Determination of absolute internal conversion coefficients using the SAGE spectrometer
NASA Astrophysics Data System (ADS)
Sorri, J.; Greenlees, P. T.; Papadakis, P.; Konki, J.; Cox, D. M.; Auranen, K.; Partanen, J.; Sandzelius, M.; Pakarinen, J.; Rahkila, P.; Uusitalo, J.; Herzberg, R.-D.; Smallcombe, J.; Davies, P. J.; Barton, C. J.; Jenkins, D. G.
2016-03-01
A non-reference based method to determine internal conversion coefficients using the SAGE spectrometer is carried out for transitions in the nuclei of 154Sm, 152Sm and 166Yb. The Normalised-Peak-to-Gamma method is in general an efficient tool to extract internal conversion coefficients. However, in many cases the required well-known reference transitions are not available. The data analysis steps required to determine absolute internal conversion coefficients with the SAGE spectrometer are presented. In addition, several background suppression methods are introduced and an example of how ancillary detectors can be used to select specific reaction products is given. The results obtained for ground-state band E2 transitions show that the absolute internal conversion coefficients can be extracted using the methods described with a reasonable accuracy. In some cases of less intense transitions only an upper limit for the internal conversion coefficient could be given.
INTERNAL CONVERSION COEFFICIENTS - HOW GOOD ARE THEY NOW?
KIBEDI,T.; BURROWS, T.W.; TRZHASKOVSKAYA, M.B.; NESTOR, JR., C.W.; DAVIDSON, P.M.
2007-04-22
Internal conversion coefficients involving atomic electrons (ICC) and electron-positron pairs (IPC) are often required to determine transition multipolarities and total transition rates. A new internal conversion coefficient data base, BrIcc has been developed which integrates a number of tabulations on ICC and IPC, as well as {Omega}(E0) electronic factors. To decide which theoretical internal conversion coefficient table to use, the accurately determined experimental {alpha}{sub K}, {alpha}{sub L}, {alpha}{sub Total} and {alpha}{sub K}/{alpha}{sub L} values were compared with the new Dirac-Fock calculations using extreme assumptions on the effect of the atomic vacancy. While the overall difference between experiment and theory is less than 1%, our analysis shows preference towards the so called ''Frozen Orbital'' approximation, which takes into account the effect of the atomic vacancy.
An analytical model for calculating internal dose conversion coefficients for non-human biota.
Amato, Ernesto; Italiano, Antonio
2014-05-01
To assess the radiation burden of non-human living organisms, dose coefficients are available in the literature, precalculated by assuming an ellipsoidal shape of each organism. A previously developed analytical method was applied for the determination of absorbed fractions inside ellipsoidal volumes from alpha, beta, and gamma radiations to the calculation of dose conversion coefficients (DCCs) for 15 reference organisms, animals and plants, either terrestrial, amphibian, or aquatic, and six radionuclides ((14)C, (90)Sr, (60)Co, (137)Cs, (238)U, and (241)Am). The results were compared with the reference values reported in Publication 108 of the International Commission on Radiological Protection, in which a different calculation approach for DCCs was employed. The results demonstrate that the present analytical method, originally intended for applications in internal dosimetry of nuclear medicine therapy, gives consistent results for all the beta-, beta-gamma-, and alpha-emitting radionuclides tested in a wide range of organism masses, between 8 mg and 1.3 kg. The applicability of the method proposed can take advantage from its ease of implementation in an ordinary electronic spreadsheet, allowing to calculate, for virtually all possible radionuclide emission spectra, the DCCs for ellipsoidal models of non-human living organisms in the environment.
Nica, N.; Hardy, J. C.; Iacob, V. E.; Balonek, C.; Trzhaskovskaya, M. B.
2008-03-15
Recently we measured the ratio of K-shell internal conversion coefficients, {alpha}{sub K}, for the 127.5-keV E3 transition in {sup 134}Cs and the 661.7-keV M4 transition in {sup 137}Ba. We here report a measurement of the 165.9-keV M1 transition in {sup 139}La, based on which we convert our earlier ratio measurement into individual {alpha}{sub K} values for the transitions in {sup 134}Cs and {sup 137}Ba. These results continue to confirm the Dirac-Fock calculations of internal conversion coefficients that incorporate the atomic K-shell vacancy.
Personal Dose Equivalent Conversion Coefficients For Photons To 1 GEV
Veinot, K. G.; Hertel, N. E.
2010-09-27
The personal dose equivalent, H{sub p}(d), is the quantity recommended by the International Commission on Radiation Units and Measurements (ICRU) to be used as an approximation of the protection quantity Effective Dose when performing personal dosemeter calibrations. The personal dose equivalent can be defined for any location and depth within the body. Typically, the location of interest is the trunk where personal dosemeters are usually worn and in this instance a suitable approximation is a 30 cm X 30 cm X 15 cm slab-type phantom. For this condition the personal dose equivalent is denoted as H{sub p,slab}(d) and the depths, d, are taken to be 0.007 cm for non-penetrating and 1 cm for penetrating radiation. In operational radiation protection a third depth, 0.3 cm, is used to approximate the dose to the lens of the eye. A number of conversion coefficients for photons are available for incident energies up to several MeV, however, data to higher energies are limited. In this work conversion coefficients up to 1 GeV have been calculated for H{sub p,slab}(10) and H{sub p,slab}(3) using both the kerma approximation and by tracking secondary charged particles. For H{sub p}(0.07) the conversion coefficients were calculated, but only to 10 MeV due to computational limitations. Additionally, conversions from air kerma to H{sub p,slab}(d) have been determined and are reported. The conversion coefficients were determined for discrete incident energies, but analytical fits of the coefficients over the energy range are provided. Since the inclusion of air can influence the production of secondary charged particles incident on the face of the phantom conversion coefficients have been determined both in vacuo and with the source and slab immersed within a sphere in air. The conversion coefficients for the personal dose equivalent are compared to the appropriate protection quantity, calculated according to the recommendations of the latest International Commission on
Personal dose-equivalent conversion coefficients for 1252 radionuclides.
Otto, Thomas
2016-01-01
Dose conversion coefficients for radionuclides are useful for routine calculations in radiation protection in industry, medicine and research. They give a simple and often sufficient estimate of dose rates during production, handling and storage of radionuclide sources, based solely on the source's activity. The latest compilation of such conversion coefficients dates from 20 y ago, based on nuclear decay data published 30 y ago. The present publication provides radionuclide-specific conversion coefficients to personal dose based on the most recent evaluations of nuclear decay data for 1252 radionuclides and fluence-to-dose-equivalent conversion coefficients for monoenergetic radiations. It contains previously unknown conversion coefficients for >400 nuclides and corrects those conversion coefficients that were based on erroneous decay schemes. For the first time, estimates for the protection quantity Hp(3) are included.
Conversion coefficient measurements of 176Lu using ICEBall
NASA Astrophysics Data System (ADS)
Battaglia, Anthony A.
We have studied the multipolarites of several transitions in the nucleus 176Lu. The synthesis of 176Lu in stellar environments is through the slow (s-) neutron capture process. The s-process is responsible for the creation of 50% of the heavy elements and 15-20 nuclei in the s-process are s-process branching points. Branching points determine if the synthesis path will beta-decay or neutron capture. The branching point 176 Lu is only produced via the s-process only and has both a long-lived ground state (K = 7--) of 37.6 Gy and a short-lived isomeric state (K = 0--) at 3.6 h. There is no direct decay to both the isomer and ground state due to selection rules. However, an intermediate state was found at 839 keV in the K = 4-- band and another intermediate state in the K = 4+ band at 709 keV which communicate to both the isomer and ground state. The communication to both the isomer and ground state through the intermediate states affects the final abundances of 176Lu in stellar environments which is sensitive to temperature. The experiment was performed at the University of Notre Dame Nuclear Science Laboratory (NSL) using a 176Yb(p,n) reaction at 7.75 MeV. Gamma-gamma and gamma-electron coincidences were measured for conversion coefficients using the Internal Conversion Electron Ball (ICEBall) array and two HPGe detectors (109% relative efficiency of a 3"x 3" NaI detector at 1332 keV). ICEBall was upgraded at the NSL for an improved efficiency from 6%-15% over 4. A total of 40 conversion cofficcients were measured and 35 multipolarities wer assigned. 17 new conversion coefficients were measured and the corresponding multipolarities were assigned. Levels and spin assignments in both the K = 4+ band and K = 4-- band were verified in the intermediate states that are important for establishing a thermal equilibrium in the s-process.
Personal dose equivalent conversion coefficients for electrons to 1 Ge V.
Veinot, K G; Hertel, N E
2012-04-01
In a previous paper, conversion coefficients for the personal dose equivalent, H(p)(d), for photons were reported. This note reports values for electrons calculated using similar techniques. The personal dose equivalent is the quantity used to approximate the protection quantity effective dose when performing personal dosemeter calibrations and in practice the personal dose equivalent is determined using a 30×30×15 cm slab-type phantom. Conversion coefficients to 1 GeV have been calculated for H(p)(10), H(p)(3) and H(p)(0.07) in the recommended slab phantom. Although the conversion coefficients were determined for discrete incident energies, analytical fits of the conversion coefficients over the energy range are provided using a similar formulation as in the photon results previously reported. The conversion coefficients for the personal dose equivalent are compared with the appropriate protection quantity, calculated according to the recommendations of the latest International Commission on Radiological Protection guidance. Effects of eyewear on H(p)(3) are also discussed.
NASA Astrophysics Data System (ADS)
Chang, Lienard A.
In the event of a radiological accident or attack, it is important to estimate the organ doses to those exposed. In general, it is difficult to measure organ dose directly in the field and therefore dose conversion coefficients (DCC) are needed to convert measurable values such as air kerma to organ dose. Previous work on these coefficients has been conducted mainly for adults with a focus on radiation protection workers. Hence, there is a large gap in the literature for pediatric values. This study coupled a Monte Carlo N-Particle eXtended (MCNPX) code with International Council of Radiological Protection (ICRP)-adopted University of Florida and National Cancer Institute pediatric reference phantoms to calculate a comprehensive list of dose conversion coefficients (mGy/mGy) to convert air-kerma to organ dose. Parameters included ten phantoms (newborn, 1-year, 5-year, 10-year, 15-year old male and female), 28 organs over 33 energies between 0.01 and 20 MeV in six (6) irradiation geometries relevant to a child who might be exposed to a radiological release: anterior-posterior (AP), posterior-anterior (PA), right-lateral (RLAT), left-lateral (LLAT), rotational (ROT), and isotropic (ISO). Dose conversion coefficients to the red bone marrow over 36 skeletal sites were also calculated. It was hypothesized that the pediatric organ dose conversion coefficients would follow similar trends to the published adult values as dictated by human anatomy, but be of a higher magnitude. It was found that while the pediatric coefficients did yield similar patterns to that of the adult coefficients, depending on the organ and irradiation geometry, the pediatric values could be lower or higher than that of the adult coefficients.
Personal dose equivalent conversion coefficients for photons to 1 GeV.
Veinot, K G; Hertel, N E
2011-04-01
The personal dose equivalent, H(p)(d), is the quantity recommended by the International Commission on Radiation Units and Measurements (ICRU) to be used as an approximation of the protection quantity effective dose when performing personal dosemeter calibrations. The personal dose equivalent can be defined for any location and depth within the body. Typically, the location of interest is the trunk, where personal dosemeters are usually worn, and in this instance a suitable approximation is a 30 × 30 × 15 cm(3) slab-type phantom. For this condition, the personal dose equivalent is denoted as H(p,slab)(d) and the depths, d, are taken to be 0.007 cm for non-penetrating and 1 cm for penetrating radiation. In operational radiation protection a third depth, 0.3 cm, is used to approximate the dose to the lens of the eye. A number of conversion coefficients for photons are available for incident energies up to several megaelectronvolts, however, data to higher energies are limited. In this work, conversion coefficients up to 1 GeV have been calculated for H(p,slab)(10) and H(p,slab)(3) both by using the kerma approximation and tracking secondary charged particles. For H(p)(0.07), the conversion coefficients were calculated, but only to 10 MeV due to computational limitations. Additionally, conversions from air kerma to H(p,slab)(d) have been determined and are reported. The conversion coefficients were determined for discrete incident energies, but analytical fits of the coefficients over the energy range are provided. Since the inclusion of air can influence the production of secondary charged particles incident on the face of the phantom, conversion coefficients have been determined both in vacuo and with the source and slab immersed within a sphere in air. The conversion coefficients for the personal dose equivalent are compared with the appropriate protection quantity, calculated according to the recommendations of the latest International Commission on Radiological
ERIC Educational Resources Information Center
Green, Samuel B.; Yang, Yanyun
2015-01-01
In the lead article, Davenport, Davison, Liou, & Love demonstrate the relationship among homogeneity, internal consistency, and coefficient alpha, and also distinguish among them. These distinctions are important because too often coefficient alpha--a reliability coefficient--is interpreted as an index of homogeneity or internal consistency.…
Delimiting Coefficient a from Internal Consistency and Unidimensionality
ERIC Educational Resources Information Center
Sijtsma, Klaas
2015-01-01
I discuss the contribution by Davenport, Davison, Liou, & Love (2015) in which they relate reliability represented by coefficient a to formal definitions of internal consistency and unidimensionality, both proposed by Cronbach (1951). I argue that coefficient a is a lower bound to reliability and that concepts of internal consistency and…
Neutron-fluence-to-dose conversion coefficients in an anthropomorphic phantom.
Alghamdi, A A; Ma, A; Tzortzis, M; Spyrou, N M
2005-01-01
A set of fluence-to-effective-dose conversion coefficients has been calculated for neutrons with energies <20 MeV using a high-resolution anthropomorphic phantom (Zubal model) and the MCNPX code. The calculation used 13 monodirectional monoenergetic neutron beams in the energy range 10(-9) to 20 MeV, under three different source irradiation configurations: anterior-posterior, posterior-anterior and left lateral. Dose calculations were performed for 18 selected organs of the body, for which the International Commission on Radiological Protection and the International Commission on Radiological Units and Measurements have set tissue weighting factors for the determination of the effective dose. Another set of neutron-fluence-to-effective-dose conversion coefficients was also calculated with the proposed modification wR from ICRP Publication 92. From comparison between the dose results calculated and the data reported for the MIRD and VIPMAN models, it can be concluded that, although some discrepancies exist between the Zubal model and the two other models, there is good agreement in the left lateral irradiation geometry.
Dose conversion coefficients for photon exposure of the human eye lens
NASA Astrophysics Data System (ADS)
Behrens, R.; Dietze, G.
2011-01-01
In recent years, several papers dealing with the eye lens dose have been published, because epidemiological studies implied that the induction of cataracts occurs even at eye lens doses of less than 500 mGy. Different questions were addressed: Which personal dose equivalent quantity is appropriate for monitoring the dose to the eye lens? Is a new definition of the dose quantity Hp(3) based on a cylinder phantom to represent the human head necessary? Are current conversion coefficients from fluence to equivalent dose to the lens sufficiently accurate? To investigate the latter question, a realistic model of the eye including the inner structure of the lens was developed. Using this eye model, conversion coefficients for electrons have already been presented. In this paper, the same eye model—with the addition of the whole body—was used to calculate conversion coefficients from fluence (and air kerma) to equivalent dose to the lens for photon radiation from 5 keV to 10 MeV. Compared to the values adopted in 1996 by the International Commission on Radiological Protection (ICRP), the new values are similar between 40 keV and 1 MeV and lower by up to a factor of 5 and 7 for photon energies at about 10 keV and 10 MeV, respectively. Above 1 MeV, the new values (calculated without kerma approximation) should be applied in pure photon radiation fields, while the values adopted by the ICRP in 1996 (calculated with kerma approximation) should be applied in case a significant contribution from secondary electrons originating outside the body is present.
First direct proof of internal conversion between bound states
NASA Astrophysics Data System (ADS)
Carreyre, T.; Harston, M. R.; Aiche, M.; Bourgine, F.; Chemin, J. F.; Claverie, G.; Goudour, J. P.; Scheurer, J. N.; Attallah, F.; Bogaert, G.; Kiener, J.; Lefebvre, A.; Durell, J.; Grandin, J. P.; Meyerhof, W. E.; Phillips, W.
2000-08-01
We present direct evidence for the process of internal conversion between bound atomic states (BIC) when the binding energy of the converted electron becomes larger than the nuclear transition energy. This process has been proposed as an explanation of the measured, unexpectedly short lifetime of the first excited state of 125Te with charge state larger than 44+. We have detected the Kα x rays emitted in flight which follow the filling of the K-shell vacancy created by the bound internal conversion process, together with γ rays from Te ions in charge states ranging between 44+ and 48+. For Te45+ and Te46+, the comparison of the x-ray to γ-ray ratios with the theoretical calculations of the internal conversion coefficients including decay to bound atomic states, assuming Te ions in their ground electronic state, show poor agreement. The agreement becomes good if account is taken of BIC decay of excited initial states with different occupancies of the 2p1/2 and 2p3/2 subshells. In this situation, the half-life becomes sensitive to the precise initial state and simple specification of the charge state alone is no longer appropriate.
Lu, Wei; Qiu, Rui; Wu, Zhen; Li, Chunyan; Yang, Bo; Liu, Huan; Ren, Li; Li, Junli
2017-03-21
The effective and organ equivalent dose coefficients have been widely used to provide assessment of doses received by adult members of the public and by workers exposed to environmental radiation from nuclear facilities under normal or accidental situations. Advancements in phantom types, weighting factors, decay data, etc, have led to the publication of newer results in this regard. This paper presents a new set of conversion coefficients for air submersion and ground contamination (with the use of Geant4) for photons from 15 keV to 10 MeV using the Chinese and International Commission on Radiological Protection (ICRP) adult reference male and female phantoms. The radiation fields, except for energy spectrum at low energies, were validated by the data obtained from the Monte Carlo code YURI. The effective dose coefficients of monoenergetic photons, obtained for the ICRP adult reference phantoms, agree well with recently published data for air submersion and ground contamination with a plane source at a depth of 0.5 g cm(-2) in soil, but an average difference of 36.5% is observed for ground surface contamination with the abovementioned radiation field. The average differences in organ equivalent dose coefficients between the Chinese and the ICRP adult reference phantoms are within 6% for most organs, but noticeable differences of up to 70% or even higher are found at photon energies below 30 keV under air submersion. The effective dose coefficients obtained with the Chinese adult reference phantoms are greater than those of the ICRP adult reference phantoms above 30 keV and 0.5 MeV for ground contamination and air submersion, respectively; the average differences from the Chinese adult reference phantoms are about 3.6% and 0.4% in the whole energy range with maximum differences of 31.8% and 27.6% at 15 keV for air submersion and ground contamination respectively. These differences are attributed to anatomical discrepancies in overlying tissue mass of an
NASA Astrophysics Data System (ADS)
Lu, Wei; Qiu, Rui; Wu, Zhen; Li, Chunyan; Yang, Bo; Liu, Huan; Ren, Li; Li, Junli
2017-03-01
The effective and organ equivalent dose coefficients have been widely used to provide assessment of doses received by adult members of the public and by workers exposed to environmental radiation from nuclear facilities under normal or accidental situations. Advancements in phantom types, weighting factors, decay data, etc, have led to the publication of newer results in this regard. This paper presents a new set of conversion coefficients for air submersion and ground contamination (with the use of Geant4) for photons from 15 keV to 10 MeV using the Chinese and International Commission on Radiological Protection (ICRP) adult reference male and female phantoms. The radiation fields, except for energy spectrum at low energies, were validated by the data obtained from the Monte Carlo code YURI. The effective dose coefficients of monoenergetic photons, obtained for the ICRP adult reference phantoms, agree well with recently published data for air submersion and ground contamination with a plane source at a depth of 0.5 g cm‑2 in soil, but an average difference of 36.5% is observed for ground surface contamination with the abovementioned radiation field. The average differences in organ equivalent dose coefficients between the Chinese and the ICRP adult reference phantoms are within 6% for most organs, but noticeable differences of up to 70% or even higher are found at photon energies below 30 keV under air submersion. The effective dose coefficients obtained with the Chinese adult reference phantoms are greater than those of the ICRP adult reference phantoms above 30 keV and 0.5 MeV for ground contamination and air submersion, respectively; the average differences from the Chinese adult reference phantoms are about 3.6% and 0.4% in the whole energy range with maximum differences of 31.8% and 27.6% at 15 keV for air submersion and ground contamination respectively. These differences are attributed to anatomical discrepancies in overlying tissue mass of an
Effect of X-ray High-voltage Variations on the Conversion Coefficients.
Behnke, B; Hupe, O; Behrens, R
2016-10-20
Conversion coefficients (CCs) are an essential vehicle in radiation protection for the determination of the dose (rate) of a given radiation field. According to the current draft of the revision of international standard ISO 4037, an X-ray field is a reference field if the CCs of the field match the tabulated ISO values within 2%. Deviations of the high-voltage (HV) tube-potential from its nominal value influence the resulting spectra and change the corresponding CCs. This work investigates the maximum allowable deviation of the HV from its nominal value such that the requirements of ISO 4037 remain fulfilled. This is achieved using both synthetic spectra created by a software simulation program and spectra measured at one of the X-ray facilities of the Physikalisch-Technische Bundesanstalt. The results are summarised in form of a new proposal for upper limit values which are suggested to be used in the next version of ISO 4037.
Fluence to Hp(3) conversion coefficients for neutrons from thermal to 15 MeV.
Gualdrini, G; Ferrari, P; Tanner, R
2013-12-01
The recent statement on tissue reactions issued by the International Commission on Radiological Protection in April 2011 recommends a very significant reduction in the equivalent dose annual limit for the eye lens from 150 to 20 mSv y(-1); this has stimulated a lot of interest in eye lens dosimetry in the radiation protection community. Until now no conversion coefficients were available for the operational quantity Hp(3) for neutrons. The scope of the present work was to extend previous evaluations of H*(10) and Hp(10) performed at the PTB in 1995 to provide also Hp(3) data for neutrons. The present work is also intended to complete the studies carried out on photons during the last 4 y within the European Union-funded ORAMED (optimisation of radiation protection for medical staff) project.
International and American Students' Perceptions of Informal English Conversations
ERIC Educational Resources Information Center
Lee, Eun Jeong
2016-01-01
This study investigated international and American students' perceptions of structured but informal English conversations with each other. American and international students perceived the effects of these conversations differently. While the international students claimed increased linguistic and cultural competence, the Americans identified…
The feasibility of universal DLP-to-risk conversion coefficients for body CT protocols
NASA Astrophysics Data System (ADS)
Li, Xiang; Samei, Ehsan; Segars, W. Paul; Paulson, Erik K.; Frush, Donald P.
2011-03-01
The effective dose associated with computed tomography (CT) examinations is often estimated from dose-length product (DLP) using scanner-independent conversion coefficients. Such conversion coefficients are available for a small number of examinations, each covering an entire region of the body (e.g., head, neck, chest, abdomen and/or pelvis). Similar conversion coefficients, however, do not exist for examinations that cover a single organ or a sub-region of the body, as in the case of a multi-phase liver examination. In this study, we extended the DLP-to-effective dose conversion coefficient (k factor) to a wide range of body CT protocols and derived the corresponding DLP-to-cancer risk conversion coefficient (q factor). An extended cardiactorso (XCAT) computational model was used, which represented a reference adult male patient. A range of body CT protocols used in clinical practice were categorized based on anatomical regions examined into 10 protocol classes. A validated Monte Carlo program was used to estimate the organ dose associated with each protocol class. Assuming the reference model to be 20 years old, effective dose and risk index (an index of the total risk for cancer incidence) were then calculated and normalized by DLP to obtain the k and q factors. The k and q factors varied across protocol classes; the coefficients of variation were 28% and 9%, respectively. The small variation exhibited by the q factor suggested the feasibility of universal q factors for a wide range of body CT protocols.
Test of internal-conversion theory with measurements in {sup 134}Cs and {sup 137}Ba
Nica, N.; Hardy, J. C.; Iacob, V. E.; Rockwell, W. E.; Trzhaskovskaya, M. B.
2007-02-15
We have measured the ratio of K-shell internal conversion coefficients, {alpha}{sub K}, for the 127.5-keV E3 transition in {sup 134}Cs and the 661.7-keV M4 transition in {sup 137}Ba. Previous measurements of these {alpha}{sub K} values led to a ratio that differed from calculated internal conversion coefficients. Our measured result, 30.01(15), disagrees with, but is a factor of three more precise than, the previous average of all experimental results. Our new result is consistent with calculations.
Photon extremity absorbed dose and kerma conversion coefficients for calibration geometries.
Veinot, K G; Hertel, N E
2007-02-01
Absorbed dose and dose equivalent conversion coefficients are routinely used in personnel dosimetry programs. These conversion coefficients can be applied to particle fluences or to measured air kerma values to determine appropriate operational monitoring quantities such as the ambient dose equivalent or personal dose equivalent for a specific geometry. For personnel directly handling materials, the absorbed dose to the extremities is of concern. This work presents photon conversion coefficients for two extremity calibration geometries using finger and wrist/arm phantoms described in HPS N13.32. These conversion coefficients have been calculated as a function of photon energy in terms of the kerma and the absorbed dose using Monte Carlo techniques and the calibration geometries specified in HPS N13.32. Additionally, kerma and absorbed dose conversion coefficients for commonly used x-ray spectra and calibration source fields are presented. The kerma values calculated in this work for the x-ray spectra and calibration sources compare well to those listed in HPS N13.32. The absorbed dose values, however, differ significantly for higher energy photons because charged particle equilibrium conditions have not been satisfied for the shallow depth. Thus, the air-kerma-to-dose and exposure-to-dose conversion coefficients for Cs and Co listed in HPS N13.32 overestimate the absorbed dose to the extremities. Applying the conversion coefficients listed in HPS N13.32 for Cs, for example, would result in an overestimate of absorbed dose of 62% for the finger phantom and 55% for the wrist phantom.
Han, Eun Young; Ha, Wi-Ho; Jin, Young-Woo; Bolch, Wesley E; Lee, Choonsik
2015-03-01
After an incident of radiological dispersal devices (RDD), health care providers will be exposed to the contaminated patients in the extended medical treatments. Assessment of potential radiation dose to the health care providers will be crucial to minimize their health risk. In this study, we compiled a set of conversion coefficients (mSv MBq(-1) s(-1)) to readily estimate the effective dose from the time-integrated activity for the health care providers while they deal with internally contaminated patients at different ages. We selected Co-60, Ir-192, Am-241, Cs-137, and I-131 as the major radionuclides that may be used for RDD. We obtained the age-specific organ burdens after the inhalation of those radionuclides from the Dose and Risk Calculation Software (DCAL) program. A series of hybrid computational phantoms (1-, 5-, 10-, and 15 year-old, and adult males) were implemented in a general purpose Monte Carlo (MC) transport code, MCNPX v 2.7, to simulate an adult male health care provider exposed to contaminated patients at different ages. Two exposure scenarios were taken into account: a health care provider (a) standing at the side of patients lying in bed and (b) sitting face to face with patients. The conversion coefficients overall depended on radionuclides, the age of the patients, and the orientation of the patients. The conversion coefficient was greatest for Co-60 and smallest for Am-241. The dose from the 1 year-old patient phantom was up to three times greater than that from the adult patient phantom. The conversion coefficients were less dependent on the age of the patients in the scenario of a health care provider sitting face to face with patients. The dose conversion coefficients established in this study will be useful to readily estimate the effective dose to the health care providers in RDD events.
Nuclear internal conversion between bound atomic states
NASA Astrophysics Data System (ADS)
Chemin, J. F.; Harston, M. R.; Karpeshin, F. F.; Carreyre, J.; Attallah, F.; Aleonard, M. M.; Scheurer, J. N.; Boggaert, G.; Grandin, J. R.; Trzhaskovskaya, M. B.
2003-01-01
We present experimental and theoretical results for rate of decay of the (3/2)+ isomeric state in 125Te versus the ionic charge state. For charge state larger than 44 the nuclear transition lies below the threshold for emission of a K-shell electron into the continuum with the result that normal internal conversion is energetically forbiden. Rather surprisingly, for the charge 45 and 46 the lifetime of the level was found to have a value close to that in neutral atoms. We present direct evidence that the nuclear transition could still be converted but without the emission of the electron into the continuum, the electron being promoted from the K-shell to an other empty bound state lying close to the continuum. We called this process BIC. The experimental results agree whith theoretical calculations if BIC resonances are taken into account. This leads to a nuclear decay constant that is extremely sensitive to the precise initial state and simple specification of the charge state is no longer appropriate. The contribution to decay of the nucleus of BIC has recently been extended to the situation in which the electron is promoted to an intermediate filled bound state (PFBIC) with an apparent violation of the Pauli principle. Numerical results of the expected dependence of PFBIC on the charge state will be presented for the decay of the 77.351 keV level in 197Au.
Dose conversion coefficients for paediatric CT examinations with automatic tube current modulation.
Schlattl, H; Zankl, M; Becker, J; Hoeschen, C
2012-10-21
A common dose-saving technique used in modern CT devices is automatic tube current modulation (TCM), which was originally designed to also reduce the dose in paediatric CT patients. In order to be able to deduce detailed organ doses of paediatric models, dose conversion coefficients normalized to CTDI(vol) for an eight-week-old baby and seven- and eight-year-old children have been computed accounting for TCM. The relative difference in organ dose conversion coefficients with and without TCM is for many organs and examinations less than 10%, but can in some cases amount up to 30%, e.g., for the thyroid in the chest CT of the seven-year-old child. Overall, the impact of TCM on the conversion coefficients increases with increasing age. Besides TCM, also the effect of collimation and tube voltage on organ dose conversion coefficients has been investigated. It could be shown that the normalization to CTDI(vol) leads to conversion coefficients that can in most cases be considered to be independent of collimation and tube voltage.
Dose conversion coefficients for paediatric CT examinations with automatic tube current modulation
NASA Astrophysics Data System (ADS)
Schlattl, H.; Zankl, M.; Becker, J.; Hoeschen, C.
2012-10-01
A common dose-saving technique used in modern CT devices is automatic tube current modulation (TCM), which was originally designed to also reduce the dose in paediatric CT patients. In order to be able to deduce detailed organ doses of paediatric models, dose conversion coefficients normalized to CTDIvol for an eight-week-old baby and seven- and eight-year-old children have been computed accounting for TCM. The relative difference in organ dose conversion coefficients with and without TCM is for many organs and examinations less than 10%, but can in some cases amount up to 30%, e.g., for the thyroid in the chest CT of the seven-year-old child. Overall, the impact of TCM on the conversion coefficients increases with increasing age. Besides TCM, also the effect of collimation and tube voltage on organ dose conversion coefficients has been investigated. It could be shown that the normalization to CTDIvol leads to conversion coefficients that can in most cases be considered to be independent of collimation and tube voltage.
Akhlaghi, Parisa; Hakimabad, Hashem Miri; Motavalli, Laleh Rafat
2015-11-01
In order to construct a library of Iranian pediatric voxel phantoms for radiological protection and dosimetry applications, an Iranian eight-year-old phantom was constructed from a series of CT images. Organ and effective dose conversion coefficients to this phantom were calculated for head, chest, abdominopelvis and chest-abdomen-pelvis scans at tube voltages of 80, 100 and 120 kVp. To validate the results, the organ and effective dose conversion coefficients obtained were compared with those of the University of Florida eight-year-old voxel female phantom as a function of examination type and anatomical scan area. For a detailed study, depth distributions of organs together with the thickness of surrounding tissues located in the beam path, which are shielding the internal organs, were determined for these two voxel phantoms. The relation between the anatomical differences and the level of delivered dose was investigated and the discrepancies among the results justified.
Zhang, Xiaomin; Xie, Xiangdong; Qu, Decheng; Ning, Jing; Zhou, Hongmei; Pan, Jie; Yang, Guoshan
2016-03-01
A set of fluence-to-dose conversion coefficients has been calculated for neutrons with energies <20 MeV using a developed voxel mouse model and Monte Carlo N-particle code (MCNP), for the purpose of neutron radiation effect evaluation. The calculation used 37 monodirectional monoenergetic neutron beams in the energy range 10(-9) MeV to 20 MeV, under five different source irradiation configurations: left lateral, right lateral, dorsal-ventral, ventral-dorsal, and isotropic. Neutron fluence-to-dose conversion coefficients for selected organs of the body were presented in the paper, and the effect of irradiation geometry conditions, neutron energy and the organ location on the organ dose was discussed. The results indicated that neutron dose conversion coefficients clearly show sensitivity to irradiation geometry at neutron energy below 1 MeV.
Zhang, Xiaomin; Xie, Xiangdong; Qu, Decheng; Ning, Jing; Zhou, Hongmei; Pan, Jie; Yang, Guoshan
2016-01-01
A set of fluence-to-dose conversion coefficients has been calculated for neutrons with energies <20 MeV using a developed voxel mouse model and Monte Carlo N-particle code (MCNP), for the purpose of neutron radiation effect evaluation. The calculation used 37 monodirectional monoenergetic neutron beams in the energy range 10−9 MeV to 20 MeV, under five different source irradiation configurations: left lateral, right lateral, dorsal–ventral, ventral–dorsal, and isotropic. Neutron fluence-to-dose conversion coefficients for selected organs of the body were presented in the paper, and the effect of irradiation geometry conditions, neutron energy and the organ location on the organ dose was discussed. The results indicated that neutron dose conversion coefficients clearly show sensitivity to irradiation geometry at neutron energy below 1 MeV. PMID:26661852
The Spectrometer for Internal Conversion Electrons at TRIUMF-ISAC
NASA Astrophysics Data System (ADS)
Smallcombe, James; Evitts, Lee; Garnsworthy, Adam; Moukaddam, Mohamad; Spice Collaboration
2016-09-01
SPICE (SPectrometer for Internal Conversion Electrons) is a powerful tool to measure conversion coefficients and E 0 transitions in nuclei. E 0 transition strengths, which are not accessible by gamma-ray spectroscopy, are a sparsely measured observable. Such transition strengths are particularly sensitive to nuclear shape and state mixing effects and as such are a key item of data in studying the evolution of shape coexistence. SPICE is an ancillary detector that has been commissioned for use with Radioactive Ion Beams (RIBs) at the ISAC-II facility of TRIUMF. The main feature of SPICE is high efficiency over a range of electron energies from 100 to 3500 keV, crucial for work with RIBs, and an effective reduction of beam-induced backgrounds. This is achieved with an upstream magnetic lens, a high- Z photon shield and a large-area lithium-drifted silicon detector. A major theme of the physics program will be the investigation of shape coexistence and state mixing in exotic nuclei. An overview of the main features of SPICE will be presented alongside details of the commissioning and preliminary data from the first experiment studying excited structures in 110Pd. Natural Sciences and Engineering Research Council of Canada (NSERC), Canada Foundation for Innovation (CFI), Ontario Ministry of Research and Innovation (MRI).
P-Wave to Rayleigh-wave conversion coefficients for wedge corners; model experiments
Gangi, A.F.; Wesson, R.L.
1978-01-01
An analytic solution is not available for the diffraction of elastic waves by wedges; however, numerical solutions of finite-difference type are available for selected wedge angles. The P- to Rayleigh-wave conversion coefficients at wedge tips have been measured on two-dimensional seismic models for stress-free wedges with wedge angles, ??0, of 10, 30, 60, 90 and 120??. The conversion coefficients show two broad peaks and a minimum as a function of the angle between the wedge face and the direction of the incident P-wave. The minimum occurs for the P wave incident parallel to the wedge face and one maximum is near an incidence angle of 90?? to the wedge face. The amplitude of this maximum, relative to the other, decreases as the wedge angle increases. The asymmetry of the conversion coefficients, CPR(??; ??0), relative to parallel incidence (?? = 0) increases as the wedge angle increases. The locations of the maxima and the minimum as well as the asymmetry can be explained qualitatively. The conversion coefficients are measured with an accuracy of ??5% in those regions where there are no interfering waves. A comparison of the data for the 10?? wedge with the theoretical results for a half plane (0?? wedge) shows good correlation. ?? 1978.
Zhang, Bintuan; Dang, Bingrong; Wang, Zhuanzi; Wei, Wei; Li, Wenjian
2013-10-01
The skin tissue-equivalent slab reported in the International Commission on Radiological Protection (ICRP) Publication 116 to calculate the localised skin dose conversion coefficients (LSDCCs) was adopted into the Monte Carlo transport code Geant4. The Geant4 code was then utilised for computation of LSDCCs due to a circular parallel beam of monoenergetic electrons, protons and alpha particles <10 MeV. The computed LSDCCs for both electrons and alpha particles are found to be in good agreement with the results using the MCNPX code of ICRP 116 data. The present work thus validates the LSDCC values for both electrons and alpha particles using the Geant4 code.
Chapter 4: Ultrafast Internal Conversion of Pyrazine via Conical Intersection
NASA Astrophysics Data System (ADS)
Suzuki, T.; Suzuki, Y. I.
2014-04-01
We describe recent experimental studies of internal conversion via conical intersection in pyrazine. Ultrafast S2 - S1 internal conversion is observed in real time using a time-resolved photoelectron imaging (TRPEI) method with a time resolution of 22 fs. This method enables us to obtain a time-energy map of the photoelectron angular anisotropy, which unambiguously reveals the signature of internal conversion. Furthermore, the time-energy map of the photoelectron kinetic energy distribution (PKED) exhibits vibrational quantum beats of totally symmetric modes in S1 after internal conversion. We also studied similar conical intersections between D1(π-1) and D0(n-1) by He(I) photoelectron spectroscopy and pulsed field ionization photoelectron spectroscopy. The existence of ultrafast internal conversion from D1 to D0 is confirmed by broadening of He(I) photoelectron spectra of pyrazine and deuterated pyrazine. Comparison of these spectra with one-color resonance-enhanced multiphoton ionization (REMPI) spectra of the 3s Rydberg states clearly indicates that the conical intersection between D1 and D0 induces ultrafast internal conversion from the Rydberg state with a D1 ion core to that with a D0 ion core.
Taranenko, Valery; Xu, X. George
2009-01-01
Protection of pregnant women and their foetus against external proton irradiations poses a unique challenge. Assessment of foetal dose due to external protons in galactic cosmic rays and as secondaries generated in aircraft walls is especially important during high-altitude flights. This paper reports a set of fluence to absorbed dose conversion coefficients for the foetus and its brain for external monoenergetic proton beams of six standard configurations (the antero-posterior, the postero-anterior, the right lateral, the left lateral, the rotational and the isotropic). The pregnant female anatomical definitions at each of the three gestational periods (3, 6 and 9 months) are based on newly developed RPI-P series of models whose organ masses were matched within 1% with the International Commission on Radiological Protection reference values. Proton interactions and the transport of secondary particles were carefully simulated using the Monte Carlo N-Particle eXtended code (MCNPX) and the phantoms consisting of several million voxels at 3 mm resolution. When choosing the physics models in the MCNPX, it was found that the advanced Cascade-Exciton intranuclear cascade model showed a maximum of 9% foetal dose increase compared with the default model combination at intermediate energies below 5 GeV. Foetal dose results from this study are tabulated and compared with previously published data that were based on simplified anatomy. The comparison showed a strong dependence upon the source geometry, energy and gestation period: the dose differences are typically less than 20% for all sources except ISO where systematically 40–80% of higher doses were observed. Below 200 MeV, a larger discrepancy in dose was found due to the Bragg peak shift caused by different anatomy. The tabulated foetal doses represent the latest and most detailed study to date offering a useful set of data to improve radiation protection dosimetry against external protons. PMID:19246483
Conversion Intentions of Interns: What Are the Motivating Factors?
ERIC Educational Resources Information Center
Hurst, Jessica L.; Good, Linda K.; Gardner, Phil
2012-01-01
Purpose: The purpose of this study is to investigate interns' supervisory support expectations, psychological contract obligations, job satisfaction, perception of advancement opportunities and affective organisational commitment in an attempt to gain a better understanding of how these variables influence interns' conversion intentions.…
Xiao, Pingping; Wang, Xianping; Sun, Jingjing; Huang, Meizhen; Chen, Xianfeng; Cao, Zhuangqi
2012-06-18
A new scheme is proposed to measure the electro-optical (EO) and converse-piezoelectric (CPE) coefficients of the PMN-PT ceramics simultaneously, in which the PMN-PT ceramics acts as the guiding layer of a symmetrical metal-cladding waveguide. As the applied electric field exerts on the waveguide, the effective refractive index (RI) (or synchronous angle) can be effectively tuned from a selected mode to another adjacent mode owing to the high sensitivity and the small spacing of the ultra-high order modes. Subsequently, a correlation between EO and CPE coefficients is established. With this correlation and the measurement of the effective RI change to the applied voltage, the quadratic EO and CPE coefficients of PMN-PT ceramics are obtained simultaneously. The obtained results are further checked by fitting the variations of effective RI to a quadratic function. Our measurement method can be extended to a wide range of other materials.
Organ dose conversion coefficients for tube current modulated CT protocols for an adult population
NASA Astrophysics Data System (ADS)
Fu, Wanyi; Tian, Xiaoyu; Sahbaee, Pooyan; Zhang, Yakun; Segars, William Paul; Samei, Ehsan
2016-03-01
In computed tomography (CT), patient-specific organ dose can be estimated using pre-calculated organ dose conversion coefficients (organ dose normalized by CTDIvol, h factor) database, taking into account patient size and scan coverage. The conversion coefficients have been previously estimated for routine body protocol classes, grouped by scan coverage, across an adult population for fixed tube current modulated CT. The coefficients, however, do not include the widely utilized tube current (mA) modulation scheme, which significantly impacts organ dose. This study aims to extend the h factors and the corresponding dose length product (DLP) to create effective dose conversion coefficients (k factor) database incorporating various tube current modulation strengths. Fifty-eight extended cardiac-torso (XCAT) phantoms were included in this study representing population anatomy variation in clinical practice. Four mA profiles, representing weak to strong mA dependency on body attenuation, were generated for each phantom and protocol class. A validated Monte Carlo program was used to simulate the organ dose. The organ dose and effective dose was further normalized by CTDIvol and DLP to derive the h factors and k factors, respectively. The h factors and k factors were summarized in an exponential regression model as a function of body size. Such a population-based mathematical model can provide a comprehensive organ dose estimation given body size and CTDIvol. The model was integrated into an iPhone app XCATdose version 2, enhancing the 1st version based upon fixed tube current modulation. With the organ dose calculator, physicists, physicians, and patients can conveniently estimate organ dose.
Internal conversion from excited electronic states of 229Th ions
NASA Astrophysics Data System (ADS)
Bilous, Pavlo V.; Kazakov, Georgy A.; Moore, Iain D.; Schumm, Thorsten; Pálffy, Adriana
2017-03-01
The process of internal conversion from excited electronic states is investigated theoretically for the case of the vacuum-ultraviolet nuclear transition of 229Th. Due to the very low transition energy, the 229Th nucleus offers the unique possibility to open the otherwise forbidden internal conversion nuclear decay channel for thorium ions via optical laser excitation of the electronic shell. We show that this feature can be exploited to investigate the isomeric state properties via observation of internal conversion from excited electronic configurations of +Th and Th+2 ions. A possible experimental realization of the proposed scenario at the nuclear laser spectroscopy facility IGISOL in Jyväskylä, Finland, is discussed.
Further test of internal-conversion theory with a measurement in {sup 197}Pt
Nica, N.; Hardy, J. C.; Iacob, V. E.; Goodwin, J.; Balonek, C.; Hernberg, M.; Nolan, J.; Trzhaskovskaya, M. B.
2009-12-15
We have measured the K-shell internal conversion coefficient, {alpha}{sub K}, for the 346.5-keV M4 transition in {sup 197}Pt to be 4.23(7). This result differs from a previous value, which disagreed significantly from theory. Our new value agrees well with Dirac-Fock calculations and removes the earlier discrepancy as a source of concern.
Internal conversion in highly-stripped {sup 83}Kr ions
Rehm, K.E.; Ahmad, I.; Gehring, J.
1995-08-01
The transition probability per unit time for the decay of a nuclear level via internal conversion (IC), {lambda}IC, depends on the electron environment of the nucleus. For example, inner-shell conversion in highly-charged ions can change appreciably as electrons are successively removed from the ion. Magnetic dipole (Ml) transitions are especially sensitive to this effect since the internal conversion depends strongly on the electron density at the nucleus. Hence, measurements of {lambda}IC,q, the internal conversion rate in an ion with charge state q, can provide good tests of theoretical electron wave functions if the electron configuration in the ions is known. In a previous experiment, a new method which identifies charge-changing events during passage of ion beams through a magnetic spectrometer was used to determine {lambda}IC,q for the 14.4-keV isomer in {sup 57}Fe. This contribution reports measurements made using the same technique for the 9.4-keV isomer in {sup 83}Kr. A beam of {sup 83}Kr with energy 650 MeV bombarded a Au target with a thickness 300 {mu}g cm{sup -2}. Secondary scattered beams were accepted and analyzed by an Enge magnetic spectrometer. The numbers of excited nuclei decaying during passage through the spectrometer and their internal conversion rates were deduced from the pattern of events measured in the spectrometer focal plane.
Further Test of Internal-conversion Theory with a Measurement in {sup 119}Sn
Nica, N. Hardy, J.C.; Iacob, V.E.
2014-06-15
Precise measurements are being used to test theoretical K-shell internal conversion coefficients (ICCs): in particular, our program has focused on examining whether the atomic K-vacancy formed during the conversion process must be incorporated into the calculations. We report here a measurement on the 65.66-keV, M4 isomeric transition in {sup 119}Sn. Our preliminary result is α{sub K}=1610(27), which confirms the importance of including the vacancy in the ICC calculations.
Behrens, R
2013-07-01
In this work, conversion coefficients from electron fluence to absorbed dose to the eye lens were calculated using Monte Carlo simulations based on a detailed stylised eye model and a very simple but whole body phantom. These data supersede and complement data published earlier based on the simulation of only a single stylised eye. The new data differ from the old ones by not more than 3, 4, 7 and 16 % for angles of radiation incidence of α=0°, 15°, 30° and 45°, respectively, due to the inclusion of the whole body phantom. The data presented in the present work also complement those of a recent report of the International Commission on Radiological Protection (ICRP) (ICRP Publication 116), where conversion coefficients from electron fluence to absorbed dose to the lens of the eye are shown for solely 0°, 180° and isotropic radiation incidence (but for a much broader range of energies). In this article, values are provided for angles of incidence of 0° up to 180° in steps of 15° and for rotational geometry; no systematic deviation was observed from the values given in ICRP Publication 116 for 0° (based on the application of a bare eye) and 180° (based on the application of a voxel whole body phantom). Data are given for monoenergetic electrons from 0.1 up to 10 MeV and for a broad parallel beam geometry in vacuum.
SPectrometer for Internal Conversion Electrons (SPICE) at TRIUMF-ISAC
NASA Astrophysics Data System (ADS)
Smallcombe, J.; Moukaddam, M.; Evitts, L. J.; Garnsworthy, A. B.; Hallam, S.; Andreoiu, C.; Ball, G. C.; Bolton, C.; Caballero-Folch, R.; Constable, M.; Cross, D. S.; Garrett, P. E.; Hackman, G.; Henderson, J.; Henderson, R.; Ketelhut, S.; Kruecken, R.; Kurchaninov, L.; Park, J.; Pore, J. L.; Rand, E. T.; Ruotsalainen, P.; Smith, J. K.; Svensson, C. E.; Williams, M.
2016-09-01
A new ancillary detector, SPICE (SPectrometer for Internal Conversion Electrons) has been constructed and recently commissioned for use with radioactive ion beams at the TRIUMF-ISAC II facility. SPICE is designed to be operated in conjunction with the TIGRESS High-Purity Germanium (HPGe) spectrometer to perform combined in-beam γ-ray and internal-conversion-electron spectroscopy. The main feature of SPICE is high effciency over a wide range of electron energies from 100 to 3500 keV, with an effective reduction of beam-induced backgrounds. SPICE will be a powerful tool to measure conversion coeffcients and E0 transitions in atomic nuclei. A recent in-beam commissioning experiment demonstrates the effectiveness of the basic design concept of SPICE in background suppression.
Dose conversion coefficients for CT examinations of adults with automatic tube current modulation
NASA Astrophysics Data System (ADS)
Schlattl, H.; Zankl, M.; Becker, J.; Hoeschen, C.
2010-10-01
Automatic tube current modulation (TCM) is used in modern CT devices. This is implemented in the numerical calculation of dose conversion coefficients for CT examinations. For four models of adults, the female and male reference models of ICRP and ICRU and a lighter and a heavier female model, dose conversion coefficients normalized to CTDIvol (DCCCT) have been computed with a Monte Carlo transport code for CT scans with and without TCM. It could be shown for both cases that reliable values for spiral CT scans are obtained when combining the results from an appropriate set of axial scans. The largest organ DCCCT are presented for typical CT examinations for all four models. The impact of TCM is greatest for chest, pelvis and whole-trunk CT examinations, where with TCM the effective DCCCT can be 20-25% lower than without TCM. Typical organs with strong dependence on TCM are thyroid, urinary bladder, lungs and oesophagus. While the DCCCT of thyroid and urinary bladder are mainly sensitive to angular TCM, the DCCCT of lungs and oesophagus are influenced primarily by longitudinal TCM. The impact of the body stature on the effective DCCCT is of the same order as the effect of TCM. Thus, for CT scans in the trunk region, accurate dose values can only be obtained when different sets of DCCCT are employed that are appropriate for the patient's sex and stature and the actual TCM settings.
Dong, Liang; Li, Taosheng; Liu, Chunyu
2015-04-01
A set of fluence-to-effective dose conversion coefficients of external exposure to muons were investigated for Chinese hybrid phantom references, which include both male and female. Both polygon meshes and Non-Uniform Rational B-Spline (NURBS) surfaces were used to descried the boundary of the organs and tissues in these phantoms. The 3D-DOCTOR and Rhinoceros software were used to polygonise the colour slice images and generate the NURBS surfaces, respectively. The voxelisation is completed using the BINVOX software and the assembly finished by using MATLAB codes. The voxel resolutions were selected to be 0.22 × 0.22 × 0.22 cm(3) and 0.2 × 0.2 × 0.2 cm(3) for male and female phantoms, respectively. All parts of the final phantoms were matched to their reference organ masses within a tolerance of ±5%. The conversion coefficients for negative and positive muons were calculated with the FLUKA transport code. There were 21 external monoenergetic beams ranging from 0.01 GeV to 100 TeV in 5 different geometrical conditions of irradiation.
Internal conversion to bound final states in 125Te
NASA Astrophysics Data System (ADS)
Harston, M. R.; Carreyre, T.; Chemin, J. F.; Karpeshin, F.; Trzhaskovskaya, M. B.
2000-08-01
Theoretical results are presented for rate of decay of the 3/2+ isomeric nuclear state of 125Te by excitation of atomic electrons to bound states in the ions Te 45+ and Te 46+. In these ions the nuclear transition energy lies just below the threshold for emission of a K-shell electron to the continuum with the result that normal K-shell internal conversion is energetically forbidden. However recent experimental results indicate that excitation of K-shell electrons is still significant in these ions. The theoretical results presented here for internal conversion to bound final states are in quantitative agreement with experiment and thereby confirm the contribution of near-resonant electron-nucleus transitions involving a bound final state.
Dose conversion coefficients for neutron exposure to the lens of the human eye
Manger, Ryan P; Bellamy, Michael B; Eckerman, Keith F
2011-01-01
Dose conversion coefficients for the lens of the human eye have been calculated for neutron exposure at energies from 1 x 10{sup -9} to 20 MeV and several standard orientations: anterior-to-posterior, rotational and right lateral. MCNPX version 2.6.0, a Monte Carlo-based particle transport package, was used to determine the energy deposited in the lens of the eye. The human eyeball model was updated by partitioning the lens into sensitive and insensitive volumes as the anterior portion (sensitive volume) of the lens being more radiosensitive and prone to cataract formation. The updated eye model was used with the adult UF-ORNL mathematical phantom in the MCNPX transport calculations.
Khailov, A M; Ivannikov, A I; Skvortsov, V G; Stepanenko, V F; Tsyb, A F; Trompier, F; Hoshi, M
2010-02-01
In the present study, MCNP4B simulation code is used to simulate neutron and photon transport. It gives the conversion coefficients that relate neutron fluence to the dose in tooth enamel (molars and pre-molars only) for 20 energy groups of monoenergetic neutrons with energies from 10-9 to 20 MeV for five different irradiation geometries. The data presented are intended to provide the basis for connection between EPR dose values and standard protection quantities defined in ICRP Publication 74. The results of the calculations for critical organs were found to be consistent with ICRP data, with discrepancies generally less than 10% for the fast neutrons. The absorbed dose in enamel was found to depend strongly on the incident neutron energy for neutrons over 10 keV. The dependence of the data on the irradiation geometry is also shown. Lower bound estimates of enamel radiation sensitivity to neutrons were made using obtained coefficients for the secondary photons. Depending on neutron energy, tooth enamel was shown to register 10-120% of the total neutron dose in the human body in the case of pure neutron exposure and AP irradiation geometry.
Measurement of internal conversion electrons from Gd neutron capture
NASA Astrophysics Data System (ADS)
Kandlakunta, P.; Cao, L. R.; Mulligan, P.
2013-03-01
Gadolinium (Gd) is a suitable material for neutron conversion because of its superior neutron absorption cross-section. However, the principal secondary particles that generate electron-hole pairs in a semiconductor detector after Gd neutron capture are low-energy internal conversion (IC) electrons. We measured the IC electron spectrum due to Gd neutron capture by using a thermal neutron beam and a digitizer-based multidetector spectroscopy. We also discussed the effective use of the IC electrons in the context of a twin-detector design and the associated gamma-ray rejection issues. Extensive simulations of the spectra of IC electrons and gamma rays agreed well with the experimental results; both types of results support the feasibility of the proposed n-γ separation method.
Alves, M C; Santos, W S; Lee, C; Bolch, W E; Hunt, J G; Júnior, A B Carvalho
2016-09-24
The aim of this study was the calculation of conversion coefficients for absorbed doses per fluence (DT/Φ) using the sitting and standing male hybrid phantom (UFH/NCI) exposure to monoenergetic protons with energy ranging from 2 MeV to 10 GeV. Sex-averaged effective dose per fluence (E/Φ) using the results of DT/Φ for the male and female hybrid phantom in standing and sitting postures were also calculated. Results of E/Φ of UFH/NCI standing phantom were also compared with tabulated effective dose conversion coefficients provided in ICRP publication 116. To develop an exposure scenario implementing the male UFH/NCI phantom in sitting and standing postures was used the radiation transport code MCNPX. Whole-body irradiations were performed using the recommended irradiation geometries by ICRP publication 116 antero-posterior (AP), postero-anterior (PA), right and left lateral, rotational (ROT) and isotropic (ISO). In most organs, the conversion coefficients DT/Φ were similar for both postures. However, relative differences were significant for organs located in the lower abdominal region, such as prostate, testes and urinary bladder, especially in the AP geometry. Results of effective dose conversion coefficients were 18% higher in the standing posture of the UFH/NCI phantom, especially below 100 MeV in AP and PA. In lateral geometry, the conversion coefficients values below 20 MeV were 16% higher in the sitting posture. In ROT geometry, the differences were below 10%, for almost all energies. In ISO geometry, the differences in E/Φ were negligible. The results of E/Φ of UFH/NCI phantom were in general below the results of the conversion coefficients provided in ICRP publication 116.
Correspondence of electron spectra from photoionization and nuclear internal conversion
Wark, D.L.; Bartlett, R.; Bowles, T.J.; Robertson, R.G.H.; Sivia, D.S.; Trela, W.; Wilkerson, J.F. ); Brown, G.S. ); Crasemann, B.; Sorensen, S.L.; Schaphorst, S.J. ); Knapp, D.A.; Henderson, J. ); Tulkki, J.; Aberg, T. )
1991-10-21
Electron energy spectra have been measured that result from {ital K}-shell ionization of Kr by two different mechanisms: (1) photoionization and (2) internal conversion in the decay of the isomeric state of {sup 83}Kr. It is demonstrated experimentally that these spectra, including satellites on the low-energy side of the primary 1{ital s}-electron peak, are identical. A theoretical interpretation of the identity of the spectra is given. The spectra agree well with a relativistic many-electron calculation in which the satellites are attributed to excitation and ionization of {ital M} and {ital N} electrons during the {ital K}-ionization process.
Krstic, D.; Nikezic, D.
2017-01-01
Radiotherapy is a common cancer treatment module, where a certain amount of dose will be delivered to the targeted organ. This is achieved usually by photons generated by linear accelerator units. However, radiation scattering within the patient’s body and the surrounding environment will lead to dose dispersion to healthy tissues which are not targets of the primary radiation. Determination of the dispersed dose would be important for assessing the risk and biological consequences in different organs or tissues. In the present work, the concept of conversion coefficient (F) of the dispersed dose was developed, in which F = (Dd/Dt), where Dd was the dispersed dose in a non-targeted tissue and Dt is the absorbed dose in the targeted tissue. To quantify Dd and Dt, a comprehensive model was developed using the Monte Carlo N-Particle (MCNP) package to simulate the linear accelerator head, the human phantom, the treatment couch and the radiotherapy treatment room. The present work also demonstrated the feasibility and power of parallel computing through the use of the Message Passing Interface (MPI) version of MCNP5. PMID:28362837
Shahmohammadi Beni, Mehrdad; Ng, C Y P; Krstic, D; Nikezic, D; Yu, K N
2017-01-01
Radiotherapy is a common cancer treatment module, where a certain amount of dose will be delivered to the targeted organ. This is achieved usually by photons generated by linear accelerator units. However, radiation scattering within the patient's body and the surrounding environment will lead to dose dispersion to healthy tissues which are not targets of the primary radiation. Determination of the dispersed dose would be important for assessing the risk and biological consequences in different organs or tissues. In the present work, the concept of conversion coefficient (F) of the dispersed dose was developed, in which F = (Dd/Dt), where Dd was the dispersed dose in a non-targeted tissue and Dt is the absorbed dose in the targeted tissue. To quantify Dd and Dt, a comprehensive model was developed using the Monte Carlo N-Particle (MCNP) package to simulate the linear accelerator head, the human phantom, the treatment couch and the radiotherapy treatment room. The present work also demonstrated the feasibility and power of parallel computing through the use of the Message Passing Interface (MPI) version of MCNP5.
Zhang, Xiaomin; Xie, Xiangdong; Cheng, Jie; Ning, Jing; Yuan, Yong; Pan, Jie; Yang, Guoshan
2012-01-01
A set of conversion coefficients from kerma free-in-air to the organ absorbed dose for external photon beams from 10 keV to 10 MeV are presented based on a newly developed voxel mouse model, for the purpose of radiation effect evaluation. The voxel mouse model was developed from colour images of successive cryosections of a normal nude male mouse, in which 14 organs or tissues were segmented manually and filled with different colours, while each colour was tagged by a specific ID number for implementation of mouse model in Monte Carlo N-particle code (MCNP). Monte Carlo simulation with MCNP was carried out to obtain organ dose conversion coefficients for 22 external monoenergetic photon beams between 10 keV and 10 MeV under five different irradiation geometries conditions (left lateral, right lateral, dorsal-ventral, ventral-dorsal, and isotropic). Organ dose conversion coefficients were presented in tables and compared with the published data based on a rat model to investigate the effect of body size and weight on the organ dose. The calculated and comparison results show that the organ dose conversion coefficients varying the photon energy exhibits similar trend for most organs except for the bone and skin, and the organ dose is sensitive to body size and weight at a photon energy approximately <0.1 MeV.
Ferrari, P; Gualdrini, G; Tanner, R; Fantuzzi, E
2014-10-01
The new recommendation issued by the International Commission on Radiological Protection (ICRP) introducing a 20-mSv annual dose limit for the eye lens stimulated an interesting debate among the radiation protection community. In the present work the problem of estimating Hp(3) for neutron realistic workplace spectra is treated, employing the recently published Hp(3)/Φ conversion coefficients with the aim of establishing a workplace-dependent relationship between Hp(10) and Hp(3). The results demonstrate that, whilst the two quantities can differ by less than 10 %, in general, Hp(10) cannot be considered a conservative estimate of Hp(3).
Conversion of internal gravity waves into magnetic waves
NASA Astrophysics Data System (ADS)
Lecoanet, D.; Vasil, G. M.; Fuller, J.; Cantiello, M.; Burns, K. J.
2017-04-01
Asteroseismology probes the interiors of stars by studying oscillation modes at a star's surface. Although pulsation spectra are well understood for solar-like oscillators, a substantial fraction of red giant stars observed by Kepler exhibit abnormally low-amplitude dipole oscillation modes. Fuller et al. (2015) suggest this effect is produced by strong core magnetic fields that scatter dipole internal gravity waves (IGWs) into higher multipole IGWs or magnetic waves. In this paper, we study the interaction of IGWs with a magnetic field to test this mechanism. We consider two background stellar structures: one with a uniform magnetic field, and another with a magnetic field that varies both horizontally and vertically. We derive analytic solutions to the wave propagation problem and validate them with numerical simulations. In both cases, we find perfect conversion from IGWs into magnetic waves when the IGWs propagate into a region exceeding a critical magnetic field strength. Downward propagating IGWs cannot reflect into upward propagating IGWs because their vertical wavenumber never approaches zero. Instead, they are converted into upward propagating slow (Alfvénic) waves, and we show they will likely dissipate as they propagate back into weakly magnetized regions. Therefore, strong internal magnetic fields can produce dipole mode suppression in red giants, and gravity modes will likely be totally absent from the pulsation spectra of sufficiently magnetized stars.
Fourth-order perturbative model for photoinduced internal conversion processes.
Molesky, Brian P; Moran, Andrew M
2013-12-27
Essential to the functionality of numerous biological and synthetic molecular systems is the ability to rapidly convert electronic excitation energy into heat. Such internal conversion (IC) transitions often cannot be described by traditional second-order kinetic theories because of time-coincident electronic and nuclear relaxation processes. Here, we present a perturbative fourth-order phenomenological model for photoinduced IC that incorporates effects associated with finite laser bandwidths and nonequilibrium nuclear motions. Specialized knowledge of first-principles computational methods is not required, and many parameters can be obtained with standard spectroscopic measurements. The model is applied to the IC processes that precede electrocyclic ring-opening in α-terpinene. It is shown that the primary factor governing the shape of the population decay profile (Gaussian versus exponential) is the rate at which the wavepacket approaches the geometry corresponding to degeneracy between the excited states. Other parameters such as the displacement in the promoting mode and the thermal fluctuation amplitudes affect the sensitivity of the IC dynamics to motion of the wavepacket but do not alter the basic physical picture. Finally, we suggest a wavepacket representation of the IC process to visualize correlations between population-transfer dynamics and the amount of energy transferred from the system to the bath.
Coherent phase control of internal conversion in pyrazine
NASA Astrophysics Data System (ADS)
Gordon, Robert J.; Hu, Zhan; Seideman, Tamar; Singha, Sima; Sukharev, Maxim; Zhao, Youbo
2015-04-01
Shaped ultrafast laser pulses were used to study and control the ionization dynamics of electronically excited pyrazine in a pump and probe experiment. For pump pulses created without feedback from the product signal, the ion growth curve (the parent ion signal as a function of pump/probe delay) was described quantitatively by the classical rate equations for internal conversion of the S2 and S1 states. Very different, non-classical behavior was observed when a genetic algorithm (GA) employing phase-only modulation was used to minimize the ion signal at some pre-determined target time, T. Two qualitatively different control mechanisms were identified for early (T < 1.5 ps) and late (T > 1.5 ps) target times. In the former case, the ion signal was largely suppressed for t < T, while for t ≫ T, the ion signal produced by the GA-optimized pulse and a transform limited (TL) pulse coalesced. In contrast, for T > 1.5 ps, the ion growth curve followed the classical rate equations for t < T, while for t ≫ T, the quantum yield for the GA-optimized pulse was much smaller than for a TL pulse. We interpret the first type of behavior as an indication that the wave packet produced by the pump laser is localized in a region of the S2 potential energy surface where the vertical ionization energy exceeds the probe photon energy, whereas the second type of behavior may be described by a reduced absorption cross section for S0 → S2 followed by incoherent decay of the excited molecules. Amplitude modulation observed in the spectrum of the shaped pulse may have contributed to the control mechanism, although this possibility is mitigated by the very small focal volume of the probe laser.
Technology Transfer Automated Retrieval System (TEKTRAN)
An empirical correlation of volumetric mass transfer coefficient was developed for a pilot scale internal-loop rectangular airlift bioreactor that was designed for biotechnology. The empirical correlation combines classic turbulence theory, Kolmogorov’s isotropic turbulence theory with Higbie’s pen...
Copeland, Kyle; Parker, Donald E; Friedberg, Wallace
2010-03-01
Conversion coefficients have been calculated for fluence-to-absorbed dose, fluence-to-effective dose and fluence-to-gray equivalent for isotropic exposure of an adult male and an adult female to (56)Fe(26+) in the energy range of 10 MeV to 1 TeV (0.01-1000 GeV). The coefficients were calculated using Monte Carlo transport code MCNPX 2.7.A and BodyBuilder 1.3 anthropomorphic phantoms modified to allow calculation of effective dose using tissues and tissue weighting factors from either the 1990 or 2007 recommendations of the International Commission on Radiological Protection (ICRP) and gray equivalent to selected tissues as recommended by the National Council on Radiation Protection and Measurements. Calculations using ICRP 2007 recommendations result in fluence-to-effective dose conversion coefficients that are almost identical at most energies to those calculated using ICRP 1990 recommendations.
Principi, S; Guardiola, C; Duch, M A; Ginjaume, M
2016-09-01
Recent studies highlight the fact that the new eye lens dose limit can be exceeded in interventional radiology procedures and that eye lens monitoring could be required for these workers. The recommended operational quantity for monitoring of eye lens exposure is the personal dose equivalent at 3 mm depth Hp(3) (ICRU 51). However, there are no available conversion coefficients in international standards, while in the literature coefficients have only been calculated for monoenergetic beams and for ISO 4037-1 X-ray qualities. The aim of this article is to provide air kerma to Hp(3) conversion coefficients for a cylindrical phantom made of ICRU-4 elements tissue-equivalent material for RQR radiation qualities (IEC-61267) from 40 to 120 kV and for angles of incidence from 0 to 180°, which are characteristic of medical workplace. Analytic calculations using interpolation techniques and Monte Carlo modelling have been compared.
NASA Astrophysics Data System (ADS)
Johnson, Perry; Lee, Choonsik; Johnson, Kevin; Siragusa, Daniel; Bolch, Wesley E.
2009-06-01
In this study, the influence of patient size on organ and effective dose conversion coefficients (DCCs) was investigated for a representative interventional fluoroscopic procedure—cardiac catheterization. The study was performed using hybrid phantoms representing an underweight, average and overweight American adult male. Reference body sizes were determined using the NHANES III database and parameterized based on standing height and total body mass. Organ and effective dose conversion coefficients were calculated for anterior-posterior, posterior-anterior, left anterior oblique and right anterior oblique projections using the Monte Carlo code MCNPX 2.5.0 with the metric dose area product being used as the normalization factor. Results show body size to have a clear influence on DCCs which increased noticeably when body size decreased. It was also shown that if patient size is neglected when choosing a DCC, the organ and effective dose will be underestimated to an underweight patient and will be overestimated to an underweight patient, with errors as large as 113% for certain projections. Results were further compared with those published for a KTMAN-2 Korean patient-specific tomographic phantom. The published DCCs aligned best with the hybrid phantom which most closely matched in overall body size. These results highlighted the need for and the advantages of phantom-patient matching, and it is recommended that hybrid phantoms be used to create a more diverse library of patient-dependent anthropomorphic phantoms for medical dose reconstruction.
NASA Astrophysics Data System (ADS)
Fujii, Ritsuko; Inaba, Toru; Watanabe, Yasutaka; Koyama, Yasushi; Zhang, Jian-Ping
2003-02-01
Near-infrared, subpicosecond time-resolved absorption spectroscopy of all- trans carotenoids having the number of conjugated double bonds, n=9-13, identified two different pathways of internal conversion in accordance with the energy diagram recently determined by measurements of resonance-Raman excitation profiles (RREPs) [K. Furuichi, T. Sashima, Y. Koyama, Chem. Phys. Lett. 356 (2002) 547]: the 1B u+→1B u-→2A g- internal conversion for neurosporene ( n=9) and spheroidene ( n=10), whereas the 1B u+→3A g-→2A g- internal conversion for lycopene ( n=11), anhydrorhodovibrin ( n=12) and spirilloxanthin ( n=13).
Internal Evaluation a Quarter-Century Later: A Conversation with Arnold J. Love
ERIC Educational Resources Information Center
Volkov, Boris B.
2011-01-01
This chapter features a recent conversation with Dr. Arnold J. Love, a long-time proponent of internal evaluation and one of the most cited internal evaluation authors. In 1983, Love edited the first issue of "New Directions for Program Evaluation" on the topic of internal evaluation. He is the author of the book "Internal…
5 CFR 315.712 - Conversion based on service as a Federal Career Intern.
Code of Federal Regulations, 2012 CFR
2012-01-01
... Career Intern. 315.712 Section 315.712 Administrative Personnel OFFICE OF PERSONNEL MANAGEMENT CIVIL SERVICE REGULATIONS CAREER AND CAREER-CONDITIONAL EMPLOYMENT Conversion to Career or Career-Conditional Employment From Other Types of Employment § 315.712 Conversion based on service as a Federal Career...
5 CFR 315.712 - Conversion based on service as a Federal Career Intern.
Code of Federal Regulations, 2010 CFR
2010-01-01
... Career Intern. 315.712 Section 315.712 Administrative Personnel OFFICE OF PERSONNEL MANAGEMENT CIVIL SERVICE REGULATIONS CAREER AND CAREER-CONDITIONAL EMPLOYMENT Conversion to Career or Career-Conditional Employment From Other Types of Employment § 315.712 Conversion based on service as a Federal Career...
5 CFR 315.712 - Conversion based on service as a Federal Career Intern.
Code of Federal Regulations, 2011 CFR
2011-01-01
... Career Intern. 315.712 Section 315.712 Administrative Personnel OFFICE OF PERSONNEL MANAGEMENT CIVIL SERVICE REGULATIONS CAREER AND CAREER-CONDITIONAL EMPLOYMENT Conversion to Career or Career-Conditional Employment From Other Types of Employment § 315.712 Conversion based on service as a Federal Career...
Topical applications of resonance internal conversion in laser produced plasma
NASA Astrophysics Data System (ADS)
Karpeshin, F. F.
2007-04-01
Physical aspects of resonance effects arising in plasma due to interactions of nuclei with the electrons are considered. Among them are resonance conversion (TEEN) and the reverse process of NEET. These processes are of great importance for pumping the excited nuclear states (isomers) and for accelerating their decay. Experiment is discussed on studying the unique 3.5-eV 229m Th nuclide.
NASA Astrophysics Data System (ADS)
Horton, Spencer L.; Liu, Yusong; Chakraborty, Pratip; Matsika, Spiridoula; Weinacht, Thomas
2017-02-01
We study the relaxation dynamics of pyrrole after excitation with an 8 eV pump pulse to a state just 0.2 eV below the ionization potential using vacuum ultraviolet/ultraviolet pump probe spectroscopy. Our measurements in conjunction with electronic structure calculations indicate that pyrrole undergoes rapid internal conversion to the ground state in less than 300 fs. We find that internal conversion to the ground state dominates over dissociation.
Inequalities, the arts and public health: Towards an international conversation
Parkinson, Clive; White, Mike
2014-01-01
This paper considers how participatory arts informed by thinking in public health can play a significant part internationally in addressing inequalities in health. It looks beyond national overviews of arts and health to consider what would make for meaningful international practice, citing recent initiatives of national networks in English-speaking countries and examples of influential developments in South America and the European Union. In the context of public health thinking on inequalities and social justice, the paper posits what would make for good practice and appropriate research that impacts on policy. As the arts and health movement gathers momentum, the paper urges the arts to describe their potency in the policy-making arena in the most compelling ways to articulate their social, economic and cultural values. In the process, it identifies the reflexive consideration of participatory practice – involving people routinely marginalised from decision-making processes – as a possible avenue into this work. PMID:25729409
Biomass conversion Task 4 1988 program of work: International Energy Agency Bioenergy Agreement
Stevens, D.J.
1987-12-01
For biomass to meet its potential as an energy resource, conversion processes must be available which are both efficient and environmentally acceptable. Conversion can include direct production of heat and electricity as well as production of intermediate gaseous, liquid, and solid fuels. While many biomass conversion processes are commercially available at present, others are still in the conceptual stage. Additional research and development activities on these advanced concepts will be necessary to fully use biomass resources. Ongoing research on biomass conversion processes is being conducted by many nations throughout the world. In an effort to coordinate this research and improve information exchange, several countries have agreed to a cooperative effort through the International Energy Agency's Bioenergy Agreement (IEA/BA). Under this Agreement, Task IV deals specifically with biomass conversion topics. The cooperative activities consists of information exchange and coordination of national research programs on specific topics. The activities address biomass conversion in a systematic manner, dealing with the pretreatment of biomass prior to conversion, the subsequent conversion of the biomass to intermediate fuels or end-product energy, and then the environmental aspects of the conversion process. This document provides an outline of cooperative work to be performed in 1988. 1 fig., 2 tabs.
Copeland, Kyle; Parker, Donald E; Friedberg, Wallace
2010-03-01
Conversion coefficients have been calculated for fluence to absorbed dose, fluence to effective dose and fluence to gray equivalent, for isotropic exposure to alpha particles in the energy range of 10 MeV to 1 TeV (0.01-1000 GeV). The coefficients were calculated using Monte Carlo transport code MCNPX 2.7.A and BodyBuilder 1.3 anthropomorphic phantoms modified to allow calculation of effective dose to a Reference Person using tissues and tissue weighting factors from 1990 and 2007 recommendations of the International Commission on Radiological Protection (ICRP) and gray equivalent to selected tissues as recommended by the National Council on Radiation Protection and Measurements. Coefficients for effective dose are within 30 % of those calculated using ICRP 1990 recommendations.
Biomass Conversion Task IV 1987 program of work: International Energy Agency Bioenergy Agreement
Stevens, D.J.
1986-12-01
Biomass is a major, renewable energy resource through out the world, and extensive research is being conducted by many countries on bioenergy technologies. In an effort to improve communications and cooperation in the area of biomass energy, several nations have agreed to a cooperative program of work under the International Energy Agency's Bioenergy Agreement (IEA/BA). Three areas of major importance have been identified including Short Rotation Forestry, Conventional Forestry, and Biomass Conversion. This document describes the 1987 Program of Work for cooperative activities in the area of Biomass Conversion. The background of the cooperation and descriptions of specific conversion projects are presented. Details of activity funding are also provided. 3 tabs.
Patni, H K; Nadar, M Y; Akar, D K; Bhati, S; Sarkar, P K
2011-11-01
The adult reference male and female computational voxel phantoms recommended by ICRP are adapted into the Monte Carlo transport code FLUKA. The FLUKA code is then utilised for computation of dose conversion coefficients (DCCs) expressed in absorbed dose per air kerma free-in-air for colon, lungs, stomach wall, breast, gonads, urinary bladder, oesophagus, liver and thyroid due to a broad parallel beam of mono-energetic photons impinging in anterior-posterior and posterior-anterior directions in the energy range of 15 keV-10 MeV. The computed DCCs of colon, lungs, stomach wall and breast are found to be in good agreement with the results published in ICRP publication 110. The present work thus validates the use of FLUKA code in computation of organ DCCs for photons using ICRP adult voxel phantoms. Further, the DCCs for gonads, urinary bladder, oesophagus, liver and thyroid are evaluated and compared with results published in ICRP 74 in the above-mentioned energy range and geometries. Significant differences in DCCs are observed for breast, testis and thyroid above 1 MeV, and for most of the organs at energies below 60 keV in comparison with the results published in ICRP 74. The DCCs of female voxel phantom were found to be higher in comparison with male phantom for almost all organs in both the geometries.
Golikov, V; Wallström, E; Wöhni, T; Tanaka, K; Endo, S; Hoshi, M
2007-11-01
Conversion coefficients from measurable quantities such as air kerma free-in-air or personal dose equivalent to effective dose were determined by phantom experiments. Heterogenic anthropomorphic phantoms representing children of one and five years age, and a Rando phantom representing an adult were exposed in the open field contaminated by different levels of radiocesium in the upper soil layer, in a forest site and inside a wooden house. LiF thermoluminescent (TL) detectors were used inside the phantoms for the estimation of organ doses and effective dose. Personal dosimeters similar to those used in radiation protection for individual dose measurements were placed onto the phantom surface (chest area). The ratios of dose values in separate organs to air kerma free-in-air varied from 0.69 to 1.15 for the children phantoms, and from 0.55 to 0.94 for the adult phantom, respectively, when irradiated in the open field. Body size (weight) was found to be the most important factor influencing the values of the conversion coefficients. The differences observed can reach approximately 40% when comparing conversion factors from air kerma free-in-air to effective dose for adults and newborns. For conversion coefficients from personal dose to effective dose, these differences can reach approximately 15%. The dependences of the various conversion coefficients on body mass were quantified by regression analysis. The results were compared with those calculated for a plane mono-energetic photon source having an energy of 700 keV and being located in the ground at a depth of 0.5 g cm(-2). Calculated and measured conversion coefficients from air kerma free-in-air to effective dose agreed within 12%.
NASA Technical Reports Server (NTRS)
Paden, Jack; Pandey, Dhirendra K.; Shivakumar, Netra D.; Stassi, Joseph C.; Wilson, Robert; Bolden, William; Thomas, Susan; Gibson, M. Alan
1991-01-01
A compendium is presented of the ground and inflight scanner and nonscanner offsets and count conversion (gain) coefficients used for the Earth Radiation Budget Experiment (ERBE) production processing of data from the ERBS, NOAA-9, and NOAA-10 satellites for the 1 Nov. 1984 to 31 Dec. 1986.
Chen, Jing
2006-03-01
External neutron exposure is of concern in the environment and in some workplaces. Dose assessments for neutrons frequently rely on fluence-to-absorbed dose conversion coefficients. A problem of concern in radiation protection is exposure of pregnant women to ionizing radiation because of the high radiosensitivity of the embryo and fetus. While neutron fluence-to-dose conversion coefficients for adults are recommended in ICRP publications and ICRU reports, conversion coefficients for embryos and fetuses are not given in the publications. This study uses the Monte Carlo code MCNPX to determine mean absorbed doses to the embryo and fetus when the mother is exposed to neutron fields. A previous study has dealt with neutrons from 1 eV to 10 MeV. In this study, monoenergetic neutrons ranging from 10 MeV to 100 GeV are considered. The irradiation geometries include antero-posterior, postero-anterior, lateral, rotational, and isotropic. At each of these standard irradiation geometries, absorbed doses to the fetal brain and body are calculated for the embryo of 8 wk and the fetus of 3, 6, or 9 mo. Neutron fluence-to-absorbed dose conversion coefficients are derived for the four prenatal ages. The results showed that the fetus at about 3 mo of prenatal age should receive more radiation protection to prevent long-term brain damage. During prenatal life, the fetus generally receives the highest absorbed dose per unit neutron fluence for antero-posterior irradiation. In cases where the irradiation geometry is not specified or not adequately known, conversion coefficients of AP-irradiation can therefore be used in a conservative dose assessment of fetus exposure to external neutrons.
ERIC Educational Resources Information Center
Tozer, Erinn E.; Hayes, Jeffrey A.
2004-01-01
This study examined the potential influence of religiosity, sexual orientation identity development, and internalized homonegativity on the propensity to seek conversion therapy to change one's sexual orientation. An Internet sample of 76 women and 130 men who were gay-identified, lesbian-identified, same-sex attracted, and "questioning" was…
Mechanism of the S1 excited state internal conversion in vitamin B12.
Lodowski, Piotr; Jaworska, Maria; Andruniów, Tadeusz; Garabato, Brady D; Kozlowski, Pawel M
2014-09-21
To explain the photostability of vitamin B12, internal conversion of the S1 state was investigated using TD-DFT. The active coordinates for radiationless deactivation were determined to be elongated axial bonds, overcoming a 5.0 kcal mol(-1) energy barrier between the relaxed ligand-to-metal charge transfer (S1), and the ground (S0) states.
Leenheer, Andrew J.; Narang, Prineha; Atwater, Harry A.; Lewis, Nathan S.
2014-04-07
Collection of hot electrons generated by the efficient absorption of light in metallic nanostructures, in contact with semiconductor substrates can provide a basis for the construction of solar energy-conversion devices. Herein, we evaluate theoretically the energy-conversion efficiency of systems that rely on internal photoemission processes at metal-semiconductor Schottky-barrier diodes. In this theory, the current-voltage characteristics are given by the internal photoemission yield as well as by the thermionic dark current over a varied-energy barrier height. The Fowler model, in all cases, predicts solar energy-conversion efficiencies of <1% for such systems. However, relaxation of the assumptions regarding constraints on the escape cone and momentum conservation at the interface yields solar energy-conversion efficiencies as high as 1%–10%, under some assumed (albeit optimistic) operating conditions. Under these conditions, the energy-conversion efficiency is mainly limited by the thermionic dark current, the distribution of hot electron energies, and hot-electron momentum considerations.
Copeland, Kyle; Parker, Donald E; Friedberg, Wallace
2011-01-01
Conversion coefficients were calculated for fluence-to-absorbed dose, fluence-to-equivalent dose, fluence-to-effective dose and fluence-to-gray equivalent for isotropic exposure of an adult female and an adult male to deuterons ((2)H(+)) in the energy range 10 MeV-1 TeV (0.01-1000 GeV). Coefficients were calculated using the Monte Carlo transport code MCNPX 2.7.C and BodyBuilder™ 1.3 anthropomorphic phantoms. Phantoms were modified to allow calculation of the effective dose to a Reference Person using tissues and tissue weighting factors from 1990 and 2007 recommendations of the International Commission on Radiological Protection (ICRP) and gray equivalent to selected tissues as recommended by the National Council on Radiation Protection and Measurements. Coefficients for the equivalent and effective dose incorporated a radiation weighting factor of 2. At 15 of 19 energies for which coefficients for the effective dose were calculated, coefficients based on ICRP 1990 and 2007 recommendations differed by <3%. The greatest difference, 47%, occurred at 30 MeV.
Rusov, V.D.; Zelentsova, T.N.; Grechan, V.I.; Semenov, M.Y.; Kravchenko, S.N.
1985-12-01
The form of the counting statistics is determined for detection of ..beta.. particles and internal-conversion electrons by a nuclear emulsion. It is shown experimentally for the first time that photographic detection of ..beta.. particles and internal-conversion electrons obeys a Neyman type-A distribution, and not a Poisson distribution as was previously assumed.
NASA Technical Reports Server (NTRS)
Paden, Jack; Pandey, Dhirendra K.; Stassi, Joseph C.; Wilson, Robert; Bolden, William; Thomas, Susan; Gibson, M. Alan
1993-01-01
This document contains a compendium of the ground and in-flight scanner and non-scanner offsets and count conversion (gain) coefficients used for the Earth Radiation Budget Experiment (ERBE) production processing of data from the ERBS satellite for the period from 1 January 1987 to 31 December 1989; for the NOAA-9 satellite, for the month of January 1987; and for the NOAA-10 satellite, for the period from 1 January 1987 to 31 May 1989.
Alves, M C; Santos, W S; Lee, Choonsik; Bolch, Wesley E; Hunt, John G; Carvalho Júnior, A B
2014-12-21
The conversion coefficients (CCs) relate protection quantities, mean absorbed dose (DT) and effective dose (E), with physical radiation field quantities, such as fluence (Φ). The calculation of CCs through Monte Carlo simulations is useful for estimating the dose in individuals exposed to radiation. The aim of this work was the calculation of conversion coefficients for absorbed and effective doses per fluence (DT/ Φ and E/Φ) using a sitting and standing female hybrid phantom (UFH/NCI) exposure to monoenergetic protons with energy ranging from 2 MeV to 10 GeV. The radiation transport code MCNPX was used to develop exposure scenarios implementing the female UFH/NCI phantom in sitting and standing postures. Whole-body irradiations were performed using the recommended irradiation geometries by ICRP publication 116 (AP, PA, RLAT, LLAT, ROT and ISO). In most organs, the conversion coefficients DT/Φ were similar for both postures. However, relative differences were significant for organs located in the abdominal region, such as ovaries, uterus and urinary bladder, especially in the AP, RLAT and LLAT geometries. Anatomical differences caused by changing the posture of the female UFH/NCI phantom led an attenuation of incident protons with energies below 150 MeV by the thigh of the phantom in the sitting posture, for the front-to-back irradiation, and by the arms and hands of the phantom in the standing posture, for the lateral irradiation.
NASA Astrophysics Data System (ADS)
Alves, M. C.; Santos, W. S.; Lee, Choonsik; Bolch, Wesley E.; Hunt, John G.; Carvalho Júnior, A. B.
2014-12-01
The conversion coefficients (CCs) relate protection quantities, mean absorbed dose (DT) and effective dose (E), with physical radiation field quantities, such as fluence (Φ). The calculation of CCs through Monte Carlo simulations is useful for estimating the dose in individuals exposed to radiation. The aim of this work was the calculation of conversion coefficients for absorbed and effective doses per fluence (DT/ Φ and E/Φ) using a sitting and standing female hybrid phantom (UFH/NCI) exposure to monoenergetic protons with energy ranging from 2 MeV to 10 GeV. The radiation transport code MCNPX was used to develop exposure scenarios implementing the female UFH/NCI phantom in sitting and standing postures. Whole-body irradiations were performed using the recommended irradiation geometries by ICRP publication 116 (AP, PA, RLAT, LLAT, ROT and ISO). In most organs, the conversion coefficients DT/Φ were similar for both postures. However, relative differences were significant for organs located in the abdominal region, such as ovaries, uterus and urinary bladder, especially in the AP, RLAT and LLAT geometries. Anatomical differences caused by changing the posture of the female UFH/NCI phantom led an attenuation of incident protons with energies below 150 MeV by the thigh of the phantom in the sitting posture, for the front-to-back irradiation, and by the arms and hands of the phantom in the standing posture, for the lateral irradiation.
Sato, Tatsuhiko; Endo, Akira; Sihver, Lembit; Niita, Koji
2011-03-01
Absorbed-dose and dose-equivalent rates for astronauts were estimated by multiplying fluence-to-dose conversion coefficients in the units of Gy.cm(2) and Sv.cm(2), respectively, and cosmic-ray fluxes around spacecrafts in the unit of cm(-2) s(-1). The dose conversion coefficients employed in the calculation were evaluated using the general-purpose particle and heavy ion transport code system PHITS coupled to the male and female adult reference computational phantoms, which were released as a common ICRP/ICRU publication. The cosmic-ray fluxes inside and near to spacecrafts were also calculated by PHITS, using simplified geometries. The accuracy of the obtained absorbed-dose and dose-equivalent rates was verified by various experimental data measured both inside and outside spacecrafts. The calculations quantitatively show that the effective doses for astronauts are significantly greater than their corresponding effective dose equivalents, because of the numerical incompatibility between the radiation quality factors and the radiation weighting factors. These results demonstrate the usefulness of dose conversion coefficients in space dosimetry.
Sato, Tatsuhiko; Endo, Akira; Zankl, Maria; Petoussi-Henss, Nina; Niita, Koji
2009-04-07
The fluence to organ-dose and effective-dose conversion coefficients for neutrons and protons with energies up to 100 GeV was calculated using the PHITS code coupled to male and female adult reference computational phantoms, which are to be released as a common ICRP/ICRU publication. For the calculation, the radiation and tissue weighting factors, w(R) and w(T), respectively, as revised in ICRP Publication 103 were employed. The conversion coefficients for effective dose equivalents derived using the radiation quality factors of both Q(L) and Q(y) relationships were also estimated, utilizing the functions for calculating the probability densities of the absorbed dose in terms of LET (L) and lineal energy (y), respectively, implemented in PHITS. By comparing these data with the corresponding data for the effective dose, we found that the numerical compatibilities of the revised w(R) with the Q(L) and Q(y) relationships are fairly established. The calculated data of these dose conversion coefficients are indispensable for constructing the radiation protection systems based on the new recommendations given in ICRP103 for aircrews and astronauts, as well as for workers in accelerators and nuclear facilities.
Angulo, Gonzalo; Grilj, Jakob; Vauthey, Eric; Serrano-Andrés, Luis; Rubio-Pons, Oscar; Jacques, Patrice
2010-02-01
The experimental ultrafast photophysics of thioxanthone in several aprotic organic solvents at room temperature is presented, measured using femtosecond transient absorption together with high-level ab initio CASPT2 calculations of the singlet- and triplet-state manifolds in the gas phase, including computed state minima and conical intersections, transition energies, oscillator strengths, and spin-orbit coupling terms. The initially populated singlet pi pi* state is shown to decay through internal conversion and intersystem crossing processes via intermediate n pi* singlet and triplet states, respectively. Two easily accessible conical intersections explain the favorable internal conversion rates and low fluorescence quantum yields in nonpolar media. The presence of a singlet-triplet crossing near the singlet pi pi* minimum and the large spin-orbit coupling terms also rationalize the high intersystem crossing rates. A phenomenological kinetic scheme is proposed that accounts for the decrease in internal conversion and intersystem crossing (i.e. the very large experimental crescendo of the fluorescence quantum yield) with the increase of solvent polarity.
Copeland, Kyle; Parker, Donald E; Friedberg, Wallace
2010-12-01
Conversion coefficients were calculated for fluence-to-absorbed dose, fluence-to-equivalent dose, fluence-to-effective dose and fluence-to-gray equivalent for isotropic exposure of an adult female and an adult male to tritons ((3)H(+)) in the energy range of 10 MeV to 1 TeV (0.01-1000 GeV). Coefficients were calculated using Monte Carlo transport code MCNPX 2.7.C and BodyBuilder™ 1.3 anthropomorphic phantoms. Phantoms were modified to allow calculation of effective dose to a Reference Person using tissues and tissue weighting factors from 1990 and 2007 recommendations of the International Commission on Radiological Protection (ICRP) and calculation of gray equivalent to selected tissues as recommended by the National Council on Radiation Protection and Measurements. At 15 of the 19 energies for which coefficients for effective dose were calculated, coefficients based on ICRP 2007 and 1990 recommendations differed by less than 3%. The greatest difference, 43%, occurred at 30 MeV.
Raffo-Caiado, Ana Claudia; Begovich, John M; Ferrada, Juan J
2009-11-01
This is the final report that closed a joint collaboration effort between DOE and the National Nuclear Energy Commission of Brazil (CNEN). In 2005, DOE and CNEN started a collaborative effort to evaluate measures that can strengthen the effectiveness of international safeguards at a natural uranium conversion plant (NUCP). The work was performed by DOE s Oak Ridge National Laboratory and CNEN. A generic model of a NUCP was developed and typical processing steps were defined. Advanced instrumentation and techniques for verification purposes were identified and investigated. The scope of the work was triggered by the International Atomic Energy Agency s 2003 revised policy concerning the starting point of safeguards at uranium conversion facilities. Prior to this policy only the final products of the uranium conversion plant were considered to be of composition and purity suitable for use in the nuclear fuel cycle and therefore, subject to the IAEA safeguards control. DOE and CNEN have explored options for implementing the IAEA policy, although Brazil understands that the new policy established by the IAEA is beyond the framework of the Quadripartite Agreement of which it is one of the parties, together with Argentina, the Brazilian-Argentine Agency for Accounting and Control of Nuclear Materials (ABACC) and the IAEA. Two technical papers on this subject were published at the 2005 and 2008 INMM Annual Meetings.
NASA Astrophysics Data System (ADS)
Curchod, Basile F. E.; Rauer, Clemens; Marquetand, Philipp; González, Leticia; Martínez, Todd J.
2016-03-01
Full multiple spawning is a formally exact method to describe the excited-state dynamics of molecular systems beyond the Born-Oppenheimer approximation. However, it has been limited until now to the description of radiationless transitions taking place between electronic states with the same spin multiplicity. This Communication presents a generalization of the full and ab initio multiple spawning methods to both internal conversion (mediated by nonadiabatic coupling terms) and intersystem crossing events (triggered by spin-orbit coupling matrix elements) based on a spin-diabatic representation. The results of two numerical applications, a model system and the deactivation of thioformaldehyde, validate the presented formalism and its implementation.
Liu, Yuzhu; Tang, Bifeng; Shen, Huan; Zhang, Song; Zhang, Bing
2010-03-15
The dynamics of excited states in o-xylene molecules has been studied by femtosecond time-resolved photoelectron imaging coupled with time-resolved mass spectroscopy. The ultrafast internal conversion from the S(2) state to the vibrationally hot S(1) state on timescale of 60 fs is observed on real time. The secondarily populated high vibronic S(1) state deactivates further to the S(0) state on timescale of 9.85 ps. Interestingly, the lifetime of the low vibronic S(1) state is much longer, extrapolated to ~12.7 ns. The great differences of lifetime of different vibronic S(1) state are due to their different radiationless dynamics.
Thioxanthone in apolar solvents: ultrafast internal conversion precedes fast intersystem crossing.
Mundt, Ramona; Villnow, Torben; Ziegenbein, Christian Torres; Gilch, Peter; Marian, Christel; Rai-Constapel, Vidisha
2016-03-07
The photophysics of thioxanthone dissolved in cyclohexane was studied by femtosecond fluorescence and transient absorption spectroscopy. From these experiments two time constants of ∼400 fs and ∼4 ps were retrieved. With the aid of quantum chemically computed spectral signatures and rate constants for intersystem crossing, the time constants were assigned to the underlying processes. Ultrafast internal conversion depletes the primarily excited (1)ππ* state within ∼400 fs. The (1)nπ* state populated thereby undergoes fast intersystem crossing (∼4 ps) yielding the lowest triplet state of (3)ππ* character.
Liebel, M; Schnedermann, C; Kukura, P
2014-05-16
Coupling of nuclear and electronic degrees of freedom mediates energy flow in molecules after optical excitation. The associated coherent dynamics in polyatomic systems, however, remain experimentally unexplored. Here, we combined transient absorption spectroscopy with electronic population control to reveal nuclear wave packet dynamics during the S2 → S1 internal conversion in β-carotene. We show that passage through a conical intersection is vibrationally coherent and thereby provides direct feedback on the role of different vibrational coordinates in the breakdown of the Born-Oppenheimer approximation.
Mariage, T V
2001-01-01
This study describes how meaning potentials were constructed in the literacy event known as Morning Message. Morning Message provided teachers and students with opportunities to construct a written text around the experiences of one student. This discourse of writing allowed for the examination of how meaning was orchestrated and scaffolded between the teacher and her students. Three findings are discussed, including the function of a series of conversational involvement moves utilized by the teacher, the specific writing conventions and metamessages afforded in the Morning Message dialogue, and an examination of how the social dialogues of Morning Message may have come to guide independent action as internalized processes on several transfer measures.
NASA Astrophysics Data System (ADS)
Liebel, M.; Schnedermann, C.; Kukura, P.
2014-05-01
Coupling of nuclear and electronic degrees of freedom mediates energy flow in molecules after optical excitation. The associated coherent dynamics in polyatomic systems, however, remain experimentally unexplored. Here, we combined transient absorption spectroscopy with electronic population control to reveal nuclear wave packet dynamics during the S2→S1 internal conversion in β-carotene. We show that passage through a conical intersection is vibrationally coherent and thereby provides direct feedback on the role of different vibrational coordinates in the breakdown of the Born-Oppenheimer approximation.
Shehzad, Khurram; Xu, Yang; Gao, Chao; Li, Hanying; Dang, Zhi-Min; Hasan, Tawfique; Luo, Jack; Duan, Xiangfeng
2017-03-01
Polymer dielectrics offer key advantages over their ceramic counterparts such as flexibility, scalability, low cost, and high breakdown voltages. However, a major drawback that limits more widespread application of polymer dielectrics is their temperature-dependent dielectric properties. Achieving dielectric constants with low/zero-temperature coefficient (L/0TC) over a broad temperature range is essential for applications in diverse technologies. Here, we report a hybrid filler strategy to produce polymer composites with an ultrawide L/0TC window of dielectric constant, as well as a significantly enhanced dielectric value, maximum energy storage density, thermal conductivity, and stability. By creating a series of percolative polymer composites, we demonstrated hybrid carbon filler based composites can exhibit a zero-temperature coefficient window of 200 °C (from -50 to 150 °C), the widest 0TC window for all polymer composite dielectrics reported to date. We further show the electric and dielectric temperature coefficient of the composites is highly stable against stretching and bending, even under AC electric field with frequency up to 1 MHz. We envision that our method will push the functional limits of polymer dielectrics for flexible electronics in extreme conditions such as in hybrid vehicles, aerospace, power electronics, and oil/gas exploration.
Copeland, Kyle; Parker, Donald E; Friedberg, Wallace
2010-12-01
Conversion coefficients were calculated for fluence-to-absorbed dose, fluence-to-equivalent dose, fluence-to-effective dose and fluence-to-gray equivalent, for isotropic exposure of an adult male and an adult female to helions ((3)He(2+)) in the energy range of 10 MeV to 1 TeV (0.01-1000 GeV). Calculations were performed using Monte Carlo transport code MCNPX 2.7.C and BodyBuilder™ 1.3 anthropomorphic phantoms modified to allow calculation of effective dose using tissues and tissue weighting factors from either the 1990 or 2007 recommendations of the International Commission on Radiological Protection (ICRP), and gray equivalent to selected tissues as recommended by the National Council on Radiation Protection and Measurements. At 15 of the 19 energies for which coefficients for effective dose were calculated, coefficients based on ICRP 2007 and 1990 recommendations differed by less than 2%. The greatest difference, 62%, occurred at 100 MeV.
NASA Astrophysics Data System (ADS)
Heidrich, P.; Wolfersdorf, J. v.; Schmidt, S.; Schnieder, M.
2008-11-01
This paper describes a non-invasive, non-destructive, transient inverse measurement technique that allows one to determine internal heat transfer coefficients and rib positions of real gas turbine blades from outer surface temperature measurements after a sudden flow heating. The determination of internal heat transfer coefficients is important during the design process to adjust local heat transfer to spatial thermal load. The detection of rib positions is important during production to fulfill design and quality requirements. For the analysis the one-dimensional transient heat transfer problem inside of the turbine blade's wall was solved. This solution was combined with the Levenberg-Marquardt method to estimate the unknown boundary condition by an inverse technique. The method was tested with artificial data to determine uncertainties with positive results. Then experimental testing with a reference model was carried out. Based on the results, it is concluded that the presented inverse technique could be used to determine internal heat transfer coefficients and to detect rib positions of real turbine blades.
Masuda, Ryo Kobayashi, Yasuhiro; Kitao, Shinji; Kurokuzu, Masayuki; Saito, Makina; Mitsui, Takaya; Iga, Fumitoshi; Seto, Makoto
2014-02-24
A detection system for synchrotron-radiation (SR)-based Mössbauer spectroscopy was developed to enhance the nuclear resonant scattering counting rate and thus increase the available nuclides. In the system, a windowless avalanche photodiode (APD) detector was combined with a vacuum cryostat to detect the internal conversion (IC) electrons and fluorescent X-rays accompanied by nuclear de-excitation. As a feasibility study, the SR-based Mössbauer spectrum using the 76.5 keV level of {sup 174}Yb was observed without {sup 174}Yb enrichment of the samples. The counting rate was five times higher than that of our previous system, and the spectrum was obtained within 10 h. This result shows that nuclear resonance events can be more efficiently detected by counting IC electrons for nuclides with high IC coefficients. Furthermore, the windowless detection system enables us to place the sample closer to the APD elements and is advantageous for nuclear resonant inelastic scattering measurements. Therefore, this detection system can not only increase the number of nuclides accessible in SR-based Mössbauer spectroscopy but also allows the nuclear resonant inelastic scattering measurements of small single crystals or enzymes with dilute probe nuclides that are difficult to measure with the previous detection system.
Nica, N.; Hardy, J.C.; Iacob, V.E.; Montague, J.R.; Trzhaskovskaya, M.B.
2005-05-01
We have measured the total intensity of K x rays relative to 129.4-keV {gamma} rays from decay of the second excited state in {sup 191}Ir. This (M1+E2) transition was observed following the {beta} decay of 15.4-d {sup 191}Os. Our measured ratio yields the result {alpha}{sub K}{omega}{sub K}=2.044(11). When combined with a recent measurement of the same ratio for the 80.2-keV M4 transition from {sup 193}Ir{sup m}, this result strongly confirms the need for the K-shell hole to be included in calculations of internal-conversion coefficients {alpha}{sub K}. Since the {alpha}{sub K} value calculated for the {sup 191}Ir transition is virtually independent of the hole treatment, our result also yields a model-independent value for the iridium fluorescence yield, {omega}{sub K}=0.954(9)
ERIC Educational Resources Information Center
Colombani, Olivier; Langelier, Ophelie; Martwong, Ekkachai; Castignolles, Patrice
2011-01-01
The use of an internal standard is a conventional and convenient way to monitor the conversion of one or several monomers during a controlled radical polymerization. However, the validity of this technique relies on an accurate determination of the initial monomer-to-internal standard ratio, A[subscript 0], because all subsequent calculations of…
NASA Astrophysics Data System (ADS)
Tsujiura, Yuichi; Kawabe, Saneyuki; Kurokawa, Fumiya; Hida, Hirotaka; Kanno, Isaku
2015-10-01
We evaluated the effective transverse piezoelectric coefficients (e31,f) of Pb(Zr,Ti)O3 (PZT) thin films from both the direct and converse piezoelectric effects of unimorph cantilevers. (001) preferentially oriented polycrystalline PZT thin films and (001)/(100) epitaxial PZT thin films were deposited on (111)Pt/Ti/Si and (001)Pt/MgO substrates, respectively, by rf-magnetron sputtering, and their piezoelectric responses owing to intrinsic and extrinsic effects were examined. The direct and converse |e31,f| values of the polycrystalline PZT thin films were calculated as 6.4 and 11.5-15.0 C/m2, respectively, whereas those of the epitaxial PZT thin films were calculated as 3.4 and 4.6-4.8 C/m2, respectively. The large |e31,f| of the converse piezoelectric property of the polycrystalline PZT thin films is attributed to extrinsic piezoelectric effects. Furthermore, the polycrystalline PZT thin films show a clear nonlinear piezoelectric contribution, which is the same as the Rayleigh-like behavior reported in bulk PZT. In contrast, the epitaxial PZT thin films on the MgO substrate show a piezoelectric response owing to the intrinsic and linear extrinsic effects, and no nonlinear contribution was observed.
NASA Astrophysics Data System (ADS)
Lai, M.; Botsis, J.; Coric, D.; Cugnoni, J.
2008-08-01
The increasing needs of extending the lifetime in high-technology fields, such as space and aerospace, rail transport and naval systems, require quality enhancing of the composite materials either from a processing standing point or in the sense of resistance to service conditions. It is well accepted that the final quality of composite materials and structures is strongly influenced by processing parameters like curing and post-curing temperatures, rate of heating and cooling, applied vacuum, etc. To optimize manufacturing cycles, residual strains evolution due to chemical shrinkage and other physical parameters of the constituent materials must be characterized in situ. Such knowledge can lead to a sensible reduction in defects and to improved physical and mechanical properties of final products. In this context continuous monitoring of strains distribution developed during processing is important in understanding and retrieving components' and materials' characteristics such as local strains gradients, degree of curing, coefficient of thermal expansion, moisture absorption, etc.
Lai, M.; Botsis, J.; Coric, D.; Cugnoni, J.
2008-08-28
The increasing needs of extending the lifetime in high-technology fields, such as space and aerospace, rail transport and naval systems, require quality enhancing of the composite materials either from a processing standing point or in the sense of resistance to service conditions. It is well accepted that the final quality of composite materials and structures is strongly influenced by processing parameters like curing and post-curing temperatures, rate of heating and cooling, applied vacuum, etc. To optimize manufacturing cycles, residual strains evolution due to chemical shrinkage and other physical parameters of the constituent materials must be characterized in situ. Such knowledge can lead to a sensible reduction in defects and to improved physical and mechanical properties of final products. In this context continuous monitoring of strains distribution developed during processing is important in understanding and retrieving components' and materials' characteristics such as local strains gradients, degree of curing, coefficient of thermal expansion, moisture absorption, etc.
Cyr, D.R.; Hayden, C.C.
1995-08-01
The authors have studied the dynamics of ultrafast internal conversion processes using femtosecond time-resolved photoionization and photoelectron spectroscopy. In hexatriene, following femtosecond pulse excitation at 250 nm, they use time-delayed photoionization to observe the formation and decay of an intermediate species on the subpicosecond time scale. With time-resolved photoelectron spectroscopy, the rapid evolution of vibrational excitation in this intermediate is observed, as electronic energy is converted to vibrational energy in the molecule. The photodynamics of cis and trans isomers of hexatriene are compared and found to be surprisingly different on the 2-3 psec time scale. These results are important for understanding the fundamental photochemical processes in linear polyenes, which have served as models for the active chromophores of many biological photosystems.
Internal conversion in energy dispersive X-ray analysis of actinide-containing materials.
Wiss, Thierry; Thiele, Hartmut; Cremer, Bert; Ray, Ian
2007-06-01
The use of X-ray elemental analysis tools like energy dispersive X-ray (EDS) is described in the context of the investigation of nuclear materials. These materials contain radioactive elements, particularly alpha-decaying actinides that affect the quantitative EDS measurement by producing interferences in the X-ray spectra. These interferences originating from X-ray emission are the result of internal conversion by the daughter atoms from the alpha-decaying actinides. The strong interferences affect primarily the L X-ray lines from the actinides (in the typical energy range used for EDS analysis) and would require the use of the M lines. However, it is typically at the energy of the actinide's M lines that the interferences are dominant. The artifacts produced in the X-ray analysis are described and illustrated by some typical examples of analysis of actinide-bearing material.
NASA Astrophysics Data System (ADS)
1993-03-01
With regard to accelerated introduction of high efficient energy conversion technology to developing countries, the paper investigates the countries' thoughts of the introduction of the technology and the status of the introduction bases. The countries for survey are the Philippines, Indonesia, Malaysia and Thailand. The Philippine government expects to develop cogeneration as well as large power sources and to widen effective use of natural energy. In Indonesia, they largely expect effective use of biomass energy using Stirling engines by international cooperation and the promoted local electrification using standalone distributed fuel cells. In Malaysia, they have great expectations of the introduction of air conditioning facilities using Stirling engines and the use of standalone distributed fuel cells for promotion of local electrification. Thailand hopes for the use of Stirling engines to air conditioning systems, and the development of solar Stirling generators with solar energy as a heat source and electric vehicles.
Curchod, Basile F. E.; Rauer, Clemens; Marquetand, Philipp; ...
2016-03-11
Full Multiple Spawning is a formally exact method to describe the excited-state dynamics of molecular systems beyond the Born-Oppenheimer approximation. However, it has been limited until now to the description of radiationless transitions taking place between electronic states with the same spin multiplicity. This Communication presents a generalization of the full and ab initio Multiple Spawning methods to both internal conversion (mediated by nonadiabatic coupling terms) and intersystem crossing events (triggered by spin-orbit coupling matrix elements) based on a spin-diabatic representation. Lastly, the results of two numerical applications, a model system and the deactivation of thioformaldehyde, validate the presented formalismmore » and its implementation.« less
Generalized trajectory surface-hopping method for internal conversion and intersystem crossing.
Cui, Ganglong; Thiel, Walter
2014-09-28
Trajectory-based fewest-switches surface-hopping (FSSH) dynamics simulations have become a popular and reliable theoretical tool to simulate nonadiabatic photophysical and photochemical processes. Most available FSSH methods model internal conversion. We present a generalized trajectory surface-hopping (GTSH) method for simulating both internal conversion and intersystem crossing processes on an equal footing. We consider hops between adiabatic eigenstates of the non-relativistic electronic Hamiltonian (pure spin states), which is appropriate for sufficiently small spin-orbit coupling. This choice allows us to make maximum use of existing electronic structure programs and to minimize the changes to available implementations of the traditional FSSH method. The GTSH method is formulated within the quantum mechanics (QM)/molecular mechanics framework, but can of course also be applied at the pure QM level. The algorithm implemented in the GTSH code is specified step by step. As an initial GTSH application, we report simulations of the nonadiabatic processes in the lowest four electronic states (S0, S1, T1, and T2) of acrolein both in vacuo and in acetonitrile solution, in which the acrolein molecule is treated at the ab initio complete-active-space self-consistent-field level. These dynamics simulations provide detailed mechanistic insight by identifying and characterizing two nonadiabatic routes to the lowest triplet state, namely, direct S1 → T1 hopping as major pathway and sequential S1 → T2 → T1 hopping as minor pathway, with the T2 state acting as a relay state. They illustrate the potential of the GTSH approach to explore photoinduced processes in complex systems, in which intersystem crossing plays an important role.
DOE R&D Accomplishments Database
Sibener, S. J.; Lee, Y. T.
1978-05-01
An experiment was performed which confirms the existence of an internal mode dependence of molecular sticking probabilities for collisions of molecules with a cold surface. The scattering of a velocity selected effusive beam of CCl{sub 4} from a 90 K CC1{sub 4} ice surface has been studied at five translational velocities and for two different internal temperatures. At a surface temperature of 90 K (approx. 99% sticking probability) a four fold increase in reflected intensity was observed for the internally excited (560 K) CC1{sub 4} relative to the room temperature (298 K) CC1{sub 4} at a translational velocity of 2.5 X 10{sup 4} cm/sec. For a surface temperature of 90 K all angular distributions were found to peak 15{sup 0} superspecularly independent of incident velocity.
Park, S H; Lee, J K; Lee, C
2008-01-01
In this study, organ-absorbed doses and effective doses to patient during interventional radiological procedures were estimated using tomographic phantom, Korean Typical Man-2 (KTMAN-2). Four projections of cardiac catheterisation were simulated for dose calculation by Monte Carlo technique. The parameters of X-ray source and exposure conditions were obtained from literature data. Particle transport was simulated using general purposed Monte Carlo code, MCNPX 2.5.0. Organ-absorbed doses and effective doses were normalised to dose area product (DAP). The effective doses per DAP were between 0.1 and 0.5 mSv Gy(-1) per cm2. The results were compared with those derived from adult stylised phantom. KTMAN-2 received up to 105% higher effective doses than stylised phantom. The dose differences were mainly caused by more realistic internal topology of KTMAN-2 compared to stylised phantom that are closely positioned organs near the heart and shift of abdominal organs to the thoracic region due to supine position. The results of this study showed that tomographic phantoms are more suitable for dose assessment of supine patients undergoing the interventional radiology. The results derived from KTMAN-2 were the first radiation dose data based on non-Caucasian individuals for interventional procedures.
NASA Astrophysics Data System (ADS)
Galeano, D. C.; Santos, W. S.; Alves, M. C.; Souza, D. N.; Carvalho, A. B.
2016-04-01
The aim of this work was to modify the standing posture of the anthropomorphic reference phantoms of ICRP publication 110, AM (Adult Male) and AF (Adult Female), to the sitting posture. The change of posture was performed using the Visual Monte Carlo software (VMC) to rotate the thigh region of the phantoms and position it between the region of the leg and trunk. Scion Image software was used to reconstruct and smooth the knee and hip contours of the phantoms in a sitting posture. For 3D visualization of phantoms, the VolView software was used. In the change of postures, the organ and tissue masses were preserved. The MCNPX was used to calculate the equivalent and effective dose conversion coefficients (CCs) per fluence for photons for six irradiation geometries suggested by ICRP publication 110 (AP, PA, RLAT, LLAT, ROT and ISO) and energy range 0.010-10 MeV. The results were compared between the standing and sitting postures, for both sexes, in order to evaluate the differences of scattering and absorption of radiation for different postures. Significant differences in the CCs for equivalent dose were observed in the gonads, colon, prostate, urinary bladder and uterus, which are present in the pelvic region, and in organs distributed throughout the body, such as the lymphatic nodes, muscle, skeleton and skin, for the phantoms of both sexes. CCs for effective dose showed significant differences of up to 16% in the AP irradiation geometry, 27% in the PA irradiation geometry and 13% in the ROT irradiation geometry. These results demonstrate the importance of using phantoms in different postures in order to obtain more precise conversion coefficients for a given exposure scenario.
Spin-symmetry conversion and internal rotation in high J molecular systems
NASA Astrophysics Data System (ADS)
Mitchell, Justin; Harter, William
2006-05-01
Dynamics and spectra of molecules with internal rotation or rovibrational coupling is approximately modeled by rigid or semi-rigid rotors with attached gyroscopes. Using Rotational Energy (RE)^1 surfaces, high resolution molecular spectra for high angular momentum show two distinct but related phenomena; spin-symmetry conversion and internal rotation. For both cases the high total angular momentum allows for transitions that would otherwise be forbidden. Molecular body-frame J-localization effects associated with tight energy level-clusters dominate the rovibronic spectra of high symmetry molecules, particularly spherical tops at J>10. ^2 The effects include large and widespread spin-symmetry mixing contrary to conventional wisdom^3 about weak nuclear moments. Such effects are discussed showing how RE surface plots may predict them even at low J. Classical dynamics of axially constrained rotors are approximated by intersecting rotational-energy-surfaces (RES) that have (J-S).B.(J-S) forms in the limit of constraints that do no work. Semi-classical eigensolutions are compared to those found by direct diagonalization. ^1 W.G Hater, in Handbook of Atomic, Molecular and Optical Physics, edited by G.W.F Drake (Springer, Germany 2006) ^2 W. G. Harter, Phys. Rev. A24,192-262(1981). ^3 G. Herzberg, Infrared and Raman Spectra (VanNostrand 1945) pp. 458,463.
Wang, Hsin; Porter, Wallace D; Bottner, Harold; Konig, Jan; Chen, Lidong; Bai, Shengqiang; Tritt, Terry M.; Mayolett, Alex; Senawiratne, Jayantha; Smith, Charlene; Harris, Fred; Gilbert, Partricia; Sharp, Jeff; Lo, Jason; Keinke, Holger; Kiss, Laszlo I.
2013-01-01
Recent research and development of high temperature thermoelectric materials has demonstrated great potential of converting automobile exhaust heat directly into electricity. Thermoelectrics based on classic bismuth telluride have also started to impact the automotive industry by enhancing air conditioning efficiency and integrated cabin climate control. In addition to engineering challenges of making reliable and efficient devices to withstand thermal and mechanical cycling, the remaining issues in thermoelectric power generation and refrigeration are mostly materials related. The figure-of-merit, ZT, still needs to improve from the current value of 1.0 - 1.5 to above 2 to be competitive to other alternative technologies. In the meantime, the thermoelectric community could greatly benefit from the development of international test standards, improved test methods and better characterization tools. Internationally, thermoelectrics have been recognized by many countries as an important area for improving energy efficiency. The International Energy Agency (IEA) group under the implementing agreement for Advanced Materials for Transportation (AMT) identified thermoelectric materials as an important area in 2009. This paper is Part I of the international round-robin testing of transport properties of bulk thermoelectrics. The main focuses in Part I are on two electronic transport properties: Seebeck coefficient and electrical resistivity.
NASA Astrophysics Data System (ADS)
Wang, Hsin; Porter, Wallace D.; Böttner, Harald; König, Jan; Chen, Lidong; Bai, Shengqiang; Tritt, Terry M.; Mayolet, Alex; Senawiratne, Jayantha; Smith, Charlene; Harris, Fred; Gilbert, Patricia; Sharp, Jeff W.; Lo, Jason; Kleinke, Holger; Kiss, Laszlo
2013-04-01
Recent research and development of high-temperature thermoelectric materials has demonstrated great potential for converting automobile exhaust heat directly into electricity. Thermoelectrics based on classic bismuth telluride have also started to impact the automotive industry by enhancing air-conditioning efficiency and integrated cabin climate control. In addition to engineering challenges of making reliable and efficient devices to withstand thermal and mechanical cycling, the remaining issues in thermoelectric power generation and refrigeration are mostly materials related. The dimensionless figure of merit, ZT, still needs to be improved from the current value of 1.0 to 1.5 to above 2.0 to be competitive with other alternative technologies. In the meantime, the thermoelectric community could greatly benefit from the development of international test standards, improved test methods, and better characterization tools. Internationally, thermoelectrics have been recognized by many countries as a key component for improving energy efficiency. The International Energy Agency (IEA) group under the Implementing Agreement for Advanced Materials for Transportation (AMT) identified thermoelectric materials as an important area in 2009. This paper is part I of the international round-robin testing of transport properties of bulk thermoelectrics. The main foci in part I are the measurement of two electronic transport properties: Seebeck coefficient and electrical resistivity.
Bradley, E.; Adelfang, P.; Goldman, I.N.
2008-07-15
The IAEA has been involved for more than twenty years in supporting international nuclear non- proliferation efforts associated with reducing the amount of highly enriched uranium (HEU) in international commerce. IAEA projects and activities have directly supported the Reduced Enrichment for Research and Test Reactors (RERTR) programme, as well as directly assisted efforts to convert research reactors from HEU to LEU fuel. HEU to LEU fuel conversion projects differ significantly depending on several factors including the design of the reactor and fuel, technical needs of the member state, local nuclear infrastructure, and available resources. To support such diverse endeavours, the IAEA tailors each project to address the relevant constraints. This paper presents the different approaches taken by the IAEA to address the diverse challenges involved in research reactor HEU to LEU fuel conversion projects. Examples of conversion related projects in different Member States are fully detailed. (author)
NASA Astrophysics Data System (ADS)
Minimala, N. S.; Peter, A. John
2013-02-01
Effects of magnetic field strength and the built-in electric fields on the exciton binding energy and the non-linear optical property such as absorption coefficients in a GaN/AlGaN wide band gap heterostructure are investigated. The internal fields due to spontaneous and piezo-electric polarizations are included in the Hamiltonian. Our results show that the optical absorption coefficients strongly depend on the internal fields and the applied magnetic field.
McCaffery, Anthony J.
2015-09-14
Little is known of the mechanism by which H and H{sub 2}, the principal constituents of the post-re-combination early Universe, cooled sufficiently to permit cluster formation, nucleosynthesis, and, eventually, the formation of structured objects. Radiative decay primarily cools the internal modes of H{sub 2}, as Δj = − 2 jumps accompany quadrupolar emission. This, however, would be a self-limiting mechanism. In this work, a translational energy cooling mechanism based on collision-induced, translation-to-internal mode conversion, is extended, following an earlier study [A. J. McCaffery and R. J. Marsh, J. Chem. Phys. 139, 234310 (2013)] of ensembles comprising H{sub 2} in a H atom bath gas. Here, the possible influence of minor species, such as HD, on this cooling mechanism is investigated. Results suggest that the influence of HD is small but not insignificant. Conversion is very rapid and an overall translation-to-internal energy conversion efficiency of some 5% could be expected. This finding may be of use in the further development of models of this complex phase of early Universe evolution. An unexpected finding in this study was that H{sub 2} + HD ensembles are capable of very rapid translation-to-internal conversion with efficiencies of >40% and relaxation rates that appear to be relatively slow. This may have potential as an energy storage mechanism.
McCaffery, Anthony J
2015-09-14
Little is known of the mechanism by which H and H2, the principal constituents of the post-re-combination early Universe, cooled sufficiently to permit cluster formation, nucleosynthesis, and, eventually, the formation of structured objects. Radiative decay primarily cools the internal modes of H2, as Δj = - 2 jumps accompany quadrupolar emission. This, however, would be a self-limiting mechanism. In this work, a translational energy cooling mechanism based on collision-induced, translation-to-internal mode conversion, is extended, following an earlier study [A. J. McCaffery and R. J. Marsh, J. Chem. Phys. 139, 234310 (2013)] of ensembles comprising H2 in a H atom bath gas. Here, the possible influence of minor species, such as HD, on this cooling mechanism is investigated. Results suggest that the influence of HD is small but not insignificant. Conversion is very rapid and an overall translation-to-internal energy conversion efficiency of some 5% could be expected. This finding may be of use in the further development of models of this complex phase of early Universe evolution. An unexpected finding in this study was that H2 + HD ensembles are capable of very rapid translation-to-internal conversion with efficiencies of >40% and relaxation rates that appear to be relatively slow. This may have potential as an energy storage mechanism.
Fazzi, Daniele; Grancini, Giulia; Maiuri, Margherita; Brida, Daniele; Cerullo, Giulio; Lanzani, Guglielmo
2012-05-14
Ultrafast dynamics upon photoexcitation in a low band gap polymer for photovoltaics is investigated both experimentally and theoretically. Our work sheds light on the excess energy relaxation processes occurring immediately after photon absorption and responsible for dissipation in the photovoltaic process of light harvesting and energy storage. A peculiar non-adiabatic decay path through a conical intersection (CI) between the higher excited state S(2) and the first singlet state S(1) is identified by ultrafast spectroscopy and theoretical calculations. Ultrafast twisting of the initially flat conformation in S(2) drives the system to the CI connecting the two potential energy surfaces, actually eliciting an internal conversion within 60 femtoseconds, followed by planarization along the adiabatic surface in S(1). Relaxed potential energy profiles (PEPs) of ground and lowest excited states along a dihedral coordinate, calculated within the time dependent density functional theory (TDDFT) approach, support the S(2)/S(1) CI mechanism. Furthermore a screening of the widely used hybrid and range separated exchange-correlation (XC) DFT functionals has been carried out finding different descriptions of S(2)/S(1) PEPs and good agreement between experimental data and long-range corrected DFT.
Cucchetti, Alessandro; Cappelli, Alberta; Ercolani, Giorgio; Mosconi, Cristina; Cescon, Matteo; Golfieri, Rita; Pinna, Antonio Daniele
2016-01-01
Background Many patients with primary liver cancers are not candidates for surgery, and systemic therapies are seldom effective. Selective internal radiation therapy (SIRT) has been shown to obtain partial and even complete response in unresectable primary tumors. As a “side effect”, SIRT can induce contra-lateral liver hypertrophy. Tumor response to SIRT can be sufficient to allow disengagement from normal vital structures whose involvement is the cause of the initial unresectability. The contra-lateral hypertrophy can thereby increase the future liver remnant (FLR) volume to over the safe threshold so that extended hepatectomy can be performed. Summary A review of the available literature was performed to assess the tumor response and liver hypertrophy that can be expected after SIRT, in order to delineate whether SIRTcan play a role in conversion therapy for resectability of primary liver malignancies. Key Message Available data suggest that SIRT in unresectable hepatocellular and cholangiocellular carcinomas can provide a considerable down-sizing of the tumors to possibly allow resection. Hypertrophy of the contra-lateral lobe represents a favorable collateral effect that can help in achieving safer subsequent major hepatectomy. In patients whose FLR volume represents the only surgical concern, portal vein embolization remains the treatment of choice. PMID:27781202
Visualizing competing intersystem crossing and internal conversion with a complementary measurement
NASA Astrophysics Data System (ADS)
Liu, Yuzhu; Gerber, Thomas; Qin, Chaochao; Jin, Feng; Knopp, Gregor
2016-02-01
A complementary measurement method based on a home-built double-sided velocity map imaging setup is introduced. This method can simultaneously obtain time-resolved photoelectron imaging and fragment ion imaging. It has been successfully applied to investigate the ultrafast dynamics of the second singlet electronically excited state (S2) in m-xylene. Time-resolved photoelectron and ion signals derived from the initial populated S2 state are tracked following two-photon absorption of a pump pulse. Time-of-flight mass spectra (TOFMS) show that there are dominant parent ions and one fragment ions with methyl loss during such a process. According to the measured photoelectron images and fragment ions images, transient kinetic energy distributions and angular distributions of the generated photoelectrons and fragments are obtained and analyzed. Compared to stand-alone photoelectron imaging, the obtained fragment ion imaging is powerful for further understanding the mechanisms especially when the dissociation occurs during the pump-probe ionization. Two competing channels intersystem crossing T3←S2 and internal conversion S1←S2 are attributed to the deactivation of the S2 state. A lifetime of ˜50 fs for the initially excited S2 state, of ˜276 fs for the secondary populated S1 state, and of 5.76 ps for the T3 state is inferred.
NASA Astrophysics Data System (ADS)
Bozkurt, A.; Chao, T. C.; Xu, X. G.; Bozkurt, A.; Chao, T. C.
2000-10-01
A new set of fluence-to-absorbed dose and fluence-to-effective dose conversion coefficients have been calculated for neutrons below 20 MeV using a whole-body anatomical model, VIP-Man, developed from the high-resolution transverse colour photographic images of the National Library of Medicine's Visible Human Project®. Organ dose calculations were performed using the Monte Carlo code MCNP for 20 monoenergetic neutron beams between 1×10-9 MeV and 20 MeV under six different irradiation geometries: anterior-posterior, posterior-anterior, right lateral, left lateral, rotational and isotropic. The absorbed dose for 24 major organs and effective dose results based on the realistic VIP-Man are presented and compared with those based on the simplified MIRD-based phantoms reported in the literature. Effective doses from VIP-Man are not significantly different from earlier results for neutrons in the energy range studied. There are, however, remarkable deviations in organ doses due to the anatomical differences between the image-based and the earlier mathematical models.
Bozkurt, A; Chao, T C; Xu, X G
2001-08-01
A new set of fluence-to-absorbed dose and fluence-to-effective dose conversion coefficients has been calculated for high-energy neutrons using a whole-body anatomical model, VIP-Man, developed from the high-resolution transversal color photographic images of the National Library of Medicine's Visible Human Project. Organ dose calculations were performed using the Monte Carlo code MCNPX for 20 monoenergetic neutron beams between 20 MeV and 10,000 MeV under 6 different irradiation geometries: anterior-posterior, posterior-anterior, left lateral, right lateral, isotropic, and rotational. For neutron Monte Carlo calculations, results based on an image-based whole-body model were not available in the literature. The absorbed dose results for 24 major organs of VIP-Man are presented in the form of tables and selected figures that compare with those based on simplified mathematical phantoms reported in the literature. VIP-Man yields up to 40% larger values of effective dose and many organ doses, thus suggesting that the results reported in the past may not be conservative.
Bozkurt, A; Chao, T C; Xu, X G
2000-10-01
A new set of fluence-to-absorbed dose and fluence-to-effective dose conversion coefficients have been calculated for neutrons below 20 MeV using a whole-body anatomical model, VIP-Man, developed from the high-resolution transverse colour photographic images of the National Library of Medicine's Visible Human Project. Organ dose calculations were performed using the Monte Carlo code MCNP for 20 monoenergetic neutron beams between 1 x 10(-9) MeV and 20 MeV under six different irradiation geometries: anterior-posterior, posterior-anterior, right lateral, left lateral, rotational and isotropic. The absorbed dose for 24 major organs and effective dose results based on the realistic VIP-Man are presented and compared with those based on the simplified MIRD-based phantoms reported in the literature. Effective doses from VIP-Man are not significantly different from earlier results for neutrons in the energy range studied. There are, however, remarkable deviations in organ doses due to the anatomical differences between the image-based and the earlier mathematical models.
Relaxation dynamics of photoexcited resorcinol: internal conversion versus H atom tunnelling.
Young, Jamie D; Staniforth, Michael; Chatterley, Adam S; Paterson, Martin J; Roberts, Gareth M; Stavros, Vasilios G
2014-01-14
The excited state dynamics of resorcinol (1,3-dihydroxybenzene) following UV excitation at a range of pump wavelengths, 278 ≥ λ ≥ 255 nm, have been investigated using a combination of time-resolved velocity map ion imaging and ultrafast time-resolved ion yield measurements coupled with complementary ab initio calculations. After excitation to the 1(1)ππ* state we extract a timescale, τ1, for excited state relaxation that decreases as a function of excitation energy from 2.70 ns to ~120 ps. This is assigned to competing relaxation mechanisms. Tunnelling beneath the 1(1)ππ*/(1)πσ* conical intersection, followed by coupling onto the dissociative (1)πσ* state, yields H atoms born with high kinetic energy (~5000 cm(-1)). This mechanism is in competition with an internal conversion process that is able to transfer population from the photoexcited 1(1)ππ* state back to a vibrationally excited ground state, S0*. When exciting between 264-260 nm a second decay component, τ2, is observed and we put forth several possible explanations as to the origins of τ2, including conformer specific dynamics. Excitation with 237 nm light (above the 1(1)ππ*/(1)πσ* conical intersection) yields high kinetic energy H atoms (~11,000 cm(-1)) produced in ~260 fs, in line with a mechanism involving ultrafast coupling between the 1(1)ππ* (or 2(1)ππ*) and (1)πσ* state followed by dissociation. The results presented highlight the profound effect the presence of additional functional groups, and more specifically the precise location of the functional groups, can have on the excited state dynamics of model heteroaromatic systems following UV excitation.
Atmospheric Science Data Center
2013-03-12
... petabyte = one quadrillion bytes The Bureau International Poids et Measures (BIPM) brochure on the International System ... For accurate conversions, see the National Institute of Standards and Technology (NIST) Special Publications: NIST Guide to ...
Lv, Wei; He, Hengda; Liu, Qian
2017-03-22
For evaluating radiation risk, the construction of anthropomorphic computational phantoms with a variety of physiques can help reduce the uncertainty that is due to anatomical variation. In our previous work, three deformable Chinese reference male phantoms with 10th, 50th and 90th percentile body mass indexes and body circumference physiques (DCRM-10, DCRM-50 and DCRM-90) were constructed to represent underweight, normal weight and overweight Chinese adult males, respectively. In the present study, the phantoms were updated by correcting the fat percentage to improve the precision of radiological dosimetry evaluations. The organ dose conversion coefficients for each phantom were calculated and compared for four idealized external photon exposures from 15 keV to 10 MeV, using the Monte Carlo method. The dosimetric results for the three deformable Chinese reference male phantom (DCRM) phantoms indicated that variations in physique can cause as much as a 20% difference in the organ dose conversion coefficients. When the photon energy was <50 keV, the discrepancy was greater. The irradiation geometry and organ position can also affect the difference in radiological dosimetry between individuals with different physiques. Hence, it is difficult to predict the conversion coefficients of the phantoms from the anthropometric parameters alone. Nevertheless, the complex organ conversion coefficients presented in this report will be helpful for evaluating the radiation risk for large groups of people with various physiques.
NASA Astrophysics Data System (ADS)
Dusciac, D.; Bordy, J.-M.; Daures, J.; Blideanu, V.
2016-09-01
In this work, we present the results of the first part of a research project aimed at offering a complete response to dosimeters providers and nuclear physicists' demands for high-energy (6 - 9 MeV) photon beams for radiation protection purposes. Classical facilities allowing the production of high-energy photonic radiation (proton accelerators, nuclear reactors) are very rare and need large investment for development and use. A novel solution is proposed, consisting in the use of a medical linear accelerator, allowing a significant decrease of all costs.Using Monte Carlo simulations (MCNP5 and PENELOPE codes), a specifically designed electron-photon conversion target allowing for obtaining a high energy photon beam (with an average energy weighted by fluence of about 6 MeV) has been built for radiation protection purposes. Due to the specific design of the target, this "realistic" radiation protection high-energy photon beam presents a uniform distribution of air kerma rate at a distance of 1 m, over a 30 × 30 cm2 surface. Two graphite cavity ionizing chambers for ionometric measurements have been built. For one of these chambers, the charge collection volume has been measured allowing for its use as a primary standard. The second ionizing chamber is used as a transfer standard; as such it has been calibrated in a 60Co beam, and in the high energy photon beam for radiation protection.The measurements with these ionizing chambers allowed for an evaluation of the air kerma rate in the LINAC based high-energy photon beam for radiation protection: the values cover a range between 36 mGy/h and 210 mGy/h, compatible with radiation protection purposes.Finally, using Monte Carlo simulations, conversion coefficients from air kerma to dose equivalent quantities have been calculated in the range between 10 keV and 22.4 MeV, for the spectral distribution of the fluence corresponding to the beam produced by the linear accelerator of the LNE-LNHB.
NASA Astrophysics Data System (ADS)
Taprogge, J.; Jungclaus, A.; Grawe, H.; Nishimura, S.; Xu, Z. Y.; Doornenbal, P.; Lorusso, G.; Nácher, E.; Simpson, G. S.; Söderström, P.-A.; Sumikama, T.; Baba, H.; Browne, F.; Fukuda, N.; Gernhäuser, R.; Gey, G.; Inabe, N.; Isobe, T.; Jung, H. S.; Kameda, D.; Kim, G. D.; Kim, Y.-K.; Kojouharov, I.; Kubo, T.; Kurz, N.; Kwon, Y. K.; Li, Z.; Sakurai, H.; Schaffner, H.; Steiger, K.; Suzuki, H.; Takeda, H.; Vajta, Zs.; Watanabe, H.; Wu, J.; Yagi, A.; Yoshinaga, K.; Benzoni, G.; Bönig, S.; Chae, K. Y.; Coraggio, L.; Covello, A.; Daugas, J.-M.; Drouet, F.; Gadea, A.; Gargano, A.; Ilieva, S.; Kondev, F. G.; Kröll, T.; Lane, G. J.; Montaner-Pizá, A.; Moschner, K.; Mücher, D.; Naqvi, F.; Niikura, M.; Nishibata, H.; Odahara, A.; Orlandi, R.; Patel, Z.; Podolyák, Zs.; Wendt, A.
2014-11-01
The decay of an isomeric state in the neutron-rich nucleus 129Cd has been observed via the detection of internal conversion and Compton electrons providing first experimental information on excited states in this nucleus. The isomer was populated in the projectile fission of a 238U beam at the Radioactive Isotope Beam Factory at RIKEN. From the measured yields of γ-rays and internal conversion electrons, a multipolarity of E3 was tentatively assigned to the isomeric transition. A half-life of T1/2 = 3.6 (2) ms was determined for the new state which was assigned a spin of (21 /2+), based on a comparison to shell model calculations performed using state-of-the-art realistic effective interactions.
Taprogge, J.; Jungclaus, A.; Grawe, H.; Nishimura, S.; Xu, Z. Y.; Doornenbal, P.; Lorusso, G.; Nacher, E.; Simpson, G. S.; Soderstrom, P. A.; Sumikama, T.; Kondev, F. G.
2014-11-10
The decay of an isomeric state in the neutron-rich nucleus 129Cd has been observed via the detection of internal conversion and Compton electrons providing first experimental information on excited states in this nucleus. The isomer was populated in the projectile fission of a 238U beam at the Radioactive Isotope Beam Factory at RIKEN. From the measured yields of γ-rays and internal conversion electrons, a multipolarity of E 3 was tentatively assigned to the isomeric transition. A half-life of T1/2=3.6(2) msT1/2=3.6(2) ms was determined for the new state which was assigned a spin of (21/2+)(21/2+), based on a comparison to shell model calculations performed using state-of-the-art realistic effective interactions.
Nica, N.; Hardy, J.C.; Iacob, V.E.; Raman, S.; Nestor, C.W. Jr.; Trzhaskovskaya, M.B.
2004-11-01
The 10.5-day isomer in {sup 193}Ir decays by a single 80.2-keV M4 transition directly to the ground state of that nucleus. We have measured the total intensity of K x rays relative to 80.2-keV {gamma} rays for this transition to be 98.7(6). With the K-shell fluorescent yield for iridium taken to be 0.958(4), this result yields {alpha}{sub K}=103.0(8) for the K-shell internal conversion coefficient (ICC). The calculated {alpha}{sub K} for this transition is particularly sensitive to the treatment of the hole that is created by conversion in the atomic K shell. Recent ICC tables, which ignore the hole, yield {alpha}{sub K}=92.0. We demonstrate that calculations incorporating the hole produce values between 99.6 and 103.3 depending on the approximation used. Our result strongly supports the need to include the hole.
Kulkarni, A.; Saluja, J.
1987-06-30
The United States Agency for International Development (AID), in joint collaboration with the Government of India (GOI), supported a research and development program in Alternate Energy Resources during the period March 1983 to June 1987. The primary emphasis of this program was to develop new and advanced coal and biomass conversion technologies for the efficient utilization of coal and biomass feedstocks in India. This final ''summary'' report is divided into two volumes. This Report, Volume I, covers the program overview and coal projects and Volume II summarizes the accomplishments of the biomass projects. The six projects selected in the area of coal were: Evaluation of the Freeboard Performance in a Fluidized-Bed Combustor; Scale-up of AFBC boilers; Rheology, Stability and Combustion of Coal-Water Slurries; Beneficiation of Fine Coal in Dense Medium Cyclones; Hot Gas Cleanup and Separation; and Cold Gas Cleanup and Separation.
Comparison of 50-year and 70-year internal-dose-conversion factors
Ryan, M.T.; Dunning, D.E. Jr.
1981-03-01
The 50-year inhalation and ingestion dose commitments associated with an acute intake (of a radionuclide) of 3.7 x 10/sup 4/ Bq (1 ..mu..Ci) in one day were compared with the corresponding dose commitments calculated for a 70-year integration period resulting from a chronic intake of the same amount at a rate of 101 Bq/d (0.00274 ..mu..Ci/d) for one year. These values, known as dose conversion factors, estimate the dose accumulated during a given period of time following a unit of intake of a radionuclide. It was demonstrated that the acute intake of 3.7 x 10/sup 4/ Bq in one day and the chronic intake of 101 Bq/d for one year (a total intake of 3.7 x 10/sup 4/ Bq) result in essentially the same dose commitment for a relatively long integration period. Therefore, the comparison of 50-year acute dose conversion factors and 70-year chronic dose conversion factors is essentially only a measure of the additional dose accumulated in the 50 to 70 year period. It was found that for radionuclides with atomic mass less than 200 the percent difference in the 70-year and 50-year dose conversion factors was essentially zero in most cases. Differences of approximately 5 to 50% were obtained for dose conversion factors for most alpha emitters with atomic masses of greater than 200. Comparisons were made on the basis of both organ dose equivalent and effective dose equivalent. The implications and significance of these results are discussed.
Chen Jing
2008-08-07
This study used the Monte-Carlo code MCNPX to determine mean absorbed doses to the embryo and foetus when the mother is exposed to external muon fields. Monoenergetic muons ranging from 20 MeV to 50 GeV were considered. The irradiation geometries include anteroposterior (AP), postero-anterior (PA), lateral (LAT), rotational (ROT), isotropic (ISO), and top-down (TOP). At each of these irradiation geometries, absorbed doses to the foetal body were calculated for the embryo of 8 weeks and the foetus of 3, 6 or 9 months, respectively. Muon fluence-to-absorbed-dose conversion coefficients were derived for the four prenatal ages. Since such conversion coefficients are yet unknown, the results presented here fill a data gap.
Fourth International Conference on Photochemical Conversion and Storage of Solar Energy
NASA Astrophysics Data System (ADS)
1982-12-01
s of 123 papers under the following topics are presented: conversion of sunlight into electrical power and photoassisted electrolysis at semiconductor electrodes; photosensitized reactions on surfaces; the role of porphyrins and chlorophylls in artificial photosynthesis; oxidation reduction photochemistry in homogeneous solutions; photoelectron transfer in organized assemblies; photogalvanic cells and effects; elementary processes in catalytic reactions at the interrace between colloidal microelectrodes and solutions; and luminescent solar collectors and concentrators. Author and subject indexes are included.
NASA Astrophysics Data System (ADS)
Chandan, D.; Peltier, W. R.
2011-12-01
The internal loading theory requires information on the radial viscosity profile and the lateral density heterogeneity in the mantle to compute signatures of the dynamical response to convective overturning. Following observations by Masters et al., (1982), that at long wavelengths the geoid is highly correlated with the heterogeneity observed seiemically at the base of the transition region, it has been suggested [Forte and Peltier, 1987, 1991; Pari and Peltier, 1995,1997] that the form of the viscosity profile that best reduces the variance between the observed geoid and the predicted geoid, be such as to include the presence of a low viscosity layer at the base of the transition zone. The geoid kernels computed using the theory will then peak in the transition zone and pick up features of the heterogeneity that provide a good fit to the geoid. However, within the formalism of the internal loading theory, it is possible to vary the amplitude of the seismic conversion factor instead (within the same region), and achieve an equivalent amount of variance reduction. Recent theoretical results based on a self-consistent thermodynamic model [Stixrude and Lithgow-Bertelloni, 2007] suggest that sharp changes in the amplitude of the conversion factor are in fact expected in the transition zone due to the presence of well documented transitions of mineral phase. We explore this tradeoff between variations in the viscosity profile and the body wave to density conversion factor on the variance reduction achievable for the geoid. Since this tradeoff is shown to be extremely important we explore the results achievable by fixing the viscosity profile to that required by the observables related to the global process of glacial isostatic adjustment and optimizing the fit to the data by adjusting the conversion factor. If time allows, we will also present results for the geodynamic observables predicted by the internal loading theory when the density anomaly is generated using the
Hankins, Jane S.; McCarville, M. Beth; Rankine-Mullings, Angela; Reid, Marvin E.; Lobo, Clarisse L.C.; Moura, Patricia G.; Ali, Susanna; Soares, Deanne; Aldred, Karen; Jay, Dennis W.; Aygun, Banu; Bennett, John; Kang, Guolian; Goldsmith, Jonathan C.; Smeltzer, Matthew P.; Boyett, James M.; Ware, Russell E.
2015-01-01
Children with sickle cell anemia (SCA) and conditional transcranial Doppler (TCD) ultrasound velocities (170-199 cm/sec) may develop stroke. However, with limited available clinical data, the current standard of care for conditional TCD velocities is observation. The efficacy of hydroxyurea in preventing conversion from conditional to abnormal TCD (≥200 cm/sec), which confers a higher stroke risk, has not been studied prospectively in a randomized trial. Sparing Conversion to Abnormal TCD Elevation (SCATE #NCT01531387) was an NHLBI-funded Phase III multicenter international clinical trial comparing alternative therapy (hydroxyurea) to standard care (observation) to prevent conversion from conditional to abnormal TCD velocity in children with SCA. SCATE enrolled 38 children from the United States, Jamaica, and Brazil [HbSS (36), HbSβ0-thalassemia (1), and HbSD (1), median age 5.4 years (range, 2.7-9.8)]. Due to slow patient accrual and administrative delays, SCATE was terminated early. In an intention-to-treat analysis, the cumulative incidence of abnormal conversion was 9% (95% CI 0 to 35%) in the hydroxyurea arm and 47% (95% CI 6 to 81%) in observation arm at 15 months (p=0.16). In post-hoc analysis according to treatment received, significantly fewer children on hydroxyurea converted to abnormal TCD velocities, compared to observation (0% versus 50%, p=0.02). After a mean of 10.1 months, a significant change in mean TCD velocity was observed with hydroxyurea treatment (−15.5 versus +10.2 cm/sec, p=0.02). No stroke events occurred in either arm. Hydroxyurea reduces TCD velocities in children with SCA and conditional velocities. PMID:26414435
Hankins, Jane S; McCarville, Mary Beth; Rankine-Mullings, Angela; Reid, Marvin E; Lobo, Clarisse L C; Moura, Patricia G; Ali, Susanna; Soares, Deanne P; Aldred, Karen; Jay, Dennis W; Aygun, Banu; Bennett, John; Kang, Guolian; Goldsmith, Jonathan C; Smeltzer, Matthew P; Boyett, James M; Ware, Russell E
2015-12-01
Children with sickle cell anemia (SCA) and conditional transcranial Doppler (TCD) ultrasound velocities (170-199 cm/sec) may develop stroke. However, with limited available clinical data, the current standard of care for conditional TCD velocities is observation. The efficacy of hydroxyurea in preventing conversion from conditional to abnormal TCD (≥200 cm/sec), which confers a higher stroke risk, has not been studied prospectively in a randomized trial. Sparing Conversion to Abnormal TCD Elevation (SCATE #NCT01531387) was a National Heart, Lung, and Blood Institute-funded Phase III multicenter international clinical trial comparing alternative therapy (hydroxyurea) to standard care (observation) to prevent conversion from conditional to abnormal TCD velocity in children with SCA. SCATE enrolled 38 children from the United States, Jamaica, and Brazil [HbSS (36), HbSβ(0) -thalassemia (1), and HbSD (1), median age = 5.4 years (range, 2.7-9.8)]. Because of the slow patient accrual and administrative delays, SCATE was terminated early. In an intention-to-treat analysis, the cumulative incidence of abnormal conversion was 9% (95% CI = 0-35%) in the hydroxyurea arm and 47% (95% CI = 6-81%) in observation arm at 15 months (P = 0.16). In post hoc analysis according to treatment received, significantly fewer children on hydroxyurea converted to abnormal TCD velocities when compared with observation (0% vs. 50%, P = 0.02). After a mean of 10.1 months, a significant change in mean TCD velocity was observed with hydroxyurea treatment (-15.5 vs. +10.2 cm/sec, P = 0.02). No stroke events occurred in either arm. Hydroxyurea reduces TCD velocities in children with SCA and conditional velocities.
ERIC Educational Resources Information Center
Kerridge, Richard; Cinnamond, Sacha
2012-01-01
Richard Kerridge and Sacha Cinnamond explain how their history department built a culture of international dialogue and collaboration that enriches their students' historical learning. Video-conferencing is at the centre of these activities. Their story begins with an initial, moving encounter with the First World War battlefields that soon turned…
ERIC Educational Resources Information Center
Abasi, Ali R.; Graves, Barbara
2008-01-01
In this study we examine how university plagiarism policies interact with international graduate students' academic writing in English as they develop identities as authors and students. The study is informed by the sociocultural theoretical perspective [Vygotsky, L. (1978). "Mind in society: The development of higher mental processes." Cambridge,…
ERIC Educational Resources Information Center
Bauer, Patricia J.; Stark, Emily N.; Lukowski, Angela F.; Rademacher, Jennifer; Van Abbema, Dana L.; Ackil, Jennifer K.
2005-01-01
Mother-child conversations about a devastating tornado and about 2 nontraumatic events were examined to determine whether there were (a) differences in use of internal states language when talking about traumatic and nontraumatic events and (b) similarities in mothers' and children's use of internal states language. At Session 1, which took place…
ERIC Educational Resources Information Center
Anderson, John L.
2011-01-01
On July 18, 2010, the eve of the 21st International Congress on the Education of the Deaf (ICED 2010), the International Leaders Summit was held at the Center for Dialogue at Simon Fraser University, Vancouver, Canada. A total of 120 world leaders from 32 countries participated. Presenters, including students, led the conversation on current…
Du, Baoji; Ma, Chongbo; Ding, Guanyu; Han, Xu; Li, Dan; Wang, Erkang; Wang, Jin
2017-01-23
Photothermal conversion ability (PCA) and cell internalization ability (CIA) are two key factors for determining the performance of photothermal agents. The previous studies mostly focus on improving the PCA by exploring new photothermal nanomaterials. Herein, the authors take the hybrids of graphene and gold nanostar (GGN) as an example to investigate the gradually enhanced phototherapy effect by changing the PCA and CIA of photothermal therapy (PTT) agent simultaneously. Based on the GGN, the GGN and the reduced GGN protected by bovine serum albumin (BSA) or BSA-FA (folic acid) are prepared, which are named as GGNB, rGGNB, and rGGNB-FA, respectively. The rGGNB showed an enhanced PCA compared to GGNB, leading to strong cell ablation. On the other hand, the 1,2-dioleoyl-3-trimethylammoniumpropan (DOTAP) can activate the endocytosis and promote the CIA of rGGNB, further help rGGNB to be more internalized into the cells. Finally, rGGNB-FA with the target ability can make itself further internalized into the cells with the aid of DOTAP, which can significantly destroy the cancer cells even at the low laser density of 0.3 W cm(-2) . Therefore, a new angle of view is brought out for researching the PTT agents of high performance.
Ramiah, Reagon D; Baker, Richard P; Bannister, Gordon C
2006-12-01
Osteopetrosis is a rare disease. When fractures are encountered, fixation is extremely difficult. A 38-year-old man with osteopetrosis who sustained a displaced Pauwels type IV fracture with 3 failed internal fixations required total hip arthroplasty. Two main problems were perceived during preoperative planning: the removal of failed and broken metalwork and reaming of the tight intramedullary canal to allow seating of the femoral stem. We present technical solutions to aid the surgeon in the management of this difficult type of case using custom-made tungsten carbide instrumentation.
Zhu, Lin; Mochizuki, Toshimitsu; Yoshita, Masahiro; Chen, Shaoqiang; Kim, Changsu; Akiyama, Hidefumi; Kanemitsu, Yoshihiko
2016-05-16
We calculated the conversion-efficiency limit ηsc and the optimized subcell bandgap energies of 1 to 5 junction solar cells without and with intermediate reflectors under 1-sun AM1.5G and 1000-sun AM1.5D irradiations, particularly including the impact of internal radiative efficiency (ηint) below unity for realistic subcell materials on the basis of an extended detailed-balance theory. We found that the conversion-efficiency limit ηsc significantly drops when the geometric mean ηint* of all subcell ηint in the stack reduces from 1 to 0.1, and that ηsc degrades linearly to logηint* for ηint* below 0.1. For ηint*<0.1 differences in ηsc due to additional intermediate reflectors became very small if all subcells are optically thick for sun light. We obtained characteristic optimized bandgap energies, which reflect both ηint* decrease and AM1.5 spectral gaps. These results provide realistic efficiency targets and design principles.
Grinev, Timur; Brumer, Paul
2015-12-28
Molecular excitation with incoherent light is examined using realistic turn-on time scales, and results are compared to those obtained via commonly used sudden turn-on, or pulses. Two significant results are obtained. First, in contrast to prior studies involving sudden turn-on, realistic turn-on is shown to lead to stationary coherences for natural turn-on time scales. Second, the time to reach the final stationary mixed state, known to result from incoherent excitation, is shown to depend directly on the inverse of the molecular energy level spacings, in both sudden and realistic turn-on cases. The S{sub 0} → S{sub 2}/S{sub 1} internal conversion process in pyrazine is used as an example throughout. Implications for studies of natural light harvesting systems are noted.
Yu, Hui; Sanchez-Rodriguez, Jose A; Pollum, Marvin; Crespo-Hernández, Carlos E; Mai, Sebastian; Marquetand, Philipp; González, Leticia; Ullrich, Susanne
2016-07-27
The photodynamic properties of molecules determine their ability to survive in harsh radiation environments. As such, the photostability of heterocyclic aromatic compounds to electromagnetic radiation is expected to have been one of the selection pressures influencing the prebiotic chemistry on early Earth. In the present study, the gas-phase photodynamics of uracil, 5-methyluracil (thymine) and 2-thiouracil-three heterocyclic compounds thought to be present during this era-are assessed in the context of their recently proposed intersystem crossing pathways that compete with internal conversion to the ground state. Specifically, time-resolved photoelectron spectroscopy measurements evidence femtosecond to picosecond timescales for relaxation of the singlet (1)ππ* and (1)nπ* states as well as for intersystem crossing to the triplet manifold. Trapping in the excited triplet state and intersystem crossing back to the ground state are investigated as potential factors contributing to the susceptibility of these molecules to ultraviolet photodamage.
Curchod, Basile F. E.; Rauer, Clemens; Marquetand, Philipp; Gonzalez, Leticia; Martinez, Todd J.
2016-03-11
Full Multiple Spawning is a formally exact method to describe the excited-state dynamics of molecular systems beyond the Born-Oppenheimer approximation. However, it has been limited until now to the description of radiationless transitions taking place between electronic states with the same spin multiplicity. This Communication presents a generalization of the full and ab initio Multiple Spawning methods to both internal conversion (mediated by nonadiabatic coupling terms) and intersystem crossing events (triggered by spin-orbit coupling matrix elements) based on a spin-diabatic representation. Lastly, the results of two numerical applications, a model system and the deactivation of thioformaldehyde, validate the presented formalism and its implementation.
Suzuki, Yoshi-Ichi; Fuji, Takao; Horio, Takuya; Suzuki, Toshinori
2010-05-07
A nonadiabatic electronic transition through a conical intersection was studied by pump-probe photoelectron imaging spectroscopy with a 22 fs time resolution in the benchmark polyatomic molecule of pyrazine and deuterated pyrazine. The lifetimes of the S(2) state of pyrazine and deuterated pyrazine were determined to be 22+/-3 fs by the global fitting of the time-energy maps of photoelectron kinetic energy (PKE) distributions. The lifetime of S(3) was determined to be 40-43 fs. Two-dimensional maps of photoelectron distributions were obtained for time (t) and PKE, and individual PKE distributions upon ionization from S(2) and S(1) were extracted. Quantum beat with an approximately 50 fs period was observed after the S(2)-->S(1) internal conversion, which was attributed to the totally symmetric vibration nu(6a) in S(1).
NASA Astrophysics Data System (ADS)
Cavalcante, F. R.; Galeano, D. C.; Carvalho Júnior, A. B.; Hunt, J.
2014-02-01
Due to the difficulty in implementing invasive techniques for calculations of dose for some exposure scenarios, computational simulators have been created to represent as realistically as possible the structures of the human body and through radiation transport simulations to obtain conversion coefficients (CCs) to estimate dose. In most published papers simulators are implemented in the standing posture and this may not describe a real scenario of exposure. In this work we developed exposure scenarios in the Visual Monte Carlo (VMC) code using a female simulator in standing and sitting postures. The simulator was irradiated in the antero-posterior (AP) geometry by a plane source of monoenergetic photons with energy from 10 keV to 2 MeV. The conversion coefficients for equivalent dose in terms of air kerma (HT/Kair) were calculated for both scenarios and compared. The results show that the percentage difference of CCs for the organs of the head and thorax was not significant (less than 5%) since the anatomic position of the organs is the same in both postures. The percentage difference is more significant to the ovaries (71% for photon energy of 20 keV), to the bladder (39% at 60 keV) and to the uterus (37% at 100 keV) due to different processes of radiation interactions in the legs of the simulator when its posture is changed. For organs and tissues that are distributed throughout the entire body, such as bone (21% at 100 keV) and muscle (30% at 80 keV) the percentage difference of CCs reflects a reduction of interaction of photons with the legs of the simulator. Therefore, the calculation of conversion coefficients using simulators in the sitting posture is relevant for a more accurate dose estimation in real exposures to radiation.
Internal dose conversion factors for calculation of dose to the public
Not Available
1988-07-01
This publication contains 50-year committed dose equivalent factors, in tabular form. The document is intended to be used as the primary reference by the US Department of Energy (DOE) and its contractors for calculating radiation dose equivalents for members of the public, resulting from ingestion or inhalation of radioactive materials. Its application is intended specifically for such materials released to the environment during routine DOE operations, except in those instances where compliance with 40 CFR 61 (National Emission Standards for Hazardous Air Pollutants) requires otherwise. However, the calculated values may be equally applicable to unusual releases or to occupational exposures. The use of these committed dose equivalent tables should ensure that doses to members of the public from internal exposures are calculated in a consistent manner at all DOE facilities.
NASA Astrophysics Data System (ADS)
Taranenko, Valery; Xu, X. George
2008-03-01
Protection of fetuses against external neutron exposure is an important task. This paper reports a set of absorbed dose conversion coefficients for fetal and maternal organs for external neutron beams using the RPI-P pregnant female models and the MCNPX code. The newly developed pregnant female models represent an adult female with a fetus including its brain and skeleton at the end of each trimester. The organ masses were adjusted to match the reference values within 1%. For the 3 mm cubic voxel size, the models consist of 10-15 million voxels for 35 organs. External monoenergetic neutron beams of six standard configurations (AP, PA, LLAT, RLAT, ROT and ISO) and source energies 0.001 eV-100 GeV were considered. The results are compared with previous data that are based on simplified anatomical models. The differences in dose depend on source geometry, energy and gestation periods: from 20% up to 140% for the whole fetus, and up to 100% for the fetal brain. Anatomical differences are primarily responsible for the discrepancies in the organ doses. For the first time, the dependence of mother organ doses upon anatomical changes during pregnancy was studied. A maximum of 220% increase in dose was observed for the placenta in the nine months model compared to three months, whereas dose to the pancreas, small and large intestines decreases by 60% for the AP source for the same models. Tabulated dose conversion coefficients for the fetus and 27 maternal organs are provided.
Chen, Jing
2008-04-01
Electrons as primary and more often as secondary radiation exist commonly in the environment and workplaces. No conversion coefficients are yet available, in the literature, for use in radiological protection of embryo and foetus against external exposure to electrons. This study uses mathematical models developed by the Radiation Protection Bureau, Health Canada, for the embryo of 8 wk and for the foetus of 3, 6, and 9 mo. Monte Carlo code MCNPX is used to determine mean absorbed doses to the embryo and foetus when the mother is exposed to external electron fields. Monoenergetic electrons ranging from 10 MeV to 10 GeV were considered. The irradiation geometries include antero-posterior (AP), postero-anterior (PA), lateral (LAT), rotational (ROT), isotropic (ISO), and top-down (TOP). At each of these irradiation geometries, absorbed doses to the foetal brain and body were calculated for the embryo of 8 wk and the foetus of 3, 6, and 9 mo. Electron fluence-to-absorbed dose conversion coefficients were derived for the four prenatal ages.
NASA Astrophysics Data System (ADS)
Xie, Yongjin
A picosecond cascaded transient oscillator (CTO) dye laser system was modified to generate continuous tunable, near transform-limited picosecond pulses. To improve the CTO system, the characteristics of a simple N_2 laser side-pumped dye laser (the first stage of CTO system) was thoroughly examined. It was found that both the pulse shape and the duration were affected strongly by the tuned wavelength, cavity length, pumping intensity, and the feedback signal from both the front and the back reflectors. A single output pulse as short as 40 ps could be generated by optimizing the operating parameters. The final output of the CTO system has a pulse duration less than 10 ps and a bandwidth less than 1 A. The technique of infrared multiphoton ionization was used to obtain state specific internal conversion rates in CrO_2Cl_2. Using narrow-band tunable 10 ps dye laser pulses, different vibrational states in the B_1 manifold were excited and the energy relaxation was monitored by an IR ps laser pulse. The relaxation can be characterized by a fast component, which is due to internal conversion to the ^1A_1 state, and a slow component, which is due to cooling of the vibrationally hot ^1A _1 ground state. The nonradiative energy transfer rate changes by almost three orders of magnitude for an excess vibrational energy change of merely 550 cm ^{-1}. With broadband incoherent picosecond dye laser pulse, the measurement of the dephasing time T _2 in dye solutions and semiconductor-doped glasses by the two pulse correlation method was demonstrated, with T_2<=ss than the correlation time of the excitation pulse tau_ {rm c}. It was found the dephasing time T_2 measured depended on the excitation photon energy relative to the band-edge or the energy difference between the ground state and the first excited electronic state. In the case of band-edge excitation, a quantum beat behavior with a beat frequency about 28 tera-hertz was observed in Rh-560 dye solutions.
ERIC Educational Resources Information Center
Bovill, Helen
2012-01-01
This paper utilises the theories of Archer to explore the impact of student "internal conversations" upon the development of reflexive approaches employed by work-based students (WBS). The study informing this paper draws on the voices of a range of WBS on a Foundation Degree in Educational Support within a new university. A range of reflexivities…
ERIC Educational Resources Information Center
Jones, Diane Carlson; Vigfusdottir, Thorbjorg Helga; Lee, Yoonsun
2004-01-01
This research evaluates the contributions of three dimensions of appearance culture (appearance magazine exposure, appearance conversations with friends, and peer appearance criticism) and body mass index (BMI) to internalization of appearance ideals and body image dissatisfaction. Four hundred thirty-three girls and 347 boys in Grades 7 through…
Cordeiro, T P V; Silva, A X
2012-12-01
With the fast advancement of technology, (60)Co teletherapy units are largely being replaced with medical linear accelerators. In most cases, the linear accelerator tends to be installed in the same room in which the (60)Co teletherapy unit was previously placed. If in-depth structural remodelling is out of the question, high-density concrete is usually used to improve shielding against primary, scatter and leakage radiation originating in the new equipment. This work presents a study based on Monte Carlo simulations of the transmission of some clinical photon spectra (from 6, 10, 15, 18 and 25 MV accelerators) through concrete, considering two different densities. Concrete walls with thickness ranging from 0.70 to 2.0 m were irradiated with 30 cm×30 cm primary beam spectra. The results show that the thickness of the barrier decreases up to ∼65 % when barite (high-density concrete) is used instead of ordinary concrete. The average energies of primary and transmitted beam spectra were also calculated. In addition, conversion coefﬁcients from air kerma to ambient dose equivalent, H*(d)/K(air), and air kerma to effective dose, E/K(air), for photon spectra from the transmitted spectra were calculated and compared. The results suggest that the 10-mm depth is not the best choice to represent the effective dose.
Schalk, Oliver; Schuurman, Michael S; Wu, Guorong; Lang, Peter; Mucke, Melanie; Feifel, Raimund; Stolow, Albert
2014-03-27
We investigate the competition between intersystem crossing (ISC) and internal conversion (IC) as nonradiative relaxation pathways in cyclic α,β-unsaturated enones following excitation to their lowest lying (1)ππ* state, by means of time-resolved photoelectron spectroscopy and ab initio computation. Upon excitation, the (1)ππ* state of 2-cyclopentenone decays to the lowest lying (1)nπ* state within 120 ± 20 fs. Within 1.2 ± 0.2 ps, the molecule subsequently decays to the triplet manifold and the singlet ground state, with quantum yields of 0.35 and 0.65, respectively. The corresponding dynamics in modified derivatives, obtained by selective methylation, show a decrease in both IC and ISC rates, with the quantum yields of ISC varying between 0.35 and 0.08. The rapid rates of ISC are explained by a large spin orbit coupling of 45-60 cm(-1) over an extended region of near degeneracy between the singlet and triplet state. Furthermore, the rate of IC is depressed by the existence of a well-defined minimum on the (1)nπ* potential energy surface. The nonadiabatic pathways evinced by the present results highlight the fact that these molecular systems conceptually represent "intermediate cases" between ultrafast dynamics mediated by vibrational motions at conical intersections versus those by statistical decay mechanisms.
Li, Shengquan; Zhang, Kezhao; Li, Juan; Liu, Chao
2016-03-01
This paper deals with the critical issue in a wind energy conversion system (WECS) based on a direct-driven permanent magnet synchronous generator (PMSG): the rejection of lumped disturbance, including the system uncertainties in the internal dynamics and unknown external forces. To simultaneously track the motor speed in real time and capture the maximum power, a maximum power point tracking strategy is proposed based on active disturbance rejection control (ADRC) theory. In real application, system inertia, drive torque and some other parameters change in a wide range with the variations of disturbances and wind speeds, which substantially degrade the performance of WECS. The ADRC design must incorporate the available model information into an extended state observer (ESO) to compensate the lumped disturbance efficiently. Based on this principle, a model-compensation ADRC is proposed in this paper. Simulation study is conducted to evaluate the performance of the proposed control strategy. It is shown that the effect of lumped disturbance is compensated in a more effective way compared with the traditional ADRC approach.
NASA Astrophysics Data System (ADS)
2014-11-01
It is our great pleasure to welcome you to the 14th International Conference on Micro- and Nano-Technology for Power Generation and Energy Conversion Applications, or PowerMEMS 2014, in Awaji Island, Japan. The aim of PowerMEM is to present the latest research results in the field of miniature, micro- and nano-scale technologies for power generation and energy conversion. The conference will also- give us the opportunity to exchange informations and new ideas in the field of Power MEMS/NEMS. The current status of the field of PowerMEMS spans the full spectrum from basic research to practical applications. We will enjoy valuable discussions not only from the viewpoint of academia but from commercial and industrial perspectives. In the conference, three invited speakers lead the technical program. We received 172 abstracts and after a careful reviewing process by the Technical Program Committee a total of 133 papers were selected for presentation. These have been organized into 16 Oral sessions in two parallel streams and two poster sessions including some late-news papers. The oral and regular poster papers are published by the Institute of Physics (IOP). We have also organized a PowerMEMS School in Kobe-Sannomiya contiguous to the main conference. This two-day school will cover various topics of energy harvesting. World leading experts will give invited lectures on their main topics. This is a new experiment to broaden the technology remit of our conference by organizing mini symposiums that aim to gather the latest research on the following topics by the organizers: Microscale Combustion, Wideband Vibration Energy Harvesting, RF Energy Transfer and Industrial Application. We hope this, and other activities will make PowerMEMS2014 a memorable success. One of the important programs in an international conference is the social program, and we prepare the PowerMEMS2014 banquet in the banquet room at the Westin Awaji Island Hotel. This will provide an opportunity to
NASA Astrophysics Data System (ADS)
Galeano, D. C.; Cavalcante, F. R.; Carvalho, A. B.; Hunt, J.
2014-02-01
The dose conversion coefficient (DCC) is important to quantify and assess effective doses associated with medical, professional and public exposures. The calculation of DCCs using anthropomorphic simulators and radiation transport codes is justified since in-vivo measurement of effective dose is extremely difficult and not practical for occupational dosimetry. DCCs have been published by the ICRP using simulators in a standing posture, which is not always applicable to all exposure scenarios, providing an inaccurate dose estimation. The aim of this work was to calculate DCCs for equivalent dose in terms of air kerma (H/Kair) using the Visual Monte Carlo (VMC) code and the VOXTISS8 adult male voxel simulator in sitting and standing postures. In both postures, the simulator was irradiated by a plane source of monoenergetic photons in antero-posterior (AP) geometry. The photon energy ranged from 15 keV to 2 MeV. The DCCs for both postures were compared and the DCCs for the standing simulator were higher. For certain organs, the difference of DCCs were more significant, as in gonads (48% higher), bladder (16% higher) and colon (11% higher). As these organs are positioned in the abdominal region, the posture of the anthropomorphic simulator modifies the form in which the radiation is transported and how the energy is deposited. It was also noted that the average percentage difference of conversion coefficients was 33% for the bone marrow, 11% for the skin, 13% for the bone surface and 31% for the muscle. For other organs, the percentage difference of the DCCs for both postures was not relevant (less than 5%) due to no anatomical changes in the organs of the head, chest and upper abdomen. We can conclude that is important to obtain DCCs using different postures from those present in the scientific literature.
Huang, Guan-Jhih; Cheng, Chi-Wen; Hsu, Hung-Yu; Prabhakar, Ch; Lee, Yuan-Pern; Diau, Eric Wei-Guang; Yang, Jye-Shane
2013-03-07
To understand the effects of solvent-solute hydrogen bonding (SSHB) on the excited-state dynamics of two GFP-like chromophores, p-ABDI and p-CFABDI, we have determined the quantum yields for fluorescence (Φf) and the isomerization Z → E (ΦZE) and the femtosecond fluorescence and transient infrared absorption in selected solvents. The behavior that ΦZE ≅ 0.50 in aprotic solvents, such as CH3CN, indicates that the E-Z photoisomerization adopts a one-bond-flip mechanism through the torsion of the exocyclic C═C bond (the τ torsion) to form a perpendicular species (τ ∼90°) in the singlet excited state followed by internal conversion (IC) to the ground state and partition to form the E and Z isomers with equal probabilities. The observed ΦZE decreased from 0.50 to 0.15-0.28 when CH3CN was replaced with the protic solvents CH3OH and CF3CH2OH. In conjunction with the solvent-independent rapid (<1 ps) kinetics for the fluorescence decay and the solvent-dependent slow (7-20 ps) kinetics for the ground-state recovery, we conclude that the SSHB modifies the potential energy surface for the τ torsion in a way that the IC occurs also for the twisted intermediates with a τ-torsion angle smaller than 90°, which favors the formation of the Z isomers. The possibility of IC induced by torsion of the exocyclic C-C bond (the φ torsion) is also considered but excluded.
NASA Astrophysics Data System (ADS)
Mitcheson, Paul; Beeby, Steve
2013-12-01
It is a pleasure to welcome you to The Royal Society in London and the 13th International Conference on Micro- and Nano-Technology for Power Generation and Energy Conversion Applications, or PowerMEMS 2013. The objective of PowerMEMS 2013 is to catalyse innovation in miniature, micro- and nano-scale technologies for power generation and energy conversion. The conference aims to stimulate the exchange of insights and information, and the development of new ideas in the Power MEMS/NEMS field as well as at the meso-scale. It will allow the attendees to interact and network within our multidisciplinary community that includes professionals from many branches of science and engineering. The technical program is led by four invited speakers covering inductive power transfer, chip scale power sources, thermal energy harvesting and implantable biofuel cells. We received 177 abstracts and following a careful reviewing process by the Technical Program Committee a total of 137 papers were selected for presentation. These have been organised into 16 oral sessions in two parallel streams and two poster sessions that have been augmented by 10 late news papers. The oral and regular poster papers are, for the first time, being published by the Institute of Physics. We have made every effort to make PowerMEMS 2013 the busiest yet and have included for the first time the PowerMEMS School. This two-day school held at Imperial College London covered a wide range of power-MEMS topics including technologies for power generation, power transmission, energy storage, power electronics interfaces and metrology. Registrations for the School exceeded our expectations and it was full by early November. We hope this, and other activities such as the Discussion Panel and the inclusion of late news papers, will make PowerMEMS 2013 a memorable success. We have also reached out to new communities, such as those working in wireless power transfer and RF harvesting to broaden the technology remit of
Anderson, John L
2011-01-01
Om July 18, 2010, the eve of the 21st International Congress on the Education of the Deaf (ICED 2010), the International Leaders Summit was held at the Center for Dialogue at Simon Fraser University, Vancouver, Canada. A total of 120 world leaders from 32 countries participated. Presenters, including students, led the conversation on current perspectives, teacher preparation, worldwide resources, and major issues affecting the education of d/Deaf and hard of hearing infants, children, and youth. Summit participants recognized that advances in detection, early intervention, and technology present challenges in meeting the needs of a student population more diverse than at any other stage in history. While it was acknowledged that needs differ in various parts of the world, there was a consensus that change is required to prepare students to handle challenges in the 21st century.
Fujimura, Miki; Tominaga, Teiji
2015-01-01
Moyamoya disease is a chronic cerebrovascular disease with unknown etiology, which is characterized by bilateral steno-occlusive changes at the terminal portion of the internal carotid artery and an abnormal vascular network formation at the base of the brain. Moyamoya disease is known to have unique and dynamic nature to convert the vascular supply for the brain from internal carotid (IC) system to the external carotid (EC) system, as indicated by Suzuki's angiographic staging established in 1969. Insufficiency of this 'IC-EC conversion system' may result in cerebral ischemia, as well as in intracranial hemorrhage from inadequate collateral vascular network, both of which represent the clinical presentation of moyamoya disease. Therefore, surgical revascularization by extracranial-intracranial bypass is the preferred procedure for moyamoya disease to complement 'IC-EC conversion' and thus to avoid cerebral infarction and/or intracranial hemorrhage. Long-term outcome of revascularization surgery for moyamoya disease is favorable, but rapid increase in cerebral blood flow on the affected hemisphere could temporarily cause unfavorable phenomenon such as cerebral hyperperfusion syndrome. We would review the current status of revascularization surgery for moyamoya disease based on its basic pathology, and sought to discuss the significance of measuring cerebral blood flow in the acute stage and intensive perioperative management.
NASA Astrophysics Data System (ADS)
Belletête, Michel; Sarpal, Ranjit S.; Durocher, Gilles
1993-01-01
The fluorescence quantum yields and lifetimes (τ F) of 3,3-dimethyl-2-phenyl-3H-indole ( 1), in a series of eighteen nonpolar, polar aprotic and/or protic solvents, range from 2.4 X 10 -4 to 0.12 and from 1 to 520 ps, respectively, as a result of viscosity dependent fast internal conversion. Rates of internal conversion are shown to be dependent upon the bulk viscosity of the solvent as opposed to the microviscosity (free volume effect of the solvent). Both φ F (or τ F) = Cη 2/3 with an identical value of C whatever the nature of the solvent is. This molecule may then be regarded as an excellent viscosity probe for heterogeneous systems and polymers over a large range of viscosities. Various solvatochromic methods have been used to evaluate the ground and excited state dipole moments of 1. The Bilot—Kawski method gives optimized values of 3.8 and 7.8 D, respectively, with a negligible polarizability of the molecule.
Chiodo, Sandro Giuseppe; Mineva, Tzonka
2015-03-21
This work reports non-radiative internal conversion (IC) rate constants obtained for Cun with n = 3, 6, and 9 and H2 on Cu3. The Time-Dependent Density Functional Theory (TDDFT) method was employed with three different functionals in order to investigate the electronic structures and the absorption spectra. The performance of the generalized gradient approximation of Perdew, Burke and Ernzerhof (PBE) and the hybrid B3LYP and PBE0 exchange correlation functionals in combination with the SVP and the def2-TZVP basis sets was examined. TDDFT results were used as input data to compute internal conversion rate constants. For this purpose, we have developed a program package. A description of the theoretical background used in our numerical implementation and the program input file is presented. In view of future applications of this program package in photoinduced catalysis, we present the analysis of the IC rate processes for the photodissociation of H2 on Cu3. These results showed the applicability of the method and the computational program to identify the vibrational modes in transition metal clusters giving rise to the largest IC rate constant due to their interactions with the excited electronic states occurring in the hot-electron induced dissociation phenomena.
NASA Astrophysics Data System (ADS)
Chiodo, Sandro Giuseppe; Mineva, Tzonka
2015-03-01
This work reports non-radiative internal conversion (IC) rate constants obtained for Cun with n = 3, 6, and 9 and H2 on Cu3. The Time-Dependent Density Functional Theory (TDDFT) method was employed with three different functionals in order to investigate the electronic structures and the absorption spectra. The performance of the generalized gradient approximation of Perdew, Burke and Ernzerhof (PBE) and the hybrid B3LYP and PBE0 exchange correlation functionals in combination with the SVP and the def2-TZVP basis sets was examined. TDDFT results were used as input data to compute internal conversion rate constants. For this purpose, we have developed a program package. A description of the theoretical background used in our numerical implementation and the program input file is presented. In view of future applications of this program package in photoinduced catalysis, we present the analysis of the IC rate processes for the photodissociation of H2 on Cu3. These results showed the applicability of the method and the computational program to identify the vibrational modes in transition metal clusters giving rise to the largest IC rate constant due to their interactions with the excited electronic states occurring in the hot-electron induced dissociation phenomena.
Lee, Jae Hoon; Chung, Duke Whan; Han, Chung Soo
2012-09-01
The purpose of this study was to analyze the utility and the clinical outcomes of anterolateral thigh (ALT)-free flaps and conversion from external to internal fixation with plating and bone grafting in Gustilo type IIIB open tibial fractures. A total of 21 patients were analyzed retrospectively. The mean follow-up period was 18 months and the mean age was 46.7 years. There were 18 men and three women. The mean time from injury to flap coverage was 11.6 days. The mean size of flaps used was 15.3 × 8.2 cm. The mean size of bone defects was 2.26 cm. Segmental bone defects were observed in 5 five cases, for which bone transport or vascularized fibular graft were performed. When flaps were successful and the fracture sites did not have any evidence of infection, internal fixation with plates and bone grafting were performed. Flaps survived in 20 cases. In the 20 cases with successful flaps, two cases developed osteomyelitis, but the 20 cases achieved solid bone union at a mean of 8.6 months after the injury, salvaging the lower extremity in 100% of the cases. At the last follow-up, 9 nine cases were measured excellent or good; 6, fair; and 6, poor in the functional assessment based on the method developed by Puno et al. ALT- free flaps to cover soft tissue defects in Gustilo type IIIB open tibial fractures are considered as useful option for the treatment of composite defects. In addition, conversion to internal fixation and bone grafting can be an alternative method in order to reduce the risk of complications and inconvenience of external fixators.
NASA Astrophysics Data System (ADS)
Fréchette, Luc G.
2007-09-01
Energy is a sector of paramount importance over the coming decades if we are to ensure sustainable development that respects our environment. The research and development of novel approaches to convert available energy into usable forms using micro and nanotechnologies can contribute towards this goal and meet the growing need for power in small scale portable applications. The dominant power sources for handheld and other portable electronics are currently primary and rechargeable batteries. Their limited energy density and adverse effects on the environment upon disposal suggest that alternative approaches need to be explored. This special issue will showcase some of the leading work in this area, initially presented at PowerMEMS 2006, the 6th International Workshop on Micro and Nanotechnologies for Power Generation and Energy Conversion Applications. Power MEMS are defined as microsystems for electrical power generation and other energy conversion applications, including propulsion and cooling. The range of power MEMS technologies includes micro thermodynamic machines, such as microturbines, miniature internal combustion engines and micro-coolers; solid-state direct energy conversion, such as thermoelectric and photovoltaic microstructures; micro electrochemical devices, such as micro fuel cells and nanostructure batteries; vibration energy harvesting devices, such as piezoelectric, magnetic or electrostatic micro generators, as well as micro thrusters and rocket engines for propulsion. These can either be driven by scavenging thermal, mechanical or solar energy from the environment, or from a stored energy source, such as chemical fuel or radioactive material. The unique scope leads to unique challenges in the development of power MEMS, ranging from the integration of novel materials to the efficient small scale implementation of energy conversion principles. In this special issue, Mitcheson et al provide a comparative assessment of three inertial vibration
Kuznetsov, Alexander M
2006-01-01
Electron tunneling through bridge molecular groups with a strong coupling to a local quantum vibrational mode is considered. A scheme is suggested for direct experimental observation of the effect of internal conversion of vibrational quanta in inelastic electron tunneling. The effect consists of excitation and re-absorption of vibrational quanta in bridge by tunneling electrons. The tunnel current produced by the absorption of vibrational quanta by the same or another electron can in principle be detected in an experimental setup a scheme of which is suggested. Current/voltage dependences have general spectroscopic features. Possible effects that can take place in the case of additional strong interaction with classical vibrational modes are discussed.
NASA Astrophysics Data System (ADS)
Karpeshin, F. F.; Trzhaskovskaya, M. B.
2017-03-01
Two-photon optical pumping of the 7.6-eV nuclear isomer in the singly ionized atoms of 229Th is considered. Differences between two mechanisms of the pumping, nuclear excitation in the electronic transition (NEET) and bound internal conversion (BIC), are derived and analyzed numerically. The BIC mechanism turns out to be more effective, by orders of magnitude, in accordance with previous calculations. Moreover, a numerical smallness in the NEET scheme is explicitly pointed out concerning singly and doubly charged ions. That is related to the smallness of the final vertex, responsible for conservation of energy. In the case of BIC, the calculated pumping rate of the isomer for the most effective scheme may be as high as 0.03 s-1.
NASA Astrophysics Data System (ADS)
Kakitani, Yoshinori; Miki, Takeshi; Koyama, Yasushi; Nagae, Hiroyoshi; Nakamura, Ryosuke; Kanematsu, Yasuo
2009-07-01
The time constants of the vibrational relaxation, υ = 2 → υ = 1 and υ = 1 → υ = 0, in the 1Bu+ manifold and those of internal conversion from the 1Bu+(0) level, which is isoenergetic (so-called 'diabatic') with the 1Bu- vibronic levels in neurosporene and spheroidene and with the 3Ag- vibronic levels in lycopene and anhydrorhodovibrin, were determined by Kerr-gate fluorescence spectroscopy. The time constants of the vibrational relaxation were in the ˜1:2 ratio, and those of internal conversion agreed with the lifetimes of the diabatic counterparts, i.e., the 1Bu- and 3Ag- electronic states, respectively.
NASA Astrophysics Data System (ADS)
Livermore, C.; Velásquez-García, L. F.
2015-12-01
Greetings, and welcome to Boston, MA and PowerMEMS 2015 - the 15th International Conference on Micro and Nanotechnology for Power Generation and Energy Conversion Applications! The objective of PowerMEMS 2015 is to catalyze innovation in micro- and nano-scale technologies for the energy domain. The scope of the meeting ranges from basic principles, to materials and fabrication, to devices and systems, to applications. The many applications of Power MEMS range from the harvesting, storage, conversion and conditioning of energy, to integrated systems that manage these processes, to actuation, pumping, and propulsion. Our Conference aims to stimulate the exchange of insights and information, as well as the development of new ideas, in the Power MEMS field. Our goal is to allow the attendees to interact and network within our multidisciplinary community that includes professionals from many branches of science and engineering, as well as energy, policy, and entrepreneurial specialists interested in the commercialization of Power MEMS technologies. Since the first PowerMEMS in Sendai, Japan in 2000, the Conference has grown in size, reputation, impact, and technical breadth. This continuing growth is evident in this year's technical program, which includes an increasing number of papers on nanomaterials, additive manufacturing for energy systems, actuators, energy storage, harvesting strategies and integrated energy harvesting systems, for example. This year's technical program is highlighted by six plenary talks from prominent experts on piezoelectrics, robotic insects, thermoelectrics, photovoltaics, nanocomposite cathodes, and thermal energy conversion systems. The contributed program received a large number of abstract submissions this year, 169 in total. After careful review by the 34-member Technical Program Committee, a total of 135 papers were selected for presentation. The 60 contributed oral presentations are arranged in two parallel sessions. The 75 posters
Kim, Garam; Kim, Jang Hyun; Park, Euy Hwan; Kang, Donghoon; Park, Byung-Gook
2014-01-27
An improved rate equation model for GaN-based LEDs considering the effective volume of the active region is proposed. Through numerical simulations, it is confirmed that the IQE, especially efficiency droop is related with small effective volume. Also, we confirmed that the effective volume is controlled by polarization charge, the barriers between the quantum wells, and current density. We also developed a fast and reliable method for extracting the recombination coefficients and the IQE of the GaN-based LEDs by measuring transient characteristics and considering the effective volume.
NASA Astrophysics Data System (ADS)
Rondonuwu, Ferdy S.; Watanabe, Yasutaka; Fujii, Ritsuko; Koyama, Yasushi
2003-07-01
Subpicosecond time-resolved absorption spectra were recorded in the visible region for a set of photosynthetic carotenoids having different numbers of conjugated double bonds ( n), which include neurosporene ( n=9), spheroidene ( n=10), lycopene ( n=11), anhydrorhodovibrin ( n=12) and spirilloxanthin ( n=13). Singular-value decomposition and global fitting of the spectral-data matrices lead us to a branched relaxation scheme including both (1) the singlet internal conversion in the sequence of 1 1B u+ → 1 1B u- → 2 1A g- → 1 1A g-(ground), and (2) the singlet-to-triplet conversion of 1 1B u- → 1 3A g followed by triplet internal conversion of 1 3A g → 1 3B u.
Picconi, David; Lami, Alessandro; Santoro, Fabrizio
2012-06-28
We face with the general problem of defining a reduced number of effective collective coordinates to describe accurately the short-time nonadiabatic dynamics of large semirigid systems, amenable to a description in terms of coupled harmonic potential energy surfaces. We present a numeric iterative protocol to define a hierarchical representation of the Hamiltonian taking into account both linear and quadratic intra- and inter-state couplings (QVC, quadratic vibronic coupling model), thus generalizing the method introduced recently in the literature [E. Gindensperger, H. Köppel, and L. S. Cederbaum, J. Chem. Phys. 126, 034106 (2007)] for the linear vibronic coupling (LVC) model. This improvement allows to take into account the effect of harmonic frequency changes and Duschinsky mixings among the different electronic states, providing a route to upgrade the models for nonadiabatic harmonic systems to those nowadays routinely used for the simulation of vibronic spectra of adiabatic systems (negligible nonadiabatic couplings). We apply our method to the study of ππ∗ → nπ∗ internal conversion in thymine, analysing the differences in LVC and QVC predictions both for the absorption spectrum and the dynamics of electronic populations.
NASA Astrophysics Data System (ADS)
Cho, Young-Ho
2012-09-01
This special section of Journal of Micromechanics and Microengineering features papers selected from the 11th International Workshop on Micro and Nanotechnology for Power Generation and Energy Conversion Applications (PowerMEMS 2011), held at Sejong Hotel in Seoul, Korea during 15-18 November 2011. Since the first PowerMEMS workshop held in Sendai, Japan in 2000, the workshop has developed as the premier forum for reporting research results in micro and nanotechnology for power generation, energy conversion, harvesting and processing applications, including in-depth technical issues on nanostructures and materials for small-scale high-density energy and thermal management. Potential PowerMEMS applications cover not only portable power devices for consumer electronics and remote sensors, but also micro engines, impulsive thrusters and fuel cells for systems ranging from the nanometer to the millimeter scale. The 2011 technical program consists of 1 plenary talk, 4 invited talks and 118 contributed presentations. The 48 oral and 70 poster presentations, selected by 27 Technical Program Committee Members from 131 submitted abstracts, have stimulated lively discussion maximizing the interaction between participants. Among them, this special section includes 9 papers covering micro-scale power generators, energy converters, harvesters, thrusters and thermal coolers. Finally, we are grateful to the members of the International Steering Committee, the Technical Program Committee, and the Local Organizing Committee for their efforts and contributions to PowerMEMS 2011. We also thank the two companies Samsung Electro-Mechanics and LG Elite for technical tour arrangements. Special thanks go to Dr Ian Forbes, the editorial staff of the Journal of Micromechanics and Microengineering, as well as to the staff of IOP Publishing for making this special section possible.
NASA Astrophysics Data System (ADS)
Tanaka, Shuji
2009-09-01
This special issue of the Journal of Micromechanics and Microengineering features papers selected from The 8th International Workshop on Micro and Nanotechnology for Power Generation and Energy Conversion Applications (PowerMEMS 2008) with the 2nd Symposium on Micro Environmental Machine Systems (μMEMS 2008). The workshop was held in Sendai, Japan on 9-12 November 2008 by Tohoku University. This is the second time that the PowerMEMS workshop has been held in Sendai, following the first workshop in 2000. Power MEMS is one of the newest categories of MEMS, which encompasses microdevices and microsystems for power generation, energy conversion and propulsion. The first concept of Power MEMS was born in the late 1990's from a MEMS-based gas turbine project at Massachusetts Institute of Technology. After that, the research and development of Power MEMS have been promoted by the strong need for compact power sources with high energy and/or power density. Since its inception, Power MEMS has expanded to include not only various MEMS-based power generators but also small energy machines and microdevices for macro power generators. Previously, the main topics of the PowerMEMS workshop were miniaturized gas turbines and micro fuel cells, but recently, energy harvesting has been the hottest topic. In 2008, energy harvesting had a 41% share in the 118 accepted regular papers. This special issue includes 19 papers on various topics. Finally, I would like to express my sincere appreciation to the members of the International Steering Committee, the Technical Program Committee, the Local Organizing Committee and financial supporters. This special issue was edited in collaboration with the staff of IOP Publishing.
ERIC Educational Resources Information Center
Zuidema, Leah A.
2011-01-01
The idea of joining a conversation through reading and writing is not new; in his 1941 book "The Philosophy of Literary Form: Studies in Symbolic Action," Kenneth Burke suggests that the acts of reading and writing are like entering a parlor where others are already conversing. The author explores the place of professional debate within NCTE and…
Energy conversion in laser propulsion: III
NASA Astrophysics Data System (ADS)
Larson, Carl W.; Mead, Franklin B., Jr.; Kalliomaa, Wayne M.
2002-09-01
Conversion of pulses of CO2 laser energy (18 microsecond pulses) to propellant kinetic energy was studied in a Myrabo Laser Lightcraft (MLL) operating with laser heated STP air and laser ablated delrin propellants. The MLL incorporates an inverted parabolic reflector that focuses laser energy into a toroidal volume where it is absorbed by a unit of propellant mass that subsequently expands in the geometry of the plug nozzle aerospike. With Delrin propellant, measurements of the coupling coefficients and the ablated mass as a function of laser pulse energy showed that the efficiency of conversion of laser energy to propellant kinetic energy was approximately 54%. With STP air, direct experimental measurement efficiency was not possible because the propellant mass associated with measured coupling coefficients was not known. Thermodynamics predicted that the upper limit of the efficiency of conversion of the internal energy of laser heated air to jet kinetic energy, (alpha) , is approximately 0.30 for EQUILIBRIUM expansion to 1 bar pressure. For FROZEN expansion (alpha) approximately 0.27. These upper limit efficiencies are nearly independent of the initial specific energy from 1 to 110 MJ/kg. With heating of air at its Mach 5 stagnation density (5.9 kg/m3 as compared to STP air density of 1.18 kg/m3) these efficiencies increase to about 0.55 (equilibrium) and 0.45 (frozen). Optimum blowdown from 1.18 kg/m3 to 1 bar occurs with expansion ratios approximately 1.5 to 4 as internal energy increases from 1 to 100 MJ/kg. Optimum expansion from the higher density state requires larger expansion ratios, 8 to 32. Expansion of laser ablated Delrin propellant appears to convert the absorbed laser energy more efficiently to jet kinetic energy because the effective density of the ablated gaseous Delrin is significantly greater than that of STP air.
Energy conversion in laser propulsion III
NASA Astrophysics Data System (ADS)
Larson, C. William; Mead, Franklin B.; Kalliomaa, Wayne M.
2003-05-01
Conversion of pulses of CO2 laser energy (18 microsecond pulses) to propellant kinetic energy was studied in a Myrabo Laser Lightcraft (MLL) operating with laser heated STP air and laser ablated delrin propellants. The MLL incorporates an inverted parabolic reflector that focuses laser energy into a toroidal volume where it is absorbed by a unit of propellant mass that subsequently expands in the geometry of the plug nozzle aerospike. With Delrin propellant, measurements of the coupling coefficients and the ablated mass as a function of laser pulse energy showed that the efficiency of conversion of laser energy to propellant kinetic energy was ~ 54%. With STP air, direct experimental measurement of efficiency was not possible because the propellant mass associated with measured coupling coefficients was not known. Thermodynamics predicted that the
Factor Scores, Structure Coefficients, and Communality Coefficients
ERIC Educational Resources Information Center
Goodwyn, Fara
2012-01-01
This paper presents heuristic explanations of factor scores, structure coefficients, and communality coefficients. Common misconceptions regarding these topics are clarified. In addition, (a) the regression (b) Bartlett, (c) Anderson-Rubin, and (d) Thompson methods for calculating factor scores are reviewed. Syntax necessary to execute all four…
Yasin, Muhammad; Park, Shinyoung; Jeong, Yeseul; Lee, Eun Yeol; Lee, Jinwon; Chang, In Seop
2014-10-01
This study proposed a submerged hollow fibre membrane bioreactor (HFMBR) system capable of achieving high carbon monoxide (CO) mass transfer for applications in microbial synthesis gas conversion systems. Hydrophobic polyvinylidene fluoride (PVDF) membrane fibres were used to fabricate a membrane module, which was used for pressurising CO in water phase. Pressure through the hollow fibre lumen (P) and membrane surface area per unit working volume of the liquid (A(S)/V(L)) were used as controllable parameters to determine gas-liquid volumetric mass transfer coefficient (k(L)a) values. We found a k(L)a of 135.72 h(-1) when P was 93.76 kPa and AS/VL was fixed at 27.5m(-1). A higher k(L)a of 155.16 h(-1) was achieved by increasing AS/VL to 62.5m(-1) at a lower P of 37.23 kPa. Practicality of HFMBR to support microbial growth and organic product formation was assessed by CO/CO2 fermentation using Eubacterium limosum KIST612.
... Recent significant stress or emotional trauma Being female — women are much more likely to develop conversion disorder Having a mental health condition, such as mood or anxiety disorders, dissociative disorder or certain personality disorders Having ...
Recirculation in multiple wave conversions
Kaufman, A. N.; Brizard, A.J.; Kaufman, A.N.; Tracy, E.R.
2008-07-30
A one-dimensional multiple wave-conversion model is constructed that allows energy recirculation in ray phase space. Using a modular eikonal approach, the connection coefficients for this model are calculated by ray phase-space methods. Analytical results (confirmed numerically) show that all connection coefficients exhibit interference effects that depend on an interference phase, calculated from the coupling constants and the area enclosed by the intersecting rays. This conceptual model, which focuses on the topology of intersecting rays in phase space, is used to investigate how mode conversion between primary and secondary waves is modified by the presence of a tertiary wave.
Preliminary Neutronic Study of D2O-cooled High Conversion PWRs
Hikaru Hiruta; Gilles Youinou
2013-10-01
This paper presents a preliminary neutronics analysis of tight-pitch D2O-cooled high-conversion PWRs loaded with MOX fuel aiming at high Pu conversion and negative void coefficient. SCALE6.1 has been exclusively utilized for this study. The analyses are performed in two separate parts. The first part of this paper investigates the performance of axial and internal blankets and seeks break-even or near-breeder core even without the presence of radial blankets. The second part of this paper performs sensitivity and uncertainty analyses of integral parameters (keff and void coefficient) for selected systems in order to analyze the characters of this high-conversion PWR from different aspects.
NASA Astrophysics Data System (ADS)
Hebling, C.; Woias, P.
2008-10-01
This special issue of Journal of Micromechanics and Microengineering (JMM) contains a selection of papers from the 7th International Workshop on Micro and Nanotechnologies for Power Generation and Energy Conversion (PowerMEMS 2007). The workshop was held in Freiburg, Germany on 27-29 November 2007 under the joint organization of the Fraunhofer Institute for Solar Energy Systems (FhG-ISE), Freiburg and the Department of Microsystems Engineering (IMTEK) of the Albert-Ludwig-University of Freiburg. PowerMEMS 2007 continues a series of workshops initiated in 2000 in Japan to create an annual discussion forum in the emerging field of micro energy technology. With a single exception in 2001, the workshop has continued as an annual meeting ever since, with a continuous increase in the number of presentations and participants. The program of PowerMEMS 2007 was composed of 2 invited talks, 25 oral talks and 61 poster presentations. From these 88 presentations 16 have been selected for this special issue. It was at the end of 1959 when the Caltech physicist Richard Feynman gave his famous lecture entitled 'There Is Plenty of Room at the Bottom' in which he discussed the possibilities of miniaturization for both storage capacity ('Encyclopaedia Britannica on the head of a pin') as well as micro machining ('rearranging the atoms'), although there were absolutely no technological possibilities in sight for an adequate realization of such ideas. Now, nearly 50 years later, we not only have incredible knowledge about the nanoworld, but even more we are now able to generate microelectromechanical devices which, next to their electronic properties, can integrate physical and analytical functions. Today, Feynman might easily have added a second lecture entitled 'There is Plenty of Energy at the Bottom'. Micro energy technology has seen a tremendous rise in MEMS and material sciences and is regarded today as one of their hot topics. Also, there are more and more companies in this
Coefficient Alpha and Reliability of Scale Scores
ERIC Educational Resources Information Center
Almehrizi, Rashid S.
2013-01-01
The majority of large-scale assessments develop various score scales that are either linear or nonlinear transformations of raw scores for better interpretations and uses of assessment results. The current formula for coefficient alpha (a; the commonly used reliability coefficient) only provides internal consistency reliability estimates of raw…
A Method for Maximizing Split-Half Reliability Coefficients
ERIC Educational Resources Information Center
Callender, John C.; Osburn, H. G.
1977-01-01
An efficient algorithm for maximizing split-half reliability coefficients is described. Coefficients derived by the algorithm were found to be generally larger than odd-even split-half coefficients or other internal consistency measures and nearly as large as the largest split half coefficients. MSPLIT, Odd-Even, and Kuder-Richardson-20…
Measurement of γ and conversion electron spectra following the decay of 125Sb
NASA Astrophysics Data System (ADS)
Sainath, M.; Venkataramaniah, K.; Sood, P. C.
1998-12-01
Relative intensities of γ rays and conversion electron lines in the decay of 125Sb are measured precisely using an HPGe detector and a miniorange electron spectrometer. These data are used to derive the K- and L-shell internal conversion coefficients and to deduce the multipolarities of the respective transitions. A revised level scheme is presented for 125Te incorporating 37 transitions between 13 energy levels up to an excitation energy of 675 keV. The newly established levels at 538 and 653 keV complete the hextuplet corresponding to the (s1/2⊗2+) and (d3/2⊗2+) phonon-coupled configurations.
ERIC Educational Resources Information Center
Beinstein, Judith; And Others
The purpose of this text is to develop elementary conversational skills in Telugu. The language materials consist of four types of language learning activities. The first, and most predominant, is the unit microwave cycle. These cycles divide the learning process into two basic phases, the first of which involves mimicry, memorization, and…
ERIC Educational Resources Information Center
Beinstein, Judith; And Others
The purpose of this text is to develop conversational skills in Tamil. It is to be used as a review of what has been learned in class and not as a teaching device. The language materials consist of four types of language learning activities. The unit microwave cycle divides the learning process into two basic phases. The first phase involves…
NASA Astrophysics Data System (ADS)
Preece, Alun; Gwilliams, Chris; Parizas, Christos; Pizzocaro, Diego; Bakdash, Jonathan Z.; Braines, Dave
2014-05-01
Recent developments in sensing technologies, mobile devices and context-aware user interfaces have made it pos- sible to represent information fusion and situational awareness for Intelligence, Surveillance and Reconnaissance (ISR) activities as a conversational process among actors at or near the tactical edges of a network. Motivated by use cases in the domain of Company Intelligence Support Team (CoIST) tasks, this paper presents an approach to information collection, fusion and sense-making based on the use of natural language (NL) and controlled nat- ural language (CNL) to support richer forms of human-machine interaction. The approach uses a conversational protocol to facilitate a ow of collaborative messages from NL to CNL and back again in support of interactions such as: turning eyewitness reports from human observers into actionable information (from both soldier and civilian sources); fusing information from humans and physical sensors (with associated quality metadata); and assisting human analysts to make the best use of available sensing assets in an area of interest (governed by man- agement and security policies). CNL is used as a common formal knowledge representation for both machine and human agents to support reasoning, semantic information fusion and generation of rationale for inferences, in ways that remain transparent to human users. Examples are provided of various alternative styles for user feedback, including NL, CNL and graphical feedback. A pilot experiment with human subjects shows that a prototype conversational agent is able to gather usable CNL information from untrained human subjects.
NASA Astrophysics Data System (ADS)
Preece, Alun; Webberley, Will; Braines, Dave
2015-05-01
Recent advances in natural language question-answering systems and context-aware mobile apps create opportunities for improved sensemaking in a tactical setting. Users equipped with mobile devices act as both sensors (able to acquire information) and effectors (able to act in situ), operating alone or in collectives. The currently- dominant technical approaches follow either a pull model (e.g. Apple's Siri or IBM's Watson which respond to users' natural language queries) or a push model (e.g. Google's Now which sends notifications to a user based on their context). There is growing recognition that users need more flexible styles of conversational interaction, where they are able to freely ask or tell, be asked or told, seek explanations and clarifications. Ideally such conversations should involve a mix of human and machine agents, able to collaborate in collective sensemaking activities with as few barriers as possible. Desirable capabilities include adding new knowledge, collaboratively building models, invoking specific services, and drawing inferences. As a step towards this goal, we collect evidence from a number of recent pilot studies including natural experiments (e.g. situation awareness in the context of organised protests) and synthetic experiments (e.g. human and machine agents collaborating in information seeking and spot reporting). We identify some principles and areas of future research for "conversational sensemaking".
Chiodo, Sandro Giuseppe; Mineva, Tzonka
2015-03-21
This work reports non-radiative internal conversion (IC) rate constants obtained for Cu{sub n} with n = 3, 6, and 9 and H{sub 2} on Cu{sub 3}. The Time-Dependent Density Functional Theory (TDDFT) method was employed with three different functionals in order to investigate the electronic structures and the absorption spectra. The performance of the generalized gradient approximation of Perdew, Burke and Ernzerhof (PBE) and the hybrid B3LYP and PBE0 exchange correlation functionals in combination with the SVP and the def2-TZVP basis sets was examined. TDDFT results were used as input data to compute internal conversion rate constants. For this purpose, we have developed a program package. A description of the theoretical background used in our numerical implementation and the program input file is presented. In view of future applications of this program package in photoinduced catalysis, we present the analysis of the IC rate processes for the photodissociation of H{sub 2} on Cu{sub 3}. These results showed the applicability of the method and the computational program to identify the vibrational modes in transition metal clusters giving rise to the largest IC rate constant due to their interactions with the excited electronic states occurring in the hot-electron induced dissociation phenomena.
ERIC Educational Resources Information Center
Rim, Eui-Do; Bresler, Samuel
Livingston's reliability coefficients and Harris' indices of efficiency were computed along with the classical internal consistency coefficients, KR-20's (Kuder-Richardson internal consistency coefficient), for 678 criterion-referenced tests in the A through E levels of an individualized mathematics program. The coefficients were carefully studied…
1987-08-31
Related Groups (DRGs) enabling MTF level case complexity analysis . 1.2. Background The basis for initiating work on the conversion of data to ICD-9-CM was...Inpatient Analysis Group of the Performance Measurement Study (PMS) was directed at gaining an effective interface for biometric data with an...relationship to national DRG normative data, adding a signi- ficant dimension to the study. Additionally, the ability to improve analysis of data
Modified Biserial Correlation Coefficients.
ERIC Educational Resources Information Center
Kraemer, Helena Chmura
1981-01-01
Asymptotic distribution theory of Brogden's form of biserial correlation coefficient is derived and large sample estimates of its standard error obtained. Its relative efficiency to the biserial correlation coefficient is examined. Recommendations for choice of estimator of biserial correlation are presented. (Author/JKS)
NASA Astrophysics Data System (ADS)
Reynaerts, Dominiek; Vullers, Ruud
2011-10-01
This special section of Journal of Micromechanics and Microengineering features papers selected from the 10th International Workshop on Micro and Nanotechnology for Power Generation and Energy Conversion Applications (PowerMEMS 2010). The workshop was organized in Leuven, Belgium from 30 November to 3 December 2010 by Katholieke Universiteit Leuven and the imec/Holst Centre. This was a special PowerMEMS Workshop, for several reasons. First of all, we celebrated the 10th anniversary of the workshop: the first PowerMEMS meeting was organized in Sendai, Japan in 2000. None of the organizers or participants of this first meeting could have predicted the impact of the workshop over the next decade. The second reason was that, for the first time, the conference organization spanned two countries: Belgium and the Netherlands. Thanks to the advances in information technology, teams from Katholieke Universiteit Leuven (Belgium) and the imec/Holst Centre in Eindhoven (the Netherlands) have been able to work together seamlessly as one team. The objective of the PowerMEMS Workshop is to stimulate innovation in micro and nanotechnology for power generation and energy conversion applications. Its scope ranges from integrated microelectromechanical systems (MEMS) for power generation, dissipation, harvesting, and management, to novel nanostructures and materials for energy-related applications. True to the objective of the PowerMEMSWorkshop, the 2010 technical program covered a broad range of energy related research, ranging from the nanometer to the millimeter scale, discussed in 5 invited and 52 oral presentations, and 112 posters. This special section includes 14 papers covering vibration energy harvesters, thermal applications and micro power systems. Finally, we wish to express sincere appreciation to the members of the International Steering Committee, the Technical Program Committee and last but not least the Local Organizing Committee. This special issue was edited in
NASA Astrophysics Data System (ADS)
Naqvi, K. Razi; Jávorfi, Tamás; Melø, T. B.; Garab, Gyözö
1998-12-01
Wavelength-selective photo-excitation of samples containing a detergent and LHCII (the main light-harvesting complex pertaining to photosystem II of green plants) is used for recording time-resolved triplet-minus-singlet (TmS) difference spectra, with a view to probing interactions between chlorophyll a (Chl a) and chlorophyll b (Chl b), and between Chl a and lutein (Lut). Once the detergent concentration ( CD) exceeds a threshold, C©, the TmS spectrum becomes sensitive to λ⊗, the wavelength of excitation, and to t, the delay between excitation and observation. Each increment in CD brings about a diminution in the efficiency of a†→ x† transfer (triplet-triplet transfer from Chl a to Lut) and a rise in both the triplet formation yield and the fluorescence yield of Chl a. What is more, b*→ a* transfer (singlet-singlet transfer from Chl b to Chl a) slackens to such an extent that Chl b*→Chl b† intersystem crossing, negligible when CD is below C©, begins to vie with transfer, for the deactivation of Chl b* (in the foregoing an asterisk/dagger denotes singlet/triplet excitation). The reduction in the efficiencies of the two transfers is easily understood by: (i) invoking the Kühlbrandt-Wang-Fujiyoshi model of LHCII, which posits each Chl b in contact with a Chl a and each Chl a in contact with a Lut, and (ii) assuming that the detergent severs contact between adjacent chromophores. That a growth in the triplet yield of Chl a* accompanies the detergent-induced decrease in the efficiency of a†→ x† transfer becomes intelligible if one assumes, further, that internal conversion in Chla* is faster than that in overlineChla * , where under or over lining betokens the presence or absence of a carotenoid neighbour. When CD is close to C©, most Chl a molecules are adjacent to a Lut, internal conversion dominates, and the overall triplet yield is low. As CD is gradually raised the Chla → overlineChla transformation sets in, causing concomitant drops in
ERIC Educational Resources Information Center
Slapac, Alina; Kim, Sujin
2014-01-01
Building a culturally responsive learning community begins with global awareness and cultural responsiveness. Preservice and PreK-12 practicing teachers can use the interactive questions showcased here to enhance their intercultural competence by drawing on the knowledge, skills, and experiences of international faculty and colleagues.
Absorption coefficient instrument for turbid natural waters.
Friedman, E; Poole, L; Cherdak, A; Houghton, W
1980-05-15
An instrument has been developed that directly measures the multispectral absorption coefficient of turbid natural water. The design incorporates methods for compensation of variation in the internal light source intensity, correction of the spectrally dependent nature of the optical elements, and correction for variation in background light level. When used in conjunction with a spectrally matched total attenuation instrument, the spectrally dependent scattering coefficient can also be derived. Systematic errors associated with multiple scattering have been estimated using Monte Carlo techniques.
Coefficients of Effective Length.
ERIC Educational Resources Information Center
Edwards, Roger H.
1981-01-01
Under certain conditions, a validity Coefficient of Effective Length (CEL) can produce highly misleading results. A modified coefficent is suggested for use when empirical studies indicate that underlying assumptions have been violated. (Author/BW)
Effectiveness Factors and Conversion in a Biocatalytic Membrane Reactor.
Godongwana, Buntu
2016-01-01
Analytical expressions of the effectiveness factor of a biocatalytic membrane reactor, and its asymptote as the Thiele modulus becomes large, are presented. The evaluation of the effectiveness factor is based on the solution of the governing equations for solute transport in the two regions of the reactor, i.e. the lumen and the matrix (with the biofilm immobilized in the matrix). The lumen solution accounts for both axial diffusion and radial convective flow, while the matrix solution is based on Robin-type boundary conditions. The effectiveness factor is shown to be a function of the Thiele modulus, the partition coefficient, the Sherwood number, the Peclet number, and membrane thickness. Three regions of Thiele moduli are defined in the effectiveness factor graphs. These correspond with reaction rate limited, internal-diffusion limited, and external mass transfer limited solute transport. Radial convective flows were shown to only improve the effectiveness factor in the region of internal diffusion limitation. The assumption of first order kinetics is shown to be applicable only in the Thiele modulus regions of internal and external mass transfer limitation. An iteration scheme is also presented for estimating the effectiveness factor when the solute fractional conversion is known. The model is validated with experimental data from a membrane gradostat reactor immobilised with Phanerochaete chrysosporium for the production of lignin and manganese peroxidases. The developed model and experimental data allow for the determination of the Thiele modulus at which the effectiveness factor and fractional conversion are optimal.
Effectiveness Factors and Conversion in a Biocatalytic Membrane Reactor
Godongwana, Buntu
2016-01-01
Analytical expressions of the effectiveness factor of a biocatalytic membrane reactor, and its asymptote as the Thiele modulus becomes large, are presented. The evaluation of the effectiveness factor is based on the solution of the governing equations for solute transport in the two regions of the reactor, i.e. the lumen and the matrix (with the biofilm immobilized in the matrix). The lumen solution accounts for both axial diffusion and radial convective flow, while the matrix solution is based on Robin-type boundary conditions. The effectiveness factor is shown to be a function of the Thiele modulus, the partition coefficient, the Sherwood number, the Peclet number, and membrane thickness. Three regions of Thiele moduli are defined in the effectiveness factor graphs. These correspond with reaction rate limited, internal-diffusion limited, and external mass transfer limited solute transport. Radial convective flows were shown to only improve the effectiveness factor in the region of internal diffusion limitation. The assumption of first order kinetics is shown to be applicable only in the Thiele modulus regions of internal and external mass transfer limitation. An iteration scheme is also presented for estimating the effectiveness factor when the solute fractional conversion is known. The model is validated with experimental data from a membrane gradostat reactor immobilised with Phanerochaete chrysosporium for the production of lignin and manganese peroxidases. The developed model and experimental data allow for the determination of the Thiele modulus at which the effectiveness factor and fractional conversion are optimal. PMID:27104954
NASA Technical Reports Server (NTRS)
Snyder, G. Jeffrey (Inventor)
2015-01-01
A high temperature Seebeck coefficient measurement apparatus and method with various features to minimize typical sources of errors is described. Common sources of temperature and voltage measurement errors which may impact accurate measurement are identified and reduced. Applying the identified principles, a high temperature Seebeck measurement apparatus and method employing a uniaxial, four-point geometry is described to operate from room temperature up to 1300K. These techniques for non-destructive Seebeck coefficient measurements are simple to operate, and are suitable for bulk samples with a broad range of physical types and shapes.
JKTLD: Limb darkening coefficients
NASA Astrophysics Data System (ADS)
Southworth, John
2015-11-01
JKTLD outputs theoretically-calculated limb darkening (LD) strengths for equations (LD laws) which predict the amount of LD as a function of the part of the star being observed. The coefficients of these laws are obtained by bilinear interpolation (in effective temperature and surface gravity) in published tables of coefficients calculated from stellar model atmospheres by several researchers. Many observations of stars require the strength of limb darkening (LD) to be estimated, which can be done using theoretical models of stellar atmospheres; JKTLD can help in these circumstances.
Cupola Corner 1 - Conversation With Chris Ferguson
Atlantis Commander Chris Ferguson joined Expedition 28 Flight Engineer Ron Garan in the International Space Station cupola for some conversation about the space shuttle, and how the astronauts can ...
Golovin, G V; Savel'ev-Trofimov, Andrei B; Uryupina, D S; Volkov, Roman V
2011-03-31
We recorded the spectrum of delayed secondary electrons ejected from the target, which was coated with a layer of iron enriched with the {sup 57}Fe isotope to 98%, under its irradiation by fluxes of broadband X-ray radiation and fast electrons from the plasma produced by a femtosecond laser pulse at an intensity of 10{sup 17} W cm{sup -2}. Maxima were identified at energies of 5.6, 7.2, and 13.6 keV in the spectrum obtained for a delay of 90 - 120 ns. The two last-listed maxima owe their origin to the internal electron conversion of the isomeric level with an energy of 14.4 keV and a lifetime of 98 ns to the K and L shells of atomic iron, respectively; the first-named level arises from a cascade K - L{sub 2}L{sub 3} Auger process. Photoexcitaion by the X-ray plasma radiation is shown to be the principal channel of the isomeric level excitation. (interaction of laser radiation with matter)
Absorption coefficient instrument for turbid natural waters
NASA Astrophysics Data System (ADS)
Friedman, E.; Cherdak, A.; Poole, L.; Houghton, W.
1980-05-01
The paper presents an instrument that directly measures multispectral absorption coefficient of turbid natural water. Attention is given to the design, which is shown to incorporate methods for the compensation of variation in the internal light source intensity, correction of the spectrally dependent nature of the optical elements, and correction for variation in the background light level. In addition, when used in conjunction with a spectrally matched total attenuation instrument, the spectrally dependent scattering coefficient can also be derived. Finally, it is reported that systematic errors associated with multiple scattering have been estimated using Monte Carlo techniques.
Absorption coefficient instrument for turbid natural waters
NASA Technical Reports Server (NTRS)
Friedman, E.; Cherdak, A.; Poole, L.; Houghton, W.
1980-01-01
The paper presents an instrument that directly measures multispectral absorption coefficient of turbid natural water. Attention is given to the design, which is shown to incorporate methods for the compensation of variation in the internal light source intensity, correction of the spectrally dependent nature of the optical elements, and correction for variation in the background light level. In addition, when used in conjunction with a spectrally matched total attenuation instrument, the spectrally dependent scattering coefficient can also be derived. Finally, it is reported that systematic errors associated with multiple scattering have been estimated using Monte Carlo techniques.
NASA Astrophysics Data System (ADS)
Allen, Mark G.; Lang, Jeffrey
2013-11-01
Welcome to this special section of the Journal of Micromechanics and Microengineering (JMM). This section, co-edited by myself and by Professor Jeffrey Lang of the Massachusetts Institute of Technology, contains expanded versions of selected papers presented at the Power MEMS meeting held in Atlanta, GA, USA, in December of 2012. Professor Lang and I had the privilege of co-chairing Power MEMS 2012, the 12th International Workshop on Micro and Nanotechnology for Power Generation and Energy Conversion Applications. The scope of the PowerMEMS series of workshops ranges from basic principles, to materials and fabrication, to devices and systems, to applications. The many applications of power MEMS (microelectromehcanical systems) range from MEMS-enabled energy harvesting, storage, conversion and conditioning, to integrated systems that manage these processes. Why is the power MEMS field growing in importance? Smaller-scale power and power supplies (microwatts to tens of watts) are gaining in prominence due to many factors, including the ubiquity of low power portable electronic equipment and the proliferation of wireless sensor nodes that require extraction of energy from their embedding environment in order to function. MEMS manufacturing methods can be utilized to improve the performance of traditional power supply elements, such as allowing batteries to charge faster or shrinking the physical size of passive elements in small-scale power supplies. MEMS technologies can be used to fabricate energy harvesters that extract energy from an embedding environment to power wireless sensor nodes, in-body medical implants and other devices, in which the harvesters are on the small scales that are appropriately matched to the overall size of these microsystems. MEMS can enable the manufacturing of energy storage elements from nontraditional materials by bringing appropriate structure and surface morphology to these materials as well as fabricating the electrical interfaces
26 CFR 1.1001-5 - European Monetary Union (conversion to the euro).
Code of Federal Regulations, 2014 CFR
2014-04-01
... 26 Internal Revenue 11 2014-04-01 2014-04-01 false European Monetary Union (conversion to the euro). 1.1001-5 Section 1.1001-5 Internal Revenue INTERNAL REVENUE SERVICE, DEPARTMENT OF THE TREASURY... Gain Or Loss § 1.1001-5 European Monetary Union (conversion to the euro). (a) Conversion of...
26 CFR 1.1001-5 - European Monetary Union (conversion to the euro).
Code of Federal Regulations, 2013 CFR
2013-04-01
... 26 Internal Revenue 11 2013-04-01 2013-04-01 false European Monetary Union (conversion to the euro). 1.1001-5 Section 1.1001-5 Internal Revenue INTERNAL REVENUE SERVICE, DEPARTMENT OF THE TREASURY... Gain Or Loss § 1.1001-5 European Monetary Union (conversion to the euro). (a) Conversion of...
26 CFR 1.1001-5 - European Monetary Union (conversion to the euro).
Code of Federal Regulations, 2012 CFR
2012-04-01
... 26 Internal Revenue 11 2012-04-01 2012-04-01 false European Monetary Union (conversion to the euro). 1.1001-5 Section 1.1001-5 Internal Revenue INTERNAL REVENUE SERVICE, DEPARTMENT OF THE TREASURY... Gain Or Loss § 1.1001-5 European Monetary Union (conversion to the euro). (a) Conversion of...
26 CFR 1.1001-5 - European Monetary Union (conversion to the euro).
Code of Federal Regulations, 2011 CFR
2011-04-01
... 26 Internal Revenue 11 2011-04-01 2011-04-01 false European Monetary Union (conversion to the euro). 1.1001-5 Section 1.1001-5 Internal Revenue INTERNAL REVENUE SERVICE, DEPARTMENT OF THE TREASURY... Gain Or Loss § 1.1001-5 European Monetary Union (conversion to the euro). (a) Conversion of...
Pashto Conversation Manual and Pashto Conversation Tapescript.
ERIC Educational Resources Information Center
Tegey, Habibullah; Robson, Barbara
This conversation manual and tapescript are part of a set of materials that have been developed to teach oral and written Afghan Pashto to English speakers. In addition to the conversation manual and tapescript, the set consists of a beginning textbook, an intermediate textbook, a reader, and a set of taped lessons that correlate with the…
Thermal Energy Conversion Branch
NASA Technical Reports Server (NTRS)
Bielozer, Matthew C.; Schreiber, Jeffrey, G.; Wilson, Scott D.
2004-01-01
The Thermal Energy Conversion Branch (5490) leads the way in designing, conducting, and implementing research for the newest thermal systems used in space applications at the NASA Glenn Research Center. Specifically some of the most advanced technologies developed in this branch can be broken down into four main areas: Dynamic Power Systems, Primary Solar Concentrators, Secondary Solar Concentrators, and Thermal Management. Work was performed in the Dynamic Power Systems area, specifically the Stirling Engine subdivision. Today, the main focus of the 5490 branch is free-piston Stirling cycle converters, Brayton cycle nuclear reactors, and heat rejection systems for long duration mission spacecraft. All space exploring devices need electricity to operate. In most space applications, heat energy from radioisotopes is converted to electrical power. The Radioisotope Thermoelectric Generator (RTG) already supplies electricity for missions such as the Cassini Spacecraft. The focus of today's Stirling research at GRC is aimed at creating an engine that can replace the RTG. The primary appeal of the Stirling engine is its high system efficiency. Because it is so efficient, the Stirling engine will significantly reduce the plutonium fuel mission requirements compared to the RTG. Stirling is also being considered for missions such as the lunar/Mars bases and rovers. This project has focused largely on Stirling Engines of all types, particularly the fluidyne liquid piston engine. The fluidyne was developed by Colin D. West. This engine uses the same concepts found in any type of Stirling engine, with the exception of missing mechanical components. All the working components are fluid. One goal was to develop and demonstrate a working Stirling Fluidyne Engine at the 2nd Annual International Energy Conversion Engineering Conference in Providence, Rhode Island.
Farkas, Árpád; Balásházy, Imre
2015-04-01
A more exact determination of dose conversion factors associated with radon progeny inhalation was possible due to the advancements in epidemiological health risk estimates in the last years. The enhancement of computational power and the development of numerical techniques allow computing dose conversion factors with increasing reliability. The objective of this study was to develop an integrated model and software based on a self-developed airway deposition code, an own bronchial dosimetry model and the computational methods accepted by International Commission on Radiological Protection (ICRP) to calculate dose conversion coefficients for different exposure conditions. The model was tested by its application for exposure and breathing conditions characteristic of mines and homes. The dose conversion factors were 8 and 16 mSv WLM(-1) for homes and mines when applying a stochastic deposition model combined with the ICRP dosimetry model (named PM-A model), and 9 and 17 mSv WLM(-1) when applying the same deposition model combined with authors' bronchial dosimetry model and the ICRP bronchiolar and alveolar-interstitial dosimetry model (called PM-B model). User friendly software for the computation of dose conversion factors has also been developed. The software allows one to compute conversion factors for a large range of exposure and breathing parameters and to perform sensitivity analyses.
NASA Astrophysics Data System (ADS)
Zhuravlev, M. V.; Solis, N. W.; Peretyagin, P. Yu.; Okun'kova, A. A.; Torrecillas, R.
2016-04-01
Using quantum and semiclassical approaches, the energy excitation threshold for induced Raman scattering is estimated and a relationship between the excitation threshold and the concentration of optically active molecules in a bilayer microresonator is established. Estimates are made during the formation of specially configured optical fields: internal and external photonic nanojets. Based on the amount of stored energy per mode and the value of the threshold intensity, an additional generalized selection rule for whispering gallery modes is suggested. It is shown that the bilayer microresonator can focus incident radiation (laser pumping) into a submicron focal volume at a low threshold intensity.
ERIC Educational Resources Information Center
Corliss, William R.
This publication is one of a series of information booklets for the general public published by the United States Atomic Energy Commission. Direct energy conversion involves energy transformation without moving parts. The concepts of direct and dynamic energy conversion plus the laws governing energy conversion are investigated. Among the topics…
Learning through Conversation.
ERIC Educational Resources Information Center
Kelly, Patricia R.; Klein, Adria F.; Pinnell, Gay Su
1996-01-01
Through teacher-child conversation, experts use oral language to help novices take on more complex tasks; and Reading Recovery children, who are obviously having difficulty with school-based learning, are especially in need of significant conversations with adults. Reading and writing processes are supported through conversation with Reading…
NASA Astrophysics Data System (ADS)
Rondonuwu, Ferdy S.; Kakitani, Yoshinori; Tamura, Hiroshi; Koyama, Yasushi
2006-09-01
Key Raman lines ascribable to the 1Bu+, 3Ag-, 1Bu- and 2Ag- states were identified in the subpicosecond time-resolved Raman spectra of spheroidene and lycopene having 10 and 11 conjugated double bonds, respectively. The sequential rise-and-decay of the key Raman lines showed the internal conversion processes of 1Bu+→3Ag-→1Bu-→2Ag-→1Ag- (ground). The time constant in each step of internal conversion reflects the energy gap between the relevant states that had been determined by measurement of resonance - Raman excitation profiles [K. Furuichi, T. Sashima, Y. Koyama, Chem. Phys. Lett. 356 (2002) 547].
Cascaded wavelength conversion as favorable application of nonlinear optical polymers.
Kim, Min-Su; Ju, Jung Jin; Park, Seung Koo; Do, Jung Yun; Lee, Myung-Hyun
2008-06-23
Nonlinear optical (NLO) polymers have been considered promising materials for wavelength conversion at a low pump power. However, they have not been readily adopted to practical applications due to their high absorption coefficients, especially at a shorter interacting wavelength. Our theoretical analysis proves that the influence of absorption coefficients can be mitigated significantly in cascaded wavelength conversion (CWC) processes. According to our example study, maximum conversion efficiencies for CWC can compare even with those for second-harmonic generation in many NLO polymers. Thus CWC can become a pertinent application of NLO polymers. However, to obtain such efficient CWC, several realistic problems should be resolved in practical devices.
Quantum Frequency Conversion between Infrared and Ultraviolet
NASA Astrophysics Data System (ADS)
Rütz, Helge; Luo, Kai-Hong; Suche, Hubertus; Silberhorn, Christine
2017-02-01
We report on the implementation of quantum frequency conversion between infrared and ultraviolet (UV) wavelengths by using single-stage up-conversion in a periodically poled potassium-titanyl-phosphate waveguide. Because of the monolithic waveguide design, we manage to transfer a telecommunication-band input photon to the wavelength of the ionic dipole transition of Yb+ at 369.5 nm. The external (internal) conversion efficiency is around 5% (10%). The high-energy pump used in this converter introduces a spontaneous parametric down-conversion process, which is a cause for noise in the UV mode. Using this process, we show that the converter preserves nonclassical correlations in the up-conversion process, rendering this miniaturized interface a source for quantum states of light in the UV.
NASA Astrophysics Data System (ADS)
Shoji, Masahiro; Horiuchi, Nobuyasu
2005-06-01
We are developing a NGL data conversion system for EPL, for LEEPL, and for EBDW, which is based on our established photomask data conversion system, PATACON PC-cluster. For EPL data conversion, it has SF division, Complementary division, Stitching, Proximity effect correction, Alignment mark insertion, EB stepper control data creation, and Mask inspection data creation. For LEEPL data conversion, it has Pattern checking, Complementary division, Stitching, Stress distortion correction, Alignment mark insertion, and Mask inspection data creation. For EB direct-writing data conversion, it has Proximity effect correction and Extraction of aperture pattern for cell projection exposure.
Iterated multidimensional wave conversion
Brizard, A. J.; Tracy, E. R.; Johnston, D.; Kaufman, A. N.; Richardson, A. S.; Zobin, N.
2011-12-23
Mode conversion can occur repeatedly in a two-dimensional cavity (e.g., the poloidal cross section of an axisymmetric tokamak). We report on two novel concepts that allow for a complete and global visualization of the ray evolution under iterated conversions. First, iterated conversion is discussed in terms of ray-induced maps from the two-dimensional conversion surface to itself (which can be visualized in terms of three-dimensional rooms). Second, the two-dimensional conversion surface is shown to possess a symplectic structure derived from Dirac constraints associated with the two dispersion surfaces of the interacting waves.
Thermionic Energy Conversion (TEC) topping thermoelectrics
NASA Technical Reports Server (NTRS)
Morris, J. F.
1981-01-01
Performance expectations for thermionic and thermoelectric energy conversion systems are reviewed. It is noted that internal radiation effects diminish thermoelectric figures of merit significantly at 1000 K and substantially at 2000 K; the effective thermal conductivity contribution of intrathermoelectric radiative dissipation increases with the third power of temperature. It is argued that a consideration of thermoelectric power generation with high temperature heat sources should include utilization of thermionic energy conversion (TEC) topping thermoelectrics. However TEC alone or TEC topping more efficient conversion systems like steam or gas turbines, combined cycles, or Stirling engines would be more desirable generally.
Coefficient Alpha: A Reliability Coefficient for the 21st Century?
ERIC Educational Resources Information Center
Yang, Yanyun; Green, Samuel B.
2011-01-01
Coefficient alpha is almost universally applied to assess reliability of scales in psychology. We argue that researchers should consider alternatives to coefficient alpha. Our preference is for structural equation modeling (SEM) estimates of reliability because they are informative and allow for an empirical evaluation of the assumptions…
Transfer having a coupling coefficient higher than its active material
NASA Technical Reports Server (NTRS)
Lesieutre, George A. (Inventor); Davis, Christopher L. (Inventor)
2001-01-01
A coupling coefficient is a measure of the effectiveness with which a shape-changing material (or a device employing such a material) converts the energy in an imposed signal to useful mechanical energy. Device coupling coefficients are properties of the device and, although related to the material coupling coefficients, are generally different from them. This invention describes a class of devices wherein the apparent coupling coefficient can, in principle, approach 1.0, corresponding to perfect electromechanical energy conversion. The key feature of this class of devices is the use of destabilizing mechanical pre-loads to counter inherent stiffness. The approach is illustrated for piezoelectric and thermoelectrically actuated devices. The invention provides a way to simultaneously increase both displacement and force, distinguishing it from alternatives such as motion amplification, and allows transducer designers to achieve substantial performance gains for actuator and sensor devices.
International geomagnetic reference field 1965.0 in dipole coordinates
NASA Technical Reports Server (NTRS)
Mead, G. D.
1970-01-01
Computer program transforming spherical harmonic coefficients into arbitrarily tilted coordinate systems, tabulating coefficients of International Geomagnetic Reference Field 1965 in dipole coordinate system
NASA Technical Reports Server (NTRS)
2004-01-01
I/NET, Inc., is making the dream of natural human-computer conversation a practical reality. Through a combination of advanced artificial intelligence research and practical software design, I/NET has taken the complexity out of developing advanced, natural language interfaces. Conversational capabilities like pronoun resolution, anaphora and ellipsis processing, and dialog management that were once available only in the laboratory can now be brought to any application with any speech recognition system using I/NET s conversational engine middleware.
NASA Technical Reports Server (NTRS)
Morris, J. F.
1981-01-01
Thermionic energy conversion (TEC) and metallic-fluid heat pipes (MFHPs), offering unique advantages in terrestrial and space energy processing by virtue of operating on working-fluid vaporization/condensation cycles that accept great thermal power densities at high temperatures, share complex materials problems. Simplified equations are presented that verify and solve such problems, suggesting the possibility of cost-effective applications in the near term for TEC and MFHP devices. Among the problems discussed are: the limitation of alkali-metal corrosion, protection against hot external gases, external and internal vaporization, interfacial reactions and diffusion, expansion coefficient matching, and creep deformation.
Analysis of Linear Conversion to Two Modes
NASA Astrophysics Data System (ADS)
Brizard, Alain J.; Jaun, Andre; Kaufman, Allan N.; Tracy, Eugene R.
2003-10-01
Recent experimental observations [1] and computer simulations [2] show that, in a tokamak plasma with multispecies ions, an incident magnetosonic wave converts either to an ion-hybrid Bernstein wave or to an ion-cyclotron wave, depending on the location of the conversion region in the poloidal cross section. We present a cold-plasma model of simultaneous conversion to these two modes, and obtain explicit expressions for transmission and conversion coefficients. Our approach is based on phase-space analysis of multiple conversion [3], in two or four phase-space dimensions (i.e., one or two spatial dimensions).Our ray-tracing algorithm [4], for detection of conversion and for treatment of ray-splitting due to conversion, will be applied to this process. 1.E Nelson-Melby, M Porkolab, P T Bonoli, Y Lin, A Mazurenko, S J Wukitch, Phys Rev Lett 90 (2003) 155004 2.E F Jaeger, L A Berry, J R Myra, D B Batchelor, E D'Azevedo, P T Bonoli, C K Phillips, D N Smithe, D A D'Ippolito, M D Carter, R J Dumont, J C Wright, R W Harvey, Phys Rev Lett 90 (2003) 195001 3. Y-M Liang, J J Morehead, D R Cook, T Fla, A N Kaufman, Physics Letters A193 (1994) 82 4. E R Tracy, A N Kaufman, A Jaun, Physics Letters A290 (2001) 309
Cytoplasmic hydrogen ion diffusion coefficient.
al-Baldawi, N F; Abercrombie, R F
1992-01-01
The apparent cytoplasmic proton diffusion coefficient was measured using pH electrodes and samples of cytoplasm extracted from the giant neuron of a marine invertebrate. By suddenly changing the pH at one surface of the sample and recording the relaxation of pH within the sample, an apparent diffusion coefficient of 1.4 +/- 0.5 x 10(-6) cm2/s (N = 7) was measured in the acidic or neutral range of pH (6.0-7.2). This value is approximately 5x lower than the diffusion coefficient of the mobile pH buffers (approximately 8 x 10(-6) cm2/s) and approximately 68x lower than the diffusion coefficient of the hydronium ion (93 x 10(-6) cm2/s). A mobile pH buffer (approximately 15% of the buffering power) and an immobile buffer (approximately 85% of the buffering power) could quantitatively account for the results at acidic or neutral pH. At alkaline pH (8.2-8.6), the apparent proton diffusion coefficient increased to 4.1 +/- 0.8 x 10(-6) cm2/s (N = 7). This larger diffusion coefficient at alkaline pH could be explained quantitatively by the enhanced buffering power of the mobile amino acids. Under the conditions of these experiments, it is unlikely that hydroxide movement influences the apparent hydrogen ion diffusion coefficient. PMID:1617134
ERIC Educational Resources Information Center
Bardige, Betty; Segal, Marilyn
2004-01-01
In this article, Bardige and Segal discuss how teachers can help a toddler's language and literacy development through conversation. They suggest an array of tactics, from asking young children open-ended, intellectually challenging questions to going beyond the here and now when carrying on a conversation. Research has shown that the practice of…
Recording Conversations in Schools.
ERIC Educational Resources Information Center
Gluckman, Ivan B.; Koerner, Thomas J., Jr.
1988-01-01
In general, because of varying federal and state legislation and a paucity of court decisions, the law governing the recording of conversations is in considerable flux. School personnel desiring to record conversations in school without the consent or knowledge of all parties involved must proceed with considerable caution. (Author)
Energy conversion alternatives study
NASA Technical Reports Server (NTRS)
Shure, L. T.
1979-01-01
Comparison of coal based energy systems is given. Study identifies and compares various advanced energy conversion systems using coal or coal derived fuels for baselaoad electric power generation. Energy Conversion Alternatives Study (ECAS) reports provede government, industry, and general public with technically consistent basis for comparison of system's options of interest for fossilfired electric-utility application.
Assessment through Conversation.
ERIC Educational Resources Information Center
Fu, Danling; Lamme, Linda L.
2002-01-01
Presents conversations with parents, teachers, and children around portfolios that provide a better picture of a child's growth and understanding than standardized test scores ever can. Concludes that the involvement of students, teachers, and parents in conversation about children's literacy development brings the potential of a common vision and…
Seaborg, G.T.
1960-09-13
A nuclear conversion apparatus is described which comprises a body of neutron moderator, tubes extending therethrough, uranium in the tubes, a fluid- circulating system associated with the tubes, a thorium-containing fluid coolant in the system and tubes, and means for withdrawing the fluid from the system and replacing it in the system whereby thorium conversion products may be recovered.
Content for Conversation Partners.
ERIC Educational Resources Information Center
Olson, Kathleen
2002-01-01
Suggests that a good strategy for helping English language learners to develop communicative competence in English is by pairing them with native English speakers. In such conversation programs, conversation partners should be provided with topics and activities that incorporate the goals, interests, and experiences of the learners. Recommends…
Coefficient alpha and interculture test selection.
Thurber, Steven; Kishi, Yasuhiro
2014-04-01
The internal consistency reliability of a measure can be a focal point in an evaluation of the potential adequacy of an instrument for adaptation to another cultural setting. Cronbach's alpha (α) coefficient is often used as the statistical index for such a determination. However, alpha presumes a tau-equivalent test and may constitute an inaccurate population estimate for multidimensional tests. These notions are expanded and examined with a Japanese version of a questionnaire on nursing attitudes toward suicidal patients, originally constructed in Sweden using the English language. The English measure was reported to have acceptable internal consistency (α) albeit the dimensionality of the questionnaire was not addressed. The Japanese scale was found to lack tau-equivalence. An alternative to alpha, "composite reliability," was computed and found to be below acceptable standards in magnitude and precision. Implications for research application of the Japanese instrument are discussed.
Alpine radar conversion for LAWR
NASA Astrophysics Data System (ADS)
Savina, M.; Burlando, P.
2012-04-01
The Local Area Weather Radar (LAWR) is a ship-born weather radar system operating in X-band developed by the DHI Group to detect precipitation in urban areas. To date more than thirty units are installed in different settings around the world. A LAWR was also deployed in the Alps, at 3883 m a.s.l. on the Kl. Matterhorn (Valais, Switzerland). This was the highest LAWR of the world and it led to the development of an Alpine LAWR system that, besides featuring important technological improvements needed to withstand the severe Alpine conditions, required the development of a new Alpine Radar COnversion Model (ARCOM), which is the main focus of this contribution. The LAWR system is equipped with the original FURUNO fan-beam slotted antenna and the original logarithmic receiver, which limits the radar observations to the video signal (L) withour providing the reflectivity (Z). The beam is 0.95 deg wide and 20 deg high. It can detect precipitation to a max range of 60 km. In order to account for the limited availability of raw signal and information and the specific mountain set-up, the conversion model had to be developed differently from the state-of-the-art radar conversion technique used for this class of radars. In particular, the ARCOM is based on a model used to simulate a spatial dependent factor, hereafter called ACF, which is in turn function of parameters that take in account climatological conditions, also used in other conversion methods, but additionally accounting for local radar beam features and for orographic forcings such as the effective sampling power (sP), which is modelled by means of antenna pattern, geometric ground clutter and their interaction. The result is a conversion factor formulated to account for a range correction that is based on the increase of the sampling volume, partial beam blocking and local climatological conditions. The importance of the latter in this study is double with respect to the standard conversion technique for this
Functional constraints on phenomenological coefficients
NASA Astrophysics Data System (ADS)
Klika, Václav; Pavelka, Michal; Benziger, Jay B.
2017-02-01
Thermodynamic fluxes (diffusion fluxes, heat flux, etc.) are often proportional to thermodynamic forces (gradients of chemical potentials, temperature, etc.) via the matrix of phenomenological coefficients. Onsager's relations imply that the matrix is symmetric, which reduces the number of unknown coefficients is reduced. In this article we demonstrate that for a class of nonequilibrium thermodynamic models in addition to Onsager's relations the phenomenological coefficients must share the same functional dependence on the local thermodynamic state variables. Thermodynamic models and experimental data should be validated through consistency with the functional constraint. We present examples of coupled heat and mass transport (thermodiffusion) and coupled charge and mass transport (electro-osmotic drag). Additionally, these newly identified constraints further reduce the number of experiments needed to describe the phenomenological coefficient.
Wrong Signs in Regression Coefficients
NASA Technical Reports Server (NTRS)
McGee, Holly
1999-01-01
When using parametric cost estimation, it is important to note the possibility of the regression coefficients having the wrong sign. A wrong sign is defined as a sign on the regression coefficient opposite to the researcher's intuition and experience. Some possible causes for the wrong sign discussed in this paper are a small range of x's, leverage points, missing variables, multicollinearity, and computational error. Additionally, techniques for determining the cause of the wrong sign are given.
Kreith, F.; Meyer, R. T.
1982-11-01
The thermal conversion process of solar energy is based on well-known phenomena of heat transfer (Kreith 1976). In all thermal conversion processes, solar radiation is absorbed at the surface of a receiver, which contains or is in contact with flow passages through which a working fluid passes. As the receiver heats up, heat is transferred to the working fluid which may be air, water, oil, or a molten salt. The upper temperature that can be achieved in solar thermal conversion depends on the insolation, the degree to which the sunlight is concentrated, and the measures taken to reduce heat losses from the working fluid.
Postoperative conversion disorder.
Afolabi, Kola; Ali, Sameer; Gahtan, Vivian; Gorji, Reza; Li, Fenghua; Nussmeier, Nancy A
2016-05-01
Conversion disorder is a psychiatric disorder in which psychological stress causes neurologic deficits. A 28-year-old female surgical patient had uneventful general anesthesia and emergence but developed conversion disorder 1 hour postoperatively. She reported difficulty speaking, right-hand numbness and weakness, and right-leg paralysis. Neurologic examination and imaging revealed no neuronal damage, herniation, hemorrhage, or stroke. The patient mentioned failing examinations the day before surgery and discontinuing her prescribed antidepressant medication, leading us to diagnose conversion disorder, with eventual confirmation by neuroimaging and follow-up examinations.
Inverse problem of electro-seismic conversion
NASA Astrophysics Data System (ADS)
Chen, Jie; Yang, Yang
2013-11-01
When a porous rock is saturated with an electrolyte, electrical fields are coupled with seismic waves via the electro-seismic conversion. Pride (1994 Phys. Rev. B 50 15678-96) derived the governing models, in which Maxwell equations are coupled with Biot's equations through the electro-kinetic mobility parameter. The inverse problem of the linearized electro-seismic conversion consists in two steps, namely the inversion of Biot's equations and the inversion of Maxwell equations. We analyze the reconstruction of conductivity and electro-kinetic mobility parameter in Maxwell equations with internal measurements, while the internal measurements are provided by the results of the inversion of Biot's equations. We show that knowledge of two internal data based on well-chosen boundary conditions uniquely determines these two parameters. Moreover, a Lipschitz-type stability is proved based on the same sets of well-chosen boundary conditions.
Responsive Teaching through Conversation
ERIC Educational Resources Information Center
Dozier, Cheryl; Garnett, Susan; Tabatabai, Simeen
2011-01-01
Conversations are the heart of responsive teaching. By talking with struggling learners, teachers can find out about their interests in order to design effective, personalized instruction; build relationships; work through complexities in teaching and learning; and celebrate successes.
Thermocatalytic converter of solar energy to chemical energy with a high energy storage coefficient
NASA Astrophysics Data System (ADS)
Anikeev, V. I.; Parmon, V. N.; Aristov, Iu. I.; Zheivot, V. I.; Kirillov, V. A.
1986-08-01
Experimental results are presented on the efficiency of the thermochemical conversion of solar energy in processes involving the conversion of saturated hydrocarbons. Three reactions were considered: (1) CH4 + CO2 yields 2H2 + 2CO; (2) CH4 + H2O yields 3H2 + CO; and (3) CnH2N + 2 + nH2O yields (2n + 1)H2 + nCO where (n = 3,4). The study has demonstrated the promise of the vapor conversion of saturated gaseous hydrocarbons to achieve thermochemical conversion of solar energy and has confirmed the feasibility of obtaining a high storage coefficient of chemical energy in this process.
Study on High Conversion BWR with Island Type Fuel
Takao Kondo; Takaaki Mochida; Junichi Yamashita
2002-07-01
High Conversion Boiling Water Reactor (HCBWR) has been studied as one of the next generation BWRs. HCBWR can be improved by the use of Island Type Fuel to have inherently negative void coefficient. The proposed reactor concept also has the sustainability to extend LWR's period by about 180 years, and the compatibility with conventional BWR system that only substitution of fuel bundles and control rods are required. As an example case, High Conversion ABWR-II was evaluated here. (authors)
Conversion of laser energy to gas kinetic energy
NASA Technical Reports Server (NTRS)
Caledonia, G. E.
1976-01-01
Techniques for the gas phase absorption of laser radiation for ultimate conversion to gas kinetic energy are discussed. Particular emphasis is placed on absorption by the vibration rotation bands of diatomic molecules at high pressures. This high pressure absorption appears to offer efficient conversion of laser energy to gas translational energy. Bleaching and chemical effects are minimized and the variation of the total absorption coefficient with temperature is minimal.
Structured luminescence conversion layer
Berben, Dirk; Antoniadis, Homer; Jermann, Frank; Krummacher, Benjamin Claus; Von Malm, Norwin; Zachau, Martin
2012-12-11
An apparatus device such as a light source is disclosed which has an OLED device and a structured luminescence conversion layer deposited on the substrate or transparent electrode of said OLED device and on the exterior of said OLED device. The structured luminescence conversion layer contains regions such as color-changing and non-color-changing regions with particular shapes arranged in a particular pattern.
Conversational flow promotes solidarity.
Koudenburg, Namkje; Postmes, Tom; Gordijn, Ernestine H
2013-01-01
Social interaction is fundamental to the development of various aspects of "we-ness". Previous research has focused on the role the content of interaction plays in establishing feelings of unity, belongingness and shared reality (a cluster of variables referred to as solidarity here). The present paper is less concerned with content, but focuses on the form of social interaction. We propose that the degree to which conversations flow smoothly or not is, of itself, a cue to solidarity. We test this hypothesis in samples of unacquainted and acquainted dyads who communicate via headsets. Conversational flow is disrupted by introducing a delay in the auditory feedback (vs. no delay). Results of three studies show that smoothly coordinated conversations (compared with disrupted conversations and a control condition) increase feelings of belonging and perceptions of group entitativity, independently of conversation content. These effects are driven by the subjective experience of conversational flow. Our data suggest that this process occurs largely beyond individuals' control. We conclude that the form of social interaction is a powerful cue for inferring group solidarity. Implications for the impact of modern communication technology on developing a shared social identity are discussed.
Orthogonality of spherical harmonic coefficients
NASA Technical Reports Server (NTRS)
Mcleod, M. G.
1980-01-01
Orthogonality relations are obtained for the spherical harmonic coefficients of functions defined on the surface of a sphere. Following a brief discussion of the orthogonality of Fourier series coefficients, consideration is given to the values averaged over all orientations of the coordinate system of the spherical harmonic coefficients of a function defined on the surface of a sphere that can be expressed in terms of Legendre polynomials for the special case where the function is the sum of two delta functions located at two different points on the sphere, and for the case of an essentially arbitrary function. It is noted that the orthogonality relations derived have found applications in statistical studies of the geomagnetic field.
Transport coefficients of gluonic fluid
Das, Santosh K.; Alam, Jan-e
2011-06-01
The shear ({eta}) and bulk ({zeta}) viscous coefficients have been evaluated for a gluonic fluid. The elastic, gg{yields}gg and the inelastic, number nonconserving, gg{yields}ggg processes have been considered as the dominant perturbative processes in evaluating the viscous coefficients to entropy density (s) ratios. Recently the processes: gg{yields}ggg has been revisited and a correction to the widely used Gunion-Bertsch (GB) formula has been obtained. The {eta} and {zeta} have been evaluated for gluonic fluid with the formula recently derived. At large {alpha}{sub s} the value of {eta}/s approaches its lower bound, {approx}1/4{pi}.
Seebeck coefficient of one electron
Durrani, Zahid A. K.
2014-03-07
The Seebeck coefficient of one electron, driven thermally into a semiconductor single-electron box, is investigated theoretically. With a finite temperature difference ΔT between the source and charging island, a single electron can charge the island in equilibrium, directly generating a Seebeck effect. Seebeck coefficients for small and finite ΔT are calculated and a thermally driven Coulomb staircase is predicted. Single-electron Seebeck oscillations occur with increasing ΔT, as one electron at a time charges the box. A method is proposed for experimental verification of these effects.
NASA Technical Reports Server (NTRS)
Chandra, N.
1974-01-01
Numerical coefficients required to express the angular distribution for the rotationally elastic or inelastic scattering of electrons from a diatomic molecule were tabulated for the case of nitrogen and in the energy range from 0.20 eV to 10.0 eV. Five different rotational states are considered.
Identities for generalized hypergeometric coefficients
Biedenharn, L.C.; Louck, J.D.
1991-01-01
Generalizations of hypergeometric functions to arbitrarily many symmetric variables are discussed, along with their associated hypergeometric coefficients, and the setting within which these generalizations arose. Identities generalizing the Euler identity for {sub 2}F{sub 1}, the Saalschuetz identity, and two generalizations of the {sub 4}F{sub 3} Bailey identity, among others, are given. 16 refs.
Effective Viscosity Coefficient of Nanosuspensions
NASA Astrophysics Data System (ADS)
Rudyak, V. Ya.; Belkin, A. A.; Egorov, V. V.
2008-12-01
Systematic calculations of the effective viscosity coefficient of nanosuspensions have been performed using the molecular dynamics method. It is established that the viscosity of a nanosuspension depends not only on the volume concentration of the nanoparticles but also on their mass and diameter. Differences from Einstein's relation are found even for nanosuspensions with a low particle concentration.
Integer Solutions of Binomial Coefficients
ERIC Educational Resources Information Center
Gilbertson, Nicholas J.
2016-01-01
A good formula is like a good story, rich in description, powerful in communication, and eye-opening to readers. The formula presented in this article for determining the coefficients of the binomial expansion of (x + y)n is one such "good read." The beauty of this formula is in its simplicity--both describing a quantitative situation…
Inequivalence of direct and converse magnetoelectric coupling at electromechanical resonance
NASA Astrophysics Data System (ADS)
Wu, Gaojian; Nan, Tianxiang; Zhang, Ru; Zhang, Ning; Li, Shandong; Sun, Nian X.
2013-10-01
Resonant direct and converse magnetoelectric (ME) effects have been investigated experimentally and theoretically in FeGa/PZT/FeGa sandwich laminate composites under the same electric and magnetic bias conditions. Resonant direct ME effect (DME) occurs at antiresonance frequency while resonant converse ME effect (CME) occurs at resonance frequency. The antiresonance and resonance frequencies have close but different values under identical bias conditions. The magnitudes of resonant effective ME coefficients for direct and converse ME effects are also not equal. A model was developed to describe the frequency response of DME and CME in laminate composite, which was in good agreement with experimental results.
Limitations of Coefficient Alpha as an Index of Test Unidimensionality
ERIC Educational Resources Information Center
Green, Samual B.; And Others
1977-01-01
Confusion in the literature between the concepts of internal consistency and homogeneity has led to a misuse of coefficient alpha as an index of item homogeneity. This misuse is discussed and several indices of item homogeneity derived from the model of common factor analysis are offered as alternatives. (Author/JKS)
Isomolybdate conversion coatings
NASA Technical Reports Server (NTRS)
Minevski, Zoran (Inventor); Maxey, Jason (Inventor); Nelson, Carl (Inventor); Eylem, Cahit (Inventor)
2002-01-01
A conversion coating solution and process forms a stable and corrosion-resistant layer on metal substrates or layers or, more preferably, on a boehmite layer or other base conversion coating. The conversion coating process involves contacting the substrate, layer or coating with an aqueous alkali metal isomolybdate solution in order to convert the surface of the substrate, layer or coating to a stable conversion coating. The aqueous alkali metal molybdates are selected from sodium molybdate (Na.sub.2 MoO.sub.4), lithium molybdate (Li.sub.2 MoO.sub.4), potassium molybdate (K.sub.2 MoO.sub.4), or combinations thereof, with the most preferred alkali metal molybdate being sodium molybdate. The concentration of alkali metal molybdates in the solution is preferably less than 5% by weight. In addition to the alkali metal molybdates, the conversion coating solution may include alkaline metal passivators selected from lithium nitrate (LiNO.sub.3), sodium nitrate (NaNO.sub.3), ammonia nitrate (NH.sub.4 NO.sub.3), and combinations thereof; lithium chloride, potassium hexafluorozirconate (K.sub.2 ZrF.sub.6) or potassium hexafluorotitanate (K.sub.2 TiF.sub.6).
NASA Technical Reports Server (NTRS)
Jalufka, N. W.
1989-01-01
The conversion of laser energy to other, more useful, forms is an important element of any space power transmission system employing lasers. In general the user, at the receiving sight, will require the energy in a form other than laser radiation. In particular, conversion to rocket power and electricity are considered to be two major areas where one must consider various conversion techniques. Three systems (photovoltaic cells, MHD generators, and gas turbines) have been identified as the laser-to-electricity conversion systems that appear to meet most of the criteria for a space-based system. The laser thruster also shows considerable promise as a space propulsion system. At this time one cannot predict which of the three laser-to-electric converters will be best suited to particular mission needs. All three systems have some particular advantages, as well as disadvantages. It would be prudent to continue research on all three systems, as well as the laser rocket thruster. Research on novel energy conversion systems, such as the optical rectenna and the reverse free-electron laser, should continue due to their potential for high payoff.
Digital optical conversion module
Kotter, Dale K.; Rankin, Richard A.
1991-02-26
A digital optical conversion module used to convert an analog signal to a computer compatible digital signal including a voltage-to-frequency converter, frequency offset response circuitry, and an electrical-to-optical converter. Also used in conjunction with the digital optical conversion module is an optical link and an interface at the computer for converting the optical signal back to an electrical signal. Suitable for use in hostile environments having high levels of electromagnetic interference, the conversion module retains high resolution of the analog signal while eliminating the potential for errors due to noise and interference. The module can be used to link analog output scientific equipment such as an electrometer used with a mass spectrometer to a computer.
Digital optical conversion module
Kotter, D.K.; Rankin, R.A.
1988-07-19
A digital optical conversion module used to convert an analog signal to a computer compatible digital signal including a voltage-to-frequency converter, frequency offset response circuitry, and an electrical-to-optical converter. Also used in conjunction with the digital optical conversion module is an optical link and an interface at the computer for converting the optical signal back to an electrical signal. Suitable for use in hostile environments having high levels of electromagnetic interference, the conversion module retains high resolution of the analog signal while eliminating the potential for errors due to noise and interference. The module can be used to link analog output scientific equipment such as an electrometer used with a mass spectrometer to a computer. 2 figs.
Predictability of Conversation Partners
NASA Astrophysics Data System (ADS)
Takaguchi, Taro; Nakamura, Mitsuhiro; Sato, Nobuo; Yano, Kazuo; Masuda, Naoki
2011-08-01
Recent developments in sensing technologies have enabled us to examine the nature of human social behavior in greater detail. By applying an information-theoretic method to the spatiotemporal data of cell-phone locations, [C. Song , ScienceSCIEAS0036-8075 327, 1018 (2010)] found that human mobility patterns are remarkably predictable. Inspired by their work, we address a similar predictability question in a different kind of human social activity: conversation events. The predictability in the sequence of one’s conversation partners is defined as the degree to which one’s next conversation partner can be predicted given the current partner. We quantify this predictability by using the mutual information. We examine the predictability of conversation events for each individual using the longitudinal data of face-to-face interactions collected from two company offices in Japan. Each subject wears a name tag equipped with an infrared sensor node, and conversation events are marked when signals are exchanged between sensor nodes in close proximity. We find that the conversation events are predictable to a certain extent; knowing the current partner decreases the uncertainty about the next partner by 28.4% on average. Much of the predictability is explained by long-tailed distributions of interevent intervals. However, a predictability also exists in the data, apart from the contribution of their long-tailed nature. In addition, an individual’s predictability is correlated with the position of the individual in the static social network derived from the data. Individuals confined in a community—in the sense of an abundance of surrounding triangles—tend to have low predictability, and those bridging different communities tend to have high predictability.
Haigh, R E
1998-01-01
The Power Conservation Technologies thrust area supports initiatives that enhance the core competencies of the Lawrence Livermore National Laboratory (LLNL) Engineering Directorate in the area of solid-state power electronics. Through partnerships with LLNL programs, projects focus on the development of enabling technologies for existing and emerging programs that have unique power conversion requirements. This year, a multi-disciplinary effort was supported which demonstrated solid-state, high voltage generation by using a dense, monolithic photovoltaic array. This effort builds upon Engineering's strengths in the core technology areas of power conversion, photonics, and microtechnologies.
Transport coefficients of quantum plasmas
Bennaceur, D.; Khalfaoui, A.H. )
1993-09-01
Transport coefficients of fully ionized plasmas with a weakly coupled, completely degenerate electron gas and classical ions with a wide range of coupling strength are expressed within the Bloch transport equation. Using the Kohler variational principle the collision integral of the quantum Boltzmann equation is derived, which accounts for quantum effects through collective plasma oscillations. The physical implications of the results are investigated through comparisons with other theories. For practical applications, electrical and thermal conductivities are derived in simple analytical formulas. The relation between these two transport coefficients is expressed in an explicit form, giving a generalized Wiedemann-Franz law, where the Lorentz ratio is a dependent function of the coupling parameter and the degree of degeneracy of the plasma.
High temperature Seebeck coefficient metrology
Martin, J.; Tritt, T.; Uher, C.
2010-12-15
We present an overview of the challenges and practices of thermoelectric metrology on bulk materials at high temperature (300 to 1300 K). The Seebeck coefficient, when combined with thermal and electrical conductivity, is an essential property measurement for evaluating the potential performance of novel thermoelectric materials. However, there is some question as to which measurement technique(s) provides the most accurate determination of the Seebeck coefficient at high temperature. This has led to the implementation of nonideal practices that have further complicated the confirmation of reported high ZT materials. To ensure meaningful interlaboratory comparison of data, thermoelectric measurements must be reliable, accurate, and consistent. This article will summarize and compare the relevant measurement techniques and apparatus designs required to effectively manage uncertainty, while also providing a reference resource of previous advances in high temperature thermoelectric metrology.
Consistent transport coefficients in astrophysics
NASA Technical Reports Server (NTRS)
Fontenla, Juan M.; Rovira, M.; Ferrofontan, C.
1986-01-01
A consistent theory for dealing with transport phenomena in stellar atmospheres starting with the kinetic equations and introducing three cases (LTE, partial LTE, and non-LTE) was developed. The consistent hydrodynamical equations were presented for partial-LTE, the transport coefficients defined, and a method shown to calculate them. The method is based on the numerical solution of kinetic equations considering Landau, Boltzmann, and Focker-Planck collision terms. Finally a set of results for the transport coefficients derived for a partially ionized hydrogen gas with radiation was shown, considering ionization and recombination as well as elastic collisions. The results obtained imply major changes is some types of theoretical model calculations and can resolve some important current problems concerning energy and mass balance in the solar atmosphere. It is shown that energy balance in the lower solar transition region can be fully explained by means of radiation losses and conductive flux.
Study of Dispersion Coefficient Channel
NASA Astrophysics Data System (ADS)
Akiyama, K. R.; Bressan, C. K.; Pires, M. S. G.; Canno, L. M.; Ribeiro, L. C. L. J.
2016-08-01
The issue of water pollution has worsened in recent times due to releases, intentional or not, of pollutants in natural water bodies. This causes several studies about the distribution of pollutants are carried out. The water quality models have been developed and widely used today as a preventative tool, ie to try to predict what will be the concentration distribution of constituent along a body of water in spatial and temporal scale. To understand and use such models, it is necessary to know some concepts of hydraulic high on their application, including the longitudinal dispersion coefficient. This study aims to conduct a theoretical and experimental study of the channel dispersion coefficient, yielding more information about their direct determination in the literature.
Portable vapor diffusion coefficient meter
Ho, Clifford K.
2007-06-12
An apparatus for measuring the effective vapor diffusion coefficient of a test vapor diffusing through a sample of porous media contained within a test chamber. A chemical sensor measures the time-varying concentration of vapor that has diffused a known distance through the porous media. A data processor contained within the apparatus compares the measured sensor data with analytical predictions of the response curve based on the transient diffusion equation using Fick's Law, iterating on the choice of an effective vapor diffusion coefficient until the difference between the predicted and measured curves is minimized. Optionally, a purge fluid can forced through the porous media, permitting the apparatus to also measure a gas-phase permeability. The apparatus can be made lightweight, self-powered, and portable for use in the field.
Convection coefficients at building surfaces
NASA Astrophysics Data System (ADS)
Kammerud, R. C.; Altmayer, E.; Bauman, F. S.; Gadgil, A.; Bohn, M.
1982-09-01
Correlations relating the rate of heat transfer from the surfaces of rooms to the enclosed air are being developed, based on empirical and analytic examinations of convection in enclosures. The correlations express the heat transfer rate in terms of boundary conditions relating to room geometry and surface temperatures. Work to date indicates that simple convection coefficient calculation techniques can be developed, which significantly improve accuracy of heat transfer predictions in comparison with the standard calculations recommended by ASHRAE.
A dynamic compressometer for converse electrostriction measurements
NASA Astrophysics Data System (ADS)
Yimnirun, Rattikorn; Moses, Paul J.; Newnham, Robert E.; Meyer, Richard J.
2003-07-01
A simple dynamic instrument for measuring very small stress dependence of capacitance is presented in this article. We describe the design and development of a dynamic compressometer for converse electrostrictive measurements on low dielectric constant materials. This redesigned system is capable of resolving a change in capacitance of 10-17 F or smaller. The most important feature is the dynamic stressing system incorporated to improve the accuracy and the reproducibility of the measurements. Furthermore, the uniaxiality and uniformity of the applied stress are found to be critical to the measurements. Therefore, a uniaxial stress delivery scheme using ball bearings is employed in the measurements to improve the accuracy of the experimental results. The converse electrostrictive coefficients obtained from this instrument agree reasonably well with those measured directly by a single-beam interferometer.
Teaching Conversation with Trivia.
ERIC Educational Resources Information Center
Crawford, Michael J.
2002-01-01
Presents a rationale for utilizing trivia to teach conversation. Shows how trivia-based materials fit into communicative language teaching approaches and provides examples of trivia-based activities and explains how to use them in the classroom. (Author/VWL)
Clinical Linguistics: Conversational Reflections
ERIC Educational Resources Information Center
Crystal, David
2013-01-01
This is a report of the main points I made in an informal "conversation" with Paul Fletcher and the audience at the 14th ICPLA conference in Cork. The observations arose randomly, as part of an unstructured 1-h Q&A, so they do not provide a systematic account of the subject, but simply reflect the issues which were raised by the conference…
Conversations and Collaborations
ERIC Educational Resources Information Center
Korpan, Cynthia
2010-01-01
This paper looks at how a series of conversations contributed to the development of a newly formed role at the University of Victoria--Teaching Assistant Consultants (TACs). TACs act as departmental mentors for teaching assistants (TAs) in their respective departments, charged with providing support in the form of discipline-specific workshops…
Mechanochemical Energy Conversion
ERIC Educational Resources Information Center
Pines, E.; And Others
1973-01-01
Summarizes the thermodynamics of macromolecular systems, including theories and experiments of cyclic energy conversion with rubber and collagen as working substances. Indicates that an early introduction into the concept of chemical potential and solution thermodynamics is made possible through the study of the cyclic processes. (CC)
Ocean thermal energy conversion
Avery, W.H.
1983-03-17
A brief explanation of the Ocean Thermal Energy Conversion (OTEC) concept and an estimate of the amount of energy that can be produced from the ocean resource without introducing environmental concerns are presented. Use of the OTEC system to generate electric power and products which can replace fossil fuels is shown. The OTEC program status and its prospects for the future are discussed.
Electromechanical Energy Conversion.
ERIC Educational Resources Information Center
LePage, Wilbur R.
This programed text on electromechanical energy conversion (motors and generators) was developed under contract with the U.S. Office of Education as Number 12 in a series of materials for use in an electrical engineering sequence. It is intended to be used in conjunction with other materials and with other short texts in the series. (DH)
ERIC Educational Resources Information Center
Berkeley, Phil
1970-01-01
Examined first is "the overall problem of housing a TV studio complex to see what particular sorts of buildings are required and how they must be related," and then considered are "the relative merits and particular problems of new studio building or a conversion." (LS)
Planetary image conversion task
NASA Technical Reports Server (NTRS)
Martin, M. D.; Stanley, C. L.; Laughlin, G.
1985-01-01
The Planetary Image Conversion Task group processed 12,500 magnetic tapes containing raw imaging data from JPL planetary missions and produced an image data base in consistent format on 1200 fully packed 6250-bpi tapes. The output tapes will remain at JPL. A copy of the entire tape set was delivered to US Geological Survey, Flagstaff, Ariz. A secondary task converted computer datalogs, which had been stored in project specific MARK IV File Management System data types and structures, to flat-file, text format that is processable on any modern computer system. The conversion processing took place at JPL's Image Processing Laboratory on an IBM 370-158 with existing software modified slightly to meet the needs of the conversion task. More than 99% of the original digital image data was successfully recovered by the conversion task. However, processing data tapes recorded before 1975 was destructive. This discovery is of critical importance to facilities responsible for maintaining digital archives since normal periodic random sampling techniques would be unlikely to detect this phenomenon, and entire data sets could be wiped out in the act of generating seemingly positive sampling results. Reccomended follow-on activities are also included.
Evaluating Energy Conversion Efficiency
NASA Technical Reports Server (NTRS)
Byvik, C. E.; Smith, B. T.; Buoncristiani, A. M.
1983-01-01
Devices that convert solar radiation directly into storable chemical or electrical energy, have characteristic energy absorption spectrum; specifically, each of these devices has energy threshold. The conversion efficiency of generalized system that emcompasses all threshold devices is analyzed, resulting in family of curves for devices of various threshold energies operating at different temperatures.
A Conversation about Observation
NASA Technical Reports Server (NTRS)
Mather, John C.; Mao, Minnie Yuan
2012-01-01
In the spirit of the Lindau Meeting, we present a dialogue between a Nobel laureate and a young researcher. This interchange started online, where it continues to unfold. Here is a digest of this conversation, which has developed across time and space.
Groysberg, Boris; Slind, Michael
2012-06-01
Globalization and new technologies have sharply reduced the efficacy of command-and-control management and its accompanying forms of corporate communication. In the course of a recent research project, the authors concluded that by talking with employees, rather than simply issuing orders, leaders can promote operational flexibility, employee engagement, and tight strategic alignment. Groysberg and Slind have identified four elements of organizational conversation that reflect the essential attributes of interpersonal conversation: intimacy, interactivity, inclusion, and intentionality. Intimacy shifts the focus from a top-down distribution of information to a bottom-up exchange of ideas. Organizational conversation is less corporate in tone and more casual. And it's less about issuing and taking orders than about asking and answering questions. Interactivity entails shunning the simplicity of monologue and embracing the unpredictable vitality of dialogue. Traditional one-way media-print and broadcast, in particular-give way to social media buttressed by social thinking. Inclusion turns employees into full-fledged conversation partners, entitling them to provide their own ideas, often on company channels. They can create content and act as brand ambassadors, thought leaders, and storytellers. Intentionality enables leaders and employees to derive strategically relevant action from the push and pull of discussion and debate.
Crabtree, G. W.; Lewis, N. S.
2008-03-01
If solar energy is to become a practical alternative to fossil fuels, we must have efficient ways to convert photons into electricity, fuel, and heat. The need for better conversion technologies is a driving force behind many recent developments in biology, materials, and especially nanoscience. The Sun has the enormous untapped potential to supply our growing energy needs. The barrier to greater use of the solar resource is its high cost relative to the cost of fossil fuels, although the disparity will decrease with the rising prices of fossil fuels and the rising costs of mitigating their impact on the environment and climate. The cost of solar energy is directly related to the low conversion efficiency, the modest energy density of solar radiation, and the costly materials currently required. The development of materials and methods to improve solar energy conversion is primarily a scientific challenge: Breakthroughs in fundamental understanding ought to enable marked progress. There is plenty of room for improvement, since photovoltaic conversion efficiencies for inexpensive organic and dye-sensitized solar cells are currently about 10% or less, the conversion efficiency of photosynthesis is less than 1%, and the best solar thermal efficiency is 30%. The theoretical limits suggest that we can do much better. Solar conversion is a young science. Its major growth began in the 1970s, spurred by the oil crisis that highlighted the pervasive importance of energy to our personal, social, economic, and political lives. In contrast, fossil-fuel science has developed over more than 250 years, stimulated by the Industrial Revolution and the promise of abundant fossil fuels. The science of thermodynamics, for example, is intimately intertwined with the development of the steam engine. The Carnot cycle, the mechanical equivalent of heat, and entropy all played starring roles in the development of thermodynamics and the technology of heat engines. Solar-energy science faces
Equation of state and transport coefficients for dense plasmas.
Blancard, C; Faussurier, G
2004-01-01
We hereby present a model to describe the thermodynamic and transport properties of dense plasmas. The electronic and ionic structures are determined self-consistently using finite-temperature density functional theory and Gibbs-Bogolyubov inequality. The main thermodynamic quantities, i.e., internal energy, pressure, entropy, and sound speed, are obtained by numerical differentiation of the plasma total Helmholtz free energy. Electronic electrical and thermal conductivities are calculated from the Ziman approach. Ionic transport coefficients are estimated using those of hard-sphere system and the Rosenfeld semiempirical "universal" correspondence between excess entropy and dimensionless transport coefficients of dense fluids. Numerical results and comparisons with experiments are presented and discussed.
Hernandez-García, Luís; Quintero, Leticia; Sánchez, Mario; Sartillo-Piscil, Fernando
2007-10-26
Primary alkoxyl free radicals were generated from their readily synthesized N-phthalimido derivatives under reductive conditions. Primary alkoxyl radicals derived from their corresponding xylo- and ribofuranose derivatives underwent, exclusively, an unusual beta-fragmentation affording L-threose and D-erythrose derivatives, respectively. This occurs because the alkoxyl radical is capable of achieving an internal hydrogen-bonding interaction leading to a stable six-membered ring intramolecular hydrogen-bonded structure. When the hydroxyl group is protected, the beta-fragmentation pathway is prevented and the hydrogen atom transfer (HAT) pathway occurs. Computational studies provided strong support for the experimental observations.
Campbell, J.R.; Luthy, R.G.
1984-06-01
Experimental and modeling activities were performed to assess techniques for measurement and prediction of distribution coefficients for aromatic solutes between water and immiscible organic solvents. Experiments were performed to measure distribution coefficients in both clean water and wastewater systems, and to assess treatment of a wastewater by solvent extraction. The theoretical portions of this investigation were directed towards development of techniques for prediction of solute-solvent/water distribution coefficients. Experiments were performed to assess treatment of a phenolic-laden coal conversion wastewater by solvent extraction. The results showed that solvent extraction for recovery of phenolic material offered several wastewater processing advantages. Distribution coefficients were measured in clean water and wastewater systems for aromatic solutes of varying functionality with different solvent types. It was found that distribution coefficients for these compounds in clean water systems were not statistically different from distribution coefficients determined in a complex coal conversion process wastewater. These and other aromatic solute distribution coefficient data were employed for evaluation of modeling techniques for prediction of solute-solvent/water distribution coefficients. Eight solvents were selected in order to represent various chemical classes: toluene and benzene (aromatics), hexane and heptane (alkanes), n-octanol (alcohols), n-butyl acetate (esters), diisopropyl ether (ethers), and methylisobutyl ketone (ketones). The aromatic solutes included: nonpolar compounds such as benzene, toluene and naphthalene, phenolic compounds such as phenol, cresol and catechol, nitrogenous aromatics such as aniline, pyridine and aminonaphthalene, and other aromatic solutes such as naphthol, quinolinol and halogenated compounds. 100 references, 20 figures, 34 tables.
Longrigg, Paul
1987-01-01
The wind energy conversion system includes a wind machine having a propeller connected to a generator of electric power, the propeller rotating the generator in response to force of an incident wind. The generator converts the power of the wind to electric power for use by an electric load. Circuitry for varying the duty factor of the generator output power is connected between the generator and the load to thereby alter a loading of the generator and the propeller by the electric load. Wind speed is sensed electro-optically to provide data of wind speed upwind of the propeller, to thereby permit tip speed ratio circuitry to operate the power control circuitry and thereby optimize the tip speed ratio by varying the loading of the propeller. Accordingly, the efficiency of the wind energy conversion system is maximized.
1986-11-01
into depth. fall time to depth conversions. Contract and lot numbers and To check the accuracy of the conversion equations and, if NALC (Naval...all AXBTsSn using te neu equation T = - 38.05 + (2. 71075 x O -2)F Coefficient Value Standard a 1,6325 0.0060 , for other lot numbers : clearly an
Persuasion Detection in Conversation
2010-03-01
is the first step in developing machine learning systems that can automatically detect persuasion in conversations. This corpus was developed from...requires some form of persuasion. Based on this research, it may be possible to construct a machine learning system that can automatically detect...specific markers, can these markers be learned and identified by annotators? Our research attempted to answer all of these questions by annotating a
Advanced Thermal Conversion Systems
2015-03-18
BAA09-31 3 Figure 1. (a) Energy diagram of the PETE process. Photo -excitation leads to enhanced...photovoltaic cells at 3000x concentration (~38%). As shown in Fig. 2(b), the highest conversion efficiencies are obtained by using photo -cathodes...p-type 4H-SiC (left) and polycrystalline n-type 3C-SiC (right). The fabrication process for p-type devices used bulk p- doped 4H-SiC wafers from
Robertson, David; LaSala, Raymond J.; Kukacka, Lawrence E.; Bliem, Carl J.; Premuzic, Eugene T.; Weare, John H.
1992-01-01
This session at the Geothermal Energy Program Review X: Geothermal Energy and the Utility Market consisted of five presentations: ''Hydrothermal Energy Conversion Technology'' by David Robertson and Raymond J. LaSala; ''Materials for Geothermal Production'' by Lawrence E. Kukacka; ''Supersaturated Turbine Expansions for Binary Geothermal Power Plants'' by Carl J. Bliem; ''Geothermal Waster Treatment Biotechnology: Progress and Advantages to the Utilities'' by Eugen T. Premuzic; and ''Geothermal Brine Chemistry Modeling Program'' by John H. Weare.
Clinical linguistics: conversational reflections.
Crystal, David
2013-04-01
This is a report of the main points I made in an informal "conversation" with Paul Fletcher and the audience at the 14th ICPLA conference in Cork. The observations arose randomly, as part of an unstructured 1-h Q&A, so they do not provide a systematic account of the subject, but simply reflect the issues which were raised by the conference participants during that time.
NASA Technical Reports Server (NTRS)
Massier, P. F.; Bankston, C. P.; Fabris, G.; Kirol, L. D.
1988-01-01
The overall objective of the Direct Conversion Technology task is to develop an experimentally verified technology base for promising direct thermal-to-electric energy conversion systems that have potential application for energy conservation in the end-use sectors. This report contains progress of research on the Alkali Metal Thermal-to-Electric Converter (AMTEC), and on the Two-Phase Liquid-Metal MHD Electrical Generator (LMMHD) for the period January 1988 through December 1988. Research on these concepts was initiated during October 1987. In addition, status reviews and assessments are presented for thermomagnetic converter concepts and for thermoelastic converters (Nitinol heat engines). Reports prepared on previous occasions contain discussions on the following other direct conversion concepts: thermoelectric, pyroelectric, thermionic thermophotovoltaic and thermoacoustic; and also, more complete discussions of AMTEC and LMMHD systems. A tabulated summary of the various systems which have been reviewed thus far has been prepared. Some of the important technical research needs are listed and a schematic of each system is shown.
Natural gas conversion process
Not Available
1992-01-01
The experimental apparatus was dismantled and transferred to a laboratory space provided by Lawrence Berkeley Laboratory (LBL) which is already equipped with a high-ventilation fume hood. This will enable us to make tests at higher gas flow rates in a safe environment. Three papers presented at the ACS meeting in San Francisco (Symposium on Natural Gas Upgrading II) April 5--10, 1992 show that the goal of direct catalytic conversion of Methane into heavier Hydrocarbons in a reducing atmosphere is actively pursued in three other different laboratories. There are similarities in their general concept with our own approach, but the temperature range of the experiments reported in these recent papers is much lower and this leads to uneconomic conversion rates. This illustrates the advantages of Methane activation by a Hydrogen plasma to reach commercial conversion rates. A preliminary process flow diagram was established for the Integrated Process, which was outlined in the previous Quarterly Report. The flow diagram also includes all the required auxiliary facilities for product separation and recycle of the unconverted feed as well as for the preparation and compression of the Syngas by-product.
Ultra-Wideband Analog-to-Digital Conversion Via Signal Expansion
2005-09-01
46963.4-CI We consider analog to digital (A/D) conversion, based on the quantization of coefficients obtained via the projection of a continuous time... based on pulse code modulation (PCM). Fundamental figures of merit in A/D conversion and system tradeoffs are discussed for the proposed ADC. The...Brian M. Sadler, Senior Member, IEEE (Invited Paper) Abstract—We consider analog to digital (A/D) conversion, based on the quantization of
Analytic expressions for ULF wave radiation belt radial diffusion coefficients
Ozeke, Louis G; Mann, Ian R; Murphy, Kyle R; Jonathan Rae, I; Milling, David K
2014-01-01
We present analytic expressions for ULF wave-derived radiation belt radial diffusion coefficients, as a function of L and Kp, which can easily be incorporated into global radiation belt transport models. The diffusion coefficients are derived from statistical representations of ULF wave power, electric field power mapped from ground magnetometer data, and compressional magnetic field power from in situ measurements. We show that the overall electric and magnetic diffusion coefficients are to a good approximation both independent of energy. We present example 1-D radial diffusion results from simulations driven by CRRES-observed time-dependent energy spectra at the outer boundary, under the action of radial diffusion driven by the new ULF wave radial diffusion coefficients and with empirical chorus wave loss terms (as a function of energy, Kp and L). There is excellent agreement between the differential flux produced by the 1-D, Kp-driven, radial diffusion model and CRRES observations of differential electron flux at 0.976 MeV—even though the model does not include the effects of local internal acceleration sources. Our results highlight not only the importance of correct specification of radial diffusion coefficients for developing accurate models but also show significant promise for belt specification based on relatively simple models driven by solar wind parameters such as solar wind speed or geomagnetic indices such as Kp. Key Points Analytic expressions for the radial diffusion coefficients are presented The coefficients do not dependent on energy or wave m value The electric field diffusion coefficient dominates over the magnetic PMID:26167440
Conversion of Questionnaire Data
Powell, Danny H; Elwood Jr, Robert H
2011-01-01
During the survey, respondents are asked to provide qualitative answers (well, adequate, needs improvement) on how well material control and accountability (MC&A) functions are being performed. These responses can be used to develop failure probabilities for basic events performed during routine operation of the MC&A systems. The failure frequencies for individual events may be used to estimate total system effectiveness using a fault tree in a probabilistic risk analysis (PRA). Numeric risk values are required for the PRA fault tree calculations that are performed to evaluate system effectiveness. So, the performance ratings in the questionnaire must be converted to relative risk values for all of the basic MC&A tasks performed in the facility. If a specific material protection, control, and accountability (MPC&A) task is being performed at the 'perfect' level, the task is considered to have a near zero risk of failure. If the task is performed at a less than perfect level, the deficiency in performance represents some risk of failure for the event. As the degree of deficiency in performance increases, the risk of failure increases. If a task that should be performed is not being performed, that task is in a state of failure. The failure probabilities of all basic events contribute to the total system risk. Conversion of questionnaire MPC&A system performance data to numeric values is a separate function from the process of completing the questionnaire. When specific questions in the questionnaire are answered, the focus is on correctly assessing and reporting, in an adjectival manner, the actual performance of the related MC&A function. Prior to conversion, consideration should not be given to the numeric value that will be assigned during the conversion process. In the conversion process, adjectival responses to questions on system performance are quantified based on a log normal scale typically used in human error analysis (see A.D. Swain and H.E. Guttmann
A comparison of two indices for the intraclass correlation coefficient.
Shieh, Gwowen
2012-12-01
In the present study, we examined the behavior of two indices for measuring the intraclass correlation in the one-way random effects model: the prevailing ICC(1) (Fisher, 1938) and the corrected eta-squared (Bliese & Halverson, 1998). These two procedures differ both in their methods of estimating the variance components that define the intraclass correlation coefficient and in their performance of bias and mean squared error in the estimation of the intraclass correlation coefficient. In contrast with the natural unbiased principle used to construct ICC(1), in the present study it was analytically shown that the corrected eta-squared estimator is identical to the maximum likelihood estimator and the pairwise estimator under equal group sizes. Moreover, the empirical results obtained from the present Monte Carlo simulation study across various group structures revealed the mutual dominance relationship between their truncated versions for negative values. The corrected eta-squared estimator performs better than the ICC(1) estimator when the underlying population intraclass correlation coefficient is small. Conversely, ICC(1) has a clear advantage over the corrected eta-squared for medium and large magnitudes of population intraclass correlation coefficient. The conceptual description and numerical investigation provide guidelines to help researchers choose between the two indices for more accurate reliability analysis in multilevel research.
Thermodynamics fundamentals of energy conversion
NASA Astrophysics Data System (ADS)
Dan, Nicolae
The work reported in the chapters 1-5 focuses on the fundamentals of heat transfer, fluid dynamics, thermodynamics and electrical phenomena related to the conversion of one form of energy to another. Chapter 6 is a re-examination of the fundamental heat transfer problem of how to connect a finite-size heat generating volume to a concentrated sink. Chapter 1 extends to electrical machines the combined thermodynamics and heat transfer optimization approach that has been developed for heat engines. The conversion efficiency at maximum power is 1/2. When, as in specific applications, the operating temperature of windings must not exceed a specified level, the power output is lower and efficiency higher. Chapter 2 addresses the fundamental problem of determining the optimal history (regime of operation) of a battery so that the work output is maximum. Chapters 3 and 4 report the energy conversion aspects of an expanding mixture of hot particles, steam and liquid water. At the elemental level, steam annuli develop around the spherical drops as time increases. At the mixture level, the density decreases while the pressure and velocity increases. Chapter 4 describes numerically, based on the finite element method, the time evolution of the expanding mixture of hot spherical particles, steam and water. The fluid particles are moved in time in a Lagrangian manner to simulate the change of the domain configuration. Chapter 5 describes the process of thermal interaction between the molten material and water. In the second part of the chapter the model accounts for the irreversibility due to the flow of the mixture through the cracks of the mixing vessel. The approach presented in this chapter is based on exergy analysis and represents a departure from the line of inquiry that was followed in chapters 3-4. Chapter 6 shows that the geometry of the heat flow path between a volume and one point can be optimized in two fundamentally different ways. In the "growth" method the
NASA Astrophysics Data System (ADS)
Zhou, Hao-Miao; Li, Meng-Han; Liu, Hui; Cui, Xiao-Le
2015-12-01
For the converse magnetoelectric coupling effect of the piezoelectric/magnetostrictive/piezoelectric tri-layer symmetric magnetoelectric laminates, based on the nonlinear thermo-magneto-mechanical constitutive equations of the giant magnetostrictive materials and the thermo-electro-mechanical constitutive equations of the piezoelectric materials, according to Newton's second law and the magnetic circuit theorem, an equivalent circuit is established. Then an expression of the converse magnetoelectric coefficient describing nonlinear thermo-magneto-electro-mechanical coupling is established. The curve of the nonlinear converse magnetoelectric coefficient versus the bias magnetic field, is predicted effectively by the expression, and the predictions are in good agreement with the experimental result both qualitatively and quantitatively. Furthermore, the model can predict the complex influences of the bias magnetic field, the stress and the ambient temperature on the converse magnetoelectric coefficient. It can be found from these predictions that the converse magnetoelectric coefficient decreases with the increasing temperature and increases with the increasing tensile stress. Under the common effect of the ambient temperature and the stress, it is also found that the converse magnetoelectric coefficient changes sharply with the ambient temperature when the tensile stress is applied on the laminates, but it has a good stability of temperature when a large compressive stress is applied. Therefore, this work contributes to the researches on the giant converse magnetoelectric coefficient and the designs of magnetoelectric devices based on the converse magnetoelectric coupling.
Enhanced converse magnetoelectric effect in cylindrical piezoelectric-magnetostrictive composites
NASA Astrophysics Data System (ADS)
Wu, Gaojian; Zhang, Ru; Zhang, Ning
2016-10-01
Enhanced converse magnetoelectric (ME) effect has been experimentally observed in cylindrical PZT-Terfenol-D piezoelectric-magnetostrictive bilayered composites, where the piezoelectric and magnetostrictive components are coupled through normal stresses instead of shear stresses that act in most of previous multiferroic composites. A theoretical model based on elastodynamics analysis has been proposed to describe the frequency response of converse ME effect for axial and radial modes in the bilayered cylindrical composites. The theory shows good agreement with the experimental results. The different variation tendency of resonant converse ME coefficient, as well as different variation rate of resonance frequency with bias magnetic field for axial and radial modes is interpreted in terms of demagnetizing effect. This work is of theoretical and technological significance for the application of converse ME effect as magnetic sensor, transducers, coil-free flux switch, etc.
Buckley, Merry; Wall, Judy D.
2006-10-01
The American Academy of Microbiology convened a colloquium March 10-12, 2006, in San Francisco, California, to discuss the production of energy fuels by microbial conversions. The status of research into various microbial energy technologies, the advantages and disadvantages of each of these approaches, research needs in the field, and education and training issues were examined, with the goal of identifying routes for producing biofuels that would both decrease the need for fossil fuels and reduce greenhouse gas emissions. Currently, the choices for providing energy are limited. Policy makers and the research community must begin to pursue a broader array of potential energy technologies. A diverse energy portfolio that includes an assortment of microbial energy choices will allow communities and consumers to select the best energy solution for their own particular needs. Funding agencies and governments alike need to prepare for future energy needs by investing both in the microbial energy technologies that work today and in the untested technologies that will serve the world’s needs tomorrow. More mature bioprocesses, such as ethanol production from starchy materials and methane from waste digestors, will find applications in the short term. However, innovative techniques for liquid fuel or biohydrogen production are among the longer term possibilities that should also be vigorously explored, starting now. Microorganisms can help meet human energy needs in any of a number of ways. In their most obvious role in energy conversion, microorganisms can generate fuels, including ethanol, hydrogen, methane, lipids, and butanol, which can be burned to produce energy. Alternatively, bacteria can be put to use in microbial fuel cells, where they carry out the direct conversion of biomass into electricity. Microorganisms may also be used some day to make oil and natural gas technologies more efficient by sequestering carbon or by assisting in the recovery of oil and
NASA Astrophysics Data System (ADS)
Zhou, Hao-Miao; Liu, Hui; Zhou, Yun; Hu, Wen-Wen
2016-12-01
Based on the tri-layer symmetrical magnetoelectric laminates, a equivalent circuit for the nonlinear resonance converse magnetoelectric coupling effect is established. Because the nonlinear thermo-magneto-mechanical constitutive equations of magnetostrictive material were introduced, a converse magnetoelectric coefficient model was derived from the equivalent circuit, which can describe the influence of bias electric field, bias magnetic field and ambient temperature on the resonance converse magnetoelectric coupling effect. Especially, the model can well predict the modulation effect of bias electric field/voltage on the magnetism of magnetoelectric composite or the converse magnetoelectric coefficient, which is absolutely vital in applications. Both of the converse magnetoelectric coefficient and the resonance frequency predicted by the model have good agreements with the existing experimental results in qualitatively and quantitatively, and the validity of the model is confirmed. On this basis, according to the model, the nonlinear trends of the resonance converse magnetoelectric effect under different bias voltages, bias magnetic fields and ambient temperatures are predicted. From the results, it can be found that the bias voltage can effectively modulate the curve of the resonance converse magnetoelectric coefficient versus bias magnetic field, and then change the corresponding optimal bias magnetic field of the maximum converse magnetoelectric coefficient; with the increasing volume ratio of piezoelectric layers, the modulation effect of bias voltage becomes more obvious; under different bias magnetic fields, the modulation effect of bias voltage on the converse magnetoelectric effect has nonvolatility in a wide temperature region.
Assessment of the Maximal Split-Half Coefficient to Estimate Reliability
ERIC Educational Resources Information Center
Thompson, Barry L.; Green, Samuel B.; Yang, Yanyun
2010-01-01
The maximal split-half coefficient is computed by calculating all possible split-half reliability estimates for a scale and then choosing the maximal value as the reliability estimate. Osburn compared the maximal split-half coefficient with 10 other internal consistency estimates of reliability and concluded that it yielded the most consistently…
Minimum Sample Size for Cronbach's Coefficient Alpha: A Monte-Carlo Study
ERIC Educational Resources Information Center
Yurdugul, Halil
2008-01-01
The coefficient alpha is the most widely used measure of internal consistency for composite scores in the educational and psychological studies. However, due to the difficulties of data gathering in psychometric studies, the minimum sample size for the sample coefficient alpha has been frequently debated. There are various suggested minimum sample…
Crucial Conversations about America's Schools
ERIC Educational Resources Information Center
Draper, John C.; Protheroe, Nancy
2010-01-01
It's up to school leaders to shift the momentum away from conversations based on misperceptions and toward those that study critical issues about school improvement. "Crucial Conversations About America's Schools" talks about how to do this and provides examples of how to reframe conversations on the hot-button but important topics of…
Special Features in Children's Conversations.
ERIC Educational Resources Information Center
Karjalainen, Merja
In a study of features that seem to be typical of children's conversations, 10 Finnish preschool children's conversations were videotaped and audiotaped over a period of 10 hours. The children were taped in conversation, play, fairy tale, and eating situations. Among the findings are that all children enjoy playing with language, but some initiate…
Flexible Conversion Ratio Fast Reactor Systems Evaluation
Neil Todreas; Pavel Hejzlar
2008-06-30
Conceptual designs of lead-cooled and liquid salt-cooled fast flexible conversion ratio reactors were developed. Both concepts have cores reated at 2400 MWt placed in a large-pool-type vessel with dual-free level, which also contains four intermediate heat exchanges coupling a primary coolant to a compact and efficient supercritical CO2 Brayton cycle power conversion system. Decay heat is removed passively using an enhanced Reactor Vessel Auxiliary Cooling System and a Passive Secondary Auxiliary Cooling System. The most important findings were that (1) it is feasible to design the lead-cooled and salt-cooled reactor with the flexible conversion ratio (CR) in the range of CR=0 and CR=1 n a manner that achieves inherent reactor shutdown in unprotected accidents, (2) the salt-cooled reactor requires Lithium thermal Expansion Modules to overcme the inherent salt coolant's large positive coolant temperature reactivity coefficient, (3) the preferable salt for fast spectrum high power density cores is NaCl-Kcl-MgCl2 as opposed to fluoride salts due to its better themal-hydraulic and neutronic characteristics, and (4) both reactor, but attain power density 3 times smaller than that of the sodium-cooled reactor.
Zinc phosphate conversion coatings
Sugama, T.
1997-02-18
Zinc phosphate conversion coatings for producing metals which exhibit enhanced corrosion prevention characteristics are prepared by the addition of a transition-metal-compound promoter comprising a manganese, iron, cobalt, nickel, or copper compound and an electrolyte such as polyacrylic acid, polymethacrylic acid, polyitaconic acid and poly-L-glutamic acid to a phosphating solution. These coatings are further improved by the incorporation of Fe ions. Thermal treatment of zinc phosphate coatings to generate {alpha}-phase anhydrous zinc phosphate improves the corrosion prevention qualities of the resulting coated metal. 33 figs.
Zinc phosphate conversion coatings
Sugama, Toshifumi
1997-01-01
Zinc phosphate conversion coatings for producing metals which exhibit enhanced corrosion prevention characteristics are prepared by the addition of a transition-metal-compound promoter comprising a manganese, iron, cobalt, nickel, or copper compound and an electrolyte such as polyacrylic acid, polymethacrylic acid, polyitaconic acid and poly-L-glutamic acid to a phosphating solution. These coatings are further improved by the incorporation of Fe ions. Thermal treatment of zinc phosphate coatings to generate .alpha.-phase anhydrous zinc phosphate improves the corrosion prevention qualities of the resulting coated metal.
NASA Astrophysics Data System (ADS)
Jansen, Jan T. M.; Shrimpton, Paul C.
2016-07-01
The ImPACT (imaging performance assessment of CT scanners) CT patient dosimetry calculator is still used world-wide to estimate organ and effective doses (E) for computed tomography (CT) examinations, although the tool is based on Monte Carlo calculations reflecting practice in the early 1990’s. Subsequent developments in CT scanners, definitions of E, anthropomorphic phantoms, computers and radiation transport codes, have all fuelled an urgent need for updated organ dose conversion factors for contemporary CT. A new system for such simulations has been developed and satisfactorily tested. Benchmark comparisons of normalised organ doses presently derived for three old scanners (General Electric 9800, Philips Tomoscan LX and Siemens Somatom DRH) are within 5% of published values. Moreover, calculated normalised values of CT Dose Index for these scanners are in reasonable agreement (within measurement and computational uncertainties of ±6% and ±1%, respectively) with reported standard measurements. Organ dose coefficients calculated for a contemporary CT scanner (Siemens Somatom Sensation 16) demonstrate potential deviations by up to around 30% from the surrogate values presently assumed (through a scanner matching process) when using the ImPACT CT Dosimetry tool for newer scanners. Also, illustrative estimates of E for some typical examinations and a range of anthropomorphic phantoms demonstrate the significant differences (by some 10’s of percent) that can arise when changing from the previously adopted stylised mathematical phantom to the voxel phantoms presently recommended by the International Commission on Radiological Protection (ICRP), and when following the 2007 ICRP recommendations (updated from 1990) concerning tissue weighting factors. Further simulations with the validated dosimetry system will provide updated series of dose coefficients for a wide range of contemporary scanners.
Jansen, Jan T M; Shrimpton, Paul C
2016-07-21
The ImPACT (imaging performance assessment of CT scanners) CT patient dosimetry calculator is still used world-wide to estimate organ and effective doses (E) for computed tomography (CT) examinations, although the tool is based on Monte Carlo calculations reflecting practice in the early 1990's. Subsequent developments in CT scanners, definitions of E, anthropomorphic phantoms, computers and radiation transport codes, have all fuelled an urgent need for updated organ dose conversion factors for contemporary CT. A new system for such simulations has been developed and satisfactorily tested. Benchmark comparisons of normalised organ doses presently derived for three old scanners (General Electric 9800, Philips Tomoscan LX and Siemens Somatom DRH) are within 5% of published values. Moreover, calculated normalised values of CT Dose Index for these scanners are in reasonable agreement (within measurement and computational uncertainties of ±6% and ±1%, respectively) with reported standard measurements. Organ dose coefficients calculated for a contemporary CT scanner (Siemens Somatom Sensation 16) demonstrate potential deviations by up to around 30% from the surrogate values presently assumed (through a scanner matching process) when using the ImPACT CT Dosimetry tool for newer scanners. Also, illustrative estimates of E for some typical examinations and a range of anthropomorphic phantoms demonstrate the significant differences (by some 10's of percent) that can arise when changing from the previously adopted stylised mathematical phantom to the voxel phantoms presently recommended by the International Commission on Radiological Protection (ICRP), and when following the 2007 ICRP recommendations (updated from 1990) concerning tissue weighting factors. Further simulations with the validated dosimetry system will provide updated series of dose coefficients for a wide range of contemporary scanners.
The emission coefficient of uranium plasmas
NASA Technical Reports Server (NTRS)
Schneider, R. T.; Campbell, H. D.; Mack, J. M.
1973-01-01
The emission coefficient for uranium plasmas (Temperature: 8000 K) was measured for the wavelength range (200 A - 6000 A). The results are compared to theory and other measurements. The absorption coefficient for the same wavelength interval is also given.
Generating Matrices of C-nomial Coefficients and Their Spectra
2010-04-20
International Conf. Fibonacci Numbers & Applic . 2010. 14. ABSTRACT In this paper, we consider a generalization of binomial coe cients, called C{ nomial coe...combinatorial matrices, Congressus Numerantium Vol. 201 (2010), Proc. Internat. Conf. Fibonacci Numbers & Applic . – ’08, 223–236. [18] E. Kilic and P...coefficients via generating func- tion, Discrete Appl. Math. 155 (2007), 2017–2024. [24] S. Vajda, Fibonacci & Lucas numbers , and the golden section, John
Direct observation of up-conversion via femtosecond photoelectron imaging
NASA Astrophysics Data System (ADS)
Liu, Yuzhu; Knopp, Gregor; Gerber, Thomas
2015-10-01
Ultrafast relaxation dynamics in 2-methylfuran has been investigated by time-resolved photoelectron imaging. An "up" internal conversion from a low-lying state into a higher-lying one has been observed experimentally. Temporal photoelectron kinetic-energy distributions and angular distributions of the photoelectrons are analyzed. In the up-conversion process, the vibrational energy in the initial state is converted to the electronic energy of the final state during the energy transfer. And the time scale for the up-conversion process is estimated by the observed onset delay for the corresponding photoelectron bands.
Internal dosimetry - a review.
Potter, Charles Augustus
2004-06-01
The field history and current status of internal dosimetry is reviewed in this article. Elements of the field that are reviewed include standards and models, derivation of dose coefficients and intake retention fractions, bioassay measurements, and intake and dose calculations. In addition, guidance is developed and provided as to the necessity of internal dosimetry for a particular facility or operation and methodology for implementing a program. A discussion of the purposes of internal dosimetry is included as well as recommendations for future development and direction.
Spatial language and converseness.
Burigo, Michele; Coventry, Kenny R; Cangelosi, Angelo; Lynott, Dermot
2016-12-01
Typical spatial language sentences consist of describing the location of an object (the located object) in relation to another object (the reference object) as in "The book is above the vase". While it has been suggested that the properties of the located object (the book) are not translated into language because they are irrelevant when exchanging location information, it has been shown that the orientation of the located object affects the production and comprehension of spatial descriptions. In line with the claim that spatial language apprehension involves inferences about relations that hold between objects it has been suggested that during spatial language apprehension people use the orientation of the located object to evaluate whether the logical property of converseness (e.g., if "the book is above the vase" is true, then also "the vase is below the book" must be true) holds across the objects' spatial relation. In three experiments using sentence acceptability rating tasks we tested this hypothesis and demonstrated that when converseness is violated people's acceptability ratings of a scene's description are reduced indicating that people do take into account geometric properties of the located object and use it to infer logical spatial relations.
Natural gas conversion process
Not Available
1991-01-01
The main objective is to design and operate a laboratory apparatus for the catalytic reforming of natural gas in order to provide data for a large-scale process. To accelerate the assembly and calibration of this equipment, a request has been made to the Lawrence Berkeley Laboratory for assistance, under the DOE's Industrial Visitor Exchange Program. Pr. Heinz Heinemann (Catalysis), Dr. John Apps (Geochemistry) and Dr. Robert Fulton (Mechanical Engineering) have expressed interest in supporting our request. Pr. Heinemann's recent results on the conversion of Petroleum Coke residues into CO2 and H2 mixtures using highly basic metal oxides catalysts, similar to ours, are very encouraging regarding the possibility of converting the Coke residue on our catalyst into Syngas in the Regenerator/riser, as proposed. To minimize Coke formation in the vapor phase, by the Plasmapyrolytic Methane Conversion reactions, the experimental data of H. Drost et al. (Ref. 12) have been reviewed. Work is underway to design equipment for the safe and non-polluting disposal of the two gaseous product streams of the flow loop. 2 refs.
Murphy, L.M.
1985-09-16
The energy conversion system includes a photo-voltaic array for receiving solar radiation and converting such radiation to electrical energy. The photo-voltaic array is mounted on a stretched membrane that is held by a frame. Tracking means for orienting the photo-voltaic array in predetermined positions that provide optimal exposure to solar radiation cooperate with the frame. An enclosure formed of a radiation transmissible material includes an inside containment space that accommodates the photo-voltaic array on the stretched membrane, the frame and the tracking means, and forms a protective shield for all such components. The enclosure is preferably formed of a flexible inflatable material and maintains its preferred form, such as a dome, under the influence of a low air pressure furnished to the dome. Under this arrangement the energy conversion system is streamlined for minimizing wind resistance, sufficiently weathproof for providing protection against weather hazards such as hail, capable of using diffused light, lightweight for low-cost construction and operational with a minimal power draw.
Murphy, Lawrence M.
1987-01-01
The energy conversion system includes a photo-voltaic array for receiving solar radiation and converting such radiation to electrical energy. The photo-voltaic array is mounted on a stretched membrane that is held by a frame. Tracking means for orienting the photo-voltaic array in predetermined positions that provide optimal exposure to solar radiation cooperate with the frame. An enclosure formed of a radiation transmissible material includes an inside containment space that accommodates the photo-voltaic array on the stretched membrane, the frame and the tracking means, and forms a protective shield for all such components. The enclosure is preferably formed of a flexible inflatable material and maintains its preferred form, such as a dome, under the influence of a low air pressure furnished to the dome. Under this arrangement the energy conversion system is streamlined for minimizing wind resistance, sufficiently weatherproof for providing protection against weather hazards such as hail, capable of using diffused light, lightweight for low-cost construction, and operational with a minimal power draw.
Direct somatic lineage conversion
Tanabe, Koji; Haag, Daniel; Wernig, Marius
2015-01-01
The predominant view of embryonic development and cell differentiation has been that rigid and even irreversible epigenetic marks are laid down along the path of cell specialization ensuring the proper silencing of unrelated lineage programmes. This model made the prediction that specialized cell types are stable and cannot be redirected into other lineages. Accordingly, early attempts to change the identity of somatic cells had little success and was limited to conversions between closely related cell types. Nuclear transplantation experiments demonstrated, however, that specialized cells even from adult mammals can be reprogrammed into a totipotent state. The discovery that a small combination of transcription factors can reprogramme cells to pluripotency without the need of oocytes further supported the view that these epigenetic barriers can be overcome much easier than assumed, but the extent of this flexibility was still unclear. When we showed that a differentiated mesodermal cell can be directly converted to a differentiated ectodermal cell without a pluripotent intermediate, it was suggested that in principle any cell type could be converted into any other cell type. Indeed, the work of several groups in recent years has provided many more examples of direct somatic lineage conversions. Today, the question is not anymore whether a specific cell type can be generated by direct reprogramming but how it can be induced. PMID:26416679
NASA Astrophysics Data System (ADS)
Jaeger, E. F.; Berry, L. A.; Myra, J. R.
2006-10-01
Fast magnetosonic waves in the ion cyclotron range of frequencies (ICRF) can convert to much shorter wavelength modes such as ion Bernstein waves (IBW) and ion cyclotron waves (ICW) [1]. These modes are potentially useful for plasma control through the generation of localized currents and sheared flows. As part of the SciDAC Center for Simulation of Wave-Plasma Interactions project, the AORSA global-wave solver [2] has been ported to the new, dual-core Cray XT-3 (Jaguar) at ORNL where it demonstrates excellent scaling with the number of processors. Preliminary calculations using 4096 processors have allowed the first full-wave simulations of mode conversion in ITER. Mode conversion from the fast wave to the ICW is observed in mixtures of deuterium, tritium and helium3 at 53 MHz. The resulting flow velocity and electric field shear will be calculated. [1] F.W. Perkins, Nucl. Fusion 17, 1197 (1977). [2] E.F. Jaeger, L.A. Berry, J.R. Myra, et al., Phys. Rev. Lett. 90, 195001-1 (2003).
Jonsson, E.B.
1997-08-01
The conversion of the Swedish 50 MW R2 reactor from HEU to LEU fuel has been successfully accomplished over a 16 cycles long process. The conversion started in January 1991 with the introduction of 6 LEU assemblies in the 8*8 core. The first all LEU core was loaded in March 1993 and physics measurements were performed for the final licensing reports. A total of 142 LEU fuel assemblies have been irradiated up until September 1994 without any fuel incident. The operating licence for the R2 reactor was renewed in mid 1994 taking into account new fuel type. The Swedish Nuclear Inspectorate (SKI) pointed out one crucial problem with the LEU operation, that the back end of the LEU fuel cycle has not yet been solved. For the HEU fuel Sweden had the reprocessing alternative. The country is now relying heavily on the success of the USDOEs Off Site Fuels Policy to take back the spent fuel from the research reactors. They have in the meantime increased their intermediate storage facilities. There is, however, a limit both in time and space for storage of MTR-type of assemblies in water. The penalty of the lower thermal neutron flux in LEU cores has been reduced by improvements of the new irradiation rigs and by fine tuning the core calculations. The Studsvik code package, CASMO-SIMULATE, widely used for ICFM in LWRs has been modified to suit the compact MTR type of core.
Harandi, M.N.; Owen, H.
1991-07-09
This patent describes a process for the aromatization of an aliphatic feedstream. It comprises fluidizing finely divided solid particles in a combustion zone; charging oxygen-containing combustion gas and fuel to the combustion zone under combustion conditions; withdrawing a stream of finely divided particles from the combustion zone; flowing the withdrawn stream of finely divided particles above to a cracking/dehydrogenation zone; fluidizing the finely divided particles above in an aliphatic feedstream under conditions within the cracking/dehydrogenation zone controlled to at least partially crack and at least partially dehydrogenate the aliphatic feedstream to form an intermediate product stream containing a quantity of C{sub 4}-olefins such that the exothermic catalytic conversion of the C{sub 4}-olefins is sufficient to supply a portion of the endothermic heat of reaction for the endothermic catalytic conversion of paraffins contained in the intermediate feedstream to aromatics; contacting the intermediate product stream with an aromatization catalyst under aromatization conditions sufficient to evolve an aromatics-rich products stream.
Standards for Standardized Logistic Regression Coefficients
ERIC Educational Resources Information Center
Menard, Scott
2011-01-01
Standardized coefficients in logistic regression analysis have the same utility as standardized coefficients in linear regression analysis. Although there has been no consensus on the best way to construct standardized logistic regression coefficients, there is now sufficient evidence to suggest a single best approach to the construction of a…
A Note on the Dynamic Correlation Coefficient.
1977-11-04
The use of the dynamic correlation coefficient as a test of spuriousness in longitudinal designs was examined. It was shown that given conditions of...spuriousness and perfect stationarity, the dynamic correlation coefficient was positively, rather than inversely, related to spuriousness. It was...recommended that the dynamic correlation coefficient not be used in the future as a test of spuriousness. (Author)
Soccer Ball Lift Coefficients via Trajectory Analysis
ERIC Educational Resources Information Center
Goff, John Eric; Carre, Matt J.
2010-01-01
We performed experiments in which a soccer ball was launched from a machine while two high-speed cameras recorded portions of the trajectory. Using the trajectory data and published drag coefficients, we extracted lift coefficients for a soccer ball. We determined lift coefficients for a wide range of spin parameters, including several spin…
M-Bonomial Coefficients and Their Identities
ERIC Educational Resources Information Center
Asiru, Muniru A.
2010-01-01
In this note, we introduce M-bonomial coefficients or (M-bonacci binomial coefficients). These are similar to the binomial and the Fibonomial (or Fibonacci-binomial) coefficients and can be displayed in a triangle similar to Pascal's triangle from which some identities become obvious.
Review of solar cell temperature coefficients for space
NASA Technical Reports Server (NTRS)
Landis, Geoffrey A.
1994-01-01
Energy conversion efficiency is an important parameter for solar cells, and well reported in the literature. However, solar cells heat up in sunlight, and the efficiency decreases. The temperature coefficient of the conversion efficiency is thus also extremely important, especially in mission modeling, but is much less well reported. It is of value to have a table which compiles into a single document values of temperature coefficients reported in the literature. In addition to modeling performance of solar cells in Earth orbit, where operating temperatures may range from about 20 C to as high as 85 C, it is of interest to model solar cells for several other recently proposed missions. These include use for the surface of Mars, for solar electric propulsion missions that may range from Venus to the Asteroid belt, and for laser-photovoltaic power that may involve laser intensities equivalent several suns. For all of these applications, variations in operating temperature away from the nominal test conditions result in significant changes in operating performance. In general the efficiency change with temperature is non-linear, however, in the range from negative 100 C through room temperature to a few hundred degrees C, efficiency is usually quite well modeled as a linear function of temperature (except for a few unusual cell types, such as amorphous silicon, and for extremely low bandgap cells, such as InGaAs).
Analytic expressions for ULF wave radiation belt radial diffusion coefficients.
Ozeke, Louis G; Mann, Ian R; Murphy, Kyle R; Jonathan Rae, I; Milling, David K
2014-03-01
We present analytic expressions for ULF wave-derived radiation belt radial diffusion coefficients, as a function of L and Kp, which can easily be incorporated into global radiation belt transport models. The diffusion coefficients are derived from statistical representations of ULF wave power, electric field power mapped from ground magnetometer data, and compressional magnetic field power from in situ measurements. We show that the overall electric and magnetic diffusion coefficients are to a good approximation both independent of energy. We present example 1-D radial diffusion results from simulations driven by CRRES-observed time-dependent energy spectra at the outer boundary, under the action of radial diffusion driven by the new ULF wave radial diffusion coefficients and with empirical chorus wave loss terms (as a function of energy, Kp and L). There is excellent agreement between the differential flux produced by the 1-D, Kp-driven, radial diffusion model and CRRES observations of differential electron flux at 0.976 MeV-even though the model does not include the effects of local internal acceleration sources. Our results highlight not only the importance of correct specification of radial diffusion coefficients for developing accurate models but also show significant promise for belt specification based on relatively simple models driven by solar wind parameters such as solar wind speed or geomagnetic indices such as Kp.
Mode conversion in magneto photonic crystal fibre
NASA Astrophysics Data System (ADS)
otmani, Hamza; Bouchemat, Mohamed; Hocini, Abdesselam; Boumaza, Touraya; benmerkhi, ahlem
2017-01-01
The first concept of an integrated isolator was based on nonreciprocal TE-TM mode conversion, the nonreciprocal coupling between these modes is caused by the Faraday rotation if the magnetization is aligned along the z-axis, parallel to mode propagation. We propose to study this magneto-optical phenomenon, by the simulation of magneto photonic crystal fibre (MPCF), it consists of a periodic triangular lattice of air-holes filled with magnetic fluid which consists of magnetic nanoparticles into a BIG (Bismuth Iron Garnet) fibre. We simulated the influence of gyrotropy and the wavelength, and calculated Faraday rotation and modal birefringence. In this fibre the light is guided by internal total reflection, like classical fibres. However it was shown that they could function on a mode conversion much stronger than conventional fibres.
NASA Astrophysics Data System (ADS)
Santos, W. S.; Carvalho, A. B., Jr.; Hunt, J. G.; Maia, A. F.
2014-02-01
The objective of this study was to estimate doses in the physician and the nurse assistant at different positions during interventional radiology procedures. In this study, effective doses obtained for the physician and at points occupied by other workers were normalised by air kerma-area product (KAP). The simulations were performed for two X-ray spectra (70 kVp and 87 kVp) using the radiation transport code MCNPX (version 2.7.0), and a pair of anthropomorphic voxel phantoms (MASH/FASH) used to represent both the patient and the medical professional at positions from 7 cm to 47 cm from the patient. The X-ray tube was represented by a point source positioned in the anterior posterior (AP) and posterior anterior (PA) projections. The CC can be useful to calculate effective doses, which in turn are related to stochastic effects. With the knowledge of the values of CCs and KAP measured in an X-ray equipment, at a similar exposure, medical professionals will be able to know their own effective dose.
Campbell, Charles E
2003-02-01
A matrix method is developed that allows a new set of Zernike coefficients that describe a surface or wave front appropriate for a new aperture size to be found from an original set of Zernike coefficients that describe the same surface or wave front but use a different aperture size. The new set of coefficients, arranged as elements of a vector, is formed by multiplying the original set of coefficients, also arranged as elements of a vector, by a conversion matrix formed from powers of the ratio of the new to the original aperture and elements of a matrix that forms the weighting coefficients of the radial Zernike polynomial functions. In developing the method, a new matrix method for expressing Zernike polynomial functions is introduced and used. An algorithm is given for creating the conversion matrix along with computer code to implement the algorithm.
Second virial coefficients for chain molecules
Bokis, C.P.; Donohue, M.D. . Dept. of Chemical Engineering); Hall, C.K. . Dept. of Chemical Engineering)
1994-01-01
The importance of having accurate second virial coefficients in phase equilibrium calculations, especially for the calculation of dew points, is discussed. The square-well potentials results in a simple but inaccurate equation for the second virial coefficient for small, spherical molecules such as argon. Here, the authors present a new equation for the second virial coefficient of both spherical molecules and chain molecules which is written in a form similar to that for the square-well potential. This new equation is accurate in comparison to Monte Carlo simulation data on second virial coefficients for square-well chain molecules and with second virial coefficients obtained from experiments on n-alkanes.
ERIC Educational Resources Information Center
Whitehouse, John
1974-01-01
In his position as retiring chief of the Workers' Education Branch of the International Labour Office (ILO), Paul B. J. Chu is interviewed on worker education, the ILO organization and tole, personal disappointments and satisfactions, future educational developments in which the ILO will be involved, and problems facing workers' education. (AG)
Newton, M. A.
1997-02-01
The Power Conversion Technologies thrust area identifies and sponsors development activities that enhance the capabilities of engineering at Lawrence Livermore National Laboratory (LLNL) in the area of solid- state power electronics. Our primary objective is to be a resource to existing and emerging LLNL programs that require advanced solid-state power electronic technologies.. Our focus is on developing and integrating technologies that will significantly impact the capability, size, cost, and reliability of future power electronic systems. During FY-96, we concentrated our research efforts on the areas of (1) Micropower Impulse Radar (MIR); (2) novel solid-state opening switches; (3) advanced modulator technology for accelerators; (4) compact accelerators; and (5) compact pulse generators.
Basis and implications of the CAP88 age-specific dose coefficients
Leggett, Richard Wayne; Scofield, Patricia A; Eckerman, Keith F
2013-01-01
Recent versions of CAP88 incorporate age-specific dose coefficients based on biokinetic and dosimetric models applied in Federal Guidance Report 13, Cancer Risk Coefficients for Environmental Exposure to Radionuclides (EPA 1999). With a few exceptions the models are those recommended in a series of reports by the International Commission on Radiological Protection (ICRP) on estimation of doses to the public from environmental radionuclides. This paper describes the basis for the ICRP s age-specific biokinetic and dosimetric models and examines differences with age in the derived dose coefficients and in estimates of dose per unit exposure based on those coefficients.
Investigation of the Performance of D2O-Cooled High-Conversion Reactors for Fuel Cycle Calculations
Hikaru Hiruta; Gilles Youinou
2013-09-01
This report presents FY13 activities for the analysis of D2O cooled tight-pitch High-Conversion PWRs (HCPWRs) with U-Pu and Th-U fueled cores aiming at break-even or near breeder conditions while retaining the negative void reactivity. The analyses are carried out from several aspects which could not be covered in FY12 activities. SCALE 6.1 code system is utilized, and a series of simple 3D fuel pin-cell models are developed in order to perform Monte Carlo based criticality and burnup calculations. The performance of U-Pu fueled cores with axial and internal blankets is analyzed in terms of their impact on the relative fissile Pu mass balance, initial Pu enrichment, and void coefficient. In FY12, Pu conversion performances of D2O-cooled HCPWRs fueled with MOX were evaluated with small sized axial/internal DU blankets (approximately 4cm of axial length) in order to ensure the negative void reactivity, which evidently limits the conversion performance of HCPWRs. In this fiscal year report, the axial sizes of DU blankets are extended up to 30 cm in order to evaluate the amount of DU necessary to reach break-even and/or breeding conditions. Several attempts are made in order to attain the milestone of the HCPWR designs (i.e., break-even condition and negative void reactivity) by modeling of HCPWRs under different conditions such as boiling of D2O coolant, MOX with different 235U enrichment, and different target burnups. A similar set of analyses are performed for Th-U fueled cores. Several promising characteristics of 233U over other fissile like 239Pu and 235U, most notably its higher fission neutrons per absorption in thermal and epithermal ranges combined with lower ___ in the fast range than 239Pu allows Th-U cores to be taller than MOX ones. Such an advantage results in 4% higher relative fissile mass balance than that of U-Pu fueled cores while retaining the negative void reactivity until the target burnup of 51 GWd/t. Several other distinctions between U-Pu and
The Role of Conversation Policy in Carrying Out Agent Conversations
Link, Hamilton E.; Phillips, Laurence R.
1999-05-20
Structured conversation diagrams, or conversation specifications, allow agents to have predictable interactions and achieve predefined information-based goals, but they lack the flexibility needed to function robustly in an unpredictable environment. We propose a mechanism that combines a typical conversation structure with a separately established policy to generate an actual conversation. The word "policy" connotes a high-level direction external to a specific planned interaction with the environment. Policies, which describe acceptable procedures and influence decisions, can be applied to broad sets of activity. Based on their observation of issues related to a policy, agents may dynamically adjust their communication patterns. The policy object describes limitations, constraints, and requirements that may affect the conversation in certain circumstances. Using this new mechanism of interaction simplifies the description of individual conversations and allows domain-specific issues to be brought to bear more easily during agent communication. By following the behavior of the conversation specification when possible and deferring to the policy to derive behavior in exceptional circumstances, an agent is able to function predictably under normal situations and still act rationally in abnormal situations. Different conversation policies applied to a given conversation specification can change the nature of the interaction without changing the specification.
A toy model for hostility between two populations in dependency on their internal frustration
NASA Astrophysics Data System (ADS)
Wieder, Thomas
2014-10-01
Hostility between two populations n and m is described in terms of a first-order differential equation system for the population sizes n(t) and m(t) over time t. Each population is subdivided into two subpopulations 'Doves' and 'Hawks'. Hawks represent the strategy aggression against the other population. The number of hawks which actually exert aggression depends on the overall frustration within their population. Conversely, aggression causes the conversion from doves to hawks in the attacked population. Thus, a system of flows among the subpopulation is established. The actual behaviour of n(t) and m(t) over time t depends on the coefficients chosen for the differential system and in particular on the temporal development of the frustration parameters. No calculation or simulation of actual population sizes is intended. The only goal of the paper is to establish a model which describes an never ending conflict between both populations caused by internal frustrations.
Investigating bias in squared regression structure coefficients
Nimon, Kim F.; Zientek, Linda R.; Thompson, Bruce
2015-01-01
The importance of structure coefficients and analogs of regression weights for analysis within the general linear model (GLM) has been well-documented. The purpose of this study was to investigate bias in squared structure coefficients in the context of multiple regression and to determine if a formula that had been shown to correct for bias in squared Pearson correlation coefficients and coefficients of determination could be used to correct for bias in squared regression structure coefficients. Using data from a Monte Carlo simulation, this study found that squared regression structure coefficients corrected with Pratt's formula produced less biased estimates and might be more accurate and stable estimates of population squared regression structure coefficients than estimates with no such corrections. While our findings are in line with prior literature that identified multicollinearity as a predictor of bias in squared regression structure coefficients but not coefficients of determination, the findings from this study are unique in that the level of predictive power, number of predictors, and sample size were also observed to contribute bias in squared regression structure coefficients. PMID:26217273
Investigating bias in squared regression structure coefficients.
Nimon, Kim F; Zientek, Linda R; Thompson, Bruce
2015-01-01
The importance of structure coefficients and analogs of regression weights for analysis within the general linear model (GLM) has been well-documented. The purpose of this study was to investigate bias in squared structure coefficients in the context of multiple regression and to determine if a formula that had been shown to correct for bias in squared Pearson correlation coefficients and coefficients of determination could be used to correct for bias in squared regression structure coefficients. Using data from a Monte Carlo simulation, this study found that squared regression structure coefficients corrected with Pratt's formula produced less biased estimates and might be more accurate and stable estimates of population squared regression structure coefficients than estimates with no such corrections. While our findings are in line with prior literature that identified multicollinearity as a predictor of bias in squared regression structure coefficients but not coefficients of determination, the findings from this study are unique in that the level of predictive power, number of predictors, and sample size were also observed to contribute bias in squared regression structure coefficients.
Gas-film coefficients for streams
Rathbun, R.E.; Tai, D.Y.
1983-01-01
Equations for predicting the gas-film coefficient for the volatilization of organic solutes from streams are developed. The film coefficient is a function of windspeed and water temperature. The dependence of the coefficient on windspeed is determined from published information on the evaporation of water from a canal. The dependence of the coefficient on temperature is determined from laboratory studies on the evaporation of water. Procedures for adjusting the coefficients for different organic solutes are based on the molecular diffusion coefficient and the molecular weight. The molecular weight procedure is easiest to use because of the availability of molecular weights. However, the theoretical basis of the procedure is questionable. The diffusion coefficient procedure is supported by considerable data. Questions, however, remain regarding the exact dependence of the film coefficint on the diffusion coefficient. It is suggested that the diffusion coefficient procedure with a 0.68-power dependence be used when precise estimate of the gas-film coefficient are needed and that the molecular weight procedure be used when only approximate estimates are needed.
Direct MC conversion of absorbed dose to graphite to absorbed dose to water for 60Co radiation.
Lye, J E; Butler, D J; Franich, R D; Harty, P D; Oliver, C P; Ramanathan, G; Webb, D V; Wright, T
2013-06-01
The ARPANSA calibration service for (60)Co gamma rays is based on a primary standard graphite calorimeter that measures absorbed dose to graphite. Measurements with the calorimeter are converted to the absorbed dose to water using the calculation of the ratio of the absorbed dose in the calorimeter to the absorbed dose in a water phantom. ARPANSA has recently changed the basis of this calculation from a photon fluence scaling method to a direct Monte Carlo (MC) calculation. The MC conversion uses an EGSnrc model of the cobalt source that has been validated against water tank and graphite phantom measurements, a step that is required to quantify uncertainties in the underlying interaction coefficients in the MC code. A comparison with the Bureau International des Poids et Mesures (BIPM) as part of the key comparison BIPM.RI(I)-K4 showed an agreement of 0.9973 (53).
Recursive prescription for logarithmic jet rate coefficients
NASA Astrophysics Data System (ADS)
Gerwick, Erik
2013-11-01
We derive a recursion relation for the analytic leading logarithmic coefficients of a final state gluon cascade. We demonstrate the potential of our method by analytically computing the rate coefficients for the emission of up to 80 gluons in both the exclusive-kt (Durham) and generalized inclusive-kt class of jet algorithms. There is a particularly simple form for the ratios of resolved coefficients. We suggest potential applications for our method including the efficient generation of shower histories.
46 CFR 45.55 - Freeboard coefficient.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 46 Shipping 2 2014-10-01 2014-10-01 false Freeboard coefficient. 45.55 Section 45.55 Shipping... § 45.55 Freeboard coefficient. (a) For ships less than 350 feet in length (L), the freeboard coefficient is P 1 in the formula: P 1=P+A[(L/D)-(L/D s)] where P is a factor, which is a function of...
46 CFR 45.55 - Freeboard coefficient.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 46 Shipping 2 2010-10-01 2010-10-01 false Freeboard coefficient. 45.55 Section 45.55 Shipping... § 45.55 Freeboard coefficient. (a) For ships less than 350 feet in length (L), the freeboard coefficient is P 1 in the formula: P 1=P+A[(L/D)-(L/D s)] where P is a factor, which is a function of...
46 CFR 45.55 - Freeboard coefficient.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 46 Shipping 2 2012-10-01 2012-10-01 false Freeboard coefficient. 45.55 Section 45.55 Shipping... § 45.55 Freeboard coefficient. (a) For ships less than 350 feet in length (L), the freeboard coefficient is P 1 in the formula: P 1=P+A[(L/D)-(L/D s)] where P is a factor, which is a function of...
46 CFR 45.55 - Freeboard coefficient.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 46 Shipping 2 2013-10-01 2013-10-01 false Freeboard coefficient. 45.55 Section 45.55 Shipping... § 45.55 Freeboard coefficient. (a) For ships less than 350 feet in length (L), the freeboard coefficient is P 1 in the formula: P 1=P+A[(L/D)-(L/D s)] where P is a factor, which is a function of...
46 CFR 45.55 - Freeboard coefficient.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 46 Shipping 2 2011-10-01 2011-10-01 false Freeboard coefficient. 45.55 Section 45.55 Shipping... § 45.55 Freeboard coefficient. (a) For ships less than 350 feet in length (L), the freeboard coefficient is P 1 in the formula: P 1=P+A[(L/D)-(L/D s)] where P is a factor, which is a function of...
Porter, D.R.
1988-10-18
This patent describes an energy conversion apparatus comprising: an engine, the engine comprising a cylinder and a piston reciprocally mounted therein, the cylinder defining a combustion chamber on one side of the piston for receiving a fuel mixture and a fluid drive chamber on the other side of the piston for receiving hydraulic fluid, a turbine, the turbine comprising a housing and a vaned turbine wheel rotatably mounted on a drive shaft journalled in the housing, hydraulic means for coupling fluid in the fluid drive chamber of the cylinder with the housing for rotatably driving the turbine wheel and the drive shaft upon a given movement of the piston, means for providing the combustion chamber of the engine with a fuel mixture comprising hydrogen and oxygen, an ignition means for selectively igniting the mixture in the combustion chamber, and purging means for selectively rotating the turbine prior to ignition of the fuel mixture in the engine to remove air therefrom, the purging means comprising a pump means for moving fluid from the reservoir into the fluid drive chambers, the conduit means and the turbine housing, whereby the piston driven by the ignited fuel mixture forces fluid in the fluid drive chamber against the vanes of the turbine wheel to rotate the drive shaft.
Geothermal energy conversion facility
Kutscher, C.F.
1997-12-31
With the termination of favorable electricity generation pricing policies, the geothermal industry is exploring ways to improve the efficiency of existing plants and make them more cost-competitive with natural gas. The Geothermal Energy Conversion Facility (GECF) at NREL will allow researchers to study various means for increasing the thermodynamic efficiency of binary cycle geothermal plants. This work has received considerable support from the US geothermal industry and will be done in collaboration with industry members and utilities. The GECF is being constructed on NREL property at the top of South Table Mountain in Golden, Colorado. As shown in Figure 1, it consists of an electrically heated hot water loop that provides heating to a heater/vaporizer in which the working fluid vaporizes at supercritical or subcritical pressures as high as 700 psia. Both an air-cooled and water-cooled condenser will be available for condensing the working fluid. In order to minimize construction costs, available equipment from the similar INEL Heat Cycle Research Facility is being utilized.
Bean, R.M. )
1989-10-01
The objectives of this project were to describe in detail the degradation of coals by fungi and microbes, to expand the range of applicability of the process to include new microbes and other coal types, to identify the means by which biosolubilization of coal is accomplished, and to explore means to enhance the rates and extent of coal bioconversion. The project was initiated in a response to the discovery by Dr. Martin Cohen at the University of Hartford, of a fungal strain of Coriolus versicolor that would render a solid coal substance, leonardite, into a liquid product. The project has identified the principal agent of leonardite solubilization as a powerful metal chelator, most likely a fungal-produced siderophore. Another nonlaccase enzyme has also been identified as a unique biosolubilizing agent produced by C. versicolor. Assays were developed for the quantitative determination of biological coal conversion, and for the determination of potency of biosolubilizing agent. Screening studies uncovered several microbial organisms capable of coal biodegradation, and led to the discovery that prolonged heating in air at the moderate temperature of 150{degree}C allowed the biodegradation of Illinois {number sign}6 coal to material soluble in dilute base. Chemical studies showed that leonardite biosolubilization was accompanied by relatively small change in composition, while solubilization of Illinois {number sign}6 coal involves considerable oxidation of the coal. 24 refs., 32 figs., 27 tabs.
Solar energy conversion apparatus
Nash, S.G.
1983-10-18
Solar energy conversion apparatus is disclosed including a housing portion, an energy absorbing portion, a fluid directing portion and a cover portion; the housing portion including a molded plastic pan member including a base section with upwardly extending spaced spacer sections, the pan member including outwardly inclined sidewall sections having spaced inner and outer wall sections with a top section including an outwardly extending flange section and an inwardly extending slotted frame section; the energy absorbing portion including a conductive metal liner member positioned within the housing portion and resting on the upper surfaces of the spacer sections, a conductive metal separator section extending between the liner sidewall sections adjacent the upper ends thereof and enclosing the liner member; the fluid directing portion including a plurality of parallel spaced longitudinal baffle members arranged in a staggered relationship to provide a tortuous fluid path through the apparatus, an inlet opening and an outlet opening to the tortuous path, the baffle members extending upwardly from the liner bottom to the separator section; the cover portion including transparent impact resistant flat and dome members, the edges of the flat member being secured to the top section, the dome member being disposed over the flat member with its edges engaged with the flange section slots, the dome member including flat sections extending upwardly at an angle of 20/sup 0/ to 30/sup 0/ and a convex central section joining the flat sections.
Distribution Coefficients of Impurities in Metals
NASA Astrophysics Data System (ADS)
Pearce, J. V.
2014-04-01
Impurities dissolved in very pure metals at the level of parts per million often cause an elevation or depression of the freezing temperature of the order of millikelvins. This represents a significant contribution to the uncertainty of standard platinum resistance thermometer calibrations. An important parameter for characterizing the behavior of impurities is the distribution coefficient , which is the ratio of the solid solubility to liquid solubility. A knowledge of for a given binary system is essential for contemporary methods of evaluating or correcting for the effect of impurities, and it is therefore of universal interest to have the most complete set of values possible. A survey of equilibrium values of (in the low concentration limit) reported in the literature for the International Temperature Scale of 1990 fixed points of Hg, Ga, In, Sn, Zn, Al, Au, Ag, and Cu is presented. In addition, thermodynamic calculations of using MTDATA are presented for 170 binary systems. In total, the combined values of from all available sources for 430 binary systems are presented. In addition, by considering all available values of for impurities in 25 different metal solvents (1300 binary systems) enough data are available to characterize patterns in the value of for a given impurity as a function of its position in the periodic table. This enables prediction of for a significant number of binary systems for which data and calculations are unavailable. By combining data from many sources, values of for solutes (atomic number from 1 to 94) in ITS-90 fixed points from Hg to Cu are suggested, together with some tentative predicted values where literature data and calculations are unavailable.
Derivation of dose conversion factors for tritium
Killough, G. G.
1982-03-01
For a given intake mode (ingestion, inhalation, absorption through the skin), a dose conversion factor (DCF) is the committed dose equivalent to a specified organ of an individual per unit intake of a radionuclide. One also may consider the effective dose commitment per unit intake, which is a weighted average of organ-specific DCFs, with weights proportional to risks associated with stochastic radiation-induced fatal health effects, as defined by Publication 26 of the International Commission on Radiological Protection (ICRP). This report derives and tabulates organ-specific dose conversion factors and the effective dose commitment per unit intake of tritium. These factors are based on a steady-state model of hydrogen in the tissues of ICRP's Reference Man (ICRP Publication 23) and equilibrium of specific activities between body water and other tissues. The results differ by 27 to 33% from the estimate on which ICRP Publication 30 recommendations are based. The report also examines a dynamic model of tritium retention in body water, mineral bone, and two compartments representing organically-bound hydrogen. This model is compared with data from human subjects who were observed for extended periods. The manner of combining the dose conversion factors with measured or model-predicted levels of contamination in man's exposure media (air, drinking water, soil moisture) to estimate dose rate to an individual is briefly discussed.
Mode conversion in plasmas with two-dimensional inhomogeneities
NASA Astrophysics Data System (ADS)
Nassiri-Mofakham, Nora; Sabzevari, Bijan Sh.
2006-02-01
Most of the mode conversion theories considered so far assume only a plane-layered medium, i.e. a medium where the parameters depend on one spatial coordinate. We generalize the mode-conversion method of Cairns and Lashmore-Davies to plasmas with two-dimensional inhomogeneities. In the method presented here, the frequencies ω_1 and ω_2 of the uncoupled modes belonging to two different dispersion equations are considered as functions of the space variable r and the wave vector k and are coupled together via a small quantity η. We calculate the energy transmission and conversion coefficients analytically by solving two coupled wave amplitude equations in the electron cyclotron range of frequencies. The results are applicable to electron Bernstein wave heating of plasmas with two-dimensional inhomogeneity, e.g. spherical tokamaks.
Conversion of para and ortho hydrogen in the Jovian planets
NASA Technical Reports Server (NTRS)
Massie, S. T.; Hunten, D. M.
1982-01-01
A mechanism is proposed which partially equilibrates the para and ortho rotational levels of molecular hydrogen in the atmospheres of Jupiter, Saturn, and Uranus. Catalytic reactions between the free-radical surface sites of aerosol particles and hydrogen modecules yield significant equilibration near 1 bar pressure, if the efficiency of conversion per collision is between 10 to the -8th and 10 to the -10th and the effective eddy mixing coefficient is 10,000 sq cm/sec. At lower pressures the ortho-para ratio retains the value at the top of the cloud layer, except for a very small effect from conversion in the thermosphere. The influence of conversion on the specific heat and adiabatic lapse rate is also investigated. The effect is found to be generally small, though is can rise to 10% inside the aerosol layer.
Selecting a Retrospective Conversion Vendor.
ERIC Educational Resources Information Center
Lisowski, Andrew; Sessions, Judith
1984-01-01
Discussion of using vendors for retrospective conversion of library catalogs rather than in-house projects highlights reasons to consider vendors, four conversion methodologies, and vendor selection criteria (database, non-matches, local data, accuracy, charging, schedule, product delivery time, local system compatibility, MARC format, impact on…
In Conversation with Jim Blair
ERIC Educational Resources Information Center
Holman, Andrew
2012-01-01
Jim Blair is the only consultant nurse working with people with learning disabilities in the country. His job helps make people better and saves money. This article shares a conversation with Jim Blair. In the conversation, Blair says he is unhappy Valuing People programme did not do as much as it could have done. Jim is worried all the changes,…
Language Teacher Educators Collaborative Conversations.
ERIC Educational Resources Information Center
Bailey, Francis; Hawkins, Maggie; Irujo, Suzanne; Larsen-Freeman, Diane; Rintell, Ellen; Willett, Jerri
1998-01-01
Conveys the power and value of collaborative conversation among a small group of language teacher educators who meet regularly to discuss practice. Excerpts from a discussion are presented to show a sample of real issues the teachers face and illustrate how the conversations allow ongoing feedback about real dilemmas from a supportive community of…
Older Siblings as Conversational Partners.
ERIC Educational Resources Information Center
Hoff-Ginsberg, Erika; Krueger, Wendy M.
1991-01-01
Discusses a study of conversational dyadic interaction between children aged 1.5 to 3 years; their 4-, 5-, 7-, or 8-year-old siblings; and their mothers. Mothers were more supportive conversational partners and adapted their level of speech more than siblings. (GH)
Record Conversion at Oregon State.
ERIC Educational Resources Information Center
Watkins, Deane
1985-01-01
Describes the conversion of card catalog records at William Jasper Kerr Library, Oregon State University, to an online system. Discussion covers the use of OCLC and student assistants, procedures and specifications, and problems associated with massive retrospective conversion needs and uncertain budget allocations. Eight sources are recommended.…
Faculty Meetings: Hidden Conversational Dynamics
ERIC Educational Resources Information Center
Bowman, Richard F.
2015-01-01
In the everydayness of faculty meetings, collegial conversations mirror distinctive dynamics and practices, which either enhance or undercut organizational effectiveness. A cluster of conversational practices affect how colleagues connect, engage, interact, and influence others during faculty meetings in diverse educational settings. The…
Conversational Competence in Academic Settings
ERIC Educational Resources Information Center
Bowman, Richard F.
2014-01-01
Conversational competence is a process, not a state. Ithaca does not exist, only the voyage to Ithaca. Vibrant campuses are a series of productive conversations. At its core, communicative competence in academic settings mirrors a collective search for meaning regarding the purpose and direction of a campus community. Communicative competence…
Life and Literacy in Haiti: A Conversation with Jocelyne Trouillot
ERIC Educational Resources Information Center
Lehman, Barbara A.; Logan, Cheryl L.
2011-01-01
A year after the earthquake that devastated Haiti in January 2010, Lehman and Logan have a virtual conversation with Jocelyne Trouillot, author and publisher of Haitian Creole children's books, founder of the Haiti section of the International Board on Books for Young People, and head of the Universite Caraibe in Port-au-Prince. They discuss the…
English Language Learners in Higher Education: An Exploratory Conversation
ERIC Educational Resources Information Center
Harrison, Jamie; Shi, Hong
2016-01-01
This article discusses an exploratory conversation between a newly hired assistant professor of ESOL Education and one of her graduate level students taking the methods and materials course. The graduate student was an English learner (international student), and therefore offered this new professor an opportunity to explore her practice of…
Push-n-Go: A Dynamic Energy Conversion Lesson.
ERIC Educational Resources Information Center
Taylor, Beverly A. P.
1998-01-01
Focuses on the use of push and go toys to discuss with students how the toy acquires potential energy when work is done on it and how this energy is stored in the internal mechanism for later conversion into kinetic energy. (DDR)
State of Practice for Emerging Waste Conversion Technologies
RTI International (RTI) was contracted by the U.S. Environmental Protection Agency (EPA), Office of Research and Development to conduct research to prepare a “State of Practice” report to support State and local decision-makers on the subject of emerging waste conversion technolo...
26 CFR 1.1001-5 - European Monetary Union (conversion to the euro).
Code of Federal Regulations, 2010 CFR
2010-04-01
... 26 Internal Revenue 11 2010-04-01 2010-04-01 true European Monetary Union (conversion to the euro). 1.1001-5 Section 1.1001-5 Internal Revenue INTERNAL REVENUE SERVICE, DEPARTMENT OF THE TREASURY (CONTINUED) INCOME TAX (CONTINUED) INCOME TAXES Determination of Amount of and Recognition of Gain Or...
The Effect of Internal Relaxation on Optoacoustic Conversion in Liquids.
1988-02-05
optical energy the time dependance of the acoustic pressure is determined by the size and shape of the excitation zone. This research was concerned with the...excitation zone in determining the time dependance of the acoustic pressure, and to 20 DISTRIBUTION /AVAILABILITY OF ABSTRACT 21 ABSTRACT SECURITY...considerations, which accurately predict the optoacoustic signal in such cases. The results show that for a short pulse of optical energy the time dependance of
Career Techniques and Interventions: Themes from an International Conversation
ERIC Educational Resources Information Center
Feller, Rich W.; Russell, Martha; Whichard, Judy A.
2005-01-01
The need for appropriate, timely, and increasingly comprehensive career development and education programs continues to escalate. It is interesting that despite the differences in cultures, religions, economies, political systems, and education structures, many countries face similar challenges when designing and implementing career development…
Commentary on Coefficient Alpha: A Cautionary Tale
ERIC Educational Resources Information Center
Green, Samuel B.; Yang, Yanyun
2009-01-01
The general use of coefficient alpha to assess reliability should be discouraged on a number of grounds. The assumptions underlying coefficient alpha are unlikely to hold in practice, and violation of these assumptions can result in nontrivial negative or positive bias. Structural equation modeling was discussed as an informative process both to…
Implications of NGA for NEHRP site coefficients
Borcherdt, Roger D.
2012-01-01
Three proposals are provided to update tables 11.4-1 and 11.4-2 of Minimum Design Loads for Buildings and Other Structures (7-10), by the American Society of Civil Engineers (2010) (ASCE/SEI 7-10), with site coefficients implied directly by NGA (Next Generation Attenuation) ground motion prediction equations (GMPEs). Proposals include a recommendation to use straight-line interpolation to infer site coefficients at intermediate values of ̅vs (average shear velocity). Site coefficients are recommended to ensure consistency with ASCE/SEI 7-10 MCER (Maximum Considered Earthquake) seismic-design maps and simplified site-specific design spectra procedures requiring site classes with associated tabulated site coefficients and a reference site class with unity site coefficients. Recommended site coefficients are confirmed by independent observations of average site amplification coefficients inferred with respect to an average ground condition consistent with that used for the MCER maps. The NGA coefficients recommended for consideration are implied directly by the NGA GMPEs and do not require introduction of additional models.
Decay of (p,q)-Fourier coefficients.
Edmunds, David E; Gurka, Petr; Lang, Jan
2014-10-08
We show that essentially the speed of decay of the Fourier sine coefficients of a function in a Lebesgue space is comparable to that of the corresponding coefficients with respect to the basis formed by the generalized sine functions sin p,q .
A gain-coefficient switched Alexandrite laser
NASA Astrophysics Data System (ADS)
Lee, Chris J.; van der Slot, Peter J. M.; Boller, Klaus-J.
2013-01-01
We report on a gain-coefficient switched Alexandrite laser. An electro-optic modulator is used to switch between high and low gain states by making use of the polarization dependent gain of Alexandrite. In gain-coefficient switched mode, the laser produces 85 ns pulses with a pulse energy of 240 mJ at a repetition rate of 5 Hz.
Coefficient Alpha Bootstrap Confidence Interval under Nonnormality
ERIC Educational Resources Information Center
Padilla, Miguel A.; Divers, Jasmin; Newton, Matthew
2012-01-01
Three different bootstrap methods for estimating confidence intervals (CIs) for coefficient alpha were investigated. In addition, the bootstrap methods were compared with the most promising coefficient alpha CI estimation methods reported in the literature. The CI methods were assessed through a Monte Carlo simulation utilizing conditions…
Calculator program set up for film coefficients
Gracey, J.O.; Teter, D.L.
1982-11-15
Describes a mechanized computation scheme for the film coefficients used in heat transfer calculations designed for the Texas Instruments TI-59 programmable calculator. Presents tables showing application conditions (small diagram included) and the corresponding heat transfer equations for 10 heat flow situations; symbols used; user instructions, a complete film coefficient program; and storage assignments. Example problem and corresponding printout are given.
Meta-Analysis of Coefficient Alpha
ERIC Educational Resources Information Center
Rodriguez, Michael C.; Maeda, Yukiko
2006-01-01
The meta-analysis of coefficient alpha across many studies is becoming more common in psychology by a methodology labeled reliability generalization. Existing reliability generalization studies have not used the sampling distribution of coefficient alpha for precision weighting and other common meta-analytic procedures. A framework is provided for…
Direct and converse measurements of electrostriction in low permittivity dielectrics
NASA Astrophysics Data System (ADS)
Yimnirun, Rattikorn
Electrostriction is the basic electromechanical coupling mechanism in all insulators. For most low permittivity dielectrics, the electrostrictive effects are extremely small, and are often obscured by other phenomena, making them difficult to measure. This study presents electrostriction measurements on low permittivity single crystals, ceramics, glasses, glass- ceramics, and polymers by two independent techniques. A single-beam interferometer with the capability of resolving 10-4 Å in the field- induced displacement was used for the direct coefficient measurements. For the converse technique, a dynamic compressometer was constructed to measure stress-induced changes in capacitance as small as 10-17 F. Problems associated with the measurements, along with procedures designed to eliminate or minimize these problems were discussed. To obtain the true electrostrictive coefficients, Maxwell stress and thermal stress corrections are required for the direct method, while a stress-induced geometric correction must be accounted for in the converse measurement. These corrections are found to be very significant in low permittivity dielectrics. Nevertheless, the results from the two methods are, with a few exceptions, in fairly good agreement. This study presents for the first time the electrostrictive coefficients of several important electronic packaging materials including Al2O 3, BeO, MgO, silica glass, and other engineering glass-ceramics and polymers. Most of the low permittivity dielectrics studied have electrostrictive M coefficients between 10-23 to 10-21 m2/V2, far smaller than the M coefficients of 10-16 m2/V2 in relaxor ferroelectrics and 10-18 m2/V2 in very compliant polymers such as polyurethane. All the materials studied exhibit positive longitudinal coefficients, while the transverse coefficients can be either positive or negative. In units of 10-21 m2/V2, the M11 coefficients of common engineering polymers ranged from +0.4 in polystyrene to +12.7 in
Estimation of the simple correlation coefficient.
Shieh, Gwowen
2010-11-01
This article investigates some unfamiliar properties of the Pearson product-moment correlation coefficient for the estimation of simple correlation coefficient. Although Pearson's r is biased, except for limited situations, and the minimum variance unbiased estimator has been proposed in the literature, researchers routinely employ the sample correlation coefficient in their practical applications, because of its simplicity and popularity. In order to support such practice, this study examines the mean squared errors of r and several prominent formulas. The results reveal specific situations in which the sample correlation coefficient performs better than the unbiased and nearly unbiased estimators, facilitating recommendation of r as an effect size index for the strength of linear association between two variables. In addition, related issues of estimating the squared simple correlation coefficient are also considered.
An agreement coefficient for image comparison
Ji, L.; Gallo, K.
2006-01-01
Combination of datasets acquired from different sensor systems is necessary to construct a long time-series dataset for remotely sensed land-surface variables. Assessment of the agreement of the data derived from various sources is an important issue in understanding the data continuity through the time-series. Some traditional measures, including correlation coefficient, coefficient of determination, mean absolute error, and root mean square error, are not always optimal for evaluating the data agreement. For this reason, we developed a new agreement coefficient for comparing two different images. The agreement coefficient has the following properties: non-dimensional, bounded, symmetric, and distinguishable between systematic and unsystematic differences. The paper provides examples of agreement analyses for hypothetical data and actual remotely sensed data. The results demonstrate that the agreement coefficient does include the above properties, and therefore is a useful tool for image comparison. ?? 2006 American Society for Photogrammetry and Remote Sensing.
Petite fabrique de conversation francaise (Little Factory of French Conversation).
ERIC Educational Resources Information Center
Dubroca, Danielle
1987-01-01
A technique using dialogues and realistic prose passages from the works of Georges Simenon and Simone de Beauvoir to teach French conversational skills at the college level is explained and illustrated. (MSE)
Roadmap on optical energy conversion
Boriskina, Svetlana V.; Green, Martin A.; Catchpole, Kylie; Yablonovitch, Eli; Beard, Matthew C.; Okada, Yoshitaka; Lany, Stephan; Gershon, Talia; Zakutayev, Andriy; Tahersima, Mohammad H.; Sorger, Volker J.; Naughton, Michael J.; Kempa, Krzysztof; Dagenais, Mario; Yao, Yuan; Xu, Lu; Sheng, Xing; Bronstein, Noah D.; Rogers, John A.; Alivisatos, A. Paul; Nuzzo, Ralph G.; Gordon, Jeffrey M.; Wu, Di M.; Wisser, Michael D.; Salleo, Alberto; Dionne, Jennifer; Bermel, Peter; Greffet, Jean-Jacques; Celanovic, Ivan; Soljacic, Marin; Manor, Assaf; Rotschild, Carmel; Raman, Aaswath; Zhu, Linxiao; Fan, Shanhui; Chen, Gang
2016-06-24
For decades, progress in the field of optical (including solar) energy conversion was dominated by advances in the conventional concentrating optics and materials design. In recent years, however, conceptual and technological breakthroughs in the fields of nanophotonics and plasmonics combined with a better understanding of the thermodynamics of the photon energy-conversion processes reshaped the landscape of energy-conversion schemes and devices. Nanostructured devices and materials that make use of size quantization effects to manipulate photon density of states offer a way to overcome the conventional light absorption limits. Novel optical spectrum splitting and photon-recycling schemes reduce the entropy production in the optical energy-conversion platforms and boost their efficiencies. Optical design concepts are rapidly expanding into the infrared energy band, offering new approaches to harvest waste heat, to reduce the thermal emission losses, and to achieve noncontact radiative cooling of solar cells as well as of optical and electronic circuitries. Light-matter interaction enabled by nanophotonics and plasmonics underlie the performance of the third- and fourth-generation energy-conversion devices, including up- and down-conversion of photon energy, near-field radiative energy transfer, and hot electron generation and harvesting. Finally, the increased market penetration of alternative solar energy-conversion technologies amplifies the role of cost-driven and environmental considerations. This roadmap on optical energy conversion provides a snapshot of the state of the art in optical energy conversion, remaining challenges, and most promising approaches to address these challenges. Leading experts authored 19 focused short sections of the roadmap where they share their vision on a specific aspect of this burgeoning research field. The roadmap opens up with a tutorial section, which introduces major concepts and terminology. It is our hope that the roadmap
Roadmap on optical energy conversion
NASA Astrophysics Data System (ADS)
Boriskina, Svetlana V.; Green, Martin A.; Catchpole, Kylie; Yablonovitch, Eli; Beard, Matthew C.; Okada, Yoshitaka; Lany, Stephan; Gershon, Talia; Zakutayev, Andriy; Tahersima, Mohammad H.; Sorger, Volker J.; Naughton, Michael J.; Kempa, Krzysztof; Dagenais, Mario; Yao, Yuan; Xu, Lu; Sheng, Xing; Bronstein, Noah D.; Rogers, John A.; Alivisatos, A. Paul; Nuzzo, Ralph G.; Gordon, Jeffrey M.; Wu, Di M.; Wisser, Michael D.; Salleo, Alberto; Dionne, Jennifer; Bermel, Peter; Greffet, Jean-Jacques; Celanovic, Ivan; Soljacic, Marin; Manor, Assaf; Rotschild, Carmel; Raman, Aaswath; Zhu, Linxiao; Fan, Shanhui; Chen, Gang
2016-07-01
For decades, progress in the field of optical (including solar) energy conversion was dominated by advances in the conventional concentrating optics and materials design. In recent years, however, conceptual and technological breakthroughs in the fields of nanophotonics and plasmonics combined with a better understanding of the thermodynamics of the photon energy-conversion processes reshaped the landscape of energy-conversion schemes and devices. Nanostructured devices and materials that make use of size quantization effects to manipulate photon density of states offer a way to overcome the conventional light absorption limits. Novel optical spectrum splitting and photon-recycling schemes reduce the entropy production in the optical energy-conversion platforms and boost their efficiencies. Optical design concepts are rapidly expanding into the infrared energy band, offering new approaches to harvest waste heat, to reduce the thermal emission losses, and to achieve noncontact radiative cooling of solar cells as well as of optical and electronic circuitries. Light-matter interaction enabled by nanophotonics and plasmonics underlie the performance of the third- and fourth-generation energy-conversion devices, including up- and down-conversion of photon energy, near-field radiative energy transfer, and hot electron generation and harvesting. Finally, the increased market penetration of alternative solar energy-conversion technologies amplifies the role of cost-driven and environmental considerations. This roadmap on optical energy conversion provides a snapshot of the state of the art in optical energy conversion, remaining challenges, and most promising approaches to address these challenges. Leading experts authored 19 focused short sections of the roadmap where they share their vision on a specific aspect of this burgeoning research field. The roadmap opens up with a tutorial section, which introduces major concepts and terminology. It is our hope that the roadmap
Energy conversion and storage program
NASA Astrophysics Data System (ADS)
1990-12-01
The Energy Conversion and Storage Program applies chemical and chemical engineering principles to solve problems in (1) production of new synthetic fuels; (2) development of high-performance rechargeable batteries and fuel cells; (3) development of advanced thermochemical processes for energy storage; (4) characterization of complex chemical processes; and (5) the application of novel materials for energy conversion and transmission. Projects focus on transport-process principles, chemical kinetics, thermodynamics, separation processes, organic and physical chemistry, and advanced methods of analysis. The following five areas are discussed: electrochemical energy storage and conversion; microstructured materials; biotechnology; fossil fuels; and high temperature superconducting processing. Papers have been processed separately for inclusion on the data base.
Advanced Thermal Energy Conversion of Temperature under 300°C by Thermoelectric Conversion Method
NASA Astrophysics Data System (ADS)
Ueda, Tadashi; Uchida, Yoshiyuki; Shingu, Hiroyasu
Many approaches have been developing for energy conversion throughout the world. However, it is difficult to achieve the global warming countermeasure based on “The Kyoto protocol”. Until now effective utilization of low temperature thermal energy (under 300°C) is not advancing one. For example, effective utilization method has not been established for waste heat energy which arise from industry machine tools, automobiles, internal combustion engines and thermal energy from natural environment, etc. In this paper, we reported the experiment for effective utilizing of low temperature (under 300°C) thermal energy conversion. The device used for the measurement is a copper thermo device. Thermo electromotive force of 150mW/cm2 was obtained at 200°C. The obtained thermo electromotive force is about 15 times higher in comparison with generally used alumal-chromal thermocouple. Our aim is that utilizes low temperature thermal energy effectively by converting into electricity.
Theoretical calculation of Joule-Thomson coefficient by using third virial coefficient
NASA Astrophysics Data System (ADS)
Mamedov, Bahtiyar Akber; Somuncu, Elif; Askerov, Iskender M.
2017-02-01
The Joule-Thomson coefficient has been theoretical investigated by using third virial coefficient. Established expressions enable us accurate and rapid calculations of Joule-Thomson coefficient. As seen from numerical results the analytical expressions for third virial coefficients are a very useful, giving a very fast method to calculate other thermodynamics properties of gasses. As an example, the calculation results have been successfully tested by using various literature data.
Path-counting formulas for generalized kinship coefficients and condensed identity coefficients.
Cheng, En; Ozsoyoglu, Z Meral
2014-01-01
An important computation on pedigree data is the calculation of condensed identity coefficients, which provide a complete description of the degree of relatedness of two individuals. The applications of condensed identity coefficients range from genetic counseling to disease tracking. Condensed identity coefficients can be computed using linear combinations of generalized kinship coefficients for two, three, four individuals, and two pairs of individuals and there are recursive formulas for computing those generalized kinship coefficients (Karigl, 1981). Path-counting formulas have been proposed for the (generalized) kinship coefficients for two (three) individuals but there have been no path-counting formulas for the other generalized kinship coefficients. It has also been shown that the computation of the (generalized) kinship coefficients for two (three) individuals using path-counting formulas is efficient for large pedigrees, together with path encoding schemes tailored for pedigree graphs. In this paper, we propose a framework for deriving path-counting formulas for generalized kinship coefficients. Then, we present the path-counting formulas for all generalized kinship coefficients for which there are recursive formulas and which are sufficient for computing condensed identity coefficients. We also perform experiments to compare the efficiency of our method with the recursive method for computing condensed identity coefficients on large pedigrees.
[Study on influence of source spectra on retro-reflection coefficient].
Yang, Yong; Zhang, Zhi-Yong; Li, Xu; Zhu, Chuan-Zheng; Zhu, Li-Wei; Sun, Yue
2014-01-01
Based on emission spectra of light sources and reflectivity curve of retroreflective materials, relative relations and changing trend of retroreflection coefficient of materials in different light sources was researched through data fitting. The tests were carried on the standard A light source test system. One kind of test results are emission spectra of halogen light source, xenon light source and white LED with different color temperature. And another kind of results are reflectivity curve of retroreflective materials with five different colors such as red, yellow, white, green and blue. Then the correction factors of retroreflection coefficient in different light sources were obtained by test results and data fitting. It shows that the change inlight source spectra has no effect on retroreflection coefficient of white material, which has continuous reflectivity curve in the range of visible light, but has some effect on retroreflection coefficient of the other color materials. Compared with halogen light source, white LED and xenon light source can increase retroreflection coefficient of red and yellow materials, and the increase in the color temperature of light source will decrease retroreflection coefficient of red and yellow materials by the maximum of 47.7% and 4.9%. Conversely, retroreflection coefficient of green and blue materials will increase by the maximum of 16.5% and 28.9%.
High-Performance Photothermal Conversion of Narrow-Bandgap Ti2 O3 Nanoparticles.
Wang, Juan; Li, Yangyang; Deng, Lin; Wei, Nini; Weng, Yakui; Dong, Shuai; Qi, Dianpeng; Qiu, Jun; Chen, Xiaodong; Wu, Tom
2017-01-01
Ti2 O3 nanoparticles with high performance of photothermal conversion are demonstrated for the first time. Benefiting from the nanosize and narrow-bandgap features, the Ti2 O3 nanoparticles possess strong light absorption and nearly 100% internal solar-thermal conversion efficiency. Furthermore, Ti2 O3 -nanoparticle-based thin film shows potential use in seawater desalination and purification.
Soccer ball lift coefficients via trajectory analysis
NASA Astrophysics Data System (ADS)
Goff, John Eric; Carré, Matt J.
2010-07-01
We performed experiments in which a soccer ball was launched from a machine while two high-speed cameras recorded portions of the trajectory. Using the trajectory data and published drag coefficients, we extracted lift coefficients for a soccer ball. We determined lift coefficients for a wide range of spin parameters, including several spin parameters that have not been obtained by today's wind tunnels. Our trajectory analysis technique is not only a valuable tool for professional sports scientists, it is also accessible to students with a background in undergraduate-level classical mechanics.
Spatial correlation coefficient images for ultrasonic detection.
Cepel, Raina; Ho, K C; Rinker, Brett A; Palmer, Donald D; Lerch, Terrence P; Neal, Steven P
2007-09-01
In ultrasonics, image formation and detection are generally based on signal amplitude. In this paper, we introduce correlation coefficient images as a signal-amplitude independent approach for image formation. The correlation coefficients are calculated between A-scans digitized at adjacent measurement positions. In these images, defects are revealed as regions of high or low correlation relative to the background correlations associated with noise. Correlation coefficient and C-scan images are shown to demonstrate flat-bottom-hole detection in a stainless steel annular ring and crack detection in an aluminum aircraft structure.
On the emission coefficient of uranium plasmas.
NASA Technical Reports Server (NTRS)
Schneider, R. T.; Campbell, H. D.; Mack, J. M.
1973-01-01
The emission coefficient for uranium plasmas (temperature: 8000 K) was measured for the wavelength range from 1200 to 6000 A. The results were compared to theoretical calculations and other measurements. Reasonable agreement between theoretical predictions and our measurements was found in the region from 1200 to 2000 A. Although it was difficult to make absolute comparisons among the different reported measurements, considerable disagreement was found for the higher wavelength region. A short discussion regarding the overall comparisons is given, and final suggestions are made as to the most appropriate emission coefficient values to be used in future design calculations. The absorption coefficient for the same wavelength interval is also reported.
Diffusion coefficients in leaflets of bilayer membranes.
Seki, Kazuhiko; Mogre, Saurabh; Komura, Shigeyuki
2014-02-01
We study diffusion coefficients of liquid domains by explicitly taking into account the two-layered structure called leaflets of the bilayer membrane. In general, the velocity fields associated with each leaflet are different and the layers sliding past each other cause frictional coupling. We obtain analytical results of diffusion coefficients for a circular liquid domain in a leaflet, and quantitatively study their dependence on the interleaflet friction. We also show that the diffusion coefficients diverge in the absence of coupling between the bilayer and solvents, even when the interleaflet friction is taken into account. In order to corroborate our theory, the effect of the interleaflet friction on the correlated diffusion is examined.
Spreading coefficients of aliphatic hydrocarbons on water
Takii, Taichi; Mori, Y.H. . Dept. of Mechanical Engineering)
1993-11-01
Experiments have been performed to determine the equilibrium spreading coefficients of some aliphatic hydrocarbons (C[sub 6]C[sub 10]) on water. The thickness of a discrete lens of each hydrocarbon sample floating on a stagnant water pool was measured interferometrically and used to calculate the spreading coefficient of the hydrocarbon with the aid of Langmuir's capillarity theory. The dependences of the spreading coefficient, thus observed, on temperature (0--50 C) and on the number of carbon atoms in the hydrocarbon molecule are in qualitative agreement with the predictions based on the Lifshitz theory of van der Waals forces.
Dynamic Conversion Working Group Summary
NASA Technical Reports Server (NTRS)
Chaffee, N.; Sovie, R. J.
1984-01-01
The potential of dynamic conversion devices for use in solar and nuclear dynamic space power systems was addressed. Conversion systems considered were based on the use of Brayton, Stirling and Rankine cycles. Both organic and liquid metal Rankine cycles were included. The basic system considerations were: mission requirements, system attributes, system options, technology issues and constraints, and priorities of needed technology development. Mission requirements, where dynamic conversion was considered enabling technology, were identified along with the associated power levels and potential energy sources. When considering the system options special attention was given to recommend operating temperatures and other significant discriminators. A list of prioritized tasks considered important for the successful development of dynamic conversion systems for 1995 and beyond was compiled.
Conversational topics in transsexual persons.
Van Borsel, John; Cayzeele, Miet; Heirman, Eva; T'sjoen, Guy
2014-06-01
Abstract In general, speech language therapy for transsexual persons focuses on pitch and pitch variation and more recently also on resonance. Other communicative aspects are dealt with far less often, especially language. This study investigated to what extent conversational topics might need attention in therapy for transsexual persons. A total of 111 males, 116 females, 28 male-to-female and 18 female-to-male transsexuals were asked to indicate on a list with 34 topics how often they speak about each topic (never, sometimes, often) in conversations with males, with females and in a gender mixed group. Results showed that transsexual persons behave in accordance with the desired gender. However, they also tend to adopt a position depending on the gender of their conversational partner. It can be concluded that in general it is not necessary to pay attention to conversational topics in therapy for transsexual persons.
Energy conversion at dipolarization fronts
NASA Astrophysics Data System (ADS)
Khotyaintsev, Yu. V.; Divin, A.; Vaivads, A.; André, M.; Markidis, S.
2017-02-01
We use multispacecraft observations by Cluster in the Earth's magnetotail and 3-D particle-in-cell simulations to investigate conversion of electromagnetic energy at the front of a fast plasma jet. We find that the major energy conversion is happening in the Earth (laboratory) frame, where the electromagnetic energy is being transferred from the electromagnetic field to particles. This process operates in a region with size of the order several ion inertial lengths across the jet front, and the primary contribution to E·j is coming from the motional electric field and the ion current. In the frame of the front we find fluctuating energy conversion with localized loads and generators at sub-ion scales which are primarily related to the lower hybrid drift instability excited at the front; however, these provide relatively small net energy conversion.
Enzymes for improved biomass conversion
Brunecky, Roman; Himmel, Michael E.
2016-02-02
Disclosed herein are enzymes and combinations of the enzymes useful for the hydrolysis of cellulose and the conversion of biomass. Methods of degrading cellulose and biomass using enzymes and cocktails of enzymes are also disclosed.
Virginia Hamilton: Continuing the Conversation.
ERIC Educational Resources Information Center
Mikkelsen, Nina
1995-01-01
Relates the latest installment of a continuing conversation between the author and Virginia Hamilton. Discusses ethnicity and identity, environmental issues, the creative process, and the way heritage, history, and family storytelling affect a writer's work. (RS)
NASA thermionic-conversion program
NASA Technical Reports Server (NTRS)
Morris, J. F.
1977-01-01
Technological processes in out-of-core thermionic energy conversion are described. The emphasis was on high temperature electrode materials and system engineering of converter geometries to produce practical power densities.
Effective communication during difficult conversations.
Polito, Jacquelyn M
2013-06-01
A strong interest and need exist in the workplace today to master the skills of conducting difficult conversations. Theories and strategies abound, yet none seem to have found the magic formula with universal appeal and success. If it is such an uncomfortable skill to master is it better to avoid or initiate such conversations with employees? Best practices and evidence-based management guide us to the decision that quality improvement dictates effective communication, even when difficult. This brief paper will offer some suggestions for strategies to manage difficult conversations with employees. Mastering the skills of conducting difficult conversations is clearly important to keeping lines of communication open and productive. Successful communication skills may actually help to avert confrontation through employee engagement, commitment and appropriate corresponding behavior
A Conversation Well Worth Remembering
ERIC Educational Resources Information Center
Woolven-Allen, John
2009-01-01
To mark the 200th anniversary of Charles Darwin's birth, a special event was held at Oxford, which included a "Conversation" between Professor Richard Dawkins and Bishop Richard Harries. Here we present a personal reminiscence of the event.
Development of Geodetic Conversion Routines
2001-09-01
horizontal and vertical datums in the United States. It provides examples to invoke the Dynamic Link Library and use conversion functions in various programming languages, such as Visual Basic , C, and C++.
Third order transport coefficients for electrons and positrons in gases
NASA Astrophysics Data System (ADS)
Dujko, Sasa; Simonovic, Ilija; White, Ronald; Petrovic, Zoran
2016-09-01
Third order transport coefficients (the skewness tensor) of the electron and positron swarms, in atomic and molecular gases, are investigated. The knowledge of the skewness tensor is necessary for the conversion of the hydrodynamic transport coefficients to the arrival time and steady-state Townsend transport data as well as for the determination of the deviations of the spatial density profiles from an ideal Gaussian. In this work, we investigate the structure and symmetries along individual elements of the skewness tensor by the group projector method. Individual components of the skewness tensor are calculated using a Monte Carlo simulation technique and multi term theory for solving the Boltzmann equation. Results obtained by these two methods are in excellent agreement. We extend previous studies by considering the sensitivity of the skewness components to explicit and implicit effects of non-conservative collisions, post-ionization energy partitioning, and inelastic collisions. The errors of the two term approximation for solving the Boltzmann equation are highlighted. We also investigate the influence of a magnetic field on the skewness tensor in varying configurations of electric and magnetic fields. Among many interesting points, we have observed a strong correlation between the skewness and diffusion.
Electroelastodynamics of flexoelectric energy conversion and harvesting in elastic dielectrics
NASA Astrophysics Data System (ADS)
Moura, Adriane G.; Erturk, Alper
2017-02-01
Flexoelectricity is the generation of electric polarization by the application of a non-uniform mechanical strain field, i.e., a strain gradient. This phenomenon is exhibited by all elastic dielectrics, but is expected to be significant only at very small scales. Energy harvesting is a potential future application area of flexoelectricity to enable next-generation ultra-low-power MEMS/NEMS devices by converting ambient vibrations into electricity. In this paper, an electroelastodynamic framework is presented and analyzed for flexoelectric energy harvesting from strain gradient fluctuations in centrosymmetric dielectrics, by accounting for the presence of a finite electrical load across the surface electrodes as well as two-way electromechanical coupling, and capturing the size effect. The flexoelectric energy harvester model is based on the Euler-Bernoulli beam theory and it assumes the main source of polarization to be static bulk flexoelectricity. Following recent efforts on the converse flexoelectric effect in finite samples, the proposed model properly accounts for thermodynamically consistent, symmetric direct and converse coupling terms. The transverse mode flexoelectric coupling coefficient (k) is obtained analytically as a direct measure of energy conversion; its dependence on the cantilever thickness and a material Figure of Merit (FoM) is shown. Size effects are further demonstrated by simulations of the electromechanical frequency response for a Strontium Titanate (STO) energy harvester at different geometric scales. It is obtained that the flexoelectric coupling coefficient of an STO cantilever for the fundamental bending mode increases from k ≈3.5 ×10-7 to k ≈0.33 as the thickness is reduced from mm- to nm-level. A critique of the experimentally identified large flexoelectric coefficient for Barium Strontium Titanate (BST) from the literature is also given with a coupling coefficient perspective.
Frequency conversion of structured light.
Steinlechner, Fabian; Hermosa, Nathaniel; Pruneri, Valerio; Torres, Juan P
2016-02-15
Coherent frequency conversion of structured light, i.e. the ability to manipulate the carrier frequency of a wave front without distorting its spatial phase and intensity profile, provides the opportunity for numerous novel applications in photonic technology and fundamental science. In particular, frequency conversion of spatial modes carrying orbital angular momentum can be exploited in sub-wavelength resolution nano-optics and coherent imaging at a wavelength different from that used to illuminate an object. Moreover, coherent frequency conversion will be crucial for interfacing information stored in the high-dimensional spatial structure of single and entangled photons with various constituents of quantum networks. In this work, we demonstrate frequency conversion of structured light from the near infrared (803 nm) to the visible (527 nm). The conversion scheme is based on sum-frequency generation in a periodically poled lithium niobate crystal pumped with a 1540-nm Gaussian beam. We observe frequency-converted fields that exhibit a high degree of similarity with the input field and verify the coherence of the frequency-conversion process via mode projection measurements with a phase mask and a single-mode fiber. Our results demonstrate the suitability of exploiting the technique for applications in quantum information processing and coherent imaging.
Frequency conversion of structured light
Steinlechner, Fabian; Hermosa, Nathaniel; Pruneri, Valerio; Torres, Juan P.
2016-01-01
Coherent frequency conversion of structured light, i.e. the ability to manipulate the carrier frequency of a wave front without distorting its spatial phase and intensity profile, provides the opportunity for numerous novel applications in photonic technology and fundamental science. In particular, frequency conversion of spatial modes carrying orbital angular momentum can be exploited in sub-wavelength resolution nano-optics and coherent imaging at a wavelength different from that used to illuminate an object. Moreover, coherent frequency conversion will be crucial for interfacing information stored in the high-dimensional spatial structure of single and entangled photons with various constituents of quantum networks. In this work, we demonstrate frequency conversion of structured light from the near infrared (803 nm) to the visible (527 nm). The conversion scheme is based on sum-frequency generation in a periodically poled lithium niobate crystal pumped with a 1540-nm Gaussian beam. We observe frequency-converted fields that exhibit a high degree of similarity with the input field and verify the coherence of the frequency-conversion process via mode projection measurements with a phase mask and a single-mode fiber. Our results demonstrate the suitability of exploiting the technique for applications in quantum information processing and coherent imaging. PMID:26875448
Frequency conversion of structured light
NASA Astrophysics Data System (ADS)
Steinlechner, Fabian; Hermosa, Nathaniel; Pruneri, Valerio; Torres, Juan P.
2016-02-01
Coherent frequency conversion of structured light, i.e. the ability to manipulate the carrier frequency of a wave front without distorting its spatial phase and intensity profile, provides the opportunity for numerous novel applications in photonic technology and fundamental science. In particular, frequency conversion of spatial modes carrying orbital angular momentum can be exploited in sub-wavelength resolution nano-optics and coherent imaging at a wavelength different from that used to illuminate an object. Moreover, coherent frequency conversion will be crucial for interfacing information stored in the high-dimensional spatial structure of single and entangled photons with various constituents of quantum networks. In this work, we demonstrate frequency conversion of structured light from the near infrared (803 nm) to the visible (527 nm). The conversion scheme is based on sum-frequency generation in a periodically poled lithium niobate crystal pumped with a 1540-nm Gaussian beam. We observe frequency-converted fields that exhibit a high degree of similarity with the input field and verify the coherence of the frequency-conversion process via mode projection measurements with a phase mask and a single-mode fiber. Our results demonstrate the suitability of exploiting the technique for applications in quantum information processing and coherent imaging.
Dielectric-Constant Gas Thermometry and the Relation to the Virial Coefficients
NASA Astrophysics Data System (ADS)
Gaiser, C.; Fellmuth, B.; Zandt, T.
2014-04-01
At PTB new dielectric-constant gas thermometry (DCGT) measurements were performed at the temperature of the triple point of water. As discussed recently in an accompanying paper, the main goal was the determination of the Boltzmann constant as a contribution to the international efforts directed to a new definition of the base unit kelvin via fixing the value of . Besides the linear term in the series expansion used for fitting the results of measurements of DCGT isotherms that reveals , in this paper the higher-order terms are analyzed. For retrieving highly accurate virial coefficients of helium from the data obtained at gas pressures up to 7 MPa, an extended DCGT working equation is developed. Applying this equation, information is deduced on the viral coefficients up to the fourth density virial coefficient. Finally, comparisons with the latest ab initio calculations for the second and third density virial coefficients as well as the second dielectric virial coefficient are performed.
Friction coefficient dependence on electrostatic tribocharging
NASA Astrophysics Data System (ADS)
Burgo, Thiago A. L.; Silva, Cristiane A.; Balestrin, Lia B. S.; Galembeck, Fernando
2013-08-01
Friction between dielectric surfaces produces patterns of fixed, stable electric charges that in turn contribute electrostatic components to surface interactions between the contacting solids. The literature presents a wealth of information on the electronic contributions to friction in metals and semiconductors but the effect of triboelectricity on friction coefficients of dielectrics is as yet poorly defined and understood. In this work, friction coefficients were measured on tribocharged polytetrafluoroethylene (PTFE), using three different techniques. As a result, friction coefficients at the macro- and nanoscales increase many-fold when PTFE surfaces are tribocharged, but this effect is eliminated by silanization of glass spheres rolling on PTFE. In conclusion, tribocharging may supersede all other contributions to macro- and nanoscale friction coefficients in PTFE and probably in other insulating polymers.
Universal relations of transport coefficients from holography
Cherman, Aleksey; Nellore, Abhinav
2009-09-15
We show that there are universal high-temperature relations for transport coefficients of plasmas described by a wide class of field theories with gravity duals. These theories can be viewed as strongly coupled large-N{sub c} conformal field theories deformed by one or more relevant operators. The transport coefficients we study are the speed of sound and bulk viscosity, as well as the conductivity, diffusion coefficient, and charge susceptibility of probe U(1) charges. We show that the sound bound v{sub s}{sup 2}{<=}1/3 is satisfied at high temperatures in these theories and also discuss bounds on the diffusion coefficient, the conductivity, and the bulk viscosity.
Second virial coefficient of one dimensional gas
Mijatovic, M.
1982-08-01
The second virial coefficient of a one dimensional gas is calculated using the expressions for the scattering amplitude. The scattering amplitude is chosen in the form of rational function of wave vector.
Heat transfer coefficient of cryotop during freezing.
Li, W J; Zhou, X L; Wang, H S; Liu, B L; Dai, J J
2013-01-01
Cryotop is an efficient vitrification method for cryopreservation of oocytes. It has been widely used owing to its simple operation and high freezing rate. Recently, the heat transfer performance of cryotop was studied by numerical simulation in several studies. However, the range of heat transfer coefficient in the simulation is uncertain. In this study, the heat transfer coefficient for cryotop during freezing process was analyzed. The cooling rates of 40 percent ethylene glycol (EG) droplet in cryotop during freezing were measured by ultra-fast measurement system and calculated by numerical simulation at different value of heat transfer coefficient. Compared with the results obtained by two methods, the range of the heat transfer coefficient necessary for the numerical simulation of cryotop was determined, which is between 9000 W/(m(2)·K) and 10000 W/(m (2)·K).
Friction coefficient dependence on electrostatic tribocharging.
Burgo, Thiago A L; Silva, Cristiane A; Balestrin, Lia B S; Galembeck, Fernando
2013-01-01
Friction between dielectric surfaces produces patterns of fixed, stable electric charges that in turn contribute electrostatic components to surface interactions between the contacting solids. The literature presents a wealth of information on the electronic contributions to friction in metals and semiconductors but the effect of triboelectricity on friction coefficients of dielectrics is as yet poorly defined and understood. In this work, friction coefficients were measured on tribocharged polytetrafluoroethylene (PTFE), using three different techniques. As a result, friction coefficients at the macro- and nanoscales increase many-fold when PTFE surfaces are tribocharged, but this effect is eliminated by silanization of glass spheres rolling on PTFE. In conclusion, tribocharging may supersede all other contributions to macro- and nanoscale friction coefficients in PTFE and probably in other insulating polymers.
Transonic Blunt Body Aerodynamic Coefficients Computation
NASA Astrophysics Data System (ADS)
Sancho, Jorge; Vargas, M.; Gonzalez, Ezequiel; Rodriguez, Manuel
2011-05-01
In the framework of EXPERT (European Experimental Re-entry Test-bed) accurate transonic aerodynamic coefficients are of paramount importance for the correct trajectory assessment and parachute deployment. A combined CFD (Computational Fluid Dynamics) modelling and experimental campaign strategy was selected to obtain accurate coefficients. A preliminary set of coefficients were obtained by CFD Euler inviscid computation. Then experimental campaign was performed at DNW facilities at NLR. A profound review of the CFD modelling was done lighten up by WTT results, aimed to obtain reliable values of the coefficients in the future (specially the pitching moment). Study includes different turbulence modelling and mesh sensitivity analysis. Comparison with the WTT results is explored, and lessons learnt are collected.
Virial coefficients and equation of state of the penetrable sphere model.
Viererblová, Linda; Kolafa, Jirí; Labík, Stanislav; Malijevský, Anatol
2010-01-07
We study the penetrable sphere (alias square mound) model in the fluid phase by means of the virial expansion, molecular dynamics simulations, and Ornstein-Zernike integral equation. The virial coefficients up to B(8) are expressed as polynomials in the Boltzmann factor with the coefficients calculated by a Monte Carlo integration. New data for pressure and internal energy are obtained by molecular dynamics simulations with attention paid to finite-size errors and properties of the Andersen thermostat. The data and virial coefficients are correlated by a formula for the Helmholtz free energy. We also propose a new closure for the Ornstein-Zernike equation and test several other closures.
Concordance correlation coefficient applied to discrete data.
Carrasco, Josep L; Jover, Lluis
2005-12-30
In any field in which decisions are subject to measurements, interchangeability between the methods used to obtain these measurements is essential. To consider methods as interchangeable, a certain degree of agreement is needed between the measurements they provide. The concordance correlation coefficient is an index that assesses the strength of agreement and it has been widely applied in situations in which measurements are made on a continuous scale. Recently the concordance correlation coefficient has been defined as a specific intraclass correlation coefficient estimated by the variance components of a Normal-Normal mixed linear model. Although this coefficient was defined for the continuous scale case, it may also be used with a discrete scale. In this case the data are often transformed and normalized, and the concordance correlation is applied. This study discusses the expression of the concordance correlation coefficient for discrete Poisson data by means of the Poisson-Normal generalized linear mixed model. The behaviour of the concordance correlation coefficient estimate is assessed by means of a simulation study, in which the estimates were compared using four models: three Normal-Normal mixed models with raw data, log-transformed data and square-root transformed data, and the Poisson-Normal generalized linear mixed model. An example is provided in which two different methods are used to measure CD34+ cells.
The megacycle, pulse-echo internal friction method has been used to measure carbon and nitrogen Snoek damping peaks in alpha - iron in the temperature range 300 to 400 C. The diffusion coefficient of nitrogen at 326 C so determined was in good agreement with the coefficient determined by a bulk desorption method. (Author)
Serious Illness Conversations in ESRD.
Mandel, Ernest I; Bernacki, Rachelle E; Block, Susan D
2016-12-28
Dialysis-dependent ESRD is a serious illness with high disease burden, morbidity, and mortality. Mortality in the first year on dialysis for individuals over age 75 years old approaches 40%, and even those with better prognoses face multiple hospitalizations and declining functional status. In the last month of life, patients on dialysis over age 65 years old experience higher rates of hospitalization, intensive care unit admission, procedures, and death in hospital than patients with cancer or heart failure, while using hospice services less. This high intensity of care is often inconsistent with the wishes of patients on dialysis but persists due to failure to explore or discuss patient goals, values, and preferences in the context of their serious illness. Fewer than 10% of patients on dialysis report having had a conversation about goals, values, and preferences with their nephrologist, although nearly 90% report wanting this conversation. Many nephrologists shy away from these conversations, because they do not wish to upset their patients, feel that there is too much uncertainty in their ability to predict prognosis, are insecure in their skills at broaching the topic, or have difficulty incorporating the conversations into their clinical workflow. In multiple studies, timely discussions about serious illness care goals, however, have been associated with enhanced goal-consistent care, improved quality of life, and positive family outcomes without an increase in patient distress or anxiety. In this special feature article, we will (1) identify the barriers to serious illness conversations in the dialysis population, (2) review best practices in and specific approaches to conducting serious illness conversations, and (3) offer solutions to overcome barriers as well as practical advice, including specific language and tools, to implement serious illness conversations in the dialysis population.
Thermoelectric conversion efficiency in IV-VI semiconductors with reduced thermal conductivity
NASA Astrophysics Data System (ADS)
Ishida, Akihiro; Thao, Hoang Thi Xuan; Yamamoto, Hidenari; Kinoshita, Yohei; Ishikiriyama, Mamoru
2015-10-01
Mid-temperature thermoelectric conversion efficiencies of the IV-VI materials were calculated under the Boltzmann transport theory of carriers, taking the Seebeck, Peltier, and Thomson effects into account. The conversion efficiency was discussed with respect to the lattice thermal conductivity, keeping other parameters such as Seebeck coefficient and electrical conductivity to the same values. If room temperature lattice thermal conductivity is decreased up to 0.5W/mK, the conversion efficiency of a PbS based material becomes as high as 15% with the temperature difference of 500K between 800K and 300K.
An automatic fractional coefficient setting method of FODPSO for hyperspectral image segmentation
NASA Astrophysics Data System (ADS)
Xie, Weiying; Li, Yunsong
2015-05-01
In this paper, an automatic fractional coefficient setting method of fractional-order Darwinian particle swarm optimization (FODPSO) is proposed for hyperspectral image segmentation. The spectrum has been already taken into consideration by integrating various types of band selection algorithms, firstly. We provide a short overview of the hyperspectral image to select an appropriate set of bands by combining supervised, semi-supervised and unsupervised band selection algorithms. Some approaches are not limited in regards to their spectral dimension, but are limited with respect to their spatial dimension owing to low spatial resolution. The addition of spatial information will be focused on improving the performance of hyperspectral image segmentation for later fusion or classification. Many researchers have advocated that a large fractional coefficient should be in the exploration state while a small fractional coefficient should be in the exploitation, which does not mean the coefficient purely decrease with time. Due to such reasons, we propose an adaptive FODPSO by setting the fractional coefficient adaptively for the application of final hyperspectral image segmentation. In fact, the paper introduces an evolutionary factor to automatically control the fractional coefficient by using a sigmoid function. Therefore, fractional coefficient with large value will benefit the global search in the exploration state. Conversely, when the fractional coefficient has a small value, the exploitation state is detected. Hence, it can avoid optimization process get trapped into the local optima. Ultimately, the experimental segmentation results prove the validity and efficiency of our proposed automatic fractional coefficient setting method of FODPSO compared with traditional PSO, DPSO and FODPSO.
Energy Conversion and Storage Program
NASA Astrophysics Data System (ADS)
Cairns, E. J.
1993-06-01
This report is the 1992 annual progress report for the Energy Conversion and Storage Program, a part of the Energy and Environment Division of the Lawrence Berkeley Laboratory. Work described falls into three broad areas: electrochemistry; chemical applications; and materials applications. The Energy Conversion and Storage Program applies principles of chemistry and materials science to solve problems in several areas: (1) production of new synthetic fuels, (2) development of high-performance rechargeable batteries and fuel cells, (3) development of advanced thermochemical processes for energy conversion, (4) characterization of complex chemical processes and chemical species, and (5) study and application of novel materials for energy conversion and transmission. Projects focus on transport-process principles, chemical kinetics, thermodynamics, separation processes, organic and physical chemistry, novel materials, and advanced methods of analysis. Electrochemistry research aims to develop advanced power systems for electric vehicle and stationary energy storage applications. Chemical applications research includes topics such as separations, catalysis, fuels, and chemical analyses. Included in this program area are projects to develop improved, energy-efficient methods for processing product and waste streams from synfuel plants, coal gasifiers, and biomass conversion processes. Materials applications research includes evaluation of the properties of advanced materials, as well as development of novel preparation techniques. For example, techniques such as sputtering, laser ablation, and poised laser deposition are being used to produce high-temperature superconducting films.
(Biotechnology for the conversion of lignocellulosics)
Woodward, J.
1990-10-25
This report summarizes the results of the traveler's participation in the International Energy Agency (IEA) Network planning meeting for Biotechnology for the Conversion of Lignocellulosics,'' held at the Institut Francais du Petrole (IFP), Rueil-Malmaison, France. It also summarizes the results of discussions held at Aston University, Birmingham, UK, with Dr. Martin Beevers with whom the traveler is attempting to initiate a collaborative research project that will be beneficial to ongoing research programs at Oak Ridge National Laboratory (ORNL). The itinerary for the trip is given in Appendix A; the names of the people contacted are listed in Appendix B. Also, pertinent information about the Institut Francais du Petrole is attached (Appendix C). 1 tab.
OCEAN THERMAL ENERGY CONVERSION PROGRAMMATIC ENVIRONMENTAL ASSESSMENT
Sands, M. Dale
1980-08-01
Significant achievements in Ocean Thermal Energy Conversion (OTEC) technology have increased the probability of producing OTEC-derived power in this decade with subsequent large-scale commercialization to follow by the turn of the century. Under U.S. Department of Energy funding, Interstate Electronics has prepared an OTEC Programmatic Environmental Assessment (EA) that considers tne development, demonstration, and commercialization of OTEC power systems. The EA considers several tecnnological designs (open cycle and closed cycle), plant configurations (land-based, moored, and plantship), and power usages (baseload electricity and production of ammonia and aluminum). Potencial environmental impacts, health and safety issues, and a status update of international, federal, and state plans and policies, as they may influence OTEC deployments, are included.
Internal Pair Decay of Giant Resonances in Hot LEAD-200.
NASA Astrophysics Data System (ADS)
Adami, Susan
resonance. In particular, this effort resulted in the unrealistic strength of ca. 100 times the full energy -weighted sum rule, which makes this result dubious. However, the internal pair decay from the giant dipole resonance built on excited states was cleanly observed for the first time and quantitatively understood by comparison to the gamma data. This comparison also established that the pair conversion coefficient in the point nucleus and Born approximation can be applied to the case of a heavy nucleus. Calculations of the pair conversion coefficient where the effect of the static Coulomb field of the Pb nucleus was included were carried to higher accuracy than previously published and confirmed this result. In addition, the differential pair conversion coefficients (with respect to the pair correlation angle and the positron energy) were found to be in good agreement with the predictions for an E1 transition. This first successful observation of the internal pair decay from the giant dipole resonance built on excited states of a heavy nucleus establishes the feasibility of investigating giant resonances in such systems through the pair decay channel.
Temporal correlation coefficient for directed networks.
Büttner, Kathrin; Salau, Jennifer; Krieter, Joachim
2016-01-01
Previous studies dealing with network theory focused mainly on the static aggregation of edges over specific time window lengths. Thus, most of the dynamic information gets lost. To assess the quality of such a static aggregation the temporal correlation coefficient can be calculated. It measures the overall possibility for an edge to persist between two consecutive snapshots. Up to now, this measure is only defined for undirected networks. Therefore, we introduce the adaption of the temporal correlation coefficient to directed networks. This new methodology enables the distinction between ingoing and outgoing edges. Besides a small example network presenting the single calculation steps, we also calculated the proposed measurements for a real pig trade network to emphasize the importance of considering the edge direction. The farm types at the beginning of the pork supply chain showed clearly higher values for the outgoing temporal correlation coefficient compared to the farm types at the end of the pork supply chain. These farm types showed higher values for the ingoing temporal correlation coefficient. The temporal correlation coefficient is a valuable tool to understand the structural dynamics of these systems, as it assesses the consistency of the edge configuration. The adaption of this measure for directed networks may help to preserve meaningful additional information about the investigated network that might get lost if the edge directions are ignored.
Computing spatial information from Fourier coefficient distributions.
Heinz, William F; Werbin, Jeffrey L; Lattman, Eaton; Hoh, Jan H
2011-05-01
The spatial relationships between molecules can be quantified in terms of information. In the case of membranes, the spatial organization of molecules in a bilayer is closely related to biophysically and biologically important properties. Here, we present an approach to computing spatial information based on Fourier coefficient distributions. The Fourier transform (FT) of an image contains a complete description of the image, and the values of the FT coefficients are uniquely associated with that image. For an image where the distribution of pixels is uncorrelated, the FT coefficients are normally distributed and uncorrelated. Further, the probability distribution for the FT coefficients of such an image can readily be obtained by Parseval's theorem. We take advantage of these properties to compute the spatial information in an image by determining the probability of each coefficient (both real and imaginary parts) in the FT, then using the Shannon formalism to calculate information. By using the probability distribution obtained from Parseval's theorem, an effective distance from the uncorrelated or most uncertain case is obtained. The resulting quantity is an information computed in k-space (kSI). This approach provides a robust, facile and highly flexible framework for quantifying spatial information in images and other types of data (of arbitrary dimensions). The kSI metric is tested on a 2D Ising model, frequently used as a model for lipid bilayer; and the temperature-dependent phase transition is accurately determined from the spatial information in configurations of the system.
Asymptotic cost in document conversion
NASA Astrophysics Data System (ADS)
Blostein, Dorothea; Nagy, George
2012-01-01
In spite of a hundredfold decrease in the cost of relevant technologies, the role of document image processing systems is gradually declining due to the transition to an on-line world. Nevertheless, in some high-volume applications, document image processing software still saves millions of dollars by accelerating workflow, and similarly large savings could be realized by more effective automation of the multitude of low-volume personal document conversions. While potential cost savings, based on estimates of costs and values, are a driving force for new developments, quantifying such savings is difficult. The most important trend is that the cost of computing resources for DIA is becoming insignificant compared to the associated labor costs. An econometric treatment of document processing complements traditional performance evaluation, which focuses on assessing the correctness of the results produced by document conversion software. Researchers should look beyond the error rate for advancing both production and personal document conversion.
Conversations with Environmental Educators: A Conversation with Four Classroom Teachers
ERIC Educational Resources Information Center
Volk, Trudi L.
2003-01-01
This article includes a conversation with four environmental education classroom teachers. The author introduces the four classroom teachers, Marie Marrs, Barb Pietrucha, Vicki Newberry, and Dara Lukonen. In the interview, the four environmental education classroom teachers describe the environmental education in their classrooms. Three of these…
La Conversation par le theatre (Conversation through Theater).
ERIC Educational Resources Information Center
Bayoff, Marie-Jose
1986-01-01
A successful advanced college-level French conversation course using French theater as a basis for students to learn oral skills has six phases: an overview of the history of French theater, reading, adaptation of the text, rehearsal-readings, final rehearsals, and performance. (MSE)
Power conversion in electrical networks
NASA Technical Reports Server (NTRS)
Wood, J. R.
1974-01-01
Aspects of dc to dc conversion were studied in terms of a class of switching voltage regulators from a stability viewpoint. Background concepts of nonlinear system theory were considered, including the problem of obtaining suitable realizations for a class of positive operators. It is shown that the state evolution equations for a power conversion network are in general of bilinear form, and that the theory of lie groups and lie algebras is useful in analyzing such systems. The feedback stabilization of a class of bilinear systems whose state space is a manifold is also discussed.
Review of betavoltaic energy conversion
NASA Technical Reports Server (NTRS)
Olsen, Larry C.
1993-01-01
Betavoltaic energy conversion refers to the generation of power by coupling a beta source to a semiconductor junction device. The theory of betavoltaic energy conversion and some past studies of the subject are briefly reviewed. Calculations of limiting efficiencies for semiconductor cells versus bandgap are presented along with specific studies for Pm-147 and Ni-63 fueled devices. The approach used for fabricating Pm-147 fueled batteries by the author in the early 1970's is reviewed. Finally, the potential performance of advanced betavoltaic power sources is considered.
Pronunciation models for conversational speech
NASA Astrophysics Data System (ADS)
Johnson, Keith
2005-09-01
Using a pronunciation dictionary of clear speech citation forms a segment deletion rate of nearly 12% is found in a corpus of conversational speech. The number of apparent segment deletions can be reduced by constructing a pronunciation dictionary that records one or more of the actual pronunciations found in conversational speech; however, the resulting empirical pronunciation dictionary often fails to include the citation pronunciation form. Issues involved in selecting pronunciations for a dictionary for linguistic, psycholinguistic, and ASR research will be discussed. One conclusion is that Ladefoged may have been the wiser for avoiding the business of producing pronunciation dictionaries. [Supported by NIDCD Grant No. R01 DC04330-03.
Parametric modeling of quantile regression coefficient functions.
Frumento, Paolo; Bottai, Matteo
2016-03-01
Estimating the conditional quantiles of outcome variables of interest is frequent in many research areas, and quantile regression is foremost among the utilized methods. The coefficients of a quantile regression model depend on the order of the quantile being estimated. For example, the coefficients for the median are generally different from those of the 10th centile. In this article, we describe an approach to modeling the regression coefficients as parametric functions of the order of the quantile. This approach may have advantages in terms of parsimony, efficiency, and may expand the potential of statistical modeling. Goodness-of-fit measures and testing procedures are discussed, and the results of a simulation study are presented. We apply the method to analyze the data that motivated this work. The described method is implemented in the qrcm R package.
Temperature coefficients of multijunction solar cells
NASA Technical Reports Server (NTRS)
Virshup, G. F.; Chung, B.-C.; Ladle Ristow, M.; Kuryla, M. S.; Brinker, D.
1990-01-01
Temperature coefficients measured in solar simulators with those measured under AM0 solar illumination are compared to illustrate the challenges in making these measurements. It is shown that simulator measurements of the short-circuit current (delta Jsc/delta T) are inaccurate due to the mismatch between the solar spectrum and the simulators at the bandgaps of the solar cells. Especially susceptible to error is the delta Jsc/delta T of cells which are components in monolithic multijunction solar cells, such as GaAs filtered by 1.93-eV AlGaAs, which has an AM0 coefficient of 6.82 micro-A/sq cm/deg C, compared to a Xenon simulator coefficient of 22.2 micro-A/sq cm/deg C.
Calculation Methods and Conversions for Pesticide Application.
ERIC Educational Resources Information Center
Cole, Herbert, Jr.
This agriculture extension service publication from Pennsylvania State University consists of conversion tables and formulas for determining concentration and rate of application of pesticides. Contents include: (1) Area and volume conversions; (2) Important conversion formulae; (3) Conversions for rates of application; (4) Quantities of pesticide…
16 CFR 1012.7 - Telephone conversations.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 16 Commercial Practices 2 2011-01-01 2011-01-01 false Telephone conversations. 1012.7 Section 1012... AGENCY PERSONNEL AND OUTSIDE PARTIES § 1012.7 Telephone conversations. (a) Telephone conversations... meet with Agency employees. However, because telephone conversations, by their very nature, are...
16 CFR 1012.7 - Telephone conversations.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 16 Commercial Practices 2 2013-01-01 2013-01-01 false Telephone conversations. 1012.7 Section 1012... AGENCY PERSONNEL AND OUTSIDE PARTIES § 1012.7 Telephone conversations. (a) Telephone conversations... meet with Agency employees. However, because telephone conversations, by their very nature, are...
16 CFR 1012.7 - Telephone conversations.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 16 Commercial Practices 2 2010-01-01 2010-01-01 false Telephone conversations. 1012.7 Section 1012... AGENCY PERSONNEL AND OUTSIDE PARTIES § 1012.7 Telephone conversations. (a) Telephone conversations... meet with Agency employees. However, because telephone conversations, by their very nature, are...
16 CFR 1012.7 - Telephone conversations.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 16 Commercial Practices 2 2012-01-01 2012-01-01 false Telephone conversations. 1012.7 Section 1012... AGENCY PERSONNEL AND OUTSIDE PARTIES § 1012.7 Telephone conversations. (a) Telephone conversations... meet with Agency employees. However, because telephone conversations, by their very nature, are...
16 CFR 1012.7 - Telephone conversations.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 16 Commercial Practices 2 2014-01-01 2014-01-01 false Telephone conversations. 1012.7 Section 1012... AGENCY PERSONNEL AND OUTSIDE PARTIES § 1012.7 Telephone conversations. (a) Telephone conversations... meet with Agency employees. However, because telephone conversations, by their very nature, are...
Diffusion and transport coefficients in synthetic opals
Sofo, J. O.; Mahan, G. D.
2000-07-15
Opals are structures composed of close-packed spheres in the size range of nano to micrometers. They are sintered to create small necks at the points of contact. We have solved the diffusion problem in such structures. The relation between the diffusion coefficient and the thermal and electrical conductivity is used to estimate the transport coefficients of opal structures as a function of the neck size and the mean free path of the carriers. The theory presented is also applicable to the diffusion problem in other periodic structures. (c) 2000 The American Physical Society.
Seebeck Coefficient Measured With Differential Heat Pulses
NASA Technical Reports Server (NTRS)
Zoltan, L.; Wood, C.; Stapfer, G.
1986-01-01
Common experimental errors reduced because pulse technique suppresses drifts in thermoelectric measurements. Differential-heat-pulse apparatus measures Seebeck coefficient in semiconductors at temperatures up to 1,900 K. Sample heated to measuring temperature in furnace. Ends of sample then differentially heated a few degrees more by lamps. Differential temperature rise and consequent Seebeck voltage measured via thermocouple leads. Because pulse technique used, errors that often arise from long-term drifts in thermoelectric measurements suppressed. Apparatus works with temperature differences of only few degrees, further increasing accuracy of coefficients obtained.
Second virial coefficients of dipolar hard spheres.
Philipse, Albert P; Kuipers, Bonny W M
2010-08-18
An asymptotic formula is reported for the second virial coefficient B(2) of a dipolar hard-sphere (DHS) fluid, in zero external field, for strongly coupled dipolar interactions. This simple formula, together with the one for the weak-coupling B(2), provides an accurate prediction of the second virial coefficient for a wide range of dipole moments, including those that are experimentally accessible in magnetite ferrofluids. The weak-coupling B(2) also yields an estimate of the magnetic moment minimally needed for isotropic gas-liquid phase-separation, if any, in the DHS fluid.
Asymptotics of loop quantum gravity fusion coefficients
NASA Astrophysics Data System (ADS)
Alesci, Emanuele; Bianchi, Eugenio; Magliaro, Elena; Perini, Claudio
2010-05-01
The fusion coefficients from SO(3) to SO(4) play a key role in the definition of spin foam models for the dynamics in loop quantum gravity. In this paper we give a simple analytic formula of the Engle-Pereira-Rovelli-Livine fusion coefficients. We study the large spin asymptotics and show that they map SO(3) semiclassical intertwiners into SU(2)L × SU(2)R semiclassical intertwiners. This non-trivial property opens the possibility for an analysis of the semiclassical behavior of the model.
Onsager coefficients of a Brownian Carnot cycle
NASA Astrophysics Data System (ADS)
Izumida, Y.; Okuda, K.
2010-10-01
We study a Brownian Carnot cycle introduced by Schmiedl and Seifert [Europhys. Lett. 81, 20003 (2008)] from a viewpoint of the linear irreversible thermodynamics. By considering the entropy production rate of this cycle, we can determine thermodynamic forces and fluxes of the cycle and calculate the Onsager coefficients for general protocols, that is, arbitrary schedules to change the potential confining the Brownian particle. We show that these Onsager coefficients contain the information of the protocol shape and they satisfy the tight-coupling condition irrespective of whatever protocol shape we choose. These properties may give an explanation why the Curzon-Ahlborn efficiency often appears in the finite-time heat engines.
Shear viscosity coefficient of liquid lanthanides
Patel, H. P. Thakor, P. B. Prajapati, A. V.; Sonvane, Y. A.
2015-05-15
Present paper deals with the computation of shear viscosity coefficient (η) of liquid lanthanides. The effective pair potential v(r) is calculated through our newly constructed model potential. The Pair distribution function g(r) is calculated from PYHS reference system. To see the influence of local field correction function, Hartree (H), Tailor (T) and Sarkar et al (S) local field correction function are used. Present results are compared with available experimental as well as theoretical data. Lastly, we found that our newly constructed model potential successfully explains the shear viscosity coefficient (η) of liquid lanthanides.
PAC91 - PROPERTIES AND COEFFICIENTS 1991
NASA Technical Reports Server (NTRS)
Mcbride, B. J.
1994-01-01
The two principal functions of PAC91 are to provide a means of generating theoretical thermodynamic functions from molecular constant data and to supply a means of fitting these functions to empirical equations by using a least-squares fit. The coefficients obtained from the fit may then be used to generate a library of thermodynamic data in a uniform and easy-to-use format for use in other computer codes. Several large compilations of selected or calculated thermodynamic data currently exist. Nevertheless, there is a continuing need for additional calculations due to the discovery of new species, the revision of existing molecular constant data and structural parameters, the need for data at temperatures other than those already published, the availability of new or revised heats of formation, dissociation or transition, and the revision of fundamental constants or atomic weights. Calculations may also be needed to compare the results of assuming various possible forms of the partition function. In addition, there is often a preference for thermodynamic data in functional rather than tabular form. In order to satisfy these needs, the PAC91 program can perform any combination of the following: (1) calculate thermodynamic functions (heat capacity, enthalpy, entropy, and Gibbs energy) for any set of 1 to 202 temperatures, (2) obtain a least-squares fit of the first three of these functions (either individually, two at a time, or all three simultaneously) for up to eight temperature intervals, and (3) calculate, as a function of temperature, heats of formation and equilibrium constants from assigned reference elements. The thermodynamic functions for ideal gases may be calculated from molecular constant data using one of several partition function variations provided by the program. For monatomic gases, one of three partition function cutoff techniques may be selected by the user, and unobserved but predicted electronic energy levels may be included by the program
Alpha, Dimension-Free, and Model-Based Internal Consistency Reliability
ERIC Educational Resources Information Center
Bentler, Peter M.
2009-01-01
As pointed out by Sijtsma ("in press"), coefficient alpha is inappropriate as a single summary of the internal consistency of a composite score. Better estimators of internal consistency are available. In addition to those mentioned by Sijtsma, an old dimension-free coefficient and structural equation model based coefficients are…
Energy Conversion and Storage Program
Cairns, E.J.
1992-03-01
The Energy Conversion and Storage Program applies chemistry and materials science principles to solve problems in (1) production of new synthetic fuels, (2) development of high-performance rechargeable batteries and fuel cells, (3) development of advanced thermochemical processes for energy conversion, (4) characterization of complex chemical processes, and (5) application of novel materials for energy conversion and transmission. Projects focus on transport-process principles, chemical kinetics, thermodynamics, separation processes, organic and physical chemistry, novel materials, and advanced methods of analysis. Electrochemistry research aims to develop advanced power systems for electric vehicle and stationary energy storage applications. Topics include identification of new electrochemical couples for advanced rechargeable batteries, improvements in battery and fuel-cell materials, and the establishment of engineering principles applicable to electrochemical energy storage and conversion. Chemical Applications research includes topics such as separations, catalysis, fuels, and chemical analyses. Included in this program area are projects to develop improved, energy-efficient methods for processing waste streams from synfuel plants and coal gasifiers. Other research projects seek to identify and characterize the constituents of liquid fuel-system streams and to devise energy-efficient means for their separation. Materials Applications research includes the evaluation of the properties of advanced materials, as well as the development of novel preparation techniques. For example, the use of advanced techniques, such as sputtering and laser ablation, are being used to produce high-temperature superconducting films.
Taking the Grading Conversation Public
ERIC Educational Resources Information Center
Reeves, Douglas B.
2011-01-01
To manage effective grading reform, education leaders must engage teachers, parents, communities, and policymakers in a rational discussion about grading. Doug Reeves suggests that leaders start the conversation with a discussion of the principles on which all stakeholders can agree; make clear what will not change under the new grading policy; be…
A Conversation with Edwin Shneidman
ERIC Educational Resources Information Center
Pestian, John
2010-01-01
This article is a transcript of a conversation that took place with Edwin Shneidman, PhD, on August 19, 2008. Recent advances in machine learning, particularly neurocognitive computing, have provided a fresh approach to the idea of using computers to analyze the language of the suicidal person. Here this notion and many others are discussed.
Batteries: Beyond intercalation and conversion
NASA Astrophysics Data System (ADS)
Grimaud, Alexis
2017-01-01
Conventional positive electrode materials for lithium-ion batteries, such as intercalation and conversion compounds, feature a host structure to reversibly insert and conduct lithium ions. Now, electrochemically activated transition metal oxide-lithium fluoride composite materials are shown to be a promising class of positive electrodes.
Turbulence and energy conversion research
Hutchinson, R.A.
1985-07-01
This report examines the role of fluid mechanics research (particularly turbulence research) in improving energy conversion systems. In this report two of the listed application areas are selected as examples: fluidization and cavitation. Research needs in general, and research possibilities for ECUT in particular, are examined.
A conversation with Edwin Shneidman.
Pestian, John
2010-10-01
This article is a transcript of a conversation that took place with Edwin Shneidman, PhD, on August 19, 2008. Recent advances in machine learning, particularly neurocognitive computing, have provided a fresh approach to the idea of using computers to analyze the language of the suicidal person. Here this notion and many others are discussed.
Technology for satellite power conversion
NASA Technical Reports Server (NTRS)
Campbell, D. P.; Gouker, M. A.; Summers, C.; Gallagher, J. J.
1984-01-01
Techniques for satellite electromagnetic energy transfer and power conversion at millimeter and infrared wavelengths are discussed. The design requirements for rectenna receiving elements are reviewed for both coherent radiation sources and Earth thermal infrared emission. Potential power transmitters including gyrotrons, free electron lasers, and CO2 lasers are assessed along with the rectification properties of metal-oxide metal diode power converters.
INDOOR EMISSIONS FROM CONVERSION VARNISHES
Conversion varnishes are two-component, acid-catalyzed varnishes that are commonly used to finish cabinets. They are valued for their water- and stain-resistance, as well as their appearance. They have been found, however, to contribute to indoor emissions of organic compounds. F...
Coaching Conversations: Enacting Instructional Scaffolding
ERIC Educational Resources Information Center
Gibson, Sharan A.
2011-01-01
This study analyzed coaching conversations and interviews of four coach/teacher partnerships for specific ways in which kindergarten and first-grade teachers, and coaches, conceptualized instructional scaffolding for guided reading. Interview transcripts were coded for coaches' and teachers' specific hypotheses/ ideas regarding instructional…
Ocean thermal energy conversion (OTEC)
Lockerby, R.W.
1981-01-01
Ocean thermal energy conversion (OTEC) is reviewed briefly. The two types of OTEC system (open and closed) are described and limitations are pointed out. A bibliography of 148 references on OTEC is given for the time period 1975 to 1980. Entries are arranged alphabetically according to the author's name. (MJJ)
Ocean Thermal Energy Conversion (OTEC)
NASA Technical Reports Server (NTRS)
Lavi, A.
1977-01-01
Energy Research and Development Administration research progress in Ocean Thermal Energy Conversion (OTEC) is outlined. The development program is being focused on cost effective heat exchangers; ammonia is generally used as the heat exchange fluid. Projected costs for energy production by OTEC vary between $1000 to $1700 per kW.
Conversation at the Intermediate Level
ERIC Educational Resources Information Center
Dunlop, Ian
1975-01-01
Discusses the use of free conversation, especially with regard to vocabulary. Recommends group discussion in the FL, using, at the intermediate level, limited, familiar vocabulary. At a higher level, words from a special technical vocabulary may be introduced, aurally and visually. A teaching example ("Traffic") is given with thorough…
Thermally driven electrokinetic energy conversion with liquid water microjets
NASA Astrophysics Data System (ADS)
Lam, Royce K.; Gamlieli, Zach; Harris, Stephen J.; Saykally, Richard J.
2015-11-01
A goal of current energy research is to design systems and devices that can efficiently exploit waste heat and utilize solar or geothermal heat energy for electrical power generation. We demonstrate a novel technique exploiting water's large coefficient of thermal expansion, wherein modest thermal gradients produce the requisite high pressure for driving fast-flowing liquid water microjets, which can effect the direct conversion of the kinetic energy into electricity and gaseous hydrogen. Waste heat in thermoelectric generating plants and combustion engines, as well as solar and geothermal energy could be used to drive these systems.
Photon energy conversion efficiency in gamma-ray spectrometry.
Švec, Anton
2016-01-01
Photon energy conversion efficiency coefficient is presented as the ratio of total energy registered in the collected spectrum to the emitted photon energy. This parameter is calculated from the conventional gamma-ray histogram and in principle is not affected by coincidence phenomena. This feature makes it particularly useful for calibration and measurement of radionuclide samples at close geometries. It complements the number of efficiency parameters used in gamma-ray spectrometry and can partly change the view as to how the gamma-ray spectra are displayed and processed.
Archer, A.W.; Maples, C.G.
1989-01-01
Numerous departures from ideal relationships are revealed by Monte Carlo simulations of widely accepted binomial coefficients. For example, simulations incorporating varying levels of matrix sparseness (presence of zeros indicating lack of data) and computation of expected values reveal that not only are all common coefficients influenced by zero data, but also that some coefficients do not discriminate between sparse or dense matrices (few zero data). Such coefficients computationally merge mutually shared and mutually absent information and do not exploit all the information incorporated within the standard 2 ?? 2 contingency table; therefore, the commonly used formulae for such coefficients are more complicated than the actual range of values produced. Other coefficients do differentiate between mutual presences and absences; however, a number of these coefficients do not demonstrate a linear relationship to matrix sparseness. Finally, simulations using nonrandom matrices with known degrees of row-by-row similarities signify that several coefficients either do not display a reasonable range of values or are nonlinear with respect to known relationships within the data. Analyses with nonrandom matrices yield clues as to the utility of certain coefficients for specific applications. For example, coefficients such as Jaccard, Dice, and Baroni-Urbani and Buser are useful if correction of sparseness is desired, whereas the Russell-Rao coefficient is useful when sparseness correction is not desired. ?? 1989 International Association for Mathematical Geology.
Dai, Guang-Ming
2006-02-15
The set of Fourier series is discussed following some discussion of Zernike polynomials. Fourier transforms of Zernike polynomials are derived that allow for relating Fourier series expansion coefficients to Zernike polynomial expansion coefficients. With iterative Fourier reconstruction, Zernike representations of wavefront aberrations can easily be obtained from wavefront derivative measurements.
ERIC Educational Resources Information Center
Mohammed, Ahmed; Zeleke, Aklilu
2015-01-01
We introduce a class of second-order ordinary differential equations (ODEs) with variable coefficients whose closed-form solutions can be obtained by the same method used to solve ODEs with constant coefficients. General solutions for the homogeneous case are discussed.
ERIC Educational Resources Information Center
Marsh, S. Neil
This paper explains the meaning and use of three important factor analytic statistics: factor scores, factor structure coefficients, and communality coefficients. For the discussion, 301 observations of junior high school students 11 measured variables from a previous study are analyzed. While factors provide the researcher with general…
Computer programs for the concordance correlation coefficient.
Crawford, Sara B; Kosinski, Andrzej S; Lin, Hung-Mo; Williamson, John M; Barnhart, Huiman X
2007-10-01
The CCC macro is presented for computation of the concordance correlation coefficient (CCC), a common measure of reproducibility. The macro has been produced in both SAS and R, and a detailed presentation of the macro input and output for the SAS program is included. The macro provides estimation of three versions of the CCC, as presented by Lin [L.I.-K. Lin, A concordance correlation coefficient to evaluate reproducibility, Biometrics 45 (1989) 255-268], Barnhart et al. [H.X. Barnhart, J.L. Haber, J.L. Song, Overall concordance correlation coefficient for evaluating agreement among multiple observers, Biometrics 58 (2002) 1020-1027], and Williamson et al. [J.M. Williamson, S.B. Crawford, H.M. Lin, Resampling dependent concordance correlation coefficients, J. Biopharm. Stat. 17 (2007) 685-696]. It also provides bootstrap confidence intervals for the CCC, as well as for the difference in CCCs for both independent and dependent samples. The macro is designed for balanced data only. Detailed explanation of the involved computations and macro variable definitions are provided in the text. Two biomedical examples are included to illustrate that the macro can be easily implemented.
On Not Interpreting Coefficients: Comment on Holt.
ERIC Educational Resources Information Center
Wilson, Thomas P.
1979-01-01
A recent recommendation by Holt (EJ 200 576) that coefficients resulting from estimating log-linear and similar models should not be interpreted is argued to be based on lack of clarity about the substantive and theoretical importance of the choice between dummy and effect coding for categorical variables. (Author/GDC)
The Seebeck coefficient of superionic conductors
Mahan, G. D.
2015-01-28
We present a theory of the anomalous Seebeck coefficient found in the superionic conductor Cu{sub 2}Se. It has a phase transition at T = 400 K where the cations disorder but the anions do not. This disorder gives a temperature-dependent width to the electronic states in the conduction band. This width provides the anomalous Seebeck contribution.
Apparatus Measures Seebeck Coefficient And Resistivity
NASA Technical Reports Server (NTRS)
Zoltan, Leslie D.; Wood, Charles; Fleurial, Jean-Pierre; Liu, Yixin
1993-01-01
Electrical measurements made by four point probes, two of which double as temperature probes. Laboratory apparatus measures both Seebeck coefficients and electrical resistivities of candidate thermoelectric materials at temperatures from ambient to 1,300 K. Apparatus makes possible to take both measurements alternately and in rapid succession during same heating cycle, thereby reducing distortion.
A new method for calculating loss coefficients
Chang, Y.C.; Yang, W.T.; Liu, C.C. . Dept. of Electrical Engineering)
1994-08-01
A method is proposed which avoids many limitations associated with traditional B-coefficient loss coefficient calculation. The proposed method, unlike the traditional B-coefficient method, is very fast and can handle line outages. The method utilizes network sensitivity factors which are established from DC load flow solutions. Line outage distribution factors (ODF's) are formulated using changes in network power generations to simulate the outaged line from the network. The method avoids the use of complicated reference frame transformations based upon Kron's tensor analysis. The necessity of data normalization used in least squares and the evaluation of the slope of [theta][sub j] versus PG[sub n] is not necessary with the proposed method. Using IEEE standard 14-bus and 30-bus systems, the method's results are compared against results obtained from an AC load flow program (LFED). The method's solution speed is compared to that of the LFED method, the base case database method and the conventional B-coefficient method based on A[sub jn]-factor. The proposed method is easy to implement and, when compared to other methods, has exhibited good accuracy and rapid execution times. The method is well suited to on-line dispatch applications.
Experimental Influence Coefficients and Vibration Modes
NASA Technical Reports Server (NTRS)
Weidman, Deene J.; Kordes, Eldon E.
1959-01-01
Test results are presented for both symmetrical and antisymmetrical static loading of a wing model mounted on a three-point support system. The first six free-free vibration modes were determined experimentally. A comparison is made of the symmetrical nodal patterns and frequencies with the symmetrical nodal patterns and frequencies calculated from the experimental influence coefficients.
Static coefficient test method and apparatus
NASA Technical Reports Server (NTRS)
Haehner, C. L.; Tarpley, J. L. (Inventor)
1976-01-01
The static coefficient of friction between contacting surfaces of a plurality of bodies is determined by applying a load to the bodies in a direction normal to the contacting surfaces. Opposite ends of a flexible filament are connected to a load cell and the first of the bodies. A motor continuously moves the second of the bodies away from the load cell at constant velocity at right angles to the force of the normal load so that the first body moves intermittently relative to the second body across a contact surface between them. The load on the surfaces, the nature of the surfaces, and the speed of the first body relative to the load cell are such that the filament is alternately and cyclically tensioned and relaxed as the movement occurs. The maximum tension occurs at the incipient stages of movement of the first body relative to the second body. The load cell derives a series of measurements which are coupled to an x-y recorder, from which the maximum forces of the filament are determined to enable the static coefficient of friction to be determined. From the maximum forces and the normal force, the coefficient is determined. For determining coefficients of friction where there are large compression loads, the normal load is applied with a calibrated compression spring that is deflected by a predetermined amount determined by a spring load vs. deflection calibration curve.
Problems on Divisibility of Binomial Coefficients
ERIC Educational Resources Information Center
Osler, Thomas J.; Smoak, James
2004-01-01
Twelve unusual problems involving divisibility of the binomial coefficients are represented in this article. The problems are listed in "The Problems" section. All twelve problems have short solutions which are listed in "The Solutions" section. These problems could be assigned to students in any course in which the binomial theorem and Pascal's…
The Evolution of Pearson's Correlation Coefficient
ERIC Educational Resources Information Center
Kader, Gary D.; Franklin, Christine A.
2008-01-01
This article describes an activity for developing the notion of association between two quantitative variables. By exploring a collection of scatter plots, the authors propose a nonstandard "intuitive" measure of association; and by examining properties of this measure, they develop the more standard measure, Pearson's Correlation Coefficient. The…
The Seebeck coefficient of superionic conductors
NASA Astrophysics Data System (ADS)
Mahan, G. D.
2015-01-01
We present a theory of the anomalous Seebeck coefficient found in the superionic conductor Cu2Se. It has a phase transition at T = 400 K where the cations disorder but the anions do not. This disorder gives a temperature-dependent width to the electronic states in the conduction band. This width provides the anomalous Seebeck contribution.
Bayesian Meta-Analysis of Coefficient Alpha
ERIC Educational Resources Information Center
Brannick, Michael T.; Zhang, Nanhua
2013-01-01
The current paper describes and illustrates a Bayesian approach to the meta-analysis of coefficient alpha. Alpha is the most commonly used estimate of the reliability or consistency (freedom from measurement error) for educational and psychological measures. The conventional approach to meta-analysis uses inverse variance weights to combine…
Coefficient Omega Bootstrap Confidence Intervals: Nonnormal Distributions
ERIC Educational Resources Information Center
Padilla, Miguel A.; Divers, Jasmin
2013-01-01
The performance of the normal theory bootstrap (NTB), the percentile bootstrap (PB), and the bias-corrected and accelerated (BCa) bootstrap confidence intervals (CIs) for coefficient omega was assessed through a Monte Carlo simulation under conditions not previously investigated. Of particular interests were nonnormal Likert-type and binary items.…
Pressure-viscosity coefficient of biobased lubricants
Technology Transfer Automated Retrieval System (TEKTRAN)
Film thickness is an important tribological property that is dependent on the combined effect of lubricant properties, material property of friction surfaces, and the operating conditions of the tribological process. Pressure-viscosity coefficient (PVC) is one of the lubricant properties that influe...
Conversion disorder: current problems and potential solutions for DSM-5.
Stone, Jon; LaFrance, W Curt; Brown, Richard; Spiegel, David; Levenson, James L; Sharpe, Michael
2011-12-01
Conversion disorder in the Diagnostic and Statistical Manual of Mental Disorders (DSM-IV-TR) describes neurological symptoms, including weakness, numbness and events resembling epilepsy or syncope, which can be positively identified as not being due to recognised neurological disease. This review combines perspectives from psychiatry, psychology and neurology to identify and discuss key problems with the current diagnostic DSM-IV criteria for conversion disorder and to make the following proposals for DSM-5: (a) abandoning the label "conversion disorder" and replacing it with an alternative term that is both theoretically neutral and potentially more acceptable to patients and practitioners; (b) relegating the requirements for "association of psychological factors" and the "exclusion of feigning" to the accompanying text; (c) adding a criterion requiring clinical findings of internal inconsistency or incongruity with recognised neurological or medical disease and altering the current 'disease exclusion' criteria to one in which the symptom must not be 'better explained' by a disease if present, (d) adding a 'cognitive symptoms' subtype. We also discuss whether conversion symptoms are better classified with other somatic symptom disorders or with dissociative disorders and how we might address the potential heterogeneity of conversion symptoms in classification.
Research and development on ocean thermal energy conversion in Japan
Uehara, H.
1982-08-01
The study of Ocean Thermal Energy Conversion (OTEC) in Japan has been conducted under the leadership of a team of the ''Sunshine Project'', a national new energy development project promoted by the Ministry of International Trade and Industries (MITI) since 1974. At present, two experimental OTEC power plants -Nauru's OTEC plant and Imari's OTEC plant are operating. In this paper, the review of research and development activity of these two OTEC plants in Japan is made.
Automatic source speaker selection for voice conversion.
Turk, Oytun; Arslan, Levent M
2009-01-01
This paper focuses on the importance of source speaker selection for a weighted codebook mapping based voice conversion algorithm. First, the dependency on source speakers is evaluated in a subjective listening test using 180 different source-target pairs from a database of 20 speakers. Subjective scores for similarity to target speaker's voice and quality are obtained. Statistical analysis of scores confirms the dependence of performance on source speakers for both male-to-male and female-to-female transformations. A source speaker selection algorithm is devised given a target speaker and a set of source speaker candidates. For this purpose, an artificial neural network (ANN) is trained that learns the regression between a set of acoustical distance measures and the subjective scores. The estimated scores are used in source speaker ranking. The average cross-correlation coefficient between rankings obtained from median subjective scores and rankings estimated by the algorithm is 0.84 for similarity and 0.78 for quality in male-to-male transformations. The results for female-to-female transformations were less reliable with a cross-correlation value of 0.58 for both similarity and quality.
Contribution of quantum molecular flexibility to the second virial coefficient of water vapor.
Donchev, Alexander G; Galkin, Nikolay G; Tarasov, Vladimir I
2006-12-01
The contribution of essentially quantum internal molecular motions to the second virial coefficient B2 of water vapor is analyzed in the framework of the path integral approach. A general purpose ab initio polarizable force field QMPFF2 or a nonpolarizable three-site water model are used with oscillator and Morse valence potentials. It is demonstrated that the contribution may be significant but depends strongly on the form of the intramolecular potential. In the case of the more realistic stretching Morse potential, inclusion of quantum molecular flexibility into the simulation reduces the virial coefficient by 20%-40%. Also, the internal modes make a contribution to the difference in the virial coefficient for light and heavy water, which is opposite to that of the intermolecular motions, so that the net effect can even change the sign at higher temperatures.
Layer coefficients for NHDOT pavement materials
NASA Astrophysics Data System (ADS)
Janoo, Vincent C.
1994-09-01
In 1992, the New Hampshire Department of Transportation (NHDOT) experimented with the use of reclaimed asphalt concrete as a base course material, identified by NHDOT as reclaimed stabilized base (RSB). The RSB and a control test section were placed on Interstate 93 between exits 18 and 19. The RSB test section was designed to the same structural number (SN) as the control. To evaluate the structural capacity of these test sections, the U.S. Army Cold Regions Research and Engineering Laboratory (CRREL) conducted deflection tests using a Dynatest 8000 falling weight deflectometer (FWD). Preliminary analysis of the results by NHDOT personnel showed higher deflection in the reclaimed asphalt concrete test sections. The explanation was that the layer coefficient used for the RSB layer in the design was probably incorrect. A total of 10 test sections constituting the base course materials used by NHDOT were built near Bow, New Hampshire. CRREL evaluated and estimated the layer coefficients of the base course materials. The test program was developed to characterize the material in more than one way. Tests were conducted with the heavy weight deflectometer (HWD), dynamic cone penetrometer (DCP) and the Clegg hammer. In situ California bearing ratio (CBR) tests were also conducted. The deflection from the HWD were used with the WESDEF back calculation program to determine the layer moduli. The moduli were than used with the AASHTO Design Guide to calculate the layer coefficients. The layer coefficients were also determined with the method proposed by Rohde. The CBR values from the Clegg hammer, in situ CBR and DCP tests were also used in the relationships in the HDM model to determine the layer coefficients.
Hall coefficient measurement for nondestructive materials characterization
NASA Astrophysics Data System (ADS)
Nagy, Peter B.
2013-01-01
Although Hall detectors are widely used for magnetic flux density measurements in numerous electromagnetic NDE applications, measurement of the Hall coefficient of metals and their alloys for NDE purposes has not been successfully attempted before. While other intrinsic electric properties, such as electric conductivity and, to a lesser degree, thermoelectric power, are widely used for NDE, Hall coefficient measurements have never been really considered mainly because the measurements are rather difficult to carry out, especially in high-conductivity materials. In contrast to electric conductivity, the Hall coefficient is influenced mainly by the concentration density of the free charge carriers, i.e., electrons in metals, and not so much by their mobility, therefore it could be a valuable addition to our NDE arsenal. We modified the alternating current potential drop (ACPD) method with square-electrode configuration by adding an external bias magnetic field modulation to measure the Hall coefficient. The presence of such a bias field violates the Reciprocity Theorem unless the sign of the magnetic field is switched between the two measurements, which can be exploited to measure the Hall coefficient in the presence of other variations that would otherwise hide it. This new experimental method was tested on paramagnetic alloys and yielded a ±4% reproducibility that probably could be further improved by additional development efforts. As a first step towards illustrating some of the potential applications of this new technique, we have done reversible applied stress measurements in Al 1100 plates and found the sensitivity of the technique to elastic strain surprisingly high.
ORGAN AND EFFECTIVE DOSE COEFFICIENTS FOR CRANIAL AND CAUDAL IRRADIATION GEOMETRIES: NEUTRONS.
Veinot, K G; Eckerman, K F; Hertel, N E; Hiller, M M
2016-08-29
Dose coefficients based on the recommendations of International Commission on Radiological Protection (ICRP) Publication 103 were reported in ICRP Publication 116, the revision of ICRP Publication 74 and ICRU Publication 57 for the six reference irradiation geometries: anterior-posterior, posterior-anterior, right and left lateral, rotational and isotropic. In this work, dose coefficients for neutron irradiation of the body with parallel beams directed upward from below the feet (caudal) and downward from above the head (cranial) using the ICRP 103 methodology were computed using the MCNP 6.1 radiation transport code. The dose coefficients were determined for neutrons ranging in energy from 10(-9) MeV to 10 GeV. At energies below about 500 MeV, the cranial and caudal dose coefficients are less than those for the six reference geometries reported in ICRP Publication 116.
The coefficient of thermal expansion of highly enriched 28Si
NASA Astrophysics Data System (ADS)
Bartl, Guido; Nicolaus, Arnold; Kessler, Ernest; Schödel, René; Becker, Peter
2009-10-01
For the new definition of the SI unit of mass based on a fundamental constant, a redetermination of Avogadro's constant is the goal of an international collaboration of numerous national laboratories and universities. Since a relative uncertainty of about 2 × 10-8 is aimed at, the macroscopic density, the isotopic composition and the volume of the unit cell of a silicon single crystal have to be measured with high precision. One step to improve the precision was the production of a silicon crystal of highly enriched 28Si. This paper addresses the effect of thermal expansion of that material in order to account for a possible discrepancy between the coefficient of thermal expansion (CTE) of natural silicon and that of 28Si. The results of two independent CTE measuring methods are presented and compared in this paper.
NASA Astrophysics Data System (ADS)
Guttmann, Anthony J.
2016-10-01
Given the first 20-100 coefficients of a typical generating function of the type that arises in many problems of statistical mechanics or enumerative combinatorics, we show that the method of differential approximants performs surprisingly well in predicting (approximately) subsequent coefficients. These can then be used by the ratio method to obtain improved estimates of critical parameters. In favourable cases, given only the first 20 coefficients, the next 100 coefficients are predicted with useful accuracy. More surprisingly, this is also the case when the method of differential approximants does not do a useful job in estimating the critical parameters, such as those cases in which one has stretched exponential asymptotic behaviour. Nevertheless, the coefficients are predicted with surprising accuracy. As one consequence, significant computer time can be saved in enumeration problems where several runs would normally be made, modulo different primes, and the coefficients constructed from their values modulo different primes. Another is in the checking of newly calculated coefficients. We believe that this concept of approximate series extension opens up a whole new chapter in the method of series analysis.