data System (ADS)
Becker, Meike; Kirschner, Matthias; Sakas, Georgios
2014-03-01
Our research project investigates a multi-port approach for minimally-invasive otologic surgery. For planning such a surgery, an accurate segmentation of the risk structures is crucial. However, the segmentation of these risk structures is a challenging task: The anatomical structures are very small and some have a complex shape, low contrast and vary both in shape and appearance. Therefore, prior knowledge is needed which is why we apply model-based approaches. In the present work, we use the Probabilistic Active Shape Model (PASM), which is a more flexible and specific variant of the Active Shape Model (ASM), to segment the following risk structures: cochlea, semicircular canals, facial nerve, chorda tympani, ossicles, internal auditory canal, external auditory canal and internal carotid artery. For the evaluation we trained and tested the algorithm on 42 computed tomography data sets using leave-one-out tests. Visual assessment of the results shows in general a good agreement of manual and algorithmic segmentations. Further, we achieve a good Average Symmetric Surface Distance while the maximum error is comparatively large due to low contrast at start and end points. Last, we compare the PASM to the standard ASM and show that the PASM leads to a higher accuracy.
An Investigation of Anatomical Competence in Junior Medical Doctors
ERIC Educational Resources Information Center
Vorstenbosch, Marc A. T. M.; Kooloos, Jan G. M.; Bolhuis, Sanneke M.; Laan, Roland F. J. M.
2016-01-01
Because of a decrease of the time available for anatomy education, decisions need to be made to reduce the relevant content of the anatomy curriculum. Several expert consensus initiatives resulted in lists of structures, lacking analysis of anatomical competence. This study aims to explore the use of anatomical knowledge by medical doctors in an…
A feature-based developmental model of the infant brain in structural MRI.
Toews, Matthew; Wells, William M; Zöllei, Lilla
2012-01-01
In this paper, anatomical development is modeled as a collection of distinctive image patterns localized in space and time. A Bayesian posterior probability is defined over a random variable of subject age, conditioned on data in the form of scale-invariant image features. The model is automatically learned from a large set of images exhibiting significant variation, used to discover anatomical structure related to age and development, and fit to new images to predict age. The model is applied to a set of 230 infant structural MRIs of 92 subjects acquired at multiple sites over an age range of 8-590 days. Experiments demonstrate that the model can be used to identify age-related anatomical structure, and to predict the age of new subjects with an average error of 72 days.
Badel, Eric; Ewers, Frank W.; Cochard, Hervé; Telewski, Frank W.
2015-01-01
The secondary xylem (wood) of trees mediates several functions including water transport and storage, mechanical support and storage of photosynthates. The optimal structures for each of these functions will most likely differ. The complex structure and function of xylem could lead to trade-offs between conductive efficiency, resistance to embolism, and mechanical strength needed to count for mechanical loading due to gravity and wind. This has been referred to as the trade-off triangle, with the different optimal solutions to the structure/function problems depending on the environmental constraints as well as taxonomic histories. Thus, the optimisation of each function will lead to drastically different anatomical structures. Trees are able to acclimate the internal structure of their trunk and branches according to the stress they experience. These acclimations lead to specific structures that favor the efficiency or the safety of one function but can be antagonistic with other functions. Currently, there are no means to predict the way a tree will acclimate or optimize its internal structure in support of its various functions under differing environmental conditions. In this review, we will focus on the acclimation of xylem anatomy and its resulting mechanical and hydraulic functions to recurrent mechanical strain that usually result from wind-induced thigmomorphogenesis with a special focus on the construction cost and the possible trade-off between wood functions. PMID:25954292
Feature-Based Morphometry: Discovering Group-related Anatomical Patterns
Toews, Matthew; Wells, William; Collins, D. Louis; Arbel, Tal
2015-01-01
This paper presents feature-based morphometry (FBM), a new, fully data-driven technique for discovering patterns of group-related anatomical structure in volumetric imagery. In contrast to most morphometry methods which assume one-to-one correspondence between subjects, FBM explicitly aims to identify distinctive anatomical patterns that may only be present in subsets of subjects, due to disease or anatomical variability. The image is modeled as a collage of generic, localized image features that need not be present in all subjects. Scale-space theory is applied to analyze image features at the characteristic scale of underlying anatomical structures, instead of at arbitrary scales such as global or voxel-level. A probabilistic model describes features in terms of their appearance, geometry, and relationship to subject groups, and is automatically learned from a set of subject images and group labels. Features resulting from learning correspond to group-related anatomical structures that can potentially be used as image biomarkers of disease or as a basis for computer-aided diagnosis. The relationship between features and groups is quantified by the likelihood of feature occurrence within a specific group vs. the rest of the population, and feature significance is quantified in terms of the false discovery rate. Experiments validate FBM clinically in the analysis of normal (NC) and Alzheimer's (AD) brain images using the freely available OASIS database. FBM automatically identifies known structural differences between NC and AD subjects in a fully data-driven fashion, and an equal error classification rate of 0.80 is achieved for subjects aged 60-80 years exhibiting mild AD (CDR=1). PMID:19853047
Investigation of topographical anatomy of Broca's area: an anatomic cadaveric study.
Eser Ocak, Pınar; Kocaelı, Hasan
2017-04-01
The sulci constituting the structure of the pars triangularis and opercularis, considered as 'Broca's area', present wide anatomical and morphological variations between different hemispheres. The boundaries are described differently from one another in various studies. The aim of this study was to explore the topographical anatomy, confirm the morphological asymmetry and highlight anatomical variations in Broca's area. This study was performed with 100 hemispheres to investigate the presence, continuity, patterns and connections of the sulcal structures that constitute the morphological asymmetry of Broca's area. Considerable individual anatomical and morphological variations between the inferior frontal gyrus and related sulcal structures were detected. Rare bilateralism findings supported the morphological asymmetry. The inferior frontal sulcus was identified as a single segment in 54 % of the right and two separate segments in 52 % of the left hemispheres, which was the most common pattern. The diagonal sulcus was present in 48 % of the right and 54 % of the left hemispheres. It was most frequently connected to the ascending ramus on both sides. A 'V' shape was observed in 42.5 % of the right hemispheres and a 'Y' shape in 38.3 % of the left hemispheres, which was the most common shape of the pars triangularis. Moreover, the full results are specified in detail. Knowledge of the anatomical variations in this region is indispensable for understanding the functional structure and performing safe surgery. However, most previously published studies have aimed to determine the anatomical asymmetry of the motor speech area without illuminating the topographical anatomy encountered during surgery.
Automated anatomical labeling method for abdominal arteries extracted from 3D abdominal CT images
NASA Astrophysics Data System (ADS)
Oda, Masahiro; Hoang, Bui Huy; Kitasaka, Takayuki; Misawa, Kazunari; Fujiwara, Michitaka; Mori, Kensaku
2012-02-01
This paper presents an automated anatomical labeling method of abdominal arteries. In abdominal surgery, understanding of blood vessel structure concerning with a target organ is very important. Branching pattern of blood vessels differs among individuals. It is required to develop a system that can assist understanding of a blood vessel structure and anatomical names of blood vessels of a patient. Previous anatomical labbeling methods for abdominal arteries deal with either of the upper or lower abdominal arteries. In this paper, we present an automated anatomical labeling method of both of the upper and lower abdominal arteries extracted from CT images. We obtain a tree structure of artery regions and calculate feature values for each branch. These feature values include the diameter, curvature, direction, and running vectors of a branch. Target arteries of this method are grouped based on branching conditions. The following processes are separately applied for each group. We compute candidate artery names by using classifiers that are trained to output artery names. A correction process of the candidate anatomical names based on the rule of majority is applied to determine final names. We applied the proposed method to 23 cases of 3D abdominal CT images. Experimental results showed that the proposed method is able to perform nomenclature of entire major abdominal arteries. The recall and the precision rates of labeling are 79.01% and 80.41%, respectively.
Wu, Jiajun; Yin, Ningbei
2016-01-01
This study aims to investigate the 3-dimensional (3D) anatomical structure of the orbicularis oris and nasalis, which are closely associated with the appearance of the upper lip and lower part of the nose. The relationship of the complicated 3D anatomical structure with the outline shape was also determined. Microcomputed tomography combined with iodine staining was used to scan the nasolabial tissues of 3 aborted fetuses. The strictly aligned, corrected, full-capacity, 2-dimensional (2D) grayscale images obtained were then used to reconstruct 3D structures using a 3D reconstruction software. 2D grayscale slices and a 3D anatomical model of the orbicularis oris and nasalis of the specimens were obtained. The 2D images and the 3D model confirmed the orbicularis oris anatomical structure reported in previous studies and also provided new insights (such as the close association of the formation of the philtral dimple, lip peak, philtral ridge, and nasal sill with the orbicularis oris). In addition, the results show that the nasolabial muscle consists of muscle fibers from different sources and is divided into four distinct parts: pars marginalis, pars peripheralis, muscle fibers of the levator labii superioris, and nasalis muscle fibers. The 3D anatomical structures indicate that the orbicularis oris and nasalis are closely associated with the appearances of the upper lip and lower part of the nose. The results may aid plastic surgeons in performing cleft-lip correction surgery.
Use of synchrotron tomography to image naturalistic anatomy in insects
NASA Astrophysics Data System (ADS)
Socha, John J.; De Carlo, Francesco
2008-08-01
Understanding the morphology of anatomical structures is a cornerstone of biology. For small animals, classical methods such as histology have provided a wealth of data, but such techniques can be problematic due to destruction of the sample. More importantly, fixation and physical slicing can cause deformation of anatomy, a critical limitation when precise three-dimensional data are required. Modern techniques such as confocal microscopy, MRI, and tabletop x-ray microCT provide effective non-invasive methods, but each of these tools each has limitations including sample size constraints, resolution limits, and difficulty visualizing soft tissue. Our research group at the Advanced Photon Source (Argonne National Laboratory) studies physiological processes in insects, focusing on the dynamics of breathing and feeding. To determine the size, shape, and relative location of internal anatomy in insects, we use synchrotron microtomography at the beamline 2-BM to image structures including tracheal tubes, muscles, and gut. Because obtaining naturalistic, undeformed anatomical information is a key component of our studies, we have developed methods to image fresh and non-fixed whole animals and tissues. Although motion artifacts remain a problem, we have successfully imaged multiple species including beetles, ants, fruit flies, and butterflies. Here we discuss advances in biological imaging and highlight key findings in insect morphology.
Stereoscopic vascular models of the head and neck: A computed tomography angiography visualization.
Cui, Dongmei; Lynch, James C; Smith, Andrew D; Wilson, Timothy D; Lehman, Michael N
2016-01-01
Computer-assisted 3D models are used in some medical and allied health science schools; however, they are often limited to online use and 2D flat screen-based imaging. Few schools take advantage of 3D stereoscopic learning tools in anatomy education and clinically relevant anatomical variations when teaching anatomy. A new approach to teaching anatomy includes use of computed tomography angiography (CTA) images of the head and neck to create clinically relevant 3D stereoscopic virtual models. These high resolution images of the arteries can be used in unique and innovative ways to create 3D virtual models of the vasculature as a tool for teaching anatomy. Blood vessel 3D models are presented stereoscopically in a virtual reality environment, can be rotated 360° in all axes, and magnified according to need. In addition, flexible views of internal structures are possible. Images are displayed in a stereoscopic mode, and students view images in a small theater-like classroom while wearing polarized 3D glasses. Reconstructed 3D models enable students to visualize vascular structures with clinically relevant anatomical variations in the head and neck and appreciate spatial relationships among the blood vessels, the skull and the skin. © 2015 American Association of Anatomists.
Real-time inverse kinematics for the upper limb: a model-based algorithm using segment orientations.
Borbély, Bence J; Szolgay, Péter
2017-01-17
Model based analysis of human upper limb movements has key importance in understanding the motor control processes of our nervous system. Various simulation software packages have been developed over the years to perform model based analysis. These packages provide computationally intensive-and therefore off-line-solutions to calculate the anatomical joint angles from motion captured raw measurement data (also referred as inverse kinematics). In addition, recent developments in inertial motion sensing technology show that it may replace large, immobile and expensive optical systems with small, mobile and cheaper solutions in cases when a laboratory-free measurement setup is needed. The objective of the presented work is to extend the workflow of measurement and analysis of human arm movements with an algorithm that allows accurate and real-time estimation of anatomical joint angles for a widely used OpenSim upper limb kinematic model when inertial sensors are used for movement recording. The internal structure of the selected upper limb model is analyzed and used as the underlying platform for the development of the proposed algorithm. Based on this structure, a prototype marker set is constructed that facilitates the reconstruction of model-based joint angles using orientation data directly available from inertial measurement systems. The mathematical formulation of the reconstruction algorithm is presented along with the validation of the algorithm on various platforms, including embedded environments. Execution performance tables of the proposed algorithm show significant improvement on all tested platforms. Compared to OpenSim's Inverse Kinematics tool 50-15,000x speedup is achieved while maintaining numerical accuracy. The proposed algorithm is capable of real-time reconstruction of standardized anatomical joint angles even in embedded environments, establishing a new way for complex applications to take advantage of accurate and fast model-based inverse kinematics calculations.
ERIC Educational Resources Information Center
Khalil, Mohammed K.; Paas, Fred; Johnson, Tristan E.; Su, Yung K.; Payer, Andrew F.
2008-01-01
This research is an effort to best utilize the interactive anatomical images for instructional purposes based on cognitive load theory. Three studies explored the differential effects of three computer-based instructional strategies that use anatomical cross-sections to enhance the interpretation of radiological images. These strategies include:…
Umbilical-spinous line: a morphological term that should be included in the anatomical terminology
Ríos, John
2013-01-01
We argue the need to include in the International Anatomical Terminology the term "Umbilical-spinous line" for its importance as a morphological referent in bioscopic and surface anatomy. Also, in order to avoid using eponyms, it is suggested that the traditional term "McBurney point" be replaced by "supra spinous point" as being more descriptive of location. PMID:24892620
LHOTÁKOVÁ, Z; ALBRECHTOVÁ, J; JANÁČEK, J; KUBÍNOVÁ, L
2008-01-01
The anatomical structure of mesophyll tissue in the leaf is tightly connected with many physiological processes in plants. One of the most important mesophyll parameters related to photosynthesis is the internal leaf surface area, i.e. the surface area of mesophyll cell walls exposed to intercellular spaces. An efficient design-based stereological method can be applied for estimation of this parameter, using software-randomized virtual fakir test probes in stacks of optical sections acquired by a confocal microscope within thick physical free-hand sections (i.e. acquired using a hand microtome), as we have shown in the case of fresh Norway spruce needles recently. However, for wider practical use in plant ecophysiology, a suitable form of sample storage and other possible technical constraints of this methodology need to be checked. We tested the effect of freezing conifer needles on their anatomical structure as well as the effect of possible deformations due to the cutting of unembedded material by a hand microtome, which can result in distortions of cutting surfaces. In the present study we found a higher proportion of intercellular spaces in mesophyll in regions near to the surface of a physical section, which means that the measurements should be restricted only to the middle region of the optical section series. On the other hand, the proportion of intercellular spaces in mesophyll as well as the internal needle surface density in mesophyll did not show significant difference between fresh and frozen needles; therefore, we conclude that freezing represents a suitable form of storage of sampled material for proposed stereological evaluation. PMID:19017201
Lhotáková, Z; Albrechtová, J; Janácek, J; Kubínová, L
2008-10-01
The anatomical structure of mesophyll tissue in the leaf is tightly connected with many physiological processes in plants. One of the most important mesophyll parameters related to photosynthesis is the internal leaf surface area, i.e. the surface area of mesophyll cell walls exposed to intercellular spaces. An efficient design-based stereological method can be applied for estimation of this parameter, using software-randomized virtual fakir test probes in stacks of optical sections acquired by a confocal microscope within thick physical free-hand sections (i.e. acquired using a hand microtome), as we have shown in the case of fresh Norway spruce needles recently. However, for wider practical use in plant ecophysiology, a suitable form of sample storage and other possible technical constraints of this methodology need to be checked. We tested the effect of freezing conifer needles on their anatomical structure as well as the effect of possible deformations due to the cutting of unembedded material by a hand microtome, which can result in distortions of cutting surfaces. In the present study we found a higher proportion of intercellular spaces in mesophyll in regions near to the surface of a physical section, which means that the measurements should be restricted only to the middle region of the optical section series. On the other hand, the proportion of intercellular spaces in mesophyll as well as the internal needle surface density in mesophyll did not show significant difference between fresh and frozen needles; therefore, we conclude that freezing represents a suitable form of storage of sampled material for proposed stereological evaluation.
What We Know About the Brain Structure-Function Relationship.
Batista-García-Ramó, Karla; Fernández-Verdecia, Caridad Ivette
2018-04-18
How the human brain works is still a question, as is its implication with brain architecture: the non-trivial structure–function relationship. The main hypothesis is that the anatomic architecture conditions, but does not determine, the neural network dynamic. The functional connectivity cannot be explained only considering the anatomical substrate. This involves complex and controversial aspects of the neuroscience field and that the methods and methodologies to obtain structural and functional connectivity are not always rigorously applied. The goal of the present article is to discuss about the progress made to elucidate the structure–function relationship of the Central Nervous System, particularly at the brain level, based on results from human and animal studies. The current novel systems and neuroimaging techniques with high resolutive physio-structural capacity have brought about the development of an integral framework of different structural and morphometric tools such as image processing, computational modeling and graph theory. Different laboratories have contributed with in vivo, in vitro and computational/mathematical models to study the intrinsic neural activity patterns based on anatomical connections. We conclude that multi-modal techniques of neuroimaging are required such as an improvement on methodologies for obtaining structural and functional connectivity. Even though simulations of the intrinsic neural activity based on anatomical connectivity can reproduce much of the observed patterns of empirical functional connectivity, future models should be multifactorial to elucidate multi-scale relationships and to infer disorder mechanisms.
Arthroscopic Medial Meniscus Posterior Root Reconstruction Using Auto-Gracilis Tendon.
Lee, Dhong Won; Haque, Russel; Chung, Kyu Sung; Kim, Jin Goo
2017-08-01
There have been several techniques to repair the medial meniscus posterior root tears (MMPRTs) with the goal of restoring the anatomic and firm fixation of the meniscal root to bone. Many anatomic studies about the menisci also have been developed, so a better understanding of the anatomy could help surgeons perform correct fixation of the MMPRTs. The meniscal roots have ligament-like structures that firmly attach the menisci to the tibial plateau, and this structural concept is important to restore normal biomechanics after anatomic root repair. We present arthroscopic transtibial medial meniscus posterior root reconstruction using auto-gracilis tendon.
A Feature-based Developmental Model of the Infant Brain in Structural MRI
Toews, Matthew; Wells, William M.; Zöllei, Lilla
2014-01-01
In this paper, anatomical development is modeled as a collection of distinctive image patterns localized in space and time. A Bayesian posterior probability is defined over a random variable of subject age, conditioned on data in the form of scale-invariant image features. The model is automatically learned from a large set of images exhibiting significant variation, used to discover anatomical structure related to age and development, and fit to new images to predict age. The model is applied to a set of 230 infant structural MRIs of 92 subjects acquired at multiple sites over an age range of 8-590 days. Experiments demonstrate that the model can be used to identify age-related anatomical structure, and to predict the age of new subjects with an average error of 72 days. PMID:23286050
ERIC Educational Resources Information Center
Stredney, Donald Larry
An overview of computer animation and the techniques involved in its creation is provided in the introduction to this masters thesis, which focuses on the problems encountered by students in learning the forms and functions of complex anatomical structures and ways in which computer animation can address these problems. The objectives for,…
Isogai, Sumio; Horiguchi, Mayuko; Hitomi, Jiro
2010-01-01
Renal, adrenal, gonadal, ureteral and inferior phrenic arteries vary in their level of origin and in their calibre, number and precise anatomical relationship to other structures. Studies of the origin and early development of these arteries have evoked sharp disputes. The ladder theory of Felix, which states that ‘All the mesonephric arteries may persist; from them are formed the phrenic, suprarenal, renal and internal spermatic arteries’ has been generally quoted in the anatomical textbooks without rigorous verification for 100 years. In this study, we re-examined this theory by performing micro-injection of dye and resin into rat (Rattus norvegicus) embryos. Our results revealed that most of the mesonephric arteries had degenerated before the metanephros started its ascent. The definitive renal, adrenal, gonadal, ureteral and inferior phrenic arteries appeared as new branches from the gonadal artery and/or directly from the abdominal aorta to the para-aortic ridge. Coincidental to this, the anatomical architecture of the inter-renal vascular cage, which consists of the interlobar and arcuate arteries and their collateral veins, was completed within the developing metanephros. We demonstrated that the delicate renal vascular cage switched from the primary renal artery to the definitive renal artery and that the route of venous drainage changed from the posterior cardinal vein to the inferior (caudal) vena cava. PMID:20579173
Clinical Anatomy of the Lingual Nerve: A Review.
Sittitavornwong, Somsak; Babston, Michael; Denson, Douglas; Zehren, Steven; Friend, Jonathan
2017-05-01
Knowledge of lingual nerve anatomy is of paramount importance to dental practitioners and maxillofacial surgeons. The purpose of this article is to review lingual nerve anatomy from the cranial base to its insertion in the tongue and provide a more detailed explanation of its course to prevent procedural nerve injuries. Fifteen human cadavers from the University of Alabama at Birmingham School of Medicine's Anatomical Donor Program were reviewed. The anatomic structures and landmarks were identified and confirmed by anatomists. Lingual nerve dissection was carried out and reviewed on 15 halved human cadaver skulls (total specimens, 28). Cadaveric dissection provides a detailed examination of the lingual nerve from the cranial base to tongue insertion. The lingual nerve receives the chorda tympani nerve approximately 1 cm below the bifurcation of the lingual and inferior alveolar nerves. The pathway of the lingual nerve is in contact with the periosteum of the mandible just behind the internal oblique ridge. The lingual nerve crosses the submandibular duct at the interproximal space between the mandibular first and second molars. The submandibular ganglion is suspended from the lingual nerve at the distal area of the second mandibular molar. A zoning classification is another way to more accurately describe the lingual nerve based on close anatomic landmarks as seen in human cadaveric specimens. This system could identify particular areas of interest that might be at greater procedural risk. Published by Elsevier Inc.
Toscano, M J; Nasr, M A F; Hothersall, B
2013-09-01
Lameness represents a major welfare and production issue in the poultry industry with a recent survey estimating 27% of birds lame and 3% unable to walk by 40 d of age. A variety of factors may induce lameness and are typically grouped into 2 broad classes on the basis of being infectious or skeletal in nature with the latter accounting for the majority of cases. The current work sought to build upon a large body of literature assessing the anatomical properties of bone in lame birds. Our specific objectives sought to identify relationships between relevant anatomical properties of the tibia and metatarsus using digital quantification from radiographs of legs and a measure of walking difficulty. Resulting output was statistically analyzed to assess 1) observer reliability for consistency in placing the leg during the radiograph procedure and quantification of the various measures within a radiograph, 2) the relationship between the various measurements of anatomical bone properties and sex, bird mass, and gait score, and 3) the relationship between each measurement and leg symmetry. Our anatomical bone measures were found to be reliable (intra-rater and test-retest reliabilities < 0.75) within radiograph for all measures and 8 of the 10 measures across radiographs. Several measures of bone properties in the tibia correlated to difficulty walking as measured by gait score (P < 0.05), indicating greater angulations with increasing lameness. Of the measures that manifested a gait score × bird mass interaction, heavier birds appeared to exhibit less angulation with increasing difficulty walking with lighter birds the opposite. These interactions suggest possibilities for influencing effects of activity or feed intake on bone mineralization with the bone angulation observed. Our efforts agree with that of others and indicate that angulation of the tibia may be related to lameness, though subsequent efforts involving comprehensive measures of bird activity, growth rates, and internal bone structure will be needed if the validity of the measures are to be accepted.
A Dynamic Finite Element Analysis of Human Foot Complex in the Sagittal Plane during Level Walking
Qian, Zhihui; Ren, Lei; Ding, Yun; Hutchinson, John R.; Ren, Luquan
2013-01-01
The objective of this study is to develop a computational framework for investigating the dynamic behavior and the internal loading conditions of the human foot complex during locomotion. A subject-specific dynamic finite element model in the sagittal plane was constructed based on anatomical structures segmented from medical CT scan images. Three-dimensional gait measurements were conducted to support and validate the model. Ankle joint forces and moment derived from gait measurements were used to drive the model. Explicit finite element simulations were conducted, covering the entire stance phase from heel-strike impact to toe-off. The predicted ground reaction forces, center of pressure, foot bone motions and plantar surface pressure showed reasonably good agreement with the gait measurement data over most of the stance phase. The prediction discrepancies can be explained by the assumptions and limitations of the model. Our analysis showed that a dynamic FE simulation can improve the prediction accuracy in the peak plantar pressures at some parts of the foot complex by 10%–33% compared to a quasi-static FE simulation. However, to simplify the costly explicit FE simulation, the proposed model is confined only to the sagittal plane and has a simplified representation of foot structure. The dynamic finite element foot model proposed in this study would provide a useful tool for future extension to a fully muscle-driven dynamic three-dimensional model with detailed representation of all major anatomical structures, in order to investigate the structural dynamics of the human foot musculoskeletal system during normal or even pathological functioning. PMID:24244500
A dynamic finite element analysis of human foot complex in the sagittal plane during level walking.
Qian, Zhihui; Ren, Lei; Ding, Yun; Hutchinson, John R; Ren, Luquan
2013-01-01
The objective of this study is to develop a computational framework for investigating the dynamic behavior and the internal loading conditions of the human foot complex during locomotion. A subject-specific dynamic finite element model in the sagittal plane was constructed based on anatomical structures segmented from medical CT scan images. Three-dimensional gait measurements were conducted to support and validate the model. Ankle joint forces and moment derived from gait measurements were used to drive the model. Explicit finite element simulations were conducted, covering the entire stance phase from heel-strike impact to toe-off. The predicted ground reaction forces, center of pressure, foot bone motions and plantar surface pressure showed reasonably good agreement with the gait measurement data over most of the stance phase. The prediction discrepancies can be explained by the assumptions and limitations of the model. Our analysis showed that a dynamic FE simulation can improve the prediction accuracy in the peak plantar pressures at some parts of the foot complex by 10%-33% compared to a quasi-static FE simulation. However, to simplify the costly explicit FE simulation, the proposed model is confined only to the sagittal plane and has a simplified representation of foot structure. The dynamic finite element foot model proposed in this study would provide a useful tool for future extension to a fully muscle-driven dynamic three-dimensional model with detailed representation of all major anatomical structures, in order to investigate the structural dynamics of the human foot musculoskeletal system during normal or even pathological functioning.
Meltzer, Carin; Båth, Magnus; Kheddache, Susanne; Ásgeirsdóttir, Helga; Gilljam, Marita; Johnsson, Åse Allansdotter
2016-06-01
The aims of this study were to assess the visibility of pulmonary structures in patients with cystic fibrosis (CF) in digital tomosynthesis (DTS) using computed tomography (CT) as reference and to investigate the dependency on anatomical location and observer experience. Anatomical structures in predefined regions of CT images from 21 patients were identified. Three observers with different levels of experience rated the visibility of the structures in DTS by performing a head-to-head comparison with visibility in CT. Visibility of the structures in DTS was reported as equal to CT in 34 %, inferior in 52 % and superior in 14 % of the ratings. Central and peripheral lateral structures received higher visibility ratings compared with peripheral structures anteriorly, posteriorly and surrounding the diaphragm (p ≤ 0.001). Reported visibility was significantly higher for the most experienced observer (p ≤ 0.01). The results indicate that minor pathology can be difficult to visualise with DTS depending on location and observer experience. Central and peripheral lateral structures are generally well depicted. © The Author 2016. Published by Oxford University Press.
Meltzer, Carin; Båth, Magnus; Kheddache, Susanne; Ásgeirsdóttir, Helga; Gilljam, Marita; Johnsson, Åse Allansdotter
2016-01-01
The aims of this study were to assess the visibility of pulmonary structures in patients with cystic fibrosis (CF) in digital tomosynthesis (DTS) using computed tomography (CT) as reference and to investigate the dependency on anatomical location and observer experience. Anatomical structures in predefined regions of CT images from 21 patients were identified. Three observers with different levels of experience rated the visibility of the structures in DTS by performing a head-to-head comparison with visibility in CT. Visibility of the structures in DTS was reported as equal to CT in 34 %, inferior in 52 % and superior in 14 % of the ratings. Central and peripheral lateral structures received higher visibility ratings compared with peripheral structures anteriorly, posteriorly and surrounding the diaphragm (p ≤ 0.001). Reported visibility was significantly higher for the most experienced observer (p ≤ 0.01). The results indicate that minor pathology can be difficult to visualise with DTS depending on location and observer experience. Central and peripheral lateral structures are generally well depicted. PMID:26842827
Açar, Halil İbrahim; Cömert, Ayhan; Avşar, Abdullah; Çelik, Safa; Kuzu, Mehmet Ayhan
2014-10-01
Lower local recurrence rates and better overall survival are associated with complete mesocolic excision with central vascular ligation for treatment of colon cancer. To accomplish this, surgeons need to pay special attention to the surgical anatomical planes and vascular anatomy of the colon. However, surgical education in this area has been neglected. The aim of this study is to define the correct surgical anatomical planes for complete mesocolic excision with central vascular ligation and to demonstrate the correct dissection technique for protecting anatomical structures. Macroscopic and microscopic surgical dissections were performed on 12 cadavers in the anatomy laboratory and on autopsy specimens. The dissections were recorded as video clips. Dissections were performed in accordance with the complete mesocolic excision technique on 10 male and 2 female cadavers. Vascular structures, autonomic nerves, and related fascias were shown. Within each step of the surgical procedure, important anatomical structures were displayed on still images captured from videos by animations. Three crucial steps for complete mesocolic excision with central vascular ligation are demonstrated on the cadavers: 1) full mobilization of the superior mesenteric root following the embryological planes between the visceral and the parietal fascias; 2) mobilization of the mesocolon from the duodenum and the pancreas and identification of vascular structures, especially the veins around the pancreas; and 3) central vascular ligation of the colonic vessels at their origin, taking into account the vascular variations within the mesocolonic vessels and the autonomic nerves around the superior mesenteric artery. The limitation of this study was the number of the cadavers used. Successful complete mesocolic excision with central vascular ligation depends on an accurate knowledge of the surgical anatomical planes and the vascular anatomy of the colon.
Isaji, Shuji; Mizuno, Shugo; Windsor, John A; Bassi, Claudio; Fernández-Del Castillo, Carlos; Hackert, Thilo; Hayasaki, Aoi; Katz, Matthew H G; Kim, Sun-Whe; Kishiwada, Masashi; Kitagawa, Hirohisa; Michalski, Christoph W; Wolfgang, Christopher L
2018-01-01
This statement was developed to promote international consensus on the definition of borderline resectable pancreatic ductal adenocarcinoma (BR-PDAC) which was adopted by the National Comprehensive Cancer Network (NCCN) in 2006, but which has changed yearly and become more complicated. Based on a symposium held during the 20th meeting of the International Association of Pancreatology (IAP) in Sendai, Japan, in 2016, the presenters sought consensus on issues related to BR-PDAC. We defined patients with BR-PDAC according to the three distinct dimensions: anatomical (A), biological (B), and conditional (C). Anatomic factors include tumor contact with the superior mesenteric artery and/or celiac artery of less than 180° without showing stenosis or deformity, tumor contact with the common hepatic artery without showing tumor contact with the proper hepatic artery and/or celiac artery, and tumor contact with the superior mesenteric vein and/or portal vein including bilateral narrowing or occlusion without extending beyond the inferior border of the duodenum. Biological factors include potentially resectable disease based on anatomic criteria but with clinical findings suspicious for (but unproven) distant metastases or regional lymph nodes metastases diagnosed by biopsy or positron emission tomography-computed tomography. This also includes a serum carbohydrate antigen (CA) 19-9 level more than 500 units/ml. Conditional factors include the patients with potentially resectable disease based on anatomic and biologic criteria and with Eastern Cooperative Oncology Group (ECOG) performance status of 2 or more. The definition of BR-PDAC requires one or more positive dimensions (e.g. A, B, C, AB, AC, BC or ABC). The present definition acknowledges that resectability is not just about the anatomic relationship between the tumor and vessels, but that biological and conditional dimensions are also important. The aim in presenting this consensus definition is also to highlight issues which remain controversial and require further research. Copyright © 2017 IAP and EPC. Published by Elsevier B.V. All rights reserved.
RANZCR Body Systems Framework of diagnostic imaging examination descriptors.
Pitman, Alexander G; Penlington, Lisa; Doromal, Darren; Slater, Gregory; Vukolova, Natalia
2014-08-01
A unified and logical system of descriptors for diagnostic imaging examinations and procedures is a desirable resource for radiology in Australia and New Zealand and is needed to support core activities of RANZCR. Existing descriptor systems available in Australia and New Zealand (including the Medicare DIST and the ACC Schedule) have significant limitations and are inappropriate for broader clinical application. An anatomically based grid was constructed, with anatomical structures arranged in rows and diagnostic imaging modalities arranged in columns (including nuclear medicine and positron emission tomography). The grid was segregated into five body systems. The cells at the intersection of an anatomical structure row and an imaging modality column were populated with short, formulaic descriptors of the applicable diagnostic imaging examinations. Clinically illogical or physically impossible combinations were 'greyed out'. Where the same examination applied to different anatomical structures, the descriptor was kept identical for the purposes of streamlining. The resulting Body Systems Framework of diagnostic imaging examination descriptors lists all the reasonably common diagnostic imaging examinations currently performed in Australia and New Zealand using a unified grid structure allowing navigation by both referrers and radiologists. The Framework has been placed on the RANZCR website and is available for access free of charge by registered users. The Body Systems Framework of diagnostic imaging examination descriptors is a system of descriptors based on relationships between anatomical structures and imaging modalities. The Framework is now available as a resource and reference point for the radiology profession and to support core College activities. © 2014 The Royal Australian and New Zealand College of Radiologists.
Fink, Christian; Hallscheidt, Peter J; Noeldge, Gerd; Kampschulte, Annette; Radeleff, Boris; Hosch, Waldemar P; Kauffmann, Günter W; Hansmann, Jochen
2002-02-01
The objective of this study was to compare clinical chest radiographs of a large-area, flat-panel digital radiography system and a conventional film-screen radiography system. The comparison was based on an observer preference study of image quality and visibility of anatomic structures. Routine follow-up chest radiographs were obtained from 100 consecutive oncology patients using a large-area, amorphous silicon flat-panel detector digital radiography system (dose equivalent to a 400-speed film system). Hard-copy images were compared with previous examinations of the same individuals taken on a conventional film-screen system (200-speed). Patients were excluded if changes in the chest anatomy were detected or if the time interval between the examinations exceeded 1 year. Observer preference was evaluated for the image quality and the visibility of 15 anatomic structures using a five-point scale. Dose measurements with a chest phantom showed a dose reduction of approximately 50% with the digital radiography system compared with the film-screen radiography system. The image quality and the visibility of all but one anatomic structure of the images obtained with the digital flat-panel detector system were rated significantly superior (p < or = 0.0003) to those obtained with the conventional film-screen radiography system. The image quality and visibility of anatomic structures on the images obtained by the flat-panel detector system were perceived as equal or superior to the images from conventional film-screen chest radiography. This was true even though the radiation dose was reduced approximately 50% with the digital flat-panel detector system.
Gobbi, Alberto; Mahajan, Vivek; Karnatzikos, Georgios
2011-05-01
Tibial plateau fracture after primary anatomic double-bundle anterior cruciate ligament (ACL) reconstruction is rare. To our knowledge, this is the first case report of a tibial plateau fracture after primary anatomic double-bundle ACL reconstruction. In our patient the tibial plateau fracture occurred after a torsional injury to the involved extremity. The fracture occurred 4.5 years after the ACL reconstruction. The fracture was intra-articular Schatzker type IV and had a significant displacement. The patient was treated operatively by open reduction-internal fixation. He recovered well. Copyright © 2011 Arthroscopy Association of North America. Published by Elsevier Inc. All rights reserved.
Ketelsen, D; Werner, M K; Thomas, C; Tsiflikas, I; Koitschev, A; Reimann, A; Claussen, C D; Heuschmid, M
2009-01-01
Important oropharyngeal structures can be superimposed by metallic artifacts due to dental implants. The aim of this study was to compare the image quality of multiplanar reconstructions and an angulated spiral in dual-source computed tomography (DSCT) of the neck. Sixty-two patients were included for neck imaging with DSCT. MPRs from an axial dataset and an additional short spiral parallel to the mouth floor were acquired. Leading anatomical structures were then evaluated with respect to the extent to which they were affected by dental artifacts using a visual scale, ranging from 1 (least artifacts) to 4 (most artifacts). In MPR, 87.1 % of anatomical structures had significant artifacts (3.12 +/- 0.86), while in angulated slices leading anatomical structures of the oropharynx showed negligible artifacts (1.28 +/- 0.46). The diagnostic growth due to primarily angulated slices concerning artifact severity was significant (p < 0.01). MPRs are not capable of reducing dental artifacts sufficiently. In patients with dental artifacts overlying the anatomical structures of the oropharynx, an additional short angulated spiral parallel to the floor of the mouth is recommended and should be applied for daily routine. As a result of the static gantry design of DSCT, the use of a flexible head holder is essential.
Automatic target validation based on neuroscientific literature mining for tractography
Vasques, Xavier; Richardet, Renaud; Hill, Sean L.; Slater, David; Chappelier, Jean-Cedric; Pralong, Etienne; Bloch, Jocelyne; Draganski, Bogdan; Cif, Laura
2015-01-01
Target identification for tractography studies requires solid anatomical knowledge validated by an extensive literature review across species for each seed structure to be studied. Manual literature review to identify targets for a given seed region is tedious and potentially subjective. Therefore, complementary approaches would be useful. We propose to use text-mining models to automatically suggest potential targets from the neuroscientific literature, full-text articles and abstracts, so that they can be used for anatomical connection studies and more specifically for tractography. We applied text-mining models to three structures: two well-studied structures, since validated deep brain stimulation targets, the internal globus pallidus and the subthalamic nucleus and, the nucleus accumbens, an exploratory target for treating psychiatric disorders. We performed a systematic review of the literature to document the projections of the three selected structures and compared it with the targets proposed by text-mining models, both in rat and primate (including human). We ran probabilistic tractography on the nucleus accumbens and compared the output with the results of the text-mining models and literature review. Overall, text-mining the literature could find three times as many targets as two man-weeks of curation could. The overall efficiency of the text-mining against literature review in our study was 98% recall (at 36% precision), meaning that over all the targets for the three selected seeds, only one target has been missed by text-mining. We demonstrate that connectivity for a structure of interest can be extracted from a very large amount of publications and abstracts. We believe this tool will be useful in helping the neuroscience community to facilitate connectivity studies of particular brain regions. The text mining tools used for the study are part of the HBP Neuroinformatics Platform, publicly available at http://connectivity-brainer.rhcloud.com/. PMID:26074781
Kachlik, D; Musil, V; Vasko, S; Klaue, K; Stingl, J; Baca, V
2010-01-01
Diseases and injuries of several specific structures in the heel region have been an enduring focus of medicine: The anatomical terminology of many of these structures has not been established until recently. The aim of the study was a historical analysis of the advances of anatomical terminology of three selected morphological units in the heel region--the Achilles tendon, calcaneus and retrocalcaneal bursa. It starts with a critical evaluation of the mythological eposes, the Illiad and Odyssey, describing the exploits of heroes in the Trojan war, followed by a review of relevant terms used for the designation of selected heel structures in the Middle Ages as well as in the 18" and 19" centuries. Principal versions of Latin anatomical terms used for the denotation of the mentioned structures are discussed. Recently applicable Latin terms and their recommended English synonyms, according to the latest version of Terminologia Anatomica (1998) are summed up. It surveys examples of "not very appropriate" terms, which are frequently used in clinical literature. The authors consider the use of official anatomical terms (both Latin and English) as an important step for the improvement of the clinical expressions and formulations.
Hemispheric Asymmetry of Human Brain Anatomical Network Revealed by Diffusion Tensor Tractography
Liu, Yaou; Duan, Yunyun; Li, Kuncheng
2015-01-01
The topological architecture of the cerebral anatomical network reflects the structural organization of the human brain. Recently, topological measures based on graph theory have provided new approaches for quantifying large-scale anatomical networks. However, few studies have investigated the hemispheric asymmetries of the human brain from the perspective of the network model, and little is known about the asymmetries of the connection patterns of brain regions, which may reflect the functional integration and interaction between different regions. Here, we utilized diffusion tensor imaging to construct binary anatomical networks for 72 right-handed healthy adult subjects. We established the existence of structural connections between any pair of the 90 cortical and subcortical regions using deterministic tractography. To investigate the hemispheric asymmetries of the brain, statistical analyses were performed to reveal the brain regions with significant differences between bilateral topological properties, such as degree of connectivity, characteristic path length, and betweenness centrality. Furthermore, local structural connections were also investigated to examine the local asymmetries of some specific white matter tracts. From the perspective of both the global and local connection patterns, we identified the brain regions with hemispheric asymmetries. Combined with the previous studies, we suggested that the topological asymmetries in the anatomical network may reflect the functional lateralization of the human brain. PMID:26539535
Knösche, Thomas R; Tittgemeyer, Marc
2011-01-01
This review focuses on the role of long-range connectivity as one element of brain structure that is of key importance for the functional-anatomical organization of the cortex. In this context, we discuss the putative guiding principles for mapping brain function and structure onto the cortical surface. Such mappings reveal a high degree of functional-anatomical segregation. Given that brain regions frequently maintain characteristic connectivity profiles and the functional repertoire of a cortical area is closely related to its anatomical connections, long-range connectivity may be used to define segregated cortical areas. This methodology is called connectivity-based parcellation. Within this framework, we investigate different techniques to estimate connectivity profiles with emphasis given to non-invasive methods based on diffusion magnetic resonance imaging (dMRI) and diffusion tractography. Cortical parcellation is then defined based on similarity between diffusion tractograms, and different clustering approaches are discussed. We conclude that the use of non-invasively acquired connectivity estimates to characterize the functional-anatomical organization of the brain is a valid, relevant, and necessary endeavor. Current and future developments in dMRI technology, tractography algorithms, and models of the similarity structure hold great potential for a substantial improvement and enrichment of the results of the technique.
Should the annular tendon of the eye be named 'annulus of Zinn' or 'of Valsalva'?
Zampieri, Fabio; Marrone, Daniela; Zanatta, Alberto
2015-02-01
The annular tendon is commonly named 'annulus of Zinn', from the German anatomist and botanist Johann Gottfried Zinn (1727-1759) who described this structure in his Descriptio anatomica oculi humani (Anatomical Description of the Human Eye, 1755). This structure, however, had been previously discovered not by Zinn, but by Antonio Maria Valsalva (1666-1723) some decades before the publication of Zinn, in his Dissertatio anatomica prima and Dissertatio anatomica altera (First and Second Anatomical Dissertations), inside Valsalva's Opera omnia published in 1740. We advance that this structure could be re-named such as 'annulus of Valsalva-Zinn' because Valsalva, even making a mistake in its functional interpretation, first described this anatomical structure. Likewise, Valsalva, with his discovery, advanced a revolutionary idea for that time on the usefulness of anatomy for clinic and pathology. © 2014 Acta Ophthalmologica Scandinavica Foundation. Published by John Wiley & Sons Ltd.
Macedo, Paula G; Kapa, Suraj; Mears, Jennifer A; Fratianni, Amy; Asirvatham, Samuel J
2010-07-01
Ablation procedures for atrial fibrillation have become an established and increasingly used option for managing patients with symptomatic arrhythmia. The anatomic structures relevant to the pathogenesis of atrial fibrillation and ablation procedures are varied and include the pulmonary veins, other thoracic veins, the left atrial myocardium, and autonomic ganglia. Exact regional anatomic knowledge of these structures is essential to allow correlation with fluoroscopy and electrograms and, importantly, to avoid complications from damage of adjacent structures within the chest. We present this information as a series of 2 articles. In a prior issue, we have discussed the thoracic vein anatomy relevant to paroxysmal atrial fibrillation. In the present article, we focus on the atria themselves, the autonomic ganglia, and anatomic issues relevant for minimizing complications during atrial fibrillation ablation.
Novelties in secretory structures and anatomy of Rhynchosia (Fabaceae).
De Vargas, Wanderleia; Sartori, Ângela L B; Dias, Edna S
2015-03-01
A comparative anatomical study was carried out on the secretory structures of leaflets from taxa belonging to the genus Rhynchosia - taxa difficult to delimit because of uncertain interspecific relations - in order to evaluate the potential diagnostic value of these anatomical traits for taxonomic assignment. A further objective was to establish consensual denomination for these secretory structures. The new anatomical features found in these taxa were sufficiently consistent to separate the species evaluated. The presence and localization of glandular-punctate structures bulbous-based trichomes, the number of layers in the palisade parenchyma and the arrangement of vascular units distinguish the taxa investigated and these characteristics can be extended to other species of Papilionoideae. The trichomes analyzed were described and classified into five types. Depicted in diagrams, photomicrographs, and by scanning electron microscopy, and listed for the first time at the genus and species levels. The information obtained served to effectively distinguish the taxa investigated among species of Papilonoideae.
Augmented reality environment for temporomandibular joint motion analysis.
Wagner, A; Ploder, O; Zuniga, J; Undt, G; Ewers, R
1996-01-01
The principles of interventional video tomography were applied for the real-time visualization of temporomandibular joint movements in an augmented reality environment. Anatomic structures were extracted in three dimensions from planar cephalometric radiographic images. The live-image fusion of these graphic anatomic structures with real-time position data of the mandible and the articular fossa was performed with a see-through, head-mounted display and an electromagnetic tracking system. The dynamic fusion of radiographic images of the temporomandibular joint to anatomic temporomandibular joint structures in motion created a new modality for temporomandibular joint motion analysis. The advantages of the method are its ability to accurately examine the motion of the temporomandibular joint in three dimensions without restraining the subject and its ability to simultaneously determine the relationship of the bony temporomandibular joint and supporting structures (ie, occlusion, muscle function, etc) during movement before and after treatment.
Detailed fetal anatomy assessment in the first trimester at 11, 12 and 13 weeks of gestation.
Luchi, Carlo; Schifano, Martina; Sacchini, Clara; Nanini, Chiara; Sceusa, Francesca; Capriello, Patrizio; Genazzani, Andrea R
2012-06-01
The aim of the present observational study was to evaluate the feasibility of a morphological scan and determine the detection rate of fetal organs, structures and systems in the first trimester of pregnancy. 977 single pregnant women attending our Fetal Medicine Section to undergo first trimester screening for aneuploidies were enrolled and divided into three groups depending on gestational age and crown-rump-length measurement. Scans targeted on a total of 26 fetal anatomical structures were performed by a single operator. The overall detection rate was 96% at 11 weeks and reached 100% at 12 and 13 weeks, with a significant statistical difference between 11 and 12/13 weeks for the majority of the investigated fetal anatomical structures. Evaluation of most part of the fetal anatomical structures is feasible with high accuracy in the first trimester. Visualization of the majority of the targeted fetal organs improves from 11 to 13 weeks.
Effects of Spaceflight on Venous and Arterial Compliance
NASA Technical Reports Server (NTRS)
Platts, S. H.; Pibeiro, L. C.; Laurie, S. S.; Lee, S. M. C.; Martin, D. S.; Ploutz-Snyder, R.; Stenger, M. B.
2016-01-01
The visual impairment and intracranial pressure (VIIP) syndrome is a spaceflight-associated medical condition consisting of a constellation of symptoms affecting less than 70% of American astronauts who have flown International Space Station (ISS) missions. VIIP is defined primarily by visual acuity deficits and anatomical changes to eye structures and is hypothesized to be related to elevated intracranial pressure secondary to spaceflight-induced cephalad fluid shifts, although other space flight factors (e.g., diet, environmental factors) may contribute. Loss of visual acuity could be a significant threat to crew health and performance during and after an exploration mission and may have implications for years postflight.
An ontology-based comparative anatomy information system
Travillian, Ravensara S.; Diatchka, Kremena; Judge, Tejinder K.; Wilamowska, Katarzyna; Shapiro, Linda G.
2010-01-01
Introduction This paper describes the design, implementation, and potential use of a comparative anatomy information system (CAIS) for querying on similarities and differences between homologous anatomical structures across species, the knowledge base it operates upon, the method it uses for determining the answers to the queries, and the user interface it employs to present the results. The relevant informatics contributions of our work include (1) the development and application of the structural difference method, a formalism for symbolically representing anatomical similarities and differences across species; (2) the design of the structure of a mapping between the anatomical models of two different species and its application to information about specific structures in humans, mice, and rats; and (3) the design of the internal syntax and semantics of the query language. These contributions provide the foundation for the development of a working system that allows users to submit queries about the similarities and differences between mouse, rat, and human anatomy; delivers result sets that describe those similarities and differences in symbolic terms; and serves as a prototype for the extension of the knowledge base to any number of species. Additionally, we expanded the domain knowledge by identifying medically relevant structural questions for the human, the mouse, and the rat, and made an initial foray into the validation of the application and its content by means of user questionnaires, software testing, and other feedback. Methods The anatomical structures of the species to be compared, as well as the mappings between species, are modeled on templates from the Foundational Model of Anatomy knowledge base, and compared using graph-matching techniques. A graphical user interface allows users to issue queries that retrieve information concerning similarities and differences between structures in the species being examined. Queries from diverse information sources, including domain experts, peer-reviewed articles, and reference books, have been used to test the system and to illustrate its potential use in comparative anatomy studies. Results 157 test queries were submitted to the CAIS system, and all of them were correctly answered. The interface was evaluated in terms of clarity and ease of use. This testing determined that the application works well, and is fairly intuitive to use, but users want to see more clarification of the meaning of the different types of possible queries. Some of the interface issues will naturally be resolved as we refine our conceptual model to deal with partial and complex homologies in the content. Conclusions The CAIS system and its associated methods are expected to be useful to biologists and translational medicine researchers. Possible applications range from supporting theoretical work in clarifying and modeling ontogenetic, physiological, pathological, and evolutionary transformations, to concrete techniques for improving the analysis of genotype–phenotype relationships among various animal models in support of a wide array of clinical and scientific initiatives. PMID:21146377
Raji, A R; Sardari, K; Mohammadi, H R
2008-06-01
The purpose of this study was to define the structures of the digits and hoof in Holstein dairy cattle by using computed tomography scan (CT scan). Transverse, sagittal and dorsoplantar CT images of two isolated cattle cadaver digits were obtained using a Siemens ARTX2 Somatom. The CT images were compared to corresponding frozen cross-sections. Relevant anatomical structures were identified and labelled at each level. The CT images provided anatomical detail of the digits and hoof in Holstein dairy cattle. Transversal images provided excellent depiction of anatomical structures when compared to corresponding frozen cross-sections. The information presented in this paper would serve as an initial reference to the evaluation of CT images of the digits and hoof in Holstein dairy cattle.
Network-Level Structure-Function Relationships in Human Neocortex
Mišić, Bratislav; Betzel, Richard F.; de Reus, Marcel A.; van den Heuvel, Martijn P.; Berman, Marc G.; McIntosh, Anthony R.; Sporns, Olaf
2016-01-01
The dynamics of spontaneous fluctuations in neural activity are shaped by underlying patterns of anatomical connectivity. While numerous studies have demonstrated edge-wise correspondence between structural and functional connections, much less is known about how large-scale coherent functional network patterns emerge from the topology of structural networks. In the present study, we deploy a multivariate statistical technique, partial least squares, to investigate the association between spatially extended structural networks and functional networks. We find multiple statistically robust patterns, reflecting reliable combinations of structural and functional subnetworks that are optimally associated with one another. Importantly, these patterns generally do not show a one-to-one correspondence between structural and functional edges, but are instead distributed and heterogeneous, with many functional relationships arising from nonoverlapping sets of anatomical connections. We also find that structural connections between high-degree hubs are disproportionately represented, suggesting that these connections are particularly important in establishing coherent functional networks. Altogether, these results demonstrate that the network organization of the cerebral cortex supports the emergence of diverse functional network configurations that often diverge from the underlying anatomical substrate. PMID:27102654
Development of a patient-specific anatomical foot model from structured light scan data.
Lochner, Samuel J; Huissoon, Jan P; Bedi, Sanjeev S
2014-01-01
The use of anatomically accurate finite element (FE) models of the human foot in research studies has increased rapidly in recent years. Uses for FE foot models include advancing knowledge of orthotic design, shoe design, ankle-foot orthoses, pathomechanics, locomotion, plantar pressure, tissue mechanics, plantar fasciitis, joint stress and surgical interventions. Similar applications but for clinical use on a per-patient basis would also be on the rise if it were not for the high costs associated with developing patient-specific anatomical foot models. High costs arise primarily from the expense and challenges of acquiring anatomical data via magnetic resonance imaging (MRI) or computed tomography (CT) and reconstructing the three-dimensional models. The proposed solution morphs detailed anatomy from skin surface geometry and anatomical landmarks of a generic foot model (developed from CT or MRI) to surface geometry and anatomical landmarks acquired from an inexpensive structured light scan of a foot. The method yields a patient-specific anatomical foot model at a fraction of the cost of standard methods. Average error for bone surfaces was 2.53 mm for the six experiments completed. Highest accuracy occurred in the mid-foot and lowest in the forefoot due to the small, irregular bones of the toes. The method must be validated in the intended application to determine if the resulting errors are acceptable.
Alonso-Farré, J M; Gonzalo-Orden, M; Barreiro-Vázquez, J D; Barreiro-Lois, A; André, M; Morell, M; Llarena-Reino, M; Monreal-Pawlowsky, T; Degollada, E
2015-02-01
Computed tomography (CT) and low-field magnetic resonance imaging (MRI) were used to scan seven by-caught dolphin cadavers, belonging to two species: four common dolphins (Delphinus delphis) and three striped dolphins (Stenella coeruleoalba). CT and MRI were obtained with the animals in ventral recumbency. After the imaging procedures, six dolphins were frozen at -20°C and sliced in the same position they were examined. Not only CT and MRI scans, but also cross sections of the heads were obtained in three body planes: transverse (slices of 1 cm thickness) in three dolphins, sagittal (5 cm thickness) in two dolphins and dorsal (5 cm thickness) in two dolphins. Relevant anatomical structures were identified and labelled on each cross section, obtaining a comprehensive bi-dimensional topographical anatomy guide of the main features of the common and the striped dolphin head. Furthermore, the anatomical cross sections were compared with their corresponding CT and MRI images, allowing an imaging identification of most of the anatomical features. CT scans produced an excellent definition of the bony and air-filled structures, while MRI allowed us to successfully identify most of the soft tissue structures in the dolphin's head. This paper provides a detailed anatomical description of the head structures of common and striped dolphins and compares anatomical cross sections with CT and MRI scans, becoming a reference guide for the interpretation of imaging studies. © 2014 Blackwell Verlag GmbH.
Avoiding Pitfalls of Tibiotalocalcaneal Nail Malposition With Internal Rotation Axial Heel View.
Callahan, Ryan; Juliano, Paul; Aydogan, Umur; Clayton, Justin
2018-04-01
Tibiotalocalcaneal (TTC) nails are often used for complex hind foot arthrodesis and deformity correction. The natural valgus alignment of the hindfoot creates a challenge to optimum placement of the guidewire and eventual nail with a straight or valgus-curved nail. Five fresh frozen cadavers were used for placement of a TTC guidewire with standard anterior-posterior (AP), lateral, and Harris axial heel views as a reference for proper placement. The limb was then rotated 15°, 30°, and 45° both internally and externally to evaluate the perceived amount of osseous purchase within the calcaneus. The TTC nail was then inserted and dissection was performed to demonstrate proximity of the nail to the sustentaculum tali and neurovascular structures. A 30° internal rotation Harris axial heel view demonstrated the most accurate representation of osseous purchase within the calcaneus with the guidewire and nail placement. When the guidewire was placed with standard imaging the nail was often ultimately placed in close proximity to the sustentaculum tali and neurovascular structures. Careful placement of the guidewire prior to reaming and nail placement should be undertaken to avoid neurovascular injury and to increase osseous purchase. For optimal guidewire placement, the authors suggest using appropriate anatomic landmarks and using a 30° internally rotated Harris axial heel view to verify correct placement. Level V: Expert opinion.
Krings, Markus; Klein, Benjamin; Heneka, Markus J; Rödder, Dennis
2017-01-01
The morphology of larvae stages of most amphibians are often completely different than in adults. Tadpole descriptions have historically been based on external characters like morphometrics, color pattern and oral disc structure. Other papers described anatomical details by the use of dissections. The increase in micro-CT scanning technology provides an opportunity to quantify and describe in detail internal characters like skeleton, musculature and organs. To date, no such tadpole descriptions exist for the well-studied Neotropical poison dart frog genus Ranitomeya (Anura: Dendrobatidae). Here we provide descriptions of the internal skeletal, musculature and organ structures of five Ranitomeya species and then provide morphological comparisons. Contrary to previous observations, closely related species display several morphological differences. For example, we observed considerable variation in chondrocranial characters, the extent of cranial ossifications, the appearance of some cranial muscles and the arrangement of inner organs. Further studies on the tadpole morphology of more species of Ranitomeya and other dendrobatid genera are needed to enable us to understand the complete morphological variation in this group.
Krings, Markus; Klein, Benjamin; Heneka, Markus J.
2017-01-01
The morphology of larvae stages of most amphibians are often completely different than in adults. Tadpole descriptions have historically been based on external characters like morphometrics, color pattern and oral disc structure. Other papers described anatomical details by the use of dissections. The increase in micro-CT scanning technology provides an opportunity to quantify and describe in detail internal characters like skeleton, musculature and organs. To date, no such tadpole descriptions exist for the well-studied Neotropical poison dart frog genus Ranitomeya (Anura: Dendrobatidae). Here we provide descriptions of the internal skeletal, musculature and organ structures of five Ranitomeya species and then provide morphological comparisons. Contrary to previous observations, closely related species display several morphological differences. For example, we observed considerable variation in chondrocranial characters, the extent of cranial ossifications, the appearance of some cranial muscles and the arrangement of inner organs. Further studies on the tadpole morphology of more species of Ranitomeya and other dendrobatid genera are needed to enable us to understand the complete morphological variation in this group. PMID:28235032
Zhang, Yang; Xu, Caiqi; Dong, Shiqui; Shen, Peng; Su, Wei; Zhao, Jinzhong
2016-09-01
To provide an up-to-date assessment of the difference between anatomic double-bundle anterior cruciate ligament (ACL) reconstruction (DB-ACLR) and anatomic single-bundle ACL reconstruction (SB-ACLR). We hypothesized that anatomic SB-ACLR using independent femoral drilling technique would be able to achieve kinematic stability as with anatomic DB-ACLR. A comprehensive Internet search was performed to identify all therapeutic trials of anatomic DB-ACLR versus anatomic SB-ACLR. Only clinical studies of Level I and II evidence were included. The comparative outcomes were instrument-measured anterior laxity, Lachman test, pivot shift, clinical outcomes including objective/subjective International Knee Documentation Committee (IKDC) score, Lysholm score, Tegner activity scale and complication rates of extension/flexion deficits, graft failure, and early osteoarthritis. Subgroup analyses were performed for femoral tunnel drilling techniques including independent drilling and transtibial (TT) drilling. Twenty-two clinical trials of 2,261 anatomically ACL-reconstructed patients were included in the meta-analysis. Via TT drilling technique, anatomic DB-ACLR led to improved instrument-measured anterior laxity with a standard mean difference (SMD) of -0.42 (95% confidence interval [CI] = -0.81 to -0.02), less rotational instability measured by pivot shift (SMD = 2.76, 95% CI = 1.24 to 6.16), and higher objective IKDC score with odds ratio (OR) of 2.28 (95% CI = 1.19 to 4.36). Via independent drilling technique, anatomic DB-ACLR yielded better pivot shift (SMD = 2.04, 95% CI = 1.36 to 3.05). Anatomic DB-ACLR also revealed statistical significance in subjective IKDC score compared with anatomic SB-ACLR (SMD = 0.27, 95% CI = 0.05 to 0.49). Anatomic DB-ACLR showed better anterior and rotational stability and higher objective IKDC score than anatomic SB-ACLR via TT drilling technique. Via independent drilling technique, however, anatomic DB-ACLR only showed superiority of rotational stability. All clinical function outcomes except subjective IKDC score were not significantly different between anatomic DB-ACLR and SB-ACLR. Level II, meta-analysis of Level I and II studies. Copyright © 2016 Arthroscopy Association of North America. Published by Elsevier Inc. All rights reserved.
The simulation of 3D structure of groundwater system based on Java/Java3D
NASA Astrophysics Data System (ADS)
Yang, Xiaodong; Cui, Weihong; Wang, Peifa; Huang, Yongqi
2007-06-01
With the singular development of Internet technique and 3DGIS as well as VR and the imminence demand of 3D visualization from Groundwater information management field, how to display, roam, anatomize and analyze of 3D structure of Groundwater system on Internet have become a research hotspot in hydrogeology field. We simulated the 3D Groundwater resource structure of Taiyuan basin and implemented displaying, roaming, anatomizing and analyzing functions on Internet by Java 3D.
A rare variant of internal anatomy of a third mandibular molar: a case report.
Nimigean, V; Nimigean, Vanda Roxana; Sălăvăstru, D I
2011-01-01
The several anatomical variations existing in the root canal system may contribute to failure of the root canal therapy. Knowledge of the internal dental morphology is a complex and extremely important point for planning and performing endodontic therapy. This paper reports the case of a left mandibular third molar that presented only one dental conical root and only one aberrant radicular canal with an initial annular portion situated in the coronar third of the root and a linear portion at the level of the other two thirds of the dental root, which opened through an apical foramen. Root canal therapy and case management are described. Features like wide crown access, adequate illumination and use of exploring files where important for successful completion of the endodontic treatment. The treatment was performed through conventional methods. This clinical case constitutes a rare anatomical variant of internal radicular morphology.
Cancer biomarkers: the role of structured data reporting.
Simpson, Ross W; Berman, Michael A; Foulis, Philip R; Divaris, Dimitrios X G; Birdsong, George G; Mirza, Jaleh; Moldwin, Richard; Spencer, Samantha; Srigley, John R; Fitzgibbons, Patrick L
2015-05-01
The College of American Pathologists has been producing cancer protocols since 1986 to aid pathologists in the diagnosis and reporting of cancer cases. Many pathologists use the included cancer case summaries as templates for dictation/data entry into the final pathology report. These summaries are now available in a computer-readable format with structured data elements for interoperability, packaged as "electronic cancer checklists." Most major vendors of anatomic pathology reporting software support this model. To outline the development and advantages of structured electronic cancer reporting using the electronic cancer checklist model, and to describe its extension to cancer biomarkers and other aspects of cancer reporting. Peer-reviewed literature and internal records of the College of American Pathologists. Accurate and usable cancer biomarker data reporting will increasingly depend on initial capture of this information as structured data. This process will support the standardization of data elements and biomarker terminology, enabling the meaningful use of these datasets by pathologists, clinicians, tumor registries, and patients.
[Diagnostic significance of T2W hypointensity of the sella].
Rousset, P; Cattin, F; Chiras, J; Bonneville, J F; Bonneville, F
2009-06-01
Normal anatomical structures and lesions characterized by low T2W signal intensity are reviewed in this pictorial essay. The purpose is to demonstrate how evaluation of the appearance, shape and exact anatomical location of the T2W hypointense sellar region structure, correlated with its T1W signal intensity, can based on the clinical context lead to an appropriate differential diagnosis.
[Analysis of anatomical pieces preservation with polyester resin for human anatomy study].
de Oliveira, Ítalo Martins; Mindêllo, Marcela Maria Aguiar; Martins, Yasmin de Oliveira; da Silva Filho, Antônio Ribeiro
2013-01-01
To evaluate the use of polyester resin in preserving anatomical specimens for the study of human anatomy. We used 150 anatomical specimens, comprised of unfixed (fresh), fixed in 10% formalin and vascular casts of organs injected with vinyl acetate and polyester resin. The solution used consisted of polyester resin with the diluent styrene monomer and catalyst (peroxol). After embedding in this solution, models in transparent resin were obtained, allowing full observation of structures and conservation of the specimens used. upon evaluation of the specimens, we observed a high degree of transparency, which promoted a complete visualization of structures with perfect preservation of the anatomy. The average time for the completion of the embedding was 48 hours. Only 14 specimens (9.3%) were lost during the preparation. Polyester resin can be used for preserving anatomical specimens for teaching human anatomy in a practical, aesthetic and durable way.
Braulin, F
2005-12-01
The Museum of Pathological Anatomy of the Regina Elena City Hospital of Trieste houses various pathological preparations of infective and contagious diseases, dating back to the early 1900's (ileo-typhus, dysentery, tuberculosis, syphillis, pulmonary plague, etc.) together with their relative diagnostic certificates. These bear witness to the key role of the Hospital's Anatomical Institute (in operation operating since 1872) during the height of the Pasteurian age. In fact, the Institute houses several anatomical-pathological preparations from a fatal clinical case of "acute human glanders". These preparations were correlated by laboratory animal experiments using Strauss' method and emblematically recall the eziological determinism of the new bacteriological science. The preparations served in their day not only as indisputable diagnostic evidence, but can now be considered a promotional metaphor of the scientific mission the Triestine Anatomical Institutés Director, Dr. Enrico Ferrarri (a disciple of Richard Paltauf), endeavored to assign to the Triestine Pathological and Anatomical Institute by strenghthening it with new laboratory methodologies. The establishment of a new "predominant and determining vision" in the international diagnostics of infectious disease was also emerging from the Haspurg city's hospital medicine. Indeed, it was here that in 1907, the brief scientific debate focussing on the cadaver of a coachman who had been infected by a glanders-infected horse was apparently taking place only locally. Yet, it can now be seen as referring to what was happening on the international scale, in a setting that after a century of empiricism and morphologism, was characterized by the progressive penetration of laboratory medicine into clinical-anatomical medicine.
A hybrid method for prediction and repositioning of drug Anatomical Therapeutic Chemical classes.
Chen, Lei; Lu, Jing; Zhang, Ning; Huang, Tao; Cai, Yu-Dong
2014-04-01
In the Anatomical Therapeutic Chemical (ATC) classification system, therapeutic drugs are divided into 14 main classes according to the organ or system on which they act and their chemical, pharmacological and therapeutic properties. This system, recommended by the World Health Organization (WHO), provides a global standard for classifying medical substances and serves as a tool for international drug utilization research to improve quality of drug use. In view of this, it is necessary to develop effective computational prediction methods to identify the ATC-class of a given drug, which thereby could facilitate further analysis of this system. In this study, we initiated an attempt to develop a prediction method and to gain insights from it by utilizing ontology information of drug compounds. Since only about one-fourth of drugs in the ATC classification system have ontology information, a hybrid prediction method combining the ontology information, chemical interaction information and chemical structure information of drug compounds was proposed for the prediction of drug ATC-classes. As a result, by using the Jackknife test, the 1st prediction accuracies for identifying the 14 main ATC-classes in the training dataset, the internal validation dataset and the external validation dataset were 75.90%, 75.70% and 66.36%, respectively. Analysis of some samples with false-positive predictions in the internal and external validation datasets indicated that some of them may even have a relationship with the false-positive predicted ATC-class, suggesting novel uses of these drugs. It was conceivable that the proposed method could be used as an efficient tool to identify ATC-classes of novel drugs or to discover novel uses of known drugs.
Bisdas, S; Bohning, D E; Besenski, N; Nicholas, J S; Rumboldt, Z
2008-06-01
There is no reproducibility study of fractional anisotropy (FA) measurements at 3T using regions of interest (ROIs). Our purpose was to establish the extent and statistical significance of the interrater variability, the variability observed with 2 different b-values, and in 2 separate scanning sessions. Twelve healthy volunteers underwent MR imaging twice. MR imaging was performed on a 3T unit, and FA maps were analyzed independently by 2 observers using ROIs positioned in the corpus callosum, internal capsules, corticospinal tracts, and right thalamus. Changes in FA values (x10(3)) measured with 2 b-values (700 and 1000 s/mm(2)), age-related differences, interobserver agreement, and measurement reproducibility were assessed. In the right internal capsule genu (FA = 702/728; b = 1000/700 s/mm(2)) and the left anterior limb of the internal capsule (AIC; FA = 617/745; b = 1000/700 s/mm(2)), the FA values were significantly different between the 2 b-values (P = .02 and .05, respectively). Significant age-related differences in FA were observed in the genu of the corpus callosum and in the left AIC. Interrater measurements showed fair-to-moderate agreement for most anatomic structures. The lowest significant change for a single subject regarding any FA values between the 2 sessions was in the corpus callosum (4%), whereas the highest one was in the corticospinal tracts (27%). The Bland-Altman plot analysis showed that the 1000-s/mm(2) b-value gave satisfactorily reproducible measurements equally good or better than the 700-s/mm(2) b-value. The reproducibility of FA estimates using ROIs was satisfactory. Measurements with a b-value at 1000 s/mm(2) showed superior reproducibility in most anatomic locations.
[Progress on treatment and research of quadrilateral plate fractures of acetabular].
Peng, Ye; Zhang, Li-hai; Tang, Pei-fu
2015-05-01
Acetabular is an important human joint for weight bearing. Quadrilateral plate is a crucial structure of medial acetabulum with special morphology and important function. Quadrilateral plate fractures are common fracture in acetabulum. Quadrilateral plate fracture is hard to expose and reduction because it is in the medial of acetabulum. At the same time,the bone in the quadrilateral plate is not easy to fixed for thinning bones and adjacent to the articular cavity. The operator should know well about the anatomy and choose the suitable internal fixation. After quadrilateral plate fractures, the femur head maybe displace medially even break into pelvis. That make reduction and treatment always be a challenge. With different kinds of fractures,the efficacy of treatment is not the same. This paper intend to review the relation of anatomic features,approaches, internal fixations, key point of treatment and efficacy.
Guerriero, S; Condous, G; van den Bosch, T; Valentin, L; Leone, F P G; Van Schoubroeck, D; Exacoustos, C; Installé, A J F; Martins, W P; Abrao, M S; Hudelist, G; Bazot, M; Alcazar, J L; Gonçalves, M O; Pascual, M A; Ajossa, S; Savelli, L; Dunham, R; Reid, S; Menakaya, U; Bourne, T; Ferrero, S; Leon, M; Bignardi, T; Holland, T; Jurkovic, D; Benacerraf, B; Osuga, Y; Somigliana, E; Timmerman, D
2016-09-01
The IDEA (International Deep Endometriosis Analysis group) statement is a consensus opinion on terms, definitions and measurements that may be used to describe the sonographic features of the different phenotypes of endometriosis. Currently, it is difficult to compare results between published studies because authors use different terms when describing the same structures and anatomical locations. We hope that the terms and definitions suggested herein will be adopted in centers around the world. This would result in consistent use of nomenclature when describing the ultrasound location and extent of endometriosis. We believe that the standardization of terminology will allow meaningful comparisons between future studies in women with an ultrasound diagnosis of endometriosis and should facilitate multicenter research. Copyright © 2016 ISUOG. Published by John Wiley & Sons Ltd. Copyright © 2016 ISUOG. Published by John Wiley & Sons Ltd.
Huey, Edward D; Lee, Seonjoo; Lieberman, Jeffrey A; Devanand, D P; Brickman, Adam M; Raymont, Vanessa; Krueger, Frank; Grafman, Jordan
2016-01-01
A factor structure underlying DSM-IV diagnoses has been previously reported in neurologically intact patients. The authors determined the brain regions associated with factors underlying DSM-IV diagnoses and compared the ability of DSM-IV diagnoses, factor scores, and self-report measures to account for the neuroanatomical findings in patients with penetrating brain injuries. This prospective cohort study included 254 Vietnam War veterans: 199 with penetrating brain injuries and 55 matched control participants. Measures include DSM-IV diagnoses (from a Structured Clinical Interview for DSM), self-report measures of depression and anxiety, and CT scans. Factors underlying DSM-IV diagnoses were determined using an exploratory factor analysis and correlated with percent of brain regions affected. The ability of the factor scores, DSM-IV diagnoses, and the self-report psychiatric measures to account for the anatomical variance was compared with multiple regressions. Internalizing and externalizing factors were identified in these brain-injured patients. Damage to the left amygdala and bilateral basal ganglia was associated with lower internalizing factor scores, and damage to the left medial orbitofrontal cortex (OFC) with higher, and bilateral hippocampi with lower, externalizing factor scores. Factor scores best predicted left amygdala and bilateral hippocampal involvement, whereas DSM-IV diagnoses best predicted bilateral basal ganglia and left OFC involvement. Damage to the limbic areas involved in the processing of emotional and reward information, including structures involved in the National Institute of Mental Health's Research Domain Criteria Negative Valence Domain, influences the development of internalizing and externalizing psychiatric symptoms. Self-report measures underperformed DSM-IV and factor scores in predicting neuroanatomical findings.
Hosoda, Koh; Shimizu, Masahiro; Ikemoto, Shuhei; Nagura, Takeo; Seki, Hiroyuki; Kitashiro, Masateru; Imanishi, Nobuaki; Aiso, Sadakazu; Jinzaki, Masahiro; Ogihara, Naomichi
2017-01-01
The anatomical design of the human foot is considered to facilitate generation of bipedal walking. However, how the morphology and structure of the human foot actually contribute to generation of bipedal walking remains unclear. In the present study, we investigated the three-dimensional kinematics of the foot bones under a weight-bearing condition using cadaver specimens, to characterize the innate mobility of the human foot inherently prescribed in its morphology and structure. Five cadaver feet were axially loaded up to 588 N (60 kgf), and radiographic images were captured using a biplane X-ray fluoroscopy system. The present study demonstrated that the talus is medioinferiorly translated and internally rotated as the calcaneus is everted owing to axial loading, causing internal rotation of the tibia and flattening of the medial longitudinal arch in the foot. Furthermore, as the talus is internally rotated, the talar head moves medially with respect to the navicular, inducing external rotation of the navicular and metatarsals. Under axial loading, the cuboid is everted simultaneously with the calcaneus owing to the osseous locking mechanism in the calcaneocuboid joint. Such detailed descriptions about the innate mobility of the human foot will contribute to clarifying functional adaptation and pathogenic mechanisms of the human foot. PMID:29134100
NASA Astrophysics Data System (ADS)
Teuho, J.; Johansson, J.; Linden, J.; Saunavaara, V.; Tolvanen, T.; Teräs, M.
2014-01-01
Selection of reconstruction parameters has an effect on the image quantification in PET, with an additional contribution from a scanner-specific attenuation correction method. For achieving comparable results in inter- and intra-center comparisons, any existing quantitative differences should be identified and compensated for. In this study, a comparison between PET, PET/CT and PET/MR is performed by using an anatomical brain phantom, to identify and measure the amount of bias caused due to differences in reconstruction and attenuation correction methods especially in PET/MR. Differences were estimated by using visual, qualitative and quantitative analysis. The qualitative analysis consisted of a line profile analysis for measuring the reproduction of anatomical structures and the contribution of the amount of iterations to image contrast. The quantitative analysis consisted of measurement and comparison of 10 anatomical VOIs, where the HRRT was considered as the reference. All scanners reproduced the main anatomical structures of the phantom adequately, although the image contrast on the PET/MR was inferior when using a default clinical brain protocol. Image contrast was improved by increasing the amount of iterations from 2 to 5 while using 33 subsets. Furthermore, a PET/MR-specific bias was detected, which resulted in underestimation of the activity values in anatomical structures closest to the skull, due to the MR-derived attenuation map that ignores the bone. Thus, further improvements for the PET/MR reconstruction and attenuation correction could be achieved by optimization of RAMLA-specific reconstruction parameters and implementation of bone to the attenuation template.
Dilated Canine Hearts: A Specimen for Teaching Cardiac Anatomy
ERIC Educational Resources Information Center
Cope, Lee Anne
2008-01-01
Dilated canine hearts were used to teach undergraduate students internal and external cardiac anatomy. The specimens were dilated using hydrostatic pressure and then fixed using 5% formalin. These specimens provided the students with an alternative to prepackaged embalmed hearts and anatomical models for studying the external and internal cardiac…
Jimenez-Del-Toro, Oscar; Muller, Henning; Krenn, Markus; Gruenberg, Katharina; Taha, Abdel Aziz; Winterstein, Marianne; Eggel, Ivan; Foncubierta-Rodriguez, Antonio; Goksel, Orcun; Jakab, Andras; Kontokotsios, Georgios; Langs, Georg; Menze, Bjoern H; Salas Fernandez, Tomas; Schaer, Roger; Walleyo, Anna; Weber, Marc-Andre; Dicente Cid, Yashin; Gass, Tobias; Heinrich, Mattias; Jia, Fucang; Kahl, Fredrik; Kechichian, Razmig; Mai, Dominic; Spanier, Assaf B; Vincent, Graham; Wang, Chunliang; Wyeth, Daniel; Hanbury, Allan
2016-11-01
Variations in the shape and appearance of anatomical structures in medical images are often relevant radiological signs of disease. Automatic tools can help automate parts of this manual process. A cloud-based evaluation framework is presented in this paper including results of benchmarking current state-of-the-art medical imaging algorithms for anatomical structure segmentation and landmark detection: the VISCERAL Anatomy benchmarks. The algorithms are implemented in virtual machines in the cloud where participants can only access the training data and can be run privately by the benchmark administrators to objectively compare their performance in an unseen common test set. Overall, 120 computed tomography and magnetic resonance patient volumes were manually annotated to create a standard Gold Corpus containing a total of 1295 structures and 1760 landmarks. Ten participants contributed with automatic algorithms for the organ segmentation task, and three for the landmark localization task. Different algorithms obtained the best scores in the four available imaging modalities and for subsets of anatomical structures. The annotation framework, resulting data set, evaluation setup, results and performance analysis from the three VISCERAL Anatomy benchmarks are presented in this article. Both the VISCERAL data set and Silver Corpus generated with the fusion of the participant algorithms on a larger set of non-manually-annotated medical images are available to the research community.
NASA Astrophysics Data System (ADS)
Tang, Zhenchao; Liu, Zhenyu; Li, Ruili; Cui, Xinwei; Li, Hongjun; Dong, Enqing; Tian, Jie
2017-03-01
It's widely known that HIV infection would cause white matter integrity impairments. Nevertheless, it is still unclear that how the white matter anatomical structural connections are affected by HIV infection. In the current study, we employed a multivariate pattern analysis to explore the HIV-related white matter connections alterations. Forty antiretroviraltherapy- naïve HIV patients and thirty healthy controls were enrolled. Firstly, an Automatic Anatomical Label (AAL) atlas based white matter structural network, a 90 × 90 FA-weighted matrix, was constructed for each subject. Then, the white matter connections deprived from the structural network were entered into a lasso-logistic regression model to perform HIV-control group classification. Using leave one out cross validation, a classification accuracy (ACC) of 90% (P=0.002) and areas under the receiver operating characteristic curve (AUC) of 0.96 was obtained by the classification model. This result indicated that the white matter anatomical structural connections contributed greatly to HIV-control group classification, providing solid evidence that the white matter connections were affected by HIV infection. Specially, 11 white matter connections were selected in the classification model, mainly crossing the regions of frontal lobe, Cingulum, Hippocampus, and Thalamus, which were reported to be damaged in previous HIV studies. This might suggest that the white matter connections adjacent to the HIV-related impaired regions were prone to be damaged.
Rotator cuff disorders: How to write a surgically relevant magnetic resonance imaging report?
Tawfik, Ahmed M; El-Morsy, Ahmad; Badran, Mohamed Aboelnour
2014-01-01
Evaluation of rotator cuff is a common indication for magnetic resonance imaging (MRI) scanning of the shoulder. Conventional MRI is the most commonly used technique, while magnetic resonance (MR) arthrography is reserved for certain cases. Rotator cuff disorders are thought to be caused by a combination of internal and external mechanisms. A well-structured MRI report should comment on the relevant anatomic structures including the acromial type and orientation, the presence of os acromiale, acromio-clavicular degenerative spurs and fluid in the subacromial subdeltoid bursa. In addition, specific injuries of the rotator cuff tendons and the condition of the long head of biceps should be accurately reported. The size and extent of tendon tears, tendon retraction and fatty degeneration or atrophy of the muscles are all essential components of a surgically relevant MRI report. PMID:24976930
[Association of three anatomical variants of the anterior cerebral circulation].
Reyes-Soto, Gervith; Pérez-Cruz, Julio; Delgado-Reyes, Luis; Ortega-Gutiérrez, César; Téllez-Palacios, Daniela
2012-01-01
As part of a study of the microsurgical anatomy of the pericallosal artery, we describe one brain with three unusual anatomical variants. From the autopsy of a 45 year-old female, we extracted the brain and all the arterial blood vessels were washed off with saline solution to be injected afterwards with red latex. The brain was then immersed in 10% formalin for two months. Finally, we dissected and measured the internal carotid artery segments, using a digital Vernier caliper under a Carl Zeiss OPMI surgical microscope with magnification of 6x up to 40x. The brain's weight was 1250 grams and three rare anatomical variants were found: 1) right accessory middle cerebral artery (ACMA-d), 2) right bihemispheric anterior cerebral artery (ACABihem-d), 3) median artery of the corpus callosum (AMCC). The association of the anatomical variations described previously is inconstant; furthermore, their appearance in a single case is rare.
Wognum, S; Bondar, L; Zolnay, A G; Chai, X; Hulshof, M C C M; Hoogeman, M S; Bel, A
2013-02-01
Future developments in image guided adaptive radiotherapy (IGART) for bladder cancer require accurate deformable image registration techniques for the precise assessment of tumor and bladder motion and deformation that occur as a result of large bladder volume changes during the course of radiotherapy treatment. The aim was to employ an extended version of a point-based deformable registration algorithm that allows control over tissue-specific flexibility in combination with the authors' unique patient dataset, in order to overcome two major challenges of bladder cancer registration, i.e., the difficulty in accounting for the difference in flexibility between the bladder wall and tumor and the lack of visible anatomical landmarks for validation. The registration algorithm used in the current study is an extension of the symmetric-thin plate splines-robust point matching (S-TPS-RPM) algorithm, a symmetric feature-based registration method. The S-TPS-RPM algorithm has been previously extended to allow control over the degree of flexibility of different structures via a weight parameter. The extended weighted S-TPS-RPM algorithm was tested and validated on CT data (planning- and four to five repeat-CTs) of five urinary bladder cancer patients who received lipiodol injections before radiotherapy. The performance of the weighted S-TPS-RPM method, applied to bladder and tumor structures simultaneously, was compared with a previous version of the S-TPS-RPM algorithm applied to bladder wall structure alone and with a simultaneous nonweighted S-TPS-RPM registration of the bladder and tumor structures. Performance was assessed in terms of anatomical and geometric accuracy. The anatomical accuracy was calculated as the residual distance error (RDE) of the lipiodol markers and the geometric accuracy was determined by the surface distance, surface coverage, and inverse consistency errors. Optimal parameter values for the flexibility and bladder weight parameters were determined for the weighted S-TPS-RPM. The weighted S-TPS-RPM registration algorithm with optimal parameters significantly improved the anatomical accuracy as compared to S-TPS-RPM registration of the bladder alone and reduced the range of the anatomical errors by half as compared with the simultaneous nonweighted S-TPS-RPM registration of the bladder and tumor structures. The weighted algorithm reduced the RDE range of lipiodol markers from 0.9-14 mm after rigid bone match to 0.9-4.0 mm, compared to a range of 1.1-9.1 mm with S-TPS-RPM of bladder alone and 0.9-9.4 mm for simultaneous nonweighted registration. All registration methods resulted in good geometric accuracy on the bladder; average error values were all below 1.2 mm. The weighted S-TPS-RPM registration algorithm with additional weight parameter allowed indirect control over structure-specific flexibility in multistructure registrations of bladder and bladder tumor, enabling anatomically coherent registrations. The availability of an anatomically validated deformable registration method opens up the horizon for improvements in IGART for bladder cancer.
[Quality control at the Istituto di Anatomia e Istologia patologica at the Università di Bologna].
Alampi, G; Baroni, R; Berti, E; Ceccarelli, C; Dina, R; Eusebi, V; Giangaspero, F; Grigioni, F W; Lecce, S; Losi, L
1994-04-01
The growing importance in medical practice of a standardized diagnosis in cyto- and histopathology and the recent recommendations for the adoption of standardized schemes for quality control in anatomic pathology by International Committees stimulated the medical staff of the Institute of Anatomic Pathology of the University of Bologna to adopt a pertinent method. The method used by the Department of Pathology of the Yale University (New Haven, Connecticut, USA) was chosen. A Committee for the quality control was appointed and two kinds of controls were set up: an External Quality Assessment (review of the difficult cases by external experts, slide seminars) and an Internal Quality Assessment performed by the members of the Committee on the diagnostic and laboratory routine of the Institute. Such a survey is periodically monitored during the monthly meetings of the Committee and described in the monthly reports. The present paper illustrates the method adopted and the preliminary results obtained in order to stimulate the discussion of such a critical theme in contemporary Anatomic Pathology at a national level.
Technical report on the surface reconstruction of stacked contours by using the commercial software
NASA Astrophysics Data System (ADS)
Shin, Dong Sun; Chung, Min Suk; Hwang, Sung Bae; Park, Jin Seo
2007-03-01
After drawing and stacking contours of a structure, which is identified in the serially sectioned images, three-dimensional (3D) image can be made by surface reconstruction. Usually, software is composed for the surface reconstruction. In order to compose the software, medical doctors have to acquire the help of computer engineers. So in this research, surface reconstruction of stacked contours was tried by using commercial software. The purpose of this research is to enable medical doctors to perform surface reconstruction to make 3D images by themselves. The materials of this research were 996 anatomic images (1 mm intervals) of left lower limb, which were made by serial sectioning of a cadaver. On the Adobe Photoshop, contours of 114 anatomic structures were drawn, which were exported to Adobe Illustrator files. On the Maya, contours of each anatomic structure were stacked. On the Rhino, superoinferior lines were drawn along all stacked contours to fill quadrangular surfaces between contours. On the Maya, the contours were deleted. 3D images of 114 anatomic structures were assembled with their original locations preserved. With the surface reconstruction technique, developed in this research, medical doctors themselves could make 3D images of the serially sectioned images such as CTs and MRIs.
Jiang, Chuang-Dao; Wang, Xin; Gao, Hui-Yuan; Shi, Lei; Chow, Wah Soon
2011-03-01
Leaf anatomy of C3 plants is mainly regulated by a systemic irradiance signal. Since the anatomical features of C4 plants are different from that of C3 plants, we investigated whether the systemic irradiance signal regulates leaf anatomical structure and photosynthetic performance in sorghum (Sorghum bicolor), a C4 plant. Compared with growth under ambient conditions (A), no significant changes in anatomical structure were observed in newly developed leaves by shading young leaves alone (YS). Shading mature leaves (MS) or whole plants (S), on the other hand, caused shade-leaf anatomy in newly developed leaves. By contrast, chloroplast ultrastructure in developing leaves depended only on their local light conditions. Functionally, shading young leaves alone had little effect on their net photosynthetic capacity and stomatal conductance, but shading mature leaves or whole plants significantly decreased these two parameters in newly developed leaves. Specifically, the net photosynthetic rate in newly developed leaves exhibited a positive linear correlation with that of mature leaves, as did stomatal conductance. In MS and S treatments, newly developed leaves exhibited severe photoinhibition under high light. By contrast, newly developed leaves in A and YS treatments were more resistant to high light relative to those in MS- and S-treated seedlings. We suggest that (1) leaf anatomical structure, photosynthetic capacity, and high-light tolerance in newly developed sorghum leaves were regulated by a systemic irradiance signal from mature leaves; and (2) chloroplast ultrastructure only weakly influenced the development of photosynthetic capacity and high-light tolerance. The potential significance of the regulation by a systemic irradiance signal is discussed.
Schulz, Sissy-Amelie; Wöhler, Aliona; Beutner, Dirk; Angelov, Doychin N
2016-03-01
The human glomus caroticum (GC) is not readily accessible during ordinary anatomical teaching courses because of insufficient time and difficulties encountered in the preparation. Accordingly, most anatomical descriptions of its location, relationship to neighboring structures, size and shape are supported only by drawings, but not by photographs. The aim of this study is to present the GC with all associated roots and branches. Following microscope-assisted dissection and precise photo-documentation, a detailed analysis of location, syntopy and morphology was performed. We carried out this study on 46 bifurcations of the common carotid artery (CCA) into the external (ECA) and internal (ICA) carotid arteries and identified the GC in 40 (91%) of them. We found significant variations regarding the location of the GC and its syntopy: GC was associated with CCA (42%), ECA (28%) and ICA (30%) lying on the medial or lateral surface (82% or 13%, respectively) or exactly in the middle (5%) of the bifurcation. The short and long diameter of its oval form varied from 1.0 × 2.0 to 5.0 × 5.0mm. Connections with the sympathetic trunk (100%), glossopharyngeal (93%), vagus (79%) and hypoglossal nerve (90%) could be established in 29 cadavers. We conclude that precise knowledge of this enormous variety might be very helpful not only to students in medicine and dentistry during anatomical dissection courses, but also to surgeons working in this field. Copyright © 2015 Elsevier GmbH. All rights reserved.
Two unusual anatomic variations create a diagnostic dilemma in distal ulnar nerve compression.
Kiehn, Mark W; Derrick, Allison J; Iskandar, Bermans J
2008-09-01
Diagnosis of peripheral neuropathies is based upon patterns of functional deficits and electrodiagnostic testing. However, anatomic variations can lead to confounding patterns of physical and electrodiagnostic findings. Authors present a case of ulnar nerve compression due to a rare combination of anatomic variations, aberrant branching pattern, and FCU insertion at the wrist, which posed a diagnostic and therapeutic dilemma. The literature related to isolated distal ulnar motor neuropathy and anatomic variations of the ulnar nerve and adjacent structures is also reviewed. This case demonstrates how anatomic variations can complicate the interpretation of clinical and electrodiagnostic findings and underscores the importance of thorough exploration of the nerve in consideration for possible variations. (c) 2008 Wiley-Liss, Inc.
An anatomical study of the intersigmoid fossa and applications for internal hernia surgery.
Somé, O R; Ndoye, J M; Yohann, R; Nolan, G; Roccia, H; Dakoure, W P; Chaffanjon, P
2017-03-01
To improve the knowledge of the morphometry and the surrounding anatomical structures of the intersigmoid fossa and to determine possible surgical applications. Forty eight adult cadavers (29 female and 19 male; mean age 83 years) underwent dissection in the Laboratoire d'Anatomie des Alpes Francaises. Two injections in the right carotid resulted in a total body concentration of formalin of 1.3 %. The study parameters were the dimensions of the intersigmoid fossa orifice and the fossa's relationship to surrounding structures. Data were recorded and analyzed using Microsoft Office Excel (MS Cerp). A Pearson coefficient r was used to examine the correlation between the length of colon and the ISF volume. The intersigmoid fossa was present in 75 % of cases (n = 36). The average dimensions for the transverse diameter, longitudinal diameter, and the depth were, respectively, 20.5 ± 0.2, 20.3 ± 0.13, and 26.8 ± 0.2 mm. The primary and secondary roots bordering this fossa measured on average 59.1 ± 0.1 and 48.3 ± 0.13 mm. In 13.9 % of cases (n = 5), the maximum depth was >40 mm and in 16.7 % of cases (n = 6), one of the diameters of the orifice entry of the fossa was >40 mm. The ureter and external iliac artery were the most frequently encountered structures during the dissection of the fundus of the intersigmoid fossa. The intersigmoid fossa remains present in most of the reported dissections of cadavers. It constitutes an essential landmark in the surgery of the sigmoid colon due to its deep structural relationship with the left ureter and external iliac artery.
Casteleyn, C; Simoens, P; Van den Broeck, W
2011-06-01
Many terms used for referring to tonsillar structures are applied in immunological research. However, in many cases, the use of these terms is not in compliance with official veterinary anatomical nomenclature. This is partly attributable to ambiguous descriptions present in conventional anatomical textbooks. This study gives an overview of pertaining controversial terms and promotes the official anatomical terminology applicable to the tonsils, to enhance the unequivocal transfer of knowledge generated during immunological research. © 2011 Blackwell Verlag GmbH.
Panzica, Martin; Janzik, Janne; Bobrowitsch, Evgenij; Krettek, Christian; Hawi, Nael; Hurschler, Christof; Jagodzinski, Michael
2015-11-01
To date, various surgical techniques to treat posterolateral knee instability have been described. Recent studies recommended an anatomical and isometric reconstruction of the posterolateral corner addressing the key structures, such as lateral collateral ligament (LCL), popliteus tendon (POP) and popliteofibular ligament (PFL). Two clinical established autologous respective local reconstruction methods of the posterolateral complex were tested for knot-bone cylinder press-fit fixation to assess efficacy of each reconstruction technique in comparison to the intact knee. The knot-bone cylinder press-fit fixation for both anatomic and isometric reconstruction techniques of the posterolateral complex shows equal biomechanical stability as the intact posterolateral knee structures. This was a controlled laboratory study. Two surgical techniques (Larson: fibula-based semitendinosus autograft for LCL and PFL reconstruction/Kawano: biceps femoris and iliotibial tract autograft for LCL, PFL and POP reconstruction) with press-fit fixation were used for restoration of posterolateral knee stability. Seven cadaveric knees (66 ± 3.4 years) were tested under three conditions: intact knee, sectioned state and reconstructed knee for each surgical technique. Biomechanical stress tests were performed for every state at 30° and 90° knee flexion for anterior-posterior translation (60 N), internal-external and varus-valgus rotation (5 Nm) at 0°, 30° and 90° using a kinemator (Kuka robot). At 30° and 90° knee flexion, no significant differences between the four knee states were registered for anterior-posterior translation loading. Internal-external and varus-valgus rotational loading showed significantly higher instability for the sectioned state than for the intact or reconstructed posterolateral structures (p < 0.05). There were no significant differences between the intact and reconstructed knee states for internal-external rotation, varus-valgus rotation and anterior-posterior translation at any flexion angles (p > 0.05). Comparing both reconstruction techniques, significant higher varus-/valgus stability was registered for the fibula-based Larson technique at 90° knee flexion (p < 0.05). Both PLC reconstructions showed equal biomechanical stability as the intact posterolateral knee structures when using knot-bone cylinder press-fit fixation. We registered restoration of the rotational and varus-valgus stability with both surgical techniques. The anterior-posterior translational stability was not influenced significantly. The Larson technique showed significant higher varus/valgus stability in 90° flexion. The latter is easier to perform and takes half the preparation time, but needs grafting of the semitendinosus tendon. The Kawano reconstruction technique is an interesting alternative in cases of missing autografts.
Dinjar, Kristijan; Toth, Jurica; Atalic, Bruno; Radanovic, Danijela; Maric, Svjetlana
2012-01-01
This paper tries to evaluate the connections between the Viennese Anatomical School and the Croatian Anatomist Jelena Krmpotic-Nemanic. 17 papers written by Professor Jelena Krmpotic-Nemanic in the last decade of her life were chosen for analyses. According to their themes they could be divided into three groups: ones which evaluate the anatomical terminology, ones which research the development of anatomical structures, and ones which describe the anatomical variations. Mentioned papers were analysed through their topics, methods of research and cited references. Analyses of the mentioned papers revealed the indirect link between the Viennese Anatomical School and the Professor Jelena Krmpotic-Nemanic, through her mentor Professor Drago Perovic, regarding the themes and the methods of her anatomical researches. It has also showed her preference for Austrian and German anatomical textbooks and atlases, primarily ones published in Vienna and Jena, rather than English and American ones. Finally, her direct connections with the Viennese Institute for the History of Medicine and the Viennese Josephinum Wax Models Museum were emphasized. Mentioned indirect and direct influences of the Viennese Anatomical School on the work of Professor Jelena Krmpotic-Nemanic were critically appraised.
Retrieving high-resolution images over the Internet from an anatomical image database
NASA Astrophysics Data System (ADS)
Strupp-Adams, Annette; Henderson, Earl
1999-12-01
The Visible Human Data set is an important contribution to the national collection of anatomical images. To enhance the availability of these images, the National Library of Medicine has supported the design and development of a prototype object-oriented image database which imports, stores, and distributes high resolution anatomical images in both pixel and voxel formats. One of the key database modules is its client-server Internet interface. This Web interface provides a query engine with retrieval access to high-resolution anatomical images that range in size from 100KB for browser viewable rendered images, to 1GB for anatomical structures in voxel file formats. The Web query and retrieval client-server system is composed of applet GUIs, servlets, and RMI application modules which communicate with each other to allow users to query for specific anatomical structures, and retrieve image data as well as associated anatomical images from the database. Selected images can be downloaded individually as single files via HTTP or downloaded in batch-mode over the Internet to the user's machine through an applet that uses Netscape's Object Signing mechanism. The image database uses ObjectDesign's object-oriented DBMS, ObjectStore that has a Java interface. The query and retrieval systems has been tested with a Java-CDE window system, and on the x86 architecture using Windows NT 4.0. This paper describes the Java applet client search engine that queries the database; the Java client module that enables users to view anatomical images online; the Java application server interface to the database which organizes data returned to the user, and its distribution engine that allow users to download image files individually and/or in batch-mode.
Mavar-Haramija, Marija; Prats-Galino, Alberto; Méndez, Juan A Juanes; Puigdelívoll-Sánchez, Anna; de Notaris, Matteo
2015-10-01
A three-dimensional (3D) model of the skull base was reconstructed from the pre- and post-dissection head CT images and embedded in a Portable Document Format (PDF) file, which can be opened by freely available software and used offline. The CT images were segmented using a specific 3D software platform for biomedical data, and the resulting 3D geometrical models of anatomical structures were used for dual purpose: to simulate the extended endoscopic endonasal transsphenoidal approaches and to perform the quantitative analysis of the procedures. The analysis consisted of bone removal quantification and the calculation of quantitative parameters (surgical freedom and exposure area) of each procedure. The results are presented in three PDF documents containing JavaScript-based functions. The 3D-PDF files include reconstructions of the nasal structures (nasal septum, vomer, middle turbinates), the bony structures of the anterior skull base and maxillofacial region and partial reconstructions of the optic nerve, the hypoglossal and vidian canals and the internal carotid arteries. Alongside the anatomical model, axial, sagittal and coronal CT images are shown. Interactive 3D presentations were created to explain the surgery and the associated quantification methods step-by-step. The resulting 3D-PDF files allow the user to interact with the model through easily available software, free of charge and in an intuitive manner. The files are available for offline use on a personal computer and no previous specialized knowledge in informatics is required. The documents can be downloaded at http://hdl.handle.net/2445/55224 .
Histology of the distal dural ring.
Graffeo, Christopher S; Perry, Avital; Copeland, William R; Raghunathan, Aditya; Link, Michael J
2017-09-01
The distal dural ring (DDR) is a conserved intracranial anatomic structure marking the boundary point at which the internal carotid artery (ICA) exits the cavernous sinus (CS) and enters the subarachnoid space. Although the CS has been well described in a range of anatomic studies, to our knowledge no prior study has analyzed the histologic relationship between the ICA and DDR. Correspondingly, our objective was to assess the relationship of the DDR to the ICA and determine whether the DDR can be dissected from the ICA and thus divided, or can only be circumferentially trimmed around the artery. The authors examined ten fresh-frozen, adult cadaveric specimens. A standard frontotemporal craniotomy, orbito-optic osteotomy, and extradural anterior clinoidectomy was performed bilaterally. The cavernous ICA, DDR, and supraclinoid ICA were harvested as an en bloc specimen. Specimens formalin-fixed and paraffin-embedded prior to routine histochemical staining with hematoxylin and eosin and Masson trichrome. In all specimens, marked microscopic investment of the DDR throughout the ICA adventitia was noted. Dural collagen fibers extensively permeated the arterial layers superficial to the muscularis propria, with no evidence of a clear separation between the DDR and arterial adventitia. Histologic analysis suggests that the ICA and DDR are highly interrelated, continuous structures, and therefore attempted intraoperative dissection between these structures may carry an elevated risk of injury to the ICA. We correspondingly recommend careful circumferential trimming of the DDR in lieu of direct dissection in cases requiring mobilization of the clinoidal ICA. Clin. Anat. 30:742-746, 2017. © 2017Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.
Tele-Immersion: Preferred Infrastructure for Anatomy Instruction
ERIC Educational Resources Information Center
Silverstein, Jonathan C.; Ehrenfeld, Jesse M.; Croft, Darin A.; Dech, Fred W.; Small, Stephen; Cook, Sandy
2006-01-01
Understanding spatial relationships among anatomic structures is an essential skill for physicians. Traditional medical education--using books, lectures, physical models, and cadavers--may be insufficient for teaching complex anatomical relationships. This study was designed to measure whether teaching complex anatomy to medical students using…
Arthroscopic approach and anatomy of the hip.
Aprato, Alessandro; Giachino, Matteo; Masse, Alessandro
2016-01-01
Hip arthroscopy has gained popularity among the orthopedic community and a precise assessment of indications, techniques and results is constantly brought on. In this chapter the principal standard entry portals for central and peripheral compartment are discussed. The description starts from the superficial landmarks for portals placement and continues with the deep layers. For each entry point an illustration of the main structures encountered is provided and the principal structures at risk for different portals are accurately examined. Articular anatomical description is carried out from the arthroscope point of view and sub-divided into central and peripheral compartment. The two compartments are systematically analyzed and the accessible articular areas for each portal explained. Moreover, some anatomical variations that can be found in the normal hip are reported. The anatomical knowledge of the hip joint along with a precise notion of the structures encountered with the arthroscope is an essential requirement for a secure and successful surgery. Level of evidence: V.
Magnetic resonance imaging of the normal bovine digit.
Raji, A R; Sardari, K; Mirmahmoob, P
2009-08-01
The purpose of this study was defining the normal structures of the digits and hoof in Holstein dairy cattle using Magnetic Resonance Image (MRI). Transverse, Sagital and Dorsoplantar MRI images of three isolated cattle cadaver digits were obtained using Gyroscan T5-NT a magnet of 0.5 Tesla and T1 Weighted sequence. The MRI images were compared to corresponding frozen cross-sections and dissect specimens of the cadaver digits. Relevant anatomical structures were identified and labeled at each level. The MRI images provided anatomical detail of the digits and hoof in Holstein dairy cattle. Transversal images provided excellent depiction of anatomical structures when compared to corresponding frozen cross-sections. The information presented in this paper would serve as an initial reference to the evaluation of MRI images of the digits and hoof in Holstein dairy cattle, that can be used by radiologist, clinicians, surgeon or for research propose in bovine lameness.
Walde, T A; Bussert, J; Sehmisch, S; Balcarek, P; Stürmer, K M; Walde, H J; Frosch, K H
2010-12-01
Femoral malrotation in total knee arthroplasty is correlated to an increased number of revisions. Anatomic landmarks such as Whiteside line, posterior condyle axis and transepicondylar axis are used for determining femoral component rotation. The femoral rotation achieved with the anatomical landmarks is compared to the femoral rotation achieved by a navigated ligament tension-based tibia-first technique. Ninety-three consecutive patients with gonarthritis were prospectively enrolled. Intraoperatively the anatomical landmarks for femoral rotation and the achieved femoral rotation using a navigated tension-based tibia-first technique were determined and stored for further comparison. A pre- and postoperative functional diagram displaying the extension and flexion and varus or valgus positions was also part of the evaluation. Using anatomical landmarks the rotational errors ranged from 12.2° of internal rotation to 15.5° of external rotation from parallel to the tibial resection surface at 90° flexion. A statistical significant improved femoral rotation was achieved using the ligament tension-based method with a rotational error ranged from 3.0° of internal rotation to 2.4° of external rotation. The functional analyses demonstrated statistical significant lower varus/valgus deviations within the flexion range and an improved maximum varus deviation at 90° flexion using the ligament tension-based method. Compared to the anatomical landmarks a balanced, almost parallel flexion gap was achieved using a navigation technique taking the ligament tension of the knee joint into account. As a result the improved femoral rotation was demonstrated by the functional evaluation. Unilateral overloading of the polyethylene inlay and unilateral instability can thus be avoided. Copyright © 2009 Elsevier B.V. All rights reserved.
Itokazu, Maki; Minoda, Yukihide; Ikebuchi, Mitsuhiko; Mizokawa, Shigekazu; Ohta, Yoichi; Nakamura, Hiroaki
2016-08-01
Soft tissue balancing is crucial to the success of total knee arthroplasty (TKA). To create a rectangular flexion joint gap, the rotation of the femoral component is important. The purpose of this study is to determine whether or not anatomical landmarks of the distal femoral condyles are parallel to the tibial bone cut surface in flexion. Forty-eight patients (three male and 45 female) with a mean age of 74years were examined. During the operation, we estimated the flexion joint gap with the following three techniques. 1) a three degree external cut to the posterior condylar line (MR1), 2) a parallel cut to the surgical transepicondylar axis (MR2), and 3) a parallel cut to the anatomical transepicondylar axis (MR3). The flexion joint gap was 1.1±3.0° (mean±standard deviation (SD)) in internal rotation in the case of MR1, 0.9±3.4° in internal rotation in the case of MR2, and 2.1±3.4° in external rotation in the case of MR3. An outlier (flexion joint gap >3.0°) was observed in 12 cases (25%) in MR1, 13 cases (27%) in MR2, and 15 cases (31%) in MR3. The anatomical landmarks of the distal femoral condyles are not always parallel to the tibial bone cut surface in flexion. To create a rectangular flexion joint gap, the rotation of the femoral component rotation is based not only on the anatomical landmarks but also on the ligament balance. Copyright © 2016 Elsevier B.V. All rights reserved.
Houyel, Lucile; Khoshnood, Babak; Anderson, Robert H; Lelong, Nathalie; Thieulin, Anne-Claire; Goffinet, François; Bonnet, Damien
2011-10-03
Classification of the overall spectrum of congenital heart defects (CHD) has always been challenging, in part because of the diversity of the cardiac phenotypes, but also because of the oft-complex associations. The purpose of our study was to establish a comprehensive and easy-to-use classification of CHD for clinical and epidemiological studies based on the long list of the International Paediatric and Congenital Cardiac Code (IPCCC). We coded each individual malformation using six-digit codes from the long list of IPCCC. We then regrouped all lesions into 10 categories and 23 subcategories according to a multi-dimensional approach encompassing anatomic, diagnostic and therapeutic criteria. This anatomic and clinical classification of congenital heart disease (ACC-CHD) was then applied to data acquired from a population-based cohort of patients with CHD in France, made up of 2867 cases (82% live births, 1.8% stillbirths and 16.2% pregnancy terminations). The majority of cases (79.5%) could be identified with a single IPCCC code. The category "Heterotaxy, including isomerism and mirror-imagery" was the only one that typically required more than one code for identification of cases. The two largest categories were "ventricular septal defects" (52%) and "anomalies of the outflow tracts and arterial valves" (20% of cases). Our proposed classification is not new, but rather a regrouping of the known spectrum of CHD into a manageable number of categories based on anatomic and clinical criteria. The classification is designed to use the code numbers of the long list of IPCCC but can accommodate ICD-10 codes. Its exhaustiveness, simplicity, and anatomic basis make it useful for clinical and epidemiologic studies, including those aimed at assessment of risk factors and outcomes.
Zhao, Guangjun; Wang, Xuchu; Niu, Yanmin; Tan, Liwen; Zhang, Shao-Xiang
2016-01-01
Cryosection brain images in Chinese Visible Human (CVH) dataset contain rich anatomical structure information of tissues because of its high resolution (e.g., 0.167 mm per pixel). Fast and accurate segmentation of these images into white matter, gray matter, and cerebrospinal fluid plays a critical role in analyzing and measuring the anatomical structures of human brain. However, most existing automated segmentation methods are designed for computed tomography or magnetic resonance imaging data, and they may not be applicable for cryosection images due to the imaging difference. In this paper, we propose a supervised learning-based CVH brain tissues segmentation method that uses stacked autoencoder (SAE) to automatically learn the deep feature representations. Specifically, our model includes two successive parts where two three-layer SAEs take image patches as input to learn the complex anatomical feature representation, and then these features are sent to Softmax classifier for inferring the labels. Experimental results validated the effectiveness of our method and showed that it outperformed four other classical brain tissue detection strategies. Furthermore, we reconstructed three-dimensional surfaces of these tissues, which show their potential in exploring the high-resolution anatomical structures of human brain. PMID:27057543
Zhao, Guangjun; Wang, Xuchu; Niu, Yanmin; Tan, Liwen; Zhang, Shao-Xiang
2016-01-01
Cryosection brain images in Chinese Visible Human (CVH) dataset contain rich anatomical structure information of tissues because of its high resolution (e.g., 0.167 mm per pixel). Fast and accurate segmentation of these images into white matter, gray matter, and cerebrospinal fluid plays a critical role in analyzing and measuring the anatomical structures of human brain. However, most existing automated segmentation methods are designed for computed tomography or magnetic resonance imaging data, and they may not be applicable for cryosection images due to the imaging difference. In this paper, we propose a supervised learning-based CVH brain tissues segmentation method that uses stacked autoencoder (SAE) to automatically learn the deep feature representations. Specifically, our model includes two successive parts where two three-layer SAEs take image patches as input to learn the complex anatomical feature representation, and then these features are sent to Softmax classifier for inferring the labels. Experimental results validated the effectiveness of our method and showed that it outperformed four other classical brain tissue detection strategies. Furthermore, we reconstructed three-dimensional surfaces of these tissues, which show their potential in exploring the high-resolution anatomical structures of human brain.
In vivo study of the surgical anatomy of the axilla.
Khan, A; Chakravorty, A; Gui, G P H
2012-06-01
Classical anatomical descriptions fail to describe variants often observed in the axilla as they are based on studies that looked at individual structures in isolation or textbooks of cadaveric dissections. The presence of variant anatomy heightens the risk of iatrogenic injury. The aim of this study was to document the nature and frequency of these anatomical variations based on in vivo peroperative surgical observations. Detailed anatomical relationships were documented prospectively during consecutive axillary dissections. Relationships between the thoracodorsal pedicle, course of the lateral thoracic vein, presence of latissimus dorsi muscle slips, variations in axillary and angular vein anatomy, and origins and branching of the intercostobrachial nerve were recorded. Among a total of 73 axillary dissections, 43 (59 per cent) revealed at least one anatomical variant. Most notable variants included aberrant courses of the thoracodorsal nerve in ten patients (14 per cent)--three variants; lateral thoracic vein in 12 patients (16 per cent)--four variants; bifid axillary veins in ten patients (14 per cent); latissimus dorsi muscle slips in four patients (5 per cent); and variants in intercostobrachial nerve origins and branching in 26 patients (36 per cent). The angular vein, a subscapular vein tributary, was found to be a constant axillary structure. Variations in axillary anatomical structures are common. Poor understanding of these variants can affect the adequacy of oncological clearance, lead to vascular injury, compromise planned microvascular procedures and result in chronic pain or numbness from nerve injury. Surgeons should be aware of the common anatomical variants to facilitate efficient and safe axillary surgery. Copyright © 2012 British Journal of Surgery Society Ltd. Published by John Wiley & Sons, Ltd.
Plakornkul, Vasana; Vannabhum, Manmas; Viravud, Yadaridee; Roongruangchai, Jantima; Mutirangura, Pramook; Akarasereenont, Pravit; Laohapand, Tawee
2016-09-15
Court-type Thai traditional massage (CTTM) has specific major signal points (MaSP) for treating musculoskeletal conditions. The objectives of this study are to investigate the anatomical surfaces and structures of MaSPs, and to examine blood flow (BF) and skin temperature (ST) changes after applying pressure on the MaSPs on neck, shoulder, and arm areas. In the anatomical study, 83 cadavers were dissected and the anatomical surfaces and structures of the 15 MaSPs recorded. In human volunteers, BF, peak systolic velocity (PS), diameter of artery (DA), and ST changes were measured at baseline and after pressure application at 0, 30, 60, 180, and 300 s. There was no statistical difference in anatomical surfaces and structures of MaSP between the left and right side of the body. The 3 MaSPs on the neck were shown to be anatomically separated from the location of the common carotid arteries. The BF of MaSPs of the neck significantly and immediately increased after pressure application for 30 s and for 60 s in the arm (p < 0.001). ST increased significantly and immediately after pressure application for 300 s (p < 0.001). There was no significant correlation between BF and ST at any of the MaSPs. This study showed that MaSP massages were mainly directed towards muscles. MaSPs can cause significant, but brief, increases in BF and ST. Further studies are suggested to identify changes in BF and ST for all of the MaSPs after actual massage treatment sessions as well as other physiological effects of massage.
Wang, Yu; Cao, Hai-yan; Xie, Ming-xing; He, Lin; Han, Wei; Hong, Liu; Peng, Yuan; Hu, Yun-fei; Song, Ben-cai; Wang, Jing; Wang, Bin; Deng, Cheng
2016-04-01
To investigate the application and effectiveness of vascular corrosion technique in preparing fetal cardiovascular cast models, 10 normal fetal heart specimens with other congenital disease (control group) and 18 specimens with severe congenital heart disease (case group) from induced abortions were enrolled in this study from March 2013 to June 2015 in our hospital. Cast models were prepared by injecting casting material into vascular lumen to demonstrate real geometries of fetal cardiovascular system. Casting effectiveness was analyzed in terms of local anatomic structures and different anatomical levels (including overall level, atrioventricular and great vascular system, left-sided and right-sided heart), as well as different trimesters of pregnancy. In our study, all specimens were successfully casted. Casting effectiveness analysis of local anatomic structures showed a mean score from 1.90±1.45 to 3.60±0.52, without significant differences between case and control groups in most local anatomic structures except left ventricle, which had a higher score in control group (P=0.027). Inter-group comparison of casting effectiveness in different anatomical levels showed no significant differences between the two groups. Intra-group comparison also revealed undifferentiated casting effectiveness between atrioventricular and great vascular system, or left-sided and right-sided heart in corresponding group. Third-trimester group had a significantly higher perfusion score in great vascular system than second-trimester group (P=0.046), while the other anatomical levels displayed no such difference. Vascular corrosion technique can be successfully used in fabrication of fetal cardiovascular cast model. It is also a reliable method to demonstrate three-dimensional anatomy of severe congenital heart disease and normal heart in fetus.
Siozopoulos, Achilleas; Thomaidis, Vasilios; Prassopoulos, Panos; Fiska, Aliki
2018-02-01
Literature includes a number of studies using structural MRI (sMRI) to determine the volume of the amygdala, which is modified in various pathologic conditions. The reported values vary widely mainly because of different anatomical approaches to the complex. This study aims at estimating of the normal amygdala volume from sMRI scans using a recent anatomical definition described in a study based on post-mortem material. The amygdala volume has been calculated in 106 healthy subjects, using sMRI and anatomical-based segmentation. The resulting volumes have been analyzed for differences related to hemisphere, sex, and age. The mean amygdalar volume was estimated at 1.42 cm 3 . The mean right amygdala volume has been found larger than the left, but the difference for the raw values was within the limits of the method error. No intersexual differences or age-related alterations have been observed. The study provides a method for determining the boundaries of the amygdala in sMRI scans based on recent anatomical considerations and an estimation of the mean normal amygdala volume from a quite large number of scans for future use in comparative studies.
The influence of patient factors on femoral rotation after total hip arthroplasty.
Tezuka, Taro; Inaba, Yutaka; Kobayashi, Naomi; Choe, Hyonmin; Higashihira, Syota; Saito, Tomoyuki
2018-06-09
A postoperative change in femoral rotation following total hip arthroplasty (THA) might be the cause of dislocation due to the change in combined anteversion. However, very few studies have evaluated the femoral rotation angle following THA, or the factors that influence femoral rotation. We aimed to evaluate changes in femoral rotation after THA, and to investigate preoperative patient factors that influence femoral rotation after THA. This study involved 211 hips treated with primary THA. We used computed tomography to measure the femoral rotation angle before and one week after THA. In addition, multiple regression analysis was performed to evaluate preoperative patient factors that could influence femoral rotation after THA. The femoral rotation angle was 0.2 ± 14° externally before surgery and 4.4 ± 12° internally after surgery (p < 0.001). Multiple regression analysis revealed that sex (β = 0.19; p = 0.003), age (β = 0.15; p = 0.017), preoperative anatomical femoral anteversion (β = - 0.25; p = 0.002), and preoperative femoral rotation angle (β = 0.36; p < 0.001) were significantly associated with the postoperative femoral rotation angle. The final model of the regression formula was described by the following equation: [postoperative femoral rotation angle = 5.41 × sex (female: 0, male: 1) + 0.15 × age - 0.22 × preoperative anatomical femoral anteversion + 0.33 × preoperative femoral rotation angle - 10.1]. The current study showed the mean internal change of 4.6° in the femoral rotation angle one week after THA. Sex, age, preoperative anatomical femoral anteversion and preoperative femoral rotation were associated with postoperative femoral rotation. The patients who were male, older, and who exhibited lesser preoperative anatomical femoral anteversion or greater preoperative femoral rotation angles, tended to demonstrate an externally rotated femur after THA. Conversely, patients who were female, younger, and who exhibited greater preoperative anatomical femoral anteversion or lesser preoperative femoral rotation angles, tended to demonstrate an internal rotation of the femur after THA.
The Adult Mouse Anatomical Dictionary: a tool for annotating and integrating data
Hayamizu, Terry F; Mangan, Mary; Corradi, John P; Kadin, James A; Ringwald, Martin
2005-01-01
We have developed an ontology to provide standardized nomenclature for anatomical terms in the postnatal mouse. The Adult Mouse Anatomical Dictionary is structured as a directed acyclic graph, and is organized hierarchically both spatially and functionally. The ontology will be used to annotate and integrate different types of data pertinent to anatomy, such as gene expression patterns and phenotype information, which will contribute to an integrated description of biological phenomena in the mouse. PMID:15774030
NASA Astrophysics Data System (ADS)
Hoang, Bui Huy; Oda, Masahiro; Jiang, Zhengang; Kitasaka, Takayuki; Misawa, Kazunari; Fujiwara, Michitaka; Mori, Kensaku
2011-03-01
This paper presents an automated anatomical labeling method of arteries extracted from contrasted 3D CT images based on multi-class AdaBoost. In abdominal surgery, understanding of vasculature related to a target organ such as the colon is very important. Therefore, the anatomical structure of blood vessels needs to be understood by computers in a system supporting abdominal surgery. There are several researches on automated anatomical labeling, but there is no research on automated anatomical labeling to arteries concerning with the colon. The proposed method obtains a tree structure of arteries from the artery region and calculates features values of each branch. These feature values are thickness, curvature, direction, and running vectors of branch. Then, candidate arterial names are computed by classifiers that are trained to output artery names. Finally, a global optimization process is applied to the candidate arterial names to determine final names. Target arteries of this paper are nine lower abdominal arteries (AO, LCIA, RCIA, LEIA, REIA, SMA, IMA, LIIA, RIIA). We applied the proposed method to 14 cases of 3D abdominal contrasted CT images, and evaluated the results by leave-one-out scheme. The average precision and recall rates of the proposed method were 87.9% and 93.3%, respectively. The results of this method are applicable for anatomical name display of surgical simulation and computer aided surgery.
Semi-Automated Trajectory Analysis of Deep Ballistic Penetrating Brain Injury
Folio, Les; Solomon, Jeffrey; Biassou, Nadia; Fischer, Tatjana; Dworzak, Jenny; Raymont, Vanessa; Sinaii, Ninet; Wassermann, Eric M.; Grafman, Jordan
2016-01-01
Background Penetrating head injuries (PHIs) are common in combat operations and most have visible wound paths on computed tomography (CT). Objective We assess agreement between an automated trajectory analysis-based assessment of brain injury and manual tracings of encephalomalacia on CT. Methods We analyzed 80 head CTs with ballistic PHI from the Institutional Review Board approved Vietnam head injury registry. Anatomic reports were generated from spatial coordinates of projectile entrance and terminal fragment location. These were compared to manual tracings of the regions of encephalomalacia. Dice’s similarity coefficients, kappa, sensitivities, and specificities were calculated to assess agreement. Times required for case analysis were also compared. Results Results show high specificity of anatomic regions identified on CT with semiautomated anatomical estimates and manual tracings of tissue damage. Radiologist’s and medical students’ anatomic region reports were similar (Kappa 0.8, t-test p < 0.001). Region of probable injury modeling of involved brain structures was sensitive (0.7) and specific (0.9) compared with manually traced structures. Semiautomated analysis was 9-fold faster than manual tracings. Conclusion Our region of probable injury spatial model approximates anatomical regions of encephalomalacia from ballistic PHI with time-saving over manual methods. Results show potential for automated anatomical reporting as an adjunct to current practice of radiologist/neurosurgical review of brain injury by penetrating projectiles. PMID:23707123
Neonatal Atlas Construction Using Sparse Representation
Shi, Feng; Wang, Li; Wu, Guorong; Li, Gang; Gilmore, John H.; Lin, Weili; Shen, Dinggang
2014-01-01
Atlas construction generally includes first an image registration step to normalize all images into a common space and then an atlas building step to fuse the information from all the aligned images. Although numerous atlas construction studies have been performed to improve the accuracy of the image registration step, unweighted or simply weighted average is often used in the atlas building step. In this article, we propose a novel patch-based sparse representation method for atlas construction after all images have been registered into the common space. By taking advantage of local sparse representation, more anatomical details can be recovered in the built atlas. To make the anatomical structures spatially smooth in the atlas, the anatomical feature constraints on group structure of representations and also the overlapping of neighboring patches are imposed to ensure the anatomical consistency between neighboring patches. The proposed method has been applied to 73 neonatal MR images with poor spatial resolution and low tissue contrast, for constructing a neonatal brain atlas with sharp anatomical details. Experimental results demonstrate that the proposed method can significantly enhance the quality of the constructed atlas by discovering more anatomical details especially in the highly convoluted cortical regions. The resulting atlas demonstrates superior performance of our atlas when applied to spatially normalizing three different neonatal datasets, compared with other start-of-the-art neonatal brain atlases. PMID:24638883
The Computerized Anatomical Man (CAM) model
NASA Technical Reports Server (NTRS)
Billings, M. P.; Yucker, W. R.
1973-01-01
A computerized anatomical man (CAM) model, representing the most detailed and anatomically correct geometrical model of the human body yet prepared, has been developed for use in analyzing radiation dose distribution in man. This model of a 50-percentile standing USAF man comprises some 1100 unique geometric surfaces and some 2450 solid regions. Internal body geometry such as organs, voids, bones, and bone marrow are explicitly modeled. A computer program called CAMERA has also been developed for performing analyses with the model. Such analyses include tracing rays through the CAM geometry, placing results on magnetic tape in various forms, collapsing areal density data from ray tracing information to areal density distributions, preparing cross section views, etc. Numerous computer drawn cross sections through the CAM model are presented.
My Corporis Fabrica: an ontology-based tool for reasoning and querying on complex anatomical models
2014-01-01
Background Multiple models of anatomy have been developed independently and for different purposes. In particular, 3D graphical models are specially useful for visualizing the different organs composing the human body, while ontologies such as FMA (Foundational Model of Anatomy) are symbolic models that provide a unified formal description of anatomy. Despite its comprehensive content concerning the anatomical structures, the lack of formal descriptions of anatomical functions in FMA limits its usage in many applications. In addition, the absence of connection between 3D models and anatomical ontologies makes it difficult and time-consuming to set up and access to the anatomical content of complex 3D objects. Results First, we provide a new ontology of anatomy called My Corporis Fabrica (MyCF), which conforms to FMA but extends it by making explicit how anatomical structures are composed, how they contribute to functions, and also how they can be related to 3D complex objects. Second, we have equipped MyCF with automatic reasoning capabilities that enable model checking and complex queries answering. We illustrate the added-value of such a declarative approach for interactive simulation and visualization as well as for teaching applications. Conclusions The novel vision of ontologies that we have developed in this paper enables a declarative assembly of different models to obtain composed models guaranteed to be anatomically valid while capturing the complexity of human anatomy. The main interest of this approach is its declarativity that makes possible for domain experts to enrich the knowledge base at any moment through simple editors without having to change the algorithmic machinery. This provides MyCF software environment a flexibility to process and add semantics on purpose for various applications that incorporate not only symbolic information but also 3D geometric models representing anatomical entities as well as other symbolic information like the anatomical functions. PMID:24936286
Anatomic changes due to interspecific grafting in cassava (Manihot esculenta).
Bomfim, N; Ribeiro, D G; Nassar, N M A
2011-05-31
Cassava rootstocks of varieties UnB 201 and UnB 122 grafted with scions of Manihot fortalezensis were prepared for anatomic study. The roots were cut, stained with safranin and alcian blue, and examined microscopically, comparing them with sections taken from ungrafted roots. There was a significant decrease in number of pericyclic fibers, vascular vessels and tyloses in rootstocks. They exhibited significant larger vessels. These changes in anatomic structure are a consequence of genetic effects caused by transference of genetic material from scion to rootstock. The same ungrafted species was compared. This is the first report on anatomic changes due to grafting in cassava.
The semantic anatomical network: Evidence from healthy and brain-damaged patient populations.
Fang, Yuxing; Han, Zaizhu; Zhong, Suyu; Gong, Gaolang; Song, Luping; Liu, Fangsong; Huang, Ruiwang; Du, Xiaoxia; Sun, Rong; Wang, Qiang; He, Yong; Bi, Yanchao
2015-09-01
Semantic processing is central to cognition and is supported by widely distributed gray matter (GM) regions and white matter (WM) tracts. The exact manner in which GM regions are anatomically connected to process semantics remains unknown. We mapped the semantic anatomical network (connectome) by conducting diffusion imaging tractography in 48 healthy participants across 90 GM "nodes," and correlating the integrity of each obtained WM edge and semantic performance across 80 brain-damaged patients. Fifty-three WM edges were obtained whose lower integrity associated with semantic deficits and together with their linked GM nodes constitute a semantic WM network. Graph analyses of this network revealed three structurally segregated modules that point to distinct semantic processing components and identified network hubs and connectors that are central in the communication across the subnetworks. Together, our results provide an anatomical framework of human semantic network, advancing the understanding of the structural substrates supporting semantic processing. © 2015 Wiley Periodicals, Inc.
Motivation and Organizational Principles for Anatomical Knowledge Representation
Rosse, Cornelius; Mejino, José L.; Modayur, Bharath R.; Jakobovits, Rex; Hinshaw, Kevin P.; Brinkley, James F.
1998-01-01
Abstract Objective: Conceptualization of the physical objects and spaces that constitute the human body at the macroscopic level of organization, specified as a machine-parseable ontology that, in its human-readable form, is comprehensible to both expert and novice users of anatomical information. Design: Conceived as an anatomical enhancement of the UMLS Semantic Network and Metathesaurus, the anatomical ontology was formulated by specifying defining attributes and differentia for classes and subclasses of physical anatomical entities based on their partitive and spatial relationships. The validity of the classification was assessed by instantiating the ontology for the thorax. Several transitive relationships were used for symbolically modeling aspects of the physical organization of the thorax. Results: By declaring Organ as the macroscopic organizational unit of the body, and defining the entities that constitute organs and higher level entities constituted by organs, all anatomical entities could be assigned to one of three top level classes (Anatomical structure, Anatomical spatial entity and Body substance). The ontology accommodates both the systemic and regional (topographical) views of anatomy, as well as diverse clinical naming conventions of anatomical entities. Conclusions: The ontology formulated for the thorax is extendible to microscopic and cellular levels, as well as to other body parts, in that its classes subsume essentially all anatomical entities that constitute the body. Explicit definitions of these entities and their relationships provide the first requirement for standards in anatomical concept representation. Conceived from an anatomical viewpoint, the ontology can be generalized and mapped to other biomedical domains and problem solving tasks that require anatomical knowledge. PMID:9452983
Deco, Gustavo; Ponce-Alvarez, Adrián; Mantini, Dante; Romani, Gian Luca; Hagmann, Patric; Corbetta, Maurizio
2013-07-03
Brain fluctuations at rest are not random but are structured in spatial patterns of correlated activity across different brain areas. The question of how resting-state functional connectivity (FC) emerges from the brain's anatomical connections has motivated several experimental and computational studies to understand structure-function relationships. However, the mechanistic origin of resting state is obscured by large-scale models' complexity, and a close structure-function relation is still an open problem. Thus, a realistic but simple enough description of relevant brain dynamics is needed. Here, we derived a dynamic mean field model that consistently summarizes the realistic dynamics of a detailed spiking and conductance-based synaptic large-scale network, in which connectivity is constrained by diffusion imaging data from human subjects. The dynamic mean field approximates the ensemble dynamics, whose temporal evolution is dominated by the longest time scale of the system. With this reduction, we demonstrated that FC emerges as structured linear fluctuations around a stable low firing activity state close to destabilization. Moreover, the model can be further and crucially simplified into a set of motion equations for statistical moments, providing a direct analytical link between anatomical structure, neural network dynamics, and FC. Our study suggests that FC arises from noise propagation and dynamical slowing down of fluctuations in an anatomically constrained dynamical system. Altogether, the reduction from spiking models to statistical moments presented here provides a new framework to explicitly understand the building up of FC through neuronal dynamics underpinned by anatomical connections and to drive hypotheses in task-evoked studies and for clinical applications.
Park, Jin Seo; Jung, Yong Wook; Choi, Hyung-Do; Lee, Ae-Kyoung
2018-01-01
Abstract The anatomical structures in most phantoms are classified according to tissue properties rather than according to their detailed structures, because the tissue properties, not the detailed structures, are what is considered important. However, if a phantom does not have detailed structures, the phantom will be unreliable because different tissues can be regarded as the same. Thus, we produced the Visible Korean (VK) -phantoms with detailed structures (male, 583 structures; female, 459 structures) based on segmented images of the whole male body (interval, 1.0 mm; pixel size, 1.0 mm2) and the whole female body (interval, 1.0 mm; pixel size, 1.0 mm2), using house-developed software to analyze the text string and voxel information for each of the structures. The density of each structure in the VK-phantom was calculated based on Virtual Population and a publication of the International Commission on Radiological Protection. In the future, we will standardize the size of each structure in the VK-phantoms. If the VK-phantoms are standardized and the mass density of each structure is precisely known, researchers will be able to measure the exact absorption rate of electromagnetic radiation in specific organs and tissues of the whole body. PMID:29659988
Park, Jin Seo; Jung, Yong Wook; Choi, Hyung-Do; Lee, Ae-Kyoung
2018-05-01
The anatomical structures in most phantoms are classified according to tissue properties rather than according to their detailed structures, because the tissue properties, not the detailed structures, are what is considered important. However, if a phantom does not have detailed structures, the phantom will be unreliable because different tissues can be regarded as the same. Thus, we produced the Visible Korean (VK) -phantoms with detailed structures (male, 583 structures; female, 459 structures) based on segmented images of the whole male body (interval, 1.0 mm; pixel size, 1.0 mm2) and the whole female body (interval, 1.0 mm; pixel size, 1.0 mm2), using house-developed software to analyze the text string and voxel information for each of the structures. The density of each structure in the VK-phantom was calculated based on Virtual Population and a publication of the International Commission on Radiological Protection. In the future, we will standardize the size of each structure in the VK-phantoms. If the VK-phantoms are standardized and the mass density of each structure is precisely known, researchers will be able to measure the exact absorption rate of electromagnetic radiation in specific organs and tissues of the whole body.
An approach to comparative anatomy of the acetabulum from amphibians to primates.
Canillas, F; Delgado-Martos, M J; Touza, A; Escario, A; Martos-Rodriguez, A; Delgado-Baeza, E
2011-12-01
The objective of this study was to investigate the anatomy, both macroscopic and microscopic, of the soft tissue internal structures of the hip joint in animal species and in three human hips (an adult and two fetuses). We dissected the hip joints of 16 species and compared the anatomical features of the soft tissue from the respective acetabula. In addition, a histological study was made of the specimens studied. In amphibians, we found a meniscus in the acetabulum, which was not observed in any of the other species studied. The isolated round ligament is observed from birds onwards. In the group of mammals analysed, including the human specimens, we found a meniscoid structure in the acetabular hip joint. Furthermore, we found that the meniscoid structure forms an anatomo-functional unit with the round ligament and the transverse ligament of the coxofemoral joint. These discoveries suggest the participation of the soft tissue anatomy in adaptative changes of species. © 2011 Blackwell Verlag GmbH.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wognum, S.; Chai, X.; Hulshof, M. C. C. M.
2013-02-15
Purpose: Future developments in image guided adaptive radiotherapy (IGART) for bladder cancer require accurate deformable image registration techniques for the precise assessment of tumor and bladder motion and deformation that occur as a result of large bladder volume changes during the course of radiotherapy treatment. The aim was to employ an extended version of a point-based deformable registration algorithm that allows control over tissue-specific flexibility in combination with the authors' unique patient dataset, in order to overcome two major challenges of bladder cancer registration, i.e., the difficulty in accounting for the difference in flexibility between the bladder wall and tumormore » and the lack of visible anatomical landmarks for validation. Methods: The registration algorithm used in the current study is an extension of the symmetric-thin plate splines-robust point matching (S-TPS-RPM) algorithm, a symmetric feature-based registration method. The S-TPS-RPM algorithm has been previously extended to allow control over the degree of flexibility of different structures via a weight parameter. The extended weighted S-TPS-RPM algorithm was tested and validated on CT data (planning- and four to five repeat-CTs) of five urinary bladder cancer patients who received lipiodol injections before radiotherapy. The performance of the weighted S-TPS-RPM method, applied to bladder and tumor structures simultaneously, was compared with a previous version of the S-TPS-RPM algorithm applied to bladder wall structure alone and with a simultaneous nonweighted S-TPS-RPM registration of the bladder and tumor structures. Performance was assessed in terms of anatomical and geometric accuracy. The anatomical accuracy was calculated as the residual distance error (RDE) of the lipiodol markers and the geometric accuracy was determined by the surface distance, surface coverage, and inverse consistency errors. Optimal parameter values for the flexibility and bladder weight parameters were determined for the weighted S-TPS-RPM. Results: The weighted S-TPS-RPM registration algorithm with optimal parameters significantly improved the anatomical accuracy as compared to S-TPS-RPM registration of the bladder alone and reduced the range of the anatomical errors by half as compared with the simultaneous nonweighted S-TPS-RPM registration of the bladder and tumor structures. The weighted algorithm reduced the RDE range of lipiodol markers from 0.9-14 mm after rigid bone match to 0.9-4.0 mm, compared to a range of 1.1-9.1 mm with S-TPS-RPM of bladder alone and 0.9-9.4 mm for simultaneous nonweighted registration. All registration methods resulted in good geometric accuracy on the bladder; average error values were all below 1.2 mm. Conclusions: The weighted S-TPS-RPM registration algorithm with additional weight parameter allowed indirect control over structure-specific flexibility in multistructure registrations of bladder and bladder tumor, enabling anatomically coherent registrations. The availability of an anatomically validated deformable registration method opens up the horizon for improvements in IGART for bladder cancer.« less
Hänel, Claudia; Pieperhoff, Peter; Hentschel, Bernd; Amunts, Katrin; Kuhlen, Torsten
2014-01-01
The visualization of the progression of brain tissue loss in neurodegenerative diseases like corticobasal syndrome (CBS) can provide not only information about the localization and distribution of the volume loss, but also helps to understand the course and the causes of this neurodegenerative disorder. The visualization of such medical imaging data is often based on 2D sections, because they show both internal and external structures in one image. Spatial information, however, is lost. 3D visualization of imaging data is capable to solve this problem, but it faces the difficulty that more internally located structures may be occluded by structures near the surface. Here, we present an application with two designs for the 3D visualization of the human brain to address these challenges. In the first design, brain anatomy is displayed semi-transparently; it is supplemented by an anatomical section and cortical areas for spatial orientation, and the volumetric data of volume loss. The second design is guided by the principle of importance-driven volume rendering: A direct line-of-sight to the relevant structures in the deeper parts of the brain is provided by cutting out a frustum-like piece of brain tissue. The application was developed to run in both, standard desktop environments and in immersive virtual reality environments with stereoscopic viewing for improving the depth perception. We conclude, that the presented application facilitates the perception of the extent of brain degeneration with respect to its localization and affected regions. PMID:24847243
Barotto, Antonio José; Monteoliva, Silvia; Gyenge, Javier; Martinez-Meier, Alejandro; Fernandez, María Elena
2018-02-01
Wood density can be considered as a measure of the internal wood structure, and it is usually used as a proxy measure of other mechanical and functional traits. Eucalyptus is one of the most important commercial forestry genera worldwide, but the relationship between wood density and vulnerability to cavitation in this genus has been little studied. The analysis is hampered by, among other things, its anatomical complexity, so it becomes necessary to address more complex techniques and analyses to elucidate the way in which the different anatomical elements are functionally integrated. In this study, vulnerability to cavitation in two races of Eucalyptus globulus Labill. with different wood density was evaluated through Path analysis, a multivariate method that allows evaluation of descriptive models of causal relationship between variables. A model relating anatomical variables with wood properties and functional parameters was proposed and tested. We found significant differences in wood basic density and vulnerability to cavitation between races. The main exogenous variables predicting vulnerability to cavitation were vessel hydraulic diameter and fibre wall fraction. Fibre wall fraction showed a direct impact on wood basic density and the slope of vulnerability curve, and an indirect and negative effect over the pressure imposing 50% of conductivity loss (P50) through them. Hydraulic diameter showed a direct negative effect on P50, but an indirect and positive influence over this variable through wood density on one hand, and through maximum hydraulic conductivity (ks max) and slope on the other. Our results highlight the complexity of the relationship between xylem efficiency and safety in species with solitary vessels such as Eucalyptus spp., with no evident compromise at the intraspecific level. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Scapular thickness--implications for fracture fixation.
Burke, Charity S; Roberts, Craig S; Nyland, John A; Radmacher, Paula G; Acland, Robert D; Voor, Michael J
2006-01-01
The purpose of this study was to measure and map scapula osseous thickness to identify the optimal areas for internal fixation. Eighteen (9 pairs) scapulae from 2 female and 7 male cadavers were used. After harvest and removal of all soft tissues, standardized measurement lines were made based on anatomic landmarks. For consistency among scapulae, measurements were taken at standard percentage intervals along each line approximating the distance between two consecutive reconstruction plate screw holes. Two-mm-diameter drill holes were made at each point, and a standard depth gauge was used to measure thickness. The glenoid fossa (25 mm) displayed the greatest mean osseous thickness, followed by the lateral scapular border (9.7 mm), the scapula spine (8.3 mm), and the central portion of the body of the scapula (3.0 mm). To optimize screw purchase and internal fixation strength, the lateral border, the lateral aspect of the base of the scapula spine, and the scapula spine itself should be used for anatomic sites of internal fixation of scapula fractures.
Transforming Clinical Imaging Data for Virtual Reality Learning Objects
ERIC Educational Resources Information Center
Trelease, Robert B.; Rosset, Antoine
2008-01-01
Advances in anatomical informatics, three-dimensional (3D) modeling, and virtual reality (VR) methods have made computer-based structural visualization a practical tool for education. In this article, the authors describe streamlined methods for producing VR "learning objects," standardized interactive software modules for anatomical sciences…
A dynamical system view of cerebellar function
NASA Astrophysics Data System (ADS)
Keeler, James D.
1990-06-01
First some previous theories of cerebellar function are reviewed, and deficiencies in how they map onto the neurophysiological structure are pointed out. I hypothesize that the cerebellar cortex builds an internal model, or prediction, of the dynamics of the animal. A class of algorithms for doing prediction based on local reconstruction of attractors are described, and it is shown how this class maps very well onto the structure of the cerebellar cortex. I hypothesize that the climbing fibers multiplex between different trajectories corresponding to different modes of operation. Then the vestibulo-ocular reflex is examined, and experiments to test the proposed model are suggested. The purpose of the presentation here is twofold: (1) To enlighten physiologists to the mathematics of a class of prediction algorithms that map well onto cerebellar architecture. (2) To enlighten dynamical system theorists to the physiological and anatomical details of the cerebellum.
The air-conditioning capacity of the human nose.
Naftali, Sara; Rosenfeld, Moshe; Wolf, Michael; Elad, David
2005-04-01
The nose is the front line defender of the respiratory system. Unsteady simulations in three-dimensional models have been developed to study transport patterns in the human nose and its overall air-conditioning capacity. The results suggested that the healthy nose can efficiently provide about 90% of the heat and the water fluxes required to condition the ambient inspired air to near alveolar conditions in a variety of environmental conditions and independent of variations in internal structural components. The anatomical replica of the human nose showed the best performance and was able to provide 92% of the heating and 96% of the moisture needed to condition the inspired air to alveolar conditions. A detailed analysis explored the relative contribution of endonasal structural components to the air-conditioning process. During a moderate breathing effort, about 11% reduction in the efficacy of nasal air-conditioning capacity was observed.
Schweingruber, Fritz Hans; Ríha, Pavel; Doležal, Jiří
2014-01-01
The detailed knowledge of plant anatomical characters and their variation among closely related taxa is key to understanding their evolution and function. We examined anatomical variation in 46 herbaceous taxa from the subfamily Campanuloideae (Campanulaceae) to link this information with their phylogeny, ecology and comparative material of 56 woody tropical taxa from the subfamily Lobelioideae. The species studied covered major environmental gradients from Mediterranean to Arctic zones, allowing us to test hypotheses on the evolution of anatomical structure in relation to plant competitive ability and ecological preferences. To understand the evolution of anatomical diversity, we reconstructed the phylogeny of studied species from nucleotide sequences and examined the distribution of anatomical characters on the resulting phylogenetic tree. Redundancy analysis, with phylogenetic corrections, was used to separate the evolutionary inertia from the adaptation to the environment. A large anatomical diversity exists within the Campanuloideae. Traits connected with the quality of fibres were the most congruent with phylogeny, and the Rapunculus 2 ("phyteumoid") clade was especially distinguished by a number of characters (absence of fibres, pervasive parenchyma, type of rays) from two other clades (Campanula s. str. and Rapunculus 1) characterized by the dominance of fibres and the absence of parenchyma. Septate fibres are an exclusive trait in the Lobelioideae, separating it clearly from the Campanuloideae where annual rings, pervasive parenchyma and crystals in the phellem are characteristic features. Despite clear phylogenetic inertia in the anatomical features studied, the ecological attributes and plant height had a significant effect on anatomical divergence. From all three evolutionary clades, the taller species converged towards similar anatomical structure, characterized by a smaller number of early wood vessels of large diameter, thinner cell-walls and alternate intervessel pits, while the opposite trend was found in small Arctic and alpine taxa. This supports the existing generalization that narrower vessels allow plants to grow in colder places where they can avoid freezing-induced embolism, while taller plants have wider vessels to minimize hydraulic resistance with their greater path lengths.
Schweingruber, Fritz Hans; Říha, Pavel; Doležal, Jiří
2014-01-01
Background The detailed knowledge of plant anatomical characters and their variation among closely related taxa is key to understanding their evolution and function. We examined anatomical variation in 46 herbaceous taxa from the subfamily Campanuloideae (Campanulaceae) to link this information with their phylogeny, ecology and comparative material of 56 woody tropical taxa from the subfamily Lobelioideae. The species studied covered major environmental gradients from Mediterranean to Arctic zones, allowing us to test hypotheses on the evolution of anatomical structure in relation to plant competitive ability and ecological preferences. Methodology/Principal Findings To understand the evolution of anatomical diversity, we reconstructed the phylogeny of studied species from nucleotide sequences and examined the distribution of anatomical characters on the resulting phylogenetic tree. Redundancy analysis, with phylogenetic corrections, was used to separate the evolutionary inertia from the adaptation to the environment. A large anatomical diversity exists within the Campanuloideae. Traits connected with the quality of fibres were the most congruent with phylogeny, and the Rapunculus 2 (“phyteumoid”) clade was especially distinguished by a number of characters (absence of fibres, pervasive parenchyma, type of rays) from two other clades (Campanula s. str. and Rapunculus 1) characterized by the dominance of fibres and the absence of parenchyma. Septate fibres are an exclusive trait in the Lobelioideae, separating it clearly from the Campanuloideae where annual rings, pervasive parenchyma and crystals in the phellem are characteristic features. Conclusions/Significance Despite clear phylogenetic inertia in the anatomical features studied, the ecological attributes and plant height had a significant effect on anatomical divergence. From all three evolutionary clades, the taller species converged towards similar anatomical structure, characterized by a smaller number of early wood vessels of large diameter, thinner cell-walls and alternate intervessel pits, while the opposite trend was found in small Arctic and alpine taxa. This supports the existing generalization that narrower vessels allow plants to grow in colder places where they can avoid freezing-induced embolism, while taller plants have wider vessels to minimize hydraulic resistance with their greater path lengths. PMID:24586306
Learning and study strategies correlate with medical students' performance in anatomical sciences.
Khalil, Mohammed K; Williams, Shanna E; Gregory Hawkins, H
2018-05-06
Much of the content delivered during medical students' preclinical years is assessed nationally by such testing as the United States Medical Licensing Examination ® (USMLE ® ) Step 1 and Comprehensive Osteopathic Medical Licensing Examination ® (COMPLEX-USA ® ) Step 1. Improvement of student study/learning strategies skills is associated with academic success in internal and external (USMLE Step 1) examinations. This research explores the strength of association between the Learning and Study Strategies Inventory (LASSI) scores and student performance in the anatomical sciences and USMLE Step 1 examinations. The LASSI inventory assesses learning and study strategies based on ten subscale measures. These subscales include three components of strategic learning: skill (Information processing, Selecting main ideas, and Test strategies), will (Anxiety, Attitude, and Motivation) and self-regulation (Concentration, Time management, Self-testing, and Study aid). During second year (M2) orientation, 180 students (Classes of 2016, 2017, and 2018) were administered the LASSI survey instrument. Pearson Product-Moment correlation analyses identified significant associations between five of the ten LASSI subscales (Anxiety, Information processing, Motivation, Selecting main idea, and Test strategies) and students' performance in the anatomical sciences and USMLE Step 1 examinations. Identification of students lacking these skills within the anatomical sciences curriculum allows targeted interventions, which not only maximize academic achievement in an aspect of an institution's internal examinations, but in the external measure of success represented by USMLE Step 1 scores. Anat Sci Educ 11: 236-242. © 2017 American Association of Anatomists. © 2017 American Association of Anatomists.
Márquez, Samuel; Laitman, Jeffrey T
2008-11-01
Previous studies exploring the effects of climate on the nasal region have largely focused on external craniofacial linear parameters, using dry crania of modern human populations. This investigation augments traditional craniofacial morphometrics with internal linear and volumetric measures of the anatomic units comprising the nasal complex (i.e., internal nasal cavity depth, maxillary sinus volumes). The study focuses on macaques (i.e., Macaca mulatta and Macaca fascicularis) living at high and low altitudes, rather than on humans, since the short residency of migratory human populations may preclude using them as reliable models to test the long-term relationship of climate to nasal morphology. It is hypothesized that there will be significant differences in nasal complex morphology among macaques inhabiting different climates. This study integrated three different approaches: CT imaging, comparative anatomy, and morphometrics-in an effort to better understand the morphological structure and adaptive nature of the nasal complex. Results showed statistically significant differences when subsets of splanchnocranial and neurocranial variables were regressed against total maxillary sinus volume for particular taxa. For example, basion-hormion was significant for M. fascicularis, whereas choanal dimensions were significant only for M. mulatta. Both taxa revealed strong correlation between sinus volume and prosthion to staphylion distance, which essentially represents the length of the nasal cavity floor-and is by extension an indicator of the air conditioning capacity of the nasal region. These results clearly show that climatic effects play a major role in shaping the anatomy of the nasal complex in closely related species. The major influence upon these differing structures appears to be related to respiratory-related adaptations subserving differing climatic factors. In addition, the interdependence of the paranasal sinuses with other parts of the complex strongly indicates a functional role for them in nasal complex/upper respiratory functions. Copyright 2008 Wiley-Liss, Inc.
Ahmad, Maha; Sleiman, Naama H; Thomas, Maureen; Kashani, Nahid; Ditmyer, Marcia M
2016-02-01
Laboratory cadaver dissection is essential for three-dimensional understanding of anatomical structures and variability, but there are many challenges to teaching gross anatomy in medical and dental schools, including a lack of available space and qualified anatomy faculty. The aim of this study was to determine the efficacy of high-definition audiovisual educational technology in the gross anatomy laboratory in improving dental students' learning outcomes and satisfaction. Exam scores were compared for two classes of first-year students at one U.S. dental school: 2012-13 (no audiovisual technology) and 2013-14 (audiovisual technology), and section exams were used to compare differences between semesters. Additionally, an online survey was used to assess the satisfaction of students who used the technology. All 284 first-year students in the two years (2012-13 N=144; 2013-14 N=140) participated in the exams. Of the 140 students in the 2013-14 class, 63 completed the survey (45% response rate). The results showed that those students who used the technology had higher scores on the laboratory exams than those who did not use it, and students in the winter semester scored higher (90.17±0.56) than in the fall semester (82.10±0.68). More than 87% of those surveyed strongly agreed or agreed that the audiovisual devices represented anatomical structures clearly in the gross anatomy laboratory. These students reported an improved experience in learning and understanding anatomical structures, found the laboratory to be less overwhelming, and said they were better able to follow dissection instructions and understand details of anatomical structures with the new technology. Based on these results, the study concluded that the ability to provide the students a clear view of anatomical structures and high-quality imaging had improved their learning experience.
Effect of limb rotation on radiographic alignment in total knee arthroplasties.
Radtke, Kerstin; Becher, Christoph; Noll, Yvonne; Ostermeier, Sven
2010-04-01
Even in a well-aligned total knee arthroplasty (TKA), limb rotation at the time of radiographic assessment will alter the measurement of alignment. This could influence the radiographic outcome of TKA. The purpose of this study was to evaluate the effect of limb rotation on radiographic alignment after TKA and to establish a re-calculation of this rotation by using existing radiographic landmarks. Synthetic femur and tibia (Sawbones), Inc. Vashon Island, WA) were used to create a TKA of the Triathlon knee prosthesis system (Stryker), Limerick, Ireland). The femoral alignment was 6.5 degrees valgus. The model was fixed in an upright stand. Five series of nine anteroposterior (AP) long leg radiographs were taken on a 30 cm x 120 cm plates in full extension with the limb rotated, in 5 degrees increments, from 20 degrees external rotation to 20 degrees internal rotation. After digitizing each radiograph (Scanner Hewlett Packard XJ 527), an observer measured the anatomic mechanical angle of the femur [AMA ( degrees )], the mechanical lateral proximal femur angle [mLPFA ( degrees )], the mechanical lateral distal femur angle [mLDFA ( degrees )], the mechanical medial proximal tibia angle [mMPTA ( degrees )] and the mechanical lateral distal tibia angle [mLDTA ( degrees )] using a digital measurement software (MediCAD, Hectec, Altfraunhofen, Germany). Besides, the observer measured the geometrical distances of the femoral component figured on the long leg radiograph. A ratio of one distance to another was measured (called femoral component distance ratio). The average radiographic anatomic alignment ranged from 6.827 degrees AMA (SD = 0.22 degrees ) in 20 degrees internal rotation to 4.627 degrees AMA (SD = 0.22 degrees ) in 20 degrees external rotation. Average mLPFA ( degrees ) ranged from 101.63 degrees (SD = 0.63) in 20 degrees internal rotation to 93.60 degrees (SD = 0.74 degrees ) in 20 degrees external rotation. Average mLDFA ( degrees ) ranged from 90.59 degrees (SD = 3.01 degrees ) in 20 degrees internal rotation to 86.76 degrees (SD = 0.36 degrees ) in 20 degrees external rotation. Average mMPTA ( degrees ) ranged from 90.35 degrees (SD = 0.81 degrees ) in 20 degrees internal rotation to 88.49 degrees (SD = 0.52 degrees ) in 20 degrees external rotation. Average mLDTA ( degrees ) ranged from 98.89 degrees (SD = 2.3 degrees ) in 20 degrees internal rotation to 90.53 degrees (SD = 3.39 degrees ) in 20 degrees external rotation. Without an application of limb rotation, the femoral component distance ratio was measured to be 0.89 (SD = 0.01), in 20 degrees internal rotation 0.63 (SD = 0.01) and in 20 degrees external rotation 1.16 (SD = 0.01). Limb rotation had a highly statistically significant effect on measured anatomic alignment and mechanical angles. A correlation between limb rotation, anatomic mechanical angle, mechanical angles measured at femur and tibia and the femoral component distance ratio was established. As the anatomic mechanical angle and the femoral component distance ratio change linearly in the range of 20 degrees internal and external limb rotation, a calculation of the femoral component distance ratio could be used to re-calculate the limb rotation at the time of radiographic assessment to evaluate the evidence of a long leg radiograph.
External and internal anatomy of third molars.
Guerisoli, D M; de Souza, R A; de Sousa Neto, M D; Silva, R G; Pécora, J D
1998-01-01
The external and internal anatomy of 269 third molars (155 maxillary and 114 mandibular) were studied. The teeth were measured, classified according to their root number and shape and the internal anatomy was observed by the use of diaphanization. A great anatomical variability was found, with the presence of up to 5 roots in maxillary third molars and 3 roots in mandibular third molars. The number of root canals followed the same pattern.
Arredondo, Jorge; Agut, Amalia; Rodríguez, María Jesús; Sarriá, Ricardo; Latorre, Rafael
2013-02-01
The minute anatomy of the temporomandibular joint (TMJ) is of great clinical relevance in cats owing to a high number of lesions involving this articulation. However, the precise anatomy is poorly documented in textbooks and scientific articles. The aim of this study was to describe, in detail, the TMJ anatomy and its relationship with other adjacent anatomical structures in the cat. Different anatomical preparations, including vascular and articular injection, microdissection, cryosection and plastination, were performed in 12 cadaveric cats. All TMJ anatomical structures were identified and described in detail. A thorough understanding of the TMJ anatomy is essential to understand the clinical signs associated with TMJ disorders, to locate lesions precisely and to accurately interpret the results in all diagnostic imaging techniques.
NASA Astrophysics Data System (ADS)
Hadida, Jonathan; Desrosiers, Christian; Duong, Luc
2011-03-01
The segmentation of anatomical structures in Computed Tomography Angiography (CTA) is a pre-operative task useful in image guided surgery. Even though very robust and precise methods have been developed to help achieving a reliable segmentation (level sets, active contours, etc), it remains very time consuming both in terms of manual interactions and in terms of computation time. The goal of this study is to present a fast method to find coarse anatomical structures in CTA with few parameters, based on hierarchical clustering. The algorithm is organized as follows: first, a fast non-parametric histogram clustering method is proposed to compute a piecewise constant mask. A second step then indexes all the space-connected regions in the piecewise constant mask. Finally, a hierarchical clustering is achieved to build a graph representing the connections between the various regions in the piecewise constant mask. This step builds up a structural knowledge about the image. Several interactive features for segmentation are presented, for instance association or disassociation of anatomical structures. A comparison with the Mean-Shift algorithm is presented.
Cha, Jaepyeong; Broch, Aline; Mudge, Scott; Kim, Kihoon; Namgoong, Jung-Man; Oh, Eugene; Kim, Peter
2018-01-01
Accurate, real-time identification and display of critical anatomic structures, such as the nerve and vasculature structures, are critical for reducing complications and improving surgical outcomes. Human vision is frequently limited in clearly distinguishing and contrasting these structures. We present a novel imaging system, which enables noninvasive visualization of critical anatomic structures during surgical dissection. Peripheral nerves are visualized by a snapshot polarimetry that calculates the anisotropic optical properties. Vascular structures, both venous and arterial, are identified and monitored in real-time using a near-infrared laser-speckle-contrast imaging. We evaluate the system by performing in vivo animal studies with qualitative comparison by contrast-agent-aided fluorescence imaging. PMID:29541506
Mori, Kensaku; Ota, Shunsuke; Deguchi, Daisuke; Kitasaka, Takayuki; Suenaga, Yasuhito; Iwano, Shingo; Hasegawa, Yosihnori; Takabatake, Hirotsugu; Mori, Masaki; Natori, Hiroshi
2009-01-01
This paper presents a method for the automated anatomical labeling of bronchial branches extracted from 3D CT images based on machine learning and combination optimization. We also show applications of anatomical labeling on a bronchoscopy guidance system. This paper performs automated labeling by using machine learning and combination optimization. The actual procedure consists of four steps: (a) extraction of tree structures of the bronchus regions extracted from CT images, (b) construction of AdaBoost classifiers, (c) computation of candidate names for all branches by using the classifiers, (d) selection of best combination of anatomical names. We applied the proposed method to 90 cases of 3D CT datasets. The experimental results showed that the proposed method can assign correct anatomical names to 86.9% of the bronchial branches up to the sub-segmental lobe branches. Also, we overlaid the anatomical names of bronchial branches on real bronchoscopic views to guide real bronchoscopy.
Some Remarks on Imaging of the Inner Ear: Options and Limitations.
Giesemann, A; Hofmann, E
2015-10-01
The temporal bone has a highly complex anatomical structure, in which the sensory organs of the cochlea and the vestibular system are contained within a small space together with the sound-conducting system of the middle ear. Detailed imaging is thus required in this anatomical area. There are a great many clinical aims for which the highest-possible spatial resolution is required. These include the localization of cerebrospinal fluid fistulas, the detection of malformations of the middle and inner ear and the vestibulocochlear nerve, an aberrant course of the facial nerve and anomalies of the arterial and venous structures, the confirmation of dehiscence of the semicircular canals and finally, the verification of endolymphatic hydrops in cases of Ménière's disease. However, the term 'high resolution' is very time dependent. Two milestones in this respect have been (in 1991) the 3D visualization of the inner ear by means of maximum-intensity projection (MIP) of a T2-weighted constructive interference in steady state (CISS) sequence of a 1.5-tesla magnetic resonance imaging (MRI) scanner (Tanioka et al., Radiology 178:141-144, 1991) and (in 1997) imaging of the vestibulocochlear nerve for the diagnosis of hypoplasia inside the internal auditory canal using the same sequence (Casselman et al., Radiology 202:773-781, 1997).The objective of this article is to highlight the options for, and the challenges of, contemporary imaging with regard to some clinical issues relating to the inner ear.
[Sigismund Laskowski and his anatomical preparations technique].
Gryglewski, Ryszard W
2015-01-01
Fixation of the entire bodies or individual organs, and later as well tissues and cellular structures, was and still is often a challenge for anatomists and histologists. Technique that combines extensive knowledge of natural sciences, as well as technical skills, was by those best researchers as Frederik Ruysch, brought to perfection. Preparations, if done with care and talent, are really propelling progress in anatomical studies and determining the quality of education for medical students and young physicians. And as it is true for many of today's medical disciplines and natural sciences, the nineteenth century was in many ways a breaking point for preparatory techniques in the realm of anatomy and histology. Among those who have achieved success, earning notoriety during their lifetime and often going into the annals of European most distinguished scholars were some Polish names: Louis Maurice Hirschfeld, whose preparations of the nervous system earned him well-deserved, international fame, Louis Charles Teichmann, who was the very first so precisely describing the lymphatic system and a creator of unique injection mass, Henry Kadyi, known for his outstanding preparations, especially of vascular system. Henry Frederick Hoyer sen., who was one of the first to use formalin regularly for accurate microscopic preparations, is seen by many as the founder of the Polish histology. In this group of innovators and precursors of modern preparation techniques place should be reserved for Zygmunt (Sigismund) Laskowski, Polish patriot, fighting in January Uprising, later an immigrant, a professor at the university sequentially Paris and Geneva. Acclaimed author of anatomical tables and certainly creator of one of the groundbreaking techniques in anatomical preparations. Based after many years of research on the simple glycerine-phenol mixture achieved excellent results both in fixation of entire bodies and organs or tissues. Quality of those preparations was as high and sometimes even higher than later formalin using techniques, and was finally surpassed only by plastination.
Frontal lobe seizures: from clinical semiology to localization.
Bonini, Francesca; McGonigal, Aileen; Trébuchon, Agnès; Gavaret, Martine; Bartolomei, Fabrice; Giusiano, Bernard; Chauvel, Patrick
2014-02-01
Frontal lobe seizures are difficult to characterize according to semiologic and electrical features. We wished to establish whether different semiologic subgroups can be identified and whether these relate to anatomic organization. We assessed all seizures from 54 patients with frontal lobe epilepsy that were explored with stereoelectroencephalography (SEEG) during presurgical evaluation. Semiologic features and concomitant intracerebral EEG changes were documented and quantified. These variables were examined using Principal Component Analysis and Cluster Analysis, and semiologic features correlated with anatomic localization. Four main groups of patients were identified according to semiologic features, and correlated with specific patterns of anatomic seizure localization. Group 1 was characterized clinically by elementary motor signs and involved precentral and premotor regions. Group 2 was characterized by a combination of elementary motor signs and nonintegrated gestural motor behavior, and involved both premotor and prefrontal regions. Group 3 was characterized by integrated gestural motor behavior with distal stereotypies and involved anterior lateral and medial prefrontal regions. Group 4 was characterized by seizures with fearful behavior and involved the paralimbic system (ventromedial prefrontal cortex ± anterior temporal structures). The groups were organized along a rostrocaudal axis, representing bands within a spectrum rather than rigid categories. The more anterior the seizure organization, the more likely was the occurrence of integrated behavior during seizures. Distal stereotypies were associated with the most anterior prefrontal localizations, whereas proximal stereotypies occurred in more posterior prefrontal regions. Meaningful categorization of frontal seizures in terms of semiology is possible and correlates with anatomic organization along a rostrocaudal axis, in keeping with current hypotheses of frontal lobe hierarchical organization. The proposed electroclinical categorization offers pointers as to the likely zone of organization of networks underlying semiologic production, thus aiding presurgical localization. Furthermore, analysis of ictal motor behavior in prefrontal seizures, including stereotypies, leads to deciphering the cortico-subcortical networks that produce such behaviors. Wiley Periodicals, Inc. © 2013 International League Against Epilepsy.
Pahwa, Avita K; Siegelman, Evan S; Arya, Lily A
2015-04-01
Pelvic organ prolapse, a herniation of pelvic organs through the vagina, is a common condition in older women. Pelvic organ prolapse distorts vaginal anatomy making pelvic examination difficult. A clinician must accurately identify anatomic landmarks both in women presenting with symptoms of prolapse and in women noted to have coincidental prolapse during routine gynecologic examination. We present a systematic approach to the female pelvic examination including anatomic landmarks of the external genitalia, vagina, and uterus in women with normal support as well as changes that occur with pelvic organ prolapse. Knowledge and awareness of normal anatomic landmarks will improve a clinician's ability to identify defects in pelvic support and allow for better diagnosis and treatment of pelvic organ prolapse. © 2014 Wiley Periodicals, Inc.
Stereoscopic augmented reality for laparoscopic surgery.
Kang, Xin; Azizian, Mahdi; Wilson, Emmanuel; Wu, Kyle; Martin, Aaron D; Kane, Timothy D; Peters, Craig A; Cleary, Kevin; Shekhar, Raj
2014-07-01
Conventional laparoscopes provide a flat representation of the three-dimensional (3D) operating field and are incapable of visualizing internal structures located beneath visible organ surfaces. Computed tomography (CT) and magnetic resonance (MR) images are difficult to fuse in real time with laparoscopic views due to the deformable nature of soft-tissue organs. Utilizing emerging camera technology, we have developed a real-time stereoscopic augmented-reality (AR) system for laparoscopic surgery by merging live laparoscopic ultrasound (LUS) with stereoscopic video. The system creates two new visual cues: (1) perception of true depth with improved understanding of 3D spatial relationships among anatomical structures, and (2) visualization of critical internal structures along with a more comprehensive visualization of the operating field. The stereoscopic AR system has been designed for near-term clinical translation with seamless integration into the existing surgical workflow. It is composed of a stereoscopic vision system, a LUS system, and an optical tracker. Specialized software processes streams of imaging data from the tracked devices and registers those in real time. The resulting two ultrasound-augmented video streams (one for the left and one for the right eye) give a live stereoscopic AR view of the operating field. The team conducted a series of stereoscopic AR interrogations of the liver, gallbladder, biliary tree, and kidneys in two swine. The preclinical studies demonstrated the feasibility of the stereoscopic AR system during in vivo procedures. Major internal structures could be easily identified. The system exhibited unobservable latency with acceptable image-to-video registration accuracy. We presented the first in vivo use of a complete system with stereoscopic AR visualization capability. This new capability introduces new visual cues and enhances visualization of the surgical anatomy. The system shows promise to improve the precision and expand the capacity of minimally invasive laparoscopic surgeries.
[Anatomical discoveries and concept of human body structure in Nan-jing (Classic of Questioning)].
Yang, Shi-zhe
2006-04-01
What Nan-jing (Classic of Questioning) contributes to the anatomical discoveries and concepts of human body structure in TCM is that it clarifies the concept, function and anatomical essence of viscera and bowels. It is the first. book that clearly defines the triple jiao as a "qi bowel", This statement is a typical example of Chinese dualistic system of its view on the human body, consisting of physical and spiritual components. This has stirred up confusion for modern interpretation and, as a result, some thought the visceral theory in the book is not based on substantial basis of anatomy. However, the Forty-second Question in Nan-jing not only carries the contents about Wei (stomach), Xiaochang (small intestine), Huichang (large intestine) and Guangchang (anus) in the chapter of "Intestine and Stomach" in Lingshu Jing (Miraculous Pivot), but also changes these names to those we actually use today in the latter chapters; and it also records the gross anatomical shape and size of gall bladder, urinary bladder and all the five viscerae. So, Nan-jing discusses the structure of human body in ancient times, and is equivalent to an integrated science of modern physiology and anatomy, and establishes a solid basis for the fundamental theory of TCM.
Stolzenburg, Jens-Uwe; Schwalenberg, Thilo; Do, Minh; Dorschner, Wolfgang; Salomon, Franz-Viktor; Jurina, Konrad; Neuhaus, Jochen
2002-08-01
Because of their superficial anatomical resemblance, the male dog seems to be suitable for studying the physiologic and pathological alterations of the bladder neck of human males. The present study was carried out to compare and contrast the muscular anatomy of the male dog lower urinary tract with that of humans. The complete lower urinary tract, including the surrounding organs (bulb of penis, prostate, rectum and musculature of the pelvic floor) were removed from adult and newborn male dogs and histologically processed using serial section technique. Based on our own histological investigations, three-dimensional (3D)-models of the anatomy of the lower urinary tract were constructed to depict the corresponding structures and the differences between the species. The results of this study confirm that the lower urinary tract of the male dog bears some anatomical resemblance (musculus detrusor vesicae, prostate, prostatic and membranous urethra) to man. As with human males, the two parts of the musculus sphincter urethrae (glaber and transversostriatus) are evident in the canine bladder neck. Nevertheless, considerable differences in formation of individual muscles should be noted. In male dogs, no separate anatomic entity can be identified as vesical or internal sphincter. The individual course of the ventral and lateral longitudinal musculature and of the circularly arranged smooth musculature of the urethra is different to that of humans. Differences in the anatomy of individual muscles of the bladder neck in the male dog and man suggest that physiological interpretations of urethral functions obtained in one species cannot be attributed without qualification to the other.
Prognostication in eye cancer: the latest tumor, node, metastasis classification and beyond
Kivelä, T; Kujala, E
2013-01-01
The tumour, node, metastasis (TNM) classification is a universal cancer staging system, which has been used for five decades. The current seventh edition became effective in 2010 and covers six ophthalmic sites: eyelids, conjunctiva, uvea, retina, orbit, and lacrimal gland; and five cancer types: carcinoma, sarcoma, melanoma, retinoblastoma, and lymphoma. The TNM categories are based on the anatomic extent of the primary tumour (T), regional lymph node metastases (N), and systemic metastases (M). The T categories of ophthalmic cancers are based on the size of the primary tumour and any invasion of periocular structures. The anatomic category is used to determine the TNM stage that correlates with survival. Such staging is currently implemented only for carcinoma of the eyelid and melanoma of the uvea. The classification of ciliary body and choroidal melanoma is the only one based on clinical evidence so far: a database of 7369 patients analysed by the European Ophthalmic Oncology Group. It spans a prognosis from 96% 5-year survival for stage I to 97% 5-year mortality for stage IV. The most accurate criterion for prognostication in uveal melanoma is, however, analysis of chromosomal alterations and gene expression. When such data are available, the TNM stage may be used for further stratification. Prognosis in retinoblastoma is frequently assigned by using an international classification, which predicts conservation of the eye and vision, and an international staging separate from the TNM system, which predicts survival. The TNM cancer staging manual is a useful tool for all ophthalmologists managing eye cancer. PMID:23258307
Pomajzl, Ryan; Maerz, Tristan; Shams, Christienne; Guettler, Joseph; Bicos, James
2015-03-01
To systematically review current literature on the anterolateral ligament (ALL) of the knee. We searched the PubMed/Medline database for publications specifically addressing the ALL. We excluded studies not written in English, studies not using human cadavers or subjects, and studies not specifically addressing the ALL. Data extraction related to the incidence, anatomy, morphometry, biomechanics, and histology of the ALL and its relation to the Segond fracture was performed. The incidence of the ALL ranged from 83% to 100%, and this range occurs because of small discrepancies in the definition of the ALL's bony insertions. The ALL originates anterior and distal to the femoral attachment of the lateral collateral ligament. It spans the joint in an oblique fashion and inserts between the fibular head and Gerdy tubercle on the tibia. Exact anatomic and morphometric descriptions vary in the literature, and there are discrepancies regarding the ALL's attachment to the capsule and lateral meniscus. The ALL is a contributor to tibial internal rotation stability, and histologically, it exhibits parallel, crimped fibers consistent with a ligamentous microstructure. The footprint of the ALL has been shown to be at the exact location of the Segond fracture. The ALL is a distinct ligamentous structure at the anterolateral aspect of the knee, and it is likely involved in tibial internal rotation stability and the Segond fracture. Level IV, systematic review of anatomic and imaging studies. Copyright © 2015 Arthroscopy Association of North America. Published by Elsevier Inc. All rights reserved.
Bernard, Jessica A.; Seidler, Rachael D.; Hassevoort, Kelsey M.; Benson, Bryan L.; Welsh, Robert C.; Wiggins, Jillian Lee; Jaeggi, Susanne M.; Buschkuehl, Martin; Monk, Christopher S.; Jonides, John; Peltier, Scott J.
2012-01-01
The cerebellum plays a role in a wide variety of complex behaviors. In order to better understand the role of the cerebellum in human behavior, it is important to know how this structure interacts with cortical and other subcortical regions of the brain. To date, several studies have investigated the cerebellum using resting-state functional connectivity magnetic resonance imaging (fcMRI; Krienen and Buckner, 2009; O'Reilly et al., 2010; Buckner et al., 2011). However, none of this work has taken an anatomically-driven lobular approach. Furthermore, though detailed maps of cerebral cortex and cerebellum networks have been proposed using different network solutions based on the cerebral cortex (Buckner et al., 2011), it remains unknown whether or not an anatomical lobular breakdown best encompasses the networks of the cerebellum. Here, we used fcMRI to create an anatomically-driven connectivity atlas of the cerebellar lobules. Timecourses were extracted from the lobules of the right hemisphere and vermis. We found distinct networks for the individual lobules with a clear division into “motor” and “non-motor” regions. We also used a self-organizing map (SOM) algorithm to parcellate the cerebellum. This allowed us to investigate redundancy and independence of the anatomically identified cerebellar networks. We found that while anatomical boundaries in the anterior cerebellum provide functional subdivisions of a larger motor grouping defined using our SOM algorithm, in the posterior cerebellum, the lobules were made up of sub-regions associated with distinct functional networks. Together, our results indicate that the lobular boundaries of the human cerebellum are not necessarily indicative of functional boundaries, though anatomical divisions can be useful. Additionally, driving the analyses from the cerebellum is key to determining the complete picture of functional connectivity within the structure. PMID:22907994
Renard, Yohann; Hossu, Gabriela; Chen, Bailiang; Krebs, Marine; Labrousse, Marc; Perez, Manuela
2018-01-01
The objective of this study was to develop a simple and useful injection protocol for imaging cadaveric vascularization and dissection. Mixtures of contrast agent and cast product should provide adequate contrast for two types of ex vivo imaging (MRI and CT) and should harden to allow gross dissection of the injected structures. We tested the most popular contrast agents and cast products, and selected the optimal mixture composition based on their availability and ease of use. All mixtures were first tested in vitro to adjust dilution parameters of each contrast agent and to fine-tune MR imaging acquisition sequences. Mixtures were then injected in 24 pig livers and one human pancreas for MR and computed tomography (CT) imaging before anatomical dissection. Colorized latex, gadobutrol and barite mixture met the above objective. Mixtures composed of copper sulfate (CuSO 4 ) gadoxetic acid (for MRI) and iodine (for CT) gave an inhomogeneous signal or extravasation of the contrast agent. Agar did not harden sufficiently for gross dissection but appears useful for CT and magnetic resonance imaging (MRI) studies without dissection. Silicone was very hard to inject but achieved the goals of the study. Resin is particularly difficult to use but could replace latex as an alternative for corrosion instead of dissection. This injection protocol allows CT and MRI images to be obtained of cadaveric vascularization and anatomical casts in the same anatomic specimen. Post-imaging processing software allow easy 3D reconstruction of complex anatomical structures using this technique. Applications are numerous, e.g. surgical training, teaching methods, postmortem anatomic studies, pathologic studies, and forensic diagnoses. © 2017 Anatomical Society.
DR-TAMAS: Diffeomorphic Registration for Tensor Accurate alignMent of Anatomical Structures
Irfanoglu, M. Okan; Nayak, Amritha; Jenkins, Jeffrey; Hutchinson, Elizabeth B.; Sadeghi, Neda; Thomas, Cibu P.; Pierpaoli, Carlo
2016-01-01
In this work, we propose DR-TAMAS (Diffeomorphic Registration for Tensor Accurate alignMent of Anatomical Structures), a novel framework for intersubject registration of Diffusion Tensor Imaging (DTI) data sets. This framework is optimized for brain data and its main goal is to achieve an accurate alignment of all brain structures, including white matter (WM), gray matter (GM), and spaces containing cerebrospinal fluid (CSF). Currently most DTI-based spatial normalization algorithms emphasize alignment of anisotropic structures. While some diffusion-derived metrics, such as diffusion anisotropy and tensor eigenvector orientation, are highly informative for proper alignment of WM, other tensor metrics such as the trace or mean diffusivity (MD) are fundamental for a proper alignment of GM and CSF boundaries. Moreover, it is desirable to include information from structural MRI data, e.g., T1-weighted or T2-weighted images, which are usually available together with the diffusion data. The fundamental property of DR-TAMAS is to achieve global anatomical accuracy by incorporating in its cost function the most informative metrics locally. Another important feature of DR-TAMAS is a symmetric time-varying velocity-based transformation model, which enables it to account for potentially large anatomical variability in healthy subjects and patients. The performance of DR-TAMAS is evaluated with several data sets and compared with other widely-used diffeomorphic image registration techniques employing both full tensor information and/or DTI-derived scalar maps. Our results show that the proposed method has excellent overall performance in the entire brain, while being equivalent to the best existing methods in WM. PMID:26931817
Finer parcellation reveals detailed correlational structure of resting-state fMRI signals.
Dornas, João V; Braun, Jochen
2018-01-15
Even in resting state, the human brain generates functional signals (fMRI) with complex correlational structure. To simplify this structure, it is common to parcellate a standard brain into coarse chunks. Finer parcellations are considered less reproducible and informative, due to anatomical and functional variability of individual brains. Grouping signals with similar local correlation profiles, restricted to each anatomical region (Tzourio-Mazoyer et al., 2002), we divide a standard brain into 758 'functional clusters' averaging 1.7cm 3 gray matter volume ('MD758' parcellation). We compare 758 'spatial clusters' of similar size ('S758'). 'Functional clusters' are spatially contiguous and cluster quality (integration and segregation of temporal variance) is far superior to 'spatial clusters', comparable to multi-modal parcellations of half the resolution (Craddock et al., 2012; Glasser et al., 2016). Moreover, 'functional clusters' capture many long-range functional correlations, with O(10 5 ) reproducibly correlated cluster pairs in different anatomical regions. The pattern of functional correlations closely mirrors long-range anatomical connectivity established by fibre tracking. MD758 is comparable to coarser parcellations (Craddock et al., 2012; Glasser et al., 2016) in terms of cluster quality, correlational structure (54% relative mutual entropy vs 60% and 61%), and sparseness (35% significant pairwise correlations vs 36% and 44%). We describe and evaluate a simple path to finer functional parcellations of the human brain. Detailed correlational structure is surprisingly consistent between individuals, opening new possibilities for comparing functional correlations between cognitive conditions, states of health, or pharmacological interventions. Copyright © 2017 The Author(s). Published by Elsevier B.V. All rights reserved.
DR-TAMAS: Diffeomorphic Registration for Tensor Accurate Alignment of Anatomical Structures.
Irfanoglu, M Okan; Nayak, Amritha; Jenkins, Jeffrey; Hutchinson, Elizabeth B; Sadeghi, Neda; Thomas, Cibu P; Pierpaoli, Carlo
2016-05-15
In this work, we propose DR-TAMAS (Diffeomorphic Registration for Tensor Accurate alignMent of Anatomical Structures), a novel framework for intersubject registration of Diffusion Tensor Imaging (DTI) data sets. This framework is optimized for brain data and its main goal is to achieve an accurate alignment of all brain structures, including white matter (WM), gray matter (GM), and spaces containing cerebrospinal fluid (CSF). Currently most DTI-based spatial normalization algorithms emphasize alignment of anisotropic structures. While some diffusion-derived metrics, such as diffusion anisotropy and tensor eigenvector orientation, are highly informative for proper alignment of WM, other tensor metrics such as the trace or mean diffusivity (MD) are fundamental for a proper alignment of GM and CSF boundaries. Moreover, it is desirable to include information from structural MRI data, e.g., T1-weighted or T2-weighted images, which are usually available together with the diffusion data. The fundamental property of DR-TAMAS is to achieve global anatomical accuracy by incorporating in its cost function the most informative metrics locally. Another important feature of DR-TAMAS is a symmetric time-varying velocity-based transformation model, which enables it to account for potentially large anatomical variability in healthy subjects and patients. The performance of DR-TAMAS is evaluated with several data sets and compared with other widely-used diffeomorphic image registration techniques employing both full tensor information and/or DTI-derived scalar maps. Our results show that the proposed method has excellent overall performance in the entire brain, while being equivalent to the best existing methods in WM. Copyright © 2016 Elsevier Inc. All rights reserved.
A review of the surface and internal anatomy of the caudal canal in children.
Lees, David; Frawley, Geoff; Taghavi, Kiarash; Mirjalili, Seyed Ali
2014-08-01
The anatomy of the sacral hiatus and caudal canal is prone to significant variation, yet studies assessing this in the pediatric population remain limited. Awareness of the possible anatomical variations is critical to the safety and success of caudal epidural blocks, particularly when image guidance is not employed. This systematic review analyzes the available evidence on the clinical anatomy of the caudal canal in pediatric patients, emphasizing surface anatomy and internal anatomical variations. A literature search using three electronic databases and standard pediatric and anatomy reference texts was conducted yielding 24 primary and seven secondary English-language sources. Appreciating that our current landmark-guided approaches to the caudal canal are not well studied in the pediatric population is important for both clinicians and researchers. © 2014 John Wiley & Sons Ltd.
How and why does the areole meristem move in Echinocereus (Cactaceae)?
Sánchez, Daniel; Grego-Valencia, Dalia; Terrazas, Teresa; Arias, Salvador
2015-01-01
Background and Aims In Cactaceae, the areole is the organ that forms the leaves, spines and buds. Apparently, the genus Echinocereus develops enclosed buds that break through the epidermis of the stem adjacent to the areole; this trait most likely represents a synapomorphy of Echinocereus. The development of the areole is investigated here in order to understand the anatomical modifications that lead to internal bud development and to supplement anatomical knowledge of plants that do not behave according to classical shoot theory. Methods The external morphology of the areole was documented and the anatomy was studied using tissue clearing, scanning electron microscopy and light microscopy for 50 species that represent the recognized clades and sections of the traditional classification of the genus, including Morangaya pensilis (Echinocereus pensilis). Key Results In Echinocereus, the areole is sealed by the periderm, and the areole meristem is moved and enclosed by the differential growth of the epidermis and surrounding cortex. The enclosed areole meristem is differentiated in a vegetative or floral bud, which develops internally and breaks through the epidermis of the stem. In Morangaya pensilis, the areole is not sealed by the periderm and the areole meristem is not enclosed. Conclusions The enclosed areole meristem and internal bud development are understood to be an adaptation to protect the meristem and the bud from low temperatures. The anatomical evidence supports the hypothesis that the enclosed bud represents one synapomorphy for Echinocereus and also supports the exclusion of Morangaya from Echinocereus. PMID:25399023
Wang, Liansheng; Li, Shusheng; Chen, Rongzhen; Liu, Sze-Yu; Chen, Jyh-Cheng
2016-01-01
Accurate segmentation and classification of different anatomical structures of teeth from medical images plays an essential role in many clinical applications. Usually, the anatomical structures of teeth are manually labelled by experienced clinical doctors, which is time consuming. However, automatic segmentation and classification is a challenging task because the anatomical structures and surroundings of the tooth in medical images are rather complex. Therefore, in this paper, we propose an effective framework which is designed to segment the tooth with a Selective Binary and Gaussian Filtering Regularized Level Set (GFRLS) method improved by fully utilizing three dimensional (3D) information, and classify the tooth by employing unsupervised learning Pulse Coupled Neural Networks (PCNN) model. In order to evaluate the proposed method, the experiments are conducted on the different datasets of mandibular molars and the experimental results show that our method can achieve better accuracy and robustness compared to other four state of the art clustering methods.
Wang, Liansheng; Li, Shusheng; Chen, Rongzhen; Liu, Sze-Yu; Chen, Jyh-Cheng
2017-04-01
Accurate classification of different anatomical structures of teeth from medical images provides crucial information for the stress analysis in dentistry. Usually, the anatomical structures of teeth are manually labeled by experienced clinical doctors, which is time consuming. However, automatic segmentation and classification is a challenging task because the anatomical structures and surroundings of the tooth in medical images are rather complex. Therefore, in this paper, we propose an effective framework which is designed to segment the tooth with a Selective Binary and Gaussian Filtering Regularized Level Set (GFRLS) method improved by fully utilizing 3 dimensional (3D) information, and classify the tooth by employing unsupervised learning i.e., k-means++ method. In order to evaluate the proposed method, the experiments are conducted on the sufficient and extensive datasets of mandibular molars. The experimental results show that our method can achieve higher accuracy and robustness compared to other three clustering methods. Copyright © 2016 Elsevier Ltd. All rights reserved.
Arthroscopic approach and anatomy of the hip
Aprato, Alessandro; Giachino, Matteo; Masse, Alessandro
2016-01-01
Summary Background Hip arthroscopy has gained popularity among the orthopedic community and a precise assessment of indications, techniques and results is constantly brought on. Methods In this chapter the principal standard entry portals for central and peripheral compartment are discussed. The description starts from the superficial landmarks for portals placement and continues with the deep layers. For each entry point an illustration of the main structures encountered is provided and the principal structures at risk for different portals are accurately examined. Articular anatomical description is carried out from the arthroscope point of view and sub-divided into central and peripheral compartment. The two compartments are systematically analyzed and the accessible articular areas for each portal explained. Moreover, some anatomical variations that can be found in the normal hip are reported. Conclusion The anatomical knowledge of the hip joint along with a precise notion of the structures encountered with the arthroscope is an essential requirement for a secure and successful surgery. Level of evidence: V. PMID:28066735
New Clinically Feasible 3T MRI Protocol to Discriminate Internal Brain Stem Anatomy.
Hoch, M J; Chung, S; Ben-Eliezer, N; Bruno, M T; Fatterpekar, G M; Shepherd, T M
2016-06-01
Two new 3T MR imaging contrast methods, track density imaging and echo modulation curve T2 mapping, were combined with simultaneous multisection acquisition to reveal exquisite anatomic detail at 7 canonical levels of the brain stem. Compared with conventional MR imaging contrasts, many individual brain stem tracts and nuclear groups were directly visualized for the first time at 3T. This new approach is clinically practical and feasible (total scan time = 20 minutes), allowing better brain stem anatomic localization and characterization. © 2016 by American Journal of Neuroradiology.
Anatomical considerations on the discomalleolar ligament
RODRÍGUEZ-VÁZQUEZ, J. F.; MÉRIDA-VELASCO, J. R.; MÉRIDA-VELASCO, J. A.; JIMÉNEZ-COLLADO, J.
1998-01-01
A study was carried out on the discomalleolar ligament by dissection of adult human cadavers. The ligament corresponds to the most internal portion of the superior lamina of the temporomandibular joint capsule. It extends from the posterointernal portion of the temporomandibular joint disc, penetrates the petrotympanic fissure and reaches the malleus of the middle ear. Because of its morphology and anatomical arrangement the discomalleolar ligament should be considered as an intrinsic ligament of the temporomandibular joint and distinguished from the tympanic portion of the sphenomandibular ligament (anterior ligament of the malleus). PMID:9723988
Management of fractures of the condyle, condylar neck, and coronoid process.
Kisnisci, Reha
2013-11-01
Proper anatomic reduction of the fracture and accelerated complete recovery are desirable goals after trauma reconstruction. Over the recent decades, significant headway in craniomaxillofacial trauma care has been achieved and advancements in the management for the injuries of the mandibular condyle have also proved to be no exception. A trend in operative and reconstructive options for proper anatomic reduction and internal fixation has become notable as a result of newly introduced technology, surgical techniques, and operative expertise. Copyright © 2013 Elsevier Inc. All rights reserved.
Wali, Arvin R; Gabel, Brandon; Mitwalli, Madhawi; Tubbs, R Shane; Brown, Justin M
2017-05-01
In 1957, Dr Geoffrey Osborne described a structure between the medial epicondyle and the olecranon that placed excessive pressure on the ulnar nerve. Three terms associated with such structures have emerged: Osborne's band, Osborne's ligament, and Osborne's fascia. As anatomical language moves away from eponymous terminology for descriptive, consistent nomenclature, we find discrepancies in the use of anatomic terms. This review clarifies the definitions of the above 3 terms. We conducted an extensive electronic search via PubMed and Google Scholar to identify key anatomical and surgical texts that describe ulnar nerve compression at the elbow. We searched the following terms separately and in combination: "Osborne's band," "Osborne's ligament," and "Osborne's fascia." A total of 36 papers were included from 1957 to 2016. Osborne's band, Osborne's ligament, and Osborne's fascia were found to inconsistently describe the etiology of ulnar neuritis, referring either to the connective tissue between the 2 heads of the flexor carpi ulnaris muscle as described by Dr Osborne or to the anatomically distinct fibrous tissue between the olecranon process of the ulna and the medial epicondyle of the humerus. The use of eponymous terms to describe ulnar pathology of the elbow remains common, and although these terms allude to the rich history of surgical anatomy, these nonspecific descriptions lead to inconsistencies. As Osborne's band, Osborne's ligament, and Osborne's fascia are not used consistently across the literature, this research demonstrates the need for improved terminology to provide reliable interpretation of these terms among surgeons.
Morphological study of the eye and adnexa in capuchin monkeys (Sapajus sp.)
Silva, Danielle Nascimento; Oriá, Arianne Pontes; Araujo, Nayone Lantyer; Martins-Filho, Emanoel; Muramoto, Caterina; Libório, Fernanda de Azevedo
2017-01-01
The objective of this study was to describe the anatomic and histologic features of the Sapajus sp. eye, comparing similarities and differences of humans and other species of non-human primates for biomedical research purposes. Computed tomography (CT) of adnexa, eye and orbit live animal, as well as formolized pieces of the same structures of Sapajus sp. for anatomical and histological study were also performed. The anatomical description of the eye and adnexa was performed using the techniques of topographic dissection and exenteration. Histological fragments were fixated in buffered formalin 10%, processed by the routine paraffin inclusion technique, stained with hematoxylin-eosin and special stains. CT scan evaluation showed no differences between the live animal and the formolized head on identification of visual apparatus structures. Anatomic and histologic evaluation revealed rounded orbit, absence of the supraorbital foramen and frontal notch, little exposure of the sclera, with slight pigmentation of the exposed area and marked pigmentation at the sclerocorneal junction. Masson's Trichrome revealed the Meibomian glands, the corneal epithelium and Bowman's membrane; in the choroid, melanocytes and Bruch's membrane were observed; and in the retina, cones and rods as well as, optic nerve, the lamina cribrosa of the nerve fibers bundles. Toluidine blue highlighted the membranes: Bowman, Descemet and the endothelium; in the choroid: melanocytes; and in the retina: nuclear layers and retinal pigment epithelium. In view of the observed results Sapajus sp. is an important experimental model for research in the ophthalmology field, which has been shown due to the high similarity of its anatomical and histological structures with the human species. PMID:29206882
A new method to predict anatomical outcome after idiopathic macular hole surgery.
Liu, Peipei; Sun, Yaoyao; Dong, Chongya; Song, Dan; Jiang, Yanrong; Liang, Jianhong; Yin, Hong; Li, Xiaoxin; Zhao, Mingwei
2016-04-01
To investigate whether a new macular hole closure index (MHCI) could predict anatomic outcome of macular hole surgery. A vitrectomy with internal limiting membrane peeling, air-fluid exchange, and gas tamponade were performed on all patients. The postoperative anatomic status of the macular hole was defined by spectral-domain OCT. MHCI was calculated as (M+N)/BASE based on the preoperative OCT status. M and N were the curve lengths of the detached photoreceptor arms, and BASE was the length of the retinal pigment epithelial layer (RPE layer) detaching from the photoreceptors. Postoperative anatomical outcomes were divided into three grades: A (bridge-like closure), B (good closure), and C (poor closure or no closure). Correlation analysis was performed between anatomical outcomes and MHCI. Receiver operating characteristic (ROC) curves were derived for MHCI, indicating good model discrimination. ROC curves were also assessed by the area under the curve, and cut-offs were calculated. Other predictive parameters reported previously, which included the MH minimum, the MH height, the macular hole index (MHI), the diameter hole index (DHI), and the tractional hole index (THI) had been compared as well. MHCI correlated significantly with postoperative anatomical outcomes (r = 0.543, p = 0.000), but other predictive parameters did not. The areas under the curves indicated that MHCI could be used as an effective predictor of anatomical outcome. Cut-off values of 0.7 and 1.0 were obtained for MHCI from ROC curve analysis. MHCI demonstrated a better predictive effect than other parameters, both in the correlation analysis and ROC analysis. MHCI could be an easily measured and accurate predictive index for postoperative anatomical outcomes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shieh, C; Kipritidis, J; OBrien, R
2014-06-15
Purpose: The Feldkamp-Davis-Kress (FDK) algorithm currently used for clinical thoracic 4-dimensional (4D) cone-beam CT (CBCT) reconstruction suffers from noise and streaking artifacts due to projection under-sampling. Compressed sensing theory enables reconstruction of under-sampled datasets via total-variation (TV) minimization, but TV-minimization algorithms such as adaptive-steepest-descent-projection-onto-convex-sets (ASD-POCS) often converge slowly and are prone to over-smoothing anatomical details. These disadvantages can be overcome by incorporating general anatomical knowledge via anatomy segmentation. Based on this concept, we have developed an anatomical-adaptive compressed sensing (AACS) algorithm for thoracic 4D-CBCT reconstruction. Methods: AACS is based on the ASD-POCS framework, where each iteration consists of a TV-minimizationmore » step and a data fidelity constraint step. Prior to every AACS iteration, four major thoracic anatomical structures - soft tissue, lungs, bony anatomy, and pulmonary details - were segmented from the updated solution image. Based on the segmentation, an anatomical-adaptive weighting was applied to the TV-minimization step, so that TV-minimization was enhanced at noisy/streaky regions and suppressed at anatomical structures of interest. The image quality and convergence speed of AACS was compared to conventional ASD-POCS using an XCAT digital phantom and a patient scan. Results: For the XCAT phantom, the AACS image represented the ground truth better than the ASD-POCS image, giving a higher structural similarity index (0.93 vs. 0.84) and lower absolute difference (1.1*10{sup 4} vs. 1.4*10{sup 4}). For the patient case, while both algorithms resulted in much less noise and streaking than FDK, the AACS image showed considerably better contrast and sharpness of the vessels, tumor, and fiducial marker than the ASD-POCS image. In addition, AACS converged over 50% faster than ASD-POCS in both cases. Conclusions: The proposed AACS algorithm was shown to reconstruct thoracic 4D-CBCT images more accurately and with faster convergence compared to ASD-POCS. The superior image quality and rapid convergence makes AACS promising for future clinical use.« less
Zhang, Chi; Wang, Ling; Li, Xiaoyun; Li, Shuyu; Pu, Fang; Fan, Yubo; Li, Deyu
2014-01-01
Circle of Willis (CoW) plays a significant role in maintaining the blood supply for the brain. Specifically, when the stenosis occurs in the internal carotid artery (ICA), abnormal structures of CoW would decrease the compensatory capacity, leading to the local insufficiency of cerebral blood supply. The present paper built a series of lumped parameter models for CoW, and simulated the blood redistribution caused by the unilateral ICA stenosis with different severities in cerebral arteries in the normal and abnormal CoW respectively. The results showed that when unilateral ICA stenosis occurred, the collateral circulation was built through the anterior communicating artery and the ipsilateral posterior communicating artery, maintaining the flow in cerebral arteries. The absence of the two communicating arteries would cause an obvious decrease of flow in local cerebral arteries in the anterior circulation. In conclusion, the two arteries play a significant role in maintaining the balance of cerebral blood supply in the development of ICA stenosis.
Borota, Ljubisa; Mahmoud, Ehab; Nyberg, Christoffer; Ekberg, Tomas
2015-06-01
Juvenile nasal angiofibroma (JNA) is a hypervascularised, benign, but locally aggressive tumour that grows in the posterior, upper part of the nasal cavity and invades surrounding anatomical structures. The treatment of choice is surgical removal, but complete resection of the tumour can be hampered because of profuse perioperative bleeding. Preoperative embolisation of the tumour has been proposed as an effective method for prevention of perioperative bleeding, thereby shortening of the time of the operation. In this report of five cases, we describe successful preoperative devascularisation of the tumour by applying a modified method of direct intratumoural injection of the liquid embolic agent Onyx combined with protection of the internal carotid artery. The control of bleeding during the embolisation and occlusion of the maxillary or sphenopalatine artery was achieved by using a bi-luminal balloon catheter. Such use of the dual-lumen catheter in treatment of JNA has not been reported so far in the medical literature. © The Author(s) 2015.
Mahmoud, Ehab; Nyberg, Christoffer; Ekberg, Tomas
2015-01-01
Juvenile nasal angiofibroma (JNA) is a hypervascularised, benign, but locally aggressive tumour that grows in the posterior, upper part of the nasal cavity and invades surrounding anatomical structures. The treatment of choice is surgical removal, but complete resection of the tumour can be hampered because of profuse perioperative bleeding. Preoperative embolisation of the tumour has been proposed as an effective method for prevention of perioperative bleeding, thereby shortening of the time of the operation. In this report of five cases, we describe successful preoperative devascularisation of the tumour by applying a modified method of direct intratumoural injection of the liquid embolic agent Onyx combined with protection of the internal carotid artery. The control of bleeding during the embolisation and occlusion of the maxillary or sphenopalatine artery was achieved by using a bi-luminal balloon catheter. Such use of the dual-lumen catheter in treatment of JNA has not been reported so far in the medical literature. PMID:25991005
Dallan, Iacopo; Seccia, Veronica; Muscatello, Luca; Lenzi, Riccardo; Castelnuovo, Paolo; Bignami, Maurizio; Montevecchi, Filippo; Tschabitscher, Manfred; Vicini, Claudio
2011-04-01
Surgical approaches to the parapharyngeal spaces are challenging. Little is known about the transoral perspective of the anatomy of the parapharyngeal space. Thus, transoral approaches are seldom performed, and only for small-sized tumors. Six freshly injected cadaver heads were dissected to illustrate the transoral surgical anatomy of the parapharyngeal space. The transoral window dominates the parapharyngeal space from the medial pterygoid muscle laterally to the superior constrictor muscle medially. The stylopharyngeus and styloglossus muscles seem to be critical landmarks in this approach. Posterior to these muscles and laterally to the superior constrictor muscle, the internal carotid artery, internal jugular vein, and lower cranial nerves are identifiable. This anatomic study emphasizes the critical role of the superior constrictor, styloglossus, and stylopharyngeus muscles and highlights the concept of a logical step by step technique that allows the identification of important structures and the creation of safe surgical corridors. Copyright © 2010 Wiley Periodicals, Inc.
ERIC Educational Resources Information Center
Cookson, Natalie E.; Aka, Justine J.; Finn, Gabrielle M.
2018-01-01
Previous research has explored the experiences of medical students using body painting as a learning tool. However, to date, faculty experiences and views have not been explored. This international qualitative study utilized a grounded theory approach with data collection through interviews with academics and clinicians who utilized body painting…
Stereolithography: a potential new tool in forensic medicine.
Dolz, M S; Cina, S J; Smith, R
2000-06-01
Stereolithography is a computer-mediated method that can be used to quickly create anatomically correct three-dimensional epoxy and acrylic resin models from various types of medical data. Multiple imaging modalities can be exploited, including computed tomography and magnetic resonance imaging. The technology was first developed and used in 1986 to overcome limitations in previous computer-aided manufacturing/milling techniques. Stereolithography is presently used to accurately reproduce both the external and internal anatomy of body structures. Current medical uses of stereolithography include preoperative planning of orthopedic and maxillofacial surgeries, the fabrication of custom prosthetic devices; and the assessment of the degree of bony and soft-tissue injury caused by trauma. We propose that there is a useful, as yet untapped, potential for this technology in forensic medicine.
Scarparo, Roberta Kochenborger; Pereira, Leticia; Moro, Diana; Grundling, Grasiela; Gomes, Maximiliano; Grecca, Fabiana Soares
2011-03-01
The present report describes and discusses root canal variations in the internal morphology of maxillary molars. Dental internal anatomy is directly related to all the technical stages of the endodontic treatment. Even though, in some situations a typical anatomical characteristics can be faced, and the professional should be able to identify them. This clinical report describes five cases with different pulpar and periapical diagnostics where the endodontic treatment was performed, in which during the treatment the unusual occurrence of two or three canals in the palatal root 'or even two distinct palatal roots' of first and second maxillary molars, were described and important details for achieving treatment success were discussed. The knowledge of tooth internal anatomy must be considered during clinical and radiographic examinations. This should be valued not only to find atypical canals but also to enable calcified canals cleaning and shaping, once they are frequently omitted during endodontic therapy. Anatomic variations can occur in any tooth, and palatal roots of maxillary first and second molars are no exception. The complexity of the root canal system and the importance of identifying its internal anatomy for planning endodontic treatment increase the chances of success.
Verification of the anatomy and newly discovered histology of the G-spot complex.
Ostrzenski, A; Krajewski, P; Ganjei-Azar, P; Wasiutynski, A J; Scheinberg, M N; Tarka, S; Fudalej, M
2014-10-01
To expand the anatomical investigations of the G-spot and to assess the G-spot's characteristic histological and immunohistochemical features. An observational study. International multicentre. Eight consecutive fresh human female cadavers. Anterior vaginal wall dissections were executed and G-spot microdissections were performed. All specimens were stained with haematoxylin and eosin (H&E). The tissues of two women were selected at random for immunohistochemical staining. The primary outcome measure was to document the anatomy of the G-spot. The secondary outcome measures were to identify the histology of the G-spot and to determine whether histological samples stained with H&E are sufficient to identify the G-spot. The anatomical existence of the G-spot was identified in all women and was in a diagonal plane. In seven (87.5%) and one (12.5%) of the women the G-spot complex was found on the left or right side, respectively. The G-spot was intimately fused with vessels, creating a complex. A large tangled vein-like vascular structure resembled an arteriovenous malformation and there were a few smaller feeding arteries. A band-like structure protruded from the tail of the G-spot. The size of the G-spot varied. Histologically, the G-spot was determined as a neurovascular complex structure. The neural component contained abundant peripheral nerve bundles and a nerve ganglion. The vascular component comprised large vein-like vessels and smaller feeding arteries. Circular and longitudinal muscles covered the G-complex. The anatomy of the G-spot complex was confirmed. The histology of the G-spot presents as neurovascular tissues with a nerve ganglion. H&E staining is sufficient for the identification of the G-spot complex. © 2014 Royal College of Obstetricians and Gynaecologists.
CAVEman: Standardized Anatomical Context for Biomedical Data Mapping
ERIC Educational Resources Information Center
Turinsky, Andrei L.; Fanea, Elena; Trinh, Quang; Wat, Stephen; Hallgrimsson, Benedikt; Dong, Xiaoli; Shu, Xueling; Stromer, Julie N.; Hill, Jonathan W.; Edwards, Carol; Grosenick, Brenda; Yajima, Masumi; Sensen, Christoph W.
2008-01-01
The authors have created a software system called the CAVEman, for the visual integration and exploration of heterogeneous anatomical and biomedical data. The CAVEman can be applied for both education and research tasks. The main component of the system is a three-dimensional digital atlas of the adult male human anatomy, structured according to…
Cell tracing reveals a dorsoventral lineage restriction plane in the mouse limb bud mesenchyme.
Arques, Carlos G; Doohan, Roisin; Sharpe, James; Torres, Miguel
2007-10-01
Regionalization of embryonic fields into independent units of growth and patterning is a widespread strategy during metazoan development. Compartments represent a particular instance of this regionalization, in which unit coherence is maintained by cell lineage restriction between adjacent regions. Lineage compartments have been described during insect and vertebrate development. Two common characteristics of the compartments described so far are their occurrence in epithelial structures and the presence of signaling regions at compartment borders. Whereas Drosophila compartmental organization represents a background subdivision of embryonic fields that is not necessarily related to anatomical structures, vertebrate compartment borders described thus far coincide with, or anticipate, anatomical or cell-type discontinuities. Here, we describe a general method for clonal analysis in the mouse and use it to determine the topology of clone distribution along the three limb axes. We identify a lineage restriction boundary at the limb mesenchyme dorsoventral border that is unrelated to any anatomical discontinuity, and whose lineage restriction border is not obviously associated with any signaling center. This restriction is the first example in vertebrates of a mechanism of primordium subdivision unrelated to anatomical boundaries. Furthermore, this is the first lineage compartment described within a mesenchymal structure in any organism, suggesting that lineage restrictions are fundamental not only for epithelial structures, but also for mesenchymal field patterning. No lineage compartmentalization was found along the proximodistal or anteroposterior axes, indicating that patterning along these axes does not involve restriction of cell dispersion at specific axial positions.
Nakashima, Kazuaki; Ashizawa, Kazuto; Ochi, Makoto; Hashmi, Rashid; Hayashi, Kuniaki; Gotoh, Shinichi; Honda, Sumihisa; Igarashi, Akito; Komaki, Takao
2003-01-01
The purpose of this study was to investigate the usefulness of Fuji Computed Radiography (FCR) 5501D by comparing it with FCR 5000 and a screen‐film system (S/F). Posteroanterior chest radiographs often patients with no abnormality on chest CT scans were obtained with FCR 5501D, FCR 5000, and S/F. Six observers (three radiologists and three radio‐technologists) evaluated the visibility of nine normal anatomic structures (including lungs, soft tissue, and bones) and overall visibility on each image. Observers scored using a five‐point scale on each structure. FCR 5000 showed a significantly higher score in soft tissue and bone structures, and overall visibility compared with S/F, but, there was no significant difference between them in the visibility of all four normal lung structures. Compared with S/F, the score for FCR 5501D was higher in eight of the nine normal structures, including three of the four lung structures (unobscured lung, retrocardiac lung, and subdiaphragmatic lung), and overall visibility. Compared with FCR 5000, the score for FCR 5501D was higher in three normal structures, including two of the four lung structures (unobscured lung and subdiaphragmatic lung), and overall visibility. FCR 5501D was the best among the three techniques to visualize normal anatomic structures, particularly the obscured and unobscured lung. © 2003 American College of Medical Physics. PACS number(s): 87.57.–s, 87.62.+n PMID:12540822
Anatomical location of LPA1 activation and LPA phospholipid precursors in rodent and human brain.
González de San Román, Estibaliz; Manuel, Iván; Giralt, María Teresa; Chun, Jerold; Estivill-Torrús, Guillermo; Rodríguez de Fonseca, Fernando; Santín, Luis Javier; Ferrer, Isidro; Rodríguez-Puertas, Rafael
2015-08-01
Lysophosphatidic acid (LPA) is a signaling molecule that binds to six known G protein-coupled receptors: LPA1 -LPA6 . LPA evokes several responses in the CNS, including cortical development and folding, growth of the axonal cone and its retraction process. Those cell processes involve survival, migration, adhesion proliferation, differentiation, and myelination. The anatomical localization of LPA1 is incompletely understood, particularly with regard to LPA binding. Therefore, we have used functional [(35) S]GTPγS autoradiography to verify the anatomical distribution of LPA1 binding sites in adult rodent and human brain. The greatest activity was observed in myelinated areas of the white matter such as corpus callosum, internal capsule and cerebellum. MaLPA1 -null mice (a variant of LPA1 -null) lack [(35) S]GTPγS basal binding in white matter areas, where the LPA1 receptor is expressed at high levels, suggesting a relevant role of the activity of this receptor in the most myelinated brain areas. In addition, phospholipid precursors of LPA were localized by MALDI-IMS in both rodent and human brain slices identifying numerous species of phosphatides and phosphatidylcholines. Both phosphatides and phosphatidylcholines species represent potential LPA precursors. The anatomical distribution of these precursors in rodent and human brain may indicate a metabolic relationship between LPA and LPA1 receptors. Lysophosphatidic acid (LPA) is a signaling molecule that binds to six known G protein-coupled receptors (GPCR), LPA1 to LPA6 . LPA evokes several responses in the central nervous system (CNS), including cortical development and folding, growth of the axonal cone and its retraction process. We used functional [(35) S]GTPγS autoradiography to verify the anatomical distribution of LPA1 -binding sites in adult rodent and human brain. The distribution of LPA1 receptors in rat, mouse and human brains show the highest activity in white matter myelinated areas. The basal and LPA-evoked activities are abolished in MaLPA1 -null mice. The phospholipid precursors of LPA are localized by MALDI-IMS. The anatomical distribution of LPA precursors in rodent and human brain suggests a relationship with functional LPA1 receptors. © 2015 International Society for Neurochemistry.
The importance of spatial ability and mental models in learning anatomy
NASA Astrophysics Data System (ADS)
Chatterjee, Allison K.
As a foundational course in medical education, gross anatomy serves to orient medical and veterinary students to the complex three-dimensional nature of the structures within the body. Understanding such spatial relationships is both fundamental and crucial for achievement in gross anatomy courses, and is essential for success as a practicing professional. Many things contribute to learning spatial relationships; this project focuses on a few key elements: (1) the type of multimedia resources, particularly computer-aided instructional (CAI) resources, medical students used to study and learn; (2) the influence of spatial ability on medical and veterinary students' gross anatomy grades and their mental models; and (3) how medical and veterinary students think about anatomy and describe the features of their mental models to represent what they know about anatomical structures. The use of computer-aided instruction (CAI) by gross anatomy students at Indiana University School of Medicine (IUSM) was assessed through a questionnaire distributed to the regional centers of the IUSM. Students reported using internet browsing, PowerPoint presentation software, and email on a daily bases to study gross anatomy. This study reveals that first-year medical students at the IUSM make limited use of CAI to study gross anatomy. Such studies emphasize the importance of examining students' use of CAI to study gross anatomy prior to development and integration of electronic media into the curriculum and they may be important in future decisions regarding the development of alternative learning resources. In order to determine how students think about anatomical relationships and describe the features of their mental models, personal interviews were conducted with select students based on students' ROT scores. Five typologies of the characteristics of students' mental models were identified and described: spatial thinking, kinesthetic approach, identification of anatomical structures, problem solving strategies, and study methods. Students with different levels of spatial ability visualize and think about anatomy in qualitatively different ways, which is reflected by the features of their mental models. Low spatial ability students thought about and used two-dimensional images from the textbook. They possessed basic two-dimensional models of anatomical structures; they placed emphasis on diagrams and drawings in their studies; and they re-read anatomical problems many times before answering. High spatial ability students thought fully in three-dimensional and imagined rotation and movement of the structures; they made use of many types of images and text as they studied and solved problems. They possessed elaborate three-dimensional models of anatomical structures which they were able to manipulate to solve problems; and they integrated diagrams, drawings, and written text in their studies. Middle spatial ability students were a mix between both low and high spatial ability students. They imagined two-dimensional images popping out of the flat paper to become more three-dimensional, but still relied on drawings and diagrams. Additionally, high spatial ability students used a higher proportion of anatomical terminology than low spatial ability or middle spatial ability students. This provides additional support to the premise that high spatial students' mental models are a complex mixture of imagistic representations and propositional representations that incorporate correct anatomical terminology. Low spatial ability students focused on the function of structures and ways to group information primarily for the purpose of recall. This supports the theory that low spatial students' mental models will be characterized by more on imagistic representations that are general in nature. (Abstract shortened by UMI.)
Anatomical Basis for the Cardiac Interventional Electrophysiologist
Sánchez-Quintana, Damián; Doblado-Calatrava, Manuel; Cabrera, José Angel; Macías, Yolanda; Saremi, Farhood
2015-01-01
The establishment of radiofrequency catheter ablation techniques as the mainstay in the treatment of tachycardia has renewed new interest in cardiac anatomy. The interventional arrhythmologist has drawn attention not only to the gross anatomic details of the heart but also to architectural and histological characteristics of various cardiac regions that are relevant to the development or recurrence of tachyarrhythmias and procedural related complications of catheter ablation. In this review, therefore, we discuss some anatomic landmarks commonly used in catheter ablations including the terminal crest, sinus node region, Koch's triangle, cavotricuspid isthmus, Eustachian ridge and valve, pulmonary venous orifices, venoatrial junctions, and ventricular outflow tracts. We also discuss the anatomical features of important structures in the vicinity of the atria and pulmonary veins, such as the esophagus and phrenic nerves. This paper provides basic anatomic information to improve understanding of the mapping and ablative procedures for cardiac interventional electrophysiologists. PMID:26665006
Interactive anatomical teaching: Integrating radiological anatomy within topographic anatomy.
Abed Rabbo, F; Garrigues, F; Lefèvre, C; Seizeur, R
2016-03-01
Hours attributed to teaching anatomy have been reduced in medical curricula through out the world. In consequence, changes in anatomical curriculum as well as in teaching methods are becoming necessary. New methods of teaching are being evaluated. We present in the following paper an example of interactive anatomical teaching associating topographic anatomy with ultrasonographic radiological anatomy. The aim was to explicitly show anatomical structures of the knee and the ankle through dissection and ultrasonography. One cadaver was used as an ultrasonographic model and the other was dissected. Anatomy of the knee and ankle articulations was studied through dissection and ultrasonography. The students were able to simultaneously assimilate both anatomical aspects of radiological and topographic anatomy. They found the teaching very helpful and practical. This body of work provides example of a teaching method combining two important aspects of anatomy to help the students understand both aspects simultaneously. Copyright © 2015 Elsevier Masson SAS. All rights reserved.
Functional Strain-Line Pattern in the Human Left Ventricle
NASA Astrophysics Data System (ADS)
Pedrizzetti, Gianni; Kraigher-Krainer, Elisabeth; De Luca, Alessio; Caracciolo, Giuseppe; Mangual, Jan O.; Shah, Amil; Toncelli, Loira; Domenichini, Federico; Tonti, Giovanni; Galanti, Giorgio; Sengupta, Partho P.; Narula, Jagat; Solomon, Scott
2012-07-01
Analysis of deformations in terms of principal directions appears well suited for biological tissues that present an underlying anatomical structure of fiber arrangement. We applied this concept here to study deformation of the beating heart in vivo analyzing 30 subjects that underwent accurate three-dimensional echocardiographic recording of the left ventricle. Results show that strain develops predominantly along the principal direction with a much smaller transversal strain, indicating an underlying anisotropic, one-dimensional contractile activity. The strain-line pattern closely resembles the helical anatomical structure of the heart muscle. These findings demonstrate that cardiac contraction occurs along spatially variable paths and suggest a potential clinical significance of the principal strain concept for the assessment of mechanical cardiac function. The same concept can help in characterizing the relation between functional and anatomical properties of biological tissues, as well as fiber-reinforced engineered materials.
[Histo-anatomical researches of two subspecies of Lavandula angustifolia Mill].
Robu, Silvia; Galeş, Ramona; Toma, C; Stănescu, Ursula
2011-01-01
The structure of the inflorescences of two subspecies of Lavandula angustifolia sL. angustifolia ssp. angustifolia and. L. angustifolia ssp. pyrenaica (D.C.) Guineaţ was studied to determine the range of variation in certain histo-anatomical characters. The flower and leaf structure has been analysed on cross and superficial section using the usual techniques and methods applied in plant histo-anatomical research. In cross-section, inflorescence axis has a squared-shape contour, with four proeminent ribs. On the epiderme of inflorescence axis there are present stomata, trichoms and secretory hairs. The trichoms are pluricelullar and T-branched. The secretory hairs have a short pedicel and a uni-or bicellular head. The study revealed that there are only quantitative differences, referring to the degree of sclerification and lignification of mechanical elements and the size of the vascular bundles.
NASA Astrophysics Data System (ADS)
Nash, Merinda C.; Adey, Walter
2018-02-01
Calcified coralline red algae are ecologically key organisms in photic benthic environments. In recent decades they have become important climate proxies, especially in the Arctic and subarctic. It has been widely accepted that magnesium content in coralline tissues is directly a function of ambient temperature, and this is a primary basis for their value as a climate archive. In this paper we show for two genera of Arctic/subarctic corallines, Leptophytum laeve and Kvaleya epilaeve, that previously unrecognised complex tissue and cell wall anatomy bears a variety of basal signatures for Mg content, with the accepted temperature relationship being secondary. The interfilament carbonate has lower Mg than adjacent cell walls and the hypothallial cell walls have the highest Mg content. The internal structure of the hypothallial cell walls can differ substantially from the perithallial radial cell wall structure. Using high-magnification scanning electron microscopy and etching we expose the nanometre-scale structures within the cell walls and interfilament. Fibrils concentrate at the internal and external edges of the cell walls. Fibrils ˜ 10 nm thick appear to thread through the radial Mg-calcite grains and form concentric bands within the cell wall. This banding may control Mg distribution within the cell. Similar fibril banding is present in the hypothallial cell walls but not the interfilament. Climate archiving with corallines can achieve greater precision with recognition of these parameters.
Modeling functional neuroanatomy for an anatomy information system.
Niggemann, Jörg M; Gebert, Andreas; Schulz, Stefan
2008-01-01
Existing neuroanatomical ontologies, databases and information systems, such as the Foundational Model of Anatomy (FMA), represent outgoing connections from brain structures, but cannot represent the "internal wiring" of structures and as such, cannot distinguish between different independent connections from the same structure. Thus, a fundamental aspect of Neuroanatomy, the functional pathways and functional systems of the brain such as the pupillary light reflex system, is not adequately represented. This article identifies underlying anatomical objects which are the source of independent connections (collections of neurons) and uses these as basic building blocks to construct a model of functional neuroanatomy and its functional pathways. The basic representational elements of the model are unnamed groups of neurons or groups of neuron segments. These groups, their relations to each other, and the relations to the objects of macroscopic anatomy are defined. The resulting model can be incorporated into the FMA. The capabilities of the presented model are compared to the FMA and the Brain Architecture Management System (BAMS). Internal wiring as well as functional pathways can correctly be represented and tracked. This model bridges the gap between representations of single neurons and their parts on the one hand and representations of spatial brain structures and areas on the other hand. It is capable of drawing correct inferences on pathways in a nervous system. The object and relation definitions are related to the Open Biomedical Ontology effort and its relation ontology, so that this model can be further developed into an ontology of neuronal functional systems.
Bayesian reconstruction and use of anatomical a priori information for emission tomography
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bowsher, J.E.; Johnson, V.E.; Turkington, T.G.
1996-10-01
A Bayesian method is presented for simultaneously segmenting and reconstructing emission computed tomography (ECT) images and for incorporating high-resolution, anatomical information into those reconstructions. The anatomical information is often available from other imaging modalities such as computed tomography (CT) or magnetic resonance imaging (MRI). The Bayesian procedure models the ECT radiopharmaceutical distribution as consisting of regions, such that radiopharmaceutical activity is similar throughout each region. It estimates the number of regions, the mean activity of each region, and the region classification and mean activity of each voxel. Anatomical information is incorporated by assigning higher prior probabilities to ECT segmentations inmore » which each ECT region stays within a single anatomical region. This approach is effective because anatomical tissue type often strongly influences radiopharmaceutical uptake. The Bayesian procedure is evaluated using physically acquired single-photon emission computed tomography (SPECT) projection data and MRI for the three-dimensional (3-D) Hoffman brain phantom. A clinically realistic count level is used. A cold lesion within the brain phantom is created during the SPECT scan but not during the MRI to demonstrate that the estimation procedure can detect ECT structure that is not present anatomically.« less
Dorello's Canal for Laymen: A Lego-Like Presentation.
Ezer, Haim; Banerjee, Anirban Deep; Thakur, Jai Deep; Nanda, Anil
2012-06-01
Objective Dorello's canal was first described by Gruber in 1859, and later by Dorello. Vail also described the anatomy of Dorello's canal. In the preceding century, Dorello's canal was clinically important, in understanding sixth nerve palsy and nowadays it is mostly important for skull base surgery. The understanding of the three dimensional anatomy, of this canal is very difficult to understand, and there is no simple explanation for its anatomy and its relationship with adjacent structures. We present a simple, Lego-like, presentation of Dorello's canal, in a stepwise manner. Materials and Methods Dorello's canal was dissected in five formalin-fixed cadaver specimens (10 sides). The craniotomy was performed, while preserving the neural and vascular structures associated with the canal. A 3D model was created, to explain the canal's anatomy. Results Using the petrous pyramid, the sixth nerve, the cavernous sinus, the trigeminal ganglion, the petorclival ligament and the posterior clinoid, the three-dimensional structure of Dorello's canal was defined. This simple representation aids in understanding the three dimensional relationship of Dorello's canal to its neighboring structures. Conclusion Dorello's canal with its three dimensional structure and relationship to its neighboring anatomical structures could be reconstructed using a few anatomical building blocks. This method simplifies the understanding of this complex anatomical structure, and could be used for teaching purposes for aspiring neurosurgeons, and anatomy students.
Dorello's Canal for Laymen: A Lego-Like Presentation
Ezer, Haim; Banerjee, Anirban Deep; Thakur, Jai Deep; Nanda, Anil
2012-01-01
Objective Dorello's canal was first described by Gruber in 1859, and later by Dorello. Vail also described the anatomy of Dorello's canal. In the preceding century, Dorello's canal was clinically important, in understanding sixth nerve palsy and nowadays it is mostly important for skull base surgery. The understanding of the three dimensional anatomy, of this canal is very difficult to understand, and there is no simple explanation for its anatomy and its relationship with adjacent structures. We present a simple, Lego-like, presentation of Dorello's canal, in a stepwise manner. Materials and Methods Dorello's canal was dissected in five formalin-fixed cadaver specimens (10 sides). The craniotomy was performed, while preserving the neural and vascular structures associated with the canal. A 3D model was created, to explain the canal's anatomy. Results Using the petrous pyramid, the sixth nerve, the cavernous sinus, the trigeminal ganglion, the petorclival ligament and the posterior clinoid, the three-dimensional structure of Dorello's canal was defined. This simple representation aids in understanding the three dimensional relationship of Dorello's canal to its neighboring structures. Conclusion Dorello's canal with its three dimensional structure and relationship to its neighboring anatomical structures could be reconstructed using a few anatomical building blocks. This method simplifies the understanding of this complex anatomical structure, and could be used for teaching purposes for aspiring neurosurgeons, and anatomy students. PMID:23730547
Prychid, C. J.; Bruhl, J. J.
2013-01-01
Background and Aims In the sedge subfamily Mapanioideae there are considerable discrepancies between the standard trimerous monocot floral architecture expected and the complex floral and inflorescence morphologies seen. Decades of debate about whether the basic reproductive units are single flowers or pseudanthia have not resolved the question. This paper evaluates current knowledge about Mapaniid reproductive structures and presents an ontogenetic study of the Mapaniid genus Lepironia with the first floral protein expression maps for the family, localizing the products of the APETALA1/FRUITFULL-like (AP1/FUL) MADS-box genes with the aim of shedding light on this conundrum. Methods A range of reproductive developmental stages, from spikelet primordia through to infructescence material, were processed for anatomical and immunohistochemical analyses. Key Results The basic reproductive unit is subtended by a bract and possesses two prophyll-like structures, the first organs to be initiated on the primordium, which grow rapidly, enclosing two whorls of initiating leaf-like structures with intervening stamens and a central gynoecium, formed from an annular primordium. The subtending bract and prophyll-like structures possess very different morphologies from that of the internal leaf-like structures and do not show AP1/FUL-like protein localization, which is otherwise strongly localized in the internal leaf-like structures, stamens and gynoecia. Conclusions Results support the synanthial hypothesis as the evolutionary origin of the reproductive unit. Thus, the basic reproductive unit in Lepironia is an extremely condensed pseudanthium, of staminate flowers surrounding a central terminal pistillate female flower. Early in development the reproductive unit becomes enclosed by a split-prophyll, with the whole structure subtended by a bract. PMID:23723258
Volume illustration of muscle from diffusion tensor images.
Chen, Wei; Yan, Zhicheng; Zhang, Song; Crow, John Allen; Ebert, David S; McLaughlin, Ronald M; Mullins, Katie B; Cooper, Robert; Ding, Zi'ang; Liao, Jun
2009-01-01
Medical illustration has demonstrated its effectiveness to depict salient anatomical features while hiding the irrelevant details. Current solutions are ineffective for visualizing fibrous structures such as muscle, because typical datasets (CT or MRI) do not contain directional details. In this paper, we introduce a new muscle illustration approach that leverages diffusion tensor imaging (DTI) data and example-based texture synthesis techniques. Beginning with a volumetric diffusion tensor image, we reformulate it into a scalar field and an auxiliary guidance vector field to represent the structure and orientation of a muscle bundle. A muscle mask derived from the input diffusion tensor image is used to classify the muscle structure. The guidance vector field is further refined to remove noise and clarify structure. To simulate the internal appearance of the muscle, we propose a new two-dimensional example based solid texture synthesis algorithm that builds a solid texture constrained by the guidance vector field. Illustrating the constructed scalar field and solid texture efficiently highlights the global appearance of the muscle as well as the local shape and structure of the muscle fibers in an illustrative fashion. We have applied the proposed approach to five example datasets (four pig hearts and a pig leg), demonstrating plausible illustration and expressiveness.
Guber, J; Lang, C; Valmaggia, C
2017-04-01
Background To evaluate the technique of inverted internal limiting membrane (ILM) flaps for the management of large macular holes and autologous ILM free flaps for non-closing macular holes. Patients and methods All macular holes were treated with pars plana vitrectomy and dual blue assisted ILM flap technique. The inverted ILM flap was created as a primary procedure for large macular holes (diameter > 400 µm). On the other hand, the free ILM flap technique was used as a secondary procedure for non-closing macular holes after failed initial standard procedure. SD-OCT images were taken to assess the anatomical outcome of surgery, while best corrected visual acuity (BCVA) was used to evaluate the functional outcome during a 2-month follow-up. Results All patients underwent successful planned manipulation of the ILM flap. In seven patients/eyes, an inverted ILM flap was created, in three patients/eyes a free ILM flap translocation was performed. All patients achieved complete anatomical closure. Partial microstructural reconstruction, demonstrated on SD-OCT as restoration of the external limiting membrane and the ellipsoid zone, was observed in some cases as early as one month after surgery. Functionally, in comparison to baseline, most of the patients showed improvements in BCVA of 1 to 2 lines at the first postoperative follow-up visit. Conclusions Inverted ILM flaps for large macular holes and free flaps for non-closing macular holes appear to be a safe and effective approach, with favourable short-term anatomical and functional results. Georg Thieme Verlag KG Stuttgart · New York.
Jiang, Yannan; Marshall, Roger J; Walpole, Sarah C; Prieto-Merino, David; Liu, Dong-Xu; Perry, Jo K
2015-03-01
Anthropometric indices associated with childhood growth and height attained in adulthood, have been associated with an increased incidence of certain malignancies. To evaluate the cancer-height relationship, we carried out a study using international data, comparing various cancer rates with average adult height of women and men in different countries. An ecological analysis of the relationship between country-specific cancer incidence rates and average adult height was conducted for twenty-four anatomical cancer sites. Age-standardized rates were obtained from GLOBOCAN 2008. Average female (112 countries) and male (65 countries) heights were sourced and compiled primarily from national health surveys. Graphical and weighted regression analysis was conducted, taking into account BMI and controlling for the random effect of global regions. A significant positive association between a country's average adult height and the country's overall cancer rate was observed in both men and women. Site-specific cancer incidence for females was positively associated with height for most cancers: lung, kidney, colorectum, bladder, melanoma, brain and nervous system, breast, non-Hodgkin lymphoma, multiple myeloma, corpus uteri, ovary, and leukemia. A significant negative association was observed with cancer of the cervix uteri. In males, site-specific cancer incidence was positively associated with height for cancers of the brain and nervous system, kidney, colorectum, non-Hodgkin lymphoma, multiple myeloma, prostate, testicular, lip and oral cavity, and melanoma. Incidence of cancer was associated with tallness in the majority of anatomical/cancer sites investigated. The underlying biological mechanisms are unclear, but may include nutrition and early-life exposure to hormones, and may differ by anatomical site.
Benavides, Erika; Rios, Hector F; Ganz, Scott D; An, Chang-Hyeon; Resnik, Randolph; Reardon, Gayle Tieszen; Feldman, Steven J; Mah, James K; Hatcher, David; Kim, Myung-Jin; Sohn, Dong-Seok; Palti, Ady; Perel, Morton L; Judy, Kenneth W M; Misch, Carl E; Wang, Hom-Lay
2012-04-01
The International Congress of Oral Implantologists has supported the development of this consensus report involving the use of Cone Beam Computed Tomography (CBCT) in implant dentistry with the intent of providing scientifically based guidance to clinicians regarding its use as an adjunct to traditional imaging modalities. The literature regarding CBCT and implant dentistry was systematically reviewed. A PubMed search that included studies published between January 1, 2000, and July 31, 2011, was conducted. Oral presentations, in conjunction with these studies, were given by Dr. Erika Benavides, Dr. Scott Ganz, Dr. James Mah, Dr. Myung-Jin Kim, and Dr. David Hatcher at a meeting of the International Congress of Oral Implantologists in Seoul, Korea, on October 6-8, 2011. The studies published could be divided into four main groups: diagnostics, implant planning, surgical guidance, and postimplant evaluation. The literature supports the use of CBCT in dental implant treatment planning particularly in regards to linear measurements, three-dimensional evaluation of alveolar ridge topography, proximity to vital anatomical structures, and fabrication of surgical guides. Areas such as CBCT-derived bone density measurements, CBCT-aided surgical navigation, and postimplant CBCT artifacts need further research. ICOI RECOMMENDATIONS: All CBCT examinations, as all other radiographic examinations, must be justified on an individualized needs basis. The benefits to the patient for each CBCT scan must outweigh the potential risks. CBCT scans should not be taken without initially obtaining thorough medical and dental histories and performing a comprehensive clinical examination. CBCT should be considered as an imaging alternative in cases where the projected implant receptor or bone augmentation site(s) are suspect, and conventional radiography may not be able to assess the true regional three-dimensional anatomical presentation. The smallest possible field of view should be used, and the entire image volume should be interpreted.
Griffiths, K R; Grieve, S M; Kohn, M R; Clarke, S; Williams, L M; Korgaonkar, M S
2016-01-01
Although multiple studies have reported structural deficits in multiple brain regions in attention-deficit hyperactivity disorder (ADHD), we do not yet know if these deficits reflect a more systematic disruption to the anatomical organization of large-scale brain networks. Here we used a graph theoretical approach to quantify anatomical organization in children and adolescents with ADHD. We generated anatomical networks based on covariance of gray matter volumes from 92 regions across the brain in children and adolescents with ADHD (n=34) and age- and sex-matched healthy controls (n=28). Using graph theory, we computed metrics that characterize both the global organization of anatomical networks (interconnectivity (clustering), integration (path length) and balance of global integration and localized segregation (small-worldness)) and their local nodal measures (participation (degree) and interaction (betweenness) within a network). Relative to Controls, ADHD participants exhibited altered global organization reflected in more clustering or network segregation. Locally, nodal degree and betweenness were increased in the subcortical amygdalae in ADHD, but reduced in cortical nodes in the anterior cingulate, posterior cingulate, mid temporal pole and rolandic operculum. In ADHD, anatomical networks were disrupted and reflected an emphasis on subcortical local connections centered around the amygdala, at the expense of cortical organization. Brains of children and adolescents with ADHD may be anatomically configured to respond impulsively to the automatic significance of stimulus input without having the neural organization to regulate and inhibit these responses. These findings provide a novel addition to our current understanding of the ADHD connectome. PMID:27824356
Hybrid computational phantoms of the male and female newborn patient: NURBS-based whole-body models
NASA Astrophysics Data System (ADS)
Lee, Choonsik; Lodwick, Daniel; Hasenauer, Deanna; Williams, Jonathan L.; Lee, Choonik; Bolch, Wesley E.
2007-07-01
Anthropomorphic computational phantoms are computer models of the human body for use in the evaluation of dose distributions resulting from either internal or external radiation sources. Currently, two classes of computational phantoms have been developed and widely utilized for organ dose assessment: (1) stylized phantoms and (2) voxel phantoms which describe the human anatomy via mathematical surface equations or 3D voxel matrices, respectively. Although stylized phantoms based on mathematical equations can be very flexible in regard to making changes in organ position and geometrical shape, they are limited in their ability to fully capture the anatomic complexities of human internal anatomy. In turn, voxel phantoms have been developed through image-based segmentation and correspondingly provide much better anatomical realism in comparison to simpler stylized phantoms. However, they themselves are limited in defining organs presented in low contrast within either magnetic resonance or computed tomography images—the two major sources in voxel phantom construction. By definition, voxel phantoms are typically constructed via segmentation of transaxial images, and thus while fine anatomic features are seen in this viewing plane, slice-to-slice discontinuities become apparent in viewing the anatomy of voxel phantoms in the sagittal or coronal planes. This study introduces the concept of a hybrid computational newborn phantom that takes full advantage of the best features of both its stylized and voxel counterparts: flexibility in phantom alterations and anatomic realism. Non-uniform rational B-spline (NURBS) surfaces, a mathematical modeling tool traditionally applied to graphical animation studies, was adopted to replace the limited mathematical surface equations of stylized phantoms. A previously developed whole-body voxel phantom of the newborn female was utilized as a realistic anatomical framework for hybrid phantom construction. The construction of a hybrid phantom is performed in three steps: polygonization of the voxel phantom, organ modeling via NURBS surfaces and phantom voxelization. Two 3D graphic tools, 3D-DOCTOR™ and Rhinoceros™, were utilized to polygonize the newborn voxel phantom and generate NURBS surfaces, while an in-house MATLAB™ code was used to voxelize the resulting NURBS model into a final computational phantom ready for use in Monte Carlo radiation transport calculations. A total of 126 anatomical organ and tissue models, including 38 skeletal sites and 31 cartilage sites, were described within the hybrid phantom using either NURBS or polygon surfaces. A male hybrid newborn phantom was constructed following the development of the female phantom through the replacement of female-specific organs with male-specific organs. The outer body contour and internal anatomy of the NURBS-based phantoms were adjusted to match anthropometric and reference newborn data reported by the International Commission on Radiological Protection in their Publication 89. The voxelization process was designed to accurately convert NURBS models to a voxel phantom with minimum volumetric change. A sensitivity study was additionally performed to better understand how the meshing tolerance and voxel resolution would affect volumetric changes between the hybrid-NURBS and hybrid-voxel phantoms. The male and female hybrid-NURBS phantoms were constructed in a manner so that all internal organs approached their ICRP reference masses to within 1%, with the exception of the skin (-6.5% relative error) and brain (-15.4% relative error). Both hybrid-voxel phantoms were constructed with an isotropic voxel resolution of 0.663 mm—equivalent to the ICRP 89 reference thickness of the newborn skin (dermis and epidermis). Hybrid-NURBS phantoms used to create their voxel counterpart retain the non-uniform scalability of stylized phantoms, while maintaining the anatomic realism of segmented voxel phantoms with respect to organ shape, depth and inter-organ positioning. This work was supported by the National Cancer Institute.
NASA Astrophysics Data System (ADS)
Houweling, Antonetta C.; Crama, Koen; Visser, Jorrit; Fukata, Kyohei; Rasch, Coen R. N.; Ohno, Tatsuya; Bel, Arjan; van der Horst, Astrid
2017-04-01
Radiotherapy using charged particles is characterized by a low dose to the surrounding healthy organs, while delivering a high dose to the tumor. However, interfractional anatomical changes can greatly affect the robustness of particle therapy. Therefore, we compared the dosimetric impact of interfractional anatomical changes (i.e. body contour differences and gastrointestinal gas volume changes) in photon, proton and carbon ion therapy for pancreatic cancer patients. In this retrospective planning study, photon, proton and carbon ion treatment plans were created for 9 patients. Fraction dose calculations were performed using daily cone-beam CT (CBCT) images. To this end, the planning CT was deformably registered to each CBCT; gastrointestinal gas volumes were delineated on the CBCTs and copied to the deformed CT. Fraction doses were accumulated rigidly. To compare planned and accumulated dose, dose-volume histogram (DVH) parameters of the planned and accumulated dose of the different radiotherapy modalities were determined for the internal gross tumor volume, internal clinical target volume (iCTV) and organs-at-risk (OARs; duodenum, stomach, kidneys, liver and spinal cord). Photon plans were highly robust against interfractional anatomical changes. The difference between the planned and accumulated DVH parameters for the photon plans was less than 0.5% for the target and OARs. In both proton and carbon ion therapy, however, coverage of the iCTV was considerably reduced for the accumulated dose compared with the planned dose. The near-minimum dose ({{D}98 % } ) of the iCTV reduced with 8% for proton therapy and with 10% for carbon ion therapy. The DVH parameters of the OARs differed less than 3% for both particle modalities. Fractionated radiotherapy using photons is highly robust against interfractional anatomical changes. In proton and carbon ion therapy, such changes can severely reduce the dose coverage of the target.
A morphometric analysis of maxillary molar crowns of Middle-Late Pleistocene hominins.
Bailey, Shara E
2004-09-01
This study explores the significance of shape differences in the maxillary first molar crowns of Neandertals and anatomically modern humans. It uses morphometric analysis to quantify these differences and to investigate how the orientation of major cusps, relative cusp base areas and occlusal polygon area influence crown shape. The aims of this study were to 1) quantify these data to test whether the tooth shapes of Neandertals and anatomically modern humans differ significantly and 2) to explore if either of the shapes is derived relative to earlier fossil hominins. Data were collected from digital occlusal photographs using image-processing software. Cusp angles, relative cusp base areas and occlusal polygon areas were measured on Neandertals (n=15), contemporary modern humans (n=62), Upper Paleolithic humans (n=6), early anatomically modern humans (n=3) and Homo erectus (n=3). Univariate and multivariate statistical tests were used to evaluate the differences between contemporary modern humans and Neandertals, while the much sparser data sets from the other fossil samples were included primarily for comparison. Statistically significant differences reflecting overall crown shape and internal placement of the crown apices were found. Neandertals are distinguished from contemporary humans by possessing maxillary first molars that 1) are markedly skewed; 2) possess a narrower distal segment of the occlusal polygon compared to the mesial segment; 3) possess a significantly smaller metacone and a significantly larger hypocone; and 4) possess a significantly smaller relative occlusal polygon area reflecting internally placed cusps. Differences in relative cusp base areas of the hypocone and metacone may contribute to the shape differences observed in Neandertals. However, early anatomically modern humans possessing a pattern of relative cusp base areas similar to Neandertals lack their unusual shape. That the morphology observed in non-Neandertal fossil hominins is more anatomically modern human-like than Neandertal-like, suggests that this distinctive morphology may be derived in Neandertals.
Tan, Wenyong; Han, Guang; Wei, Shaozhong; Hu, Desheng
2014-08-01
During intensity-modulated radiotherapy, an organ is usually assumed to be functionally homogeneous and, generally, its anatomical and spatial heterogeneity with respect to radiation response are not taken into consideration. However, advances in imaging and radiation techniques as well as an improved understanding of the radiobiological response of organs have raised the possibility of sparing the critical functional structures within various organs at risk during intensity-modulated radiotherapy. Here, we discuss these structures, which include the critical brain structure, or neural nuclei, and the nerve fiber tracts in the CNS, head and neck structures related to radiation-induced salivary and swallowing dysfunction, and functional structures in the heart and lung. We suggest that these structures can be used as potential surrogate organs at risk in order to minimize their radiation dose and/or irradiated volume without compromising the dose coverage of the target volume during radiation treatment.
ERIC Educational Resources Information Center
Lufler, Rebecca S.; Zumwalt, Ann C.; Romney, Carla A.; Hoagland, Todd M.
2010-01-01
Radiological images show anatomical structures in multiple planes and may be effective for teaching anatomical spatial relationships, something that students often find difficult to master. This study tests the hypotheses that (1) the use of cadaveric computed tomography (CT) scans in the anatomy laboratory is positively associated with…
Stelzner, Sigmar; Holm, Torbjörn; Moran, Brendan J; Heald, Richard J; Witzigmann, Helmut; Zorenkov, Dimitri; Wedel, Thilo
2011-08-01
Extralevator abdominoperineal excision results in superior oncologic outcome for advanced low rectal cancer. The exact definition of surgical resection planes is pivotal to achieving negative circumferential resection margins. This study aims to describe the surrounding anatomical structures that are at risk for inadvertent damage during extralevator abdominoperineal excision. Joint surgical and macroanatomical dissection was performed in a university laboratory of clinical anatomy. A stepwise dissection study was conducted according to the technique of extralevator abdominoperineal excision by abdominal and perineal approaches in 4 human cadaveric pelvises. Muscular, fascial, tendinous, and neural structures were carefully exposed and related to the corresponding surgical resection planes. In addition to the autonomic nerves to be identified and preserved during total mesorectal excision, further structures endangered during extralevator abdominoperineal excision can be clearly identified. Terminal pudendal nerve branches come close to the surgical resection plane at the outer surface of the puborectal sling. Likewise, the pelvic plexus and its neurovascular bundles embedded within the parietal pelvic fascia extend close to the apex of the prostate where the parietal pelvic fascia has to be divided. These neural structures converge in the region of the perineal body, an area that provides no "self-opening" planes for surgical dissection. Thus, the necessity to sharply detach the anorectal specimen anteriorly from the perineal body and the superficial transverse perineal muscle bears the risk of both inadvertent damage of the aforementioned anatomical structures and perforation of the specimen. The study focused primarily on the macroscopic topography relevant to the surgical procedure, so that previously published histologic examinations were not performed. The present anatomical dissection study highlights those anatomical landmarks that require clear identification for the successful achievement of both negative circumferential resection margins and preservation of urogenital functions during extralevator abdominoperineal excision.
Figueroa, Rodrigo; Laurenzi, Andrea; Laurent, Alexis; Cherqui, Daniel
2018-03-01
To present technical details for central hepatectomy and right anterior and posterior sectionectomies using perihilar Glissonian approach for anatomical delineation and selective inflow occlusion. Central tumors and those deeply located in the right liver may require extensive resections because of their proximity to major vascular structures. In such cases, anatomical more limited resections such as central hepatectomy or sectionectomies may provide an alternative to extensive surgery by assuring both parenchymal sparing and suitable oncologic resection. We present the global concept for performing a perihilar Glissonian approach and its application to each individual anatomical procedure. This includes detailed descriptions, illustrations, and videos demonstrating the technique. This technique was applied since 1991 for anatomical parenchymal resections including central hepatectomy (resection of segments 4, 5, and 8), right anterior sectionectomy (resection of segments 5 and 8), and right posterior sectionectomy (resection of segments 6 and 7). The feasibility rate of the Glissonian approach was 88%. Perihilar Glissonian approach is a safe and reproducible technique that enables anatomical parenchymal preserving liver resections for selected central and right-sided deeply located tumors.
Population of anatomically variable 4D XCAT adult phantoms for imaging research and optimization
DOE Office of Scientific and Technical Information (OSTI.GOV)
Segars, W. P.; Bond, Jason; Frush, Jack
2013-04-15
Purpose: The authors previously developed the 4D extended cardiac-torso (XCAT) phantom for multimodality imaging research. The XCAT consisted of highly detailed whole-body models for the standard male and female adult, including the cardiac and respiratory motions. In this work, the authors extend the XCAT beyond these reference anatomies by developing a series of anatomically variable 4D XCAT adult phantoms for imaging research, the first library of 4D computational phantoms. Methods: The initial anatomy of each phantom was based on chest-abdomen-pelvis computed tomography data from normal patients obtained from the Duke University database. The major organs and structures for each phantommore » were segmented from the corresponding data and defined using nonuniform rational B-spline surfaces. To complete the body, the authors manually added on the head, arms, and legs using the original XCAT adult male and female anatomies. The structures were scaled to best match the age and anatomy of the patient. A multichannel large deformation diffeomorphic metric mapping algorithm was then used to calculate the transform from the template XCAT phantom (male or female) to the target patient model. The transform was applied to the template XCAT to fill in any unsegmented structures within the target phantom and to implement the 4D cardiac and respiratory models in the new anatomy. Each new phantom was refined by checking for anatomical accuracy via inspection of the models. Results: Using these methods, the authors created a series of computerized phantoms with thousands of anatomical structures and modeling cardiac and respiratory motions. The database consists of 58 (35 male and 23 female) anatomically variable phantoms in total. Like the original XCAT, these phantoms can be combined with existing simulation packages to simulate realistic imaging data. Each new phantom contains parameterized models for the anatomy and the cardiac and respiratory motions and can, therefore, serve as a jumping point from which to create an unlimited number of 3D and 4D variations for imaging research. Conclusions: A population of phantoms that includes a range of anatomical variations representative of the public at large is needed to more closely mimic a clinical study or trial. The series of anatomically variable phantoms developed in this work provide a valuable resource for investigating 3D and 4D imaging devices and the effects of anatomy and motion in imaging. Combined with Monte Carlo simulation programs, the phantoms also provide a valuable tool to investigate patient-specific dose and image quality, and optimization for adults undergoing imaging procedures.« less
Anatomical terminology, then and now.
O'Rahilly, R
1989-01-01
Anatomical terminology, which had become chaotic by the nineteenth century, was codified in the BNA of 1895, when some 5,000 terms were carefully selected from among approximately 50,000 names. The BNA and its three major revisions (BR, INA, PNA) are here reviewed and placed in historical perspective. It is emphasized that many anatomical terms are very ancient and that the various nomenclatures are not 'new terminologies' but rather, for the most part, selections of already existing names. This can be seen clearly in the naming of the cranial nerves. Another example, the carpal and tarsal bones, is analysed in detail. Of the 8 carpal bones, for instance, the current names for 7 of them are those proposed by Henle in 1855. All the nomenclatures are, as they should be, in Latin, but it is understood that translations of many terms into other languages are necessary. Although views pro and con have been expressed, current usage favours the erect posture and the anatomical position as a basis, as well as the elimination of eponyms. In both teaching and research, the Nomina has been of great benefit in reducing drastically the number of unnecessary synonyms and in providing a coherent, internationally accepted system that is now the standard in anatomical textbooks. Hence, further use of the Nomina should be encouraged.
Atsumi, Noritoshi; Nakahira, Yuko; Tanaka, Eiichi; Iwamoto, Masami
2018-05-01
Impairments of executive brain function after traumatic brain injury (TBI) due to head impacts in traffic accidents need to be obviated. Finite element (FE) analyses with a human brain model facilitate understanding of the TBI mechanisms. However, conventional brain FE models do not suitably describe the anatomical structure in the deep brain, which is a critical region for executive brain function, and the material properties of brain parenchyma. In this study, for better TBI prediction, a novel brain FE model with anatomical structure in the deep brain was developed. The developed model comprises a constitutive model of brain parenchyma considering anisotropy and strain rate dependency. Validation was performed against postmortem human subject test data associated with brain deformation during head impact. Brain injury analyses were performed using head acceleration curves obtained from reconstruction analysis of rear-end collision with a human whole-body FE model. The difference in structure was found to affect the regions of strain concentration, while the difference in material model contributed to the peak strain value. The injury prediction result by the proposed model was consistent with the characteristics in the neuroimaging data of TBI patients due to traffic accidents.
Interactive modeling and simulation of peripheral nerve cords in virtual environments
NASA Astrophysics Data System (ADS)
Ullrich, Sebastian; Frommen, Thorsten; Eckert, Jan; Schütz, Astrid; Liao, Wei; Deserno, Thomas M.; Ntouba, Alexandre; Rossaint, Rolf; Prescher, Andreas; Kuhlen, Torsten
2008-03-01
This paper contributes to modeling, simulation and visualization of peripheral nerve cords. Until now, only sparse datasets of nerve cords can be found. In addition, this data has not yet been used in simulators, because it is only static. To build up a more flexible anatomical structure of peripheral nerve cords, we propose a hierarchical tree data structure where each node represents a nerve branch. The shape of the nerve segments itself is approximated by spline curves. Interactive modeling allows for the creation and editing of control points which are used for branching nerve sections, calculating spline curves and editing spline representations via cross sections. Furthermore, the control points can be attached to different anatomic structures. Through this approach, nerve cords deform in accordance to the movement of the connected structures, e.g., muscles or bones. As a result, we have developed an intuitive modeling system that runs on desktop computers and in immersive environments. It allows anatomical experts to create movable peripheral nerve cords for articulated virtual humanoids. Direct feedback of changes induced by movement or deformation is achieved by visualization in real-time. The techniques and the resulting data are already used for medical simulators.
[On human morphological studies in New Spain and in Mexico of nineteenth century].
de Micheli, Alfredo; Izaguirre-Avila, Raúl
2007-01-01
The renewed anatomical studies reached a culmination in the XVI century allowing the discovery of the pulmonary blood circulation and later of the systemic blood circulation. The XVII century saw the coming of microscopic anatomy and the XVIII witness the systematization of pathological anatomy. These studies will be impelled during following century toward the clinical-anatomical comparison. Regarding to America, the anatomical studies began in New Spain, when the first textbooks of anatomy, surgery and physiology were published. The first anatomy chair was established in 1621 at the Royal and Papal University of Mexico. The teaching of anatomy was modernized, making that more practical, at the Royal School of Surgery, which began to function in 1770. In the Establishment of Medical Sciences, founded in 1833, surgery was incorporated to internal medicine. This fact permitted to unify the anatomical teaching. If on examines the lists of textbooks utilized in the different periods, it comes out that these books belonged with the contemporaneous advances of science. This consideration concerns also the receptional thesis presented to Faculty of Medicine during the XIX century.
An illustrated anatomical ontology of the developing mouse lower urogenital tract
Georgas, Kylie M.; Armstrong, Jane; Keast, Janet R.; Larkins, Christine E.; McHugh, Kirk M.; Southard-Smith, E. Michelle; Cohn, Martin J.; Batourina, Ekatherina; Dan, Hanbin; Schneider, Kerry; Buehler, Dennis P.; Wiese, Carrie B.; Brennan, Jane; Davies, Jamie A.; Harding, Simon D.; Baldock, Richard A.; Little, Melissa H.; Vezina, Chad M.; Mendelsohn, Cathy
2015-01-01
Malformation of the urogenital tract represents a considerable paediatric burden, with many defects affecting the lower urinary tract (LUT), genital tubercle and associated structures. Understanding the molecular basis of such defects frequently draws on murine models. However, human anatomical terms do not always superimpose on the mouse, and the lack of accurate and standardised nomenclature is hampering the utility of such animal models. We previously developed an anatomical ontology for the murine urogenital system. Here, we present a comprehensive update of this ontology pertaining to mouse LUT, genital tubercle and associated reproductive structures (E10.5 to adult). Ontology changes were based on recently published insights into the cellular and gross anatomy of these structures, and on new analyses of epithelial cell types present in the pelvic urethra and regions of the bladder. Ontology changes include new structures, tissue layers and cell types within the LUT, external genitalia and lower reproductive structures. Representative illustrations, detailed text descriptions and molecular markers that selectively label muscle, nerves/ganglia and epithelia of the lower urogenital system are also presented. The revised ontology will be an important tool for researchers studying urogenital development/malformation in mouse models and will improve our capacity to appropriately interpret these with respect to the human situation. PMID:25968320
Comprehensive cellular‐resolution atlas of the adult human brain
Royall, Joshua J.; Sunkin, Susan M.; Ng, Lydia; Facer, Benjamin A.C.; Lesnar, Phil; Guillozet‐Bongaarts, Angie; McMurray, Bergen; Szafer, Aaron; Dolbeare, Tim A.; Stevens, Allison; Tirrell, Lee; Benner, Thomas; Caldejon, Shiella; Dalley, Rachel A.; Dee, Nick; Lau, Christopher; Nyhus, Julie; Reding, Melissa; Riley, Zackery L.; Sandman, David; Shen, Elaine; van der Kouwe, Andre; Varjabedian, Ani; Write, Michelle; Zollei, Lilla; Dang, Chinh; Knowles, James A.; Koch, Christof; Phillips, John W.; Sestan, Nenad; Wohnoutka, Paul; Zielke, H. Ronald; Hohmann, John G.; Jones, Allan R.; Bernard, Amy; Hawrylycz, Michael J.; Hof, Patrick R.; Fischl, Bruce
2016-01-01
ABSTRACT Detailed anatomical understanding of the human brain is essential for unraveling its functional architecture, yet current reference atlases have major limitations such as lack of whole‐brain coverage, relatively low image resolution, and sparse structural annotation. We present the first digital human brain atlas to incorporate neuroimaging, high‐resolution histology, and chemoarchitecture across a complete adult female brain, consisting of magnetic resonance imaging (MRI), diffusion‐weighted imaging (DWI), and 1,356 large‐format cellular resolution (1 µm/pixel) Nissl and immunohistochemistry anatomical plates. The atlas is comprehensively annotated for 862 structures, including 117 white matter tracts and several novel cyto‐ and chemoarchitecturally defined structures, and these annotations were transferred onto the matching MRI dataset. Neocortical delineations were done for sulci, gyri, and modified Brodmann areas to link macroscopic anatomical and microscopic cytoarchitectural parcellations. Correlated neuroimaging and histological structural delineation allowed fine feature identification in MRI data and subsequent structural identification in MRI data from other brains. This interactive online digital atlas is integrated with existing Allen Institute for Brain Science gene expression atlases and is publicly accessible as a resource for the neuroscience community. J. Comp. Neurol. 524:3127–3481, 2016. © 2016 The Authors The Journal of Comparative Neurology Published by Wiley Periodicals, Inc. PMID:27418273
An illustrated anatomical ontology of the developing mouse lower urogenital tract.
Georgas, Kylie M; Armstrong, Jane; Keast, Janet R; Larkins, Christine E; McHugh, Kirk M; Southard-Smith, E Michelle; Cohn, Martin J; Batourina, Ekatherina; Dan, Hanbin; Schneider, Kerry; Buehler, Dennis P; Wiese, Carrie B; Brennan, Jane; Davies, Jamie A; Harding, Simon D; Baldock, Richard A; Little, Melissa H; Vezina, Chad M; Mendelsohn, Cathy
2015-05-15
Malformation of the urogenital tract represents a considerable paediatric burden, with many defects affecting the lower urinary tract (LUT), genital tubercle and associated structures. Understanding the molecular basis of such defects frequently draws on murine models. However, human anatomical terms do not always superimpose on the mouse, and the lack of accurate and standardised nomenclature is hampering the utility of such animal models. We previously developed an anatomical ontology for the murine urogenital system. Here, we present a comprehensive update of this ontology pertaining to mouse LUT, genital tubercle and associated reproductive structures (E10.5 to adult). Ontology changes were based on recently published insights into the cellular and gross anatomy of these structures, and on new analyses of epithelial cell types present in the pelvic urethra and regions of the bladder. Ontology changes include new structures, tissue layers and cell types within the LUT, external genitalia and lower reproductive structures. Representative illustrations, detailed text descriptions and molecular markers that selectively label muscle, nerves/ganglia and epithelia of the lower urogenital system are also presented. The revised ontology will be an important tool for researchers studying urogenital development/malformation in mouse models and will improve our capacity to appropriately interpret these with respect to the human situation. © 2015. Published by The Company of Biologists Ltd.
Golbin, Denis A.; Lasunin, Nikolay V.; Cherekaev, Vasily A.; Polev, Georgiy A.
2016-01-01
Objectives To evaluate the efficacy and safety of using a buccal fat pad for endoscopic skull base defect reconstruction. Design Descriptive anatomical study with an illustrative case presentation. Setting Anatomical study was performed on 12 fresh human cadaver specimens with injected arteries (24 sides). Internal carotid artery was exposed in the coronal plane via the endoscopic transpterygoid approach. The pedicled buccal fat pad was used for reconstruction. Participants: 12 human cadaver head specimens; one patient operated using the proposed technique. Main outcome measures: Proximity of the buccal fat pad flap to the defect, compliance of the flap, comfort and safety of harvesting procedure, and compatibility with the Hadad–Bassagasteguy nasoseptal flap. Results: Harvesting procedure was performed using anterior transmaxillary corridor. The pedicled buccal fat pad flap can be used to pack the sphenoid sinus or cover the internal carotid artery from cavernous to upper parapharyngeal segment. Conclusion The buccal fat pad can be safely harvested through the same approach without external incisions and is compliant enough to conform to the skull base defect. The proposed pedicled flap can replace free abdominal fat in central skull base reconstruction. The volume of the buccal fat pad allows obliteration of the sphenoid sinus or upper parapharyngeal space. PMID:28180047
NASA Astrophysics Data System (ADS)
Belinato, Walmir; Santos, William S.; Silva, Rogério M. V.; Souza, Divanizia N.
2014-03-01
The determination of dose conversion factors (S values) for the radionuclide fluorodeoxyglucose (18F-FDG) absorbed in the lungs during a positron emission tomography (PET) procedure was calculated using the Monte Carlo method (MCNPX version 2.7.0). For the obtained dose conversion factors of interest, it was considered a uniform absorption of radiopharmaceutical by the lung of a healthy adult human. The spectrum of fluorine was introduced in the input data file for the simulation. The simulation took place in two adult phantoms of both sexes, based on polygon mesh surfaces called FASH and MASH with anatomy and posture according to ICRP 89. The S values for the 22 internal organs/tissues, chosen from ICRP No. 110, for the FASH and MASH phantoms were compared with the results obtained from a MIRD V phantoms called ADAM and EVA used by the Committee on Medical Internal Radiation Dose (MIRD). We observed variation of more than 100% in S values due to structural anatomical differences in the internal organs of the MASH and FASH phantoms compared to the mathematical phantom.
Sound source localization and segregation with internally coupled ears: the treefrog model
Christensen-Dalsgaard, Jakob
2016-01-01
Acoustic signaling plays key roles in mediating many of the reproductive and social behaviors of anurans (frogs and toads). Moreover, acoustic signaling often occurs at night, in structurally complex habitats, such as densely vegetated ponds, and in dense breeding choruses characterized by high levels of background noise and acoustic clutter. Fundamental to anuran behavior is the ability of the auditory system to determine accurately the location from where sounds originate in space (sound source localization) and to assign specific sounds in the complex acoustic milieu of a chorus to their correct sources (sound source segregation). Here, we review anatomical, biophysical, neurophysiological, and behavioral studies aimed at identifying how the internally coupled ears of frogs contribute to sound source localization and segregation. Our review focuses on treefrogs in the genus Hyla, as they are the most thoroughly studied frogs in terms of sound source localization and segregation. They also represent promising model systems for future work aimed at understanding better how internally coupled ears contribute to sound source localization and segregation. We conclude our review by enumerating directions for future research on these animals that will require the collaborative efforts of biologists, physicists, and roboticists. PMID:27730384
How and why does the areole meristem move in Echinocereus (Cactaceae)?
Sánchez, Daniel; Grego-Valencia, Dalia; Terrazas, Teresa; Arias, Salvador
2015-01-01
In Cactaceae, the areole is the organ that forms the leaves, spines and buds. Apparently, the genus Echinocereus develops enclosed buds that break through the epidermis of the stem adjacent to the areole; this trait most likely represents a synapomorphy of Echinocereus. The development of the areole is investigated here in order to understand the anatomical modifications that lead to internal bud development and to supplement anatomical knowledge of plants that do not behave according to classical shoot theory. The external morphology of the areole was documented and the anatomy was studied using tissue clearing, scanning electron microscopy and light microscopy for 50 species that represent the recognized clades and sections of the traditional classification of the genus, including Morangaya pensilis (Echinocereus pensilis). In Echinocereus, the areole is sealed by the periderm, and the areole meristem is moved and enclosed by the differential growth of the epidermis and surrounding cortex. The enclosed areole meristem is differentiated in a vegetative or floral bud, which develops internally and breaks through the epidermis of the stem. In Morangaya pensilis, the areole is not sealed by the periderm and the areole meristem is not enclosed. The enclosed areole meristem and internal bud development are understood to be an adaptation to protect the meristem and the bud from low temperatures. The anatomical evidence supports the hypothesis that the enclosed bud represents one synapomorphy for Echinocereus and also supports the exclusion of Morangaya from Echinocereus. © The Author 2014. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
[Multi-center study of the Jenaer model of the temporal bone].
Schneider, G; Müller, A
2004-06-01
Preparing exercises at the temporal bone are a prerequisite for the knowledge of the anatomical special features of this region and for learning the fundamentals of the tympanic cavity surgery. Since however fewer human temporal bones are available, the search for back-up models already took place in the last years. Based on the experiences of the handling and visualization of CT data for the 3D-implant construction in the ent department Jena a temporal bone model was developed. The model was sent away to surgeons of different training. On the basis of identification of anatomical structures and evaluation of general parameters by means of a point system the model was evaluated. The Jenaer temporal bone model is suitable as entrance into the preparing exercises. The anatomical structures are good to identify for the beginner. The handling with drill and chisel can be learned.
Anterolateral ligament anatomy: a comparative anatomical study.
Ingham, Sheila Jean McNeill; de Carvalho, Rogerio Teixeira; Martins, Cesar A Q; Lertwanich, Pisit; Abdalla, Rene Jorge; Smolinski, Patrick; Lovejoy, C Owen; Fu, Freddie H
2017-04-01
Some anatomical studies have indicated that the anterolateral ligament (ALL) of the knee is distinct ligamentous structure in humans. The purpose of this study is to compare the lateral anatomy of the knee among human and various animal specimens. Fifty-eight fresh-frozen knee specimens, from 24 different animal species, were used for this anatomical study. The same researchers dissected all the specimens in this study, and dissections were performed in a careful and standardized manner. An ALL was not found in any of the 58 knees dissected. Another interesting finding in this study is that some primate species (the prosimians: the red and black and white lemurs) have two LCLs. The clinical relevance of this study is the lack of isolation of the ALL as a unique structure in animal species. Therefore, precaution is recommended before assessing the need for surgery to reconstruct the ALL as a singular ligament.
Deco, Gustavo; Mantini, Dante; Romani, Gian Luca; Hagmann, Patric; Corbetta, Maurizio
2013-01-01
Brain fluctuations at rest are not random but are structured in spatial patterns of correlated activity across different brain areas. The question of how resting-state functional connectivity (FC) emerges from the brain's anatomical connections has motivated several experimental and computational studies to understand structure–function relationships. However, the mechanistic origin of resting state is obscured by large-scale models' complexity, and a close structure–function relation is still an open problem. Thus, a realistic but simple enough description of relevant brain dynamics is needed. Here, we derived a dynamic mean field model that consistently summarizes the realistic dynamics of a detailed spiking and conductance-based synaptic large-scale network, in which connectivity is constrained by diffusion imaging data from human subjects. The dynamic mean field approximates the ensemble dynamics, whose temporal evolution is dominated by the longest time scale of the system. With this reduction, we demonstrated that FC emerges as structured linear fluctuations around a stable low firing activity state close to destabilization. Moreover, the model can be further and crucially simplified into a set of motion equations for statistical moments, providing a direct analytical link between anatomical structure, neural network dynamics, and FC. Our study suggests that FC arises from noise propagation and dynamical slowing down of fluctuations in an anatomically constrained dynamical system. Altogether, the reduction from spiking models to statistical moments presented here provides a new framework to explicitly understand the building up of FC through neuronal dynamics underpinned by anatomical connections and to drive hypotheses in task-evoked studies and for clinical applications. PMID:23825427
Kapakin, S
2011-02-01
Rapid prototyping (RP), or stereolithography, is a new clinical application area, which is used to obtain accurate three-dimensional physical replicas of complex anatomical structures. The aim of this study was to create tangible hard copies of the ethmoidal labyrinth air cells (ELACs) with stereolithographic biomodelling. The visible human dataset (VHD) was used as the input imaging data. The Surfdriver software package was applied to these images to reconstruct the ELACs as three-dimensional DXF (data exchange file) models. These models were post-processed in 3D-Doctor software for virtual reality modelling language (VRML) and STL (Standard Triangulation Language) formats. Stereolithographic replicas were manufactured in a rapid prototyping machine by using the STL format. The total number of ELACs was 21. The dimensions of the ELACs on the right and left sides were 52.91 x 13.00 x 28.68 mm and 53.79 x 12.42 x 28.55 mm, respectively. The total volume of the ELACs was 4771.1003 mm(3). The mean ELAC distance was 27.29 mm from the nasion and 71.09 mm from the calotte topologically. In conclusion, the combination of Surfdriver and 3D-Doctor could be effectively used for manufacturing 3D solid models from serial sections of anatomical structures. Stereolithographic anatomical models provide an innovative and complementary tool for students, researchers, and surgeons to apprehend these anatomical structures tangibly. The outcomes of these attempts can provide benefits in terms of the visualization, perception, and interpretation of the structures in anatomy teaching and prior to surgical interventions.
Multilayer motif analysis of brain networks
NASA Astrophysics Data System (ADS)
Battiston, Federico; Nicosia, Vincenzo; Chavez, Mario; Latora, Vito
2017-04-01
In the last decade, network science has shed new light both on the structural (anatomical) and on the functional (correlations in the activity) connectivity among the different areas of the human brain. The analysis of brain networks has made possible to detect the central areas of a neural system and to identify its building blocks by looking at overabundant small subgraphs, known as motifs. However, network analysis of the brain has so far mainly focused on anatomical and functional networks as separate entities. The recently developed mathematical framework of multi-layer networks allows us to perform an analysis of the human brain where the structural and functional layers are considered together. In this work, we describe how to classify the subgraphs of a multiplex network, and we extend the motif analysis to networks with an arbitrary number of layers. We then extract multi-layer motifs in brain networks of healthy subjects by considering networks with two layers, anatomical and functional, respectively, obtained from diffusion and functional magnetic resonance imaging. Results indicate that subgraphs in which the presence of a physical connection between brain areas (links at the structural layer) coexists with a non-trivial positive correlation in their activities are statistically overabundant. Finally, we investigate the existence of a reinforcement mechanism between the two layers by looking at how the probability to find a link in one layer depends on the intensity of the connection in the other one. Showing that functional connectivity is non-trivially constrained by the underlying anatomical network, our work contributes to a better understanding of the interplay between the structure and function in the human brain.
Chu, Shu-Hsien; Parhi, Keshab K; Lenglet, Christophe
2018-03-16
A joint structural-functional brain network model is presented, which enables the discovery of function-specific brain circuits, and recovers structural connections that are under-estimated by diffusion MRI (dMRI). Incorporating information from functional MRI (fMRI) into diffusion MRI to estimate brain circuits is a challenging task. Usually, seed regions for tractography are selected from fMRI activation maps to extract the white matter pathways of interest. The proposed method jointly analyzes whole brain dMRI and fMRI data, allowing the estimation of complete function-specific structural networks instead of interactively investigating the connectivity of individual cortical/sub-cortical areas. Additionally, tractography techniques are prone to limitations, which can result in erroneous pathways. The proposed framework explicitly models the interactions between structural and functional connectivity measures thereby improving anatomical circuit estimation. Results on Human Connectome Project (HCP) data demonstrate the benefits of the approach by successfully identifying function-specific anatomical circuits, such as the language and resting-state networks. In contrast to correlation-based or independent component analysis (ICA) functional connectivity mapping, detailed anatomical connectivity patterns are revealed for each functional module. Results on a phantom (Fibercup) also indicate improvements in structural connectivity mapping by rejecting false-positive connections with insufficient support from fMRI, and enhancing under-estimated connectivity with strong functional correlation.
Freyer, Marcus; Ale, Angelique; Schulz, Ralf B; Zientkowska, Marta; Ntziachristos, Vasilis; Englmeier, Karl-Hans
2010-01-01
The recent development of hybrid imaging scanners that integrate fluorescence molecular tomography (FMT) and x-ray computed tomography (XCT) allows the utilization of x-ray information as image priors for improving optical tomography reconstruction. To fully capitalize on this capacity, we consider a framework for the automatic and fast detection of different anatomic structures in murine XCT images. To accurately differentiate between different structures such as bone, lung, and heart, a combination of image processing steps including thresholding, seed growing, and signal detection are found to offer optimal segmentation performance. The algorithm and its utilization in an inverse FMT scheme that uses priors is demonstrated on mouse images.
Valdés, Ángel; Cadien, Donald B; Gosliner, Terrence M
2016-08-08
Based on morphological data a total of nine native species of Philinidae are recognized from the northeastern Pacific including the Bering Sea and the adjacent Arctic Ocean (Beaufort Sea). Four of them have been previously described: Philine ornatissima Yokoyama, 1927, Philine bakeri Dall, 1919, Philine polystrigma (Dall, 1908), and Philine hemphilli Dall, 1919. Five of them are new and described herein: Philine mcleani sp. nov., Philine baxteri sp. nov., Philine malaquiasi sp. nov., Philine wareni sp. nov., and Philine harrisae sp. nov. These species display a substantial degree of variation in internal and external morphological traits (i.e., presence/absence of gizzard plates, different radular structure and tooth morphology, various reproductive anatomical features) and it is likely that they belong to different clades (genera). However, in the absence of a comprehensive phylogeny for Philine, they are here provisionally regarded as Philine sensu lato. In addition to the nine native species, two introduced species: Philine orientalis A. Adams, 1854 and Philine auriformis Suter, 1909 are here illustrated and compared to the native species to facilitate identification. Finally, two species previously considered members of Philinidae are examined anatomically and confirmed as members of Laonidae, Laona californica (Willett, 1944) and Philinorbidae, Philinorbis albus (Mattox, 1958), based on morphological data.
Trace Elemental Imaging of Rare Earth Elements Discriminates Tissues at Microscale in Flat Fossils
Gueriau, Pierre; Mocuta, Cristian; Dutheil, Didier B.; Cohen, Serge X.; Thiaudière, Dominique; Charbonnier, Sylvain; Clément, Gaël; Bertrand, Loïc
2014-01-01
The interpretation of flattened fossils remains a major challenge due to compression of their complex anatomies during fossilization, making critical anatomical features invisible or hardly discernible. Key features are often hidden under greatly preserved decay prone tissues, or an unpreparable sedimentary matrix. A method offering access to such anatomical features is of paramount interest to resolve taxonomic affinities and to study fossils after a least possible invasive preparation. Unfortunately, the widely-used X-ray micro-computed tomography, for visualizing hidden or internal structures of a broad range of fossils, is generally inapplicable to flattened specimens, due to the very high differential absorbance in distinct directions. Here we show that synchrotron X-ray fluorescence spectral raster-scanning coupled to spectral decomposition or a much faster Kullback-Leibler divergence based statistical analysis provides microscale visualization of tissues. We imaged exceptionally well-preserved fossils from the Late Cretaceous without needing any prior delicate preparation. The contrasting elemental distributions greatly improved the discrimination of skeletal elements material from both the sedimentary matrix and fossilized soft tissues. Aside content in alkaline earth elements and phosphorus, a critical parameter for tissue discrimination is the distinct amounts of rare earth elements. Local quantification of rare earths may open new avenues for fossil description but also in paleoenvironmental and taphonomical studies. PMID:24489809
Trace elemental imaging of rare earth elements discriminates tissues at microscale in flat fossils.
Gueriau, Pierre; Mocuta, Cristian; Dutheil, Didier B; Cohen, Serge X; Thiaudière, Dominique; Charbonnier, Sylvain; Clément, Gaël; Bertrand, Loïc
2014-01-01
The interpretation of flattened fossils remains a major challenge due to compression of their complex anatomies during fossilization, making critical anatomical features invisible or hardly discernible. Key features are often hidden under greatly preserved decay prone tissues, or an unpreparable sedimentary matrix. A method offering access to such anatomical features is of paramount interest to resolve taxonomic affinities and to study fossils after a least possible invasive preparation. Unfortunately, the widely-used X-ray micro-computed tomography, for visualizing hidden or internal structures of a broad range of fossils, is generally inapplicable to flattened specimens, due to the very high differential absorbance in distinct directions. Here we show that synchrotron X-ray fluorescence spectral raster-scanning coupled to spectral decomposition or a much faster Kullback-Leibler divergence based statistical analysis provides microscale visualization of tissues. We imaged exceptionally well-preserved fossils from the Late Cretaceous without needing any prior delicate preparation. The contrasting elemental distributions greatly improved the discrimination of skeletal elements material from both the sedimentary matrix and fossilized soft tissues. Aside content in alkaline earth elements and phosphorus, a critical parameter for tissue discrimination is the distinct amounts of rare earth elements. Local quantification of rare earths may open new avenues for fossil description but also in paleoenvironmental and taphonomical studies.
Automatic MRI 2D brain segmentation using graph searching technique.
Pedoia, Valentina; Binaghi, Elisabetta
2013-09-01
Accurate and efficient segmentation of the whole brain in magnetic resonance (MR) images is a key task in many neuroscience and medical studies either because the whole brain is the final anatomical structure of interest or because the automatic extraction facilitates further analysis. The problem of segmenting brain MRI images has been extensively addressed by many researchers. Despite the relevant achievements obtained, automated segmentation of brain MRI imagery is still a challenging problem whose solution has to cope with critical aspects such as anatomical variability and pathological deformation. In the present paper, we describe and experimentally evaluate a method for segmenting brain from MRI images basing on two-dimensional graph searching principles for border detection. The segmentation of the whole brain over the entire volume is accomplished slice by slice, automatically detecting frames including eyes. The method is fully automatic and easily reproducible by computing the internal main parameters directly from the image data. The segmentation procedure is conceived as a tool of general applicability, although design requirements are especially commensurate with the accuracy required in clinical tasks such as surgical planning and post-surgical assessment. Several experiments were performed to assess the performance of the algorithm on a varied set of MRI images obtaining good results in terms of accuracy and stability. Copyright © 2012 John Wiley & Sons, Ltd.
Olsen, Rosanna K.; Berron, David; Carr, Valerie A.; Stark, Craig E.L.; Amaral, Robert S.C.; Amunts, Katrin; Augustinack, Jean C.; Bender, Andrew R.; Bernstein, Jeffrey D.; Boccardi, Marina; Bocchetta, Martina; Burggren, Alison; Chakravarty, M. Mallar; Chupin, Marie; Ekstrom, Arne; de Flores, Robin; Insausti, Ricardo; Kanel, Prabesh; Kedo, Olga; Kennedy, Kristen M.; Kerchner, Geoffrey A.; LaRocque, Karen F.; Liu, Xiuwen; Maass, Anne; Malykhin, Nicolai; Mueller, Susanne G.; Ofen, Noa; Palombo, Daniela J.; Parekh, Mansi B.; Pluta, John B.; Pruessner, Jens C.; Raz, Naftali; Rodrigue, Karen M.; Schoemaker, Dorothee; Shafer, Andrea T.; Steve, Trevor A.; Suthana, Nanthia; Wang, Lei; Winterburn, Julie L.; Yassa, Michael A.; Yushkevich, Paul A.; la Joie, Renaud
2016-01-01
The advent of high-resolution magnetic resonance imaging (MRI) has enabled in vivo research in a variety of populations and diseases on the structure and function of hippocampal subfields and subdivisions of the parahippocampal gyrus. Due to the many extant and highly discrepant segmentation protocols, comparing results across studies is difficult. To overcome this barrier, the Hippocampal Subfields Group was formed as an international collaboration with the aim of developing a harmonized protocol for manual segmentation of hippocampal and parahippocampal subregions on high-resolution MRI. In this commentary we discuss the goals for this protocol and the associated key challenges involved in its development. These include differences among existing anatomical reference materials, striking the right balance between reliability of measurements and anatomical validity, and the development of a versatile protocol that can be adopted for the study of populations varying in age and health. The commentary outlines these key challenges, as well as the proposed solution of each, with concrete examples from our working plan. Finally, with two examples, we illustrate how the harmonized protocol, once completed, is expected to impact the field by producing measurements that are quantitatively comparable across labs and by facilitating the synthesis of findings across different studies. PMID:27862600
[Evaluation of a training system for middle ear surgery with optoelectric detection].
Strauss, G; Bahrami, N; Pössneck, A; Strauss, M; Dietz, A; Korb, W; Lüth, T; Haase, R; Moeckel, H; Grunert, R
2009-10-01
This work presents a new training concept for surgery of the temporal bone. It is based on a model of gypsum plastic with optoelectric detection of risk structures. A prototypical evaluation is given. The training models are based on high-resolution computed tomographic data of a human skull. The resulting data set was printed by a three-dimensional (3D) printer. A 3D phantom is created from gypsum powder and a bonding agent. Risks structures are the facial nerve, semicircular canal, cochlea, ossicular chain, sigmoid sinus, dura, and internal carotid artery. An electrically conductive metal (Wood's metal) and a fiber-optic cable were used as detection materials for the risk structures. For evaluating the training system, a study was done with eight inexperienced and eight experienced ear surgeons. They were asked to perform temporal bone surgery using two identical training models (group A). In group B, the same surgeons underwent surgical training with human cadavers. In the case of injuries, the number, point in time, degree (facial nerve), and injured structure were documented during the training on the model. In addition, the total time needed was noted. The training systems could be used in all cases. Evaluation of the anatomic accuracy of the models showed results that were between 49.5% and 90% agreement with the anatomic origin. Error detection was evaluated with values between 79% and 100% agreement with the perception of an experienced surgeon. The operating setting was estimated to be better than the previous"gold standard." The possibility of completely replacing the previous training method, which uses cadavers, with the examined training model was affirmed. This study shows that the examined system fulfills the conditions for a new training concept for temporal bone surgery. The system connects the preliminary work with printed and sintered models with the possibilities of microsystem engineering. In addition, the model's digital database permits a complete virtual representation of the model with appropriate further applications ("look behind the wall," virtual endoscopy).
Anatomy of the Volar Retinacular Elements of the Hand: A Unified Nomenclature.
Godfrey, Jenna; Rayan, Ghazi M
2018-03-01
Many investigators have described the anatomy of the volar retinacular structures of the hand over the last 60 years. As a result, multiple terms have been assigned to 1 anatomical structure and 1 name designated to more than 1 structure. Our purpose is to review the detailed anatomy and key components of the volar retinacular elements of the hand, their etymology, and their most recent descriptions. The objective also is to organize these structures into systems, which can be helpful for learners to assimilate into a practical anatomical guide. Lastly, the goal is to create a common nomenclature for identifying the volar retinacular structures of the hand in order to facilitate clear communication about them across languages. Copyright © 2018 American Society for Surgery of the Hand. Published by Elsevier Inc. All rights reserved.
Creation of 3D Multi-Body Orthodontic Models by Using Independent Imaging Sensors
Barone, Sandro; Paoli, Alessandro; Razionale, Armando Viviano
2013-01-01
In the field of dental health care, plaster models combined with 2D radiographs are widely used in clinical practice for orthodontic diagnoses. However, complex malocclusions can be better analyzed by exploiting 3D digital dental models, which allow virtual simulations and treatment planning processes. In this paper, dental data captured by independent imaging sensors are fused to create multi-body orthodontic models composed of teeth, oral soft tissues and alveolar bone structures. The methodology is based on integrating Cone-Beam Computed Tomography (CBCT) and surface structured light scanning. The optical scanner is used to reconstruct tooth crowns and soft tissues (visible surfaces) through the digitalization of both patients' mouth impressions and plaster casts. These data are also used to guide the segmentation of internal dental tissues by processing CBCT data sets. The 3D individual dental tissues obtained by the optical scanner and the CBCT sensor are fused within multi-body orthodontic models without human supervisions to identify target anatomical structures. The final multi-body models represent valuable virtual platforms to clinical diagnostic and treatment planning. PMID:23385416
Creation of 3D multi-body orthodontic models by using independent imaging sensors.
Barone, Sandro; Paoli, Alessandro; Razionale, Armando Viviano
2013-02-05
In the field of dental health care, plaster models combined with 2D radiographs are widely used in clinical practice for orthodontic diagnoses. However, complex malocclusions can be better analyzed by exploiting 3D digital dental models, which allow virtual simulations and treatment planning processes. In this paper, dental data captured by independent imaging sensors are fused to create multi-body orthodontic models composed of teeth, oral soft tissues and alveolar bone structures. The methodology is based on integrating Cone-Beam Computed Tomography (CBCT) and surface structured light scanning. The optical scanner is used to reconstruct tooth crowns and soft tissues (visible surfaces) through the digitalization of both patients' mouth impressions and plaster casts. These data are also used to guide the segmentation of internal dental tissues by processing CBCT data sets. The 3D individual dental tissues obtained by the optical scanner and the CBCT sensor are fused within multi-body orthodontic models without human supervisions to identify target anatomical structures. The final multi-body models represent valuable virtual platforms to clinical diagnostic and treatment planning.
Blom, Rianne M; van Wingen, Guido A; van der Wal, Sija J; Luigjes, Judy; van Dijk, Milenna T; Scholte, H Steven; Denys, Damiaan
2016-01-01
Body Integrity Identity Disorder (BIID) is a condition in which individuals perceive a mismatch between their internal body scheme and physical body shape, resulting in an absolute desire to be either amputated or paralyzed. The condition is hypothesized to be of congenital nature, but evidence for a neuro-anatomical basis is sparse. We collected T1-weighted structural magnetic resonance imaging scans on a 3T scanner in eight individuals with BIID and 24 matched healthy controls, and analyzed the data using voxel-based morphometry. The results showed reduced grey matter volume in the left dorsal and ventral premotor cortices and larger grey matter volume in the cerebellum (lobule VIIa) in individuals with BIID compared to controls. The premotor cortex and cerebellum are thought to be crucial for the experience of body-ownership and the integration of multisensory information. Our results suggest that BIID is associated with structural brain anomalies and might result from a dysfunction in the integration of multisensory information, leading to the feeling of disunity between the mental and physical body shape.
Ultrasound guidance for internal jugular vein cannulation: Continuing Professional Development.
Ayoub, Christian; Lavallée, Catherine; Denault, André
2010-05-01
The objective of this continuing professional development module is to describe the role of ultrasound for central venous catheterization and to specify its benefits and limitations. Although ultrasound techniques are useful for all central venous access sites, the focus of this module is on the internal jugular vein approach. In recent years, several studies were published on the benefits of ultrasound use for central venous catheterization. This technique has evolved rapidly due to improvements in the equipment and technology available. Ultrasound helps to detect the anatomical variants of the internal jugular vein. The typical anterolateral position of the internal jugular vein with respect to the carotid is found in only 9-92% of cases. Ultrasound guidance reduces the rate of mechanical, infectious, and thrombotic complications by 57%, and it also reduces the failure rate by 86%. Cost-benefit analyses show that the cost of ultrasound equipment is compensated by the decrease in the expenses associated with the treatment of complications. In this article, we will review the history of ultrasound guidance as well as the reasons that account for its superiority over the classical anatomical landmark technique. We will describe the equipment needed for central venous catheterization as well as the various methods to visualize with ultrasound. To improve patient safety, we recommend the use of ultrasound for central venous catheterization using the internal jugular approach.
Pérez-Bellmunt, Albert; Miguel-Pérez, Maribel; Brugué, Marc Blasi; Cabús, Juan Blasi; Casals, Martí; Martinoli, Carlo; Kuisma, Raija
2015-06-01
The proximal attachment of hamstring muscles has a very high incidence of injuries due to a wide number of factors and its morphology may be one of the underlying factors as scientific literature points out. The connective tissue component of the attachment of hamstring muscles is not well known. For this reason the aim of this study is to describe the anatomy and histology surrounding the proximal attachment of the hamstring muscles (PAHM) and its direct anatomic relations. Forty-eight cryopreserved lower limbs have sequentially been studied by means of dissection, anatomical sections and histology. All specimens studied presented an annular connective tissue structure that resembles a retinaculum, which covers and adapts to the attachment of hamstring muscles on the ischial tuberosity. The results show how this retinaculum is continuous with the long head of biceps femoris muscle, however there is a layer of loose connective tissue between the retinaculum and the semitendinosus muscle. Furthermore, this structure receives expansions of the anterior epimysium of the gluteus maximus muscle (GIM). Copyright © 2014 Elsevier Ltd. All rights reserved.
Anatomic Peculiarities of Pig and Human Liver.
Nykonenko, Andriy; Vávra, Petr; Zonča, Pavel
2017-02-01
Many investigations on surgical methods and medical treatment are currently done on pigs. This is possible because the pig is sufficiently close genetically to humans. In recent years, progress in liver surgery has opened new possibilities in surgical treatment of liver diseases. Because the methods are relatively novel, various improvements are still needed, and it is thus helpful to conduct experimental surgeries on pig livers. We reviewed the literature to compare the anatomic and functional features of pig and human livers, information that will be of great importance for improving surgical techniques. During the literature review, we used various sources, such as PubMed, Scopus, and veterinary journals. Our results were summarized in diagrams to facilitate understanding of the vascular structure and biliary systems. We conclude that, although the shapes of the human and pig livers are quite different, the pig liver is divided into the same number of segments as the human liver, which also shows a common structure of the vascular system. Thus, with the anatomic and structural features of the pig liver taken into account, this animal model can be used in experimental hepatic surgery.
The response of bone, articular cartilage and tendon to exercise in the horse
Firth, Elwyn C
2006-01-01
Horses can gallop within hours of birth, and may begin training for athletic competition while still growing. This review cites studies on the effects of exercise on bone, tendon and articular cartilage, as detected by clinical and research imaging techniques, tissue biochemical analysis and microscopy of various kinds. For bone, alterations in bone mineral content, mineral density and the morphology of the mineralized tissue are the most common end-points. Apparent bone density increases slightly after athletic training in the cortex, but substantially in the major load paths of the epiphyses and cuboidal bones, despite the lower material density of the new bone, which is deposited subperiosteally and on internal surfaces without prior osteoclastic resorption. With training of greater intensity, adaptive change is supervened by patho-anatomical change in the form of microdamage and frank lesions. In tendon, collagen fibril diameter distribution changes significantly during growth, but not after early training. The exact amount and type of protracted training that does cause reduction in mass average diameter (an early sign of progressive microdamage) have not been defined. Training is associated with an increase in the cross-sectional area of some tendons, possibly owing to slightly greater water content of non-collagenous or newly synthesized matrix. Early training may be associated with greater thickness of hyaline but not calcified articular cartilage, at least in some sites. The age at which adaptation of cartilage to biomechanical influences can occur may thus extend beyond very early life. However, cartilage appears to be the most susceptible of the three tissues to pathological alteration. The effect of training exercise on the anatomical or patho-anatomical features of connective tissue structures is affected by the timing, type and amount of natural or imposed exercise during growth and development which precedes the training. PMID:16637875
Hau, Janice; Sarubbo, Silvio; Perchey, Guy; Crivello, Fabrice; Zago, Laure; Mellet, Emmanuel; Jobard, Gaël; Joliot, Marc; Mazoyer, Bernard M.; Tzourio-Mazoyer, Nathalie; Petit, Laurent
2016-01-01
We combined the neuroanatomists’ approach of defining a fascicle as all fibers passing through its compact stem with diffusion-weighted tractography to investigate the cortical terminations of two association tracts, the inferior fronto-occipital fasciculus (IFOF) and the uncinate fasciculus (UF), which have recently been implicated in the ventral language circuitry. The aim was to provide a detailed and quantitative description of their terminations in 60 healthy subjects and to do so to apply an anatomical stem-based virtual dissection, mimicking classical post-mortem dissection, to extract with minimal a priori the IFOF and UF from tractography datasets. In both tracts, we consistently observed more extensive termination territories than their conventional definitions, within the middle and superior frontal, superior parietal and angular gyri for the IFOF and the middle frontal gyrus and superior, middle and inferior temporal gyri beyond the temporal pole for the UF. We revealed new insights regarding the internal organization of these tracts by investigating for the first time the frequency, distribution and hemispheric asymmetry of their terminations. Interestingly, we observed a dissociation between the lateral right-lateralized and medial left-lateralized fronto-occipital branches of the IFOF. In the UF, we observed a rightward lateralization of the orbito-frontal and temporal branches. We revealed a more detailed map of the terminations of these fiber pathways that will enable greater specificity for correlating with diseased populations and other behavioral measures. The limitations of the diffusion tensor model in this study are also discussed. We conclude that anatomical stem-based virtual dissection with diffusion tractography is a fruitful method for studying the structural anatomy of the human white matter pathways. PMID:27252628
Mastering Lymphatic Microsurgery: A New Training Model in Living Tissue.
Campisi, Corrado Cesare; Jiga, Lucian P; Ryan, Melissa; di Summa, Pietro G; Campisi, Corradino; Ionac, Mihai
2017-09-01
Advanced microsurgical techniques have emerged as a promising approach for the treatment of lymphedema, but achieving international standards is limited by a scarcity of adequate training models. The purpose of this report is to describe our in vivo porcine training model for microsurgery. Five female common-breed pigs (Sus scrofa domesticus) weighing 20 to 28 kg were placed under general anesthesia, and blue patent violet dye was injected to highlight lymphatic structures and prepare the pigs for anatomical exploration and microsurgery. The number and type of patent anastomoses achieved and lymph node flaps created and any anatomical differences between porcine and human vessels were noted, in light of evaluating the use of pigs as a training model for microsurgery in living tissue. Multiple lymphatic-venous anastomoses were created at the site of a single incision made at the subinguinal region, running medial and parallel to the saphenous vessels. Ten multiple lymphatic-venous anastomoses were created in total, and all were demonstrated to be patent. Four lymph node flaps were prepared for lymph node transfer. The superficial lymphatic collector system in the caudal limb of the pig was identified and described with particular reference to the superficial, medial (dominant), and lateral branches along the saphenous vein and its accessory. The authors present a safe and adaptable in vivo experimental microsurgical porcine model that provides the opportunity to practice several advanced lymphatic microsurgical techniques in the same animal. The ideal lymph node transfer training model can be developed from this anatomical detail, giving the opportunity to use it for artery-to-artery anastomoses, vein-to-vein anastomoses, and lymphatic-to-lymphatic anastomoses.
Biomechanical and anatomical assessment after knee hyperextension injury.
Fornalski, Stefan; McGarry, Michelle H; Csintalan, Rick P; Fithian, Donald C; Lee, Thay Q
2008-01-01
Knee hyperextension can be a serious and disabling injury in both the athletic and general patient population. Understanding the pathoanatomy and pathomechanics is critical for accurate surgical soft tissue reconstructions. To quantify the effects of knee hyperextension injury on knee laxity in a human cadaveric model and to qualitatively assess the anatomical injury pattern through surgical dissection. Descriptive laboratory study. Six fresh-frozen cadaveric knees were rigidly mounted on a custom knee testing system that simulates clinical laxity tests. The knee laxity measurements consisted of anterior-posterior laxity, internal-external rotational laxity, and varus-valgus laxity using a custom testing setup and a Microscribe 3DLX system. The laxity data were collected at both 30 degrees and 90 degrees of knee flexion for the intact specimens and then after 15 degrees and 30 degrees hyperextension injury. After biomechanical assessment, a detailed dissection was performed to document the injured structures in the knee. Repeated-measures analysis of variance with a Tukey post hoc test (P < .05) was used for statistical comparison. The results from this study suggest progressive damage to translational and rotational knee soft-tissue restraints with increasing knee hyperextension. Knee hyperextension to 30 degrees caused the most significant increase in anterior-posterior and rotational laxity. Anatomical dissections showed a general injury pattern to the posterolateral corner, partial femoral anterior cruciate ligament avulsion in 4 of 6 specimens, and no gross posterior cruciate ligament injuries. Injuries to the posterolateral corner of the knee can result from isolated knee hyperextension. The clinician should be aware of the potential for posterolateral corner injuries with isolated knee hyperextension. This will allow early surgical planning and primary surgical repair.
Topolnitskiy, E B; Dambaev, G Ts; Hodorenko, V N; Fomina, T I; Shefer, N A; Gunther, V E
2012-07-01
We studied morphological features of the regenerate formed after postresection defect plasty of the pericardium, diaphragm, and thorax with a mesh implant made of nanostructural titanium-nickelide threads. The newly formed tissue grew through the implant with the formation of an integrated tissue regenerate ensuring anatomic and physiological restoration of this area.
Jabs, Douglas A; Nussenblatt, Robert B; Rosenbaum, James T
2005-09-01
To begin a process of standardizing the methods for reporting clinical data in the field of uveitis. Consensus workshop. Members of an international working group were surveyed about diagnostic terminology, inflammation grading schema, and outcome measures, and the results used to develop a series of proposals to better standardize the use of these entities. Small groups employed nominal group techniques to achieve consensus on several of these issues. The group affirmed that an anatomic classification of uveitis should be used as a framework for subsequent work on diagnostic criteria for specific uveitic syndromes, and that the classification of uveitis entities should be on the basis of the location of the inflammation and not on the presence of structural complications. Issues regarding the use of the terms "intermediate uveitis," "pars planitis," "panuveitis," and descriptors of the onset and course of the uveitis were addressed. The following were adopted: standardized grading schema for anterior chamber cells, anterior chamber flare, and for vitreous haze; standardized methods of recording structural complications of uveitis; standardized definitions of outcomes, including "inactive" inflammation, "improvement'; and "worsening" of the inflammation, and "corticosteroid sparing," and standardized guidelines for reporting visual acuity outcomes. A process of standardizing the approach to reporting clinical data in uveitis research has begun, and several terms have been standardized.
Fascia: a morphological description and classification system based on a literature review
Kumka, Myroslava; Bonar, Jason
2012-01-01
Fascia is virtually inseparable from all structures in the body and acts to create continuity amongst tissues to enhance function and support. In the past fascia has been difficult to study leading to ambiguities in nomenclature, which have only recently been addressed. Through review of the available literature, advances in fascia research were compiled, and issues related to terminology, descriptions, and clinical relevance of fascia were addressed. Our multimodal search strategy was conducted in Medline and PubMed databases, with other targeted searches in Google Scholar and by hand, utilizing reference lists and conference proceedings. In an effort to organize nomenclature for fascial structures provided by the Federative International Committee on Anatomical Terminology (FICAT), we developed a functional classification system which includes four categories of fascia: i) linking, ii) fascicular, iii) compression, and iv) separating fasciae. Each category was developed from descriptions in the literature on gross anatomy, histology, and biomechanics; the category names reflect the function of the fascia. An up-to-date definition of fascia is provided, as well as descriptions of its function and clinical features. Our classification demonstrates the use of internationally accepted terminology in an ontology which can improve understanding of major terms in each category of fascia. PMID:22997468
Zhou, Xiangrong; Takayama, Ryosuke; Wang, Song; Hara, Takeshi; Fujita, Hiroshi
2017-10-01
We propose a single network trained by pixel-to-label deep learning to address the general issue of automatic multiple organ segmentation in three-dimensional (3D) computed tomography (CT) images. Our method can be described as a voxel-wise multiple-class classification scheme for automatically assigning labels to each pixel/voxel in a 2D/3D CT image. We simplify the segmentation algorithms of anatomical structures (including multiple organs) in a CT image (generally in 3D) to a majority voting scheme over the semantic segmentation of multiple 2D slices drawn from different viewpoints with redundancy. The proposed method inherits the spirit of fully convolutional networks (FCNs) that consist of "convolution" and "deconvolution" layers for 2D semantic image segmentation, and expands the core structure with 3D-2D-3D transformations to adapt to 3D CT image segmentation. All parameters in the proposed network are trained pixel-to-label from a small number of CT cases with human annotations as the ground truth. The proposed network naturally fulfills the requirements of multiple organ segmentations in CT cases of different sizes that cover arbitrary scan regions without any adjustment. The proposed network was trained and validated using the simultaneous segmentation of 19 anatomical structures in the human torso, including 17 major organs and two special regions (lumen and content inside of stomach). Some of these structures have never been reported in previous research on CT segmentation. A database consisting of 240 (95% for training and 5% for testing) 3D CT scans, together with their manually annotated ground-truth segmentations, was used in our experiments. The results show that the 19 structures of interest were segmented with acceptable accuracy (88.1% and 87.9% voxels in the training and testing datasets, respectively, were labeled correctly) against the ground truth. We propose a single network based on pixel-to-label deep learning to address the challenging issue of anatomical structure segmentation in 3D CT cases. The novelty of this work is the policy of deep learning of the different 2D sectional appearances of 3D anatomical structures for CT cases and the majority voting of the 3D segmentation results from multiple crossed 2D sections to achieve availability and reliability with better efficiency, generality, and flexibility than conventional segmentation methods, which must be guided by human expertise. © 2017 The Authors. Medical Physics published by Wiley Periodicals, Inc. on behalf of American Association of Physicists in Medicine.
Coello, Christopher; Willoch, Frode; Selnes, Per; Gjerstad, Leif; Fladby, Tormod; Skretting, Arne
2013-05-15
A voxel-based algorithm to correct for partial volume effect in PET brain volumes is presented. This method (named LoReAn) is based on MRI based segmentation of anatomical regions and accurate measurements of the effective point spread function of the PET imaging process. The objective is to correct for the spill-out of activity from high-uptake anatomical structures (e.g. grey matter) into low-uptake anatomical structures (e.g. white matter) in order to quantify physiological uptake in the white matter. The new algorithm is presented and validated against the state of the art region-based geometric transfer matrix (GTM) method with synthetic and clinical data. Using synthetic data, both bias and coefficient of variation were improved in the white matter region using LoReAn compared to GTM. An increased number of anatomical regions doesn't affect the bias (<5%) and misregistration affects equally LoReAn and GTM algorithms. The LoReAn algorithm appears to be a simple and promising voxel-based algorithm for studying metabolism in white matter regions. Copyright © 2013 Elsevier Inc. All rights reserved.
Lee, Won-Kang; Bae, Jung-Hee; Hu, Kyung-Seok; Kato, Takafumi; Kim, Seong-Taek
2017-03-01
The objective of this study was to simplify the anatomically safe and reproducible approach for BoNT injection and to generate a detailed topographic map of the important anatomical structures of the temporal region by dividing the temporalis into nine equally sized compartments. Nineteen sides of temporalis muscle were used. The topographies of the superficial temporal artery, middle temporal vein, temporalis tendon, and the temporalis muscle were evaluated. Also evaluated was the postural relations among the foregoing anatomical structures in the temporalis muscle, pivoted upon a total of nine compartments. The temporalis above the zygomatic arch exhibited an oblique quadrangular shape with rounded upper right and left corners. The distance between the anterior and posterior margins of the temporalis muscle was equal to the width of the temporalis rectangle, and the distance between the reference line and the superior temporalis margin was equal to its height. The mean ratio of width to height was 5:4. We recommend compartments Am, Mu, and Pm (coordinates of the rectangular outline) as areas in the temporal region for BoNT injection, because using these sites will avoid large blood vessels and tendons, thus improving the safety and reproducibility of the injection.
Giovanni Domenico Santorini (1681-1737): a prominent physician and meticulous anatomist.
Kleinerman, Rachel; John, Alana; Etienne, Denzil; Turner, Benjamin; Shoja, Mohammadali M; Tubbs, R Shane; Loukas, Marios
2014-05-01
Venetian physician Giovanni Domenico Santorini is revered as one of the most industrious and thorough anatomists of the eighteenth century. After receiving his medical degree in Pisa, Santorini worked as a physician and professor of anatomy and obstetrics in Venice. Of interest, he was a student of Malpighi while in Pisa. He quickly established himself as a dynamic lecturer and meticulous dissector. Santorini's anatomical observations include the prostatic venous plexus, accessory pancreatic duct, corniculate cartilage, parietal emissary veins, the risorius muscle, and many other structures. In addition to the detailed descriptions of these structures, he also produced copper plates and illustrations that are revered as "masterpieces" of that era. Santorini published Observationes anatomicae (Anatomical observations) in 1724, however his primary work, which included the description and anatomical drawings of the accessory pancreatic duct, was not published until thirty-eight years after his death. This posthumous release of Jo. Dominici Santorini anatomici summi septedecim tabulae [Giovanni Domenici Santorini, the excellent anatomist's seventeen drawings] was accomplished by Giambattista Morgagni and his disciple, Michael Girardi in 1775. Giovanni Santorini's assiduous dissections have significantly enhanced our knowledge of human anatomy and his work has been immortalized with several anatomical eponyms. Copyright © 2013 Wiley Periodicals, Inc.
Balaya, V; Uhl, J-F; Lanore, A; Salachas, C; Samoyeau, T; Ngo, C; Bensaid, C; Cornou, C; Rossi, L; Douard, R; Bats, A-S; Lecuru, F; Delmas, V
2016-05-01
To achieve a 3D vectorial model of a female pelvis by Computer-Assisted Anatomical Dissection and to assess educationnal and surgical applications. From the database of "visible female" of Visible Human Project(®) (VHP) of the "national library of medicine" NLM (United States), we used 739 transverse anatomical slices of 0.33mm thickness going from L4 to the trochanters. The manual segmentation of each anatomical structures was done with Winsurf(®) software version 4.3. Each anatomical element was built as a separate vectorial object. The whole colored-rendered vectorial model with realistic textures was exported in 3Dpdf format to allow a real time interactive manipulation with Acrobat(®) pro version 11 software. Each element can be handled separately at any transparency, which allows an anatomical learning by systems: skeleton, pelvic organs, urogenital system, arterial and venous vascularization. This 3D anatomical model can be used as data bank to teach of the fundamental anatomy. This 3D vectorial model, realistic and interactive constitutes an efficient educational tool for the teaching of the anatomy of the pelvis. 3D printing of the pelvis is possible with the new printers. Copyright © 2016 Elsevier Masson SAS. All rights reserved.
Anatomy of mole external genitalia: Setting the record straight
Sinclair, Adriane Watkins; Glickman, Stephen; Baskin, Lawrence; Cunha, Gerald R.
2016-01-01
Anatomy of male and female external genitalia of adult mice (Mus musculus) and broad-footed moles (Scapanus latimanus) was re-examined to provide more meaningful anatomical terminology. In the past the perineal appendage of male broad-footed moles has been called the penis, while the female perineal appendage has been given several terms (e.g. clitoris, penile clitoris, peniform clitoris and others). Histological examination demonstrates that perineal appendages of male and female broad-footed moles are the prepuce, which in both sexes are covered externally with a hair-bearing epidermis and lacks erectile bodies. The inner preputial epithelium is non-hair-bearing and defines the preputial space in both sexes. The penis of broad-footed moles lies deep within the preputial space, is an “internal organ” in the resting state and contains the penile urethra, os penis, and erectile bodies. The clitoris of broad-footed moles is defined by a U-shaped clitoral epithelial lamina. Residing within clitoral stroma encompassed by the clitoral epithelial lamina is the corpus cavernosum, blood-filled spaces and the urethra. External genitalia of male and female mice are anatomically similar to that of broad-footed moles with the exception that in female mice the clitoris contains a small os clitoridis and lacks defined erectile bodies, while male mice have an os penis and a prominent distal cartilaginous structure within the male urogenital mating protuberance (MUMP). Clitori of female broad-footed moles lack an os clitoridis but contain defined erectile bodies, while male moles have an os penis similar to the mouse but lack the distal cartilaginous structure. PMID:26694958
NASA Astrophysics Data System (ADS)
Nikitichev, Daniil I.; Xia, Wenfeng; West, Simeon J.; Desjardins, Adrien E.; Ourselin, Sebastien; Vercauteren, Tom
2017-03-01
Ultrasound (US) imaging is widely used to guide vascular access procedures such as arterial and venous cannulation. As needle visualisation with US imaging can be very challenging, it is easy to misplace the needle in the patient and it can be life threating. Photoacoustic (PA) imaging is well suited to image medical needles and catheters that are commonly used for vascular access. To improve the success rate, a certain level of proficiency is required that can be gained through extensive practice on phantoms. Unfortunately, commercial training phantoms are expensive and custom-made phantoms usually do not replicate the anatomy very well. Thus, there is a great demand for more realistic and affordable ultrasound and photoacoustic imaging phantoms for vasculature access procedures training. Three-dimensional (3D) printing can help create models that replicate complex anatomical geometries. However, the available 3D printed materials do not possess realistic tissue properties. Alternatively, tissue-mimicking materials can be employed using casting and 3D printed moulds but this approach is limited to the creation of realistic outer shapes with no replication of complex internal structures. In this study, we developed a realistic vasculature access phantom using a combination of mineral oil based materials as background tissue and a non-toxic, water dissolvable filament material to create complex vascular structure using 3D printing. US and PA images of the phantoms comprising the complex vasculature network were acquired. The results show that 3D printing can facilitate the fabrication of anatomically realistic training phantoms, with designs that can be customized and shared electronically.
Wang, Shousen; Qin, Yong; Xiao, Deyong; Wu, Zhifeng; Wei, Liangfeng
2018-05-03
To evaluate the clinical value of three-dimensional (3D) CT reconstruction of the sphenoidal sinus separation in localizing sellar floor during endonasal transsphenoidal surgery, and determine the size and location of sellar floor fenestration. After exclusion,51 patients were eligible for study inclusion. A pre-operative CT scan of the paranasal sinus and CT scan and MRI of the pituitary gland were obtained. Sphenoidal sinus separation was reconstructed using Mimics 15.0 software and the quantity, shape, and orientation were observed and compared with intra-operative data, the purpose of which was to guide the localization of sellar floor. Anatomic variation of the sphenoidal sinus and adjacent structures, tumor and sella turcica morphology, minimal distance between the cavernous segment of the internal carotid artery(CSICA) bilaterally, and the shortest distance from the midline were measured. Based upon the shape of the sphenoidal sinus separation, sellar floor was accurately localized in all cases. Intra-operative sphenoidal sinus separation was consistent with pre-operative 3D CT reconstruction images. The sellar floor was extremely small in two patients, and insufficient fenestration of the sellar floor negatively affected tumor resection. Pre-operative 3D CT reconstruction is helpful for accurate and rapid localization of the saddle floor. The anatomic variation of sphenoidal sinus and adjacent structures, the characteristics of tumor and Sella, the minimum distance between bilateral CSICA and the shortest distance from the midline are helpful for the establishment of individualized Sellar bottom fenestration. Copyright © 2018. Published by Elsevier Inc.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Plets, C.; Baert, A.L.; Nijs, G.L.
1986-01-01
It is of the greatest importance to the radiologist, the neurologist and the neurosurgeon to be able to localize topographically a pathological brain process on the CT scan as precisely as possible. For that purpose, the identification of as many anatomical structures as possible on the CT scan image are necessary and indispensable. In this atlas a great number of detailed anatomical data on frontal horizontal CT scan sections, each being only 2 mm thick, are indicated, e.g. the cortical gyri, the basal ganglia, details of the white matter, extracranial muscles and blood vessels, parts of the base and themore » vault of the skull, etc. The very precise topographical description of the numerous CT scan images was realized by the author by confrontation of these images with the corresponding anatomical sections of the same brain specimen, performed by an original technique.« less
La Fountaine, Michael F
2017-11-29
Concussion is defined as a complex pathophysiological process affecting the brain that is induced by the application or transmission of traumatic biomechanical forces to the head. The result of the impact is the onset of transient symptoms that may be experienced for approximately 2weeks in most individuals. However, in some individuals, symptoms may not resolve and persist for a protracted period and a chronic injury ensues. Concussion symptoms are generally characterized by their emergence through changes in affect, cognition, or multi-sensory processes including the visual and vestibular systems. An emerging consequence of concussion is the presence of cardiovascular autonomic nervous system dysfunction that is most apparent through hemodynamic perturbations and provocations. Further interrogation of data that are derived from continuous digital electrocardiograms and/or beat-to-beat blood pressure monitoring often reveal an imbalance of parasympathetic or sympathetic nervous system activity during a provocation after an injury. The disturbance is often greatest early after injury and a resolution of the dysfunction occurs in parallel with other symptoms. The possibility exists that the disturbance may remain if the concussion does not resolve. Unfortunately, there is little evidence in humans to support the etiology for the emergence of this post-injury dysfunction. As such, evidence from experimental models of traumatic brain injury and casual observations from human studies of concussion implicate a transient abnormality of the anatomical structures and functions of the cardiovascular autonomic nervous system. The purpose of this review article is to provide a mechanistic narrative of multi-disciplinary evidence to support the anatomical and physiological basis of cardiovascular autonomic nervous system dysfunction after concussion. The review article will identify the anatomical structures of the autonomic nervous system and propose a theoretical framework to demonstrate the potential effects of concussive head trauma on corresponding outcome measurements. Evidence from experimental models will be used to describe abnormal cellular functions and provide a hypothetical mechanistic basis for the respective responses of the anatomical structures to concussive head trauma. When available, example observations from the human concussion literature will be presented to demonstrate the effects of concussive head trauma that may be related to anomalous activity in the respective anatomical structures of the autonomic nervous system. Copyright © 2017 Elsevier B.V. All rights reserved.
An International Survey of Gross Anatomy Courses in Chiropractic Colleges
Ball, Jennette J.; Petrocco-Napuli, Kristina L.; Zumpano, Michael P.
2012-01-01
Purpose: The purpose of this study is to provide the first comprehensive description of gross anatomy course design in chiropractic colleges internationally and to provide baseline data for future investigation, future comparison with other health care professions, and identification of trends. Methods: A 72-question cross-sectional electronic survey was sent to the anatomy department chair at 36 chiropractic colleges internationally using Zoomerang, a web-based survey instrument. To augment the survey response data, public sources of data also were collected. Results: Forty-four percent of the electronic surveys were returned and information was gathered for 31 institutions from public sources. These results indicate (1) the most common degrees held by anatomy faculty were MS and PhD in anatomy, and DC degrees; (2) 75% of institutions utilized human cadavers and 75% presented laboratory anatomical demonstrations; (3) 62% used PowerPoint and 100% provided students with copies of lecture presentations; (4) 88% required attendance in laboratory and 50% in lecture; (5) 69% issued one grade for lecture and laboratory; (6) 100% of laboratory examinations were anatomical identification; and (7) 80% of written examinations were multiple-choice format. Conclusions: While individual variations existed, chiropractic institutions internationally have similar gross anatomy faculty, course design, delivery methods, and assessment methods. PMID:23362365
Lanska, Douglas J
2014-01-01
The purpose of this article is to review the anatomical illustrations and physiological demonstrations of sixteenth-century Flemish-born anatomist and physician Andreas Vesalius concerning the recurrent laryngeal nerves. Although Vesalius was primarily an anatomist, he also used vivisection as a pedagogical device to help his students understand the function of structures within the fabric of the body that they had previously studied in anatomical detail. Vesalius's masterwork, De humani corporis fabrica or simply the Fabrica (1543, 1555), was ostensibly an anatomy text, but Vesalius included textual and figural references to his use of vivisection to explicate the function of specific structures. Even as he began to criticize the errors in Galen's anatomical works, Vesalius nevertheless adopted some of Galen's classic physiological demonstrations, in particular the ligation (and subsequent release) of the recurrent laryngeal nerves of a pig to demonstrate their role in generating the pig's squeal. Vesalius's illustrations concerning the recurrent laryngeal nerve in the Fabrica were of two types: elegant anatomical woodcut plates-unsurpassed for their clarity, accuracy, and detail - and the distinctly inelegant historiated initial Q, depicting a throng of putti busily engaged in vivisecting a pig. Vesalius' anatomical plates were heavily plagiarized while the historiated initials, showing the rough work of an anatomist or surgeon, were largely ignored and remain little recognized today. While Vesalius' anatomical illustrations of the recurrent laryngeal nerves contained some errors, they were a dramatic departure from prior meager efforts at medical illustration and indeed far surpassed all contemporary published illustrations by others. Vesalius was also influential in reviving Galen's approach to vivisection, at least for pedagogical purposes, if not really then yet as a full-fledged investigative technique.
NASA Astrophysics Data System (ADS)
Ota, Shunsuke; Deguchi, Daisuke; Kitasaka, Takayuki; Mori, Kensaku; Suenaga, Yasuhito; Hasegawa, Yoshinori; Imaizumi, Kazuyoshi; Takabatake, Hirotsugu; Mori, Masaki; Natori, Hiroshi
2008-03-01
This paper presents a method for automated anatomical labeling of bronchial branches (ALBB) extracted from 3D CT datasets. The proposed method constructs classifiers that output anatomical names of bronchial branches by employing the machine-learning approach. We also present its application to a bronchoscopy guidance system. Since the bronchus has a complex tree structure, bronchoscopists easily tend to get disoriented and lose the way to a target location. A bronchoscopy guidance system is strongly expected to be developed to assist bronchoscopists. In such guidance system, automated presentation of anatomical names is quite useful information for bronchoscopy. Although several methods for automated ALBB were reported, most of them constructed models taking only variations of branching patterns into account and did not consider those of running directions. Since the running directions of bronchial branches differ greatly in individuals, they could not perform ALBB accurately when running directions of bronchial branches were different from those of models. Our method tries to solve such problems by utilizing the machine-learning approach. Actual procedure consists of three steps: (a) extraction of bronchial tree structures from 3D CT datasets, (b) construction of classifiers using the multi-class AdaBoost technique, and (c) automated classification of bronchial branches by using the constructed classifiers. We applied the proposed method to 51 cases of 3D CT datasets. The constructed classifiers were evaluated by leave-one-out scheme. The experimental results showed that the proposed method could assign correct anatomical names to bronchial branches of 89.1% up to segmental lobe branches. Also, we confirmed that it was quite useful to assist the bronchoscopy by presenting anatomical names of bronchial branches on real bronchoscopic views.
NASA Astrophysics Data System (ADS)
Cho, Nam Hyun; Lee, Jang Woo; Cho, Jin-ho; Kim, Jeehyun; Jang, Jeong Hun; Jung, Woonggyu
2015-03-01
Optical coherence tomography (OCT) has advanced significantly over the past two decades and is currently used extensively to monitor the internal structures of organs, particularly in ophthalmology and dermatology. We used ethylenediamine tetra-acetic acid (EDTA) to decalcify the bony walls of the cochlea and investigated the inner structures by deep penetration of light into the cochlear tissue using OCT on a guinea pig model of endolymphatic hydrops (EH), induced by surgical obliteration of the endolymphatic duct. The structural and functional changes associated with EH were identified using OCT and auditory brainstem response tests, respectively. We also evaluated structural alterations in the cochlea using three-dimensional reconstruction of the OCT images, which clearly showed physical changes in the cochlear structures. Furthermore, we found significant anatomical variations in the EH model and conducted graphical analysis by strial atrophy for comparison. The physical changes included damage to and flattening of the organ of Corti-evidence of Reissner's membrane distention-and thinning of the lateral wall. These results indicate that observation of EDTA-decalcified cochlea using OCT is significant in examination of gradual changes in the cochlear structures that are otherwise not depicted by hematoxylin and eosin staining.
Information system to manage anatomical knowledge and image data about brain
NASA Astrophysics Data System (ADS)
Barillot, Christian; Gibaud, Bernard; Montabord, E.; Garlatti, S.; Gauthier, N.; Kanellos, I.
1994-09-01
This paper reports about first results obtained in a project aiming at developing a computerized system to manage knowledge about brain anatomy. The emphasis is put on the design of a knowledge base which includes a symbolic model of cerebral anatomical structures (grey nuclei, cortical structures such as gyri and sulci, verntricles, vessels, etc.) and of hypermedia facilities allowing to retrieve and display information associated with the objects (texts, drawings, images). Atlas plates digitized from a stereotactic atlas are also used to provide natural and effective communication means between the user and the system.
Anatomy of the clitoris and the female sexual response.
Pauls, Rachel N
2015-04-01
The clitoris may be the most pivotal structure for female sexual pleasure. While its significance has been reported for hundreds of years, no complete anatomical description was available until recently. Most of the components of the clitoris are buried under the skin and connective tissues of the vulva. It comprises an external glans and hood, and an internal body, root, crura, and bulbs; its overall size is 9-11 cm. Clitoral somatic innervation is via the dorsal nerve of the clitoris, a branch of the pudendal nerve, while other neuronal networks within the structure are complex. The clitoris is the center for orgasmic response and is embryologically homologous to the male penis. While the source of vaginal eroticism might or might not be exclusively clitoral stimulation, it is necessary to understand the intricate anatomy of the organ to assess the data in this regard. Ultimately, sexual enjoyment entails a balance of physical and emotional factors and should be encouraged. © 2015 Wiley Periodicals, Inc.
Diagnostic ability of computed tomography using DentaScan software in endodontics: case reports.
Siotia, Jaya; Gupta, Sunil K; Acharya, Shashi R; Saraswathi, Vidya
2011-01-01
Radiographic examination is essential in diagnosis and treatment planning in endodontics. Conventional radiographs depict structures in two dimensions only. The ability to assess the area of interest in three dimensions is advantageous. Computed tomography is an imaging technique which produces three-dimensional images of an object by taking a series of two-dimensional sectional X-ray images. DentaScan is a computed tomography software program that allows the mandible and maxilla to be imaged in three planes: axial, panoramic, and cross-sectional. As computed tomography is used in endodontics, DentaScan can play a wider role in endodontic diagnosis. It provides valuable information in the assessment of the morphology of the root canal, diagnosis of root fractures, internal and external resorptions, pre-operative assessment of anatomic structures etc. The aim of this article is to explore the clinical usefulness of computed tomography and DentaScan in endodontic diagnosis, through a series of four cases of different endodontic problems.
BIOMARKERS OF HEALTH EFFECTS IN THE HUMAN LUNG
Little information exists about retained particle/metal burden in human lung and associated biomarkers of internal dose/indicators of health effects. We have shown that anatomical remodeling of the terminal and respiratory bronchioles occur at sites of particle deposition. We ext...
Godin, Jonathan A; Chahla, Jorge; Moatshe, Gilbert; Kruckeberg, Bradley M; Muckenhirn, Kyle J; Vap, Alexander R; Geeslin, Andrew G; LaPrade, Robert F
2017-09-01
The qualitative anatomy of the distal iliotibial band (ITB) has previously been described. However, a comprehensive characterization of the quantitative anatomic, radiographic, and biomechanical properties of the Kaplan fibers of the deep distal ITB has not yet been established. It is paramount to delineate these characteristics to fully understand the distal ITB's contribution to rotational knee stability. Purpose/Hypothesis: There were 2 distinct purposes for this study: (1) to perform a quantitative anatomic and radiographic evaluation of the distal ITB's attachment sites and their relationships to pertinent osseous and soft tissue landmarks, and (2) to quantify the biomechanical properties of the deep (Kaplan) fibers of the distal ITB. It was hypothesized that the distal ITB has definable parameters concerning its anatomic attachments and consistent relationships to surgically pertinent landmarks with correlating plain radiographic findings. In addition, it was hypothesized that the biomechanical properties of the Kaplan fibers would support their role as important restraints against internal rotation. Descriptive laboratory study. Ten nonpaired, fresh-frozen human cadaveric knees (mean age, 61.1 years; range, 54-65 years) were dissected for anatomic and radiographic purposes. A coordinate measuring device quantified the attachment areas of the distal ITB to the distal femur, patella, and proximal tibia and their relationships to pertinent bony landmarks. A radiographic analysis was performed by inserting pins into the attachment sites of relevant anatomic structures to assess their location relative to pertinent bony landmarks with fluoroscopic guidance. A further biomechanical assessment of 10 cadaveric knees quantified the load to failure and stiffness of the Kaplan fibers' insertion on the distal femur after a preconditioning protocol. Two separate deep (Kaplan) fiber bundles were identified with attachments to 2 newly identified femoral bony prominences (ridges). The proximal and distal bundles inserted on the distal femur 53.6 mm (95% CI, 50.7-56.6 mm) and 31.4 mm (95% CI, 27.3-35.5 mm) proximal to the lateral epicondyle, respectively. The centers of the bundle insertions were 22.5 mm (95% CI, 19.1-25.9 mm) apart. The total insertion area of the distal ITB on the proximal tibia was 429.1 mm 2 (95% CI, 349.2-509.1 mm 2 ). A distinct capsulo-osseous layer of the distal ITB was also identified that was intimately related to the lateral knee capsule. Its origin was in close proximity to the lateral gastrocnemius tubercle, and it inserted on the proximal tibia at the lateral tibial tubercle between the fibular head and the Gerdy tubercle. Radiographic analysis supported the quantitative anatomic findings. The mean maximum load during pull-to-failure testing was 71.3 N (95% CI, 41.2-101.4 N) and 170.2 N (95% CI, 123.6-216.8 N) for the proximal and distal Kaplan bundles, respectively. The most important finding of this study was that 2 distinct deep bundles (Kaplan fibers) of the distal ITB were identified. Each bundle of the deep layer of the ITB was associated with a newly identified distinct bony ridge. Radiographic analysis confirmed the measurements previously recorded and established reproducible landmarks for the newly described structures. Biomechanical testing revealed that the Kaplan fibers had a strong attachment to the distal femur, thereby supporting a role in rotational knee stability. The identification of 2 distinct deep fiber (Kaplan) attachments clarifies the function of the ITB more definitively. The results also support the role of the ITB in rotatory knee stability because of the fibers' vectors and their identified maximum loads. These findings provide the anatomic and biomechanical foundation needed for the development of reconstruction or repair techniques to anatomically address these deficiencies in knee ligament injuries.
Geometric approach to the design of an imaging probe to evaluate the iridocorneal angle structures
NASA Astrophysics Data System (ADS)
Hong, Xun Jie Jeesmond; V. K., Shinoj; Murukeshan, V. M.; Baskaran, M.; Aung, Tin
2017-06-01
Photographic imaging methods allow the tracking of anatomical changes in the iridocorneal angle structures and the monitoring of treatment responses overtime. In this work, we aim to design an imaging probe to evaluate the iridocorneal angle structures using geometrical optics. We first perform an analytical analysis on light propagation from the anterior chamber of the eye to the exterior medium using Snell's law. This is followed by adopting a strategy to achieve uniform near field irradiance, by simplifying the complex non-rotational symmetric irradiance distribution of LEDs tilted at an angle. The optimization is based on the geometric design considerations of an angled circular ring array of 4 LEDs (or a 2 × 2 square LED array). The design equation give insights on variable parameters such as the illumination angle of the LEDs, ring array radius, viewing angle of the LEDs, and the working distance. A micro color CCD video camera that has sufficient resolution to resolve the iridocorneal angle structures at the required working distance is then chosen. The proposed design aspects fulfil the safety requirements recommended by the International Commission on Non-ionizing Radiation Protection.
Wong, Y S; Chung, K L Y; Lo, K W Y; Liu, C S W; Fan, T W; Tse, S K S; Tang, P M Y; Chao, N S Y; Liu, K K W; Leung, M W Y
2014-01-01
Anatomical variations on venous drainage in varicoceles are under-reported. We report our experience in scrotal antegrade sclerotherapy (SAS) for adolescent varicoceles. Since 2011, 15 consecutive boys with left varicoceles were recruited. Under general anaesthesia, a 5-mm transverse incision was made at scrotal neck, testicular vein was cannulated at pampiniform plexus with venogram performed. Foam sclerosant by mixing sodium tetradecyl sulphate (STS), Lipiodol(®) and air was slowly injected under fluoroscopy. Postoperatively the patients were followed-up for varicocele grading, testicular size, and complications. Median age at operation was 14 (10-19) years. 80 % had grade three varicoceles, 33.3 % had smaller left testis before operation. Intra-operative venogram showed three different anatomical variations. Group I: eleven patients (73.3 %) had single distinct internal spermatic vein; Group II: two patients demonstrated duplication of internal spermatic vein draining into left renal vein; Group III: two patients had pampiniform plexus draining to iliac and/or paraspinal veins. SAS was performed in Group I and II patients. Sclerosant volume injected ranged from 1.5 to 4.5 ml. In Group III patients, surgical ligation of testicular veins was performed rather than SAS to avoid uncontrolled systemic sclerosant spillage. Mean length of stay was 1.13 day. One patient with scrotal haematoma and one other with minor wound dehiscence were managed conservatively. Mean follow-up period was 10.9 (1-22) months. Thirteen patients (86.7 %) achieved varicocele grading ≤ 1. There was no postoperative testicular atrophy, hydrocele and epididymo-orchitis. Scrotal antegrade sclerotherapy using STS foam is a safe and effective treatment for adolescent varicoceles. Anatomical variations on venous drainage in varicoceles are common.
Lemos-Rodriguez, Ana M; Sreenath, Satyan B; Rawal, Rounak B; Overton, Lewis J; Farzal, Zainab; Zanation, Adam M
2017-03-01
To investigate the extent of carotid artery exposure attained, including the identification of the external carotid branches and lower cranial nerves in five sequential external approaches to the parapharyngeal space, and to provide an anatomical algorithm. Anatomical study. Six latex-injected adult cadaver heads were dissected in five consecutive approaches: transcervical approach with submandibular gland removal, posterior extension of the transcervical approach, transcervical approach with parotidectomy, parotidectomy with lateral mandibulotomy, and parotidectomy with mandibulectomy. The degree of carotid artery exposure attained, external carotid branches, and lower cranial nerves visualized was documented. The transcervical approach exposed 1.5 cm (Standard Deviation (SD) 0.5) of internal carotid artery (ICA) and 1.25 cm (SD 0.25) of external carotid artery (ECA). The superior thyroid and facial arteries and cranial nerve XII and XI were identified. The posterior extension exposed 2.9 cm (SD 0.7) of ICA and 2.7 cm (SD 1.0) of ECA. Occipital and ascending pharyngeal arteries were visualized. The transparotid approach exposed 4.0 cm (SD 1.1) of ICA and 3.98 cm (SD 1.8) of ECA. Lateral mandibulotomy exposed the internal maxillary artery, cranial nerve X, the sympathetic trunk, and 4.6 cm (SD 2.4) of ICA. Mandibulectomy allowed for complete ECA exposure, cranial nerve IX, lingual nerve, and 6.9 cm (SD 1.3) of ICA. Approaches for the parapharyngeal space must be based on anatomic and biological patient factors. This study provides a guide for the skull base surgeon for an extended approach based on the desired anatomic exposure. N/A. Laryngoscope, 127:585-591, 2017. © 2017 The American Laryngological, Rhinological and Otological Society, Inc.
Yarnitzky, G; Yizhar, Z; Gefen, A
2006-01-01
No technology is presently available to provide real-time information on internal deformations and stresses in plantar soft tissues of individuals during evaluation of the gait pattern. Because internal deformations and stresses in the plantar pad are critical factors in foot injuries such as diabetic foot ulceration, this severely limits evaluation of patients. To allow such real-time subject-specific analysis, we developed a hierarchal modeling system which integrates a two-dimensional gross structural model of the foot (high-order model) with local finite element (FE) models of the plantar tissue padding the calcaneus and medial metatarsal heads (low-order models). The high-order whole-foot model provides real-time analytical evaluations of the time-dependent plantar fascia tensile forces during the stance phase. These force evaluations are transferred, together with foot-shoe local reaction forces, also measured in real time (under the calcaneus, medial metatarsals and hallux), to the low-order FE models of the plantar pad, where they serve as boundary conditions for analyses of local deformations and stresses in the plantar pad. After careful verification of our custom-made FE solver and of our foot model system with respect to previous literature and against experimental results from a synthetic foot phantom, we conducted human studies in which plantar tissue loading was evaluated in real time during treadmill gait in healthy individuals (N = 4). We concluded that internal deformations and stresses in the plantar pad during gait cannot be predicted from merely measuring the foot-shoe force reactions. Internal loading of the plantar pad is constituted by a complex interaction between the anatomical structure and mechanical behavior of the foot skeleton and soft tissues, the body characteristics, the gait pattern and footwear. Real-time FE monitoring of internal deformations and stresses in the plantar pad is therefore required to identify elevated deformation/stress exposures toward utilizing it in gait laboratories to protect feet that are susceptible to injury.
Cortical parcellation based on structural connectivity: A case for generative models.
Tittgemeyer, Marc; Rigoux, Lionel; Knösche, Thomas R
2018-06-01
One of the major challenges in systems neuroscience is to identify brain networks and unravel their significance for brain function -this has led to the concept of the 'connectome'. Connectomes are currently extensively studied in large-scale international efforts at multiple scales, and follow different definitions with respect to their connections as well as their elements. Perhaps the most promising avenue for defining the elements of connectomes originates from the notion that individual brain areas maintain distinct (long-range) connection profiles. These connectivity patterns determine the areas' functional properties and also allow for their anatomical delineation and mapping. This rationale has motivated the concept of connectivity-based cortex parcellation. In the past ten years, non-invasive mapping of human brain connectivity has led to immense advances in the development of parcellation techniques and their applications. Unfortunately, many of these approaches primarily aim for confirmation of well-known, existing architectonic maps and, to that end, unsuitably incorporate prior knowledge and frequently build on circular argumentation. Often, current approaches also tend to disregard the specific apertures of connectivity measurements, as well as the anatomical specificities of cortical areas, such as spatial compactness, regional heterogeneity, inter-subject variability, the multi-scaling nature of connectivity information, and potential hierarchical organisation. From a methodological perspective, however, a useful framework that regards all of these aspects in an unbiased way is technically demanding. In this commentary, we first outline the concept of connectivity-based cortex parcellation and discuss its prospects and limitations in particular with respect to structural connectivity. To improve reliability and efficiency, we then strongly advocate for connectivity-based cortex parcellation as a modelling approach; that is, an approximation of the data based on (model) parameter inference. As such, a parcellation algorithm can be formally tested for robustness -the precision of its predictions can be quantified and statistics about potential generalization of the results can be derived. Such a framework also allows the question of model constraints to be reformulated in terms of hypothesis testing through model selection and offers a formative way to integrate anatomical knowledge in terms of prior distributions. Copyright © 2018 Elsevier Inc. All rights reserved.
Anatomic variation of depth-dependent mechanical properties in neonatal bovine articular cartilage.
Silverberg, Jesse L; Dillavou, Sam; Bonassar, Lawrence; Cohen, Itai
2013-05-01
Articular cartilage has well known depth-dependent structure and has recently been shown to have similarly non-uniform depth-dependent mechanical properties. Here, we study anatomic variation of the depth-dependent shear modulus and energy dissipation rate in neonatal bovine knees. The regions we specifically focus on are the patellofemoral groove, trochlea, femoral condyle, and tibial plateau. In every sample, we find a highly compliant region within the first 500 µm of tissue measured from the articular surface, where the local shear modulus is reduced by up to two orders of magnitude. Comparing measurements taken from different anatomic sites, we find statistically significant differences localized within the first 50 µm. Histological images reveal these anatomic variations are associated with differences in collagen density and fiber organization. Copyright © 2012 Orthopaedic Research Society.
Changes in the cerebellar and cerebro-cerebellar circuit in type 2 diabetes.
Fang, Peng; An, Jie; Tan, Xin; Zeng, Ling-Li; Shen, Hui; Qiu, Shijun; Hu, Dewen
2017-04-01
Currently, 422 million adults suffer from diabetes worldwide, leading to tremendous disabilities and a great burden to families and society. Functional and structural MRIs have demonstrated that patients with type 2 diabetes mellitus (T2DM) exhibit abnormalities in brain regions in the cerebral cortex. However, the changes of cerebellar anatomical connections in diabetic patients remains unclear. In the current study, diffusion tensor imaging deterministic tractography and statistical analysis were employed to investigate abnormal cerebellar anatomical connections in diabetic patients. This is the first study to investigate the altered cerebellar anatomical connectivity in T2DM patients. Decreased anatomical connections were found in the cerebellar and cerebro-cerebellar circuits of T2DM patients, providing valuable new insights into the potential neuro-pathophysiology of diabetes-related motor and cognitive deficits. Copyright © 2017. Published by Elsevier Inc.
The AEO, an Ontology of Anatomical Entities for Classifying Animal Tissues and Organs
Bard, Jonathan B. L.
2012-01-01
This paper describes the AEO, an ontology of anatomical entities that expands the common anatomy reference ontology (CARO) and whose major novel feature is a type hierarchy of ~160 anatomical terms. The breadth of the AEO is wider than CARO as it includes both developmental and gender-specific classes, while the granularity of the AEO terms is at a level adequate to classify simple-tissues (~70 classes) characterized by their containing a predominantly single cell-type. For convenience and to facilitate interoperability, the AEO contains an abbreviated version of the ontology of cell-types (~100 classes) that is linked to these simple-tissue types. The AEO was initially based on an analysis of a broad range of animal anatomy ontologies and then upgraded as it was used to classify the ~2500 concepts in a new version of the ontology of human developmental anatomy (www.obofoundry.org/), a process that led to significant improvements in its structure and content, albeit with a possible focus on mammalian embryos. The AEO is intended to provide the formal classification expected in contemporary ontologies as well as capturing knowledge about anatomical structures not currently included in anatomical ontologies. The AEO may thus be useful in increasing the amount of tissue and cell-type knowledge in other anatomy ontologies, facilitating annotation of tissues that share common features, and enabling interoperability across anatomy ontologies. The AEO can be downloaded from http://www.obofoundry.org/. PMID:22347883
Comparative histology of mouse, rat, and human pelvic ligaments.
Iwanaga, Ritsuko; Orlicky, David J; Arnett, Jameson; Guess, Marsha K; Hurt, K Joseph; Connell, Kathleen A
2016-11-01
The uterosacral (USL) and cardinal ligaments (CL) provide support to the uterus and pelvic organs, and the round ligaments (RL) maintain their position in the pelvis. In women with pelvic organ prolapse (POP), the connective tissue, smooth muscle, vasculature, and innervation of the pelvic support structures are altered. Rodents are commonly used animal models for POP research. However, the pelvic ligaments have not been defined in these animals. In this study, we hypothesized that the gross anatomy and histological composition of pelvic ligaments in rodents and humans are similar. We performed an extensive literature search for anatomical and histological descriptions of the pelvic support ligaments in rodents. We also performed anatomical dissections of the pelvis to define anatomical landmarks in relation to the ligaments. In addition, we identified the histological components of the pelvic ligaments and performed quantitative analysis of the smooth muscle bundles and connective tissue of the USL and RL. The anatomy of the USL, CL, and RL and their anatomical landmarks are similar in mice, rats, and humans. All species contain the same cellular components and have similar histological architecture. However, the cervical portion of the mouse USL and RL contain more smooth muscle and less connective tissue compared with rat and human ligaments. The pelvic support structures of rats and mice are anatomically and histologically similar to those of humans. We propose that both mice and rats are appropriate, cost-effective models for directed studies in POP research.
The AEO, an Ontology of Anatomical Entities for Classifying Animal Tissues and Organs.
Bard, Jonathan B L
2012-01-01
This paper describes the AEO, an ontology of anatomical entities that expands the common anatomy reference ontology (CARO) and whose major novel feature is a type hierarchy of ~160 anatomical terms. The breadth of the AEO is wider than CARO as it includes both developmental and gender-specific classes, while the granularity of the AEO terms is at a level adequate to classify simple-tissues (~70 classes) characterized by their containing a predominantly single cell-type. For convenience and to facilitate interoperability, the AEO contains an abbreviated version of the ontology of cell-types (~100 classes) that is linked to these simple-tissue types. The AEO was initially based on an analysis of a broad range of animal anatomy ontologies and then upgraded as it was used to classify the ~2500 concepts in a new version of the ontology of human developmental anatomy (www.obofoundry.org/), a process that led to significant improvements in its structure and content, albeit with a possible focus on mammalian embryos. The AEO is intended to provide the formal classification expected in contemporary ontologies as well as capturing knowledge about anatomical structures not currently included in anatomical ontologies. The AEO may thus be useful in increasing the amount of tissue and cell-type knowledge in other anatomy ontologies, facilitating annotation of tissues that share common features, and enabling interoperability across anatomy ontologies. The AEO can be downloaded from http://www.obofoundry.org/.
Clinical anatomy of the subserous layer: An amalgamation of gross and clinical anatomy.
Yabuki, Yoshihiko
2016-05-01
The 1998 edition of Terminologia Anatomica introduced some currently used clinical anatomical terms for the pelvic connective tissue or subserous layer. These innovations persuaded the present author to consider a format in which the clinical anatomical terms could be reconciled with those of gross anatomy and incorporated into a single anatomical glossary without contradiction or ambiguity. Specific studies on the subserous layer were undertaken on 79 Japanese women who had undergone surgery for uterine cervical cancer, and on 26 female cadavers that were dissected, 17 being formalin-fixed and 9 fresh. The results were as follows: (a) the subserous layer could be segmentalized by surgical dissection in the perpendicular, horizontal and sagittal planes; (b) the segmentalized subserous layer corresponded to 12 cubes, or ligaments, of minimal dimension that enabled the pelvic organs to be extirpated; (c) each ligament had a three-dimensional (3D) structure comprising craniocaudal, mediolateral, and dorsoventral directions vis-á-vis the pelvic axis; (d) these 3D-structured ligaments were encoded morphologically in order of decreasing length; and (e) using these codes, all the surgical procedures for 19th century to present-day radical hysterectomy could be expressed symbolically. The establishment of clinical anatomical terms, represented symbolically through coding as demonstrated in this article, could provide common ground for amalgamating clinical anatomy with gross anatomy. Consequently, terms in clinical anatomy and gross anatomy could be reconciled and compiled into a single anatomical glossary. © 2015 Wiley Periodicals, Inc.
Survival of resin infiltrated ceramics under influence of fatigue.
Aboushelib, Moustafa N; Elsafi, Mohamed H
2016-04-01
to evaluate influence of cyclic fatigue on two resin infiltrated ceramics and three all-ceramic crowns manufactured using CAD/CAM technology. CAD/CAM anatomically shaped crowns were manufactured using two resin infiltrated ceramics (Lava Ultimate and Vita Enamic), two reinforced glass ceramic milling blocks ((IPS)Empress CAD and (IPS)e.max CAD) and a veneered zirconia core ((IPS)Zir CAD). (IPS)e.max CAD and (IPS)Zir CAD were milled into 0.5mm thick anatomically shaped core structure which received standardized press-on veneer ceramic. The manufactured crowns were cemented on standardized resin dies using a resin adhesive (Panavia F2.0). Initial fracture strength of half of the specimens was calculated using one cycle load to failure in a universal testing machine. The remaining crowns were subjected to 3.7 million chewing cycles (load range 50-200N at 3s interval) in a custom made pneumatic fatigue tester. Survival statistics were calculated and Weibull modulus was measured from fitted load-cycle-failure diagrams. Scanning electron microscopy was performed to fractographically analyze fractured surfaces. Data were analyzed using two way analysis of variance and Bonferroni post hoc tests (α=0.05). Dynamic fatigue resulted in significant reduction (F=7.54, P<0.005) of the initial fracture strength of the tested specimens. Zirconia showed the highest deterioration percent (34% reduction in strength) followed by (IPS)Empress (32.2%), (IPS)e.max (27.1%) while Lava Ultimate and Vita Enamic showed the lowest percent of reduction in strength. The two types of resin infiltrated ceramics and (IPS)Empress demonstrated the highest percent of fracture incidences under the influence of fatigue (35-45% splitting). None of the tested veneered zirconia restorations were fractured during testing, however, chipping of the veneer ceramics was observed in 6 crowns. The lowest percent of failure was observed for (IPS)e.max crowns manifested as 3 cases of minor chipping in addition to two complete fracture incidences. SEM images demonstrated the internal structure of the tested materials and detected location and size of the critical crack. The internal structure of the tested materials significantly influenced their fatigue behavior. Resin infiltrated ceramics were least influenced by fatigue while the characteristic strength of zirconia prevented core fracture but failure still occurred from the weaker veneer ceramic. Copyright © 2015 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.
Anatomical image-guided fluorescence molecular tomography reconstruction using kernel method
NASA Astrophysics Data System (ADS)
Baikejiang, Reheman; Zhao, Yue; Fite, Brett Z.; Ferrara, Katherine W.; Li, Changqing
2017-05-01
Fluorescence molecular tomography (FMT) is an important in vivo imaging modality to visualize physiological and pathological processes in small animals. However, FMT reconstruction is ill-posed and ill-conditioned due to strong optical scattering in deep tissues, which results in poor spatial resolution. It is well known that FMT image quality can be improved substantially by applying the structural guidance in the FMT reconstruction. An approach to introducing anatomical information into the FMT reconstruction is presented using the kernel method. In contrast to conventional methods that incorporate anatomical information with a Laplacian-type regularization matrix, the proposed method introduces the anatomical guidance into the projection model of FMT. The primary advantage of the proposed method is that it does not require segmentation of targets in the anatomical images. Numerical simulations and phantom experiments have been performed to demonstrate the proposed approach's feasibility. Numerical simulation results indicate that the proposed kernel method can separate two FMT targets with an edge-to-edge distance of 1 mm and is robust to false-positive guidance and inhomogeneity in the anatomical image. For the phantom experiments with two FMT targets, the kernel method has reconstructed both targets successfully, which further validates the proposed kernel method.
Borgarelli, Michele; Tursi, Massimiliano; La Rosa, Giuseppe; Savarino, Paolo; Galloni, Marco
2011-09-01
To compare echocardiographic variables of dogs with postmortem anatomic measurements and histologic characteristics of the mitral valve (MV). 21 cardiologically normal dogs. The MV was measured echocardiographically by use of the right parasternal 5-chamber long-axis view. Dogs were euthanized, and anatomic measurements of the MV annulus (MVa) were performed at the level of the left circumflex coronary artery. Mitral valve leaflets (MVLs) and chordae tendineae were measured. Structure of the MVLs was histologically evaluated in 3 segments (proximal, middle, and distal). Echocardiographic measurements of MVL length did not differ significantly from anatomic measurements. A positive correlation was detected between body weight and MVa area. There was a negative correlation between MVa area and the percentage by which the MVL area exceeded the MVa area. Anterior MVLs had a significantly higher number of chordae tendineae than did posterior MVLs. Histologically, layering of MVLs was less preserved in the distal segment, whereas the muscular component and adipose tissue were significantly more diffuse in the proximal and middle segments. The MV in cardiologically normal dogs had wide anatomic variability. Anatomic measurements of MVL length were correlated with echocardiographic measurements.
Chino, Kentaro; Takahashi, Hideyuki
2016-04-01
Passive joint stiffness is an important quantitative measure of flexibility, but is affected by muscle volume and all of the anatomical structures located within and over the joint. Shear wave elastography can assess muscle elasticity independent of the influences of muscle volume and the other nearby anatomical structures. We determined how muscle elasticity, as measured using shear wave elastography, is associated with passive joint stiffness and patient sex. Twenty-six healthy men (24.4 ± 5.9 years) and 26 healthy women (25.2 ± 4.8 years) participated in this study. The passive ankle joint stiffness and tissue elasticity of the medial gastrocnemius (MG) were quantified with the ankle in 30° plantar flexion (PF), a neutral anatomical position (NE), and 20° dorsiflexion (DF). No significant difference in passive joint stiffness by sex was observed with the ankle in PF, but significantly greater passive ankle joint stiffness in men than in women was observed in NE and DF. The MG elasticity was not significantly associated with joint stiffness in PF or NE, but it was significantly associated with joint stiffness in DF. There were no significant differences in MG elasticity by sex at any ankle position. Muscle elasticity, measured independent of the confounding effects of muscle volume and the other nearby anatomical structures, is associated with passive joint stiffness in the joint position where the muscle is sufficiently lengthened, but does not vary by sex in any joint position tested.
Chandra, Poornima; Govindaraju, Poornima; Chowdhary, Ramesh
2016-01-01
Oral rehabilitation using implants is rapidly replacing tooth supported prostheses. The success of implants is largely dependent on the quality and quantity of alveolar bone. In this study, we assessed the location of limiting anatomical structures and the amount of alveolar bone available for implant placement. Six hundred digital panoramic radiographs (300 males and 300 females) of dentate patients aged between 15-60 years were selected from the archives. The radiographs were subdivided into 3 groups with age interval of 15 years. Then the location of mental foramen, anterior loop, mandibular canal and maxillary sinus was determined. The amount of bone available was measured in both maxilla and mandible in the premolar and molar regions. The mental foramen was most commonly located at the apex of the second premolar in both the genders. The anterior loop was more readily visible in the younger age group. The amount of bone available in the premolar and molar region of the mandible is nearly the same, while more bone is available in the premolar region of the maxilla. The location and morphology of anatomical structures of the jaws vary not only in different populations but also within the same population. The amount of bone available also showed variations in the same population and in the same individual on the right and left sides. The limiting anatomical structures govern the amount of bone available for possible implant placement.
ERIC Educational Resources Information Center
Kunt, Halil
2016-01-01
The purpose of this research was to determine science student teachers' level of knowledge about the anatomical structure of two sensory organs, the eye and the ear, in addition to vision and hearing processes. Conducted with 86 science student teachers, research utilized drawing methods and open-ended questions as data collection instruments. The…
Ziegler, Christoph M; Klimowicz, Thomas R
2013-01-01
An increasing number of different types of commercial cone-beam computed tomography (CBCT) devices are available for three-dimensional (3D) imaging in the field of dental and maxillofacial radiology. When removing impacted or supernumerary teeth, surgical teams often operate adjacent significant anatomical structures such as nerves, vessels, adjacent teeth roots, and paranasal sinuses. It is therefore important to choose the appropriate surgical approach to avoid iatrogenic damage to the essential anatomical neighbouring structures. CBCT, also called digital volume tomography (DVT), can visualize impacted and supernumerary teeth in all standard planes, as well as multisectional 3D views. These devices have shown to be highly beneficial in the assessment of small bony lesions and maxillofacial injuries. However, it is still necessary to determine the effectiveness of such devices in the assessment of impacted and supernumerary teeth, in comparison to the conventional radiological methods of intraoral X-rays and panoramic X-rays. During a period of 2 years, a total of 61 patients of whom majority had impacted teeth or supernumerary elements in the frontal maxillary region were studied with CBCT and treated at the St. Olavs University Hospital. Patients were referred to our Department of Oral and Maxillofacial Surgery with both conventional and digital intraoral X-rays and/or panoramic X-rays. None had any acute infections or odontogenic abscesses, and most presented with asymptomatic impacted tooth. A comparison between the preoperative conventional and the CBCT images, the resulting diagnoses, and the intraoperative findings as "gold standard" were made and recorded in a compiled scoring sheet. The objects of interest were researched with the magnification method. Each patient was identified only with a patient number. In contrast to the conventional X-rays, the pre-surgical evaluation with the CBCT revealed detailed imaging of significant anatomical structures and objects of interest, with highly accurate anatomical and morphologic imaging, when compared to the intraoperative findings. Furthermore, no diagnostic problems, in relation to the anatomical localization, occurred preoperatively. The CBCT provides true and precise anatomical information with high surgical predictability without distortion or artefacts, and is superior to conventional radiography. It enables more time-efficient surgeries and reduces costs and surgical complications.
Automatic anatomical segmentation of the liver by separation planes
NASA Astrophysics Data System (ADS)
Boltcheva, Dobrina; Passat, Nicolas; Agnus, Vincent; Jacob-Da, Marie-Andrée, , Col; Ronse, Christian; Soler, Luc
2006-03-01
Surgical planning in oncological liver surgery is based on the location of the 8 anatomical segments according to Couinaud's definition and tumors inside these structures. The detection of the boundaries between the segments is then the first step of the preoperative planning. The proposed method, devoted to binary images of livers segmented from CT-scans, has been designed to delineate these segments. It automatically detects a set of landmarks using a priori anatomical knowledge and differential geometry criteria. These landmarks are then used to position the Couinaud's segments. Validations performed on 7 clinical cases tend to prove that the method is reliable for most of these separation planes.
Anatomically accurate individual face modeling.
Zhang, Yu; Prakash, Edmond C; Sung, Eric
2003-01-01
This paper presents a new 3D face model of a specific person constructed from the anatomical perspective. By exploiting the laser range data, a 3D facial mesh precisely representing the skin geometry is reconstructed. Based on the geometric facial mesh, we develop a deformable multi-layer skin model. It takes into account the nonlinear stress-strain relationship and dynamically simulates the non-homogenous behavior of the real skin. The face model also incorporates a set of anatomically-motivated facial muscle actuators and underlying skull structure. Lagrangian mechanics governs the facial motion dynamics, dictating the dynamic deformation of facial skin in response to the muscle contraction.
Modeling Functional Neuroanatomy for an Anatomy Information System
Niggemann, Jörg M.; Gebert, Andreas; Schulz, Stefan
2008-01-01
Objective Existing neuroanatomical ontologies, databases and information systems, such as the Foundational Model of Anatomy (FMA), represent outgoing connections from brain structures, but cannot represent the “internal wiring” of structures and as such, cannot distinguish between different independent connections from the same structure. Thus, a fundamental aspect of Neuroanatomy, the functional pathways and functional systems of the brain such as the pupillary light reflex system, is not adequately represented. This article identifies underlying anatomical objects which are the source of independent connections (collections of neurons) and uses these as basic building blocks to construct a model of functional neuroanatomy and its functional pathways. Design The basic representational elements of the model are unnamed groups of neurons or groups of neuron segments. These groups, their relations to each other, and the relations to the objects of macroscopic anatomy are defined. The resulting model can be incorporated into the FMA. Measurements The capabilities of the presented model are compared to the FMA and the Brain Architecture Management System (BAMS). Results Internal wiring as well as functional pathways can correctly be represented and tracked. Conclusion This model bridges the gap between representations of single neurons and their parts on the one hand and representations of spatial brain structures and areas on the other hand. It is capable of drawing correct inferences on pathways in a nervous system. The object and relation definitions are related to the Open Biomedical Ontology effort and its relation ontology, so that this model can be further developed into an ontology of neuronal functional systems. PMID:18579841
2017-01-01
Placoderms are considered as the first jawed vertebrates and constitute a paraphyletic group in the stem-gnathostome grade. The acanthothoracid placoderms are among the phylogenetically most basal and morphologically primitive gnathostomes, but their neurocranial anatomy is poorly understood. Here we present a near-complete three-dimensional skull of Romundina stellina, a small Early Devonian acanthothoracid from the Canadian Arctic Archipelago, scanned with propagation phase contrast microtomography at a 7.46 μm isotropic voxel size at the European Synchrotron Radiation Facility, Grenoble, France. This is the first model of an early gnathostome skull produced using this technique, and as such represents a major advance in objectivity compared to past descriptions of placoderm neurocrania on the basis of grinding series. Despite some loss of material along an oblique crack, most of the internal structures are remarkably preserved, and most of the missing structures can be reconstructed by symmetry. This virtual approach offers the possibility to connect with certainty all the external foramina to the blood and nerve canals and the central structures, and thus identify accurate homologies without destroying the specimen. The high level of detail enables description of the main arterial, venous and nerve canals of the skull, and other perichondrally ossified endocranial structures such as the palatoquadrate articulations, the endocranial cavity and the inner ear cavities. The braincase morphology appears less extreme than that of Brindabellaspis, and is in some respects more reminiscent of a basal arthrodire such as Kujdanowiaspis. PMID:28170434
Spindler, Nick; Kaatz, Florian; Feja, Christine; Etz, Christian; Mohr, Friedrich-Wilhelm; Bechmann, Ingo; Josten, Christoph; Langer, Stefan; Loeffler, Sabine
2017-01-01
Introduction: Deep sternal wound infections (DSWI) are a rare but devastating complication after median sternotomy. Minor perfusion in bone and soft tissue, especially after recruiting the internal mammary artery for bypass supports the development of wound infection and nonunion of the sternal bone. The aim of the study was the macroscopic and radiological presentation of the vascular system supplying the sternum, in particular the compensating blood supply routes in the event that the internal mammary artery is no longer available after use as a bypass vessel. Method: This anatomic study was carried out on the anterior chest wall of 7 specimens. The thorax plates of 7 specimens were analyzed macroscopically after microsurgical preparation. Different anatomic preparations were produced using different contrast or form-giving substances. Radiological analysis and three-dimensional reconstructions were performed to show alternative, collateral sternal vessel perfusion under estimation of the loss of the internal thoracic artery due to a bypass. Results: The length of the ITA (internal thoracic artery), measured from the beginning of the first rib to the division into the superior epigastric artery and musculophrenic artery, was an average of 16.3 cm. On average, 18.5 branches were delivered from each artery, 10 medially to the sternum supply, and 8 to the intercostal muscle. Conclusion: Our analysis gives an overview of the macroanatomic vessel system supplying the sternal bone, describing especially a common trunk deriving from the ITA and supplying multiple branches and playing an important role in building a collateral circulation of the sternum. For better evaluation, in vivo CT analysis with contrast media should be performed in patients prior to the operation and directly after the use of the double ITA to demonstrate the change in perfusion of the sternum. In the future, preconditioning of the sternum by coiling the deriving branches could become an option, although patient selection has to be improved and further analysis of the topic performed.
Anatomic suitability of aortoiliac aneurysms for next generation branched systems.
Pearce, Benjamin J; Varu, Vinit N; Glocker, Roan; Novak, Zdenek; Jordan, William D; Lee, Jason T
2015-01-01
Preservation of internal iliac flow is an important consideration to prevent ischemic complications during endovascular aneurysm repair. We sought to determine the suitability of aortoiliac aneurysms for off-the-shelf iliac branched systems currently in clinical trial. Patients undergoing abdominal aortic aneurysm repair from 2004 to 2013 at 2 institutions were reviewed. Centerline diameters and lengths of aortoiliac morphology were measured using three-dimensional workstations and compared with inclusion/exclusion criteria for both Cook and Gore iliac branch devices. Of the nearly 2,400 aneurysm repairs performed during the study period, 99 patients had common iliac aneurysms suitable for imaging review. Eighteen of the 99 (18.2%) patients and 25/99 (25.3%) patients fit the inclusion criteria and would have been able to be treated using the Cook and Gore iliac branch devices, respectively. The most common reason for exclusion from Cook was internal iliac diameter of <6 or >9 mm (68/99, 68.7%). The most common reason for exclusion from Gore was proximal common iliac diameter of <17 mm (39/99, 39.4%) and inadequate internal iliac artery diameter of <6.5 or >13.5 mm (37/99, 37.3%). Comparing the included patients across both devices, a total of 35/99 (35.4%) of patients would be eligible for the treatment of aortoiliac aneurysms based on anatomic criteria. Only 35% of the aneurysm repairs involving common iliac arteries would have been candidates for the 2 iliac branch devices currently in trial based on anatomic criteria. The major common reason for exclusion is the internal iliac landing zone for both devices. Design modifications for future generation iliac branch technology should focus on diameter accommodations for the hypogastric branch stent and proximal and distal sizes of the iliac branch components. Familiarity with alternate branch preserving techniques is still needed in the majority of cases. Copyright © 2015 Elsevier Inc. All rights reserved.
Nelson, Eric W
2018-05-01
Although there is frequently an element of variability found in human anatomy, we tend to think of anatomic structures as following the pattern in which we, as surgeons, most frequently encounter them. Though it is possible that a variant pattern of a commonly encountered anatomic structure has "never been seen" by us as surgeons, the constant process of learning sometimes leads us to ask ourselves whether we have truly never encountered such a structure or condition before or whether we simply did not recognize it when it "saw us." Copyright © 2018 Arthroscopy Association of North America. Published by Elsevier Inc. All rights reserved.
Cassetta, M; Di Carlo, S; Pranno, N; Stagnitti, A; Pompa, V; Pompa, G
2012-12-01
The pre-operative evaluation in oral and maxillofacial surgery is currently performed by computerized tomography (CT). However in some case the information of the traditional imaging methods are not enough in the diagnosis and surgical planning. The efficacy of these imaging methods in the evaluation of soft tissues is lower than magnetic resonance imaging (MRI). The aim of the study was to show the use of MRI in the evaluation of relation between intraosseous lesions of the jaws and anatomical structures, when it was difficult using the traditional radiographic methods, and to evaluate the usefulness of MRI to depict the morphostructural characterization of the lesions and infiltration of the soft tissues. 10 patients with a lesion of jaw were selected. All the patients underwent panoramic radiography (OPT), CT and MRI. The images were examined by dental and maxillofacial radiology who compared the different imaging methods to analyze the morphological and structural characteristics of the lesion and assessed the relationship between the lesion and the anatomical structures. Magnetic resonance imaging provided more detailed spatial and structural information than other imaging methods. MRI allowed us to characterize the intraosseous lesions of the jaws and to plan the surgery, resulting in a lower risk of anatomic structures surgical injury.
The light response of mesophyll conductance is controlled by structure across leaf profiles.
Théroux-Rancourt, Guillaume; Gilbert, Matthew E
2017-05-01
Mesophyll conductance to CO 2 (g m ) may respond to light either through regulated dynamic mechanisms or due to anatomical and structural factors. At low light, some layers of cells in the leaf cross-section approach photocompensation and contribute minimally to bulk leaf photosynthesis and little to whole leaf g m (g m,leaf ). Thus, the bulk g m,leaf will appear to respond to light despite being based upon cells having an anatomically fixed mesophyll conductance. Such behaviour was observed in species with contrasting leaf structure using the variable J or stable isotope method of measuring g m,leaf . A species with bifacial structure, Arbutus × 'Marina', and an isobilateral species, Triticum durum L., had contrasting responses of g m,leaf upon varying adaxial or abaxial illumination. Anatomical observations, when coupled with the proposed model of g m,leaf to photosynthetic photon flux density (PPFD) response, successfully represented the observed gas exchange data. The theoretical and observed evidence that g m,leaf apparently responds to light has large implications for how g m,leaf values are interpreted, particularly limitation analyses, and indicates the importance of measuring g m under full light saturation. Responses of g m,leaf to the environment should be treated as an emergent property of a distributed 3D structure, and not solely a leaf area-based phenomenon. © 2016 John Wiley & Sons Ltd.
Dameron, O; Gibaud, B; Morandi, X
2004-06-01
The human cerebral cortex anatomy describes the brain organization at the scale of gyri and sulci. It is used as landmarks for neurosurgery as well as localization support for functional data analysis or inter-subject data comparison. Existing models of the cortex anatomy either rely on image labeling but fail to represent variability and structural properties or rely on a conceptual model but miss the inner 3D nature and relations of anatomical structures. This study was therefore conducted to propose a model of sulco-gyral anatomy for the healthy human brain. We hypothesized that both numeric knowledge (i.e., image-based) and symbolic knowledge (i.e., concept-based) have to be represented and coordinated. In addition, the representation of this knowledge should be application-independent in order to be usable in various contexts. Therefore, we devised a symbolic model describing specialization, composition and spatial organization of cortical anatomical structures. We also collected numeric knowledge such as 3D models of shape and shape variation about cortical anatomical structures. For each numeric piece of knowledge, a companion file describes the concept it refers to and the nature of the relationship. Demonstration software performs a mapping between the numeric and the symbolic aspects for browsing the knowledge base.
Computed Tomography of the Normal Bovine Tarsus.
Hagag, U; Tawfiek, M; Brehm, W; Gerlach, K
2016-12-01
The objective of this study was to provide a detailed multiplanar computed tomographic (CT) anatomic reference for the bovine tarsus. The tarsal regions from twelve healthy adult cow cadavers were scanned in both soft and bone windows via a 16-slice multidetector CT scanner. Tarsi were frozen at -20 o C and sectioned to 10-mm-thick slices in transverse, dorsal and sagittal planes respecting the imaging protocol. The frozen sections were cleaned and then photographed. Anatomic structures were identified, labelled and compared with the corresponding CT images. The sagittal plane was indispensable for evaluation of bone contours, the dorsal plane was valuable in examination of the collateral ligaments, and both were beneficial for assessment of the tarsal joint articulations. CT images allowed excellent delineation between the cortex and medulla of bones, and the trabecular structure was clearly depicted. The tarsal soft tissues showed variable shades of grey, and the synovial fluid was the lowest attenuated structure. This study provided full assessment of the clinically relevant anatomic structures of the bovine tarsal joint. This technique may be of value when results from other diagnostic imaging techniques are indecisive. Images presented in this study should serve as a basic CT reference and assist in the interpretation of various bovine tarsal pathology. © 2016 Blackwell Verlag GmbH.
Imaging structural covariance in the development of intelligence.
Khundrakpam, Budhachandra S; Lewis, John D; Reid, Andrew; Karama, Sherif; Zhao, Lu; Chouinard-Decorte, Francois; Evans, Alan C
2017-01-01
Verbal and non-verbal intelligence in children is highly correlated, and thus, it has been difficult to differentiate their neural substrates. Nevertheless, recent studies have shown that verbal and non-verbal intelligence can be dissociated and focal cortical regions corresponding to each have been demonstrated. However, the pattern of structural covariance corresponding to verbal and non-verbal intelligence remains unexplored. In this study, we used 586 longitudinal anatomical MRI scans of subjects aged 6-18 years, who had concurrent intelligence quotient (IQ) testing on the Wechsler Abbreviated Scale of Intelligence. Structural covariance networks (SCNs) were constructed using interregional correlations in cortical thickness for low-IQ (Performance IQ=100±8, Verbal IQ=100±7) and high-IQ (PIQ=121±8, VIQ=120±9) groups. From low- to high-VIQ group, we observed constrained patterns of anatomical coupling among cortical regions, complemented by observations of higher global efficiency and modularity, and lower local efficiency in high-VIQ group, suggesting a shift towards a more optimal topological organization. Analysis of nodal topological properties (regional efficiency and participation coefficient) revealed greater involvement of left-hemispheric language related regions including inferior frontal and superior temporal gyri for high-VIQ group. From low- to high-PIQ group, we did not observe significant differences in anatomical coupling patterns, global and nodal topological properties. Our findings indicate that people with higher verbal intelligence have structural brain differences from people with lower verbal intelligence - not only in localized cortical regions, but also in the patterns of anatomical coupling among widely distributed cortical regions, possibly resulting to a system-level reorganization that might lead to a more efficient organization in high-VIQ group. Crown Copyright © 2016. Published by Elsevier Inc. All rights reserved.
The Quality of In Vivo Upconversion Fluorescence Signals Inside Different Anatomic Structures.
Wang, Lijiang; Draz, Mohamed Shehata; Wang, Wei; Liao, Guodong; Xu, Yuhong
2015-02-01
Fluorescence imaging is a broadly interesting and rapidly growing strategy for non-invasive clinical applications. However, because of interference from light scattering, absorbance, and tissue autofluorescence, the images can exhibit low sensitivity and poor quality. Upconversion fluorescence imaging, which is based on the use of near-infrared (NIR) light for excitation, has recently been introduced as an improved approach to minimize the effects of light scattering and tissue autofluorescence. This strategy is promising for ultrasensitive and deep tissue imaging applications. However, the emitted upconversion fluorescence signals are primarily in the visible range and are likely to be absorbed and scattered by tissues. Therefore, different anatomic structures could impose various effects on the quality of the images. In this study, we used upconversion-core/silica-shell nanoprobes to evaluate the quality of upconversion fluorescence at different anatomic locations in athymic nude mice. The nanoprobe contained an upconversion core, which was green (β-NaYF4:Yb3+/Ho3+) or red (β-NaYF4:Yb3+/Er3+), and a nonporous silica shell to allow for multicolor imaging. High-quality upconversion fluorescence signals were detected with signal-to-noise ratios of up to 170 at tissue depths of up to - 1.0 cm when a 980 nm laser excitation source and a bandpass emission filter were used. The presence of dense tissue structures along the imaging path reduced the signal intensity and imaging quality, and nanoprobes with longer-wavelength emission spectra were therefore preferable. This study offers a detailed analysis of the quality of upconversion signals in vivo inside different anatomic structures. Such information could be essential for the analysis of upconversion fluorescence images in any in vivo biodiagnostic and microbial tracking applications.
Conjoined twin piglets with duplicated cranial and caudal axes.
McManus, C A; Partlow, G D; Fisher, K R
1994-06-01
Twins with doubling of the cranial and caudal poles, yet having a single thorax, are rare. One set of diprosopus, dipygus porcine conjoined twins was studied. In addition to the conjoining anomaly, these twins also exhibited ambiguous internal reproductive features. The twins had two snouts, three eyes, a single thorax, and were duplicated from the umbilicus caudally. Radiography indicated a single vertebral column in the cervical region. The vertebral columns were separate caudally from this point. There was a total of six limbs--one pair of forelimbs and two pairs of hindlimbs. Many medial structures failed to develop in these twins. Medial cranial nerves V-XII were absent or displaced although apparently normal laterally. The medial palates were present but shortened, whereas the medial mandibular rami had folded back on themselves rostrally to form a midline mass between the two chins. Each twin had only one lateral kidney and one lateral testis. Medial scrotal sacs were present but devoid of a testis. There was a midline, "uterine"-like structure which crossed between the twins. However, histological analysis of this structure revealed it to be dysplastic testicular tissue. The relationship between the abnormal reproductive features in these twins and the conjoining is unclear. The anatomy of these twins, in addition to the literature reviewed, illustrates the internal anatomical heterogeneity of grossly similar conjoined twins. A review of the literature also suggests that conjoined twinning may be more common in swine than was previously suspected.
Hall, M Kennedy; Mirjalili, S Ali; Moore, Christopher L; Rizzolo, Lawrence J
2015-01-01
Anatomy students are often confused by multiple names ascribed to the same structure by different clinical disciplines. Increasingly, sonography is being incorporated into clinical anatomical education, but ultrasound textbooks often use names unfamiliar to the anatomist. Confusion is worsened when ultrasound names ascribed to the same structure actually refer to different structures. Consider the sonographic main lobar fissure (MLF). The sonographic MLF is a hyper-echoic landmark used by sonographers of the right upper quadrant. Found in approximately 70% of people, there is little consensus on what the sonographic MLF is anatomically. This structure appears to be related to the main portal fissure (aka principal plane of the liver or principal hepatic fissure), initially described by anatomists and surgeons as in intrahepatic division along the middle hepatic vein which in essence divides the territories of the left and right hepatic arteries and biliary systems. By exploring the relationship between the main portal fissure and the sonographic MLF in cadaveric livers ex vivo, the data suggest the sonographic MLF is actually an extrahepatic structure that parallels the rim of the main portal fissure. The authors recommend that this structure be renamed the "sonographic cystic pedicle," which includes the cystic duct and ensheathing fat and blood vessels. In the context of the redefined underlying anatomy, the absence of the sonographic cystic pedicle due to anatomic variation may serve an important clinical role in predicting complications from difficult laparoscopic cholecystectomies and is deserving of future study. © 2015 American Association of Anatomists.
Construction of a three-dimensional interactive model of the skull base and cranial nerves.
Kakizawa, Yukinari; Hongo, Kazuhiro; Rhoton, Albert L
2007-05-01
The goal was to develop an interactive three-dimensional (3-D) computerized anatomic model of the skull base for teaching microneurosurgical anatomy and for operative planning. The 3-D model was constructed using commercially available software (Maya 6.0 Unlimited; Alias Systems Corp., Delaware, MD), a personal computer, four cranial specimens, and six dry bones. Photographs from at least two angles of the superior and lateral views were imported to the 3-D software. Many photographs were needed to produce the model in anatomically complex areas. Careful dissection was needed to expose important structures in the two views. Landmarks, including foramen, bone, and dura mater, were used as reference points. The 3-D model of the skull base and related structures was constructed using more than 300,000 remodeled polygons. The model can be viewed from any angle. It can be rotated 360 degrees in any plane using any structure as the focal point of rotation. The model can be reduced or enlarged using the zoom function. Variable transparencies could be assigned to any structures so that the structures at any level can be seen. Anatomic labels can be attached to the structures in the 3-D model for educational purposes. This computer-generated 3-D model can be observed and studied repeatedly without the time limitations and stresses imposed by surgery. This model may offer the potential to create interactive surgical exercises useful in evaluating multiple surgical routes to specific target areas in the skull base.
Current issues with standards in the measurement and documentation of human skeletal anatomy.
Magee, Justin; McClelland, Brian; Winder, John
2012-09-01
Digital modeling of human anatomy has become increasingly important and relies on well-documented quantitative anatomy literature. This type of documentation is common for the spine and pelvis; however, significant issues exist due to the lack of standardization in measurement and technique. Existing literature on quantitative anatomy for the spine and pelvis of white adults (aged 18-65 years, separated into decadal categories) was reviewed from the disciplines of anatomy, manipulative therapy, anthropometrics, occupational ergonomics, biomechanics and forensic science. The data were unified into a single normative model of the sub-axial spine. Two-dimensional orthographic drawings were produced from the 590 individual measurements identified, which informed the development of a 3D digital model. A similar review of full range of motion data was conducted as a meta-analysis and the results were applied to the existing model, providing an inter-connected, articulated digital spine. During these data analysis processes several inconsistencies were observed accompanied by an evidential lack of standardization with measurement and recording of data. These have been categorized as: anatomical terminology; scaling of measurements; measurement methodology, dimension and anatomical reference positions; global coordinate systems. There is inconsistency in anatomical terminology where independent researchers use the same terms to describe different aspects of anatomy or different terms for the same anatomy. Published standards exist for measurement methods of the human body regarding spatial interaction, anthropometric databases, automotive applications, clothing industries and for computer manikins, but none exists for skeletal anatomy. Presentation of measurements often lacks formal structure in clinical publications, seldom providing geometric reference points, therefore making digital reconstruction difficult. Published quantitative data does not follow existing international published standards relating to engineering drawing and visual communication. Large variations are also evident in standards or guidelines used for global coordinate systems across biomechanics, ergonomics, software systems and 3D software applications. This paper identifies where established good practice exists and suggests additional recommendations, informing an improved communication protocol, to assist reconstruction of skeletal anatomy using 3D digital modeling. © 2012 The Authors. Journal of Anatomy © 2012 Anatomical Society.
Congenital completely buried penis in boys: anatomical basis and surgical technique.
Liu, Xing; He, Da-wei; Hua, Yi; Zhang, De-ying; Wei, Guang-hui
2013-07-01
WHAT'S KNOWN ON THE SUBJECT? AND WHAT DOES THE STUDY ADD?: Surgical correction of the congenital completely buried penis (CCBP) is a difficult challenge and there is no unanimous consensus about the surgical 'gold standard' and patient eligibility for surgery. In the present study, dysgenetic fundiform ligaments were found to be attached to the distal or middle shaft of the penis. This abnormality can be successfully corrected by releasing the fundiform ligament and mobilising the scrotal skin to cover the length of the penile shaft. The study shows that the paucity and traction of the penile skin and an abnormal fundiform ligament are important anatomical defects in CCBP. Dorsal curve and severe shortage of penile skin in erectile conditions are the main indications for surgical correction. To present our experience of anatomical findings for congenital completely buried penis (CCBP), which has no unanimous consensus regarding the 'gold standard' for surgical correction and patient eligibility, by providing our surgical technique and illustrations. Between February 2006 and February 2011, 22 children with a median (range) age of 4.2 (2.5-5.8) years, with CCBP underwent surgical correction by one surgeon. Toilet training and photographs of morning erections by parents were advised before surgery. The abnormal anatomical structure of buried penis during the operation was observed. The technique consisted of the release of the fundiform ligament, fixation of the subcutaneous penile skin at the base of the degloved penis, penoscrotal Z-plasty and mobilisation of the penile and scrotal skin to cover the penile shaft. In reflex erectile conditions, CCBP presents varying degrees of dorsal curve and shortage of penile skin. Dysgenetic fundiform ligaments were found to be attached to the distal or middle shaft of the penis in all patients. All wounds healed well and the cosmetic outcome was good at 6-month follow-up after the repair. The appearance of the dorsal curve in CCBP mainly results from the traction of penile dorsal skin and the abnormal attachment of the fundiform ligament to the shaft. This abnormality can be successfully corrected by releasing the abnormal fundiform ligament and mobilising scrotal skin to cover the length of the penile shaft. © 2013 BJU International.
Ocular examination for trauma; clinical ultrasound aboard the International Space Station.
Chiao, Leroy; Sharipov, Salizhan; Sargsyan, Ashot E; Melton, Shannon; Hamilton, Douglas R; McFarlin, Kellie; Dulchavsky, Scott A
2005-05-01
Ultrasound imaging is a successful modality in a broad variety of diagnostic applications including trauma. Ultrasound has been shown to be accurate when performed by non-radiologist physicians; recent reports have suggested that non-physicians can perform limited ultrasound examinations. A multipurpose ultrasound system is installed on the International Space Station (ISS) as a component of the Human Research Facility (HRF). This report documents the first ocular ultrasound examination conducted in space, which demonstrated the capability to assess physiologic alterations or pathology including trauma during long-duration space flight. An ISS crewmember with minimal sonography training was remotely guided by an imaging expert from Mission Control Center (MCC) through a comprehensive ultrasound examination of the eye. A multipurpose ultrasound imager was used in conjunction with a space-to-ground video downlink and two-way audio. Reference cards with topological reference points, hardware controls, and target images were used to facilitate the examination. Multiple views of the eye structures were obtained through a closed eyelid. Pupillary response to light was demonstrated by modifying the light exposure of the contralateral eye. A crewmember on the ISS was able to complete a comprehensive ocular examination using B- and M-mode ultrasonography with remote guidance from an expert in the MCC. Multiple anteroposterior, oblique, and coronal views of the eye clearly demonstrated the anatomic structures of both segments of the globe. The iris and pupil were readily visualized with probe manipulation. Pupillary diameter was assessed in real time in B- and M-mode displays. The anatomic detail and fidelity of ultrasound video were excellent and could be used to answer a variety of clinical and space physiologic questions. A comprehensive, high-quality ultrasound examination of the eye was performed with a multipurpose imager aboard the ISS by a non-expert operator using remote guidance. Ocular ultrasound images were of diagnostic quality despite the 2-second communication latency and the unconventional setting of a weightless spacecraft environment. The remote guidance techniques developed to facilitate this successful NASA research experiment will support wider applications of ultrasound for remote medicine on Earth including the assessment of pupillary reactions in patients with severe craniofacial trauma and swelling.
Ocular examination for trauma; clinical ultrasound aboard the International Space Station
NASA Technical Reports Server (NTRS)
Chiao, Leroy; Sharipov, Salizhan; Sargsyan, Ashot E.; Melton, Shannon; Hamilton, Douglas R.; McFarlin, Kellie; Dulchavsky, Scott A.
2005-01-01
BACKGROUND: Ultrasound imaging is a successful modality in a broad variety of diagnostic applications including trauma. Ultrasound has been shown to be accurate when performed by non-radiologist physicians; recent reports have suggested that non-physicians can perform limited ultrasound examinations. A multipurpose ultrasound system is installed on the International Space Station (ISS) as a component of the Human Research Facility (HRF). This report documents the first ocular ultrasound examination conducted in space, which demonstrated the capability to assess physiologic alterations or pathology including trauma during long-duration space flight. METHODS: An ISS crewmember with minimal sonography training was remotely guided by an imaging expert from Mission Control Center (MCC) through a comprehensive ultrasound examination of the eye. A multipurpose ultrasound imager was used in conjunction with a space-to-ground video downlink and two-way audio. Reference cards with topological reference points, hardware controls, and target images were used to facilitate the examination. Multiple views of the eye structures were obtained through a closed eyelid. Pupillary response to light was demonstrated by modifying the light exposure of the contralateral eye. RESULTS: A crewmember on the ISS was able to complete a comprehensive ocular examination using B- and M-mode ultrasonography with remote guidance from an expert in the MCC. Multiple anteroposterior, oblique, and coronal views of the eye clearly demonstrated the anatomic structures of both segments of the globe. The iris and pupil were readily visualized with probe manipulation. Pupillary diameter was assessed in real time in B- and M-mode displays. The anatomic detail and fidelity of ultrasound video were excellent and could be used to answer a variety of clinical and space physiologic questions. CONCLUSIONS: A comprehensive, high-quality ultrasound examination of the eye was performed with a multipurpose imager aboard the ISS by a non-expert operator using remote guidance. Ocular ultrasound images were of diagnostic quality despite the 2-second communication latency and the unconventional setting of a weightless spacecraft environment. The remote guidance techniques developed to facilitate this successful NASA research experiment will support wider applications of ultrasound for remote medicine on Earth including the assessment of pupillary reactions in patients with severe craniofacial trauma and swelling.
Unusual anatomy of a maxillary first molar with two palatal roots: a case report.
Tomazinho, Flávia S F; Baratto-Filho, Flares; Zaitter, Suellen; Leonardi, Denise P; Gonzaga, Carla C
2010-03-01
The success of endodontic therapy is based on good endodontic access, correct cleaning and shaping, and adequate root canal obturation. However, endodontic treatment is also dependent on a sound knowledge of the internal anatomy of human teeth, especially when anatomical variations are present. Certain anatomical changes may be present to varying degrees, and it is important to report these to improve the understanding and expertise of endodontic specialists. With this aim in mind, this study reports an example of a maxillary first molar showing unusual anatomy (four roots and six root canals) and describes the endodontic treatment that was employed.
Aoki, Yasuko; Endo, Hidenori; Niizuma, Kuniyasu; Inoue, Takashi; Shimizu, Hiroaki; Tominaga, Teiji
2013-12-01
We report two cases with internal carotid artery(ICA)aneurysms, in which fusion image effectively indicated the anatomical variations of the anterior choroidal artery (AchoA). Fusion image was obtained using fusion application software (Integrated Registration, Advantage Workstation VS4, GE Healthcare). When the artery passed through the choroidal fissure, it was diagnosed as AchoA. Case 1 had an aneurysm at the left ICA. Left internal carotid angiography (ICAG) showed that an artery arising from the aneurysmal neck supplied the medial occipital lobe. Fusion image showed that this artery had a branch passing through the choroidal fissure, which was diagnosed as hyperplastic AchoA. Case 2 had an aneurysm at the supraclinoid segment of the right ICA. AchoA or posterior communicating artery (PcomA) were not detected by the right ICAG. Fusion image obtained from 3D vertebral angiography (VAG) and MRI showed that the right AchoA arose from the right PcomA. Fusion image obtained from the right ICAG and the left VAG suggested that the aneurysm was located on the ICA where the PcomA regressed. Fusion image is an effective tool for assessing anatomical variations of AchoA. The present method is simple and quick for obtaining a fusion image that can be used in a real-time clinical setting.
Anatomical nuances of the internal carotid artery in relation to the quadrangular space.
Dolci, Ricardo L L; Ditzel Filho, Leo F S; Goulart, Carlos R; Upadhyay, Smita; Buohliqah, Lamia; Lazarini, Paulo R; Prevedello, Daniel M; Carrau, Ricardo L
2018-01-01
OBJECTIVE The aim of this study was to evaluate the anatomical variations of the internal carotid artery (ICA) in relation to the quadrangular space (QS) and to propose a classification system based on the results. METHODS A total of 44 human cadaveric specimens were dissected endonasally under direct endoscopic visualization. During the dissection, the anatomical variations of the ICA and their relationship with the QS were noted. RESULTS The space between the paraclival ICAs (i.e., intercarotid space) can be classified as 1 of 3 different shapes (i.e., trapezoid, square, or hourglass) based on the trajectory of the ICAs. The ICA trajectories also directly influence the volumetric area of the QS. Based on its geometry, the QS was classified as one of the following: 1) Type A has the smallest QS area and is associated with a trapezoid intercarotid space, 2) Type B corresponds to the expected QS area (not minimized or enlarged) and is associated with a square intercarotid space, and 3) Type C has the largest QS area and is associated with an hourglass intercarotid space. CONCLUSIONS The different trajectories of the ICAs can modify the area of the QS and may be an essential parameter to consider for preoperative planning and defining the most appropriate corridor to reach Meckel's cave. In addition, ICA trajectories should be considered prior to surgery to avoid injuring the vessels.
Michelin, Paul; Kasprzak, Kevin; Dacher, Jean Nicolas; Lefebvre, Valentin; Duparc, Fabrice
2015-08-01
In the literature, shoulder ultrasound (US) protocols rely on the widely accepted anatomical concept of the infraspinatus tendon (IST) running parallel and posterior to the supraspinatus tendon (SST). To assess the IST, authors currently recommend placing the transducer posteroinferior to the acromion; however the examination of the anterosuperior part of the IST remains problematic. The aim of our study was to apply recent anatomical knowledge to propose a simple protocol to assess the IST over its entire width including its anterosuperior margin. Six non-diseased shoulders from four cadavers were assessed in hyperextended internal rotation (HIR) position with US anterosuperolateral approach followed by dissection. Twelve healthy volunteers underwent similar US examination of the shoulder. The IST is a thin, wide, strap-like tendon. The HIR position exposed the largest area of IST beyond the acromion; combined anterosuperolateral US approach enabled imaging of the IST over its entire width with transverse and longitudinal views. The anterosuperior margin of the IST was distinguishable from the SST. The anterosuperolateral US approach in HIR position enables an accurate assessment of the IST including the transverse plane. The limit between the SST and IST appears more clearly. • The hyperextended internal rotation of the shoulder brings the infraspinatus tendon forward. • The infraspinatus tendon is visible with anterosuperolateral ultrasound approach. • The anterosuperior margin of the infraspinatus tendon is visible with this technique.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vásquez Osorio, Eliana M., E-mail: e.vasquezosorio@erasmusmc.nl; Kolkman-Deurloo, Inger-Karine K.; Schuring-Pereira, Monica
Purpose: In the treatment of cervical cancer, large anatomical deformations, caused by, e.g., tumor shrinkage, bladder and rectum filling changes, organ sliding, and the presence of the brachytherapy (BT) applicator, prohibit the accumulation of external beam radiotherapy (EBRT) and BT dose distributions. This work proposes a structure-wise registration with vector field integration (SW+VF) to map the largely deformed anatomies between EBRT and BT, paving the way for 3D dose accumulation between EBRT and BT. Methods: T2w-MRIs acquired before EBRT and as a part of the MRI-guided BT procedure for 12 cervical cancer patients, along with the manual delineations of themore » bladder, cervix-uterus, and rectum-sigmoid, were used for this study. A rigid transformation was used to align the bony anatomy in the MRIs. The proposed SW+VF method starts by automatically segmenting features in the area surrounding the delineated organs. Then, each organ and feature pair is registered independently using a feature-based nonrigid registration algorithm developed in-house. Additionally, a background transformation is calculated to account for areas far from all organs and features. In order to obtain one transformation that can be used for dose accumulation, the organ-based, feature-based, and the background transformations are combined into one vector field using a weighted sum, where the contribution of each transformation can be directly controlled by its extent of influence (scope size). The optimal scope sizes for organ-based and feature-based transformations were found by an exhaustive analysis. The anatomical correctness of the mapping was independently validated by measuring the residual distances after transformation for delineated structures inside the cervix-uterus (inner anatomical correctness), and for anatomical landmarks outside the organs in the surrounding region (outer anatomical correctness). The results of the proposed method were compared with the results of the rigid transformation and nonrigid registration of all structures together (AST). Results: The rigid transformation achieved a good global alignment (mean outer anatomical correctness of 4.3 mm) but failed to align the deformed organs (mean inner anatomical correctness of 22.4 mm). Conversely, the AST registration produced a reasonable alignment for the organs (6.3 mm) but not for the surrounding region (16.9 mm). SW+VF registration achieved the best results for both regions (3.5 and 3.4 mm for the inner and outer anatomical correctness, respectively). All differences were significant (p < 0.02, Wilcoxon rank sum test). Additionally, optimization of the scope sizes determined that the method was robust for a large range of scope size values. Conclusions: The novel SW+VF method improved the mapping of large and complex deformations observed between EBRT and BT for cervical cancer patients. Future studies that quantify the mapping error in terms of dose errors are required to test the clinical applicability of dose accumulation by the SW+VF method.« less
Thomas, Cibu; Ye, Frank Q; Irfanoglu, M Okan; Modi, Pooja; Saleem, Kadharbatcha S; Leopold, David A; Pierpaoli, Carlo
2014-11-18
Tractography based on diffusion-weighted MRI (DWI) is widely used for mapping the structural connections of the human brain. Its accuracy is known to be limited by technical factors affecting in vivo data acquisition, such as noise, artifacts, and data undersampling resulting from scan time constraints. It generally is assumed that improvements in data quality and implementation of sophisticated tractography methods will lead to increasingly accurate maps of human anatomical connections. However, assessing the anatomical accuracy of DWI tractography is difficult because of the lack of independent knowledge of the true anatomical connections in humans. Here we investigate the future prospects of DWI-based connectional imaging by applying advanced tractography methods to an ex vivo DWI dataset of the macaque brain. The results of different tractography methods were compared with maps of known axonal projections from previous tracer studies in the macaque. Despite the exceptional quality of the DWI data, none of the methods demonstrated high anatomical accuracy. The methods that showed the highest sensitivity showed the lowest specificity, and vice versa. Additionally, anatomical accuracy was highly dependent upon parameters of the tractography algorithm, with different optimal values for mapping different pathways. These results suggest that there is an inherent limitation in determining long-range anatomical projections based on voxel-averaged estimates of local fiber orientation obtained from DWI data that is unlikely to be overcome by improvements in data acquisition and analysis alone.
Vrionis, F D; Robertson, J H; Foley, K T; Gardner, G
1997-01-01
Approaches through the middle cranial fossa directed at reaching the internal auditory canal (IAC) invariably employ exposure of the geniculate ganglion, the superior semicircular canal (SSC) or the epitympanum. This involves risk to the facial nerve and hearing apparatus. To minimize this risk, we conducted a laboratory study on 9 cadaver temporal bones by using an image-interactive guidance system (StealthStation) to provide topographic orientation in the middle fossa approach. Surface anatomic fiducials such as the umbo of the tympanic membrane, Henle's spine, the root of the zygoma and various sutures were used as fiducials for registration of CT-images of the temporal bone. Accurate localization of the IAC was achieved in every specimen. Mean target localization error varied from 1.20 to 1.38 mm for critical structures in the temporal bone such as the apex of the cochlea, crus commune, ampula of the SSC and facial hiatus. Our results suggest that frameless stereotaxy may be used as an alternative to current methods in localizing the IAC in patients with small vestibular schwannomas or intractable vertigo undergoing middle fossa surgery.
[Clinical practice guideline on closed tibial plateau fractures in adulthood].
Ocegueda-Sosa, Miguel Ángel; Valenzuela-Flores, Adriana Abigail; Aldaco-García, Víctor Daniel; Flores-Aguilar, Sergio; Manilla-Lezama, Nicolás; Pérez-Hernández, Jorge
2013-01-01
Closed tibiae plateau fractures are common injuries in the emergency room. The optimal treatment is not well defined or established. For this reason, there are several surgical management options: open reduction and internal fixation, closed reduction and percutaneous synthesis, external fixation, and even conservative treatment for this kind of fracture. The mechanism of production of this fracture is through large varus or valgus deformation to which is added a factor of axial load. The trauma may be direct or indirect. The degree of displacement, fragmentation and involvement of soft tissues like ligaments, menisci, vascular and nerve structures are determined by the magnitude of the force exerted. Any intra-articular fracture treatment can lead to an erroneous instability, deformity and limitation of motion with subsequent arthritic changes, leading to joint incongruity, limiting activity and significantly altering the quality of life. Open reduction and internal fixation with anatomic restitution is the method used in this type of fracture. However, the results of numerous publications can be questioned due to the inclusion in the same study of fractures treated with very different methods.
Automatic non-proliferative diabetic retinopathy screening system based on color fundus image.
Xiao, Zhitao; Zhang, Xinpeng; Geng, Lei; Zhang, Fang; Wu, Jun; Tong, Jun; Ogunbona, Philip O; Shan, Chunyan
2017-10-26
Non-proliferative diabetic retinopathy is the early stage of diabetic retinopathy. Automatic detection of non-proliferative diabetic retinopathy is significant for clinical diagnosis, early screening and course progression of patients. This paper introduces the design and implementation of an automatic system for screening non-proliferative diabetic retinopathy based on color fundus images. Firstly, the fundus structures, including blood vessels, optic disc and macula, are extracted and located, respectively. In particular, a new optic disc localization method using parabolic fitting is proposed based on the physiological structure characteristics of optic disc and blood vessels. Then, early lesions, such as microaneurysms, hemorrhages and hard exudates, are detected based on their respective characteristics. An equivalent optical model simulating human eyes is designed based on the anatomical structure of retina. Main structures and early lesions are reconstructed in the 3D space for better visualization. Finally, the severity of each image is evaluated based on the international criteria of diabetic retinopathy. The system has been tested on public databases and images from hospitals. Experimental results demonstrate that the proposed system achieves high accuracy for main structures and early lesions detection. The results of severity classification for non-proliferative diabetic retinopathy are also accurate and suitable. Our system can assist ophthalmologists for clinical diagnosis, automatic screening and course progression of patients.
Comparison of large-scale human brain functional and anatomical networks in schizophrenia.
Nelson, Brent G; Bassett, Danielle S; Camchong, Jazmin; Bullmore, Edward T; Lim, Kelvin O
2017-01-01
Schizophrenia is a disease with disruptions in thought, emotion, and behavior. The dysconnectivity hypothesis suggests these disruptions are due to aberrant brain connectivity. Many studies have identified connectivity differences but few have been able to unify gray and white matter findings into one model. Here we develop an extension of the Network-Based Statistic (NBS) called NBSm (Multimodal Network-based statistic) to compare functional and anatomical networks in schizophrenia. Structural, resting functional, and diffusion magnetic resonance imaging data were collected from 29 chronic patients with schizophrenia and 29 healthy controls. Images were preprocessed, and average time courses were extracted for 90 regions of interest (ROI). Functional connectivity matrices were estimated by pairwise correlations between wavelet coefficients of ROI time series. Following diffusion tractography, anatomical connectivity matrices were estimated by white matter streamline counts between each pair of ROIs. Global and regional strength were calculated for each modality. NBSm was used to find significant overlap between functional and anatomical components that distinguished health from schizophrenia. Global strength was decreased in patients in both functional and anatomical networks. Regional strength was decreased in all regions in functional networks and only one region in anatomical networks. NBSm identified a distinguishing functional component consisting of 46 nodes with 113 links (p < 0.001), a distinguishing anatomical component with 47 nodes and 50 links (p = 0.002), and a distinguishing intermodal component with 26 nodes (p < 0.001). NBSm is a powerful technique for understanding network-based group differences present in both anatomical and functional data. In light of the dysconnectivity hypothesis, these results provide compelling evidence for the presence of significant overlapping anatomical and functional disruption in people with schizophrenia.
[Morphogenesis in formative process in vitro from Rehmannia glutinosa].
Xue, Jian-ping; Zhang, Ai-min; Liu, Jun; Xu, Xue-feng
2004-01-01
To study the morphogenesis in formative process of tuberous root in vitro from Rehmannia glutinosa and compare the anatomical shape of tuberous root with nature term R. glutinosa. Tuberous roots of different vegetal phase were cut and dyed, then made into paraffin cuts and observed microscope. In anatomical shape, nature R. glutinosa and tuberous root were the same, which showed that no structural variation occurred in tuberous root induced process.
Thomas, K Jackson; Denham, Bryan E; Dinolfo, John D
2011-01-01
This pilot study was designed to assess the perceptions of physical therapy (PT) and occupational therapy (OT) students regarding the use of computer-assisted pedagogy and prosection-oriented communications in the laboratory component of a human anatomy course at a comprehensive health sciences university in the southeastern United States. The goal was to determine whether student perceptions changed over the course of a summer session regarding verbal, visual, tactile, and web-based teaching methodologies. Pretest and post-test surveys were distributed online to students who volunteered to participate in the pilot study. Despite the relatively small sample size, statistically significant results indicated that PT and OT students who participated in this study perceived an improved ability to name major anatomical structures from memory, to draw major anatomical structures from memory, and to explain major anatomical relationships from memory. Students differed in their preferred learning styles. This study demonstrates that the combination of small group learning and digital web-based learning seems to increase PT and OT students' confidence in their anatomical knowledge. Further research is needed to determine which forms of integrated instruction lead to improved student performance in the human gross anatomy laboratory. Copyright © 2011 American Association of Anatomists.
Congenital blindness is associated with large-scale reorganization of anatomical networks.
Hasson, Uri; Andric, Michael; Atilgan, Hicret; Collignon, Olivier
2016-03-01
Blindness is a unique model for understanding the role of experience in the development of the brain's functional and anatomical architecture. Documenting changes in the structure of anatomical networks for this population would substantiate the notion that the brain's core network-level organization may undergo neuroplasticity as a result of life-long experience. To examine this issue, we compared whole-brain networks of regional cortical-thickness covariance in early blind and matched sighted individuals. This covariance is thought to reflect signatures of integration between systems involved in similar perceptual/cognitive functions. Using graph-theoretic metrics, we identified a unique mode of anatomical reorganization in the blind that differed from that found for sighted. This was seen in that network partition structures derived from subgroups of blind were more similar to each other than they were to partitions derived from sighted. Notably, after deriving network partitions, we found that language and visual regions tended to reside within separate modules in sighted but showed a pattern of merging into shared modules in the blind. Our study demonstrates that early visual deprivation triggers a systematic large-scale reorganization of whole-brain cortical-thickness networks, suggesting changes in how occipital regions interface with other functional networks in the congenitally blind. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.
Adaptive Adjustment in Taraxacum Officinale Wigg. in the Conditions of Overburden Dump
NASA Astrophysics Data System (ADS)
Legoshchina, Olga; Egorova, Irina; Neverova, Olga
2017-11-01
Morphological and anatomical features of the leaves and roots of Taraxacum officinale Wigg., growing under the conditions of the rocky dump of the Kedrovsky coal mine of the Kemerovo region, were studied. It was revealed that the specific environmental conditions of the dump cause morphological and anatomical changes in the leaves and roots of the dandelion. At the level of morphology, a decrease in the average leaf area, a thickening of leaf blades, a tendency to decrease the number of leaves in the rosette, a significant decrease in the mass and length of the roots. At the level of the anatomical structure of the leaves, there is a significant increase in the thickness of the mesophyll, a tendency to decrease the thickness of the tissues of the upper and lower epidermis, a decrease in the number of cells in 1 mm2 and an increase in the size of stomata in the tissues of the lower and upper epidermis, a decrease in the number of stomata by 1 mm2 and a stomatal index on the upper epidermis. At the level of the anatomical structure of the roots, the radius of the root decreases, the radius of the cortex and phloem, the diameter of the xylem.
El-Shafey, A; Kassab, A
2013-04-01
The purpose of the present study was to provide a detailed computed tomography (CT) and cross-sectional anatomic reference of the normal metatarsus and digits for the camel and buffalo, as well as to compare between metatarsus and digits in these animals to outstand a basis for diagnosis of their diseases. Advantages, including depiction of detailed cross-sectional anatomy, improved contrast resolution and computer reformatting, make it a potentially valuable diagnostic technique. The hind limbs of 12 healthy adult camel and buffalo were used. Clinically relevant anatomic structures were identified and labelled at each level in the corresponding images (CT and anatomic slices). CT images were used to identify the bony and soft tissue structures of the metatarsus and digits. The knowledge of normal anatomy of the camel and buffalo metatarsus and digits would serve as initial reference to the evaluation of CT images in these species. © 2012 Blackwell Verlag GmbH.
Howard-Swirzinski, Karen; Edwards, Paul C.; Saini, Tarnjit S.; Norton, Neil S.
2010-01-01
The greater palatine canal is an important anatomical structure that is often utilized as a pathway for infiltration of local anesthesia to affect sensation and hemostasis. Increased awareness of the length and anatomic variation in the anatomy of this structure is important when performing surgical procedures in this area (e.g., placement of osseointegrated dental implants). We examined the anatomy of the greater palatine canal using data obtained from CBCT scans of 500 subjects. Both right and left canals were viewed (N = 1000) in coronal and sagittal planes, and their paths and lengths determined. The average length of the greater palatine canal was 29 mm (±3 mm), with a range from 22 to 40 mm. Coronally, the most common anatomic pattern consisted of the canal traveling inferior-laterally for a distance then directly inferior for the remainder (43.3%). In the sagittal view, the canal traveled most frequently at an anterior-inferior angle (92.9%). PMID:20871845
Recent Developments in the Treatment of Ankle and Subtalar Instability
Sugimoto, Kazuya
2017-01-01
It was nearly a centenary ago that severe ankle sprain was recognized as an injury of the ankle ligament(s). With the recent technological advances and tools in imaging and surgical procedures, the management of ankle sprains - including subtalar injuries - has drastically improved. The repair or reconstruction of ankle ligaments is getting more anatomical and less invasive than previously. More specifically, ligamentous reconstruction with tendon graft has been the gold standard in the management of severely damaged ligament, however, it does not reproduce the original ultrastructure of the ankle ligaments. The anatomical ligament structure of a ligament comprises a ligament with enthesis at both ends and the structure should also exhibit proprioceptive function. To date, it remains impossible to reconstruct a functionally intact and anatomical ligament. Cooperation of the regenerative medicine and surgical technology in expected to improve reconstructions of the ankle ligament, however, we need more time to develop a technology in reproducing the ideal ligament complex. PMID:28979582
Trelease, R B; Nieder, G L; Dørup, J; Hansen, M S
2000-04-15
Continuing evolution of computer-based multimedia technologies has produced QuickTime, a multiplatform digital media standard that is supported by stand-alone commercial programs and World Wide Web browsers. While its core functions might be most commonly employed for production and delivery of conventional video programs (e.g., lecture videos), additional QuickTime VR "virtual reality" features can be used to produce photorealistic, interactive "non-linear movies" of anatomical structures ranging in size from microscopic through gross anatomic. But what is really included in QuickTime VR and how can it be easily used to produce novel and innovative visualizations for education and research? This tutorial introduces the QuickTime multimedia environment, its QuickTime VR extensions, basic linear and non-linear digital video technologies, image acquisition, and other specialized QuickTime VR production methods. Four separate practical applications are presented for light and electron microscopy, dissectable preserved specimens, and explorable functional anatomy in magnetic resonance cinegrams.
Numerical simulation of hemorrhage in human injury
NASA Astrophysics Data System (ADS)
Chong, Kwitae; Jiang, Chenfanfu; Santhanam, Anand; Benharash, Peyman; Teran, Joseph; Eldredge, Jeff
2015-11-01
Smoothed Particle Hydrodynamics (SPH) is adapted to simulate hemorrhage in the injured human body. As a Lagrangian fluid simulation, SPH uses fluid particles as computational elements and thus mass conservation is trivially satisfied. In order to ensure anatomical fidelity, a three-dimensional reconstruction of a portion of the human body -here, demonstrated on the lower leg- is sampled as skin, bone and internal tissue particles from the CT scan image of an actual patient. The injured geometry is then generated by simulation of ballistic projectiles passing through the anatomical model with the Material Point Method (MPM) and injured vessel segments are identified. From each such injured segment, SPH is used to simulate bleeding, with inflow boundary condition obtained from a coupled 1-d vascular tree model. Blood particles interact with impermeable bone and skin particles through the Navier-Stokes equations and with permeable internal tissue particles through the Brinkman equations. The SPH results are rendered in post-processing for improved visual fidelity. The overall simulation strategy is demonstrated on several injury scenarios in the lower leg.
Anatomical connections of the functionally-defined “face patches” in the macaque monkey
Saleem, Kadharbatcha S.
2017-01-01
The neural circuits underlying face recognition provide a model for understanding visual object representation, social cognition, and hierarchical information processing. A fundamental piece of information lacking to date is the detailed anatomical connections of the face patches. Here, we injected retrograde tracers into four different face patches (PL, ML, AL, AM) to characterize their anatomical connectivity. We found that the patches are strongly and specifically connected to each other, and individual patches receive inputs from extrastriate cortex, the medial temporal lobe, and three subcortical structures (the pulvinar, claustrum, and amygdala). Inputs from prefrontal cortex were surprisingly weak. Patches were densely interconnected to one another in both feedforward and feedback directions, inconsistent with a serial hierarchy. These results provide the first direct anatomical evidence that the face patches constitute a highly specialized system, and suggest that subcortical regions may play a vital role in routing face-related information to subsequent processing stages. PMID:27263973
Dilandro, Anthony C; Chappell, Todd M; Panchani, Prakash N; Kozlowski, Piotr B; Tubbs, R Shane; Khan, Khurram H; D'Antoni, Anthony V
2013-01-01
Many cadaver-based anatomy courses and surgical workshops use prosections to help podiatry students and residents learn clinically relevant anatomy. The quality of these prosections is variable and dependent upon the methods used to prepare them. These methods have not been adequately described in the literature, and few studies describe the use of chemicals to prepare prosections of the cadaveric foot and ankle. Recognizing the need for better teaching prosections in podiatric education, we developed a chemical application method with underwater dissection to better preserve anatomic structures of the cadaveric foot and ankle. We used inexpensive chemicals before, during, and after each step, which ultimately resulted in high-quality prosections that improved identification of anatomic structures relevant to the practice of podiatric medicine. Careful preservation of clinically important nerves, vessels, muscles, ligaments, and joints was achieved with these prosections. Although this method required additional preparation time, the resultant prosections have been repeatedly used for several years to facilitate learning among podiatry students and residents, and they have held up well. This method can be used by educators to teach podiatry students throughout their medical training and even into residency.
Olejník, Peter; Nosal, Matej; Havran, Tomas; Furdova, Adriana; Cizmar, Maros; Slabej, Michal; Thurzo, Andrej; Vitovic, Pavol; Klvac, Martin; Acel, Tibor; Masura, Jozef
2017-01-01
To evaluate the accuracy of the three-dimensional (3D) printing of cardiovascular structures. To explore whether utilisation of 3D printed heart replicas can improve surgical and catheter interventional planning in patients with complex congenital heart defects. Between December 2014 and November 2015 we fabricated eight cardiovascular models based on computed tomography data in patients with complex spatial anatomical relationships of cardiovascular structures. A Bland-Altman analysis was used to assess the accuracy of 3D printing by comparing dimension measurements at analogous anatomical locations between the printed models and digital imagery data, as well as between printed models and in vivo surgical findings. The contribution of 3D printed heart models for perioperative planning improvement was evaluated in the four most representative patients. Bland-Altman analysis confirmed the high accuracy of 3D cardiovascular printing. Each printed model offered an improved spatial anatomical orientation of cardiovascular structures. Current 3D printers can produce authentic copies of patients` cardiovascular systems from computed tomography data. The use of 3D printed models can facilitate surgical or catheter interventional procedures in patients with complex congenital heart defects due to better preoperative planning and intraoperative orientation.
Xiong, Dongliang; Flexas, Jaume; Yu, Tingting; Peng, Shaobing; Huang, Jianliang
2017-01-01
Leaf hydraulic conductance (K leaf ) and mesophyll conductance (g m ) both represent major constraints to photosynthetic rate (A), and previous studies have suggested that K leaf and g m is correlated in leaves. However, there is scarce empirical information about their correlation. In this study, K leaf , leaf hydraulic conductance inside xylem (K x ), leaf hydraulic conductance outside xylem (K ox ), A, stomatal conductance (g s ), g m , and anatomical and structural leaf traits in 11 Oryza genotypes were investigated to elucidate the correlation of H 2 O and CO 2 diffusion inside leaves. All of the leaf functional and anatomical traits varied significantly among genotypes. K leaf was not correlated with the maximum theoretical stomatal conductance calculated from stomatal dimensions (g smax ), and neither g s nor g smax were correlated with K x . Moreover, K ox was linearly correlated with g m and both were closely related to mesophyll structural traits. These results suggest that K leaf and g m are related to leaf anatomical and structural features, which may explain the mechanism for correlation between g m and K leaf . © 2016 The Authors. New Phytologist © 2016 New Phytologist Trust.
Kiapour, Ata M.; Fleming, Braden C.; Murray, Martha M.
2017-01-01
Background: Abnormal joint motion has been linked to joint arthrosis after anterior cruciate ligament (ACL) reconstruction. However, the relationships between the graft properties (ie, structural and anatomic) and extent of posttraumatic osteoarthritis are not well defined. Hypotheses: (1) The structural (tensile) and anatomic (area and alignment) properties of the reconstructed graft or repaired ACL correlate with the total cartilage lesion area 1 year after ACL surgery, and (2) side-to-side differences in anterior-posterior (AP) knee laxity correlate with the total cartilage lesion area 1 year postoperatively. Study Design: Controlled laboratory study. Methods: Sixteen minipigs underwent unilateral ACL transection and were randomly treated with ACL reconstruction or bridge-enhanced ACL repair. The tensile properties, cross-sectional area, and multiplanar alignment of the healing ACL or graft, AP knee laxity, and cartilage lesion areas were assessed 1 year after surgery. Results: In the reconstructed group, the normalized graft yield and maximum failure loads, cross-sectional area, sagittal and coronal elevation angles, and side-to-side differences in AP knee laxity at 60° of flexion were associated with the total cartilage lesion area 1 year after surgery (R 2 > 0.5, P < .04). In the repaired group, normalized ACL yield load, linear stiffness, cross-sectional area, and the sagittal and coronal elevation angles were associated with the total cartilage lesion area (R 2 > 0.5, P < .05). Smaller cartilage lesion areas were observed in the surgically treated knees when the structural and anatomic properties of the ligament or graft and AP laxity values were closer to those of the contralateral ACL-intact knee. Reconstructed grafts had a significantly larger normalized cross-sectional area and sagittal elevation angle (more vertical) when compared with repaired ACLs (P < .02). Conclusion: The tensile properties, cross-sectional area, and multiplanar alignment of the healing ACLs or grafts and AP knee laxity in reconstructed knees were associated with the extent of tibiofemoral cartilage damage after ACL surgery. Clinical Relevance: These data highlight the need for novel ACL injury treatments that can restore the structural and anatomic properties of the torn ACL to those of the native ACL in an effort to minimize the risk of early-onset posttraumatic osteoarthritis. PMID:28875154
Gao, Xin; Zhang, Wenjing; Yao, Li; Xiao, Yuan; Liu, Lu; Liu, Jieke; Li, Siyi; Tao, Bo; Shah, Chandan; Gong, Qiyong; Sweeney, John; Lui, Su
2017-12-05
Neuroimaging studies have shown both structural and functional abnormalities in patients with schizophrenia. Recently, studies have begun to explore the association between structural and functional grey matter abnormalities. By conducting a meta-analysis on morphometric and functional imaging studies of grey matter alterations in drug-free patients, the present study aims to examine the degree of overlap between brain regions with anatomic and functional changes in patients with schizophrenia. We performed a systematic search of PubMed, Embase, Web of Science and the Cochrane Library to identify relevant publications. A multimodal analysis was then conducted using Seed-based d Mapping software. Exploratory analyses included jackknife, subgroup and meta-regression analyses. We included 15 structural MRI studies comprising 486 drug-free patients and 485 healthy controls, and 16 functional MRI studies comprising 403 drug-free patients and 428 controls in our meta-analysis. Drug-free patients were examined to reduce pharmacological effects on the imaging data. Multimodal analysis showed considerable overlap between anatomic and functional changes, mainly in frontotemporal regions, bilateral medial posterior cingulate/paracingulate gyrus, bilateral insula, basal ganglia and left cerebellum. There were also brain regions showing only anatomic changes in the right superior frontal gyrus, left supramarginal gyrus, right lingual gyrus and functional alternations involving the right angular gyrus. The methodological aspects, patient characteristics and clinical variables of the included studies were heterogeneous, and we cannot exclude medication effects. The present study showed overlapping anatomic and functional brain abnormalities mainly in the default mode (DMN) and auditory networks (AN) in drug-free patients with schizophrenia. However, the pattern of changes differed in these networks. Decreased grey matter was associated with decreased activation within the DMN, whereas it was associated with increased activation within the AN. These discrete patterns suggest different pathophysiological changes impacting structural and functional associations within different neural networks in patients with schizophrenia. 2017 Joule Inc., or its licensors
Gao, Xin; Zhang, Wenjing; Yao, Li; Xiao, Yuan; Liu, Lu; Liu, Jieke; Li, Siyi; Tao, Bo; Shah, Chandan; Gong, Qiyong; Sweeney, John A; Lui, Su
2018-03-01
Neuroimaging studies have shown both structural and functional abnormalities in patients with schizophrenia. Recently, studies have begun to explore the association between structural and functional grey matter abnormalities. By conducting a meta-analysis on morphometric and functional imaging studies of grey matter alterations in drug-free patients, the present study aims to examine the degree of overlap between brain regions with anatomic and functional changes in patients with schizophrenia. We performed a systematic search of PubMed, Embase, Web of Science and the Cochrane Library to identify relevant publications. A multimodal analysis was then conducted using Seed-based d Mapping software. Exploratory analyses included jackknife, subgroup and meta-regression analyses. We included 15 structural MRI studies comprising 486 drug-free patients and 485 healthy controls, and 16 functional MRI studies comprising 403 drug-free patients and 428 controls in our meta-analysis. Drug-free patients were examined to reduce pharmacological effects on the imaging data. Multimodal analysis showed considerable overlap between anatomic and functional changes, mainly in frontotemporal regions, bilateral medial posterior cingulate/paracingulate gyrus, bilateral insula, basal ganglia and left cerebellum. There were also brain regions showing only anatomic changes in the right superior frontal gyrus, left supramarginal gyrus, right lingual gyrus and functional alternations involving the right angular gyrus. The methodological aspects, patient characteristics and clinical variables of the included studies were heterogeneous, and we cannot exclude medication effects. The present study showed overlapping anatomic and functional brain abnormalities mainly in the default mode (DMN) and auditory networks (AN) in drug-free patients with schizophrenia. However, the pattern of changes differed in these networks. Decreased grey matter was associated with decreased activation within the DMN, whereas it was associated with increased activation within the AN. These discrete patterns suggest different pathophysiological changes impacting structural and functional associations within different neural networks in patients with schizophrenia.
Gao, Xin; Zhang, Wenjing; Yao, Li; Xiao, Yuan; Liu, Lu; Liu, Jieke; Li, Siyi; Tao, Bo; Shah, Chandan; Gong, Qiyong; Sweeney, John A; Lui, Su
2017-12-15
Neuroimaging studies have shown both structural and functional abnormalities in patients with schizophrenia. Recently, studies have begun to explore the association between structural and functional grey matter abnormalities. By conducting a meta-analysis on morphometric and functional imaging studies of grey matter alterations in drug-free patients, the present study aims to examine the degree of overlap between brain regions with anatomic and functional changes in patients with schizophrenia. We performed a systematic search of PubMed, Embase, Web of Science and the Cochrane Library to identify relevant publications. A multimodal analysis was then conducted using Seed-based d Mapping software. Exploratory analyses included jackknife, subgroup and meta-regression analyses. We included 15 structural MRI studies comprising 486 drug-free patients and 485 healthy controls, and 16 functional MRI studies comprising 403 drug-free patients and 428 controls in our meta-analysis. Drug-free patients were examined to reduce pharmacological effects on the imaging data. Multimodal analysis showed considerable overlap between anatomic and functional changes, mainly in frontotemporal regions, bilateral medial posterior cingulate/paracingulate gyrus, bilateral insula, basal ganglia and left cerebellum. There were also brain regions showing only anatomic changes in the right superior frontal gyrus, left supramarginal gyrus, right lingual gyrus and functional alternations involving the right angular gyrus. The methodological aspects, patient characteristics and clinical variables of the included studies were heterogeneous, and we cannot exclude medication effects. The present study showed overlapping anatomic and functional brain abnormalities mainly in the default mode (DMN) and auditory networks (AN) in drug-free patients with schizophrenia. However, the pattern of changes differed in these networks. Decreased grey matter was associated with decreased activation within the DMN, whereas it was associated with increased activation within the AN. These discrete patterns suggest different pathophysiological changes impacting structural and functional associations within different neural networks in patients with schizophrenia.
[The anatomical revolution and the transition of anatomical conception in late imperial china].
Sihn, Kyu Hwan
2012-04-30
This paper aimed to examine the anatomical revolution from Yilingaicuo (Correcting the Errors of Medicine) and Quantixinlun(Outline of Anatomy and Physiology) in late imperial China. As the cephalocentrism which the brain superintend human operation of the mind was diffused in China since 16th century, the cephalocentrism and the cardiocentrism had competed for the hegemony of anatomical conception. Because of the advent of Yilingaicuo and Quantixinlun, the cephalocentrism became the main stream in the anatomical conception. The supporters of the Wang Yangming's Xinxue(the Learning of Heart and Mind) argued that the heart was the central organ of perception, sensitivity, and morality of the human body in medicine since 16th century. Even reformist and revolutionary intellectuals like Tan sitong and Mao zedong who had supported the Wang Yangming's Xinxue embraced the cephalocentrism in the late 19th century and the early 20th century. May Fourth intellectuals had not obsessed metaphysical interpretation of human body any more in the New Culture Movement in 1910s. They regarded human body as the object of research and writing. The anatomy was transformed into the instrumental knowledge for mutilation of the body. Yilingaicuo challenged the traditional conception of body, and Chinese intellectuals drew interest in the anatomy knowledge based on real mutilation. Quantixinlun based on Western medicine fueled a controversy about anatomy. Though new knowledge of anatomy was criticized by traditional Chinese medical doctors from the usefulness and morality of anatomy, nobody disavowed new knowledge of anatomy from the institutionalization of Western medicine in medical school. The internal development of cephalocentrism and positivism had influence on anatomy in China since 16th century. The advent of Yilingaicuo and Quantixinlun provided the milestone of new anatomy, though both sides represented traditional Chinese medicine and Western medicine respectively. They contributed to the development of new knowledge of anatomy, getting over the metaphysical system of knowledge. Based on the internal development of anatomy, Chinese anatomy was half century late than Japanese anatomy founded on Dutch anatomy.
Zada, Gabriel; Cavallo, Luigi M; Esposito, Felice; Fernandez-Jimenez, Julio Cesar; Tasiou, Anastasia; De Angelis, Michelangelo; Cafiero, Tullio; Cappabianca, Paolo; Laws, Edward R
2010-10-01
In addition to difficulties with anesthetic and medical management, transsphenoidal operations in patients with longstanding acromegaly are associated with inherent intraoperative challenges because of anatomical variations that occur frequently in these patients. The object of this study was to review the overall safety profile and anatomical/technical challenges associated with transsphenoidal surgery in patients with acromegaly. The authors performed a retrospective analysis of 169 patients who underwent endoscopic transsphenoidal operations for growth hormone-secreting adenomas to assess the incidence of surgical complications. A review of frequently occurring anatomical challenges and operative strategies employed during each phase of the operation to address these particular issues was performed. Of 169 cases reviewed, there was no perioperative mortality. Internal carotid artery injury occurred in 1 patient (0.6%) with complex sinus anatomy, who remained neurologically intact following endovascular unilateral carotid artery occlusion. Other complications included: significant postoperative epistaxis (5 patients [3%]), transient diabetes insipidus (5 patients [3%]), delayed symptomatic hyponatremia (4 patients [2%]), CSF leak (2 patients [1%]), and pancreatitis (1 patient [0.6%]). Preoperative considerations in patients with acromegaly should include a cardiopulmonary evaluation and planning regarding intubation and other aspects of the anesthetic technique. During the nasal phase of the transsphenoidal operation, primary challenges include maintaining adequate visualization and hemostasis, which is frequently compromised by redundant, edematous nasal mucosa and bony hypertrophy of the septum and the nasal turbinates. During the sphenoid phase, adequate bony removal, optimization of working space, and correlation of imaging studies to intraoperative anatomy are major priorities. The sellar phase is frequently challenged by increased sellar floor thickness, distinct patterns of tumor extension and bony invasion, and anatomical variations in the caliber and course of the internal carotid artery. Specific operative techniques for addressing each of these intraoperative challenges are discussed. Transsphenoidal surgery in patients with longstanding acromegaly frequently poses greater challenges than operations for other types of sellar lesions, yet these challenges may be safely and effectively overcome with the anticipation of specific issues and implementation of various intraoperative techniques.
Evolution of illustrations in anatomy: a study from the classical period in Europe to modern times.
Ghosh, Sanjib Kumar
2015-01-01
Illustrations constitute an essential element of learning anatomy in modern times. However it required a significant evolutionary process spread over centuries, for illustrations to achieve the present status in the subject of anatomy. This review article attempts to outline the evolutionary process by highlighting on the works of esteemed anatomists in a chronological manner. Available literature suggests that illustrations were not used in anatomy during the classical period when the subject was dominated by the descriptive text of Galen. Guido da Vigevano was first to use illustrations in anatomy during the Late Middle Ages and this concept developed further during the Renaissance period when Andreas Vesalius pioneered in illustrations becoming an indispensable tool in conveying anatomical details. Toward later stages of the Renaissance period, Fabricius ab Aquapendente endeavored to restrict dramatization of anatomical illustrations which was a prevalent trend in early Renaissance. During the 18th century, anatomical artwork was characterized by the individual styles of prominent anatomists leading to suppression of anatomical details. In the 19th century, Henry Gray used illustrations in his anatomical masterpiece that focused on depicting anatomical structures and were free from any artistic style. From early part of the 20th century medical images and photographs started to complement traditional handmade anatomical illustrations. Computer technology and advanced software systems played a key role in the evolution of anatomical illustrations during the late 20th century resulting in new generation 3D image datasets that are being used in the 21st century in innovative formats for teaching and learning anatomy. © 2014 American Association of Anatomists.
Martin, Bradford D; Thorpe, Donna; Merenda, Victoria; Finch, Brian; Anderson-Smith, Wendy; Consiglio-Lahti, Zane
2010-01-01
Almost 12 years since the publishing of Terminologia Anatomica (TA) by the Federative Committee on Anatomical Terminology (FCAT), there has yet to be a unified adoption of FCAT-recommended anatomical terms by North American anatomists. A survey was sent to members of the Human Anatomy & Physiology Society (HAPS) to compare the frequency of FCAT term usage with a previous study involving the American Association of Anatomists (AAA). The HAPS differed from AAA in being composed mostly of biologists (56.5%) who teach anatomy with only 18.3% of respondents having terminal degrees in anatomy. The survey included the same 25 sets of synonymic names for selected gross anatomical structures or related terms used for the AAA survey. Overall results indicate that the FCAT preferred term had the highest frequency of usage in only 40.0% of the survey questions, demonstrating 4% lower compliance than AAA respondents. Compliance with FCAT preferred terms ranged from 92.2% to 1.7% usage. When compared with AAA anatomists, there were reversals in predominant usage between FCAT and non-FCAT terms for six sets of anatomical structures: HAPS respondents predominantly used non-FCAT terms for adrenal gland (88.7%), antecubital fossa (57.4%), patellar tendon (65.2%), ligamentum capitis femoris (36.5%), while preferring the FCAT anterior circumflex humeral artery (45.2%) and anterior/posterior preferred over ventral/dorsal (41.7%). Almost 54% of HAPS anatomists were not familiar with the FCAT, nearly 21% higher than the AAA. Copyright 2009 American Association of Anatomists.
Delgado-González, José-Carlos; Florensa-Vila, José; Mansilla-Legorburo, Francisco; Insausti, Ricardo; Artacho-Pérula, Emilio
2017-01-01
The medial temporal lobe (MTL), and in particular the hippocampal formation, is essential in the processing and consolidation of declarative memory. The 3D environment of the anatomical structures contained in the MTL is an important issue. Our aim was to explore the spatial relationship of the anatomical structures of the MTL and changes in aging and/or Alzheimer's disease (AD). MTL anatomical landmarks are identified and registered to create a 3D network. The brain network is quantitatively described as a plane, rostrocaudally-oriented, and presenting Euclidean/real distances. Correspondence between 1.5T RM, 3T RM, and histological sections were assessed to determine the most important recognizable changes in AD, based on statistical significance. In both 1.5T and 3T RM images and histology, inter-rater reliability was high. Sex and hemisphere had no influence on network pattern. Minor changes were found in relation to aging. Distances from the temporal pole to the dentate gyrus showed the most significant differences when comparing control and AD groups. The best discriminative distance between control and AD cases was found in the temporal pole/dentate gyrus rostrocaudal length in histological sections. Moreover, more distances between landmarks were required to obtain 100% discrimination between control (divided into <65 years or >65 years) and AD cases. Changes in the distance between MTL anatomical landmarks can successfully be detected by using measurements of 3D network patterns in control and AD cases.
Cone beam computed tomography of plastinated hearts for instruction of radiological anatomy.
Chang, Chih-Wei; Atkinson, Gregory; Gandhi, Niket; Farrell, Michael L; Labrash, Steven; Smith, Alice B; Norton, Neil S; Matsui, Takashi; Lozanoff, Scott
2016-09-01
Radiological anatomy education is an important aspect of the medical curriculum. The purpose of this study was to establish and demonstrate the use of plastinated anatomical specimens, specifically human hearts, for use in radiological anatomy education. Four human hearts were processed with routine plastination procedures at room temperature. Specimens were subjected to cone beam computed tomography and a graphics program (ER3D) was applied to generate 3D cardiac models. A comparison was conducted between plastinated hearts and their corresponding computer models based on a list of morphological cardiac features commonly studied in the gross anatomy laboratory. Results showed significant correspondence between plastinations and CBCT-generated 3D models (98 %; p < .01) for external structures and 100 % for internal cardiac features, while 85 % correspondence was achieved between plastinations and 2D CBCT slices. Complete correspondence (100 %) was achieved between key observations on the plastinations and internal radiological findings typically required of medical student. All pathologic features seen on the plastinated hearts were also visualized internally with the CBCT-generated models and 2D slices. These results suggest that CBCT-derived slices and models can be successfully generated from plastinated material and provide accurate representations for radiological anatomy education.
Moxham, Bernard John; McHanwell, Stephen; Berkovitz, Barry
2018-03-01
The formulation of core syllabuses for the biomedical sciences within medical and dental courses is partially driven by the need to cope with decreased time allocations for these subjects as a result of major curricular changes taking place worldwide. There is also a requirement to deal with the request for increased clinical relevance. In response to such demands, the International Federation of Associations of Anatomists (IFAA) is devising core syllabuses for the anatomical sciences relating to the education and training of both scientific and clinical professions. The process initially involves using Delphi Panels consisting of a team of anatomists, scientists, and clinicians who evaluate syllabus content in detail and accord each element/topic 'essential,' 'important,' 'acceptable,' or 'not required' status. Their conjectures, published on the IFAA website, provide merely a framework to enable other stakeholders to comment. The approach is international in scope, is conceptually 'democratic,' and is developmentally fluid in being readily available for amendment. The aim is to set internationally recognized standards and thus to provide guidelines concerning anatomical knowledge when engaged in course development. This article presents the deliberations of an IFAA Delphi Panel into a core syllabus for oral anatomy, histology, and embryology within the dental curriculum. Clin. Anat. 31:231-249, 2018. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.
Gunderman, Richard B; Wilson, Philip K
2005-08-01
For a variety of reasons, new radiological imaging techniques are supplanting traditional cadaver dissection in the teaching of human anatomy. The authors briefly review the historical forces behind this transition, and then explore the advantages and drawbacks of each approach. Cadaver dissection offers an active, hands-on exploration of human structure, provides deep insights into the meaning of human embodiment and mortality, and represents a profound rite of passage into the medical profession. Radiological imaging permits in vivo visualization, offers physiologic as well as anatomic insights, and represents the context in which contemporary practicing physicians most frequently encounter their patients' otherwise hidden internal anatomy. Despite its important strengths, radiology cannot simply substitute for cadaver dissection, and the best models for teaching gross anatomy will incorporate both cadaver dissection and radiological imaging.
Swapna, K S; Salim, Nabeesa; Chandra, Ratheesh; Puthur, Jos T
2015-09-01
A comparative study was designed to elucidate the effect of iron and mercury on the morphological and anatomical changes as well as bioaccumulation potential in Chromolaena odorata. Plants were grown in half-strength Hoagland nutrient medium artificially contaminated with known quantities of HgCl2 (15 μM) and FeCl3 (1000 μM). Bioaccumulation of Hg and Fe was maximum in the root, and comparatively reduced bioaccumulation was recorded in the stem and leaves. Microscopic studies on morphology and anatomy revealed development of trichomes and lenticels on the stem and modified trichomes on leaves. Localized deposits of stained masses in various internal parts of the root, stem and leaf also were observed. Differential adaptation/strategy of C. odorata to attain tolerance towards Hg and Fe and phytoremediation potential of the plant is discussed.
Anatomical image-guided fluorescence molecular tomography reconstruction using kernel method
Baikejiang, Reheman; Zhao, Yue; Fite, Brett Z.; Ferrara, Katherine W.; Li, Changqing
2017-01-01
Abstract. Fluorescence molecular tomography (FMT) is an important in vivo imaging modality to visualize physiological and pathological processes in small animals. However, FMT reconstruction is ill-posed and ill-conditioned due to strong optical scattering in deep tissues, which results in poor spatial resolution. It is well known that FMT image quality can be improved substantially by applying the structural guidance in the FMT reconstruction. An approach to introducing anatomical information into the FMT reconstruction is presented using the kernel method. In contrast to conventional methods that incorporate anatomical information with a Laplacian-type regularization matrix, the proposed method introduces the anatomical guidance into the projection model of FMT. The primary advantage of the proposed method is that it does not require segmentation of targets in the anatomical images. Numerical simulations and phantom experiments have been performed to demonstrate the proposed approach’s feasibility. Numerical simulation results indicate that the proposed kernel method can separate two FMT targets with an edge-to-edge distance of 1 mm and is robust to false-positive guidance and inhomogeneity in the anatomical image. For the phantom experiments with two FMT targets, the kernel method has reconstructed both targets successfully, which further validates the proposed kernel method. PMID:28464120
Márquez, Samuel; Tessema, Belachew; Clement, Peter Ar; Schaefer, Steven D
2008-11-01
Frontal and/or maxillary sinusitis frequently originates with pathologic processes of the ethmoid sinuses. This clinical association is explained by the close anatomical relationship between the frontal and maxillary sinuses and the ethmoid sinus, since developmental trajectories place the ethmoid in a strategic central position within the nasal complex. The advent of optical endoscopes has permitted improved visualization of these spaces, leading to a renaissance in intranasal sinus surgery. Advancing patient care has consequently driven the need for the proper and accurate anatomical description of the paranasal sinuses, regrettably the continuing subject of persistent confusion and ambiguity in nomenclature and terminology. Developmental tracking of the pneumatization of the ethmoid and adjacent bones, and particularly of the extramural cells of the ethmoid, helps to explain the highly variable adult morphology of the ethmoid air sinus system. To fully understand the nature and underlying biology of this sinus system, multiple approaches were employed here. These include CT imaging of living humans (n = 100), examination of dry cranial material (n = 220), fresh tissue and cadaveric anatomical dissections (n = 168), and three-dimensional volume rendering methods that allow digitizing of the spaces of the ethmoid sinus for graphical examination. Results show the ethmoid sinus to be highly variable in form and structure as well as in the quantity of air cells. The endochondral bony origin of the ethmoid sinuses leads to remarkably thin bony contours of their irregular and morphologically unique borders, making them substantially different from the other paranasal sinuses. These investigations allow development of a detailed anatomical template of this region based on observed patterns of morphological diversity, which can initially mask the underlying anatomy. For example, the frontal recess, ethmoid infundibulum, and hiatus semilunaris are key anatomical components of the ethmoid structural complex that are fully documented and explained here on the basis of the template we have developed, as well as being comprehensively illustrated. In addition, an exhaustive 2000-year literature search identified original sources of nomenclature, in order to help clarify the persistent confusions found in the literature. Modified anatomical terms are suggested to permit proper description of the ethmoid region. This clarification of nomenclature will permit better communication in addition to eliminating redundant terminology. The combination of anatomical, evolutionary, and clinical perspectives provides an important strategy for gaining insight into the complexity of these sinuses. Copyright 2008 Wiley-Liss, Inc.
Semi-automated measurement of anatomical structures using statistical and morphological priors
NASA Astrophysics Data System (ADS)
Ashton, Edward A.; Du, Tong
2004-05-01
Rapid, accurate and reproducible delineation and measurement of arbitrary anatomical structures in medical images is a widely held goal, with important applications in both clinical diagnostics and, perhaps more significantly, pharmaceutical trial evaluation. This process requires the ability first to localize a structure within the body, and then to find a best approximation of the structure"s boundaries within a given scan. Structures that are tortuous and small in cross section, such as the hippocampus in the brain or the abdominal aorta, present a particular challenge. Their apparent shape and position can change significantly from slice to slice, and accurate prior shape models for such structures are often difficult to form. In this work, we have developed a system that makes use of both a user-defined shape model and a statistical maximum likelihood classifier to identify and measure structures of this sort in MRI and CT images. Experiments show that this system can reduce analysis time by 75% or more with respect to manual tracing with no loss of precision or accuracy.
NASA Astrophysics Data System (ADS)
Villéger, Alice; Ouchchane, Lemlih; Lemaire, Jean-Jacques; Boire, Jean-Yves
2007-03-01
Symptoms of neurodegenerative pathologies such as Parkinson's disease can be relieved through Deep Brain Stimulation. This neurosurgical technique relies on high precision positioning of electrodes in specific areas of the basal ganglia and the thalamus. These subcortical anatomical targets must be located at pre-operative stage, from a set of MRI acquired under stereotactic conditions. In order to assist surgical planning, we designed a semi-automated image analysis process for extracting anatomical areas of interest. Complementary information, provided by both patient's data and expert knowledge, is represented as fuzzy membership maps, which are then fused by means of suitable possibilistic operators in order to achieve the segmentation of targets. More specifically, theoretical prior knowledge on brain anatomy is modelled within a 'virtual atlas' organised as a spatial graph: a list of vertices linked by edges, where each vertex represents an anatomical structure of interest and contains relevant information such as tissue composition, whereas each edge represents a spatial relationship between two structures, such as their relative directions. The model is built using heterogeneous sources of information such as qualitative descriptions from the expert, or quantitative information from prelabelled images. For each patient, tissue membership maps are extracted from MR data through a classification step. Prior model and patient's data are then matched by using a research algorithm (or 'strategy') which simultaneously computes an estimation of the location of every structures. The method was tested on 10 clinical images, with promising results. Location and segmentation results were statistically assessed, opening perspectives for enhancements.
Anderson, Sarah J.; Hecker, Kent G.; Krigolson, Olave E.; Jamniczky, Heather A.
2018-01-01
In anatomy education, a key hurdle to engaging in higher-level discussion in the classroom is recognizing and understanding the extensive terminology used to identify and describe anatomical structures. Given the time-limited classroom environment, seeking methods to impart this foundational knowledge to students in an efficient manner is essential. Just-in-Time Teaching (JiTT) methods incorporate pre-class exercises (typically online) meant to establish foundational knowledge in novice learners so subsequent instructor-led sessions can focus on deeper, more complex concepts. Determining how best do we design and assess pre-class exercises requires a detailed examination of learning and retention in an applied educational context. Here we used electroencephalography (EEG) as a quantitative dependent variable to track learning and examine the efficacy of JiTT activities to teach anatomy. Specifically, we examined changes in the amplitude of the N250 and reward positivity event-related brain potential (ERP) components alongside behavioral performance as novice students participated in a series of computerized reinforcement-based learning modules to teach neuroanatomical structures. We found that as students learned to identify anatomical structures, the amplitude of the N250 increased and reward positivity amplitude decreased in response to positive feedback. Both on a retention and transfer exercise when learners successfully remembered and translated their knowledge to novel images, the amplitude of the reward positivity remained decreased compared to early learning. Our findings suggest ERPs can be used as a tool to track learning, retention, and transfer of knowledge and that employing the reinforcement learning paradigm is an effective educational approach for developing anatomical expertise. PMID:29467638
Anderson, Sarah J; Hecker, Kent G; Krigolson, Olave E; Jamniczky, Heather A
2018-01-01
In anatomy education, a key hurdle to engaging in higher-level discussion in the classroom is recognizing and understanding the extensive terminology used to identify and describe anatomical structures. Given the time-limited classroom environment, seeking methods to impart this foundational knowledge to students in an efficient manner is essential. Just-in-Time Teaching (JiTT) methods incorporate pre-class exercises (typically online) meant to establish foundational knowledge in novice learners so subsequent instructor-led sessions can focus on deeper, more complex concepts. Determining how best do we design and assess pre-class exercises requires a detailed examination of learning and retention in an applied educational context. Here we used electroencephalography (EEG) as a quantitative dependent variable to track learning and examine the efficacy of JiTT activities to teach anatomy. Specifically, we examined changes in the amplitude of the N250 and reward positivity event-related brain potential (ERP) components alongside behavioral performance as novice students participated in a series of computerized reinforcement-based learning modules to teach neuroanatomical structures. We found that as students learned to identify anatomical structures, the amplitude of the N250 increased and reward positivity amplitude decreased in response to positive feedback. Both on a retention and transfer exercise when learners successfully remembered and translated their knowledge to novel images, the amplitude of the reward positivity remained decreased compared to early learning. Our findings suggest ERPs can be used as a tool to track learning, retention, and transfer of knowledge and that employing the reinforcement learning paradigm is an effective educational approach for developing anatomical expertise.
Evolving marine biomimetics for regenerative dentistry.
Green, David W; Lai, Wing-Fu; Jung, Han-Sung
2014-05-13
New products that help make human tissue and organ regeneration more effective are in high demand and include materials, structures and substrates that drive cell-to-tissue transformations, orchestrate anatomical assembly and tissue integration with biology. Marine organisms are exemplary bioresources that have extensive possibilities in supporting and facilitating development of human tissue substitutes. Such organisms represent a deep and diverse reserve of materials, substrates and structures that can facilitate tissue reconstruction within lab-based cultures. The reason is that they possess sophisticated structures, architectures and biomaterial designs that are still difficult to replicate using synthetic processes, so far. These products offer tantalizing pre-made options that are versatile, adaptable and have many functions for current tissue engineers seeking fresh solutions to the deficiencies in existing dental biomaterials, which lack the intrinsic elements of biofunctioning, structural and mechanical design to regenerate anatomically correct dental tissues both in the culture dish and in vivo.
Evolving Marine Biomimetics for Regenerative Dentistry
Green, David W.; Lai, Wing-Fu; Jung, Han-Sung
2014-01-01
New products that help make human tissue and organ regeneration more effective are in high demand and include materials, structures and substrates that drive cell-to-tissue transformations, orchestrate anatomical assembly and tissue integration with biology. Marine organisms are exemplary bioresources that have extensive possibilities in supporting and facilitating development of human tissue substitutes. Such organisms represent a deep and diverse reserve of materials, substrates and structures that can facilitate tissue reconstruction within lab-based cultures. The reason is that they possess sophisticated structures, architectures and biomaterial designs that are still difficult to replicate using synthetic processes, so far. These products offer tantalizing pre-made options that are versatile, adaptable and have many functions for current tissue engineers seeking fresh solutions to the deficiencies in existing dental biomaterials, which lack the intrinsic elements of biofunctioning, structural and mechanical design to regenerate anatomically correct dental tissues both in the culture dish and in vivo. PMID:24828293
Micro computed tomography (CT) scanned anatomical gateway to insect pest bioinformatics
USDA-ARS?s Scientific Manuscript database
An international collaboration to establish an interactive Digital Video Library for a Systems Biology Approach to study the Asian citrus Psyllid and psyllid genomics/proteomics interactions is demonstrated. Advances in micro-CT, digital computed tomography (CT) scan uses X-rays to make detailed pic...
2003-02-09
The Phantom Torso is a tissue-muscle plastic anatomical model of a torso and head. It contains over 350 radiation measuring devices to calculate the radiation that penetrates internal organs in space travel. The Phantom Torso is one of three radiation experiments in Expedition Two including the Borner Ball Neutron Detector and Dosimetric Mapping.
Crema, M D; Watts, G J; Guermazi, A; Kim, Y-J; Kijowski, R; Roemer, F W
2017-01-01
To review and discuss the role of magnetic resonance imaging (MRI) in the context of hip osteoarthritis (OA) research. The content of this narrative review, based on an extensive PubMed database research including English literature only, describes the advances in MRI of the hip joint and its potential usefulness in hip OA research, reviews the relevance of different MRI features in regard to symptomatic and structural progression in hip OA, and gives an outlook regarding future use of MRI in hip OA research endeavors. Recent technical advances have helped to overcome many of the past difficulties related to MRI assessment of hip OA. MRI-based morphologic scoring systems allow for detailed assessment of several hip joint tissues and, in combination with the recent advances in MRI, may increase reproducibility and sensitivity to change. Compositional MRI techniques may add to our understanding of disease onset and progression. Knowledge about imaging pitfalls and anatomical variants is crucial to avoid misinterpretation. In comparison to research on knee OA, the associations between MRI features and the incidence and progression of disease as well as with clinical symptoms have been little explored. Anatomic alterations of the hip joint as seen in femoro-acetabular impingement (FAI) seem to play a role in the onset and progression of structural damage. With the technical advances occurring in recent years, MRI may play a major role in investigating the natural history of hip OA and provide an improved method for assessment of the efficacy of new therapeutic approaches. Copyright © 2016 Osteoarthritis Research Society International. Published by Elsevier Ltd. All rights reserved.
Root xylem plasticity to improve water use and yield in water-stressed soybean
Prince, Silvas J.; Murphy, Mackensie; Durnell, Lorellin A.; Shannon, J. Grover
2017-01-01
Abstract We tested the hypothesis that increasing the number of metaxylem vessels would enhance the efficiency of water uptake in soybean (Glycine max) and decrease the yield gap in water-limited environments. A panel of 41 soybean accessions was evaluated in greenhouse, rainout shelter, and rain-fed field environments. The metaxylem number influenced the internal capture of CO2 and improved stomatal conductance, enhancing water uptake/use in soybeans exposed to stress during the reproductive stage. We determined that other root anatomical features, such as cortex cell area and the percentage of stele that comprised cortical cells, also affected seed yield under similar growth parameters. Seed yield was also impacted by pod retention rates under drought stress (24–80 pods/plant). We surmise that effective biomass allocation, that is, the transport of available photosynthates to floral structures at late reproductive growth stages (R6–R7), enables yield protection under drought stress. A mesocosm study of contrasting lines for yield under drought stress and root anatomical features revealed that increases in metaxylem number as an adaptation to drought in the high-yielding lines improved root hydraulic conductivity, which reduced the metabolic cost of exploring water in deeper soil strata and enhanced water transport. This allowed the maintenance of shoot physiological processes under water-limited conditions. PMID:28064176
Topodynamics of metastable brains
NASA Astrophysics Data System (ADS)
Tozzi, Arturo; Peters, James F.; Fingelkurts, Andrew A.; Fingelkurts, Alexander A.; Marijuán, Pedro C.
2017-07-01
The brain displays both the anatomical features of a vast amount of interconnected topological mappings as well as the functional features of a nonlinear, metastable system at the edge of chaos, equipped with a phase space where mental random walks tend towards lower energetic basins. Nevertheless, with the exception of some advanced neuro-anatomic descriptions and present-day connectomic research, very few studies have been addressing the topological path of a brain embedded or embodied in its external and internal environment. Herein, by using new formal tools derived from algebraic topology, we provide an account of the metastable brain, based on the neuro-scientific model of Operational Architectonics of brain-mind functioning. We introduce a ;topodynamic; description that shows how the relationships among the countless intertwined spatio-temporal levels of brain functioning can be assessed in terms of projections and mappings that take place on abstract structures, equipped with different dimensions, curvatures and energetic constraints. Such a topodynamical approach, apart from providing a biologically plausible model of brain function that can be operationalized, is also able to tackle the issue of a long-standing dichotomy: it throws indeed a bridge between the subjective, immediate datum of the naïve complex of sensations and mentations and the objective, quantitative, data extracted from experimental neuro-scientific procedures. Importantly, it opens the door to a series of new predictions and future directions of advancement for neuroscientific research.