Vimalchand, Pannalal; Liu, Guohai; Peng, Wan Wang
2015-02-24
The improvements proposed in this invention provide a reliable apparatus and method to gasify low rank coals in a class of pressurized circulating fluidized bed reactors termed "transport gasifier." The embodiments overcome a number of operability and reliability problems with existing gasifiers. The systems and methods address issues related to distribution of gasification agent without the use of internals, management of heat release to avoid any agglomeration and clinker formation, specific design of bends to withstand the highly erosive environment due to high solid particles circulation rates, design of a standpipe cyclone to withstand high temperature gasification environment, compact design of seal-leg that can handle high mass solids flux, design of nozzles that eliminate plugging, uniform aeration of large diameter Standpipe, oxidant injection at the cyclone exits to effectively modulate gasifier exit temperature and reduction in overall height of the gasifier with a modified non-mechanical valve.
Bazylev, V V; Nemchenko, E V; Karnakhin, V A; Pavlov, A A; Mikulyak, A I
2016-01-01
Advantages and shortcomings of aortocoronary bypass grafting on the beating heart and in the conditions of artificial circulation (AC) have long been discussed. The data on patency of bypass grafts in the remote period are indicative of comparable results of operations with and without AC or advantages of using AC. In order to determine benefits of each method it is necessary to reveal intraoperative predictors of bypass grafts occlusion in the remote period. We analyzed the results of ultrasound flowmetry of the blood flow through the left internal thoracic artery during bypass grafting of the anterior descending artery with the use of AC and on the beating heart. A retrospective study included a total of 352 patients subdivided into 2 groups: Group One was composed of 120 patients undergoing surgery in the conditions of AC and Group Two comprised 232 patients subjected to similar operations on the beating heart. Blood flow was measured with the help of flowmeter VeryQ MediStim® after termination of AC and inactivation of heparin by protamine, with systolic pressure of 100-110 mm Hg. There were no statistically significant differences between the groups by the diameter and degree of stenosis of the anterior descending artery, diameter of the left internal thoracic artery. The mean volumetric blood flow velocity (Qmean) along the shunts in Group One was higher (p=0.01). No statistically significant differences by the pulsatility index (PI) between the groups were revealed (p=0.2). A conclusion was drawn that coronary bypass grafting of the anterior descending artery by the left internal thoracic artery in the conditions of artificial circulation made it possible to achieve higher volumetric velocity of blood flow through the conduit as compared with operations on the beating heart, with similar resistance index. The immediate results of the operations with the use of the both techniques did not differ.
NASA Technical Reports Server (NTRS)
Vasquez, Arturo
2011-01-01
An advanced reactant pressure regulator with an internal ejector reactant circulation pump has been developed to support NASA's future fuel cell power systems needs. These needs include reliable and safe operation in variable-gravity environments, and for exploration activities with both manned and un manned vehicles. This product was developed for use in Proton Exchange Membrane Fuel Cell (PEMFC) power plant reactant circulation systems, but the design could also be applied to other fuel cell system types, (e.g., solid-oxide or alkaline) or for other gas pressure regulation and circulation needs. The regulator design includes porting for measurement of flow and pressure at key points in the system, and also includes several fuel cell system integration options. NASA has recognized ejectors as a viable alternative to mechanical pumps for use in spacecraft fuel cell power systems. The ejector motive force is provided by a variable, high-pressure supply gas that travels through the ejector s jet nozzle, whereby the pressure energy of the fluid stream is converted to kinetic energy in the gas jet. The ejector can produce circulation-to-consumption-flow ratios that are relatively high (2-3 times), and this phenomenon can potentially (with proper consideration of the remainder of the fuel cell system s design) be used to provide completely for reactant pre-humidification and product water removal in a fuel cell system. Specifically, a custom pressure regulator has been developed that includes: (1) an ejector reactant circulation pump (with interchangeable jet nozzles and mixer sections, gas-tight sliding and static seals in required locations, and internal fluid porting for pressure-sensing at the regulator's control elements) and (2) internal fluid porting to allow for flow rate and system pressure measurements. The fluid porting also allows for inclusion of purge, relief, and vacuum-breaker check valves on the regulator assembly. In addition, this regulator could also be used with NASA's advanced nonflow-through fuel cell power systems by simply incorporating a jet nozzle with an appropriate nozzle diameter.
Performance of casings in Cerro Prieto production wells
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dominguez A, B.; Vital B, F.; Bermejo M, F.
A careful evaluation of different production casings used at Cerro Prieto from 1964 to date has shown that the following casings have yielded particularly impressive results: 7 5/8-in. diameter, J-55, 26 lb/ft; 7 5/8-in. diameter, K-55, 45.3 lb/ft; and 5-in. diameter, K-55, 23.2 lb/ft. These casings differ from others of the same diameter but lighter weight which were also used at the field. The results are favorable in spite of severe construction problems, especially the loss of circulation during cementing operations, which we encountered in some of the wells where these casings were used. The use of gravity-fed fine sandmore » as packing material and the arrangement of the production and intermediate casings were important in avoiding damage due to tension-compression stresses and, above all, damage due to internal or external corrosion over time. This situation is clearly evidenced if we compare the damage to the above casings with that experienced by grade N-80 production casings, especially in a corrosive environment.« less
Ultrasonic Doppler blood flow meter for extracorporeal circulation
NASA Astrophysics Data System (ADS)
Dantas, Ricardo G.; Costa, Eduardo T.; Maia, Joaquim M.; Nantes Button, Vera L. d. S.
2000-04-01
In cardiac surgeries it is frequently necessary to carry out interventions in internal heart structures, and where the blood circulation and oxygenation are made by artificial ways, out of the patient's body, in a procedure known as extracorporeal circulation (EC). During this procedure, one of the most important parameters, and that demands constant monitoring, is the blood flow. In this work, an ultrasonic pulsed Doppler blood flowmeter, to be used in an extracorporeal circulation system, was developed. It was used a 2 MHz ultrasonic transducer, measuring flows from 0 to 5 liters/min, coupled externally to the EC arterial line destined to adults perfusion (diameter of 9.53 mm). The experimental results using the developed flowmeter indicated a maximum deviation of 3.5% of full scale, while the blood flow estimator based in the rotation speed of the peristaltic pump presented deviations greater than 20% of full scale. This ultrasonic flowmeter supplies the results in a continuous and trustworthy way, and it does not present the limitations found in those flowmeters based in other transduction methods. Moreover, due to the fact of not being in contact with the blood, it is not disposable and it does not need sterilization, reducing operational costs and facilitating its use.
Martinez-Pinna, R; Lindholt, J S; Madrigal-Matute, J; Blanco-Colio, L M; Esteban-Salan, M; Torres-Fonseca, M M; Lefebvre, T; Delbosc, S; Laustsen, J; Driss, F; Vega de Ceniga, M; Gouya, L; Weiss, G; Egido, J; Meilhac, O; Michel, J-B; Martin-Ventura, J
2014-07-03
Iron deposits are observed in tissue of abdominal aortic aneurysm (AAA) patients, although the underlying mechanisms are not completely elucidated. Therefore we explored circulating markers of iron metabolism in AAA patients, and tested if they could serve as biomarkers of AAA. Increased red blood cell (RBC)-borne iron retention and transferrin, transferrin receptor and ferritin expression was observed in AAA tissue compared to control aorta (immunohistochemistry and western blot). In contrast, decreased circulating iron, transferrin, mean corpuscular haemoglobin concentration (MCHC) and haemoglobin concentration, along with circulating RBC count, were observed in AAA patients (aortic diameter >3 cm, n=114) compared to controls (aortic diameter <3 cm, n=88) (ELISA), whereas hepcidin concentrations were increased in AAA subjects (MS/MS assay). Moreover, iron, transferrin and haemoglobin levels were negatively, and hepcidin positively, correlated with aortic diameter in AAA patients. The association of low haemoglobin with AAA presence or aortic diameter was independent of specific risk factors. Moreover, MCHC negatively correlated with thrombus area in another cohort of AAA patients (aortic diameter 3-5 cm, n=357). We found that anaemia was significantly more prevalent in AAA patients (aortic diameter >5 cm, n=8,912) compared to those in patients with atherosclerotic aorto-iliac occlusive disease (n=17,737) [adjusted odds ratio=1.77 (95% confidence interval: 1.61;1.93)]. Finally, the mortality risk among AAA patients with anaemia was increased by almost 30% [adjusted hazard ratio: 1.29 (95% confidence interval: 1.16;1.44)] as compared to AAA subjects without anaemia. In conclusion, local iron retention and altered iron recycling associated to high hepcidin and low transferrin systemic concentrations could lead to reduced circulating haemoglobin levels in AAA patients. Low haemoglobin levels are independently associated to AAA presence and clinical outcome.
Jun, Hong Young; Lee, Young Hwan; Juhng, Seon Kwan; Lee, Myeung Su; Oh, Jaemin; Yoon, Kwon-Ha
2014-06-01
The purpose of this study was to elucidate the micro CT findings of tumoral vessels supplied by portal circulation during establishment of hepatic metastasis of colorectal cancer in a mouse model. Hepatic metastases were induced in 15 BALB/c mice through the injection of murine colonic adenocarcinoma tumor cells into the mesenteric vein. Micro-CT imaging of the tumoral vessels was obtained to clarify the microvascular architecture. We evaluated the sinusoidal structure, diameter of the tumoral vessels (DTV) and blood vessel density (BVD) according to tumor sizes ranging from 201 to 3,000 µm in diameter. A total of 116 tumors were observed on day 15 after cell injection. The mean diameter of a normal hepatic sinusoid was 11.7 ± 2.0 µm on micro CT. The DTV supplied by the portal vein of tumors measuring 1,001-1,500 µm in diameter was greater than that of tumors 200-1,000 µm in diameter. The mean BVD from the portal vein gradually decrease according to size of tumor from 201 to 3,000 µm in diameter (r(2) = -0.584, P < 0.01). The characteristics of tumoral vessels supplied by portal circulation during establishment of hepatic colorectal metastases were well visualized with micro-CT imaging. © 2014 Wiley Periodicals, Inc.
Zeng, Dao-Bing; Dai, Chuan-Zhou; Lu, Shi-Chun; He, Ning; Wang, Wei; Li, Hong-Jun
2013-01-01
AIM: To determine an optimal cutoff value for abnormal splenic artery diameter/proper hepatic artery diameter (S/P) ratio in cirrhosis-induced portal hypertension. METHODS: Patients with cirrhosis and portal hypertension (n = 770) and healthy volunteers (n = 31) underwent volumetric computed tomography three-dimensional vascular reconstruction to measure the internal diameters of the splenic artery and proper hepatic artery to calculate the S/P ratio. The cutoff value for abnormal S/P ratio was determined using receiver operating characteristic curve analysis, and the prevalence of abnormal S/P ratio and associations between abnormal S/P ratio and major complications of portal hypertension were studied using logistic regression. RESULTS: The receiver operating characteristic analysis showed that the cutoff points for abnormal splenic artery internal diameter and S/P ratio were > 5.19 mm and > 1.40, respectively. The sensitivity, specificity, positive predictive value, and negative predictive value were 74.2%, 45.2%, 97.1%, and 6.6%, respectively. The prevalence of an abnormal S/P ratio in the patients with cirrhosis and portal hypertension was 83.4%. Patients with a higher S/P ratio had a lower risk of developing ascites [odds ratio (OR) = 0.708, 95%CI: 0.508-0.986, P = 0.041] and a higher risk of developing esophageal and gastric varices (OR = 1.483, 95%CI: 1.010-2.175, P = 0.044) and forming collateral circulation (OR = 1.518, 95%CI: 1.033-2.230, P = 0.034). After splenectomy, the portal venous pressure and maximum and mean portal venous flow velocities were reduced, while the flow rate and maximum and minimum flow velocities of the hepatic artery were increased (P < 0.05). CONCLUSION: The prevalence of an abnormal S/P ratio is high in patients with cirrhosis and portal hypertension, and it can be used as an important marker of splanchnic hemodynamic disturbances. PMID:23483462
Wang, Shousen; Ying, Jianbin; Wei, Liangfeng; Li, Shiqing; Jing, Junjie
2015-01-01
This study is to investigate the compensatory intracranial venous pathways in parasagittal meningiomas (PSM) patients by virtual reality technology. A total of 48 PSM patients (tumor group) and 20 patients with trigeminal neuralgia and hemifacial spasm but without intracranial venous diseases (control group) were enrolled. All patients underwent 3D CE-MRV examination. The 3D reconstructed images by virtual reality technology were used for assessment of diameter and number of intracranial veins, tumor location, venous sinus invasion degree and collateral circulation formation. Diameter of bridging veins in posterior 1/3 superior sagittal sinus (SSS) in tumor group was significantly smaller than that of the control group (P < 0.05). For tumors located in mid 1/3 SSS, diameter of bridging veins and vein of Labbé (VL) in posterior 1/3 SSS decreased significantly (P < 0.05). For tumors located in posterior 1/3 SSS, bridging vein number and transverse sinus (TS) diameter significantly decreased while superficial Sylvian vein (SSV) diameter increased significantly (P < 0.05). Compared with tumor in posterior 1/3 SSS subgroup, number of bridging veins in the tumor in mid 1/3 SSS subgroup increased significantly (P < 0.05). Compared with control group, only the bridging vein number in anterior 1/3 SSS segment in invasion Type 3-4 tumor subgroup decreased significantly (P < 0.05). Diameter of TS and bridging veins in posterior 1/3 SSS segment in sinus invasion Type 5-6 tumor subgroup decreased significantly (P < 0.05). Compared with control group, only the diameter of VL and TS of collateral circulation Grade 1 tumor subgroup decreased significantly (P < 0.05) while in Grade 3 tumor subgroup, TS diameter decreased and SSV diameter increased significantly (P < 0.05). The intracranial blood flow is mainly drained through SSV drainage after SSS occlusion by PSM.
Wang, Shousen; Ying, Jianbin; Wei, Liangfeng; Li, Shiqing; Jing, Junjie
2015-01-01
Objective: This study is to investigate the compensatory intracranial venous pathways in parasagittal meningiomas (PSM) patients by virtual reality technology. Methods: A total of 48 PSM patients (tumor group) and 20 patients with trigeminal neuralgia and hemifacial spasm but without intracranial venous diseases (control group) were enrolled. All patients underwent 3D CE-MRV examination. The 3D reconstructed images by virtual reality technology were used for assessment of diameter and number of intracranial veins, tumor location, venous sinus invasion degree and collateral circulation formation. Results: Diameter of bridging veins in posterior 1/3 superior sagittal sinus (SSS) in tumor group was significantly smaller than that of the control group (P < 0.05). For tumors located in mid 1/3 SSS, diameter of bridging veins and vein of Labbé (VL) in posterior 1/3 SSS decreased significantly (P < 0.05). For tumors located in posterior 1/3 SSS, bridging vein number and transverse sinus (TS) diameter significantly decreased while superficial Sylvian vein (SSV) diameter increased significantly (P < 0.05). Compared with tumor in posterior 1/3 SSS subgroup, number of bridging veins in the tumor in mid 1/3 SSS subgroup increased significantly (P < 0.05). Compared with control group, only the bridging vein number in anterior 1/3 SSS segment in invasion Type 3-4 tumor subgroup decreased significantly (P < 0.05). Diameter of TS and bridging veins in posterior 1/3 SSS segment in sinus invasion Type 5-6 tumor subgroup decreased significantly (P < 0.05). Compared with control group, only the diameter of VL and TS of collateral circulation Grade 1 tumor subgroup decreased significantly (P < 0.05) while in Grade 3 tumor subgroup, TS diameter decreased and SSV diameter increased significantly (P < 0.05). Conclusions: The intracranial blood flow is mainly drained through SSV drainage after SSS occlusion by PSM. PMID:26550184
Increased Arterial Diameters in the Posterior Cerebral Circulation in Men with Fabry Disease
Üçeyler, Nurcan; Homola, György A.; Guerrero González, Hans; Kramer, Daniela; Wanner, Christoph; Weidemann, Frank; Solymosi, László; Sommer, Claudia
2014-01-01
A high load of white matter lesions and enlarged basilar arteries have been shown in selected patients with Fabry disease, a disorder associated with an increased stroke risk. We studied a large cohort of patients with Fabry disease to differentially investigate white matter lesion load and cerebral artery diameters. We retrospectively analyzed cranial magnetic resonance imaging scans of 87 consecutive Fabry patients, 20 patients with ischemic stroke, and 36 controls. We determined the white matter lesion load applying the Fazekas score on fluid-attenuated inversion recovery sequences and measured the diameters of cerebral arteries on 3D-reconstructions of the time-of-flight-MR-angiography scans. Data of different Fabry patient subgroups (males – females; normal – impaired renal function) were compared with data of patients with stroke and controls. A history of stroke or transient ischemic attacks was present in 4/30 males (13%) and 5/57 (9%) females with Fabry disease, all in the anterior circulation. Only one man with Fabry disease showed confluent cerebral white matter lesions in the Fazekas score assessment (1%). Male Fabry patients had a larger basilar artery (p<0.01) and posterior cerebral artery diameter (p<0.05) compared to male controls. This was independent of disease severity as measured by renal function and did not lead to changes in arterial blood flow properties. A basilar artery diameter of >3.2 mm distinguished between men with Fabry disease and controls (sensitivity: 87%, specificity: 86%, p<0.001), but not from stroke patients. Enlarged arterial diameters of the posterior circulation are present only in men with Fabry disease independent of disease severity. PMID:24475221
Vafi, Kourosh; Brandt, Adam
2016-07-19
This paper introduces GHGfrack, an open-source engineering-based model that estimates energy consumption and associated GHG emissions from drilling and hydraulic fracturing operations. We describe verification and calibration of GHGfrack against field data for energy and fuel consumption. We run GHGfrack using data from 6927 wells in Eagle Ford and 4431 wells in Bakken oil fields. The average estimated energy consumption in Eagle Ford wells using lateral hole diameters of 8 (3)/4 and 6 (1)/8 in. are 2.25 and 2.73 TJ/well, respectively. The average estimated energy consumption in Bakken wells using hole diameters of 6 in. for horizontal section is 2.16 TJ/well. We estimate average greenhouse gas (GHG) emissions of 419 and 510 tonne of equivalent CO2 per well (tonne of CO2 eq/well) for the two aforementioned assumed geometries in Eagle Ford, respectively, and 417 tonne of CO2 eq/well for the case of Bakken. These estimates are limited only to GHG emissions from combustion of diesel fuel to supply energy only for rotation of drill string, drilling mud circulation, and fracturing pumps. Sensitivity analysis of the model shows that the top three key variables in driving energy intensity in drilling are the lateral hole diameter, drill pipe internal diameter, and mud flow rate. In hydraulic fracturing, the top three are lateral casing diameter, fracturing fluid volume, and length of the lateral.
Effects of Packed Structure and Operation Conditions on Liquid Flow Behavior in Blast Furnace Hearth
NASA Astrophysics Data System (ADS)
Zuo, Haibin; Hong, Jun; Zhang, Jianliang; Zheng, Jin
The circulating flow of molten iron is an important reason that results in the erosion of blast furnace hearth. In order to prolong the campaign life of blast furnace, it is necessary to analysis the flow state of molten iron. The three-dimensional mathematical model at steady state which takes the standard k-e and porous zone model into consideration is applied to simulate the flow field under different conditions. The results showed that floating of the deadman did strengthen molten iron circulating flow. Increasing the deadman diameter will increase the erosion of hearth and bottom. Deepen the depth of the taphole and reduce the taphole diameter can reduce the circulating flow. Effect of the taphole angle from 10° to 15° is not significant. The results can be used to provide guidance for protecting the blast furnace hearth.
Operation of a cascade air conditioning system with two-phase loop
DOE Office of Scientific and Technical Information (OSTI.GOV)
Feng, Yinshan; Wang, Jinliang; Zhao, Futao
A method of operating a heat transfer system includes starting operation of a first heat transfer fluid vapor/compression circulation loop including a fluid pumping mechanism, a heat exchanger for rejecting thermal energy from a first heat transfer fluid, and a heat absorption side of an internal heat exchanger. A first conduit in a closed fluid circulation loop circulates the first heat transfer fluid therethrough. Operation of a second two-phase heat transfer fluid circulation loop is started after starting operation of the first heat transfer fluid circulation loop. The second heat transfer fluid circulation loop transfers heat to the first heatmore » transfer fluid circulation loop through the internal heat exchanger and includes a heat rejection side of the internal heat exchanger, a liquid pump, and a heat exchanger evaporator. A second conduit in a closed fluid circulation loop circulates a second heat transfer fluid therethrough.« less
Vortex Rings Generated by a Shrouded Hartmann-Sprenger Tube
NASA Technical Reports Server (NTRS)
DeLoof, Richard L. (Technical Monitor); Wilson, Jack
2005-01-01
The pulsed flow emitted from a shrouded Hartmann-Sprenger tube was sampled with high-frequency pressure transducers and with laser particle imaging velocimetry, and found to consist of a train of vortices. Thrust and mass flow were also monitored using a thrust plate and orifice, respectively. The tube and shroud lengths were altered to give four different operating frequencies. From the data, the radius, velocity, and circulation of the vortex rings was obtained. Each frequency corresponded to a different length to diameter ratio of the pulse of air leaving the driver shroud. Two of the frequencies had length to diameter ratios below the formation number, and two above. The formation number is the value of length to diameter ratio below which the pulse converts to a vortex ring only, and above which the pulse becomes a vortex ring plus a trailing jet. A modified version of the slug model of vortex ring formation was used to compare the observations with calculated values. Because the flow exit area is an annulus, vorticity is shed at both the inner and outer edge of the jet. This results in a reduced circulation compared with the value calculated from slug theory accounting only for the outer edge. If the value of circulation obtained from laser particle imaging velocimetry is used in the slug model calculation of vortex ring velocity, the agreement is quite good. The vortex ring radius, which does not depend on the circulation, agrees well with predictions from the slug model.
NASA Astrophysics Data System (ADS)
Bell, L.
2002-01-01
The Sasakawa International Center for Space Architecture (SICSA) has a long history of projects that involve design of space structures, including habitats for low-Earth orbit (LEO) and planetary applications. Most of these facilities and component systems are planned to comply with size, geometry and mass restrictions imposed by the Space Shuttle Orbiter's payload and lift/landing abort restrictions. These constraints limit launch elements to approximately 15 ft. diameter, 40 ft. long cylindrical dimensions weighing no more than approximately 25 metric tons. It is clear that future success of commercial space programs such as tourism will hinge upon the availability of bigger and more efficient Earth to LEO launch vehicles which can greatly reduce transportation and operational costs. This will enable development and utilization of larger habitat modules and other infrastructure elements which can be deployed with fewer launches and on-orbit assembly procedures. The sizing of these new heavy lift launchers should be scaled to optimize habitat functionality and efficiency, just as the habitat designs must consider optimization of launch vehicle economy. SICSA's planning studies address these vehicle and habitat optimization priorities as parallel and interdependent considerations. The allowable diameter of habitat modules established by launch vehicle capacity dictates functionally acceptable internal configuration options. Analyses of these options relative to practical dimensions for Earth-to-orbit launch vehicle scaling were conducted for two general schemes. The "bologna slice" configuration stacks the floors within a predominately cylindrical or spherical envelope, producing circular areas. The "banana split" approach divides a cylindrical module longitudinally, creating floors that are generally rectangular in shape. The assessments established minimum sizes for reasonable utility and efficiency. The bologna slice option. This configuration is only acceptable for modules with diameters of approximately 45 ft. or more. Smaller dimensions will severely limit maximum sight lines, creating claustrophobic conditions. Equipment racks and other elements typically located around internal parameters will further reduce open areas, and vertical circulation access ways between floor levels will diminish usable space even more. However this scheme can work very well for larger diameter habitats, particularly for surface applications where a relatively wide-based/low height module is to be landed vertically. The banana split option. A longitudinal floor orientation can serve very satisfactorily for modules with diameters of 15 ft. or more. Unlike the bologna slice's circular floors, the rectangular spaces offer considerable versatility to accommodate diverse equipment and functional arrangements. Modules smaller than 15 ft. in diameter (the International Space Station standard) will be incompatible with efficient equipment rack design and layouts due to tight-radius wall curvatures. Beyond the 15 ft. diameters, it is logical to scale the modules at dimensional increments based upon the number of desired floors, allowing approximately 8-9 ft. of height/level. Current SICSA Mars mission planning advocates development of new launchers with payload accommodations for 45 ft. diameter, 200 metric ton cargo elements. This large booster will offer launch economies along with habitat scaling advantages. Launch system design efficiencies are influenced by the amount of functional drag that results as the vehicle passes through the Earth's atmosphere. These drag losses are subject to a "cubed-squared law". As the launchcraft's external dimensions increase, its surface area increases with the square of the dimension, while the volume increases with the cube. Since drag is a function of surface, not volume, increasing the vehicle size will reduce proportional drag losses. For this reason, the huge Saturn V Moon rocket experienced relatively low drag. Module pressure envelope geometries also influence internal layout versatility and functionality. SICSA examined cylindrical and spherical envelope approaches for habitat module application, exploring special advantages and disadvantages each presented. The 45 ft. diameter sphere constrained functional volumes and layouts around the upper level perimeter. A modified scheme was selected which reshaped and expanded the height of that area. SICSA's final plan proposes 45 ft. diameter modules of modified spherical form.
Vortex circulation and polarity patterns in closely packed cap arrays
Streubel, Robert; Kronast, Florian; Reiche, Christopher F.; ...
2016-01-25
For this work, we studied curvature-driven modifications to the magnetostatic coupling of vortex circulation and polarity in soft-magnetic closely packed cap arrays. A phase diagram for the magnetic remanent/transition states at room temperature as a function of diameter and thickness was assembled. For specimens with vortex remanent state (40 nm-thick Permalloy on 330 nm spherical nanoparticles), both vortex circulation and polarity were visualized. Intercap coupling upon vortex nucleation leads to the formation of vortex circulation patterns in closely packed arrays. The remanent circulation pattern can be tailored choosing the direction of the applied magnetic field with respect to the symmetrymore » axis of the hexagonal array. An even and random distribution of vortex polarity indicates the absence of any circulation-polarity coupling.« less
2017-01-01
The low-efficiency cellular uptake property of current nanoparticles greatly restricts their application in the biomedical field. Herein, we demonstrate that novel virus-like mesoporous silica nanoparticles can easily be synthesized, showing greatly superior cellular uptake property. The unique virus-like mesoporous silica nanoparticles with a spiky tubular rough surface have been successfully synthesized via a novel single-micelle epitaxial growth approach in a low-concentration-surfactant oil/water biphase system. The virus-like nanoparticles’ rough surface morphology results mainly from the mesoporous silica nanotubes spontaneously grown via an epitaxial growth process. The obtained nanoparticles show uniform particle size and excellent monodispersity. The structural parameters of the nanoparticles can be well tuned with controllable core diameter (∼60–160 nm), tubular length (∼6–70 nm), and outer diameter (∼6–10 nm). Thanks to the biomimetic morphology, the virus-like nanoparticles show greatly superior cellular uptake property (invading living cells in large quantities within few minutes, <5 min), unique internalization pathways, and extended blood circulation duration (t1/2 = 2.16 h), which is much longer than that of conventional mesoporous silica nanoparticles (0.45 h). Furthermore, our epitaxial growth strategy can be applied to fabricate various virus-like mesoporous core–shell structures, paving the way toward designed synthesis of virus-like nanocomposites for biomedicine applications. PMID:28852697
Ishida, O; Maruyama, K; Sasaki, K; Iwatsuru, M
1999-11-10
We have examined the size dependence of extravasation and interstitial localization of polyethyleneglycol-coated liposomes (PEG-liposomes) in the solid tumor tissue by means of electron microscopic observation. Liposomes composed of distearoyl phosphatidylcholine, cholesterol and distearoylphosphatidylethanolamine derivative of polyethyleneglycol (PEG) were prepared in various size ranges. PEG-liposomes with an average diameter of 100-200 nm showed the most prolonged circulation time and the greatest tumor accumulation in all the solid tumors employed in this experiment. Although large PEG-liposomes with a diameter of 400 nm showed a short circulation time in normal mice, the results in splenectomized mice indicated that they do have an intrinsic prolonged circulation character in vivo. However, large PEG-liposomes could not extravasate into solid tumor tissue. These results indicate that the size of liposomes is critical for extravasation. The electron microscopic observations revealed the almost exclusive engulfment of extravasated liposomes by tumor-associated macrophages; very few were taken up by tumor cells.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Streubel, Robert; Kronast, Florian; Reiche, Christopher F.
For this work, we studied curvature-driven modifications to the magnetostatic coupling of vortex circulation and polarity in soft-magnetic closely packed cap arrays. A phase diagram for the magnetic remanent/transition states at room temperature as a function of diameter and thickness was assembled. For specimens with vortex remanent state (40 nm-thick Permalloy on 330 nm spherical nanoparticles), both vortex circulation and polarity were visualized. Intercap coupling upon vortex nucleation leads to the formation of vortex circulation patterns in closely packed arrays. The remanent circulation pattern can be tailored choosing the direction of the applied magnetic field with respect to the symmetrymore » axis of the hexagonal array. An even and random distribution of vortex polarity indicates the absence of any circulation-polarity coupling.« less
Rahman, Maryam; Ogilvy, Christopher S; Zipfel, Gregory J; Derdeyn, Colin P; Siddiqui, Adnan H; Bulsara, Ketan R; Kim, Louis J; Riina, Howard A; Mocco, J; Hoh, Brian L
2011-01-01
The International Study of Intracranial Aneurysms found that for patients with no previous history of subarachnoid hemorrhage, small (< 7 mm) anterior circulation and posterior circulation aneurysms had a 0% and 2.5% risk of subarachnoid hemorrhage over 5 years, respectively. To determine whether cerebral aneurysms shrink with rupture. The clinical databases of 7 sites were screened for patients with imaging of cerebral aneurysms before and after rupture. Inclusion criteria included documented subarachnoid hemorrhage by imaging or lumbar puncture and intracranial imaging before and after cerebral aneurysm rupture. The patients were evaluated for aneurysm maximal height, maximal width, neck diameter, and other measurement parameters. Only a change of ≥ 2 mm was considered a true change. Data on 13 patients who met inclusion criteria were collected. The median age was 60, and 11 of the 13 patients (84.6%) were female. Only 5 patients had posterior circulation aneurysms. None of the aneurysms had a significant decrease in size. One aneurysm decreased by 1.8 mm in maximum size after rupture (7.7%). Six aneurysms had an increase in maximum size of at least 2 mm after rupture (46.2%) with a mean increase of 3.5 mm (± 0.5 mm). Unruptured aneurysms do not shrink when they rupture. The large percentage of ruptured small aneurysms in previous studies were likely small before they ruptured.
Influence of the implant-abutment connection design and diameter on the screw joint stability.
Shin, Hyon-Mo; Huh, Jung-Bo; Yun, Mi-Jeong; Jeon, Young-Chan; Chang, Brian Myung; Jeong, Chang-Mo
2014-04-01
This study was conducted to evaluate the influence of the implant-abutment connection design and diameter on the screw joint stability. Regular and wide-diameter implant systems with three different joint connection designs: an external butt joint, a one-stage internal cone, and a two-stage internal cone were divided into seven groups (n=5, in each group). The initial removal torque values of the abutment screw were measured with a digital torque gauge. The postload removal torque values were measured after 100,000 cycles of a 150 N and a 10 Hz cyclic load had been applied. Subsequently, the rates of the initial and postload removal torque losses were calculated to evaluate the effect of the joint connection design and diameter on the screw joint stability. Each group was compared using Kruskal-Wallis test and Mann-Whitney U test as post-hoc test (α=0.05). THE POSTLOAD REMOVAL TORQUE VALUE WAS HIGH IN THE FOLLOWING ORDER WITH REGARD TO MAGNITUDE: two-stage internal cone, one-stage internal cone, and external butt joint systems. In the regular-diameter group, the external butt joint and one-stage internal cone systems showed lower postload removal torque loss rates than the two-stage internal cone system. In the wide-diameter group, the external butt joint system showed a lower loss rate than the one-stage internal cone and two-stage internal cone systems. In the two-stage internal cone system, the wide-diameter group showed a significantly lower loss rate than the regular-diameter group (P<.05). The results of this study showed that the external butt joint was more advantageous than the internal cone in terms of the postload removal torque loss. For the difference in the implant diameter, a wide diameter was more advantageous in terms of the torque loss rate.
Influence of the implant-abutment connection design and diameter on the screw joint stability
Shin, Hyon-Mo; Huh, Jung-Bo; Yun, Mi-Jeong; Jeon, Young-Chan; Chang, Brian Myung
2014-01-01
PURPOSE This study was conducted to evaluate the influence of the implant-abutment connection design and diameter on the screw joint stability. MATERIALS AND METHODS Regular and wide-diameter implant systems with three different joint connection designs: an external butt joint, a one-stage internal cone, and a two-stage internal cone were divided into seven groups (n=5, in each group). The initial removal torque values of the abutment screw were measured with a digital torque gauge. The postload removal torque values were measured after 100,000 cycles of a 150 N and a 10 Hz cyclic load had been applied. Subsequently, the rates of the initial and postload removal torque losses were calculated to evaluate the effect of the joint connection design and diameter on the screw joint stability. Each group was compared using Kruskal-Wallis test and Mann-Whitney U test as post-hoc test (α=0.05). RESULTS The postload removal torque value was high in the following order with regard to magnitude: two-stage internal cone, one-stage internal cone, and external butt joint systems. In the regular-diameter group, the external butt joint and one-stage internal cone systems showed lower postload removal torque loss rates than the two-stage internal cone system. In the wide-diameter group, the external butt joint system showed a lower loss rate than the one-stage internal cone and two-stage internal cone systems. In the two-stage internal cone system, the wide-diameter group showed a significantly lower loss rate than the regular-diameter group (P<.05). CONCLUSION The results of this study showed that the external butt joint was more advantageous than the internal cone in terms of the postload removal torque loss. For the difference in the implant diameter, a wide diameter was more advantageous in terms of the torque loss rate. PMID:24843398
Hu, Zhaoyan; Lu, Lijun; Zhang, Tianyi; Chen, Zhenglong; Zhang, Tao
2013-12-01
This paper mainly studies the driving system of centrifugal blood pump for extracorporeal circulation, with the core being disc magnetic coupling. Structure parameters of disc magnetic coupling are related to the ability of transferring magnetic torque. Therefore, it is necessary to carry out disc magnetic coupling permanent magnet pole number (n), air gap length (L(g)), permanent magnet thickness (L(m)), permanent magnet body inside diameter (R(i)) and outside diameter (R(o)), etc. thoroughly. This paper adopts the three-dimensional static magnetic field edge element method of Ansys for numerical calculation, and analyses the relations of magnetic coupling each parameter to transmission magnetic torque. It provides a good theory basis and calculation method for further optimization of the disc magnetic coupling.
Szpinda, Michał; Szpinda, Anna
2012-01-01
Normative data on the diameters of the aorto-iliac segment are extremely useful in the diagnosis and monitoring of prenatal arterial variants and pathologies. The present study describes age-specific reference intervals and normal growth curves for the external diameters of the external and internal iliac arteries. Using anatomical dissection and digital-image analysis, the normal growth of the external diameters of the external and internal iliac arteries was studied in 124 spontaneously aborted human fetuses, aged 15-34 weeks. Neither sex differences nor laterality differences were found. The external diameters of the external iliac arteries increased from 0.31 +/- 0.06 to 1.41 +/- 0.31 mm on the right, and from 0.29 +/- 0.04 to 1.37 +/- 0.24 mm on the left, and generated the following growth curves of best fit: y = 0.665 - 0.056 x Age + 0.002 x Age2 +/- 0.143 (R2 = 0.82) and y = 0.612 - 0.052 x Age + 0.002 x Age2 +/- 0.118 (R2 = 0.86), respectively. The external diameters of the internal iliac arteries were found to be statistically larger than those of the external iliac arteries (p = 0.0000). The external diameters of the internal iliac arteries ranged from 0.44 +/- 0.07 to 2.04 +/- 0.43 mm on the right, and from 0.44 +/- 0.06 to 1.83 +/- 0.43 mm on the left, and modeled the following quadratic functions: y = 1.524 - 0.127 x Age + 0.004 x Age2 +/- 0.242 (R2 = 0.74), and y = 1.391 - 0.117 x Age + 0.004 x Age2 +/- 0.220 (R2 = 0.76), respectively. The right external iliac arteries (in 71% of the cases) and the right internal iliac arteries (in 65.3% of cases) were larger in external diameter. The values of the external diameters of the external and internal iliac arteries are independent of sex. A strong trend towards higher values for the right external and internal iliac arteries is noted. The external diameter of the internal iliac artery is nearly 1.5 times greater than that of the external iliac artery. Surprisingly, normal growth of the external diameters of the external and internal iliac arteries follows quadratic functions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Peynircioglu, Bora, E-mail: borapeynir@gmail.com; Geyik, Serdar; Yavuz, Kivilcim
2007-09-15
Purpose. To retrospectively assess the feasibility, safety, and clinical mid-term outcome of patients undergoing carotid artery stenting with stent-grafts. Methods. Over a 4 year period stent-grafts were used in the endovascular treatment of symptomatic internal carotid artery stenosis in 12 patients (2 women, 10 men, aged 47-83 (mean 64) years). Protection devices were not used. Possible microembolic complications were evaluated by magnetic resonance imaging (MRI) examinations of the brain before and the day after the procedure in all patients. Mean follow-up was 22 months (range 1-42 months), by Doppler ultrasonography and conventional angiography as well as clinical examination .Results. Themore » technical success rate was 100%. A total of 13 coronary stent-grafts were used. The mean stenosis rate (in terms of diameter) was 85% and the mean length of stent-grafts used was 20.9 mm. The mean diameter to which the stent-grafts were dilated was 4.66 mm. In-hospital complications occurred in 1 patient who suffered a minor femoral access hematoma that did not require transfusion or surgical decompression. Post-stenting diffusion-weighted MRI revealed several ipsilateral silent microemboli in only 1 case, which was completely asymptomatic. Two patients had a major stroke after 2 years of follow-up. Restenosis was found in 2 patients who underwent successful balloon dilatation followed by placement of a self-expandable bare stent within the stent-grafts. Conclusions. Stent-grafts may prevent microembolic complications during stenting of atherosclerotic carotid lesions in selected cases, offering immediate exclusion of the atherosclerotic lesion from the circulation by pressing the plaque against the vessel wall. Comparative, randomized studies in larger series of patients are needed with carotid-dedicated stent-graft designs.« less
Internal pedestrian circulation and common open space, also illustrating mature ...
Internal pedestrian circulation and common open space, also illustrating mature landscape features. Building 35 at left foreground. Facing east - Harbor Hills Housing Project, 26607 Western Avenue, Lomita, Los Angeles County, CA
Interior design of the lunar outpost
NASA Technical Reports Server (NTRS)
Kennedy, Kriss J.
1990-01-01
This paper is part of an ongoing study on the interior design of a lunar outpost habitat facility. The concept presented represents the work done up to and including August 1989. This concept is part of NASA's ongoing effort to explore alternative options for planet surface systems habitation. Results of a volume analog study to determine the required pressurized volume are presented along with an internal layout of the habitat facility. The concept presented in this paper is a constructible lunar habitat that provides a living and working environment for a crew of 12. It is a 16-m diameter spherical pneumatic structure which contains 2145 cubic meters of volume. Five levels of living and working areas make up the 742 sq m of floor space. A 2-m vertical circulation shaft at the center allows for transfer of crew and equipment.
Effects of Small-Scale Bathymetric Roughness on the Global Internal Wave Field
2008-09-30
Navy. Much of the interest stems from the suggestion by Munk and Wunsch (1998) that the strength of the meridional overturning circulation is controlled... meridional overturning circulation . Journal of Physical Oceanography 32, 3578-3595. St. Laurent, L.C., 1999. Diapycnal advection by double diffusion...waves generated by flows over the rough seafloor. On the time scales of internal waves, mesoscale eddies and the general circulation can be regarded as
Stephens, Terrance L; Budwig, Ralph S
2007-01-01
Two acoustic devices to stabilize a droplet in an open gas stream (single-axis and three-axis levitators) have been designed and tested. The gas stream was provided by a jet apparatus with a 64 mm exit diameter and a uniform velocity profile. The acoustic source used was a Langevin vibrator with a concave reflector. The single-axis levitator relied primarily on the radial force from the acoustic field and was shown to be limited because of significant droplet wandering. The three-axis levitator relied on a combination of the axial and radial forces. The three-axis levitator was applied to examine droplet deformation and circulation and to investigate the uptake of SO(2) from the gas stream to the droplet. Droplets ranging in diameters from 2 to 5 mm were levitated in gas streams with velocities up to 9 ms. Droplet wandering was on the order of a half droplet diameter for a 3 mm diameter droplet. Droplet circulation ranged from the predicted Hadamard-Rybczynski pattern to a rotating droplet pattern. Droplet pH over a central volume of the droplet was measured by planar laser induced fluorescence. The results for the decay of droplet pH versus time are in general agreement with published theory and experiments.
NASA Astrophysics Data System (ADS)
Stephens, Terrance L.; Budwig, Ralph S.
2007-01-01
Two acoustic devices to stabilize a droplet in an open gas stream (single-axis and three-axis levitators) have been designed and tested. The gas stream was provided by a jet apparatus with a 64mm exit diameter and a uniform velocity profile. The acoustic source used was a Langevin vibrator with a concave reflector. The single-axis levitator relied primarily on the radial force from the acoustic field and was shown to be limited because of significant droplet wandering. The three-axis levitator relied on a combination of the axial and radial forces. The three-axis levitator was applied to examine droplet deformation and circulation and to investigate the uptake of SO2 from the gas stream to the droplet. Droplets ranging in diameters from 2to5mm were levitated in gas streams with velocities up to 9m /s. Droplet wandering was on the order of a half droplet diameter for a 3mm diameter droplet. Droplet circulation ranged from the predicted Hadamard-Rybczynski pattern to a rotating droplet pattern. Droplet pH over a central volume of the droplet was measured by planar laser induced fluorescence. The results for the decay of droplet pH versus time are in general agreement with published theory and experiments.
Mid-section of a can-annular gas turbine engine with a cooling system for the transition
Wiebe, David J.; Rodriguez, Jose L.
2015-12-08
A cooling system is provided for a transition (420) of a gas turbine engine (410). The cooling system includes a cowling (460) configured to receive an air flow (111) from an outlet of a compressor section of the gas turbine engine (410). The cowling (460) is positioned adjacent to a region of the transition (420) to cool the transition region upon circulation of the air flow within the cowling (460). The cooling system further includes a manifold (121) to directly couple the air flow (111) from the compressor section outlet to an inlet (462) of the cowling (460). The cowling (460) is configured to circulate the air flow (111) within an interior space (426) of the cowling (460) that extends radially outward from an inner diameter (423) of the cowling to an outer diameter (424) of the cowling at an outer surface.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Umetani, K.; Fukushima, K.
2013-03-15
An X-ray intravital microscopy technique was developed to enable in vivo visualization of the coronary, cerebral, and pulmonary arteries in rats without exposure of organs and with spatial resolution in the micrometer range and temporal resolution in the millisecond range. We have refined the system continually in terms of the spatial resolution and exposure time. X-rays transmitted through an object are detected by an X-ray direct-conversion type detector, which incorporates an X-ray SATICON pickup tube. The spatial resolution has been improved to 6 {mu}m, yielding sharp images of small arteries. The exposure time has been shortened to around 2 msmore » using a new rotating-disk X-ray shutter, enabling imaging of beating rat hearts. Quantitative evaluations of the X-ray intravital microscopy technique were extracted from measurements of the smallest-detectable vessel size and detection of the vessel function. The smallest-diameter vessel viewed for measurements is determined primarily by the concentration of iodinated contrast material. The iodine concentration depends on the injection technique. We used ex vivo rat hearts under Langendorff perfusion for accurate evaluation. After the contrast agent is injected into the origin of the aorta in an isolated perfused rat heart, the contrast agent is delivered directly into the coronary arteries with minimum dilution. The vascular internal diameter response of coronary arterial circulation is analyzed to evaluate the vessel function. Small blood vessels of more than about 50 {mu}m diameters were visualized clearly at heart rates of around 300 beats/min. Vasodilation compared to the control was observed quantitatively using drug manipulation. Furthermore, the apparent increase in the number of small vessels with diameters of less than about 50 {mu}m was observed after the vasoactive agents increased the diameters of invisible small blood vessels to visible sizes. This technique is expected to offer the potential for direct investigation of mechanisms of vascular dysfunctions.« less
Tang, Rui; Xue, Jianpeng; Xu, Baogang; Shen, Duanwen; Sudlow, Gail P; Achilefu, Samuel
2015-01-27
The large size of many near-infrared (NIR) fluorescent nanoparticles prevents rapid extravasation from blood vessels and subsequent diffusion to tumors. This confines in vivo uptake to the peritumoral space and results in high liver retention. In this study, we developed a viscosity modulated approach to synthesize ultrasmall silver sulfide quantum dots (QDs) with distinct tunable light emission from 500 to 1200 nm and a QD core diameter between 1.5 and 9 nm. Conjugation of a tumor-avid cyclic pentapeptide (Arg-Gly-Asp-DPhe-Lys) resulted in monodisperse, water-soluble QDs (hydrodynamic diameter < 10 nm) without loss of the peptide's high binding affinity to tumor-associated integrins (KI = 1.8 nM/peptide). Fluorescence and electron microscopy showed that selective integrin-mediated internalization was observed only in cancer cells treated with the peptide-labeled QDs, demonstrating that the unlabeled hydrophilic nanoparticles exhibit characteristics of negatively charged fluorescent dye molecules, which typically do not internalize in cells. The biodistribution profiles of intravenously administered QDs in different mouse models of cancer reveal an exceptionally high tumor-to-liver uptake ratio, suggesting that the small sized QDs evaded conventional opsonization and subsequent high uptake in the liver and spleen. The seamless tunability of the QDs over a wide spectral range with only a small increase in size, as well as the ease of labeling the bright and noncytotoxic QDs with biomolecules, provides a platform for multiplexing information, tracking the trafficking of single molecules in cells, and selectively targeting disease biomarkers in living organisms without premature QD opsonization in circulating blood.
NASA Astrophysics Data System (ADS)
Knaster, J.; Evans, D.; Rajainmaki, H.
2012-06-01
The pre-compression rings (PCRs) for the International Thermonuclear Experimental Reactor (ITER) represent one of the largest and most highly stressed composite structures ever designed for long term operation at 4K. Three rings, each 5m in diameter and 337 × 288 mm in cross-section, will be installed at the top and bottom of the eighteen "D" shaped Toroidal Field (TF) coils to apply a total centripetal load of 70 MN per TF coil. The interaction of the 68 kA conductor current circulating in the coil (for a total of 9.1MA) with the required magnetic field to confine the plasma during operation will result in Lorentz forces that build in-plane and out-of-plane loads. The PCRs are essential to keep the stresses below the acceptable level for the ITER magnets structural materials.
Anastasiadis, Kyriakos; Murkin, John; Antonitsis, Polychronis; Bauer, Adrian; Ranucci, Marco; Gygax, Erich; Schaarschmidt, Jan; Fromes, Yves; Philipp, Alois; Eberle, Balthasar; Punjabi, Prakash; Argiriadou, Helena; Kadner, Alexander; Jenni, Hansjoerg; Albrecht, Guenter; van Boven, Wim; Liebold, Andreas; de Somer, Fillip; Hausmann, Harald; Deliopoulos, Apostolos; El-Essawi, Aschraf; Mazzei, Valerio; Biancari, Fausto; Fernandez, Adam; Weerwind, Patrick; Puehler, Thomas; Serrick, Cyril; Waanders, Frans; Gunaydin, Serdar; Ohri, Sunil; Gummert, Jan; Angelini, Gianni; Falk, Volkmar; Carrel, Thierry
2016-01-01
Minimal invasive extracorporeal circulation (MiECC) systems have initiated important efforts within science and technology to further improve the biocompatibility of cardiopulmonary bypass components to minimize the adverse effects and improve end-organ protection. The Minimal invasive Extra-Corporeal Technologies international Society was founded to create an international forum for the exchange of ideas on clinical application and research of minimal invasive extracorporeal circulation technology. The present work is a consensus document developed to standardize the terminology and the definition of minimal invasive extracorporeal circulation technology as well as to provide recommendations for the clinical practice. The goal of this manuscript is to promote the use of MiECC systems into clinical practice as a multidisciplinary strategy involving cardiac surgeons, anaesthesiologists and perfusionists. PMID:26819269
Thermodynamic, Transport and Chemical Properties of Reference JP-8
2006-06-01
external diameter, 0.18 cm internal diameter) that are sealed on one end with a stainless steel plug welded by a clean tungsten-inert-gas ( TIG ) 15...tubing with an internal diameter of 0.02 cm, also TIG welded to the cell. Each cell and valve is capable of withstanding a pressure in excess of 105... process . Each cell is connected to a high-pressure high-temperature valve at the other end with a short length of 0.16 cm diameter 316 stainless steel
The clinical spectrum of unruptured intracranial aneurysms.
Raps, E C; Rogers, J D; Galetta, S L; Solomon, R A; Lennihan, L; Klebanoff, L M; Fink, M E
1993-03-01
A retrospective study was performed to delineate the clinical characteristics of symptomatic unruptured aneurysms. Patient histories, operative reports, and angiograms in 111 patients with 132 unruptured aneurysms were reviewed. Tertiary care university hospital. One hundred eleven patients with 132 unruptured intracranial aneurysms were studied. There were 85 women and 26 men, with a mean age of 51.2 years (age range, 11 to 77 years). Many patients were referred by community neurologists and neurosurgeons for further evaluation and neurosurgical management. Fifty-four symptomatic patients were identified. Group 1 (n = 19; mean aneurysm diameter, 2.1 cm) had acute symptoms: ischemia (n = 7), headache (n = 7), seizure (n = 3), and cranial neuropathy (n = 2). Group 2 (n = 35; mean aneurysm diameter, 2.2 cm) had chronic symptoms attributed to mass effect: headache (n = 18), visual loss (n = 10), pyramidal tract dysfunction (n = 4), and facial pain (n = 3). Group 3 (n = 57; mean aneurysm diameter, 1.1 cm) had asymptomatic aneurysms. Acute severe headache, comparable to subarachnoid hemorrhage headache, but without nuchal rigidity, was associated with the following mechanisms: aneurysm thrombosis, localized meningeal inflammation, and unexplained. Unruptured aneurysms may be misdiagnosed as optic neuritis or migraine, or serve as a nidus for cerebral thromboembolic events. Internal carotid artery and posterior circulation aneurysms were more likely to cause focal symptoms from mass effect than were anterior cerebral artery and middle cerebral artery aneurysms. Weeks to years may elapse before their diagnosis. The absence of subarachnoid blood does not exclude an aneurysm as a cause for acute or chronic neurologic symptoms.
NASA Astrophysics Data System (ADS)
Vetchanin, E. V.; Kilin, A. A.
2016-01-01
The free and controlled motion of an arbitrary two-dimensional body with a moving internal mass and constant circulation around the body in an ideal fluid is studied. Bifurcation analysis of the free motion is performed (under the condition of a fixed internal mass). It is shown that the body can be moved to a given point by varying the position of the internal mass. Some problems related to the presence of a nonzero drift of the body with a fixed internal mass are noted.
Coronary Collateral Growth—Back to the Future
Chilian, William M.; Penn, Marc S.; Pung, Yuh Fen; Dong, Feng; Mayorga, Maritza; Ohanyan, Vahagn; Logan, Suzanna; Yin, Liya
2012-01-01
The coronary collateral circulation is critically important as an adaptation of the heart to prevent the damage from ischemic insults. In their native state, collaterals in the heart would be classified as part of the microcirculation, existing as arterial-arterial anastomotic connections in the range of 30 to 100 μM in diameter. However, these vessels also show a propensity to remodel into components of the macrocirculation and can become arteries larger than a 1000 μM in diameter. This process of outward remodelling is critically important in the adaptation of the heart to ischemia because the resistance to blood flow is inversely related to the fourth power of the diameter of the vessel. Thus, an expansion of a vessel from 100 to 1000 μM would reduce resistance (in this part of the circuit) to a negligible amount and enable delivery of flow to the region at risk. Our goal in this review is to highlight the voids in understanding this adaptation to ischemia—the growth of the coronary collateral circulation. In doing so we discuss the controversies and unknown aspects of the causal factors that stimulate growth of the collateral circulation, the role of genetics, and the role of endogenous stem and progenitor cells in the context of the normal, physiological situation and under more pathological conditions of ischemic heart disease or with some of the underlying risk factors, e.g., diabetes. The major conclusion of this review is that there are many gaps in our knowledge of coronary collateral growth and this knowledge is critical before the potential of stimulating collateralization in the hearts of patients can be realized. PMID:22210280
End Restraints for Impact-Energy-Absorbing Tube Specimens
NASA Technical Reports Server (NTRS)
Farley, G. L.; Modlin, J. T.
1985-01-01
Inexpensive device developed that eliminates tipping problem without affecting crushing process. Device consists of soft sponge-rubber insert approximately 0.5 inches (1.3 centimeters) thick, cut to same diameter as internal diameter of tube specimen. Metal washer, slightly smaller than internal diameter of tube, placed on top of rubber insert. Screw passed through washer and rubber insert and threaded into base of test machine. As screw tightened against washer, rubber insert compressed and expands radially. Radial expansion applies pressure against internal wall of tube specimen, which provides sufficient support to tube to prevent tipping.
Carmo, Vildete A S; De Oliveira, Mônica C; Reis, Eduardo C O; Guimarães, Tânia M P D; Vilela, José M C; Andrade, Margareth S; Michalick, Marilene S M; Cardoso, Valbert N
2008-01-01
Complement activation is an important step in the acceleration of liposome clearance. The anaphylatoxins released following complement activation may motivate a wide variety of physiologic changes. We performed physicochemical characterization and in vitro studies of the interaction of complement system with both noncirculating and long-circulating pH-sensitive and nonpH-sensitive liposomes. The liposomes were characterized by diameter, zeta potential, and atomic force microscopy (AFM). The study of liposome interactions with complement system was conducted using hemolytic assay in rat serum. All liposomes presented a similar mean diameter (between 99.8 and 124.3 nm). The zeta potential was negative in all liposome preparations, except in liposomes modified with aminopoly (ethyleneglycol) 2000-distearoylphosphatidylethanolamine (aPEG(2000)-DSPE), which presented positive zeta potential. Atomic force microscopy images showed that non-long-circulating pH-sensitive liposomes are prone to vesicles aggregation. Non-pH-sensitive liposomes complement system activates, while pH-sensitive liposomes showed to be poor complement activators in rat serum.
Multi-stage circulating fluidized bed syngas cooling
Liu, Guohai; Vimalchand, Pannalal; Guan, Xiaofeng; Peng, WanWang
2016-10-11
A method and apparatus for cooling hot gas streams in the temperature range 800.degree. C. to 1600.degree. C. using multi-stage circulating fluid bed (CFB) coolers is disclosed. The invention relates to cooling the hot syngas from coal gasifiers in which the hot syngas entrains substances that foul, erode and corrode heat transfer surfaces upon contact in conventional coolers. The hot syngas is cooled by extracting and indirectly transferring heat to heat transfer surfaces with circulating inert solid particles in CFB syngas coolers. The CFB syngas coolers are staged to facilitate generation of steam at multiple conditions and hot boiler feed water that are necessary for power generation in an IGCC process. The multi-stage syngas cooler can include internally circulating fluid bed coolers, externally circulating fluid bed coolers and hybrid coolers that incorporate features of both internally and externally circulating fluid bed coolers. Higher process efficiencies can be realized as the invention can handle hot syngas from various types of gasifiers without the need for a less efficient precooling step.
ERIC Educational Resources Information Center
Blachford, Dongyan Ru; Zhang, Bailing
2014-01-01
This article examines the dynamics of brain circulation through a historical review of the debates over international migration of human capital and a case study on Chinese-Canadian academics. Interviews with 22 Chinese-Canadian professors who originally came from China provide rich data regarding the possibilities and problems of the contemporary…
Jeon, Jin Hee; Kim, Sang Done; Lim, Tak Hyoung; Lee, Dong Hyun
2005-08-01
The effects of initial trichloroethylene (TCE) concentration, recirculating liquid flow rate and gas velocity on photodegradation of TCE have been determined in an internally circulating slurry bubble column reactor (0.15m-ID x 0.85 m-high). Titanium dioxide (TiO2) powder was employed as a photocatalyst and the optimum loading of TiO2 in the present system is found to be approximately 0.2 wt%. The stripping fraction of TCE by air flow increases but photodegradation fraction of TCE decreases with increasing the initial TCE concentration, recirculating liquid flow rate and gas velocity. The average removal efficiency of TCE is found to be approximately 97% in an internally circulating slurry bubble column reactor.
Low-autofluorescence fluoropolymer membrane filters for cell filtration
NASA Astrophysics Data System (ADS)
Kihara, Naoto; Kuboyama, Daiki; Onoshima, Daisuke; Ishikawa, Kenji; Tanaka, Hiromasa; Ozawa, Naoya; Hase, Tetsunari; Koguchi, Ryohei; Yukawa, Hiroshi; Odaka, Hidefumi; Hasegawa, Yoshinori; Baba, Yoshinobu; Hori, Masaru
2018-06-01
A fluoropolymer membrane filter with through-holes was fabricated by photolithographic patterning and the dry etching method. 380,000 highly packed through-holes, each with a diameter of 7 µm were able to cover a whole area with a diameter of 13 mm. Ethylene tetrafluoroethylene (ETFE) was used as the membrane, which was suitable for the fluorescence detection of rare cells such as circulating tumor cells (CTCs) in human blood. The device fabrication for the size based capture of rare cells in blood such as CTCs is realized in this study.
NASA Astrophysics Data System (ADS)
Ammendola, Paola; Bareschino, Piero; Chirone, Riccardo; Salatino, Piero; Solimene, Roberto
2017-06-01
Fluidization technology displays a long record of success stories, mostly related to applications to thermal and thermochemical processes, which are fostering extension to novel and relatively unexplored fields. Application of fluidized beds to collection and thermal storage of solar radiation in Concentrated Solar Power (CSP) is one of the most promising, a field which poses challenging issues and great opportunities to fluidization scientists and technologists. The potential of this growing field calls for reconsideration of some of the typical design and operation guidelines and criteria, with the goal of exploiting the inherently good thermal performances of gas-fluidized beds at their best. "Creative" and non-conventional design and operation of fluidized beds, like those based on internal and external solids circulation, may be beneficial to the enhancement of thermal diffusivity and surface-to-bed heat transfer, improving the potential for application in the very demanding context of CSP with thermal energy storage. This paper investigated: i) a fluidized bed configuration with an uneven distribution of the fluidizing gas to promote vortices in the scale of bed height (internal solids circulation); ii) a dual fluidized bed configuration characterized by an external solids circulation achieved by the operation of a riser and a bubbling fluidized bed. CFD simulations showed the hydrodynamics conditions under which the internal solids circulation was established. The hydrodynamic characterization of the external solids circulation was achieved by an experimental study carried out with different cold models. The dual fluidized bed system was optimized in terms of operating conditions and geometrical features of the connections between two fluidized beds.
Shobha, Nandavar; Fang, Jiming; Hill, Michael D
2013-10-01
Lacunar infarcts constitute up to 25% of all ischaemic strokes. As acute intracranial vascular imaging has become widely available with computed tomographic angiography, thrombolysis of lacunar strokes has become contentious because an intracranial vascular lesion cannot be visualized. We studied the effect of thrombolysis on lacunar strokes compared to other clinical ischaemic stroke sub-types. Ischaemic stroke patients from phase 3 of the Registry of the Canadian Stroke Network data (July 2003-March 2008) were included. Lacunar stroke was defined as a lacunar syndrome supported by computed tomography brain showing a subcortical hypodense lesion with a diameter <20 mm. Clinical syndromes were used to define other stroke sub-types. The outcomes were mortality at 90 days, modified Rankin Scale score 0-2 at discharge, occurrence of intracranial haemorrhage as a complication of stroke in-hospital, and discharge disposition to home. A total of 11,503 patients of ischaemic stroke were included from the Registry of the Canadian Stroke Network 3 between July 2003 and March 2008. Lacunar strokes formed 19.1% of the total strokes. The total number of patients who received tissue plasminogen activator was 1630 (14.2%). A significant association was found between tissue plasminogen activator treatment and outcomes after controlling Oxfordshire Community Stroke Project types--for modified Rankin Scale at discharge and discharge to home, but not for mortality. A thrombolysis-by-Oxfordshire Community Stroke Project stroke sub-type interaction was observed due to lack of benefit among the posterior circulation stroke sub-types. Patients with lacunar strokes, partial anterior circulation stroke, and total anterior circulation strokes all benefited approximately equally from thrombolysis. Thrombolysis is associated with clinically improved outcome among patients with lacunar stroke syndromes. © 2012 The Authors. International Journal of Stroke © 2012 World Stroke Organization.
Effects of nanopillar array diameter and spacing on cancer cell capture and cell behaviors
NASA Astrophysics Data System (ADS)
Wang, Shunqiang; Wan, Yuan; Liu, Yaling
2014-10-01
While substrates with nanopillars (NPs) have emerged as promising platforms for isolation of circulating tumor cells (CTCs), the influence of diameter and spacing of NPs on CTC capture is still unclear. In this paper, CTC-capture yield and cell behaviors have been investigated by using antibody functionalized NPs of various diameters (120-1100 nm) and spacings (35-800 nm). The results show a linear relationship between the cell capture yield and effective contact area of NP substrates where a NP array of small diameter and reasonable spacing is preferred; however, spacing that is too small or too large adversely impairs the capture efficiency and specificity, respectively. In addition, the formation of pseudopodia between captured cells and the substrate is found to be dependent not only on cell adhesion status but also on elution strength and shear direction. These findings provide essential guidance in designing NP substrates for more efficient capture of CTCs and manipulation of cytomorphology in future.While substrates with nanopillars (NPs) have emerged as promising platforms for isolation of circulating tumor cells (CTCs), the influence of diameter and spacing of NPs on CTC capture is still unclear. In this paper, CTC-capture yield and cell behaviors have been investigated by using antibody functionalized NPs of various diameters (120-1100 nm) and spacings (35-800 nm). The results show a linear relationship between the cell capture yield and effective contact area of NP substrates where a NP array of small diameter and reasonable spacing is preferred; however, spacing that is too small or too large adversely impairs the capture efficiency and specificity, respectively. In addition, the formation of pseudopodia between captured cells and the substrate is found to be dependent not only on cell adhesion status but also on elution strength and shear direction. These findings provide essential guidance in designing NP substrates for more efficient capture of CTCs and manipulation of cytomorphology in future. Electronic supplementary information (ESI) available: Additional details about calculation of maximal displacement of an individual NP; additional study of substrate wettability through Cassie's Law; additional details about selection of incubation time and shaking speeds. See DOI: 10.1039/c4nr02854f
DOE Office of Scientific and Technical Information (OSTI.GOV)
Katalenich, Jeffrey A.; Kitchen, Brian B.; Pierson, Bruce
Cerium dioxide microspheres with uniform diameters between 65 – 211 µm were fabricated using internal gelation sol-gel methods. Although uniform microspheres are produced for nuclear fuel applications with diameters above 300 µm, sol-gel microspheres with diameters of 50 - 200 µm have historically been made by emulsion techniques and had poor size uniformity [1, 2]. An internal gelation, sol-gel apparatus was designed and constructed to accommodate the production of small, uniform microspheres whereby cerium-containing solutions were dispersed into flowing silicone oil and heated in a gelation column to initiate solidification [3, 4]. Problems with premature feed gelation and microsphere coalescencemore » were overcome by equipment modifications unique among known internal gelation setups. Microspheres were fabricated and sized in batches as a function of dispersing needle diameter and silicone oil flow rate in the two-fluid nozzle in order to determine the range of sizes possible and corresponding degree of monodispersity. Initial experiments with poor size uniformity were linked to microsphere coalescence in the gelation column prior to solidification as well as excessive flow rates for the cerium feed solution. Average diameter standard deviations as low as 2.23% were observed after optimization of flow rates and minimization of coalescence reactions.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Katalenich, Jeffrey A.; Kitchen, Brian B.; Pierson, Bruce D.
Cerium dioxide microspheres with uniform diameters between 65 – 211 µm were fabricated using internal gelation sol-gel methods. Although uniform microspheres are produced for nuclear fuel applications with diameters above 300 µm, sol-gel microspheres with diameters of 50 - 200 µm have historically been made by emulsion techniques and had poor size uniformity [1, 2]. An internal gelation, sol-gel apparatus was designed and constructed to accommodate the production of small, uniform microspheres whereby cerium-containing solutions were dispersed into flowing silicone oil and heated in a gelation column to initiate solidification [3, 4]. Problems with premature feed gelation and microsphere coalescencemore » were overcome by equipment modifications unique among known internal gelation setups. Microspheres were fabricated and sized in batches as a function of dispersing needle diameter and silicone oil flow rate in the two-fluid nozzle in order to determine the range of sizes possible and corresponding degree of monodispersity. Initial experiments with poor size uniformity were linked to microsphere coalescence in the gelation column prior to solidification as well as excessive flow rates for the cerium feed solution. Average diameter standard deviations as low as 2.23% were observed after optimization of flow rates and minimization of coalescence reactions.« less
Atherosclerotic involvement in patients with left or right dominant coronary circulation.
Balci, Bahattin; Yilmaz, Ozcan
2004-06-01
There are variations in the anatomy of the coronary arteries in patients with left dominant circulation. The influence of anatomical variations in patients with left dominant circulation on coronary arteriosclerosis is not clear. We investigated whether atherosclerotic involvement in patients with left dominant circulation differs from that in patients with right dominant circulation. We retrospectively compared 38 consecutive angiograms with left coronary dominance with 459 consecutive angiograms with right coronary dominance. By using the 29-segment coding system of the American College of Cardiology/American Heart Association, numerical values were given to each segment, according to the percentage of the decrease in luminary diameter. Using, the sum of numerical values in each coronary artery, LAD score, LCx score, RCA score, and left main coronary artery (LMCA) score were obtained. Using the sum of these 4 vessel scores, the coronary artery disease (CAD) score was calculated. Total LAD score (49+/-48 vs 47+/-57), total LCx score (29+/-45 vs 41+/-58), total RCA score (32+/-68 vs 30+/-51), total LMCA score (1.8+/-11.3 vs 2.9+/-13.6) and total CAD score (108+/-108 vs 108+/-123) were similar in patients with left and right dominant circulation (all differences NS). The extent of coronary atherosclerosis does not depend on the type of dominant coronary circulation.
Thermal-hydraulics of internally heated molten salts and application to the Molten Salt Fast Reactor
NASA Astrophysics Data System (ADS)
Fiorina, Carlo; Cammi, Antonio; Luzzi, Lelio; Mikityuk, Konstantin; Ninokata, Hisashi; Ricotti, Marco E.
2014-04-01
The Molten Salt Reactors (MSR) are an innovative kind of nuclear reactors and are presently considered in the framework of the Generation IV International Forum (GIF-IV) for their promising performances in terms of low resource utilization, waste minimization and enhanced safety. A unique feature of MSRs is that molten fluoride salts play the distinctive role of both fuel (heat source) and coolant. The presence of an internal heat generation perturbs the temperature field and consequences are to be expected on the heat transfer characteristics of the molten salts. In this paper, the problem of heat transfer for internally heated fluids in a straight circular channel is first faced on a theoretical ground. The effect of internal heat generation is demonstrated to be described by a corrective factor applied to traditional correlations for the Nusselt number. It is shown that the corrective factor can be fully characterized by making explicit the dependency on Reynolds and Prandtl numbers. On this basis, a preliminary correlation is proposed for the case of molten fluoride salts by interpolating the results provided by an analytic approach previously developed at the Politecnico di Milano. The experimental facility and the related measuring procedure for testing the proposed correlation are then presented. Finally, the developed correlation is used to carry out a parametric investigation on the effect of internal heat generation on the main out-of-core components of the Molten Salt Fast Reactor (MSFR), the reference circulating-fuel MSR design in the GIF-IV. The volumetric power determines higher temperatures at the channel wall, but the effect is significant only in case of large diameters and/or low velocities.
Ikai, Akio; Shirai, Mikiyasu; Nishimura, Kazunobu; Ikeda, Tadashi; Kameyama, Takayuki; Ueyama, Koji; Komeda, Masashi
2005-01-01
After cavopulmonary shunt in which the superior vena cava is anastomosed to the right pulmonary artery, the right lung is in a unique condition without flow pulsatility and hepatic venous effluent. In a previous study, we reported that hypoxic pulmonary vasoconstriction disappeared in the pulmonary circulation after cavopulmonary shunt. In this study, however, to investigate the influence of pulsatility and hepatic venous effluent on hypoxic pulmonary vasoconstriction in the pulmonary circulation, we developed an alternative cavopulmonary shunt rabbit model that included hepatic venous effluent in the pulmonary circulation and reduced the pulsatility of the pulmonary arterial blood flow. We then observed the physiologic characteristics of the peripheral pulmonary artery after cavopulmonary shunt, specifically the disappearance of hypoxic pulmonary vasoconstriction. Sixteen Japanese white rabbits (12-16 weeks old) were used in this study. With general anesthesia, a cavopulmonary shunt was established by anastomosing the right superior vena cava to the right pulmonary artery in an end-to-side fashion. Of the 16 rabbits for the study, the proximal right pulmonary artery was completely ligated in 5 (atresia group) and partially ligated in 6 (stenosis group). Sham operation was performed in the remaining 5 rabbits. Two weeks later, we analyzed the response of the pulmonary artery (which was divided into three categories: segmental, lobular, and acinar level artery) to hypoxia (8% oxygen inhalation) with a specially designed video radiographic system. Morphometric analysis of the resistance pulmonary artery was done in each group after angiography. Mean pressure and pulse pressure in the right pulmonary artery were not significantly different between the atresia and stenosis groups. The mean pulmonary artery pressures in the atresia and stenosis groups were 8 and 11 mm Hg, respectively. However, the pulse pressure was less than 2 mm Hg in both groups. The baseline internal diameter of the resistance pulmonary artery of the atresia group was significantly different from those of the stenosis and sham groups. In the atresia group, the resistance pulmonary arteries did not respond to hypoxia. In contrast, significant constriction (as assessed by percentage change of internal diameter of the resistance pulmonary arteries in the acinar and lobular level arteries) was observed in the pulmonary arteries of the sham and stenosis groups (atresia vs stenosis vs sham 0.4% vs - 19.0% vs - 18.8%, P = .01). In our morphometric study, we observed vasodilation of the resistance pulmonary artery with a thinner medial layer in the atresia group, consistent with the result of microangiography. We developed a cavopulmonary shunt rabbit model in which the inferior vena caval blood was derived from the right ventricle. Hypoxic pulmonary vasoconstriction was maintained in the model with the blood flow from the right ventricle. When the blood flow was not maintained, however, hypoxic pulmonary vasoconstriction disappeared. This phenomenon strongly suggests that a substance in hepatic venous effluent partially regulates the physiological pulmonary vascular function in the rabbit lung.
Holsti, Mari; Wanhainen, Anders; Lundin, Christina; Björck, Martin; Tegler, Gustaf; Svensson, Johan; Sund, Malin
2018-04-12
Abdominal aortic aneurysm (AAA) is characterised by enhanced proteolytic activity, and extracellular matrix (ECM) remodelling in the vascular wall. Type IV and XVIII collagen/endostatin are structural proteins in vascular basement membrane (VBM), a specialised ECM structure. Here the association between plasma levels of these collagens with the aortic diameter and expansion rate is studied, and their expression in aortic tissue characterised. This was a retrospective population based cohort study. Type IV and XVIII collagen/endostatin were analysed in plasma by ELISA assay in 615 men, divided into three groups based on the aortic diameter: 1) normal aorta ≤ 25 mm, 2) sub-aneurysmal aorta (SAA) 26-29 mm, and 3) AAA ≥ 30 mm. Follow up data were available for 159 men. The association between collagen levels and aortic diameter at baseline, and with the expansion rate at follow up were analysed in ordinal logistic regression and linear regression models, controlling for common confounding factors. Tissue expression of the collagens was analysed in normal aorta (n = 6) and AAA (n = 6) by immunofluorescence. Plasma levels of type XVIII collagen/endostatin (136 ng/mL [SD 29] in individuals with a normal aorta diameter, 154 ng/ml [SD 45] in SAA, and 162 ng/ml [SD 46] in AAA; p = .001) and type IV collagen (105 ng/mL [SD 42] normal aorta, 124 ng/ml [SD 46] SAA, and 127 ng/ml [SD 47] AAA; p = .037) were associated with a larger aortic diameter. A significant association was found between the baseline levels of type XVIII/endostatin and the aortic expansion rate (p = .035), but in the multivariable model, only the initial aortic diameter remained significantly associated with expansion (p = .005). Altered expression patterns of both collagens were observed in AAA tissue. Plasma levels of circulating type IV and XVIII collagen/endostatin increase with AAA diameter. The expression pattern of VBM proteins is altered in the aneurysm wall. Copyright © 2018 European Society for Vascular Surgery. Published by Elsevier B.V. All rights reserved.
von Jeinsen, Beatrice; Short, Meghan I; Xanthakis, Vanessa; Carneiro, Herman; Cheng, Susan; Mitchell, Gary F; Vasan, Ramachandran S
2018-06-21
Adipokines mediate cardiometabolic risk associated with obesity but their role in the pathogenesis of obesity-associated heart failure remains uncertain. We investigated the associations between circulating adipokine concentrations and echocardiographic measures in a community-based sample. We evaluated 3514 Framingham Heart Study participants (mean age 40 years, 53.8% women) who underwent routine echocardiography and had select circulating adipokines measured, ie, leptin, soluble leptin receptor, fatty acid-binding protein 4, retinol-binding protein 4, fetuin-A, and adiponectin. We used multivariable linear regression, adjusting for known correlates (including weight), to relate adipokine concentrations (independent variables) to the following echocardiographic measures (dependent variables): left ventricular mass index, left atrial diameter in end systole, fractional shortening, and E/e'. In multivariable-adjusted analysis, left ventricular mass index was inversely related to circulating leptin and fatty acid-binding protein 4 concentrations but positively related to retinol-binding protein 4 and leptin receptor levels ( P ≤0.002 for all). Left atrial end-systolic dimension was inversely related to leptin but positively related to retinol-binding protein 4 concentrations ( P ≤0.0001). E/e' was inversely related to leptin receptor levels ( P =0.0002). We observed effect modification by body weight for select associations (leptin receptor and fatty acid-binding protein 4 with left ventricular mass index, and leptin with left atrial diameter in end systole; P <0.05 for interactions). Fractional shortening was not associated with any of the adipokines. No echocardiographic trait was associated with fetuin-A or adiponectin concentrations. In our cross-sectional study of a large, young to middle-aged, relatively healthy community-based sample, key indices of subclinical cardiac remodeling were associated with higher or lower circulating concentrations of prohypertrophic and antihypertrophic adipokines in a context-specific manner. These observations may offer insights into the pathogenesis of the cardiomyopathy of obesity. © 2018 The Authors. Published on behalf of the American Heart Association, Inc., by Wiley.
Weather types in the South Shetlands (Antarctica) using a circulation type approach
NASA Astrophysics Data System (ADS)
Mora, Carla; João Rocha, Maria; Dutra, Emanuel; Trigo, Isabel; Vieira, Gonçalo; Fragoso, Marcelo; Ramos, Miguel
2010-05-01
Weather types in the South Shetlands (Antarctica) were defined using an automated method based on the Lamb Weather Type classification scheme (Jones et al. 1993). This is an objective classification originally developed for the British Isles (Jones et al., 1993) and also applied to southeast (Goodess and Palutikof 1998) and northwest Spain (Lorenzo et al, 2009), Portugal (Trigo and DaCamara 2000) and Greece (Maheras et al. 2004) with good results. Daily atmospheric circulation in the South Shetlands region from 1989 to 2009 was classified using a 16-node grid of sea level pressure data from the ERA Interim. The classification is obtained through the comparison of the magnitudes of the directional and rotational components of the geostrophic flow. Basic circulation types were combined into 10 groups of weather types: four directional types (NW, N, S and SW), three anticyclonic types (A, ASW and ANW), and three cyclonic types (C, CSW and CNW). Westerly flow and cyclonic circulation are the most frequent events throughout the year. The sea level pressure field for each weather type is presented and the synoptic characteristics are described. The analysis is based on ERA-Interim fields, including mean sea level pressure, precipitation, cloud cover, humidity and air temperature. Snow thickess modelled using HTESSEL is also considered. Analysis of variance (anova) and multivariate analysis (principal component analysis) are applied to evaluate the characteristics of each weather type. This circulation-type approach showed good results in the past for the downscaling of precipitation in other regions, and we are interested in evaluating the possibilities that the classification offers for downscaling precipitation, but also for snow and air temperature. For this we will be using observational data at test sites in Livingston and Deception islands. We are also motivated by the possibility of using the circulation-type approach as a predictor in statistical downscaling. References: Goodess CM, Palutikof JP.1998. Development of daily rainfall scenarios for southeast Spain using a Circulation-type approach to downscaling. International Journal of Climatology. 10: 1051-1083. JonesPD, Hulme M, Briffa KR. 1993. A comparison of Lamb circulation types with an objective classification scheme. International Journal of Climatology, 13:655-663. Lorenzo M N, Iglesias I , Taboada JJ , Gómez-Gesteira M. 2009. Relationship between monthly rainfall in northwest Iberian Peninsula and North Atlantic sea surface temperature. International Journal of Climatology. Maheras P, Tolika K, Anagnostopoulou C, Vafiadis M, Patrikas I, Flocas H. 2004. On the relationship between circulation types and changes in rainfall variability in Grece. International Journal of Climatology 24: 1695-1712. Trigo RM, DaCamara C. 2000. Circulation weather types and their influence on the precipitation regime in Portugal. International Journal of Climatology. 20: 1559-1581.
Island-Trapped Waves, Internal Waves, and Island Circulation
2014-09-30
from the government of Palau to allow us to deliver some water and food to the officers. Governor Patris of Hatohobei State and the Coral Reef ...Island-trapped waves , internal waves , and island circulation T. M. Shaun Johnston Scripps Institution of Oceanography University of California...large islands (Godfrey, 1989; Firing et al., 1999); • Westward propagating eddies and/or Rossby waves encounter large islands and produce boundary
Customized Internal Reference Controls for Improved Assessment of Circulating MicroRNAs in Disease.
Schlosser, Kenny; McIntyre, Lauralyn A; White, R James; Stewart, Duncan J
2015-01-01
Altered levels of circulating extracellular miRNA in plasma and serum have shown promise as non-invasive biomarkers of disease. However, unlike the assessment of cellular miRNA levels for which there are accepted housekeeping genes, analogous reference controls for normalization of circulating miRNA are lacking. Here, we provide an approach to identify and validate circulating miRNA reference controls on a de novo basis, and demonstrate the advantages of these customized internal controls in different disease settings. Importantly, these internal controls overcome key limitations of external spike-in controls. Using a global RT-qPCR screen of 1066 miRNAs in plasma from pulmonary hypertension patients (PAH) and healthy subjects as a case example, we identified a large pool of initial candidate miRNAs that were systematically ranked according to their plasma level stability using a predefined algorithm. The performance of the top candidates was validated against multiple comparators, and in a second independent cohort of PAH and control subjects. The broader utility of this approach was demonstrated in a completely different disease setting with 372 miRNAs screened in plasma from septic shock patients and healthy controls. Normalization of data with specific internal reference controls significantly reduced the overall variation in circulating miRNA levels between subjects (relative to raw data), provided a more balanced distribution of up- and down-regulated miRNAs, replicated the results obtained by the benchmark geometric averaging of all detected miRNAs, and outperformed the commonly used external spike-in strategy. We demonstrate the feasibility of identifying circulating reference controls that can reduce extraneous technical variations, and improve the assessment of disease-related changes in plasma miRNA levels. This study provides a novel conceptual framework that addresses a critical and previously unmet need if circulating miRNAs are to advance as reliable diagnostic tools in medicine.
Customized Internal Reference Controls for Improved Assessment of Circulating MicroRNAs in Disease
Schlosser, Kenny; McIntyre, Lauralyn A.; White, R. James; Stewart, Duncan J.
2015-01-01
Background Altered levels of circulating extracellular miRNA in plasma and serum have shown promise as non-invasive biomarkers of disease. However, unlike the assessment of cellular miRNA levels for which there are accepted housekeeping genes, analogous reference controls for normalization of circulating miRNA are lacking. Here, we provide an approach to identify and validate circulating miRNA reference controls on a de novo basis, and demonstrate the advantages of these customized internal controls in different disease settings. Importantly, these internal controls overcome key limitations of external spike-in controls. Methods Using a global RT-qPCR screen of 1066 miRNAs in plasma from pulmonary hypertension patients (PAH) and healthy subjects as a case example, we identified a large pool of initial candidate miRNAs that were systematically ranked according to their plasma level stability using a predefined algorithm. The performance of the top candidates was validated against multiple comparators, and in a second independent cohort of PAH and control subjects. The broader utility of this approach was demonstrated in a completely different disease setting with 372 miRNAs screened in plasma from septic shock patients and healthy controls. Results Normalization of data with specific internal reference controls significantly reduced the overall variation in circulating miRNA levels between subjects (relative to raw data), provided a more balanced distribution of up- and down-regulated miRNAs, replicated the results obtained by the benchmark geometric averaging of all detected miRNAs, and outperformed the commonly used external spike-in strategy. Conclusions We demonstrate the feasibility of identifying circulating reference controls that can reduce extraneous technical variations, and improve the assessment of disease-related changes in plasma miRNA levels. This study provides a novel conceptual framework that addresses a critical and previously unmet need if circulating miRNAs are to advance as reliable diagnostic tools in medicine. PMID:26010841
Federal Register 2010, 2011, 2012, 2013, 2014
2010-08-25
...; An internal inspection tool (pig \\1\\) launcher to the 16- inch-diameter pipeline lateral; \\1\\ A ``pig..., internal inspections, or other purposes. A pig receiver on the 16-inch-diameter pipeline lateral; and A new...
Economics of ingot slicing with an internal diameter saw for low-cost solar cells
NASA Technical Reports Server (NTRS)
Daud, T.; Liu, J. K.; Fiegl, G.
1981-01-01
Slicing of silicon ingots using diamond impregnated internal diameter blade saws has been a standard technology of the semiconductor industry. This paper describes work on improvements to this technology for 10 cm diameter ingot slicing. Ingot rotation, dynamic blade edge control with feedback, mechanized blade dressing and development of thinner blades are the approaches tried. A comparison of the results for wafering with and without ingot rotation is also made. A sensitivity analysis of the major cost elements in wafering is performed for 10 cm diameter ingot and extended to the 15 cm diameter ingot case. Various parameter values such as machine cost, feed rate and consumable materials cost are identified both for single and multiple ingot slicing.
2009-02-01
the largest zonal current in the world, which links the Atlantic , Indian and Pacific Oceans. The associated Meridional Overturning Circulation (MOC...formed in polar regions (Wunsch and Ferrari, 2004). Mixing is especially important in the Southern Ocean where the Meridional Overturning Circulation ...general circulation of the ocean and an important driver of the lower cell of the Meridional Overturning Circulation . Wunsch (1998) estimated that the
On-Chip Microwave Quantum Hall Circulator
NASA Astrophysics Data System (ADS)
Mahoney, A. C.; Colless, J. I.; Pauka, S. J.; Hornibrook, J. M.; Watson, J. D.; Gardner, G. C.; Manfra, M. J.; Doherty, A. C.; Reilly, D. J.
2017-01-01
Circulators are nonreciprocal circuit elements that are integral to technologies including radar systems, microwave communication transceivers, and the readout of quantum information devices. Their nonreciprocity arises from the interference of microwaves over the centimeter scale of the signal wavelength, in the presence of bulky magnetic media that breaks time-reversal symmetry. Here, we realize a completely passive on-chip microwave circulator with size 1 /1000 th the wavelength by exploiting the chiral, "slow-light" response of a two-dimensional electron gas in the quantum Hall regime. For an integrated GaAs device with 330 μ m diameter and about 1-GHz center frequency, a nonreciprocity of 25 dB is observed over a 50-MHz bandwidth. Furthermore, the nonreciprocity can be dynamically tuned by varying the voltage at the port, an aspect that may enable reconfigurable passive routing of microwave signals on chip.
76 FR 9608 - Certain Welded Large Diameter Line Pipe From Mexico
Federal Register 2010, 2011, 2012, 2013, 2014
2011-02-18
... Large Diameter Line Pipe From Mexico AGENCY: United States International Trade Commission. ACTION... duty order on certain welded large diameter line pipe from Mexico. For further information concerning... welded large diameter line pipe from Mexico would not be likely to lead to continuation or recurrence of...
Chen, Hongzhang; Qin, Lanzhi; Li, Hongqiang
2014-02-01
Internal air circulation affects the temperature field distribution in a gas double-dynamic solid-state fermentation bioreactor (GDSFB). To enhance heat transfer through strengthening internal air circulation in a GDSFB, we put an air distribution plate (ADP) into the bioreactor and studied the effects of forced internal air circulation on airflow, heat transfer, and cellulase activity of Trichoderma viride L3. Results showed that ADP could help form a steady and uniform airflow distribution, and with gas-guide tubes, air reversal was formed inside the bioreactor, thus resulting in a smaller temperature difference between medium and air by enhancing convective heat transfer inside the bioreactor. Using an ADP of 5.35 % aperture ratio caused a 1 °C decrease in the average temperature difference during the solid-state fermentation process of T. viride L3. Meanwhile, the cellulase activity of T. viride L3 increased by 13.5 %. The best heat-transfer effect was attained when using an ADP of 5.35 % aperture ratio and setting the fan power to 125 V (4.81 W) in the gas double-dynamic solid-state fermentation (GDSF) process. An option of suitable aperture ratio and fan power may be conducive to ADPs' industrial amplification.
NASA Technical Reports Server (NTRS)
Re, Richard J.; Abeyounis, William K.
1993-01-01
Pressure distributions on three inlets having different cowl lengths were obtained in the Langley 16-Foot Transonic Tunnel. The cowl diameter ratio (highlight diameter to maximum diameter) was 0.85 and the cowl length ratios (cowl length to maximum diameter) were 0.337, 0.439, and 0.547. The cowls had identical nondimensionalized (with respect to cowl length) external geometry and identical internal geometry. The internal contraction ratio (highlight area to throat area) was 1.250. The inlets had longitudinal rows of static pressure orifices on the top and bottom (external) surfaces and on the contraction (internal) and diffuser surfaces. The afterbody was cylindrical in shape, and its diameter was equal to the maximum diameter of the cowl. Depending on the cowl configuration and free-stream Mach number, the mass-flow ratio varied between 0.27 and 0.87 during the tests. Angle of attack varied from 0 to 4.1 deg at selected Mach numbers and mass-flow ratios, and the Reynolds number varied with the Mach number from 3.2x10(exp 6) to 4.2x10(exp 6) per foot.
Pasechnyk, Olena V; Hendel, Nataliia V
2018-01-01
Introduction: The development of international legal cooperation in the field of health has largely been driven by the trade interests of states. The aim: The article analyzes the legal regulation of the circulation of medicines through the prism of the law of the World Trade Organization. Materials and methods: Using the historical legal method has allowed to analyze the genesis of legal regulation of the circulation of medicines through the prism of the law of the World Trade Organization. The dialectical method is widely used, in particular, when it comes to the issue of the ratio of market regulation of medicines circulation and public health protection, the formal logic method, in particular, in formulating the general principles, principles and methods of legal regulation in the field of medicines, as well as the systemic method, in particular, in defining the institutional component of legal regulation in the field of medicines. Review: The activities of the WTO include several areas related to health protection: international control over infectious diseases, international legal regulation of food safety (food security), tobacco control, environmental protection, international legal aspects of access and treatment of medicinal and pharmaceutical products, international legal regulation of medical services provision. Conclusions: It is proved that the right to health is a right to access to medicines. However, for many developing countries, it is problematic to obtain patents for the production of necessary medicines or to pay a license fee, which creates a barrier to the realization of the right to health.
[Study on the law of circulation of meridians].
Wang, Hong-mo
2005-03-01
To study the basic law of circulation of channels and collaterals. Inherit and develop ripe experiences of predecessors based on The Yellow Emperor's Internal Classic and other classic medical books. Circulation of channels and collaterals has the eight laws, including naming law, distribution law, converging law, exterior-interior association law, beginning-ending running law, meridian-qi bidirectional circulation law, zang- and fu-organ pathway liaison law, and liaison law of connecting with trunks and sense organs.
Korzekwa, David A.; Bingert, John F.; Peterson, Dean E.; Sheinberg, Haskell
1995-01-01
A superconductive article is made by inserting a rigid mandrel into an internal cavity of a first metallic tube, said tube having an interior surface and an exterior surface, said interior surface defining the interior cavity, forming a layer of a superconductive material or superconductive precursor upon the exterior surface of said first metallic tube, machining the layer of superconductive material or superconductive precursor to a predetermined diameter to form an intermediate article configured for insertion into a second metallic tube having an interior diameter corresponding to the predetermined diameter, inserting the machined intermediate article into a second metallic tube having an internal diameter corresponding to the predetermined diameter of the intermediate article to form a composite intermediate article, reducing or ironing the composite intermediate article to a predetermined cross-sectional diameter, and sintering the reduced or ironed composite intermediate article at temperatures and for time sufficient for the superconductive material or superconductive precursor to exhibit superconductivity.
Korzekwa, D.A.; Bingert, J.F.; Peterson, D.E.; Sheinberg, H.
1995-07-18
A superconductive article is made by inserting a rigid mandrel into an internal cavity of a first metallic tube, said tube having an interior surface and an exterior surface, said interior surface defining the interior cavity, forming a layer of a superconductive material or superconductive precursor upon the exterior surface of said first metallic tube, machining the layer of superconductive material or superconductive precursor to a predetermined diameter to form an intermediate article configured for insertion into a second metallic tube having an interior diameter corresponding to the predetermined diameter, inserting the machined intermediate article into a second metallic tube having an internal diameter corresponding to the predetermined diameter of the intermediate article to form a composite intermediate article, reducing or ironing the composite intermediate article to a predetermined cross-sectional diameter, and sintering the reduced or ironed composite intermediate article at temperatures and for time sufficient for the superconductive material or superconductive precursor to exhibit superconductivity. 2 figs.
SpaceX Dragon Air Circulation System
NASA Technical Reports Server (NTRS)
Hernandez, Brenda; Piatrovich, Siarhei; Prina, Mauro
2011-01-01
The Dragon capsule is a reusable vehicle being developed by Space Exploration Technologies (SpaceX) that will provide commercial cargo transportation to the International Space Station (ISS). Dragon is designed to be a habitable module while it is berthed to ISS. As such, the Dragon Environmental Control System (ECS) consists of pressure control and pressure equalization, air sampling, fire detection, illumination, and an air circulation system. The air circulation system prevents pockets of stagnant air in Dragon that can be hazardous to the ISS crew. In addition, through the inter-module duct, the air circulation system provides fresh air from ISS into Dragon. To utilize the maximum volume of Dragon for cargo packaging, the Dragon ECS air circulation system is designed around cargo rack optimization. At the same time, the air circulation system is designed to meet the National Aeronautics Space Administration (NASA) inter-module and intra-module ventilation requirements and acoustic requirements. A flight like configuration of the Dragon capsule including the air circulation system was recently assembled for testing to assess the design for inter-module and intra-module ventilation and acoustics. The testing included the Dragon capsule, and flight configuration in the pressure section with cargo racks, lockers, all of the air circulation components, and acoustic treatment. The air circulation test was also used to verify the Computational Fluid Dynamics (CFD) model of the Dragon capsule. The CFD model included the same Dragon internal geometry that was assembled for the test. This paper will describe the Dragon air circulation system design which has been verified by testing the system and with CFD analysis.
Internal Carotid Artery Hypoplasia: Role of Color-Coded Carotid Duplex Sonography.
Chen, Pei-Ya; Liu, Hung-Yu; Lim, Kun-Eng; Lin, Shinn-Kuang
2015-10-01
The purpose of this study was to determine the role of color-coded carotid duplex sonography for diagnosis of internal carotid artery hypoplasia. We retrospectively reviewed 25,000 color-coded carotid duplex sonograms in our neurosonographic database to establish more diagnostic criteria for internal carotid artery hypoplasia. A definitive diagnosis of internal carotid artery hypoplasia was made in 9 patients. Diagnostic findings on color-coded carotid duplex imaging include a long segmental small-caliber lumen (52% diameter) with markedly decreased flow (13% flow volume) in the affected internal carotid artery relative to the contralateral side but without intraluminal lesions. Indirect findings included markedly increased total flow volume (an increase of 133%) in both vertebral arteries, antegrade ipsilateral ophthalmic arterial flow, and a reduced vessel diameter with increased flow resistance in the ipsilateral common carotid artery. Ten patients with distal internal carotid artery dissection showed a similar color-coded duplex pattern, but the reductions in the internal and common carotid artery diameters and increase in collateral flow from the vertebral artery were less prominent than those in hypoplasia. The ipsilateral ophthalmic arterial flow was retrograde in 40% of patients with distal internal carotid artery dissection. In addition, thin-section axial and sagittal computed tomograms of the skull base could show the small diameter of the carotid canal in internal carotid artery hypoplasia and help distinguish hypoplasia from distal internal carotid artery dissection. Color-coded carotid duplex sonography provides important clues for establishing a diagnosis of internal carotid artery hypoplasia. A hypoplastic carotid canal can be shown by thin-section axial and sagittal skull base computed tomography to confirm the final diagnosis. © 2015 by the American Institute of Ultrasound in Medicine.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-06-21
... DEPARTMENT OF COMMERCE International Trade Administration [A-570-929] Small Diameter Graphite... antidumping duty order on small diameter graphite electrodes from the People's Republic of China (``PRC'') for... preliminary results of this review were published on March 7, 2011. See Small Diameter Graphite Electrodes...
Federal Register 2010, 2011, 2012, 2013, 2014
2012-02-07
... DEPARTMENT OF COMMERCE International Trade Administration [A-570-929] Small Diameter Graphite... Department) initiated an administrative review of the antidumping duty order on small diameter graphite... preliminary results of this review by 95 days until February 3, 2012. See Small Diameter Graphite Electrodes...
Immobilization of xanthine oxidase on a polyaniline silicone support.
Nadruz, W; Marques, E T; Azevedo, W M; Lima-Filho, J L; Carvalho, L B
1996-03-01
A polyaniline silicone support to immobilize xanthine oxidase is proposed as a reactor coil to monitor the action of xanthine oxidase on hypoxanthine, xanthine and 6-mercaptopurine. A purified xanthine oxidase immobilized on this support lost 80% of the initial activity after 12 min of use. Co-immobilization of superoxide dismutase and catalase increased the stability of immobilized xanthine oxidase so that the derivative maintained 79% of its initial activity after 4.6 h of continuous use in which 1.5 mumol purine bases were converted by the immobilized enzyme system. There is no evidence of either polyaniline or protein leaching from the coil during 3 h of continuous use. When solutions (10 ml) of hypoxanthine, xanthine and 6-mercaptopurine were circulated individually through the xanthine oxidase-superoxide dismutase-catalase-polyaniline coil (1 mm internal diameter and 3 m in length, 3 ml internal volume) activities of 8.12, 11.17 and 1.09 nmol min-1 coil-1, respectively, were obtained. The advantages of the reactor configuration and the redox properties of the polymer, particularly with respect to immobilized oxidoreductases, make this methodology attractive for similar enzyme systems. This immobilized enzyme system using polyaniline-silicone as support converted 6-mercaptopurine to 6-thiouric acid with equal efficiency as resins based on polyacrylamide and polyamide 11.
NASA Astrophysics Data System (ADS)
Roth, Tanja; Sprenger, Lisa; Odenbach, Stefan; Häfeli, Urs O.
2018-04-01
Microfluidic spirals are able to focus non-spherical microparticles in diluted suspension due to the Dean effect. A secondary flow establishes in a curved channel, consisting of two counter-rotating vortices, which transport particles to an equilibrium position near the inner wall of the channel. The relevant size parameter, which is responsible for successful focusing, is the ratio between the particle diameter of a sphere and the hydraulic diameter, which is a characteristic of the microfluidic spiral. A non-spherical particle has not one but several different size parameters. This study investigated the minor and major axes, the equivalent spherical diameter, and the maximal rotational diameter as an equivalent to the spherical diameter. Using a polydimethylsiloxane (PDMS)-based microfluidic device with spirals, experiments were conducted with artificial peanut-shaped and ellipsoidal particles sized between 3 and 9 μm as well as with the bacteria Bacillus subtilis. Our investigations show that the equivalent spherical diameter, the major axis, and the maximal rotational diameter of a non-spherical particle can predict successful focusing. The minor axis is not suitable for this purpose. Non-spherical particles focused when the ratio of their equivalent spherical diameter to the hydraulic diameter of the channel was larger than 0.07. The particles also focused when the ratio between the maximal rotational diameter or the major axis and the hydraulic diameter was larger than 0.01. These results may help us to separate non-spherical biological particles, such as circulating tumor cells or pathogenic bacteria, from blood in future experimental studies.
NASA Technical Reports Server (NTRS)
Kessinger, C. J.; Wilson, J. W.; Weisman, M.; Klemp, J.
1984-01-01
Data from three NCAR radars are used in both single and dual Doppler analyses to trace the evolution of a June 30, 1982 Colorado convective storm containing downburst-type winds and strong vortices 1-2 km in diameter. The analyses show that a series of small circulations formed along a persistent cyclonic shear boundary; at times as many as three misocyclones were present with vertical vorticity values as large as 0.1/s using a 0.25 km grid interval. The strength of the circulations suggests the possibility of accompanying tornadoes or funnels, although none were observed. Dual-Doppler analyses show that strong, small-scale downdrafts develop in close proximity to the misocyclones. A midlevel mesocyclone formed in the same general region of the storm where the misocylones later developed. The observations are compared with numerical simulations from a three-dimensional cloud model initialized with sounding data from the same day.
NASA Astrophysics Data System (ADS)
Kihara, Naoto; Odaka, Hidefumi; Kuboyama, Daiki; Onoshima, Daisuke; Ishikawa, Kenji; Baba, Yoshinobu; Hori, Masaru
2018-03-01
Although membrane filters are indispensable in biochemical analysis fields, most methods for through-hole fabrication are complex and inefficient. We developed a simple method of fabricating poly(ethylene terephthalate) (PET) membrane filters with a precise arrangement of through-holes for the isolation of circulating tumor cells (CTCs) based on their size. By photolithography and dry etching, highly packed 380,000 through-holes with a diameter of 7 µm were able to cover a whole area with a diameter of 13 mm. Device fabrication for the size-based capture of rare cells in blood such as CTCs is realized in this study.
Rotor Wake Development During the First Revolution
NASA Technical Reports Server (NTRS)
McAlister, Kenneth W.
2003-01-01
The wake behind a two-bladed model rotor in light climb was measured using particle image velocimetry, with particular emphasis on the development of the trailing vortex during the first revolution of the rotor. The distribution of vorticity was distinguished from the slightly elliptical swirl pattern. Peculiar dynamics within the void region may explain why the peak vorticity appeared to shift away from the center as the vortex aged, suggesting the onset of instability. The swirl and axial velocities (which reached 44 and 12 percent of the rotor-tip speed, respectively) were found to be asymmetric relative to the vortex center. In particular, the axial flow was composed of two concentrated zones moving in opposite directions. The radial distribution of the circulation rapidly increased in magnitude until reaching a point just beyond the core radius, after which the rate of growth decreased significantly. The core-radius circulation increased slightly with wake age, but the large-radius circulation appeared to remain relatively constant. The radial distributions of swirl velocity and vorticity exhibit self-similar behaviors, especially within the core. The diameter of the vortex core was initially about 10 percent of the rotor-blade chord, but more than doubled its size after one revolution of the rotor. According to vortex models that approximate the measured data, the core-radius circulation was about 79 percent of the large-radius circulation, and the large-radius circulation was about 67 percent of the maximum bound circulation on the rotor blade. On average, about 53 percent of the maximum bound circulation resides within the vortex core during the first revolution of the rotor.
Axial contraction in etched optical fiber due to internal stress reduction.
Lim, Kok-Sing; Yang, Hang-Zhou; Chong, Wu-Yi; Cheong, Yew-Ken; Lim, Chin-Hong; Ali, Norfizah M; Ahmad, Harith
2013-02-11
When an optical fiber is dipped in an etching solution, the internal stress profile in the fiber varies with the fiber diameter. We observed a physical contraction as much as 0.2% in the fiber axial dimension when the fiber was reduced from its original diameter to ~6 µm through analysis using high resolution microscope images of the grating period of an etched FBG at different fiber diameters. This axial contraction is related to the varying axial stress profile in the fiber when the fiber diameter is reduced. On top of that, the refractive index of fiber core increases with reducing fiber diameter due to stress-optic effect. The calculated index increment is as much as 1.8 × 10(-3) at the center of fiber core after the diameter is reduced down to ~6 µm. In comparison with the conventional model that assumes constant grating period and neglects the variation in stress-induced index change in fiber core, our proposed model indicates a discrepancy as much as 3nm in Bragg wavelength at a fiber diameter of ~6 µm.
Federal Register 2010, 2011, 2012, 2013, 2014
2013-02-25
... Diameter Line Pipe From Japan; Scheduling of a Full Five-Year Review Concerning the Antidumping Duty Order on Welded Large Diameter Line Pipe From Japan AGENCY: United States International Trade Commission... revocation of the antidumping duty order on welded large diameter line pipe from Japan would be likely to...
Eddy Resolving Global Ocean Prediction including Tides
2013-09-30
atlantic meridional overturning circulation in the subpolar North Atlantic . Journal of Geophysical Research vol 118, doi:10.1002/jgrc,20065. [published, refereed] ...global ocean circulation model was examined using results from years 2005-2009 of a seven and a half year 1/12.5° global simulation that resolves...internal tides, along with barotropic tides and the eddying general circulation . We examined tidal amplitudes computed using 18 183-day windows that
Liposomal nanomedicines: an emerging field.
Fenske, David B; Chonn, Arcadio; Cullis, Pieter R
2008-01-01
Liposomal nanoparticles (LNs) encapsulating therapeutic agents, or liposomal nanomedicines (LNMs), represent one of the most advanced classes of drug delivery systems, with several currently on the market and many more in clinical trials. During the past 20 years, a variety of techniques have been developed for encapsulating both conventional drugs and the new genetic drugs (plasmid DNA-containing therapeutic genes, antisense oligonucleotides, and small, interfering RNA [siRNA]) within LNs encompassing a very specific set of properties: a diameter centered on 100 nm, a high drug-to-lipid ratio, excellent retention of the encapsulated drug, and a long (>6 hours) circulation lifetime. Particles with these properties tend to accumulate at sites of disease, such as tumors, where the endothelial layer is "leaky" and allows extravasation of particles with small diameters. Thus, LNs protect the drug during circulation, prevent it from reaching healthy tissues, and permit its accumulation at sites of disease. We will discuss recent advances in this field involving conventional anticancer drugs as well as gene-delivery, immunostimulatory, and gene-silencing applications involving the new genetic drugs. LNMs have the potential to offer new treatments in such areas as cancer therapy, vaccine development, and cholesterol management.
Fenske, David B; Cullis, Pieter R
2008-01-01
Liposomal nanoparticles (LNs) encapsulating therapeutic agents, or liposomal nanomedicines, represent an advanced class of drug delivery systems, with several formulations presently on the market and many more in clinical trials. Over the past 20 years, a variety of techniques have been developed for encapsulating both conventional drugs (such as anticancer drugs and antibiotics) and the new genetic drugs (plasmid DNA containing therapeutic genes, antisense oligonucleotides and small interfering RNA) within LNs. If the LNs possess certain properties, they tend to accumulate at sites of disease, such as tumours, where the endothelial layer is 'leaky' and allows extravasation of particles with small diameters. These properties include a diameter centred on 100 nm, a high drug-to-lipid ratio, excellent retention of the encapsulated drug, and a long (> 6 h) circulation lifetime. These properties permit the LNs to protect their contents during circulation, prevent contact with healthy tissues, and accumulate at sites of disease. The authors discuss recent advances in this field involving conventional anticancer drugs, as well as applications involving gene delivery, stimulation of the immune system and silencing of unwanted gene expression. Liposomal nanomedicines have the potential to offer new treatments in such areas as cancer therapy, vaccine development and cholesterol management.
Electrical properties of the costo-uterine muscle of the guinea-pig.
Parkington, H C
1983-01-01
The spontaneous electrical and mechanical activity of the costo-uterine muscle of the guinea-pig are described. The spontaneous electrical activity, recorded intracellularly, is similar to that observed previously in longitudinal myometrium of rat (Marshall, 1959) and ionic substitution suggests that, though calcium may be the predominant ion carrying the current during the upstroke of the action potential, some influence of sodium cannot be ruled out. During dioestrus, when circulating progesterone levels are high, there is an increase in the resting membrane potential and a decrease in the frequency of electrical and mechanical activity. There is a two-fold decrease in the space constant (lambda) during dioestrus. At this time the membrane time constant (tau m) is also decreased. The diameter and length of the smooth muscle cells are smaller during dioestrus. However, the differences in cell diameter do not explain all of the differences observed in lambda at this time and it is suggested that there may be an increase in the resistance to current flow between cells. It is concluded that high circulating progesterone may bring about quiescence of target smooth muscle in two ways: by stabilizing the cell membrane and by restricting the spread of activity. PMID:6683758
Kommareddy, Sushma; Amiji, Mansoor
2007-02-01
The objective of the present study was to modify thiolated gelatin nanoparticles with poly(ethylene glycol) (PEG) chains and examine their long circulating and tumor-targeting properties in vivo in an orthotopic a human breast adenocarcinoma xenograft model. The crosslinked nanoparticle systems were characterized to have a size of 150-250 nm with rapid payload release properties in a highly reducing environment. Upon PEG modification, the nanoparticle size increased to 300-350 nm in diameter. The presence of PEG chains on the surface was confirmed by characterization with electron spectroscopy for chemical analysis. The in vivo long-circulating potential, biodistribution and passive tumor targeting of the controls, and PEG-modified thiolated gelatin nanoparticles were evaluated by injecting indium-111 (111In)-labeled nanoparticles into breast tumor (MDA-MB-435)-bearing nude mice. Upon modification with PEG, the nanoparticles were found to have longer circulation times, with the plasma and tumor half-lives of 15.3 and 37.8 h, respectively. The results also showed preferential localization of thiolated nanoparticles in the tumor mass. The resulting nanoparticulate systems with long circulation properties could be used to target encapsulated drugs and genes to tumors passively by utilizing the enhanced permeability and retention effect of the tumor vasculature. Copyright (c) 2006 Wiley-Liss, Inc.
Federal Register 2010, 2011, 2012, 2013, 2014
2013-09-16
... DEPARTMENT OF COMMERCE International Trade Administration [A-570-929] Small Diameter Graphite... (Department) determines that imports from the People's Republic of China (PRC) of graphite electrodes... Act of 1930, as amended (the Act).\\1\\ \\1\\ See Antidumping Duty Order: Small Diameter Graphite...
Li, Hongbo; Yang, Yanye; Zhang, Meimei; Yin, Liping; Tu, Juan; Guo, Xiasheng; Zhang, Dong
2018-05-01
A long-circulating lipid-coated ultrasound (US) contrast agent was fabricated to achieve a longer wash-out time and gain more resistance against higher-mechanical index sonication. Systemic physical, acoustic, and in vivo imaging experiments were performed to better understand the underlying mechanism enabling the improvement of contrast agent performance by adjusting the physical and acoustic properties of contrast agent microbubbles. By simply altering the gas core, a kind of US contrast agent microbubble was synthesized with a similar lipid-coating shell as SonoVue microbubbles (Bracco SpA, Milan, Italy) to achieve a longer wash-out time and higher inertial cavitation threshold. To bridge the structure-performance relationship of the synthesized microbubbles, the imaging performance of the microbubbles was assessed in vivo with SonoVue as a control group. The size distribution and inertial cavitation threshold of the synthesized microbubbles were characterized, and the shell parameters of the microbubbles were determined by acoustic attenuation measurements. All of the measurements were compared with SonoVue microbubbles. The synthesized microbubbles had a spherical shape, a smooth, consistent membrane, and a uniform distribution, with an average diameter of 1.484 μm. According to the measured attenuation curve, the synthesized microbubbles resonated at around 2.8 MHz. Although the bubble's shell elasticity (0.2 ± 0.09 N/m) was comparable with SonoVue, it had relatively greater viscosity and inertial cavitation because of the different gas core. Imaging studies showed that the synthesized microbubbles had a longer circulation time and a better chance of fighting against rapid collapse than SonoVue. Nano/micrometer long-circulating lipid-coated microbubbles could be fabricated by simply altering the core composition of SonoVue microbubbles with a higher-molecular weight gas. The smaller diameter and higher inertial cavitation threshold of the synthesized microbubbles might make it easier to access deep-seated organs and give prolonged imaging enhancement in the liver. © 2017 by the American Institute of Ultrasound in Medicine.
Wojakowski, W; Pyrlik, A; Król, M; Buszman, P; Ochała, A; Milewski, K; Smolka, G; Kawecki, D; Rudnik, A; Pawłowski, T; Jadczyk, T; Wyderka, R; Cybulski, W; Dworowy, S; Tendera, M
2013-06-01
Aim of the study was to evaluate the association between circulating endothelial progenitor cells (EPCs) and angiographic outcomes after implantation of GenousTM stent in patients with non-ST-segment elevation acute coronary syndromes (ACS) (NSTE-ACS) undergoing urgent percutaneous coronary intervention (PCI). Sixty patients treated with EPC-capture stent (N.=30) or bare metal stents (BMS) (N.=30) receiving 80 mg atorvastatin and dual antiplatelet therapy (DAT) for 12 months. Restenosis was assessed after 6 months by quantitative coronary angiography (QCA) and major acute coronary events (MACE) evaluated after 6 and 12 months. de novo lesion >70% in native vessel, diameter 2.5-4 mm, lesion length <30 mm. diabetes, previous revascularization, significant left main stenosis, chronic total occlusions (CTO) and multivessel disease. Majority of patients in EPC-capture stent and BMS groups presented with NSTEMI (73.3% and 70%, respectively). Mean stent length was 20.1±8 and 19.9±10 mm, diameter 3±0.97 and 3.1±0.88 mm in respective groups. The binary restenosis was significantly lower in GenousTM (13 vs. 26.6%, P=0.04). Risk of MACE after 6 and 12 months were comparable in both groups. There was no stent thrombosis. Numbers of circulating EPCs were significantly approximately 2-fold higher during the ACS than after 6 months. Mobilization of EPCs during acute ischemia was significantly lower in patients who developed restenosis after 6 months (3 vs. 4.5 cells/μL, P=0.002) and it was negatively correlated with late-loss after 6 months (R=-0.42; P<0.03). Use of GenousTM stents in NSTE-ACS is associated with lower restenosis rate than BMS at 6 months. There was no ST through 1 year. The number of circulating EPCs is inversely correlated with in-stent late loss (LL).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Katalenich, Jeffrey A.; Kitchen, Brian B.; Pierson, Bruce D.
Internal gelation sol-gel methods have used a variety of sphere forming methods in the past to produce metal oxide microspheres, but typically with poor control over the size uniformity at diameters near 100 µm. This work describes efforts to make and measure internal gelation, sol-gel microspheres with very uniform diameters in the 100 – 200 µm size range using a two-fluid nozzle. A custom apparatus was used to form aqueous droplets of sol-gel feed solutions in silicone oil and heat them to cause gelation of the spheres. Gelled spheres were washed, dried, and sintered prior to mounting on glass slidesmore » for optical imaging and analysis. Microsphere diameters and shape factors were determined as a function of silicone oil flow rate in a two-fluid nozzle and the size of a needle dispensing the aqueous sol-gel solution. Nine batches of microspheres were analyzed and had diameters ranging from 65.5 ± 2.4 µm for the smallest needle and fastest silicone oil flow rate to 211 ± 4.7 µm for the largest needle and slowest silicone oil flow rate. Standard deviations for measured diameters were less than 8% for all samples and most were less than 4%. Microspheres had excellent circularity with measured shape factors of 0.9 – 1. However, processing of optical images was complicated by shadow effects in the photoresist layer on glass slides and by overlapping microspheres. Based on calculated flow parameters, microspheres were produced in a simple dripping mode in the two-fluid nozzle. Using flow rates consistent with a simple dripping mode in a two-fluid nozzle configuration allows for very uniform oxide microspheres to be produced using the internal-gelation sol-gel method.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Katalenich, Jeffrey A.; Kitchen, Brian B.; Pierson, Bruce
2018-05-01
Internal gelation sol-gel methods have used a variety of sphere forming methods in the past to produce metal oxide microspheres, but typically with poor control over the size uniformity at diameters near 100 µm. This work describes efforts to make and measure internal gelation, sol-gel microspheres with very uniform diameters in the 100 – 200 µm size range using a two-fluid nozzle. A custom apparatus was used to form aqueous droplets of sol-gel feed solutions in silicone oil and heat them to cause gelation of the spheres. Gelled spheres were washed, dried, and sintered prior to mounting on glass slidesmore » for optical imaging and analysis. Microsphere diameters and shape factors were determined as a function of silicone oil flow rate in a two-fluid nozzle and the size of a needle dispensing the aqueous sol-gel solution. Nine batches of microspheres were analyzed and had diameters ranging from 65.5 ± 2.4 µm for the smallest needle and fastest silicone oil flow rate to 211 ± 4.7 µm for the largest needle and slowest silicone oil flow rate. Standard deviations for measured diameters were less than 8% for all samples and most were less than 4%. Microspheres had excellent circularity with measured shape factors of 0.9 – 1. However, processing of optical images was complicated by shadow effects in the photoresist layer on glass slides and by overlapping microspheres. Based on calculated flow parameters, microspheres were produced in a simple dripping mode in the two-fluid nozzle. Using flow rates consistent with a simple dripping mode in a two-fluid nozzle configuration allows for very uniform oxide microspheres to be produced using the internal-gelation sol-gel method.« less
Baliyan, Ankur; Nakajima, Yoshikata; Fukuda, Takahiro; Uchida, Takashi; Hanajiri, Tatsuro; Maekawa, Toru
2014-01-22
It still remains a crucial challenge to actively control carbon nanotube (CNT) structure such as the alignment, area density, diameter, length, chirality, and number of walls. Here, we synthesize an ultradense forest of CNTs of a uniform internal diameter by the plasma-enhanced chemical vapor deposition (PECVD) method using hollow nanoparticles (HNPs) modified with ligand as a catalyst. The diameters of the HNPs and internal cavities in the HNPs are uniform. A monolayer of densely packed HNPs is self-assembled on a silicon substrate by spin coating. HNPs shrink via the collapse of the internal cavities and phase transition from iron oxide to metallic iron in hydrogen plasma during the PECVD process. Agglomeration of catalytic NPs is avoided on account of the shrinkage of the NPs and ligand attached to the NPs. Diffusion of NPs into the substrate, which would inactivate the growth of CNTs, is also avoided on account of the ligand. As a result, an ultradense forest of triple-walled CNTs of a uniform internal diameter is successfully synthesized. The area density of the grown CNTs is as high as 0.6 × 10(12) cm(-2). Finally, the activity of the catalytic NPs and the NP/carbon interactions during the growth process of CNTs are investigated and discussed. We believe that the present approach may make a great contribution to the development of an innovative synthetic method for CNTs with selective properties.
Owolabi, Mayowa O; Agunloye, Atinuke M; Ogunniyi, Adesola
2014-01-01
Chronic changes in flow rate through arteries produce adjustment of arterial diameters. We compared the relationship between flow velocity and diameter in the carotid and in the vertebral arteries of stroke patients. Using triplex ultrasonography, the internal diameter and flow velocities of the common carotid, internal carotid, and vertebral arteries of 176 consecutive stroke patients were measured. Correlations were examined with Pearson's statistics at an alpha level of 0.05. Mean age of the patients was 59.3 ± 12 years, and 66% had cerebral infarcts. Diameter and blood flow velocities showed significant negative correlations (-0.115 ≥ r ≥ -0.382) in the carotid arteries on both sides, but positive correlations (0.211 ≤ r ≤ 0.320) in the vertebral arteries, even after controlling for age, gender, and blood pressure. Our study demonstrated different diameter/flow relationships in the carotid and the vertebral arteries of stroke patients, which may suggest pathologic changes in the adaptive processes governing vessel diameter and growth, especially in the carotid arteries. Copyright © 2013 Wiley Periodicals, Inc.
Federal Register 2010, 2011, 2012, 2013, 2014
2012-09-27
... DEPARTMENT OF COMMERCE International Trade Administration [A-588-851] Certain Small Diameter Carbon and Alloy Seamless Standard, Line and Pressure Pipe (Under 4\\1/2\\ Inches) From Japan: Rescission... antidumping order on certain small diameter carbon and alloy seamless standard, line and pressure pipe (under...
Federal Register 2010, 2011, 2012, 2013, 2014
2010-10-19
... DEPARTMENT OF COMMERCE International Trade Administration [A-570-929] Small Diameter Graphite Electrodes From the People's Republic of China: Extension of Time Limit for the Preliminary Results of the... review of the antidumping duty order on small diameter graphite electrodes from the People's Republic of...
Federal Register 2010, 2011, 2012, 2013, 2014
2011-11-01
... DEPARTMENT OF COMMERCE International Trade Administration [A-570-929] Small Diameter Graphite... diameter graphite electrodes from the People's Republic of China (PRC) for the period February 1, 2010... Graphite, Co. The preliminary results of the review are currently due no later than October 31, 2011...
Fundamental characteristics of degradation-recoverable solid-state DFB polymer laser.
Yoshioka, Hiroaki; Yang, Yu; Watanabe, Hirofumi; Oki, Yuji
2012-02-13
A novel solid-state dye laser with degradation recovery was proposed and demonstrated. Polydimethylsiloxane was used as a nanoporous solid matrix to enable the internal circulation of dye molecules in the solid state. An internal circulation model for the dye molecules was also proposed and verified numerically by assuming molecular mobility and using a proposed diffusion equation. The durability of the laser was increased 20.5-fold compared with that of a conventional polymethylmethacrylate laser. This novel laser solves the low-durability problem of dye-doped polymer lasers.
Giuberti, Cristiane dos Santos; Boratto, Fernanda Alves; Degobert, Ghania; Silveira, Josianne Nicácio; Oliveira, Mônica Cristina
2013-09-01
Recent studies using long-circulating and pH-sensitive liposomes containing cisplatin (SpHL-CDDP) have resulted in a formulation with improved pharmacokinetic, toxicity and tumor localization properties. In this study, SpHL-CDDP were prepared in both laboratory and pilot scales. This study evaluated the possibility of using the dehydration-rehydration method, as well as using alternative organic solvents (ethyl acetate/ethanol mixtures at 2:1 and 1:1 volume ratios), for the preparation of liposomes by the reverse-phase evaporation (REV) method. The influence of different concentrations of cisplatin (CDDP) (2.0, 1.0, 0.5 and 0.25 mg/mL) on the entrapment percentage and size of SpHL-CDDP was also investigated. In addition, carbohydrates were tested as cryoprotectants in a freeze-thaw study as a pretest to screen the type to be used in the freeze-drying process. A decrease in the encapsulation percentage of CDDP and an increase in the vesicle diameter could be observed for both liposome formulations prepared with ethyl acetate:ethanol mixtures, as compared with REV liposomes prepared with ethyl ether. It is important to note that after applying either quick or slow cooling, the mean diameter of SpHL (empty liposomes) proved to be similar when in the presence of cryoprotectants. In sum, the optimal processing conditions were achieved when using a 0.5 mg/mL CDDP solution, ethyl ether and the REV method, resulting in liposomal dispersions of mean diameters and homogeneities that were deemed suitable for intravenous administration.
American Issues Forum: Active Projects--Summary Report [And] Nationally Circulated Materials.
ERIC Educational Resources Information Center
National Endowment for the Humanities (NFAH), Washington, DC.
These two reports briefly describe the active projects and nationally circulated mateirals associated with the American Issues Forum Bicentennial Programs. The summary report of active projects is designed to show how various national media, national and international organizations, corporations, and state and community groups are actively…
46 CFR 56.50-80 - Lubricating-oil systems.
Code of Federal Regulations, 2014 CFR
2014-10-01
... coolers on steam driven machinery shall be provided with two separate means of circulating water through the coolers. (d) For internal combustion engine installations, the requirements of paragraphs (b) and... provided for circulating coolant on those engines on which oil coolers are fitted. One of those means must...
46 CFR 56.50-80 - Lubricating-oil systems.
Code of Federal Regulations, 2013 CFR
2013-10-01
... coolers on steam driven machinery shall be provided with two separate means of circulating water through the coolers. (d) For internal combustion engine installations, the requirements of paragraphs (b) and... provided for circulating coolant on those engines on which oil coolers are fitted. One of those means must...
46 CFR 56.50-80 - Lubricating-oil systems.
Code of Federal Regulations, 2012 CFR
2012-10-01
... coolers on steam driven machinery shall be provided with two separate means of circulating water through the coolers. (d) For internal combustion engine installations, the requirements of paragraphs (b) and... provided for circulating coolant on those engines on which oil coolers are fitted. One of those means must...
46 CFR 56.50-80 - Lubricating-oil systems.
Code of Federal Regulations, 2010 CFR
2010-10-01
... coolers on steam driven machinery shall be provided with two separate means of circulating water through the coolers. (d) For internal combustion engine installations, the requirements of paragraphs (b) and... provided for circulating coolant on those engines on which oil coolers are fitted. One of those means must...
46 CFR 56.50-80 - Lubricating-oil systems.
Code of Federal Regulations, 2011 CFR
2011-10-01
... coolers on steam driven machinery shall be provided with two separate means of circulating water through the coolers. (d) For internal combustion engine installations, the requirements of paragraphs (b) and... provided for circulating coolant on those engines on which oil coolers are fitted. One of those means must...
Mean Platelet Volume as an Indicator of Platelet Rejuvenation Following Bone Marrow Transplantation.
1986-07-01
al., 1972 Family R ACD volume D D Murphy et al., 1972 Connective Tissue Disorders Ehlers - Danlos Syndrome diameter N I Estes, 1968 Marlan Syndrome ...autosomal dominant), Maran syndrome (autosomal dominant), Mucopolysaccharidosis syndrome (sex-linked), Ehlers - Danlos syndrome (autosomal dominant...individuals with hyperdestructive syndromes (Paulus, 1975). If macrothrombocytosis in hyperdestruction is due only to the young age of the circulating
The Value of Circulating Biomarkers in Bicuspid Aortic Valve-Associated Aortopathy.
Naito, Shiho; Hillebrand, Mathias; Bernhardt, Alexander Martin Justus; Jagodzinski, Annika; Conradi, Lenard; Detter, Christian; Sydow, Karsten; Reichenspurner, Hermann; Kodolitsch, Yskert von; Girdauskas, Evaldas
2018-06-01
Traditional risk stratification model of bicuspid aortic valve (BAV) aortopathy is based on measurement of maximal cross-sectional aortic diameter, definition of proximal aortic shape, and aortic stiffness/elasticity parameters. However, conventional imaging-based criteria are unable to provide reliable information regarding the risk stratification in BAV aortopathy, especially considering the heterogeneous nature of BAV disease. Given those limitations of conventional imaging, there is a growing clinical interest to use circulating biomarkers in the screening process for thoracic aortic aneurysms as well as in the risk-assessment algorithms. We aimed to systematically review currently available biomarkers, which may be of value to predict the natural evolution of aortopathy in individuals with BAV. Georg Thieme Verlag KG Stuttgart · New York.
[Hemodynamic phenomena in retrobulhar and eyeball vessels].
Modrzejewska, Monika
2011-01-01
The purpose of this review was to evaluate factors connected with blood flow and indices regulating vascular diameter and some parameters influencing retrobulbar circulation such as type of vascular resistance, anatomical structure of vascular wall and vessel lumen. Neurogenic and angiogenic factors, rheological blood composition, presence of anatomical and pathological obstructions on blood flow pathway as well as degree of development of collateral circulation pathways--have influence on the volume and blood flow velocity in eyeball. There were discussed bulbar circulation hemodynamics, emphasizing the importance of perfusion pressure. The role of risk factors was underlined for pathological lesions in vessels supplying blood to eyeball and in ophthalmic artery (OA) and its collaterals, in central retinal artery (CRA) as well as posterior ciliary arteries (PCAs), and in venous system carrying away blood from eye. IN CONCLUSION--the results of many studies of retrobulbar blood flow in different types of ophthalmic diseases of the vascular etiopathogenesis indicate that registry of the mean values of blood flow parameters and vascular resistance indices parallel to measurement of blood flow spectrum in OA, CRA, PCAs arteries, might contribute much information to explain or to evaluate nature of pathological changes in retinal and choroidal circulation.
Yuruk, Koray; Bezemer, Rick; Euser, Mariska; Milstein, Dan M J; de Geus, Hilde H R; Scholten, Evert W; de Mol, Bas A J M; Ince, Can
2012-09-01
OBJECTIVES To reduce the complications associated with cardiopulmonary bypass (CPB) during cardiac surgery, many modifications have been made to conventional extracorporeal circulation systems. This trend has led to the development of miniaturized extracorporeal circulation systems. Cardiac surgery using conventional extracorporeal circulation systems has been associated with significantly reduced microcirculatory perfusion, but it remains unknown whether this could be prevented by an mECC system. Here, we aimed to test the hypothesis that microcirculatory perfusion decreases with the use of a conventional extracorporeal circulation system and would be preserved with the use of an miniaturized extracorporeal circulation system. METHODS Microcirculatory density and perfusion were assessed using sublingual side stream dark-field imaging in patients undergoing on-pump coronary artery bypass graft (CABG) surgery before, during and after the use of either a conventional extracorporeal circulation system (n = 10) or a miniaturized extracorporeal circulation system (n = 10). In addition, plasma neutrophil gelatinase-associated lipocalin and creatinine levels and creatinine clearance were assessed up to 5 days post-surgery to monitor renal function. RESULTS At the end of the CPB, one patient in the miniaturized extracorporeal circulation-treated group and five patients in the conventional extracorporeal circulation-treated group received one bag of packed red blood cells (300 ml). During the CPB, the haematocrit and haemoglobin levels were slightly higher in the miniaturized extracorporeal circulation-treated patients compared with the conventional extracorporeal circulation-treated patients (27.7 ± 3.3 vs 24.7 ± 2.0%; P = 0.03; and 6.42 ± 0.75 vs 5.41 ± 0.64 mmol/l; P < 0.01). The density of perfused vessels with a diameter <25 µm (i.e. perfused vessel density) decreased slightly in the conventional extracorporeal circulation-treated group from 16.4 ± 3.8 to 12.8 ± 3.3 mm/mm(2) (P < 0.01) and remained stable in the miniaturized extracorporeal circulation-treated group (16.3 ± 2.7 and 15.2 ± 2.9 mm/mm(2) before and during the pump, respectively). Plasma neutrophil gelatinase-associated lipocalin levels were increased following the use of extracorporeal circulation in both groups, and no differences were observed between the groups. Plasma creatinine levels and creatinine clearance were not affected by CABG surgery or CPB. CONCLUSIONS The results from this relatively small study suggest that the use of the miniaturized extracorporeal circulation system is associated with a statistically significant (but clinically insignificant) reduction in haemodilution and microcirculatory hypoperfusion compared with the use of the conventional extracorporeal circulation system.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-02-11
... DEPARTMENT OF COMMERCE International Trade Administration [A-588-850] Certain Large Diameter Carbon and Alloy Seamless Standard, Line, and Pressure Pipe (Over 4\\1/2\\ Inches) From Japan: Extension of... administrative review of the antidumping duty order on certain large diameter carbon and alloy seamless standard...
A Wind Tunnel Model to Explore Unsteady Circulation Control for General Aviation Applications
NASA Technical Reports Server (NTRS)
Cagle, Christopher M.; Jones, Gregory S.
2002-01-01
Circulation Control airfoils have been demonstrated to provide substantial improvements in lift over conventional airfoils. The General Aviation Circular Control model is an attempt to address some of the concerns of this technique. The primary focus is to substantially reduce the amount of air mass flow by implementing unsteady flow. This paper describes a wind tunnel model that implements unsteady circulation control by pulsing internal pneumatic valves and details some preliminary results from the first test entry.
Effect of gravity waves on the North Atlantic circulation
NASA Astrophysics Data System (ADS)
Eden, Carsten
2017-04-01
The recently proposed IDEMIX (Internal wave Dissipation, Energy and MIXing) parameterisation for the effect of gravity waves offers the possibility to construct consistent ocean models with a closed energy cycle. This means that the energy available for interior mixing in the ocean is only controlled by external energy input from the atmosphere and the tidal system and by internal exchanges. A central difficulty is the unknown fate of meso-scale eddy energy. In different scenarios for that eddy dissipation, the parameterized internal wave field provides between 2 and 3 TW for interior mixing from the total external energy input of about 4 TW, such that a transfer between 0.3 and 0.4 TW into mean potential energy contributes to drive the large-scale circulation in the model. The impact of the different mixing on the meridional overturning in the North Atlantic is discussed and compared to hydrographic observations. Furthermore, the direct energy exchange of the wave field with the geostrophic flow is parameterized in extended IDEMIX versions and the sensitivity of the North Atlantic circulation by this gravity wave drag is discussed.
The effect of non-zero radial velocity on the impulse and circulation of starting jets
NASA Astrophysics Data System (ADS)
Krieg, Michael; Mohseni, Kamran
2011-11-01
Vortex ring formation dynamics are generally studied using two basic types of vortex generators. Piston cylinder vortex generators eject fluid through a long tube which ensures a purely axial jet; whereas, vortex ring generators which expel fluid through a flat plate with a circular orifice produce 2-D jets (non-zero radial velocity). At the nozzle exit plane of the orifice type vortex generator the radial component of velocity is linearly proportional to the radial distance from the axis of symmetry, reaching a maximum at the edge of the orifice with a magnitude around 10 % of the piston velocity (the ratio of the volume flux and the nozzle area). As the jet advances downstream the radial velocity quickly dissipates, and becomes purely axial less than a diameter away from the nozzle exit plane. The radial velocity gradient in the axial direction plays a key role in the rate at which circulation and impulse are ejected from the vortex generator. Though the radial component of velocity is small compared to the axial velocity, it has a significant effect on both the circulation and impulse of the starting jet because of this gradient. The extent of circulation and impulse enhancement is investigated through experimental DPIV data showing that the orifice device produces nearly double both circulation and energy (with identical piston velocity and stroke ratios).
Yao, Shuai-Lei; Luo, Jing-Jia; Huang, Gang
2016-01-01
Regional climate projections are challenging because of large uncertainty particularly stemming from unpredictable, internal variability of the climate system. Here, we examine the internal variability-induced uncertainty in precipitation and surface air temperature (SAT) trends during 2005-2055 over East Asia based on 40 member ensemble projections of the Community Climate System Model Version 3 (CCSM3). The model ensembles are generated from a suite of different atmospheric initial conditions using the same SRES A1B greenhouse gas scenario. We find that projected precipitation trends are subject to considerably larger internal uncertainty and hence have lower confidence, compared to the projected SAT trends in both the boreal winter and summer. Projected SAT trends in winter have relatively higher uncertainty than those in summer. Besides, the lower-level atmospheric circulation has larger uncertainty than that in the mid-level. Based on k-means cluster analysis, we demonstrate that a substantial portion of internally-induced precipitation and SAT trends arises from internal large-scale atmospheric circulation variability. These results highlight the importance of internal climate variability in affecting regional climate projections on multi-decadal timescales.
ERIC Educational Resources Information Center
Francisco, Jaime; Cordeiro, Parreira; Carvalho, Luis Miguel
2005-01-01
This article focuses on the circulation of educational models between Portugal and Brazil (from 1920 to 1935), within a broader context of an intensive international transfer of "ways of thinking" about education. It describes and analyses the results from research on two educational journals, one Portuguese (Revista Escolar) the other…
Estephan, Zaki G; Hariri, Hanaa H; Schlenoff, Joseph B
2013-02-26
Stable aqueous dispersions of superparamagnetic iron oxide nanoparticles were synthesized in one step in the presence of a zwitterionic siloxane as the stabilizing/capping/solubilizing ligand. The hydrodynamic diameter of the particles was tuned by controlling the concentration of zwitterion siloxane, which ultimately yielded monodisperse nanoparticles small enough for renal filtration (<6 nm diameter). The zwitterated nanoparticles were readily dispersed and stable in aqueous media in the pH range 6-9 but exhibited lower magnetization values than nonzwitterated materials due to amorphous content and spin canting, typical for particles of such size. Turbidimetry and light scattering studies revealed no interaction between the particles and proteins, suggesting the materials will circulate well in vivo.
Niebroj-Dobosz, Irena; Madej-Pilarczyk, Agnieszka; Marchel, Michał; Sokołowska, Beata; Hausmanowa-Petrusewicz, Irena
2011-12-01
As osteopontin (OPN) may be assumed to have diagnostic/prognostic value in heart diseases, it is worth assessing whether it is also involved in the pathogenesis and can be applied in the diagnosis of the dilated cardiomyopathy (DCM) in Emery-Dreifuss muscular dystrophy (EDMD). Serum levels of osteopontin were quantified by means of sandwich immunoassay in 25 EDMD patients (10 laminopathies AD-EDMD and 15 emerinopathies--X-EDMD), eight carriers of X-EDMD, nine disease controls (patients with dystrophinopathy) and 20 age-matched healthy controls. The levels of circulating OPN were elevated in all AD-EDMD and X-linked EDMD patients, as well as in X-EDMD carriers and patients suffering progressive muscular dystrophy. There was no correlation between the osteopontin level and different cardiac parameters, including left-ventricular end-diastolic diameter, left atrial diameter, the left ventricular ejection fraction and the CK-MB level. There was a slight negative correlation with the ages of the patients. The presented results indicate that assessments of circulating OPN levels may help to identify EDMD patients at risk of dilated cardiomyopathy and might be therefore included among the set of biomarkers referred to with a view to appropriate early cardiologic diagnosis and therapy being commenced with in time.
Interaction of Vortex Rings and Steady Jets with Permeable Screens of Varied Porosity
NASA Astrophysics Data System (ADS)
Musta, Mustafa
2013-11-01
Vortex ring and steady jet interaction with a porous matrix formed from several parallel, transparent permeable screens with the same grid geometry for open area ratios (φ) 49.5% - 83.8% was studied previously using digital particle image velocimetry (DPIV) at jet Reynolds number (Re) of 1000-3000. Vortex ring results showed that unlike the experiments with thin screens, a transmitted vortex ring, which has a similar diameter to the primary one, wasn't formed. Instead a centerline vortex ring like structure formed and its diameter, circulation, and dissipation time decreased as φ decreased. However, for the case of screens φ = 55.7% with large screen spacing, reformation of large scale weak vortex rings was observed downstream of the first screen. The present work experimentally investigates the interaction of vortex rings and steady jets with screens of decreasing φ (83.8%-49.5%) in the flow direction. A piston type vortex ring generator was used and measurements were made using DPIV. The vortex ring results show that the size and circulation of the vortex ring like flow structure was changed based on the screen φ within the permeable screen matrix. Similarly, steady jet flow structure and the local turbulent kinetic energy was changed based on the local screen φ.
Acute effects of a large bolide impact simulated by a global atmospheric circulation model
NASA Technical Reports Server (NTRS)
Thompson, Starley L.; Crutzen, P. J.
1988-01-01
The goal is to use a global three-dimensional atmospheric circulation model developed for studies of atmospheric effects of nuclear war to examine the time evolution of atmospheric effects from a large bolide impact. The model allows for dust and NOx injection, atmospheric transport by winds, removal by precipitation, radiative transfer effects, stratospheric ozone chemistry, and nitric acid formation and deposition on a simulated Earth having realistic geography. Researchers assume a modest 2 km-diameter impactor of the type that could have formed the 32 km-diameter impact structure found near Manson, Iowa and dated at roughly 66 Ma. Such an impact would have created on the order of 5 x 10 to the 10th power metric tons of atmospheric dust (about 0.01 g cm(-2) if spread globally) and 1 x 10 to the 37th power molecules of NO, or two orders of magnitude more stratospheric NO than might be produced in a large nuclear war. Researchers ignore potential injections of CO2 and wildfire smoke, and assume the direct heating of the atmosphere by impact ejecta on a regional scale is not large compared to absorption of solar energy by dust. Researchers assume an impact site at 45 N in the interior of present day North America.
Madsen, Søren Møller; Thorup, Anne Cathrine; Overgaard, Kristian; Bjerre, Mette; Jeppesen, Per Bendix
2015-01-01
We wished to investigate the effects of 8 weeks of low volume high intensity interval training (HIIT) on endothelial function of popliteal artery and circulating cell adhesion molecules in type 2 diabetes (T2D) patients and matched controls (CON). Over 8 weeks, non-active T2D patients and CONs cycled three times per week (10 × 60 sec HIIT). Pre- and post-HIIT measurements of endothelial function were conducted by applying flow-mediated dilation (FMD) along with taking venous blood samples. Baseline diameter of popliteal artery increased significantly from an average of 5.53 mm to 5.97 mm (∼8%) in the CON-group (p = 0.006) and 5.32 mm to 5.61 mm (∼6%) in the T2D-group (p = 0.009). Peak diameter increased significantly from 5.82 mm to 6.36 mm (∼9%) in the CON-group (p = 0.001) and 5.57 mm to 5.93 mm (∼7%) in the T2D-group (p = 0.004). FMD% increased significantly from 5.12% to 6.58% in the CON-group (p = 0.004) and 4.84% to 5.66% in the T2D-group: (p = 0.045). The shear rate reduced significantly in both groups (CON-group: p = 0.04; T2D-group: p = 0.002). Circulating cell adhesion molecules remained unchanged (p > 0.05). HIIT induced an improvement of endothelium-dependent FMD and significant outwards artery modelling. No changes in circulating cell adhesion molecules were observed.
Mocco, J; Brown, Robert D; Torner, James C; Capuano, Ana W; Fargen, Kyle M; Raghavan, Madhavan L; Piepgras, David G; Meissner, Irene; Huston, John
2018-04-01
There are conflicting data between natural history studies suggesting a very low risk of rupture for small, unruptured intracranial aneurysms and retrospective studies that have identified a much higher frequency of small, ruptured aneurysms than expected. To use the prospective International Study of Unruptured Intracranial Aneurysms cohort to identify morphological characteristics predictive of unruptured intracranial aneurysm rupture. A case-control design was used to analyze morphological characteristics associated with aneurysm rupture in the International Study of Unruptured Intracranial Aneurysms database. Fifty-seven patients with ruptured aneurysms during follow-up were matched (by size and location) with 198 patients with unruptured intracranial aneurysms without rupture during follow-up. Twelve morphological metrics were measured from cerebral angiograms in a blinded fashion. Perpendicular height (P = .008) and size ratio (ratio of maximum diameter to the parent vessel diameter; P = .01) were predictors of aneurysm rupture on univariate analysis. Aspect ratio, daughter sacs, multiple lobes, aneurysm angle, neck diameter, parent vessel diameter, and calculated aneurysm volume were not statistically significant predictors of rupture. On multivariate analysis, perpendicular height was the only significant predictor of rupture (Chi-square 7.1, P-value .008). This study underscores the importance of other morphological factors, such as perpendicular height and size ratio, that may influence unruptured intracranial aneurysm rupture risk in addition to greatest diameter and anterior vs posterior location.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Woloshun, Keith Albert; Dale, Gregory E.; Olivas, Eric Richard
The Northstar target for Mo99 production is made up of Mo100 disks in a stack separated by coolant gaps for helium flow. A number of targets have been tested at ANL for both production of Mo99 and for thermal-hydraulic performance. These have all been with a 12 mm diameter target, even while the production goals have increased the diameter to now 29 mm. A 29 mm diameter target has been designed that is consistent with the ANL beam capabilities and the capabilities of the helium circulation system currently in use at ANL. This target is designed for 500 μA atmore » 35 MeV electrons. While the plant design calls for 42 MeV, the chosen design point is more favorable and higher power given the limits of the ANL accelerator. The intended beam spot size is 12 mm FWHM, but the thermal analysis presented herein conservatively assumed a 10 mm FWHM beam, which results in a 44% higher beam current density at beam center.« less
NASA Astrophysics Data System (ADS)
Benavidez, P. G.; Durda, D. D.; Enke, B.; Campo Bagatin, A.; Richardson, D. C.; Asphaug, E.; Bottke, W. F.
2018-04-01
In this work we extend the systematic investigation of impact outcomes of 100-km-diameter targets started by Durda et al. (2007) and Benavidez et al. (2012) to targets of D = 400 km using the same range of impact conditions and two internal structures: monolithic and rubble-pile. We performed a new set of simulations in the gravity regime for targets of 400 km in diameter using these same internal structures. This provides a large set of 600 simulations performed in a systematic way that permits a thorough analysis of the impact outcomes and evaluation of the main features of the size frequency distribution due mostly to self-gravity. In addition, we use the impact outcomes to attempt to constrain the impact conditions of the asteroid belt where known asteroid families with a large expected parent body were formed. We have found fairly good matches for the Eunomia and Hygiea families. In addition, we identified a potential acceptable match to the Vesta family from a monolithic parent body of 468 km. The impact conditions of the best matches suggest that these families were formed in a dynamically excited belt. The results also suggest that the parent body of the Eunomia family could be a monolithic body of 382 km diameter, while the one for Hygiea could have a rubble-pile internal structure of 416 km diameter.
A blood circulation model for reference man
DOE Office of Scientific and Technical Information (OSTI.GOV)
Leggett, R.W.; Eckerman, K.F.; Williams, L.R.
This paper describes a dynamic blood circulation model that predicts the movement and gradual dispersal of a bolus of material in the circulation after its intravascular injection into an adult human. The main purpose of the model is to improve the dosimetry of internally deposited radionuclides that decay in the circulation to a significant extent. The total blood volume is partitioned into the blood contents of 24 separate organs or tissues, right heart chambers, left heart chambers, pulmonary circulation, arterial outflow to the systemic tissues (aorta and large arteries), and venous return from the systemic tissues (large veins). As amore » compromise between physical reality and computational simplicity, the circulation of blood is viewed as a system of first-order transfers between blood pools, with the delay time depending on the mean transit time across the pool. The model allows consideration of incomplete, tissue-dependent extraction of material during passage through the circulation and return of material from tissues to plasma.« less
NASA Astrophysics Data System (ADS)
Yong, Yumei; Lu, Qinggang
2003-05-01
The combustion performance of the boiler largely depends on the coal type. Lots of experimental research shows that different fuels have different combustion characteristics. It is obvious that fuel will change the whole operating performance of Circulating Fluidized Bed Combustion (CFBC). We know even in a pilot-scale running boiler, the measurement of some parameters is difficult and costly. Therefore, we developed the way of simulation to evaluate the combustion performance of Chinese coals in CFB. The simulation results show that, different coals will result in different coal particle diameter and comminution depending on their mineral component and the change will affect the distribution of ash in CFBC system. In a word, the computational results are in accordance with experimental results qualitatively but there are some differences quantitatively.
Experimental Study of a Nitrogen Natural Circulation Loop at Low Heat Flux
NASA Astrophysics Data System (ADS)
Baudouy, B.
2010-04-01
A natural convection circulation loop in liquid nitrogen, i.e. an open thermosiphon flow configuration, has been investigated experimentally near atmospheric pressure. The experiments were conducted on a 2 m high loop with a copper tube of 10 mm inner diameter uniformly heated over a length of 0.95 m. Evolution of the total mass flow rate of the loop and the pressure difference along the tube are described. We also report the boiling curves where single phase and two-phase flows are identified with increasing heat flux. We focus our heat transfer analysis on the single phase regime where mixed convection is encountered. A heat transfer coefficient correlation is proposed. We also examine the boiling incipience as a function of the tube height.
Evans, Robert M.
1976-10-05
1. A neutronic reactor having a moderator, coolant tubes traversing the moderator from an inlet end to an outlet end, bodies of material fissionable by neutrons of thermal energy disposed within the coolant tubes, and means for circulating water through said coolant tubes characterized by the improved construction wherein the coolant tubes are constructed of aluminum having an outer diameter of 1.729 inches and a wall thickness of 0.059 inch, and the means for circulating a liquid coolant through the tubes includes a source of water at a pressure of approximately 350 pounds per square inch connected to the inlet end of the tubes, and said construction including a pressure reducing orifice disposed at the inlet ends of the tubes reducing the pressure of the water by approximately 150 pounds per square inch.
Milleret, Vincent; Bittermann, Anne Greet; Mayer, Dieter; Hall, Heike
2009-01-01
Many wounds heal slowly and are difficult to manage. Therefore Negative Pressure Wound Therapy (NPWT) was developed where polymer foams are applied and a defined negative pressure removes wound fluid, reduces bacterial burden and increases the formation of granulation tissue. Although NPWT is used successfully, its mechanisms are not well understood. In particular, different NPWT dressings were never compared. Here a poly-ester urethane Degrapol® (DP)-foam was produced and compared with commercially available dressings (polyurethane-based and polyvinyl-alcohol-based) in terms of apparent pore sizes, swelling and effective interconnectivity of foam pores. DP-foams contain relatively small interconnected pores; PU-foams showed large pore size and interconnectivity; whereas PVA-foams displayed heterogeneous and poorly interconnected pores. PVA-foams swelled by 40 %, whereas DP- and PU-foams remained almost without swelling. Effective interconnectivity was investigated by submitting fluorescent beads of 3, 20 and 45 μm diameter through the foams. DP- and PU-foams removed 70-90 % of all beads within 4 h, independent of the bead diameter or bead pre-adsorption with serum albumin. For PVA-foams albumin pre-adsorbed beads circulated longer, where 20 % of 3 μm and 10 % of 20 μm diameter beads circulated after 96 h. The studies indicate that efficient bead perfusion does not only depend on pore size and swelling capacity, but effective interconnectivity might also depend on chemical composition of the foam itself. In addition due to the efficient sieve-effect of the foams uptake of wound components in vivo might occur only for short time suggesting other mechanisms being decisive for success of NPWT.
NASA Astrophysics Data System (ADS)
Michel, P.; Benz, W.; Richardson, D. C.
2005-08-01
Recent simulations of asteroid break-ups, including both the fragmentation of the parent body and the gravitational interactions of the fragments, have allowed to reproduced successfully the main properties of asteroid families formed in different regimes of impact energy. Here, using the same kind of simulations, we concentrate on a single regime of impact energy, the so-called catastrophic threshold usually designated by Qcrit, which results in the escape of half of the target's mass. Considering a wide range of diameter values and two kinds of internal structures of the parent body, monolithic and pre-shattered, we analyse their potential influences on the value of Qcrit and on the collisional outcome limited here to the fragment size and ejection speed distributions, which are the main outcome properties used by collisional models to study the evolutions of the different populations of small bodies. For all the considered diameters and the two internal structures of the parent body, we confirm that the process of gravitational reaccumulation is at the origin of the largest remnant's mass. We then find that, for a given diameter of the parent body, the impact energy corresponding to the catastrophic disruption threshold is highly dependent on the internal structure of the parent body. In particular, a pre-shattered parent body containing only damaged zones but no macroscopic voids is easier to disrupt than a monolithic parent body. Other kinds of internal properties that can also characterize small bodies in real populations will be investigated in a future work.
Yuruk, Koray; Bezemer, Rick; Euser, Mariska; Milstein, Dan M.J.; de Geus, Hilde H.R.; Scholten, Evert W.; de Mol, Bas A.J.M.; Ince, Can
2012-01-01
OBJECTIVES To reduce the complications associated with cardiopulmonary bypass (CPB) during cardiac surgery, many modifications have been made to conventional extracorporeal circulation systems. This trend has led to the development of miniaturized extracorporeal circulation systems. Cardiac surgery using conventional extracorporeal circulation systems has been associated with significantly reduced microcirculatory perfusion, but it remains unknown whether this could be prevented by an mECC system. Here, we aimed to test the hypothesis that microcirculatory perfusion decreases with the use of a conventional extracorporeal circulation system and would be preserved with the use of an miniaturized extracorporeal circulation system. METHODS Microcirculatory density and perfusion were assessed using sublingual side stream dark-field imaging in patients undergoing on-pump coronary artery bypass graft (CABG) surgery before, during and after the use of either a conventional extracorporeal circulation system (n = 10) or a miniaturized extracorporeal circulation system (n = 10). In addition, plasma neutrophil gelatinase-associated lipocalin and creatinine levels and creatinine clearance were assessed up to 5 days post-surgery to monitor renal function. RESULTS At the end of the CPB, one patient in the miniaturized extracorporeal circulation-treated group and five patients in the conventional extracorporeal circulation-treated group received one bag of packed red blood cells (300 ml). During the CPB, the haematocrit and haemoglobin levels were slightly higher in the miniaturized extracorporeal circulation-treated patients compared with the conventional extracorporeal circulation-treated patients (27.7 ± 3.3 vs 24.7 ± 2.0%; P = 0.03; and 6.42 ± 0.75 vs 5.41 ± 0.64 mmol/l; P < 0.01). The density of perfused vessels with a diameter <25 µm (i.e. perfused vessel density) decreased slightly in the conventional extracorporeal circulation-treated group from 16.4 ± 3.8 to 12.8 ± 3.3 mm/mm2 (P < 0.01) and remained stable in the miniaturized extracorporeal circulation-treated group (16.3 ± 2.7 and 15.2 ± 2.9 mm/mm2 before and during the pump, respectively). Plasma neutrophil gelatinase-associated lipocalin levels were increased following the use of extracorporeal circulation in both groups, and no differences were observed between the groups. Plasma creatinine levels and creatinine clearance were not affected by CABG surgery or CPB. CONCLUSIONS The results from this relatively small study suggest that the use of the miniaturized extracorporeal circulation system is associated with a statistically significant (but clinically insignificant) reduction in haemodilution and microcirculatory hypoperfusion compared with the use of the conventional extracorporeal circulation system. PMID:22700685
Pallesen, Lars P; Khomenko, Andrei; Dzialowski, Imanuel; Barlinn, Jessica; Barlinn, Kristian; Zerna, Charlotte; van der Hoeven, Erik Jrj; Algra, Ale; Kapelle, L Jaap; Michel, Patrik; Bodechtel, Ulf; Demchuk, Andrew M; Schonewille, Wouter; Puetz, Volker
2017-02-01
Background Coma is associated with poor outcome in patients with basilar artery occlusion. Aims We sought to assess whether the posterior circulation Acute Stroke Prognosis Early CT Score and the Pons-Midbrain Index applied to CT angiography source images predict the outcome of comatose patients in the Basilar Artery International Cooperation Study. Methods Basilar Artery International Cooperation Study was a prospective, observational registry of patients with acute basilar artery occlusion with 48 recruiting centers worldwide. We applied posterior circulation Acute Stroke Prognosis Early CT Score and Pons-Midbrain Index to CT angiography source images of Basilar Artery International Cooperation Study patients who presented with coma. We calculated adjusted risk ratios to assess the association of dichotomized posterior circulation Acute Stroke Prognosis Early CT Score (≥8 vs. <8) and Pons-Midbrain Index (<3 vs. ≥3) with mortality and favourable outcome (modified Rankin Scale score 0-3) at one month. Results Of 619 patients in the Basilar Artery International Cooperation Study registry, CT angiography source images were available for review in 158 patients. Among these, 78 patients (49%) presented with coma. Compared to non-comatose patients, comatose patients were more likely to die (risk ratios 2.34; CI 95% 1.56-3.52) and less likely to have a favourable outcome (risk ratios 0.44; CI 95% 0.24-0.80). Among comatose patients, a Pons-Midbrain Index < 3 was related to reduced mortality (adjusted RR 0.66; 95% CI 0.46-0.96), but not to favourable outcome (adjusted RR 1.19; 95% CI 0.39-3.62). Posterior circulation Acute Stroke Prognosis Early CT Score dichotomized at ≥ 8 vs. <8 was not significantly associated with death (adjusted RR 0.70; 95% CI 0.46-1.05). Conclusion In comatose patients with basilar artery occlusion, the extent of brainstem ischemia appears to be related to mortality but not to favourable outcome.
Connector tube for a turbine rotor cooling circuit
Li, Ming Cheng
2003-06-24
A tubular connector adapted to extend between two tubular components comprising a tubular body having an internal diameter, a first free end including an annular radial flange having a tapered surface adapted to engage a complementary seating surface on a first of the two tubular components, the internal diameter remaining constant through the first free end; and a second free end having an annular bulbous shape adapted to seat within a cylindrical end of a second of the two tubular components.
Connector tube for a turbine rotor cooling circuit
Li, Ming Cheng
2002-01-01
A tubular connector adapted to extend between two tubular components comprising a tubular body having an internal diameter, a first free end including an annular radial flange having a tapered surface adapted to engage a complementary seating surface on a first of the two tubular components, the internal diameter remaining constant through the first free end; and a second free end having an annular bulbous shape adapted to seat within a cylindrical end of a second of the two tubular components.
Apparatus for Leak Testing Pressurized Hoses
NASA Technical Reports Server (NTRS)
Underwood, Steve D. (Inventor); Garrison, Steve G. (Inventor); Gant, Bobby D. (Inventor); Palmer, John R. (Inventor)
2015-01-01
A hose-attaching apparatus for leak-testing a pressurized hose may include a hose-attaching member. A bore may extend through the hose-attaching member. An internal annular cavity may extend coaxially around the bore. At least one of a detector probe hole and a detector probe may be connected to the internal annular cavity. At least a portion of the bore may have a diameter which is at least one of substantially equal to and less than a diameter of a hose to be leak-tested.
Sub-scale Inverse Wind Turbine Blade Design Using Bound Circulation
NASA Astrophysics Data System (ADS)
Kelley, Christopher; Berg, Jonathan
2014-11-01
A goal of the National Rotor Testbed project at Sandia is to design a sub-scale wind turbine blade that has similitude to a modern, commercial size blade. However, a smaller diameter wind turbine operating at the same tip-speed-ratio exhibits a different range of operating Reynolds numbers across the blade span, thus changing the local lift and drag coefficients. Differences to load distribution also affect the wake dynamics and stability. An inverse wind turbine blade design tool has been implemented which uses a target, dimensionless circulation distribution from a full-scale blade to find the chord and twist along a sub-scale blade. In addition, airfoil polar data are interpolated from a few specified span stations leading to a smooth, manufacturable blade. The iterative process perturbs chord and twist, after running a blade element momentum theory code, to reduce the residual sum of the squares between the modeled sub-scale circulation and the target full-scale circulation. It is shown that the converged sub-scale design also leads to performance similarity in thrust and power coefficients. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy under Contract DE-AC04-94AL85000.
The Effect of Particle Size on the Biodistribution of Low-modulus Hydrogel PRINT Particles
Merkel, Timothy J.; Chen, Kai; Jones, Stephen W.; Pandya, Ashish A.; Tian, Shaomin; Napier, Mary E.; Zamboni, William E.; DeSimone, Joseph M.
2012-01-01
There is a growing recognition that the deformability of particles used for drug delivery plays a significant role on their biodistribution and circulation profile. Understanding these effects would provide a crucial tool for the rational design of drug delivery systems. While particles resembling red blood cells (RBCs) in size, shape and deformability have extended circulation times and altered biodistribution profiles compared to rigid, but otherwise similar particles, the in vivo behavior of such highly deformable particles of varied size has not been explored. We report the fabrication of a series of discoid, monodisperse, low-modulus hydrogel particles with diameters ranging from 0.8 to 8.9 μm, spanning sizes smaller than and larger than RBCs. We injected these particles into healthy mice, and tracked their concentration in the blood and their distribution into major organs. These deformable particles all demonstrated some hold up in filtration tissues like the lungs and spleen, followed by release back into the circulation, characterized by decreases in particles in these tissues with concomitant increases in particle concentration in blood. Particles similar to red blood cells in size demonstrated longer circulation times, suggesting that this size and shape of deformable particle is uniquely suited to avoid clearance. PMID:22705460
Sailer, Irena; Asgeirsson, Asgeir G; Thoma, Daniel S; Fehmer, Vincent; Aspelund, Thor; Özcan, Mutlu; Pjetursson, Bjarni E
2018-04-01
There is limited knowledge regarding the strength of zirconia abutments with internal and external implant abutment connections and zirconia abutments supported by a titanium resin base (Variobase, Straumann) for narrow diameter implants. To compare the fracture strength of narrow diameter abutments with different types of implant abutment connections after chewing simulation. Hundred and twenty identical customized abutments with different materials and implant abutment connections were fabricated for five groups: 1-piece zirconia abutment with internal connection (T1, Cares-abutment-Straumann BL-NC implant, Straumann Switzerland), 1-piece zirconia abutment with external hex connection (T2, Procera abutment-Branemark NP implant, Nobel Biocare, Sweden), 2-piece zirconia abutments with metallic insert for internal connection (T3, Procera abutment-Replace NP implant, Nobel Biocare), 2-piece zirconia abutment on titanium resin base (T4, LavaPlus abutment-VarioBase-Straumann BL-NC implant, 3M ESPE, Germany) and 1-piece titanium abutment with internal connection (C, Cares-abutment-Straumann BL-NC implant, Straumann, Switzerland). All implants had a narrow diameter ranging from 3.3 to 3.5 mm. Sixty un-restored abutments and 60 abutments restored with glass-ceramic crowns were tested. Mean bending moments were compared using ANOVA with p-values adjusted for multiple comparisons using Tukey's procedure. The mean bending moments were 521 ± 33 Ncm (T4), 404 ± 36 Ncm (C), 311 ± 106 Ncm (T1) 265 ± 22 Ncm (T3) and 225 ± 29 (T2) for un-restored abutments and 278 ± 84 Ncm (T4), 302 ± 170 Ncm (C), 190 ± 55 Ncm (T1) 80 ± 102 Ncm (T3) and 125 ± 57 (T2) for restored abutments. For un-restored abutments, C and T4 had similar mean bending moments, significantly higher than those of the three other groups (p < .05). Titanium abutments (C) had significantly higher bending moments than identical zirconia abutments (T1) (p < .05). Zirconia abutments (T1) with internal connection had higher bending moments than zirconia abutments with external connection (T2) (p < .05). For all test groups, the bending moments were significantly reduced when restored with all-ceramic crowns. For narrow diameter abutments, the fracture strength of 2-piece internal connected zirconia abutments fixed on titanium resin bases was similar to those obtained for 1-piece titanium abutments. Narrow diameter zirconia abutments with internal connection exhibited higher fracture strength than zirconia abutments with an external connection. Titanium abutments with an internal connection were significantly stronger than identical zirconia abutments. © 2018 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Al-Jumaian, Nasser; Malik, Rizwan; Khandekar, Rajiv; Al-Humaidan, Abdullah; Al-Madany, Rana; Al-Qahtani, Reham; Altowairqi, Ahmed; Al-Theeb, Abdulwahab; Zaman, Babar; Al-Djasim, Leyla; Craven, E. Randy; Edward, Deepak P.
2016-01-01
WHAT IS KNOWN AND OBJECTIVE: Physical bottle characteristics differ of brand name topical glaucoma medications and local generic equivalents. This study compares the bottle characteristics of international topical glaucoma brands versus local brands from the Kingdom of Saudi Arabia. METHODS: Data were collected on bottle drum volume, drop volume, bottle squeezability, bottle tip diameter, labels and instructions, cap color coding, and clarity of the drug label. Density-based calculations of drops in bottle volume were assessed using an analytic balance. Bottle tip diameter was measured using 0.05 mm Vernier calipers. A Likert scale-based questionnaire was used to evaluate the subjective opinions of patients on bottle squeezability, clarity of usage and storage instructions, and the consistency of the cap color coding. RESULTS: The volumes of international brands were statistically significantly higher than the local brands (P < 0.001). A number of drops per bottle and tip diameter were comparable between the international local brands. Cap color coding was inconsistent for international and local brands. Patients were dissatisfied with the label font size. Patients reported that the international and local brands were similar in terms of the ease of opening the bottle, instilling a drop, and the clarity of the instructions; but the local brands were subjectively easier to squeeze than international brands. WHAT IS NEW AND CONCLUSIONS: This is the first study to compare bottle characteristics of local Saudi Arabia brands with international brands. The bottle characteristics and patient feedback were similar between the local and international topical glaucoma medications. However, there were differences between the local and international brands in drug volume, bottle squeezability. Hence, patient compliance and drop dosage may differ based on the origin of manufacture. PMID:27994392
Lattice Boltzmann Simulation of Blood Flow in Blood Vessels with the Rolling Massage
NASA Astrophysics Data System (ADS)
Yi, Hou-Hui; Xu, Shi-Xiong; Qian, Yue-Hong; Fang, Hai-Ping
2005-12-01
The rolling massage manipulation is a classic Chinese massage, which is expected to improve the circulation by pushing, pulling and kneading of the muscle. A model for the rolling massage manipulation is proposed and the lattice Boltzmann method is applied to study the blood flow in the blood vessels. The simulation results show that the blood flux is considerably modified by the rolling massage and the explicit value depends on the rolling frequency, the rolling depth, and the diameter of the vessel. The smaller the diameter of the blood vessel, the larger the enhancement of the blood flux by the rolling massage. The model, together with the simulation results, is expected to be helpful to understand the mechanism and further development of rolling massage techniques.
Covalent IR820-PEG-diamine nanoconjugates for theranostic applications in cancer.
Fernandez-Fernandez, Alicia; Manchanda, Romila; Carvajal, Denny A; Lei, Tingjun; Srinivasan, Supriya; McGoron, Anthony J
2014-01-01
Near-infrared dyes can be used as theranostic agents in cancer management, based on their optical imaging and localized hyperthermia capabilities. However, their clinical translatability is limited by issues such as photobleaching, short circulation times, and nonspecific biodistribution. Nanoconjugate formulations of cyanine dyes, such as IR820, may be able to overcome some of these limitations. We covalently conjugated IR820 with 6 kDa polyethylene glycol (PEG)-diamine to create a nanoconjugate (IRPDcov) with potential for in vivo applications. The conjugation process resulted in nearly spherical, uniformly distributed nanoparticles of approximately 150 nm diameter and zeta potential -0.4±0.3 mV. The IRPDcov formulation retained the ability to fluoresce and to cause hyperthermia-mediated cell-growth inhibition, with enhanced internalization and significantly enhanced cytotoxic hyperthermia effects in cancer cells compared with free dye. Additionally, IRPDcov demonstrated a significantly longer (P<0.05) plasma half-life, elimination half-life, and area under the curve (AUC) value compared with IR820, indicating larger overall exposure to the theranostic agent in mice. The IRPDcov conjugate had different organ localization than did free IR820, with potential reduced accumulation in the kidneys and significantly lower (P<0.05) accumulation in the lungs. Some potential advantages of IR820-PEG-diamine nanoconjugates may include passive targeting of tumor tissue through the enhanced permeability and retention effect, prolonged circulation times resulting in increased windows for combined diagnosis and therapy, and further opportunities for functionalization, targeting, and customization. The conjugation of PEG-diamine with a near-infrared dye provides a multifunctional delivery vector whose localization can be monitored with noninvasive techniques and that may also serve for guided hyperthermia cancer treatments.
Pichler, Gerhard; Pocivalnik, Mirjam; Riedl, Regina; Pichler-Stachl, Elisabeth; Morris, Nicholas; Zotter, Heinz; Müller, Wilhelm; Urlesberger, Berndt
2011-08-01
Interpretation of peripheral circulation in ill neonates is crucial but difficult. The aim was to analyse parameters potentially influencing peripheral oxygenation and circulation. In a prospective observational cohort study in 116 cardio-circulatory stable neonates, peripheral muscle near-infrared spectroscopy (NIRS) with venous occlusion was performed. Tissue oxygenation index (TOI), mixed venous oxygenation (SvO(2)), fractional oxygen extraction (FOE), fractional tissue oxygen extraction (FTOE), haemoglobin flow (Hbflow), oxygen delivery (DO(2)), oxygen consumption (VO(2)), and vascular resistance (VR) were assessed. Correlation coefficients between NIRS parameters and demographic parameters (gestational age, birth weight, age, actual weight, diameter of calf, subcutaneous adipose tissue), monitoring parameters (heart rate, arterial oxygen saturation (SaO(2)), mean blood pressure (MAP), core/peripheral temperature, central/peripheral capillary refill time) and laboratory parameters (haemoglobin concentration (Hb-blood), pCO(2)) were calculated. All demographic parameters except for Hbflow and DO(2) correlated with NIRS parameters. Heart rate correlated with TOI, SvO(2), VO(2) and VR. SaO(2) correlated with FOE/FTOE. MAP correlated with Hbflow, DO(2), VO(2) and VR. Core temperature correlated with FTOE. Peripheral temperature correlated with all NIRS parameters except VO(2). Hb-blood correlated with FOE and VR. pCO(2) levels correlated with TOI and SvO(2). The presence of multiple interdependent factors associated with peripheral oxygenation and circulation highlights the difficulty in interpreting NIRS data. Nevertheless, these findings have to be taken into account when analysing peripheral oxygenation and circulation data.
Impact of Chronic Rheumatic Valve Diseases on Large Vessels.
Altunbas, Gokhan; Yuce, Murat; Ozer, Hasan O; Davutoglu, Vedat; Ercan, Suleyman; Kizilkan, Nese; Bilici, Muhammet
2016-01-01
BACKGROUND AND AIM OF STUDY: Rheumatic valvular heart disease, which remains a common health problem in developing countries, has numerous consequences on the heart chambers and circulation. The study aim was to investigate the effects of chronic rheumatic valve disease on the diameters of the descending aorta (DA) and inferior vena cava (IVC). METHODS: A total of 88 patients with echocardiographically documented rheumatic valvular heart disease and 112 healthy controls were enrolled into the study. All patients underwent detailed echocardiographic examinations, while their height and body weight were recorded and adjusted to their body surface area. RESULTS: The most common involvement was mitral valve disease, followed by aortic valve disease and tricuspid valve disease. The mean diameter of the DA (indexed to BSA) was 1.79 ± 0.49 cm for patients and 1.53 ± 0.41 for controls (p <0.001). The mean diameter of the IVC (indexed to BSA) was 1.69 ± 0.73 for patients and 1.38 ± 0.35 cm for controls (p <0.001). There was a significant positive correlation between mitral valve mean gradient and IVC diameter (p = 0.01, r = 0.18). There were also strong associations between the mitral valve area and the diameters of the DA (p = 0.001, r = -0.239) and IVC (p <0.001, r = -0.246). CONCLUSION: Rheumatic valve disease, especially mitral stenosis, was closely related to remodeling of the great vessels.
[Research on the feasibility of a magnetic-coupling-driven axial flow blood pump].
Yu, Xiaoqing; Ding, Wenxiang; Wang, Wei; Chen, En; Jiang, Zuming; Zou, Wenyan
2004-02-01
A new-designed axial flow blood pump, dived by magnetic coupling and using internal hollow brushless DC motor and inlet and outlet in line with impeller, was tested in mimic circuit. The results showed good performance of the new pump and indicated that its hydrodynamic characteristic can meet the demands of clinical extracorporeal circulation and auxiliary circulation.
Wall Driven Cavity Approach to Slug Flow Modeling In a Micro channel
NASA Astrophysics Data System (ADS)
Sahu, Avinash; Kulkarni, Shekhar; Pushpavanam, Subramaniam; Pushpavanam Research League Team, Prof.
2014-03-01
Slug flow is a commonly observed stable regime and occurs at relatively low flow rates of the fluids. Wettability of channel decides continuous and discrete phases. In these types of biphasic flows, the fluid - fluid interface acts as a barrier that prohibits species movement across the interface. The flow inside a slug is qualitatively similar to the well known shallow cavity flow. In shallow cavities the flow mimics the ``fully developed'' internal circulation in slug flows. Another approach to slug flow modeling can be in a moving reference frame. Here the wall boundary moves in the direction opposite to that of the flow, hence induces circulations within the phases which is analogous to the well known Lid Driven Cavity. The two parallel walls are moved in the opposite directions which generate circulation patterns, equivalent to the ones regularly observed in slug flow in micro channels. A fourth order stream function equation is solved using finite difference approach. The flow field obtained using the two approaches will be used to analyze the effect on mass transfer and chemical reactions in the micro channel. The internal circulations and the performance of these systems will be validated experimentally.
NASA Astrophysics Data System (ADS)
Yamamoto, Tatsumi; Kawasaki, Hiroyuki; Mori, Hidetoshi
2017-11-01
Loop type bubble columns have good performance of liquid circulation and mass transfer by airlift effect, where the liquid circulation time is an important measurable characteristic parameter. This parameter is affected by the column construction, the aspect ratio of the column, the cross-sectional area ratio of down comer to riser (R), and the superficial gas velocity in the riser (UGR). In this work, the mean gas holdup and the liquid circulation time (TC) have been measured in four types of loop airlift type bubble column: concentric tube internal loop airlift type, rectangular internal loop airlift type, external loop airlift type, external loop airlift with separator. Air and tap water were used as gas and liquid phase, respectively. The results have demonstrated that the mean gas holdup in riser increases in proportion to UGR, and that it in downcomer changes according to the geometric parameters of each bubble column. TC has been found to conform to an empirical equation which depends on UGR and the length of draft tube or division plate in the region of 0.33 < R < 1.
A study of the rheological properties of endodontic sealers.
Lacey, S; Pitt Ford, T R; Watson, T F; Sherriff, M
2005-08-01
To test the hypothesis that there would be no statistically significant difference in viscosity-related measures of endodontic sealers or change in these with strain rate, internal diameter or powder : liquid ratio in a capillary system. Materials used were Apexit, Tubliseal EWT, Grossman's sealer and Ketac-endo. Viscosity-related measures were tested in a two-plate test, and in a capillary rheometer. The mean values (n = 12) for thickness and diameter of material formed between two glass plates were tested with one-way analysis of variance. Pressure was applied to a capillary rheometer at strain rates 5 and 10 mm min(-1) in tubes of internal diameter 0.6 and 1.2 mm. Tubliseal EWT had a thinner film thickness than the other sealers (alpha = 0.05). The difference in diameter between Tubliseal EWT and the other sealers was significant apart from Apexit. Increased strain rate gave a significant increase (alpha = 0.05) in the flow of all sealers. Narrower tubes produced increased velocity, which was significant for all sealers, and reduced volumetric flow, which was significant for all sealers except Grossman's 2 : 1 (Wilcoxon signed rank test). Reduction in powder : liquid ratio of Grossman's significantly increased flow in narrow tubes and at higher strain rate (Mann-Whitney test). There was a significant difference between the flow of Tubliseal EWT and the other sealers tested in the two-plate test; capillary flow was affected by sealer, internal diameter, strain rate and powder : liquid ratio. The null hypotheses were rejected.
A drop in uniaxial and biaxial nonlinear extensional flows
NASA Astrophysics Data System (ADS)
Favelukis, M.
2017-08-01
In this theoretical report, we explore small deformations of an initially spherical drop subjected to uniaxial or biaxial nonlinear extensional creeping flows. The problem is governed by the capillary number (Ca), the viscosity ratio (λ), and the nonlinear intensity of the flow (E). When the extensional flow is linear (E = 0), the familiar internal circulations are obtained and the same is true with E > 0, except that the external and internal flow rates increase with increasing E. If E < 0, the external flow consists of some unconnected regions leading to the same number of internal circulations (-3/7 < E < 0) or twice the number of internal circulations (E < -3/7), when compared to the linear case. The shape of the deformed drop is represented in terms of a modified Taylor deformation parameter, and the conditions for the breakup of the drop by a center pinching mechanism are also established. When the flow is linear (E = 0), the literature predicts prolate spheroidal drops for uniaxial flows (Ca > 0) and oblate spheroidal drops for biaxial flows (Ca < 0). For the same |Ca|, if E > 0, the drop is more elongated than the linear case, while E < 0 results in less elongated drops than the linear case. Compared to the linear case, for both uniaxial and biaxial extensional flows, E > 0 tends to facilitate drop breakup, while E < 0 makes drop breakup more difficult.
NASA Technical Reports Server (NTRS)
Stevens, Mark A.; Handschuh, Robert F.; Lewicki, David G.
2010-01-01
The Offset Compound Gear Drive is an in-line, discrete, two-speed device utilizing a special offset compound gear that has both an internal tooth configuration on the input end and external tooth configuration on the output end, thus allowing it to mesh in series, simultaneously, with both a smaller external tooth input gear and a larger internal tooth output gear. This unique geometry and offset axis permits the compound gear to mesh with the smaller diameter input gear and the larger diameter output gear, both of which are on the same central, or primary, centerline. This configuration results in a compact in-line reduction gear set consisting of fewer gears and bearings than a conventional planetary gear train. Switching between the two output ratios is accomplished through a main control clutch and sprag. Power flow to the above is transmitted through concentric power paths. Low-speed operation is accomplished in two meshes. For the purpose of illustrating the low-speed output operation, the following example pitch diameters are given. A 5.0 pitch diameter (PD) input gear to 7.50 PD (internal tooth) intermediate gear (0.667 reduction mesh), and a 7.50 PD (external tooth) intermediate gear to a 10.00 PD output gear (0.750 reduction mesh). Note that it is not required that the intermediate gears on the offset axis be of the same diameter. For this example, the resultant low-speed ratio is 2:1 (output speed = 0.500; product of stage one 0.667 reduction and stage two 0.750 stage reduction). The design is not restricted to the example pitch diameters, or output ratio. From the output gear, power is transmitted through a hollow drive shaft, which, in turn, drives a sprag during which time the main clutch is disengaged.
Galván Duque-Gastélum, Carlos; Quiñones-Uriostegui, Ivett; Mendoza, Felipe; Rodríguez, Gerardo
2014-07-01
Ortheses are devices that assist in the function of the limbs, contributing with stability and support to the involved joints. KAFOs (knee-ankle-foot orthosis) are mainly indicated for people with muscular or neural diseases that affect the lower limbs. The actual designs of knee hinges for KAFOs compromise the stability and mobility of the limb. In this work, it was tested the feasibility of a design for a knee hinge for KAFO that should be able to modify its mechanical resistance depending on the gait phase. Orthotics biomechanical criteria and gait biomechanical requirements were considered. It was proposed an electromagnetic system in order to modify the hinge damping. In the future, the system will be interacting with a magnetorheological fluid (MR) which can change its rheological properties when a magnetic field is applied, thus, reaching different damping constants with the designed hinge. The diameter of the internal pipes required for the MR fluid to freely circulate within the orthosis was established. It was observed that the original design of the proposed orthotic hinge is feasible; however, some proposals are presented in order to achieve a better performance of the orthosis.
Hunt, Geraldine B; Culp, William T N; Mayhew, Kelli N; Mayhew, Philipp; Steffey, Michele A; Zwingenberger, Allison
2014-10-01
To evaluate the in vivo pattern of ameroid constrictor closure of congenital extrahepatic portosystemic shunts in dogs. Prospective study. Dogs (n = 22) with congenital extrahepatic portosystemic shunts. Contrast-enhanced computed tomography was performed immediately before, and at least 8 weeks after placement of ameroid ring constrictors. Plastic-encased ameroid constrictors were used in 17 dogs and metal constrictors in 5 dogs. Presence of residual flow through the portosystemic shunt, additional anomalous vessels, acquired shunts and soft tissue associated with the ameroid constrictor was recorded. Postoperative internal diameter was recorded for the 17 plastic constrictors. Correlations between internal diameter and pre- and postoperative serum protein concentration were analyzed. No ameroid constrictor closed completely: shunt occlusion was always dependent on soft tissue within the ameroid ring. Residual flow through the shunt was present in 4 dogs (18%), although this caused persistent elevation of shunt fraction in only 1 dog (dog 8). The change in ameroid constrictor internal diameter was not significantly correlated with serum protein concentration. Complete shunt occlusion after AC placement is usually dependent on soft tissue reaction. Ameroid constrictors ≥5 mm diameter may not promote complete shunt occlusion. © Copyright 2014 by The American College of Veterinary Surgeons.
Sato, Kohei; Sadamoto, Tomoko; Hirasawa, Ai; Oue, Anna; Subudhi, Andrew W; Miyazawa, Taiki; Ogoh, Shigehiko
2012-01-01
Arterial CO2 serves as a mediator of cerebral blood flow (CBF), and its relative influence on the regulation of CBF is defined as cerebral CO2 reactivity. Our previous studies have demonstrated that there are differences in CBF responses to physiological stimuli (i.e. dynamic exercise and orthostatic stress) between arteries in humans. These findings suggest that dynamic CBF regulation and cerebral CO2 reactivity may be different in the anterior and posterior cerebral circulation. The aim of this study was to identify cerebral CO2 reactivity by measuring blood flow and examine potential differences in CO2 reactivity between the internal carotid artery (ICA), external carotid artery (ECA) and vertebral artery (VA). In 10 healthy young subjects, we evaluated the ICA, ECA, and VA blood flow responses by duplex ultrasonography (Vivid-e, GE Healthcare), and mean blood flow velocity in middle cerebral artery (MCA) and basilar artery (BA) by transcranial Doppler (Vivid-7, GE healthcare) during two levels of hypercapnia (3% and 6% CO2), normocapnia and hypocapnia to estimate CO2 reactivity. To characterize cerebrovascular reactivity to CO2, we used both exponential and linear regression analysis between CBF and estimated partial pressure of arterial CO2, calculated by end-tidal partial pressure of CO2. CO2 reactivity in VA was significantly lower than in ICA (coefficient of exponential regression 0.021 ± 0.008 vs. 0.030 ± 0.008; slope of linear regression 2.11 ± 0.84 vs. 3.18 ± 1.09% mmHg−1: VA vs. ICA, P < 0.01). Lower CO2 reactivity in the posterior cerebral circulation was persistent in distal intracranial arteries (exponent 0.023 ± 0.006 vs. 0.037 ± 0.009; linear 2.29 ± 0.56 vs. 3.31 ± 0.87% mmHg−1: BA vs. MCA). In contrast, CO2 reactivity in ECA was markedly lower than in the intra-cerebral circulation (exponent 0.006 ± 0.007; linear 0.63 ± 0.64% mmHg−1, P < 0.01). These findings indicate that vertebro-basilar circulation has lower CO2 reactivity than internal carotid circulation, and that CO2 reactivity of the external carotid circulation is markedly diminished compared to that of the cerebral circulation, which may explain different CBF responses to physiological stress. PMID:22526884
Langohr, G Daniel G; Giles, Joshua W; Athwal, George S; Johnson, James A
2015-06-01
Little is known about the effects of glenosphere diameter on shoulder joint loads. The purpose of this biomechanical study was to investigate the effects of glenosphere diameter on joint load, load angle, and total deltoid force required for active abduction and range of motion in internal/external rotation and abduction. A custom, instrumented reverse shoulder arthroplasty implant system capable of measuring joint load and varying glenosphere diameter (38 and 42 mm) and glenoid offset (neutral and lateral) was implanted in 6 cadaveric shoulders to provide at least 80% power for all variables. A shoulder motion simulator was used to produce active glenohumeral and scapulothoracic motion. All implant configurations were tested with active and passive motion with joint kinematics, loads, and moments recorded. At neutral and lateralized glenosphere positions, increasing diameter significantly increased joint load (+12 ± 21 N and +6 ± 9 N; P < .01) and deltoid load required for active abduction (+9 ± 22 N and +11 ± 15 N; P < .02), whereas joint load angle was unaffected (P > .8). Passive internal rotation was reduced with increased diameter at both neutral and lateralized glenosphere positions (-6° ± 6° and -12° ± 6°; P < .002); however, external rotation was not affected (P > .05). At neutral glenosphere position, increasing diameter increased the maximum angles of both adduction (+1° ± 1°; P = .03) and abduction (+8° ± 9°; P < .05). Lateralization also increased abduction range of motion compared with neutral (P < .01). Although increasing glenosphere diameter significantly increased joint load and deltoid force, the clinical impact of these changes is presently unclear. Internal rotation, however, was reduced, which contradicts previous bone modeling studies, which we postulate is due to increased posterior capsular tension as it is forced to wrap around a larger 42 mm implant assembly. Copyright © 2015 Journal of Shoulder and Elbow Surgery Board of Trustees. Published by Elsevier Inc. All rights reserved.
Trends of atmospheric circulation during singular hot days in Europe
NASA Astrophysics Data System (ADS)
Jézéquel, Aglaé; Cattiaux, Julien; Naveau, Philippe; Radanovics, Sabine; Ribes, Aurélien; Vautard, Robert; Vrac, Mathieu; Yiou, Pascal
2018-05-01
The influence of climate change on mid-latitudes atmospheric circulation is still very uncertain. The large internal variability makes it difficult to extract any statistically significant signal regarding the evolution of the circulation. Here we propose a methodology to calculate dynamical trends tailored to the circulation of specific days by computing the evolution of the distances between the circulation of the day of interest and the other days of the time series. We compute these dynamical trends for two case studies of the hottest days recorded in two different European regions (corresponding to the heat-waves of summer 2003 and 2010). We use the NCEP reanalysis dataset, an ensemble of CMIP5 models, and a large ensemble of a single model (CESM), in order to account for different sources of uncertainty. While we find a positive trend for most models for 2003, we cannot conclude for 2010 since the models disagree on the trend estimates.
Characterization of microsieves recovery efficiency in isolation of circulating tumor cells
NASA Astrophysics Data System (ADS)
Osuchowska, Paulina Natalia; Sarzyński, Antoni; Strzelec, Marek; Bogdanowicz, Zdzisław; Marczak, Jan; Łapiński, Mariusz Piotr; Trafny, ElŻbieta Anna
2016-12-01
Isolation of circulating tumor cells (CTCs) from the blood is important in the diagnosis of malignant tumors and for monitoring therapeutic responses. The two main problems to be solved are extremely low CTCs numbers in the blood (average 1-10 CTC per 10 ml of whole blood) and the absence of one particular phenotype or genotype, which would allow for precise identification. Isolation of CTCs can be based on physical characteristics, e.g. the size of the cells (ISET, Isolation by Size of Epithelial Tumor cells) or the biological properties of these cells (the expression of specific proteins on their surface). In the IOE WAT the copper alloy microsieves with a pore diameter of 10.85 +/- 0.89 μm designed for cell isolation by ISET method were produced. The microsieves with 100 000 pores with a 50 μm interval was made using precise, percussion laser drilling. The performance microsieves filtration was determined using fluorescent beads with three dimensions: 4 μm, 10 μm and 15 μm. Furthermore, the suspensions of cells lines from different types of tumor were used in the process of filtration. The efficiency of the cells filtration process was affected by lack of biocompatibility of the material used for the microsieves production as well as the roughness and porosity of the microsieves surface. Moreover, the diameter of the pores and the course of the filtration process were also significant.
Cheng, Kun-Shan; Liao, Yan-Chiou; Chen, Mu-Yuan; Kuan, Tang-Ching; Hong, Yi-Han; Ko, Li; Hsieh, Wen-Yeh; Wu, Chien-Liang; Chen, Ming-Ren; Lin, Chih-Sheng
2013-01-01
Ventricular septal defect (VSD) is the most common form of congenital heart diseases. Matrix metalloproteinases (MMPs) are a family of zinc-dependent endopeptidases involved in causal cardiac tissue remodeling. We studied the changes of circulating MMP-2 and MMP-9 activities in the patients with VSD severity and closure. There were 96 children with perimembranous VSD enrolled in this study. We assigned the patients into three groups according to the ratio of VSD diameter/diameter of aortic root (Ao). They were classified as below: Trivial (VSD/Ao ratio ≤ 0.2), Small (0.2 < VSD/Ao ≤ 0.3) and Median (0.3 < VSD/Ao) group. Plasma MMP-2 and MMP-9 activities were assayed by gelatin zymography. There was a significant higher MMP-2 activity in the VSD (Trivial, Small and Median) groups compared with that in Control group. The plasma MMP-9 activity showed a similar trend as the findings in MMP-2 activity. After one year follow-up, a significant difference in the MMP-9 activity was found between VSD spontaneous closure and non-closure groups. In conclusion, a positive trend between the severity of VSD and activities of MMP-2 and MMP-9 was found. Our data imply that MMP-2 and MMP-9 activities may play a role in the pathogenesis of VSD. PMID:23847438
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mei, J.S.; Lee, G.T.; Seachman, S.M.
2008-05-13
Flow regime study was conducted in a 0.3 m diameter, 15.5 m tall circulating fluidized bed (CFB) riser with an abrupt exit at the National Energy Technology Laboratory of the U. S. Department of Energy. A statistical designed test series was conducted including four (4) operating set points and a duplicated center point (therefore a total of 6 operating set points). Glass beads of mean diameter 200 μm and particle density of 2,430 kg/m3 were used as bed material. The CFB riser was operated at various superficial gas velocities ranging from 5.6 to 7.6 m/s and solid mass flux frommore » a low of 86 to a high of 303 kg/m2-s. Results of the apparent solids fraction profile as well as the radial particle velocity profile were analyzed in order to identify the presence of Dense Suspension Upflow (DSU) conditions. DSU regime was found to exist at the bottom of the riser, while the middle section of the riser was still exhibiting core-annular flow structure. Due to the abrupt geometry of the exit, the DSU regime was also found at the top of the riser. In addition the effects of the azimuthal angle, riser gas velocity, and mass solids flux on the particle velocity were investigated and are discussed in this paper.« less
Cheng, Kun-Shan; Liao, Yan-Chiou; Chen, Mu-Yuan; Kuan, Tang-Ching; Hong, Yi-Han; Ko, Li; Hsieh, Wen-Yeh; Wu, Chien-Liang; Chen, Ming-Ren; Lin, Chih-Sheng
2013-01-01
Ventricular septal defect (VSD) is the most common form of congenital heart diseases. Matrix metalloproteinases (MMPs) are a family of zinc-dependent endopeptidases involved in causal cardiac tissue remodeling. We studied the changes of circulating MMP-2 and MMP-9 activities in the patients with VSD severity and closure. There were 96 children with perimembranous VSD enrolled in this study. We assigned the patients into three groups according to the ratio of VSD diameter/diameter of aortic root (Ao). They were classified as below: Trivial (VSD/Ao ratio ≤ 0.2), Small (0.2 < VSD/Ao ≤ 0.3) and Median (0.3 < VSD/Ao) group. Plasma MMP-2 and MMP-9 activities were assayed by gelatin zymography. There was a significant higher MMP-2 activity in the VSD (Trivial, Small and Median) groups compared with that in Control group. The plasma MMP-9 activity showed a similar trend as the findings in MMP-2 activity. After one year follow-up, a significant difference in the MMP-9 activity was found between VSD spontaneous closure and non-closure groups. In conclusion, a positive trend between the severity of VSD and activities of MMP-2 and MMP-9 was found. Our data imply that MMP-2 and MMP-9 activities may play a role in the pathogenesis of VSD.
Dias, Lilian Mara Kirsch; de Barros, Marina Berrettini Paes; Viau, Priscila; Sales, José Nélio de Sousa; Valentim, Renato; dos Santos, Fernanda Ferreira; da Cunha, Manoel Claudio; Marino, Carolina Tobias; de Oliveira, Claudio Alvarenga
2015-04-01
This study evaluated the effectiveness of a new progesterone intravaginal device (DPR) in ewes through four experiments: Experiment 1 compared the circulating progesterone concentration of ovariectomized ewes that received either a new or a re-used DPR. Experiment 2 compared the progesterone concentration between DPR-estrous-synchronized ewes and naturally estrous-cycling ewes. Experiment 3 evaluated the effect of new and re-used DPRs on ovarian follicular dynamics and time of ovulation of estrous cycling ewes. Experiment 4 compared the pregnancy rate after the use of a DPR and Controlled Internal Drug Releasing Device (CIDR). The mean concentration of progesterone released by the DPR device during its first use (New Group: 5.1 ± 0.5 ng/ml) was greater than that during the second use (Re-used Group: 2.4 ± 0.3 ng/ml). There was no difference between the animals that received DPR devices for first and second use in terms of ovulatory follicle diameter, follicular wave emergence day for ovulatory follicle and period of ovulatory wave of ovarian follicular development. However, there was a significant difference between groups regarding the time between DPR device removal and first ovulation (New Group: 71.7 ± 2.5h and Re-Used Group: 63.9 ± 2.7h). Pregnancy rates were similar between ewes with DPR and CIDR devices. It was concluded that DPR is effective in increasing and maintaining progesterone concentrations, controlling follicular dynamics, promoting synchronized times of ovulation from healthy follicles, promoting development of a competent corpus luteum and when used results in pregnancy rates similar to that with use of the CIDR. Copyright © 2015 Elsevier B.V. All rights reserved.
Gregory, Shaun D; Schummy, Emma; Pearcy, Mark; Pauls, Jo P; Tansley, Geoff; Fraser, John F; Timms, Daniel
2015-02-01
Biventricular support with dual rotary ventricular assist devices (VADs) has been implemented clinically with restriction of the right VAD (RVAD) outflow cannula to artificially increase afterload and, therefore, operate within recommended design speed ranges. However, the low preload and high afterload sensitivity of these devices increase the susceptibility of suction events. Active control systems are prone to sensor drift or inaccurate inferred (sensor-less) data, therefore an alternative solution may be of benefit. This study presents the in vitro evaluation of a compliant outflow cannula designed to passively decrease the afterload sensitivity of rotary RVADs and minimize left-sided suction events. A one-way fluid-structure interaction model was initially used to produce a design with suitable flow dynamics and radial deformation. The resultant geometry was cast with different initial cross-sectional restrictions and concentrations of a softening diluent before evaluation in a mock circulation loop. Pulmonary vascular resistance (PVR) was increased from 50 dyne s/cm(5) until left-sided suction events occurred with each compliant cannula and a rigid, 4.5 mm diameter outflow cannula for comparison. Early suction events (PVR ∼ 300 dyne s/cm(5) ) were observed with the rigid outflow cannula. Addition of the compliant section with an initial 3 mm diameter restriction and 10% diluent expanded the outflow restriction as PVR increased, thus increasing RVAD flow rate and preventing left-sided suction events at PVR levels beyond 1000 dyne s/cm(5) . Therefore, the compliant, restricted outflow cannula provided a passive control system to assist in the prevention of suction events with rotary biventricular support while maintaining pump speeds within normal ranges of operation. Copyright © 2014 International Center for Artificial Organs and Transplantation and Wiley Periodicals, Inc.
So You're Going to Get an Intern!
ERIC Educational Resources Information Center
Boardman, Edna M.
1990-01-01
Presents a checklist of skills for school librarians to use with library science student interns. Areas of skills addressed include selection of materials, cataloging, vertical files, preparation of materials for shelving, circulation, audiovisual and computer equipment and procedures, administration, physical arrangement, relations with staff and…
Ceramic backup ring prevents undesirable weld-metal buildup
NASA Technical Reports Server (NTRS)
Leonard, G. E.
1971-01-01
Removable ceramic backup material butted against weld zone back prevents weld metal buildup at that site. Method is successful with manual tungsten-inert gas /TIG/ welding of 316 corrosion resistant steel /CRES/ pieces with 0.76 cm throat diameter and 1.57 cm pipe internal diameter.
Kang, Dong-Wan; Jeong, Han-Gil; Kim, Do Yeon; Yang, Wookjin; Lee, Seung-Hoon
2017-06-01
The susceptibility vessel sign (SVS) is a hypointense signal visualized because of the susceptibility effect of thrombi, sensitively detected on susceptibility-weighted magnetic resonance imaging. The relationship of SVS parameters with the stroke subtype and recanalization status after endovascular treatment remains uncertain. The data from 89 patients with acute stroke caused by anterior circulation infarcts who underwent susceptibility-weighted magnetic resonance imaging before endovascular treatment were examined. Independent reviewers, blinded to the stroke subtype and recanalization status, measured the SVS diameter, length, and estimated volume. The intra- and interrater agreements of the SVS parameters were assessed. The SVS was identified in 78% of the patients. SVS was more commonly associated with cardioembolism than with noncardioembolism ( P =0.01). The SVS diameter ( P <0.01) and length ( P =0.01) were larger in the cardioembolism group. The SVS diameter was larger in the recanalization group (thrombolysis in cerebral infarction ≥2b) than in the nonrecanalization group ( P =0.04). Multivariable analysis revealed that the SVS diameter was an independent predictor of cardioembolism (adjusted odds ratio, 1.97; 95% confidence interval, 1.34-2.90; P <0.01). There was no significant association between the SVS volume and the recanalization status (adjusted odds ratio, 1.003; 95% confidence interval, 0.999-1.006; P =0.12). The optimal cutoff value of the SVS diameter for the cardioembolism was 5.5 mm (sensitivity, 45.6%; specificity, 93.8%). Increased SVS diameter on susceptibility-weighted magnetic resonance imaging may predict cardioembolism. No clear association was found between SVS volume and endovascular recanalization. © 2017 The Authors.
7 CFR 51.1565 - Internal defects.
Code of Federal Regulations, 2014 CFR
2014-01-01
..., Internal Discoloration, Vascular Browning, Fusarium Wilt, Net Necrosis, Other Necrosis, Stem End Browning 5... Discoloration (Heat Necrosis) Not more than the equivalent of 3 scattered spots 1/8 inch in diameter in a potato...
7 CFR 51.1565 - Internal defects.
Code of Federal Regulations, 2013 CFR
2013-01-01
..., Internal Discoloration, Vascular Browning, Fusarium Wilt, Net Necrosis, Other Necrosis, Stem End Browning 5... Discoloration (Heat Necrosis) Not more than the equivalent of 3 scattered spots 1/8 inch in diameter in a potato...
Osol, George; Barron, Carolyn; Mandalà, Maurizio
2012-01-01
During pregnancy the mammalian uterine circulation undergoes significant expansive remodelling necessary for normal pregnancy outcome. The underlying mechanisms are poorly defined. The goal of this study was to test the hypothesis that myometrial stretch actively stimulates uterine vascular remodelling by developing a new surgical approach to induce unilateral uterine distension in non-pregnant rats. Three weeks after surgery, which consisted of an infusion of medical-grade silicone into the uterine lumen, main and mesometrial uterine artery and vein length, diameter and distensibility were recorded. Radial artery diameter, distensibility and vascular smooth muscle mitotic rate (Ki67 staining) were also measured. Unilateral uterine distension resulted in significant increases in the length of main uterine artery and vein and mesometrial segments but had no effect on vessel diameter or distensibility. In contrast, there were significant increases in the diameter of the radial arteries associated with the distended uterus. These changes were accompanied by reduced arterial distensibility and increased vascular muscle hyperplasia. In summary, this is the first report to show that myometrial stretch is a sufficient stimulus to induce significant remodelling of uterine vessels in non-pregnant rats. Moreover, the results indicate differential regulation of these growth processes as a function of vessel size and type.
7 CFR 51.3416 - Classification of defects.
Code of Federal Regulations, 2011 CFR
2011-01-01
... ring Internal Black Spot, Internal Discoloration, Vascular Browning, Fusarium Wilt, Net Necrosis, Other Necrosis, Stem End Browning 5% waste 10% waste. Occurring entirely within the vascular ring Hollow Heart or... diameter in a 10 ounce potato. 1 Internal Brown Spot and similar discoloration (Heat Necrosis) Not more...
7 CFR 51.3416 - Classification of defects.
Code of Federal Regulations, 2012 CFR
2012-01-01
... ring Internal Black Spot, Internal Discoloration, Vascular Browning, Fusarium Wilt, Net Necrosis, Other Necrosis, Stem End Browning 5% waste 10% waste. Occurring entirely within the vascular ring Hollow Heart or... diameter in a 10 ounce potato. 1 Internal Brown Spot and similar discoloration (Heat Necrosis) Not more...
NASA Astrophysics Data System (ADS)
Tanigawa, Hiroshi; Seno, Hiroaki; Watanabe, Yoshiaki; Nakajima, Koshiro
1998-05-01
A nondestructive inspection method to estimate the contact condition of soil on the surface of an underground pipe, utilizing the resonance of a transverse Lamb wave circulating along the pipe wall is proposed.The Q factor of the resonance is considered and measured under some contact conditions by sweeping the vibrating frequency in a 150-mm-inner diameter Fiberglass Reinforced Plastic Mortar (FRPM) pipe. It is confirmed that the Q factor shows a clear response to the change in the contact conditions. For example, the Q factor is 8.4 when the pipe is in ideal contact with the soil plane and goes up to 19.2 when a 100-mm-diameter void is located at the contact surface of the soil.The spatial resolution of the proposed inspection method is also measured by moving the sensing point along the direction of laying the length of the pipe into a 85-mm-diameter void. The resolution of the proposed method is estimated at about 50 mm.
Quantum optical circulator controlled by a single chirally coupled atom
NASA Astrophysics Data System (ADS)
Scheucher, Michael; Hilico, Adèle; Will, Elisa; Volz, Jürgen; Rauschenbeutel, Arno
2016-12-01
Integrated nonreciprocal optical components, which have an inherent asymmetry between their forward and backward propagation direction, are key for routing signals in photonic circuits. Here, we demonstrate a fiber-integrated quantum optical circulator operated by a single atom. Its nonreciprocal behavior arises from the chiral interaction between the atom and the transversally confined light. We demonstrate that the internal quantum state of the atom controls the operation direction of the circulator and that it features a strongly nonlinear response at the single-photon level. This enables, for example, photon number-dependent routing and novel quantum simulation protocols. Furthermore, such a circulator can in principle be prepared in a coherent superposition of its operational states and may become a key element for quantum information processing in scalable integrated optical circuits.
Formation of self-ordered porous anodized alumina template for growing tungsten trioxide nanowires
NASA Astrophysics Data System (ADS)
Hussain, Tajamal; Shah, Asma Tufail; Shehzad, Khurram; Mujahid, Adnan; Farooqi, Zahoor Hussain; Raza, Muhammad Hamid; Ahmed, Mirza Nadeem; Nisa, Zaib Un
2015-12-01
Uniform porous anodized aluminum oxide (AAO) membrane has been synthesized by two-step anodization for fabricating tungsten trioxide (WO3) nanowires. Under assayed conditions, uniform porous structure of alumina (Al2O3) membrane with long range ordered hexagonal arrangements of nanopores was achieved. The self-assembled template possesses pores of internal diameter of 50 nm and interpore distance ( d int) of 80 nm with a thickness of about 80 µm, i.e., used for fabrication of nanostructures. WO3 nanowires have been fabricated by simple electroless deposition method inside Al2O3 nanopores. SEM images show tungsten trioxide nanowire with internal diameter of about 50 nm, similar to porous diameter of AAO template. XRD results showed that nanowires exist in cubic crystalline state with minor proportion of monoclinic phase.
NASA Astrophysics Data System (ADS)
Maliniemi, V.; Asikainen, T.; Mursula, K.
2017-12-01
Northern Hemisphere winter circulation is known to be affected by both internal and external (solar-related) forcings. Earlier studies have shown ENSO and volcanic activity to produce negative and positive North Atlantic Oscillation (NAO) type responses, respectively. In addition, recent studies have shown a positive NAO response related to both geomagnetic activity (proxy for solar wind driven particle precipitation) and sunspot activity (proxy for solar irradiance). These solar-related signals have been suggested to be due to the changes in the polar vortex. Here the relative role of these four internal and external drivers on wintertime circulation in the Northern Hemisphere is studied. The phase of the quasi-biennial oscillation (QBO) is used to study the driver responses for different stratospheric conditions. Moreover, the effects are separated for early (Dec/Jan) and late (Feb/Mar) winter. The global pattern of ENSO is very similar (negative NAO) otherwise, but in early winter and westerly QBO the pattern is changed in the Atlantic sector to a weakly positive NAO. The positive NAO pattern due to volcanic activity is more pronounced for westerly QBO in both early and late winter. The positive NAO pattern produced by geomagnetic activity is obtained during easterly QBO phase in both early and late winter. Sunspot related NAO response in late winter is also strongly modulated by the QBO phase. These results imply that the stratospheric conditions expressed by QBO significantly modulate the way the internal and external drivers affect the Northern Hemisphere winter climate.
Diabatic processes and the evolution of two contrasting extratropical cyclones
NASA Astrophysics Data System (ADS)
Methven, John; Martinez-Alvarado, Oscar; Gray, Suzanne
2017-04-01
Extratropical cyclones are typically weaker and less frequent in summer as a result of differences in the background state flow and diabatic processes with respect to other seasons. Two extratropical cyclones were observed in summer 2012 with a research aircraft during the DIAMET (DIAbatic influences on Mesoscale structure in ExTratropical storms) field campaign. The first cyclone deepened only down to 995 hPa; the second cyclone deepened down to 978 hPa and formed a potential vorticity (PV) tower, a frequent signature of intense cyclones. The cyclones were analyzed through numerical simulations incorporating tracers for the effects of diabatic processes on potential temperature and PV. It was found that the observed maximum vapor flux in the stronger cyclone was twice as strong as in the weaker cyclone; the water vapor mass flow along the warm conveyor belt of the stronger cyclone was over half that typical in winter even though the flow was weaker. Did the greater water transport and latent heat release associated with condensation result in the greater circulation in the PV tower case? A cyclone-centred integral framework is introduced relating the tracers with cross-isentropic mass transport and circulation around the cyclone. It is shown that the circulation increases much more slowly than the amplitude of the diabatically-generated PV tower at its centre. This effect is explained using the PV impermeability theorem and the influence of diabatic heating on circulation around a cyclone is shown to scale with Rossby number. The implication is that the stronger a cyclone becomes (larger Rossby number), the stronger the influence of latent heating on circulation.
Anatomic suitability of aortoiliac aneurysms for next generation branched systems.
Pearce, Benjamin J; Varu, Vinit N; Glocker, Roan; Novak, Zdenek; Jordan, William D; Lee, Jason T
2015-01-01
Preservation of internal iliac flow is an important consideration to prevent ischemic complications during endovascular aneurysm repair. We sought to determine the suitability of aortoiliac aneurysms for off-the-shelf iliac branched systems currently in clinical trial. Patients undergoing abdominal aortic aneurysm repair from 2004 to 2013 at 2 institutions were reviewed. Centerline diameters and lengths of aortoiliac morphology were measured using three-dimensional workstations and compared with inclusion/exclusion criteria for both Cook and Gore iliac branch devices. Of the nearly 2,400 aneurysm repairs performed during the study period, 99 patients had common iliac aneurysms suitable for imaging review. Eighteen of the 99 (18.2%) patients and 25/99 (25.3%) patients fit the inclusion criteria and would have been able to be treated using the Cook and Gore iliac branch devices, respectively. The most common reason for exclusion from Cook was internal iliac diameter of <6 or >9 mm (68/99, 68.7%). The most common reason for exclusion from Gore was proximal common iliac diameter of <17 mm (39/99, 39.4%) and inadequate internal iliac artery diameter of <6.5 or >13.5 mm (37/99, 37.3%). Comparing the included patients across both devices, a total of 35/99 (35.4%) of patients would be eligible for the treatment of aortoiliac aneurysms based on anatomic criteria. Only 35% of the aneurysm repairs involving common iliac arteries would have been candidates for the 2 iliac branch devices currently in trial based on anatomic criteria. The major common reason for exclusion is the internal iliac landing zone for both devices. Design modifications for future generation iliac branch technology should focus on diameter accommodations for the hypogastric branch stent and proximal and distal sizes of the iliac branch components. Familiarity with alternate branch preserving techniques is still needed in the majority of cases. Copyright © 2015 Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ueno, K.
1994-05-01
In patients with internal carotid and major cerebral arterial obstructions, it is clinically important to know the presence of collateral circulation. However, this information is not available from Tc-99m HMPAO perfusion SPECT alone. To investigate the usefulness of Tc-99m HMPAO radionuclide angiography (RNA) in the diagnosis of collaterals, we retrospectively studied 39 patients (pts) cerebrovascular diseases (CVD) with HMPAO RNA and SPECT. Contrast angiography was done on all pts. Of these, 11 internal carotid artery (ICA), 1 anterior cerebral artery (ACA), and 3 middle cerebral artery (MCA) obstructions were found angiographically. Non- or decreased visualization of ICA was found inmore » 11 of 11 pts of ICA obstruction. In 1 pt of ICA obstruction, the collaterals were directly visualized with RNA. Early perfusion deficient area with delayed filling-in with Tc-HMPAO was found in 7 of 11 pts of ICA, 1 of 1 pt of ACA, and 2 of 3 pts of MCA obstructions. In all pts with the delayed filling-in sign on RNA, collateral circulations were confirmed angiographically. We conclude that the delayed filling-in of Tc-HMPAO is a useful sign of collateral circulation in the CVD pts.« less
Multifunctional Carbon Nanotube Fiber Composites
2004-12-26
Opt. Eng. 4234 (Smart Materials), 223-23 1, (2001). 9. " Microfabricated Electroactive Carbon Nanotube Actuators", A. Ahluwalia, R.H. Baughman, D. De...peristaltic pumped circulating flow of PVA operating in an open loop consisting of a 1.5 m long, 0.40 cm diameter glass pipe , flex-tubing, and a polymer reserve...forming a gel-like ribbon that flows down the length of the pipe before being released into a rotating water bath where it is collected on a mandrel. Our
1979-11-01
diameter test cell used for laser propagation measurements is Path length-84 m to 2.0 km available and has been designed for circulating aerosols or...36- and 110-GHz and found an attenuation ratio of comparison measurements along a 4-km path with rain rate measured near the receiver end. a *02 They...time. Tipping-bucket systems . gauges are reliable, but become increasingly in- accurate at high rates . Flow gauges which The direct field measurement
Axial jet mixing of ethanol in spherical containers during weightlessness
NASA Technical Reports Server (NTRS)
Audelott, J. C.
1976-01-01
An experimental program was conducted to examine the liquid flow patterns that result from the axial jet mixing of ethanol in 10-centimeter-diameter spherical containers in weightlessness. Complete liquid circulation flow patterns were easily established in containers that were less than half full of liquid, while for higher liquid fill conditions, vapor was drawn into the inlet of the simulated mixer unit. Increasing the liquid-jet or lowering the position at which the liquid jet entered the container caused increasing turbulence and bubble formation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lakshminarayan, Raghuram; Scott, Paul M.; Robinson, Graham J.
Carotid stump syndrome is one of the recognised causes of recurrent ipsilateral cerebrovascular events after occlusion of the internal carotid artery. It is believed that microemboli arising from the stump of the occluded internal carotid artery or the ipsilateral external carotid artery can pass into the middle cerebral artery circulation as a result of patent external carotid-internal carotid anastomotic channels. Different pathophysiologic causes of this syndrome and endovascular options for treatment are discussed.
NASA Astrophysics Data System (ADS)
Tripathi, S. N.; Thamban, N.
2017-12-01
Indo-Gangetic Plain (IGP) is one of the most populated and polluted regions in northern India. Even though IGP is a well-known "absorbing aerosol hotspot", information of BC mixing state in IGP is mostly unknown. Our calculation on size resolved mixing state in IGP shown that the mixing state of BC changes with the core diameter of BC. The majority of BC particle were thickly coated ( 80%) at lower diameter (75-125 nm) and the externally mixed BC fraction was gradually increased at higher core diameter of BC (125-250 nm). The mean fraction of "thickly coated BC" particles (fTCBC) was found to be 61.6% for a BC core diameter of 70 to 450 nm, indicating that a large fraction of BC particles was internally mixed in IGP. The fTCBC increased after sunrise with a peak at about noontime, indicating that the formation of secondary organic aerosol under active photochemistry can enhance organic coating on a core of black carbon. A positive correlation between the fTCBC and the mass absorption cross-section at 781nm (MAC781) was also observed (r=0.58). Our results identify that the observed fTCBC in IGP could amplify the MAC781 approximately by a factor of 1.8, which may catalyze the positive radiative forcing.
[Predictive value of ultrasonography in portal hypertension].
Moreno, E; Torres, P; Trejo, C; Barra Ostoni, V; Ortega, C; Römer, H
1991-01-01
Portal hypertension is a common pathology in childhood and one of its most common causes is cavernomatosis of the portal vein. This obstruction causes hemodynamic changes which lead to splenomegaly and collateral circulation. Esophageal varices are one of the most important sequelae, which endanger the patient's life because of a bleeding tendency. Ecosonography helps to detect the thickening of the lesser omentum vis a vis the aortic diameter, caused by the collateral circulation. We studied 15 children presenting with portal hypertension resulting from portal vein cavernomatosis; we performed an upper GI endoscopy and abdominal ecosonography. The endoscopy revealed grade II esophageal varices in 20% of cases, the remaining 80% had grade III and grade IV. Ecosonography revealed an increased lesser omentum/aorta ratio in children with portal hypertension, compared to controls (p < 0.001). Our results suggest that the lesser omentum/aorta ratio has diagnostic value in pediatric portal hypertension.
Wagh, Sameer M; Koranne, Kishore V; Sonolikar, Ram L
2012-04-01
The hydrodynamic characteristics of RFJLB was studied with superficial liquid velocity (Ul), nozzle diameter (Dn) and nozzle height (Hn) in the range of 0.0293-0.094m/s, 17.4-22.0mm and 50-400mm, respectively. For Dn=17.4mm, Hn=50 and 200mm, with ejector mode and regular operating procedure i.e. simultaneous entry of gas with increasing liquid velocity, had limitation of not establishing the circulation loop. To overcome this limitation a modified operating procedure i.e. entry of gas after established liquid circulation loop is proposed. Also the comparison of gas holdups with ejector and injector mode proves the effectiveness of ejector mode and can eliminate the supply of compressed gas. Thus proper choice of Dn, Hn and also the operating procedure becomes necessary. Copyright © 2012 Elsevier Ltd. All rights reserved.
MFIX simulation of NETL/PSRI challenge problem of circulating fluidized bed
Li, Tingwen; Dietiker, Jean-François; Shahnam, Mehrdad
2012-12-01
In this paper, numerical simulations of NETL/PSRI challenge problem of circulating fluidized bed (CFB) using the open-source code Multiphase Flow with Interphase eXchange (MFIX) are reported. Two rounds of simulation results are reported including the first-round blind test and the second-round modeling refinement. Three-dimensional high fidelity simulations are conducted to model a 12-inch diameter pilot-scale CFB riser. Detailed comparisons between numerical results and experimental data are made with respect to axial pressure gradient profile, radial profiles of solids velocity and solids mass flux along different radial directions at various elevations for operating conditions covering different fluidization regimes. Overall, the numericalmore » results show that CFD can predict the complex gas–solids flow behavior in the CFB riser reasonably well. In addition, lessons learnt from modeling this challenge problem are presented.« less
Natural circulation decay heat removal from an SP-100, 550 kWe power system for a lunar outpost
NASA Technical Reports Server (NTRS)
El-Genk, Mohamed S.; Xue, Huimin
1992-01-01
This research investigated the decay heat removal from the SP-100 reactor core of a 550-kWe power system for a lunar outpost by natural circulation of lithium coolant. A transient model that simulates the decay heat removal loop (DHRL) of the power system was developed and used to assess the system's decay heat removal capability. The effects of the surface area of the decay heat rejection radiator, the dimensions of the decay heat exchanger (DHE) flow duct, the elevation of the DHE, and the diameter of the rise and down pipes in the DHRL on the decay heat removal capability were examined. Also, to determine the applicability of test results at earth gravity to actual system performance on the lunar surface, the effect of the gravity constant (1 g and 1/6 g) on the thermal behavior of the system after shutdown was investigated.
NASA Astrophysics Data System (ADS)
Frederiksen, Carsten; Grainger, Simon; Zheng, Xiaogu; Sisson, Janice
2013-04-01
ENSO variability is an important driver of the Southern Hemisphere (SH) atmospheric circulation. Understanding the observed and projected changes in ENSO variability is therefore important to understanding changes in Australian surface climate. Using a recently developed methodology (Zheng et al., 2009), the coherent patterns, or modes, of ENSO-related variability in the SH atmospheric circulation can be separated from modes that are related to intraseasonal variability or to changes in radiative forcings. Under this methodology, the seasonal mean SH 500 hPa geopotential height is considered to consist of three components. These are: (1) an intraseasonal component related to internal dynamics on intraseasonal time scales; (2) a slow-internal component related to internal dynamics on slowly varying (interannual or longer) time scales, including ENSO; and (3) a slow-external component related to external (i.e. radiative) forcings. Empirical Orthogonal Functions (EOFs) are used to represent the modes of variability of the interannual covariance of the three components. An assessment is first made of the modes in models from the Coupled Model Intercomparison Project Phase 5 (CMIP5) dataset for the SH summer and winter seasons in the 20th century. In reanalysis data, two EOFs of the slow component (which includes the slow-internal and slow-external components) have been found to be related to ENSO variability (Frederiksen and Zheng, 2007). In SH summer, the CMIP5 models reproduce the leading ENSO mode very well when the structures of the EOF and the associated SST, and associated variance are considered. There is substantial improvement in this mode when compared with the CMIP3 models shown in Grainger et al. (2012). However, the second ENSO mode in SH summer has a poorly reproduced EOF structure in the CMIP5 models, and the associated variance is generally underestimated. In SH winter, the performance of the CMIP5 models in reproducing the structure and variance is similar for both ENSO modes, with the associated variance being generally underestimated. Projected changes in the modes in the 21st century are then investigated using ensembles of CMIP5 models that reproduce well the 20th century slow modes. The slow-internal and slow-external components are examined separately, allowing the projected changes in the response to ENSO variability to be separated from the response to changes in greenhouse gas concentrations. By using several ensembles, the model-dependency of the projected changes in the ENSO-related slow-internal modes is examined. Frederiksen, C. S., and X. Zheng, 2007: Variability of seasonal-mean fields arising from intraseasonal variability. Part 3: Application to SH winter and summer circulations. Climate Dyn., 28, 849-866. Grainger, S., C. S. Frederiksen, and X. Zheng, 2012: Modes of interannual variability of Southern Hemisphere atmospheric circulation in CMIP3 models: Assessment and Projections. Climate Dyn., in press. Zheng, X., D. M. Straus, C. S. Frederiksen, and S. Grainger, 2009: Potentially predictable patterns of extratropical tropospheric circulation in an ensemble of climate simulations with the COLA AGCM. Quart. J. Roy. Meteor. Soc., 135, 1816-1829.
He, Wei; Yang, Ke; Fan, Lifang; Lv, Yaqi; Jin, Zhu; Zhu, Shumin; Qin, Chao; Wang, Yiao; Yin, Lifang
2015-11-10
Oral drug delivery is the most preferred route for patients; however, the low solubility of drugs and the resultant poor absorption compromise the benefits of oral administration. On the other hand, for years, the overwhelmingly accepted mechanism for enhanced oral absorption using lipid nanocarriers was based on the process of lipid digestion and drug solubilization in the small intestine. Few reports indicated that other bypass pathways are involved in drug absorption in the gastrointestinal tract (GIT) for oral delivery of nanocarriers. Herein, we report a new nanoemulsion system with a denatured globular protein with a diameter of 30 nm, soybean protein isolates (SPI), and bile salt as emulsifiers, aiming to enhance the absorption of insoluble drugs and explore other pathways for absorption. A BCS class II drug, fenofibrate (FB), was used as the model drug. The SPI and bile salt-coated Ns with a diameter of approximately 150 nm were prepared via a high-pressure homogenizing procedure. Interestingly, the present Ns could be converted to solid dosage form using fluid-bed coating technology, maintaining a nanoscale size. Most importantly, in a model of in situ rat intestinal perfusion, Ns could penetrate across the intestinal epithelial barrier into the systemic circulation and then obtain biodistribution into other tissues. In addition, Ns significantly improved FB oral absorption, exhibited as a greater than 2- and 2.5-fold increase in Cmax and AUC0-t, respectively, compared to the suspension formulation. Overall, the present Ns are promising nanocarriers for the oral delivery of insoluble drugs, and the penetration of intact Ns across the GIT barrier into systemic circulation may be a new strategy for improved drug absorption with the use of nanocarriers. Copyright © 2015 Elsevier B.V. All rights reserved.
Flow Regime Study in a High Density Circulating Fluidized Bed Riser with an Abrupt Exit
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mei, J.S.; Shadle, L.J.; Yue, P.C.
2007-01-01
Flow regime study was conducted in a 0.3 m diameter, 15.5 m height circulating fluidized bed (CFB) riser with an abrupt exit at the National Energy Technology Laboratory of the U.S. Department of Energy. Local particle velocities were measured at various radial positions and riser heights using an optical fiber probe. On-line measurement of solid circulating rate was continuously recorded by the Spiral. Glass beads of mean diameter 61 μm and particle density of 2,500 kg/m3 were used as bed material. The CFB riser was operated at various superficial gas velocities ranging from 3 to 7.6 m/s and solid massmore » flux from 20 to 550 kg/m2-s. At a constant riser gas velocity, transition from fast fluidization to dense suspension upflow (DSU) regime started at the bottom of the riser with increasing solid flux. Except at comparatively low riser gas velocity and solid flux, the apparent solid holdup at the top exit region was higher than the middle section of the riser. The solid fraction at this top region could be much higher than 7% under high riser gas velocity and solid mass flux. The local particle velocity showed downward flow near the wall at the top of the riser due to its abrupt exit. This abrupt geometry reflected the solids and, therefore, caused solid particles traveling downward along the wall. However, at location below, but near, the top of the riser the local particle velocities were observed flowing upward at the wall. Therefore, DSU was identified in the upper region of the riser with an abrupt exit while the fully developed region, lower in the riser, was still exhibiting core-annular flow structure. Our data were compared with the flow regime boundaries proposed by Kim et al. [1] for distinguishing the dilute pneumatic transport, fast fluidization, and DSU.« less
Venous catheterization with ultrasound navigation
NASA Astrophysics Data System (ADS)
Kasatkin, A. A.; Urakov, A. L.; Nigmatullina, A. R.
2015-11-01
By ultrasound scanning it was determined that respiratory movements made by chest of healthy and sick person are accompanied by respiratory chest rise of internal jugular veins. During the exhalation of an individual diameter of his veins increases and during the breath it decreases down to the complete disappearing if their lumen. Change of the diameter of internal jugular veins in different phases can influence significantly the results of vein puncture and cauterization in patients. The purpose of this research is development of the method increasing the efficiency and safety of cannulation of internal jugular veins by the ultrasound visualization. We suggested the method of catheterization of internal jugular veins by the ultrasound navigation during the execution of which the puncture of venous wall by puncture needle and the following conduction of J-guide is carried out at the moment of patient's exhalation. This method decreases the risk of complications development during catheterization of internal jugular vein due to exclusion of perforating wound of vein and subjacent tissues and anatomical structures.
Venous catheterization with ultrasound navigation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kasatkin, A. A., E-mail: ant-kasatkin@yandex.ru; Nigmatullina, A. R.; Urakov, A. L., E-mail: ant-kasatkin@yandex.ru
By ultrasound scanning it was determined that respiratory movements made by chest of healthy and sick person are accompanied by respiratory chest rise of internal jugular veins. During the exhalation of an individual diameter of his veins increases and during the breath it decreases down to the complete disappearing if their lumen. Change of the diameter of internal jugular veins in different phases can influence significantly the results of vein puncture and cauterization in patients. The purpose of this research is development of the method increasing the efficiency and safety of cannulation of internal jugular veins by the ultrasound visualization.more » We suggested the method of catheterization of internal jugular veins by the ultrasound navigation during the execution of which the puncture of venous wall by puncture needle and the following conduction of J-guide is carried out at the moment of patient’s exhalation. This method decreases the risk of complications development during catheterization of internal jugular vein due to exclusion of perforating wound of vein and subjacent tissues and anatomical structures.« less
Bender, Matthew T; Lin, Li-Mei; Coon, Alexander L; Colby, Geoffrey P
2017-06-14
This is a case of a high-flow, post-traumatic direct carotid-cavernous fistula with a widened arterial defect and a large-diameter internal carotid artery (ICA). The unique aspect of this case is the oversized ICA, >8mm in diameter, which is both a pathological and a therapeutic challenge, given the lack of available neuroendovascular devices for full vessel reconstruction. We present a planned two-stage embolisation paradigm for definitive treatment. Transarterial coil embolisation is performed as the first stage to disconnect the fistula and normalise flow in the ICA. A 3-month recovery period is then allowed for reduction in carotid diameter. Repair of the large vessel defect and pseudoaneurysm is performed as a second stage in a delayed fashion with a flow-diverting device. Follow-up angiography at 6 months demonstrates obliteration of the fistula and curative ICA reconstruction to a diameter <5mm. © BMJ Publishing Group Ltd (unless otherwise stated in the text of the article) 2017. All rights reserved. No commercial use is permitted unless otherwise expressly granted.
Baltag, Ioana; Watanabe, Kouichi; Miyakawa, Osamu
2005-06-01
The behavior of molten titanium in molds of complicated shape is still insufficiently understood; consequently, definite spruing criteria are not yet available for titanium RPD frameworks. This study investigated the influence of sprue design on porosity in pressure-cast titanium circumferential clasps. The patterns of 90 circumferential clasps were sprued with three directions (0, 30 and 60 degrees , as measured between the sprue and the symmetry plane of the clasp assembly) and three sprue diameters (1.5, 2.0 and 2.5mm). CPTi was cast in a one-chamber pressure casting machine. Pore number and size were assessed on radiographs of the castings. Statistical analysis was done by two-way analysis of variance (ANOVA), followed by Fisher's PLSD post hoc test. The porosity in lingual arms increased significantly with increase of sprue diameter and sprue angle, while the porosity in minor connectors had an inversely proportional distribution. Very low porosity, uninfluenced by sprue design, was found in buccal arms. In conclusion, internal porosity in titanium circumferential clasp arms can be minimized through sprue design: the 0 degrees sprue direction produced the least porosity, while for the 30 and 60 degrees directions, 1.5mm diameter sprues produced lower porosity than 2.0 and 2.5mm diameter sprues. In this study, the lowest porosity in titanium circumferential clasp arms was obtained with sprues attached perpendicularly to the minor connectors, regardless of sprue diameter. Conventional sprue directions produced significantly higher porosity in clasp lingual arms, the amount of porosity increasing with sprue diameter.
Measurements of the Early Development of Trailing Vorticity from a Rotor
NASA Technical Reports Server (NTRS)
McAlister, Kenneth W.; Heineck, James T.
2002-01-01
The wake behind a two-bladed model rotor in light climb was measured using particle image velocimetry, with particular emphasis on the development of the trailing vortex during the first revolution of the rotor. The distribution of vorticity was distinguished from the slightly elliptical swirl pattern. Peculiar dynamics within the "void" region may explain why the peak vorticity appeared to shift away from the center as the vortex aged, suggesting the onset of instability. The swirl and axial velocities (which reached 44% and 12% of the rotor tip speed, respectively) were found to be asymmetric relative to the vortex center. In particular, the axial flow was composed of two concentrated zones moving in opposite directions. The radial distribution of the circulation rapidly increased in magnitude until reaching a point just beyond the core radius, after which the rate of growth decreased significantly. The core-radius circulation increased slightly with wake age, but the large-radius circulation appeared to remain relatively constant. The radial distributions of swirl velocity and vorticity exhibit self-similar behaviors, especially within the core. The diameter of the vortex core was initially about 10% of the rotor-blade chord, but more than doubled its size after one revolution of the rotor.
Hydrodynamic characteristics of airlift nitrifying reactor using carrier-induced granular sludge.
Jin, Ren-Cun; Zheng, Ping; Mahmood, Qaisar; Zhang, Lei
2008-09-15
Since nitrification is the rate-limiting step in the biological nitrogen removal from wastewater, many studies have been conducted on the immobilization of nitrifying bacteria. A laboratory-scale investigation was carried out to scrutinize the effectiveness of activated carbon carrier addition for granulation of nitrifying sludge in a continuous-flow airlift bioreactor and to study the hydrodynamics of the reactor with carrier-induced granules. The results showed that the granular sludge began to appear and matured 60 and 108 days, respectively, after addition of carriers, while no granule was observed in the absence of carriers in the control test. The mature granules had a diameter of 0.5-5 mm (1.6 mm in average), settling velocity 22.3-55.8 m h(-1) and specific gravity of 1.086. The relationship between the two important hydrodynamic coefficients, i.e. gas holdup and liquid circulation velocity, and the superficial gas velocity were established by a simple model and were confirmed experimentally. The model also could predict the critical superficial gas velocity for liquid circulation and that for granules circulation, with respective values of 1.017 and 2.662 cm min(-1), accurately.
Kaneda, H; Furuya, T; Sugito, K; Goto, S; Kawashima, H; Inoue, M; Hosoda, T; Masuko, T; Ohashi, K; Ikeda, T; Koshinaga, T; Hoshino, M; Goto, H
2015-08-01
The current study aimed to verify the usefulness of preoperative ultrasonographic evaluation of contralateral patent processus vaginalis (PPV) at the level of the internal inguinal ring. This was a prospective study of patients undergoing unilateral inguinal hernia repair at two institutions during 2010-2011. The sex, age at initial operation, birth weight, initial operation side, and the preoperative diameter of the contralateral PPV as determined using ultrasonography (US) were recorded. We analyzed the incidence of contralateral inguinal hernia, risk factors, and the usefulness of the preoperative major diameter of the contralateral PPV. The follow-up period was 36 months. All 105 patients who underwent unilateral hernia repair completed 36 months of follow-up, during which 11 patients (10.5 %) developed a contralateral hernia. The following covariates were not associated with contralateral hernia development: sex (p = 0.350), age (p = 0.185), birth weight (p = 0.939), and initial operation side (p = 0.350). The preoperative major diameter of the contralateral PPV determined using US was significantly wider among patients with a contralateral hernia than those without a contralateral hernia (p = 0.001). When the 105 patients were divided into two groups according to cut-off values of the preoperative major diameter of the contralateral PPV (wide group, >2.0 mm; narrow group, ≤2.0 mm), a significant association was observed between the preoperative major diameter of the contralateral PPV and patient outcomes (p = 0.001). We used US and confirmed the usefulness of a preoperative evaluation of the major diameter of the contralateral PPV at the level of the internal inguinal ring in pediatric patients with unilateral inguinal hernias.
2009-09-30
Mooring Records and a High- Resolution General Circulation Model Harper Simmons School of Fisheries and Ocean Sciences 903 Koyukuk Drive Fairbanks AK...oceanographic community has been to develop a global internal wave prediction system analogous to those already in place for surface waves. Early steps have... Fisheries and Ocean Sciences,903 Koyukuk Drive,Fairbanks,AK,99775 8. PERFORMING ORGANIZATION REPORT NUMBER 9. SPONSORING/MONITORING AGENCY NAME(S) AND
Tropical Cyclone Genesis and Sudden Changes of Track and Intensity in the Western Pacific
2008-09-30
North Atlantic . (Published in 2008) Our work on the effect of internally generated inner-core asymmetries on tropical cyclone potential intensity has...of the atmospheric circulation in TC basins to the global warming is more critical than increasing SST to understanding the impacts of global warming...Japan and its adjacent seas is studied with WRF model. The results suggest that the northward moisture transport through the outer cyclonic circulation
Byrne, Gerard D; Vllasaliu, Driton; Falcone, Franco H; Somekh, Michael G; Stolnik, Snjezana
2015-11-02
In this work we utilize the combination of label-free total internal reflection microscopy and total internal reflectance fluorescence (TIRM/TIRF) microscopy to achieve a simultaneous, live imaging of single, label-free colloidal particle endocytosis by individual cells. The TIRM arm of the microscope enables label free imaging of the colloid and cell membrane features, while the TIRF arm images the dynamics of fluorescent-labeled clathrin (protein involved in endocytosis via clathrin pathway), expressed in transfected 3T3 fibroblasts cells. Using a model polymeric colloid and cells with a fluorescently tagged clathrin endocytosis pathway, we demonstrate that wide field TIRM/TIRF coimaging enables live visualization of the process of colloidal particle interaction with the labeled cell structure, which is valuable for discerning the membrane events and route of colloid internalization by the cell. We further show that 500 nm in diameter model polystyrene colloid associates with clathrin, prior to and during its cellular internalization. This association is not apparent with larger, 1 μm in diameter colloids, indicating an upper particle size limit for clathrin-mediated endocytosis.
Surface changes in the North Atlantic meridional overturning circulation during the last millennium
Wanamaker, Alan D.; Butler, Paul G.; Scourse, James D.; Heinemeier, Jan; Eiríksson, Jón; Knudsen, Karen Luise; Richardson, Christopher A.
2012-01-01
Despite numerous investigations, the dynamical origins of the Medieval Climate Anomaly and the Little Ice Age remain uncertain. A major unresolved issue relating to internal climate dynamics is the mode and tempo of Atlantic meridional overturning circulation variability, and the significance of decadal-to-centennial scale changes in Atlantic meridional overturning circulation strength in regulating the climate of the last millennium. Here we use the time-constrained high-resolution local radiocarbon reservoir age offset derived from an absolutely dated annually resolved shell chronology spanning the past 1,350 years, to reconstruct changes in surface ocean circulation and climate. The water mass tracer data presented here from the North Icelandic shelf, combined with previously published data from the Arctic and subtropical Atlantic, show that surface Atlantic meridional overturning circulation dynamics likely amplified the relatively warm conditions during the Medieval Climate Anomaly and the relatively cool conditions during the Little Ice Age within the North Atlantic sector. PMID:22692542
Surface changes in the North Atlantic meridional overturning circulation during the last millennium.
Wanamaker, Alan D; Butler, Paul G; Scourse, James D; Heinemeier, Jan; Eiríksson, Jón; Knudsen, Karen Luise; Richardson, Christopher A
2012-06-12
Despite numerous investigations, the dynamical origins of the Medieval Climate Anomaly and the Little Ice Age remain uncertain. A major unresolved issue relating to internal climate dynamics is the mode and tempo of Atlantic meridional overturning circulation variability, and the significance of decadal-to-centennial scale changes in Atlantic meridional overturning circulation strength in regulating the climate of the last millennium. Here we use the time-constrained high-resolution local radiocarbon reservoir age offset derived from an absolutely dated annually resolved shell chronology spanning the past 1,350 years, to reconstruct changes in surface ocean circulation and climate. The water mass tracer data presented here from the North Icelandic shelf, combined with previously published data from the Arctic and subtropical Atlantic, show that surface Atlantic meridional overturning circulation dynamics likely amplified the relatively warm conditions during the Medieval Climate Anomaly and the relatively cool conditions during the Little Ice Age within the North Atlantic sector.
A case study of sea breeze circulation at Thumba Coast through observations and modelling
NASA Astrophysics Data System (ADS)
Kunhikrishnan, P. K.; Ramachandran, Radhika; Alappattu, Denny P.; Kiran Kumar, N. V. P.; Balasubrahamanyam, D.
2006-12-01
A case study of sea breeze circulation at a coastal region Thumba (8.5°N, 76.9°E) was carried out using Doppler Sodar, surface wind, temperature, humidity measurements and radiosonde ascents. The analysis of surface meteorological data showed that the onset of sea breeze on 12th April 2006 was at 0945 hrs. GPS sonde observation over sea at 1425 hrs and Radiosonde observation over land at 1730 showed a well developed sea breeze circulation over Thumba coast by afternoon hours. The vertical extent of sea breeze circulation was ~1000m over sea as well as on land. The Thermal Internal Boundary Layer (TIBL) depth associated with sea breeze circulation was about 400m at 8 km away from coast. The marine mixed layer height was ~500m about 12 km away from the coast. Numerical simulation of sea breeze was made using HRM (High Resolution Model) and compared the results with the observations.
Li, Wenyuan; Dorans, Kirsten S; Wilker, Elissa H; Rice, Mary B; Ljungman, Petter L; Schwartz, Joel D; Coull, Brent A; Koutrakis, Petros; Gold, Diane R; Keaney, John F; Vasan, Ramachandran S; Benjamin, Emelia J; Mittleman, Murray A
2017-09-01
The objective of this study is to examine associations between short-term exposure to ambient air pollution and circulating biomarkers of systemic inflammation in participants from the Framingham Offspring and Third Generation cohorts in the greater Boston area. We included 3996 noncurrent smoking participants (mean age, 53.6 years; 54% women) who lived within 50 km from a central air pollution monitoring site in Boston, MA, and calculated the 1- to 7-day moving averages of fine particulate matter (diameter<2.5 µm), black carbon, sulfate, nitrogen oxides, and ozone before the examination visits. We used linear mixed effects models for C-reactive protein and tumor necrosis factor receptor 2, which were measured up to twice for each participant; we used linear regression models for interleukin-6, fibrinogen, and tumor necrosis factor α, which were measured once. We adjusted for demographics, socioeconomic position, lifestyle, time, and weather. The 3- to 7-day moving averages of fine particulate matter (diameter<2.5 µm) and sulfate were positively associated with C-reactive protein concentrations. A 5 µg/m 3 higher 5-day moving average fine particulate matter (diameter<2.5 µm) was associated with 4.2% (95% confidence interval: 0.8, 7.6) higher circulating C-reactive protein. Positive associations were also observed for nitrogen oxides with interleukin-6 and for black carbon, sulfate, and ozone with tumor necrosis factor receptor 2. However, black carbon, sulfate, and nitrogen oxides were negatively associated with fibrinogen, and sulfate was negatively associated with tumor necrosis factor α. Higher short-term exposure to relatively low levels of ambient air pollution was associated with higher levels of C-reactive protein, interleukin-6, and tumor necrosis factor receptor 2 but not fibrinogen or tumor necrosis factor α in individuals residing in the greater Boston area. © 2017 American Heart Association, Inc.
Irwin, John A.
1979-01-01
A gas turbine engine has an internal drive shaft including one end connected to a driven load and an opposite end connected to a turbine wheel and wherein the shaft has an in situ adjustable balance system near the critical center of a bearing span for the shaft including two 360.degree. rings piloted on the outer diameter of the shaft at a point accessible through an internal engine panel; each of the rings has a small amount of material removed from its periphery whereby both of the rings are precisely unbalanced an equivalent amount; the rings are locked circumferentially together by radial serrations thereon; numbered tangs on the outside diameter of each ring identify the circumferential location of unbalance once the rings are locked together; an aft ring of the pair of rings has a spline on its inside diameter that mates with a like spline on the shaft to lock the entire assembly together.
Kravchik, T; Oved, S; Paztal-Levy, O; Pelled, O; Gonen, R; German, U; Tshuva, A
2008-01-01
Inhalation is the main route of internal exposure to radioactive aerosols in the nuclear industry. To assess the radiation dose from the intake of these aerosols, it is necessary to know their physical (aerodynamic diameter distribution) and chemical (dissolution rate in extracellular lung fluid) characteristics. Air samples were taken from the uranium processing plant at the Nuclear Research Center, Negev. Measurements of aerodynamic diameter distribution using a cascade impactor indicated an average activity median aerodynamic diameter value close to 5 microm, in accordance with the recent recommended values of International Commission on Radiological Protection (ICRP) model. Solubility profiles of these aerosols were determined by performing in vitro solubility tests over 100 d in a simultant solution of the extracellular fluid. The tests indicated that the uranium aerosols should be assigned to an absorption between Types M and S (as defined by the ICRP Publication 66 model).
One-step internal-tin Nb/sub 3/Sn superconductor fabrication. Final report, June 1983-August 1984
DOE Office of Scientific and Technical Information (OSTI.GOV)
Marancik, W.
1985-03-01
The object of this research is to demonstrate the feasibility of producing a Nb/sub 3/Sn superconductor in a single extrusion process with a large number of filaments with internal tin. The technique chosen uses .010'-diameter Nb and tin-plated Cu wires formed into a solenoid. The solenoid is covered with tin-plated copper foil and isostatically compacted to a pressure of 17,000 psi. The solenoid is slit along its length. This results in a ribbon about 40 inches long by about 5-inches wide, with the Nb wires running across the 5-inch-width. The ribbon is then rolled up (Jelly Roll) around a 0.5more » inch diameter Ta covered copper rod to produce a composite of about 1.5 inches in diameter by 5 inches long. The composite geometry is now a cylindrical bundle of 0.010-inch-diameter Nb wire separated from each other by tin-plated copper. Each Nb wire is aligned with the axis of cylinder. The cylinder is slid into a Ta-lined copper extrusion can which is evacuated and sealed. The can is extruded at a low temperature and drawn to final wire size without intermediate annealing. The advantage of the process is that it is an internal tin process with the tin uniformly distributed through the matrix. The Nb is in a relatively soft state having been fully annealed at 0.020-inch diameter. Only one extrusion is required since the bundling technique allows a large number of wires to be precisely aligned and spaced in the matrix.« less
Federal Register 2010, 2011, 2012, 2013, 2014
2012-11-08
... NOVA Corporation are owned by a wholly owned subsidiary of the International Petroleum Investment... series of internal transactions, Polysar's direct parent was merged into NOVA Inc. and Polysar changed... non-gaseous fuels to or from a foreign country. The Department of State is circulating this...
ERIC Educational Resources Information Center
Carvalho, Luís Miguel; Costa, Estela
2015-01-01
The paper addresses the Organization for Economic Cooperation and Development's "Program for International Student Assessment" (PISA) as a public policy instrument, whose worldwide circulation is mediated by processes of reinterpretation, negotiation, and re-contextualization, where national, local, and international agencies intertwine.…
ERIC Educational Resources Information Center
Woldegiorgis, Emnet Tadesse; Doevenspeck, Martin
2015-01-01
Since the 1990s, the development in the international dimension of higher education including student/scholar mobility, regional and international research networks and initiatives have brought new opportunities for African higher education to be incorporated in the global knowledge production and circulation processes. One of the instruments of…
Mehta, T; Desai, N; Mehta, K; Parikh, R; Male, S; Hussain, M; Ollenschleger, M; Spiegel, G; Grande, A; Ezzeddine, M; Jagadeesan, B; Tummala, R; McCullough, L
2018-01-01
Introduction Proximal cervical internal carotid artery stenosis greater than 50% merits revascularization to mitigate the risk of stroke recurrence among large-vessel anterior circulation strokes undergoing mechanical thrombectomy. Carotid artery stenting necessitates the use of antiplatelets, and there is a theoretical increased risk of hemorrhagic transformation given that such patients may already have received intravenous thrombolytics and have a significant infarct burden. We investigate the outcomes of large-vessel anterior circulation stroke patients treated with intravenous thrombolytics receiving same-day carotid stenting or selective angioplasty compared to no carotid intervention. Materials and methods The study cohort was obtained from the National (Nationwide) Inpatient Sample database between 2006 and 2014, using International Statistical Classification of Diseases, ninth revision discharge diagnosis and procedure codes. A total of 11,825 patients with large-vessel anterior circulation stroke treated with intravenous thrombolytic and mechanical thrombectomy on the same day were identified. The study population was subdivided into three subgroups: no carotid intervention, same-day carotid angioplasty without carotid stenting, and same-day carotid stenting. Outcomes were assessed with respect to mortality, significant disability at discharge, hemorrhagic transformation, and requirement of percutaneous endoscopic gastronomy tube placement, prolonged mechanical ventilation, or craniotomy. Results This study found no statistically significant difference in patient outcomes in those treated with concurrent carotid stenting compared to no carotid intervention in terms of morbidity or mortality. Conclusions If indicated, it is reasonable to consider concurrent carotid stenting and/or angioplasty for large-vessel anterior circulation stroke patients treated with mechanical thrombectomy who also receive intravenous thrombolytics.
Passive control of a biventricular assist device with compliant inflow cannulae.
Gregory, Shaun David; Pearcy, Mark John; Timms, Daniel
2012-08-01
Rotary ventricular assist device (VAD) support of the cardiovascular system is susceptible to suction events due to the limited preload sensitivity of these devices. This may be of particular concern with rotary biventricular support (BiVAD) where the native, flow balancing Starling response is diminished in both ventricles. The reliability of sensor and sensorless-based control systems which aim to control VAD flow based on preload has limitations, and, thus, an alternative solution is desired. This study introduces a compliant inflow cannula (CIC) which could improve the preload sensitivity of a rotary VAD by passively altering VAD flow depending on preload. To evaluate the design, both the CIC and a standard rigid inflow cannula were inserted into a mock circulation loop to enable biventricular heart failure support using configurations of atrial and ventricular inflow, and arterial outflow cannulation. A range of left (LVAD) and right VAD (RVAD) rotational speeds were tested as well as step changes in systemic/pulmonary vascular resistance to alter relative preloads, with resulting flow rates recorded. Simulated suction events were observed, particularly at higher VAD speeds, during support with the rigid inflow cannula, while the CIC prevented suction events under all circumstances. The compliant section passively restricted its internal diameter as preload was reduced, which increased the VAD circuit resistance and thus reduced VAD flow. Therefore, a CIC could potentially be used as a passive control system to prevent suction events in rotary left, right, and biventricular support. © 2012, Copyright the Authors. Artificial Organs © 2012, International Center for Artificial Organs and Transplantation and Wiley Periodicals, Inc.
NASA Astrophysics Data System (ADS)
Tang, Rui; Xu, Baogang; Shen, Duanwen; Sudlow, Gail; Achilefu, Samuel
2018-02-01
The large size of many near infrared (NIR) fluorescent nanoparticles prevents rapid extravasation from blood vessels and subsequent diffusion to tumors. This confines in vivo uptake to the peritumoral space and results in high liver retention. We developed a viscosity modulated approach to synthesize ultrasmall silver sulfide quantum dots (QDs) with distinct tunable light emission from visible to near-infrared in spectrum and a QD core diameter between less than 5 nm. Further functionalization of these Ag2S QDs with different type of molecules such as targeting peptides, retains monodisperse, relatively small water soluble QDs without loss of the functionality of the peptide's high binding affinity to cancerous tumor. Fluorescence and electron microscopy showed that selective integrin-mediated internalization was observed only in cancer cells treated with the peptide-labeled QDs, demonstrating that the unlabeled hydrophilic nanoparticles exhibit characteristics of negatively charged fluorescent dye molecules, which typically do not internalize in cells. The biodistribution profiles of intravenously administered QDs in different mouse models of cancer reveal an exceptionally high tumor-to-liver uptake ratio, suggesting that the small sized QDs evaded conventional opsonization and subsequent high uptake in the liver and spleen. The seamless tunability of the QDs over a wide spectral range with only a small increase in size, as well as the ease of labeling the bright and non-cytotoxic QDs with biomolecules, provides a platform for multiplexing information, tracking the trafficking of single molecules in cells, and selectively targeting disease biomarkers in living organisms without premature QD opsonization in circulating blood.
Glineur, David; D'hoore, William; de Kerchove, Laurent; Noirhomme, Philippe; Price, Joel; Hanet, Claude; El Khoury, Gebrine
2011-11-01
Saphenous vein, in situ right gastroepiploic artery, and right internal thoracic artery grafts are routinely used to revascularize the right coronary artery. Little is known about the predictive value of objective preoperative angiographic parameters on midterm graft patency. We prospectively enrolled 210 consecutive patients undergoing coronary revascularization. Revascularization of the right coronary artery was randomly performed with the saphenous vein grafts in 81 patients and the right gastroepiploic artery in 92 patients. During the same study period, 37 patients received right coronary artery revascularization with the right internal thoracic artery used in a Y-composite fashion. All patients underwent a protocol-driven coronary angiogram 3 years after surgery. Preoperative angiographic parameters included minimum lumen diameter percent stenosis measured by quantitative angiography. A graft was considered "not functional" with patency scores of 0 to 2 and "functional" with patency scores of 3 or 4. Angiographic follow-up was 100% complete. A significant difference in the distribution of flow patterns was observed in the 3 groups. In multivariate analysis, the use of a saphenous vein graft was associated with superior graft functionality compared with the other conduits (odds ratio, 6.1; 95% confidence interval, 2.4-15). Graft function was negatively influenced by the minimum lumen diameter (odds ratio, 0.11; confidence interval, 0.05-0.25). In the right gastroepiploic artery and right internal thoracic artery groups, the proportion of functional grafts was higher when the minimum lumen diameter was below a threshold value in the third minimum lumen diameter quartile (0.64-1.30 mm). Preoperative angiography predicts graft patency in the right gastroepiploic artery and right internal thoracic artery, whereas the flow pattern in saphenous vein grafts is significantly less influenced by quantitative angiographic parameters. Copyright © 2011 The American Association for Thoracic Surgery. Published by Mosby, Inc. All rights reserved.
The role of meteorology on different sized aerosol fractions (PM₁₀, PM₂.₅, PM₂.₅-₁₀).
Pateraki, St; Asimakopoulos, D N; Flocas, H A; Maggos, Th; Vasilakos, Ch
2012-03-01
The scope of the present study is to assess the influence of meteorology on different diameter particles (PM(10), PM(2.5), PM(2.5-10)) during a 53 months long experimental campaign at an urban Mediterranean area. Except for the investigation of the wind, temperature and relative humidity role, day by day synoptic conditions were classified over the Attica peninsula in order to explore as well, the role of the synoptic scale atmospheric circulation. The strong dependence of the aerosols character on their various sources, not only explain the different diameter particles behavior and their differentiation with the inorganic pollutants but also highlights the need for an effective emission policy. High PM(10) and PM(2.5-10) concentrations found to be closely related to the southwesterly regime, suggesting long range transport from the 'polluted' south sector while the general prevalence of the secondary particles generation revealed the health hazard. PM(2.5) showed a weaker correlation than the bigger particles with both the circulation patterns and the parameters' fluctuations. Temporal pollutants variations were clearly governed by the emissions patterns while the low wind speed was not necessarily a good indicator of high concentration levels. Finally it was found that only during the open/close anticyclonic days and the southwesterly wind regime the morning levels were continuously higher than those of the night. Copyright © 2012 Elsevier B.V. All rights reserved.
Mota, Luciene Das Graças; de Barros, André Luís Branco; Fuscaldi, Leonardo Lima; de Oliveira, Mônica Cristina; Cardoso, Valbert Nascimento
2015-06-01
Inflammatory and infectious diseases are one of the most common causes of mortality and morbidity. This paper aimed to prepare and to evaluate the ability of long-circulating and pH-sensitive liposomes, trapping a radiotracer, to identify inflamed focus. The physicochemical characterization of freeze-dried liposomes, using glucose as cryoprotectant, showed 80% of the vesicles with adequate mean diameter and good vesicle size homogeneity. Radiotracer encapsulation percentage in liposomes was 10.65%, of which 4.88% was adsorbed on the surface of the vesicles. Furthermore, liposomes presented positive zeta potential. Freeze-dried liposomes, stored for 180 days at 4 degrees C, did not show significant changes in the mean diameter, indicating good stability. Free radiotracer and radiolabeled liposomes were injected into inflammation focus-bearing rats, and ex-vivo biodistribution studies and scintigraphic images were performed. Results showed that radiopharmaceutical, free and encapsulated into liposomes, were able to identify the inflamed site. Target/non-target ratios, obtained by scintigraphic images, were greater than 1.5 at all investigated times. Data did not show significant differences between the free radiotracer and radiolabeled liposomes. Results suggest that this liposomal preparation could be employed as an alternative procedure for inflamed site detection by means of scintigraphic images. However, as the radiotracer is adsorbed onto the liposome surface by electrostatic forces, it is suggested that a neutral radiopharmaceutical be used to confirm the potential of this formulation as a scintigraphic probe for inflammation/infection detection.
Association of pentraxin-3 with the severity of rheumatic mitral valve stenosis.
Polat, Nihat; Yildiz, Abdulkadir; Alan, Sait; Toprak, Nizamettin
2015-08-01
Inflammation is involved in the pathogenesis of rheumatic mitral valve stenosis (RMVS). Pentraxin-3 (PTX3) indicates the inflammatory state of humans. However, circulating PTX3 levels in patients with RMVS, remain largely unknown. In this study, we investigated whether there is an association between the severity of RMVS and PTX3. All patients diagnosed as rheumatic mitral valvular stenosis between December 2013 and April 2014 were included in the study. We investigated circulating PTX3 and high-sensitivity C-reactive protein (hsCRP) levels in patients with RMVS and healthy controls. The study population included 72 subjects (41 patients with RMVS and 31 healthy subjects, 56 female) with a mean age of 40 +/- 13 years. Patients with RMVS had higher left atrial diameters than healthy subjects. PTX3 and hsCRP were significantly higher in patients with RMVS when compared to control subjects and this difference was more significant in PTX3 compared to hsCRP (3.37 +/- 1.11 vs 2.86 +/- 0.59, P = 0.014 and 2.36 +/- 1.48 vs. 1.72 +/- 0.73, P = 0.019, respectively). PTX3 was positively correlated with Wilkins score, mitral valvular area, mitral pressure gradient and left atrium diameter. We demonstrated that plasma PTX3 and hsCRP levels were increased in patients with RMVS. Compared to hsCRP, PTX3 was more closely related with the severity of mitral valve stenosis. These findings suggest that PTX3 may participate in the pathophysiology of RMVS.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schock, Sarah C.; Edrissi, Hamidreza; Burger, Dylan
Highlights: • Microparticles are elevated in the plasma in a rodent model of chronic cerebral ischemia. • These microparticles initiate apoptosis in cultured cells. • Microparticles contain caspase 3 and they activate receptors for TNF-α and TRAIL. - Abstract: Circulating microparticles (MPs) are involved in many physiological processes and numbers are increased in a variety of cardiovascular disorders. The present aims were to characterize levels of MPs in a rodent model of chronic cerebral hypoperfusion (CCH) and to determine their signaling properties. MPs were isolated from the plasma of rats exposed to CCH and quantified by flow cytometry. When MPsmore » were added to cultured endothelial cells or normal rat kidney cells they induced cell death in a time and dose dependent manner. Analysis of pellets by electron microscopy indicates that cell death signals are carried by particles in the range of 400 nm in diameter or less. Cell death involved the activation of caspase 3 and was not a consequence of oxidative stress. Inhibition of the Fas/FasL signaling pathway also did not improve cell survival. MPs were found to contain caspase 3 and treating the MPs with a caspase 3 inhibitor significantly reduced cell death. A TNF-α receptor blocker and a TRAIL neutralizing antibody also significantly reduced cell death. Levels of circulating MPs are elevated in a rodent model of chronic cerebral ischemia. MPs with a diameter of 400 nm or less activate the TNF-α and TRAIL signaling pathways and may deliver caspase 3 to cultured cells.« less
Fine fuel heating by radiant flux
David Frankman; Brent W. Webb; Bret W. Butler; Don J. Latham
2010-01-01
Experiments were conducted wherein wood shavings and Ponderosa pine needles in quiescent air were subjected to a steady radiation heat flux from a planar ceramic burner. The internal temperature of these particles was measured using fine diameter (0.076mm diameter) type K thermocouples. A narrow angle radiometer was used to determine the emissive power generated by the...
Internal absorber solar collector
Sletten, Carlyle J.; Herskovitz, Sheldon B.; Holt, F. S.; Sletten, E. J.
1981-01-01
Thin solar collecting panels are described made from arrays of small rod collectors consisting of a refracting dielectric rod lens with an absorber imbedded within it and a reflecting mirror coated on the back side of the dielectric rod. Non-tracking collector panels on vertical walls or roof tops receive approximately 90% of solar radiation within an acceptance zone 60.degree. in elevation angle by 120.degree. or more in the azimuth sectors with a collector concentration ratio of approximately 3.0. Miniaturized construction of the circular dielectric rods with internal absorbers reduces the weight per area of glass, plastic and metal used in the collector panels. No external parts or insulation are needed as heat losses are low due to partial vacuum or low conductivity gas surrounding heated portions of the collector. The miniature internal absorbers are generally made of solid copper with black selective surface and the collected solar heat is extracted at the collector ends by thermal conductivity along the absorber rods. Heat is removed from end fittings by use of liquid circulants. Several alternate constructions are provided for simplifying collector panel fabrication and for preventing the thermal expansion and contraction of the heated absorber or circulant tubes from damaging vacuum seals. In a modified version of the internal absorber collector, oil with temperature dependent viscosity is pumped through a segmented absorber which is now composed of closely spaced insulated metal tubes. In this way the circulant is automatically diverted through heated portions of the absorber giving higher collector concentration ratios than theoretically possible for an unsegmented absorber.
Shatri, Jeton; Bexheti, Dorentina; Bexheti, Sadi; Kabashi, Serbeze; Krasniqi, Shaip; Ahmetgjekaj, Ilir; Zhjeqi, Valbona
2017-10-15
Circulus arteriosus cerebri is the main source of blood supply to the brain; it connects the left and right hemispheres with anterior and posterior parts. Located at the interpenducular fossa at the base of the brain the circle of Willis is the most important source of collateral circulation in the presence of the disease in the carotid or vertebral artery. The purpose of the research is to study the diameter and length of arteries and provide an important source of reference on Kosovo's population. This is an observative descriptive study performed at the University Clinical Center of Kosovo. A randomised sample of 133 angiographic examinations in adult patients of both sexes who were instructed to exploration is included. The diameters and lengths measured in our study were comparable with other brain-cadaver studies especially those performed by MRA. All dimensions of the arteries are larger in male than female, except the diameter of PCoA that is larger in female (p < 0.05) and length of the ACoA (p < 0.05). Significant differences were found in diameters of arteries between the younger and the older age groups. Knowing the dimensions of the arteries of the circle of Willis has a great importance in interventional radiology as well as during anatomy lessons.
Shatri, Jeton; Bexheti, Dorentina; Bexheti, Sadi; Kabashi, Serbeze; Krasniqi, Shaip; Ahmetgjekaj, Ilir; Zhjeqi, Valbona
2017-01-01
BACKGROUND: Circulus arteriosus cerebri is the main source of blood supply to the brain; it connects the left and right hemispheres with anterior and posterior parts. Located at the interpenducular fossa at the base of the brain the circle of Willis is the most important source of collateral circulation in the presence of the disease in the carotid or vertebral artery. AIM: The purpose of the research is to study the diameter and length of arteries and provide an important source of reference on Kosovo’s population. METHODS: This is an observative descriptive study performed at the University Clinical Center of Kosovo. A randomised sample of 133 angiographic examinations in adult patients of both sexes who were instructed to exploration is included. RESULTS: The diameters and lengths measured in our study were comparable with other brain-cadaver studies especially those performed by MRA. All dimensions of the arteries are larger in male than female, except the diameter of PCoA that is larger in female (p < 0.05) and length of the ACoA (p < 0.05). Significant differences were found in diameters of arteries between the younger and the older age groups. CONCLUSION: Knowing the dimensions of the arteries of the circle of Willis has a great importance in interventional radiology as well as during anatomy lessons. PMID:29104678
Granell, Miquel; Calvo, Xavier; Garcia-Guiñón, Antoni; Escoda, Lourdes; Abella, Eugènia; Martínez, Clara Mª; Teixidó, Montserrat; Gimenez, Mª Teresa; Senín, Alicia; Sanz, Patricia; Campoy, Desirée; Vicent, Ana; Arenillas, Leonor; Rosiñol, Laura; Sierra, Jorge; Bladé, Joan; de Larrea, Carlos Fernández
2017-01-01
The presence of circulating plasma cells in patients with multiple myeloma is considered a marker for highly proliferative disease. In the study herein, the impact of circulating plasma cells assessed by cytology on survival of patients with multiple myeloma was analyzed. Wright-Giemsa stained peripheral blood smears of 482 patients with newly diagnosed myeloma or plasma cell leukemia were reviewed and patients were classified into 4 categories according to the percentage of circulating plasma cells: 0%, 1–4%, 5–20%, and plasma cell leukemia with the following frequencies: 382 (79.2%), 83 (17.2%), 12 (2.5%) and 5 (1.0%), respectively. Median overall survival according to the circulating plasma cells group was 47, 50, 6 and 14 months, respectively. At multivariate analysis, the presence of 5 to 20% circulating plasma cells was associated with a worse overall survival (relative risk 4.9, 95% CI 2.6–9.3) independently of age, creatinine, the Durie-Salmon system stage and the International Staging System (ISS) stage. Patients with ≥5% circulating plasma cells had lower platelet counts (median 86×109/L vs. 214×109/L, P<0.0001) and higher bone marrow plasma cells (median 53% vs. 36%, P=0.004). The presence of ≥5% circulating plasma cells in patients with multiple myeloma has a similar adverse prognostic impact as plasma cell leukemia. PMID:28255016
Updated Results for the Wake Vortex Inverse Model
NASA Technical Reports Server (NTRS)
Robins, Robert E.; Lai, David Y.; Delisi, Donald P.; Mellman, George R.
2008-01-01
NorthWest Research Associates (NWRA) has developed an Inverse Model for inverting aircraft wake vortex data. The objective of the inverse modeling is to obtain estimates of the vortex circulation decay and crosswind vertical profiles, using time history measurements of the lateral and vertical position of aircraft vortices. The Inverse Model performs iterative forward model runs using estimates of vortex parameters, vertical crosswind profiles, and vortex circulation as a function of wake age. Iterations are performed until a user-defined criterion is satisfied. Outputs from an Inverse Model run are the best estimates of the time history of the vortex circulation derived from the observed data, the vertical crosswind profile, and several vortex parameters. The forward model, named SHRAPA, used in this inverse modeling is a modified version of the Shear-APA model, and it is described in Section 2 of this document. Details of the Inverse Model are presented in Section 3. The Inverse Model was applied to lidar-observed vortex data at three airports: FAA acquired data from San Francisco International Airport (SFO) and Denver International Airport (DEN), and NASA acquired data from Memphis International Airport (MEM). The results are compared with observed data. This Inverse Model validation is documented in Section 4. A summary is given in Section 5. A user's guide for the inverse wake vortex model is presented in a separate NorthWest Research Associates technical report (Lai and Delisi, 2007a).
Wave-mean flow interactions in the upper atmosphere
NASA Technical Reports Server (NTRS)
Lindzen, R. S.
1973-01-01
The nature of internal gravity waves is described with special emphasis on their ability to transport energy and momentum. The conditions under which these fluxes interact with the mean state of the atmosphere are described and the results are applied to various problems of the upper atmosphere, including the quasi-biennial oscillation, the heat budget of the thermosphere, the general circulation of the mesosphere, turbulence in the mesosphere, and the 4-day circulation of the Venusian atmosphere.
Yatera, Kazuhiro; Hsieh, Joanne; Hogg, James C; Tranfield, Erin; Suzuki, Hisashi; Shih, Chih-Horng; Behzad, Ali R; Vincent, Renaud; van Eeden, Stephan F
2008-02-01
Epidemiologic studies have shown an association between exposure to ambient particulate air pollution <10 microm in diameter (PM(10)) and increased cardiovascular morbidity and mortality. We previously showed that PM(10) exposure causes progression of atherosclerosis in coronary arteries. We postulate that the recruitment of monocytes from the circulation into atherosclerotic lesions is a key step in this PM(10)-induced acceleration of atherosclerosis. The study objective was to quantify the recruitment of circulating monocytes into vessel walls and the progression of atherosclerotic plaques induced by exposure to PM(10). Female Watanabe heritable hyperlipidemic rabbits, which naturally develop systemic atherosclerosis, were exposed to PM(10) (EHC-93) or vehicle by intratracheal instillation twice a week for 4 wk. Monocytes, labeled with 5-bromo-2'-deoxyuridine (BrdU) in donors, were transfused to recipient rabbits as whole blood, and the recruitment of BrdU-labeled cells into vessel walls and plaques in recipients was measured by quantitative histological methodology. Exposure to PM(10) caused progression of atherosclerotic lesions in thoracic and abdominal aorta. It also decreased circulating monocyte counts, decreased circulating monocytes expressing high levels of CD31 (platelet endothelial cell adhesion molecule-1) and CD49d (very late antigen-4 alpha-chain), and increased expression of CD54 (ICAM-1) and CD106 (VCAM-1) in plaques. Exposure to PM(10) increased the number of BrdU-labeled monocytes adherent to endothelium over plaques and increased the migration of BrdU-labeled monocytes into plaques and smooth muscle underneath plaques. We conclude that exposure to ambient air pollution particles promotes the recruitment of circulating monocytes into atherosclerotic plaques and speculate that this is a critically important step in the PM(10)-induced progression of atherosclerosis.
Kamiya, Kouhei; Hori, Masaaki; Miyajima, Masakazu; Nakajima, Madoka; Suzuki, Yuriko; Kamagata, Koji; Suzuki, Michimasa; Arai, Hajime; Ohtomo, Kuni; Aoki, Shigeki
2014-01-01
Previous studies suggest that compression and stretching of the corticospinal tract (CST) potentially cause treatable gait disturbance in patients with idiopathic normal pressure hydrocephalus (iNPH). Measurement of axon diameter with diffusion MRI has recently been used to investigate microstructural alterations in neurological diseases. In this study, we investigated alterations in the axon diameter and intra-axonal fraction of the CST in iNPH by q-space imaging (QSI) analysis. Nineteen patients with iNPH and 10 age-matched controls were recruited. QSI data were obtained with a 3-T system by using a single-shot echo planar imaging sequence with the diffusion gradient applied parallel to the antero-posterior axis. By using a two-component low-q fit model, the root mean square displacements of intra-axonal space ( = axon diameter) and intra-axonal volume fraction of the CST were calculated at the levels of the internal capsule and body of the lateral ventricle, respectively. Wilcoxon's rank-sum test revealed a significant increase in CST intra-axonal volume fraction at the paraventricular level in patients (p<0.001), whereas no significant difference was observed in the axon diameter. At the level of the internal capsule, neither axon diameter nor intra-axonal volume fraction differed significantly between the two groups. Our results suggest that in patients with iNPH, the CST does not undergo irreversible axonal damage but is rather compressed and/or stretched owing to pressure from the enlarged ventricle. These analyses of axon diameter and intra-axonal fraction yield insights into microstructural alterations of the CST in iNPH.
The fracture strength by a torsion test at the implant-abutment interface.
Watanabe, Fumihiko; Hiroyasu, Kazuhiko; Ueda, Kazuhiko
2015-12-01
Fractured connections between implants and implant abutments or abutment screws are frequently encountered in a clinical setting. The purpose of this study was to investigate fracture strength using a torsion test at the interface between the implant and the abutment. Thirty screw-type implant with diameters of 3.3, 3.8, 4.3, 5.0, and 6.0 mm were submitted to a torsion test. Implants of each size were connected to abutments with abutment screws tightened to 20 N · cm. Mechanical stress was applied with a rotational speed of 3.6 °/min until fracture occurred, and maximum torque (fracture torque) and torsional yield strength were measured. The mean values were calculated and then compared using Tukey's test. The abutments were then removed, and the implant-abutment interfaces were examined using a scanning electron microscope (SEM). No significant differences in mean fracture torque were found among 3.3, 3.8, and 4.3 mm-diameter implants, but significant differences were found between these sizes and 5.0 and 6.0 mm-diameter implants (p < 0.01). Concerning mean torsional yield strength, significant differences were found between 3.3, 3.8, and 4.3 mm-diameter and 5.0 and 6.0 mm-diameter implants (p < 0.01). Observations under the SEM showed that all the projections of the abutment corresponding to the internal notches of the implant body had been destroyed. Smaller diameter implants demonstrated lower fracture torque and torsional yield strength than implants with larger diameters. In internal tube-in-tube connections, three abutment projections corresponding to rotation-prevention notches were destroyed in each implant.
Lee, Ji-Hye; Lee, Won; Huh, Yoon-Hyuk; Park, Chan-Jin; Cho, Lee-Ra
2017-09-05
To evaluate the axial displacement of the implant-abutment assembly of different implant diameter after static and cyclic loading of overload condition. An internal conical connection system with three diameters (Ø 4.0, 4.5, and 5.0) applying identical abutment dimension and the same abutment screw was evaluated. Axial displacement of abutment and reverse torque loss of abutment screw were evaluated under static and cyclic loading conditions. Static loading test groups were subjected to vertical static loading of 250, 400, 500, 600, 700, and 800 N consecutively. Cyclic loading test groups were subjected to 500 N cyclic loading to evaluate the effect of excessive masticatory loading. After abutment screw tightening for 30 Ncm, axial displacement was measured upon 1, 3, 10, and 1,000,000 cyclic loadings of 500 N. Repeated-measure ANOVA and 2-way ANOVA were used for statistical analysis (α = 0.05). The increasing magnitude of vertical load and thinner wall thickness of implant increased axial displacement of abutment and reverse torque loss of abutment screw (p < 0.05). Implants in the Ø 5.0 diameter group demonstrated significantly low axial displacement, and reverse torque loss after static loading than Ø 4.0 and Ø 4.5 diameter groups (p < 0.05). In the cyclic loading test, all diameter groups of implant showed significant axial displacement after 1 cycle of loading of 500 N (p < 0.05). There was no significant axial displacement after 3, 10, or 1,000,000 cycles of loading (p = 0.603). Implants with Ø 5.0 diameter demonstrated significantly low axial displacement and reverse torque loss after the cyclic and static loading of overload condition. © 2017 by the American College of Prosthodontists.
Wilczyński, Michał; Pośpiech-Zabierek, Aleksandra
2015-01-01
The accurate measurement of the anterior chamber internal diameter and depth is important in ophthalmic diagnosis and before some eye surgery procedures. The purpose of the study was to compare the white-to-white distance measurements performed using the IOL-Master and photography with internal anterior chamber diameter determined using slit lamp adapted optical coherence tomography in healthy eyes, and to compare anterior chamber depth measurements by IOL-Master and slit lamp adapted optical coherence tomography. The data were gathered prospectively from a non-randomized consecutive series of patients. The examined group consisted of 46 eyes of 39 patients. White-to-white was measured using IOL-Master and photographs of the eye were taken with a digital camera. Internal anterior chamber diameter was measured with slit-lamp adapted optical coherence tomography. Anterior chamber depth was measured using the IOL Master and slit-lamp adapted optical coherence tomography. Statistical analysis was performed using parametric tests. A Bland-Altman plot was drawn. White-to-white distance by the IOL Master was 11.8 +/- 0.40 mm, on photographs it was 11.29 +/- 0.58 mm and internal anterior chamber diameter by slit-lamp adapted optical coherence tomography was 11.34?0.54 mm. A significant difference was found between IOL-Master and slit-lamp adapted optical coherence tomography (p<0.01), as well as between IOL Master and digital photographs (p<0.01). There was no difference between SL-OCT and digital photographs (p>0.05). All measurements were correlated (Spearman p<0.001). Mean anterior chamber depth determined using the IOL-Master was 2.99 +/- 0.50 mm and by slit-lamp adapted optical coherence tomography was 2.56 +/- 0.46 mm. The difference was statistically significant (p<0.001). The correlation between the values was also statistically significant (Spearman, p<0.001). Automated measurements using IOL-Master yield constantly higher values than measurements based on direct eye visualization slit-lamp adapted optical coherence tomography and digital photographs. In order to obtain accurate measurements of the internal anterior chamber diameter and anterior chamber depth, a method involving direct visualization of intraocular structures should be used.
Federal Register 2010, 2011, 2012, 2013, 2014
2013-09-11
.... Acclcarbon Co., Ltd. 3. Allied Carbon (China) Co., Limited 4. Anssen Metallurgy Group Co., Ltd. 5. AMGL 6... International Trade Co., Ltd. 20. Dalian Horton International Trading Co., Ltd. 21. Dalian LST Metallurgy Co...
NASA Astrophysics Data System (ADS)
Fathonah, N. N.; Nurtono, T.; Kusdianto; Winardi, S.
2018-03-01
Single phase turbulent flow in a vessel agitated by side entering inclined blade turbine has simulated using CFD. The aim of this work is to identify the hydrodynamic characteristics of a model vessel, which geometrical configuration is adopted at industrial scale. The laboratory scale model vessel is a flat bottomed cylindrical tank agitated by side entering 4-blade inclined blade turbine with impeller rotational speed N=100-400 rpm. The effect of the impeller diameter on fluid flow pattern has been investigated. The fluid flow patterns in a vessel is essentially characterized by the phenomena of macro-instabilities, i.e. the flow patterns change with large scale in space and low frequency. The intensity of fluid flow in the tank increase with the increase of impeller rotational speed from 100, 200, 300, and 400 rpm. It was accompanied by shifting the position of the core of circulation flow away from impeller discharge stream and approached the front of the tank wall. The intensity of fluid flow in the vessel increase with the increase of the impeller diameter from d=3 cm to d=4 cm.
López-Herce, Jesús; Rodríguez Núñez, Antonio; Maconochie, Ian; Van de Voorde, Patric; Biarent, Dominique; Eich, Christof; Bingham, Robert; Rajka, Thomas; Zideman, David; Carrillo, Ángel; de Lucas, Nieves; Calvo, Custodio; Manrique, Ignacio
2017-07-01
This summary of the European guidelines for pediatric cardiopulmonary resuscitation (CPR) emphasizes the main changes and encourages health care professionals to keep their pediatric CPR knowledge and skills up to date. Basic and advanced pediatric CPR follow the same algorithm in the 2015 guidelines. The main changes affect the prevention of cardiac arrest and the use of fluids. Fluid expansion should not be used routinely in children with fever in the abuse of signs of shock because too high a volume can worsen prognosis. Rescue breaths should last around 1 second in basic CPR, making pediatric recommendations consistent with those for adults. Chest compressions should be at least as deep as one-third the anteroposterior diameter of the thorax. Most children in cardiac arrest lack a shockable rhythm, and in such cases a coordinated sequence of breaths, chest compressions, and administration of adrenalin is essential. An intraosseous canula may be the first choice for introducing fluids and medications, especially in young infants. In treating supraventricular tachycardia with cardioversion, an initial dose of 1 J/kg is currently recommended (vs the dose of 0.5 J/kg previously recommended). After spontaneous circulation is recovered, measures to control fever should be taken. The goal is to reach a normal temperature even before arrival to the hospital.
NASA Technical Reports Server (NTRS)
Morton, Richard D.; Jurick, Matthew; Roman, Ruben; Adamson, Gary; Bui, Chinh T.; Laliberte, Yvon J.
2011-01-01
The International Space Station (ISS) contains two Active Thermal Control Sub-systems (ATCS) that function by using a liquid ammonia cooling system collecting waste heat and rejecting it using radiators. These subsystems consist of a number of heat exchangers, cold plates, radiators, the Pump and Flow Control Subassembly (PFCS), and the Pump Module (PM), all of which are Orbital Replaceable Units (ORU's). The PFCS provides the motive force to circulate the ammonia coolant in the Photovoltaic Thermal Control Subsystem (PVTCS) and has been in operation since December, 2000. The Pump Module (PM) circulates liquid ammonia coolant within the External Active Thermal Control Subsystem (EATCS) cooling the ISS internal coolant (water) loops collecting waste heat and rejecting it through the ISS radiators. These PM loops have been in operation since December, 2006. This paper will discuss the original reliability analysis approach of the PFCS and Pump Module, comparing them against the current operational performance data for the ISS External Thermal Control Loops.
[Analysis of the continuity, circulation and productivity of the Revista Española de Quimioterapia].
Gimeno Sieres, E
2007-06-01
The primary objective of this study was to compare some of the bibliometric indicators of the continuity, circulation and productivity of the Revista Espanola de Quimioterapia up to 2003 with other spanish journals of Pharmacy and Pharmacology. This was done by reviewing periodicals directories, such as the ISSN (International Standard Serial Number/Número Internacional Normalizado de Publicaciones Seriadas) and ULRICH'S (Periodicals Directory), as well as the CDU (Classification Universal Decimal), national and international databases including IME (Indice Médico Español), ICYT (Indice Espanol de Ciencia y Tecnologia), IPA (International Pharmaceutical Abstracts), SCI Expanded (Science Citation Index Expanded), MEDLINE (Index Medicus), EMBASE (Excerpta Medica), BIOSIS PREVIEWS, ANALYTICAL ABSTRACTS, FSTA (Food Science and Technology Abstracts), SCIFINDER SCHOLAR and CHEMISTRY CITATION INDEX. According to the results, the Revista Española de Quimioterapia, in publication for 15 years, is widely distributed and has a good rating among other scientific journals of the same discipline.
International Student Mobility: European and US Perspectives
ERIC Educational Resources Information Center
de Wit, Hans; Ferencz, Irina; Rumbley, Laura E.
2013-01-01
The most striking trend in international student mobility over the past forty years is the increase in the number of globally circulating students, from approximately 250,000 in 1965, up to an estimated 3.7 million at present (OECD 2011: 320, UNESCO 2006: 34). Perhaps as important as the growing numbers of students is the fact that the traditional…
Investigation of internal elements impaction on particles circulation in a fluidized bed reactor
NASA Astrophysics Data System (ADS)
Solovev, S. A.; Soloveva, O. V.; Antipin, A. V.; Shamsutdinov, E. V.
2018-01-01
A numerical study of the fluidized bed apparatus in the presence of various internal elements is carried out. A chemical reaction for temperature-dependent processes with heat absorption is considered. The task of incoming heated catalyst granules to the reactor is investigated. The main emphasis is focused on the circulation flows of the catalyst particles, heating of the reactor, and the efficiency of the chemical reaction. The analysis of the impact of various design elements on the efficiency of the reactor is carried out. The influence of feeding heated catalyst device design on the effectiveness of whole reactor heating is educed. The influence of the presence of fine particles on the efficiency of the reaction for different reactor design features is also educed.
Pattern formation in a monolayer of magnetic spheres
NASA Astrophysics Data System (ADS)
Stambaugh, Justin; Lathrop, Daniel P.; Ott, Edward; Losert, Wolfgang
2003-08-01
Pattern formation is investigated for a vertically vibrated monolayer of magnetic spheres. The spheres of diameter D encase cylindrical magnetic cores of length l. For large D/l, we find that the particles form a hexagonal-close-packed pattern in which the particles’ dipole vectors assume a macroscopic circulating vortical pattern. For smaller D/l, the particles form concentric rings. The static configurational magnetic energy (which depends on D/l) appears to be a determining factor in pattern selection even though the experimental system is driven and dissipative.
NASA Technical Reports Server (NTRS)
Crumpler, L. S.; Arvidson, R. E.; Farrand, W. H.; Golombek, M. P.; Grant, J. A.; Ming, D. W.; Mittlefehldt, D. W.; Parker, T. J.
2015-01-01
Mars Exploration Rover Opportunity traversed 7.9 km and 27 degrees of arc along the rim of the 22 km-diameter Noachian "Endeavour" impact crater since its arrival 1200 sols ago. Areas of aqueous and low-grade thermal alteration, and changes in structure, attitude, and macroscopic texture of outcrops are notable across several discontinuities between segments of the crater rim. The discontinuities and other post-impact joints and fractures coincide with sites of apparent deep fluid circulation processes responsible for thermal and chemical alteration of local outcrops.
NASA Technical Reports Server (NTRS)
Murchie, S. L.; Fraeman, A. A.; Arvidson, R. E.; Rivkin, A. S.; Morris, R. V.
2013-01-01
Compositional interpretations of new spectral measurements of Phobos and Deimos from Mars Express/OMEGA and MRO/CRISM and density measurements from encounters by multiple spacecraft support refined estimates of the moons' porosity and internal structure. Phobos' estimated macroporosity of 12-20% is consistent with a fractured but coherent interior; Deimos' estimated macroporosity of 23-44% is more consistent with a loosely consolidated interior. These internal differences are reflected in differences in surface morphology: Phobos exhibits a globally coherent pattern of grooves, whereas Deimos has a surface dominated instead by fragmental debris. Comparison with other asteroids .110 km in diameter shows that this correspondence between landforms and inferred internal structure is part of a pervasive pattern: asteroids interpreted to have coherent interiors exhibit pervasive, organized ridge or groove systems, whereas loosely consolidated asteroids have landforms dominated by fragmental debris and/or retain craters >1.3 body radii in diameter suggesting a porous, compressible interior.
Change of heart dimensions and function during pregnancy in goats.
Szaluś-Jordanow, Olga; Czopowicz, Michał; Witkowski, Lucjan; Moroz, Agata; Mickiewicz, Marcin; Frymus, Tadeusz; Markowska-Daniel, Iwona; Bagnicka, Emilia; Kaba, Jarosław
2018-03-08
The study aimed to evaluate the effect of pregnancy on heart diameters and function in goats. Transthoracic echocardiography of 12 female dairy goats of two Polish regional breeds was performed. A Mindray M7 diagnostic ultrasound system with Phased Array transducer was used. Simultaneously, electrocardiography was recorded. All animals were examined four times - at mating season, at the end of the first trimester, at the end of the second trimester and just before kidding. Eleven measurements were taken each time: aortic and left atrial diameter (AoD and LAD), right and left ventricular internal diameter in diastole (RVIDd and LVIDd), left ventricular internal diameter in systole (LVIDs), inter-ventricular septum thickness in diastole and systole (IVSd and IVSd) and left ventricular posterior wall in diastole and systole (LVPWd and LVPWs), maximum left and right ventricular outflow tract velocity (RVOT Vmax and LVOT Vmax). Nine consecutive measurements were derived: the ratio of the left atrial diameter to the aortic diameter (AoD/LAD), left ventricular fractional shortening (FS%), left ventricular ejection fraction (EF%), maximum outflow tract pressure gradients (RVOT PGmax and LVOT PGmax), left ventricular end-diastolic volume (LVEDV) and left ventricular end-systolic volume (LVESV), stroke volume (SV) and cardiac output (CO). HR, LAD, LVPWs, IVSs increased significantly in the first trimester. AoD and RVIDd were significantly higher around parturition. LVIDd, FS%, EF%, SV and CO rose both in the first and third trimester. No measurement decreased during pregnancy. The study confirms that pregnancy causes changes in the heart size and functioning. Copyright © 2018. Published by Elsevier Ltd.
2009-01-01
Mooring Records and a High- Resolution General Circulation Model Harper Simmons School of Fisheries and Ocean Sciences 903 Koyukuk Drive Fairbanks AK...oceanographic community has been to develop a global internal wave prediction system analogous to those already in place for surface waves. Early steps have...AUTHOR(S) 5d. PROJECT NUMBER 5e. TASK NUMBER 5f. WORK UNIT NUMBER 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) School of Fisheries and Ocean
NASA Astrophysics Data System (ADS)
Lyard, Florent Henri; Zampolli, Mario; Marsaleix, Patrick
2014-05-01
Hydrophone stations of the Comprehensive Nuclear-Test-Ban Organisation (CTBTO) International Monitoring System (IMS), with the exception of one in Australia, comprise two triplets of submerged moored hydrophones, one North and one South of the island from which the respective system is deployed. Triplet distances vary approximately between 50 - 100 km kilometres from the island, with each triplet connected to the receiving shore equipment by fibre-optic submarine data cables. Once deployed, the systems relay underwater acoustic waveforms in the band 1 - 100 Hz in real time to Vienna via a shore based satellite link. The design life of hydroacoustic stations is at least 20 years, without need for any maintenance of the underwater system. The re-establishment of hydrophone monitoring station HA04 at Crozet (French Southern and Antarctic Territories) in the South-Western Indian Ocean is currently being investigated. The highly dynamic ocean environment at Crozet is governed by strong winds and generally high sea states at the surface, local circulation emanating from the sub-Antarctic front (SAF) and the Agulhas return current (ARC), moderate surface tides and strong internal tides. Deploying the submarine cables and triplets in such an environment requires careful evaluation of all risks and in particular the minimization of the exposure of the deployed system to excessively strong currents. This issue has been addressed by two studies which are briefly introduced here. In the first study, a linear spectral model was used to study and characterize the barotropic tide-driven currents on the Crozet plateau in three spatial dimensions. The M2 semi-diurnal component was shown to dominate in the area, driving sizeable internal tides. The estimate was quantitatively and spatially refined in the second study, in which a time stepping model was used taking into account the local ocean climatology and stratification, as well as the interplay between the seasonally varying local circulation and the internal tides. The numerical result showed a counter-clockwise circulation around Ile de la Possession and Ile de l'Est (Crozet Islands), with a strong component in the South. Internal waves propagating downslope in the near-bottom layers can be particularly intense South of the two islands, while the regions to the North appear to be more calm. The results from the studies are compared to a set of limited current measurements acquired during a survey campaign in 1998.
Investigating a hydrothermal venting scenario at the Bahariya Oasis, Western Desert, Egypt
NASA Astrophysics Data System (ADS)
Lupi, Matteo; Mazzini, Adriano; Sciarra, Alessandra; Hammed, Mohammed S.; Schmindt, Susanne T.; Suessenberger, Annette
2017-04-01
The Bahariya depression (BD) (or Bahariya Oasis) is located in the Egyptian Western desert about 300 km SW of Cairo. The depression stretches for approximately 90 km along a NE-SW direction. The BD is known since Roman times for its thermal springs. Hot fluids were still emitted at the surface in the late 70ies before agricultural development caused the deepening of the groundwater table. Today, hot fluids are found at shallow depths and extracted for thermal bathing and farming. The oldest exposed rocks cropping out in the BD are of Early Cenomanian age and mainly consist of sandstones and claystones. Magmatic formations are also found in the BD and crop out as isolated basaltic formations. The most prominent tectonic feature dissecting the whole area is a NE-SW trending strike-slip fault system along which the depression developed. Satellite images reveal that large part of the BD area is characterised by concentric features (similar in shape to impact craters) that increase in number approaching the fault zone. A cross section of these features resembles to flattened crater-like structures (up to 10 m in height) with steeper external flanks and a gently dipping internal zone. Their average diameter is about 100 m. However, some of the largest features may reach nearly 400 m in diameter. We performed CO2 and CH4 soil gas flux measurements completing profiles across the structures finding a higher concentration of CO2 approaching the center. No significant CH4 flux variations were observed through the profiles. The central zone of one structure was targeted for detailed investigations. The samples recovered are characterised by the presence of halite-cemented breccias. XRD and semi-quantitative SEM analysis indicate the presence of mineral phases typical of hydrothermal circulation. In particular, some of the K-feldspars analyzed show a Ba-rich core with outer rims with no Ba content. One of the K-feldspar phases is sanidine and does not appear as an overgrowth but it is a primary phase. Quartz is often rimmed by a phyllosilicate phase of the montmorillonite group, grew probably during the final phases of hydrothermal circulation. We also identified a Zn-Al-F-silicate, that we speculate may be hemimorphite, a typical low-T phase occurring in hydrothermal environments. In addition, zircon, rutile, quartz and microcline are easily recognized and halite, brushite, bornite and diopside are detected by XRD analysis. Considering the textural relationship between the minerals it can be inferred that the Ba-bearing K-feldspar was the first phase to crystallize while the euhedral sanidine grew afterwards. SEM images indicate the textural evidence of channeling implying that high-T fluids were flushing the system and inducing the precipitation of the minerals. The paragenesis and the petrographic structures of the identified mineralogical assemblages indicate circulation of high temperature fluids flushed from these vents towards the surface. This evidence is consistent with large-scale field observations and with a scenario envisaging the paleo-venting system focusing hydrothermal fluids at localities near the faulted zone.
31 CFR 10.51 - Incompetence and disreputable conduct.
Code of Federal Regulations, 2013 CFR
2013-07-01
..., body or board. (11) Knowingly aiding and abetting another person to practice before the Internal... abusive language, making false accusations or statements, knowing them to be false or circulating or...
31 CFR 10.51 - Incompetence and disreputable conduct.
Code of Federal Regulations, 2012 CFR
2012-07-01
..., body or board. (11) Knowingly aiding and abetting another person to practice before the Internal... abusive language, making false accusations or statements, knowing them to be false or circulating or...
31 CFR 10.51 - Incompetence and disreputable conduct.
Code of Federal Regulations, 2014 CFR
2014-07-01
..., body or board. (11) Knowingly aiding and abetting another person to practice before the Internal... abusive language, making false accusations or statements, knowing them to be false or circulating or...
NASA Technical Reports Server (NTRS)
Lau, K.- M.; Kim, K.-M.; Yang, S.
1998-01-01
In this paper, we present a description of the internal dynamics and boundary forcing characteristics of two major components of the Asian summer monsoon (ASM), i.e., the South Asian (SAM) and the Southeast-East Asian monsoon (SEAM). The description is based on a new monsoon-climate paradigm in which the variability of ASM is considered as the outcome of the interplay of a "fast" and an "intermediate" monsoon subsystem, under the influenced of the "slow" varying external forcings. Two sets of regional monsoon indices derived from dynamically consistent rainfall and wind data are used in this study. For SAM, the internal dynamics is represented by that of a "classical" monsoon system where the anomalous circulation is governed by Rossby-wave dynamics, i.e., generation of anomalous vorticity induced by an off-equatorial heat source is balanced by planetary vorticity advection. On the other hand, the internal dynamics of SEAM is characterized by a "hybrid" monsoon system featuring multi-cellular meridional circulation over the East Asian section, extending from the deep tropics to midlatitudes. These meridional-cells link tropical heating to extratropical circulation system via the East Asian jetstream, and are responsible for the characteristic occurrences of zonally oriented anomalous rainfall patterns over East Asian and the subtropical western Pacific. In the extratropical regions, the major upper level vorticity balance is by anomalous vorticity advection and generation by the anomalous divergent circulation. A consequence of this is that compared to SAM, the SEAM is associated with stronger teleconnection patterns to regions outside the ASM. A strong SAM is linked to basin-scale sea surface temperature (SST) fluctuation with significant signal in the equatorial eastern Pacific. During the boreal spring SST warming in the Arabian Sea and the subtropical western Pacific may lead to a strong SAM. For SEAM, interannual variability is tied to SSTA over the Sea of Japan and the South China Sea regions, while the linkage to equatorial basin-scale SSTA is weak at best. A large scale SSTA dipole with warming (cooling) in the subtropical central (eastern) Pacific foreshadows a strong SEAM.
NASA Astrophysics Data System (ADS)
Liu, Zedong; Wan, Xiuquan
2018-04-01
The Atlantic meridional overturning circulation (AMOC) is a vital component of the global ocean circulation and the heat engine of the climate system. Through the use of a coupled general circulation model, this study examines the role of synoptic systems on the AMOC and presents evidence that internally generated high-frequency, synoptic-scale weather variability in the atmosphere could play a significant role in maintaining the overall strength and variability of the AMOC, thereby affecting climate variability and change. Results of a novel coupling technique show that the strength and variability of the AMOC are greatly reduced once the synoptic weather variability is suppressed in the coupled model. The strength and variability of the AMOC are closely linked to deep convection events at high latitudes, which could be strongly affected by the weather variability. Our results imply that synoptic weather systems are important in driving the AMOC and its variability. Thus, interactions between atmospheric weather variability and AMOC may be an important feedback mechanism of the global climate system and need to be taken into consideration in future climate change studies.
Granell, Miquel; Calvo, Xavier; Garcia-Guiñón, Antoni; Escoda, Lourdes; Abella, Eugènia; Martínez, Clara Mª; Teixidó, Montserrat; Gimenez, Mª Teresa; Senín, Alicia; Sanz, Patricia; Campoy, Desirée; Vicent, Ana; Arenillas, Leonor; Rosiñol, Laura; Sierra, Jorge; Bladé, Joan; de Larrea, Carlos Fernández
2017-06-01
The presence of circulating plasma cells in patients with multiple myeloma is considered a marker for highly proliferative disease. In the study herein, the impact of circulating plasma cells assessed by cytology on survival of patients with multiple myeloma was analyzed. Wright-Giemsa stained peripheral blood smears of 482 patients with newly diagnosed myeloma or plasma cell leukemia were reviewed and patients were classified into 4 categories according to the percentage of circulating plasma cells: 0%, 1-4%, 5-20%, and plasma cell leukemia with the following frequencies: 382 (79.2%), 83 (17.2%), 12 (2.5%) and 5 (1.0%), respectively. Median overall survival according to the circulating plasma cells group was 47, 50, 6 and 14 months, respectively. At multivariate analysis, the presence of 5 to 20% circulating plasma cells was associated with a worse overall survival (relative risk 4.9, 95% CI 2.6-9.3) independently of age, creatinine, the Durie-Salmon system stage and the International Staging System (ISS) stage. Patients with ≥5% circulating plasma cells had lower platelet counts (median 86×10 9 /L vs 214×10 9 /L, P <0.0001) and higher bone marrow plasma cells (median 53% vs 36%, P =0.004). The presence of ≥5% circulating plasma cells in patients with multiple myeloma has a similar adverse prognostic impact as plasma cell leukemia. Copyright© Ferrata Storti Foundation.
Meridional circulation and CNO anomalies in red giant stars
NASA Technical Reports Server (NTRS)
Sweigart, A. V.; Mengel, J. G.
1979-01-01
The possibility is investigated that meridional circulation driven by internal rotation might lead to the mixing of CNO-processed material from the vicinity of the hydrogen shell into the envelope of a red giant star. This theory of meridional mixing is found to be generally consistent with available data and to be capable of explaining a number of observational results without invoking a radical departure from the standard physics of stellar interiors. It is suggested that meridional circulation must be a normal characteristic of a rotating star and that meridional mixing provides a reasonable framework for understanding many of the CNO anomalies exhibited by weak-G-band and CN-strong stars as well as the low C-12/C-13 ratios measured among field red giants.
Hopewell Furnace NHS : alternative transportation study
DOT National Transportation Integrated Search
2009-12-31
This study assesses the potential for an alternative transportation system (ATS) at Hopewell Furnace National Historic Site (NHS). The Volpe Center investigated internal circulation and potential partnerships with local historic, cultural, and recrea...
Projections of Southern Hemisphere atmospheric circulation interannual variability
NASA Astrophysics Data System (ADS)
Grainger, Simon; Frederiksen, Carsten S.; Zheng, Xiaogu
2017-02-01
An analysis is made of the coherent patterns, or modes, of interannual variability of Southern Hemisphere 500 hPa geopotential height field under current and projected climate change scenarios. Using three separate multi-model ensembles (MMEs) of coupled model intercomparison project phase 5 (CMIP5) models, the interannual variability of the seasonal mean is separated into components related to (1) intraseasonal processes; (2) slowly-varying internal dynamics; and (3) the slowly-varying response to external changes in radiative forcing. In the CMIP5 RCP8.5 and RCP4.5 experiments, there is very little change in the twenty-first century in the intraseasonal component modes, related to the Southern annular mode (SAM) and mid-latitude wave processes. The leading three slowly-varying internal component modes are related to SAM, the El Niño-Southern oscillation (ENSO), and the South Pacific wave (SPW). Structural changes in the slow-internal SAM and ENSO modes do not exceed a qualitative estimate of the spatial sampling error, but there is a consistent increase in the ENSO-related variance. Changes in the SPW mode exceed the sampling error threshold, but cannot be further attributed. Changes in the dominant slowly-varying external mode are related to projected changes in radiative forcing. They reflect thermal expansion of the tropical troposphere and associated changes in the Hadley Cell circulation. Changes in the externally-forced associated variance in the RCP8.5 experiment are an order of magnitude greater than for the internal components, indicating that the SH seasonal mean circulation will be even more dominated by a SAM-like annular structure. Across the three MMEs, there is convergence in the projected response in the slow-external component.
ERIC Educational Resources Information Center
Dussel, Ines
2011-01-01
International exhibitions provide a good arena in which to study the circulation and transfer of educational ideas and practices in the second half of the nineteenth century. Structured around themes of industry, progress, and civilisation, and defined as ephemeral museums of the new world of commodities for the consumption of the masses, they…
NASA Technical Reports Server (NTRS)
Nayagam, Vedha; Dietrich, Daniel L.; Ferkul, Paul V.; Hicks, Michael C.; Williams, Forman A.
2012-01-01
Motivated by the need to understand the flammability limits of condensed-phase fuels in microgravity, isolated single droplet combustion experiments were carried out in the Combustion Integrated Rack Facility onboard the International Space Station. Experimental observations of methanol droplet combustion and extinction in oxygen/carbon-dioxide/nitrogen mixtures at 0.7 and 1 atmospheric pressure in quiescent microgravity environment are reported for initial droplet diameters varying between 2 mm to 4 mm in this study.The ambient oxygen concentration was systematically lowered from test to test so as to approach the limiting oxygen index (LOI) at fixed ambient pressure. At one atmosphere pressure, ignition and some burning were observed for an oxygen concentration of 13% with the rest being nitrogen. In addition, measured droplet burning rates, flame stand-off ratios, and extinction diameters are presented for varying concentrations of oxygen and diluents. Simplified theoretical models are presented to explain the observed variations in extinction diameter and flame stand-off ratios.
Cryo-transmission electron tomography of native casein micelles from bovine milk
Trejo, R.; Dokland, T.; Jurat-Fuentes, J.; Harte, F.
2013-01-01
Caseins are the principal protein components in milk and an important ingredient in the food industry. In liquid milk, caseins are found as micelles of casein proteins and colloidal calcium nanoclusters. Casein micelles were isolated from raw skim milk by size exclusion chromatography and suspended in milk protein-free serum produced by ultrafiltration (molecular weight cut-off of 3 kDa) of raw skim milk. The micelles were imaged by cryo-electron microscopy and subjected to tomographic reconstruction methods to visualize the 3-dimensional and internal organization of native casein micelles. This provided new insights into the internal architecture of the casein micelle that had not been apparent from prior cryo-transmission electron microscopy studies. This analysis demonstrated the presence of water-filled cavities (~20 to 30 nm in diameter), channels (diameter greater than ~5 nm), and several hundred high-density nanoclusters (6 to 12 nm in diameter) within the interior of the micelles. No spherical protein submicellar structures were observed. PMID:22118067
DOE Office of Scientific and Technical Information (OSTI.GOV)
Laurent, P.A.
1976-09-28
An apparatus is described for afterburning the combustible pollutants from the exhaust gases of an internal combustion engine in a reactor, in which secondary air is introduced. Upstream of the reactor, a chamber in the form of a torus is provided, through which the exhaust gases from a maximum number of cylinders flow before entering the reactor. A first obstacle, acting as a flame holder is disposed inside the torus. The reactor comprises a chamber whose inner surface is approximately a surface of revolution, and mounted inside of which is a second obstacle, acting as flame holder, substantially along themore » axis of revolution. The second flame holder has a diameter large enough to provide a contact time of 1 to 3 x 10/sup -3/ seconds of the gas flow in a recirculation zone surrounding the second flame holder, the diameter of the second flame holder being 15 to 40 percent of the reactor diameter.« less
Exploring the Ice Giants with JWST
NASA Astrophysics Data System (ADS)
Orton, Glenn S.; Fletcher, Leigh; Hammel, Heidi B.; Melin, Henrik; Guerlet, Sandrine; Greathouse, Thomas K.; Irwin, Patrick GJ
2017-06-01
The Ice Giants Uranus and Neptune are among the least-explored environments in our Solar System, having been visited only once, by Voyager 2 in 1986 and 1989, respectively. Their bulk properties and composition, intermediate between the hydrogen-rich gas giants and the smaller terrestrial worlds, make them representative of a planetary class that may be commonplace in other planetary systems. Furthermore, their small angular diameter, low atmospheric temperatures, and dynamic and ever-changing atmospheres make them tantalising infrared targets for JWST. This presentation will reveal the scientific rationale and requirements for a long-term program of JWST spectroscopic mapping of these two worlds. Specifically, the MIRI instrument can be used to determine the 3-dimensional temperature structure to understand (i) seasonal atmospheric circulation from the equator to the poles, (ii) the relation between temperatures, visible atmospheric banding and storm phenomena; and (iii) to discover the unknown circulations and wave phenomena shaping their middle atmospheres. JWST spectra will also allow us to search for and map chemical species produced from photochemistry (e.g., hydrocarbons derived from methane photolysis), from vertical mixing (e.g., disequilibrium species), and from external sources (e.g., HCN and oxygen compounds delivered by comets, ring rain and interplanetary dust). Furthermore, near-infrared imaging and spectroscopy with NIRCAM and NIRSpec will provide detailed characterisations of ice-giant cloud and haze formation and their evolution with time, as well as revealing how auroral processes (observed via H3+ emission) influence the middle atmosphere. JWST will not only enable intercomparison of these atmospheric processes on two very different worlds (Uranus with its extreme tilt and sluggish mixing; Neptune with its powerful internal heat source), but also mature our understanding of how ice giant phenomena compare to both gas giant and terrestrial atmospheric processes. We propose that preliminary mapping observations from the GTO programme will initiate a long-term programme of ice giant characterisation over the duration of JWST’s lifetime.
Air pollution ultrafine particles: toxicity beyond the lung.
Terzano, C; Di Stefano, F; Conti, V; Graziani, E; Petroianni, A
2010-10-01
Ultrafine particles or nanoparticles (UFPs or PM0.1) are the fraction of ambient particulates with an aerodynamic diameter smaller than 0.1 microm. Currently UFPs are emerging as the most abundant particulate pollutants in urban and industrial areas, as their exposures have increased dramatically because of anthropogenic sources such as internal combustion engines, power plants, incinerators and many other sources of thermo-degradation. Ultrafine particles have been less studied than PM2.5 and PM10 particulates, mass concentrations of particles smaller than 2.5 and 10 microm, respectively. OBJECTIVE, EVIDENCE AND INFORMATION SOURCES: We examined the current scientific literature about the health effects of ultrafine particles exposure. UFPs are able to inhibit phagocytosis, and to stimulate inflammatory responses, damaging epithelial cells and potentially gaining access to the interstitium. They could be responsible for consistent reductions in forced expiratory volume in 1 second (FEV1) and forced vital capacity (FVC) in patients with asthma. Chronic exposure to UFPs can produce deleterious effects on the lung, also causing oxidative stress and enhancing pro-inflammatory effects in airways of COPD patients. Cardiovascular detrimental consequences due to UFPs exposure have observed in epidemiological studies, and could likely be explained by translocation of UFPs from the respiratory epithelium towards circulation and subsequent toxicity to vascular endothelium; alteration of blood coagulation; triggering of autonomic nervous system reflexes eventually altering the cardiac frequency and function. Once deposited deeply into the lung, UFPs--in contrast to larger-sized particles--appear to access to the blood circulation by different transfer routes and mechanisms, resulting in distribution throughout the body, including the brain, with potential neurotoxic consequences. UFPs represent an area of toxicology of emerging concern. A new concept of environmental medicine would help in understanding not only the environmental mechanisms of disease, but also in developing specific preventive or therapeutic strategies for minimizing the dangerous influence of pollution on health.
The effects of hindlimb unweighting on the capacitance of rat small mesenteric veins
NASA Technical Reports Server (NTRS)
Dunbar, S. L.; Berkowitz, D. E.; Brooks-Asplund, E. M.; Shoukas, A. A.
2000-01-01
Microgravity is associated with an impaired cardiac output response to orthostatic stress. Mesenteric veins are critical in modulating cardiac filling through venoconstriction. The purpose of this study was to determine the effects of simulated microgravity on the capacitance of rat mesenteric small veins. We constructed pressure-diameter relationships from vessels of 21-day hindlimb-unweighted (HLU) rats and control rats by changing the internal pressure and measuring the external diameter. Pressure-diameter relationships were obtained both before and after stimulation with norepinephrine (NE). The pressure-diameter curves of HLU vessels were shifted to larger diameters than control vessels. NE (10(-4) M) constricted veins from control animals such that the pressure-diameter relationship was significantly shifted downward (i.e., to smaller diameters at equal pressure). NE had no effect on vessels from HLU animals. These results indicate that, after HLU, unstressed vascular volume may be increased and can no longer decrease in response to sympathetic stimulation. This may partially underlie the mechanism leading to the exaggerated fall in cardiac output and stroke volume seen in astronauts during an orthostatic stress after exposure to microgravity.
Lipid-shelled vehicles: engineering for ultrasound molecular imaging and drug delivery.
Ferrara, Katherine W; Borden, Mark A; Zhang, Hua
2009-07-21
Ultrasound pressure waves can map the location of lipid-stabilized gas micro-bubbles after their intravenous administration in the body, facilitating an estimate of vascular density and microvascular flow rate. Microbubbles are currently approved by the Food and Drug Administration as ultrasound contrast agents for visualizing opacification of the left ventricle in echocardiography. However, the interaction of ultrasound waves with intravenously-injected lipid-shelled particles, including both liposomes and microbubbles, is a far richer field. Particles can be designed for molecular imaging and loaded with drugs or genes; the mechanical and thermal properties of ultrasound can then effect localized drug release. In this Account, we provide an overview of the engineering of lipid-shelled microbubbles (typical diameter 1000-10 000 nm) and liposomes (typical diameter 65-120 nm) for ultrasound-based applications in molecular imaging and drug delivery. The chemistries of the shell and core can be optimized to enhance stability, circulation persistence, drug loading and release, targeting to and fusion with the cell membrane, and therapeutic biological effects. To assess the biodistribution and pharmacokinetics of these particles, we incorporated positron emission tomography (PET) radioisotopes on the shell. The radionuclide (18)F (half-life approximately 2 h) was covalently coupled to a dipalmitoyl lipid, followed by integration of the labeled lipid into the shell, facilitating short-term analysis of particle pharmacokinetics and metabolism of the lipid molecule. Alternately, labeling a formed particle with (64)Cu (half-life 12.7 h), after prior covalent incorporation of a copper-chelating moiety onto the lipid shell, permits pharmacokinetic study of particles over several days. Stability and persistence in circulation of both liposomes and microbubbles are enhanced by long acyl chains and a poly(ethylene glycol) coating. Vascular targeting has been demonstrated with both nano- and microdiameter particles. Targeting affinity of the microbubble can be modulated by burying the ligand within a polymer brush layer; the application of ultrasound then reveals the ligand, enabling specific targeting of only the insonified region. Microbubbles and liposomes require different strategies for both drug loading and release. Microbubble loading is inhibited by the gas core and enhanced by layer-by-layer construction or conjugation of drug-entrapped particles to the surface. Liposome loading is typically internal and is enhanced by drug-specific loading techniques. Drug release from a microbubble results from the oscillation of the gas core diameter produced by the sound wave, whereas that from a liposome is enhanced by heat produced from the local absorption of acoustic energy within the tissue microenvironment. Biological effects induced by ultrasound, such as changes in cell membrane and vascular permeability, can enhance drug delivery. In particular, as microbubbles oscillate near a vessel wall, shock waves or liquid jets enhance drug transport. Mild heating induced by ultrasound, either before or after injection of the drug, facilitates the transport of liposomes from blood vessels to the tissue interstitium, thus increasing drug accumulation in the target region. Lipid-shelled vehicles offer many opportunities for chemists and engineers; ultrasound-based applications beyond the few currently in common use will undoubtedly soon multiply as molecular construction techniques are further refined.
Century/millennium internal climate oscillations in an ocean-atmosphere-continental ice sheet model
NASA Technical Reports Server (NTRS)
Birchfield, Edward G.; Wang, Huaxiao; Rich, Jonathan J.
1994-01-01
We demonstrate in a simple climate model that there exist nonlinear feedbacks between the atmosphere, ocean, and ice sheets capable of producing century/millennium timescale internal oscillations resembling those seen in the paleoclimate record. Feedbacks involve meridional heat and salt transports in the North Atlantic, surface ocean freshwater fluxes associated with melting and growing continental ice sheets in the northen hemisphere and with Atlantic to Pacific water vapor transport. The positive feedback between the production of North Atlantic Deep Water (NADW) and the meridional salt transport by the Atlantic thermohaline circulation tends to destabilize the climate system, while the negative feedback between the freshwater flux, either to or from the continental ice sheets, and meridional heat flux to the high-latitude North Atlantic, accomplished by the thermohaline circulation, stabilizes the system. The thermohaline circulation plays a central role in both positive and negative feedbacks because of its transport of both heat and salt. Because of asymmetries between the growth and melt phases the oscillations are, in general, accompanied by a growing or decreasing ice volume over each cycle, which in the model is reflected by increasing or decreasing mean salinity.
Jet penetration into a riser operated in dense suspension upflow: experimental and model comparisons
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shadle, L.J.; Ludlow, C.J.; Spenik, J.L.
2008-05-13
Solids tracers were used to characterize the penetration of a gas-solids jet directed toward the center of the 0.3-m diameter, circulating fluidized bed (CFB) riser. The penetration was measured by tracking phosphorescent particles illuminated immediately prior to injection into the riser. Photosensors and piezoelectric detectors were traversed across the radius of the riser at various axial positions to detect the phosphorescent jet material and particles traveling in the radial direction. Local particle velocities were measured at various radial positions, riser heights, and azimuthal angles using an optical fiber probe. Four (4) variables were tested including the jet velocity, solids feedmore » rate into the jet, the riser velocity, and overall CFB circulation rate over 8 distinct test cases with the central, or base case, repeated each time the test series was conducted. In addition to the experimental measurements made, the entire riser with a side feed jet of solids was simulated using the Eulerian-Eulerian computer model MFIX.« less
Building International Research Partnerships in the North Atlantic-Arctic Region
NASA Astrophysics Data System (ADS)
Benway, Heather M.; Hofmann, Eileen; St. John, Michael
2014-09-01
The North Atlantic-Arctic region, which is critical to the health and socioeconomic well being of North America and Europe, is susceptible to climate-driven changes in circulation, biogeochemistry, and marine ecosystems. The need for strong investment in the study of biogeochemical and ecosystem processes and interactions with physical processes over a range of time and space scales in this region was clearly stated in the 2013 Galway Declaration, an intergovernmental statement on Atlantic Ocean cooperation (http://europa.eu/rapid/press-release_IP-13-459_en.htm). Subsequently, a workshop was held to bring together researchers from the United States, Canada, and Europe with expertise across multiple disciplines to discuss an international research initiative focused on key features, processes, and ecosystem services (e.g., Atlantic Meridional Overturning Circulation, spring bloom dynamics, fisheries, etc.) and associated sensitivities to climate changes.
Development of the Circulation Control Flow Scheme Used in the NTF Semi-Span FAST-MAC Model
NASA Technical Reports Server (NTRS)
Jones, Gregory S.; Milholen, William E., II; Chan, David T.; Allan, Brian G.; Goodliff, Scott L.; Melton, Latunia P.; Anders, Scott G.; Carter, Melissa B.; Capone, Francis J.
2013-01-01
The application of a circulation control system for high Reynolds numbers was experimentally validated with the Fundamental Aerodynamic Subsonic Transonic Modular Active Control semi-span model in the NASA Langley National Transonic Facility. This model utilized four independent flow paths to modify the lift and thrust performance of a representative advanced transport type of wing. The design of the internal flow paths highlights the challenges associated with high Reynolds number testing in a cryogenic pressurized wind tunnel. Weight flow boundaries for the air delivery system were identified at mildly cryogenic conditions ranging from 0.1 to 10 lbm/sec. Results from the test verified system performance and identified solutions associated with the weight-flow metering system that are linked to internal perforated plates used to achieve flow uniformity at the jet exit.
A universal time scale for vortex ring formation
NASA Astrophysics Data System (ADS)
Gharib, Morteza; Rambod, Edmond; Shariff, Karim
1998-04-01
The formation of vortex rings generated through impulsively started jets is studied experimentally. Utilizing a piston/cylinder arrangement in a water tank, the velocity and vorticity fields of vortex rings are obtained using digital particle image velocimetry (DPIV) for a wide range of piston stroke to diameter (L/D) ratios. The results indicate that the flow field generated by large L/D consists of a leading vortex ring followed by a trailing jet. The vorticity field of the leading vortex ring formed is disconnected from that of the trailing jet. On the other hand, flow fields generated by small stroke ratios show only a single vortex ring. The transition between these two distinct states is observed to occur at a stroke ratio of approximately 4, which, in this paper, is referred to as the ‘formation number’. In all cases, the maximum circulation that a vortex ring can attain during its formation is reached at this non-dimensional time or formation number. The universality of this number was tested by generating vortex rings with different jet exit diameters and boundaries, as well as with various non-impulsive piston velocities. It is shown that the ‘formation number’ lies in the range of 3.6 4.5 for a broad range of flow conditions. An explanation is provided for the existence of the formation number based on the Kelvin Benjamin variational principle for steady axis-touching vortex rings. It is shown that based on the measured impulse, circulation and energy of the observed vortex rings, the Kelvin Benjamin principle correctly predicts the range of observed formation numbers.
The margination propensity of spherical particles for vascular targeting in the microcirculation
Gentile, Francesco; Curcio, Antonio; Indolfi, Ciro; Ferrari, Mauro; Decuzzi, Paolo
2008-01-01
The propensity of circulating particles to drift laterally towards the vessel walls (margination) in the microcirculation has been experimentally studied using a parallel plate flow chamber. Fluorescent polystyrene particles, with a relative density to water of just 50 g/cm3comparable with that of liposomal or polymeric nanoparticles used in drug delivery and bio-imaging, have been used with a diameter spanning over three order of magnitudes from 50 nm up to 10 μm. The number n∼s of particles marginating per unit surface have been measured through confocal fluorescent microscopy for a horizontal chamber, and the corresponding total volume V∼s of particles has been calculated. Scaling laws have been derived as a function of the particle diameter d. In horizontal capillaries, margination is mainly due to the gravitational force for particles with d > 200 nm and V∼s increases with d4; whereas for smaller particles V∼s increases with d3. In vertical capillaries, since the particles are heavier than the fluid they would tend to marginate towards the walls in downward flows and towards the center in upward flows, with V∼s increasing with d9/2. However, the margination in vertical capillaries is predicted to be much smaller than in horizontal capillaries. These results suggest that, for particles circulating in an external field of volume forces (gravitation or magnetic), the strategy of using larger particles designed to marginate and adhere firmly to the vascular walls under flow could be more effective than that of using particles sufficiently small (d < 200 nm) to hopefully cross a discontinuous endothelium. PMID:18702833
NASA Astrophysics Data System (ADS)
Adachi, Kouji; Zaizen, Yuji; Kajino, Mizuo; Igarashi, Yasuhito
2014-05-01
Soot particles influence the global climate through interactions with sunlight. A coating on soot particles increases their light absorption by increasing their absorption cross section and cloud condensation nuclei activity when mixed with other hygroscopic aerosol components. Therefore, it is important to understand how soot internally mixes with other materials to accurately simulate its effects in climate models. In this study, we used a transmission electron microscope (TEM) with an auto particle analysis system, which enables more particles to be analyzed than a conventional TEM. Using the TEM, soot particle size and shape (shape factor) were determined with and without coating from samples collected at a remote mountain site in Japan. The results indicate that ~10% of aerosol particles between 60 and 350 nm in aerodynamic diameters contain or consist of soot particles and ~75% of soot particles were internally mixed with nonvolatile ammonium sulfate or other materials. In contrast to an assumption that coatings change soot shape, both internally and externally mixed soot particles had similar shape and size distributions. Larger aerosol particles had higher soot mixing ratios, i.e., more than 40% of aerosol particles with diameters >1 µm had soot inclusions, whereas <20% of aerosol particles with diameters <1 µm included soot. Our results suggest that climate models may use the same size distributions and shapes for both internally and externally mixed soot; however, changing the soot mixing ratios in the different aerosol size bins is necessary.
Yamamoto, Tomohisa; Satoi, Sohei; Yanagimoto, Hiroaki; Hirooka, Satoshi; Yamaki, So; Ryota, Hironori; Kotsuka, Masaya; Matsui, Yoichi; Kon, Masanori
2017-06-01
Post-operative pancreatic fistula (POPF) is one of the most common causes of death following pancreaticoduodenectomy (PD). The aim of this study was to evaluate the clinical effect of a long-internal stent on the development of POPF in patients with a main pancreatic duct diameter of 3 mm or less. Patients (N = 108) with a main pancreatic duct (≤3 mm) who underwent PD were included in this single-institution historical control study. Between January 2012 and December 2013, 54 patients had undergone PJ with a long-internal stent across the duct-to-mucosa anastomosis (long-stent group), and between February 2009 and December 2011, 54 patients had undergone PJ without a stent (control). There was no significant difference between groups (long-stent vs control) in the incidence of POPF (70% vs. 56%, p = 0.110) and grade B/C POPF (26% vs. 26%, p = 1.000). Univariate analysis identified body mass index, extent of blood loss and soft pancreatic parenchyma as risk factors related to POPF. Multivariate analysis identified extent of blood loss and soft pancreatic parenchyma as significant risk factors. Placement of a long-internal stent during PJ did not reduce POPF after PD in patients with a main pancreatic duct of small diameter. Copyright © 2017 IJS Publishing Group Ltd. Published by Elsevier Ltd. All rights reserved.
4 Metre diameter penstock construction for the Raymond Reservoir Hydro Project
DOE Office of Scientific and Technical Information (OSTI.GOV)
Miller, H.D.; Alexander, M.
1995-12-31
A four metre diameter 770 m long buried steel penstock was constructed for the 20 MW Raymond Reservoir Hydro Project in southern Alberta. The penstock delivers up to 56.7 m{sup 3}/sec of irrigation water at an effective head of 44 m to a 2.6 m diameter Kaplan turbine. The hydro facility was commissioned in the spring of 1994. The steel pipe was delivered to the site in 18 m long sections from a fabrication plant located 250 km away. Specialized equipment was engineered and constructed to externally coat and internally line the pipe sections on site. The pipe sections, weighingmore » from 27,000 to 30,000 kg, were rolled and moved on a specially built lathe during the external sandblasting and tape wrapping operation. The external tape wrapping is one element of the cathodic protection system for the steel pipe. Specialized equipment was modified to sandblast the interior to white metal and then mechanically apply three coats of internal epoxy lining. The internal lining improves the hydraulic characteristics of the pipe in addition to protecting the pipe from corrosion. This innovative approach to coating and lining the pipe resulted in an exceptionally high quality product at an affordable cost.« less
Evaluation of Heating Methods for Thermal Structural Testing of Large Structures
NASA Technical Reports Server (NTRS)
Daryabeigi, Kamran; Sikora, Joseph G.; Caldwell, Darrell L., Jr.
1998-01-01
An experimental study was conducted to evaluate different heating methods for thermal structural testing of large scale structures at temperatures up to 350 F as part of the High Speed Research program. The heating techniques evaluated included: radiative/convective, forced convective, and conductive. The radiative/convective heaters included finned strip heaters, and clear and frosted quartz lamps. The forced convective heating was accomplished by closed loop circulation of heated air. The conductive heater consisted of heating blankets. The tests were conducted on an 1/8 inch thick stainless steel plate in a custom-built oven. The criteria used for comparing the different heating methods included test specimen temperature uniformity, heater response time, and consumed power. The parameters investigated included air circulation in the oven, reflectance of oven walls, and the orientation of the test specimen and heaters (vertical and horizontal). It was found that reflectance of oven walls was not an important parameter. Air circulation was necessary to obtain uniform temperatures only for the vertically oriented specimen. Heating blankets provided unacceptably high temperature non-uniformities. Quartz lamps with internal air circulation had the lowest power consumption levels. Using frosted quartz lamps with closed loop circulation of cool air, and closed loop circulation of heated air provided the fastest response time.
An Isopycnal Box Model with predictive deep-ocean structure for biogeochemical cycling applications
NASA Astrophysics Data System (ADS)
Goodwin, Philip
2012-07-01
To simulate global ocean biogeochemical tracer budgets a model must accurately determine both the volume and surface origins of each water-mass. Water-mass volumes are dynamically linked to the ocean circulation in General Circulation Models, but at the cost of high computational load. In computationally efficient Box Models the water-mass volumes are simply prescribed and do not vary when the circulation transport rates or water mass densities are perturbed. A new computationally efficient Isopycnal Box Model is presented in which the sub-surface box volumes are internally calculated from the prescribed circulation using a diffusive conceptual model of the thermocline, in which upwelling of cold dense water is balanced by a downward diffusion of heat. The volumes of the sub-surface boxes are set so that the density stratification satisfies an assumed link between diapycnal diffusivity, κd, and buoyancy frequency, N: κd = c/(Nα), where c and α are user prescribed parameters. In contrast to conventional Box Models, the volumes of the sub-surface ocean boxes in the Isopycnal Box Model are dynamically linked to circulation, and automatically respond to circulation perturbations. This dynamical link allows an important facet of ocean biogeochemical cycling to be simulated in a highly computationally efficient model framework.
Hernández-Pérez, María; Puig, Josep; Blasco, Gerard; Pérez de la Ossa, Natalia; Dorado, Laura; Dávalos, Antoni; Munuera, Josep
2016-02-01
Contrary to usual static vascular imaging techniques, contrast-enhanced dynamic magnetic resonance angiography (dMRA) enables dynamic study of cerebral vessels. We evaluated dMRA ability to assess arterial occlusion, cerebral hemodynamics, and collateral circulation in acute ischemic stroke. Twenty-five acute ischemic stroke patients with proximal anterior circulation occlusion underwent dMRA on a 3T scanner within 12 hours of symptoms onset. Diffusion weighted imaging, Tmax6 s lesion volumes and hypoperfusion intensity ratio as volume of Tmax>6 s/volume of Tmax>10 s were measured. Site and grade of occlusion (Thrombolysis in Myocardial Infarction criteria) were evaluated on time-of-flight MRA and dMRA. Leptomeningeal collaterality (American Society of Interventional and Therapeutic Neuroradiology/Society of Interventional Radiology [ASITN/SIR] Scale) and asymmetries in venous clearance were assessed exclusively on dMRA. Collateral filling was dichotomized into incomplete (ASITN/SIR 0-2) or complete (ASITN/SIR 3-4). On dMRA, site of occlusion was M1 in 21 patients, tandem internal carotid artery/M1 in 2 and tandem internal carotid artery/terminal internal carotid artery in 2 patients. Three tandem occlusions were not detected on time-of-flight-MRA. All patients had Thrombolysis in Myocardial Infarction 0 to 1 on time-of-flight-MRA, but three of them had Thrombolysis in Myocardial Infarction 2 on dMRA. Complete collateral filling (n=12, 48%) was associated with smaller diffusion weighted imaging lesion volume (P=0.039), smaller hypoperfused volume (P=0.018), and lower hypoperfusion intensity ratio (P=0.006). Patients with symmetrical clearance of transverse sinuses (52%) were more likely to have complete collateral filling (P=0.015). As a fast, direct, feasible, noninvasive, and reliable method to assess site of occlusion, collateral circulation and hemodynamic alterations, dMRA provides profound insights in acute stroke. © 2015 American Heart Association, Inc.
Bypass of the maxillary artery to proximal middle cerebral artery.
Ma, Lin; Ren, He-cheng; Huang, Ying
2015-03-01
The objective of this work was to explore the feasibility of bypass between the maxillary artery (MA) and proximity of middle cerebral artery (MCA). Ten fixed and perfused adult cadaver heads were dissected bilaterally, 20 sides in total. The superficial temporal artery and its 2 branches were dissected, and outer diameters were measured. The MA and its branch were exposed as well as deep temporal artery; outer diameter of MA was measured. The lengths between the external carotid artery, internal carotid artery, maxillary artery, and proximal middle cerebral artery were measured. Ten healthy adults as targets (20 sides), inner diameter and blood flow dynamic parameters of the common carotid artery, external carotid artery, internal carotid artery, maxillary artery, superficial temporal artery, and its 2 branches were done with ultrasound examination. The mean outer diameter of MA (2.60 ± 0.20 mm) was larger than that of the temporal artery trunk (1.70 ± 0.30 mm). The mean lengths of graft vessels between the internal carotid artery, external carotid artery, and the bifurcation section of MCA (171.00 ± 2.70 and 162.40 ± 2.60 mm) were longer than the mean lengths of graft vessels between MA and MCA bifurcation section (61.70 ± 1.50 mm). In adults, the mean blood flow of the second part of MA (62.70 ± 13.30 mL/min) was more than that of the 2 branches of the superficial temporal artery (15.90 ± 3.70 mL/min and 17.70 ± 4.10 ml/min). Bypass between the maxillary artery and proximity of middle cerebral artery is feasible. It is a kind of effective high flow bypass with which the graft vessel is shorter and straighter than the bypass between internal carotid artery or external carotid artery and proximity of middle cerebral artery.
Vessel calibre and flow splitting relationships at the internal carotid artery terminal bifurcation.
Chnafa, C; Bouillot, P; Brina, O; Delattre, B M A; Vargas, M I; Lovblad, K O; Pereira, V M; Steinman, D A
2017-11-01
Vessel lumen calibres and flow rates are thought to be related by mathematical power laws, reflecting the optimization of cardiac versus metabolic work. While these laws have been confirmed indirectly via measurement of branch calibres, there is little data confirming power law relationships of flow distribution to branch calibres at individual bifurcations. Flow rates and diameters of parent and daughter vessels of the internal carotid artery terminal bifurcation were determined, via robust and automated methods, from 4D phase-contrast magnetic resonance imaging and 3D rotational angiography of 31 patients. Junction exponents were 2.06 ± 0.44 for relating parent to daughter branch diameters (geometrical exponent), and 2.45 ± 0.75 for relating daughter branch diameters to their flow division (flow split exponent). These exponents were not significantly different, but showed large inter- and intra-individual variations, and with confidence intervals excluding the theoretical optimum of 3. Power law fits of flow split versus diameter ratio and pooled flow rates versus diameters showed exponents of 2.17 and 1.96, respectively. A significant negative correlation was found between age and the geometrical exponent (r = -0.55, p = 0.003) but not the flow split exponent. We also found a dependence of our results on how lumen diameter is measured, possibly explaining some of the variability in the literature. Our study confirms that, on average, division of flow to the middle and anterior cerebral arteries is related to these vessels' relative calibres via a power law, but it is closer to a square law than a cube law as commonly assumed.
Morphological and clinical risk factors for posterior communicating artery aneurysm rupture.
Matsukawa, Hidetoshi; Fujii, Motoharu; Akaike, Gensuke; Uemura, Akihiro; Takahashi, Osamu; Niimi, Yasunari; Shinoda, Masaki
2014-01-01
Recent studies have shown that posterior circulation aneurysms, specifically posterior communicating artery (PCoA) aneurysms, are more likely to rupture than other aneurysms. To date, few studies have investigated the factors contributing to PCoA aneurysm rupture. The authors aimed to identify morphological and clinical characteristics predisposing to PCoA aneurysm rupture. The authors retrospectively reviewed 134 consecutive patients with PCoA aneurysms managed at their facility between July 2003 and December 2012. The authors divided patients into groups of those with aneurysmal rupture (n = 39) and without aneurysmal rupture (n = 95) and compared morphological and clinical characteristics. Morphological characteristics were mainly evaluated by 3D CT angiography and included diameter of arteries (anterior cerebral artery, middle cerebral artery, and internal carotid artery), size of the aneurysm, dome-to-neck ratio, neck direction of the aneurysmal dome around the PCoA (medial, lateral, superior, inferior, and posterior), aneurysm bleb formation, whether the PCoA was fetal type, and the existence of other intracranial unruptured aneurysm(s). Patients with ruptured PCoA aneurysms were significantly younger (a higher proportion were < 60 years of age) and a significantly higher proportion of patients with ruptured PCoA aneurysms showed a lateral direction of the aneurysmal dome around the PCoA, had bleb formation, and the aneurysm was > 7 mm in diameter and/or the dome-to-neck ratio was > 2.0. Multivariate logistic regression analysis showed age < 60 years (OR 4.3, p = 0.011), history of hypertension (OR 5.1, p = 0.008), lateral direction of the aneurysmal dome around the PCoA (OR 6.7, p = 0.0001), and bleb formation (OR 11, p < 0.0001) to be significantly associated with PCoA aneurysm rupture. The present results demonstrated that lateral projection of a PCoA aneurysm may be related to rupture.
Intra-aortic balloon shape change: effects on volume displacement during inflation and deflation.
Khir, Ashraf William; Bruti, Gianpaolo
2013-07-01
It has been observed that operating the intra-aortic balloon at an angle to the horizontal resulted in a reduction of the volume displaced toward the coronary arteries and compromised afterload reduction. Therefore, the aim of this work is to examine whether changing the current balloon shape, which has not been altered for 40 years, could compensate for the negative hemodynamic effects due to angulation. We tested two tapered balloons, increasing diameter (TID) and decreasing diameter (TDD), and compared the results with those obtained from a standard cylindrical balloon. The balloons were tested in vitro at 60 beats/min and a static pressure of 90 mm Hg. The balloons were operated at four angles (0°, 20°, 30°, 45°), and the pressure at three locations along the balloon (base, middle, and tip) was also measured. Flow rate upstream of the tip of the balloon was also measured to indicate the flow displaced toward the coronary circulation. The relative volume displaced toward (VUTVi) and suctioned away from (VUTVd) the simulated ascending aorta, during inflation and deflation, respectively, is reduced when a standard cylindrical balloon is operated at an angle to the horizontal. The TDD provided the greatest VUTVi and also produced the largest pulse pressure during deflation. Although the TID provided less VUTVi and VUTVd at smaller angles, it was not markedly affected by the change of angle. According to these results, different balloon shapes analyzed, with comparable volume to that of a cylindrical balloon, produced greater inflation and deflation benefits, at the horizontal and at a range of angles to the horizontal. Further investigations are required to optimize the shape of the tapered balloons to fit into the available physiological space. © 2013 Wiley Periodicals, Inc. and International Center for Artificial Organs and Transplantation.
Iwanaga, Joe; Watanabe, Koichi; Henry, Brandon; Tomaszewski, Krzysztof A; Walocha, Jerzy A; Oskouian, Rod J; Tubbs, R Shane
2017-09-01
The internal nasal branch of the infraorbital nerve (ION) runs down the nose and around the ala to be distributed to the nasal septum and vestibule. The aim of this study was to measure the internal nasal branch around the ala of the nose and discuss its possible relevance in clinical/surgical practice. Twelve sides from seven specimens derived from fresh frozen and embalmed Caucasian cadaveric heads were dissected. The specimens included three males and four females. The ages of the cadavers at death ranged from 65 to 84 years. The diameter of the internal nasal branch, horizontal distance from the lateral contour of the ala (Point A) to the branch (distance H) and vertical distance from the bottom part of the ala (Point B) to the branch (distance V) were recorded. Distance H ranged from -1.6 to 1.5 mm on right sides and -1.0 to 1.5 mm on left sides. The diameter of the nerves at Point A ranged from 1.3 to 1.8 mm on right sides and 1.3 to 1.6 mm on left sides. Distance V ranged from -1.5 to 1.0 mm on right sides and -2.3 to 1.1 mm on left sides. The diameter of the nerves at Point B ranged from 0.7 to 1.3 mm on right sides and 0.8 to 1.2 mm on left sides. The results of this study are the first to detail the topography of the internal nasal branch of the ION. Clin. Anat. 30:817-820, 2017. © 2017Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.
Shahnaz, Gul; Kremser, Christian; Reinisch, Andreas; Vetter, Anja; Laffleur, Flavia; Rahmat, Deni; Iqbal, Javed; Dünnhaupt, Sarah; Salvenmoser, Willi; Tessadri, Richard; Griesser, Ulrich; Bernkop-Schnürch, Andreas
2013-11-01
The aim of this study was to design thiolated surface stabilized superparamagnetic iron oxide nanoparticles (TSS-SPIONs) for efficient internalization with high MRI sensitivity. TSS-SPIONs were developed by chelation between thiolated chitosan-thioglycolic acid (chitosan-TGA) hydrogel and iron ions (Fe(2+)/Fe(3+)). Likely, unmodified chitosan hydrogel SPIONs (UC-SPIONs) and uncoated SPIONs were used as control. Moreover, TSS-SPIONs were investigated regarding to their iron core size, hydrodynamic diameter, zeta potential, iron contents, molar relaxivities (r1 and r2), and cellular internalization. TSS-SPIONs demonstrated an iron oxide core diameter (crystallite size by XRD) of 3.1 ± 0.02 nm, a hydrodynamic diameter of 94 ± 20 nm, a zeta potential of +21 ± 5 mV, and an iron content of 3.6 ± 0.9 mg/mL. In addition, internalization of TSS-SPIONs into human endothelial progenitor cells (EPC) from umbilical cord blood was more than threefold and 17-fold higher in contrast to UC-SPIONs and SPIONs, respectively. With twofold lower incubation iron concentration of TSS-SPIONs, more than threefold higher internalization was achieved as compared to Resovist®. Also, cell viability of more than 90% was observed in the presence of TSS-SPIONs after 24h. The molar MR relaxivities (r2) value at 1.5 T was threefold higher than that of Resovist® and demonstrated that TSS-SPIONs have the potential as very effective T2 contrast-enhancement agent. According to these findings, TSS-SPIONs with efficient internalization, lower cytotoxicity, and high MRI sensitivity seem to be promising for cell tracking. Copyright © 2013 Elsevier B.V. All rights reserved.
Threshold Switchable Particles (TSPs) To Control Internal Hemorrhage
2016-09-01
hemorrhage at local sites. Four collaborating laboratories worked together under this contract to define threshold levels of activators of blood clotting...such that the candidate clotting activators will circulate in the blood at a concentration below the threshold necessary to trigger clotting, but...accumulation of the activators at sites of internal injury/bleeding will cause the local concentration of clotting activators to exceed the clotting
[Micropore filters for measuring red blood cell deformability and their pore diameters].
Niu, X; Yan, Z
2001-09-01
Micropore filters are the most important components in micropore filtration testes for assessing red blood cell (RBC) deformability. With regard to their appearance and filtration behaviors, comparisons are made for different kinds of filters currently in use. Nickel filters with regular geometric characteristics are found to be more sensitive to the effects of physical, chemical, especially pathological factors on the RBC deformability. We have critically reviewed the following viewpoint that filters with 3 microns pore diameter are more sensitive to cell volume than to internal viscosity while filters with 5 microns pore diameter are just the opposite. After analyzing the experiment results with 3 microns and 5 microns filters, we point out that filters with smaller pore diameters are more suitable for assessing the RBC deformability.
NASA Technical Reports Server (NTRS)
HARSHVARDHAN
1990-01-01
Broad-band parameterizations for atmospheric radiative transfer were developed for clear and cloudy skies. These were in the shortwave and longwave regions of the spectrum. These models were compared with other models in an international effort called ICRCCM (Intercomparison of Radiation Codes for Climate Models). The radiation package developed was used for simulations of a General Circulation Model (GCM). A synopsis is provided of the research accomplishments in the two areas separately. Details are available in the published literature.
Circulation in the Hudson Shelf Valley: MESA physical oceanographic studies in New York Bight, 1
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mayer, D.A.; Hansen, D.V.; Han, G.C.
1982-11-20
Over 900 days of current velocity data were obtained at mainly two locations in the inner and outer Hudson Shelf Valley (HSV). The large cross-axis depth gradients in the HSV, together with the strong winter cyclones and the baroclinic density distribution over the shelf, are primarily responsible for the major circulation features observed in the valley. CSTD data from 12 cruises and meteorological data from JFK International Airport and an environmental buoy were collected concurrently with the current meter data.
NASA Astrophysics Data System (ADS)
Timoshina, Polina A.; Shi, Rui; Zhang, Yang; Zhu, Dan; Semyachkina-Glushkovskaya, Oxana V.; Tuchin, Valery V.; Luo, Qingming
2015-03-01
The study of blood microcirculation is one of the most important problems of the medicine. This paper presents results of experimental study of cerebral blood flow microcirculation in mice with alloxan-induced diabetes using Temporal Laser Speckle Imaging (TLSI). Additionally, a direct effect of glucose water solution (concentration 20% and 45%) on blood flow microcirculation was studied. In the research, 20 white laboratory mice weighing 20-30 g were used. The TLSI method allows one to investigate time dependent scattering from the objects with complex dynamics, since it possesses greater temporal resolution. Results show that in brain of animal diabetic group diameter of sagittal vein is increased and the speed of blood flow reduced relative to the control group. Topical application of 20%- or 45%-glucose solutions also causes increase of diameter of blood vessels and slows down blood circulation. The results obtained show that diabetes development causes changes in the cerebral microcirculatory system and TLSI techniques can be effectively used to quantify these alterations.
Circulation of fluids in the gastrovascular system of a stoloniferan octocoral.
Parrin, Austin P; Netherton, Sarah E; Bross, Lori S; McFadden, Catherine S; Blackstone, Neil W
2010-10-01
Cilia-based transport systems characterize sponges and placozoans. Cilia are employed in cnidarian gastrovascular systems as well, but typically function in concert with muscular contractions. Previous reports suggest that anthozoans may be an exception to this pattern, utilizing only cilia in their gastrovascular systems. With an inverted microscope and digital image analysis, we used stoloniferan octocoral colonies growing on microscope cover glass to quantitatively describe the movement of fluids in this system for the first time. Flow in stolons (diameter ≈300 μm) is simultaneously bidirectional, with average velocities of 100-200 μm/s in each direction. Velocities are maximal immediately adjacent to the stolon wall and decrease to a minimum in the center of the stolon. Flow velocity is unaffected by stolonal contractions, suggesting that muscular peristalsis is not a factor in propelling the flow. Stolon intersections (diameter ≈500 μm) occur below polyps and serve as traffic roundabouts with unidirectional, circular flow. Such cilia-driven transport may be the plesiomorphic state for the gastrovascular system of cnidarians.
Bridgeman, Devon; Tsow, Francis; Xian, Xiaojun; Forzani, Erica
2016-01-01
The development and performance characterization of a new differential pressure-based flow meter for human breath measurements is presented in this article. The device, called a “Confined Pitot Tube,” is comprised of a pipe with an elliptically shaped expansion cavity located in the pipe center, and an elliptical disk inside the expansion cavity. The elliptical disk, named Pitot Tube, is exchangeable, and has different diameters, which are smaller than the diameter of the elliptical cavity. The gap between the disk and the cavity allows the flow of human breath to pass through. The disk causes an obstruction in the flow inside the pipe, but the elliptical cavity provides an expansion for the flow to circulate around the disk, decreasing the overall flow resistance. We characterize the new sensor flow experimentally and theoretically, using Comsol Multiphysics® software with laminar and turbulent models. We also validate the sensor, using inhalation and exhalation tests and a reference method. PMID:27818521
Ma, Junqiang; Ma, Yonglie; Dong, Bin; Bandet, Mischa V; Shuaib, Ashfaq; Winship, Ian R
2017-08-01
Collateral circulation is a key variable determining prognosis and response to recanalization therapy during acute ischemic stroke. Remote ischemic perconditioning (RIPerC) involves inducing peripheral ischemia (typically in the limbs) during stroke and may reduce perfusion deficits and brain damage due to cerebral ischemia. In this study, we directly investigated pial collateral flow augmentation due to RIPerC during distal middle cerebral artery occlusion (MCAo) in rats. Blood flow through pial collaterals between the anterior cerebral artery (ACA) and the MCA was assessed in male Sprague Dawley rats using in vivo laser speckle contrast imaging (LSCI) and two photon laser scanning microscopy (TPLSM) during distal MCAo. LSCI and TPLSM revealed that RIPerC augmented collateral flow into distal MCA segments. Notably, while control rats exhibited an initial dilation followed by a progressive narrowing of pial arterioles 60 to 150-min post-MCAo (constricting to 80-90% of post-MCAo peak diameter), this constriction was prevented or reversed by RIPerC (such that vessel diameters increased to 105-110% of post-MCAo, pre-RIPerC diameter). RIPerC significantly reduced early ischemic damage measured 6 h after stroke onset. Thus, prevention of collateral collapse via RIPerC is neuroprotective and may facilitate other protective or recanalization therapies by improving blood flow in penumbral tissue.
Ripple, Dean C; Montgomery, Christopher B; Hu, Zhishang
2015-02-01
Accurate counting and sizing of protein particles has been limited by discrepancies of counts obtained by different methods. To understand the bias and repeatability of techniques in common use in the biopharmaceutical community, the National Institute of Standards and Technology has conducted an interlaboratory comparison for sizing and counting subvisible particles from 1 to 25 μm. Twenty-three laboratories from industry, government, and academic institutions participated. The circulated samples consisted of a polydisperse suspension of abraded ethylene tetrafluoroethylene particles, which closely mimic the optical contrast and morphology of protein particles. For restricted data sets, agreement between data sets was reasonably good: relative standard deviations (RSDs) of approximately 25% for light obscuration counts with lower diameter limits from 1 to 5 μm, and approximately 30% for flow imaging with specified manufacturer and instrument setting. RSDs of the reported counts for unrestricted data sets were approximately 50% for both light obscuration and flow imaging. Differences between instrument manufacturers were not statistically significant for light obscuration but were significant for flow imaging. We also report a method for accounting for differences in the reported diameter for flow imaging and electrical sensing zone techniques; the method worked well for diameters greater than 15 μm. © 2014 Wiley Periodicals, Inc. and the American Pharmacists Association.
Biodistribution of Encapsulated Indocyanine Green in Healthy Mice
Yaseen, Mohammad A.; Yu, Jie; Jung, Bongsu; Wong, Michael S.; Anvari, Bahman
2009-01-01
Indocyanine Green (ICG) is a fluorescent probe used in various optically-mediated diagnostic and therapeutic applications. However, utility of ICG remains limited by its unstable optical properties and non-specific localization. We have encapsulated ICG within electrostatically-assembled mesocapsules (MCs) to explore its potential for targeted optical diagnosis and therapy. In this study, we investigate how the surface coating and size of the MCs influences ICG's biodistribution in vivo. ICG was administered intravenously to Swiss Webster mice as a free solution or encapsulated within either 100 nm diameter MCs coated with dextran; 500 nm diameter MCs coated with dextran; or 100 nm diameter MCs coated with 10 nm ferromagnetic iron oxide nanoparticles, themselves coated with polyethylene glycol. ICG was extracted from harvested blood and organs at various times and its amount quantified with fluorescence measurements. MCs containing ICG accumulated in organs of the reticuloendothelial system, namely the liver and spleen, as well as the lungs. The circulation kinetics of ICG remained unaffected by encapsulation; however, the deposition within organs other than the liver suggests a different biodistribution mechanism. Results suggest that the capsules' coating influences their biodistribution to a greater extent than their size. The MC encapsulation system allows for delivery of ICG to organs other than the liver, enabling the potential development of new optical imaging and therapeutic strategies. PMID:19799463
40 CFR Table 2 to Subpart Jjjj of... - Requirements for Performance Tests
Code of Federal Regulations, 2014 CFR
2014-07-01
... requirements 1. Stationary SI internal combustion engine demonstrating compliance according to § 60.4244. a. limit the concentration of NOX in the stationary SI internal combustion engine exhaust. i. Select the...) Alternatively, for NOX, O2, and moisture measurement, ducts ≤6 inches in diameter may be sampled at a single...
[Evaluation of the level of endemic tuberculosis in a survey of Banqui (Central African Republic)].
Sarda, J; Monges, J; Pujol, C; Ndoyo, J; Samba, M; Monges, P; Merouze, J; Testa, J
1993-01-01
A cluster sample survey on tuberculosis has been carried out in Bangui in February 1988. The bimodal distribution of the diameters of IDR on children aged between 5 to 9, gives evidence of a circulation of some non typical mycobacteriae and enables to fix the limit of positivity at 14 mm. The prevalence rate of the tuberculotic infection is 7.9 +/- 1.7% in the surveyed children population at school. The annual risk of infection is evaluated at 1.09% that ranks the Centrafrican Republic in the countries with a low prevalence rate.
Glass fining experiments in zero gravity
NASA Technical Reports Server (NTRS)
Smith, H. D.
1977-01-01
Ground based experiments were conducted to demonstrate that thermal migration actually operated in glass melts. Thermal migration consistent with the theory was found in one experiment on a borax melt, i.e., there was an approximately linear relation between the bubble diameter and bubble velocity for a given temperature and temperature gradient. It also appeared that nearby bubbles were attracted to one another, which could greatly aid fining. Interpretation of these results was not possible because of complications arising from gravity, i.e., floating of the bubbles, circulation currents due to buoyancy-driven natural connection, and flow of the melt out from the cell.
Leyse, C.F.; Putnam, G.E.
1961-05-01
An irradiation apparatus is described. It comprises a pressure vessel, a neutronic reactor active portion having a substantially greater height than diameter in the pressure vessel, an annular tank surrounding and spaced from the pressure vessel containing an aqueous indium/sup 1//sup 1//sup 5/ sulfate solution of approximately 600 grams per liter concentration, means for circulating separate coolants through the active portion and the space between the annular tank and the pressure vessel, radiator means adapted to receive the materials to be irradiated, and means for flowing the indium/sup 1//sup 1//sup 5/ sulfate solution through the radiator means.
Biaxial fatigue loading of notched composites
NASA Technical Reports Server (NTRS)
Francis, P. H.; Walrath, D. E.; Sims, D. F.; Weed, D. N.
1977-01-01
Thin-walled, 2.54-cm diameter tubular specimens of graphite/epoxy were fatigue cycled in combinations of axial, torsional, and internal pressure loading. Two different four-ply layup configurations were tested: (0-90)s and (+ or- 45)s; each tube contained a 0.48-cm diameter circular hole penetrating one wall midway along the tube length. S-N curves were developed to characterize fatigue behavior under pure axial, torsional, or internal pressure loading, as well as combined loading fatigue. A theory was developed based on a plane stress model which enabled the S-N curve for combined stress states to be predicted from the S-N data for the uniaxial loading modes. Correlation of the theory with the experimental data proved to be remarkably good.
Evaluating Primary Dendrite Trunk Diameters in Directionally Solidified Al-Si Alloys
NASA Technical Reports Server (NTRS)
Grugel, R. N.; Tewari, S. N.; Poirier, D. R.
2014-01-01
The primary dendrite trunk diameters of Al-Si alloys that were directionally solidified over a range of processing conditions have been measured. These data are analyzed with a model based primarily on an assessment of secondary dendrite arm dissolution in the mushy zone. Good fit with the experimental data is seen and it is suggested that the primary dendrite trunk diameter is a useful metric that correlates well with the actual solidification processing parameters. These results are placed in context with the limited results from the aluminium - 7 wt. % silicon samples directionally solidified aboard the International Space Station as part of the MICAST project.
Wind-driven circulation patterns in a shallow estuarine lake: St Lucia, South Africa
NASA Astrophysics Data System (ADS)
Schoen, Julia H.; Stretch, Derek D.; Tirok, Katrin
2014-06-01
The spatiotemporal structure of wind-driven circulation patterns and associated water exchanges or residence times can drive important bio-hydrodynamic interactions in shallow lakes and estuaries. The St Lucia estuarine lake in South Africa is an example of such a system. It is a UNESCO World Heritage Site and RAMSAR wetland of international importance but no detailed research on its circulation patterns has previously been undertaken. In this study, a hydrodynamic model was used to investigate the structure of these circulations to provide insights into their role in transport and water exchange processes. A strong diurnal temporal pattern of wind speeds, together with directional switching between two dominant directions, drives intermittent water exchanges and mixing between the lake basins. “High speed flows in shallow nearshore areas with slower upwind counter-flows in deeper areas, linked by circulatory gyres, are key features of the circulation”. These patterns are strongly influenced by the complex geometry of St Lucia and constrictions in the system. Water exchange time scales are non-homogeneous with some basin extremities having relatively long residence times. The influence of the circulation patterns on biological processes is discussed.
State of the Art of Stimuli-Responsive Liposomes for Cancer Therapy
Heidarli, Elmira; Dadashzadeh, Simin; Haeri, Azadeh
2017-01-01
Specific delivery of therapeutic agents to solid tumors and their bioavailability at the target site are the most clinically important and challenging goals in cancer therapy. Liposomes are promising nanocarriers and have been well investigated for cancer therapy. In spite of preferred accumulation in tumors via the enhanced permeability and retention (EPR) effect, inefficient drug release at the target site and endosomal entrapment of long circulating liposomes are very important obstacles for achieving maximum anticancer efficacy. Thus, additional strategies such as stimulus-sensitive drug release are necessary to improve efficacy. Stimuli-sensitive liposomes are stable in blood circulation, however, activated by responding to external or internal stimuli and control the cargo release at the target site. This review focuses on state of the art of stimuli-responsive liposomes. Both external stimuli-responsive liposomes, including hyperthermia (HT), magnetic, light, and ultrasound-sensitive liposomes and internal stimuli (pH, reduction, and enzyme) responsive liposomes are covered. PMID:29552041
State of the Art of Stimuli-Responsive Liposomes for Cancer Therapy.
Heidarli, Elmira; Dadashzadeh, Simin; Haeri, Azadeh
2017-01-01
Specific delivery of therapeutic agents to solid tumors and their bioavailability at the target site are the most clinically important and challenging goals in cancer therapy. Liposomes are promising nanocarriers and have been well investigated for cancer therapy. In spite of preferred accumulation in tumors via the enhanced permeability and retention (EPR) effect, inefficient drug release at the target site and endosomal entrapment of long circulating liposomes are very important obstacles for achieving maximum anticancer efficacy. Thus, additional strategies such as stimulus-sensitive drug release are necessary to improve efficacy. Stimuli-sensitive liposomes are stable in blood circulation, however, activated by responding to external or internal stimuli and control the cargo release at the target site. This review focuses on state of the art of stimuli-responsive liposomes. Both external stimuli-responsive liposomes, including hyperthermia (HT), magnetic, light, and ultrasound-sensitive liposomes and internal stimuli (pH, reduction, and enzyme) responsive liposomes are covered.
International law, public health, and the meanings of pharmaceuticalization
Cloatre, Emilie; Pickersgill, Martyn
2014-01-01
Recent social science scholarship has employed the term “pharmaceuticalization” in analyses of the production, circulation and use of drugs. In this paper, we seek to open up further discussion of the scope, limits and potential of this as an analytical device through consideration of the role of law and legal processes in directing pharmaceutical flows. To do so, we synthesize a range of empirical and conceptual work concerned with the relationships between access to medicines and intellectual property law. This paper suggests that alongside documenting the expansion or reduction in demand for particular drugs, analysts of pharmaceuticalization attend to the ways in which socio-legal developments change (or not) the identities of drugs, and the means through which they circulate and come to be used by states and citizens. Such scholarship has the potential to more precisely locate the biopolitical processes that shape international agendas and targets, form markets, and produce health. PMID:25431535
Balcı, Ahmet Yavuz; Vural, Unsal; Özdemir, MD Fatih; Kızılay, Mehmet; Şenocak, Mutlu; Kayacıoğlu, Ilyas; Yekeler, Ibrahim; Aksoy, Rezan; Satılmış,, Seçkin; Şaşkın, Huseyin
2017-01-01
Summary Background: This study was designed to determine the short- and long-term effects of proximal aortic anastomosis, performed during isolated coronary artery bypass grafting (CABG) in patients with dilatation of the ascending aorta who did not require surgical intervention. Methods: The study was performed on 192 (38 female and 160 male patients; mean age, 62.1 ± 9.2 years; range, 42–80 years) patients with dilatation of the ascending aorta who underwent CABG surgery between 1 June 2006 and 31 May 2014. In group 1 (n = 114), the saphenous vein and left internal mammarian artery grafts were used, and proximal anastomosis was performed on the ascending aorta. In group 2 (n = 78), left and right internal mammarian artery grafts were used, and proximal aortic anastomosis was not performed. Pre-operatively and in the first and third years postoperatively, the ascending aortic diameter was measured and recorded using transthoracic echocardiography at four different regions (annulus, sinus of Valsalva, sinotubular junction and tubular aorta). Results: A statistically significant difference was found between the groups for the number of grafts used and the duration of aortic cross-clamping and cardiopulmonary bypass. No significant intergroup difference was seen for the mean diameter of the ascending aorta (p > 0.05). Annual changes in the aortic diameter were found to be extremely significantly different in both groups (p = 0.0001). Mean values of the aortic diameter at the level of the sinotubular junction and tubular ascending aorta, mean aortic diameters (p = 0.002 and p = 0.0001, respectively), annual increase in diameter (p = 0.0001 and p = 0.0001, respectively), and mean annual difference in diameter (p = 0.0001 and p = 0.0001, respectively) at one and three years postoperatively were statistically significantly different between the groups. Conclusion: In patients with ascending aortic dilatation who did not require surgical intervention and who had proximal anastomosis of the ascending aorta and underwent only CABG, we detected statistically significant increases in the diameter of the sinotubular junction and tubular aorta up to three years postoperatively. PMID:27701487
Yavuz Balci, Ahmet; Vural, Unsal; Aksoy, Rezan; Özdemir, M Fatih; Satilmiş, Seçkin; Kizilay, Mehmet; Şenocak, Mutlu; Şaşkin, Huseyin; Kayacioğlu, Ilyas; Yekeler, Ibrahim
This study was designed to determine the short- and long-term effects of proximal aortic anastomosis, performed during isolated coronary artery bypass grafting (CABG) in patients with dilatation of the ascending aorta who did not require surgical intervention. The study was performed on 192 (38 female and 160 male patients; mean age, 62.1 ± 9.2 years; range, 42-80 years) patients with dilatation of the ascending aorta who underwent CABG surgery between 1 June 2006 and 31 May 2014. In group 1 (n = 114), the saphenous vein and left internal mammarian artery grafts were used, and proximal anastomosis was performed on the ascending aorta. In group 2 (n = 78), left and right internal mammarian artery grafts were used, and proximal aortic anastomosis was not performed. Pre-operatively and in the first and third years postoperatively, the ascending aortic diameter was measured and recorded using transthoracic echocardiography at four different regions (annulus, sinus of Valsalva, sinotubular junction and tubular aorta). A statistically significant difference was found between the groups for the number of grafts used and the duration of aortic cross-clamping and cardiopulmonary bypass. No significant intergroup difference was seen for the mean diameter of the ascending aorta (p > 0.05). Annual changes in the aortic diameter were found to be extremely significantly different in both groups (p = 0.0001). Mean values of the aortic diameter at the level of the sinotubular junction and tubular ascending aorta, mean aortic diameters (p = 0.002 and p = 0.0001, respectively), annual increase in diameter (p = 0.0001 and p = 0.0001, respectively), and mean annual difference in diameter (p = 0.0001 and p = 0.0001, respectively) at one and three years postoperatively were statistically significantly different between the groups. In patients with ascending aortic dilatation who did not require surgical intervention and who had proximal anastomosis of the ascending aorta and underwent only CABG, we detected statistically significant increases in the diameter of the sinotubular junction and tubular aorta up to three years postoperatively.
Methanol Droplet Extinction in Carbon-Dioxide-Enriched Environments in Microgravity
NASA Technical Reports Server (NTRS)
Hicks, Michael C.; Nayagam, Vedha; Williams, Forman A.
2010-01-01
Diffusive extinction of methanol droplets with initial diameters between 1.25 mm and 1.72 mm, burning in a quiescent microgravity environment at one atmosphere pressure, was obtained experimentally for varying levels of ambient carbon-dioxide concentrations with a fixed oxygen concentration of 21% and a balance of nitrogen. These experiments serve as precursors to those which are beginning to be performed on the International Space Station and are motivated by the need to understand the effectiveness of carbon-dioxide as a fire suppressant in low-gravity environments. In these experiments, the flame standoff distance, droplet diameter, and flame radiation are measured as functions of time. The results show that the droplet extinction diameter depends on both the initial droplet diameter and the ambient concentration of carbon dioxide. Increasing the initial droplet diameter leads to an increased extinction diameter, while increasing the carbon-dioxide concentration leads to a slight decrease in the extinction diameter. These results are interpreted using a critical Damk hler number for extinction as predicted by an earlier theory, which is extended here to be applicable in the presence of effects of heat conduction along the droplet support fibers and of the volume occupied by the support beads
Bos, Michaël J; van Loon, Rick F H J; Heywood, Luke; Morse, Mitchell P; van Zundert, André A J
2016-08-01
Central venous access is indicated for transduction of central venous pressure and the administration of inotropes in the perioperative period. The right internal jugular vein (RIJV) is cannulated preferentially over the left internal jugular vein (LIJV). Cannulation of the LIJV is associated with a higher complication rate and a perceived increased level of difficulty when compared with cannulation of the RIJV. Possible explanations for the higher complication rate include a smaller diameter and more anterior position relative to the corresponding carotid artery (CA) of the LIJV compared with the RIJV. In this study, the RIJV and LIJV were examined in mechanically ventilated patients to determine the validity of these possible explanations. A prospective, nonrandomized cohort study. The operating room of a major teaching hospital. One hundred fifty-one patients scheduled for elective heart surgery. Ultrasound examination of the RIJV and LIJV at the level of the cricoid cartilage with a 12-MHz linear transducer in 151 anesthetized, mechanically ventilated patients in the Trendelenburg position. In 72% of patients, the RIJV was dominant over the LIJV. The diameter and cross-sectional area of the RIJV was larger than the LIJV (P < .001). An anterior position of the LIJV in relation to the left CA was detected more often when compared with the RIJV and right CA (15.1% vs 5.4%, P = .01). This study confirms the smaller diameter and increased frequency of anterior positioning relative to the corresponding CA of the LIJV when compared with the RIJV. This validates them as possible explanations for the higher complication rate of LIJV cannulation compared with RIJV cannulation. Copyright © 2016 Elsevier Inc. All rights reserved.
Injector for use in high voltage isolators for liquid feed lines
NASA Technical Reports Server (NTRS)
Snyder, J. A. (Inventor)
1973-01-01
An improved injector is described for use in introducing fluid substances into feed lines employed in delivering flowing bodies of liquids. The injector includes a porous plug, concentrically related to a feed line, including an internally tapered surface of a truncated conical configuration with an inlet orifice of a first diameter substantially smaller than the first diameter and an external surface circumscribed by an annular chamber containing a body of insulating gas.
Coric, Dragan; Lai, Marco; Botsis, John; Luo, Aiping; Limberger, Hans G
2010-12-06
Optical low coherence reflectometry and fiber Bragg gratings written in small diameter (50 micrometer) optical fibers were used for measurements of non-homogenous internal strain fields inside an epoxy specimen with sub-grating length resolution. The results were compared with measurements using Fiber Bragg gratings in standard size (125 micrometer) single mode fibers and show that smaller fibers are less intrusive at stress heterogeneities.
Internal tides and vertical mixing over the Kerguelen Plateau
NASA Astrophysics Data System (ADS)
Park, Young-Hyang; Fuda, Jean-Luc; Durand, Isabelle; Naveira Garabato, Alberto C.
2008-03-01
Within the context of the natural iron-fertilization study KEOPS, time series measurements of CTD and LADCP profiles at a site (50.6°S, 72°E; 528 m) coinciding with an annual phytoplankton bloom over the Kerguelen Plateau were made during the January-February 2005 KEOPS cruise. An important activity of highly nonlinear semidiurnal internal tides having peak-to-peak isopycnal displacements of up to 80 m is identified. These internal tides appear to be a principal agent for promoting elevated vertical mixing indispensable for upward transfer of iron within the seasonal thermocline. We estimate local vertical eddy diffusivities of the order of 4×10 -4 m 2 s -1 using a Thorpe scale analysis. Although this estimate is higher by an order of magnitude than the canonical value O (0.1×10 -4 m 2 s -1) in the open ocean away from boundaries, it is consistent with nonlinear internal wave/wave interaction theories, as verified by independent diffusivity estimates using the vertical wavenumber spectral methods for shear and strain. It is also suggested that the general ocean circulation may play an important role in preconditioning the bloom in that the relatively sluggish circulation over the shallow plateau (compared to the much more dynamic neighbouring deep ocean) may foster the bloom's observed annual recurrence over the plateau.
ATMOSPHERIC CIRCULATION OF BROWN DWARFS: JETS, VORTICES, AND TIME VARIABILITY
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Xi; Showman, Adam P., E-mail: xiz@lpl.arizona.edu
2014-06-10
A variety of observational evidence demonstrates that brown dwarfs exhibit active atmospheric circulations. In this study we use a shallow-water model to investigate the global atmospheric dynamics in the stratified layer overlying the convective zone on these rapidly rotating objects. We show that the existence and properties of the atmospheric circulation crucially depend on key parameters including the energy injection rate and radiative timescale. Under conditions of strong internal heat flux and weak radiative dissipation, a banded flow pattern comprised of east-west jet streams spontaneously emerges from the interaction of atmospheric turbulence with the planetary rotation. In contrast, when themore » internal heat flux is weak and/or radiative dissipation is strong, turbulence injected into the atmosphere damps before it can self-organize into jets, leading to a flow dominated by transient eddies and isotropic turbulence instead. The simulation results are not very sensitive to the form of the forcing. Based on the location of the transition between jet-dominated and eddy-dominated regimes, we suggest that many brown dwarfs may exhibit atmospheric circulations dominated by eddies and turbulence (rather than jets) due to the strong radiative damping on these worlds, but a jet structure is also possible under some realistic conditions. Our simulated light curves capture important features from observed infrared light curves of brown dwarfs, including amplitude variations of a few percent and shapes that fluctuate between single-peak and multi-peak structures. More broadly, our work shows that the shallow-water system provides a useful tool to illuminate fundamental aspects of the dynamics on these worlds.« less
TOPEX/POSEIDON joint verification plan
NASA Technical Reports Server (NTRS)
1992-01-01
TOPEX/POSEIDON is a satellite mission that will use altimetry to make precise measurements of sea level with the primary goal of studying global ocean circulation. The mission is jointly conducted by the United States' National Aeronautics and Space Administration (NASA) and the French space agency, Centre National d'Etudes Spatiales (CNES). The current plans call for a launch of the satellite in August 1992. The primary mission will last 3 years, and provisions were made to extend the mission for an additional 2 years. The mission was coordinated with a number of international oceanographic and meteorological programs, including the World Ocean Circulation Experiment and the Tropical Ocean and Global Atmosphere Program, both of which are sponsored by the World Climate Research Program. The observations of TOPEX/POSEIDON are timed to provide a global perspective for interpreting the in situ measurements collected by these programs and in turn will be combined with observations of other satellites to achieve a global, four-dimensional description of the circulation of the world's oceans. In the autumn of 1987, an international team of 38 Principal Investigators was selected to participate in the mission. These scientists have been working closely with the TOPEX/POSEIDON Project to refine the mission design and science plans. During the first 6 months after launch, a number of these investigators will join with the project to conduct a wide range of oceanographic and geophysical investigations using the TOPEX/POSEIDON data. The purpose of these investigations is to demonstrate the scientific utility of the mission to the international scientific community.
NASA Technical Reports Server (NTRS)
Mclallin, K. L.; Haas, J. E.
1980-01-01
The aerodynamic design, the performance, and an internal loss breakdown were examined for a 15.04 cm tip diameter, radial-inflow turbine. The design application was to drive a two stage, 10 to 1 pressure ratio compressor with a mass flow of 0.952 kg/sec and a rotative speed of 70,000 rmp. The turbine inlet temperature was 1478 K, and the turbine was designed with blades thick enough for internal cooling passages. The rotor tip diameter was limited to 86 percent of optimum in order to obtain a reduced tip speed design. The turbine was fabricated with solid, uncooled blading and tested in air at nominal inlet pressure and temperature of 1.379 x 10000 N/sq m and 322.2 K, respectively. Results indicated the turbine total efficiency to be 5.3 points less than design. Analysis of these results has indicated the deficit in performance to be due to stator secondary flow losses, vaneless space surface friction losses, and trailing edge wake mixing losses.
Cryo-transmission electron tomography of native casein micelles from bovine milk.
Trejo, R; Dokland, T; Jurat-Fuentes, J; Harte, F
2011-12-01
Caseins are the principal protein components in milk and an important ingredient in the food industry. In liquid milk, caseins are found as micelles of casein proteins and colloidal calcium nanoclusters. Casein micelles were isolated from raw skim milk by size exclusion chromatography and suspended in milk protein-free serum produced by ultrafiltration (molecular weight cut-off of 3 kDa) of raw skim milk. The micelles were imaged by cryo-electron microscopy and subjected to tomographic reconstruction methods to visualize the 3-dimensional and internal organization of native casein micelles. This provided new insights into the internal architecture of the casein micelle that had not been apparent from prior cryo-transmission electron microscopy studies. This analysis demonstrated the presence of water-filled cavities (∼20 to 30 nm in diameter), channels (diameter greater than ∼5 nm), and several hundred high-density nanoclusters (6 to 12 nm in diameter) within the interior of the micelles. No spherical protein submicellar structures were observed. Copyright © 2011 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Applications of the Amplatzer Vascular Plug to various vascular lesions
Güneyli, Serkan; Çınar, Celal; Bozkaya, Halil; Parıldar, Mustafa; Oran, İsmail
2014-01-01
The Amplatzer® Vascular Plug (AVP) can be used to embolize medium-to-large high-flow vessels in various locations. Between 2009 and 2012, 41 AVPs (device size, 6–22 mm in diameter) were used to achieve occlusion in 31 patients (24 males, seven females) aged 9–92 years (mean age, 54.5 years). The locations and indications for embolotherapy were as follows: internal iliac artery embolization before stent-graft repair for aorto-iliac (n=6) and common iliac artery (n=3) aneurysms, subclavian artery embolization before stent-graft repair for thoracic aorta (n=3) and arcus aorta (n=1) aneurysms, brachiocephalic trunk embolization before stent-graft repair for a thoracic aorta aneurysm (n=1), embolization of aneurysms and pseudoaneurysms (n=5), embolization for carotid blow-out syndrome (n=3), closure of arteriovenous fistula (n=8), and closure of a portosystemic fistula (n=1). Of the 41 AVPs, 30 were AVP 2 and 11 were AVP 4. The mean follow-up duration was 4.7 months (range, 1–24 months). During follow-up, there was one migration, one insufficient embolization, and one recanalization. The remaining vascular lesions were successfully excluded from the circulation. The AVP, which can be used in a wide spectrum of pathologies, is easy to use and causes few complications. This essay presents our experience with the AVP. PMID:24047719
Sasportas, Laura Sarah; Gambhir, Sanjiv Sam
2014-01-01
Metastasis, the cause for 90% of cancer mortality, is a complex and poorly understood process involving the invasion of circulating tumor cells (CTCs) into blood vessels. These cells have potential prognostic value as biomarkers for early metastatic risk. But their rarity and the lack of specificity and sensitivity in measuring them render their interrogation by current techniques very challenging. How and when these cells are circulating in the blood, on their way to potentially give rise to metastasis, is a question that remains largely unanswered. In order to provide an insight into this "black box" using non-invasive imaging, we developed a novel miniature intravital microscopy (mIVM) strategy capable of real-time long-term monitoring of CTCs in awake small animals. We established an experimental 4T1-GL mouse model of metastatic breast cancer, in which tumor cells express both fluorescent and bioluminescent reporter genes to enable both single cell and whole body tumor imaging. Using mIVM, we monitored blood vessels of different diameters in awake mice in an experimental model of metastasis. Using an in-house software algorithm we developed, we demonstrated in vivo CTC enumeration and computation of CTC trajectory and speed. These data represent the first reported use we know of for a miniature mountable intravital microscopy setup for in vivo imaging of CTCs in awake animals.
Sasportas, Laura Sarah; Gambhir, Sanjiv Sam
2014-01-01
Metastasis, the cause for 90% of cancer mortality, is a complex and poorly understood process involving the invasion of circulating tumor cells (CTCs) into blood vessels. These cells have potential prognostic value as biomarkers for early metastatic risk. But their rarity and the lack of specificity and sensitivity in measuring them render their interrogation by current techniques very challenging. How and when these cells are circulating in the blood, on their way to potentially give rise to metastasis, is a question that remains largely unanswered. In order to provide an insight into this "black box" using non-invasive imaging, we developed a novel miniature intravital microscopy (mIVM) strategy capable of real-time long-term monitoring of CTCs in awake small animals. We established an experimental 4T1-GL mouse model of metastatic breast cancer, in which tumor cells express both fluorescent and bioluminescent reporter genes to enable both single cell and whole body tumor imaging. Using mIVM, we monitored blood vessels of different diameters in awake mice in an experimental model of metastasis. Using an in-house software algorithm we developed, we demonstrated in vivo CTC enumeration and computation of CTC trajectory and speed. These data represent the first reported use we know of for a miniature mountable intravital microscopy setup for in vivo imaging of CTCs in awake animals. PMID:24497977
Risk mapping of West Nile virus circulation in Spain, 2015.
Sánchez-Gómez, Amaya; Amela, Carmen; Fernández-Carrión, Eduardo; Martínez-Avilés, Marta; Sánchez-Vizcaíno, José Manuel; Sierra-Moros, María José
2017-05-01
West Nile fever is an emergent disease in Europe. The objective of this study was to conduct a predictive risk mapping of West Nile Virus (WNV) circulation in Spain based on historical data of WNV circulation. Areas of Spain with evidence of WNV circulation were mapped based on data from notifications to the surveillance systems and a literature review. A logistic regression-based spatial model was used to assess the probability of WNV circulation. Data were analyzed at municipality level. Mean temperatures of the period from June to October, presence of wetlands and presence of Special Protection Areas for birds were considered as potential predictors. Two predictors of WNV circulation were identified: higher temperature [adjusted odds ratio (AOR) 2.07, 95% CI 1.82-2.35, p<0.01] and presence of wetlands (3.37, 95% CI 1.89-5.99, p<0.01). Model validations indicated good predictions: area under the ROC curve was 0.895 (95% CI 0.870-0.919) for internal validation and 0.895 (95% CI 0.840-0.951) for external validation. This model could support improvements of WNV risk- based surveillance in Spain. The importance of a comprehensive surveillance for WNF, including human, animal and potential vectors is highlighted, which could additionally result in model refinements. Copyright © 2017 Elsevier B.V. All rights reserved.
Effect of grain port length-diameter ratio on combustion performance in hybrid rocket motors
NASA Astrophysics Data System (ADS)
Cai, Guobiao; Zhang, Yuanjun; Tian, Hui; Wang, Pengfei; Yu, Nanjia
2016-11-01
The objectives of this study are to develop a more accurate regression rate considering the oxidizer mass flow and the fuel grain geometry configuration with numerical and experimental investigations in polyethylene (PE)/90% hydrogen peroxide (HP) hybrid rocket. Firstly, a 2-D axisymmetric CFD model with turbulence, chemistry reaction, solid-gas coupling is built to investigate the combustion chamber internal flow structure. Then a more accurate regression formula is proposed and the combustion efficiency changing with the length-diameter ratio is studied. A series experiments are conducted in various oxidizer mass flow to analyze combustion performance including the regression rate and combustion efficiency. The regression rates are measured by the fuel mass reducing and diameter changing. A new regression rate formula considering the fuel grain configuration is proposed in this paper. The combustion efficiency increases with the length-diameter ratio changing. To improve the performance of a hybrid rocket motor, the port length-diameter ratio is suggested 10-12 in the paper.
Experimental Pressure Distributions on Axisymmetric Cowls at Mach Numbers From 0.60 to 0.92
NASA Technical Reports Server (NTRS)
Re, Richard J.
2006-01-01
Pressure distributions on four nacelle cowl models of the same length and highlight area but different geometries external to the highlight are compared. The diameter ratio (ratio of highlight diameter to maximum diameter) of the four cowls was 0.854 and the length ratio (ratio of cowl length to maximum diameter) was 0.439. The cowls had the same internal geometry from the highlight to the throat with a contraction ratio (ratio of highlight area to throat area) of 1.250. Data for two other cowls which had a diameter ratio of 0.880, a length ratio of 0.400 and a contraction ratio 1.250 are also included. All the cowls had rows of static pressure orifices on the top and bottom surfaces. Mass-flow ratio was varied between 0.27 and 0.93. Some data were obtained between angles of attack from -2.1deg and 4.1deg. The test was conducted in the Langley 16-Foot Transonic Tunnel.
Combustion Science to Reduce PM Emissions for Military Platforms
2012-01-01
355 7.0 References 356 Appendix: List of Archival Publications and Conference Papers 376 vi List...carbonaddition HITRAN Database of infra-red spectra HP High Pressure HW Harris and Weiner ICCD Intensified charge coupled device ID internal diameter IR ...archival publication based on this work received a distinguished outstanding paper award at the 32nd International Combustion Symposium
Converting international ¼ inch tree volume to Doyle
Aaron Holley; John R. Brooks; Stuart A. Moss
2014-01-01
An equation for converting Mesavage and Girard's International ¼ inch tree volumes to the Doyle log rule is presented as a function of tree diameter. Volume error for trees having less than four logs exhibited volume prediction errors within a range of ±10 board feet. In addition, volume prediction error as a percent of actual Doyle tree volume...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Marshall, Theron D.; McDonald, Jimmie M.; Cadwallader, Lee C.
2000-01-15
This paper discusses the thermal response of two prototypical International Thermonuclear Experimental Reactor (ITER) divertor channels during simulated loss-of-flow-accident (LOFA) experiments. The thermal response was characterized by the time-to-burnout (TBO), which is a figure of merit on the mockups' survivability. Data from the LOFA experiments illustrate that (a) the pre-LOFA inlet velocity does not significantly influence the TBO, (b) the incident heat flux (IHF) does influence the TBO, and (c) a swirl tape insert significantly improves the TBO and promotes the initiation of natural circulation. This natural circulation enabled the mockup to absorb steady-state IHFs after the coolant circulation pumpmore » was disabled. Several methodologies for thermal-hydraulic modeling of the LOFA were attempted.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Marshall, T.D.; McDonald, J.M.; Cadwallader, L.C.
2000-01-01
This paper discusses the thermal response of two prototypical International Thermonuclear Experimental Reactor (ITER) divertor channels during simulated loss-of-flow-accident (LOFA) experiments. The thermal response was characterized by the time-to-burnout (TBO), which is a figure of merit on the mockups' survivability. Data from the LOFA experiments illustrate that (a) the pre-LOFA inlet velocity does not significantly influence the TBO, (b) the incident heat flux (IHF) does influence the TBO, and (c) a swirl tape insert significantly improves the TBO and promotes the initiation of natural circulation. This natural circulation enabled the mockup to absorb steady-state IHFs after the coolant circulation pumpmore » was disabled. Several methodologies for thermal-hydraulic modeling of the LOFA were attempted.« less
Eldridge, J H; Staas, J K; Meulbroek, J A; Tice, T R; Gilley, R M
1991-01-01
Microspheres composed of biocompatible, biodegradable poly(DL-lactide-co-glycolide) (DL-PLG) and staphylococcal enterotoxin B (SEB) toxoid were evaluated as a vaccine delivery system when subcutaneously injected into mice. As measured by circulating immunoglobulin G (IgG) antitoxin titers, the delivery of SEB toxoid via DL-PLG microspheres, 1 to 10 microns in diameter, induced an immune response which was approximately 500 times that seen with nonencapsulated toxoid. The kinetics, magnitude, and duration of the antitoxin response induced with microencapsulated toxoid were similar to those obtained when an equal toxoid dose was administered as an emulsion with complete Freund adjuvant. However, the microspheres did not induce the inflammation and granulomata formation seen with complete Freund adjuvant. The adjuvant activity of the microspheres was not dependent on the superantigenicity of SEB toxin and was equally effective at potentiating circulating IgG antitrinitrophenyl levels in response to microencapsulated trinitrophenyl-keyhole limpet hemocyanin. Empty DL-PLG microspheres were not mitogenic, and SEB toxoid injected as a mixture with empty DL-PLG microspheres was no more effective as an immunogen than toxoid alone. Antigen-containing microspheres 1 to 10 microns in diameter exhibited stronger adjuvant activity than those greater than 10 microns, which correlated with the delivery of the 1- to 10-microns, but not the greater than 10-microns, microspheres into the draining lymph nodes within macrophages. The antibody response induced through immunization with microencapsulated SEB toxoid was protective against the weight loss and splenic V beta 8+ T-cell expansion induced by intravenous toxin administration. These results show that DL-PLG microsphere vaccine delivery systems, which are composed of pharmaceutically acceptable components, possess a strong adjuvant activity for their encapsulated antigens. PMID:1879922
Context of ancient aqueous environments on Mars from in situ geologic mapping at Endeavour Crater
Crumpler, L.S.; Arvidson, R. E.; Bell, J.; Clark, B. C.; Cohen, B. A.; Farrand, W. H.; Gellert, Ralf; Golombek, M.; Grant, J. A.; Guinness, E.; Herkenhoff, Kenneth E.; Johnson, J. R.; Jolliff, B.; Ming, D. W.; Mittlefehldt, D. W.; Parker, T.; Rice, J. W.; Squyres, S. W.; Sullivan, R.; Yen, A. S.
2015-01-01
Using the Mars Exploration Rover Opportunity, we have compiled one of the first field geologic maps on Mars while traversing the Noachian terrain along the rim of the 22 km diameter Endeavour Crater (Latitude −2°16′33″, Longitude −5°10′51″). In situ mapping of the petrographic, elemental, structural, and stratigraphic characteristics of outcrops and rocks distinguishes four mappable bedrock lithologic units. Three of these rock units predate the surrounding Burns formation sulfate-rich sandstones and one, the Matijevic Formation, represents conditions on early Mars predating the formation of Endeavour Crater. The stratigraphy assembled from these observations includes several geologic unconformities. The differences in lithologic units across these unconformities record changes in the character and intensity of the Martian aqueous environment over geologic time. Water circulated through fractures in the oldest rocks over periods long enough that texturally and elementally significant alteration occurred in fracture walls. These oldest pre-Endeavour rocks and their network of mineralized and altered fractures were preserved by burial beneath impact ejecta and were subsequently exhumed and exposed. The alteration along joints in the oldest rocks and the mineralized veins and concentrations of trace metals in overlying lithologic units is direct evidence that copious volumes of mineralized and/or hydrothermal fluids circulated through the early Martian crust. The wide range in intensity of structural and chemical modification from outcrop to outcrop along the crater rim shows that the ejecta of large (>8 km in diameter) impact craters is complex. These results imply that geologic complexity is to be anticipated in other areas of Mars where cratering has been a fundamental process in the local and regional geology and mineralogy.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Monazam, E.R.; Shadle, L.J.
2008-11-05
In commercial circulating fluidized bed (CFB) processes the acceleration zone greatly contributes to solids mixing, gas and solids dispersion, and particle residence times. A new analysis was developed to describe the relative gas-solids concentration in the acceleration region of a transport system with air as the fluidizing agent for Geldart-type B particles. A theoretical expression was derived from a drag relationship and momentum and continuity equations to describe the evolution of the gas-solids profile along the axial direction. The acceleration zone was characterized using nondimensional analysis of the continuum equations (balances of masses and momenta) that described multiphase flows. Inmore » addition to acceleration length, the boundary condition for the solids fraction at the bottom of the riser and the fully developed regions were measured using an industrial scale CFB of 0.3 m diameter and 15 m tall. The operating factors affecting the flow development in the acceleration region were determined for three materials of various sizes and densities in core annular and dilute regimes of the riser. Performance data were taken from statistically designed experiments over a wide range of Fr (0.5-39), Re (8-600), Ar (29-3600), load ratio (0.2-28), riser to particle diameter ratio (375-5000), and gas to solids density ratio (138-1381). In this one-dimensional system of equations, velocities and solid fractions were assumed to be constant over any cross section. The model and engineering correlations were compared with literature expressions to assess their validity and range of applicability. These expressions can be used as tools for simulation and design of a CFB riser and can also be easily coupled to a kinetics model for process simulation.« less
Chang, Teddy; Trench, David; Putnam, Joshua; Stenzel, Martina H; Lord, Megan S
2016-03-07
Polymeric micelles were formed from poly(poly(ethylene glycol) methyl ether methacrylate)-block-poly(styrene) (P(PEGMEMA)-b-PS) block copolymer of two different chain lengths. The micelles formed were approximately 16 and 46 nm in diameter and used to encapsulate curcumin. Upon loading of the curcumin into the micelles, their size increased to approximately 34 and 80 nm in diameter, respectively, with a loading efficiency of 58%. The unloaded micelles were not cytotoxic to human colon carcinoma cells, whereas only the smaller loaded micelles were cytotoxic after 72 h of exposure. The micelles were rapidly internalized by the cells within minutes of exposure, with the loaded micelles internalized to a greater extent owing to their enhanced stability compared to that of the unloaded micelles. The larger micelles were more rapidly internalized and exocytosed than the smaller micelles, demonstrating the effect of micelle size and drug loading on drug delivery and cytotoxicity.
Evaluating endothelial function of the common carotid artery: an in vivo human model.
Mazzucco, S; Bifari, F; Trombetta, M; Guidi, G C; Mazzi, M; Anzola, G P; Rizzuto, N; Bonadonna, R
2009-03-01
Flow mediated dilation (FMD) of peripheral conduit arteries is a well-established tool to evaluate endothelial function. The aims of this study are to apply the FMD model to cerebral circulation by using acetazolamide (ACZ)-induced intracranial vasodilation as a stimulus to increase common carotid artery (CCA) diameter in response to a local increase of blood flow velocity (BFV). In 15 healthy subjects, CCA end-diastolic diameter and BFV, middle cerebral artery (MCA) BFV and mean arterial blood pressure (MBP) were measured at basal conditions, after an intravenous bolus of 1g ACZ, and after placebo (saline) sublingual administration at the 15th and 20th minute. In a separate session, the same parameters were evaluated after placebo (saline) infusion instead of ACZ and after 10 microg/m(2) bs and 300 microg of glyceryl trinitrate (GTN), administered sublingually, at the 15th and 20th minute, respectively. After ACZ bolus, there was a 35% maximal MCA mean BFV increment (14th minute), together with a 22% increase of mean CCA end-diastolic BFV and a CCA diameter increment of 3.9% at the 3rd minute (p=0.024). There were no MBP significant variations up to the 15th minute (p=0.35). After GTN administration, there was a significant increment in CCA diameter (p<0.00001). ACZ causes a detectable CCA dilation in healthy individuals concomitantly with an increase in BFV. Upon demonstration that this phenomenon is endothelium dependent, this experimental model might become a valuable tool to assess endothelial function in the carotid artery.
NASA Astrophysics Data System (ADS)
Werkmeister, René M.; Vietauer, Martin; Knopf, Corinna; Fürnsinn, Clemens; Leitgeb, Rainer A.; Reitsamer, Herbert; Gröschl, Martin; Garhöfer, Gerhard; Vilser, Walthard; Schmetterer, Leopold
2014-10-01
A wide variety of ocular diseases are associated with abnormalities in ocular circulation. As such, there is considerable interest in techniques for quantifying retinal blood flow, among which Doppler optical coherence tomography (OCT) may be the most promising. We present an approach to measure retinal blood flow in the rat using a new optical system that combines the measurement of blood flow velocities via Doppler Fourier-domain optical coherence tomography and the measurement of vessel diameters using a fundus camera-based technique. Relying on fundus images for extraction of retinal vessel diameters instead of OCT images improves the reliability of the technique. The system was operated with an 841-nm superluminescent diode and a charge-coupled device camera that could be operated at a line rate of 20 kHz. We show that the system is capable of quantifying the response of 100% oxygen breathing on the retinal blood flow. In six rats, we observed a decrease in retinal vessel diameters of 13.2% and a decrease in retinal blood velocity of 42.6%, leading to a decrease in retinal blood flow of 56.7%. Furthermore, in four rats, the response of retinal blood flow during stimulation with diffuse flicker light was assessed. Retinal vessel diameter and blood velocity increased by 3.4% and 28.1%, respectively, leading to a relative increase in blood flow of 36.2%;. The presented technique shows much promise to quantify early changes in retinal blood flow during provocation with various stimuli in rodent models of ocular diseases in rats.
Comparison of air space measurement imaged by CT, small-animal CT, and hyperpolarized Xe MRI
NASA Astrophysics Data System (ADS)
Madani, Aniseh; White, Steven; Santyr, Giles; Cunningham, Ian
2005-04-01
Lung disease is the third leading cause of death in the western world. Lung air volume measurements are thought to be early indicators of lung disease and markers in pharmaceutical research. The purpose of this work is to develop a lung phantom for assessing and comparing the quantitative accuracy of hyperpolarized xenon 129 magnetic resonance imaging (HP 129Xe MRI), conventional computed tomography (HRCT), and highresolution small-animal CT (μCT) in measuring lung gas volumes. We developed a lung phantom consisting of solid cellulose acetate spheres (1, 2, 3, 4 and 5 mm diameter) uniformly packed in circulated air or HP 129Xe gas. Air volume is estimated based on simple thresholding algorithm. Truth is calculated from the sphere diameters and validated using μCT. While this phantom is not anthropomorphic, it enables us to directly measure air space volume and compare these imaging methods as a function of sphere diameter for the first time. HP 129Xe MRI requires partial volume analysis to distinguish regions with and without 129Xe gas and results are within %5 of truth but settling of the heavy 129Xe gas complicates this analysis. Conventional CT demonstrated partial-volume artifacts for the 1mm spheres. μCT gives the most accurate air-volume results. Conventional CT and HP 129Xe MRI give similar results although non-uniform densities of 129Xe require more sophisticated algorithms than simple thresholding. The threshold required to give the true air volume in both HRCT and μCT, varies with sphere diameters calling into question the validity of thresholding method.
Nanoformulation for anticancer drug delivery: Enhanced pharmacokinetics and circulation
NASA Astrophysics Data System (ADS)
Parekh, Gaurav
In this study, we have explored the application of the Layer-by-Layer (LbL) assembly technique for improving injectable drug delivery systems of low soluble anticancer drugs (e.g. Camptothecin (CPT), Paclitaxel (PTX) or Doxorubicin (DOX)). For this study, a polyelectrolyte shell encapsulates different types of drug nanocores (e.g. soft core, nanomicelle or solid lipid nanocores).The low soluble drugs tend to crystallize and precipitate in an aqueous medium. This is the reason they cannot be injected and may have low concentrations and low circulation time in the blood. Even though these drugs when present in the cancer microenvironment have high anti-tumor inhibition, the delivery to the tumor site after intravenous administration is a challenge. We have used FDA-approved biopolymers for the process and elaborated formation of 60-90 nm diameter initial cores, which was stabilized by multilayer LbL shells for controlled release and longer circulation. A washless LbL assembly process was applied as an essential advancement in nano-assembly technology using low density nanocore (lipids) and preventing aggregation. This advancement reduced the number of process steps, enhanced drug loading capacity, and prevented the loss of expensive polyelectrolytes. Finally, we elaborated a general nano-encapsulation process, which allowed these three important anticancer drug core-shell nanocapsules with diameters of ca. 100-130 nm (this small size is a record for LbL encapsulation technique) to be stable in the serum and the blood for at least one week, efficient for cancer cell culture studies, injectable to mice with circulation for 4 hrs, and effective in suppressing tumors. This work is divided into three studies. The first study (CHAPTER 4) explores the application of LbL assembly for encapsulating a soft core of albumin protein and CPT anticancer drug. In order to preserve the activity of drug in the core, a unique technique of pH reversal is employed where the first few layers of the LbL shell are assembled at acidic pH 3, and the final layers (2-3) are assembled at a slightly basic pH of 7.4. These LbL-encapsulated nanocores are not stable and immediately aggregate in water or the serum. A final layer of 5 kDa PEG was assembled to improve circulation time. It showed higher colloidal stability in PBS, high drug loading concentration of 0.5 mg/mL, and an improved drug chemical stability in Fetal Bovine Serum with high lactone fraction of 99%. It also showed 3 times improved cytotoxicity against glioblastoma cancer cells. For the first time we applied a new method of the LbL capsule assembly at different pH values, the first 4 bilayers at pH 3, and the following 3 bilayers at pH 7.4. In the second study (CHAPTER 5), the developed LbL assembly for low solubility drug encapsulation was extended for the delivery of PTX loaded in nanomicelle cores. PTX, as a nanomicelle core, is encapsulated with fewer layers of LbL assembly, followed by an extra layer of PEG (PEGylation). A significant improvement was seen in reducing the process steps through reduction in the number of LbL layers, while smaller nano-colloids, ~100 nm, were produced with improved drug loading capacity, higher cytotoxicity, and high mice survival rate. In the third study (CHAPTER 6), we have applied the concepts learned and the techniques developed from the previous two studies to modify the surface of the nanostructured solid lipid carriers (NLC) with LbL architecture, plus extra PEGylation. The NLC are co-loaded with DOX and docosahexaenoic acid (DHA). This study is an attempt to further increase drug circulation time in the blood. We improved the colloidal stability with a narrow distribution size, 128 nm, polydispersity of 0.098, a higher longevity in the blood, a 1.5 times lower accumulation in the liver, a 2.25 times higher accumulation in tumors, and a significant ~3.5 times greater tumor growth inhibition in 4T1 murine tumor model in mice. In conclusion, we developed a general model of an LbL nanoassembly core-shell drug delivery system of three anticancer drugs. The capsules had diameters of ca. 100170 nm, were stable in the serum and the blood for three weeks, were injectable to small animals with a circulation time of 1-4 hrs., and effectively suppressed cancerous tumors in mice.
Ocean science. Enhanced: internal tides and ocean mixing.
Garrett, Chris
2003-09-26
Recent satellite and in situ observations have shown that at ocean ridges and other seafloor topographic features, a substantial amount of energy is transferred from the main ocean tides into "internal tides." In his Perspective, Garrett explains how these internal waves with tidal periods propagate through the density-stratified deep ocean and eventually break down into turbulence. The resulting mixing affects ocean stratification and ocean circulation. It thus influences climate as well as biological production. The energy for the internal tides is derived from the rotational energy of the Earth-Moon system changes of the length of the day and the distance to the Moon.
Chaotic behavior of the coronary circulation.
Trzeciakowski, Jerome; Chilian, William M
2008-05-01
The regulation of the coronary circulation is a complex paradigm in which many inputs that influence vasomotor tone have to be integrated to provide the coronary vasomotor adjustments to cardiac metabolism and to perfusion pressure. We hypothesized that the integration of many disparate signals that influence membrane potential of smooth muscle cells, calcium sensitivity of contractile filaments, receptor trafficking result in complex non-linear characteristics of coronary vasomotion. To test this hypothesis, we measured an index of vasomotion, flowmotion, the periodic fluctuations of flow that reflect dynamic changes in resistances in the microcirculation. Flowmotion was continuously measured in periods ranging from 15 to 40 min under baseline conditions, during antagonism of NO synthesis, and during combined purinergic and NOS antagonism in the beating heart of anesthetized open-chest dogs. Flowmotion was measured in arterioles ranging from 80 to 135 microm in diameter. The signals from the flowmotion measurements were used to derive quantitative indices of non-linear behavior: power spectra, chaotic attractors, correlation dimensions, and the sum of the Lyapunov exponents (Kolmogorov-Sinai entropy), which reflects the total chaos and unpredictability of flowmotion. Under basal conditions, the coronary circulation demonstrated chaotic non-linear behavior with a power spectra showing three principal frequencies in flowmotion. Blockade of nitric oxide synthase or antagonism of purinergic receptors did not affect the correlation dimensions, but significantly increased the Kolmogorov-Sinai entropy, altered the power spectra of flowmotion, and changed the nature of the chaotic attractor. These changes are consistent with the view that certain endogenous controls, nitric oxide and various purines (AMP, ADP, ATP, adenosine) make the coronary circulation more predictable, and that blockade of these controls makes the control of flow less predictable and more chaotic.
Numerical simulation of velocity and temperature fields in natural circulation loop
NASA Astrophysics Data System (ADS)
Sukomel, L. A.; Kaban'kov, O. N.
2017-11-01
Low flow natural circulation regimes are realized in many practical applications and the existence of the reliable engineering and design calculation methods of flows driven exclusively by buoyancy forces is an actual problem. In particular it is important for the analysis of start up regimes of passive safety systems of nuclear power plants. In spite of a long year investigations of natural circulation loops no suitable predicting recommendations for heat transfer and friction for the above regimes have been proposed for engineering practice and correlations for forced flow are commonly used which considerably overpredicts the real flow velocities. The 2D numerical simulation of velocity and temperature fields in circular tubes for laminar flow natural circulation with reference to the laboratory experimental loop has been carried out. The results were compared with the 1D modified model and experimental data obtained on the above loop. The 1D modified model was still based on forced flow correlations, but in these correlations the physical properties variability and the existence of thermal and hydrodynamic entrance regions are taken into account. The comparison of 2D simulation, 1D model calculations and the experimental data showed that even subject to influence of liquid properties variability and entrance regions on heat transfer and friction the use of 1D model with forced flow correlations do not improve the accuracy of calculations. In general, according to 2D numerical simulation the wall shear stresses are mainly affected by the change of wall velocity gradient due to practically continuous velocity profiles deformation along the whole heated zone. The form of velocity profiles and the extent of their deformation in its turn depend upon the wall heat flux density and the hydraulic diameter.
Peachey, Tom; Tang, Andrew; Baker, Elinor C; Pott, Jason; Freund, Yonathan; Harris, Tim
2016-09-02
Assessment of circulating volume and the requirement for fluid replacement are fundamental to resuscitation but remain largely empirical. Passive leg raise (PLR) may determine fluid responders while avoiding potential fluid overload. We hypothesised that inferior vena cava collapse index (IVCCI) and carotid artery blood flow would change predictably in response to PLR, potentially providing a non-invasive tool to assess circulating volume and identifying fluid responsive patients. We conducted a prospective proof of concept pilot study on fasted healthy volunteers. One operator measured IVC diameter during quiet respiration and sniff, and carotid artery flow. Stroke volume (SV) was also measured using suprasternal Doppler. Our primary endpoint was change in IVCCI after PLR. We also studied changes in IVCCI after "sniff", and correlation between carotid artery flow and SV. Passive leg raise was associated with significant reduction in the mean inferior vena cava collapsibility index from 0.24 to 0.17 (p < 0.01). Mean stroke volume increased from 56.0 to 69.2 mL (p < 0.01). There was no significant change in common carotid artery blood flow. Changes in physiology consequent upon passive leg raise normalised rapidly. Passive leg raise is associated with a decrease of IVCCI and increase in stroke volume. However, the wide range of values observed suggests that factors other than circulating volume predominate in determining the proportion of collapse with respiration. In contrast to other studies, we did not find that carotid blood flow increased with passive leg raise. Rapid normalisation of post-PLR physiology may account for this.
Ahmed, J; Pulfer, M K; Linsenmeier, R A
2001-09-01
The most successful method for measuring absolute blood flow rate through the retinal circulation has been the use of radioactive microspheres. The purpose of this study was to develop a microsphere method that did not have the drawbacks associated with radioactivity and to use this method to make measurements of retinal blood flow in the cat. Blood flow measurements were made by injecting 15-microm-diameter polystyrene microspheres into the left ventricle of anesthetized, artificially ventilated cats. These microspheres were labeled with one of three fluorescent dyes. Retinal blood flow measurements were made by determining the number of spheres that were embedded in the retina and comparing them to the number found in a reference sample. Spheres in the retina were counted by making retinal whole mounts and taking retinal images with a CCD camera mounted on an epifluorescence microscope equipped with filter sets appropriate for imaging the dyes used to label the spheres. Blood flow measurements made under normal conditions showed a mean retinal blood flow of 19.8 +/- 12.4 ml/min 100 g tissue (mean +/- SD; n = 15 cats). Since the retinal circulation perfuses only the inner half of the retina, the effective flow rate in that region is about twice this value. RBF increased during hypoxemia (P(a)O2 < 42 mm Hg) to 336% of the normoxic value on average. Analysis of sphere deposition patterns showed that the central retina had a higher blood flow than the peripheral retina, although this difference was significant only during hypoxemia. We conclude that even with a relatively small number of spheres deposited in the retina, the technique can reveal important properties of the retinal circulation. Copyright 2001 Academic Press.
Biaxial fatigue loading of notched composites
NASA Technical Reports Server (NTRS)
Francis, P. H.; Walrath, D. E.; Sims, D. F.; Weed, D. N.
1977-01-01
Thin walled, 2.54-cm (1-in.) diameter tubular specimens of T300/934 graphite/epoxy were fabricated and fatigue cycled in combinations of axial, torsional, and internal pressure loading. Two different four-ply layup configurations were tested: (0/90)S and (+ or - 45)S; all tubes contained a 0.48-cm (3/16-in.) diameter circular hole penetrating one wall midway along the tube length. S-N curves were developed to characterize fatigue behavior under pure axial, torsional, or internal pressure loading, as well as combined loading fatigue. A theory was developed based on the Hill plane stress model which enabled the S-N curve for combined stress states to be predicted from the S-N data for the uniaxial loading modes. Correlation of the theory with the experimental data proved to be remarkably good.
Spanwise loading distribution and wake velocity surveys of a semi-span wing
NASA Technical Reports Server (NTRS)
Felker, F. F., III; Piziali, R. A.; Gall, J. K.
1982-01-01
The spanwise distribution of bound circulation on a semi-span wing and the flow velocities in its wake were measured in a wind tunnel. Particular attention was given to documenting the flow velocities in and around the development tip vortex. A two-component laser velocimeter was used to make the velocity measurements. The spanwise distribution of bound circulation, three components of the time-averaged velocities throughout the near wake their standard deviations, and the integrated forces and moments on a metric tip as measured by an internal strain gage balance are presented without discussion.
Momentum flux measurements: Techniques and needs, part 4.5A
NASA Technical Reports Server (NTRS)
Fritts, D. C.
1984-01-01
The vertical flux of horizontal momentum by internal gravity waves is now recognized to play a significant role in the large-scale circulation and thermal structure of the middle atmosphere. This is because a divergence of momentum flux due to wave dissipation results in an acceleration of the local mean flow towards the phase speed of the gravity wave. Such mean flow acceleration are required to offset the large zonal accelerations driven by Coriolis torques acting on the diabatic meridional circulation. Techniques and observations regarding the momentum flux distribution in the middle atmosphere are discussed.
Cryosurgery in Cancer Treatment: Questions and Answers
... is the use of extreme cold produced by liquid nitrogen (or argon gas) to destroy abnormal tissue . Cryosurgery is used to ... and tumors in the bone). For internal tumors, liquid nitrogen or argon gas is circulated through a hollow instrument called a ...
NASA Astrophysics Data System (ADS)
De, S.; Agarwal, N. K.; Hazra, Anupam; Chaudhari, Hemantkumar S.; Sahai, A. K.
2018-04-01
The interaction between cloud and large scale circulation is much less explored area in climate science. Unfolding the mechanism of coupling between these two parameters is imperative for improved simulation of Indian summer monsoon (ISM) and to reduce imprecision in climate sensitivity of global climate model. This work has made an effort to explore this mechanism with CFSv2 climate model experiments whose cloud has been modified by changing the critical relative humidity (CRH) profile of model during ISM. Study reveals that the variable CRH in CFSv2 has improved the nonlinear interactions between high and low frequency oscillations in wind field (revealed as internal dynamics of monsoon) and modulates realistically the spatial distribution of interactions over Indian landmass during the contrasting monsoon season compared to the existing CRH profile of CFSv2. The lower tropospheric wind error energy in the variable CRH simulation of CFSv2 appears to be minimum due to the reduced nonlinear convergence of error to the planetary scale range from long and synoptic scales (another facet of internal dynamics) compared to as observed from other CRH experiments in normal and deficient monsoons. Hence, the interplay between cloud and large scale circulation through CRH may be manifested as a change in internal dynamics of ISM revealed from scale interactive quasi-linear and nonlinear kinetic energy exchanges in frequency as well as in wavenumber domain during the monsoon period that eventually modify the internal variance of CFSv2 model. Conversely, the reduced wind bias and proper modulation of spatial distribution of scale interaction between the synoptic and low frequency oscillations improve the eastward and northward extent of water vapour flux over Indian landmass that in turn give feedback to the realistic simulation of cloud condensates attributing improved ISM rainfall in CFSv2.
Karataylı, Ersin; Altunoğlu, Yasemin Çelik; Karataylı, Senem Ceren; Yurdaydın, Cihan; Bozdayı, A Mithat
2014-10-01
Internal controls (ICs), are the main components of any real-time PCR based amplification methods, which are co-purified and co-amplified with the actual target. The existence of free circulating nucleic acids in plasma and serum (CNAPS) has been known for many years. The aim of this study was to verify whether CNAPS can be used as ICs in real-time PCR based detection and quantification of DNA or RNA targets in plasma and serum samples. Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) as a housekeeping gene, was chosen at random as CNAPS to serve as an intrinsic internal control in two different real-time PCR based quantification models in plasma and serum. Viral loads of hepatitis B virus (HBV) DNA and hepatitis delta virus (HDV) RNA were quantified as actual targets in parallel to GAPDH as IC in a total of 519 serum or plasma samples including 21 healthy controls, 202 positive chronic hepatitis delta patients, 37 chronic hepatitis C patients, 168 chronic hepatitis B patients, 52 patients with hepatocellular carcinoma, and 39 patients with non-alcoholic steatohepatitis/non-alcoholic fatty liver disease. GAPDH levels did not show significant variance in different patient groups and yielded positive signals in all 519 patients with persistent cycle threshold (CT) values 27.85±1.57 (mean±standard deviation (SD)). Reproducibility of the GAPDH amplification in HDV RNA and HBV DNA quantifications was shown with a SD value of CT ranging from 0.42 to 2.14 (mean SD; 1.18) and 0.24 to 1.75 (mean SD; 1.03), respectively. In conclusion, the freely circulating nucleic acids can clearly be used as internal controls for real-time PCR based detection and quantification of any RNA and mainly DNA targets (pathogens) in serum or plasma and this simply excludes the compulsory external addition of any IC molecules into the reaction. Copyright © 2014 Elsevier B.V. All rights reserved.
Rapoport, Natalya; Gupta, Roohi; Kim, Yoo-Shin; O'Neill, Brian E
2015-05-28
Intravital imaging of nanoparticle extravasation and tumor accumulation has revealed, for the first time, detailed features of carrier and drug behavior in circulation and tissue that suggest new directions for optimization of drug nanocarriers. Using intravital fluorescent microscopy, the extent of the extravasation, diffusion in the tissue, internalization by tissue cells, and uptake by the RES system were studied for polymeric micelles, nanoemulsions, and nanoemulsion-encapsulated drug. Discrimination of vascular and tissue compartments in the processes of micelle and nanodroplet extravasation and tissue accumulation was possible. A simple 1-D continuum model was suggested that allowed discriminating between various kinetic regimes of nanocarrier (or released drug) internalization in tumors of various sizes and cell density. The extravasation and tumor cell internalization occurred much faster for polymeric micelles than for nanoemulsion droplets. Fast micelle internalization resulted in the formation of a perivascular fluorescent coating around blood vessels. A new mechanism of micelle extravasation and internalization was suggested, based on the fast extravasation and internalization rates of copolymer unimers while maintaining micelle/unimer equilibrium in the circulation. The data suggested that to be therapeutically effective, nanoparticles with high internalization rate should manifest fast diffusion in the tumor tissue in order to avoid generation of concentration gradients that induce drug resistance. However an extra-fast diffusion should be avoided as it may result in the flow of extravasated nanoparticles from the tumor to normal organs, which would compromise targeting efficiency. The extravasation kinetics were different for nanodroplets and nanodroplet-encapsulated drug F-PTX suggesting a premature release of some fraction of the drug from the carrier. In conclusion, the development of an "ideal" drug carrier should involve the optimization of both drug retention and carrier diffusion parameters. Copyright © 2015 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Stenberg, Erik; Ezhova, Ekaterina; Cenedese, Claudia; Brandt, Luca
2017-04-01
We the report results of large eddy simulations of a turbulent buoyant plume in a configuration providing an idealized model of subglacial discharge from a submarine glacier in stratifications typical of Greenland Fjords. We neglect a horizontal momentum of the plume and assume that its influence on the plume dynamics is small and important only close to the source. Moreover, idealized models have considered the plume adjacent to the glacier as a half-conical plume (e.g., [1]). Thus, to compare the results for such plume with the classical plume theory, developed for free plumes entraining ambient fluid from all directions, it is convenient to add the second half-conical part and consider a free plume with double the total discharge as a model. Given the estimate of the total subglacial discharge for Helheim Glacier in Sermilik Fjord [2], we perform simulations with double the total discharge in order to investigate the dynamics of the flow in typical winter and summer stratifications in Greenland fjords [3]. The plume is discharged from a round source of various diameters. In winter, when the stratification is similar to an idealised two-layers case, turbulent entrainment and generation of internal waves by the plume top are in agreement with the theoretical and numerical results obtained for turbulent jets in a two-layer stratification. In summer, instead, the stratification is more complex and turbulent entrainment is significantly reduced. The subsurface layer in summer is characterized by a strong density gradient and the oscillating plume generates non-linear internal waves which are able to mix this layer even if the plume does not penetrate to the surface. The classical theory for the integral parameters of a turbulent plume in a homogeneous fluid gives accurate predictions of the plume parameters in the weakly stratified lower layer up to the pycnocline. [1] Mankoff, K. D., F. Straneo, C. Cenedese, S. B. Das, C. D. Richards, and H. Singh, 2016: Structure and dynamics of a subglacial discharge plume in a Greenland Fjord. J. Geophys. Res., 121, doi:10.1002/2016JC011764. [2] Sciascia, R., F. Straneo, C. Cenedese, and P. Heimbach, 2013: Seasonal variability of submarine melt rate and circulation in an East Greenland fjord. J. Geophys. Res., 118, 2492-2506. [3] Straneo, F., R. Curry, D. Sutherland, G. Hamilton, C. Cenedese, K. Vage, and L. Stearns, 2011: Impact of fjord dynamics and glacial runoff on the circulation near Helheim Glacier. Nature Geosci., 4, 322-327.
Volievica, Alma; Kulenovic, Amela; Lujinovic, Almira; Talovic, Elvira
2006-01-01
Cerebrovascular deseases , cerebral vessels deseases, represents one of the greatest problems of humankind. The reasons are not just the high incidence and relatively high prevalence of letal outcomes in the acute faze of the desease, but also high level of disfunctionality caused by this disease in numerous patients who survived cerebrovascular insult and haemorraghe The onset, course and outcome of cerebrovascular diseases depends among other things on the possibility o f colateral brain circulation establishment. Willis ring onthe base of the brain is the most important anastomosis between circulation in both carotid arteries and basilar artery. First precondition for Willis ring t o function as valvular mechanisam is its intact configuration. But, it is found in almost half of th e subjectsincluded in the study that certain anatomical abnormalities in the Willis ring structure exist. Presence of these abnormalities favors onset of vascular diseases since they unables colateral circulation establishment. Studies till now have shown that all components of Willis ring do not contribute equally in colateral function among obstructive diseases.
Diagnostic Value of Circulating CXC Chemokines in Non-small Cell Lung Cancer.
Spaks, Artjoms; Jaunalksne, Inta; Spaka, Irina; Chudasama, Dimple; Pirtnieks, Ainis; Krievins, Dainis
2015-12-01
To evaluate the diagnostic value of circulating CXC chemokines as biomarkers for non-small cell lung cancer and compare them against a standard panel of already existing cancer biomarkers. A total of 90 individuals were enrolled in the study. We analyzed 30 patients with stage IA-IIB carcinoma of the lung who underwent pulmonary resection, 30 patients with metastatic NSCLC, and 30 healthy volunteers. The biomarkers levels were measured in plasma blood samples, by ELISA and immunoassays. The levels of circulating CXCL4, CXCL8, CXCL9, CXCL10 and CXCL11 were higher and those of circulating CXCL1 were lower in patients with early-stage NSCLC compared to metastatic NSCLC patients and controls (p<0.05). CXCL4, CXCL9 and CXCL11 were included in the panel that showed a sensitivity of 100% versus 60% for CEA, CA125 and CYFRA21-1 (p<0.001). Combination of CXCL4, CXCL9 and CXCL11 has a high diagnostic value. Copyright© 2015 International Institute of Anticancer Research (Dr. John G. Delinassios), All rights reserved.
A compact centrifugal blood pump for extracorporeal circulation: design and performance.
Tanaka, S; Yamamoto, S; Yamakoshi, K; Kamiya, A
1987-08-01
A new compact centrifugal blood pump driven by a miniature DC servomotor has been designed for use for short-term extra corporeal and cardiac-assisted circulation. The impeller of the pump was connected directly to the motor by using a simple-gear coupling. The shaft for the impeller was sealed from blood by both a V-ring and a seal bearing. Either pulsatile or nonpusatile flow was produced by controlling the current supply to the motor. The pump characteristics and the degree of hemolysis were evaluated with regard to the configuration of the impeller with a 38-mm outer diameter in vitro tests; the impeller having the blade angles at the inlet of 20 deg and at the outlet of 50 deg was the most appropriate as a blood pump. The performance in an operation, hemolysis and thrombus formation in the pump were assessed by a left ventricular bypass experiment in dogs. It was suggested by this study that this prototype pump appears promising for use not only in animal experiments but also in clinical application.
Weng, Tsai-Lung; Cheng, An; Chao, Sao-Jeng; Hsu, Hui-Mi
2018-01-01
This study aims to investigate the effect of adding circulating fluidized bed combustion (CFBC) ash, desulfurization slag, air-cooled blast-furnace slag and coal bottom ash to the controlled low-strength material (CLSM). Test methods include slump flow test, ball drop test, water soluble chloride ion content measurement, compressive strength and length change measurement. The results show that (1) the use of CFBC hydration ash with desulfurization slag of slump flow is the best, and the use of CFBC hydration ash with coal bottom ash and slump flow is the worst; (2) CFBC hydration ash with desulfurization slag and chloride ion content is the highest; (3) 24 h ball drop test (diameter ≤ 76 mm), and test results are 70 mm to 76 mm; (4) CFBC hydration ash with desulfurization slag and compression strength is the highest, with the coal bottom ash being the lowest; increase of CFBC hydration ash can reduce compressive strength; and (5) the water-quenched blast furnace slag and CFBC hydration ash would expand, which results in length changes of CLSM specimens. PMID:29724055
The viscous lee wave problem and its implications for ocean modelling
NASA Astrophysics Data System (ADS)
Shakespeare, Callum J.; Hogg, Andrew McC.
2017-05-01
Ocean circulation models employ 'turbulent' viscosity and diffusivity to represent unresolved sub-gridscale processes such as breaking internal waves. Computational power has now advanced sufficiently to permit regional ocean circulation models to be run at sufficiently high (100 m-1 km) horizontal resolution to resolve a significant part of the internal wave spectrum. Here we develop theory for boundary generated internal waves in such models, and in particular, where the waves dissipate their energy. We focus specifically on the steady lee wave problem where stationary waves are generated by a large-scale flow acting across ocean bottom topography. We generalise the energy flux expressions of [Bell, T., 1975. Topographically generated internal waves in the open ocean. J. Geophys. Res. 80, 320-327] to include the effect of arbitrary viscosity and diffusivity. Applying these results for realistic parameter choices we show that in the present generation of models with O(1) m2s-1 horizontal viscosity/diffusivity boundary-generated waves will inevitably dissipate the majority of their energy within a few hundred metres of the boundary. This dissipation is a direct consequence of the artificially high viscosity/diffusivity, which is not always physically justified in numerical models. Hence, caution is necessary in comparing model results to ocean observations. Our theory further predicts that O(10-2) m2s-1 horizontal and O(10-4) m2s-1 vertical viscosity/diffusivity is required to achieve a qualitatively inviscid representation of internal wave dynamics in ocean models.
Internal structure of mushroom-shaped salt diapirs
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1989-01-01
This book focuses on the dynamics and kinematics of salt diapirs with crestal bulbs shaped like a mushroom, one of the most complex types of diapirs, as interpreted by experimental modeling and from naturally occurring examples. Direct, practical applications of this research include use in the evaluation of salt domes as repositories for radioactive waste, in the exploration and production of salt, potash, and sulfur, and in the search for subtle hydrocarbon traps. The authors conducted 8 centrifuge experiments, which produced more than 100 model diapirs. These experiments were dynamically scaled to U.S. Gulf Coast salt domes, but the qualitativemore » results are also relevant to salt diapirs in other provinces and to granitoid diapirs penetrating metamorphic crust. The centrifuged domes grew under overburdens of constant thickness or under aggrading and prograding overburdens, a new experimental approach. Results indicate that external mushroom structure results from toroidal circulation of buoyant source and immediate cover having similar effective viscosities, whereas internal structure is produced by toroidal circulation confined within the diapir. The internal diapir structure elucidates the mechanics of emplacement and indicates whether an external mushroom shape can be expected and sought by further exploration.« less
Roersch Van Der Hoogte, Arjo; Pieters, Toine
2016-01-01
In this study, we will show how a Dutch pharmaceutical consortium of cinchona producers and quinine manufacturers was able to capitalize on one of the first international public health campaigns to fight malaria, thereby promoting the sale of quinine, an antimalarial medicine. During the 1920s and 1930s, the international markets for quinine were controlled by this Dutch consortium, which was a transoceanic cinchona–quinine enterprise centered in the Cinchona Bureau in the Netherlands. We will argue that during the interwar period, the Cinchona Bureau became the decision-making center of this Dutch cinchona–quinine pharmaceutical enterprise and monopolized the production and trade of an essential medicine. In addition, we will argue that capitalizing on the international public health campaign in the fight against malaria by the Dutch cinchona–quinine enterprise via the Cinchona Bureau can be regarded as an early example of corporate colonization of public health by a private pharmaceutical consortium. Furthermore, we will show how commercial interests prevailed over scientific interests within the Dutch cinchona–quinine consortium, thus interfering with and ultimately curtailing the transoceanic circulation of knowledge in the Dutch empire. PMID:26054829
NASA Astrophysics Data System (ADS)
Chen, Ying-Ying; Jin, Fei-Fei
2018-03-01
The eastern equatorial Pacific has a pronounced westward propagating SST annual cycle resulting from ocean-atmosphere interactions with equatorial semiannual solar forcing and off-equatorial annual solar forcing conveyed to the equator. In this two-part paper, a simple linear coupled framework is proposed to quantify the internal dynamics and external forcing for a better understanding of the linear part of the dynamics annual cycle. It is shown that an essential internal dynamical factor is the SST damping rate which measures the coupled stability in a similar way as the Bjerknes instability index for the El Niño-Southern Oscillation. It comprises three major negative terms (dynamic damping due to the Ekman pumping feedback, mean circulation advection, and thermodynamic feedback) and two positive terms (thermocline feedback and zonal advection). Another dynamical factor is the westward-propagation speed that is mainly determined by the thermodynamic feedback, the Ekman pumping feedback, and the mean circulation. The external forcing is measured by the annual and semiannual forcing factors. These linear internal and external factors, which can be estimated from data, determine the amplitude of the annual cycle.
Large-Scale Circulation and Climate Variability. Chapter 5
NASA Technical Reports Server (NTRS)
Perlwitz, J.; Knutson, T.; Kossin, J. P.; LeGrande, A. N.
2017-01-01
The causes of regional climate trends cannot be understood without considering the impact of variations in large-scale atmospheric circulation and an assessment of the role of internally generated climate variability. There are contributions to regional climate trends from changes in large-scale latitudinal circulation, which is generally organized into three cells in each hemisphere-Hadley cell, Ferrell cell and Polar cell-and which determines the location of subtropical dry zones and midlatitude jet streams. These circulation cells are expected to shift poleward during warmer periods, which could result in poleward shifts in precipitation patterns, affecting natural ecosystems, agriculture, and water resources. In addition, regional climate can be strongly affected by non-local responses to recurring patterns (or modes) of variability of the atmospheric circulation or the coupled atmosphere-ocean system. These modes of variability represent preferred spatial patterns and their temporal variation. They account for gross features in variance and for teleconnections which describe climate links between geographically separated regions. Modes of variability are often described as a product of a spatial climate pattern and an associated climate index time series that are identified based on statistical methods like Principal Component Analysis (PC analysis), which is also called Empirical Orthogonal Function Analysis (EOF analysis), and cluster analysis.
Electrospray ionization from nanopipette emitters with tip diameters of less than 100 nm.
Yuill, Elizabeth M; Sa, Niya; Ray, Steven J; Hieftje, Gary M; Baker, Lane A
2013-09-17
Work presented here demonstrates application of nanopipettes pulled to orifice diameters of less than 100 nm as electrospray ionization emitters for mass spectrometry. Mass spectrometric analysis of a series of peptides and proteins electrosprayed from pulled-quartz capillary nanopipette emitters with internal diameters ranging from 37 to 70 nm is detailed. Overall, the use of nanopipette emitters causes a shift toward the production of ions of higher charge states and leads to a reduction in width of charge-state distribution as compared to typical nanospray conditions. Further, nanopipettes show improved S/N and the same signal precision as typical nanospray, despite the much smaller dimensions. As characterized by SEM images acquired before and after spray, nanopipettes are shown to be robust under conditions employed. Analytical calculations and numerical simulations are used to calculate the electric field at the emitter tip, which can be significant for the small diameter tips used.
Sugimoto, Motokazu; Elliott, Irmina A; Nguyen, Andrew H; Kim, Stephen; Muthusamy, V Raman; Watson, Rabindra; Hines, O Joe; Dawson, David W; Reber, Howard A; Donahue, Timothy R
2017-01-18
According to the 2012 International Consensus Guidelines, the diagnostic criterion of intraductal papillary mucinous neoplasms (IPMNs) involving the main duct (MD IPMNs) or the main and branch ducts (mixed IPMNs) of the pancreatic system is a main pancreatic duct (MPD) diameter of 5.0 mm or greater on computed tomography (CT) or magnetic resonance imaging (MRI). However, surgical resection is recommended for patients with an MPD diameter of 10.0 mm or greater, which is characterized as a high-risk stigma. An MPD diameter of 5.0 to 9.0 mm is not an indication for immediate resection. To determine an appropriate cutoff (ie, one with high sensitivity and negative predictive value) of the MPD diameter on CT or MRI as a prognostic factor for malignant disease and to propose a new management algorithm for patients with MD or mixed IPMNs. This retrospective cohort study included 103 patients who underwent surgical resection for a preoperative diagnosis of MD or mixed IPMN and in whom IPMN was confirmed by surgical pathologic findings at a single institution from July 1, 1996, to December 31, 2015. Malignant disease was defined as high-grade dysplasia or invasive adenocarcinoma on results of surgical pathologic evaluation. An appropriate MPD diameter on preoperative CT or MRI to predict malignant disease was determined using a receiver operating characteristic curve analysis. The prognostic value of the new management algorithm that incorporated the new MPD diameter cutoff was evaluated. Among the 103 patients undergoing resection for an MD or mixed IPMN (59 men [57.3%]; 44 women [42.7%]; median [range] age, 71 [48-86] years), 64 (62.1%) had malignant disease. Diagnostic accuracy for malignant neoplasms was highest at an MPD diameter cutoff of 7.2 mm (area under the receiver operating characteristic curve, 0.70; 95% CI, 0.59-0.81). An MPD diameter of 7.2 mm or greater was also an independent prognostic factor for malignant neoplasms (odds ratio, 12.76; 95% CI, 2.43-66.88; P = .003) on logistic regression analysis after controlling for preoperative variables. The new management algorithm, which included an MPD diameter of 7.2 mm or greater as one of the high-risk stigmata, had a higher sensitivity (100%), negative predictive value (100%), and accuracy (66%) for malignant disease than the 2012 version of the International Consensus Guidelines (95%, 57%, and 63%, respectively). In this single-center, retrospective analysis, an MPD diameter of 7.2 mm was identified as an optimal cutoff for a prognostic factor for malignant disease in MD or mixed IPMN. These data support lowering the accepted criteria for MPD diameter when selecting patients for resection vs surveillance so as not to overlook cancer in IPMN.
Wear of matrix overdenture attachments after one to eight years of clinical use.
Fromentin, Olivier; Lassauzay, Claire; Nader, Samer Abi; Feine, Jocelyne; de Albuquerque, Rubens F
2012-03-01
Matrices of unsplinted attachment systems are generally reported to be the weak component of implant overdentures, often requiring frequent maintenance. Clinical wear results in reduced retention of the prosthesis, requiring activation or renewal of the matrix to restore the initial level of retention. The purpose of this retrospective study was to measure the wear of the matrix of a ball attachment after various periods of clinical wear. Seventy specimens of 3 groups of matrices of ball attachments that had been in use for mean periods of 12.3 months (1Y group, n=26), 39.0 months (3Y group, n=28) and 95.6 months (8Y group, n=16) were retrieved from 35 patients (2 specimens per patient) and measured on a coordinate measuring machine equipped with a touch trigger probe. Ten unused matrices were used as controls (CTRL group). The external and internal matrix diameters and deviations from circularity were measured. For the various time periods, the decreases in matrix thickness were calculated and compared with controls. Kruskal-Wallis 1-way ANOVA by ranks, followed by the Mann-Whitney post hoc tests, were conducted to test for differences in median values among groups (α =.05). For the internal upper diameter of the matrices tested, the Kruskal-Wallis and Mann-Whitney tests revealed significant differences for the 3 groups compared to the controls. For group 1Y, a significant difference (P<.001) of the internal upper diameter was found compared to the CTRL group. Compared to the controls, the nonparametric analyses for groups 3Y and 8Y showed significant differences for the internal upper diameter (P<.001) and deviations from circularity (P<.001). For groups 1Y, 3Y and 8Y, matrix thickness losses were 07, 47 and 70 μm, respectively. Within the limitations of this study, it was observed that one year of clinical wear had limited effect on the ball attachment matrices. Three to 8 years of clinical use resulted in a significant decrease of matrix thickness, especially at the tip of the retentive lamellae. Copyright © 2012 The Editorial Council of the Journal of Prosthetic Dentistry. Published by Mosby, Inc. All rights reserved.
Kobayashi, Tohru; Fuse, Shigeto; Sakamoto, Naoko; Mikami, Masashi; Ogawa, Shunichi; Hamaoka, Kenji; Arakaki, Yoshio; Nakamura, Tsuneyuki; Nagasawa, Hiroyuki; Kato, Taichi; Jibiki, Toshiaki; Iwashima, Satoru; Yamakawa, Masaru; Ohkubo, Takashi; Shimoyama, Shinya; Aso, Kentaro; Sato, Seiichi; Saji, Tsutomu
2016-08-01
Several coronary artery Z score models have been developed. However, a Z score model derived by the lambda-mu-sigma (LMS) method has not been established. Echocardiographic measurements of the proximal right coronary artery, left main coronary artery, proximal left anterior descending coronary artery, and proximal left circumflex artery were prospectively collected in 3,851 healthy children ≤18 years of age and divided into developmental and validation data sets. In the developmental data set, smooth curves were fitted for each coronary artery using linear, logarithmic, square-root, and LMS methods for both sexes. The relative goodness of fit of these models was compared using the Bayesian information criterion. The best-fitting model was tested for reproducibility using the validation data set. The goodness of fit of the selected model was visually compared with that of the previously reported regression models using a Q-Q plot. Because the internal diameter of each coronary artery was not similar between sexes, sex-specific Z score models were developed. The LMS model with body surface area as the independent variable showed the best goodness of fit; therefore, the internal diameter of each coronary artery was transformed into a sex-specific Z score on the basis of body surface area using the LMS method. In the validation data set, a Q-Q plot of each model indicated that the distribution of Z scores in the LMS models was closer to the normal distribution compared with previously reported regression models. Finally, the final models for each coronary artery in both sexes were developed using the developmental and validation data sets. A Microsoft Excel-based Z score calculator was also created, which is freely available online (http://raise.umin.jp/zsp/calculator/). Novel LMS models with which to estimate the sex-specific Z score of each internal coronary artery diameter were generated and validated using a large pediatric population. Copyright © 2016 American Society of Echocardiography. Published by Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gittinger, J.
1996-12-31
Circulating fluidized bed CFB repowering options are summarized. The following topics are discussed: why repower with CFB technology; advantages of repowering; two forms of of repowering; B and N`s internal recirculation CFB; space-saving design features; cost-saving design features; Ukrainian repowering project; and candidates for repowering.
Compaction-Driven Evolution of Pluto's Rocky Core: Implications for Water-Rock Interactions
NASA Astrophysics Data System (ADS)
Gabasova, L. R.; Tobie, G.; Choblet, G.
2018-05-01
We model the compaction of Pluto's rocky core after accretion and explore the potential for hydrothermal circulation within the porous layer, as well as examine its effect on core cooling and the persistence of a liquid internal ocean.
"Mobile" Contexts/"Immobile" Cultures
ERIC Educational Resources Information Center
Geoffroy, Christine
2007-01-01
Communication technologies and cheap air travel have profoundly reshaped the patterns of international circulation and migration, blurring the distinction between travellers, tourists and migrants. Some tourists have selected their former recreational area as permanent place of residence while other people are choosing or are being forced into…
The Feasibility of Two Screws Anterior Fixation for Type II Odontoid Fracture Among Arabs.
Marwan, Yousef; Kombar, Osama Rabie; Al-Saeed, Osama; Aleidan, Aljarrah; Samir, Ahmed; Esmaeel, Ali
2016-06-01
Retrospective, cross-sectional study. To evaluate the feasibility of two screws anterior fixation of the odontoid process among Arab adults. Anterior screw fixation is the treatment of choice for type II odontoid fractures. In order to perform the procedure safely, the diameter of the odontoid process should be wide enough to allow for the placement of one or two screws. A retrospective review of 156 computed tomography scans of the cervical spine was done. The included patients were Arabs, adults (at least 18 years old), and had no evidence of upper cervical spine trauma, deformity, infection, tumor, or surgery. The minimum external transverse diameter (METD), minimum internal transverse diameter (MITD), minimum external anteroposterior diameter (MEAD), and minimum internal anteroposterior diameter (MIAD) of the odontoid process were measured. A P value of ≤0.05 was considered as the cutoff level of statistical significance. Our study included 94 (60.3%) males and 62 (39.7%) females. The mean age of the subjects was 37.8 ± 16.9 years (range 18-85). The mean values of the METD, MITD, MEAD, and MIAD were 8.7 ± 1.0 mm, 6.0 ± 1.1 mm, 10.3 ± 1.0 mm, and 7.4 ± 1.1 mm, respectively. Men had larger diameters compared to women. This was statistically significant for METD (P = 0.035) and MEAD (P < 0.001). The METD was <9.0 mm in 95 (60.9%) subjects, while the MITD was <8.0 mm in 153 (98.1%) subjects. These findings were not significantly different between males and females. Two screws anterior fixation of type II odontoid fracture is not feasible among the majority of Arabs. 3.
Vertically aligned carbon nanofibers as sacrificial templates for nanofluidic structures
NASA Astrophysics Data System (ADS)
Melechko, A. V.; McKnight, T. E.; Guillorn, M. A.; Merkulov, V. I.; Ilic, B.; Doktycz, M. J.; Lowndes, D. H.; Simpson, M. L.
2003-02-01
We report a method to fabricate nanoscale pipes ("nanopipes") suitable for fluidic transport. Vertically aligned carbon nanofibers grown by plasma-enhanced chemical vapor deposition are used as sacrificial templates for nanopipes with internal diameters as small as 30 nm and lengths up to several micrometers that are oriented perpendicular to the substrate. This method provides a high level of control over the nanopipe location, number, length, and diameter, permitting them to be deterministically positioned on a substrate and arranged into arrays.
23RD International Conference on Phenomena in Ionized Gases, Volume 5
1998-12-01
eNm.f, generated within the plasma is given by section with a 5-cm diameter. The magnetic field was Vof = wh Bt p i vn provided by an iron- core ...cylindrical tungsten probes, of 0.038cm. as impurities can be centrifuged as reported by diameter, insulated by thin glass tube except their tips Bonnevier...Norfolk, VA 213529 1. Discharge modes discharge begins, at several hundred Torr, to change from a hollow cathode discharge into what we Experimental
The 80 kV electrostatic wire septum for AmPS
NASA Astrophysics Data System (ADS)
Vanderlinden, A.; Bijleveld, J. H. M.; Rookhuizen, H. Boer; Bruinsma, P. J. T.; Heine, E.; Lassing, P.; Prins, E.
The characteristics of the wire septum for the Amsterdam Pulse Stretcher (AmPS) are summarized. In the extraction process of the AmPS the extracted beam is intercepted from the circulating beam by the 1 m long electrostatic wire septum. For a bending angle of 4.4 mrad, the maximum anode voltage is 80 kV. The system developed consists of a wire spacing of 0.65 mm between tungsten wires of 50 micrometers diameter. Stainless steel spring wires, bent in a half cylindrical carrier, stretch the septum wires two by two. Prototype tests were successful up to an anode voltage of 120 kV.
Cardiac arrest: resuscitation and reperfusion.
Patil, Kaustubha D; Halperin, Henry R; Becker, Lance B
2015-06-05
The modern treatment of cardiac arrest is an increasingly complex medical procedure with a rapidly changing array of therapeutic approaches designed to restore life to victims of sudden death. The 2 primary goals of providing artificial circulation and defibrillation to halt ventricular fibrillation remain of paramount importance for saving lives. They have undergone significant improvements in technology and dissemination into the community subsequent to their establishment 60 years ago. The evolution of artificial circulation includes efforts to optimize manual cardiopulmonary resuscitation, external mechanical cardiopulmonary resuscitation devices designed to augment circulation, and may soon advance further into the rapid deployment of specially designed internal emergency cardiopulmonary bypass devices. The development of defibrillation technologies has progressed from bulky internal defibrillators paddles applied directly to the heart, to manually controlled external defibrillators, to automatic external defibrillators that can now be obtained over-the-counter for widespread use in the community or home. But the modern treatment of cardiac arrest now involves more than merely providing circulation and defibrillation. As suggested by a 3-phase model of treatment, newer approaches targeting patients who have had a more prolonged cardiac arrest include treatment of the metabolic phase of cardiac arrest with therapeutic hypothermia, agents to treat or prevent reperfusion injury, new strategies specifically focused on pulseless electric activity, which is the presenting rhythm in at least one third of cardiac arrests, and aggressive post resuscitation care. There are discoveries at the cellular and molecular level about ischemia and reperfusion pathobiology that may be translated into future new therapies. On the near horizon is the combination of advanced cardiopulmonary bypass plus a cocktail of multiple agents targeted at restoration of normal metabolism and prevention of reperfusion injury, as this holds the promise of restoring life to many patients for whom our current therapies fail. © 2015 American Heart Association, Inc.
Qhattal, Hussaini Syed Sha; Hye, Tanvirul; Alali, Amer; Liu, Xinli
2014-06-24
Hyaluronan-grafted liposomes (HA-liposomes) preferentially target CD44-overexpressing tumor cells in vitro via receptor-mediated endocytosis. We investigated the pharmacokinetics and biodistribution of HA-liposomes with various sizes of HA (MW 5-8, 50-60, and 175-350 kDa) in mice. Incorporation of negatively charged HA on the liposome surface compromised its blood circulation time, which led to decreased tumor accumulation in CD44+ human breast cancer MDA-MB-231 xenografts compared to PEGylated liposomes (PEG-5000). Clearance of HA-liposomes was HA polymer length-dependent; high MW (175-350 kDa, highest ligand binding affinity) HA-liposomes displayed faster clearance compared to low MW (5-8, 50-60 kDa) HA-liposomes or PEGylated liposomes. Surface HA ligand density can also affect clearance of HA-liposomes. Thus, HA is not an effective stealth coating material. When dual coating of PEG and HA was used, the PEG-HA-liposomes displayed similar blood circulation time and tumor accumulation to that of the PEGylated liposomes; however, the PEG-HA-liposomes displayed better cellular internalization capability in vivo. Tumor histology showed that PEG-HA-liposomes had a more direct association with CD44+ cancer cells, while PEGylated liposomes located predominantly in the tumor periphery, with less association with CD44+ cells. Flow cytometry analysis of ex vivo tumor cells showed that PEG-HA-liposomes had significantly higher tumor cell internalization compared to PEGylated liposomes. This study demonstrates that a long blood circulation time is critical for active tumor targeting. Furthermore, the use of the tumor-targeting ligand HA does not increase total tumor accumulation of actively targeted liposomes in solid tumors; however, it can enhance intracellular delivery.
Sun, Jiaoxia; Wang, Yuanliang; Qian, Zhiyong; Hu, Chenbo
2011-11-01
The angiogenesis of 3D scaffold is one of the major current limitations in clinical practice tissue engineering. The new strategy of construction 3D scaffold with microchannel circulation network may improve angiogenesis. In this study, 3D poly(D: ,L: -lactic acid) scaffolds with controllable microchannel structures were fabricated using sacrificial sugar structures. Melt drawing sugar-fiber network produced by a modified filament spiral winding method was used to form the microchannel with adjustable diameters and porosity. This fabrication process was rapid, inexpensive, and highly scalable. The porosity, microchannel diameter, interconnectivity and surface topographies of the scaffold were characterized by scanning electron microscopy. Mechanical properties were evaluated by compression tests. The mean porosity values of the scaffolds were in the 65-78% and the scaffold exhibited microchannel structure with diameter in the 100-200 μm range. The results showed that the scaffolds exhibited an adequate porosity, interconnective microchannel network, and mechanical properties. The cell culture studies with endothelial cells (ECs) demonstrated that the scaffold allowed cells to proliferate and penetrate into the volume of the entire scaffold. Overall, these findings suggest that the fabrication process offers significant advantages and flexibility in generating a variety of non-cytotoxic tissue engineering scaffolds with controllable distributions of porosity and physical properties that could provide the necessary physical cues for ECs and further improve angiogenesis for tissue engineering.
Lindqvist, Markus; Hellström, Anders; Henriksson, Anders E
2012-01-01
Previous investigations have shown hyperhomocysteinemi in patients with abdominal aortic aneurysm (AAA). In the present study we evaluated the circulating level of homocysteine (Hcy) in relation to renal function, vitamins B6, B12 and folate status in AAA patients with special regard to aneurysm size, and rupture. Hcy, Creatinine, B6, B12 and folate were measured in 119 patients with AAA and 36 controls without aneurysm matched by age, gender and smoking habit. As expected there was a weak correlation between Hcy and vitamins B6, B12 or folate. We found similar levels of Hcy, B6 and folic acid in patients with nonruptured AAA compared to the control group matched by age, gender and smoking habit. There was no correlation between maximum diameter of the nonruptured AAA (n=78) and Hcy, B6 or folate. However, the present study shows a significant inverse correlation between maximum diameter of the nonruptured AAA (n=78) and B12 (r = -0.304, p=0.007) with significant higher levels in small AAA compared to large AAA. In conclusion, Hcy does not seem to be a useful biomarker in AAA disease. The unexpected finding of B12 levels correlating to aneurysm diameter warrants urgent further investigation of B12 supplement to prevent progression of small AAA. PMID:23173106
Lindqvist, Markus; Hellström, Anders; Henriksson, Anders E
2012-01-01
Previous investigations have shown hyperhomocysteinemi in patients with abdominal aortic aneurysm (AAA). In the present study we evaluated the circulating level of homocysteine (Hcy) in relation to renal function, vitamins B6, B12 and folate status in AAA patients with special regard to aneurysm size, and rupture. Hcy, Creatinine, B6, B12 and folate were measured in 119 patients with AAA and 36 controls without aneurysm matched by age, gender and smoking habit. As expected there was a weak correlation between Hcy and vitamins B6, B12 or folate. We found similar levels of Hcy, B6 and folic acid in patients with nonruptured AAA compared to the control group matched by age, gender and smoking habit. There was no correlation between maximum diameter of the nonruptured AAA (n=78) and Hcy, B6 or folate. However, the present study shows a significant inverse correlation between maximum diameter of the nonruptured AAA (n=78) and B12 (r = -0.304, p=0.007) with significant higher levels in small AAA compared to large AAA. In conclusion, Hcy does not seem to be a useful biomarker in AAA disease. The unexpected finding of B12 levels correlating to aneurysm diameter warrants urgent further investigation of B12 supplement to prevent progression of small AAA.
Reconciling the Observed and Modeled Southern Hemisphere Circulation Response to Volcanic Eruptions
NASA Astrophysics Data System (ADS)
McGraw, M. C.; Barnes, E. A.; Deser, C.
2016-12-01
Confusion exists regarding the tropospheric circulation response to volcanic eruptions, with models and observations seeming to disagree on the sign of the response. The forced Southern Hemisphere circulation response to the eruptions of Pinatubo and El Chichon is shown to be a robust positive annular mode, using over 200 ensemble members from 38 climate models. It is demonstrated that the models and observations are not at odds, but rather, internal climate variability is large and can overwhelm the forced response. It is further argued that the state of ENSO can at least partially explain the sign of the observed anomalies, and may account for the perceived discrepancy between model and observational studies. The eruptions of both El Chichon and Pinatubo occurred during El Nino events, and it is demonstrated that the SAM anomalies following volcanic eruptions are weaker during El Nino events compared to La Nina events.
Optimization of EGFR high positive cell isolation procedure by design of experiments methodology.
Levi, Ofer; Tal, Baruch; Hileli, Sagi; Shapira, Assaf; Benhar, Itai; Grabov, Pavel; Eliaz, Noam
2015-01-01
Circulating tumor cells (CTCs) in blood circulation may play a role in monitoring and even in early detection of metastasis patients. Due to the limited presence of CTCs in blood circulation, viable CTCs isolation technology must supply a very high recovery rate. Here, we implement design of experiments (DOE) methodology in order to optimize the Bio-Ferrography (BF) immunomagnetic isolation (IMI) procedure for the EGFR high positive CTCs application. All consequent DOE phases such as screening design, optimization experiments and validation experiments were used. A significant recovery rate of more than 95% was achieved while isolating 100 EGFR high positive CTCs from 1 mL human whole blood. The recovery achievement in this research positions BF technology as one of the most efficient IMI technologies, which is ready to be challenged with patients' blood samples. © 2015 International Clinical Cytometry Society.
Sewage sludge dewatering using flowing liquid metals
Carlson, Larry W.
1986-01-01
A method and apparatus for reducing the moisture content of a moist sewage sludge having a moisture content of about 50% to 80% and formed of small cellular micro-organism bodies having internally confined water is provided. A hot liquid metal is circulated in a circulation loop and the moist sewage sludge is injected in the circulation loop under conditions of temperature and pressure such that the confined water vaporizes and ruptures the cellular bodies. The vapor produced, the dried sludge, and the liquid metal are then separated. Preferably, the moist sewage sludge is injected into the hot liquid metal adjacent the upstream side of a venturi which serves to thoroughly mix the hot liquid metal and the moist sewage sludge. The venturi and the drying zone after the venturi are preferably vertically oriented. The dried sewage sludge recovered is available as a fuel and is preferably used for heating the hot liquid metal.
Raske, Matthew; Weisse, Chick; Berent, Allyson C; McDougall, Renee; Lamb, Kenneth
2018-03-01
Intraluminal tracheal stenting is a minimally invasive procedure shown to have variable degrees of success in managing clinical signs associated with tracheal collapse syndrome (CTCS) in dogs. Identify immediate post-stent changes in tracheal diameter, determine the extent of stent migration, and stent shortening after stent placement in the immediate-, short-, and long-term periods, and evaluate inter-observer reliability of radiographic measurements. Fifty client-owned dogs. Retrospective study in which medical records were reviewed in dogs with CTCS treated with an intraluminal tracheal stent. Data collected included signalment, location, and type of collapse, stent diameter and length, and post-stent placement radiographic follow-up times. Radiographs were used to obtain pre-stent tracheal measurements and post-stent placement measurements. Immediate mean percentage change was 5.14%, 5.49%, and 21.64% for cervical, thoracic inlet, and intra-thoracic tracheal diameters, respectively. Ultimate mean follow-up time was 446 days, with mean percentage change of 2.55%, 15.09%, and 8.65% for cervical, thoracic inlet, and intra-thoracic tracheal diameters, respectively. Initial mean stent length was 26.72% higher than nominal length and ultimate long-term tracheal mean stent shortening was only 9.90%. No significant stent migration was identified in the immediate, short-, or long-term periods. Good inter-observer agreement of radiographic measurements was found among observers of variable experience level. Use of an intraluminal tracheal stent for CTCS is associated with minimal stent shortening with no clinically relevant stent migration after fluoroscopic placement. Precise stent sizing and placement techniques likely play important roles in avoiding these reported complications. Copyright © 2018 The Authors. Journal of Veterinary Internal Medicine published by Wiley Periodicals, Inc. on behalf of the American College of Veterinary Internal Medicine.
Narayanan, Raja; Singh, Sumit R; Taylor, Stanford; Berrocal, Maria H; Chhablani, Jay; Tyagi, Mudit; Ohno-Matsui, Kyoko; Pappuru, Rajeev R; Apte, Rajendra S
2018-04-23
To evaluate the anatomical and visual outcomes of inverted flap technique of peeling of internal limiting membrane (ILM) versus standard peeling of ILM for macular holes of basal diameter more than 800 μm. Patients with very large idiopathic macular holes more than 800 μm in basal diameter (ranging from 243 μm to 840 μm in minimum diameter) were retrospectively included in the study. In Group A, 18 eyes of 18 patients underwent ILM peeling using the inverted flap technique. In Group B, 18 eyes of 18 patients underwent conventional ILM peeling. The primary endpoint was the rate of hole closure at 6 months after surgery. The secondary outcome measure was the change in best-corrected visual acuity at 6 months after surgery. There were no significant differences in ocular characteristics of the study groups at baseline except for the age distribution. Mean macular hole diameter was 1,162.8 ± 206.0 μm and 1,229.6 ± 228.1 μm in Group A and Group B, respectively. The hole closure rate was 88.9% (16/18) in Group A and 77.8% (14/18) in Group B (P = 0.66). The mean gain in best-corrected visual acuity was higher in Group A than in Group B (P = 0.12) at 6 months, but this was not statistically significant. There were no severe ocular adverse events in either group. In this multicenter series, inverted ILM flap technique did not lead to significantly higher anatomical closure rates than conventional ILM peeling in large macular holes more than 800 μm in diameter.
NASA Astrophysics Data System (ADS)
Fan, Y. Z.; Zuo, Z. G.; Liu, S. H.; Wu, Y. L.; Sha, Y. J.
2012-11-01
Primary formulation derivation indicates that the dimension of one existing centrifugal boiler circulation pump casing is too large. As great manufacture cost can be saved by dimension decrease, a numerical simulation research is developed in this paper on dimension decrease for annular casing of this pump with a specific speed equaling to 189, which aims at finding an appropriately smaller dimension of the casing while hydraulic performance and strength performance will hardly be changed according to the requirements of the cooperative company. The research object is one existing centrifugal pump with a diffuser and a semi-spherical annular casing, working as the boiler circulation pump for (ultra) supercritical units in power plants. Dimension decrease, the modification method, is achieved by decreasing the existing casing's internal radius (marked as "Ri0") while keeping the wall thickness. The research analysis is based on primary formulation derivation, CFD (Computational Fluid Dynamics) simulation and FEM (Finite Element Method) simulation. Primary formulation derivation estimates that a design casing's internal radius should be less than 0.75 Ri0. CFD analysis indicates that smaller casing with 0.75 Ri0 has a worse hydraulic performance when working at large flow rates and a better hydraulic performance when working at small flow rates. In consideration of hydraulic performance and dimension decrease, an appropriate casing's internal radius is determined, which equals to 0.875 Ri0. FEM analysis then confirms that modified pump casing has nearly the same strength performance as the existing pump casing. It is concluded that dimension decrease can be an economical method as well as a practical method for large pumps in engineering fields.
Barahona, Ana
2015-01-01
The transnational approach of the science and technology studies (S&TS) abandons the nation as a unit of analysis in order to understand the development of science history. It also abandons Euro-US-centred narratives in order to explain the role of international collaborative networks and the circulation of knowledge, people, artefacts and scientific practices. It is precisely under this perspective that the development of genetics and radiobiology in Mexico shall be analyzed, together with the pioneering work of the Mexican physician-turned-geneticist Alfonso León de Garay who spent two years in the Galton Laboratory in London under the supervision of Lionel Penrose. Upon his return de Garay funded the Genetics and Radiobiology Program of the National Commission of Nuclear Energy based on local needs and the aim of working beyond geographical limitations to thus facilitate the circulation of knowledge, practices and people. The three main lines of research conducted in the years after its foundation that were in line with international projects while responding to the national context were, first, cytogenetic studies of certain abnormalities, and the cytogenetics and anthropological studies of the Olympic Games held in Mexico in 1968; second, the study of the effects of radiation on hereditary material; and third, the study of population genetics in Drosophila and in Mexican indigenous groups. The program played a key role in reshaping the scientific careers of Mexican geneticists, and in transferring locally sourced research into broader networks. This case shows the importance of international collaborative networks and circulation in the constitution of national scientific elites, and also shows the national and transnational concerns that shaped local practices.
Time and diffusion lesion size in major anterior circulation ischemic strokes.
Hakimelahi, Reza; Vachha, Behroze A; Copen, William A; Papini, Giacomo D E; He, Julian; Higazi, Mahmoud M; Lev, Michael H; Schaefer, Pamela W; Yoo, Albert J; Schwamm, Lee H; González, R Gilberto
2014-10-01
Major anterior circulation ischemic strokes caused by occlusion of the distal internal carotid artery or proximal middle cerebral artery or both account for about one third of ischemic strokes with mostly poor outcomes. These strokes are treatable by intravenous tissue-type plasminogen activator and endovascular methods. However, dynamics of infarct growth in these strokes are poorly documented. The purpose was to help understand infarct growth dynamics by measuring acute infarct size with diffusion-weighted imaging (DWI) at known times after stroke onset in patients with documented internal carotid artery/middle cerebral artery occlusions. Retrospectively, we included 47 consecutive patients with documented internal carotid artery/middle cerebral artery occlusions who underwent DWI within 30 hours of stroke onset. Prospectively, 139 patients were identified using the same inclusion criteria. DWI lesion volumes were measured and correlated to time since stroke onset. Perfusion data were reviewed in those who underwent perfusion imaging. Acute infarct volumes ranged from 0.41 to 318.3 mL. Infarct size and time did not correlate (R2=0.001). The majority of patients had DWI lesions that were <25% the territory at risk (<70 mL) whether they were imaged <8 or >8 hours after stroke onset. DWI lesions corresponded to areas of greatly reduced perfusion. Poor correlation between infarct volume and time after stroke onset suggests that there are factors more powerful than time in determining infarct size within the first 30 hours. The observations suggest that highly variable cerebral perfusion via the collateral circulation may primarily determine infarct growth dynamics. If verified, clinical implications include the possibility of treating many patients outside traditional time windows. © 2014 American Heart Association, Inc.
1996-10-01
aerothermoelasticity, temperature gradients and internal heat gies, belong fully resuable SSTO and TSTO sytems, protection. The demand of extreme light...supersonic conditions, convergent and convergent-divergent nozzles matching the cold cage internal diameter will be fixed on the end plate. A set of five...in hypersonic flow. AIAA Paper93- des Fluides, Avril 1996. 5111, 5th International Aerospace Planes and 16. Morrisette, E.L., Creel, T.R., Chen, F.J
Minimizing distortion and internal forces in truss structures by simulated annealing
NASA Technical Reports Server (NTRS)
Kincaid, Rex K.; Padula, Sharon L.
1990-01-01
Inaccuracies in the length of members and the diameters of joints of large space structures may produce unacceptable levels of surface distortion and internal forces. Here, two discrete optimization problems are formulated, one to minimize surface distortion (DSQRMS) and the other to minimize internal forces (FSQRMS). Both of these problems are based on the influence matrices generated by a small-deformation linear analysis. Good solutions are obtained for DSQRMS and FSQRMS through the use of a simulated annealing heuristic.
Fodder Resource Uses and Assessment of Nitrogen Flows on Livestock Farming with Crop Production
NASA Astrophysics Data System (ADS)
Shirahase, Kyoko; Kobayashi, Hisashi
With understanding the livestock farming on cattle breeding practiced increasing of self-production of fodders by the farmland's operation as “Livestock Farming with crop production”, we investigated the utilizations of actual fodder resources and farmland for two selected different types of livestock farming systems: “Multiple Type” which practices cattle raising with fodder cultivation, and “Grazing Type” which practices grazing and fodder cultivation with similar feed self-sufficiency rates. We also prepared and compared material and nitrogen flow of both livestock farming systems. The amount of nitrogen flow is clearly different between the two types though feed self-sufficiency rates are at similar level. Moreover, we defined “Internal Nitrogen Rate (INR)” which indicates the rate of internal nitrogen use to total nitrogen use in cattle raising, “Internal Nitrogen Circulation Rate (NCR)” which indicates the ratio of nitrogen amount in internal circulation to the nitrogen amount introduced from outside, and Nitrogen Outflow Potential (Op), which is the balance of nitrogen amount between input to farmlands and uptake by plants, and analyzed the balance of the amounts of nitrogen flows in both livestock farming type. It is suggested that “Grazing type”, which had the values of relatively high NCR and absolutely low Op, was the livestock farming type with high rates of nitrogen procurement from the interregional farming and low risk of nitrogen outflow.
Anti-cyclonic circulation driven by the estuarine circulation in a gulf type ROFI
NASA Astrophysics Data System (ADS)
Fujiwara, T.; Sanford, L. P.; Nakatsuji, K.; Sugiyama, Y.
1997-08-01
Baroclinic residual circulation processes are examined in gulf type Regions Of Freshwater Influence (ROFIs), which have large rivers discharging into a rounded head wider than the Rossby internal deformation radius. Theoretical and observational investigations concentrate on Ise Bay, Japan, with supporting data from Osaka Bay and Tokyo Bay. Simplified analytical solutions are derived to describe the primary features of the circulation. Three dimensional residual current data collected using moored current meters and shipboard acoustic doppler current profilers (ADCPs), satellite imagery and density structure data observed using STDs, are presented for comparison to the theoretical predictions. There are three key points to understanding the resulting circulation in gulf type ROFIs. First, there are likely to be three distinct water masses: the river plume, a brackish upper layer, and a higher salinity lower layer. Second, baroclinic processes in gulf type ROFIs are influenced by the Earth's rotation at first order. Residual currents are quasi-geostrophic and potential vorticity is approximately conserved. Third, the combined effects of a classical longitudinal estuarine circulation and the Earth's rotation are both necessary to produce the resulting circulation. Anti-cyclonic vorticity is generated in the upper layer by the horizontal divergence associated with upward entrainment, which is part of the estuarine circulation. The interaction between anti-cyclonic vorticity and horizontal divergence results in two regions of qualitatively different circulation, with gyre-like circulation near the bay head and uniformly seaward anti-cyclonicly sheared flow further towards the mouth. The stagnation point separating the two regions is closer to (further away from) the bay head for stronger (weaker) horizontal divergence, respectively. The vorticity and spin-up time of this circulation are-(ƒ-ω 1)/2 and h/2w 0, respectively, where ƒ is the Coriolis parameter, ω 1 is the vorticity of the lower layer, h is the depth of the upper layer and w 0 is the upward entrainment velocity across the pycnocline. Under high discharge conditions the axis of the river plume proceeds in a right bounded direction, describing an inertial circle clearly seen in satellite images. Under low discharge conditions the river plume is deflected in a left bounded direction by the anti-cyclonic circulation of the upper layer.
Role of mesoscale eddies on exchanges between coastal regions
NASA Astrophysics Data System (ADS)
Kersalé, M.; Petrenko, A. A.; Doglioli, A. M.; Nencioli, F.; Bouffard, J.; Dekeyser, I.
2012-04-01
The general circulation in the northwestern Mediterranean Sea is characterized by a cyclonic circulation. The northern part of this gyre is formed by the Northern Current (NC), which flows along the continental slope from the Ligurian Sea towards the Catalan Shelf. The NC has an important influence on the Gulf of Lion (GoL), a large continental margin in the northern part of the basin. The NC constitutes an effective dynamical barrier which blocks coastal waters on the continental shelf. The western part of the GoL is a key region for regulating the outflow from the continental shelf to the Catalan Basin. These exchanges are mainly induced by partially ageostrophic processes originating from the interaction between the NC and mesoscale activity like meanders, filaments and eddies. Both GoL and Catalan shelf are characterized by an intense mesoscale activity. Eddies in the GoL are baroclinic structures extending throughout the mixed layer (30 to 50m), often elliptic in shape and about 20-30km in diameter. Catalan eddies are characterized by a vertical extension between 70 and 100m and a diameter of about 45km. The LAgrangian Transport EXperiment (LATEX, 2008-2011) was designed to study the mechanisms of formation of anticyclones in the western part of the GoL and their influence on cross-shelf exchanges. Mesoscale anticyclones have been observed in the western part of the GoL and over the Catalan shelf by the combined use of data from satellite observations, in situ measurements and numerical modeling. Recent numerical experiments show an anticyclonic circulation extending over a large part of the coastal area (latitudinal range : 41°50' to 43°N ; longitudinal range : 3°10' to 4°10'E). Interaction with a meander of the NC induces the separation of this circulation in two different eddies, one in the GoL and the other in the Catalan shelf. These eddies exhibit strong interaction between them, resulting in important exchanges between the two coastal regions. On one hand the Catalan eddy causes a heat transfer to the GoL; and, on the other hand, the interaction between the GoL eddy and a topographic barrier (Cap Creus) leads to a transfer of energy to the Catalan eddy. In order to quantify this exchange, a balance of kinetic energy has been analyzed from the model results. Numerical results are also discussed in comparison with in situ observations collected during the Latex09 campaign (August 24-28, 2009). The analysis of Sea Surface Temperature (SST) satellite images, Acoustic Doppler Current Profiler (ADCP) and Lagrangian drifter trajectories, confirmed the above interpretation derived from numerical model.
The Fate and Impact of Internal Waves in Nearshore Ecosystems
NASA Astrophysics Data System (ADS)
Woodson, C. B.
2018-01-01
Internal waves are widespread features of global oceans that play critical roles in mixing and thermohaline circulation. Similarly to surface waves, internal waves can travel long distances, ultimately breaking along continental margins. These breaking waves can transport deep ocean water and associated constituents (nutrients, larvae, and acidic low-oxygen waters) onto the shelf and locally enhance turbulence and mixing, with important effects on nearshore ecosystems. We are only beginning to understand the role internal waves play in shaping nearshore ecosystems. Here, I review the physics of internal waves in shallow waters and identify two commonalities among internal waves in the nearshore: exposure to deep offshore waters and enhanced turbulence and mixing. I relate these phenomena to important ecosystem processes ranging from extreme events to fertilization success to draw general conclusions about the influence of internal waves on ecosystems and the effects of internal waves in a changing climate.
The Fate and Impact of Internal Waves in Nearshore Ecosystems.
Woodson, C B
2018-01-03
Internal waves are widespread features of global oceans that play critical roles in mixing and thermohaline circulation. Similarly to surface waves, internal waves can travel long distances, ultimately breaking along continental margins. These breaking waves can transport deep ocean water and associated constituents (nutrients, larvae, and acidic low-oxygen waters) onto the shelf and locally enhance turbulence and mixing, with important effects on nearshore ecosystems. We are only beginning to understand the role internal waves play in shaping nearshore ecosystems. Here, I review the physics of internal waves in shallow waters and identify two commonalities among internal waves in the nearshore: exposure to deep offshore waters and enhanced turbulence and mixing. I relate these phenomena to important ecosystem processes ranging from extreme events to fertilization success to draw general conclusions about the influence of internal waves on ecosystems and the effects of internal waves in a changing climate.
Shape optimized headers and methods of manufacture thereof
Perrin, Ian James
2013-11-05
Disclosed herein is a shape optimized header comprising a shell that is operative for collecting a fluid; wherein an internal diameter and/or a wall thickness of the shell vary with a change in pressure and/or a change in a fluid flow rate in the shell; and tubes; wherein the tubes are in communication with the shell and are operative to transfer fluid into the shell. Disclosed herein is a method comprising fixedly attaching tubes to a shell; wherein the shell is operative for collecting a fluid; wherein an internal diameter and/or a wall thickness of the shell vary with a change in pressure and/or a change in a fluid flow rate in the shell; and wherein the tubes are in communication with the shell and are operative to transfer fluid into the shell.
NASA Technical Reports Server (NTRS)
Albers, J. A.
1973-01-01
Theoretical and experimental internal flow characteristics of two 51-cm-diameter inlets are compared. Theoretical flow characteristics along the inlet surface were obtained from an axisymmetric potential flow and boundary layer analysis. The experimental data were obtained from low-speed tests of a high-bypass-ratio turbofan engine simulator. Comparisons between calculated internal surface pressure distributions and experimental data are presented for a free-system velocity of 45 m/sec and for incidence angles from 0 deg to 50 deg. Analysis of boundary layer separation on the inlet lip at incidence angle is the major emphasis of this report. Theoretical boundary layer shape factors, skin friction coefficients, and velocity profiles in the boundary layer are presented, along with the location of the transition region. Theoretical and experimental separation locations are also discussed.
Copyright: Know Your Electronic Rights!
ERIC Educational Resources Information Center
Valauskas, Edward J.
1992-01-01
Defines copyright and examines the interests of computer software publishers. Issues related to the rights of libraries in the circulation of software are discussed, including the fair use principle, software vendors' licensing agreements, and cooperation between libraries and vendors. An inset describes procedures for internal auditing of…
Zhang, Chi; Wang, Ling; Li, Xiaoyun; Li, Shuyu; Pu, Fang; Fan, Yubo; Li, Deyu
2014-01-01
Circle of Willis (CoW) plays a significant role in maintaining the blood supply for the brain. Specifically, when the stenosis occurs in the internal carotid artery (ICA), abnormal structures of CoW would decrease the compensatory capacity, leading to the local insufficiency of cerebral blood supply. The present paper built a series of lumped parameter models for CoW, and simulated the blood redistribution caused by the unilateral ICA stenosis with different severities in cerebral arteries in the normal and abnormal CoW respectively. The results showed that when unilateral ICA stenosis occurred, the collateral circulation was built through the anterior communicating artery and the ipsilateral posterior communicating artery, maintaining the flow in cerebral arteries. The absence of the two communicating arteries would cause an obvious decrease of flow in local cerebral arteries in the anterior circulation. In conclusion, the two arteries play a significant role in maintaining the balance of cerebral blood supply in the development of ICA stenosis.
Tu, Yizhou; Liu, Xing-Peng; Li, Hui-Qiang; Yang, Ping
2017-12-01
Fracturing waste liquid (FWL) is generated during shale gas extraction and contains high concentrations of suspended solid, salinity and organic compounds, which needs proper management to prevent excessive environmental disruption. Biological treatment of the FWL was attempted in this study using a membrane-coupled internal circulation aerobic biological fluidized bed (MC-ICABFB) after being treated by coagulation. The results showed that poly aluminum chloride (PAC) of 30 g/L, polyacrylamide (PAM) of 20 mg/L and pH of 7.0 were suitable choices for coagulation. The pretreated FWL mixed with synthetic wastewater at different ratios were used as the influent wastewater for the reactor. The MC-ICABFB had relatively good performance on COD and NH 4 + -N removal and the main residual organic compound in the effluent was phthalates according to the analysis of GC-MC profiles. In addition, a suitable pretreatment process for the FWL to facilitate biological treatment of the wastewater needs further research.
Multifunctional High Drug Loading Nanocarriers for Cancer Drug Delivery
NASA Astrophysics Data System (ADS)
Jin, Erlei
2011-12-01
Most anticancer drugs have poor water-solubility, rapid blood clearance, low tumor-selectivity and severe systemic toxicity to healthy tissues. Thus, polymeric nanocarriers have been widely explored for anticancer drugs to solve these problems. However, polymer nanocarriers developed to date still suffer drawbacks including low drug loading contents, premature drug release, slow cellular internalization, slow intracellular drug release and thereby low therapeutic efficiency in cancer thermotherapy. Accordingly, in this dissertation, functional nanocapsules and nanoparticles including high drug loading liposome-like nanocapsules, high drug loading phospholipid-mimic nanocapsules with fast intracellular drug release, high drug loading charge-reversal nanocapsules, TAT based long blood circulation nanoparticles and charge-reversal nuclear targeted nanoparticles are designed and synthesized. These functional carriers have advantages such as high drug loading contents without premature drug release, fast cellular internalization and intracellular drug release, nuclear targeted delivery and long blood circulation. As a result, all these drug carriers show much higher in vitro and in vivo anti-cancer activities.
Qin, Yuge; Wang, Feng; Qin, Yuheng; Li, Li; Li, Mei
2016-05-01
By analyzing the acupuncture taboos in Neijing (Internal Classic) on clinical application of mind conduction of acupuncture therapy in going against the actual situation, astronomy and others, it is found that the relevant acupuncture taboo implies many subtle mysteries of human body, qi, mind and astronomy, which have not been discovered yet in modern science and are very significant in qi protection. In Neijing, the acupuncture physicians have been highly required in the mind treatment, in which, accurately regulating qi circulation is the target in the treatment. The mind conduction is used for qi circulation to accomplish accurately the reinforcing or reducing in the deficiency or excess condition. All of the taboos are provided to normalize the accuracy of reinforcing and reducing technique of acupuncture therapy and avoid the damage of qi in human body. Hence, those taboos must be obeyed so as to prevent from serious consequence and ensure the safety of this acupuncture therapy.
Papadopoulou, Domniki N; Mendrinos, Efstratios; Mangioris, Georgios; Donati, Guy; Pournaras, Constantin J
2009-09-01
To study the effect of intravitreal (IVT) ranibizumab (Lucentis; Genentech, Inc, San Francisco, CA) on the retinal arteriolar diameter in patients with neovascular age-related macular degeneration (AMD). Prospective consecutive interventional case series. Eleven eyes of eleven patients with previously untreated neovascular AMD. All eyes had 3 monthly IVT injections of ranibizumab. The diameter of the retinal arterioles was measured in vivo with a retinal vessel analyzer (RVA) before the first IVT injection and then 7 and 30 days after the first, second, and third injections. Primary end points were changes in retinal arteriolar diameter and mean arterial pressure (MAP) after IVT ranibizumab. Secondary end points were changes in best-corrected visual acuity (BCVA), central retinal thickness, and intraocular pressure after IVT ranibizumab, and appearance of adverse events during the follow-up period. A significant decrease of the retinal arteriolar diameter was observed after each IVT injection of ranibizumab. Thirty days after the first, second, and third injections, there was a mean decrease of 8.1+/-3.2%, 11.5+/-4.4%, and 17.6+/-7.4%, respectively, of the retinal arteriolar diameter compared with baseline values (P<0.01). There was no significant change in MAP during the period of follow-up (P>0.05). Thirty days after the third IVT injection of ranibizumab, mean BCVA improved by 6.5+/-4.9 Early Treatment Diabetic Retinopathy Study (ETDRS) letters, and central retinal thickness decreased by 91+/-122 microm (P = 0.03). These results suggest that IVT ranibizumab may induce retinal arteriolar vasoconstriction in patients with neovascular AMD after IVT ranibizumab. Further studies evaluating larger sample sizes are needed to confirm these results and potential adverse effects on the retinal circulation in patients with AMD and retinal vascular diseases. The author(s) have no proprietary or commercial interest in any materials discussed in this article.
Guo, Fangyuan; Guo, Dingjia; Zhang, Wei; Yan, Qinying; Yang, Yan; Hong, Weiyong; Yang, Gensheng
2017-03-01
Biodegradable polymeric nanoparticles (NPs) have potential therapeutic applications; however, preparing NPs of a specific diameter and uniform size distribution is a challenge. In this work, we fabricated a microchannel system for the preparation of curcumin (Cur)-loaded NPs by the interfacial precipitation method, which rapidly and consistently generated stable NPs with a relatively smaller diameter, narrow size distribution, and higher drug-loading capacity and entrapment efficiency. Poly(ε-caprolactone)-poly(ethylene glycol)-poly (ε-caprolactone) triblock copolymers(PCEC) used as the carrier material was synthesized and characterized. Cur-loaded PCEC NPs had an average size of 167.2nm with a zeta potential of -29.23mV, and showed a loading capacity and drug entrapment efficiency of 15.28%±0.23% and 96.11%±0.13%, respectively. Meanwhile, the NPs demonstrated good biocompatibility and bioavailability, efficient cellular uptake, and long circulation time and a possible liver targeting effect in vivo. These results indicate that the Cur-loaded PCEC NPs can be used as drug carriers in controlled delivery systems and other biomedical applications. Copyright © 2017 Elsevier B.V. All rights reserved.
High-Resolution Simulations of Gas-Solids Jet Penetration Into a High Density Riser Flow
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Tingwen
2011-05-01
High-resolution simulations of a gas-solids jet in a 0.3 m diameter and 15.9 m tall circulating fluidized bed (CFB) riser were conducted with the open source software-MFIX. In the numerical simulations, both gas and solids injected through a 1.6 cm diameter radial-directed tube 4.3 m above the bottom distributor were tracked as tracers, which enable the analysis of the characteristics of a two-phase jet. Two jetting gas velocities of 16.6 and 37.2 m/s were studied with the other operating conditions fixed. Reasonable flow hydrodynamics with respect to overall pressure drop, voidage, and solids velocity distributions were predicted. Due to themore » different dynamic responses of gas and particles to the crossflow, a significant separation of gas and solids within the jet region was predicted for both cases. In addition, the jet characteristics based on tracer concentration and tracer mass fraction profiles at different downstream levels are discussed. Overall, the numerical predictions compare favorably to the experimental measurements made at NETL.« less
System for producing a uniform rubble bed for in situ processes
Galloway, T.R.
1983-07-05
A method and a cutter are disclosed for producing a large cavity filled with a uniform bed of rubblized oil shale or other material, for in situ processing. A raise drill head has a hollow body with a generally circular base and sloping upper surface. A hollow shaft extends from the hollow body. Cutter teeth are mounted on the upper surface of the body and relatively small holes are formed in the body between the cutter teeth. Relatively large peripheral flutes around the body allow material to drop below the drill head. A pilot hole is drilled into the oil shale deposit. The pilot hole is reamed into a large diameter hole by means of a large diameter raise drill head or cutter to produce a cavity filled with rubble. A flushing fluid, such as air, is circulated through the pilot hole during the reaming operation to remove fines through the raise drill, thereby removing sufficient material to create sufficient void space, and allowing the larger particles to fill the cavity and provide a uniform bed of rubblized oil shale. 4 figs.
Human rights, health, and capital accumulation in the Third World.
Chossudovsky, M
1979-01-01
This article examines the relationship between human rights and the pattern of capital accumulation in the Third World. The repressive authoritarian State increasingly constitutes the means for enforcing the intensive exploitation of labor in Third World industrial enclaves and commercial agriculture. While the development of center capitalism has evolved toward "the Welfare State" and a framework of liberal sociodemocracy, the "peripheral State" is generally characterized by nondemocratic forms of government. This bipolarity in the state structure between center and periphery is functionally related to the international division of labor and the unity of production and circulation on a world level. The programs and policies of the center Welfare State (health, education, social security, etc.) constitute an input of "human capital" into the high-technology center labor process. Moreover, welfare programs in center countries activate the process of circulation by sustaining high levels of consumer demand. In underdeveloped countries, the underlying vacuum in the social sectors and the important allocations to military expenditure support the requirements of the peripheral labor process. Programs in health in the center and periphery are related to the bipolarity (qualification/dequalification) in the international division of labor. The social and economic functions of health programs are intimately related to the organic structure of the State and the mechanics whereby the State allocates its financial surplus in support of both capitalist production and circulation.
NASA Astrophysics Data System (ADS)
Muzi, Laura; Ménard-Moyon, Cécilia; Russier, Julie; Li, Jian; Chin, Chee Fei; Ang, Wee Han; Pastorin, Giorgia; Risuleo, Gianfranco; Bianco, Alberto
2015-03-01
The use of platinum-based chemotherapeutic drugs in cancer therapy still suffers from severe disadvantages, such as lack of appropriate selectivity for tumor tissues and insurgence of multi-drug resistance. Moreover, drug efficacy can be attenuated by several mechanisms such as premature drug inactivation, reduced drug uptake inside cells and increased drug efflux once internalized. The use of functionalized carbon nanotubes (CNTs) as chemotherapeutic drug delivery systems is a promising strategy to overcome such limitations due to their ability to enhance cellular internalization of poorly permeable drugs and thus increase the drug bioavailability at the diseased site, compared to the free drug. Furthermore, the possibility to encapsulate agents in the nanotubes' inner cavity can protect the drug from early inactivation and their external functionalizable surface is useful for selective targeting. In this study, a hydrophobic platinum(iv) complex was encapsulated within the inner space of two different diameter functionalized multi-walled CNTs (Pt(iv)@CNTs). The behavior of the complexes, compared to the free drug, was investigated on both HeLa human cancer cells and RAW 264.7 murine macrophages. Both CNT samples efficiently induced cell death in HeLa cancer cells 72 hours after the end of exposure to CNTs. Although the larger diameter CNTs were more cytotoxic on HeLa cells compared to both the free drug and the smaller diameter nanotubes, the latter allowed a prolonged release of the encapsulated drug, thus increasing its anticancer efficacy. In contrast, both Pt(iv)@CNT constructs were poorly cytotoxic on macrophages and induced negligible cell activation and no pro-inflammatory cytokine production. Both CNT samples were efficiently internalized by the two types of cells, as demonstrated by transmission electron microscopy observations and flow cytometry analysis. Finally, the platinum levels found in the cells after Pt(iv)@CNT exposure demonstrate that they can promote drug accumulation inside cells in comparison with treatment with the free complex. To conclude, our study shows that CNTs are promising nanocarriers to improve the accumulation of a chemotherapeutic drug and its slow release inside tumor cells, by tuning the CNT diameter, without inducing a high inflammatory response.The use of platinum-based chemotherapeutic drugs in cancer therapy still suffers from severe disadvantages, such as lack of appropriate selectivity for tumor tissues and insurgence of multi-drug resistance. Moreover, drug efficacy can be attenuated by several mechanisms such as premature drug inactivation, reduced drug uptake inside cells and increased drug efflux once internalized. The use of functionalized carbon nanotubes (CNTs) as chemotherapeutic drug delivery systems is a promising strategy to overcome such limitations due to their ability to enhance cellular internalization of poorly permeable drugs and thus increase the drug bioavailability at the diseased site, compared to the free drug. Furthermore, the possibility to encapsulate agents in the nanotubes' inner cavity can protect the drug from early inactivation and their external functionalizable surface is useful for selective targeting. In this study, a hydrophobic platinum(iv) complex was encapsulated within the inner space of two different diameter functionalized multi-walled CNTs (Pt(iv)@CNTs). The behavior of the complexes, compared to the free drug, was investigated on both HeLa human cancer cells and RAW 264.7 murine macrophages. Both CNT samples efficiently induced cell death in HeLa cancer cells 72 hours after the end of exposure to CNTs. Although the larger diameter CNTs were more cytotoxic on HeLa cells compared to both the free drug and the smaller diameter nanotubes, the latter allowed a prolonged release of the encapsulated drug, thus increasing its anticancer efficacy. In contrast, both Pt(iv)@CNT constructs were poorly cytotoxic on macrophages and induced negligible cell activation and no pro-inflammatory cytokine production. Both CNT samples were efficiently internalized by the two types of cells, as demonstrated by transmission electron microscopy observations and flow cytometry analysis. Finally, the platinum levels found in the cells after Pt(iv)@CNT exposure demonstrate that they can promote drug accumulation inside cells in comparison with treatment with the free complex. To conclude, our study shows that CNTs are promising nanocarriers to improve the accumulation of a chemotherapeutic drug and its slow release inside tumor cells, by tuning the CNT diameter, without inducing a high inflammatory response. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr00220f
Spice: Southwest Pacific Ocean Circulation and Climate Experiment
NASA Astrophysics Data System (ADS)
Ganachaud, A. S.; Melet, A.; Maes, C.
2010-12-01
South Pacific oceanic waters are carried from the subtropical gyre centre in the westward flowing South Equatorial Current (SEC), towards the southwest Pacific-a major circulation pathway that redistributes water from the subtropics to the equator and Southern Ocean. The transit in the Coral Sea is potentially of great importance to tropical climate prediction because changes in either the temperature or the amount of water arriving at the equator have the capability to modulate ENSO and produce basin-scale climate feedbacks. The south branch is associated with comparable impacts in the Tasman Sea area. The Southwest Pacific is a region of complex circulation, with the SEC splitting in strong zonal jets upon encountering island archipelagos. Those jets partition on the Australian eastern boundary to feed the East Australian Current for the southern branch and the North Queensland Current and eventually the Equatorial Undercurrent for the northern branch. On average, the oceanic circulation is driven by the Trade Winds, and subject to substantial variability, related with the South Pacific Convergence Zone (SPCZ) position and intensity. The circulation, and its influence on remote and regional climate, is poorly understood due to the lack of appropriate measurements. Ocean and atmosphere scientists from Australia, France, New Zealand, the United States and Pacific Island countries initiated an international research project under the auspices of CLIVAR to comprehend the southwest Pacific Ocean circulation and its direct and indirect influence on the climate and environment. SPICE is a regionally-coordinated experiment to measure, study and monitor the ocean circulation and the SPCZ, to validate and improve numerical models, and to integrate with assimilating systems. This ongoing project reflects a strong sense that substantial progress can be made through collaboration among South Pacific national research groups, coordinated with broader South Pacific projects.
Gender differences of airway dimensions in anatomically matched sites on CT in smokers.
Kim, Yu-Il; Schroeder, Joyce; Lynch, David; Newell, John; Make, Barry; Friedlander, Adam; Estépar, Raúl San José; Hanania, Nicola A; Washko, George; Murphy, James R; Wilson, Carla; Hokanson, John E; Zach, Jordan; Butterfield, Kiel; Bowler, Russell P; Copdgene Investigators
2011-08-01
There are limited data on, and controversies regarding gender differences in the airway dimensions of smokers. Multi-detector CT (MDCT) images were analyzed to examine whether gender could explain differences in airway dimensions of anatomically matched airways in smokers. We used VIDA imaging software to analyze MDCT scans from 2047 smokers (M:F, 1021:1026) from the COPDGene® cohort. The airway dimensions were analyzed from segmental to subsubsegmental bronchi. We compared the differences of luminal area, inner diameter, wall thickness, wall area percentage (WA%) for each airway between men and women, and multiple linear regression including covariates (age, gender, body sizes, and other relevant confounding factors) was used to determine the predictors of each airway dimensions. Lumen area, internal diameter and wall thickness were smaller for women than men in all measured airway (18.4 vs 22.5 mm(2) for segmental bronchial lumen area, 10.4 vs 12.5 mm(2) for subsegmental bronchi, 6.5 vs 7.7 mm(2) for subsubsegmental bronchi, respectively p < 0.001). However, women had greater WA% in subsegmental and subsubsegmental bronchi. In multivariate regression, gender remained one of the most significant predictors of WA%, lumen area, inner diameter and wall thickness. Women smokers have higher WA%, but lower luminal area, internal diameter and airway thickness in anatomically matched airways as measured by CT scan than do male smokers. This difference may explain, in part, gender differences in the prevalence of COPD and airflow limitation.
Corbacioglu, Aytul; Aslan, Halil; Dagdeviren, Hediye; Ceylan, Yavuz
2012-01-01
Ductus venosus connecting the portal and embryonic venous circulation into the inferior vena cava has a crucial role in fetal circulation. The absence of ductus venosus is a rare anomaly, in which the umbilical vein connection to the venous system may be extrahepatic, bypassing the liver or intrahepatic via the portal venous system. We report three cases of ductus venosus agenesis with associated anomalies. In two of them the connection was directly to the right atrium, whereas the umbilical vein drained to the left internal iliac artery in the third case. Copyright © 2012 Wiley Periodicals, Inc.
Rahmani, Sahar; Villa, Carlos H; Dishman, Acacia F; Grabowski, Marika E; Pan, Daniel C; Durmaz, Hakan; Misra, Asish C; Colón-Meléndez, Laura; Solomon, Michael J; Muzykantov, Vladimir R; Lahann, Joerg
2015-01-01
Nanoparticles with controlled physical properties have been widely used for controlled release applications. In addition to shape, the anisotropic nature of the particles can be an important design criterion to ensure selective surface modification or independent release of combinations of drugs. Electrohydrodynamic (EHD) co-jetting is used for the fabrication of uniform anisotropic nanoparticles with individual compartments and initial physicochemical and biological characterization is reported. EHD co-jetting is used to create nanoparticles, which are characterized at each stage with scanning electron microscopy (SEM), structured illumination microscopy (SIM), dynamic light scattering (DLS) and nanoparticle tracking analysis (NTA). Surface immobilization techniques are used to incorporate polyethylene glycol (PEG) and I(125) radiolabels into the nanoparticles. Particles are injected in mice and the particle distribution after 1, 4 and 24 hours is assessed. Nanoparticles with an average diameter of 105.7 nm are prepared by EHD co-jetting. The particles contain functional chemical groups for further surface modification and radiolabeling. The density of PEG molecules attached to the surface of nanoparticles is determined to range between 0.02 and 6.04 ligands per square nanometer. A significant fraction of the nanoparticles (1.2% injected dose per mass of organ) circulates in the blood after 24 h. EHD co-jetting is a versatile method for the fabrication of nanoparticles for drug delivery. Circulation of the nanoparticles for 24 h is a pre-requisite for subsequent studies to explore defined targeting of the nanoparticles to a specific anatomic site.
Characterization of coals for circulating fluidized bed combustion by pilot scale tests
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lopez, L.A.; Cabanillas, A.C.; Becerra, J.O. de
1995-12-31
The major part of the Spanish coal supply is low range coal with both high ash (20--40%) and sulfur (1--8%) content. The use of this coal, by conventional combustion processes in power and industrial plants, implies a very high environmental impact. The Circulating Fluidized Bed Combustion process enables an efficient use of this coal. The Centro de Investigaciones Energeticas, Medioambientales y Tecnologicas is carrying out a program with the intention of assisting companies in evaluating fuel quality impact, using atmospheric fluidized bed combustion. This paper reviews the major results of the fuel program in order to determine the fluidized bedmore » combustion performance of four fuels. Two lignites, a bituminous coal and an anthracite. The two lignites have very high sulfur content (7% and 8%) but the sulfur is organic in one case and pyritic in the other. The bituminous coal and the anthracite have 1% and 2% sulfur content respectively and the sulfur is pyritic in these cases. In order to reduce the sulfur in the flue gases, a high calcium content limestone has been used as sorbent. The combustion trials have been done in a circulating fluidized bed pilot plant with a 200 mm inside diameter and a height of 6.5 m. The influence of temperature, fluidization velocity, oxygen excess, Ca/S ratio and coal properties have been studied in relation to the combustion efficiency, sulfur retention, CO and NO{sub x} emissions.« less
Erythrocyte migration and gap formation in rabbit blood clots in vitro.
Ueki, T; Yazama, F; Horiuchi, T; Yamada, M
2008-04-01
Thrombolytic agents must be carried by the blood circulation to thrombi to exert their functions. Structural gaps exist between blood vessels and thrombi or in the area surrounding thrombi. Therefore, information about fundamental gap formation at thrombotic areas is critically important for thrombolytic therapy. We previously reported that t-PA accelerates the activities of bovine erythrocytes and hemoglobin (Hb) towards bovine plasminogen activation. Here, we examined gap generation by observing morphological changes during thrombolytic processes in rabbit blood clots deformation of erythrocytes from blood clots and Hb transfer from erythrocytes to serum in vitro. Rabbit venous blood samples (1 ml) were stored under sterile conditions in glass tubes at 37 degrees C for 2, 24, 48 h, 1, and 2 weeks. We examined clot diameter, erythrocyte diameter and number as well as Hb volume in the serum, as well as histological changes in the clots. The diameter of blood clots did not change until 2 weeks after sampling. Erythrocyte diameter decreased within 48 h and at 2 weeks after sampling at the clot surface (p < 0.001) and interior (p < 0.001). The number of erythrocytes in the serum started to increase starting from 24 h after sampling (p < 0.01). Serum Hb volume also gradually increased from 24 h until 2 weeks after sampling (p < 0.01). The erythrocyte envelope became disrupted and cytoplasm started to flow through pores into the serum at 24 h. The results indicated that blood clots are reduced due to clot retraction, erythrocyte dissociation and cytoplasm leakage without a distinct fibrinolytic reaction. These results indicated that gaps start to form between 2 and 24 h after blood clotting.
Termeie, Deborah; Klokkevold, Perry R; Caputo, Angelo A
2015-10-01
The long-term clinical success of a dental implant is dependent upon maintaining sufficient osseointegration to resist forces of occlusion. The purpose of this study was to investigate the effect of implant diameter on stress distribution around screw-type dental implants in mandibular first molar sites using photoelastic models. The design included models with different buccal-lingual dimension. Twelve composite photoelastic models were assembled using 2 different resins to simulate trabecular and cortical bone. Half of the models were fabricated with average dimensions for ridge width and the other half with narrower buccal-lingual dimensions. One internal connection implant (13 mm length) with either a standard (4 mm), wide (5 mm), or narrow (3.3 mm) diameter was embedded in the first molar position of each photoelastic model. Half the implants were tapered and the other half were straight. Full gold crowns in the shape of a mandibular first molar were fabricated and attached to the implants. Vertical and angled loads of 15 and 30 pounds were applied to specific points on the crown. Wide-diameter implants produced the least stress in all ridges while narrow-diameter implants generated the highest stress, especially in narrow ridges. It may be that the volume and quality of bone surrounding implants influences stress distribution with a greater ratio of cortical to trabecular bone, thus providing better support. Models with wide-diameter implants loaded axially had a more symmetrical stress distribution compared to standard and narrow diameter implants. A more asymmetrical stress pattern developed along the entire implant length with angled loads. Implant diameter and ridge width had considerable influence on stress distribution. Narrow-diameter implants produced more stress than wide diameter implants in all conditions tested.
U.S. Laboratory Module (Destiny) for the International Space Station
NASA Technical Reports Server (NTRS)
1997-01-01
In this photograph, the U.S. Laboratory Module (also called Destiny) for the International Space Station (ISS) is shown under construction in the West High Bay of the Space Station manufacturing facility (building 4708) at the Marshall Space Flight Center. The U.S. Laboratory module is the centerpiece of the ISS, where science experiments will be performed in the near-zero gravity of space. The Destiny Module was launched aboard the Space Shuttle orbiter Atlantis (STS-98 mission) on February 7, 2001. The aluminum module is 8.5 meters (28 feet) long and 4.3 meters (14 feet) in diameter. The laboratory consists of three cylindrical sections and two endcones with hatches that will be mated to other station components. A 50.9-centimeter- (20-inch-) diameter window is located on one side of the center module segment. This pressurized module is designed to accommodate pressurized payloads. It has a capacity of 24 rack locations, and payload racks will occupy 13 locations especially designed to support experiments. The ISS is a multidisciplinary laboratory, technology test bed, and observatory that will provide unprecedented undertakings in scientific, technological, and international experimentation.
U.S. Laboratory Module (Destiny) for the International Space Station
NASA Technical Reports Server (NTRS)
1998-01-01
This photograph shows the U.S. Laboratory Module (also called Destiny) for the International Space Station (ISS), in the Space Station manufacturing facility at the Marshall Space Flight Center, being readied for shipment to the Kennedy Space Center. The U.S. Laboratory module is the centerpiece of the ISS, where science experiments will be performed in the near-zero gravity of space. The Destiny Module was launched aboard the Space Shuttle orbiter Atlantis (STS-67 mission) on February 7, 2001. The aluminum module is 8.5 meters (28 feet) long and 4.3 meters (14 feet) in diameter. The laboratory consists of three cylindrical sections and two endcones with hatches that will be mated to other station components. A 50.9-centimeter- (20-inch-) diameter window is located on one side of the center module segment. This pressurized module is designed to accommodate pressurized payloads. It has a capacity of 24 rack locations, and payload racks will occupy 13 locations especially designed to support experiments. The ISS is a multidisciplinary laboratory, technology test bed, and observatory that will provide unprecedented undertakings in scientific, technological, and international experimentation.
U.S. Laboratory Module (Destiny) for the International Space Station
NASA Technical Reports Server (NTRS)
1997-01-01
This photograph shows the U.S. Laboratory Module (also called Destiny) for the International Space Station (ISS), under construction in the Space Station manufacturing facility at the Marshall Space Flight Center. The U.S. Laboratory module is the centerpiece of the ISS, where science experiments will be performed in the near-zero gravity of space. The Destiny Module was launched aboard the Space Shuttle orbiter Atlantis (STS-67 mission) on February 7, 2001. The aluminum module is 8.5 meters (28 feet) long and 4.3 meters (14 feet) in diameter. The laboratory consists of three cylindrical sections and two end cones with hatches that will be mated to other station components. A 50.9-centimeter- (20-inch-) diameter window is located on one side of the center module segment. This pressurized module is designed to accommodate pressurized payloads. It has a capacity of 24 rack locations, and payload racks will occupy 13 locations especially designed to support experiments. The ISS is a multidisciplinary laboratory, technology test bed, and observatory that will provide unprecedented undertakings in scientific, technological, and international experimentation.
International Space Station (ISS)
1998-11-01
This photograph shows the U.S. Laboratory Module (also called Destiny) for the International Space Station (ISS), in the Space Station manufacturing facility at the Marshall Space Flight Center, being readied for shipment to the Kennedy Space Center. The U.S. Laboratory module is the centerpiece of the ISS, where science experiments will be performed in the near-zero gravity of space. The Destiny Module was launched aboard the Space Shuttle orbiter Atlantis (STS-67 mission) on February 7, 2001. The aluminum module is 8.5 meters (28 feet) long and 4.3 meters (14 feet) in diameter. The laboratory consists of three cylindrical sections and two endcones with hatches that will be mated to other station components. A 50.9-centimeter- (20-inch-) diameter window is located on one side of the center module segment. This pressurized module is designed to accommodate pressurized payloads. It has a capacity of 24 rack locations, and payload racks will occupy 13 locations especially designed to support experiments. The ISS is a multidisciplinary laboratory, technology test bed, and observatory that will provide unprecedented undertakings in scientific, technological, and international experimentation.
International Space Station (ISS)
1997-01-01
In this photograph, the U.S. Laboratory Module (also called Destiny) for the International Space Station (ISS) is shown under construction in the West High Bay of the Space Station manufacturing facility (building 4708) at the Marshall Space Flight Center. The U.S. Laboratory module is the centerpiece of the ISS, where science experiments will be performed in the near-zero gravity of space. The Destiny Module was launched aboard the Space Shuttle orbiter Atlantis (STS-98 mission) on February 7, 2001. The aluminum module is 8.5 meters (28 feet) long and 4.3 meters (14 feet) in diameter. The laboratory consists of three cylindrical sections and two endcones with hatches that will be mated to other station components. A 50.9-centimeter- (20-inch-) diameter window is located on one side of the center module segment. This pressurized module is designed to accommodate pressurized payloads. It has a capacity of 24 rack locations, and payload racks will occupy 13 locations especially designed to support experiments. The ISS is a multidisciplinary laboratory, technology test bed, and observatory that will provide unprecedented undertakings in scientific, technological, and international experimentation.
International Space Station (ISS)
1997-11-01
In this photograph, the U.S. Laboratory Module (also called Destiny) for the International Space Station (ISS) is shown under construction in the West High Bay of the Space Station manufacturing facility (building 4708) at the Marshall Space Flight Center. The U.S. Laboratory module is the centerpiece of the ISS, where science experiments will be performed in the near-zero gravity of space. The Destiny Module was launched aboard the Space Shuttle orbiter Atlantis (STS-98 mission) on February 7, 2001. The aluminum module is 8.5 meters (28 feet) long and 4.3 meters (14 feet) in diameter. The laboratory consists of three cylindrical sections and two endcones with hatches that will be mated to other station components. A 50.9-centimeter- (20-inch-) diameter window is located on one side of the center module segment. This pressurized module is designed to accommodate pressurized payloads. It has a capacity of 24 rack locations, and payload racks will occupy 13 locations especially designed to support experiments. The ISS is a multidisciplinary laboratory, technology test bed, and observatory that will provide unprecedented undertakings in scientific, technological, and international experimentation.
International Space Station (ISS)
1997-11-26
This photograph shows the U.S. Laboratory Module (also called Destiny) for the International Space Station (ISS), under construction in the Space Station manufacturing facility at the Marshall Space Flight Center. The U.S. Laboratory module is the centerpiece of the ISS, where science experiments will be performed in the near-zero gravity of space. The Destiny Module was launched aboard the Space Shuttle orbiter Atlantis (STS-67 mission) on February 7, 2001. The aluminum module is 8.5 meters (28 feet) long and 4.3 meters (14 feet) in diameter. The laboratory consists of three cylindrical sections and two end cones with hatches that will be mated to other station components. A 50.9-centimeter- (20-inch-) diameter window is located on one side of the center module segment. This pressurized module is designed to accommodate pressurized payloads. It has a capacity of 24 rack locations, and payload racks will occupy 13 locations especially designed to support experiments. The ISS is a multidisciplinary laboratory, technology test bed, and observatory that will provide unprecedented undertakings in scientific, technological, and international experimentation.
Kurabe, Satoshi; Okamoto, Kouichirou; Suzuki, Kiyotaka; Matsuzawa, Hisothi; Watanabe, Masaki; Suzuki, Yuji; Nakada, Tsutomu; Fujii, Yukihiko
2016-01-01
In patients with cerebral infarction, identifying the distribution of infarction and the relevant artery is essential for ascertaining the underlying vascular pathophysiological mechanisms and preventing subsequent stroke. However, visualization of the basal perforating arteries (BPAs) has had limited success, and simultaneous viewing of background anatomical structures has only rarely been attempted in living human brains. Our study aimed at identifying the BPAs with 7T MRI and evaluating their distribution in the subcortical structures, thereby showing the clinical significance of the technique. Twenty healthy subjects and 1 patient with cerebral infarction involving the posterior limb of the internal capsule (ICpost) and thalamus underwent 3-dimensional fast spoiled gradient-echo sequence as time-of-flight magnetic resonance angiography (MRA) at 7T with a submillimeter resolution. The MRA was modified to detect inflow signals from BPAs, while preserving the background anatomical signals. BPA stems and branches in the subcortical structures and their origins were identified on images, using partial maximum intensity projection in 3 dimensions. A branch of the left posterior cerebral artery (PCA) in the patient ran through both the infarcted thalamus and ICpost and was clearly the relevant artery. In 40 intact hemispheres in healthy subjects, 571 stems and 1,421 branches of BPAs were detected in the subcortical structures. No significant differences in the numbers of stems and branches were observed between the intact hemispheres. The numbers deviated even less across subjects. The distribution analysis showed that the subcortical structures of the telencephalon, such as the caudate nucleus, anterior limb of the internal capsule, and lenticular nucleus, were predominantly supplied by BPAs from the anterior circulation. In contrast, the thalamus, belonging to the diencephalon, was mostly fed by BPAs from the posterior circulation. However, compared with other subcortical structures, the ICpost, which marks the anatomical boundary between the telencephalon and the diencephalon, was supplied by BPAs with significantly more diverse origins. These BPAs originated from the internal carotid artery (23.1%), middle cerebral artery (38.5%), PCA (17.3%), and the posterior communicating artery (21.1%). The modified MRI method allowed the detection of the relevant BPA within the infarcted area in the stroke survivor as well as the BPAs in the subcortical structures of living human brains. Based on in vivo BPA distribution analyses, the ICpost is the transitional zone of the anterior and posterior cerebral circulations. © 2016 S. Karger AG, Basel.
Nakamine, Sakari; Sakai, Hiroshi; Arakaki, Yoshikuni; Yonahara, Michiko; Kaiya, Tadayoshi
2018-01-01
To study the effect of the internal fixation lamp on anterior chamber width measured by anterior segment optical coherence tomography. In a prospective cross sectional observational study, consecutive 22 right eyes of 22 patients (4 men and 18 women) with suspected primary angle closure underwent swept source domain anterior segment optical coherence tomography (AS-OCT), (CASIA SS-1000, Tomey, Nagoya, Japan). Anterior chamber parameters of angle opening distance (AOD), trabecular-iris angle (TIA), angle recess area (ARA) at 500 or 750 µm from scleral spur and pupil diameter were measured by AS-OCT in a three-dimensional mode in 4 quadrants (superior, inferior, temporal and nasal) in dark room setting both with and without internal fixation lamp. Anterior segment parameters of AOD 500 in superior, inferior and temporal quadrants, AOD 750 at superior and nasal, TIA 500 at superior, and inferior and TIA 750 at superior and nasal, and ARA 500 or 750 at superior and inferior with internal fixation lamp were greater and the pupil diameter was significantly (all P < 0.05, paired t test) smaller than when measured without fixation lamp. Internal fixation lamp of the anterior segment OCT makes the pupil constrict and angle wider. When using AS-OCT with usual setting with internal fixation lamp on with eyes in which the anterior chamber angle is narrow but open, it is recommended that the internal fixation lamp be turned off to ensure a clear indication as to whether the angle is open or closed in the dark.
2015-06-01
DNA hybridization using fluorescence,” Biopolymers 95(7), 472–486 (2011). 26. J.-L. Mergny and L. Lacroix, “Analysis of thermal melting curves...Microfilter Platform PRINCIPAL INVESTIGATOR: Gregory W. Faris, Ph.D. CONTRACTING ORGANIZATION : SRI International Menlo Park, CA 94025 REPORT DATE...Ph.D. 5e. TASK NUMBER E-Mail: ! ! 5f. WORK UNIT NUMBER 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) SRI International AND ADDRESS(ES) 8
How Stationary Are the Internal Tides in a High-Resolution Global Ocean Circulation Model?
2014-05-12
Egbert et al., 1994] and that the model global internal tide amplitudes compare well with an altimetric-based tidal analysis [Ray and Byrne, 2010]. The... analysis [Foreman, 1977] applied to the HYCOM total SSH. We will follow Shriver et al. [2012], analyzing the tides along satellite altimeter tracks...spots,’’ the comparison between the model and altimetric analysis is not as good due, in part, to two prob- lems, errors in the model barotropic tides and
Threats to international science
NASA Astrophysics Data System (ADS)
Kisslinger, Carl
The role of nongovernmental organizations (NGOs) as effective agents for promoting world science is seriously threatened. It is ironic that the threat comes from Norway and Denmark, two countries that have demonstrated a deep commitment to individual freedom and human rights. Motivated by a sincere desire to express their strongest disapproval of the “apartheid” policies of the government of the Republic of South Africa, these countries have passed laws that have the effect of rejecting the International Council of Scientific Unions (ICSU) principles of nondiscrimination and free circulation of scientists.
A Simple Diagnostic Model of the Circulation Beneath an Ice Shelf
NASA Astrophysics Data System (ADS)
Jenkins, Adrian; Nøst, Ole Anders
2017-04-01
The ocean circulation beneath ice shelves supplies the heat required to melt ice and exports the resulting freshwater. It therefore plays a key role in determining the mass balance and geometry of the ice shelves and hence the restraint they impose on the outflow of grounded ice from the interior of the ice sheet. Despite this critical role in regulating the ice sheet's contribution to eustatic sea level, an understanding of some of the most basic features of the circulation is lacking. The conventional paradigm is one of a buoyancy-forced overturning circulation, with inflow of warm, salty water along the seabed and outflow of cooled and freshened waters along the ice base. However, most sub-ice-shelf cavities are broad relative to the internal Rossby radius, so a horizontal circulation accompanies the overturning. Primitive equation ocean models applied to idealised geometries produce cyclonic gyres of comparable magnitude, but in the absence of a theoretical understanding of what controls the gyre strength, those solutions can only be validated against each other. Furthermore, we have no understanding of how the gyre circulation should change given more complex geometries. To begin to address this gap in our theoretical understanding we present a simple, linear, steady-state model for the circulation beneath an ice shelf. Our approach in analogous to that of Stommel's classic analysis of the wind-driven gyres, but is complicated by the fact that his most basic assumption of homogeneity is inappropriate. The only forcing on the flow beneath an ice shelf arises because of the horizontal density gradients set up by melting. We thus arrive at a diagnostic model which gives us the depth-dependent horizontal circulation that results from an imposed geometry and density distribution. We describe the development of the model and present some preliminary solutions for the simplest cavity geometries.
Study on interfacial stability and internal flow of a droplet levitated by ultrasonic wave.
Abe, Yutaka; Yamamoto, Yuji; Hyuga, Daisuke; Awazu, Shigeru; Aoki, Kazuyoshi
2009-04-01
For a microgravity environment, new and high-quality material is expected to be manufactured. However, the effect of surface instability and the internal flow become significant when the droplet becomes large. Elucidation of internal flow and surface instability on a levitated droplet is required for the quality improvement of new material manufacturing in a microgravity environment. The objectives of this study are to clarify the interfacial stability and internal flow of a levitated droplet. Surface instability and internal flow are investigated with a large droplet levitated by the ultrasonic acoustic standing wave. The experiment with a large droplet is conducted both under normal gravity and microgravity environments. In the experiment, at first, the characteristics of the levitated droplet are investigated; that is, the relationships among the levitated droplet diameter, the droplet aspect ratio, the displacement of the antinode of the standing wave, and the sound pressure are experimentally measured. As a result, it is clarified that the levitated droplet tends to be located at an optimal position with an optimal shape and diameter. Second, the border condition between the stable and the unstable levitation of the droplet is evaluated by using the existing stability theory. The experimental results qualitatively agree with the theory. It is suggested that the stability of the droplet can be evaluated with the stability theory. Finally, multidimensional visual measurement is conducted to investigate the internal flow structure in a levitated droplet. It is suggested that complex flow with the vortex is generated in the levitated droplet. Moreover, the effect of physical properties of the test fluid on the internal flow structure of the levitated droplet is investigated. As a result, the internal flow structure of the levitated droplet is affected by the surface tension and viscosity.
Variety of RNAs in Peripheral Blood Cells, Plasma, and Plasma Fractions
Kuligina, Elena V.; Bariakin, Dmitry N.; Kozlov, Vadim V.; Richter, Vladimir A.; Semenov, Dmitry V.
2017-01-01
Human peripheral blood contains RNA in cells and in extracellular membrane vesicles, microvesicles and exosomes, as well as in cell-free ribonucleoproteins. Circulating mRNAs and noncoding RNAs, being internalized, possess the ability to modulate vital processes in recipient cells. In this study, with SOLiD sequencing technology, we performed identification, classification, and quantification of RNAs from blood fractions: cells, plasma, plasma vesicles pelleted at 16,000g and 160,000g, and vesicle-depleted plasma supernatant of healthy donors and non-small cell lung cancer (NSCLC) patients. It was determined that 16,000g blood plasma vesicles were enriched with cell-free mitochondria and with a set of mitochondrial RNAs. The variable RNA set of blood plasma 160,000g pellets reflected the prominent contribution of U1, U5, and U6 small nuclear RNAs' fragments and at the same time was characterized by a remarkable depletion of small nucleolar RNAs. Besides microRNAs, the variety of fragments of mRNAs and snoRNAs dominated in the set of circulating RNAs differentially expressed in blood fractions of NSCLC patients. Taken together, our data emphasize that not only extracellular microRNAs but also circulating fragments of messenger and small nuclear/nucleolar RNAs represent prominent classes of circulating regulatory ncRNAs as well as promising circulating biomarkers for the development of disease diagnostic approaches. PMID:28127559
RFQ (radio-frequency quadrupole) accelerator tuning system
Bolie, V.W.
1988-04-12
A cooling system is provided for maintaining a preselected operating temperature in a device, which may be an RFQ accelerator, having a variable heat removal requirement, by circulating a cooling fluid through a cooling system remote from the device. Internal sensors in the device enable an estimated error signal to be generated from parameters which are indicative of the heat removal requirement from the device. Sensors are provided at predetermined locations in the cooling system for outputting operational temperature signals. Analog and digital computers define a control signal functionally related to the temperature signals and the estimated error signal, where the control signal is defined effective to return the device to the preselected operating temperature in a stable manner. The cooling system includes a first heat sink responsive to a first portion of the control signal to remove heat from a major portion of the circulating fluid. A second heat sink is responsive to a second portion of the control to remove heat from a minor portion of the circulating fluid. The cooled major and minor portions of the circulating fluid are mixed in responsive to a mixing portion of the control signal, which is effective to proportion the major and minor portions of the circulating fluid to establish a mixed fluid temperature which is effective to define the preselected operating temperature for the remote device. 3 figs., 2 tabs.
Circulation of core collection monographs in an academic medical library.
Schmidt, C M; Eckerman, N L
2001-04-01
Academic medical librarians responsible for monograph acquisition face a challenging task. From the plethora of medical monographs published each year, academic medical librarians must select those most useful to their patrons. Unfortunately, none of the selection tools available to medical librarians are specifically intended to assist academic librarians with medical monograph selection. The few short core collection lists that are available are intended for use in the small hospital or internal medicine department library. As these are the only selection tools available, however, many academic medical librarians spend considerable time reviewing these collection lists and place heavy emphasis on the acquisition of listed books. The study reported here was initiated to determine whether the circulation of listed books in an academic library justified the emphasis placed on the acquisition of these books. Circulation statistics for "listed" and "nonlisted" books in the hematology (WH) section of Indiana University School of Medicine's Ruth Lilly Medical Library were studied. The average circulation figures for listed books were nearly two times as high as the corresponding figures for the WH books in general. These data support the policies of those academic medical libraries that place a high priority on collection of listed books.
Closed-loop helium circulation system for actuation of a continuously operating heart catheter pump.
Karabegovic, Alen; Hinteregger, Markus; Janeczek, Christoph; Mohl, Werner; Gföhler, Margit
2017-06-09
Currently available, pneumatic-based medical devices are operated using closed-loop pulsatile or open continuous systems. Medical devices utilizing gases with a low atomic number in a continuous closed loop stream have not been documented to date. This work presents the construction of a portable helium circulation addressing the need for actuating a novel, pneumatically operated catheter pump. The design of its control system puts emphasis on the performance, safety and low running cost of the catheter pump. Static and dynamic characteristics of individual elements in the circulation are analyzed to ensure a proper operation of the system. The pneumatic circulation maximizes the working range of the drive unit inside the catheter pump while reducing the total size and noise production.Separate flow and pressure controllers position the turbine's working point into the stable region of the pressure creation element. A subsystem for rapid gas evacuation significantly decreases the duration of helium removal after a leak, reaching subatmospheric pressure in the intracorporeal catheter within several milliseconds. The system presented in the study offers an easy control of helium mass flow while ensuring stable behavior of its internal components.
Circulation of core collection monographs in an academic medical library
Schmidt, Cynthia M.; Eckerman, Nancy L.
2001-01-01
Academic medical librarians responsible for monograph acquisition face a challenging task. From the plethora of medical monographs published each year, academic medical librarians must select those most useful to their patrons. Unfortunately, none of the selection tools available to medical librarians are specifically intended to assist academic librarians with medical monograph selection. The few short core collection lists that are available are intended for use in the small hospital or internal medicine department library. As these are the only selection tools available, however, many academic medical librarians spend considerable time reviewing these collection lists and place heavy emphasis on the acquisition of listed books. The study reported here was initiated to determine whether the circulation of listed books in an academic library justified the emphasis placed on the acquisition of these books. Circulation statistics for “listed” and “nonlisted” books in the hematology (WH) section of Indiana University School of Medicine's Ruth Lilly Medical Library were studied. The average circulation figures for listed books were nearly two times as high as the corresponding figures for the WH books in general. These data support the policies of those academic medical libraries that place a high priority on collection of listed books. PMID:11337947
Elasto-plastic impact of hemispherical shell impacting on hard rigid sphere
NASA Technical Reports Server (NTRS)
Raftopoulos, D. D.; Spicer, A. L.
1976-01-01
An analysis of plastic stress waves for cylindrical metallic projectile in impact is extended to an analysis of a hemispherical shell suffereing plastic deformation during the process of impact. It is assumed that the hemispherical shell with a prescribed launch velocity impinges a fixed rigid sphere of diameter equal to the internal diameter of the shell. The dynamic biaxial state of stress present in the shell during deformation is investigated. The analysis is valuable for studying the state of stress during large plastic deformation of a hemispherical shell.
Fabrication of carbon nanowires by pyrolysis of aqueous solution of sugar within asbestos nanofibers
NASA Astrophysics Data System (ADS)
Butko, V. Yu.; Fokin, A. V.; Nevedomskii, V. N.; Kumzerov, Yu. A.
2015-05-01
Carbon nanowires have been fabricated by pyrolysis of an aqueous solution of sugar in nanochannels of asbestos fibers. Electron microscopy demonstrates that the diameter of these nanochannels corresponds to the diameter of the thinnest of the carbon nanowires obtained. Some of these nanowires have a graphite crystal lattice and internal pores. After asbestos is etched out, the carbon nanowires can retain the original shape of the asbestos fibers. Heating in an inert atmosphere reduces the electrical resistivity of the carbon nanowires to ˜0.035 Ω cm.
Boller, E.R.; Robinson, J.W.
1960-09-13
A fuel element design for a nuclear reactor is presented. The fuel element comprises a cylindrical fuel body having a portion of smaller diameter at each end thereof with an annular flange at the extreme ends of these portions of smaller diameter. An end cap fits over the ends of the fuel body and has an internal annular groove adapted to receive the flange. The fuel body and end caps are disposed in a cup-shaped jacket, a closure disc completing the enclosure of the fuel body, and tht caps are bonded over their entire periphery to the jacket.
1994-01-01
which predicts that cylinder diameter or spacing has any influence on the dielctric spectra once the concer~tration of cylinders is fixed, and thus...differences in column girth and spacing . Furthermore, in applying the Sillars’ model to the present situation no precise meaning is attached to his end...cm). The test cell comprises two duralumin electrodes 9 cm in diameter spaced by 1.4 cm. Thu planar section of the upper half sphere, solid with a
NASA Technical Reports Server (NTRS)
Gelalles, A G; Marsh, E T
1933-01-01
Using the method of weighing fuel collected in a receiver during a definite interval of the injection period, rates of discharge were determined, and the effects noted, when various changes were made in a fuel-injection system. The injection system consisted primarily of a by-pass controlled fuel pump and an automatic injection valve. The variables of the system studied were the pump speed, pump-throttle setting, discharge-orifice diameter, injection-valve opening and closing pressures, and injection-tube length and diameter.
Liu, Yang; Wang, Yue-ru; Wang, Long; Song, Rui-mei; Zhou, Bo; Song, Zhen-shun
2014-01-01
Circulating hepatocellular carcinoma cells may be detected by reverse transcription-polymerase chain reaction. We investigated the relationship between circulating hepatocellular carcinoma cells and hepatoma patient survival after different managements and survival periods. Peripheral vein blood (5 ml) samples were obtained from 113 patients with hepatocellular carcinoma and from 33 control subjects (9 with liver cirrhosis after hepatitis B, 14 with chronic hepatitis B, 10 healthy individuals) between January 1, 2009, and December 31, 2013. To detect circulating hepatocellular carcinoma cells in peripheral blood, alpha-fetoprotein messenger RNA was amplified from total RNA extracted from whole blood by reverse transcription-polymerase chain reaction. Alpha-fetoprotein messenger RNA was detected in 59 blood samples from the hepatocellular carcinoma patients (59/113, 52.2%). In contrast, there were no clinical control subjects whose samples showed detectable alpha-fetoprotein messenger RNA. The presence of alpha-fetoprotein messenger RNA in blood seemed to be correlated with the stage (by TNM classification) of hepatocellular carcinoma, serum alpha-fetoprotein value, and the presence of intrahepatic metastasis, portal vein thrombosis, tumor diameter and/or distant metastasis. In addition, alpha-fetoprotein messenger RNA was detected in the blood of 25 patients showing distant metastasis at extrahepatic organs (100%), in contrast to 32 of 88 cases without metastasis (36.4%). All the patients with hepatocellular carcinoma were followed. Seventeen patients with resection of a T 2 stage hepatocellular carcinoma had a survival of 3.2 years after surgical management, 38 cases with resection of a T3 stage hepatocellular carcinoma had a 1.3-year survival, and only 37 cases with T4 stage disease after different treatments except surgery survived for 0.6 years (P <0.01). The presence of alpha-fetoprotein messenger RNA in peripheral blood may be an indicator of circulating hepatocellular carcinoma cells, which might predict hematogenous spreading metastasis in patients with hepatocellular carcinoma and may be a poor prognostic factor for hepatocellular carcinoma patients.
Classification of Kiwifruit Grades Based on Fruit Shape Using a Single Camera
Fu, Longsheng; Sun, Shipeng; Li, Rui; Wang, Shaojin
2016-01-01
This study aims to demonstrate the feasibility for classifying kiwifruit into shape grades by adding a single camera to current Chinese sorting lines equipped with weight sensors. Image processing methods are employed to calculate fruit length, maximum diameter of the equatorial section, and projected area. A stepwise multiple linear regression method is applied to select significant variables for predicting minimum diameter of the equatorial section and volume and to establish corresponding estimation models. Results show that length, maximum diameter of the equatorial section and weight are selected to predict the minimum diameter of the equatorial section, with the coefficient of determination of only 0.82 when compared to manual measurements. Weight and length are then selected to estimate the volume, which is in good agreement with the measured one with the coefficient of determination of 0.98. Fruit classification based on the estimated minimum diameter of the equatorial section achieves a low success rate of 84.6%, which is significantly improved using a linear combination of the length/maximum diameter of the equatorial section and projected area/length ratios, reaching 98.3%. Thus, it is possible for Chinese kiwifruit sorting lines to reach international standards of grading kiwifruit on fruit shape classification by adding a single camera. PMID:27376292
Toro, Luis; Barrientos, Víctor; León, Pablo; Rojas, Macarena; Gonzalez, Magdalena; González-Ibáñez, Alvaro; Illanes, Sebastián; Sugikawa, Keigo; Abarzúa, Néstor; Bascuñán, César; Arcos, Katherine; Fuentealba, Carlos; Tong, Ana María; Elorza, Alvaro A; Pinto, María Eugenia; Alzamora, Rodrigo; Romero, Carlos; Michea, Luis
2018-05-01
It is accepted that osteoblasts/osteocytes are the major source for circulating fibroblast growth factor 23 (FGF23). However, erythropoietic cells of bone marrow also express FGF23. The modulation of FGF23 expression in bone marrow and potential contribution to circulating FGF23 has not been well studied. Moreover, recent studies show that plasma FGF23 may increase early during acute kidney injury (AKI). Erythropoietin, a kidney-derived hormone that targets erythropoietic cells, increases in AKI. Here we tested whether an acute increase of plasma erythropoietin induces FGF23 expression in erythropoietic cells of bone marrow thereby contributing to the increase of circulating FGF23 in AKI. We found that erythroid progenitor cells of bone marrow express FGF23. Erythropoietin increased FGF23 expression in vivo and in bone marrow cell cultures via the homodimeric erythropoietin receptor. In experimental AKI secondary to hemorrhagic shock or sepsis in rodents, there was a rapid increase of plasma erythropoietin, and an induction of bone marrow FGF23 expression together with a rapid increase of circulating FGF23. Blockade of the erythropoietin receptor fully prevented the induction of bone marrow FGF23 and partially suppressed the increase of circulating FGF23. Finally, there was an early increase of both circulating FGF23 and erythropoietin in a cohort of patients with severe sepsis who developed AKI within 48 hours of admission. Thus, increases in plasma erythropoietin and erythropoietin receptor activation are mechanisms implicated in the increase of plasma FGF23 in AKI. Copyright © 2017 International Society of Nephrology. Published by Elsevier Inc. All rights reserved.
Using information theory to assess the communicative capacity of circulating microRNA.
Finn, Nnenna A; Searles, Charles D
2013-10-11
The discovery of extracellular microRNAs (miRNAs) and their transport modalities (i.e., microparticles, exosomes, proteins and lipoproteins) has sparked theories regarding their role in intercellular communication. Here, we assessed the information transfer capacity of different miRNA transport modalities in human serum by utilizing basic principles of information theory. Zipf Statistics were calculated for each of the miRNA transport modalities identified in human serum. Our analyses revealed that miRNA-mediated information transfer is redundant, as evidenced by negative Zipf's Statistics with magnitudes greater than one. In healthy subjects, the potential communicative capacity of miRNA in complex with circulating proteins was significantly lower than that of miRNA encapsulated in circulating microparticles and exosomes. Moreover, the presence of coronary heart disease significantly lowered the communicative capacity of all circulating miRNA transport modalities. To assess the internal organization of circulating miRNA signals, Shannon's zero- and first-order entropies were calculated. Microparticles (MPs) exhibited the lowest Shannon entropic slope, indicating a relatively high capacity for information transfer. Furthermore, compared to the other miRNA transport modalities, MPs appeared to be the most efficient at transferring miRNA to cultured endothelial cells. Taken together, these findings suggest that although all transport modalities have the capacity for miRNA-based information transfer, MPs may be the simplest and most robust way to achieve miRNA-based signal transduction in sera. This study presents a novel method for analyzing the quantitative capacity of miRNA-mediated information transfer while providing insight into the communicative characteristics of distinct circulating miRNA transport modalities. Published by Elsevier Inc.
ERIC Educational Resources Information Center
Singh, Michael; Huang, Xiaowen
2013-01-01
To ratify possibilities for worldly linguistic connectivities and critical theorising there is a need to forgo the exclusionary preoccupation with English and Western critical theories. The debates informing the international circulation of Bourdieu's (1977, 1993, 1999, 2004) ideas provide methodological lessons for moving from critical sociology…
Concentration Response Curve for Ozone related Mortality at High Concentrations Ana G. Rappold, James Crooks, Lucas M. Neas Background Rising temperatures and decreased global circulation in the upcoming decades are expected to have a detrimental impact on air quality, particular...
Crushing characteristics of composite tubes with 'near-elliptical' cross sections
NASA Astrophysics Data System (ADS)
Farley, Gary L.; Jones, Robert M.
1992-01-01
An experimental investigation was conducted to determine whether the energy-absorption capability of near-elliptical cross-section composite tubular specimens is a function of included angle. Each half of the near-elliptical cross-section tube is a segment of a circle. The included angle is the angle created by radial lines extending from the center of the circular segment to the ends of the circular segment. Graphite- and Kevlar-reinforced epoxy material was used to fabricate specimens. Tube internal diameters were 2.54, 3.81, and 7.62 cm, and included angles were 180, 160, 135, and 90 degrees. Based upon the test results from these tubes, energy-absorption capability increased between 10 and 30 percent as included angle decreased between 180 and 90 degrees for the materials evaluated. Energy-absorption capability was a decreasing nonlinear function of the ratio of tube internal diameter to wall thickness.
Stable density stratification solar pond
NASA Technical Reports Server (NTRS)
Lansing, F. L. (Inventor)
1985-01-01
A stable density-stratification solar pond for use in the collection and storage of solar thermal energy including a container having a first section characterized by an internal wall of a substantially cylindrical configuration and a second section having an internal wall of a substantially truncated conical configuration surmounting the first section in coaxial alignment therewith, the second section of said container being characterized by a base of a diameter substantially equal to the diameter of the first section and a truncated apex defining a solar energy acceptance opening is discussed. A body of immiscible liquids is disposed within the container and comprises a lower portion substantially filling the first section of the container and an upper portion substantially filling the second section of the container, said lower portion being an aqueous based liquid of a darker color than the upper portion and of a greater density. A protective cover plate is removably provided for covering the acceptance opening.
Argon hollow cathode. M.S. Thesis; [propellants for ion bombardment thrusters
NASA Technical Reports Server (NTRS)
Rehn, L. A.
1976-01-01
An interest in alternate propellants for ion-bombardment thrusters, together with ground applications of this technology, has prompted consideration of argon. Several variations of conventional hollow cathode designs were tried, but the bulk of the testing used a hollow tube with an internal tungsten emitter and an orifice at one end. The optimum cathode tube diameter was found to be in the range of 1.0-2.5 cm, somewhat larger than those used for cesium and mercury. Optimum orifice diameter depended on operating conditions, and varied from 0.5 to 5 mm. Biasing the internal emitter negative relative to the cathode chamber reduced the external coupling voltage and should therefore improve orifice lifetime. The expected effect of this bias on emitter lifetime was less clear. Lifetime tests were not conducted as part of this investigation, but several designs show promise of long lifetime in specific applications.
Thermal stability of Pt nanoclusters interacting to carbon sublattice
NASA Astrophysics Data System (ADS)
Baidyshev, V. S.; Gafner, Yu. Ya.; Gafner, S. L.; Redel, L. V.
2017-12-01
The catalytic activity of Pt clusters is dependent not only on the nanoparticle size and its composition, but also on its internal structure. To determine the real structure of the nanoparticles used in catalysis, the boundaries of the thermal structure stability of Pt clusters to 8.0 nm in diameter interacting with carbon substrates of two types: a fixed α-graphite plane and a mobile substrate with the diamond structure. The effect of a substrate on the processes melting of Pt nanoclusters is estimated. The role of the cooling rate in the formation of the internal structure of Pt clusters during crystallization is studied. The regularities obtained in the case of "free" Pt clusters and Pt clusters on a substrate are compared. It is concluded that platinum nanoparticles with diameter D ≤ 4.0 nm disposed on a carbon substrate conserve the initial fcc structure during cooling.
A parametric investigation on a solar dish-Stirling system
NASA Astrophysics Data System (ADS)
Gholamalizadeh, Ehsan; Chung, Jae Dong
2018-06-01
The aim of this study is to analyze the performance of a solar dish-Stirling system. A mathematical model for the overall thermal efficiency of the solar-powered high-temperature-differential dish-Stirling engine is described. This model takes into account pressure losses due to fluid friction which is internal to the engine, mechanical friction between the moving parts, actual heat transfer includes the effects of both internal and external irreversibilities of the cycle and finite regeneration processes time. Validation was done through comparison with the actual power output of the "EuroDish" system. Moreover, the effects of dish diameter and working fluid on the performance of the system were studied. An increase of about 7.2% was observed for the power output using hydrogen as the working fluid rather than helium. Also, the focal distance for any diameter of dish was calculated.
Šebestová, Andrea; Petr, Jan
2017-12-01
The combination of capillaries with different internal diameters was used to accelerate the separation of enantiomers in capillary electrophoresis. Separation of R,S-1,1'-binaphthalene-2,2'-diyl hydrogen phosphate using isopropyl derivative of cyclofructan 6 was studied as a model system. The best separation conditions included 500 mM sodium borate pH 9.5 with 60 mM concentration of the chiral selector. Separation lasted approx. 1.5 min using the combination of 50 and 100 μm id capillaries of 9.7 cm and 22.9 cm, respectively. It allowed approx. 12-fold acceleration in comparison to the traditional long-end separation mainly due to the higher electroosmotic flow generated in the connected capillaries. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Technical Reports Server (NTRS)
1982-01-01
Williams International's F107 fanjet engine is used in two types of cruise missiles, Navy-sponsored Tomahawk and the Air Force AGM-86B Air Launched Cruise Missile (ALCM). Engine produces about 600 pounds thrust, is one foot in diameter and weighs only 141 pounds. Design was aided by use of a COSMIC program in calculating airflows in engine's internal ducting, resulting in a more efficient engine with increased thrust and reduced fuel consumption.
Creep-rupture tests of internally pressurized Inconel 702 tubes
NASA Technical Reports Server (NTRS)
Gumto, K. H.
1973-01-01
Seamless Inconel 702 tubes with 0.375-in. outside diameter and 0.025-in. wall thickness were tested to failure at temperatures from 1390 to 1575 F and internal helium pressures from 700 to 1800 psi. Lifetimes ranged from 29 to 1561 hr. The creep-rupture strength of the tubes was about 70 percent lower than that of sheet specimens. Larson-Miller correlations and photomicrographs of some specimens are presented.
Wang, Gang; Li, Le; Ma, Yuan; Qu, Feng-Zhi; Zhu, Hong; Lv, Jia-Chen; Jia, Yue-Hui; Wu, Lin-Feng; Sun, Bei
2016-08-01
To compare the early efficacy of external versus internal pancreatic duct drainage after pancreaticoduodenectomy (PD), providing clinical evidence for selecting the optimal approach to pancreatic duct drainage. The clinical data of 395 consecutive patients undergoing PD from 2006 to 2013 were analyzed retrospectively. All the patients were divided into external and internal drainage group. Intraoperative blood loss, surgery duration, postoperative hospitalization duration, mortality rate, PF, and other complications were compared between the two groups. The perioperative relative risk factors that might induce PF were analyzed. External drainage significantly reduced the incidences of post-PD PF, delayed gastric emptying, abdominal infection, bowel obstruction, overall complications, and shortened the healing time of PF (p < .05). The univariate analysis showed that the pancreatic duct drainage method, body mass index (BMI), preoperative serum bilirubin level, perioperative blood transfusion, pancreaticojejunostomy approach, pancreatic texture, pancreatic duct diameter, and primary disease differed markedly between the two groups (p < .05). A multivariate analysis revealed that BMI ≥ 25 kg/m(2), internal pancreatic duct drainage, pancreatic duct diameter <3 mm, soft pancreatic texture, and ampullary disease were independent risk factors for PF. External pancreatic duct drainage can effectively reduce the morbidity of PF and overall complications after PD.
Glutathione-responsive core cross-linked micelles for controlled cabazitaxel delivery
NASA Astrophysics Data System (ADS)
Han, Xiaoxiong; Gong, Feirong; Sun, Jing; Li, Yueqi; Liu, XiaoFei; Chen, Dan; Liu, Jianwen; Shen, Yaling
2018-02-01
Stimulus-responsive polymeric micelles (PMs) have recently received attention due to the controlled delivery of drug or gene for application in cancer diagnosis and treatment. In this work, novel glutathione-responsive PMs were prepared to encapsulate hydrophobic antineoplastic drug, cabazitaxel (CTX), to improve its solubility and toxicity. These CTX-loaded micelles core cross-linked by disulfide bonds (DCL-CTX micelles) were prepared by a novel copolymer, lipoic acid grafted mPEG-PLA. These micelles had regular spherical shape, homogeneous diameter of 18.97 ± 0.23 nm, and a narrow size distribution. The DCL-CTX micelles showed high encapsulation efficiency of 98.65 ± 1.77%, and the aqueous solubility of CTX was improved by a factor of 1:1200. In vitro release investigation showed that DCL-CTX micelles were stable in the medium without glutathione (GSH), whereas the micelles had burst CTX release in the medium with 10 mM GSH. Cell uptake results implied that DCL-CTX micelles were internalized into MCF-7 cells through clathrin-mediated endocytosis and released cargo more effectively than Jevtana (commercially available CTX) owing to GSH-stimulated degradation. In MTT assay against MCF-7 cells, these micelles inhibited tumor cell proliferation more effectively than Jevtana due to their GSH-responsive CTX release. All results revealed the potency of GSH-responsive DCL-CTX micelles for stable delivery in blood circulation and for intracellular GSH-trigged release of CTX. Therefore, DCL-CTX micelles show potential as safe and effective CTX delivery carriers and as a cancer chemotherapy formulation.
Cueto, Marcos
2016-01-01
This article examines the history of Mexican physiology during the period 1910-60 when two noted investigators, José J. Izquierdo, first, and Arturo Rosenblueth, second, inscribed their work into an international network of medical research. The network had at its center the laboratory of Walter B. Cannon at Harvard University. The Rockefeller Foundation was its main supporter. Rosenblueth was quite familiar with the network because he worked with Cannon at Harvard for over ten years before returning to Mexico in the early 1940s. Izquierdo and Rosenblueth developed different strategies to face adverse conditions such as insufficient laboratory equipment, inadequate library resources, a small scientific community, and ephemeral political support. Both acquired local influence and international prestige, but the sources of financial and academic power remained in the United States. This case study provides insight into the circulation of scientific ideas and practices in an important Latin American country and suggests that the world's circulation of science among industrial and developing nations during the mid-twentieth century was intrinsically asymmetric but opened temporary opportunities for talented individuals and groups of researchers. © The Author 2015. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Van Der Hoogte, Arjo Roersch; Pieters, Toine
2016-04-01
In this study, we will show how a Dutch pharmaceutical consortium of cinchona producers and quinine manufacturers was able to capitalize on one of the first international public health campaigns to fight malaria, thereby promoting the sale of quinine, an antimalarial medicine. During the 1920s and 1930s, the international markets for quinine were controlled by this Dutch consortium, which was a transoceanic cinchona-quinine enterprise centered in the Cinchona Bureau in the Netherlands. We will argue that during the interwar period, the Cinchona Bureau became the decision-making center of this Dutch cinchona-quinine pharmaceutical enterprise and monopolized the production and trade of an essential medicine. In addition, we will argue that capitalizing on the international public health campaign in the fight against malaria by the Dutch cinchona-quinine enterprise via the Cinchona Bureau can be regarded as an early example of corporate colonization of public health by a private pharmaceutical consortium. Furthermore, we will show how commercial interests prevailed over scientific interests within the Dutch cinchona-quinine consortium, thus interfering with and ultimately curtailing the transoceanic circulation of knowledge in the Dutch empire. © The Author 2015. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Oxidation at through-hole defects in fused slurry silicide coated columbium alloys FS-85 and Cb-752
NASA Technical Reports Server (NTRS)
Levine, S. R.
1973-01-01
Metal recession and interstitial contamination at 0.08-centimeter-diameter through-hole intentional defects in fused slurry silicide coated FS-85 and Cb-752 columbium alloys were studied to determine the tolerance of these materials to coating defects. Five external pressure reentry simulation exposures to 1320 C and 4.7 x 1,000 N/sq m (maximum pressure) resulted in a consumed metal zone having about twice the initial defect diameter for both alloys with an interstitial contamination zone extending about three to four initial defect diameters. Self-healing occurred in the 1.33 x 10 N/sq m, 1320 C exposures and to a lesser extent in internal pressure reentry cycles to 1320 C and 1.33 x 100 N/sq m (maximum pressure).
Modeling Czochralski growth of oxide crystals for piezoelectric and optical applications
NASA Astrophysics Data System (ADS)
Stelian, C.; Duffar, T.
2018-05-01
Numerical modeling is applied to investigate the impact of crystal and crucible rotation on the flow pattern and crystal-melt interface shape in Czochralski growth of oxide semi-transparent crystals used for piezoelectric and optical applications. Two cases are simulated in the present work: the growth of piezoelectric langatate (LGT) crystals of 3 cm in diameter in an inductive furnace, and the growth of sapphire crystals of 10 cm in diameter in a resistive configuration. The numerical results indicate that the interface shape depends essentially on the internal radiative heat exchanges in the semi-transparent crystals. Computations performed by applying crystal/crucible rotation show that the interface can be flattened during LGT growth, while flat-interface growth of large diameter sapphire crystals may not be possible.
NASA Astrophysics Data System (ADS)
tongqing, Wu; liang, Li; xinjian, Liu; Xu, nianchun; Tian, Mao
2018-03-01
Self-balanced method is carried out on the large diameter rock-socketed filling piles of high-pile wharf at Inland River, to explore the distribution laws of load-displacement curve, pile internal force, pile tip friction resistance and pile side friction resistance under load force. The results showed that: the tip resistance of S1 and S2 test piles accounted for 53.4% and 53.6% of the pile bearing capacity, respectively, while the total side friction resistance accounted for 46.6% and 46.4% of the pile bearing capacity, respectively; both the pile tip friction resistance and pile side friction resistance can be fully played, and reach to the design requirements. The reasonability of large diameter rock-socketed filling design is verified through test analysis, which can provide basis for the optimization of high-pile wharf structural type, thus reducing the wharf project cost, and also providing reference for the similar large diameter rock-socketed filling piles of high-pile wharf at Inland River.
NASA Astrophysics Data System (ADS)
Lim, Sangyeob; Shin, Chansun; Heo, Jungwoo; Kim, Sangeun; Jin, Hyung-Ha; Kwon, Junhyun; Guim, Hwanuk; Jang, Dongchan
2018-05-01
HT9, a ferritic/martensitic steel, is a candidate structural material for next-generation advanced reactors. Its microstructure is a typical tempered martensite showing a hierarchical lath-block-and-packet structure. We investigate the specimen size effect and strengthening contribution of various microstructural boundaries manifested in the compression tests of micropillars with diameters ranging from 0.5 to 17 μm. It is observed that micropillars with diameters larger than 3 μm show uniform deformation and plastic flow curves comparable to the bulk flow curve. Localized deformation by a few pronounced slip bands occurs in micropillars with diameters smaller than 1 μm, and the yield strength is reduced. Careful examination of the sizes of the microstructural features and cross-sections of the micropillars shows that the block boundaries are the most effective strengthening boundaries in tempered martensitic microstructure. The bulk mechanical properties of HT9 can be evaluated from a micropillar with diameter as low as 3 μm.
Przyłuska, Jolanta
2006-01-01
A high classification of scientific journals in the ranking of international transfer of knowledge is reflected by other researchers' citations. The International Journal of Occupational Medicine and Environmental Health (IJOMEH) is an international professional quarterly focused on such areas as occupational medicine, toxicology and environmental health edited in Poland. IJOMEH, published in English, is indexed in numerous world information services (MEDLINE, EMBASE, EBSCO, SCOPUS). This paper presents the contribution of IJOMEH publications to the world circulation of scientific information based on the citation analysis. The analysis, grounded on the SCOPUS database, assessed the frequency of citations in the years 1996-2005. Journals in which they have been cited were retrieved and their list is also included.
OVERVIEW OF REMAINS OF DEWATERING BUILDING, LOOKING SOUTH TOWARD CYANIDE ...
OVERVIEW OF REMAINS OF DEWATERING BUILDING, LOOKING SOUTH TOWARD CYANIDE PROCESSING AREA. WATER USED IN PROCESSING AT THE STAMP MILL WAS CIRCULATED HERE FOR RECLAMATION. SANDS WERE SETTLED OUT AND DEPOSITED IN ONE OF TWO TAILINGS HOLDING AREAS. CLEARED WATER WAS PUMPED BACK TO THE MILL FOR REUSE. THIS PROCESS WAS ACCOMPLISHED BY THE USE OF SETTLING CONES, EIGHT FEET IN DIAMETER AND SIX FEET HIGH. THE REMAINS OF FOUR CONES ARE AT CENTER, BEHIND THE TANK IN THE FOREGROUND. TO THE LEFT IS THE MAIN ACCESS ROAD BETWEEN THE MILL AND THE PARKING LOT. - Keane Wonder Mine, Park Route 4 (Daylight Pass Cutoff), Death Valley Junction, Inyo County, CA
SPOUTED BED DESIGN CONSIDERATIONS FOR COATED NUCLEAR FUEL PARTICLES
DOE Office of Scientific and Technical Information (OSTI.GOV)
Marshall, Douglas W.
High Temperature Gas Cooled Reactors (HTGRs) are fueled with tristructural isotropic (TRISO) coated nuclear fuel particles embedded in a carbon-graphite fuel body. TRISO coatings consist of four layers of pyrolytic carbon and silicon carbide that are deposited on uranium ceramic fuel kernels (350µm – 500µm diameters) in a concatenated series of batch depositions. Each layer has dedicated functions such that the finished fuel particle has its own integral containment to minimize and control the release of fission products into the fuel body and reactor core. The TRISO coatings are the primary containment structure in the HTGR reactor and must havemore » very high uniformity and integrity. To ensure high quality TRISO coatings, the four layers are deposited by chemical vapor deposition (CVD) using high purity precursors and are applied in a concatenated succession of batch operations before the finished product is unloaded from the coating furnace. These depositions take place at temperatures ranging from 1230°C to 1550°C and use three different gas compositions, while the fuel particle diameters double, their density drops from 11.1 g/cm3 to 3.0 g/cm3, and the bed volume increases more than 8-fold. All this is accomplished without the aid of sight ports or internal instrumentation that could cause chemical contamination within the layers or mechanical damage to thin layers in the early stages of each layer deposition. The converging section of the furnace retort was specifically designed to prevent bed stagnation that would lead to unacceptably high defect fractions and facilitate bed circulation to avoid large variability in coating layer dimensions and properties. The gas injection nozzle was designed to protect precursor gases from becoming overheated prior to injection, to induce bed spouting and preclude bed stagnation in the bottom of the retort. Furthermore, the retort and injection nozzle designs minimize buildup of pyrocarbon and silicon carbide on the retort wall and manage nozzle orifice accretions. The equipment and operating methods have yielded very good reproducibility in the TRISO coated particles batches.« less
Design of internal screw thread measuring device based on the Three-Line method principle
NASA Astrophysics Data System (ADS)
Hu, Dachao; Chen, Jianguo
2010-08-01
In accordance with the principle of Three-Line, this paper analyze the correlation of every main parameter of internal screw thread, and then designed a device to measure the main parameters of internal screw thread. Internal thread parameters, such as the pitch diameter, thread angle and screw-pitch of common screw thread, terraced screw thread, zigzag screw thread were obtained through calculation and measurement. The practical applications have proved that this device is convenience to use, and the measurements have a high accuracy. Meanwhile, the application for the patent of invention has been accepted by the Patent Office (Filing number: 200710044081.5).
Acute Hemodynamic Effects of the Braslet-M Device on the International Space Station
NASA Technical Reports Server (NTRS)
Hamilton, Douglas R.; Barratt, Michael R.; Sargsyan, Ashot E.; Garcia, Kathleen M.; Ebert, Douglas; Martin, David; Dulchavsky, Scott A.; Duncan, J. Michael
2009-01-01
The Braslet-M occlusion device is prescribed for cosmonauts as a countermeasure for early phases of spaceflight to temporarily alleviate symptoms associated with the cephalad fluid shift. Using a multipurpose ultrasound (US) device onboard, we assessed the acute hemodynamic effects of the Bracelet-M device on a long duration International Space Station (ISS) crewmember. Methods A combination of just-in-time training and real-time remote expert assistance was used to conduct the imaging procedures. An HDI-5000 imager (Philips, Bothell, WA) was used, provided by the ISS Human Research Facility. Superficial femoral artery (SFA), femoral vein (FV) flow spectra were obtained at mid-thigh level. Left ventricle was imaged through the apical 4-chamber view, with Color M-Mode to measure propagation velocity (V (p)). After 10 minutes of Bracelet-M use, data collection was repeated. All data were transmitted in DICOM format to ground for analysis. Results With Braslet-M, cardiac V(p) slope decreased (56ms to 42ms). A stagnation signature in the FV was seen suggesting impeded flow (rouleaux formation, too-low-to-measure velocity, and increase in diameter). Quadri-phasic flow in SFA was seen both before and after Braslet-M application. Velocities in the SFA decreased with Braslet-M (65cm/sec to 52cm/sec) and so did the time velocity integrals (16.97 to 12.4); the flow pattern spoke of resistivity increase in the vascular bed. Conclusion In the long duration ISS crewmember we observed effects of lower extremity venous occlusion through both central and peripheral indicators. A part of circulating volume transferred to peripheral potential vascular space. Impediment to venous outflow was demonstrated objectively, with a commensurate change in the flow pattern of the main feeding artery. Central volume reduction caused lower V(p). Additional studies are warranted to determine the time course of the changes and the dynamics in interstitial fluid sequestration, as well as the safe levels and duration of the compression forces.
Streeter, Jason E.; Gessner, Ryan; Miles, Iman; Dayton, Paul A.
2010-01-01
Molecular imaging with ultrasound relies on microbubble contrast agents (MCAs) selectively adhering to a ligand-specific target. Prior studies have shown that only small quantities of microbubbles are retained at their target sites, therefore, enhancing contrast sensitivity to low concentrations of microbubbles is essential to improve molecular imaging techniques. In order to assess the effect of MCA diameter on imaging sensitivity, perfusion and molecular imaging studies were performed with microbubbles of varying size distributions. To assess signal improvement and MCA circulation time as a function of size and concentration, blood perfusion was imaged in rat kidneys using nontargeted size-sorted MCAs with a Siemens Sequoia ultrasound system (Siemans, Mountain View, CA) in cadence pulse sequencing (CPS) mode. Molecular imaging sensitivity improvements were studied with size-sorted αvβ3-targeted bubbles in both fibrosarcoma and R3230 rat tumor models. In perfusion imaging studies, video intensity and contrast persistence was ≈8 times and ≈3 times greater respectively, for “sorted 3-micron” MCAs (diameter, 3.3 ± 1.95 μm) when compared to “unsorted” MCAs (diameter, 0.9 ± 0.45 μm) at low concentrations. In targeted experiments, application of sorted 3-micron MCAs resulted in a ≈20 times video intensity increase over unsorted populations. Tailoring size-distributions results in substantial imaging sensitivity improvement over unsorted populations, which is essential in maximizing sensitivity to small numbers of MCAs for molecular imaging. PMID:20236606
On the formation of vortex rings in coaxial tubes
NASA Astrophysics Data System (ADS)
Gan, Lian
2011-11-01
The formation of vortex rings within coaxial tubes of different diameter is investigated experimentally and numerically. PIV measurements were carried out in a water tank equipped with a piston-cylinder apparatus used to generate vortex rings inside a series of coaxial tubes with tube to piston diameter ratios, DT / D , ranging from 4 to 1.5. In order to distinguish between the effect confinement has on the formation of isolated vortex rings from those formed with a trailing jet flow, non- dimensional stroke ratios below and above the formation number were investigated, L / D = 2 . 5 and 10 respectively. For DT / D > 2 and L / D s below the formation number the kinematics of the vortex rings follow classical inviscid theory in so much as their self-induced velocity decreases linearly with decreasing tube diameter in accordance with the image theorem. For DT / D <= 2 boundary layer separation along the tube wall begins to interfere with the vortex during its roll-up phase. For vortex rings below the formation number, the vortex core is briefly arrested upon completion of the piston stroke. On the other hand, long L / D s give rise to even more complex dynamics. When DT / D = 2 the interaction between boundary layer and the starting jet acts to suppress vortex ring formation altogether. However, as confinement is increased further to DT / D = 1 . 5 the formation of a lead vortex ring re-appears but with a circulation lower than the formation number before rapidly decaying.
Size-amplified acoustofluidic separation of circulating tumor cells with removable microbeads
NASA Astrophysics Data System (ADS)
Liu, Huiqin; Ao, Zheng; Cai, Bo; Shu, Xi; Chen, Keke; Rao, Lang; Luo, Changliang; Wang, Fu-Bin; Liu, Wei; Bondesson, Maria; Guo, Shishang; Guo, Feng
2018-06-01
Isolation and analysis of rare circulating tumor cells (CTCs) is of great interest in cancer diagnosis, prognosis, and treatment efficacy evaluation. Acoustofluidic cell separation becomes an attractive method due to its contactless, noninvasive, simple, and versatile features. However, the indistinctive physical difference between CTCs and normal blood cells limits the purity of CTCs using current acoustic methods. Herein, we demonstrate a size-amplified acoustic separation and release of CTCs with removable microbeads. CTCs selectively bound to size-amplifiers (40 μm-diameter anti-EpCAM/gelatin-coated SiO2 microbeads) have significant physical differences (size and mechanics) compared to normal blood cells, resulting in an amplification of acoustic radiation force approximately a hundredfold over that of bare CTCs or normal blood cells. Therefore, CTCs can be efficiently sorted out with size-amplifiers in a traveling surface acoustic wave microfluidic device and released from size-amplifiers by enzymatic degradation for further purification or downstream analysis. We demonstrate a cell separation from blood samples with a total efficiency (E total) of ∼ 77%, purity (P) of ∼ 96%, and viability (V) of ∼83% after releasing cells from size-amplifiers. Our method substantially improves the emerging application of rare cell purification for translational medicine.
Docetaxel-loaded multilayer nanoparticles with nanodroplets for cancer therapy.
Oh, Keun Sang; Kim, Kyungim; Yoon, Byeong Deok; Lee, Hye Jin; Park, Dal Yong; Kim, Eun-Yeong; Lee, Kiho; Seo, Jae Hong; Yuk, Soon Hong
2016-01-01
A mixture of docetaxel (DTX) and Solutol(®) HS 15 (Solutol) transiently formed nanodroplets when it was suspended in an aqueous medium. However, nanodroplets that comprised DTX and Solutol showed a rapid precipitation of DTX because of their unstable characteristics in the aqueous medium. The incorporation of nanodroplets that comprised DTX and Solutol through vesicle fusion and subsequent stabilization was designed to prepare multilayer nanoparticles (NPs) with a DTX-loaded Solutol nanodroplet (as template NPs) core for an efficient delivery of DTX as a chemotherapeutic drug. As a result, the DTX-loaded Solutol nanodroplets (~11.7 nm) were observed to have an increased average diameter (from 11.7 nm to 156.1 nm) and a good stability of the hydrated NPs without precipitation of DTX by vesicle fusion and multilayered structure, respectively. Also, a long circulation of the multilayer NPs was observed, and this was due to the presence of Pluronic F-68 on the surface of the multilayer NPs. This led to an improved antitumor efficacy based on the enhanced permeation and retention effect. Therefore, this study indicated that the multilayer NPs have a considerable potential as a drug delivery system with an enhanced therapeutic efficacy by blood circulation and with low side effects.
Rapid ice drilling with continual air transport of cuttings and cores: General concept
NASA Astrophysics Data System (ADS)
Wang, Rusheng; An, Liu; Cao, Pinlu; Chen, Baoyi; Sysoev, Mikhail; Fan, Dayou; Talalay, Pavel G.
2017-12-01
This article describes the investigation of the feasibility of rapid drilling in ice sheets and glaciers to depths of up to 600 m, with cuttings and cores continually transported by air reverse circulation. The method employs dual wall drill rods. The inner tubes provide a continuous pathway for the chips and cores from the drill bit face to the surface. To modify air reverse circulation drilling technology according to the conditions of a specific glacier, original cutter drill bits and air processing devices (air-cooled aftercoolers, air receivers, coalescing filters, desiccant dryers) should be used. The airflow velocity for conveying a 60-mm diameter and 200-mm long ice core should not be lower than 22.5 m/s, and the minimal airflow rate for continual chip and cores transport is 6.8 m3/min at 2.3-2.6 MPa. Drilling of a 600-m deep hole can be accomplished within 1.5 days in the case of 24 h drilling operations. However, to avoid sticking while drilling through ice, the drilling depth should to be limited to 540 m at a temperature of -20 °C and to 418 m at a temperature of -10 °C.
Ohno, Kohji; Akashi, Tatsuki; Tsujii, Yoshinobu; Yamamoto, Masaya; Tabata, Yasuhiko
2012-03-12
The physiological properties of polymer brush-afforded silica particles prepared by surface-initiated living radical polymerization were investigated in terms of the circulation lifetime in the blood and distribution in tissues. Hydrophilic polymers consisting mainly of poly(poly(ethylene glycol) methyl ether methacrylate) were grafted onto silica particles by surface-initiated atom transfer radical polymerization that was mediated by a copper complex to produce hairy hybrid particles. A series of hybrid particles was synthesized by varying the diameter of the silica core and the chain length of the polymer brush to examine the relationship between their physicochemical and physiological properties. The hybrid particles were injected intravenously into mice to investigate systematically their blood clearance and body distribution. It was revealed that the structural features of the hybrid particles significantly affected their in vivo pharmacokinetics. Some hybrid particles exhibited an excellently prolonged circulation lifetime in the blood with a half life of ∼20 h. When such hybrid particles were injected intravenously into a tumor-bearing mouse, they preferentially accumulated in tumor tissue. The tumor-targeted delivery was optically visualized using hybrid particles grafted with fluorescence-labeled polymer brushes.
NASA Technical Reports Server (NTRS)
Zhou, Y. P.; Xu, Kuan-Man; Sud, Y. C.; Betts, A. K.
2011-01-01
Scores of modeling studies have shown that increasing greenhouse gases in the atmosphere impact the global hydrologic cycle; however, disagreements on regional scales are large, and thus the simulated trends of such impacts, even for regions as large as the tropics, remain uncertain. The present investigation attempts to examine such trends in the observations using satellite data products comprising Global Precipitation Climatology Project precipitation and International Satellite Cloud Climatology Project cloud and radiation. Specifically, evolving trends of the tropical hydrological cycle over the last 20-30 years were identified and analyzed. The results show (1) intensification of tropical precipitation in the rising regions of the Walker and Hadley circulations and weakening over the sinking regions of the associated overturning circulation; (2) poleward shift of the subtropical dry zones (up to 2deg/decade in June-July-August (JJA) in the Northern Hemisphere and 0.3-0.7deg/decade in June-July-August and September-October-November in the Southern Hemisphere) consistent with an overall broadening of the Hadley circulation; and (3) significant poleward migration (0.9-1.7deg/decade) of cloud boundaries of Hadley cell and plausible narrowing of the high cloudiness in the Intertropical Convergence Zone region in some seasons. These results support findings of some of the previous studies that showed strengthening of the tropical hydrological cycle and expansion of the Hadley cell that are potentially related to the recent global warming trends.
NASA Astrophysics Data System (ADS)
Kerr, P. C.; Donahue, A. S.; Westerink, J. J.; Luettich, R. A.; Zheng, L. Y.; Weisberg, R. H.; Huang, Y.; Wang, H. V.; Teng, Y.; Forrest, D. R.; Roland, A.; Haase, A. T.; Kramer, A. W.; Taylor, A. A.; Rhome, J. R.; Feyen, J. C.; Signell, R. P.; Hanson, J. L.; Hope, M. E.; Estes, R. M.; Dominguez, R. A.; Dunbar, R. P.; Semeraro, L. N.; Westerink, H. J.; Kennedy, A. B.; Smith, J. M.; Powell, M. D.; Cardone, V. J.; Cox, A. T.
2013-10-01
A Gulf of Mexico performance evaluation and comparison of coastal circulation and wave models was executed through harmonic analyses of tidal simulations, hindcasts of Hurricane Ike (2008) and Rita (2005), and a benchmarking study. Three unstructured coastal circulation models (ADCIRC, FVCOM, and SELFE) validated with similar skill on a new common Gulf scale mesh (ULLR) with identical frictional parameterization and forcing for the tidal validation and hurricane hindcasts. Coupled circulation and wave models, SWAN+ADCIRC and WWMII+SELFE, along with FVCOM loosely coupled with SWAN, also validated with similar skill. NOAA's official operational forecast storm surge model (SLOSH) was implemented on local and Gulf scale meshes with the same wind stress and pressure forcing used by the unstructured models for hindcasts of Ike and Rita. SLOSH's local meshes failed to capture regional processes such as Ike's forerunner and the results from the Gulf scale mesh further suggest shortcomings may be due to a combination of poor mesh resolution, missing internal physics such as tides and nonlinear advection, and SLOSH's internal frictional parameterization. In addition, these models were benchmarked to assess and compare execution speed and scalability for a prototypical operational simulation. It was apparent that a higher number of computational cores are needed for the unstructured models to meet similar operational implementation requirements to SLOSH, and that some of them could benefit from improved parallelization and faster execution speed.
Gender Differences of Airway Dimensions in Anatomically Matched Sites on CT in Smokers
Kim, Yu-Il; Schroeder, Joyce; Lynch, David; Newell, John; Make, Barry; Friedlander, Adam; Estépar, Raúl San José; Hanania, Nicola A.; Washko, George; Murphy, James R.; Wilson, Carla; Hokanson, John E.; Zach, Jordan; Butterfield, Kiel; Bowler, Russell P.
2013-01-01
Rationale and Objectives There are limited data on, and controversies regarding gender differences in the airway dimensions of smokers. Multi-detector CT (MDCT) images were analyzed to examine whether gender could explain differences in airway dimensions of anatomically matched airways in smokers. Materials and Methods We used VIDA imaging software to analyze MDCT scans from 2047 smokers (M:F, 1021:1026) from the COPDGene® cohort. The airway dimensions were analyzed from segmental to subsubsegmental bronchi. We compared the differences of luminal area, inner diameter, wall thickness, wall area percentage (WA%) for each airway between men and women, and multiple linear regression including covariates (age, gender, body sizes, and other relevant confounding factors) was used to determine the predictors of each airway dimensions. Results Lumen area, internal diameter and wall thickness were smaller for women than men in all measured airway (18.4 vs 22.5 mm2 for segmental bronchial lumen area, 10.4 vs 12.5 mm2 for subsegmental bronchi, 6.5 vs 7.7 mm2 for subsubsegmental bronchi, respectively p < 0.001). However, women had greater WA% in subsegmental and subsubsegmental bronchi. In multivariate regression, gender remained one of the most significant predictors of WA%, lumen area, inner diameter and wall thickness. Conclusion Women smokers have higher WA%, but lower luminal area, internal diameter and airway thickness in anatomically matched airways as measured by CT scan than do male smokers. This difference may explain, in part, gender differences in the prevalence of COPD and airflow limitation. PMID:21756032
Size effects on magnetic actuation in Ni-Mn-Ga shape-memory alloys.
Dunand, David C; Müllner, Peter
2011-01-11
The off-stoichiometric Ni(2)MnGa Heusler alloy is a magnetic shape-memory alloy capable of reversible magnetic-field-induced strains (MFIS). These are generated by twin boundaries moving under the influence of an internal stress produced by a magnetic field through the magnetocrystalline anisotropy. While MFIS are very large (up to 10%) for monocrystalline Ni-Mn-Ga, they are near zero (<0.01%) in fine-grained polycrystals due to incompatibilities during twinning of neighboring grains and the resulting internal geometrical constraints. By growing the grains and/or shrinking the sample, the grain size becomes comparable to one or more characteristic sample sizes (film thickness, wire or strut diameter, ribbon width, particle diameter, etc), and the grains become surrounded by free space. This reduces the incompatibilities between neighboring grains and can favor twinning and thus increase the MFIS. This approach was validated recently with very large MFIS (0.2-8%) measured in Ni-Mn-Ga fibers and foams with bamboo grains with dimensions similar to the fiber or strut diameters and in thin plates where grain diameters are comparable to plate thickness. Here, we review processing, micro- and macrostructure, and magneto-mechanical properties of (i) Ni-Mn-Ga powders, fibers, ribbons and films with one or more small dimension, which are amenable to the growth of bamboo grains leading to large MFIS, and (ii) "constructs" from these structural elements (e.g., mats, laminates, textiles, foams and composites). Various strategies are proposed to accentuate this geometric effect which enables large MFIS in polycrystalline Ni-Mn-Ga by matching grain and sample sizes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
He Yingbo; Chang Guodong; Zhan Shunli
2008-06-06
The level of circulating tissue factor (TF) is up-regulated in human angiogenesis-related malignancies. However, whether circulating TF has angiogenic activities has not been determined. Soluble TF (sTF) is the main domain of circulating TF. Here, using cell migration, wound healing, and tubule formation assays, human recombinant sTF was found to significantly promote the migration and differentiation of endothelial cells. The stress fiber formation and rearrangement induced by sTF observed through immunofluorescence microscope may be responsible for the stimulatory migration effect of sTF. Nevertheless, sTF had no effects on endothelial cell proliferation. Interestingly, sTF can be internalized by endothelial cells, whichmore » implies a novel mechanism for sTF in angiogenesis. These results suggest that sTF has unique angiogenic activities and may serve as a potential therapeutic target to treat diseases associated with angiogenesis such as cancer and rheumatoid arthritis.« less
Probability of US Heat Waves Affected by a Subseasonal Planetary Wave Pattern
NASA Technical Reports Server (NTRS)
Teng, Haiyan; Branstator, Grant; Wang, Hailan; Meehl, Gerald A.; Washington, Warren M.
2013-01-01
Heat waves are thought to result from subseasonal atmospheric variability. Atmospheric phenomena driven by tropical convection, such as the Asian monsoon, have been considered potential sources of predictability on subseasonal timescales. Mid-latitude atmospheric dynamics have been considered too chaotic to allow significant prediction skill of lead times beyond the typical 10-day range of weather forecasts. Here we use a 12,000-year integration of an atmospheric general circulation model to identify a pattern of subseasonal atmospheric variability that can help improve forecast skill for heat waves in the United States. We find that heat waves tend to be preceded by 15-20 days by a pattern of anomalous atmospheric planetary waves with a wavenumber of 5. This circulation pattern can arise as a result of internal atmospheric dynamics and is not necessarily linked to tropical heating.We conclude that some mid-latitude circulation anomalies that increase the probability of heat waves are predictable beyond the typical weather forecast range.
Radiographic inspection of porosity in pure titanium dumbbell castings.
Nuñez, Juliana Maria Costa; Takahashi, Jessica Mie Ferreira Koyama; Henriques, Guilherme Elias Pessanha; Nóbilo, Mauro Antônio de Arruda; Consani, Rafael Leonardo Xediek; Mesquita, Marcelo Ferraz
2011-09-01
Titanium frameworks are frequently indicated for implant supported prostheses; however, voids are usually encountered inside cast titanium. This study aimed to confirm the efficacy of a radiographic technique for inspection of porosity in commercially pure titanium castings with different diameter. Sixty dumbbell rods (n=20) with a central 1.5, 2.0 and 3.5mm diameter were prepared by lost-wax casting. Cast specimens were finished and polished and submitted to radiographic examination (90kV, 15mA, 0.6s and 10-13mm of distance) using periapical film. The radiographs were visually analysed for the presence of porosity in the extension of the dumbbell or in the central portion of the rods. Data were submitted to Pearson Chi-square test (5%). The tested radiographic method proved to be suitable for the evaluation of cast frameworks. Internal porosities were observed in most of the specimens (91.7%) (p=0.0005); however, only 20% occurred on the central portion of the rods (p=0.612). Internal porosities can be visualised through radiographs and occur mostly in small diameter structures. The radiographic evaluation of metal structures can improve the quality of frameworks and thereby potentially increase the longevity of the rehabilitation. © 2010 The Gerodontology Society and John Wiley & Sons A/S.
An Improved High-Sensitivity Airborne Transient Electromagnetic Sensor for Deep Penetration
Chen, Shudong; Guo, Shuxu; Wang, Haofeng; He, Miao; Liu, Xiaoyan; Qiu, Yu; Zhang, Shuang; Yuan, Zhiwen; Zhang, Haiyang; Fang, Dong; Zhu, Jun
2017-01-01
The investigation depth of transient electromagnetic sensors can be effectively increased by reducing the system noise, which is mainly composed of sensor internal noise, electromagnetic interference (EMI), and environmental noise, etc. A high-sensitivity airborne transient electromagnetic (AEM) sensor with low sensor internal noise and good shielding effectiveness is of great importance for deep penetration. In this article, the design and optimization of such an AEM sensor is described in detail. To reduce sensor internal noise, a noise model with both a damping resistor and a preamplifier is established and analyzed. The results indicate that a sensor with a large diameter, low resonant frequency, and low sampling rate will have lower sensor internal noise. To improve the electromagnetic compatibility of the sensor, an electromagnetic shielding model for a central-tapped coil is established and discussed in detail. Previous studies have shown that unclosed shields with multiple layers and center grounding can effectively suppress EMI and eddy currents. According to these studies, an improved differential AEM sensor is constructed with a diameter, resultant effective area, resonant frequency, and normalized equivalent input noise of 1.1 m, 114 m2, 35.6 kHz, and 13.3 nV/m2, respectively. The accuracy of the noise model and the shielding effectiveness of the sensor have been verified experimentally. The results show a good agreement between calculated and measured results for the sensor internal noise. Additionally, over 20 dB shielding effectiveness is achieved in a complex electromagnetic environment. All of these results show a great improvement in sensor internal noise and shielding effectiveness. PMID:28106718
Creep-rupture tests of internally pressurized Hastelloy-X tubes
NASA Technical Reports Server (NTRS)
Gumto, K. H.; Colantino, G. J.
1973-01-01
Seamless Hastelloy-X tubes with 0.375-in. outside diameter and 0.025-in. wall thickness were tested to failure at temperatures from 1400 to 1650 F and internal helium pressures from 800 to 1800 psi. Lifetimes ranged from 58 to 3600 hr. The creep-rupture strength of the tubes was from 20 to 40 percent lower than that of sheet specimens. Larson-Miller correlations and photomicrographs of some specimens are presented.
Zhou, Yu-Qing; Cahill, Lindsay S; Wong, Michael D; Seed, Mike; Macgowan, Christopher K; Sled, John G
2014-08-15
This study used high-frequency ultrasound to evaluate the flow distribution in the mouse fetal circulation at late gestation. We studied 12 fetuses (embryonic day 17.5) from 12 pregnant CD1 mice with 40 MHz ultrasound to assess the flow in 11 vessels based on Doppler measurements of blood velocity and M-mode measurements of diameter. Specifically, the intrahepatic umbilical vein (UVIH), ductus venosus (DV), foramen ovale (FO), ascending aorta (AA), main pulmonary artery (MPA), ductus arteriosus (DA), descending thoracic aorta (DTA), common carotid artery (CCA), inferior vena cava (IVC), and right and left superior vena cavae (RSVC, LSVC) were examined, and anatomically confirmed by micro-CT. The mouse fetal circulatory system was found to be similar to that of the humans in terms of the major circuit and three shunts, but characterized by bilateral superior vena cavae and a single umbilical artery. The combined cardiac output (CCO) was 1.22 ± 0.05 ml/min, with the left ventricle (flow in AA) contributing 47.8 ± 2.3% and the right ventricle (flow in MPA) 52.2 ± 2.3%. Relative to the CCO, the flow percentages were 13.6 ± 1.0% for the UVIH, 10.4 ± 1.1% for the DV, 35.6 ± 2.4% for the DA, 41.9 ± 2.6% for the DTA, 3.8 ± 0.3% for the CCA, 29.5 ± 2.2% for the IVC, 12.7 ± 1.0% for the RSVC, and 9.9 ± 0.9% for the LSVC. The calculated flow percentage was 16.6 ± 3.4% for the pulmonary circulation and 31.2 ± 5.3% for the FO. In conclusion, the flow in mouse fetal circulation can be comprehensively evaluated with ultrasound. The baseline data of the flow distribution in normal mouse fetus serve as the reference range for future studies. Copyright © 2014 the American Physiological Society.
Donndorf, Peter; Kühn, Franziska; Vollmar, Brigitte; Rösner, Jan; Liebold, Andreas; Gierer, Philipp; Steinhoff, Gustav; Kaminski, Alexander
2012-09-01
Minimal extracorporeal circulation (MECC) has been introduced in coronary artery bypass graft (CABG) surgery, offering clinical benefits owing to reduced hemodilution and no blood-air interface. Yet, the effects of MECC on the intraoperative microvascular perfusion in comparison with conventional extracorporeal circulation (CECC) have not been studied so far. The current study aimed to analyze alterations in microvascular perfusion at 4 predefined time points (T1-T4) during on-pump CABG using orthogonal polarization spectral imaging. Forty patients were randomized for being operated on with either MECC or CECC. Changes in functional capillary density (FCD), blood flow velocity, and vessel diameter were analyzed by a blinded investigator. After start of extracorporeal circulation (ECC) and aortic crossclamping (T2), both groups showed a significant drop of FCD, with a significantly higher FCD in the MECC group (206.8 ± 33.6 cm/cm² in CECC group versus 217.8 ± 35.3 cm/cm² in MECC group; P = .034). In the late phase of the ECC (T3), FCD in the MECC group was already recovered, whereas FCD in the CECC group was still significantly depressed (223.1 ± 35.6 cm/cm² in MECC group; P = .100 vs T1; 211.1 ± 36.9 cm/cm² in CECC group; P = .017 vs T1). After termination of ECC (T4), FCD recovered in both groups to baseline. Blood flow velocity tended to be higher in the MECC group, with a significant intergroup difference after aortic crossclamping (T2). Orthogonal polarization spectral imaging data reveal an impairment of microvascular perfusion during on-pump CABG. Changes in FCD indicate a faster recovery of the microvascular perfusion in MECC during the reperfusion period. Beneficial recovery of microvascular organ perfusion could partly explain the perioperative advantages reported for MECC. Copyright © 2012 The American Association for Thoracic Surgery. Published by Mosby, Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Gao, Lipeng; Han, Lin; Ding, Xiaoling; Xu, Jiaojiao; Wang, Jing; Zhu, Jianzhong; Lu, Weiyue; Sun, Jihong; Yu, Lei; Yan, Zhiqiang; Wang, Yiting
2017-08-01
Antibody-based drugs have attracted much attention for their targeting ability, high efficacy and low toxicity. But it is difficult for those intrabodies, a kind of antibody whose targets are intracellular biomarkers, to become effective drugs due to the lack of intracellular delivery strategy and their short circulation time in blood. Human telomerase reverse transcriptase (hTERT), an important biomarker for tumors, is expressed only in cytoplasm instead of on cell membrane. In this study, the anti-hTERT blocking monoclonal antibody (mAb), as the model intrabody, was used to prepare nanoparticles (NPs), followed by the encapsulation of erythrocyte membrane (EM), to obtain the EM-coated anti-hTERT mAb NPs delivery system. The final NPs showed a z-average hydrodynamic diameter of about 197.3 nm. The in vitro cellular uptake by HeLa cells confirmed that compared with free anti-hTERT mAb, the EM-coated anti-hTERT mAb NPs exhibited a significantly increased uptake by tumor cells. Besides, the pharmacokinetic study confirmed that the EM encapsulation can remarkably prolong the circulation time and increase the area under curve (AUC) of NPs in blood. The EM-coated anti-hTERT mAb NPs exhibited a remarkably decreased uptake by macrophages than uncoated NPs, which may be responsible for the prolonged circulation time and increased AUC. Furthermore, the frozen section of tumor tissue was performed and proved that the EM-coated anti-hTERT mAb NPs can be more effectively accumulated in tumor tissues than the free mAb and uncoated NPs. In summary, this study indicated that EM-coated anti-hTERT mAb NPs are an effective delivery system for the long circulation and intracellular delivery of an intrabody, and make it possible for the intracellular biomarkers to become the potential targets of drugs.
Application of classical thermodynamic principles to the study of oceanic overturning circulation
NASA Astrophysics Data System (ADS)
Gade, Herman G.; Gustafsson, Karin E.
2004-08-01
Stationary deep-reaching overturning circulation in the ocean is studied by means of classical thermodynamic methods employing closed cycles in pV-space (p, pressure; V, volume). From observed (or computed) density fields, the pV-method may be used to infer the power required for driving a circulation with a given mass flux, or, if the available power is known, the resulting mass flux of the circulation may be assessed. Here, the circulation is assumed to be driven by diapycnal mixing caused by internal disturbances of meteorological and tidal origin and from transfer of geothermal heat through the ocean bottom. The analysis is developed on the basis that potential energy produced by any of these mechanisms is available for driving a circulation of the water masses above its level of generation. The method also takes into account secondary generated potential energy resulting from turbulence developed by the ensuing circulation.Models for different types of circulation are developed and applied to four types of hemispheric circulation with deep-water formation, convection and sinking in an idealized North Atlantic. Our calculations show that the energy input must exceed 15 J kg
1 for a cycle to the bottom to exist. An energy supply of 2 TW would in that case support a constant vertical mass flux of 3.2 G kg s
1 (3.1 Sv). Computed mass fluxes reaching the surface in the subtropics, corresponding to the same energy input, range between 2.3 5.2 G kg s
1, depending on the type of convection/sinking involved. Much higher flux values ensue with ascending water masses reaching the surface at higher geographical latitudes.The study reveals also that compressibility of sea water does not enhance the circulation. An incompressible system, operating within the same mass flux and temperature range, would require about 25% less energy supply, provided that the circulation comprises the same water masses. It is furthermore shown that the meridional distribution of surface salinity, with higher values in the tropics and lower values in regions of deep-water formation, actually enhances the circulation in comparison with one of a more uniform surface salinity. With a homohaline North Atlantic, operating within the same temperature range as presently observed, an increase of 66% of power supply would be required in order that the mass flux of the overturning circulation should remain the same.
40 CFR 86.1335-90 - Cool-down procedure.
Code of Federal Regulations, 2010 CFR
2010-07-01
...'s internal or external surfaces except for water and air as prescribed in paragraphs (c) and (d) of this section. (c) For water-cooled engines, two types of cooling are permitted: (1) Water may be circulated through the engine's water coolant system. (i) The coolant may be flowed in either direction and...
Thinking in a "Worldly" Way: Mobility, Knowledge, Power and Geography
ERIC Educational Resources Information Center
Fahey, Johannah; Kenway, Jane
2010-01-01
In order to enhance understandings of the international mobility of researchers and the implications of their mobility for knowledge production and circulation, we need to develop more sophisticated conceptual resources. Here we draw on and seek to develop ideas generated from literary theory and geography in order to highlight the links between…
Circulating East to East: Understanding the Push-Pull Factors of Chinese Students Studying in Korea
ERIC Educational Resources Information Center
Lee, Se Woong
2017-01-01
Every year, substantial numbers of students choose to study abroad, and China is one of the largest exporters of international students. Interestingly, instead of choosing English-speaking countries, increasingly more Chinese students are choosing nearby Asian countries as their destination to study abroad, particularly Korea. Despite this…
USDA-ARS?s Scientific Manuscript database
MicroRNAs (miRNAs) ubiquitously exist in microorganisms, plants and animals, and appear to modulate a wide range of critical biological processes. However, no definitive conclusion has been reached regarding the uptake of exogenous dietary small RNAs into mammalian circulation and organs and cross-k...
Influenza A virus and secondary bacterial infection in swine
USDA-ARS?s Scientific Manuscript database
Influenza A virus (IAV) infection alone causes significant disease characterized by respiratory distress and poor growth in pigs. Endemic strains of IAV in North America pigs consist of the subtypes H1N1, H1N2, and H3N2. These circulating strains contain the triple reassortant internal gene (TRIG) c...
Female Education and the Cultural Transfer of Pedagogical Knowledge in the Eighteenth Century
ERIC Educational Resources Information Center
Mayer, Christine
2012-01-01
In the eighteenth century, the German pedagogical discourse took place within the broader framework of an international circulation of pedagogical concepts and ideas. The trans-cultural nature of these intellectual exchanges is particularly evident in the thoughts and writings on female education. Translations of books and essays played a…
ERIC Educational Resources Information Center
Postiglione, Gerard A.
2013-01-01
International competition drives research universities to find ways to anchor globalization for academic productivity and innovation through cross-border collaboration. This article examines the case of pre- and post-colonial Hong Kong and how its universities transited from undergraduate institutions to highly ranked research universities within…
All That Is Global Is Not World Culture: Accountability Systems and Educational Apparatuses
ERIC Educational Resources Information Center
Sobe, Noah W.
2015-01-01
This article explores why we see educational accountability systems circulating transnationally. It argues that researchers in the field of comparative and international education need to use the concepts of diffusion and translation to think about the formation, coordination and extension of networks and discursive formations through which…
Apparatus and methods for regeneration of precipitating solvent
Liu, Guohai; Vimalchand, Pannalal; Peng, Wan Wang; Bonsu, Alexander
2015-08-25
A regenerator that can handle rich loaded chemical solvent containing precipitated absorption reaction products is disclosed. The invention is particularly suitable for separating CO.sub.2 from large gas streams that are typical of power plant processes. The internally circulating liquid stream in the regenerator (ICLS regenerator) rapidly heats-up the in-coming rich solvent stream in a downcomer standpipe as well as decreases the overall concentration of CO.sub.2 in the mixed stream. Both these actions lead to dissolution of precipitates. Any remaining precipitate further dissolves as heat is transferred to the mixed solution with an inverted bayonet tube heat exchanger in the riser portion of the regenerator. The evolving CO.sub.2 bubbles in the riser portion of the regenerator lead to substantial gas hold-up and the large density difference between the solutions in the downcomer standpipe and riser portions promotes internal circulation of the liquid stream in the regenerator. As minor amounts of solvent components present in the exit gas stream are condensed and returned back to the regenerator, pure CO.sub.2 gas stream exits the disclosed regenerator and condenser system.
Depth of a strong jovian jet from a planetary-scale disturbance driven by storms.
Sánchez-Lavega, A; Orton, G S; Hueso, R; García-Melendo, E; Pérez-Hoyos, S; Simon-Miller, A; Rojas, J F; Gómez, J M; Yanamandra-Fisher, P; Fletcher, L; Joels, J; Kemerer, J; Hora, J; Karkoschka, E; de Pater, I; Wong, M H; Marcus, P S; Pinilla-Alonso, N; Carvalho, F; Go, C; Parker, D; Salway, M; Valimberti, M; Wesley, A; Pujic, Z
2008-01-24
The atmospheres of the gas giant planets (Jupiter and Saturn) contain jets that dominate the circulation at visible levels. The power source for these jets (solar radiation, internal heat, or both) and their vertical structure below the upper cloud are major open questions in the atmospheric circulation and meteorology of giant planets. Several observations and in situ measurements found intense winds at a depth of 24 bar, and have been interpreted as supporting an internal heat source. This issue remains controversial, in part because of effects from the local meteorology. Here we report observations and modelling of two plumes in Jupiter's atmosphere that erupted at the same latitude as the strongest jet (23 degrees N). The plumes reached a height of 30 km above the surrounding clouds, moved faster than any other feature (169 m s(-1)), and left in their wake a turbulent planetary-scale disturbance containing red aerosols. On the basis of dynamical modelling, we conclude that the data are consistent only with a wind that extends well below the level where solar radiation is deposited.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Philippov, Alexander A.; Rafikov, Roman R., E-mail: sashaph@princeton.edu
Radial transport of particles, elements and fluid driven by internal stresses in three-dimensional (3D) astrophysical accretion disks is an important phenomenon, potentially relevant for the outward dust transport in protoplanetary disks, origin of the refractory particles in comets, isotopic equilibration in the Earth–Moon system, etc. To gain better insight into these processes, we explore the dependence of meridional circulation in 3D disks with shear viscosity on their thermal stratification, and demonstrate a strong effect of the latter on the radial flow. Previous locally isothermal studies have normally found a pattern of the radial outflow near the midplane, switching to inflowmore » higher up. Here we show, both analytically and numerically, that a flow that is inward at all altitudes is possible in disks with entropy and temperature steeply increasing with height. Such thermodynamic conditions may be typical in the optically thin, viscously heated accretion disks. Disks in which these conditions do not hold should feature radial outflow near the midplane, as long as their internal stress is provided by the shear viscosity. Our results can also be used for designing hydrodynamical disk simulations with a prescribed pattern of the meridional circulation.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xiaolin Wei; Yang Wang; Dianfu Liu
2009-03-15
An internally circulating fluidized bed (ICFB) was applied to investigate the behavior of chlorine and sulfur during cofiring RDF and coal. The pollutant emissions in the flue gas were measured by Fourier transform infrared (FTIR) spectrometry (Gasmet DX-3000). In the tests, the concentrations of the species CO, CO{sub 2}, HCl, and SO{sub 2} were measured online. Results indicated when cofiring RDF and char, due to the higher content of chlorine in RDF, the formation of HCl significantly increases. The concentration of SO{sub 2} is relatively low because alkaline metal in the fuel ash can absorb SO{sub 2}. The concentration ofmore » CO emission during firing pure RDF is relatively higher and fluctuates sharply. With the CaO addition, the sulfur absorption by calcium quickly increases, and the desulfurization ratio is bigger than the dechlorination ratio. The chemical equilibrium method is applied to predict the behavior of chlorine. Results show that gaseous HCl emission increases with increasing RDF fraction, and gaseous KCl and NaCl formation might occur. 35 refs., 18 figs., 2 tabs.« less
Measuring stone volume - three-dimensional software reconstruction or an ellipsoid algebra formula?
Finch, William; Johnston, Richard; Shaida, Nadeem; Winterbottom, Andrew; Wiseman, Oliver
2014-04-01
To determine the optimal method for assessing stone volume, and thus stone burden, by comparing the accuracy of scalene, oblate, and prolate ellipsoid volume equations with three-dimensional (3D)-reconstructed stone volume. Kidney stone volume may be helpful in predicting treatment outcome for renal stones. While the precise measurement of stone volume by 3D reconstruction can be accomplished using modern computer tomography (CT) scanning software, this technique is not available in all hospitals or with routine acute colic scanning protocols. Therefore, maximum diameters as measured by either X-ray or CT are used in the calculation of stone volume based on a scalene ellipsoid formula, as recommended by the European Association of Urology. In all, 100 stones with both X-ray and CT (1-2-mm slices) were reviewed. Complete and partial staghorn stones were excluded. Stone volume was calculated using software designed to measure tissue density of a certain range within a specified region of interest. Correlation coefficients among all measured outcomes were compared. Stone volumes were analysed to determine the average 'shape' of the stones. The maximum stone diameter on X-ray was 3-25 mm and on CT was 3-36 mm, with a reasonable correlation (r = 0.77). Smaller stones (<9 mm) trended towards prolate ellipsoids ('rugby-ball' shaped), stones of 9-15 mm towards oblate ellipsoids (disc shaped), and stones >15 mm towards scalene ellipsoids. There was no difference in stone shape by location within the kidney. As the average shape of renal stones changes with diameter, no single equation for estimating stone volume can be recommended. As the maximum diameter increases, calculated stone volume becomes less accurate, suggesting that larger stones have more asymmetric shapes. We recommend that research looking at stone clearance rates should use 3D-reconstructed stone volumes when available, followed by prolate, oblate, or scalene ellipsoid formulas depending on the maximum stone diameter. © 2013 The Authors. BJU International © 2013 BJU International.
Song, K D; Park, H J; Cha, D I; Kang, T W; Lee, J; Moon, J Y; Rhim, H
2015-01-01
Objective: To compare the performance of the 15-G internally cooled electrode with that of the conventional 17-G internally cooled electrode. Methods: A total of 40 (20 for each electrode) and 20 ablation zones (10 for each electrode) were made in extracted bovine livers and in in vivo porcine livers, respectively. Technical parameters, three dimensions [long-axis diameter (Dl), vertical-axis diameter (Dv) and short-axis diameter (Ds)], volume and the circularity (Ds/Dl) of the ablation zone were compared. Results: The total delivered energy was higher in the 15-G group than in the 17-G group in both ex vivo and in vivo studies (8.78 ± 1.06 vs 7.70 ± 0.98 kcal, p = 0.033; 11.20 ± 1.13 vs 8.49 ± 0.35 kcal, p = 0.001, respectively). The three dimensions of the ablation zone had a tendency to be larger in the 15-G group than in the 17-G group in both studies. The ablation volume was larger in the 15-G group than in the 17-G group in both ex vivo and in vivo studies (29.61 ± 7.10 vs 23.86 ± 3.82 cm3, p = 0.015; 10.26 ± 2.28 vs 7.79 ± 1.68 cm3, p = 0.028, respectively). The circularity of ablation zone was not significantly different in both the studies. Conclusion: The size of ablation zone was larger in the 15-G internally cooled electrode than in the 17-G electrode in both ex vivo and in vivo studies. Advances in knowledge: Radiofrequency ablation of hepatic tumours using 15-G electrode is useful to create larger ablation zones. PMID:25882688
NASA Astrophysics Data System (ADS)
Kirpes, Rachel M.; Bondy, Amy L.; Bonanno, Daniel; Moffet, Ryan C.; Wang, Bingbing; Laskin, Alexander; Ault, Andrew P.; Pratt, Kerri A.
2018-03-01
Few measurements of aerosol chemical composition have been made during the winter-spring transition (following polar sunrise) to constrain Arctic aerosol-cloud-climate feedbacks. Herein, we report the first measurements of individual particle chemical composition near Utqiaġvik (Barrow), Alaska, in winter (seven sample days in January and February 2014). Individual particles were analyzed by computer-controlled scanning electron microscopy with energy dispersive X-ray spectroscopy (CCSEM-EDX, 24 847 particles), Raman microspectroscopy (300 particles), and scanning transmission X-ray microscopy with near-edge X-ray absorption fine structure spectroscopy (STXM-NEXAFS, 290 particles). Sea spray aerosol (SSA) was observed in all samples, with fresh and aged SSA comprising 99 %, by number, of 2.5-7.5 µm diameter particles, 65-95 % from 0.5-2.5 µm, and 50-60 % from 0.1-0.5 µm, indicating SSA is the dominant contributor to accumulation and coarse-mode aerosol during the winter. The aged SSA particles were characterized by reduced chlorine content with 94 %, by number, internally mixed with secondary sulfate (39 %, by number, internally mixed with both nitrate and sulfate), indicative of multiphase aging reactions during transport. There was a large number fraction (40 % of 1.0-4.0 µm diameter particles) of aged SSA during periods when particles were transported from near Prudhoe Bay, consistent with pollutant emissions from the oil fields participating in atmospheric processing of aerosol particles. Organic carbon and sulfate particles were observed in all samples and comprised 40-50 %, by number, of 0.1-0.4 µm diameter particles, indicative of Arctic haze influence. Soot was internally mixed with organic and sulfate components. All sulfate was mixed with organic carbon or SSA particles. Therefore, aerosol sources in the Alaskan Arctic and resulting aerosol chemical mixing states need to be considered when predicting aerosol climate effects, particularly cloud formation, in the winter Arctic.
Rahmani, Sahar; Villa, Carlos H.; Dishman, Acacia F.; Grabowski, Marika E.; Pan, Daniel C.; Durmaz, Hakan; Misra, Asish C; Colón-Meléndez, Laura; Solomon, Michael J.; Muzykantov, Vladimir R.; Lahann, Joerg
2016-01-01
Background Nanoparticles with controlled physical properties have been widely used for controlled release applications. In addition to shape, the anisotropic nature of the particles can be an important design criterion to ensure selective surface modification or independent release of combinations of drugs. Purpose Electrohydrodynamic (EHD) co-jetting is used for the fabrication of uniform anisotropic nanoparticles with individual compartments and initial physicochemical and biological characterization is reported. Methods EHD co-jetting is used to create nanoparticles, which are characterized at each stage with scanning electron microscopy (SEM), structured illumination microscopy (SIM), dynamic light scattering (DLS) and nanoparticle tracking analysis (NTA). Surface immobilization techniques are used to incorporate polyethylene glycol (PEG) and I125 radiolabels into the nanoparticles. Particles are injected in mice and the particle distribution after 1, 4 and 24 hours is assessed. Results and discussion Nanoparticles with an average diameter of 105.7 nm are prepared by EHD co-jetting. The particles contain functional chemical groups for further surface modification and radiolabeling. The density of PEG molecules attached to the surface of nanoparticles is determined to range between 0.02 and 6.04 ligands per square nanometer. A significant fraction of the nanoparticles (1.2% injected dose per mass of organ) circulates in the blood after 24 h. Conclusion EHD co-jetting is a versatile method for the fabrication of nanoparticles for drug delivery. Circulation of the nanoparticles for 24 h is a pre-requisite for subsequent studies to explore defined targeting of the nanoparticles to a specific anatomic site. PMID:26453170
Biophysical isolation and identification of circulating tumor cells.
Che, James; Yu, Victor; Garon, Edward B; Goldman, Jonathan W; Di Carlo, Dino
2017-04-11
Isolation and enumeration of circulating tumor cells (CTCs) from blood is important for determining patient prognosis and monitoring treatment. Methods based on affinity to cell surface markers have been applied to both purify (via immunoseparation) and identify (via immunofluorescence) CTCs. However, variability of cell biomarker expression associated with tumor heterogeneity and evolution and cross-reactivity of antibody probes have long complicated CTC enrichment and immunostaining. Here, we report a truly label-free high-throughput microfluidic approach to isolate, enumerate, and characterize the biophysical properties of CTCs using an integrated microfluidic device. Vortex-mediated deformability cytometry (VDC) consists of an initial vortex region which enriches large CTCs, followed by release into a downstream hydrodynamic stretching region which deforms the cells. Visualization and quantification of cell deformation with a high-speed camera revealed populations of large (>15 μm diameter) and deformable (aspect ratio >1.2) CTCs from 16 stage IV lung cancer samples, that are clearly distinguished by increased deformability compared to contaminating blood cells and rare large cells isolated from healthy patients. The VDC technology demonstrated a comparable positive detection rate of putative CTCs above healthy baseline (93.8%) with respect to standard immunofluorescence (71.4%). Automation allows full enumeration of CTCs from a 10 mL vial of blood within <1 h after sample acquisition, compared with 4+ hours with standard approaches. Moreover, cells are released into any collection vessel for further downstream analysis. VDC shows potential for accurate CTC enumeration without labels and confirms the unique highly deformable biophysical properties of large CTCs circulating in blood.
N-acetylcysteine improves coronary and peripheral vascular function.
Andrews, N P; Prasad, A; Quyyumi, A A
2001-01-01
We investigated whether N-acetylcysteine (NAC), a reduced thiol that modulates redox state and forms adducts of nitric oxide (NO), improves endothelium-dependent vasomotion. Coronary atherosclerosis is associated with endothelial dysfunction and reduced NO activity. In 16 patients undergoing cardiac catheterization, seven with and nine without atherosclerosis, we assessed endothelium-dependent vasodilation with acetylcholine (ACH) and endothelium-independent vasodilation with nitroglycerin (NTG) and sodium nitroprusside (SNP) before and after intracoronary NAC. In 14 patients femoral vascular responses to ACH, NTG and SNP were measured before and after NAC. Intraarterial NAC did not change resting coronary or peripheral vascular tone. N-acetylcysteine potentiated ACH-mediated coronary vasodilation; coronary blood flow was 36 +/- 11% higher (p < 0.02), and epicardial diameter changed from -1.2 +/- 2% constriction to 4.7 +/- 2% dilation after NAC (p = 0.03). Acetylcholine-mediated femoral vasodilation was similarly potentiated by NAC (p = 0.001). Augmentation of the ACH response was similar in patients with or without atherosclerosis. N-acetylcysteine did not affect NTG-mediated vasodilation in either the femoral or coronary circulations and did not alter SNP responses in the femoral circulation. In contrast, coronary vasodilation with SNP was significantly greater after NAC (p < 0.05). Thiol supplementation with NAC improves human coronary and peripheral endothelium-dependent vasodilation. Nitroglycerin responses are not enhanced, but SNP-mediated responses are potentiated only in the coronary circulation. These NO-enhancing effects of thiols reflect the importance of the redox state in the control of vascular function and may be of therapeutic benefit in treating acute and chronic manifestations of atherosclerosis.
Takatani, Setsuo; Hoshi, Hideo; Tajima, Kennichi; Ohuchi, Katsuhiro; Nakamura, Makoto; Asama, Junichio; Shimshi, Tadahiko; Yoshikawa, Masaharu
2005-01-01
In this study, a seal-less, tiny centrifugal rotary blood pump was designed for low-flow circulatory support in children and infants. The design was targeted to yield a compact and priming volume of 5 ml with a flow rate of 0.5-4 l/min against a head pressure of 40-100 mm Hg. To meet the design requirements, the first prototype had an impeller diameter of 30 mm with six straight vanes. The impeller was supported with a needle-type hydrodynamic bearing and was driven with a six-pole radial magnetic driver. The external pump dimensions included a pump head height of 20 mm, diameter of 49 mm, and priming volume of 5 ml. The weight was 150 g, including the motor driver. In the mock circulatory loop, using fresh porcine blood, the pump yielded a flow of 0.5-4.0 l/min against a head pressure of 40-100 mm Hg at a rotational speed of 1800-4000 rpm using 1/4" inflow and outflow conduits. The maximum flow and head pressure of 5.25 l/min and 244 mm Hg, respectively, were obtained at a rotational speed of 4400 rpm. The maximum electrical-to-hydraulic efficiency occurred at a flow rate of 1.5-3.5 l/min and at a rotational speed of 2000-4400 rpm. The normalized index of hemolysis, which was evaluated using fresh porcine blood, was 0.0076 g/100 l with the impeller in the down-mode and a bearing clearance of 0.1 mm. Further refinement in the bearing and magnetic coupler are required to improve the hemolytic performance of the pump. The durability of the needle-type hydrodynamic bearing and antithrombotic performance of the pump will be performed before clinical applications. The tiny centrifugal blood pump meets the flow requirements necessary to support the circulation of pediatric patients.
Nielsen, R H; Clausen, N M; Schjerling, P; Larsen, J O; Martinussen, T; List, E O; Kopchick, J J; Kjaer, M; Heinemeier, K M
2014-02-01
The growth hormone/insulin-like growth factor-I (GH/IGF-I) axis is an important stimulator of collagen synthesis in connective tissue, but the effect of chronically altered GH/IGF-I levels on connective tissue of the muscle-tendon unit is not known. We studied three groups of mice; 1) giant transgenic mice that expressed bovine GH (bGH) and had high circulating levels of GH and IGF-I, 2) dwarf mice with a disrupted GH receptor gene (GHR-/-) leading to GH resistance and low circulating IGF-I, and 3) a wild-type control group (CTRL). We measured the ultra-structure, collagen content and mRNA expression (targets: GAPDH, RPLP0, IGF-IEa, IGF-IR, COL1A1, COL3A1, TGF-β1, TGF-β2, TGF-β3, versican, scleraxis, tenascin C, fibronectin, fibromodulin, decorin) in the Achilles tendon, and the mRNA expression was also measured in calf muscle (same targets as tendon plus IGF-IEb, IGF-IEc). We found that GHR-/- mice had significantly lower collagen fibril volume fraction in Achilles tendon, as well as decreased mRNA expression of IGF-I isoforms and collagen types I and III in muscle compared to CTRL. In contrast, the mRNA expression of IGF-I isoforms and collagens in bGH mice was generally high in both tendon and muscle compared to CTRL. Mean collagen fibril diameter was significantly decreased with both high and low GH/IGF-I signaling, but the GHR-/- mouse tendons were most severely affected with a total loss of the normal bimodal diameter distribution. In conclusion, chronic manipulation of the GH/IGF-I axis influenced both morphology and mRNA levels of selected genes in the muscle-tendon unit of mice. Whereas only moderate structural changes were observed with up-regulation of GH/IGF-I axis, disruption of the GH receptor had pronounced effects upon tendon ultra-structure. © 2013.
NASA Technical Reports Server (NTRS)
Beebe, R.
1986-01-01
Although the albedo of specific belts and zones varies as a function of time, there is evidence that wind maxima may be fixed in latitude. Before considering a standard notation for wind jets, it is necessary to establish a coordinate system within which the nomenclature would be defined. Traditionally, the BAA has used planetographic latitudes; however, this system is based not only on an accurate determination of the polar diameter but also on the assumption that the equipotential surfaces can be represented by biaxial ellipsoids. The International Astronomical Union strives to adopt unambiguous nomenclature that will be universally acceptable. It is proposed that planetocentric coordinates be utilized and that a standardized value of the ratio of the polar diameter to the equatorial diameter be established for each planet to facilitate transformation into planetographic coordinates.
Biomedical imaging and therapy with physically and physiologically tailored magnetic nanoparticles
NASA Astrophysics Data System (ADS)
Khandhar, Amit Praful
Magnetic particle imaging (MPI) and magnetic fluid hyperthermia (MFH) are emerging imaging and therapy approaches that have the potential to improve diagnostic safety and disease management of heart disease and cancer - the number 1 and 2 leading causes of deaths in the United States. MPI promises real-time, tomographic and quantitative imaging of superparamagnetic iron oxide nanoparticle (SPION) tracers distributed in vivo, and is targeted to offer a safer angiography alternative for its first clinical application. MFH uses ac-fields to dissipate heat from SPIONs that can be delivered locally to promote hyperthermia therapy (~42°C) in cancer cells. Both technologies use safe radiofrequency magnetic fields to exploit the fundamental magnetic relaxation properties of superparamagnetic iron oxide nanoparticles (SPIONs), which must be tailored for optimal imaging in the case of MPI, and maximum hyperthermia potency in the case of MFH. Furthermore, the magnetic core and shell of SPIONs are both central to the optimization process; the shell, in particular, bridges the translational gap between the optimized core and its safe and effective use in the physiological environment. Unfortunately, existing SPIONs that were originally designed as MRI contrast agents lack the basic physical properties that enable the clinical translation of MPI and MFH. In this work, the core and shell of monodisperse SPIONs were optimized in concert to accomplish two equally important objectives: (1) biocompatibility, and (2) MPI and MFH efficacy of SPIONs in physiological environments. Critically, it was found that the physical and physiological responses of SPIONs are coupled, and impacting one can have consequences on the other. It was shown that the poly(ethylene glycol) (PEG)-based shell when properly optimized reduced protein adsorption to SPION surface and phagocytic uptake in macrophages - both prerequisites for designing long-circulating SPIONs. In MPI, tailoring the surface coating reduced protein adsorption and improved colloidal stability, which were critical in retaining the magnetization relaxation properties of the SPIONs. The improvements in surface coatings enabled the use of larger SPION cores (> 20 nm core diameter), which were used to demonstrate benchmark-imaging performance in some of the world's first MPI scanners at Philips Medical Imaging and University of California, Berkeley. In MFH, it was shown for the first time that optimization of heat loss from SPIONs (W/g) is possible by tailoring the core size and size distribution for the given ac-field conditions. Biodistribution and blood circulation studies in mice showed that SPIONs accumulated primarily in the liver and spleen with minimal renal involvement, and demonstrated gradual clearance. Circulation time was evaluated using the MPI signal detected over time in blood, which offered insight on the relevant circulation time for angiography applications. In comparison with carboxy-dextran coated ResovistRTM SPIONs, the PEG-coated SPIONs developed in this work circulated substantially longer; furthermore, reducing the hydrodynamic diameter showed a 4.5x improvement in blood half-life. The work presented in this thesis demonstrates that the combined effort in optimizing the core and shell properties of SPIONs enhances biocompatibility and efficacy, with the in vivo studies providing critical feedback on the success (or failure) of the optimization process. Future work will entail designing functionalized SPIONs for targeting specific disease sites, which will further enable the molecular level diagnosis and therapy of diseases.
Bolie, V.W.
1990-07-03
A cooling system is provided for maintaining a preselected operating temperature in a device, which may be an RFQ accelerator, having a variable heat removal requirement, by circulating a cooling fluid through a cooling system remote from the device. Internal sensors in the device enable an estimated error signal to be generated from parameters which are indicative of the heat removal requirement from the device. Sensors are provided at predetermined locations in the cooling system for outputting operational temperature signals. Analog and digital computers define a control signal functionally related to the temperature signals and the estimated error signal, where the control signal is defined effective to return the device to the preselected operating temperature in a stable manner. The cooling system includes a first heat sink responsive to a first portion of the control signal to remove heat from a major portion of the circulating fluid. A second heat sink is responsive to a second portion of the control signal to remove heat from a minor portion of the circulating fluid. The cooled major and minor portions of the circulating fluid are mixed in response to a mixing portion of the control signal, which is effective to proportion the major and minor portions of the circulating fluid to establish a mixed fluid temperature which is effective to define the preselected operating temperature for the remote device. In an RFQ environment the stable temperature control enables the resonant frequency of the device to be maintained at substantially a predetermined value during transient operations. 3 figs.
Bolie, Victor W.
1990-01-01
A cooling system is provided for maintaining a preselected operating temperature in a device, which may be an RFQ accelerator, having a variable heat removal requirement, by circulating a cooling fluid through a cooling system remote from the device. Internal sensors in the device enable an estimated error signal to be generated from parameters which are indicative of the heat removal requirement from the device. Sensors are provided at predetermined locations in the cooling system for outputting operational temperature signals. Analog and digital computers define a control signal functionally related to the temperature signals and the estimated error signal, where the control signal is defined effective to return the device to the preselected operating temperature in a stable manner. The cooling system includes a first heat sink responsive to a first portion of the control signal to remove heat from a major portion of the circulating fluid. A second heat sink is responsive to a second portion of the control signal to remove heat from a minor portion of the circulating fluid. The cooled major and minor portions of the circulating fluid are mixed in response to a mixing portion of the control signal, which is effective to proportion the major and minor portions of the circulating fluid to establish a mixed fluid temperature which is effective to define the preselected operating temperature for the remote device. In an RFQ environment the stable temperature control enables the resonant frequency of the device to be maintained at substantially a predetermined value during transient operations.
Knudsen, Anders R; Andersen, Kasper J; Hamilton-Dutoit, Stephen; Nyengaard, Jens R; Mortensen, Frank V
2016-04-01
Circulating liver enzymes such as alanine transaminase are often used as markers of hepatocellular damage. Ischaemia/reperfusion (I/R) injury is an inevitable consequence of prolonged liver ischaemia. The aim of this study was to examine the correlation between liver enzymes and volume of liver cell necrosis after ischaemia/reperfusion injuries, using design-unbiased stereological methods. Forty-seven male Wistar rats were subjected to 1 h of partial liver ischaemia, followed by either 4 or 24 h of reperfusion. Within each group, one-third of animals were subjected to ischaemic preconditioning and one-third to ischaemic postconditioning. At the end of reperfusion, blood and liver samples were collected for analysis. The volume of necrotic liver tissue was subsequently correlated to circulating markers of I/R injury. Correlation between histological findings and circulating markers was performed using Pearson's correlation coefficient. Alanine transferase peaked after 4 h of reperfusion; however, at this time-point, only mild necrosis was observed, with a Pearson's correlation coefficient of 0.663 (P = 0.001). After 24 h of reperfusion, alanine aminotransferase was found to be highly correlated to the degree of hepatocellular necrosis R = 0.836 (P = 0.000). Furthermore, alkaline phosphatase (R = 0.806) and α-2-macroglobulin (R = 0.655) levels were also correlated with the degree of necrosis. We show for the first time that there is a close correlation between the volume of hepatocellular necrosis and alanine aminotransferase levels in a model of I/R injury. This is especially apparent after 24 h of reperfusion. Similarly, increased levels of alkaline phosphatase and α-2-macroglobulin are correlated to the volume of liver necrosis. © 2016 The Authors. International Journal of Experimental Pathology © 2016 International Journal of Experimental Pathology.
NASA Astrophysics Data System (ADS)
Li, Camille; Michel, Clio; Seland Graff, Lise; Bethke, Ingo; Zappa, Giuseppe; Bracegirdle, Thomas J.; Fischer, Erich; Harvey, Ben J.; Iversen, Trond; King, Martin P.; Krishnan, Harinarayan; Lierhammer, Ludwig; Mitchell, Daniel; Scinocca, John; Shiogama, Hideo; Stone, Dáithí A.; Wettstein, Justin J.
2018-04-01
This study investigates the global response of the midlatitude atmospheric circulation to 1.5 and 2.0 °C of warming using the HAPPI (Half a degree Additional warming, Prognosis and Projected Impacts) ensemble, with a focus on the winter season. Characterising and understanding this response is critical for accurately assessing the near-term regional impacts of climate change and the benefits of limiting warming to 1.5 °C above pre-industrial levels, as advocated by the Paris Agreement of the United Nations Framework Convention on Climate Change (UNFCCC). The HAPPI experimental design allows an assessment of uncertainty in the circulation response due to model dependence and internal variability. Internal variability is found to dominate the multi-model mean response of the jet streams, storm tracks, and stationary waves across most of the midlatitudes; larger signals in these features are mostly consistent with those seen in more strongly forced warming scenarios. Signals that emerge in the 1.5 °C experiment are a weakening of storm activity over North America, an inland shift of the North American stationary ridge, an equatorward shift of the North Pacific jet exit, and an equatorward intensification of the South Pacific jet. Signals that emerge under an additional 0.5 °C of warming include a poleward shift of the North Atlantic jet exit, an eastward extension of the North Atlantic storm track, and an intensification on the flanks of the Southern Hemisphere storm track. Case studies explore the implications of these circulation responses for precipitation impacts in the Mediterranean, in western Europe, and on the North American west coast, paying particular attention to possible outcomes at the tails of the response distributions. For example, the projected weakening of the Mediterranean storm track emerges in the 2 °C warmer world, with exceptionally dry decades becoming 5 times more likely.
Hoell, Andrew; Funk, Christopher C.; Mathew Barlow,
2014-01-01
Northern Hemisphere circulations differ considerably between individual El Niño-Southern Oscillation events due to internal atmospheric variability and variation in the zonal location of sea surface temperature forcing over the tropical Pacific Ocean. This study examines the similarities between recent Northern Hemisphere droughts associated with La Niña events and anomalously warm tropical west Pacific sea surface temperatures during 1988–1989, 1998–2000, 2007–2008 and 2010–2011 in terms of the hemispheric-scale circulations and the regional forcing of precipitation over North America and Asia during the cold season of November through April. The continental precipitation reductions associated with recent central Pacific La Niña events were most severe over North America, eastern Africa, the Middle East and southwest Asia. High pressure dominated the entire Northern Hemisphere mid-latitudes and weakened and displaced storm tracks northward over North America into central Canada. Regionally over North America and Asia, the position of anomalous circulations within the zonal band of mid-latitude high pressure varied between each La Niña event. Over the northwestern and southeastern United States and southern Asia, the interactions of anomalous circulations resulted in consistent regional temperature advection, which was subsequently balanced by similar precipitation-modifying vertical motions. Over the central and northeastern United States, the spatial variation of anomalous circulations resulted in modest inter-seasonal temperature advection variations, which were balanced by varying vertical motion and precipitation patterns. Over the Middle East and eastern Africa, the divergence of moisture and the advection of dry air due to anomalous circulations enhanced each of the droughts.
Pereira, M H C; Wiltbank, M C; Guida, T G; Lopes, F R; Vasconcelos, J L M
2017-10-01
Two treatments designed to increase circulating progesterone concentration (P4) during preovulatory follicle development were compared. One treatment used 2 intravaginal P4 implants (controlled internal drug-releasing inserts; CIDR) and the other used a GnRH treatment at beginning of the protocol. Lactating Holstein cows that had been diagnosed as nonpregnant were randomly assigned to receive timed artificial insemination (TAI) following 1 of 2 treatments (n = 1,638 breedings): (1) GnRH: CIDR+ 2 mg of estradiol (E2) benzoate + 100 µg of GnRH on d -11, PGF 2α on d -4, CIDR withdrawal + 1.0 mg of E2-cypionate + PGF 2α ) on d -2, and TAI on d 0; or (2) 2CIDR: 2 CIDR + 2 mg of E2-benzoate on d -11, 1 CIDR withdrawn + PGF 2α on d -4, second CIDR withdrawn + 1.0 mg of E2-cypionate + PGF 2α on d -2, and TAI on d 0. Milk yield was measured daily between d 0 and d 7. Rectal temperature was measured using a digital thermometer at d 0 and 7, and elevated body temperature was defined as an average rectal temperature ≥39.1°C. Pregnancy diagnoses were performed on d 32 and 60 after TAI. We detected no effect of treatments on pregnancy per AI or pregnancy loss regardless of elevated body temperature, body condition score, parity, milk yield, or presence or absence of a corpus luteum (CL) on d -11 or d -4. Pregnancy per AI at 60 d was reduced [elevated body temperature = 22.8% (162/709), no elevated body temperature 34.1% (279/817)] and pregnancy loss tended to increase [elevated body temperature = 20.2% (41/203), no elevated body temperature 14.4% (47/326)] in cows with elevated body temperature. Various physiological measurements associated with greater fertility were also reduced in cows with elevated body temperature, such as percentage of cows with a CL at PGF 2α (decreased 7.9%), ovulatory follicle diameter (decreased 0.51 mm), expression of estrus (decreased 5.1%), and ovulation near TAI (decreased 2.8%) compared with cows without elevated body temperature. A greater proportion of cows (30.2%) had a CL at PGF 2α in the GnRH treatment [74.1% (570/763)] than in the 2CIDR treatment [56.9% (434/763)]; however, circulating P4 concentration was greater at the time of PGF 2α treatment (d -4) for cows 2CIDR (4.26 ± 0.13 ng/mL) than in cows in GnRH (3.99 ± 0.14 ng/mL). Thus, these 2 protocols yield similar fertility results that might be due to somewhat different physiological alterations. Treatment with GnRH increased the proportion of cows with a CL at PGF 2α ; however, the 2CIDR protocol increased circulating P4 under all circumstances. Copyright © 2017 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Overhead electric power transmission line jumpering system for bundles of five or more subconductors
Winkelman, Paul F.
1982-01-01
Jumpering of electric power transmission lines at a dead end tower. Two transmission line conductor bundles each contain five or more spaced apart subconductors (5) arranged in the shape of a cylinder having a circular cross section. The ends of each bundle of subconductors are attached with insulators to a dead end tower (1). Jumpering allows the electric current to flow between the two bundles of subconductors using jumper buses, internal jumper conductors, and external jumper conductors. One or more current collecting jumper buses (37) are located inside each bundle of subconductors with each jumper bus being attached to the end of a subconductor. Small-diameter internal jumper conductors (33) are located in the inherently electrically shielded area inside each bundle of subconductors with each subconductor (except ones having an attached jumper bus) having one internal jumper conductor connected between that subconductor's end and a jumper bus. Large-diameter external jumper conductors (9) are located outside each bundle of subconductors with one or more external jumper conductors being connected between the jumper buses in one bundle of subconductors and the jumper buses in the other bundle.
International Space Station (ISS)
2001-02-16
The International Space Station (ISS), with its newly attached U.S. Laboratory, Destiny, was photographed by a crew member aboard the Space Shuttle Orbiter Atlantis during a fly-around inspection after Atlantis separated from the Space Station. The Laboratory is shown in the foreground of this photograph. The American-made Destiny module is the cornerstone for space-based research aboard the orbiting platform and the centerpiece of the International Space Station (ISS), where unprecedented science experiments will be performed in the near-zero gravity of space. Destiny will also serve as the command and control center for the ISS. The aluminum module is 8.5-meters (28-feet) long and 4.3-meters (14-feet) in diameter. The laboratory consists of three cylindrical sections and two endcones with hatches that will be mated to other station components. A 50.9-centimeter (20-inch-) diameter window is located on one side of the center module segment. This pressurized module is designed to accommodate pressurized payloads. It has a capacity of 24 rack locations. Payload racks will occupy 15 locations especially designed to support experiments. The Destiny module was built by the Boeing Company under the direction of the Marshall Space Flight Center.
Chaban, Vitaly V; Prezhdo, Victor V; Prezhdo, Oleg V
2012-03-27
Vapor pressure grows rapidly above the boiling temperature, and past the critical point liquid droplets disintegrate. Our atomistic simulations show that this sequence of events is reversed inside carbon nanotubes (CNT). Droplets disintegrate first and at low temperature, while pressure remains low. The droplet disintegration temperature is independent of the CNT diameter. In contrast, depending on CNT diameter, a temperature that is much higher than the bulk boiling temperature is required to raise the internal pressure. The control over pressure by CNT size can be useful for therapeutic drug delivery. © 2012 American Chemical Society
Eight-cm mercury ion thruster system technology
NASA Technical Reports Server (NTRS)
1974-01-01
The technology status of 8 cm diameter electron bombardment ion thrusters is presented. Much of the technology resulting from the 5 cm diameter thruster has been adapted and improved upon to increase the reliability, durability, and efficiency of the 8 cm thruster. Technology discussed includes: dependence of neutralizer tip erosion upon neutralizer flow rate; impregnated and rolled-foil insert cathode performance and life testing; neutralizer position studies; thruster ion beam profile measurements; high voltage pulse ignition; high utilization ion machined accelerator grids; deposition internal and external to the thruster; thruster vectoring systems; thruster cycling life testing and thruster system weights for typical mission applications.
Application of X-ray television image system to observation in solid rocket motor
NASA Astrophysics Data System (ADS)
Fujiwara, T.; Ito, K.; Tanemura, T.; Shimizu, M.; Godai, T.
The X-ray television image system is used to observe the solid propellant burning surface during rocket motor operation as well as to inspect defects in solid rocket motors in a real time manner. This system can test 200 mm diameter dummy propellant rocket motors with under 2 percent discriminative capacity. Viewing of a 50 mm diameter internal-burning rocket motor, propellant burning surface time transition and propellant burning process of the surroundings of artificial defects were satisfactorily observed. The system was demonstrated to be effective for nondestructive testing and combustion research of solid rocket motors.