Science.gov

Sample records for internal dose assessment

  1. SECOND LATIN AMERICAN INTERCOMPARISON ON INTERNAL DOSE ASSESSMENT.

    PubMed

    Rojo, A; Puerta, N; Gossio, S; Gómez Parada, I; Cruz Suarez, R; López, E; Medina, C; Lastra Boylan, J; Pinheiro Ramos, M; Mora Ramírez, E; Alves Dos Reis, A; Yánez, H; Rubio, J; Vironneau Janicek, L; Somarriba Vanegas, F; Puerta Ortiz, J; Salas Ramírez, M; López Bejerano, G; da Silva, T; Miri Oliveira, C; Terán, M; Alfaro, M; García, T; Angeles, A; Duré Romero, E; Farias de Lima, F

    2016-09-01

    Internal dosimetry intercomparisons are essential for the verification of applied models and the consistency of results'. To that aim, the First Regional Intercomparison was organised in 2005, and that results led to the Second Regional Intercomparison Exercise in 2013, which was organised in the frame of the RLA 9/066 and coordinated by Autoridad Regulatoria Nuclear of Argentina. Four simulated cases covering intakes of (131)I, (137)Cs and Tritium were proposed. Ninteen centres from thirteen different countries participated in this exercise. This paper analyses the participants' results in this second exercise in order to test their skills and acquired knowledge, particularly in the application of the IDEAS Guidelines. It is important to highlight the increased number of countries that participated in this exercise compared with the first one and, furthermore, the improvement in the overall performance. The impact of the International Atomic Energy Agency (IAEA) Projects since 2003 has led to a significant enhancement of internal dosimetry capabilities that strengthen the radiation protection of workers.

  2. Internal dosimetry performing dose assessments via bioassay measurements

    SciTech Connect

    Bailey, K.M.

    1993-05-11

    The Internal Dosimetry Department at the Y-12 Plant maintains a state-of-the-art bioassay program managed under the guidance and regulations of the Department of Energy. The two major bioassay techniques currently used at Y-12 are the in vitro (urinalysis) and in vivo (lung counting) programs. Fecal analysis (as part of the in vitro program) is another alternative; however, since both urine and fecal analysis provide essentially the same capabilities for detecting exposures to uranium, the urinalysis is the main choice primarily for aesthetic reasons. The bioassay frequency is based on meeting NCRP 87 objectives which are to monitor the accumulation of radioactive material in exposed individuals, and to ensure that significant depositions are detected.

  3. Internal dose assessment data management system for a large population of Pu workers.

    PubMed

    Bertelli, L; Miller, G; Little, T; Guilmette, R A; Glasser, S M

    2007-01-01

    This paper describes the design and implementation of the Los Alamos National Laboratory (LANL) dose assessment (DA) data system. Dose calculations for the most important radionuclides at LANL, namely plutonium, americium, uranium and tritium, are performed through the Microsoft Access DA database. DA includes specially developed forms and macros that perform a variety of tasks, such as retrieving bioassay data, launching the FORTRAN internal dosimetry applications and displaying dose results in the form of text summaries and plots. The DA software involves the following major processes: (1) downloading of bioassay data from a remote data source, (2) editing local and remote databases, (3) setting up and carrying out internal dose calculations using the UF code or the ID code, (3) importing results of the dose calculations into local results databases, (4) producing a secondary database of 'official results' and (5) automatically creating and e-mailing reports. The software also provides summary status and reports of the pending DAs, which are useful for managing the cases in process.

  4. Internal dose assessment -- Operation Crossroads. Technical report, 11 January 1984-15 April 1985

    SciTech Connect

    Phillips, J.; Klemm, J.; Goetz, J.

    1985-10-30

    The radiation dose commitment to ten body organs/parts, due to inhalation of resuspended nuclear contaminants from target ships exposed to the underwater burst (Test Baker) is determined for personnel who worked on the ships during and after Operation CROSSROADS. Four representative ships, INDEPENDENCE, NEW YORK, PENSACOLA and SALT LAKE CITY, are examined for the personnel activities associated with post-BAKER reboarding. Additionally, the dose due to internal emitters is assessed for personnel who unloaded ammunition from twenty target ships at Kwajalein, and for shipyard workers exposed to eight of the higher intensity ships at Pearl Harbor, Puget Sound, and San Francisco Naval Shipyards. For almost all activities, fifty-year bone dose commitments are less than 0.15 rem from any annual period of exposure.

  5. Revised series of stylized anthropometric phantoms for internal and external radiation dose assessment

    NASA Astrophysics Data System (ADS)

    Han, Eunyoung

    At present, the dosimetry systems of both the International Commission on Radiological Protection, and the Society of Nuclear Medicine's Medical Internal Radiation Dose Committee utilize a series of stylized or mathematical anthropometric models of patient anatomy developed in 1987 at the Oak Ridge National Laboratory (ORNL). In this study, substantial revisions to the ORNL phantom series are reported with tissue compositions, tissue densities, and organ masses adjusted to match their most recent values in the literature. In addition, both the ICRP and MIRD systems of internal dosimetry implicitly consider that electron and beta-particle energy emitted within the source organs of the patient are fully deposited within these organs. With the development of the revised ORNL phantom series, three additional applications were explored as part of this dissertation research. First, the phantoms were used in combination to assess external radiation exposures to family members caring or interacting with patients released from the hospital following radionuclide therapy with I-131. Values of family member effective dose are then compared to values obtained using NRC guidance and based on a simple point-source methodology which ignores the effects of photon attenuation and scatter within both the source individual (patient) and the target individual (family member). Second, the anatomical structures of the extrathoracic airways and thoracic airways (exclusive of the lungs themselves) have been included in the entire revised ORNL phantom series of pediatric individuals. Values of cross-region photon dose are explored for use in radioactive aerosol inhalation exposures to members of the general public, and comparisons are made to values given by the ICRP in which surrogate organ assignments were made in the absence of explicit models of these airways. Finally, the revised ORNL phantoms of the adult male and adult female are used to determine internal photon exposures to

  6. Biomarkers of internal dose for the assessment of environmental exposure to benzene.

    PubMed

    Lovreglio, Piero; D'Errico, Maria Nicolà; Fustinoni, Silvia; Drago, Ignazio; Barbieri, Anna; Sabatini, Laura; Carrieri, Mariella; Apostoli, Pietro; Soleo, Leonardo

    2011-10-01

    The urinary excretion of t,t-muconic acid (t,t-MA), S-phenylmercapturic acid (SPMA) and urinary benzene and the influence of a smoking habit and of exposure to urban traffic on the urinary excretion of these biomarkers were investigated in 137 male adults from the general population. All subjects were not occupationally exposed to benzene and resident in two cities in Puglia (Southern-Italy). Environmental exposure to benzene was measured using passive personal samplers. The biomarkers t,t-MA, SPMA and urinary benzene were determined in urine samples collected from each subject at the end of the environmental sampling. The percentage of cases above the limit of detection was higher for SPMA and urinary benzene in smokers than in non-smokers, and for airborne benzene and urinary benzene in subjects exposed to urban traffic. Airborne benzene was correlated with the time spent in urban traffic during the environmental sampling. Among the biomarkers, urinary benzene was found to be correlated with airborne benzene only in non-smokers, and with the time spent in urban traffic, both in smokers and non-smokers considered together, and in non-smokers only. Finally, multiple regression analysis showed that the urinary excretion of all the biomarkers was dependent on the number of cigarettes smoked per day and, for urinary benzene, also on the time spent in urban traffic. In conclusion, urinary benzene seems to be a more valid biomarker than t,t-MA and SPMA to assess environmental exposure to extremely low concentrations of benzene. Cigarette smoking prevailed over traffic exhaust fumes in determining the internal dose of benzene.

  7. Practical applications of internal dose calculations

    SciTech Connect

    Carbaugh, E.H.

    1994-06-01

    Accurate estimates of intake magnitude and internal dose are the goal for any assessment of an actual intake of radioactivity. When only one datum is available on which to base estimates, the choices for internal dose assessment become straight-forward: apply the appropriate retention or excretion function, calculate the intake, and calculate the dose. The difficulty comes when multiple data and different types of data become available. Then practical decisions must be made on how to interpret conflicting data, or how to adjust the assumptions and techniques underlying internal dose assessments to give results consistent with the data. This article describes nine types of adjustments which can be incorporated into calculations of intake and internal dose, and then offers several practical insights to dealing with some real-world internal dose puzzles.

  8. Internal dose assessment for 211At α-emitter in isotonic solution as radiopharmaceutical

    NASA Astrophysics Data System (ADS)

    Yuminov, O. A.; Fotina, O. V.; Priselkova, A. B.; Tultaev, A. V.; Platonov, S. Yu.; Eremenko, D. O.; Drozdov, V. A.

    2003-12-01

    The functional fitness of the α-emitter 211At for radiotherapy of the thyroid gland cancer is evaluated. Radiation doses are calculated using the MIRD method and previously obtained pharmacokinetic data for 211At in isotonic solution and for 123I as sodium iodide. Analysis of the 211At radiation dose to the thyroid gland suggests that this radiopharmaceutical may be predominantly used for the treatment of the thyroid cancer.

  9. Improvement of the measuring equipment used in the assessment of internal doses in emergency situations.

    PubMed

    Muikku, M; Rahola, T

    2007-01-01

    Emergency response plans have long been focused on accidents at nuclear power plants. Recently, the malevolent use of radiation aimed at creating disruption in the society has been considered as a possible threat. In this kind of emergency situations casualties will most likely be members of the public and the number of affected people can vary from a few to mass casualties. There is an evident need for rapid measurements of large groups of internally contaminated people. Radiation and Nuclear Safety Authority (STUK) in Finland has obtained new monitors for thyroid and simple whole-body measurements in field conditions as a part of the continuous improving of emergency preparedness. The new monitors consist of a NaI(Tl) detector and a control unit. The monitors work as spectrometers allowing real-time spectrum analysis in the field.

  10. Use of international data sets to evaluate and validate pathway assessment models applicable to exposure and dose reconstruction at DOE facilities. Progress report, August 1993--January 1994

    SciTech Connect

    Hendrickson, S.M.; Hoffman, F.O.

    1994-03-01

    This project, ``Use of International Data Sets to Evaluate and Validate Pathway Assessment Models Applicable to Exposure and Dose Reconstruction at DOE Facilities,`` grew out of several activities being conducted by the Principal Investigator Dr. F Owen Hoffman. One activity was originally part of the Chernobyl Studies Project and began as Task 7.1D, ``Internal Dose From Direct Contamination of Terrestrial Food Sources.`` The objective of Task 7.1D was to (1) establish a collaborative US USSR effort to improve and validate our methods of forecasting doses and dose commitments from the direct contamination of food sources, and (2) perform experiments and validation studies to improve our ability to predict rapidly and accurately the long-term internal dose from the contamination of agricultural soil. The latter was to include the consideration of remedial measures to block contamination of food grown on contaminated soil. The current objective of this project is to evaluate and validate pathway-assessment models applicable to exposure and dose reconstruction at DOE facilities through use of international data sets. This project incorporates the activity of Task 7.1D into a multinational effort to evaluate data used for the prediction of radionuclide transfer through agricultural and aquatic systems to humans. It also includes participation in two multinational studies, BIOMOVS (BIOspheric MOdel Validation Study) with the Swedish National Institute for Radiation Protection and VAMP (VAlidation of Model Predictions) with the International Atomic Energy Agency, that address testing the performance of models of radionuclide transport through foodchains.

  11. Mayak Worker Dosimetry System 2008 (MWDS-2008): assessment of internal dose from measurement results of plutonium activity in urine.

    PubMed

    Khokhryakov, Victor V; Khokhryakov, Valentin F; Suslova, Klara G; Vostrotin, Vadim V; Vvedensky, Vladimir E; Sokolova, Alexandra B; Krahenbuhl, Melinda P; Birchall, Alan; Miller, Scott C; Schadilov, Anatoly E; Ephimov, Alexander V

    2013-04-01

    A new modification of the prior human lung compartment plutonium model, Doses-2005, has been described. The modified model was named "Mayak Worker Dosimetry System-2008" (MWDS-2008). In contrast to earlier models developed for workers at the Mayak Production Association (Mayak PA), the new model more correctly describes plutonium biokinetics and metabolism in pulmonary lymph nodes. The MWDS-2008 also provides two sets of doses estimates: one based on bioassay data and the other based on autopsy data, where available. The algorithm of internal dose calculation from autopsy data will be described in a separate paper. Results of comparative analyses of Doses-2005 and MWDS-2008 are provided. Perspectives on the further development of plutonium dosimetry are discussed.

  12. Utirik Atoll Dose Assessment

    SciTech Connect

    Robison, W.L.; Conrado, C.L.; Bogen, K.T

    1999-10-06

    On March 1, 1954, radioactive fallout from the nuclear test at Bikini Atoll code-named BRAVO was deposited on Utirik Atoll which lies about 187 km (300 miles) east of Bikini Atoll. The residents of Utirik were evacuated three days after the fallout started and returned to their atoll in May 1954. In this report we provide a final dose assessment for current conditions at the atoll based on extensive data generated from samples collected in 1993 and 1994. The estimated population average maximum annual effective dose using a diet including imported foods is 0.037 mSv y{sup -1} (3.7 mrem y{sup -1}). The 95% confidence limits are within a factor of three of their population average value. The population average integrated effective dose over 30-, 50-, and 70-y is 0.84 mSv (84, mrem), 1.2 mSv (120 mrem), and 1.4 mSv (140 mrem), respectively. The 95% confidence limits on the population-average value post 1998, i.e., the 30-, 50-, and 70-y integral doses, are within a factor of two of the mean value and are independent of time, t, for t > 5 y. Cesium-137 ({sup 137}Cs) is the radionuclide that contributes most of this dose, mostly through the terrestrial food chain and secondarily from external gamma exposure. The dose from weapons-related radionuclides is very low and of no consequence to the health of the population. The annual background doses in the U. S. and Europe are 3.0 mSv (300 mrem), and 2.4 mSv (240 mrem), respectively. The annual background dose in the Marshall Islands is estimated to be 1.4 mSv (140 mrem). The total estimated combined Marshall Islands background dose plus the weapons-related dose is about 1.5 mSv y{sup -1} (150 mrem y{sup -1}) which can be directly compared to the annual background effective dose of 3.0 mSv y{sup -1} (300 mrem y{sup -1}) for the U. S. and 2.4 mSv y{sup -1} (240 mrem y{sup -1}) for Europe. Moreover, the doses listed in this report are based only on the radiological decay of {sup 137}Cs (30.1 y half-life) and other

  13. Experimental assessment of absorbed dose to mineralized bone tissue from internal emitters: An electron paramagnetic resonance study

    SciTech Connect

    Desrosiers, M.F.

    1994-12-31

    EPR resonances attributable to radiation-induced centers in hydroxyapatite were not detectable in bone samples supplied by the USTUR. These centers are the basis for imaging and dose assessment. Presumable, the short range of the alpha particles emitted precluded the formation of appreciable amounts of hydroxyapatite centers. However, one bone sample did offer a suggestion of hydroxyapatite centers and newly-developed methods to extract this information will be pursued.

  14. Polycyclic aromatic hydrocarbons at fire stations: firefighters' exposure monitoring and biomonitoring, and assessment of the contribution to total internal dose.

    PubMed

    Oliveira, Marta; Slezakova, Klara; Alves, Maria José; Fernandes, Adília; Teixeira, João Paulo; Delerue-Matos, Cristina; Pereira, Maria do Carmo; Morais, Simone

    2017-02-05

    This work characterizes levels of eighteen polycyclic aromatic hydrocarbons (PAHs) in the breathing air zone of firefighters during their regular work shift at eight Portuguese fire stations, and the firefighters' total internal dose by six urinary monohydroxyl metabolites (OH-PAHs). Total PAHs (ΣPAHs) concentrations varied widely (46.4-428ng/m(3)), mainly due to site specificity (urban/rural) and characteristics (age and layout) of buildings. Airborne PAHs with 2-3 rings were the most abundant (63.9-95.7% ΣPAHs). Similarly, urinary 1-hydroxynaphthalene and 1-hydroxyacenaphthene were the predominant metabolites (66-96% ΣOH-PAHs). Naphthalene contributed the most to carcinogenic ΣPAHs (39.4-78.1%) in majority of firehouses; benzo[a]pyrene, the marker of carcinogenic PAHs, accounted with 1.5-10%. Statistically positive significant correlations (r≥0.733, p≤0.025) were observed between ΣPAHs and urinary ΣOH-PAHs for firefighters of four fire stations suggesting that, at these sites, indoor air was their major exposure source of PAHs. Firefighter's personal exposure to PAHs at Portuguese fire stations were well below the existent occupational exposure limits. Also, the quantified concentrations of post-shift urinary 1-hydroxypyrene in all firefighters were clearly lower than the benchmark level (0.5μmol/mol) recommended by the American Conference of Governmental Industrial Hygienists.

  15. THE CHALLENGE OF CIEMAT INTERNAL DOSIMETRY SERVICE FOR ACCREDITATION ACCORDING TO ISO/IEC 17025 STANDARD, FOR IN VIVO AND IN VITRO MONITORING AND DOSE ASSESSMENT OF INTERNAL EXPOSURES.

    PubMed

    Lopez, M A; Martin, R; Hernandez, C; Navarro, J F; Navarro, T; Perez, B; Sierra, I

    2016-09-01

    The accreditation of an Internal Dosimetry Service (IDS) according to ISO/IEC 17025 Standard is a challenge. The aim of this process is to guarantee the technical competence for the monitoring of radionuclides incorporated in the body and for the evaluation of the associated committed effective dose E(50). This publication describes the main accreditation issues addressed by CIEMAT IDS regarding all the procedures involving good practice in internal dosimetry, focussing in the difficulties to ensure the traceability in the whole process, the appropriate calculation of detection limit of measurement techniques, the validation of methods (monitoring and dose assessments), the description of all the uncertainty sources and the interpretation of monitoring data to evaluate the intake and the committed effective dose.

  16. Internal dose following a major nuclear war

    SciTech Connect

    Peterson, K.R.; Shapiro, C.S. )

    1992-01-01

    The PATHWAY model results were used, in conjunction with a hypothetical major nuclear attack on the U.S., to arrive at the ratio of internal to external dose for humans from early (48 h) fallout. Considered were the four nuclides (137Cs, 89Sr, 90Sr, 131I) that account for most of the reconstructed whole-body committed equivalent dose from internal radiation in people who lived downwind of the Nevada Test Site during atmospheric tests. Effects of climate perturbations (the 'nuclear winter' effect) on food crops were considered. These could increase internal dose estimates, depending on the severity of the climate perturbations. Internal and external doses to humans for 10 locations within the U.S. have been calculated, with varying local conditions and varying assumption about their shelters. The estimated 50-y internal dose commitment ranged from 0.0-0.17 Sv, the 48-h external dose from 0.15-4.6 Sv. The resultant ratios of internal to external committed dose received in the first months (until food transport was restored) varied from less than 0.01 to about 0.2. In all cases examined, the total dose from early fallout was found to be dominated by the external dose.

  17. Internal dose following a major nuclear war.

    PubMed

    Peterson, K R; Shapiro, C S

    1992-01-01

    The PATHWAY model results were used, in conjunction with a hypothetical major nuclear attack on the U.S., to arrive at the ratio of internal to external dose for humans from early (48 h) fallout. Considered were the four nuclides (137Cs, 89Sr, 90Sr, 131I) that account for most of the reconstructed whole-body committed equivalent dose from internal radiation in people who lived downwind of the Nevada Test Site during atmospheric tests. Effects of climate perturbations (the "nuclear winter" effect) on food crops were considered. These could increase internal dose estimates, depending on the severity of the climate perturbations. Internal and external doses to humans for 10 locations within the U.S. have been calculated, with varying local conditions and varying assumption about their shelters. The estimated 50-y internal dose commitment ranged from 0.0-0.17 Sv, the 48-h external dose from 0.15-4.6 Sv. The resultant ratios of internal to external committed dose received in the first months (until food transport was restored) varied from less than 0.01 to about 0.2. In all cases examined, the total dose from early fallout was found to be dominated by the external dose.

  18. REMEDIATION FACILITY WORKER DOSE ASSESSMENT

    SciTech Connect

    V. Arakali; E. Faillace

    2004-02-27

    The purpose of this design calculation is to estimate radiation doses received by personnel in the Remediation Facility performing operations to receive, prepare, open, repair, recover, disposition, and correct off-normal and non-standard conditions with casks, canisters, spent nuclear fuel (SNF) assemblies, and waste packages (WP). The specific scope of work contained in this calculation covers both collective doses and individual worker group doses on an annual basis, and includes the contributions due to external and internal radiation. The results of this calculation will be used to support the design of the Remediation Facility and provide occupational dose estimates for the License Application.

  19. Use of international data sets to evaluate and validate pathway assessment models applicable to exposure and dose reconstruction at DOE facilities. Progress report, March--May 1994

    SciTech Connect

    Anspaugh, L.R.; Hendrickson, S.M.; Hoffman, F.O.

    1994-06-01

    The project described in this report was the result of a Memorandum of Cooperation between the US and the former-USSR following the accident at the Chernobyl Nuclear Power Plant Unit 4. A joint program was established to improve the safety of nuclear power plants and to understand the implications of environmental releases. The task of Working Group 7 was ``to develop jointly methods to project rapidly the health effects of any future nuclear reactor accident.`` The current objective of this project is to evaluate and validate pathway-assessment models applicable to exposure and dose reconstruction at DOE facilities through use of international data sets. This project incorporates data used for the prediction of radionuclide transfer through agricultural and aquatic systems to humans. It also includes participation in two multinational studies, BIOMOVS (Biospheric Model Validation Study) with the Swedish National Institute for Radiation Protection and VAMP (Validation of Model Predictions) with the International Atomic Energy Agency, that address testing the performance of models of radionuclide transport through foodchains. In the future, this project will be considered separately from the Chernobyl Studies Project and the essential activities of former Task 7.1D will be folded within the broader umbrella of the BIOMOVS and VAMP projects. The Working Group Leader of Task 7.1D will continue to provide oversight for this project.

  20. Respirators, internal dose, and Oyster Creek

    SciTech Connect

    Michal, R.

    1996-06-01

    This article looks at the experience of Oyster Creek in relaxing the requirements for the use of respirators in all facets of plant maintenance, on the overall dose received by plant maintenance personnel. For Roger Shaw, director of radiological controls for three years at GPU Nuclear Corporation`s Oyster Creek nuclear plant the correct dose balance is determined on a job-by-job basis: Does the job require a respirator, which is an effective means of decreasing worker inhalation of airborne radioactive particles? Will wearing a respirator slow down a worker, consequently increasing whole body radiation exposure by prolonging the time spent in fields of high external radiation? How does respiratory protection affect worker safety and to what degree? While changes to the Nuclear Regulatory Commission`s 10CFR20 have updated the radiation protection requirements for the nuclear industry, certain of the revisions have been directed specifically at reducing worker dose, Shaw said. {open_quotes}It basically delineates that dose is dose,{close_quotes} Shaw said, {open_quotes}regardless of whether it is acquired externally or internally.{close_quotes} The revision of Part 20 changed the industry`s attitude toward internal dose, which had always been viewed negatively. {open_quotes}Internal dose was always seen as preventable by wearing respirators and by using engineering techniques such as ventilation control and decontamination,{close_quotes} Shaw said, {open_quotes}whereas external dose, although reduced where practical, was seen as a fact of the job.{close_quotes}

  1. AGING FACILITY WORKER DOSE ASSESSMENT

    SciTech Connect

    R.L. Thacker

    2005-03-24

    The purpose of this calculation is to estimate radiation doses received by personnel working in the Aging Facility performing operations to transfer aging casks to the aging pads for thermal and logistical management, stage empty aging casks, and retrieve aging casks from the aging pads for further processing in other site facilities. Doses received by workers due to aging cask surveillance and maintenance operations are also included. The specific scope of work contained in this calculation covers both collective doses and individual worker group doses on an annual basis, and includes the contributions due to external and internal radiation from normal operation. There are no Category 1 event sequences associated with the Aging Facility (BSC 2004 [DIRS 167268], Section 7.2.1). The results of this calculation will be used to support the design of the Aging Facility and to provide occupational dose estimates for the License Application. The calculations contained in this document were developed by Environmental and Nuclear Engineering of the Design and Engineering Organization and are intended solely for the use of the Design and Engineering Organization in its work regarding facility operation. Yucca Mountain Project personnel from the Environmental and Nuclear Engineering should be consulted before use of the calculations for purposes other than those stated herein or use by individuals other than authorized personnel in Environmental and Nuclear Engineering.

  2. Fukushima simulation experiment: assessing the effects of chronic low-dose-rate internal 137Cs radiation exposure on litter size, sex ratio, and biokinetics in mice

    PubMed Central

    Nakajima, Hiroo; Yamaguchi, Yoshiaki; Yoshimura, Takashi; Fukumoto, Manabu; Todo, Takeshi

    2015-01-01

    To investigate the transgenerational effects of chronic low-dose-rate internal radiation exposure after the Fukushima Daiichi Nuclear Power Plant accident in Japan, 18 generations of mice were maintained in a radioisotope facility, with free access to drinking water containing 137CsCl (0 and 100 Bq/ml). The 137Cs distribution in the organs of the mice was measured after long-term ad libitum intake of the 137CsCl water. The litter size and the sex ratio of the group ingesting the 137Cs water were compared with those of the control group, for all 18 generations of mice. No significant difference was noted in the litter size or the sex ratio between the mice in the control group and those in the group ingesting the 137Cs water. The fixed internal exposure doses were ∼160 Bq/g and 80 Bq/g in the muscles and other organs, respectively. PMID:26825299

  3. Fukushima simulation experiment: assessing the effects of chronic low-dose-rate internal 137Cs radiation exposure on litter size, sex ratio, and biokinetics in mice.

    PubMed

    Nakajima, Hiroo; Yamaguchi, Yoshiaki; Yoshimura, Takashi; Fukumoto, Manabu; Todo, Takeshi

    2015-12-01

    To investigate the transgenerational effects of chronic low-dose-rate internal radiation exposure after the Fukushima Daiichi Nuclear Power Plant accident in Japan, 18 generations of mice were maintained in a radioisotope facility, with free access to drinking water containing (137)CsCl (0 and 100 Bq/ml). The (137)Cs distribution in the organs of the mice was measured after long-term ad libitum intake of the (137)CsCl water. The litter size and the sex ratio of the group ingesting the (137)Cs water were compared with those of the control group, for all 18 generations of mice. No significant difference was noted in the litter size or the sex ratio between the mice in the control group and those in the group ingesting the (137)Cs water. The fixed internal exposure doses were ∼160 Bq/g and 80 Bq/g in the muscles and other organs, respectively.

  4. Measurement of (131)I activity in thyroid of nuclear medical staff and internal dose assessment in a Polish nuclear medical hospital.

    PubMed

    Brudecki, K; Kowalska, A; Zagrodzki, P; Szczodry, A; Mroz, T; Janowski, P; Mietelski, J W

    2017-03-01

    This paper presents results of (131)I thyroid activity measurements in 30 members of the nuclear medicine personnel of the Department of Endocrinology and Nuclear Medicine Holy Cross Cancer Centre in Kielce, Poland. A whole-body spectrometer equipped with two semiconductor gamma radiation detectors served as the basic research instrument. In ten out of 30 examined staff members, the determined (131)I activity was found to be above the detection limit (DL = 5 Bq of (131)I in the thyroid). The measured activities ranged from (5 ± 2) Bq to (217 ± 56) Bq. The highest activities in thyroids were detected for technical and cleaning personnel, whereas the lowest values were recorded for medical doctors. Having measured the activities, an attempt has been made to estimate the corresponding annual effective doses, which were found to range from 0.02 to 0.8 mSv. The highest annual equivalent doses have been found for thyroid, ranging from 0.4 to 15.4 mSv, detected for a cleaner and a technician, respectively. The maximum estimated effective dose corresponds to 32% of the annual background dose in Poland, and to circa 4% of the annual limit for the effective dose due to occupational exposure of 20 mSv per year, which is in compliance with the value recommended by the International Commission on Radiological Protection.

  5. International Arctic Seas Assessment Project.

    PubMed

    Sjöblom, K L; Salo, A; Bewers, J M; Cooper, J; Dyer, R S; Lynn, N M; Mount, M E; Povinec, P P; Sazykina, T G; Schwarz, J; Scott, E M; Sivintsev, Y V; Tanner, J E; Warden, J M; Woodhead, D

    1999-09-30

    The International Atomic Energy Agency responded to the news that the former Soviet Union had dumped radioactive wastes in the shallow waters of the Arctic Seas, by launching the International Arctic Seas Assessment Project in 1993. The project had two objectives: to assess the risks to human health and to the environment associated with the radioactive wastes dumped in the Kara and Barents Seas; and to examine possible remedial actions related to the dumped wastes and to advise on whether they are necessary and justified. The current radiological situation in the Arctic waters was examined to assess whether there is any evidence for releases from the dumped waste. Potential future releases from the dumped wastes were predicted, concentrating on the high-level waste objects containing the major part of the radionuclide inventory of the wastes. Environmental transport of released radionuclides was modelled and the associated radiological impact on humans and the biota was assessed. The feasibility, costs and benefits of possible remedial measures applied to a selected high-level waste object were examined. Releases from identified dumped objects were found to be small and localised to the immediate vicinity of the dumping sites. Projected future annual doses to members of the public in typical local population groups were very small, less than 1 microSv--corresponding to a trivial risk. Projected future doses to a hypothetical group of military personnel patrolling the foreshore of the fjords in which wastes have been dumped were higher, up to 4 mSv/year, which still is of the same order as the average annual natural background dose. Moreover, since any of the proposed remedial actions were estimated to cost several million US$ to implement, remediation was not considered justified on the basis of potentially removing a collective dose of 10 man Sv. Doses calculated to marine fauna were insignificant, orders of magnitude below those at which detrimental effects on

  6. Critical Dose of Internal Organs Internal Exposure - 13471

    SciTech Connect

    Grigoryan, G.; Amirjanyan, A.; Grigoryan, N.

    2013-07-01

    The health threat posed by radionuclides has stimulated increased efforts to developed characterization on the biological behavior of radionuclides in humans in all ages. In an effort motivated largely by the Chernobyl nuclear accident, the International Commission on Radiological Protection (ICRP) is assembling a set of age specific biokinetic models for environmentally important radioelements. Radioactive substances in the air, mainly through the respiratory system and digestive tract, is inside the body. Radioactive substances are unevenly distributed in various organs and tissues. Therefore, the degree of damage will depend not only on the dose of radiation have but also on the critical organ, which is the most accumulation of radioactive substances, which leads to the defeat of the entire human body. The main objective of radiation protection, to avoid exceeding the maximum permissible doses of external and internal exposure of a person to prevent the physical and genetic damage people. The maximum tolerated dose (MTD) of radiation is called a dose of radiation a person in uniform getting her for 50 years does not cause changes in the health of the exposed individual and his progeny. The following classification of critical organs, depending on the category of exposure on their degree of sensitivity to radiation: First group: the whole body, gonads and red bone marrow; Second group: muscle, fat, liver, kidney, spleen, gastrointestinal tract, lungs and lens of the eye; The third group: bone, thyroid and skin; Fourth group: the hands, forearms, feet. MTD exposure whole body, gonads and bone marrow represent the maximum exposures (5 rem per year) experienced by people in their normal activities. The purpose of this article is intended dose received from various internal organs of the radionuclides that may enter the body by inhalation, and gastrointestinal tract. The biokinetic model describes the time dependent distribution and excretion of different

  7. Science Teaching and International Assessments

    ERIC Educational Resources Information Center

    Bybee, Rodger W.

    2007-01-01

    This article is an introduction to the international assessments Programme for International Student Assessment (PISA) and the Trends in International Mathematics and Science Study (TIMSS) and a review of results from 2003. International comparisons, especially in the media, have elevated interest in science education and stimulated discussions…

  8. VOXMAT: Hybrid Computational Phantom for Dose Assessment

    SciTech Connect

    Akkurt, Hatice; Eckerman, Keith F

    2007-01-01

    The Oak Ridge National Laboratory (ORNL) computational phantoms have been the standard for assessing the radiation dose due to internal and external exposure over the past three decades. In these phantoms, the body surface and each organ are approximated by mathematical equations; hence, some of the organs are not necessarily realistic in their shape. Over the past two decades, these phantoms have been revised and updated: some of the missing internal organs have been added and the locations of the existing organs have been revised (e.g., thyroid). In the original phantom, only three elemental compositions were used to describe all body tissues. Recently, the compositions of the organs have been updated based on ICRP-89 standards. During the past decade, phantoms based on CT scans were developed for use in dose assessment. Although their shapes are realistic, some computational challenges are noted; including increased computational times and increased memory requirements. For good spatial resolution, more than several million voxels are used to represent the human body. Moreover, when CT scans are obtained, the subject is in a supine position with arms at the side. In some occupational exposure cases, it is necessary to evaluate the dose with the arms and legs in different positions. It will be very difficult and inefficient to reposition the voxels defining the arms and legs to simulate these exposure geometries. In this paper, a new approach for computational phantom development is presented. This approach utilizes the combination of a mathematical phantom and a voxelized phantom for the representation of the anatomy.

  9. Influence of DTPA Treatment on Internal Dose Estimates.

    PubMed

    Davesne, Estelle; Blanchardon, Eric; Peleau, Bernadette; Correze, Philippe; Bohand, Sandra; Franck, Didier

    2016-06-01

    In case of internal contamination with plutonium materials, a treatment with diethylene triamine pentaacetic acid (DTPA) can be administered in order to reduce plutonium body burden and consequently avoid some radiation dose. DTPA intravenous injections or inhalation can start almost immediately after intake, in parallel with urinary and fecal bioassay sampling for dosimetric follow-up. However, urine and feces excretion will be significantly enhanced by the DTPA treatment. As internal dose is calculated from bioassay results, the DTPA effect on excretion has to be taken into account. A common method to correct bioassay data is to divide it by a factor representing the excretion enhancement under DTPA treatment by intravenous injection. Its value may be based on a nominal reference or observed after a break in the treatment. The aim of this study was to estimate the influence of this factor on internal dose by comparing the dose estimated using default or upper and lower values of the enhancement factor for 11 contamination cases. The observed upper and lower values of the enhancement factor were 18.7 and 63.0 for plutonium and 24.9 and 28.8 for americium. For americium, a default factor of 25 is proposed. This work demonstrates that the use of a default DTPA enhancement factor allows the determination of the magnitude of the contamination because dose estimated could vary by a factor of 2 depending on the value of the individual DTPA enhancement factor. In case of significant intake, an individual enhancement factor should be determined to obtain a more reliable dose assessment.

  10. Ingestion of Nevada Test Site Fallout: Internal dose estimates

    SciTech Connect

    Whicker, F.W.; Kirchner, T.B.; Anspaugh, L.R.

    1996-10-01

    This paper summarizes individual and collective dose estimates for the internal organs of hypothetical yet representative residents of selected communities that received measurable fallout from nuclear detonations at the Nevada Test Site. The doses, which resulted from ingestion of local and regional food products contaminated with over 20 radionuclides, were estimated with use of the PATHWAY food-chain-transport model to provide estimates of central tendency and uncertainty. The thyroid gland received much higher doses than other internal organs and tissues. In a avery few cases, infants might have received thyroid doses in excess of 1 Gy, depending on location, diet, and timing of fallout. {sup 131}I was the primary thyroid dose contributor, and fresh milk was the main exposure pathway. With the exception of the thyroid, organ doses from the ingestion pathway were much smaller (<3%) than those from external gamma exposure to deposited fallout. Doses to residents living closest to the Nevada Test Site were contributed mainly by a few fallout events; doses to more distantly located people were generally smaller, but a greater number of events provided measurable contributions. The effectiveness of different fallout events in producing internal organ doses through ingestion varied dramatically with seasonal timing of the test, with maximum dose per unit fallout occurring for early summer depositions when milk cows were on pasture and fresh, local vegetables were used. Within specific communities, internal doses differed by age, sex, and lifestyle. Collective internal dose estimates for specific geographic areas are provided.

  11. Dose rate assessment in tooth enamel

    NASA Astrophysics Data System (ADS)

    Wieser, A.; Göksu, H. Y.; Regulla, D. F.; Vogenauer, A.

    A mammoth found in the southern part of Germany was dated by ESR spectroscopy. This dating method is based on the measurement of the accumulated dose in tooth enamel and assessment of the annual dose. The accumulated dose is obtained from the radiation induced ESR signal at g = 2.0018 of the enamel. The annual dose was first determined by measuring the 238U, 232Th and 40K content of the tooth and of the surrounding soil. As a crosscheck, the dose rate from the tooth was measured by inserting TL dosimeters in the dentine and storing them at 'zero' background in a salt mine. The cosmic dose rate and the gamma dose rate from the soil was evaluated from TL dosimeters buried at the excavation site. The results are discussed with respect to the applicability of ESR dating on teeth.

  12. Use of international data sets to evaluate and validate pathway assessment models applicable to exposure and dose reconstruction at DOE facilities. Monthly progress reports and final report, October--December 1994

    SciTech Connect

    Hoffman, F.O.

    1995-04-01

    The objective of Task 7.lD was to (1) establish a collaborative US-USSR effort to improve and validate our methods of forecasting doses and dose commitments from the direct contamination of food sources, and (2) perform experiments and validation studies to improve our ability to predict rapidly and accurately the long-term internal dose from the contamination of agricultural soil. At early times following an accident, the direct contamination of pasture and food stuffs, particularly leafy vegetation and grain, can be of great importance. This situation has been modeled extensively. However, models employed then to predict the deposition, retention and transport of radionuclides in terrestrial environments employed concepts and data bases that were more than a decade old. The extent to which these models have been tested with independent data sets was limited. The data gathered in the former-USSR (and elsewhere throughout the Northern Hemisphere) offered a unique opportunity to test model predictions of wet and dry deposition, agricultural foodchain bioaccumulation, and short- and long-term retention, redistribution, and resuspension of radionuclides from a variety of natural and artificial surfaces. The current objective of this project is to evaluate and validate pathway-assessment models applicable to exposure and dose reconstruction at DOE facilities through use of international data sets. This project incorporates the activity of Task 7.lD into a multinational effort to evaluate models and data used for the prediction of radionuclide transfer through agricultural and aquatic systems to humans. It also includes participation in two studies, BIOMOVS (BIOspheric MOdel Validation Study) with the Swedish National Institute for Radiation Protection and VAMP (VAlidation of Model Predictions) with the International Atomic Energy Agency, that address testing the performance of models of radionuclide transport through foodchains.

  13. Biodosimetry and assessment of radiation dose

    PubMed Central

    Crespo, Rafael Herranz; Domene, Mercedes Moreno; Rodríguez, María Jesús Prieto

    2011-01-01

    Aim When investigating radiation accidents, it is very important to determine the exposition dose to the individuals. In the case of exposures over 1 Gy, clinicians may expect deterministic effects arising the following weeks and months, in these cases dose estimation will help physicians in the planning of therapy. Nevertheless, for doses below 1 Gy, biodosimetry data are important due to the risk of developing late stochastic effects. Finally, some accidental overexposures are lack of physical measurements and the only way of quantifying dose is by biological dosimetry. Background The analysis of chromosomal aberrations by different techniques is the most developed method of quantifying dose to individuals exposed to ionising radiations.1,2 Furthermore, the analysis of dicentric chromosomes observed in metaphases from peripheral lymphocytes is the routine technique used in case of acute exposures to assess radiation doses. Materials and methods Solid stain of chromosomes is used to determine dicentric yields for dose estimation. Fluorescence in situ hybridization (FISH) for translocations analysis is used when delayed sampling or suspected chronically irradiation dose assessment. Recommendations in technical considerations are based mainly in the IAEA Technical Report No. 405.2 Results Experience in biological dosimetry at Gregorio Marañón General Hospital is described, including own calibration curves used for dose estimation, background studies and real cases of overexposition. Conclusion Dose assessment by biological dosimeters requires a large previous standardization work and a continuous update. Individual dose assessment involves high qualification professionals and its long time consuming, therefore requires specific Centres. For large mass casualties cooperation among specialized Institutions is needed. PMID:24376970

  14. An updated dose assessment for Rongelap Island

    SciTech Connect

    Robison, W.L.; Conrado, C.L.; Bogen, K.T.

    1994-07-01

    We have updated the radiological dose assessment for Rongelap Island at Rongelap Atoll using data generated from field trips to the atoll during 1986 through 1993. The data base used for this dose assessment is ten fold greater than that available for the 1982 assessment. Details of each data base are presented along with details about the methods used to calculate the dose from each exposure pathway. The doses are calculated for a resettlement date of January 1, 1995. The maximum annual effective dose is 0.26 mSv y{sup {minus}1} (26 mrem y{sup {minus}1}). The estimated 30-, 50-, and 70-y integral effective doses are 0.0059 Sv (0.59 rem), 0.0082 Sv (0.82 rem), and 0.0097 Sv (0.97 rem), respectively. More than 95% of these estimated doses are due to 137-Cesium ({sup 137}Cs). About 1.5% of the estimated dose is contributed by 90-Strontium ({sup 90}Sr), and about the same amount each by 239+240-Plutonium ({sup 239+240}PU), and 241-Americium ({sup 241}Am).

  15. CANISTER HANDLING FACILITY WORKER DOSE ASSESSMENT

    SciTech Connect

    D.T. Dexheimer

    2004-02-27

    The purpose of this calculation is to estimate radiation doses received by personnel working in the Canister Handling Facility (CHF) performing operations to receive transportation casks, transfer wastes, prepare waste packages, perform associated equipment maintenance. The specific scope of work contained in this calculation covers individual worker group doses on an annual basis, and includes the contributions due to external and internal radiation. The results of this calculation will be used to support the design of the CHF and provide occupational dose estimates for the License Application.

  16. Considerations of beta and electron transport in internal dose calculations

    SciTech Connect

    Bolch, W.E.; Poston, J.W. Sr. . Dept. of Nuclear Engineering)

    1990-12-01

    Ionizing radiation has broad uses in modern science and medicine. These uses often require the calculation of energy deposition in the irradiated media and, usually, the medium of interest is the human body. Energy deposition from radioactive sources within the human body and the effects of such deposition are considered in the field of internal dosimetry. In July of 1988, a three-year research project was initiated by the Nuclear Engineering Department at Texas A M University under the sponsorship of the US Department of Energy. The main thrust of the research was to consider, for the first time, the detailed spatial transport of electron and beta particles in the estimation of average organ doses under the Medical Internal Radiation Dose (MIRD) schema. At the present time (December of 1990), research activities are continuing within five areas. Several are new initiatives begun within the second or third year of the current contract period. They include: (1) development of small-scale dosimetry; (2) development of a differential volume phantom; (3) development of a dosimetric bone model; (4) assessment of the new ICRP lung model; and (5) studies into the mechanisms of DNA damage. A progress report is given for each of these tasks within the Comprehensive Report. In each use, preliminary results are very encouraging and plans for further research are detailed within this document. 22 refs., 13 figs., 1 tab.

  17. Considerations of beta and electron transport in internal dose calculations

    SciTech Connect

    Bolch, W.E.; Poston, J.W. Sr.

    1990-12-01

    Ionizing radiation has broad uses in modern science and medicine. These uses often require the calculation of energy deposition in the irradiated media and, usually, the medium of interest is the human body. Energy deposition from radioactive sources within the human body and the effects of such deposition are considered in the field of internal dosimetry. In July of 1988, a three-year research project was initiated by the Nuclear Engineering Department at Texas A M University under the sponsorship of the US Department of Energy. The main thrust of the research was to consider, for the first time, the detailed spatial transport of electron and beta particles in the estimation of average organ doses under the Medical Internal Radiation Dose (MIRD) schema. At the present time (December of 1990), research activities are continuing within five areas. Several are new initiatives begun within the second or third year of the current contract period. They include: (1) development of small-scale dosimetry; (2) development of a differential volume phantom; (3) development of a dosimetric bone model; (4) assessment of the new ICRP lung model; and (5) studies into the mechanisms of DNA damage. A progress report is given for each of these tasks within the Comprehensive Report. In each case, preliminary results are very encouraging and plans for further research are detailed within this document.

  18. Assessing dose rate distributions in VMAT plans

    NASA Astrophysics Data System (ADS)

    Mackeprang, P.-H.; Volken, W.; Terribilini, D.; Frauchiger, D.; Zaugg, K.; Aebersold, D. M.; Fix, M. K.; Manser, P.

    2016-04-01

    Dose rate is an essential factor in radiobiology. As modern radiotherapy delivery techniques such as volumetric modulated arc therapy (VMAT) introduce dynamic modulation of the dose rate, it is important to assess the changes in dose rate. Both the rate of monitor units per minute (MU rate) and collimation are varied over the course of a fraction, leading to different dose rates in every voxel of the calculation volume at any point in time during dose delivery. Given the radiotherapy plan and machine specific limitations, a VMAT treatment plan can be split into arc sectors between Digital Imaging and Communications in Medicine control points (CPs) of constant and known MU rate. By calculating dose distributions in each of these arc sectors independently and multiplying them with the MU rate, the dose rate in every single voxel at every time point during the fraction can be calculated. Independently calculated and then summed dose distributions per arc sector were compared to the whole arc dose calculation for validation. Dose measurements and video analysis were performed to validate the calculated datasets. A clinical head and neck, cranial and liver case were analyzed using the tool developed. Measurement validation of synthetic test cases showed linac agreement to precalculated arc sector times within  ±0.4 s and doses  ±0.1 MU (one standard deviation). Two methods for the visualization of dose rate datasets were developed: the first method plots a two-dimensional (2D) histogram of the number of voxels receiving a given dose rate over the course of the arc treatment delivery. In similarity to treatment planning system display of dose, the second method displays the dose rate as color wash on top of the corresponding computed tomography image, allowing the user to scroll through the variation over time. Examining clinical cases showed dose rates spread over a continuous spectrum, with mean dose rates hardly exceeding 100 cGy min-1 for conventional

  19. Mesorad dose assessment model. Volume 1. Technical basis

    SciTech Connect

    Scherpelz, R.I.; Bander, T.J.; Athey, G.F.; Ramsdell, J.V.

    1986-03-01

    MESORAD is a dose assessment model for emergency response applications. Using release data for as many as 50 radionuclides, the model calculates: (1) external doses resulting from exposure to radiation emitted by radionuclides contained in elevated or deposited material; (2) internal dose commitment resulting from inhalation; and (3) total whole-body doses. External doses from airborne material are calculated using semi-infinite and finite cloud approximations. At each stage in model execution, the appropriate approximation is selected after considering the cloud dimensions. Atmospheric processes are represented in MESORAD by a combination of Lagrangian puff and Gaussian plume dispersion models, a source depletion (deposition velocity) dry deposition model, and a wet deposition model using washout coefficients based on precipitation rates.

  20. Radiological assessment. A textbook on environmental dose analysis

    SciTech Connect

    Till, J.E.; Meyer, H.R.

    1983-09-01

    Radiological assessment is the quantitative process of estimating the consequences to humans resulting from the release of radionuclides to the biosphere. It is a multidisciplinary subject requiring the expertise of a number of individuals in order to predict source terms, describe environmental transport, calculate internal and external dose, and extrapolate dose to health effects. Up to this time there has been available no comprehensive book describing, on a uniform and comprehensive level, the techniques and models used in radiological assessment. Radiological Assessment is based on material presented at the 1980 Health Physics Society Summer School held in Seattle, Washington. The material has been expanded and edited to make it comprehensive in scope and useful as a text. Topics covered include (1) source terms for nuclear facilities and Medical and Industrial sites; (2) transport of radionuclides in the atmosphere; (3) transport of radionuclides in surface waters; (4) transport of radionuclides in groundwater; (5) terrestrial and aquatic food chain pathways; (6) reference man; a system for internal dose calculations; (7) internal dosimetry; (8) external dosimetry; (9) models for special-case radionuclides; (10) calculation of health effects in irradiated populations; (11) evaluation of uncertainties in environmental radiological assessment models; (12) regulatory standards for environmental releases of radionuclides; (13) development of computer codes for radiological assessment; and (14) assessment of accidental releases of radionuclides.

  1. Assessments for High Dose Radionuclide Therapy Treatment Planning

    SciTech Connect

    Fisher, Darrell R.

    2003-10-01

    Advances in the biotechnology of cell-specific targeting of cancer, and the increased number of clinical trials involving treatment of cancer patients with radiolabeled antibodies, peptides, and similar delivery vehicles have led to an increase in the number of high-dose radionuclide therapy procedures. Optimized radionuclide therapy for cancer treatment is based on the concept of absorbed dose to the dose-limiting normal organ or tissue. The limiting normal tissue is often the red marrow, but it may sometimes be lungs, liver, intestinal tract, or kidneys. Appropriate treatment planning requires assessment of radiation dose to several internal organs and tissues, and usually involves biodistribution studies in the patient using a tracer amount of radionuclide bound to the targeting agent and imaged at sequential time points using a planar gamma camera. Time-activity curves are developed from the imaging data for the major organs tissues of concern, for the whole body, and sometimes for selected tumors. Patient-specific factors often require that dose estimates be customized for each patient. The Food and Drug Administration regulates the experimental use of investigational new drugs and requires reasonable calculation of radiation absorbed dose to the whole body and to critical organs using methods prescribed by the Medical Internal Radiation Dose (MIRD) Committee of the Society of Nuclear Medicine. Review of high-dose studies in the U.S. and elsewhere shows that 1) some studies are conducted with minimal dosimetry, 2) the marrow dose is difficult to establish and is subject to large uncertainties, and 3) despite the general availability of MIRD software, internal dosimetry methods are often inconsistent from one clinical center to another.

  2. Risk assessment in international operations

    SciTech Connect

    Stricklin, Daniela L.

    2008-11-15

    During international peace-keeping missions, a diverse number of non-battle hazards may be encountered, which range from heavily polluted areas, endemic disease, toxic industrial materials, local violence, traffic, and even psychological factors. Hence, elevated risk levels from a variety of sources are encountered during deployments. With the emphasis within the Swedish military moving from national defense towards prioritization of international missions in atypical environments, the risk of health consequences, including long term health effects, has received greater consideration. The Swedish military is interested in designing an optimal approach for assessment of health threats during deployments. The Medical Intelligence group at FOI CBRN Security and Defence in Umea has, on request from and in collaboration with the Swedish Armed Forces, reviewed a variety of international health threat and risk assessment models for military operations. Application of risk assessment methods used in different phases of military operations will be reviewed. An overview of different international approaches used in operational risk management (ORM) will be presented as well as a discussion of the specific needs and constraints for health risk assessment in military operations. This work highlights the specific challenges of risk assessment that are unique to the deployment setting such as the assessment of exposures to a variety of diverse hazards concurrently.

  3. DRY TRANSFER FACILITY WORKER DOSE ASSESSMENT

    SciTech Connect

    J.S. Tang

    2004-09-23

    The purpose of this calculation is to estimate radiation doses received by personnel working in the Dry Transfer Facility No.1 (DTF-1) performing operations to receive transportation casks, transfer wastes, prepare waste packages, and ship out loaded waste packages and empty casks. Doses received by workers due to maintenance operations are also included in this revision. The specific scope of work contained in this calculation covers both collective doses and individual worker group doses on an annual basis, and includes the contributions due to external and internal radiation from normal operation, excluding the remediation area of the building. The results of this calculation will be used to support the design of the DTF-1 and to provide occupational dose estimates for the License Application. The calculations contained in this document were developed by Environmental and Nuclear Engineering of the Design and Engineering Organization and are intended solely for the use of the Design and Engineering Organization in its work regarding facility operation. Yucca Mountain Project personnel from the Environmental and Nuclear Engineering should be consulted before use of the calculations for purposes other than those stated herein or use by individuals other than authorized personnel in the Environmental and Nuclear Engineering.

  4. Dose estimates for the solid waste performance assessment

    SciTech Connect

    Rittman, P.D.

    1994-08-30

    The Solid Waste Performance Assessment calculations by PNL in 1990 were redone to incorporate changes in methods and parameters since then. The ten scenarios found in their report were reduced to three, the Post-Drilling Resident, the Post-Excavation Resident, and an All Pathways Irrigator. In addition, estimates of population dose to people along the Columbia River are also included. The attached report describes the methods and parameters used in the calculations, and derives dose factors for each scenario. In addition, waste concentrations, ground water concentrations, and river water concentrations needed to reach the performance objectives of 100 mrem/yr and 500 person-rem/yr are computed. Internal dose factors from DOE-0071 were applied when computing internal dose. External dose rate factors came from the GENII Version 1.485 software package. Dose calculations were carried out on a spreadsheet. The calculations are described in detail in the report for 63 nuclides, including 5 not presently in the GENII libraries. The spreadsheet calculations were checked by comparison with GENII, as described in Appendix D.

  5. Reassessing benzene risks using internal doses and Monte-Carlo uncertainty analysis.

    PubMed Central

    Cox, L A

    1996-01-01

    Human cancer risks from benzene have been estimated from epidemiological data, with supporting evidence from animal bioassay data. This article reexamines the animal-based risk assessments using physiologically based pharmacokinetic (PBPK) models of benzene metabolism in animals and humans. Internal doses (total benzene metabolites) from oral gavage experiments in mice are well predicted by the PBPK model. Both the data and the PBPK model outputs are also well described by a simple nonlinear (Michaelis-Menten) regression model, as previously used by Bailer and Hoel [Metabolite-based internal doses used in risk assessment of benzene. Environ Health Perspect 82:177-184 (1989)]. Refitting the multistage model family to internal doses changes the maximum-likelihood estimate (MLE) dose-response curve for mice from linear-quadratic to purely cubic, so that low-dose risk estimates are smaller than in previous risk assessments. In contrast to Bailer and Hoel's findings using interspecies dose conversion, the use of internal dose estimates for humans from a PBPK model reduces estimated human risks at low doses. Sensitivity analyses suggest that the finding of a nonlinear MLE dose-response curve at low doses is robust to changes in internal dose definitions and more consistent with epidemiological data than earlier risk models. A Monte-Carlo uncertainty analysis based on maximum-entropy probabilities and Bayesian conditioning is used to develop an entire probability distribution for the true but unknown dose-response function. This allows the probability of a positive low-dose slope to be quantified: It is about 10%. An upper 95% confidence limit on the low-dose slope of excess risk is also obtained directly from the posterior distribution and is similar to previous q1* values. This approach suggests that the excess risk due to benzene exposure may be nonexistent (or even negative) at sufficiently low doses. Two types of biological information about benzene effects

  6. Computed Tomography: Image and Dose Assessment

    SciTech Connect

    Valencia-Ortega, F.; Ruiz-Trejo, C.; Rodriguez-Villafuerte, M.; Buenfil, A. E.; Mora-Hernandez, L. A.

    2006-09-08

    In this work an experimental evaluation of image quality and dose imparted during a computed tomography study in a Public Hospital in Mexico City is presented; The measurements required the design and construction of two phantoms at the Institute of Physics, UNAM, according to the recommendations of American Association of Physicists in Medicine (AAPM). Image assessment was performed in terms the spatial resolution and image contrast. Dose measurements were carried out using LiF: Mg,Ti (TLD-100) dosemeters and pencil-shaped ionisation chamber; The results for a computed tomography head study in single and multiple detector modes are presented.

  7. Internal dose following a large-scale nuclear war

    SciTech Connect

    Peterson, K.R.; Shapiro, C.S.; Harvey, T.F.

    1988-03-01

    In this study, we use the PATHWAY model, in conjunction with a reasonable hypothetical nuclear attack on the US to arrive at calculations of internal and external dose estimates that are based on valid model results. Our own estimates are presented with calculational aids (at every step) that enable readers to use their own nuclear war scenarios, fallout patterns, assumptions about the climatic changes brought on by large fires following a nuclear attack, the viability of the transportation system for food delivery, the quality and quantity of water and foods available locally, the required caloric intakes of the survivors, and several other factors. We conclude that the average American family that survived a large-scale nuclear war, using their own home or workplace as a refuge, would receive a total internal dose from ingestion that is from one to 10 percent of the total external dose. Those who stayed where shelter protection factors and foraged food consumption were large could receive internal doses from 11 percent to more than 100% of the total external dose. 28 refs., 9 figs.

  8. Multi-component assessment of chronic obstructive pulmonary disease: an evaluation of the ADO and DOSE indices and the global obstructive lung disease categories in international primary care data sets

    PubMed Central

    Jones, Rupert C; Price, David; Chavannes, Niels H; Lee, Amanda J; Hyland, Michael E; Ställberg, Björn; Lisspers, Karin; Sundh, Josefin; van der Molen, Thys; Tsiligianni, Ioanna

    2016-01-01

    Suitable tools for assessing the severity of chronic obstructive pulmonary disease (COPD) include multi-component indices and the global initiative for chronic obstructive lung disease (GOLD) categories. The aim of this study was to evaluate the dyspnoea, obstruction, smoking, exacerbation (DOSE) and the age, dyspnoea, obstruction (ADO) indices and GOLD categories as measures of current health status and future outcomes in COPD patients. This was an observational cohort study comprising 5,114 primary care COPD patients across three databases from UK, Sweden and Holland. The associations of DOSE and ADO indices with (i) health status using the Clinical COPD Questionnaire (CCQ) and St George’s Respiratory Questionnaire (SGRQ) and COPD Assessment test (CAT) and with (ii) current and future exacerbations, admissions and mortality were assessed in GOLD categories and DOSE and ADO indices. DOSE and ADO indices were significant predictors of future exacerbations: incident rate ratio was 1.52 (95% confidence intervals 1.46–1.57) for DOSE, 1.16 (1.12–1.20) for ADO index and 1.50 (1.33–1.68) and 1.23 (1.10–1.39), respectively, for hospitalisations. Negative binomial regression showed that the DOSE index was a better predictor of future admissions than were its component items. The hazard ratios for mortality were generally higher for ADO index groups than for DOSE index groups. The GOLD categories produced widely differing assessments for future exacerbation risk or for hospitalisation depending on the methods used to calculate them. None of the assessment systems were excellent at predicting future risk in COPD; the DOSE index appears better than the ADO index for predicting many outcomes, but not mortality. The GOLD categories predict future risk inconsistently. The DOSE index and the GOLD categories using exacerbation frequency may be used to identify those at high risk for exacerbations and admissions. PMID:27053297

  9. Multi-component assessment of chronic obstructive pulmonary disease: an evaluation of the ADO and DOSE indices and the global obstructive lung disease categories in international primary care data sets.

    PubMed

    Jones, Rupert C; Price, David; Chavannes, Niels H; Lee, Amanda J; Hyland, Michael E; Ställberg, Björn; Lisspers, Karin; Sundh, Josefin; van der Molen, Thys; Tsiligianni, Ioanna

    2016-04-07

    Suitable tools for assessing the severity of chronic obstructive pulmonary disease (COPD) include multi-component indices and the global initiative for chronic obstructive lung disease (GOLD) categories. The aim of this study was to evaluate the dyspnoea, obstruction, smoking, exacerbation (DOSE) and the age, dyspnoea, obstruction (ADO) indices and GOLD categories as measures of current health status and future outcomes in COPD patients. This was an observational cohort study comprising 5,114 primary care COPD patients across three databases from UK, Sweden and Holland. The associations of DOSE and ADO indices with (i) health status using the Clinical COPD Questionnaire (CCQ) and St George's Respiratory Questionnaire (SGRQ) and COPD Assessment test (CAT) and with (ii) current and future exacerbations, admissions and mortality were assessed in GOLD categories and DOSE and ADO indices. DOSE and ADO indices were significant predictors of future exacerbations: incident rate ratio was 1.52 (95% confidence intervals 1.46-1.57) for DOSE, 1.16 (1.12-1.20) for ADO index and 1.50 (1.33-1.68) and 1.23 (1.10-1.39), respectively, for hospitalisations. Negative binomial regression showed that the DOSE index was a better predictor of future admissions than were its component items. The hazard ratios for mortality were generally higher for ADO index groups than for DOSE index groups. The GOLD categories produced widely differing assessments for future exacerbation risk or for hospitalisation depending on the methods used to calculate them. None of the assessment systems were excellent at predicting future risk in COPD; the DOSE index appears better than the ADO index for predicting many outcomes, but not mortality. The GOLD categories predict future risk inconsistently. The DOSE index and the GOLD categories using exacerbation frequency may be used to identify those at high risk for exacerbations and admissions.

  10. Dose Calculation Evolution for Internal Organ Irradiation in Humans

    SciTech Connect

    Jimenez V, Reina A.

    2007-10-26

    The International Commission of Radiation Units (ICRU) has established through the years, a discrimination system regarding the security levels on the prescription and administration of doses in radiation treatments (Radiotherapy, Brach therapy, Nuclear Medicine). The first level is concerned with the prescription and posterior assurance of dose administration to a point of interest (POI), commonly located at the geometrical center of the region to be treated. In this, the effects of radiation around that POI, is not a priority. The second level refers to the dose specifications in a particular plane inside the patient, mostly the middle plane of the lesion. The dose is calculated to all the structures in that plane regardless if they are tumor or healthy tissue. In this case, the dose is not represented by a point value, but by level curves called 'isodoses' as in a topographic map, so you can assure the level of doses to this particular plane, but it also leave with no information about how this values go thru adjacent planes. This is why the third level is referred to the volumetrical description of doses so these isodoses construct now a volume (named 'cloud') that give us better assurance about tissue irradiation around the volume of the lesion and its margin (sub clinical spread or microscopic illness). This work shows how this evolution has resulted, not only in healthy tissue protection improvement but in a rise of tumor control, quality of life, better treatment tolerance and minimum permanent secuelae.

  11. Assessment of dose during an SGTR

    SciTech Connect

    Adams, J.P.

    1993-01-01

    The Nuclear Regulatory Commission requires utilities to determine the response of a pressurized water reactor to a steam generator tube rupture (SGTR) as part of the safety analysis for the plant. The SGTR analysis includes assumptions regarding the iodine concentration in the reactor coolant system (RCS) due to iodine spikes, primary flashing and bypass fractions, and iodine partitioning in the secondary coolant system (SCS). Experimental and analytical investigations have recently been completed wherein these assumptions were tested to determine whether and to what degree they were conservative (that is, whether they result in a calculated iodine source term/dose that is at least as large or larger than that expected during an actual event). The current study has the objective to assess the overall effects of the results of these investigations on the calculated iodine dose to the environment during an SGTR. To assist in this study, a computer program, DOSE, was written. This program uses a simple, non-mechanistic model to calculate the iodine source term to the environment during an SGTR as a function of water mass inventories and flow rates and iodine concentrations in the RCS and SCS. The principal conclusion of this study is that the iodine concentration in the RCS is the dominant parameter, due to the dominance of primary flashing on the iodine source term.

  12. Internal dose conversion factors for calculation of dose to the public

    SciTech Connect

    Not Available

    1988-07-01

    This publication contains 50-year committed dose equivalent factors, in tabular form. The document is intended to be used as the primary reference by the US Department of Energy (DOE) and its contractors for calculating radiation dose equivalents for members of the public, resulting from ingestion or inhalation of radioactive materials. Its application is intended specifically for such materials released to the environment during routine DOE operations, except in those instances where compliance with 40 CFR 61 (National Emission Standards for Hazardous Air Pollutants) requires otherwise. However, the calculated values may be equally applicable to unusual releases or to occupational exposures. The use of these committed dose equivalent tables should ensure that doses to members of the public from internal exposures are calculated in a consistent manner at all DOE facilities.

  13. Assessment of out-of-field absorbed dose and equivalent dose in proton fields

    SciTech Connect

    Clasie, Ben; Wroe, Andrew; Kooy, Hanne; Depauw, Nicolas; Flanz, Jay; Paganetti, Harald; Rosenfeld, Anatoly

    2010-01-15

    . Conclusions: The dose deposited immediately downstream of the primary field, in these cases, is dominated by internally produced neutrons; therefore, scattered and scanned fields may have similar risk of second cancer in this region. The authors confirm that there is a reduction in the out-of-field dose in active scanning but the effect decreases with depth. GEANT4 is suitable for simulating the dose deposited outside the primary field. The agreement with measurements is comparable to or better than the agreement reported for other implementations of Monte Carlo models. Depending on the position, the absorbed dose outside the primary field is dominated by contributions from primary protons that may or may not have scattered in the brass collimating devices. This is noteworthy as the quality factor of the low LET protons is well known and the relative dose risk in this region can thus be assessed accurately.

  14. Patient doses in CT examinations in 18 countries: initial results from International Atomic Energy Agency projects.

    PubMed

    Muhogora, W E; Ahmed, N A; Beganovic, A; Benider, A; Ciraj-Bjelac, O; Gershan, V; Gershkevitsh, E; Grupetta, E; Kharita, M H; Manatrakul, N; Milakovic, M; Ohno, K; Ben Omrane, L; Ptacek, J; Schandorf, C; Shabaan, M S; Stoyanov, D; Toutaoui, N; Wambani, J S; Rehani, M M

    2009-09-01

    The purpose of this prospective study at 73 facilities in 18 countries in Africa, Asia and Eastern Europe was to investigate if the CT doses to adult patients in developing countries are higher than international standards. The dose assessment was performed in terms of weighted computed tomography dose index (CTDIw) and dose length product (DLP) for chest, chest (high resolution), lumbar spine, abdomen and pelvis CT examinations using standard methods. Except in one case, the mean CTDIw values were below diagnostic reference level (DRL) while for DLP, 17 % of situations were above DRLs. The resulting CT images were of adequate quality for diagnosis. The CTDIw and DLP data presented herein are largely similar to those from two recent national surveys. The study has shown a stronger need to create awareness and training of radiology personnel as well as monitoring of radiation doses in many developing countries so as to conform to the ALARA principle.

  15. Internal scatter, the unavoidable major component of the peripheral dose in photon-beam radiotherapy

    NASA Astrophysics Data System (ADS)

    Chofor, Ndimofor; Harder, Dietrich; Willborn, Kay C.; Poppe, Björn

    2012-03-01

    In clinical photon beams, the dose outside the geometrical field limits is produced by photons originating from (i) head leakage, (ii) scattering at the beam collimators and the flattening filter (head scatter) and (iii) scattering from the directly irradiated region of the patient or phantom (internal scatter). While the first two components can be modified, e.g. by reinforcement of shielding components or by re-modeling the filter system, internal scatter remains an unavoidable contributor to the peripheral dose. Its relative magnitude compared to the other components, its numerical variation with beam energy, field size and off-axis distance as well as its spectral distribution are evaluated in this study. We applied a detailed Monte Carlo (MC) model of our 6/15 MV Siemens Primus linear accelerator beam head, provided with ideal head leakage shielding conditions (multi-leaf collimator without gaps) to assess the head scatter contribution. Experimental values obtained under real shielding conditions were used to evaluate the head leakage contribution. It was found that the MC-computed internal scatter doses agree with the results of our previous measurements, that internal scatter is the major contributor to the peripheral dose in the near periphery while head leakage prevails in the far periphery, and that the lateral decline of the internal scatter dose can be represented by the sum of two exponentials, with an asymptotic tenth value of 18 to 19 cm. Internal scatter peripheral doses from various elementary beams are additive, so that their sum increases approximately in proportion with field size. The ratio between normalized internal scatter doses at 6 and 15 MV is approximately 2:1. The energy fluence spectra of the internal scatter component at all points of interest outside the field have peaks near 500 keV. The fact that the energy-shifted internal scatter constitutes the major contributor to the dose in the near periphery has a general bearing for

  16. Preliminary dose assessment of the Chernobyl accident

    SciTech Connect

    Hull, A.P.

    1987-01-01

    From the major accident at Unit 4 of the Chernobyl nuclear power station, a plume of airborne radioactive fission products was initially carried northwesterly toward Poland, thence toward Scandinavia and into Central Europe. Reports of the levels of radioactivity in a variety of media and of external radiation levels were collected in the Department of Energy's Emergency Operations Center and compiled into a data bank. Portions of these and other data which were obtained directly from published and official reports were utilized to make a preliminary assessment of the extent and magnitude of the external dose to individuals downwind from Chernobyl. Radioactive /sup 131/I was the predominant fission product. The time of arrival of the plume and the maximum concentrations of /sup 131/I in air, vegetation and milk and the maximum reported depositions and external radiation levels have been tabulated country by country. A large amount of the total activity in the release was apparently carried to a significant elevation. The data suggest that in areas where rainfall occurred, deposition levels were from ten to one-hundred times those observed in nearby ''dry'' locations. Sufficient spectral data were obtained to establish average release fractions and to establish a reference spectra of the other nuclides in the release. Preliminary calculations indicated that the collective dose equivalent to the population in Scandinavia and Central Europe during the first year after the Chernobyl accident would be about 8 x 10/sup 6/ person-rem. From the Soviet report, it appears that a first year population dose of about 2 x 10/sup 7/ person-rem (2 x 10/sup 5/ Sv) will be received by the population who were downwind of Chernobyl within the U.S.S.R. during the accident and its subsequent releases over the following week. 32 refs., 14 figs., 20 tabs.

  17. Interactive Rapid Dose Assessment Model (IRDAM): scenarios for comparing dose-assessment models. Vol. 3

    SciTech Connect

    Poeton, R.W.; Moeller, M.P.; Laughlin, G.J.; Desrosiers, A.E.

    1983-05-01

    The Interactive Rapid Dose Assessment Model (IRDAM) is a micro-computer based program designed to provide rapid assessments of the radiological impact of accidents at nuclear power plants. The main body of this document consists of 28 examples of IRDAM input and output, representing various types of accidents and releases. These examples are intended to provide a basis for comparison with other models or for testing IRDAM itself. Figures are included which show dose rates calculated by IRDAM for each scenario. Figures are also included which show calculations made using the computer codes WRAITH (Scherpelz, Borst and Hoenes, 1980) and RADPUR (Dabbert, et. al., 1982). Two other companion volumes to this one provide additional information on IRDAM. The User's Guide (NUREG/CR-3012, Volume 1) describes the setup and operation of equipment necessary to run IRDAM. Reactor Accident Assessment Methods (NUREG/CR-3012, Volume 2) describes the technical bases for IRDAM including methods, models and assumptions used in calculations.

  18. Shuttle radiation dose measurements in the International Space Station orbits.

    PubMed

    Badhwar, Gautam D

    2002-01-01

    The International Space Station (ISS) is now a reality with the start of a permanent human presence on board. Radiation presents a serious risk to the health and safety of the astronauts, and there is a clear requirement for estimating their exposures prior to and after flights. Predictions of the dose rate at times other than solar minimum or solar maximum have not been possible, because there has been no method to calculate the trapped-particle spectrum at intermediate times. Over the last few years, a tissue-equivalent proportional counter (TEPC) has been flown at a fixed mid-deck location on board the Space Shuttle in 51.65 degrees inclination flights. These flights have provided data that cover the expected changes in the dose rates due to changes in altitude and changes in solar activity from the solar minimum to the solar maximum of the current 23rd solar cycle. Based on these data, a simple function of the solar deceleration potential has been derived that can be used to predict the galactic cosmic radiation (GCR) dose rates to within +/-10%. For altitudes to be covered by the ISS, the dose rate due to the trapped particles is found to be a power-law function, rho(-2/3), of the atmospheric density, rho. This relationship can be used to predict trapped dose rates inside these spacecraft to +/-10% throughout the solar cycle. Thus, given the shielding distribution for a location inside the Space Shuttle or inside an ISS module, this approach can be used to predict the combined GCR + trapped dose rate to better than +/-15% for quiet solar conditions.

  19. 10 CFR 835.203 - Combining internal and external equivalent doses.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... External Exposure § 835.203 Combining internal and external equivalent doses. (a) The total effective dose during a year shall be determined by summing the effective dose from external exposures and the committed... 10 Energy 4 2010-01-01 2010-01-01 false Combining internal and external equivalent doses....

  20. Perspectives on Numeracy: Reflections from International Assessments

    ERIC Educational Resources Information Center

    Tout, Dave; Gal, Iddo

    2015-01-01

    This paper examines perspectives regarding the mathematical skills expected of adults and school graduates, comparing ideas developed as part of two major multinational comparative assessments of skills: the Programme for International Student Assessment and the Programme for International Assessment of Adult Competencies (also known as the OECD…

  1. Radiation fields and dose assessments in Korean nuclear power plants.

    PubMed

    Kim, Hee Geun; Kong, Tae Young; Jeong, Woo Tae; Kim, Seok Tae

    2011-07-01

    In the primary systems of nuclear power plants (NPPs), various radionuclides including fission products and corrosion products are generated due to the complex water chemistry conditions. In particular, (3)H, (14)C, (58)Co, (60)Co, (137)Cs, and (131)I are important or potential radionuclides with respect to dose assessment for workers and the management of radioactive effluents or dose assessment for the public. In this paper, the dominant contributors to the dose for workers and the public were reviewed and the process of dose assessment attributable to those contributors was investigated. Furthermore, an analysis was carried out on some examples of dose to workers during NPP operation.

  2. International assessment of PCA codes

    SciTech Connect

    Neymotin, L.; Lui, C.; Glynn, J.; Archarya, S.

    1993-11-01

    Over the past three years (1991-1993), an extensive international exercise for intercomparison of a group of six Probabilistic Consequence Assessment (PCA) codes was undertaken. The exercise was jointly sponsored by the Commission of European Communities (CEC) and OECD Nuclear Energy Agency. This exercise was a logical continuation of a similar effort undertaken by OECD/NEA/CSNI in 1979-1981. The PCA codes are currently used by different countries for predicting radiological health and economic consequences of severe accidents at nuclear power plants (and certain types of non-reactor nuclear facilities) resulting in releases of radioactive materials into the atmosphere. The codes participating in the exercise were: ARANO (Finland), CONDOR (UK), COSYMA (CEC), LENA (Sweden), MACCS (USA), and OSCAAR (Japan). In parallel with this inter-code comparison effort, two separate groups performed a similar set of calculations using two of the participating codes, MACCS and COSYMA. Results of the intercode and inter-MACCS comparisons are presented in this paper. The MACCS group included four participants: GREECE: Institute of Nuclear Technology and Radiation Protection, NCSR Demokritos; ITALY: ENEL, ENEA/DISP, and ENEA/NUC-RIN; SPAIN: Universidad Politecnica de Madrid (UPM) and Consejo de Seguridad Nuclear; USA: Brookhaven National Laboratory, US NRC and DOE.

  3. Dosimetry experiences and lessons learned for radiation dose assessment in Korean nuclear power plants.

    PubMed

    Choi, Jong Rak; Kim, Hee Geun; Kong, Tae Young; Son, Jung Kwon

    2013-07-01

    Since the first Korean nuclear power plant (NPP), Kori 1, commenced operation in 1978, a total of 21 NPPs had been put into operation in Korea by the end of 2011. Radiation doses of NPP workers have been periodically evaluated and controlled within the prescribed dose limit. Radiation dose assessment is carried out monthly by reading personal dosemeters for external radiation exposure, which have traceability in compliance with strict technical guidelines. In the case of the internal radiation exposure, workers who have access to the possible area of polluted air are also evaluated for their internal dose after maintenance task. In this article, the overall situation and experience for the assessment and distribution of radiation doses in Korean NPPs is described.

  4. Astronaut's organ doses inferred from measurements in a human phantom outside the international space station.

    PubMed

    Reitz, Guenther; Berger, Thomas; Bilski, Pawel; Facius, Rainer; Hajek, Michael; Petrov, Vladislav; Puchalska, Monika; Zhou, Dazhuang; Bossler, Johannes; Akatov, Yury; Shurshakov, Vyacheslav; Olko, Pawel; Ptaszkiewicz, Marta; Bergmann, Robert; Fugger, Manfred; Vana, Norbert; Beaujean, Rudolf; Burmeister, Soenke; Bartlett, David; Hager, Luke; Pálfalvi, József; Szabó, Julianna; O'Sullivan, Denis; Kitamura, Hisashi; Uchihori, Yukio; Yasuda, Nakahiro; Nagamatsu, Aiko; Tawara, Hiroko; Benton, Eric; Gaza, Ramona; McKeever, Stephen; Sawakuchi, Gabriel; Yukihara, Eduardo; Cucinotta, Francis; Semones, Edward; Zapp, Neal; Miller, Jack; Dettmann, Jan

    2009-02-01

    Space radiation hazards are recognized as a key concern for human space flight. For long-term interplanetary missions, they constitute a potentially limiting factor since current protection limits for low-Earth orbit missions may be approached or even exceeded. In such a situation, an accurate risk assessment requires knowledge of equivalent doses in critical radiosensitive organs rather than only skin doses or ambient doses from area monitoring. To achieve this, the MATROSHKA experiment uses a human phantom torso equipped with dedicated detector systems. We measured for the first time the doses from the diverse components of ionizing space radiation at the surface and at different locations inside the phantom positioned outside the International Space Station, thereby simulating an extravehicular activity of an astronaut. The relationships between the skin and organ absorbed doses obtained in such an exposure show a steep gradient between the doses in the uppermost layer of the skin and the deep organs with a ratio close to 20. This decrease due to the body self-shielding and a concomitant increase of the radiation quality factor by 1.7 highlight the complexities of an adequate dosimetry of space radiation. The depth-dose distributions established by MATROSHKA serve as benchmarks for space radiation models and radiation transport calculations that are needed for mission planning.

  5. MESORAD dose assessment of the Chernobyl reactor accident

    SciTech Connect

    Ramsdell, J.V.; Hubbe, J.M.; Athey, G.F.; Davis, W.E.

    1989-12-01

    An accident involving Unit 4 of the Chernobylskaya Atomic Energy Station resulted in the release of a large amount of radioactive material to the atmosphere. This report describes the results of an assessment of the doses near the site (within 80 km) made at the Pacific Northwest Laboratory using the MESORAD Dose Assessment model. 6 refs., 10 figs., 5 tabs.

  6. BRADOS - Dose determination in the Russian segment of the International Space Station

    NASA Astrophysics Data System (ADS)

    Hajek, M.; Berger, T.; Fürstner, M.; Fugger, M.; Vana, N.; Akatov, Y.; Shurshakov, V.; Arkhangelsky, V.

    Absorbed dose and dose-average linear energy transfer (LET) were assessed by means of LiF: Mg, Ti thermoluminescence (TL) detectors at different locations onboard the Russian segment (RS) of the International Space Station (ISS) in the timeframe between February and November 2001, i.e. for 248 days. Based on calibrations of the employed detectors in a variety of heavy-ion beams, mainly at the Heavy Ion Medical Accelerator (HIMAC) in Chiba, Japan, the measured absorbed dose values could be corrected for the TL dose registration efficiency in the radiation climate onboard the ISS. Various strategies for efficiency correction are discussed. For the specific case the efficiency correction accounted for a reduction by nearly 20 % in dose, implying that without proper consideration of the TL efficiency behaviour the absorbed dose inside the ISS would be overestimated. The dose-average LET was derived from TLD-700 measurements evaluated according to the well-established high-temperature ratio (HTR) method which analyzes the TL emission in the temperature range between 248 and 310 C. According to the shielding distribution, the efficiency-corrected absorbed dose was found to vary between 155 μ Gy/d for panel N 457 (RS-ISS toilet) and 230 μ Gy/d for panel N 443 (RS-ISS starboard cabin). The determined LET indicated a modification of the spectral composition of the onboard radiation field for the different exposure locations. Arrangement of TLD-600 and TLD-700 in pair allowed also some information about the neutron component to be drawn. Experimentally determined absorbed dose values are compared with model calculations by means of a self-developed code, using as input data detailed shielding distributions and proton fluxes from AP-8 and JPL algorithms.

  7. Personnel Dose Assessment during Active Interrogation

    SciTech Connect

    Miller, Thomas Martin; Akkurt, Hatice; Patton, Bruce W

    2010-01-01

    A leading candidate in the detection of special nuclear material (SNM) is active interrogation (AI). Unlike passive interrogation, AI uses a source to enhance or create a detectable signal from SNM (usually fission), particularly in shielded scenarios or scenarios where the SNM has a low activity. The use of AI thus makes the detection of SNM easier or, in some scenarios, even enables previously impossible detection. During the development of AI sources, significant effort is put into determining the source strength required to detect SNM in specific scenarios. Usually during this process, but not always, an evaluation of personnel dose is also completed. In this instance personnel dose could involve any of the following: (1) personnel performing the AI; (2) unknown stowaways who are inside the object being interrogated; or (3) in clandestine interrogations, personnel who are known to be inside the object being interrogated but are unaware of the interrogation. In most instances, dose to anyone found smuggling SNM will be a secondary issue. However, for the organizations performing the AI, legal if not moral considerations should make dose to the personnel performing the AI, unknown stowaways, or innocent bystanders in clandestine interrogations a serious concern.

  8. Iodine-129 Dose in LLW Disposal Facility Performance Assessments

    SciTech Connect

    Wilhite, E.L.

    1999-10-15

    Iodine-129 has the lowest Performance Assessment derived inventory limit in SRS disposal facilities. Because iodine is concentrated in the body to one organ, the thyroid, it has been thought that dilution with stable iodine would reduce the dose effects of 129I.Examination of the dose model used to establish the Dose conversion factor for 129I shows that, at the levels considered in performance assessments of low-level waste disposal facilities, the calculated 129I dose already accounts for ingestion of stable iodine. At higher than normal iodine ingestion rates, the uptake of iodine by the thyroid itself decrease, which effectively cancels out the isotopic dilution effect.

  9. Mathematical phantoms for evaluation of age-specific internal dose

    SciTech Connect

    Cristy, M.

    1980-01-01

    A series of mathematical phantoms representing children has been developed for use with photon transport codes. These phantoms, patterned after the Fisher-Snyder adult phantom, consist of simple mathematical expressions for the boundaries of the major organs and body sections. The location and shape of the organs are consistent with drawings depicting developmental anatomy, with the organ volumes assigned such that the masses at the various ages conform closely with the data presented in Reference Man. The explicit mathematical expressions for the various ages overcome the potential misrepresentation of organ sizes that occurred in phantoms derived from simple mathematical transformations of the adult phantom. Female breast tissue has been added to the phantoms, including the adult, now allowing assessment of doses to this organ.

  10. Measurement and assessment of radiation dose of astronauts in space

    NASA Astrophysics Data System (ADS)

    Zhang, Binquan; Sun, Yue-qiang; Yang, Chuibai; Zhang, Shenyi; Liang, Jinbao

    Astronauts in flight are exposed by the space radiation, which is mainly composed of proton, electron, heavy ion, and neutron. To assess the radiation risk, measurement and assessment of radiation dose of astronauts is indispensable. Especially, measurement for heavy ion radiation is most important as it contributes the major dose. Until now, most of the measurements and assessments of radiation dose of astronauts are based on the LET (Linear Energy Transfer) spectrum of space radiation. However, according to the ICRP Publication 123, energy and charge number of heavy ions should be measured in order to assess space radiation exposure to astronauts. In addition, from the publication, quality factors for each organs or tissues of astronauts are different and they should be calculated or measured independently. Here, a method to measure the energy and charge number of heavy ion and a voxel phantom based on the anatomy of Chinese adult male are presented for radiation dose assessment of astronauts.

  11. A Framework for "Fit for Purpose" Dose Response Assessment

    EPA Science Inventory

    The NRC report Science and Decisions: Advancing Risk Assessment made several recommendations to improve chemical risk assessment, with a focus on in-depth chronic dose-response assessments conducted by the U.S. Environmental Protection Agency. The recommendations addressed two ...

  12. DOSE ASSESSMENTS FROM THE DISPOSAL OF LOW ...

    EPA Pesticide Factsheets

    Modeling the long-term performance of the RCRA-C disposal cell and potential doses to off-site receptors is used to derive maximum radionuclide specific concentrations in the wastes that would enable these wastes to be disposed of safely using the RCRA-C disposal cell technology. Modeling potential exposures to derive these waste acceptance concentrations involves modeling exposures to workers during storage, treatment and disposal of the wastes, as well as exposures to individuals after disposal operations have ceased. Post facility closure exposures can result from the slow expected degradation of the disposal cell over long time periods (one thousand years after disposal) and in advertent human intrusion. Provide a means of determining waste acceptance radionuclide concentrations for disposal of debris from radiological dispersal device incidents as well as low-activity wastes generated in commercial, medical and research activities, potentially serve as the technical basis for guidance on disposal of these materials.

  13. Monte Carlo assessment of computed tomography dose to tissue adjacent to the scanned volume.

    PubMed

    Boone, J M; Cooper, V N; Nemzek, W R; McGahan, J P; Seibert, J A

    2000-10-01

    The assessment of the radiation dose to internal organs or to an embryo or fetus is required on occasion for risk assessment or for comparing imaging studies. Limited resources hinder the ability to accurately assess the radiation dose received to locations outside the tissue volume actually scanned during computed tomography (CT). The purpose of this study was to assess peripheral doses and provide tabular data for dose evaluation. Validated Monte Carlo simulation techniques were used to compute the dose distribution along the length of water-equivalent cylindrical phantoms, 16 and 32 cm in diameter. For further validation, comparisons between physically measured and Monte Carlo-derived air kerma profiles were performed and showed excellent (1% to 2%) agreement. Polyenergetic x-ray spectra at 80, 100, 120, and 140 kVp with beam shaping filters were studied. Using 10(8) simulated photons input to the cylinders perpendicular to their long axis, line spread functions (LSF) of the dose distribution were determined at three depths in the cylinders (center, mid-depth, and surface). The LSF data were then used with appropriate mathematics to compute dose distributions along the long axis of the cylinder. The dose distributions resulting from helical (pitch = 1.0) scans and axial scans were approximately equivalent. Beyond about 3 cm from the edge of the CT scanned tissue volume, the fall-off of radiation dose was exponential. A series of tables normalized at 100 milliampere seconds (mAs) were produced which allow the straight-forward assessment of dose within and peripheral to the CT scanned volume. The tables should be useful for medical physicists and radiologists in the estimation of dose to sites beyond the edge of the CT scanned volume.

  14. Interactive Rapid Dose Assessment Model (IRDAM): user's guide

    SciTech Connect

    Poeton, R.W.; Moeller, M.P.; Laughlin, G.J.; Desrosiers, A.E.

    1983-05-01

    As part of the continuing emphasis on emergency preparedness the US Nuclear Regulatory Commission (NRC) sponsored the development of a rapid dose assessment system by Pacific Northwest Laboratory (PNL). This system, the Interactive Rapid Dose Assessment Model (IRDAM) is a micro-computer based program for rapidly assessing the radiological impact of accidents at nuclear power plants. This User's Guide provides instruction in the setup and operation of the equipment necessary to run IRDAM. Instructions are also given on how to load the magnetic disks and access the interactive part of the program. Two other companion volumes to this one provide additional information on IRDAM. Reactor Accident Assessment Methods (NUREG/CR-3012, Volume 2) describes the technical bases for IRDAM including methods, models and assumptions used in calculations. Scenarios for Comparing Dose Assessment Models (NUREG/CR-3012, Volume 3) provides the results of calculations made by IRDAM and other models for specific accident scenarios.

  15. Comparison of internal dose estimates obtained using organ-level, voxel S value, and Monte Carlo techniques

    SciTech Connect

    Grimes, Joshua; Celler, Anna

    2014-09-15

    Purpose: The authors’ objective was to compare internal dose estimates obtained using the Organ Level Dose Assessment with Exponential Modeling (OLINDA/EXM) software, the voxel S value technique, and Monte Carlo simulation. Monte Carlo dose estimates were used as the reference standard to assess the impact of patient-specific anatomy on the final dose estimate. Methods: Six patients injected with{sup 99m}Tc-hydrazinonicotinamide-Tyr{sup 3}-octreotide were included in this study. A hybrid planar/SPECT imaging protocol was used to estimate {sup 99m}Tc time-integrated activity coefficients (TIACs) for kidneys, liver, spleen, and tumors. Additionally, TIACs were predicted for {sup 131}I, {sup 177}Lu, and {sup 90}Y assuming the same biological half-lives as the {sup 99m}Tc labeled tracer. The TIACs were used as input for OLINDA/EXM for organ-level dose calculation and voxel level dosimetry was performed using the voxel S value method and Monte Carlo simulation. Dose estimates for {sup 99m}Tc, {sup 131}I, {sup 177}Lu, and {sup 90}Y distributions were evaluated by comparing (i) organ-level S values corresponding to each method, (ii) total tumor and organ doses, (iii) differences in right and left kidney doses, and (iv) voxelized dose distributions calculated by Monte Carlo and the voxel S value technique. Results: The S values for all investigated radionuclides used by OLINDA/EXM and the corresponding patient-specific S values calculated by Monte Carlo agreed within 2.3% on average for self-irradiation, and differed by as much as 105% for cross-organ irradiation. Total organ doses calculated by OLINDA/EXM and the voxel S value technique agreed with Monte Carlo results within approximately ±7%. Differences between right and left kidney doses determined by Monte Carlo were as high as 73%. Comparison of the Monte Carlo and voxel S value dose distributions showed that each method produced similar dose volume histograms with a minimum dose covering 90% of the volume (D90

  16. Internal Mammary Lymph Node Irradiation Contributes to Heart Dose in Breast Cancer

    SciTech Connect

    Chargari, Cyrus; Castadot, Pierre; MacDermed, Dhara; Vandekerkhove, Christophe; Bourgois, Nicolas; Van Houtte, Paul; Magne, Nicolas

    2010-10-01

    We assessed the impact of internal mammary chain radiotherapy (IMC RT) to the radiation dose received by the heart in terms of heart dose-volume histogram (DVH). Thirty-six consecutive breast cancer patients presenting with indications for IMC RT were enrolled in a prospective study. The IMC was treated by a standard conformal RT technique (50 Gy). For each patient, a cardiac DVH was generated by taking into account the sole contribution of IMC RT. Cardiac HDV were compared according to breast cancer laterality and the type of previous surgical procedure, simple mastectomy or breast conservative therapy (BCT). The contribution of IMC RT to the heart dose was significantly greater for patients with left-sided versus right-sided tumors (13.8% and 12.8% for left-sided tumors versus 3.9% and 4.2% for right-sided tumors in the BCT group and the mastectomy group, respectively; p < 0.0001). There was no statistically significant difference in IMC contribution depending on the initial surgical procedure. IMC RT contributes to cardiac dose for both left-sided and right-sided breast cancers, although the relative contribution is greater in patients with left-sided tumors.

  17. Automated size-specific CT dose monitoring program: Assessing variability in CT dose

    SciTech Connect

    Christianson, Olav; Li Xiang; Frush, Donald; Samei, Ehsan

    2012-11-15

    Purpose: The potential health risks associated with low levels of ionizing radiation have created a movement in the radiology community to optimize computed tomography (CT) imaging protocols to use the lowest radiation dose possible without compromising the diagnostic usefulness of the images. Despite efforts to use appropriate and consistent radiation doses, studies suggest that a great deal of variability in radiation dose exists both within and between institutions for CT imaging. In this context, the authors have developed an automated size-specific radiation dose monitoring program for CT and used this program to assess variability in size-adjusted effective dose from CT imaging. Methods: The authors radiation dose monitoring program operates on an independent health insurance portability and accountability act compliant dosimetry server. Digital imaging and communication in medicine routing software is used to isolate dose report screen captures and scout images for all incoming CT studies. Effective dose conversion factors (k-factors) are determined based on the protocol and optical character recognition is used to extract the CT dose index and dose-length product. The patient's thickness is obtained by applying an adaptive thresholding algorithm to the scout images and is used to calculate the size-adjusted effective dose (ED{sub adj}). The radiation dose monitoring program was used to collect data on 6351 CT studies from three scanner models (GE Lightspeed Pro 16, GE Lightspeed VCT, and GE Definition CT750 HD) and two institutions over a one-month period and to analyze the variability in ED{sub adj} between scanner models and across institutions. Results: No significant difference was found between computer measurements of patient thickness and observer measurements (p= 0.17), and the average difference between the two methods was less than 4%. Applying the size correction resulted in ED{sub adj} that differed by up to 44% from effective dose estimates

  18. Respiratory dose assessment of inhaled particles: continuing progress

    EPA Science Inventory

    Internal dose is a key factor for determining the health risk ofinhaled pollutant particles on the one hand and the efficacy ofdrug inhalantsonthe other. Accurateestimation ofrespiratorydose, however, is a difficult task because multiple factors come to play roles in the process....

  19. Estimates of intakes and internal doses from ingestion of {sup 32}P at MIT and NIH

    SciTech Connect

    Stabin, M.G.; Toohey, R.E.

    1996-06-01

    A researcher at Massachusetts Institute of Technology (MIT) became internally contaminated with {sup 32}P, probably due to an intentional act. The incident occurred on or about 14 August 1995. Subsequent measurement of activity in urine and a single whole body count were used to estimate the individual`s intake, with the assumption of ingestion as the route of intake. Two separate Sets of urine data were analyzed-one supplied by MIT and one from independent analyses of urine samples conducted at Oak Ridge Institute for Science and Education (ORISE); the former data set contained 35 samples, the latter 49. In addition, the results of 35 whole body counts, provided by MIT from a chair-type counter calibrated for 32p, were used to obtain a separate estimate of intake. The kinetic model for 32P proposed in ICRP Publication 30 and implemented in NUREG/CR-4884 was used to interpret the data. The data were analyzed using both the weighted and unweighted least squares techniques. All of the intake estimates were in very good agreement with each other, ranging from 18-22 MBq. Based on the dose model in ICRP 30, this would indicate a committed effective dose equivalent of 38-46 mSv. The incident was helpful in assessing the value of the least squares techniques in determining estimates of intake and dose. The ICRP model tended to slightly overestimate the whole body retention data and underestimate the urinary excretion at later times. Further results obtained by visual best fit and development of an individual-specific kinetic and dose model will also be discussed. This incident was quite similar to another case of ingestion of 32p that occurred at the National Institute of Health (NIH) on 28 June 1995. Dose assessment for the NIH case will also be presented if the data are available for public release.

  20. The International Arctic Seas Assessment Project

    SciTech Connect

    Linsley, G.S.; Sjoeblom, K.L.

    1994-07-01

    The International Arctic Seas Assessment Project (IASAP) was initiated in 1993 to address widespread concern over the possible health and environmental impacts associated with the radioactive waste dumped into the shallow waters of the Arctic Seas. This article discusses the project with these general topics: A brief history of dumping activities; the international control system; perspectives on arctic Seas dumping; the IASAP aims and implementation; the IASAP work plan and progress. 2 figs.

  1. Identification and dose assessment of irradiated cumin by EPR spectrometry.

    PubMed

    Abdel-Fattah, A A

    2002-03-01

    The use of electron paramagnetic resonance spectroscopy to accurately distinguish irradiated from unirradiated cumin and assess the absorbed dose to radiation-processed cumin is examined. The results were successful for identifying both irradiated and unirradiated cumin. Additive reirradiation of the cumin produces a reproducible dose response function, which can be used to assess the initial dose by back-extrapolation. Third-degree polynomial and exponential functions were used to fit the EPR signal/dose curves. It was found that the 3rd degree polynomial function provides satisfactory results without correction for decay of free radicals. The exponential fit to the data cannot be used without correction of decay of free radicals. The stability of the radiation-induced EPR signal of irradiated cumin was studied over a storage period of 6 months. The additive reirradiation of some samples was carried out at different storage times (10, 20 and 30 days) after initial irradiation.

  2. Radiation dose assessment of exposure to depleted uranium.

    PubMed

    Li, Wei Bo; Gerstmann, Udo C; Höllriegl, Vera; Szymczak, Wilfried; Roth, Paul; Hoeschen, Christoph; Oeh, Uwe

    2009-07-01

    Depleted uranium (DU) is claimed to contribute to human health problems, known as the Gulf War Syndrome and the Balkan Syndrome. Quantitative radiation dose is required to estimate the health risk of DU materials. The influences of the solubility parameters in the human alimentary tract and the respiratory tract systems and the aerosol particles size on the radiation dose of DU materials were evaluated. The dose conversion factor of daily urinary excretion of DU is provided. The retention and excretion of DU in the human body after a contamination at a wound site were predicted. Dose coefficients of DU after ingestion and inhalation were calculated using the solubility parameters of the DU corrosion products in simulated gastric and simulated lung fluid, which were determined in the Helmholtz Zentrum München. (238)U is the main radiation dose contributor per 1 Bq of DU materials. The dose coefficients of DU materials were estimated to be 3.5 x 10(-8) and 2.1 x 10(-6) Sv Bq(-1) after ingestion and inhalation for members of the public. The ingestion dose coefficient of DU materials is about 75% of the natural uranium value. The inhalation dose coefficient of DU material is in between those for Type M and Type S according to the category for inhaled materials defined by the International Commission on Radiological Protection. Radiation dose possibly received from DU materials can directly be estimated by using the dose conversion factor provided in this study, if daily urinary excretion of DU is measured.

  3. External dose assessment in the Ukraine following the Chernobyl accident

    NASA Astrophysics Data System (ADS)

    Frazier, Remi Jordan Lesartre

    While the physiological effects of radiation exposure have been well characterized in general, it remains unclear what the relationship is between large-scale radiological events and psychosocial behavior outcomes in individuals or populations. To investigate this, the National Science Foundation funded a research project in 2008 at the University of Colorado in collaboration with Colorado State University to expand the knowledge of complex interactions between radiation exposure, perception of risk, and psychosocial behavior outcomes by modeling outcomes for a representative sample of the population of the Ukraine which had been exposed to radiocontaminant materials released by the reactor accident at Chernobyl on 26 April 1986. In service of this project, a methodology (based substantially on previously published models specific to the Chernobyl disaster and the Ukrainian population) was developed for daily cumulative effective external dose and dose rate assessment for individuals in the Ukraine for as a result of the Chernobyl disaster. A software platform was designed and produced to estimate effective external dose and dose rate for individuals based on their age, occupation, and location of residence on each day between 26 April 1986 and 31 December 2009. A methodology was developed to transform published 137Cs soil deposition contour maps from the Comprehensive Atlas of Caesium Deposition on Europe after the Chernobyl Accident into a geospatial database to access these data as a radiological source term. Cumulative effective external dose and dose rate were computed for each individual in a 703-member cohort of Ukrainians randomly selected to be representative of the population of the country as a whole. Error was estimated for the resulting individual dose and dose rate values with Monte Carlo simulations. Distributions of input parameters for the dose assessment methodology were compared to computed dose and dose rate estimates to determine which

  4. Assessment of the effective dose equivalent for external photon radiation

    SciTech Connect

    Reece, W.D.; Poston, J.W.; Xu, X.G. )

    1993-02-01

    Beginning in January 1994, US nuclear power plants must change the way that they determine the radiation exposure to their workforce. At that time, revisions to Title 10 Part 20 of the Code of Federal Regulations will be in force requiring licensees to evaluate worker radiation exposure using a risk-based methodology termed the effective dose equivalent.'' A research project was undertaken to improve upon the conservative method presently used for assessing effective dose equivalent. In this project effective dose equivalent was calculated using a mathematical model of the human body, and tracking photon interactions for a wide variety of radiation source geometries using Monte Carlo computer code simulations. Algorithms were then developed to relate measurements of the photon flux on the surface of the body (as measured by dosimeters) to effective dose equivalent. This report (Volume I of a two-part study) describes: the concept of effective dose equivalent, the evolution of the concept and its incorporation into regulations, the variations in human organ susceptibility to radiation, the mathematical modeling and calculational techniques used, the results of effective dose equivalent calculations for a broad range of photon energiesand radiation source geometries. The study determined that for beam radiation sources the highest effective dose equivalent occurs for beams striking the front of the torso. Beams striking the rear of the torsoproduce the next highest effective dose equivalent, with effective dose equivalent falling significantly as one departs from these two orientations. For point sources, the highest effective dose equivalent occurs when the sources are in contact with the body on the front of the torso. For females the highest effective dose equivalent occurs when the source is on the sternum, for males when it is on the gonads.

  5. Peak Dose Assessment for Proposed DOE-PPPO Authorized Limits

    SciTech Connect

    Maldonado, Delis

    2012-06-01

    The Oak Ridge Institute for Science and Education (ORISE), a U.S. Department of Energy (DOE) prime contractor, was contracted by the DOE Portsmouth/Paducah Project Office (DOE-PPPO) to conduct a peak dose assessment in support of the Authorized Limits Request for Solid Waste Disposal at Landfill C-746-U at the Paducah Gaseous Diffusion Plant (DOE-PPPO 2011a). The peak doses were calculated based on the DOE-PPPO Proposed Single Radionuclides Soil Guidelines and the DOE-PPPO Proposed Authorized Limits (AL) Volumetric Concentrations available in DOE-PPPO 2011a. This work is provided as an appendix to the Dose Modeling Evaluations and Technical Support Document for the Authorized Limits Request for the C-746-U Landfill at the Paducah Gaseous Diffusion Plant, Paducah, Kentucky (ORISE 2012). The receptors evaluated in ORISE 2012 were selected by the DOE-PPPO for the additional peak dose evaluations. These receptors included a Landfill Worker, Trespasser, Resident Farmer (onsite), Resident Gardener, Recreational User, Outdoor Worker and an Offsite Resident Farmer. The RESRAD (Version 6.5) and RESRAD-OFFSITE (Version 2.5) computer codes were used for the peak dose assessments. Deterministic peak dose assessments were performed for all the receptors and a probabilistic dose assessment was performed only for the Offsite Resident Farmer at the request of the DOE-PPPO. In a deterministic analysis, a single input value results in a single output value. In other words, a deterministic analysis uses single parameter values for every variable in the code. By contrast, a probabilistic approach assigns parameter ranges to certain variables, and the code randomly selects the values for each variable from the parameter range each time it calculates the dose (NRC 2006). The receptor scenarios, computer codes and parameter input files were previously used in ORISE 2012. A few modifications were made to the parameter input files as appropriate for this effort. Some of these changes

  6. Radiological assessment of worker doses during sludge mobilization and removal at the Melton Valley storage tanks

    SciTech Connect

    Kerr, G.D.; Coleman, R.L.; Kocher, D.C.; Wynn, C.C.

    1996-12-17

    This report presents an assessment of potential radiation doses to workers during mobilization and removal of contaminated sludges from the Melton Valley Storage Tanks at Oak Ridge National Laboratory. The assessment is based on (1) measurements of radionuclide concentrations in sludge and supernatant liquid samples from the waste storage tanks, (2) measurements of gamma radiation levels in various areas that will be accessed by workers during normal activities, (3) calculations of gamma radiation levels for particular exposure situations, especially when the available measurements are not applicable, and (4) assumed scenarios for worker activities in radiation areas. Only doses from external exposure are estimated in this assessment. Doses from internal exposure are assumed to be controlled by containment of radioactive materials or respiratory protection of workers and are not estimated.

  7. INTEGRATED RISK ASSESSMENT - RESULTS FROM AN INTERNATIONAL WORKSHOP

    EPA Science Inventory

    The WHO International Programme on Chemical Safety and international partners have developed a framework for integrated assessment of human health and ecological risks and four case studies. An international workshop was convened to consider how ecological and health risk assess...

  8. Estimation of Internal Radiation Dose from both Immediate Releases and Continued Exposures to Contaminated Materials

    SciTech Connect

    Napier, Bruce A.

    2012-03-26

    A brief description is provided of the basic concepts related to 'internal dose' and how it differs from doses that result from radioactive materials and direct radiation outside of the body. The principles of radiation dose reconstruction, as applied to both internal and external doses, is discussed based upon a recent publication prepared by the US National Council on Radiation Protection and Measurements. Finally, ideas are introduced related to residual radioactive contamination in the environment that has resulted from the releases from the damaged reactors and also to the management of wastes that may be generated in both regional cleanup and NPP decommissioning.

  9. An analytical model for calculating internal dose conversion coefficients for non-human biota.

    PubMed

    Amato, Ernesto; Italiano, Antonio

    2014-05-01

    To assess the radiation burden of non-human living organisms, dose coefficients are available in the literature, precalculated by assuming an ellipsoidal shape of each organism. A previously developed analytical method was applied for the determination of absorbed fractions inside ellipsoidal volumes from alpha, beta, and gamma radiations to the calculation of dose conversion coefficients (DCCs) for 15 reference organisms, animals and plants, either terrestrial, amphibian, or aquatic, and six radionuclides ((14)C, (90)Sr, (60)Co, (137)Cs, (238)U, and (241)Am). The results were compared with the reference values reported in Publication 108 of the International Commission on Radiological Protection, in which a different calculation approach for DCCs was employed. The results demonstrate that the present analytical method, originally intended for applications in internal dosimetry of nuclear medicine therapy, gives consistent results for all the beta-, beta-gamma-, and alpha-emitting radionuclides tested in a wide range of organism masses, between 8 mg and 1.3 kg. The applicability of the method proposed can take advantage from its ease of implementation in an ordinary electronic spreadsheet, allowing to calculate, for virtually all possible radionuclide emission spectra, the DCCs for ellipsoidal models of non-human living organisms in the environment.

  10. Application of the International Life Sciences Institute Key Events Dose-Response Framework to food contaminants.

    PubMed

    Fenner-Crisp, Penelope A

    2012-12-01

    Contaminants are undesirable constituents in food. They may be formed during production of a processed food, present as a component in a source material, deliberately added to substitute for the proper substance, or the consequence of poor food-handling practices. Contaminants may be chemicals or pathogens. Chemicals generally degrade over time and become of less concern as a health threat. Pathogens have the ability to multiply, potentially resulting in an increased threat level. Formal structures have been lacking for systematically generating and evaluating hazard and exposure data for bioactive agents when problem situations arise. We need to know what the potential risk may be to determine whether intervention to reduce or eliminate contact with the contaminant is warranted. We need tools to aid us in assembling and assessing all available relevant information in an expeditious and scientifically sound manner. One such tool is the International Life Sciences Institute (ILSI) Key Events Dose-Response Framework (KEDRF). Developed as an extension of the WHO's International Program on Chemical Safety/ILSI mode of action/human relevance framework, it allows risk assessors to understand not only how a contaminant exerts its toxicity but also the dose response(s) for each key event and the ultimate outcome, including whether a threshold exists. This presentation will illustrate use of the KEDRF with case studies included in its development (chloroform and Listeriaonocytogenes) after its publication in the peer-reviewed scientific literature (chromium VI) and in a work in progress (3-monochloro-1, 2-propanediol).

  11. Fetal and maternal dose assessment for diagnostic scans during pregnancy

    NASA Astrophysics Data System (ADS)

    Rafat Motavalli, Laleh; Miri Hakimabad, Hashem; Hoseinian Azghadi, Elie

    2016-05-01

    Despite the concerns about prenatal exposure to ionizing radiation, the number of nuclear medicine examinations performed for pregnant women increased in the past decade. This study attempts to better quantify radiation doses due to diagnostic nuclear medicine procedures during pregnancy with the help of our recently developed 3, 6, and 9 month pregnant hybrid phantoms. The reference pregnant models represent the adult female international commission on radiological protection (ICRP) reference phantom as a base template with a fetus in her gravid uterus. Six diagnostic scintigraphy scans using different radiopharmaceuticals were selected as typical diagnostic nuclear medicine procedures. Furthermore, the biokinetic data of radioiodine was updated in this study. A compartment representing iodide in fetal thyroid was addressed explicitly in the biokinetic model. Calculations were performed using the Monte Carlo transport method. Tabulated dose coefficients for both maternal and fetal organs are provided. The comparison was made with the previously published fetal doses calculated for stylized pregnant female phantoms. In general, the fetal dose in previous studies suffers from an underestimation of up to 100% compared to fetal dose at organ level in this study. A maximum of difference in dose was observed for the fetal thyroid compared to the previous studies, in which the traditional models did not contain the fetal thyroid. Cumulated activities of major source organs are primarily responsible for the discrepancies in the organ doses. The differences in fetal dose depend on several other factors including chord length distribution between fetal organs and maternal major source organs, and anatomical differences according to gestation periods. Finally, considering the results of this study, which was based on the realistic pregnant female phantoms, a more informed evaluation of the risks and benefits of the different procedures could be made.

  12. Integrated Worker Radiation Dose Assessment for the K Basins

    SciTech Connect

    NELSON, J.V.

    1999-10-27

    This report documents an assessment of the radiation dose workers at the K Basins are expected to receive in the process of removing spent nuclear fuel from the storage basins. The K Basins (K East and K West) are located in the Hanford 100K Area.

  13. The Assessment of Effective Dose Equivalent Using Personnel Dosimeters

    NASA Astrophysics Data System (ADS)

    Xu, Xie

    From January 1994, U.S. nuclear plants must develop a technically rigorous approach for determining the effective dose equivalent for their work forces. This dissertation explains concepts associated with effective dose equivalent and describes how to assess effective dose equivalent by using conventional personnel dosimetry measurements. A Monte Carlo computer code, MCNP, was used to calculate photon transport through a model of the human body. Published mathematical phantoms of the human adult male and female were used to simulate irradiation from a variety of external radiation sources in order to calculate organ and tissue doses, as well as effective dose equivalent using weighting factors from ICRP Publication 26. The radiation sources considered were broad parallel photon beams incident on the body from 91 different angles and isotropic point sources located at 234 different locations in contact with or near the body. Monoenergetic photons of 0.08, 0.3, and 1.0 MeV were considered for both sources. Personnel dosimeters were simulated on the surface of the body and exposed to with the same sources. From these data, the influence of dosimeter position on dosimeter response was investigated. Different algorithms for assessing effective dose equivalent from personnel dosimeter responses were proposed and evaluated. The results indicate that the current single-badge approach is satisfactory for most common exposure situations encountered in nuclear plants, but additional conversion factors may be used when more accurate results become desirable. For uncommon exposures involving source situated at the back of the body or source located overhead, the current approach of using multi-badges and assigning the highest dose is overly conservative and unnecessarily expensive. For these uncommon exposures, a new algorithm, based on two dosimeters, one on the front of the body and another one on the back of the body, has been shown to yield conservative assessment of

  14. TSD-DOSE: A radiological dose assessment model for treatment, storage, and disposal facilities

    SciTech Connect

    Pfingston, M.; Arnish, J.; LePoire, D.; Chen, S.-Y.

    1998-10-14

    Past practices at US Department of Energy (DOE) field facilities resulted in the presence of trace amounts of radioactive materials in some hazardous chemical wastes shipped from these facilities. In May 1991, the DOE Office of Waste Operations issued a nationwide moratorium on shipping all hazardous waste until procedures could be established to ensure that only nonradioactive hazardous waste would be shipped from DOE facilities to commercial treatment, storage, and disposal (TSD) facilities. To aid in assessing the potential impacts of shipments of mixed radioactive and chemically hazardous wastes, a radiological assessment computer model (or code) was developed on the basis of detailed assessments of potential radiological exposures and doses for eight commercial hazardous waste TSD facilities. The model, called TSD-DOSE, is designed to incorporate waste-specific and site-specific data to estimate potential radiological doses to on-site workers and the off-site public from waste-handling operations at a TSD facility. The code is intended to provide both DOE and commercial TSD facilities with a rapid and cost-effective method for assessing potential human radiation exposures from the processing of chemical wastes contaminated with trace amounts of radionuclides.

  15. Assessment of Organ Doses for a Glovebox Worker Using Realistic Postures with PIMAL and VOXMAT

    SciTech Connect

    Akkurt, Hatice; Bekar, Kursat; Eckerman, Keith F

    2009-01-01

    In an earlier effort, the Oak Ridge National Laboratory (ORNL) mathematical phantom has been revised to enable assessment of radiation dose for different postures in occupational exposures by enabling freely positioning arms and legs. The revised phantom is called PIMAL: Phantom wIth Moving Arms and Legs. Further, to assist the analyst with input preparation and output manipulation for different postures, a graphical user interface has been developed. Also, at ORNL a hybrid computational phantom, which uses a combination of voxelized and stylized geometry, for radiation dose assessment was recently developed. This phantom is based on the International Commission on Radiological Protection's (ICRP's) male phantom model and is called VOXMAT. For VOXMAT, the head and torso, which contain significant anatomical details, were described using voxel geometry. The arms and legs, which contain less-detailed anatomical structures, were modeled using the mathematical equations (stylized approach). With this approach the number of voxels was reduced from 7 million to 2.3 million, which translated into a proportional reduction in computational time and memory requirements. More importantly, VOXMAT allows easy the movement of arms and legs for radiation dose assessment for realistic postures. To determine/demonstrate the importance of the realistic posture for a case study, PIMAL and VOXMAT are applied to assess the dose to a glovebox worker. In this paper, the comparative computational results for the estimated dose are presented.

  16. TSD-DOSE : a radiological dose assessment model for treatment, storage, and disposal facilities.

    SciTech Connect

    Pfingston, M.

    1998-12-23

    In May 1991, the U.S. Department of Energy (DOE), Office of Waste Operations, issued a nationwide moratorium on shipping slightly radioactive mixed waste from DOE facilities to commercial treatment, storage, and disposal (TSD) facilities. Studies were subsequently conducted to evaluate the radiological impacts associated with DOE's prior shipments through DOE's authorized release process under DOE Order 5400.5. To support this endeavor, a radiological assessment computer code--TSD-DOSE (Version 1.1)--was developed and issued by DOE in 1997. The code was developed on the basis of detailed radiological assessments performed for eight commercial hazardous waste TSD facilities. It was designed to utilize waste-specific and site-specific data to estimate potential radiological doses to on-site workers and the off-site public from waste handling operations at a TSD facility. The code has since been released for use by DOE field offices and was recently used by DOE to evaluate the release of septic waste containing residual radioactive material to a TSD facility licensed under the Resource Conservation and Recovery Act. Revisions to the code were initiated in 1997 to incorporate comments received from users and to increase TSD-DOSE's capability, accuracy, and flexibility. These updates included incorporation of the method used to estimate external radiation doses from DOE's RESRAD model and expansion of the source term to include 85 radionuclides. In addition, a detailed verification and benchmarking analysis was performed.

  17. Patient doses in {gamma}-intracoronary radiotherapy: The Radiation Burden Assessment Study

    SciTech Connect

    Thierens, Hubert . E-mail: hubert.thierens@Ughent.be; Reynaert, Nick; Bacher, Klaus; Eijkeren, Marc van; Taeymans, Yves

    2004-10-01

    Purpose: To determine accurately the radiation burden of both patients and staff from intracoronary radiotherapy (IRT) with {sup 192}Ir and to investigate the importance of IRT in the patient dose compared with interventional X-rays. Methods and materials: The Radiation Burden Assessment Study (RABAS) population consisted of 9 patients undergoing {gamma}-IRT after percutaneous transluminal coronary angioplasty and 14 patients undergoing percutaneous transluminal coronary angioplasty only as the control group. For each patient, the dose to the organs and tissues from the internal and external exposure was determined in detail by Monte Carlo N-particle simulations. Patient skin dose measurements with thermoluminescence dosimeters served as verification. Staff dosimetry was performed with electronic dosimeters, thermoluminescence dosimeters, and double film badge dosimetry. Results: With respect to the patient dose from IRT, the critical organs are the thymus (58 mGy), lungs (31 mGy), and esophagus (27 mGy). The mean effective dose from IRT was 8 mSv. The effective dose values from interventional X-rays showed a broad range (2-28 mSv), with mean values of 8 mSv for the IRT patients and 13 mSv for the control group. The mean dose received by the radiotherapist from IRT was 4 {mu}Sv/treatment. The doses to the other staff members were completely negligible. Conclusion: Our results have shown that the patient and personnel doses in {gamma}-IRT remain at an acceptable level. The patient dose from IRT was within the variations in dose from the accompanying interventional X-rays.

  18. Estimating the Radiation Dose to the Fetus in Prophylactic Internal Iliac Artery Balloon Occlusion: Three Cases

    PubMed Central

    Kai, Kentaro; Hamada, Tomohiro; Yuge, Akitoshi; Kiyosue, Hiro; Nishida, Yoshihiro; Nasu, Kaei; Narahara, Hisashi

    2015-01-01

    Background. Although radiation exposure is of great concern to expecting patients, little information is available on the fetal radiation dose associated with prophylactic internal iliac artery balloon occlusion (IIABO). Here we estimated the fetal radiation dose associated with prophylactic IIABO in Caesarean section (CS). Cases. We report our experience with the IIABO procedure in three consecutive patients with suspected placenta previa/accreta. Fetal radiation dose measurements were conducted prior to each CS by using an anthropomorphic phantom. Based on the simulated value, we calculated the fetal radiation dose as the absorbed dose. We found that the fetal radiation doses ranged from 12.88 to 31.6 mGy. The fetal radiation dose during the prophylactic IIABOs did not exceed 50 mGy. Conclusion. The IIABO procedure could result in a very small increase in the risk of harmful effects to the fetus. PMID:26180648

  19. 10 CFR 20.1502 - Conditions requiring individual monitoring of external and internal occupational dose.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 1 2010-01-01 2010-01-01 false Conditions requiring individual monitoring of external and internal occupational dose. 20.1502 Section 20.1502 Energy NUCLEAR REGULATORY COMMISSION STANDARDS FOR PROTECTION AGAINST RADIATION Surveys and Monitoring § 20.1502 Conditions requiring individual monitoring of external and internal...

  20. Estimation of internal organ motion-induced variance in radiation dose in non-gated radiotherapy

    NASA Astrophysics Data System (ADS)

    Zhou, Sumin; Zhu, Xiaofeng; Zhang, Mutian; Zheng, Dandan; Lei, Yu; Li, Sicong; Bennion, Nathan; Verma, Vivek; Zhen, Weining; Enke, Charles

    2016-12-01

    In the delivery of non-gated radiotherapy (RT), owing to intra-fraction organ motion, a certain degree of RT dose uncertainty is present. Herein, we propose a novel mathematical algorithm to estimate the mean and variance of RT dose that is delivered without gating. These parameters are specific to individual internal organ motion, dependent on individual treatment plans, and relevant to the RT delivery process. This algorithm uses images from a patient’s 4D simulation study to model the actual patient internal organ motion during RT delivery. All necessary dose rate calculations are performed in fixed patient internal organ motion states. The analytical and deterministic formulae of mean and variance in dose from non-gated RT were derived directly via statistical averaging of the calculated dose rate over possible random internal organ motion initial phases, and did not require constructing relevant histograms. All results are expressed in dose rate Fourier transform coefficients for computational efficiency. Exact solutions are provided to simplified, yet still clinically relevant, cases. Results from a volumetric-modulated arc therapy (VMAT) patient case are also presented. The results obtained from our mathematical algorithm can aid clinical decisions by providing information regarding both mean and variance of radiation dose to non-gated patients prior to RT delivery.

  1. INTERNAL DOSE AND RESPONSE IN REAL-TIME.

    EPA Science Inventory

    Abstract: Rapid temporal fluctuations in exposure may occur in a number of situations such as accidents or other unexpected acute releases of airborne substances. Often risk assessments overlook temporal exposure patterns under simplifying assumptions such as the use of time-wei...

  2. AN APPROACH TO REDUCTION OF UNCERTAINTIES IN INTERNAL DOSES RECONSTRUCTED FOR THE TECHA RIVER POPULATION

    SciTech Connect

    Degteva, M. O.; Shagina, N. B.; Tolstykh, E. I.; Bougrov, N. G.; Zalyapin, V. I.; Anspaugh, L. R.; Napier, Bruce A.

    2007-12-01

    A methodology is being developing for reduction of uncertainties in estimates of internal dose for residents of the Techa Riverside communities, who were exposed as a result of releases of radionuclides from the Mayak plutonium-production facility in 1949–1956. The “Techa River Dosimetry System” (TRDS) was specifically elaborated for reconstruction of doses. A preliminary analysis of uncertainty for doses estimated using the current version of the TRDS showed large ranges in the uncertainty of internal absorbed dose and led to suggestions of methods to reduce uncertainties. The new methodological approaches described in this paper will allow for significant reduction of uncertainties of 90Sr-dose. The major sources of reduction are in making use of individual measured values of 90Sr and through development of a Household Registry to associate unmeasured persons with measured persons living in the same household(s).

  3. Absorbed dose assessment in newborns during x-ray examinations

    NASA Astrophysics Data System (ADS)

    Taipe, Patricia K.; Berrocal, Mariella J.; Carita, Raúl F.

    2012-02-01

    Often a newborn presents breathing problems during the early days of life, i.e. bronchopneumonia, wich are caused in most of cases, by aspirating a mixture of meconium and amniotic fluid. In these cases, it is necessary to make use of a radiograph, requested by the physician to reach a diagnosis. This paper seeks to evaluate the absorbed doses in neonates undergoing a radiograph. For this reason we try to simulate the real conditions in a X-ray room from Lima hospitals. With this finality we perform a simulation made according a questionnaire related to technical data of X-ray equipment, distance between the source and the neonate, and its position to be irradiated. The information obtained has been used to determine the absorbed dose by infants, using the MCNP code. Finally, the results are compared with reference values of international health agencies.

  4. Dose estimation for internal organs during boron neutron capture therapy for body-trunk tumors.

    PubMed

    Sakurai, Y; Tanaka, H; Suzuki, M; Masunaga, S; Kinashi, Y; Kondo, N; Ono, K; Maruhashi, A

    2014-06-01

    Radiation doses during boron neutron capture therapy for body-trunk tumors were estimated for various internal organs, using data from patients treated at Kyoto University Research Reactor Institute. Dose-volume histograms were constructed for tissues of the lung, liver, kidney, pancreas, and bowel. For pleural mesothelioma, the target total dose to the normal lung tissues on the diseased side is 5Gy-Eq in average for the whole lung. It was confirmed that the dose to the liver should be carefully considered in cases of right lung disease.

  5. An internal radiation dosimetry computer program, IDAC 2.0, for estimation of patient doses from radiopharmaceuticals.

    PubMed

    Andersson, M; Johansson, L; Minarik, D; Mattsson, S; Leide-Svegborn, S

    2014-12-01

    The internal dosimetry computer program internal dose assessment by computer (IDAC) for calculations of absorbed doses to organs and tissues as well as effective doses to patients from examinations with radiopharmaceuticals has been developed. The new version, IDAC2.0, incorporates the International Commission on Radiation Protection (ICRP)/ICRU computational adult male and female voxel phantoms and decay data from the ICRP publication 107. Instead of only 25 source and target regions, calculation can now be made with 63 source regions to 73 target regions. The major advantage of having the new phantom is that the calculations of the effective doses can be made with the latest tissue weighting factors of ICRP publication 103. IDAC2.0 uses the ICRP human alimentary tract (HAT) model for orally administrated activity and for excretion through the gastrointestinal tract and effective doses have been recalculated for radiopharmaceuticals that are orally administered. The results of the program are consistent with published data using the same specific absorption fractions and also compared with published data from the same computational phantoms but with segmentation of organs leading to another set of specific absorption fractions. The effective dose is recalculated for all the 34 radiopharmaceuticals that are administered orally and has been published by the ICRP. Using the new HAT model, new tissue weighting factors and the new adult computational voxel phantoms lead to an average effective dose of half of its earlier estimated value. The reduction mainly depends on electron transport simulations to walled organs and the transition from the stylised phantom with unrealistic interorgan distances to more realistic voxel phantoms.

  6. Assessment of patient dose in medical processes by in-vivo dose measuring devices: A review

    NASA Astrophysics Data System (ADS)

    Tuncel, Nina

    2016-11-01

    In-vivo dosimetry (IVD) in medicine especially in radiation therapy is a well-established and recommended procedure for the estimation of the dose delivered to a patient during the radiation treatment. It became even more important with the emerging use of new and more complex radiotherapy techniques such as intensity-modulated or image-guided radiation therapy. While IVD has been used in brachytherapy for decades and the initial motivation for performing was mainly to assess doses to organs at risk by direct measurements, it is now possible to calculate 3D for detection of deviations or errors. In-vivo dosimeters can be divided into real-time and passive detectors that need some finite time following irradiation for their analysis. They require a calibration against a calibrated ionization chamber in a known radiation field. Most of these detectors have a response that is energy and/or dose rate dependent and consequently require adjustments of the response to account for changes in the actual radiation conditions compared to the calibration situation. Correction factors are therefore necessary to take. Today, the most common dosimeters for patients' dose verification through in-vivo measurements are semiconductor diodes, thermo-luminescent dosimeters, optically stimulated luminescence dosimeters, metal-oxide-semiconductor field-effect transistors and plastic scintillator detectors with small outer diameters.

  7. Radiological environmental dose assessment methods and compliance dose results for 2015 operations at the Savannah River Site

    SciTech Connect

    Jannik, G. T.; Dixon, K. L.

    2016-09-01

    This report presents the environmental dose assessment methods and the estimated potential doses to the offsite public from 2015 Savannah River Site (SRS) atmospheric and liquid radioactive releases. Also documented are potential doses from special-case exposure scenarios - such as the consumption of deer meat, fish, and goat milk.

  8. Cone beam computed tomography radiation dose and image quality assessments.

    PubMed

    Lofthag-Hansen, Sara

    2010-01-01

    Diagnostic radiology has undergone profound changes in the last 30 years. New technologies are available to the dental field, cone beam computed tomography (CBCT) as one of the most important. CBCT is a catch-all term for a technology comprising a variety of machines differing in many respects: patient positioning, volume size (FOV), radiation quality, image capturing and reconstruction, image resolution and radiation dose. When new technology is introduced one must make sure that diagnostic accuracy is better or at least as good as the one it can be expected to replace. The CBCT brand tested was two versions of Accuitomo (Morita, Japan): 3D Accuitomo with an image intensifier as detector, FOV 3 cm x 4 cm and 3D Accuitomo FPD with a flat panel detector, FOVs 4 cm x 4 cm and 6 cm x 6 cm. The 3D Accuitomo was compared with intra-oral radiography for endodontic diagnosis in 35 patients with 46 teeth analyzed, of which 41 were endodontically treated. Three observers assessed the images by consensus. The result showed that CBCT imaging was superior with a higher number of teeth diagnosed with periapical lesions (42 vs 32 teeth). When evaluating 3D Accuitomo examinations in the posterior mandible in 30 patients, visibility of marginal bone crest and mandibular canal, important anatomic structures for implant planning, was high with good observer agreement among seven observers. Radiographic techniques have to be evaluated concerning radiation dose, which requires well-defined and easy-to-use methods. Two methods: CT dose index (CTDI), prevailing method for CT units, and dose-area product (DAP) were evaluated for calculating effective dose (E) for both units. An asymmetric dose distribution was revealed when a clinical situation was simulated. Hence, the CTDI method was not applicable for these units with small FOVs. Based on DAP values from 90 patient examinations effective dose was estimated for three diagnostic tasks: implant planning in posterior mandible and

  9. 78 FR 14912 - International Aviation Safety Assessment (IASA) Program Change

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-03-08

    ... Federal Aviation Administration 14 CFR Part 129 International Aviation Safety Assessment (IASA) Program Change AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Policy statement. SUMMARY: This statement describes a policy change to the FAA's International Aviation Safety Assessment (IASA)...

  10. Assessment of organ absorbed doses and estimation of effective doses from pediatric anthropomorphic phantom measurements for multi-detector row CT with and without automatic exposure control.

    PubMed

    Brisse, Hervé J; Robilliard, Magalie; Savignoni, Alexia; Pierrat, Noelle; Gaboriaud, Geneviève; De Rycke, Yann; Neuenschwander, Sylvia; Aubert, Bernard; Rosenwald, Jean-Claude

    2009-10-01

    This study was designed to measure organ absorbed doses from multi-detector row computed tomography (MDCT) on pediatric anthropomorphic phantoms, calculate the corresponding effective doses, and assess the influence of automatic exposure control (AEC) in terms of organ dose variations. Four anthropomorphic phantoms (phantoms represent the equivalent of a newborn, 1-, 5-, and 10-y-old child) were scanned with a four-channel MDCT coupled with a z-axis-based AEC system. Two CT torso protocols were compared: a first protocol without AEC and constant tube current-time product and a second protocol with AEC using age-adjusted noise indices. Organ absorbed doses were monitored by thermoluminescent dosimeters (LiF: Mg, Cu, P). Effective doses were calculated according to the tissue weighting factors of the International Commission on Radiological Protection (). For fixed mA acquisitions, organ doses normalized to the volume CT dose index in a 16-cm head phantom (CTDIvol16) ranged from 0.6 to 1.5 and effective doses ranged from 8.4 to 13.5 mSv. For the newborn-equivalent phantom, the AEC-modulated scan showed almost no significant dose variation compared to the fixed mA scan. For the 1-, 5- and 10-y equivalent phantoms, the use of AEC induced a significant dose decrease on chest organs (ranging from 61 to 31% for thyroid, 37 to 21% for lung, 34 to 17% for esophagus, and 39 to 10% for breast). However, AEC also induced a significant dose increase (ranging from 28 to 48% for salivary glands, 22 to 51% for bladder, and 24 to 70% for ovaries) related to the high density of skull base and pelvic bones. These dose increases should be considered before using AEC as a dose optimization tool in children.

  11. TRIAGE DOSE ASSESSMENT FOR PARTIAL-BODY EXPOSURE: DICENTRIC ANALYSIS

    PubMed Central

    Moroni, Maria; Pellmar, Terry C.

    2009-01-01

    Partial-body biodosimetry is likely to be required after a radiological or nuclear exposure. Clinical signs and symptoms, distribution of dicentrics in circulating blood cells, organ-specific biomarkers, physical signals in teeth and nails all can provide indications of non-homogeneous exposures. Organ specific biomarkers may provide early warning regarding physiological systems at risk after radiation injury. Use of a combination of markers and symptoms will be needed for clinical insights for therapeutic approaches. Analysis of dicentrics, a marker specific for radiation injury, is the “Gold standard” of biodosimetry and can reveal partial-body exposures. Automation of sample processing for dicentric analysis can increase throughput with customization of off-the-shelf technologies for cytogenetic sample processing and information management. Automated analysis of the metaphase spreads is currently limited but improvements are in development. Our efforts bridge the technological gaps to allow the use of dicentric chromosome assay (DCA) for risk-based stratification of mass casualties. This article summarizes current knowledge on partial-body cytogenetic dose assessment synthesizing information leading to the proposal of an approach to triage dose prediction in radiation mass casualties, based on equivalent whole-body doses under partial-body exposure conditions and assesses the validity of using this model. An initial screening using only 20 metaphase spreads per subject can confirm irradiation above 2-Gy. A subsequent increase to 50 metaphases improves dose determination to allow risk stratification for clinical triage. Metaphases evaluated for inhomogeneous distribution of dicentrics can reveal partial-body exposures. We tested the validity of this approach in an in vitro model that simulates partial-body irradiation by mixing irradiated and un-irradiated lymphocytes in various proportions. Our preliminary results support the notion that this approach will

  12. Source term calculations for assessing radiation dose to equipment

    SciTech Connect

    Denning, R.S.; Freeman-Kelly, R.; Cybulskis, P.; Curtis, L.A.

    1989-07-01

    This study examines results of analyses performed with the Source Term Code Package to develop updated source terms using NUREG-0956 methods. The updated source terms are to be used to assess the adequacy of current regulatory source terms used as the basis for equipment qualification. Time-dependent locational distributions of radionuclides within a containment following a severe accident have been developed. The Surry reactor has been selected in this study as representative of PWR containment designs. Similarly, the Peach Bottom reactor has been used to examine radionuclide distributions in boiling water reactors. The time-dependent inventory of each key radionuclide is provided in terms of its activity in curies. The data are to be used by Sandia National Laboratories to perform shielding analyses to estimate radiation dose to equipment in each containment design. See NUREG/CR-5175, Beta and Gamma Dose Calculations for PWR and BWR Containments.'' 6 refs., 11 tabs.

  13. ARAC: A flexible real-time dose consequence assessment system

    SciTech Connect

    Ellis, J.S.; Sullivan, T.J.

    1993-10-07

    Since its beginning, the Atmospheric Release Advisory Capability (ARAC), an emergency radiological dose assessment service of the US Government, has been called on to do consequence assessments for releases into the atmosphere of radionuclides and a variety of other substances. Some of the more noteworthy emergency responses have been for the Three Mile Island and Chernobyl nuclear power reactor accidents, and more recently, for a cloud of gases from a rail-car spill into the Sacramento river of the herbicide metam sodium, smoke from hundreds of burning oil wells in Kuwait, and ash clouds from the eruption of Mt. Pinatubo. The spatial scales of these responses range from local, to regional, to global, and the response periods from hours, to weeks, to months. Because of the variety of requirements of each unique assessment, ARAC has developed and maintains a flexible system of people, computer software and hardware.

  14. Dose limits to the lens of the eye: International Basic Safety Standards and related guidance.

    PubMed

    Boal, T J; Pinak, M

    2015-06-01

    The International Atomic Energy Agency (IAEA) safety requirements: 'General Safety Requirements Part 3--Radiation protection and safety of radiation sources: International Basic Safety Standards' (BSS) was approved by the IAEA Board of Governors at its meeting in September 2011, and was issued as General Safety Requirements Part 3 in July 2014. The equivalent dose limit for the lens of the eye for occupational exposure in planned exposure situations was reduced from 150 mSv year(-1) to 20 mSv year(-1), averaged over defined periods of 5 years, with no annual dose in a single year exceeding 50 mSv. This reduction in the dose limit for the lens of the eye followed the recommendation of the International Commission on Radiological Protection in its statement on tissue reactions of 21 April 2011. IAEA has developed guidance on the implications of the new dose limit for the lens of the eye. This paper summarises the process that led to the inclusion of the new dose limit for the lens of the eye in the BSS, and the implications of the new dose limit.

  15. Mixed species radioiodine air sampling readout and dose assessment system

    DOEpatents

    Distenfeld, Carl H.; Klemish, Jr., Joseph R.

    1978-01-01

    This invention provides a simple, reliable, inexpensive and portable means and method for determining the thyroid dose rate of mixed airborne species of solid and gaseous radioiodine without requiring highly skilled personnel, such as health physicists or electronics technicians. To this end, this invention provides a means and method for sampling a gas from a source of a mixed species of solid and gaseous radioiodine for collection of the mixed species and readout and assessment of the emissions therefrom by cylindrically, concentrically and annularly molding the respective species around a cylindrical passage for receiving a conventional probe-type Geiger-Mueller radiation detector.

  16. Habitability Assessment of International Space Station

    NASA Technical Reports Server (NTRS)

    Thaxton, Sherry

    2015-01-01

    The purpose of this study is to assess habitability during the International Space Station 1-year mission, and subsequent 6-month missions, in order to better prepare for future long-duration spaceflights to destinations such as Near Earth Asteroid (NEA) and Mars, which will require crewmembers to live and work in a confined spacecraft environment for over a year. Data collected using Space Habitability Observation Reporting Tool (iSHORT), crew-collected videos, questionnaires, and PI conferences will help characterize the current state of habitability for the ISS. These naturalistic techniques provide crewmembers with the opportunity to self-report habitability and human factors observations in near real-time, which is not systematically done during ISS missions at present.

  17. Assessment of the occupational eye lens dose for clinical staff in interventional radiology, cardiology and neuroradiology.

    PubMed

    Omar, Artur; Kadesjö, Nils; Palmgren, Charlotta; Marteinsdottir, Maria; Segerdahl, Tony; Fransson, Annette

    2017-03-20

    In accordance with recommendations by the International Commission on Radiological Protection, the current European Basic Safety Standards has adopted a reduced occupational eye lens dose limit of 20 mSv yr(-1). The radiation safety implications of this dose limit is of concern for clinical staff that work with relatively high dose x-ray angiography and interventional radiology. Presented in this work is a thorough assessment of the occupational eye lens dose based on clinical measurements with active personal dosimeters worn by staff during various types of procedures in interventional radiology, cardiology and neuroradiology. Results are presented in terms of the estimated equivalent eye lens dose for various medical professions. In order to compare the risk of exceeding the regulatory annual eye lens dose limit for the widely different clinical situations investigated in this work, the different medical professions were separated into categories based on their distinct work pattern: staff that work (a) regularly beside the patient, (b) in proximity to the patient and (c) typically at a distance from the patient. The results demonstrate that the risk of exceeding the annual eye lens dose limit is of concern for staff category (a), i.e. mainly the primary radiologist/cardiologist. However, the results also demonstrate that the risk can be greatly mitigated if radiation protection shields are used in the clinical routine. The results presented in this work cover a wide range of clinical situations, and can be used as a first indication of the risk of exceeding the annual eye lens dose limit for staff at other medical centres.

  18. Evaluation of the Emergency Response Dose Assessment System(ERDAS)

    NASA Technical Reports Server (NTRS)

    Evans, Randolph J.; Lambert, Winifred C.; Manobianco, John T.; Taylor, Gregory E.; Wheeler, Mark M.; Yersavich, Ann M.

    1996-01-01

    The emergency response dose assessment system (ERDAS) is a protype software and hardware system configured to produce routine mesoscale meteorological forecasts and enhanced dispersion estimates on an operational basis for the Kennedy Space Center (KSC)/Cape Canaveral Air Station (CCAS) region. ERDAS provides emergency response guidance to operations at KSC/CCAS in the case of an accidental hazardous material release or an aborted vehicle launch. This report describes the evaluation of ERDAS including: evaluation of sea breeze predictions, comparison of launch plume location and concentration predictions, case study of a toxic release, evaluation of model sensitivity to varying input parameters, evaluation of the user interface, assessment of ERDA's operational capabilities, and a comparison of ERDAS models to the ocean breeze dry gultch diffusion model.

  19. Why a Global International Waters Assessment (GIWA)?

    PubMed

    Hempel, Gotthilf; Daler, Dag

    2004-02-01

    Why GIWA? Six years ago several people had their doubts as to whether a Global International Waters Assessment would be worth the money and effort. Nowadays, it is no longer necessary to justify the creation of GIWA. On the contrary, we will show how important it was that the Global Environmental Facility (GEF) and UNEP, constituted GIWA. Countless water-related assessments focus on specific regions and/or specific issues. But GIWA is unique in its global and holistic policy-oriented approach applying a common methodology to address the major problems in all parts of the global hydrosphere. One major achievement of GIWA will be the GIWA publications which provide advice to GEF and other decision-making organizations. Further assets include the network of regional focal points and teams. GIWA encompasses marine, surface freshwater, and groundwater systems, following the flow of water from the sources in the mountains through the rivers and estuaries into the coastal waters and the shelf seas. GIWA studies the physical, chemical and biological properties of those waterbodies and living resources in relation to the human activities, combining ecological and socioeconomic considerations.

  20. International exchange of emergency phase information and assessments: an aid to national/international decision makers.

    PubMed

    Sullivan, Thomas J; Chino, Masamichi; Ehrhardt, Joachim; Shershakov, Vyacheslav

    2004-01-01

    This paper discusses a collaborative project (1) to demonstrate the feasibility and benefit of a system seeking early review, in a 'quasi peer review' mode, of nuclear accident plume and dose assessment predictions by four major international nuclear accident emergency response systems before release of calculations to respective national authorities followed by (2) sharing these results with responsible national/international authorities, (3) development of an affordable/accessible system to distribute results to countries without prediction capabilities and (4) utilisation for exercises and collaboration studies. The project exploits Internet browser technology and low-cost PC hardware, incorporates an Internet node, with access control, for depositing a minimal set of XML-based graphics files for presentation in an identical map format. Side-by-side viewing and televideo conferencing will permit rapid evaluation, data elaboration and recalculation (if necessary) and should produce strong consensus among decision makers. Successful completion affords easy utilisation by national/international organisations and non-nuclear states at risk of trans-boundary incursion.

  1. A comprehensive dose reconstruction methodology for former rocketdyne/atomics international radiation workers.

    PubMed

    Boice, John D; Leggett, Richard W; Ellis, Elizabeth Dupree; Wallace, Phillip W; Mumma, Michael; Cohen, Sarah S; Brill, A Bertrand; Chadda, Bandana; Boecker, Bruce B; Yoder, R Craig; Eckerman, Keith F

    2006-05-01

    Incomplete radiation exposure histories, inadequate treatment of internally deposited radionuclides, and failure to account for neutron exposures can be important uncertainties in epidemiologic studies of radiation workers. Organ-specific doses from lifetime occupational exposures and radionuclide intakes were estimated for an epidemiologic study of 5,801 Rocketdyne/Atomics International (AI) radiation workers engaged in nuclear technologies between 1948 and 1999. The entire workforce of 46,970 Rocketdyne/AI employees was identified from 35,042 Kardex work histories cards, 26,136 electronic personnel listings, and 14,189 radiation folders containing individual exposure histories. To obtain prior and subsequent occupational exposure information, the roster of all workers was matched against nationwide dosimetry files from the Department of Energy, the Nuclear Regulatory Commission, the Landauer dosimetry company, the U.S. Army, and the U.S. Air Force. Dosimetry files of other worker studies were also accessed. Computation of organ doses from radionuclide intakes was complicated by the diversity of bioassay data collected over a 40-y period (urine and fecal samples, lung counts, whole-body counts, nasal smears, and wound and incident reports) and the variety of radionuclides with documented intake including isotopes of uranium, plutonium, americium, calcium, cesium, cerium, zirconium, thorium, polonium, promethium, iodine, zinc, strontium, and hydrogen (tritium). Over 30,000 individual bioassay measurements, recorded on 11 different bioassay forms, were abstracted. The bioassay data were evaluated using ICRP biokinetic models recommended in current or upcoming ICRP documents (modified for one inhaled material to reflect site-specific information) to estimate annual doses for 16 organs or tissues taking into account time of exposure, type of radionuclide, and excretion patterns. Detailed internal exposure scenarios were developed and annual internal doses were derived

  2. International Developments in Environmental and Social Impact Assessment

    EPA Science Inventory

    The author has been involved in international developments in comprehensive impact assessment since 1995. During that time she has participated in ISO 14040 series development, initiated and co-chaired three international workshops, participated in Society of Environmental Toxic...

  3. The immune tolerance induction (ITI) dose debate: does the International ITI Study provide a clearer picture?

    PubMed

    Ettingshausen, C Escuriola; Kreuz, W

    2013-01-01

    Among the proposed predictors for immune tolerance induction (ITI) outcome, the therapeutic regimen - specifically the dose and frequency of administered factor VIII (FVIII) as well as FVIII product type - is intensely debated. Are there any advantages for low-dose regimens (50 IU FVIII kg(-1) three times a week) over high-dose regimens (200 IU FVIII kg day(-1)) or vice versa? Are von Willebrand factor (VWF)-containing plasma-derived concentrates superior to recombinant FVIII concentrates for tolerance induction? A review of the available literature indicates that patients with good prognostic factors can achieve success with either low-dose or high-dose ITI regimens. Retrospective data suggest that patient characteristics such as maximum historical inhibitor titres and pre-ITI inhibitor titres are better predictors of treatment success than dose. Results of the prospective International ITI Study have recently become available. In inhibitor patients with good prognosis, success rates were similar between low-dose (50 IU FVIII kg(-1) three times a week) and high-dose (200 IU FVIII kg(-1) daily) regimens. However, patients receiving low-dose ITI took longer to achieve various ITI milestones and had a significantly higher bleed rate per month compared with the high-dose group (0.62 vs. 0.28; P = 0.00024), findings with important clinical implications. Inhibitor patients with poor prognostic features should be treated with a high-dose protocol. This conclusion is supported by a meta-analysis of the International Immune Tolerance Registry and North American Immune Tolerance Registry and by data from Germany showing good success rates with the high-dose, high-frequency Bonn protocol in poor prognosis patients. Type of concentrate also appears to have an influence on ITI success rates in this patient subgroup, with evidence suggesting an advantage for VWF-containing plasma-derived FVIII concentrates over recombinant or VWF-free concentrates. The ongoing prospective

  4. Environmental impact assessment: An international evaluation

    NASA Astrophysics Data System (ADS)

    Hollick, Malcolm

    1986-03-01

    Experiences with environmental impact assessment (EIA) in a number of countries are discussed in the light of both explicit and implicit goals and objectives. Adequate environmental information is not always available to decision makers because of failure to apply EIA to all relevant decisions, the continuing inadequacies of prediction and evaluation techniques, the failure to consider alternatives adequately, and the bias of some EISs. EIA frequently results in changes to proposals and may result in stricter environmental management conditions in some cases, but some people regard it as a failure because it has not stopped development. Generally, EIA leads to better integration of environmental factors into project planning. Open procedures and freedom of information encourage responsiveness to EIA procedures, which can be weakened by discretionary powers and lack of access to the courts by public interest groups. However, legal standing may have side effects that offset its advantages. EIA can encourage cooperation and coordination between agencies but does not ensure them. Similarly, it can have a limited role in coordinating interstate and international policies. In the long term, the success of EIA depends on adequate monitoring, reassessment, and enforcement over the life of the project. EIA has generally opened up new opportunities for public participation, and may help to reduce conflict. EIA procedures need to be integrated with other environmental protection and development control programs, and various means exist for reducing its cost to developers and the public.

  5. Interactive Rapid Dose Assessment Model (IRDAM): reactor-accident assessment methods. Vol. 2

    SciTech Connect

    Poeton, R.W.; Moeller, M.P.; Laughlin, G.J.; Desrosiers, A.E.

    1983-05-01

    As part of the continuing emphasis on emergency preparedness, the US Nuclear Regulatory Commission (NRC) sponsored the development of a rapid dose assessment system by Pacific Northwest Laboratory (PNL). This system, the Interactive Rapid Dose Assessment Model (IRDAM) is a micro-computer based program for rapidly assessing the radiological impact of accidents at nuclear power plants. This document describes the technical bases for IRDAM including methods, models and assumptions used in calculations. IRDAM calculates whole body (5-cm depth) and infant thyroid doses at six fixed downwind distances between 500 and 20,000 meters. Radionuclides considered primarily consist of noble gases and radioiodines. In order to provide a rapid assessment capability consistent with the capacity of the Osborne-1 computer, certain simplifying approximations and assumptions are made. These are described, along with default values (assumptions used in the absence of specific input) in the text of this document. Two companion volumes to this one provide additional information on IRDAM. The user's Guide (NUREG/CR-3012, Volume 1) describes the setup and operation of equipment necessary to run IRDAM. Scenarios for Comparing Dose Assessment Models (NUREG/CR-3012, Volume 3) provides the results of calculations made by IRDAM and other models for specific accident scenarios.

  6. EXPOSURES AND INTERNAL DOSES OF TRIHALOMETHANES IN HUMANS: MULTI-ROUTE CONTRIBUTIONS FROM DRINKING WATER (FINAL)

    EPA Science Inventory

    The National Center for Environmental Assessment (NCEA) has released a final report that presents and applies a method to estimate distributions of internal concentrations of trihalomethanes (THMs) in humans resulting from a residential drinking water exposure. The report presen...

  7. ASSESSMENT OF EFFECTIVE DOSE FROM CONE BEAM CT IMAGING IN SPECT/CT EXAMINATION IN COMPARISON WITH OTHER MODALITIES.

    PubMed

    Tonkopi, Elena; Ross, Andrew A

    2016-12-01

    The aim of this study was to assess radiation dose from the cone beam computed tomography (CBCT) component of single photon emission tomography/computed tomography (SPECT/CT) examinations and to compare it with the radiopharmaceutical related dose as well as dose from multidetector computed tomography (MDCT). Effective dose (ED) from computed tomography (CT) was estimated using dose-length product values and anatomy-specific conversion factors. The contribution from the SPECT component was evaluated using ED per unit administered activity for the radiopharmaceuticals listed in the International Commission on Radiological Protection Publications 80 and 106. With the exception of cardiac studies (0.11 mSv), the CBCT dose (3.96-6.04 mSv) was similar to that from the radiopharmaceutical accounting for 29-56 % of the total ED from the examination. In comparison with MDCT examinations, the CBCT dose was 48 and 42 % lower for abdomen/pelvis and chest/abdomen/pelvis scans, respectively, while in the chest the CBCT scan resulted in higher dose (23 %). Radiation dose from the CT component should be taken into consideration when evaluating total SPECT/CT patient dose.

  8. INTDOS: a computer code for estimating internal radiation dose using recommendations of the International Commission on Radiological Protection

    SciTech Connect

    Ryan, M.T.

    1981-09-01

    INTDOS is a user-oriented computer code designed to calculate estimates of internal radiation dose commitment resulting from the acute inhalation intake of various radionuclides. It is designed so that users unfamiliar with the details of such can obtain results by answering a few questions regarding the exposure case. The user must identify the radionuclide name, solubility class, particle size, time since exposure, and the measured lung burden. INTDOS calculates the fractions of the lung burden remaining at time, t, postexposure considering the solubility class and particle size information. From the fraction remaining in the lung at time, t, the quantity inhaled is estimated. Radioactive decay is accounted for in the estimate. Finally, effective committed dose equivalents to various organs and tissues of the body are calculated using inhalation committed dose factors presented by the International Commission on Radiological Protection (ICRP). This computer code was written for execution on a Digital Equipment Corporation PDP-10 computer and is written in Fortran IV. A flow chart and example calculations are discussed in detail to aid the user who is unfamiliar with computer operations.

  9. Dose assessment to workers in a dicalcium phosphate production plant.

    PubMed

    Mulas, D; Garcia-Orellana, J; Casacuberta, N; Hierro, A; Moreno, V; Masqué, P

    2016-12-01

    The production of dicalcium phosphate (DCP) uses phosphate rock (PR) as a raw material. Sedimentary phosphate rocks are enriched with relevant concentrations of natural radionuclides from the (238)U decay chain (around 10(3) Bq·kg(-1)), leading to the need of controlling potential exposures to radiation of workers and members of the public in accordance with IAEA safety standards. Indeed, phosphate industries are classified as Naturally Occurring Radioactive Material (NORM) industries. Thus, the aim of this work is to assess the radiological risk of the workers in a DCP production plant located in the Iberian Peninsula (South-West Europe), which digests PR with hydrochloric acid. In the present study (238)U, (230)Th, (222)Rn, (210)Pb and (210)Po concentrations in aerosols (indoor and outdoor areas) are reported. Aerosols showed concentrations between 0.42-92 mBq·m(-3) for (238)U, 0.24-33 mBq·m(-3) for (230)Th, 0.67-147 mBq·m(-3) for (210)Pb and 0.09-34 mBq·m(-3) for (210)Po. Long-term exposure (four months) of passive (222)Rn detectors provided concentrations that ranged from detection limit (< DL) to 121 Bq·m(-3) in outdoor areas and from < DL to 211 Bq·m(-3) in indoor areas, similar to concentrations obtained from short-term measurements with active detectors from < DL to 117 Bq·m(-3) in outdoor areas and from < DL to 318 Bq·m(-3) in indoor places. (226)Ra accumulation in ebonite and pipe scales were the most important contributions to the ambient dose equivalent H*(10), resulting in 0.07 (background)-27 μSv·h(-1) with a median value of 1.1 μSv·h(-1). Average (222)Rn air concentrations were lower than the 300 Bq·m(-3) limit and therefore, according to European Directive 2013/59/EURATOM, (222)Rn concentration is excluded from the worker operational annual effective dose. Thus, considering the inhalation of aerosols and the external dose sources, the total effective dose determined for plant operators was 0.37 mSv·y(-1).

  10. Calculation of internal dose from ingested soil-derived uranium in humans: Application of a new method.

    PubMed

    Träber, S C; Li, W B; Höllriegl, V; Nebelung, K; Michalke, B; Rühm, W; Oeh, U

    2015-08-01

    The aim of the present study was to determine the internal dose in humans after the ingestion of soil highly contaminated with uranium. Therefore, an in vitro solubility assay was performed to estimate the bioaccessibility of uranium for two types of soil. Based on the results, the corresponding bioavailabilities were assessed by using a recently published method. Finally, these bioavailability data were used together with the biokinetic model of uranium to assess the internal doses for a hypothetical but realistic scenario characterized by a daily ingestion of 10 mg of soil over 1 year. The investigated soil samples were from two former uranium mining sites of Germany with (238)U concentrations of about 460 and 550 mg/kg. For these soils, the bioavailabilities of (238)U were quantified as 0.18 and 0.28 % (geometric mean) with 2.5th percentiles of 0.02 and 0.03 % and 97.5th percentiles of 1.48 and 2.34 %, respectively. The corresponding calculated annual committed effective doses for the assumed scenario were 0.4 and 0.6 µSv (GM) with 2.5th percentiles of 0.2 and 0.3 µSv and 97.5th percentiles of 1.6 and 3.0 µSv, respectively. These annual committed effective doses are similar to those from natural uranium intake by food and drinking water, which is estimated to be 0.5 µSv. Based on the present experimental data and the selected ingestion scenario, the investigated soils-although highly contaminated with uranium-are not expected to pose any major health risk to humans related to radiation.

  11. International Exchange of Emergency Phase Information and Assessment: An Aid to Inter/National Decision Makers

    SciTech Connect

    Sullivan, T J; Chino, M; Ehrhardt, J; Shershakov, V

    2003-09-01

    This paper discusses a collaborative project whose purpose is (1) to demonstrate the technical feasibility and mutual benefit of a system seeking early review or preview, in a ''quasi peer review'' mode, of nuclear accident plume and dose assessment predictions by four major international nuclear accident emergency response systems before release of their calculations to their respective national authorities followed by (2) sharing these results with responsible international authorities. The extreme sensitivity of the general public to any nuclear accident information has been a strong motivation to seek peer review prior to public release. Another intended objective of this work is (3) the development of an affordable/accessible system for distribution of prediction results to countries having no prediction capabilities and (4) utilization of the link for exercises and collaboration studies. The project exploits the Internet as a ubiquitous communications medium, browser technology as a simple, user friendly interface, and low-cost PC level hardware. The participants are developing a web based dedicated node with ID and password access control, where the four systems can deposit a minimal set of XML-based data and graphics files, which are then displayed in a common identical map format. Side-by-side viewing and televideo conferencing will permit rapid evaluation, correction or elaboration of data, recalculation (if necessary) and should produce a strong level of consensus to assist international decision makers. Successful completion of this work could lead to easy utilization by national and international organizations, such as the IAEA and WHO, as well as by non-nuclear states at risk of a trans-boundary incursion on their territory.

  12. Screening level dose assessment of aquatic biota downstream of the Marcoule nuclear complex in southern France

    SciTech Connect

    St-Pierre, S.; Chambers, D.B.; Lowe, L.M.; Bontoux, J.G.

    1999-09-01

    Aquatic biota in the Rhone River downstream of the Marcoule nuclear complex in France are exposed to natural sources of radiation and to radioactivity released from the Marcoule complex. A simple conservative screening level model was used to estimate the range of concentrations in aquatic media of both artificial and natural radionuclides and the consequent absorbed dose rates for aquatic organisms. Five categories of aquatic organisms were studied, namely, submerged aquatic plants (phanerogam), non-bottom-feeding fish, bottom-feeding fish, mollusca, and fish-eating birds. The analysis was based on the radionuclide concentrations reported in four consecutive annual radioecological monitoring reports published by French agencies with nuclear regulatory responsibilities. The results of this assessment were used to determine, qualitatively, the magnitude of any potential health impacts on each of the five categories of aquatic organisms studied. The range of dose rate estimates ranged over three orders of magnitude, with maximum dose rates estimated to be in the order of 1 to 10 {micro}Gy h{sup {minus}1}. These maximum dose rates are a factor 40 or more below the international guideline intended to ensure the protection of aquatic populations, and a factor ten or more below the level which may trigger the need for a more detailed evaluation of potential ecological consequences to the exposed populations.

  13. Diffuse and fugitive emission dose assessment on the Hanford Site

    SciTech Connect

    Davis, W.E.; Schmidt, J.W.; Gleckler, B.P.; Rhoads, K.

    1995-01-01

    On February 3, 1993, the US Department of Energy, Richland Operations Office (RL), received a Compliance Order and Information Request from the Director of the Air and Toxics Division of the US Environmental Protection Agency (EPA), Region 10. The Compliance Order requires RL to (1) evaluate all radionuclide emission points at the Hanford Site to determine which are subject to continuous emission measurement requirements in 40 Code of Federal Regulations (CFR) 61, Subpart H, and (2) continuously measure radionuclide emissions in accordance with 40 CFR 61.93. The Information Request requires RL to provide a written Compliance Plan to meet the requirements of the Compliance Order. The RL Compliance Plan included as one of its milestones the requirement to develop a Federal Facility Compliance Agreement (FFCA). An FFCA was negotiated between RL and the EPA, Region 10, and was entered into on February 7, 1994. One of the milestones was to provide EPA, Region 10, with a copy of the Federal Clean Air Act Title V operating air permit application and Air Emission Inventory (AEI) concurrent with its submission to the Washington State Department of Ecology. The AEI will include an assessment of the diffuse and fugitive emissions from the Hanford Site. This assessment does not identify any diffuse or fugitive emission source that would cause an effective dose equivalent greater than 0.1 mrem/yr.

  14. Absorbed dose calculations to blood and blood vessels for internally deposited radionuclides

    SciTech Connect

    Akabani, G.; Poston, J.W. Sr. )

    1991-05-01

    At present, absorbed dose calculations for radionuclides in the human circulatory system used relatively simple models and are restricted in their applications. To determine absorbed doses to the blood and to the surface of the blood vessel wall, EGS4 Monte Carlo calculations were performed. Absorbed doses were calculated for the blood and the blood vessel wall (lumen) for different blood vessels sizes. The radionuclides chosen for this study were those commonly used in nuclear medicine. No penetration of the radionuclide into the blood vessel was assumed nor was cross fire between the vessel assumed. The results are useful in assessing the dose to blood and blood vessel walls for different nuclear medicine procedures.

  15. Absorbed dose calculations to blood and blood vessels for internally deposited radionuclides

    SciTech Connect

    Akabani, G. ); Poston, J.W. . Dept. of Nuclear Engineering)

    1991-05-01

    At present, absorbed dose calculations for radionuclides in the human circulatory system used relatively simple models and are restricted in their applications. To determine absorbed doses to the blood and to the surface of the blood vessel wall, EGS4 Monte Carlo calculations were performed. Absorbed doses were calculated for the blood and the blood vessel wall (lumen) for different blood vessels sizes. The radionuclides chosen for this study were those commonly used in nuclear medicine. No diffusion of the radionuclide into the blood vessel was assumed nor cross fire between vessel was assumed. Results are useful in assessing the dose in blood and blood vessel walls for different nuclear medicine procedures. 6 refs., 6 figs., 5 tabs.

  16. Technology Assessment and Roadmap for the Emergency Radiation Dose Assessment Program

    SciTech Connect

    Turteltaub, K W; Hartman-Siantar, C; Easterly, C; Blakely, W

    2005-10-03

    A Joint Interagency Working Group (JIWG) under the auspices of the Department of Homeland Security Office of Research and Development conducted a technology assessment of emergency radiological dose assessment capabilities as part of the overall need for rapid emergency medical response in the event of a radiological terrorist event in the United States. The goal of the evaluation is to identify gaps and recommend general research and development needs to better prepare the Country for mitigating the effects of such an event. Given the capabilities and roles for responding to a radiological event extend across many agencies, a consensus of gaps and suggested development plans was a major goal of this evaluation and road-mapping effort. The working group consisted of experts representing the Departments of Homeland Security, Health and Human Services (Centers for Disease Control and the National Institutes of Health), Food and Drug Administration, Department of Defense and the Department of Energy's National Laboratories (see appendix A for participants). The specific goals of this Technology Assessment and Roadmap were to: (1) Describe the general context for deployment of emergency radiation dose assessment tools following terrorist use of a radiological or nuclear device; (2) Assess current and emerging dose assessment technologies; and (3) Put forward a consensus high-level technology roadmap for interagency research and development in this area. This report provides a summary of the consensus of needs, gaps and recommendations for a research program in the area of radiation dosimetry for early response, followed by a summary of the technologies available and on the near-term horizon. We then present a roadmap for a research program to bring present and emerging near-term technologies to bear on the gaps in radiation dose assessment and triage. Finally we present detailed supporting discussion on the nature of the threats we considered, the status of technology

  17. High-Dose Daptomycin Therapy for Left-Sided Infective Endocarditis: a Prospective Study from the International Collaboration on Endocarditis

    PubMed Central

    Bayer, Arnold S.; Miró, Josè M.; Park, Lawrence P.; Guimarães, Armenio C.; Skoutelis, Athanasios; Fortes, Claudio Q.; Durante-Mangoni, Emanuele; Hannan, Margaret M.; Nacinovich, Francisco; Fernández-Hidalgo, Nuria; Grossi, Paolo; Tan, Ru-San; Holland, Thomas; Fowler, Vance G.; Corey, Ralph G.; Chu, Vivian H.

    2013-01-01

    The use of daptomycin in Gram-positive left-sided infective endocarditis (IE) has significantly increased. The purpose of this study was to assess the influence of high-dose daptomycin on the outcome of left-sided IE due to Gram-positive pathogens. This was a prospective cohort study based on 1,112 cases from the International Collaboration on Endocarditis (ICE)-Plus database and the ICE-Daptomycin Substudy database from 2008 to 2010. Among patients with left-sided IE due to Staphylococcus aureus, coagulase-negative staphylococci, and Enterococcus faecalis, we compared those treated with daptomycin (cohort A) to those treated with standard-of-care (SOC) antibiotics (cohort B). The primary outcome was in-hospital mortality. Time to clearance of bacteremia, 6-month mortality, and adverse events (AEs) ascribable to daptomycin were also assessed. There were 29 and 149 patients included in cohort A and cohort B, respectively. Baseline comorbidities did not differ between the two cohorts, except for a significantly higher prevalence of diabetes and previous episodes of IE among patients treated with daptomycin. The median daptomycin dose was 9.2 mg/kg of body weight/day. Two-thirds of the patients treated with daptomycin had failed a previous antibiotic regimen. In-hospital and 6-month mortalities were similar in the two cohorts. In cohort A, median time to clearance of methicillin-resistant S. aureus (MRSA) bacteremia was 1.0 day, irrespective of daptomycin dose, representing a significantly faster bacteremia clearance compared to SOC (1.0 versus 5.0 days; P < 0.01). Regimens with higher daptomycin doses were not associated with increased incidence of AEs. In conclusion, higher-dose daptomycin may be an effective and safe alternative to SOC in the treatment of left-sided IE due to common Gram-positive pathogens. PMID:24080644

  18. Possibilities for an International Assessment in Geography

    ERIC Educational Resources Information Center

    Lane, Rod; Bourke, Terri

    2017-01-01

    A recent editorial in International Research in Geographical and Environmental Education (IRGEE) highlighted an opportunity for the inclusion of geography as a subject in the Trends in International Mathematics and Science Study (TIMSS) tests. At present, TIMSS tests only encompass mathematics and physical sciences. The IRGEE editors encouraged…

  19. ASSESSING POPULATION EXPOSURES TO MULTIPLE AIR POLLUTANTS USING A MECHANISTIC SOURCE-TO-DOSE MODELING FRAMEWORK

    EPA Science Inventory

    The Modeling Environment for Total Risks studies (MENTOR) system, combined with an extension of the SHEDS (Stochastic Human Exposure and Dose Simulation) methodology, provide a mechanistically consistent framework for conducting source-to-dose exposure assessments of multiple pol...

  20. PHYSIOLOCIGALLY BASED PHARMACOKINETIC (PBPK) MODELING AND MODE OF ACTION IN DOSE-RESPONSE ASSESSMENT

    EPA Science Inventory

    PHYSIOLOGICALLY BASED PHARMACOKINETIC (PBPK) MODELING AND MODE OF ACTION IN DOSE-RESPONSE ASSESSMENT. Barton HA. Experimental Toxicology Division, National Health and Environmental Effects Laboratory, ORD, U.S. EPA
    Dose-response analysis requires quantitatively linking infor...

  1. Commentary on the OECD's Programme for International Student Assessment 2012

    ERIC Educational Resources Information Center

    Froese-Germain, Bernie

    2013-01-01

    Every three years the focus of the international education community shifts to the release of the Programme for International Student Assessment (PISA) study conducted by the Organisation for Economic Co-operation and Development (OECD). No other international study of education commands as much attention as PISA. In an age of intense global…

  2. Dosimetric evaluation of internal shielding in a high dose rate skin applicator

    PubMed Central

    Granero, Domingo; Perez-Calatayud, Jose; Carmona, Vicente; Pujades, M Carmen; Ballester, Facundo

    2011-01-01

    Purpose The Valencia HDR applicators are accessories of the microSelectron HDR afterloading system (Nucletron) shaped as truncated cones. The base of the cone is either 2 or 3 cm diameter. They are intended to treat skin lesions, being the typical prescription depth 3 mm. In patients with eyelid lesions, an internal shielding is very useful to reduce the dose to the ocular globe. The purpose of this work was to evaluate the dose enhancement from potential backscatter and electron contamination due to the shielding. Material and methods Two methods were used: a) Monte Carlo simulation, performed with the GEANT4 code, 2 cm Valencia applicator was placed on the surface of a water phantom in which 2 mm lead slab was located at 3 mm depth; b) radiochromic EBT films, used to verify the Monte Carlo results, positioning the films at 1.5, 3, 5 and 7 mm depth, inside the phantom. Two irradiations, with and without the lead shielding slab, were carried out. Results The Monte Carlo results showed that due to the backscatter component from the lead, the dose level raised to about 200% with a depth range of 0.5 mm. Under the lead the dose level was enhanced to about 130% with a depth range of 1 mm. Two millimeters of lead reduce the dose under the slab with about 60%. These results agree with film measurements within uncertainties. Conclusions In conclusion, the use of 2 mm internal lead shielding in eyelid skin treatments with the Valencia applicators were evaluated using MC methods and EBT film dosimetry. The minimum bolus thickness that was needed above and below the shielding was 0.5 mm and 1 mm respectively, and the shielding reduced the absorbed dose delivered to the ocular globe by about 60%. PMID:27877198

  3. Non-Linear Dose-Response Relationships in Biology, Toxicology and Medicine - An International Conference

    SciTech Connect

    Calabrese, Edward J.; Kostecki, Paul T.

    2002-05-28

    Conference abstract book contains seven sections: Plenary-4 abstracts; Chemical-9 abstracts; Radiation-7 abstracts; Ultra Low Doses and Medicine-6 abstracts; Biomedical-11 abstracts; Risk Assessment-5 abstracts and Poster Sessions-25 abstracts. Each abstract was provided by the author/presenter participating in the conference.

  4. Highlights from the 2000 Program for International Student Assessment (PISA).

    ERIC Educational Resources Information Center

    National Center for Education Statistics (ED), Washington, DC.

    The Program for International Student Assessment (PISA) is a new system of international assessments that focus on 15-year-olds' capabilities in reading literacy, mathematics literacy, and science literacy. PISA, which is sponsored by the Organization for Economic Cooperation and Development (OECD), also measures general or cross-curricular…

  5. Assessment of the Annual Additional Effective Doses amongst Minamisoma Children during the Second Year after the Fukushima Daiichi Nuclear Power Plant Disaster.

    PubMed

    Tsubokura, Masaharu; Kato, Shigeaki; Morita, Tomohiro; Nomura, Shuhei; Kami, Masahiro; Sakaihara, Kikugoro; Hanai, Tatsuo; Oikawa, Tomoyoshi; Kanazawa, Yukio

    2015-01-01

    An assessment of the external and internal radiation exposure levels, which includes calculation of effective doses from chronic radiation exposure and assessment of long-term radiation-related health risks, has become mandatory for residents living near the nuclear power plant in Fukushima, Japan. Data for all primary and secondary children in Minamisoma who participated in both external and internal screening programs were employed to assess the annual additional effective dose acquired due to the Fukushima Daiichi nuclear power plant disaster. In total, 881 children took part in both internal and external radiation exposure screening programs between 1st April 2012 to 31st March 2013. The level of additional effective doses ranged from 0.025 to 3.49 mSv/year with the median of 0.70 mSv/year. While 99.7% of the children (n = 878) were not detected with internal contamination, 90.3% of the additional effective doses was the result of external radiation exposure. This finding is relatively consistent with the doses estimated by the United Nations Scientific Committee on the Effects of Atomic Radiation (UNSCEAR). The present study showed that the level of annual additional effective doses among children in Minamisoma has been low, even after the inter-individual differences were taken into account. The dose from internal radiation exposure was negligible presumably due to the success of contaminated food control.

  6. Assessment of the Annual Additional Effective Doses amongst Minamisoma Children during the Second Year after the Fukushima Daiichi Nuclear Power Plant Disaster

    PubMed Central

    Tsubokura, Masaharu; Kato, Shigeaki; Morita, Tomohiro; Nomura, Shuhei; Kami, Masahiro; Sakaihara, Kikugoro; Hanai, Tatsuo; Oikawa, Tomoyoshi; Kanazawa, Yukio

    2015-01-01

    An assessment of the external and internal radiation exposure levels, which includes calculation of effective doses from chronic radiation exposure and assessment of long-term radiation-related health risks, has become mandatory for residents living near the nuclear power plant in Fukushima, Japan. Data for all primary and secondary children in Minamisoma who participated in both external and internal screening programs were employed to assess the annual additional effective dose acquired due to the Fukushima Daiichi nuclear power plant disaster. In total, 881 children took part in both internal and external radiation exposure screening programs between 1st April 2012 to 31st March 2013. The level of additional effective doses ranged from 0.025 to 3.49 mSv/year with the median of 0.70 mSv/year. While 99.7% of the children (n = 878) were not detected with internal contamination, 90.3% of the additional effective doses was the result of external radiation exposure. This finding is relatively consistent with the doses estimated by the United Nations Scientific Committee on the Effects of Atomic Radiation (UNSCEAR). The present study showed that the level of annual additional effective doses among children in Minamisoma has been low, even after the inter-individual differences were taken into account. The dose from internal radiation exposure was negligible presumably due to the success of contaminated food control. PMID:26053271

  7. Environmental dose assessment methods for normal operations at DOE nuclear sites

    SciTech Connect

    Strenge, D.L.; Kennedy, W.E. Jr.; Corley, J.P.

    1982-09-01

    Methods for assessing public exposure to radiation from normal operations at DOE facilities are reviewed in this report. The report includes a discussion of environmental doses to be calculated, a review of currently available environmental pathway models and a set of recommended models for use when environmental pathway modeling is necessary. Currently available models reviewed include those used by DOE contractors, the Environmental Protection Agency (EPA), the Nuclear Regulatory Commission (NRC), and other organizations involved in environmental assessments. General modeling areas considered for routine releases are atmospheric transport, airborne pathways, waterborne pathways, direct exposure to penetrating radiation, and internal dosimetry. The pathway models discussed in this report are applicable to long-term (annual) uniform releases to the environment: they do not apply to acute releases resulting from accidents or emergency situations.

  8. Internal thyroid doses to Fukushima residents—estimation and issues remaining

    PubMed Central

    Kim, Eunjoo; Kurihara, Osamu; Kunishima, Naoaki; Momose, Takumaro; Ishikawa, Tetsuo; Akashi, Makoto

    2016-01-01

    Enormous quantities of radionuclides were released into the environment following the disastrous accident at the Fukushima Daiichi Nuclear Power Plant (FDNPP) in March 2011. It is of great importance to determine the exposure doses received by the populations living in the radiologically affected areas; however, there has been significant difficulty in estimating the internal thyroid dose received through the intake of short-lived radionuclides (mainly, 131I), because of the lack of early measurements on people. An estimation by the National Institute of Radiological Sciences for 1 April 2012 to 31 March 2013 was thus performed using a combination of the following three sources: thyroid measurement data (131I) for 1080 children examined in the screening campaign, whole-body counter measurement data (134Cs, 137Cs) for 3000 adults, and atmospheric transport dispersion model simulations. In this study, the residents of Futaba town, Iitate village and Iwaki city were shown to have the highest thyroid equivalent dose, and their doses were estimated to be mostly below 30 mSv. However, this result involved a lot of uncertainties and provided only representative values for the residents. The present paper outlines a more recent dose estimation and preliminary analyses of personal behavior data used in the new method. PMID:27538842

  9. Measurement of absorbed dose during the phantom torso experiment on the International Space Station

    NASA Astrophysics Data System (ADS)

    Semones, E.; Gibbons, F.; Golightly, M.; Weyland, M.; Johnson, A.; Smith, G.; Shelfer, T.; Zapp, N.

    The Phantom Torso Experiment (PTE) was flown on the International Space Station (ISS) during Increment 2 (April-August 2001). The experiment was located in the US Lab module Human Research Facility (HRF) rack. The objective of the passive dosimetry portion of the experiment was to measure spatial distributions of absorbed dose in the 34, 1 inch sections of a modified RandoTM phantom. In each section of the phantom, thermoluminescent detectors (TLDs) were placed at various locations (depths) to provide the spatial measurement. TLDs were also located at several radiosensitive organ locations (brain, thyroid, heart/lung, stomach and colon) and two locations on the surface (skin). Active silicon detectors were also placed at these organ locations to provide time resolved results of the absorbed dose rates. Using these detectors, it is possible to separate the trapped and galactic cosmic ray components of the absorbed dose. The TLD results of the spatial and organ dose measurements will be presented and comparisons of the TLD and silicon detector organ absorbed doses will be made.

  10. Establishing bounding internal dose estimates for thorium activities at Rocky Flats.

    PubMed

    Ulsh, Brant A; Rich, Bryce L; Chew, Melton H; Morris, Robert L; Sharfi, Mutty; Rolfes, Mark R

    2008-07-01

    As part of an evaluation of a Special Exposure Cohort petition filed on behalf of workers at the Rocky Flats Plant, the National Institute for Occupational Safety and Health (NIOSH) was required to demonstrate that bounding values could be established for radiation doses due to the potential intake of all radionuclides present at the facility. The main radioactive elements of interest at Rocky Flats were plutonium and uranium, but much smaller quantities of several other elements, including thorium, were occasionally handled at the site. Bounding potential doses from thorium has proven challenging at other sites due to the early historical difficulty in detecting this element through urinalysis methods and the relatively high internal dose delivered per unit intake. This paper reports the results of NIOSH's investigation of the uses of thorium at Rocky Flats and provides bounding dose reconstructions for these operations. During this investigation, NIOSH reviewed unclassified reports, unclassified extracts of classified materials, material balance and inventory ledgers, monthly progress reports from various groups, and health physics field logbooks, and conducted interviews with former Rocky Flats workers. Thorium operations included: (1) an experimental metal forming project with 240 kg of thorium in 1960; (2) the use of pre-formed parts in weapons mockups; (3) the removal of Th from U; (4) numerous analytical procedures involving trace quantities of thorium; and (5) the possible experimental use of thorium as a mold coating compound. The thorium handling operations at Rocky Flats were limited in scope, well-monitored and documented, and potential doses can be bounded.

  11. The Internal Consultant Model for Assessment

    ERIC Educational Resources Information Center

    Lewis, Kristi L.; Swerdzewski, Peter J.

    2009-01-01

    Many universities rely on a committee approach to assessment in which a group of faculty, staff, and administrators is tapped to provide guidance for assessment projects on behalf of various university programs or departments or the entire university. However, other organizational approaches to achieving strong programs of assessment are…

  12. History of the international societies in health technology assessment: International Society for Technology Assessment in Health Care and Health Technology Assessment International.

    PubMed

    Banta, David; Jonsson, Egon; Childs, Paul

    2009-07-01

    The International Society for Technology Assessment in Health Care (ISTAHC) was formed in 1985. It grew out of the increasing awareness of the international dimensions of health technology assessment (HTA) and the need for new communication methods at the international level. The main function of ISTAHC was to present an annual conference, which gradually grew in size, and also to generally improve in quality from to year. ISTAHC overextended itself financially early in the first decade of the 2000s and had to cease its existence. A new society, Health Technology Assessment international (HTAi), based on many of the same ideas and people, grew up beginning in the year 2003. The two societies have played a large role in making the field of HTA visible to people around the world and providing a forum for discussion on the methods and role of HTA.

  13. An international dosimetry exchange for boron neutron capture therapy. Part I: Absorbed dose measurements.

    PubMed

    Binns, P J; Riley, K J; Harling, O K; Kiger, W S; Munck af Rosenschöld, P M; Giusti, V; Capala, J; Sköld, K; Auterinen, I; Serén, T; Kotiluoto, P; Uusi-Simola, J; Marek, M; Viererbl, L; Spurny, F

    2005-12-01

    An international collaboration was organized to undertake a dosimetry exchange to enable the future combination of clinical data from different centers conducting neutron capture therapy trials. As a first step (Part I) the dosimetry group from the Americas, represented by MIT, visited the clinical centers at Studsvik (Sweden), VTT Espoo (Finland), and the Nuclear Research Institute (NRI) at Rez (Czech Republic). A combined VTT/NRI group reciprocated with a visit to MIT. Each participant performed a series of dosimetry measurements under equivalent irradiation conditions using methods appropriate to their clinical protocols. This entailed in-air measurements and dose versus depth measurements in a large water phantom. Thermal neutron flux as well as fast neutron and photon absorbed dose rates were measured. Satisfactory agreement in determining absorbed dose within the experimental uncertainties was obtained between the different groups although the measurement uncertainties are large, ranging between 3% and 30% depending upon the dose component and the depth of measurement. To improve the precision in the specification of absorbed dose amongst the participants, the individually measured dose components were normalized to the results from a single method. Assuming a boron concentration of 15 microg g(-1) that is typical of concentrations realized clinically with the boron delivery compound boronophenylalanine-fructose, systematic discrepancies in the specification of the total biologically weighted dose of up to 10% were apparent between the different groups. The results from these measurements will be used in future to normalize treatment plan calculations between the different clinical dosimetry protocols as Part II of this study.

  14. Radiological Dose Assessment - Nonuniform Skin Dose, Radioactive Skin Contamination, and Multiple Dosimetry

    SciTech Connect

    W. C. Inkret; M. E. Schillaci

    1999-03-01

    Radioactive skin contamination with {beta}- and {gamma}-emitting radionuclides may result in biologically significant absorbed doses to the skin. A specific exposure scenario of interest is a nonuniform skin dose delivered by {beta}- and {gamma}-emissions from radioactive skin contamination. The United States Department of Energy requires a formal evaluation and reporting of nonuniform skin doses. The United States Department of Energy also requires specific, formal procedures for evaluating the results from the placement or use of multiple dosimeters. Action levels relative to potential absorbed doses for the contamination survey instrumentation in use at Los Alamos and formal procedures for evaluating nonuniform skin doses and multiple dosimeters are developed and presented here.

  15. EVALUATING QUANTITATIVE FORMULAS FOR DOSE-RESPONSE ASSESSMENT OF CHEMICAL MIXTURES

    EPA Science Inventory

    Risk assessment formulas are often distinguished from dose-response models by being rough but necessary. The evaluation of these rough formulas is described here, using the example of mixture risk assessment. Two conditions make the dose-response part of mixture risk assessment d...

  16. Assessment of Dose to the Nursing Infant from Radionuclides in Breast Milk

    SciTech Connect

    Leggett, Richard Wayne; Eckerman, Keith F

    2010-03-01

    A computer software package was developed to predict tissue doses to an infant due to intake of radionuclides in breast milk based on bioassay measurements and exposure data for the mother. The package is intended mainly to aid in decisions regarding the safety of breast feeding by a mother who has been acutely exposed to a radionuclide during lactation or pregnancy, but it may be applied to previous intakes during the mother s adult life. The package includes biokinetic and dosimetric information needed to address intake of Co-60, Sr-90, Cs-134, Cs-137, Ir-192, Pu-238, Pu-239, Am-241, or Cf-252 by the mother. It has been designed so that the library of biokinetic and dosimetric files can be expanded to address a more comprehensive set of radionuclides without modifying the basic computational module. The methods and models build on the approach used in Publication 95 of the International Commission on Radiological Protection (ICRP 2004), Doses to Infants from Ingestion of Radionuclides in Mothers Milk . The software package allows input of case-specific information or judgments such as chemical form or particle size of an inhaled aerosol. The package is expected to be more suitable than ICRP Publication 95 for dose assessment for real events or realistic planning scenarios in which measurements of the mother s excretion or body burden are available.

  17. International organizations, risk assessment and research-Why, what and how.

    PubMed

    Preston, R Julian

    2017-03-08

    The process of setting radiation protection standards requires the interaction of a number of international and national organizations that in turn require the input of scientific and regulatory experts. Bill Morgan served in an expert capacity for several of these organizations particularly for the application of radiation biology data to risk assessment. He brought great enthusiasm and dedication to these committee efforts. In fact, he really enjoyed this type of service. The United Nations Scientific Committee on the Effects of Atomic Radiation (UNSCEAR), for example, provides comprehensive reviews of the input data for radiation risk assessments. In this context, they do not conduct risk assessments. In Europe, a research component of the risk assessment process is provided by the Multidisciplinary European Low Dose Initiative (MELODI). Specific issue areas are identified for which additional research can aid in reducing uncertainty in risk assessments. The International Commission on Radiological Protection (ICRP) uses these types of input data to develop nominal cancer risk estimates as input data for establishing dose limits for the public and workers. A similar regulatory role is provided in the US by the National Council on Radiation Protection and Measurements (NCRP). The NCRP Reports address the underlying principles for setting regulatory dose limits for the US public and workers; these differ to a limited extent from those of ICRP. The implementation of dose limits is conducted by individual countries but with significant guidance by the International Atomic Energy Agency (IAEA) through its Basic Safety Standards. The role of other national and international organizations are discussed in this same framework.

  18. Austrian dose measurements onboard space station MIR and the International Space Station - overview and comparison

    NASA Astrophysics Data System (ADS)

    Berger, T.; Hajek, M.; Summerer, L.; Vana, N.; Akatov, Y.; Shurshakov, V.; Arkhangelsky, V.

    2004-01-01

    The Atominstitute of the Austrian Universities has conducted various space research missions in the last 12 years in cooperation with the Institute for Biomedical Problems in Moscow. They dealt with the exact determination of the radiation hazards for cosmonauts and the development of precise measurement devices. Special emphasis will be laid on the last experiment on space station MIR the goal of which was the determination of the depth distribution of absorbed dose and dose equivalent in a water filled Phantom. The first results from dose measurements onboard the International Space Station (ISS) will also be discussed. The spherical Phantom with a diameter of 35 cm was developed at the Institute for Biomedical Problems and had 4 channels where dosemeters can be exposed in different depths. The exposure period covered the timeframe from May 1997 to February 1999. Thermoluminescent dosemeters (TLDs) were exposed inside the Phantom, either parallel or perpendicular to the hull of the spacecraft. For the evaluation of the linear energy transfer (LET), the high temperature ratio (HTR) method was applied. Based on this method a mean quality factor and, subsequently, the dose equivalent is calculated according to the Q(LET ∞) relationship proposed in ICRP 26. An increased contribution of neutrons could be detected inside the Phantom. However the total dose equivalent did not increase over the depth of the Phantom. As the first Austrian measurements on the ISS dosemeter packages were exposed for 248 days, starting in February 2001 at six different locations onboard the ISS. The Austrian dosemeter sets for this first exposure on the ISS contained five different kinds of passive thermoluminescent dosemeters. First results showed a position dependent absorbed dose rate at the ISS.

  19. Impact of Internal Metallic Ports in Temporary Tissue Expanders on Postmastectomy Radiation Dose Distribution

    SciTech Connect

    Chen, Susie A.; Ogunleye, Tomiwa; Dhabbaan, Anees; Huang, Eugene H.; Losken, Albert; Gabram, Sheryl; Davis, Lawrence; Torres, Mylin A.

    2013-03-01

    Purpose: Temporary tissue expanders (TTE) with an internal magnetic metal port (IMP) have been increasingly used for breast reconstruction in post-mastectomy patients who receive radiation therapy (XRT). We evaluated XRT plans of patients with IMP to determine its effect on XRT dose distribution. Methods and Materials: Original treatment plans with CT simulation scans of 24 consecutive patients who received XRT (ORI), planned without heterogeneity corrections, to a reconstructed breast containing an IMP were used. Two additional treatment plans were then generated: one treatment plan with the IMP assigned the electron density of the rare earth magnet, nickel plated neodymium-iron-boron (HET), and a second treatment plan with the IMP assigned a CT value of 1 to simulate a homogeneous breast without an IMP (BRS). All plans were prescribed 50 Gy to the reconstructed breast (CTV). Results: CTV coverage by 50 Gy was significantly lower in the HET (mean 87.7% CTV) than in either the ORI (mean 99.7% CTV, P<.001) or BRS plans (mean 95.0% CTV, P<.001). The effect of the port was more pronounced on CT slices containing the IMP with prescription dose coverage of the CTV being less in the HET than in either ORI (mean difference 33.6%, P<.01) or BRS plans (mean difference 30.1%, P<.001). HET had a less homogeneous and conformal dose distribution than BRS or ORI. Conclusion: IMPs increase dose heterogeneity and reduce dose to the breast CTV through attenuation of the beam. For optimal XRT treatment, heterogeneity corrections should be used in XRT planning for patients with TTE with IMP, as the IMP impacts dose distribution.

  20. Use of in vivo counting measurements to estimate internal doses from (241)Am in workers from the Mayak production association.

    PubMed

    Sokolova, Alexandra B; Suslova, Klara G; Efimov, Alexander V; Miller, Scott C

    2014-08-01

    Comparisons between results of in vivo counting measurements of americium burden and results from radiochemical analyses of organ samples taken at autopsy of 11 cases of former Mayak workers were made. The in vivo counting measurements were performed 3-8 y before death. The best agreement between in vivo counting measurements for americium and autopsy data was observed for the skull. For lungs and liver, the ratios of burden measured by in vivo counting to those obtained from radiochemical analyses data ranged from 0.7-3.8, while those for the skull were from 1.0-1.1. There was a good correlation between the estimates of americium burden in the entire skeleton obtained from in vivo counting with those obtained from autopsy data. Specifically, the skeletal burden ratio, in vivo counting/autopsy, averaged 0.9 ± 0.1. The prior human americium model, D-Am2010, used in vivo counting measurements for americium in the skeleton to estimate the contents of americium and plutonium at death. The results using this model indicate that in vivo counting measurements of the skull can be used to estimate internal doses from americium in the Mayak workers. Additionally, these measurements may also be used to provide a qualitative assessment of internal doses from plutonium.

  1. The Northern Marshall Islands radiological survey: Data and dose assessments

    SciTech Connect

    Robison, W.L.; Noshkin, V.E.; Conrado, C.L.

    1997-07-01

    Fallout from atmospheric nuclear tests, especially from those conducted at the Pacific Proving Grounds between 1946 and 1958, contaminated areas of the Northern Marshall Islands. A radiological survey at some Northern Marshall Islands was conducted from September through November 1978 to evaluate the extent of residual radioactive contamination. The atolls included in the Northern Marshall Islands Radiological Survey (NMIRS) were Likiep, Ailuk, Utirik, Wotho, Ujelang, Taka, Rongelap, Rongerik, Bikar, Ailinginae, and Mejit and Jemo Islands. The original test sites, Bikini and Enewetak Atolls, were also visited on the survey. An aerial survey was conducted to determine the external gamma exposure rate. Terrestrial (soil, food crops, animals, and native vegetation), cistern and well water samples, and marine (sediment, seawater, fish and clams) samples were collected to evaluate radionuclide concentrations in the atoll environment. Samples were processed and analyzed for {sup 137}Cs, {sup 90}Sr, {sup 239+240}Pu and {sup 241}Am. The dose from the ingestion pathway was calculated using the radionuclide concentration data and a diet model for local food, marine, and water consumption. The ingestion pathway contributes 70% to 90% of the estimated dose. Approximately 95% of the dose is from {sup 137}Cs accounts for about 10% to 30% of the dose. {sup 239+240}Pu and {sup 241}Am are the major contributors to dose via the inhalation pathway; however, inhalation accounts for only about 1% of the total estimated dose, based on surface soil levels and resuspension studies. All doses are computed for concentrations decay corrected to 1996. The maximum annual effective dose from manmade radionuclides at these atolls ranges from .02 mSv y{sup -1}. The background dose in the Marshall Islands is estimated to be 2.4 mSv y{sup -1} to 4.5 mSv y{sup -1}. The 50-y integral dose ranges from 0.5 to 65 mSv. 35 refs., 2 figs., 9 tabs.

  2. KREAM: Korean Radiation Exposure Assessment Model for Aviation Route Dose

    NASA Astrophysics Data System (ADS)

    Hwang, J.; Dokgo, K.; Choi, E. J.; Kim, K. C.; Kim, H. P.; Cho, K. S. F.

    2014-12-01

    Since Korean Air has begun to use the polar route from Seoul/ICN airport to New York/JFK airport on August 2006, there are explosive needs for the estimation and prediction against cosmic radiation exposure for Korean aircrew and passengers in South Korea from public. To keep pace with those needs of public, Korean government made the law on safety standards and managements of cosmic radiation for the flight attendants and the pilots in 2013. And we have begun to develop our own Korean Radiation Exposure Assessment Model (KREAM) for aviation route dose since last year funded by Korea Meteorological Administration (KMA). GEANT4 model and NRLMSIS 00 model are used for calculation of the energetic particles' transport in the atmosphere and for obtaining the background atmospheric neutral densities depending on altitude. For prediction the radiation exposure in many routes depending on the various space weather effects, we constructed a database from pre-arranged simulations using all possible combinations of R, S, and G, which are the space weather effect scales provided by the National Oceanic and Atmospheric Administration (NOAA). To get the solar energetic particles' spectrum at the 100 km altitude which we set as a top of the atmospheric layers in the KREAM, we use ACE and GOES satellites' proton flux observations. We compare the results between KREAM and the other cosmic radiation estimation programs such as CARI-6M which is provided by the Federal Aviation Agency (FAA). We also validate KREAM's results by comparison with the measurement from Liulin-6K LET spectrometer onboard Korean commercial flights and Korean Air Force reconnaissance flights.

  3. Internal assessment of practical coursework in GCSE

    NASA Astrophysics Data System (ADS)

    Skevington, John H.

    1986-07-01

    The proposed introduction in September 1986 of a system of examinations to replace the present GCE O-level and CSE will impose on teachers the responsibility for a significant proportion of the assessment of their pupils. In addition, the adoption of the National Criteria for GCSE means that there will be some degree of commonality imposed on all physics syllabuses and schemes of assessment. One of the requirements of the criteria is that all examinations at this level will include an assessment of practical skills in the laboratory and that this will be carried out by the teacher. The introduction of a compulsory assessment of practical and experimental skills for all candidates, together with the requirement that this should be, at least in part, the assessment of practical work carried out as part of the course, is a source of concern for many teachers. The author outlines the schemes of practical assessment, which have been accepted by the SEC as meeting the National Criteria, showing how they develop from the relevant objectives in the criteria, and suggests how teachers might begin to produce their own assessment programme.

  4. Toxicity from repeated doses of acetaminophen in children: assessment of causality and dose in reported cases.

    PubMed

    Heard, Kennon; Bui, Alison; Mlynarchek, Sara L; Green, Jody L; Bond, G Randall; Clark, Richard F; Kozer, Eran; Koff, Raymond S; Dart, Richard C

    2014-01-01

    Liver injury has been reported in children treated with repeated doses of acetaminophen. The objective of this study was to identify and validate reports of liver injury or death in children younger than 6 years who were administered repeated therapeutic doses of acetaminophen. We reviewed US Poison Center data, peer-reviewed literature, US Food and Drug Administration Adverse Event Reports, and US Manufacturer Safety Reports describing adverse effects after acetaminophen administration. Reports that described hepatic abnormalities (description of liver injury or abnormal laboratory testing) or death after acetaminophen administration to children younger than 6 years were included. The identified reports were double abstracted and then reviewed by an expert panel to determine if the hepatic injury was related to acetaminophen and whether the dose of acetaminophen was therapeutic (≤75 mg/kg) or supratherapeutic. Our search yielded 2531 reports of adverse events associated with acetaminophen use. From these cases, we identified 76 cases of hepatic injury and 26 deaths associated with repeated acetaminophen administration. There were 6 cases of hepatic abnormalities and no deaths associated with what our panel determined to be therapeutic doses. A large proportion of cases could not be fully evaluated due to incomplete case reporting. Although we identified numerous examples of liver injury and death after repeated doses of acetaminophen, all the deaths and all but 6 cases of hepatic abnormalities involved doses more than 75 mg/kg per day. This study suggests that the doses of less than 75 mg/kg per day of acetaminophen are safe for children younger than 6 years.

  5. Dose assessment of 2% chlorhexidine acetate for canine superficial pyoderma.

    PubMed

    Murayama, Nobuo; Terada, Yuri; Okuaki, Mio; Nagata, Masahiko

    2011-10-01

    The dose of 2% chlorhexidine acetate (2CA; Nolvasan(®) Surgical Scrub; Fort Dodge Animal Health, Fort Dodge, IA, USA) for canine superficial pyoderma was evaluated. The first trial compared three doses (group 1, 57 mL/m(2) body surface area; group 2, 29 mL/m(2) body surface area; and group 3, 19 mL/m(2) body surface area) in a randomized, double-blind, controlled fashion. Twenty-seven dogs with superficial pyoderma were treated with 2CA at the allocated doses every 2 days for 1 week. The owners and investigators subjectively evaluated the dogs, and investigators scored skin lesions, including erythema, papules/pustules, alopecia and scales, on a 0-4 scale. There were no significant differences in response between the treatment groups. The second trial established a practical dose-measuring method for 2CA. Sixty-eight owners were asked to apply 2CA on their palm in an amount corresponding to a Japanese ¥500 coin, 26.5 mm in diameter. This yielded an average dose of 0.90±0.40 mL. Mathematically, the doses used in groups 1, 2 and 3 can be represented as one coin per approximately one-, two- and three-hand-sized lesions, respectively. The results therefore suggest that owners instructed to apply one coin of the product per two-hand-sized areas of superficial pyoderma would use the range of doses evaluated in this trial.

  6. LIFE CYCLE ASSESSMENT: AN INTERNATIONAL EXPERIENCE

    EPA Science Inventory

    Life Cycle Assessment (LCA) is used to evaluate environmental burdens associated with a product, process or activity by identifying and quantifying relevant inputs and outputs of the defined system and evaluating their potential impacts. This article outlines the four components ...

  7. Radiation Dose-Response Relationships and Risk Assessment

    SciTech Connect

    Strom, Daniel J.

    2005-07-05

    The notion of a dose-response relationship was probably invented shortly after the discovery of poisons, the invention of alcoholic beverages, and the bringing of fire into a confined space in the forgotten depths of ancient prehistory. The amount of poison or medicine ingested can easily be observed to affect the behavior, health, or sickness outcome. Threshold effects, such as death, could be easily understood for intoxicants, medicine, and poisons. As Paracelsus (1493-1541), the 'father' of modern toxicology said, 'It is the dose that makes the poison.' Perhaps less obvious is the fact that implicit in such dose-response relationships is also the notion of dose rate. Usually, the dose is administered fairly acutely, in a single injection, pill, or swallow; a few puffs on a pipe; or a meal of eating or drinking. The same amount of intoxicants, medicine, or poisons administered over a week or month might have little or no observable effect. Thus, before the discovery of ionizing radiation in the late 19th century, toxicology ('the science of poisons') and pharmacology had deeply ingrained notions of dose-response relationships. This chapter demonstrates that the notion of a dose-response relationship for ionizing radiation is hopelessly simplistic from a scientific standpoint. While useful from a policy or regulatory standpoint, dose-response relationships cannot possibly convey enough information to describe the problem from a quantitative view of radiation biology, nor can they address societal values. Three sections of this chapter address the concepts, observations, and theories that contribute to the scientific input to the practice of managing risks from exposure to ionizing radiation. The presentation begins with irradiation regimes, followed by responses to high and low doses of ionizing radiation, and a discussion of how all of this can inform radiation risk management. The knowledge that is really needed for prediction of individual risk is presented

  8. The Concentration Of Tritium In Urine And Internal Radiation Dose Estimation Of PTNBR Radiation Workers

    SciTech Connect

    Tjahaja, Poppy Intan; Sukmabuana, Putu; Aisyah, Neneng Nur

    2010-12-23

    The operation of Triga 2000 reactor in Nuclear Technology Center for Materials and Radiometry (PTNBR BATAN) normally produce tritium radionuclide which is the activation product of deuterium atom in reactor primary cooling water. According to previous monitoring, tritium was detected with the concentration of 8.236{+-}0.677 kBq/L and 1.704{+-}0.046 Bq/L in the primary cooling water and in reactor hall air, respectively. The tritium in reactor hall air chronically can be inhaled by the workers. In this research, tritium content in radiation workers' urine was determined to estimate the internal radiation doses received by the workers. About 50-100 mL of urine samples were collected from 48 PTNBR workers that is classified as 24 radiation workers and 24 administration staffs as a control. Urine samples of 25 mL were then prepared by active charcoal and KMnO{sub 4} addition and followed with complete distillation. The 2 mL of distillate was added with 13 mL scintillator, shaked vigorously and remained in cool and dark condition for about 24 hours. The tritium in the samples was then measured using liquid scintillation counter (LSC) for 1 hour. From the measurement results it was obtained that the tritium concentration in the urine of radiation workers were in the range of not detected and 5.191 Bq/mL, whereas in the administration staffs the concentration were between not detected and 4.607 Bq/mL. Internally radiation doses were calculated using the tritium concentration data, and it was found the averages about 0.602 {mu}Sv/year and 0.532 {mu}Sv/year for radiation workers and administration staffs, respectively. The doses received by the workers were lower than that of the permissible doses from tritium, i.e. 40 {mu}Sv/year.

  9. The Radiobiological Basis for Improvements in Radiotherapy and Low Dose Risk Assessment

    SciTech Connect

    Hei, Tom K

    2009-12-09

    Overall Goal: This conference grant was proposed to organize and host an international conference at Columbia University in New York to critically assess the cellular and molecular signaling events and tissue response following radiation damage. The conference would also serve as a venue to play tribute to the more than forty years contributions made by Professor Eric J. Hall to the radiation biology field. The goals of the meeting were to examine tumor hypoxia and sensitizer development; recent advances made in clinical radiotherapy; addressed several low dose phenomena, including genomic instability and bystander effects that are important in radiation risk assessment. Study and Results: The symposium was held on October 13th and 14th, 2008 at the Alfred Lerner Hall in the Morningside campus of Columbia University. The symposium, entitled “From Beans to Genes: A Forty Year Odyssey in Radiation Biology” was attended by more than 120 faculty, scientists, clinicians, fellows and students. The symposium, spanned over a day and a half, covered four scientific themes. These included tumor hypoxia and radiosensitizers; low dose radiation response; radiation biology in the practice of radiotherapy, and radiation hazard in space and genetic predisposition to cancer. The program of the symposium is as follow:

  10. Nuclear Decay Data in the MIRD (Medical Internal Radiation Dose) Format

    DOE Data Explorer

    MIRD is a database of evaluated nuclear decay data for over 2,100 radioactive nuclei. Data are extracted from ENSDF, processed by the program RadList, and used for medical internal radiation dose calculations. When using the MIRD interface, tables of nuclear and atomic radiations from nuclear decay and decay scheme drawings will be produced in the MIRD format from the Evaluated Nuclear Structure Data File (ENSDF) for the specified nuclide. Output may be either HTML-formatted tables and JPEG drawings, PostScript tables and drawings, or PDF tables and drawings.

  11. Dose assessment of an accidental exposure at the IPNS

    SciTech Connect

    Campos Torres, M.M.

    1995-02-01

    Seven different methods were used to estimate the dose rate to a female worker who was accidentally exposed in the neutron PHOENIX beamline at the IPNS. Theoretical and measured entrance dose ranged from 550 mrem/min to 2850 mrem/min. Theoretical estimates were based on a Monte Carlo simulation of a spectrum provided by IPNS (Crawford Spectrum). Dose measurements were made with TLDs on phantoms and with ionization chambers in a water phantom. Estimates of the whole body total effective dose equivalent (TEDE) rate ranged from 5.2 mrem/min to 840 mrem/min. Assumed and measured quality factors ranged from 2.6 to 11.8. Cytogenetic analyses of blood samples detected no positive exposure. The recommended TEDE rate was 158 mrem/min. The TEDE was 750 mrem.

  12. Radiological dose assessments of atolls in the Northern Marshall Islands

    SciTech Connect

    Robison, W.L.

    1983-11-01

    Methods and models used to estimate the radiation doses to a returning population of the atolls in the Marshall Islands are presented. In this environment natural processes have acted on source-term radionuclides for nearly 30 years. The data bases developed for the models, and the results of the radiological dose analyses at the various atolls are described. The major radionuclides in order of their contribution to the total estimated doses were /sup 137/Cs, /sup 90/Sr, /sup 239/ /sup 240/Pu, /sup 241/Am, and /sup 60/Co. Exposure pathways in order of their contribution to the estimated doses were: terrestrial food chain, external ..gamma.., marine food chain, inhalation, and cistern water and ground water. 56 references, 13 figures, 16 tables.

  13. The Northern Marshall Islands Radiological Survey: data and dose assessments.

    PubMed

    Robison, W L; Noshkin, V E; Conrado, C L; Eagle, R J; Brunk, J L; Jokela, T A; Mount, M E; Phillips, W A; Stoker, A C; Stuart, M L; Wong, K M

    1997-07-01

    Fallout from atmospheric nuclear tests, especially from those conducted at the Pacific Proving Grounds between 1946 and 1958, contaminated areas of the Northern Marshall Islands. A radiological survey at some Northern Marshall Islands was conducted from September through November 1978 to evaluate the extent of residual radioactive contamination. The atolls included in the Northern Marshall Islands Radiological Survey (NMIRS) were Likiep, Ailuk, Utirik, Wotho, Ujelang, Taka, Rongelap, Rongerik, Bikar, Ailinginae, and Mejit and Jemo Islands. The original test sites, Bikini and Enewetak Atolls, were also visited on the survey. An aerial survey was conducted to determine the external gamma exposure rate. Terrestrial (soil, food crops, animals, and native vegetation), cistern and well water samples, and marine (sediment, seawater, fish and clams) samples were collected to evaluate radionuclide concentrations in the atoll environment. Samples were processed and analyzed for 137Cs, 90Sr, 239+240Pu and 241Am. The dose from the ingestion pathway was calculated using the radionuclide concentration data and a diet model for local food, marine, and water consumption. The ingestion pathway contributes 70% to 90% of the estimated dose. Approximately 95% of the dose is from 137Cs. 90Sr is the second most significant radionuclide via ingestion. External gamma exposure from 137Cs accounts for about 10% to 30% of the dose. 239+240Pu and 241Am are the major contributors to dose via the inhalation pathway; however, inhalation accounts for only about 1% of the total estimated dose, based on surface soil levels and resuspension studies. All doses are computed for concentrations decay corrected to 1996. The maximum annual effective dose from manmade radionuclides at these atolls ranges from .02 mSv y(-1) to 2.1 mSv y(-1). The background dose in the Marshall Islands is estimated to be 2.4 mSv y(-1). The combined dose from both background and bomb related radionuclides ranges from slightly

  14. Exposure versus internal dose: Respiratory tract deposition modeling of inhaled asbestos fibers in rats and humans (Presentation Poster)

    EPA Science Inventory

    Exposure to asbestos is associated with respiratory diseases, including asbestosis, lung cancer and mesothelioma. Internal fiber dose depends on fiber inhalability and orientation, fiber density, length and width, and various deposition mechanisms (DM). Species-specific param...

  15. INTEGRATED RISK ASSESSMENT - RESULTS OF AN INTERNATIONAL WORKSHOP

    EPA Science Inventory

    The UNEP/ILO/WHO International Programme on Chemical Safety (IPCS), the Organization for Economic Cooperation and Development (OECD), and the U.S. Environmental Protection Agency (USEPA) have developed a collaborative partnership to foster integration of assessment approaches to ...

  16. Assessment of International Work on Organizational Factors

    SciTech Connect

    Wall, Ian

    2002-06-01

    This report describes the concept of organizational factors and includes a consensus definition. It summarizes existing methods for assessing organizations from a safety culture perspective, for analyzing past incidents at plants to assess the role of safety culture, and for using such incident analysis to provide a database supporting organizational factors models. It describes existing methods that potentially could be extended to quantify organizational factors in a Probabilistic Safety Analysis. It concludes that no method is clearly superior for this purpose and recommends the organization of a workshop to clarify important issues prior to selecting a method.

  17. Internal Assessment as a First Step in Strategic Planning.

    ERIC Educational Resources Information Center

    Morris, Pamela; Tuthill, Suzanne

    The internal assessment process described in this report was initiated at the Wilmington/Stanton Campus of Delaware Technical and Community College in 1985 in preparation for a reaccreditation study and in response to a climate of rapid internal and external change. Following introductory comments on the campus, the purpose of the internal…

  18. International Civic and Citizenship Education Study: Assessment Framework

    ERIC Educational Resources Information Center

    Schulz, Wolfram; Fraillon, Julian; Ainley, John; Losito, Bruno; Kerr, David

    2008-01-01

    This document outlines the framework and assessment design for the International Civic and Citizenship Education Study (ICCS) sponsored by the International Association for the Evaluation of Educational Achievement (IEA). Over the past 50 years, IEA has conducted comparative research studies focusing on educational policies, practices, and…

  19. Needs Assessment of International Students at Eastern Oregon State College.

    ERIC Educational Resources Information Center

    Eid, Mamoud Taha; Jordan-Domschot, Theresa

    The purpose of the research project was to assess the needs, satisfaction, and concerns of international students attending Eastern Oregon State College. The international student population consisted of students from Micronesia, Netherlands, Somalia, Saudi Arabia, Jordan, Iran, Japan, Thailand, Zimbabwe, Belgium, Canada, Nigeria, China,…

  20. Development of wireless communication system in real-time internal radiation dose measurement system using magnetic field

    SciTech Connect

    Sato, Fumihiro; Shinohe, Kohta; Takura, Tetsuya; Matsuki, Hidetoshi; Yamada, Syogo; Sato, Tadakuni

    2009-04-01

    In radiation therapy, excessive radiation occurs because the actual delivered dose to the tumor is unknown. To overcome this problem, we need a system in which the delivered dose is measured inside the body, and the dose data are transmitted from the inside to the outside of the body. In this study, a wireless communication system, using magnetic fields was studied, and an internal circuit for obtaining radiation dose data from an x-ray detector was examined. As a result, a communication distance of 200 mm was obtained. An internal circuit was developed, and a signal transmission experiment was performed using the wireless communication system. As a result, the radiation dose data from an x-ray detector was transmitted over a communication distance of 200 mm, and the delivered dose was determined from the received signal.

  1. Radiological dose assessments in the northern Marshall Islands (1989--1991)

    SciTech Connect

    Sun, L.C.; Meinhold, C.B.; Moorthy, A.R.; Clinton, J.H.; Kaplan, E.

    1992-01-01

    The present Brookhaven National Laboratory (BNL) Marshall Islands Radiological Safety Program (MIRSP) began in 1987 with funding from the US Department of Energy (DOE). The objectives of the MIRSP are to determine the radionuclides present in the bodies of those people potentially exposed to residual radionuclide from weapon tests and fallout, and to assess their present and lifetime dose from external and internal sources. Field bioassay missions involving whole body counting (WBC) and urine sample collection have, therefore, been important components of the program. WBC is used to measure {gamma}-emitters, such as {sup 40}K, {sup 60}Co and {sup 137}Cs, present in individuals. Urine samples are used to measure {alpha} and {beta}-emitting nuclides, such as {sup 239}Pu and {sup 90}Sr, that are undetectable by WBC routine methods.

  2. Effect of Gold Nanoparticles on Prostate Dose Distribution under Ir-192 Internal and 18 MV External Radiotherapy Procedures Using Gel Dosimetry and Monte Carlo Method

    PubMed Central

    Khosravi, H.; Hashemi, B.; Mahdavi, S. R.; Hejazi, P.

    2015-01-01

    Background Gel polymers are considered as new dosimeters for determining radiotherapy dose distribution in three dimensions. Objective The ability of a new formulation of MAGIC-f polymer gel was assessed by experimental measurement and Monte Carlo (MC) method for studying the effect of gold nanoparticles (GNPs) in prostate dose distributions under the internal Ir-192 and external 18MV radiotherapy practices. Method A Plexiglas phantom was made representing human pelvis. The GNP shaving 15 nm in diameter and 0.1 mM concentration were synthesized using chemical reduction method. Then, a new formulation of MAGIC-f gel was synthesized. The fabricated gel was poured in the tubes located at the prostate (with and without the GNPs) and bladder locations of the phantom. The phantom was irradiated to an Ir-192 source and 18 MV beam of a Varian linac separately based on common radiotherapy procedures used for prostate cancer. After 24 hours, the irradiated gels were read using a Siemens 1.5 Tesla MRI scanner. The absolute doses at the reference points and isodose curves resulted from the experimental measurement of the gels and MC simulations following the internal and external radiotherapy practices were compared. Results The mean absorbed doses measured with the gel in the presence of the GNPs in prostate were 15% and 8 % higher than the corresponding values without the GNPs under the internal and external radiation therapies, respectively. MC simulations also indicated a dose increase of 14 % and 7 % due to presence of the GNPs, for the same experimental internal and external radiotherapy practices, respectively. Conclusion There was a good agreement between the dose enhancement factors (DEFs) estimated with MC simulations and experiment gel measurements due to the GNPs. The results indicated that the polymer gel dosimetry method as developed and used in this study, can be recommended as a reliable method for investigating the DEF of GNPs in internal and external

  3. Standards-Based Assessment for Principal Interns

    ERIC Educational Resources Information Center

    Koonce, Glenn; Causey, Ralph

    2011-01-01

    The Framework for School Leaders, an architecture derived from the Interstate School Leaders Licensure Consortium (ISLLC) Standards, is utilized in the design of the Principal Internship Mentor's Assessment (PIMA). PIMA outcomes are reported for average scores for each standard and investigated as a measure of ISLLC Standards achievement and for…

  4. 42 CFR 82.18 - How will NIOSH calculate internal dose to the primary cancer site(s)?

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... primary cancer site(s)? 82.18 Section 82.18 Public Health PUBLIC HEALTH SERVICE, DEPARTMENT OF HEALTH AND... Dose Reconstruction Process § 82.18 How will NIOSH calculate internal dose to the primary cancer site(s... cancer covered by a claim is in a tissue not covered by existing ICRP models, NIOSH will use the...

  5. 42 CFR 82.18 - How will NIOSH calculate internal dose to the primary cancer site(s)?

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... primary cancer site(s)? 82.18 Section 82.18 Public Health PUBLIC HEALTH SERVICE, DEPARTMENT OF HEALTH AND... Dose Reconstruction Process § 82.18 How will NIOSH calculate internal dose to the primary cancer site(s... cancer covered by a claim is in a tissue not covered by existing ICRP models, NIOSH will use the...

  6. 42 CFR 82.18 - How will NIOSH calculate internal dose to the primary cancer site(s)?

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... primary cancer site(s)? 82.18 Section 82.18 Public Health PUBLIC HEALTH SERVICE, DEPARTMENT OF HEALTH AND... Dose Reconstruction Process § 82.18 How will NIOSH calculate internal dose to the primary cancer site(s... cancer covered by a claim is in a tissue not covered by existing ICRP models, NIOSH will use the...

  7. 42 CFR 82.18 - How will NIOSH calculate internal dose to the primary cancer site(s)?

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... primary cancer site(s)? 82.18 Section 82.18 Public Health PUBLIC HEALTH SERVICE, DEPARTMENT OF HEALTH AND... Dose Reconstruction Process § 82.18 How will NIOSH calculate internal dose to the primary cancer site(s... cancer covered by a claim is in a tissue not covered by existing ICRP models, NIOSH will use the...

  8. 42 CFR 82.18 - How will NIOSH calculate internal dose to the primary cancer site(s)?

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... primary cancer site(s)? 82.18 Section 82.18 Public Health PUBLIC HEALTH SERVICE, DEPARTMENT OF HEALTH AND... Dose Reconstruction Process § 82.18 How will NIOSH calculate internal dose to the primary cancer site(s... cancer covered by a claim is in a tissue not covered by existing ICRP models, NIOSH will use the...

  9. Computational assessment of effective dose and patient specific doses for kilovoltage stereotactic radiosurgery of wet age-related macular degeneration

    NASA Astrophysics Data System (ADS)

    Hanlon, Justin Mitchell

    Age-related macular degeneration (AMD) is a leading cause of vision loss and a major health problem for people over the age of 50 in industrialized nations. The current standard of care, ranibizumab, is used to help slow and in some cases stabilize the process of AMD, but requires frequent invasive injections into the eye. Interest continues for stereotactic radiosurgery (SRS), an option that provides a non-invasive treatment for the wet form of AMD, through the development of the IRay(TM) (Oraya Therapeutics, Inc., Newark, CA). The goal of this modality is to destroy choroidal neovascularization beneath the pigment epithelium via delivery of three 100 kVp photon beams entering through the sclera and overlapping on the macula delivering up to 24 Gy of therapeutic dose over a span of approximately 5 minutes. The divergent x-ray beams targeting the fovea are robotically positioned and the eye is gently immobilized by a suction-enabled contact lens. Device development requires assessment of patient effective dose, reference patient mean absorbed doses to radiosensitive tissues, and patient specific doses to the lens and optic nerve. A series of head phantoms, including both reference and patient specific, was derived from CT data and employed in conjunction with the MCNPX 2.5.0 radiation transport code to simulate treatment and evaluate absorbed doses to potential tissues-at-risk. The reference phantoms were used to evaluate effective dose and mean absorbed doses to several radiosensitive tissues. The optic nerve was modeled with changeable positions based on individual patient variability seen in a review of head CT scans gathered. Patient specific phantoms were used to determine the effect of varying anatomy and gaze. The results showed that absorbed doses to the non-targeted tissues were below the threshold levels for serious complications; specifically the development of radiogenic cataracts and radiation induced optic neuropathy (RON). The effective dose

  10. Estimating dose rates to organs as a function of age following internal exposure to radionuclides

    SciTech Connect

    Leggett, R.W.; Eckerman, K.F.; Dunning, D.E. Jr.; Cristy, M.; Crawford-Brown, D.J.; Williams, L.R.

    1984-03-01

    The AGEDOS methodology allows estimates of dose rates, as a function of age, to radiosensitive organs and tissues in the human body at arbitrary times during or after internal exposure to radioactive material. Presently there are few, if any, radionuclides for which sufficient metabolic information is available to allow full use of all features of the methodology. The intention has been to construct the methodology so that optimal information can be gained from a mixture of the limited amount of age-dependent, nuclide-specific data and the generally plentiful age-dependent physiological data now available. Moreover, an effort has been made to design the methodology so that constantly accumulating metabolic information can be incorporated with minimal alterations in the AGEDOS computer code. Some preliminary analyses performed by the authors, using the AGEDOS code in conjunction with age-dependent risk factors developed from the A-bomb survivor data and other studies, has indicated that the doses and subsequent risks of eventually experiencing radiogenic cancers may vary substantially with age for some exposure scenarios and may be relatively invariant with age for other scenarios. We believe that the AGEDOS methodology provides a convenient and efficient means for performing the internal dosimetry.

  11. Warfarin Dosing and Time Required to Reach Therapeutic International Normalized Ratio in Patients with Hypercoagulable Conditions

    PubMed Central

    Kahlon, Pushpinderdeep; Nabi, Shahzaib; Arshad, Adeel; Jabbar, Absia; Haythem, Ali

    2016-01-01

    Objective: The purpose of this study was to analyze the difference in duration of anticoagulation and dose of warfarin required to reach a therapeutic international normalized ratio [(INR) of 2 to 3] in patients with hypercoagulable conditions as compared to controls. To our knowledge, this study is the first in the literature to delineate such a difference. Materials and Methods: A retrospective chart review was performed in a tertiary care hospital. The total study population was 622. Cases (n=125) were patients with a diagnosis of a hypercoagulable syndrome who developed venous thromboembolism. Controls (n=497) were patients with a diagnosis of venous thromboembolism in the absence of a hypercoagulable syndrome and were matched for age, sex, and race. Results: The total dose of warfarin required to reach therapeutic INR in cases was higher (50.7±17.6 mg) as compared to controls (41.2±17.7 mg). The total number of days required to reach therapeutic INR in cases was 8.9±3.5 days as compared to controls (6.8±2.9 days). Both of these differences were statistically significant (p<0.001). Conclusion: Patients with hypercoagulable conditions require approximately 10 mg of additional total warfarin dose and also require, on average, 2 extra days to reach therapeutic INR as compared to controls. PMID:27093959

  12. Involving Classroom Teachers in the Assessment of Preservice Intern Portfolios.

    ERIC Educational Resources Information Center

    Rakow, Steven J.

    1999-01-01

    The University of Houston-Clear Lake requires preservice teachers to develop a portfolio to demonstrate their proficiency in seven standard areas. The portfolios are developed and assessed under the guidance of university faculty and mentor teachers at the public schools. This team assessment provides interns more extensive and objective feedback,…

  13. An International Assessment of Bachelor Degree Graduates' Learning Outcomes

    ERIC Educational Resources Information Center

    Coates, Hamish; Richardson, Sarah

    2012-01-01

    This paper examines rationales, aspirations, assumptions and methods shaping an international assessment of learning outcomes: the OECD's Assessment of Higher Education Learning Outcomes (AHELO) feasibility study. The first part of the paper is analytical, exploring formative rationales, and shaping contexts and normative perspectives that frame…

  14. International Large-Scale Assessments: What Uses, What Consequences?

    ERIC Educational Resources Information Center

    Johansson, Stefan

    2016-01-01

    Background: International large-scale assessments (ILSAs) are a much-debated phenomenon in education. Increasingly, their outcomes attract considerable media attention and influence educational policies in many jurisdictions worldwide. The relevance, uses and consequences of these assessments are often the focus of research scrutiny. Whilst some…

  15. Assessment of gamma-dose rate in city of Kermanshah

    PubMed Central

    Tavakoli, Mohamad Bagher; Kodamoradi, Ehsan; Shaneh, Zahra

    2012-01-01

    Introduction: Environmental natural radiation measurement is of great importance and interest especially for human health. The induction of genetic disorder and cancer appears to be the most important in an exposed population. Materials and Methods: Measurements of background gamma rays were performed using a mini-rad environmental survey meter at 25 different locations around the city of Kermanshah (a city in the west of Iran). The measurements were also performed at two different time of day one in the morning and the other in the afternoon. At each location and time measurements were repeated for five times and the mean was considered as the background dose at that location. Results and Discussions: Comparison between the measured results in the morning and afternoon has not shown any significant difference (P > 0.95). The maximum and minimum obtained results were 2.63 mSv/y and 1.49 mSv/y, respectively. From the total measurements at 25 sites mean and SD background radiation dose to the population is 2.24 ± 0.25 mSv. Conclusion: The mean radiation dose to the population is about 2.5 times of the world average total external exposure cosmic rays and terrestrial gamma rays dose reported by UNSCEAR. PMID:23555133

  16. Overview of Dose Assessment Developments and the Health of Riverside Residents Close to the “Mayak” PA Facilities, Russia

    PubMed Central

    Standring, William J.F.; Dowdall, Mark; Strand, Per

    2009-01-01

    The Norwegian Radiation Protection Authority (NRPA) has been involved in studies related to the Mayak PA and the consequences of activities undertaken at the site for a number of years. This paper strives to present an overview of past and present activities at the Mayak PA and subsequent developments in the quantification of health effects on local populations caused by discharges of radioactive waste into the Techa River. Assessments of doses to affected populations have relied on the development of dose reconstruction techniques for both external and internal doses. Contamination levels are typically inhomogeneous and decrease with increasing distance from the discharge point. Citations made in this paper give a comprehensive, though not exhaustive, basis for further reading about this topic. PMID:19440276

  17. Climate Change Impact Assessments for International Market Systems (CLIMARK)

    NASA Astrophysics Data System (ADS)

    Winkler, J. A.; Andresen, J.; Black, J.; Bujdoso, G.; Chmielewski, F.; Kirschke, D.; Kurlus, R.; Liszewska, M.; Loveridge, S.; Niedzwiedz, T.; Nizalov, D.; Rothwell, N.; Tan, P.; Ustrnul, Z.; von Witzke, H.; Zavalloni, C.; Zhao, J.; Zhong, S.

    2012-12-01

    The vast majority of climate change impact assessments evaluate how local or regional systems and processes may be affected by a future climate. Alternative strategies that extend beyond the local or regional scale are needed when assessing the potential impacts of climate change on international market systems, including agricultural commodities. These industries have multiple production regions that are distributed worldwide and are likely to be differentially impacted by climate change. Furthermore, for many industries and market systems, especially those with long-term climate-dependent investments, temporal dynamics need to be incorporated into the assessment process, including changing patterns of international trade, consumption and production, and evolving adaptation strategies by industry stakeholder groups. A framework for conducting climate change assessments for international market systems, developed as part of the CLIMARK (Climate Change and International Markets) project is outlined, and progress toward applying the framework for an impact assessment for the international tart cherry industry is described. The tart cherry industry was selected for analysis in part because tart cherries are a perennial crop requiring long-term investments by the producer. Components of the project include the preparation of fine resolution climate scenarios, evaluation of phenological models for diverse production regions, the development of a yield model for tart cherry production, new methods for incorporating individual decision making and adaptation options into impact assessments, and modification of international trade models for use in impact studies. Innovative aspects of the project include linkages between model components and evaluation of the mega-uncertainty surrounding the assessment outcomes. Incorporation of spatial and temporal dynamics provides a more comprehensive evaluation of climate change impacts and an assessment product of potentially greater

  18. Harmonization of international risk assessment protocol.

    PubMed

    Toyofuku, Hajime

    2006-01-01

    For over centuries developments in food production and new food safety management systems in most developed countries have been perceived by many to be efficient in the prevention of food-borne disease. Nevertheless a number of problems remain dominant, one of these being the high level of food-borne microbiological disease which seems, for some pathogens, to have increased over the last decades. The development of an interdisciplinary approach with direct interaction between surveillance and risk analysis systems is described as a potential basis for improved prevention of food-borne disease. Quantitative microbiological risk assessment is a relatively new scientific approach, able to link data from food within the entire food chain and the various data on human disease to provide a clear estimation of risk. Today food safety is one of the WHOs top eleven priorities; the Organization calls for more systematic and aggressive steps to be taken to reduce significantly the risk of microbiological food-borne diseases. Dealing with this challenge is one of the major challenges for the 21st century in regard to food safety, implying a significant re-direction of food microbiology efforts in many parts of the world.

  19. Development of the voxel computational phantoms of pediatric patients and their application to organ dose assessment

    NASA Astrophysics Data System (ADS)

    Lee, Choonik

    A series of realistic voxel computational phantoms of pediatric patients were developed and then used for the radiation risk assessment for various exposure scenarios. The high-resolution computed tomographic images of live patients were utilized for the development of the five voxel phantoms of pediatric patients, 9-month male, 4-year female, 8-year female, 11-year male, and 14-year male. The phantoms were first developed as head and torso phantoms and then extended into whole body phantoms by utilizing computed tomographic images of a healthy adult volunteer. The whole body phantom series was modified to have the same anthropometrics with the most recent reference data reported by the international commission on radiological protection. The phantoms, named as the University of Florida series B, are the first complete set of the pediatric voxel phantoms having reference organ masses and total heights. As part of the dosimetry study, the investigation on skeletal tissue dosimetry methods was performed for better understanding of the radiation dose to the active bone marrow and bone endosteum. All of the currently available methodologies were inter-compared and benchmarked with the paired-image radiation transport model. The dosimetric characteristics of the phantoms were investigated by using Monte Carlo simulation of the broad parallel beams of external phantom in anterior-posterior, posterior-anterior, left lateral, right lateral, rotational, and isotropic angles. Organ dose conversion coefficients were calculated for extensive photon energies and compared with the conventional stylized pediatric phantoms of Oak Ridge National Laboratory. The multi-slice helical computed tomography exams were simulated using Monte Carlo simulation code for various exams protocols, head, chest, abdomen, pelvis, and chest-abdomen-pelvis studies. Results have found realistic estimates of the effective doses for frequently used protocols in pediatric radiology. The results were very

  20. Assessment of radiation doses from residential smoke detectors that contain americium-241

    SciTech Connect

    O'Donnell, F.R.; Etnier, E.L.; Holton, G.A.; Travis, C.C.

    1981-10-01

    External dose equivalents and internal dose commitments were estimated for individuals and populations from annual distribution, use, and disposal of 10 million ionization chamber smoke detectors that contain 110 kBq (3 ..mu..Ci) americium-241 each. Under exposure scenarios developed for normal distribution, use, and disposal using the best available information, annual external dose equivalents to average individuals were estimated to range from 4 fSv (0.4 prem) to 20 nSv (2 ..mu..rem) for total body and from 7 fSv to 40 nSv for bone. Internal dose commitments to individuals under post disposal scenarios were estimated to range from 0.006 to 80 ..mu..Sv (0.0006 to 8 mrem) to total body and from 0.06 to 800 ..mu..Sv to bone. The total collective dose (the sum of external dose equivalents and 50-year internal dose commitments) for all individuals involved with distribution, use, or disposal of 10 million smoke detectors was estimated to be about 0.38 person-Sv (38 person-rem) to total body and 00 ft/sup 2/).

  1. Using the Monte Carlo method for assessing the tissue and organ doses of patients in dental radiography

    NASA Astrophysics Data System (ADS)

    Makarevich, K. O.; Minenko, V. F.; Verenich, K. A.; Kuten, S. A.

    2016-05-01

    This work is dedicated to modeling dental radiographic examinations to assess the absorbed doses of patients and effective doses. For simulating X-ray spectra, the TASMIP empirical model is used. Doses are assessed on the basis of the Monte Carlo method by using MCNP code for voxel phantoms of ICRP. The results of the assessment of doses to individual organs and effective doses for different types of dental examinations and features of X-ray tube are presented.

  2. International Harmonization of Food Safety Assessment of Pesticide Residues.

    PubMed

    Ambrus, Árpád

    2016-01-13

    This paper summarizes the development of principles and methods applied within the program of the FAO/WHO Codex Alimentarius during the past 50 years for the safety assessment of pesticide residues in food and feed and establishing maximum residue limits (MRLs) to promote free international trade and assure the safety of consumers. The role of major international organizations in this process, the FAO capacity building activities, and some problematic areas that require special attention are briefly described.

  3. Digital breast tomosynthesis: Dose and image quality assessment.

    PubMed

    Maldera, A; De Marco, P; Colombo, P E; Origgi, D; Torresin, A

    2017-01-01

    The aim of this work was to evaluate how different acquisition geometries and reconstruction parameters affect the performance of four digital breast tomosynthesis (DBT) systems (Senographe Essential - GE, Mammomat Inspiration - Siemens, Selenia Dimensions - Hologic and Amulet Innovality - Fujifilm) on the basis of a physical characterization. Average Glandular Dose (AGD) and image quality parameters such as in-plane/in-depth resolution, signal difference to noise ratio (SDNR) and artefact spread function (ASF) were examined. Measured AGD values resulted below EUREF limits for 2D imaging. A large variability was recorded among the investigated systems: the mean dose ratio DBT/2D ranged between 1.1 and 1.9. In-plane resolution was in the range: 2.2mm(-1)-3.8mm(-1) in chest wall-nipple direction. A worse resolution was found for all devices in tube travel direction. In-depth resolution improved with increasing scan angle but was also affected by the choice of reconstruction and post-processing algorithms. The highest z-resolution was provided by Siemens (50°, FWHM=2.3mm) followed by GE (25°, FWHM=2.8mm), while the Fujifilm HR showed the lowest one, despite its wide scan angle (40°, FWHM=4.1mm). The ASF was dependent on scan angle: smaller range systems showed wider ASF curves; however a clear relationship was not found between scan angle and ASF, due to the different post processing and reconstruction algorithms. SDNR analysis, performed on Fujifilm system, demonstrated that pixel binning improves detectability for a fixed dose/projection. In conclusion, we provide a performance comparison among four DBT systems under a clinical acquisition mode.

  4. EMP Attachment 3 DOE-SC PNNL Site Dose Assessment Guidance

    SciTech Connect

    Snyder, Sandra F.

    2011-12-21

    This Dose Assessment Guidance (DAG) describes methods to use to determine the Maximally-Exposed Individual (MEI) location and to estimate dose impact to that individual under the U.S. Department of Energy Office of Science (DOE-SC) Pacific Northwest National Laboratory (PNNL) Site Environmental Monitoring Plan (EMP). This guidance applies to public dose from radioactive material releases to the air from PNNL Site operations. This document is an attachment to the Pacific Northwest National Laboratory (PNNL) Environmental Monitoring Plan (EMP) and describes dose assessment guidance for radiological air emissions. The impact of radiological air emissions from the U.S. Department of Energy Office of Science (DOE-SC) PNNL Site is indicated by dose estimates to a maximally exposed member of the public, referred to as the maximally exposed individual (MEI). Reporting requirements associated with dose to members of the public from radiological air emissions are in 40 CFR Part 61.94, WAC 246-247-080, and DOE Order 458.1. The DOE Order and state standards for dose from radioactive air emissions are consistent with U.S. Environmental Protection Agency (EPA) dose standards in 40 CFR 61.92 (i.e., 10 mrem/yr to a MEI). Despite the fact that the current Contract Requirements Document (CRD) for the DOE-SC PNNL Site operations does not include the requirement to meet DOE CRD 458.1, paragraph 2.b, public dose limits, the DOE dose limits would be met when EPA limits are met.

  5. A Needs Assessment for a Longitudinal Emergency Medicine Intern Curriculum

    PubMed Central

    Shappell, Eric; Ahn, James

    2017-01-01

    Introduction A key task of emergency medicine (EM) training programs is to develop a consistent knowledge of core content in recruits with heterogeneous training backgrounds. The traditional model for delivering core content is lecture-based weekly conference; however, a growing body of literature finds this format less effective and less appealing than alternatives. We sought to address this challenge by conducting a needs assessment for a longitudinal intern curriculum for millennial learners. Methods We surveyed all residents from the six EM programs in the greater Chicago area regarding the concept, format, and scope of a longitudinal intern curriculum. Results We received 153 responses from the 300 residents surveyed (51% response rate). The majority of respondents (80%; 82% of interns) agreed or strongly agreed that a dedicated intern curriculum would add value to residency education. The most positively rated teaching method was simulation sessions (91% positive responses), followed by dedicated weekly conference time (75% positive responses) and dedicated asynchronous resources (71% positive responses). Less than half of respondents (47%; 26% of interns) supported use of textbook readings in the curriculum. Conclusion There is strong learner interest in a longitudinal intern curriculum. This needs assessment can serve to inform the development of a universal intern curriculum targeting the millennial generation. PMID:28116005

  6. Estimating Toxicity Pathway Activating Doses for High Throughput Chemical Risk Assessments

    EPA Science Inventory

    Estimating a Toxicity Pathway Activating Dose (TPAD) from in vitro assays as an analog to a reference dose (RfD) derived from in vivo toxicity tests would facilitate high throughput risk assessments of thousands of data-poor environmental chemicals. Estimating a TPAD requires def...

  7. QUANTITATION OF MOLECULAR ENDPOINTS FOR THE DOSE-RESPONSE COMPONENT OF CANCER RISK ASSESSMENT

    EPA Science Inventory

    Cancer risk assessment involves the steps of hazard identification, dose-response assessment, exposure assessment and risk characterization. The rapid advances in the use of molecular biology approaches has had an impact on all four components, but the greatest overall current...

  8. Radiation dose assessment from ingestion pathway in Saudi Arabia

    SciTech Connect

    Abdul-Majid, S.; Abdul-Fattah, A.R.A.F.; Abulfaraj, W.H. )

    1992-01-01

    Levels of radioactivities in foodstuffs in the local market have been measured for the period from November 1987 until end of June 1988. Out of the 674 samples analyzed there were 83 milk powder, 85 infant milk powder, 54 infant cereals, 89 meat, 16 lentils, 14 wheat, and 26 macaroni samples. The average radioactivity concentration of {sup 137}Cs and {sup 134}Cs, in these samples in Bq/kg were 19, 13, 18, 6, 10, 25 and 13 respectively. The rest adults and infant foodstuffs had negligible radioactivity levels. The calculated annual doses from ingestion pathway due to {sup 137}Cs and {sup 134}Cs for adults were 3.13 {times} 10{sup {minus}5} Sv and 2.1 {times} 10{sup {minus}5} Sv while for one year old infant they were 12 {times} 10{sup {minus}5} Sv and 8 {times} 10{sup {minus}5} Sv respectively. The estimated accumulated dose for 50 years from {sup 90}Sr due to one year food ingestion for adults and one year old infants were 3.76 {times} 3.76 {times} 10{sup {minus}5} Sv and 5.2 {times} 10{sup {minus}5} Sv respectively.

  9. Natural radioactivities in iron and nickel ores imported into Japan and the dose assessment for workers handling them.

    PubMed

    Iwaoka, Kazuki; Tagami, Keiko; Yonehara, Hidenori

    2010-09-01

    Japan imports Fe and Ni ores from abroad for use as industrial raw materials in the manufacture of industrial products like stainless steel. Some of these ores might contain high levels of radioactivity, and then workers handling them would be exposed to radiation without being aware of it. Activity concentrations in these ores should be measured to evaluate the radiation exposure of workers. In this study, Fe and Ni ores used as industrial raw materials were collected from iron and steel companies, and the activity concentrations of the (238)U series, the (232)Th series and (40)K in these ores were determined using inductively coupled plasma mass spectrometry (ICP-MS) and gamma ray spectrometry. The activity concentrations of the (238)U series, the (232)Th series and (40)K in these ores samples were lower than the International Atomic Energy Agency (IAEA) values. The doses to workers handling these ores were estimated using methods for dose assessment given in a report by the European Commission. In each scenario, a maximum value of the annual effective dose to workers was estimated to be about 6.8 × 10(-6) Sv, which was lower than intervention exemption levels (annual dose 1.0 × 10(-3) Sv) given in International Commission on Radiological Protection (ICRP) Publication 82.

  10. Cancer Dose-Response Assessment for Polychlorinated Biphenyls (PCBs) and Application to Environmental Mixtures

    EPA Pesticide Factsheets

    This report updates the cancer dose-response assessment for PCBs and shows how information on toxicity, disposition, and environmental processes can be considered together to evaluate health risks from PCB mixtures in the environment.

  11. ASSESSING RESIDENTIAL EXPOSURE USING THE STOCHASTIC HUMAN EXPOSURE AND DOSE SIMULATION (SHEDS) MODEL

    EPA Science Inventory

    As part of a workshop sponsored by the Environmental Protection Agency's Office of Research and Development and Office of Pesticide Programs, the Aggregate Stochastic Human Exposure and Dose Simulation (SHEDS) Model was used to assess potential aggregate residential pesticide e...

  12. Radiation Dose Assessments for Fleet-Based Individuals in Operation Tomodachi, Revision 1

    DTIC Science & Technology

    2014-04-01

    thermoluminescent dosimeters (TLDs), electronic personal dosimeters (EPDs), posted TLDs, and surface contamination surveys were used to assess the validity of...and maneuver TED Total Effective Dose TEPCO Tokyo Electric Power Company TLD thermoluminescent dosimeter TR technical report TRAP tactical

  13. Preliminary Risk Assessment Associated with IGSCC of BWR Vessel Internals

    SciTech Connect

    A. Ware; K. Morton; M. Nitzel; N. Chokshi; T-Y. Chang

    1999-08-01

    BWR core shrouds and other reactor internals important to safety are experiencing intergranular stress corrosion cracking (IGSCC). The United States Nuclear Regulatory Commission (NRC) has followed the problem, and as part of its investigations, contracted with the Idaho National Engineering and Environmental Laboratory (INEEL) to conduct a risk assessment. The overall project objective is to assess the potential consequences and risks associated with the failure of IGSCC-susceptible BWR vessel internals, with specific consideration given to potential cascading and common mode effects. The paper presents an overview of the program, discusses the results of a preliminary qualitative assessment, and summarizes a simplified risk assessment that was conducted on sequences resulting from failures of jet pump components of a BWR/4 plant.

  14. Dose assessment for sheep exposed to fallout from nuclear test Nancy

    SciTech Connect

    Sasser, L.B.; Soldat, J.K.; Kennedy, W.E. Jr.; Murphy, D.W.

    1982-10-01

    Radiation doses were estimated for sheep wintering on Nevada ranges during the testing at the Nevada Test Site of the nuclear weapon Nancy on March 24, 1953. Exposure pathways considered were inhalation of radionuclides from both cloud passage and resuspension, external exposure of the total body and skin, and ingestion of contaminated forage and soil. Physiological, metabolic, and dosimetric data needed for these calculations were obtained from data appropriate for the sheep. Dose rate and radionuclide deposition values for shot Nancy were used. Radionuclide deposition and retention on the desert vegetation were obtained from data collected during several nuclear tests at the Nevada Test Site. Existing dosimetric computer programs, whose libraries were modified to include the sheep data, and specially developed models were used to estimate the dose commitment for the sheep. The total-body dose for reference sheep located within the 40-mR/hr (H+12) isopleth from all modes of exposure was estimated to be 2.6 rad. Ingestion of fallout on edible vegetation contributed the majority of the dose, whereas inhalation of radionuclides and consumption of contaminated soil from the ground contributed little to the internal doses. The dose to the thyroid of ewes from radioiodine and other radionuclides reaching the thyroid was approximately 400 rad. The calculated uniform dose to the reticulo-rumen was 4 rad; however, if fallout particles were assumed to concentrate in the ventral rumen, a localized dose of 200 rad could have been received by the rumen wall. Estimated dose to the bare skin of ewes was 120 rad. The dose to the fetal thyroid from radioiodine ingested by a pregnant ewe grazing at a location where the dose rate was 40 mR/hr (H+12) was estimated to be 700 rad, or approximately twice the dose to the maternal thyroid.

  15. [International trend of guidance for nanomaterial risk assessment].

    PubMed

    Hirose, Akihiko

    2013-01-01

    In the past few years, several kinds of opinions or recommendations on the nanomaterial safety assessment have been published from international or national bodies. Among the reports, the first practical guidance of risk assessment from the regulatory body was published from the European Food Safety Authorities in May 2011, which included the determination of exposure scenario and toxicity testing strategy. In October 2011, European Commission (EC) adopted the definition of "nanomaterial" for regulation. And more recently, Scientific Committee on Consumer Safety of EC released guidance for assessment of nanomaterials in cosmetics in June 2012. A series of activities in EU marks an important step towards realistic safety assessment of nanomaterials. On the other hand, the US FDA announced a draft guidance for industry in June 2011, and then published draft guidance documents for both "Cosmetic Products" and "Food Ingredients and Food Contact Substances" in April 2012. These draft documents do not restrictedly define the physical properties of nanomaterials, but when manufacturing changes alter the dimensions, properties, or effects of an FDA-regulated product, the products are treated as new products. Such international movements indicate that most of nanomaterials with any new properties would be assessed or regulated as new products by most of national authorities in near future, although the approaches are still case by case basis. We will introduce such current international activities and consideration points for regulatory risk assessment.

  16. Method for Fast CT/SPECT-Based 3D Monte Carlo Absorbed Dose Computations in Internal Emitter Therapy

    PubMed Central

    Wilderman, S. J.; Dewaraja, Y. K.

    2010-01-01

    The DPM (Dose Planning Method) Monte Carlo electron and photon transport program, designed for fast computation of radiation absorbed dose in external beam radiotherapy, has been adapted to the calculation of absorbed dose in patient-specific internal emitter therapy. Because both its photon and electron transport mechanics algorithms have been optimized for fast computation in 3D voxelized geometries (in particular, those derived from CT scans), DPM is perfectly suited for performing patient-specific absorbed dose calculations in internal emitter therapy. In the updated version of DPM developed for the current work, the necessary inputs are a patient CT image, a registered SPECT image, and any number of registered masks defining regions of interest. DPM has been benchmarked for internal emitter therapy applications by comparing computed absorption fractions for a variety of organs using a Zubal phantom with reference results from the Medical Internal Radionuclide Dose (MIRD) Committee standards. In addition, the β decay source algorithm and the photon tracking algorithm of DPM have been further benchmarked by comparison to experimental data. This paper presents a description of the program, the results of the benchmark studies, and some sample computations using patient data from radioimmunotherapy studies using 131I. PMID:20305792

  17. Dosimetric models of the eye and lens of the eye and their use in assessing dose coefficients for ocular exposures.

    PubMed

    Bolch, W E; Dietze, G; Petoussi-Henss, N; Zankl, M

    2015-06-01

    Based upon recent epidemiological studies of ocular exposure, the Main Commission of the International Commission on Radiological Protection (ICRP) in ICRP Publication 118 states that the threshold dose for radiation-induced cataracts is now considered to be approximately 0.5 Gy for both acute and fractionated exposures. Consequently, a reduction was also recommended for the occupational annual equivalent dose to the lens of the eye from 150 mSv to 20 mSv, averaged over defined periods of 5 years. To support ocular dose assessment and optimisation, Committee 2 included Annex F within ICRP Publication 116 . Annex F provides dose coefficients - absorbed dose per particle fluence - for photon, electron, and neutron irradiation of the eye and lens of the eye using two dosimetric models. The first approach uses the reference adult male and female voxel phantoms of ICRP Publication 110. The second approach uses the stylised eye model of Behrens et al., which itself is based on ocular dimensional data given in Charles and Brown. This article will review the data and models of Annex F with particular emphasis on how these models treat tissue regions thought to be associated with stem cells at risk.

  18. International Perspective on Assessment & Evaluation of Visual Arts Education.

    ERIC Educational Resources Information Center

    Grauer, Kit, Ed.

    1994-01-01

    The articles in this volume explore various conceptions of assessment and evaluation and the ramifications of these perspectives in a number of countries across many diverse art educational settings. Kit Grauer introduces the theme in "An Editorial: Values and Evaluation." In "International Perspectives on Evaluation and Assessment…

  19. Assessing Student Learning Outcomes Internationally: Insights and Frontiers

    ERIC Educational Resources Information Center

    Coates, Hamish

    2016-01-01

    As higher education systems and institutions expand, more energy is being invested in ensuring that sufficient learning has been achieved to warrant the award of a qualification. Many commonly used assessment approaches do not scale well, and there remains a pressing need for reform. This paper distils insights from international investigations of…

  20. International Computer and Information Literacy Study: Assessment Framework

    ERIC Educational Resources Information Center

    Fraillon, Julian; Schulz, Wolfram; Ainley, John

    2013-01-01

    The purpose of the International Computer and Information Literacy Study 2013 (ICILS 2013) is to investigate, in a range of countries, the ways in which young people are developing "computer and information literacy" (CIL) to support their capacity to participate in the digital age. To achieve this aim, the study will assess student…

  1. AN INTERNATIONAL WORKSHOP ON LIFE CYCLE IMPACT ASSESSMENT SOPHISTICATION

    EPA Science Inventory

    On November 29-30,1998 in Brussels, an international workshop was held to discuss Life Cycle Impact Assessment (LCIA) Sophistication. Approximately 50 LCA experts attended the workshop from North America, Europe, and Asia. Prominant practicioners and researchers were invited to ...

  2. Internal Medicine Residents Do Not Accurately Assess Their Medical Knowledge

    ERIC Educational Resources Information Center

    Jones, Roger; Panda, Mukta; Desbiens, Norman

    2008-01-01

    Background: Medical knowledge is essential for appropriate patient care; however, the accuracy of internal medicine (IM) residents' assessment of their medical knowledge is unknown. Methods: IM residents predicted their overall percentile performance 1 week (on average) before and after taking the in-training exam (ITE), an objective and well…

  3. Contracting Processes, Internal Controls, and Procurement Fraud: A Knowledge Assessment

    DTIC Science & Technology

    2015-04-30

    A Knowledge Assessment Juanita M. Rendon—is a CPA and instructor at the Naval Postgraduate School (NPS). Rendon teaches auditing , finance, and...review academic journal articles, government reports, and previous research studies in the areas of auditability , contract management processes, and...internal control components. Auditability in Public Organizations The literature on auditability reflects an organization’s transformation in its

  4. Strategically Assessing International Business Course-Specific Learning Aims

    ERIC Educational Resources Information Center

    Kashlak, Roger; Lorenzi, Peter; Cummings, Jeffrey

    2007-01-01

    During the past 30 years, there have been calls for universities and business schools to internationalize curriculum, students and faculty. As most U.S. business schools have added international components to their respective programs, the assessment of these programs was subsequently recommended from accreditation and competitive perspectives. To…

  5. A method for calculating Bayesian uncertainties on internal doses resulting from complex occupational exposures.

    PubMed

    Puncher, M; Birchall, A; Bull, R K

    2012-08-01

    Estimating uncertainties on doses from bioassay data is of interest in epidemiology studies that estimate cancer risk from occupational exposures to radionuclides. Bayesian methods provide a logical framework to calculate these uncertainties. However, occupational exposures often consist of many intakes, and this can make the Bayesian calculation computationally intractable. This paper describes a novel strategy for increasing the computational speed of the calculation by simplifying the intake pattern to a single composite intake, termed as complex intake regime (CIR). In order to assess whether this approximation is accurate and fast enough for practical purposes, the method is implemented by the Weighted Likelihood Monte Carlo Sampling (WeLMoS) method and evaluated by comparing its performance with a Markov Chain Monte Carlo (MCMC) method. The MCMC method gives the full solution (all intakes are independent), but is very computationally intensive to apply routinely. Posterior distributions of model parameter values, intakes and doses are calculated for a representative sample of plutonium workers from the United Kingdom Atomic Energy cohort using the WeLMoS method with the CIR and the MCMC method. The distributions are in good agreement: posterior means and Q(0.025) and Q(0.975) quantiles are typically within 20 %. Furthermore, the WeLMoS method using the CIR converges quickly: a typical case history takes around 10-20 min on a fast workstation, whereas the MCMC method took around 12-72 hr. The advantages and disadvantages of the method are discussed.

  6. Assessing health impact assessment: multidisciplinary and international perspectives

    PubMed Central

    Krieger, N; Northridge, M; Gruskin, S; Quinn, M; Kriebel, D; Davey, S; Bassett, M; Rehkopf, D; Miller, C

    2003-01-01

    Health impact assessment (HIA) seeks to expand evaluation of policy and programmes in all sectors, both private and public, to include their impact on population health. While the idea that the public's health is affected by a broad array of social and economic policies is not new and dates back well over two centuries, what is new is the notion—increasingly adopted by major health institutions, such as the World Health Organisation (WHO) and the United Kingdom National Health Services (NHS)—that health should be an explicit consideration when evaluating all public policies. In this article, it is argued that while HIA has the potential to enhance recognition of societal determinants of health and of intersectoral responsibility for health, its pitfalls warrant critical attention. Greater clarity is required regarding criteria for initiating, conducting, and completing HIA, including rules pertaining to decision making, enforcement, compliance, plus paying for their conduct. Critical debate over the promise, process, and pitfalls of HIA needs to be informed by multiple disciplines and perspectives from diverse people and regions of the world. PMID:12933768

  7. [ESTIMATION OF IONIZING RADIATION EFFECTIVE DOSES IN THE INTERNATIONAL SPACE STATION CREWS BY THE METHOD OF CALCULATION MODELING].

    PubMed

    Mitrikas, V G

    2015-01-01

    Monitoring of the radiation loading on cosmonauts requires calculation of absorbed dose dynamics with regard to the stay of cosmonauts in specific compartments of the space vehicle that differ in shielding properties and lack means of radiation measurement. The paper discusses different aspects of calculation modeling of radiation effects on human body organs and tissues and reviews the effective dose estimates for cosmonauts working in one or another compartment over the previous period of the International space station operation. It was demonstrated that doses measured by a real or personal dosimeters can be used to calculate effective dose values. Correct estimation of accumulated effective dose can be ensured by consideration for time course of the space radiation quality factor.

  8. The Chernobyl Accident 20 Years On: An Assessment of the Health Consequences and the International Response

    PubMed Central

    Baverstock, Keith; Williams, Dillwyn

    2006-01-01

    Background The Chernobyl accident in 1986 caused widespread radioactive contamination and enormous concern. Twenty years later, the World Health Organization and the International Atomic Energy Authority issued a generally reassuring statement about the consequences. Accurate assessment of the consequences is important to the current debate on nuclear power. Objectives Our objectives in this study were to evaluate the health impact of the Chernobyl accident, assess the international response to the accident, and consider how to improve responses to future accidents. Discussion So far, radiation to the thyroid from radioisotopes of iodine has caused several thousand cases of thyroid cancer but very few deaths; exposed children were most susceptible. The focus on thyroid cancer has diverted attention from possible nonthyroid effects, such as mini-satellite instability, which is potentially important. The international response to the accident was inadequate and uncoordinated, and has been unjustifiably reassuring. Accurate assessment of Chernobyl’s future health effects is not currently possible in the light of dose uncertainties, current debates over radiation actions, and the lessons from the late consequences of atomic bomb exposure. Conclusions Because of the uncertainties over the dose from and the consequences of the Chernobyl accident, it is essential that investigations of its effects should be broadened and supported for the long term. Because of the problems with the international response to Chernobyl, the United Nations should initiate an independent review of the actions and assignments of the agencies concerned, with recommendations for dealing with future international-scale accidents. These should involve independent scientists and ensure cooperation rather than rivalry. PMID:16966081

  9. 4D cone beam CT-based dose assessment for SBRT lung cancer treatment

    NASA Astrophysics Data System (ADS)

    Cai, Weixing; Dhou, Salam; Cifter, Fulya; Myronakis, Marios; Hurwitz, Martina H.; Williams, Christopher L.; Berbeco, Ross I.; Seco, Joao; Lewis, John H.

    2016-01-01

    The purpose of this research is to develop a 4DCBCT-based dose assessment method for calculating actual delivered dose for patients with significant respiratory motion or anatomical changes during the course of SBRT. To address the limitation of 4DCT-based dose assessment, we propose to calculate the delivered dose using time-varying (‘fluoroscopic’) 3D patient images generated from a 4DCBCT-based motion model. The method includes four steps: (1) before each treatment, 4DCBCT data is acquired with the patient in treatment position, based on which a patient-specific motion model is created using a principal components analysis algorithm. (2) During treatment, 2D time-varying kV projection images are continuously acquired, from which time-varying ‘fluoroscopic’ 3D images of the patient are reconstructed using the motion model. (3) Lateral truncation artifacts are corrected using planning 4DCT images. (4) The 3D dose distribution is computed for each timepoint in the set of 3D fluoroscopic images, from which the total effective 3D delivered dose is calculated by accumulating deformed dose distributions. This approach is validated using six modified XCAT phantoms with lung tumors and different respiratory motions derived from patient data. The estimated doses are compared to that calculated using ground-truth XCAT phantoms. For each XCAT phantom, the calculated delivered tumor dose values generally follow the same trend as that of the ground truth and at most timepoints the difference is less than 5%. For the overall delivered dose, the normalized error of calculated 3D dose distribution is generally less than 3% and the tumor D95 error is less than 1.5%. XCAT phantom studies indicate the potential of the proposed method to accurately estimate 3D tumor dose distributions for SBRT lung treatment based on 4DCBCT imaging and motion modeling. Further research is necessary to investigate its performance for clinical patient data.

  10. The principal results of the International Immune Tolerance Study: a randomized dose comparison.

    PubMed

    Hay, Charles R M; DiMichele, Donna M

    2012-02-09

    The International Immune Tolerance Study was a multicenter, prospective, randomized comparison of high-dose (HD; 200 IU/kg/d) and low-dose (LD; 50 IU/kg 3 times/week) factor VIII regimens in 115 "good-risk," severe high-titer inhibitor hemophilia A subjects. Sixty-six of 115 subjects reached the defined study end points: success, n = 46 (69.7%); partial response, n = 3 (4.5%); and failure, n = 17 (25.8%). Successes did not differ between treatment arms (24 of 58 LD vs 22/57 HD, P = .909). The times taken to achieve a negative titer (P = .027), a normal recovery (P = .002), and tolerance (P = .116, nonsignificant) were shorter with the HD immune tolerance induction (ITI). Peak historical (P = .026) and on-ITI (P = .002) titers were correlated inversely with success, but only peak titer on ITI predicted outcome in a multivariate analysis (P = .002). LD subjects bled more often (odds ratio, 2.2; P = .0019). The early bleed rate/month was 0.62 (LD) and 0.28 (HD; P = .000 24), decreasing by 90% once negative titers were achieved. Bleeding was absent in 8 of 58 LD versus 21 of 57 HD subjects (P = .0085). One hundred twenty-four central catheter infections were reported in 41 subjects (19 LD); infection frequency did not differ between the treatment arms. Neither bleeding nor infection influenced outcome. Although it was stopped early for futility and safety considerations, this trial contributed valuable data toward evidence-based ITI practice.

  11. ANDROS: A code for Assessment of Nuclide Doses and Risks with Option Selection

    SciTech Connect

    Begovich, C.L.; Sjoreen, A.L.; Ohr, S.Y.; Chester, R.O.

    1986-11-01

    ANDROS (Assessment of Nuclide Doses and Risks with Option Selection) is a computer code written to compute doses and health effects from atmospheric releases of radionuclides. ANDROS has been designed as an integral part of the CRRIS (Computerized Radiological Risk Investigation System). ANDROS reads air concentrations and environmental concentrations of radionuclides to produce tables of specified doses and health effects to selected organs via selected pathways (e.g., ingestion or air immersion). The calculation may be done for an individual at a specific location or for the population of the whole assessment grid. The user may request tables of specific effects for every assessment grid location. Along with the radionuclide concentrations, the code requires radionuclide decay data, dose and risk factors, and location-specific data, all of which are available within the CRRIS. This document is a user manual for ANDROS and presents the methodology used in this code.

  12. A biosphere modeling methodology for dose assessments of the potential Yucca Mountain deep geological high level radioactive waste repository.

    PubMed

    Watkins, B M; Smith, G M; Little, R H; Kessler, J

    1999-04-01

    Recent developments in performance standards for proposed high level radioactive waste disposal at Yucca Mountain suggest that health risk or dose rate limits will likely be part of future standards. Approaches to the development of biosphere modeling and dose assessments for Yucca Mountain have been relatively lacking in previous performance assessments due to the absence of such a requirement. This paper describes a practical methodology used to develop a biosphere model appropriate for calculating doses from use of well water by hypothetical individuals due to discharges of contaminated groundwater into a deep well. The biosphere model methodology, developed in parallel with the BIOMOVS II international study, allows a transparent recording of the decisions at each step, from the specification of the biosphere assessment context through to model development and analysis of results. A list of features, events, and processes relevant to Yucca Mountain was recorded and an interaction matrix developed to help identify relationships between them. Special consideration was given to critical/potential exposure group issues and approaches. The conceptual model of the biosphere system was then developed, based on the interaction matrix, to show how radionuclides migrate and accumulate in the biosphere media and result in potential exposure pathways. A mathematical dose assessment model was specified using the flexible AMBER software application, which allows users to construct their own compartment models. The starting point for the biosphere calculations was a unit flux of each radionuclide from the groundwater in the geosphere into the drinking water in the well. For each of the 26 radionuclides considered, the most significant exposure pathways for hypothetical individuals were identified. For 14 of the radionuclides, the primary exposure pathways were identified as consumption of various crops and animal products following assumed agricultural use of the contaminated

  13. The relevance of international assessments to GRAS determinations.

    PubMed

    Kruger, Claire

    2016-08-01

    A discussion of the risk assessment process as applied to the Generally Recognized As Safe (GRAS) determination of safety for new ingredients can benefit from an international perspective. When we think about how risk assessments are performed around the world it is critical to assess what can be learned. What are the similarities? What are the differences? What are the takeaways? It is important to talk about the similarities in processes, because it validates the approach taken by risk assessors who are charged with protecting the food supply. It is also instructive to evaluate the differences in order to determine where improvements can be made to our process.

  14. Assessment of adequacy of hemodialysis dose at a Palestinian hospital.

    PubMed

    Adas, Heba; Al-Ramahi, Rowa; Jaradat, Nidal; Badran, Rand

    2014-03-01

    Adequacy of hemodialysis improves patient survival, quality of life and biochemical outcomes and minimizes disease complications and hospitalizations. This study was an observational cross-sectional study that was conducted in July 2012. Blood tests, weight and blood pressure were measured before and after hemodialysis. Single-pool Kt/V and urea reduction ratio (URR) were calculated. The targets based on the National Kidney Foundation Disease Outcomes Quality Initiative (KDOQI) Clinical Practice Guidelines were Kt/V ≥ 1.2 and URR ≥ 65%. Of the 64 patients, 41 (64.1%) were males. The mean age of the patients was 58.13 ± 17.2 years. The mean body mass index (BMI) was 25.04 ± 5.01 kg/m 2 . The mean Kt/V and URR were 1.06 ± 0.05 and 54.4 ± 19.3, respectively. There was no significant difference between men and women (1.06 ± 0.47 versus 1.04 ± 0.55, P = 0.863) and (54.7 ± 19.59 versus 53.81 ± 19.17, P = 0.296). Only 25 (39.1%) patients achieved the Kt/V goal and only 22 (34.4%) had target URR, and there was no significant association between hemodialysis adequacy and any of the variables such as sex, age, presence of chronic diseases or BMI. Serum potassium levels post-dialysis were significantly lower in patients who reached the target Kt/V (mean = 3.44 ± 0.48 versus 3.88 ± 0.48, P = 0.001). Most patients were inadequately dialyzed and a large percentage of the patients did not attain the targets. Attempts to achieve the desired goals are necessary. It is important to calculate Kt/V or URR and individualize the dialysis doses for each patient.

  15. Gene Expression Response of Mice after a Single Dose of 137Cs as an Internal Emitter

    PubMed Central

    Paul, Sunirmal; Ghandhi, Shanaz A.; Weber, Waylon; Doyle-Eisele, Melanie; Melo, Dunstana; Guilmette, Raymond; Amundson, Sally A.

    2014-01-01

    Cesium-137 is a radionuclide of concern in fallout from reactor accidents or nuclear detonations. When ingested or inhaled, it can expose the entire body for an extended period of time, potentially contributing to serious health consequences ranging from acute radiation syndrome to increased cancer risks. To identify changes in gene expression that may be informative for detecting such exposure, and to begin examining the molecular responses involved, we have profiled global gene expression in blood of male C57BL/6 mice injected with 137CsCl. We extracted RNA from the blood of control or 137CsCl-injected mice at 2, 3, 5, 20 or 30 days after exposure. Gene expression was measured using Agilent Whole Mouse Genome Microarrays, and the data was analyzed using BRB-ArrayTools. Between 466–6,213 genes were differentially expressed, depending on the time after 137Cs administration. At early times (2–3 days), the majority of responsive genes were expressed above control levels, while at later times (20–30 days) most responding genes were expressed below control levels. Numerous genes were overexpressed by day 2 or 3, and then underexpressed by day 20 or 30, including many Tp53-regulated genes. The same pattern was seen among significantly enriched gene ontology categories, including those related to nucleotide binding, protein localization and modification, actin and the cytoskeleton, and in the integrin signaling canonical pathway. We compared the expression of several genes three days after 137CsCl injection and three days after an acute external gamma-ray exposure, and found that the internal exposure appeared to produce a more sustained response. Many common radiation-responsive genes are altered by internally administered 137Cs, but the gene expression pattern resulting from continued irradiation at a decreasing dose rate is extremely complex, and appears to involve a late reversal of much of the initial response. PMID:25162453

  16. Assessment of the radiological impact of gamma and radon dose rates at former U mining sites in Tajikistan.

    PubMed

    Lespukh, E; Stegnar, P; Yunusov, M; Tilloboev, H; Zyazev, G; Kayukov, P; Hosseini, A; Strømman, G; Salbu, B

    2013-12-01

    An assessment of the radiological situation due to exposure to gamma radiation, radon ((222)Rn) and thoron ((220)Rn) was carried out at former uranium (U) mining and processing sites in Taboshar and at Digmai in Tajikistan. Gamma dose rate measurements were made using various field instruments. (222)Rn/(220)Rn measurements were carried out with field instruments for instantaneous measurements and then discriminative (222)Rn/(220)Rn solid state nuclear track detectors (SSNTD) were used for longer representative measurements. The detectors were exposed for an extended period of time in different outdoor and indoor public and residential environments at the selected U legacy sites. The results showed that gamma, (222)Rn and (220)Rn doses were in general low, which consequently implies a low to relatively low radiological risk. The radiation doses deriving from external radiation (gamma dose rate), indoor (222)Rn and (220)Rn with their short-lived progenies did not exceed national or international standards. At none of the sites investigated did the average individual annual effective doses exceed 10 mSv, the recommended threshold value for the general public. A radiation hazard could be associated with exceptional situations, such as elevated exposures to ionizing radiation at the Digmai tailings site and/or in industrial facilities, where gamma and (222)Rn/(220)Rn dose rates could reach values of several 10 mSv/a. Current doses of ionizing radiation do not represent a hazard to the health of the resident public, with the exception of some specific situations. These issues should be adequately addressed to further reduce needless exposure of the resident public to ionizing radiation.

  17. Guidelines and Ethical Considerations for Assessment Center Operations: International Task Force on Assessment Center Guidelines.

    ERIC Educational Resources Information Center

    Public Personnel Management, 2000

    2000-01-01

    This update of the International Personnel Management Association's guidelines for organizational psychologists, human resource management specialists, and others addresses elements of assessment centers, policy statements, assessor training, informed participation, and participants' rights. (SK)

  18. Displaying 3D radiation dose on endoscopic video for therapeutic assessment and surgical guidance.

    PubMed

    Qiu, Jimmy; Hope, Andrew J; Cho, B C John; Sharpe, Michael B; Dickie, Colleen I; DaCosta, Ralph S; Jaffray, David A; Weersink, Robert A

    2012-10-21

    We have developed a method to register and display 3D parametric data, in particular radiation dose, on two-dimensional endoscopic images. This registration of radiation dose to endoscopic or optical imaging may be valuable in assessment of normal tissue response to radiation, and visualization of radiated tissues in patients receiving post-radiation surgery. Electromagnetic sensors embedded in a flexible endoscope were used to track the position and orientation of the endoscope allowing registration of 2D endoscopic images to CT volumetric images and radiation doses planned with respect to these images. A surface was rendered from the CT image based on the air/tissue threshold, creating a virtual endoscopic view analogous to the real endoscopic view. Radiation dose at the surface or at known depth below the surface was assigned to each segment of the virtual surface. Dose could be displayed as either a colorwash on this surface or surface isodose lines. By assigning transparency levels to each surface segment based on dose or isoline location, the virtual dose display was overlaid onto the real endoscope image. Spatial accuracy of the dose display was tested using a cylindrical phantom with a treatment plan created for the phantom that matched dose levels with grid lines on the phantom surface. The accuracy of the dose display in these phantoms was 0.8-0.99 mm. To demonstrate clinical feasibility of this approach, the dose display was also tested on clinical data of a patient with laryngeal cancer treated with radiation therapy, with estimated display accuracy of ∼2-3 mm. The utility of the dose display for registration of radiation dose information to the surgical field was further demonstrated in a mock sarcoma case using a leg phantom. With direct overlay of radiation dose on endoscopic imaging, tissue toxicities and tumor response in endoluminal organs can be directly correlated with the actual tissue dose, offering a more nuanced assessment of normal tissue

  19. ACS/HRC Internal Assessment of Data Quality

    NASA Astrophysics Data System (ADS)

    Sirianni, Marco

    2006-07-01

    This program will assess the functionality of HRC after the ACS Suspend event that occurred on day 266 2006.A series of Bias, 0.1 sec pseudo dark, Dark and internal flat will be executed through amps A and B to assessdata quality.10-09-2006 : visits 01-03 should be withdrawn. 10-10-2006: visits 04-07 contains bias and dark frames to allow the creation of reference files using the standardamount of images. Two pairs of internal flats have been added for sanity checks.

  20. International Global Crop Condition Assessments in the framework of GEOGLAM

    NASA Astrophysics Data System (ADS)

    Becker-Reshef, I.; Justice, C. O.; Vermote, E.; Whitcraft, A. K.; Claverie, M.

    2013-12-01

    The Group on Earth Observations (partnership of governments and international organizations) developed the Global Agricultural Monitoring (GEOGLAM) initiative in response to the growing calls for improved agricultural information. The goal of GEOGLAM is to strengthen the international community's capacity to produce and disseminate relevant, timely and accurate forecasts of agricultural production at national, regional and global scales through the use of Earth observations. This initiative is designed to build on existing agricultural monitoring initiatives at national, regional and global levels and to enhance and strengthen them through international networking, operationally focused research, and data/method sharing. GEOGLAM was adopted by the G20 as part of the action plan on food price volatility and agriculture and is being implemented through building on the extensive GEO Agricultural Community of Practice (CoP) that was initiated in 2007 and includes key national and international agencies, organizations, and universities involved in agricultural monitoring. One of the early GEOGLAM activities is to provide harmonized global crop outlooks that offer timely qualitative consensus information on crop status and prospects. This activity is being developed in response to a request from the G-20 Agricultural Market Information System (AMIS) and is implemented within the global monitoring systems component of GEOGLAM. The goal is to develop a transparent, international, multi-source, consensus assessment of crop growing conditions, status, and agro-climatic conditions, likely to impact global production. These assessments are focused on the four primary crop types (corn, wheat, soy and rice) within the main agricultural producing regions of the world. The GEOGLAM approach is to bring together international experts from global, regional and national monitoring systems that can share and discuss information from a variety of independent complementary sources in

  1. [Environmental damage assessment: international regulations and revelation to China].

    PubMed

    Zhang, Hong-zhen; Cao, Dong; Yu, Fang; Wang, Jin-nan; Qi, Ji; Jia, Qian; Zhang, Tian-zhu; Luo, Yong-ming

    2013-05-01

    As the whole society gradually realizes the scarcity of nature resources and environmental value, countries all over the world have evolved and improved the system of environmental damage assessment through the practices of pollution prevention and ecological environmental protection. On one hand, in the research prospective, the practices of environmental damage assessment brought new challenges to environmental law, environmental economics, environmental science, environmental engineering, etc. On the other hand, they constantly promoted and developed relevant laws and regulations, techniques, working mechanism, and guidelines on procedure in practice. On the hasis of comparison and analysis of international practices and experiences from US, EU, and Japan, etc., this article identified relevant concepts, content, and scope of environmental damage assessment, and presented its scientific positioning and development direction. At present, both theory and practice of environmental damage assessment in China are in their infancy period. Considering current environmental situation and socioeconomic development features of China, learning international practices and experiences and raising the orientation of environmental damage assessment have great meaning in exploring the suitable environmental damage assessment system.

  2. Objective assessment of image quality and dose reduction in CT iterative reconstruction

    SciTech Connect

    Vaishnav, J. Y. Jung, W. C.; Popescu, L. M.; Zeng, R.; Myers, K. J.

    2014-07-15

    Purpose: Iterative reconstruction (IR) algorithms have the potential to reduce radiation dose in CT diagnostic imaging. As these algorithms become available on the market, a standardizable method of quantifying the dose reduction that a particular IR method can achieve would be valuable. Such a method would assist manufacturers in making promotional claims about dose reduction, buyers in comparing different devices, physicists in independently validating the claims, and the United States Food and Drug Administration in regulating the labeling of CT devices. However, the nonlinear nature of commercially available IR algorithms poses challenges to objectively assessing image quality, a necessary step in establishing the amount of dose reduction that a given IR algorithm can achieve without compromising that image quality. This review paper seeks to consolidate information relevant to objectively assessing the quality of CT IR images, and thereby measuring the level of dose reduction that a given IR algorithm can achieve. Methods: The authors discuss task-based methods for assessing the quality of CT IR images and evaluating dose reduction. Results: The authors explain and review recent literature on signal detection and localization tasks in CT IR image quality assessment, the design of an appropriate phantom for these tasks, possible choices of observers (including human and model observers), and methods of evaluating observer performance. Conclusions: Standardizing the measurement of dose reduction is a problem of broad interest to the CT community and to public health. A necessary step in the process is the objective assessment of CT image quality, for which various task-based methods may be suitable. This paper attempts to consolidate recent literature that is relevant to the development and implementation of task-based methods for the assessment of CT IR image quality.

  3. Assessment of the dose from radon and its decay products in the Bozkov dolomite cave.

    PubMed

    Rovenská, K; Thinová, L; Zdímal, V

    2008-01-01

    The dose from radon and its progeny remains a frequently discussed problem. ICRP 65 provides a commonly used methodology to calculate the dose from radon. Our work focuses on a cave environment and on assessing the doses in public open caves. The differences in conditions (aerosol size distribution, humidity, radon and its progeny ratio, etc.) are described by the so-called cave factor j. The cave factor is used to correct the dose for workers which is calculated using the ICRP 65 recommendation. In this work, the authors have brought together measured data of aerosol size distribution, unattached and attached fraction activity, and have calculated the so-called cave factor for the Bozkov dolomite cave environment. The dose conversion factors based on measured data and used for evaluating the cave factor were calculated by LUDEP software, which implements HRTM ICRP66.

  4. Identification and dose assessment of irradiated cardamom and cloves by EPR spectrometry

    NASA Astrophysics Data System (ADS)

    Beshir, W. B.

    2014-03-01

    The use of electron paramagnetic resonance spectroscopy to accurately distinguish irradiated from unirradiated cardamom and cloves and assesses the absorbed dose to radiation processed cardamom and cloves are examined. The results were successful for identifying both irradiated and unirradiated cardamom and cloves. Additive reirradiation of cardamom and cloves produces reproducible dose-response functions, which can be used to assess the initial dose by back-extrapolation. Third degree polynomial function was used to fit the EPR signal/dose curves. It was found that this 3rd degree polynomial function provides satisfactory results without correction of decay for free radicals. The stability of the radiation induced EPR signal of irradiated cardamom and cloves were studied over a storage period of almost 8 months.

  5. Radiological dose assessment related to management of naturally occurring radioactive materials generated by the petroleum industry

    SciTech Connect

    Smith, K.P.; Blunt, D.L.; Williams, G.P.; Tebes, C.L.

    1996-09-01

    A preliminary radiological dose assessment of equipment decontamination, subsurface disposal, landspreading, equipment smelting, and equipment burial was conducted to address concerns regarding the presence of naturally occurring radioactive materials (NORM) in production waste streams. The assessment estimated maximum individual dose equivalents for workers and the general public. Sensitivity analyses of certain input parameters also were conducted. On the basis of this assessment, it is concluded that (1) regulations requiring workers to wear respiratory protection during equipment cleaning operations are likely to result in lower worker doses, (2) underground injection and downhole encapsulation of NORM wastes present a negligible risk to the general public, and (3) potential doses to workers and the general public related to smelting NORM-contaminated equipment can be controlled by limiting the contamination level of the initial feed. It is recommended that (1) NORM wastes be further characterized to improve studies of potential radiological doses; (2) states be encouraged to permit subsurface disposal of NORM more readily, provided further assessments support this study; results; (3) further assessment of landspreading NORM wastes be conducted; and (4) the political, economic, sociological, and nonradiological issues related to smelting NORM-contaminated equipment be studied to fully examine the feasibility of this disposal option.

  6. Qualitative and quantitative approaches in the dose-response assessment of genotoxic carcinogens.

    PubMed

    Fukushima, Shoji; Gi, Min; Kakehashi, Anna; Wanibuchi, Hideki; Matsumoto, Michiharu

    2016-05-01

    Qualitative and quantitative approaches are important issues in field of carcinogenic risk assessment of the genotoxic carcinogens. Herein, we provide quantitative data on low-dose hepatocarcinogenicity studies for three genotoxic hepatocarcinogens: 2-amino-3,8-dimethylimidazo[4,5-f]quinoxaline (MeIQx), 2-amino-3-methylimidazo[4,5-f]quinoline (IQ) and N-nitrosodiethylamine (DEN). Hepatocarcinogenicity was examined by quantitative analysis of glutathione S-transferase placental form (GST-P) positive foci, which are the preneoplastic lesions in rat hepatocarcinogenesis and the endpoint carcinogenic marker in the rat liver medium-term carcinogenicity bioassay. We also examined DNA damage and gene mutations which occurred through the initiation stage of carcinogenesis. For the establishment of points of departure (PoD) from which the cancer-related risk can be estimated, we analyzed the above events by quantitative no-observed-effect level and benchmark dose approaches. MeIQx at low doses induced formation of DNA-MeIQx adducts; somewhat higher doses caused elevation of 8-hydroxy-2'-deoxyquanosine levels; at still higher doses gene mutations occurred; and the highest dose induced formation of GST-P positive foci. These data indicate that early genotoxic events in the pathway to carcinogenesis showed the expected trend of lower PoDs for earlier events in the carcinogenic process. Similarly, only the highest dose of IQ caused an increase in the number of GST-P positive foci in the liver, while IQ-DNA adduct formation was observed with low doses. Moreover, treatment with DEN at low doses had no effect on development of GST-P positive foci in the liver. These data on PoDs for the markers contribute to understand whether genotoxic carcinogens have a threshold for their carcinogenicity. The most appropriate approach to use in low dose-response assessment must be approved on the basis of scientific judgment.

  7. Evaluation of the neutron spectrum and dose assessment around the venus reactor.

    PubMed

    Coeck, Michèle; Vermeersch, Fernand; Vanhavere, Filip

    2005-01-01

    An assessment of the neutron field near the VENUS reactor is made in order to evaluate the neutron dose to the operators, particularly in an area near the reactor shielding and in the control room. Therefore, a full MCNPX model of the shielding geometry was developed. The source term used in the simulation is derived from a criticality calculation done beforehand. Calculations are compared to routine neutron dose rate measurements and show good agreement. The MCNPX model developed easily allows core adaptations in order to evaluate the effect of future core configuration on the neutron dose to the operators.

  8. The debate on the use of linear no threshold for assessing the effects of low doses.

    PubMed

    Tubiana, M; Aurengo, A; Averbeck, D; Masse, R

    2006-09-01

    From December 2004 to July 2005, three reports on the effects of low doses of ionising radiation were released: ICRP (2004), the joint report of the French Academies of Science and Medicine (Tubiana et al 2005), and a report from the American Academy of Sciences (BEIR VII 2005). These reports quote the same recent articles on the biological effects of low doses, yet their conclusions diverge. The French report concludes that recent biological data show that the efficacy of defense mechanisms is modulated by dose and dose rate and that linear no threshold (LNT) is no longer plausible. The ICRP and the BEIR VII reports recognise that there are biologic arguments against LNT but feel that there are not sufficient biological proofs against it to change risk assessment methodology and subsequent regulatory policy based on LNT. They point out the remaining uncertainties and the lack of mechanistic explanations of phenomena such as low dose hyperlethality or the adaptive response. In this context, a critical analysis of the available data is necessary. The epidemiological data and the experimental data challenge the validity of the LNT hypothesis for assessing the carcinogenic effect of low doses, but do not allow its exclusion. Therefore, the main criteria for selecting the most reliable dose-effect relationship from a scientific point of view should be based on biological data. Their analysis should help one to understand the current controversy.

  9. Assessing the Clinical Impact of Approximations in Analytical Dose Calculations for Proton Therapy

    SciTech Connect

    Schuemann, Jan Giantsoudi, Drosoula; Grassberger, Clemens; Moteabbed, Maryam; Min, Chul Hee; Paganetti, Harald

    2015-08-01

    Purpose: To assess the impact of approximations in current analytical dose calculation methods (ADCs) on tumor control probability (TCP) in proton therapy. Methods: Dose distributions planned with ADC were compared with delivered dose distributions as determined by Monte Carlo simulations. A total of 50 patients were investigated in this analysis with 10 patients per site for 5 treatment sites (head and neck, lung, breast, prostate, liver). Differences were evaluated using dosimetric indices based on a dose-volume histogram analysis, a γ-index analysis, and estimations of TCP. Results: We found that ADC overestimated the target doses on average by 1% to 2% for all patients considered. The mean dose, D95, D50, and D02 (the dose value covering 95%, 50% and 2% of the target volume, respectively) were predicted within 5% of the delivered dose. The γ-index passing rate for target volumes was above 96% for a 3%/3 mm criterion. Differences in TCP were up to 2%, 2.5%, 6%, 6.5%, and 11% for liver and breast, prostate, head and neck, and lung patients, respectively. Differences in normal tissue complication probabilities for bladder and anterior rectum of prostate patients were less than 3%. Conclusion: Our results indicate that current dose calculation algorithms lead to underdosage of the target by as much as 5%, resulting in differences in TCP of up to 11%. To ensure full target coverage, advanced dose calculation methods like Monte Carlo simulations may be necessary in proton therapy. Monte Carlo simulations may also be required to avoid biases resulting from systematic discrepancies in calculated dose distributions for clinical trials comparing proton therapy with conventional radiation therapy.

  10. Evaluating quantitative formulas for dose-response assessment of chemical mixtures.

    PubMed

    Hertzberg, Richard C; Teuschler, Linda K

    2002-12-01

    Risk assessment formulas are often distinguished from dose-response models by being rough but necessary. The evaluation of these rough formulas is described here, using the example of mixture risk assessment. Two conditions make the dose-response part of mixture risk assessment difficult, lack of data on mixture dose-response relationships, and the need to address risk from combinations of chemicals because of public demands and statutory requirements. Consequently, the U.S. Environmental Protection Agency has developed methods for carrying out quantitative dose-response assessment for chemical mixtures that require information only on the toxicity of single chemicals and of chemical pair interactions. These formulas are based on plausible ideas and default parameters but minimal supporting data on whole mixtures. Because of this lack of mixture data, the usual evaluation of accuracy (predicted vs. observed) cannot be performed. Two approaches to the evaluation of such formulas are to consider fundamental biological concepts that support the quantitative formulas (e.g., toxicologic similarity) and to determine how well the proposed method performs under simplifying constraints (e.g., as the toxicologic interactions disappear). These ideas are illustrated using dose addition and two weight-of-evidence formulas for incorporating toxicologic interactions.

  11. Development and application of a tomographic model from CT images for calculating internal dose to a pregnant woman

    NASA Astrophysics Data System (ADS)

    Shi, Chengyu

    Assessment of radiation dose and possible risk to a pregnant woman and her fetus is an important task in radiation protection. Although stylized models for male and female patients of different ages have been developed, tomographic models for pregnant women have not been developed to date. This dissertation presents an effort to construct a partial-body model of a pregnant woman from a set of CT images. The patient was 30-weeks pregnant, and the CT scan covered the portion of the body between the lower breast and the upper thigh in 70 slices, each 7 mm thick. The image resolution was 512 x 512 pixels in a 48 cm x 48 cm field. The images were carefully segmented to identify 34 organs and tissues, It has been found that the masses are different from the Reference Woman. The characteristics of the resulting model is discussed and compared with one existing stylized mathematical model for pregnant women. Based on this tomographic model, a Monte Carlo code, EGS4-VLSI, was used to derive Specific Absorbed Fractions. Monoenergetic and isotropic photon and electron emitters distributed in different source organs were assumed and the energies ranged from 10 keV to 4 MeV for photons and from 100 keV to 4 MeV for electrons. The results for high energy (>50 keV) photons showed general agreement with previous studies, however, the results for lower energy (<50 keV) photons showed differences of up to several hundreds percent for some source and target organs. For electron results, several tens of percent differences were found. Those differences can be explained by mass differences and the relative geometry differences between source and target organs. In summary, the stylized models for pregnant women are satisfactory for a very large size patient for most of the photon energies (between 50 keV and 4 MeV). However, a tomographic model has to be used to obtain acceptable dose assessments for electrons. The newly calculated SAF data set can provide the nuclear medicine dosimetry

  12. Computed tomography dose assessment for a 160 mm wide, 320 detector row, cone beam CT scanner.

    PubMed

    Geleijns, J; Salvadó Artells, M; de Bruin, P W; Matter, R; Muramatsu, Y; McNitt-Gray, M F

    2009-05-21

    Computed tomography (CT) dosimetry should be adapted to the rapid developments in CT technology. Recently a 160 mm wide, 320 detector row, cone beam CT scanner that challenges the existing Computed Tomography Dose Index (CTDI) dosimetry paradigm was introduced. The purpose of this study was to assess dosimetric characteristics of this cone beam scanner, to study the appropriateness of existing CT dose metrics and to suggest a pragmatic approach for CT dosimetry for cone beam scanners. Dose measurements with a small Farmer-type ionization chamber and with 100 mm and 300 mm long pencil ionization chambers were performed free in air to characterize the cone beam. According to the most common dose metric in CT, namely CTDI, measurements were also performed in 150 mm and 350 mm long CT head and CT body dose phantoms with 100 mm and 300 mm long pencil ionization chambers, respectively. To explore effects that cannot be measured with ionization chambers, Monte Carlo (MC) simulations of the dose distribution in 150 mm, 350 mm and 700 mm long CT head and CT body phantoms were performed. To overcome inconsistencies in the definition of CTDI100 for the 160 mm wide cone beam CT scanner, doses were also expressed as the average absorbed dose within the pencil chamber (D100). Measurements free in air revealed excellent correspondence between CTDI300air and D100air, while CTDI100air substantially underestimates CTDI300air. Results of measurements in CT dose phantoms and corresponding MC simulations at centre and peripheral positions were weighted and revealed good agreement between CTDI300w, D100w and CTDI600w, while CTDI100w substantially underestimates CTDI300w. D100w provides a pragmatic metric for characterizing the dose of the 160 mm wide cone beam CT scanner. This quantity can be measured with the widely available 100 mm pencil ionization chamber within 150 mm long CT dose phantoms. CTDI300w measured in 350 mm long CT dose phantoms serves as an appropriate standard of

  13. Dose Assessment in Computed Tomography Examination and Establishment of Local Diagnostic Reference Levels in Mazandaran, Iran

    PubMed Central

    Janbabanezhad Toori, A.; Shabestani-Monfared, A.; Deevband, M.R.; Abdi, R.; Nabahati, M.

    2015-01-01

    Background Medical X-rays are the largest man-made source of public exposure to ionizing radiation. While the benefits of Computed Tomography (CT) are well known in accurate diagnosis, those benefits are not risk-free. CT is a device with higher patient dose in comparison with other conventional radiation procedures. Objective This study is aimed at evaluating radiation dose to patients from Computed Tomography (CT) examination in Mazandaran hospitals and defining diagnostic reference level (DRL). Methods Patient-related data on CT protocol for four common CT examinations including brain, sinus, chest and abdomen & pelvic were collected. In each center, Computed Tomography Dose Index (CTDI) measurements were performed using pencil ionization chamber and CT dosimetry phantom according to AAPM report No. 96 for those techniques. Then, Weighted Computed Tomography Dose Index (CTDIW), Volume Computed Tomography Dose Index (CTDI vol) and Dose Length Product (DLP) were calculated. Results The CTDIw for brain, sinus, chest and abdomen & pelvic ranged (15.6-73), (3.8-25. 8), (4.5-16.3) and (7-16.3), respectively. Values of DLP had a range of (197.4-981), (41.8-184), (131-342.3) and (283.6-486) for brain, sinus, chest and abdomen & pelvic, respectively. The 3rd quartile of CTDIW, derived from dose distribution for each examination is the proposed quantity for DRL. The DRLs of brain, sinus, chest and abdomen & pelvic are measured 59.5, 17, 7.8 and 11 mGy, respectively. Conclusion Results of this study demonstrated large scales of dose for the same examination among different centers. For all examinations, our values were lower than international reference doses. PMID:26688796

  14. An updated dose assessment for a U.S. Nuclear Test Site - Bikini Atoll

    SciTech Connect

    Robison, W.L.; Bogen, K.T.; Conrado, C.L.

    1995-10-01

    On March 1, 1954, a nuclear weapon test, code-named BRAVO, conducted at Bikini Atoll in the northern Marshall Islands contaminated the major residence island. There has been a continuing effort since 1977 to refine dose assessments for resettlement options at Bikini Atoll. Here we provide a radiological dose assessment for the main residence island, Bikini, using extensive radionuclide concentration data derived from analysis of food crops, ground water, cistern water, fish and other marine species, animals, air, and soil collected at Bikini Island as part of our continuing research and monitoring program that began in 1975. The unique composition of coral soil greatly alters the relative contribution of cesium-137 ({sup 137}Cs) and strontium-90 ({sup 90}Sr) to the total estimated dose relative to expectations based on North American and European soils. Without counter measures, cesium-137 produces 96% of the estimated dose for returning residents, mostly through uptake from the soil to terrestrial food crops but also from external gamma exposure. The doses are calculated assuming a resettlement date of 1999. The estimated maximum annual effective dose for current island conditions is 4.0 mSv when imported foods, which are now an established part of the diet, are available. The corresponding 30-, 50-, and 70-y integral effective doses are 9.1 cSv, 13 cSv, and 15 cSv, respectively. A corresponding uncertainty analysis showed that after about 5 y of residence, the 95% confidence limits on population-average dose would be {plus_minus}35% of its expected value. We have evaluated various countermeasures to reduce {sup 137}Cs in food crops. Treatment with potassium reduces the uptake of {sup 137}Cs into food crops, and therefore the ingestion dose, to about 5% of pretreatment levels and has essentially no negative environmental consequences.

  15. Comparison of 50-year and 70-year internal-dose-conversion factors

    SciTech Connect

    Ryan, M.T.; Dunning, D.E. Jr.

    1981-03-01

    The 50-year inhalation and ingestion dose commitments associated with an acute intake (of a radionuclide) of 3.7 x 10/sup 4/ Bq (1 ..mu..Ci) in one day were compared with the corresponding dose commitments calculated for a 70-year integration period resulting from a chronic intake of the same amount at a rate of 101 Bq/d (0.00274 ..mu..Ci/d) for one year. These values, known as dose conversion factors, estimate the dose accumulated during a given period of time following a unit of intake of a radionuclide. It was demonstrated that the acute intake of 3.7 x 10/sup 4/ Bq in one day and the chronic intake of 101 Bq/d for one year (a total intake of 3.7 x 10/sup 4/ Bq) result in essentially the same dose commitment for a relatively long integration period. Therefore, the comparison of 50-year acute dose conversion factors and 70-year chronic dose conversion factors is essentially only a measure of the additional dose accumulated in the 50 to 70 year period. It was found that for radionuclides with atomic mass less than 200 the percent difference in the 70-year and 50-year dose conversion factors was essentially zero in most cases. Differences of approximately 5 to 50% were obtained for dose conversion factors for most alpha emitters with atomic masses of greater than 200. Comparisons were made on the basis of both organ dose equivalent and effective dose equivalent. The implications and significance of these results are discussed.

  16. Factors that elevate the internal radionuclide and chemical retention, dose and health risks to infants and children in a radiological-nuclear emergency.

    PubMed

    Richardson, Richard B

    2009-06-01

    The factors that influence the dose and risk to vulnerable population groups from exposure and internal uptake of chemicals are examined and, in particular, the radionuclides released in chemical, biological, radiological, nuclear and explosive events. The paper seeks to identify the areas that would benefit from further research. The intake and body burdens of carbon and calcium were assessed as surrogates for contaminants that either act like or bind to hydrocarbons (e.g. tritium and (14)C) or bone-seeking radionuclides (e.g. (90)Sr and (239)Pu). The shortest turnover times for such materials in the whole body were evaluated for the newborn: 11 d and 0.5 y for carbon and calcium, respectively. However, their biokinetic behaviour is complicated by a particularly high percentage of the gut-absorbed dietary intake of carbon (approximately 16%) and calcium (approximately 100%) that is incorporated into the soft tissue and skeleton of the growing neonate. The International Commission on Radiological Protection dose coefficients (Sv Bq(-1)) were examined for 14 radionuclides, including 9 of concern because of their potential use in radiological dispersal devices. The dose coefficients for a 3-month-old are greater than those for adults (2-56 times more for ingestion and 2-12 times for inhalation). The age-dependent dose and exposure assessment of contaminant intakes would improve by accounting for gender and growth where it is currently neglected. Health risk is evaluated as the product of the exposure and hazard factors, the latter being about 10-fold greater in infants than in adults. The exposure factor is also approximately 10-fold higher for ingestion by infants than by adults, and unity for inhalation varying with the contaminant. Qualitative and quantitative physiological and epidemiological evidence supports infants being more vulnerable to cancer and neurological deficit than older children.

  17. Psychological assessment in XLMR: a proposal for setting international standards.

    PubMed

    Fisch, G S

    2000-01-01

    The need for an agreed upon set of standards for assessing individuals with XLMR was made quite evident this past year at the Fragile X and XLMR Workshop in Strasbourg. Several affected individuals from different families may have been incorrectly diagnosed as MR. Many factors can have a negative affect on IQ testing. As a result, evaluating individuals with cognitive deficits can be problematic. To be effective, psychological assessments must produce uniform results that are consistent with the definition of MR. Therefore, to foster international research in XLMR. I propose a two-stage standardized protocol. To determine which tests may be suitable. I review an assortment of instruments for psychological assessment at each stage, noting their strengths and weaknesses. Afterward, I present a set of standardized protocols based on age and language ability.

  18. Lifetime Effective Dose Assessment Based on Background Outdoor Gamma Exposure in Chihuahua City, Mexico.

    PubMed

    Luevano-Gurrola, Sergio; Perez-Tapia, Angelica; Pinedo-Alvarez, Carmelo; Carrillo-Flores, Jorge; Montero-Cabrera, Maria Elena; Renteria-Villalobos, Marusia

    2015-09-30

    Determining ionizing radiation in a geographic area serves to assess its effects on a population's health. The aim of this study was to evaluate the spatial distribution of the background environmental outdoor gamma dose rates in Chihuahua City. This study also estimated the annual effective dose and the lifetime cancer risks of the population of this city. To determine the outdoor gamma dose rate in air, the annual effective dose and the lifetime cancer risk, 48 sampling points were randomly selected in Chihuahua City. Outdoor gamma dose rate measurements were carried out by using a Geiger-Müller counter. Outdoor gamma dose rates ranged from 113 to 310 nGy·h(-1). At the same sites, 48 soil samples were taken to obtain the activity concentrations of (226)Ra, (232)Th and (40)K and to calculate their terrestrial gamma dose rates. Radioisotope activity concentrations were determined by gamma spectrometry. Calculated gamma dose rates ranged from 56 to 193 nGy·h(-1). Results indicated that the lifetime effective dose of the inhabitants of Chihuahua City is on average 19.8 mSv, resulting in a lifetime cancer risk of 0.001. In addition, the mean of the activity concentrations in soil were 52, 73 and 1097 Bq·kg(-1), for (226)Ra, (232)Th and (40)K, respectively. From the analysis, the spatial distribution of (232)Th, (226)Ra and (40)K is to the north, to the north-center and to the south of city, respectively. In conclusion, the natural background gamma dose received by the inhabitants of Chihuahua City is high and mainly due to the geological characteristics of the zone. From the radiological point of view, this kind of study allows us to identify the importance of manmade environments, which are often highly variable and difficult to characterize.

  19. Lifetime Effective Dose Assessment Based on Background Outdoor Gamma Exposure in Chihuahua City, Mexico

    PubMed Central

    Luevano-Gurrola, Sergio; Perez-Tapia, Angelica; Pinedo-Alvarez, Carmelo; Carrillo-Flores, Jorge; Montero-Cabrera, Maria Elena; Renteria-Villalobos, Marusia

    2015-01-01

    Determining ionizing radiation in a geographic area serves to assess its effects on a population’s health. The aim of this study was to evaluate the spatial distribution of the background environmental outdoor gamma dose rates in Chihuahua City. This study also estimated the annual effective dose and the lifetime cancer risks of the population of this city. To determine the outdoor gamma dose rate in air, the annual effective dose and the lifetime cancer risk, 48 sampling points were randomly selected in Chihuahua City. Outdoor gamma dose rate measurements were carried out by using a Geiger-Müller counter. Outdoor gamma dose rates ranged from 113 to 310 nGy·h−1. At the same sites, 48 soil samples were taken to obtain the activity concentrations of 226Ra, 232Th and 40K and to calculate their terrestrial gamma dose rates. Radioisotope activity concentrations were determined by gamma spectrometry. Calculated gamma dose rates ranged from 56 to 193 nGy·h−1. Results indicated that the lifetime effective dose of the inhabitants of Chihuahua City is on average 19.8 mSv, resulting in a lifetime cancer risk of 0.001. In addition, the mean of the activity concentrations in soil were 52, 73 and 1097 Bq·kg−1, for 226Ra, 232Th and 40K, respectively. From the analysis, the spatial distribution of 232Th, 226Ra and 40K is to the north, to the north-center and to the south of city, respectively. In conclusion, the natural background gamma dose received by the inhabitants of Chihuahua City is high and mainly due to the geological characteristics of the zone. From the radiological point of view, this kind of study allows us to identify the importance of manmade environments, which are often highly variable and difficult to characterize. PMID:26437425

  20. Fetal dose assessment from invasive special procedures by Monte Carlo methods.

    PubMed

    Metzger, R L; Van Riper, K A

    1999-08-01

    The assessment of fetal dose from a special procedure in the clinical environment is difficult as patient size, fluoroscopic beam motion, and imaging sequences vary significantly from study to study. Fetal dose is particularly difficult to estimate when the fetus is exposed partially or totally to scatter radiation from images taken in other locations of the mother's body. A method to reliably estimate fetal dose has been developed by using template based input files for the Monte Carlo radiation transport code MCNP. Female patient phantoms at 0, 3, 6, and 9 months of pregnancy and source terms for common diagnostic tube potentials are used to rapidly build an input file for MCNP. The phantoms can be easily modified to fit patient shape. The geometry and beam location for each type of image acquired (i.e. fluoroscopy, spot filming, etc.) is verified by the use of a 3D visualization code (Sabrina). MCNP is then run to estimate the dose to the embryo/fetus and the exposure to skin entrance (ESE) for the beam being modeled. The actual ESE for the beam is then measured with ion chambers and the fetal dose is determined from the MCNP supplied ratio of ESE to fetal dose. Runs are made for each type of imaging and the doses are summed for the total fetal dose. For most procedures, the method can provide an estimate of the fetal dose within one day of the study. The method can also be used to prospectively model a study in order to choose imaging sequences that will minimize fetal dose.

  1. Effect of low-dose CT and iterative reconstruction on trabecular bone microstructure assessment

    NASA Astrophysics Data System (ADS)

    Kopp, Felix K.; Baum, Thomas; Nasirudin, Radin A.; Mei, Kai; Garcia, Eduardo G.; Burgkart, Rainer; Rummeny, Ernst J.; Bauer, Jan S.; Noël, Peter B.

    2016-03-01

    The trabecular bone microstructure is an important factor in the development of osteoporosis. It is well known that its deterioration is one effect when osteoporosis occurs. Previous research showed that the analysis of trabecular bone microstructure enables more precise diagnoses of osteoporosis compared to a sole measurement of the mineral density. Microstructure parameters are assessed on volumetric images of the bone acquired either with high-resolution magnetic resonance imaging, high-resolution peripheral quantitative computed tomography or high-resolution computed tomography (CT), with only CT being applicable to the spine, which is one of clinically most relevant fracture sites. However, due to the high radiation exposure for imaging the whole spine these measurements are not applicable in current clinical routine. In this work, twelve vertebrae from three different donors were scanned with standard and low radiation dose. Trabecular bone microstructure parameters were assessed for CT images reconstructed with statistical iterative reconstruction (SIR) and analytical filtered backprojection (FBP). The resulting structure parameters were correlated to the biomechanically determined fracture load of each vertebra. Microstructure parameters assessed for low-dose data reconstructed with SIR significantly correlated with fracture loads as well as parameters assessed for standard-dose data reconstructed with FBP. Ideal results were achieved with low to zero regularization strength yielding microstructure parameters not significantly different from those assessed for standard-dose FPB data. Moreover, in comparison to other approaches, superior noise-resolution trade-offs can be found with the proposed methods.

  2. Effect of Low-Dose MDCT and Iterative Reconstruction on Trabecular Bone Microstructure Assessment

    PubMed Central

    Baum, Thomas; Nasirudin, Radin A.; Mei, Kai; Garcia, Eduardo G.; Burgkart, Rainer; Rummeny, Ernst J.; Kirschke, Jan S.; Noël, Peter B.

    2016-01-01

    We investigated the effects of low-dose multi detector computed tomography (MDCT) in combination with statistical iterative reconstruction algorithms on trabecular bone microstructure parameters. Twelve donated vertebrae were scanned with the routine radiation exposure used in our department (standard-dose) and a low-dose protocol. Reconstructions were performed with filtered backprojection (FBP) and maximum-likelihood based statistical iterative reconstruction (SIR). Trabecular bone microstructure parameters were assessed and statistically compared for each reconstruction. Moreover, fracture loads of the vertebrae were biomechanically determined and correlated to the assessed microstructure parameters. Trabecular bone microstructure parameters based on low-dose MDCT and SIR significantly correlated with vertebral bone strength. There was no significant difference between microstructure parameters calculated on low-dose SIR and standard-dose FBP images. However, the results revealed a strong dependency on the regularization strength applied during SIR. It was observed that stronger regularization might corrupt the microstructure analysis, because the trabecular structure is a very small detail that might get lost during the regularization process. As a consequence, the introduction of SIR for trabecular bone microstructure analysis requires a specific optimization of the regularization parameters. Moreover, in comparison to other approaches, superior noise-resolution trade-offs can be found with the proposed methods. PMID:27447827

  3. MOVING FROM EXTERNAL EXPOSURE CONCENTRATION TO INTERNAL DOSE: DURATION EXTRAPOLATION BASED ON PHYSIOLOGICALLY-BASED PHARMACOKINETIC-MODEL DERIVED ESTIMATES OF INTERNAL DOSE

    EPA Science Inventory

    The potential human health risk(s) from exposure to chemicals under conditions for which adequate human or animal data are not available must frequently be assessed. Exposure scenario is particularly important for the acute neurotoxic effects of volatile organic compounds (VOCs)...

  4. 10 CFR 20.1502 - Conditions requiring individual monitoring of external and internal occupational dose.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... the entire pregnancy, from radiation sources external to the body, a deep dose equivalent in excess of... likely to receive, in 1 year, an intake in excess of 10 percent of the applicable ALI(s) in table 1..., during the entire pregnancy, a committed effective dose equivalent in excess of 0.1 rem (1 mSv)....

  5. A A field test for extremity dose assessment during outages at Korean nuclear power plants.

    PubMed

    Kim, Hee Geun; Kong, Tae Young

    2013-05-01

    During maintenance on the water chamber of a steam generator, the pressuriser heater and the pressure tube feeder in nuclear power plants, workers are likely to receive high radiation doses due to the severe workplace conditions. In particular, it is expected that workers' hands would receive the highest radiation doses because of their contact with the radioactive materials. In this study, field tests for extremity dose assessments in radiation workers undertaking contact tasks with high radiation doses were conducted during outages at pressurised water reactors and pressurised heavy water reactors in Korea. In the test, the radiation workers were required to wear additional thermoluminescent dosemeters (TLDs) on their backs and wrists and an extremity dosemeter on the finger, as well as a main TLD on the chest while performing the maintenance tasks.

  6. Revisions to US EPA Superfund Risk and Dose Assessment Models and Guidance - 13403

    SciTech Connect

    Walker, Stuart A.

    2013-07-01

    The U.S. Environmental Protection Agency (EPA) Superfund program's six Preliminary Remediation Goal (PRG) and Dose Compliance Concentration (DCC) internet based calculators for risk and dose assessment at Superfund sites are being revised to reflect better science, revisions to existing exposure scenarios and new scenarios, and changes to match up more closely with the EPA chemical regional screening level calculator. A revised version of the 1999 guidance document that provides an overview for the Superfund risk assessment process at radioactively contaminated sites, 'Radiation Risk Assessment At CERCLA Sites: Q and A', is being completed that will reflect Superfund recommended guidance and other technical documents issued over the past 13 years. EPA is also issuing a series of fact sheets in the document 'Superfund Radiation Risk Assessment: A Community Tool-kit'. This presentation would go over those changes that are expected to be finished by this spring. (authors)

  7. Comprehensive assessment of radiation dose estimates for the CORE320 study.

    PubMed

    Rybicki, Frank J; Mather, Richard T; Kumamaru, Kanako K; Brinker, Jeffrey; Chen, Marcus Y; Cox, Christopher; Matheson, Matthew B; Dewey, Marc; DiCarli, Marcelo F; Miller, Julie M; Geleijns, Jacob; George, Richard T; Paul, Narinder; Texter, John; Vavere, Andrea; Yaw, Tan Swee; Lima, Joao A C; Clouse, Melvin E

    2015-01-01

    OBJECTIVE. The purpose of this study was to comprehensively study estimated radiation doses for subjects included in the main analysis of the Combined Non-invasive Coronary Angiography and Myocardial Perfusion Imaging Using 320 Detector Computed Tomography (CORE320) study ( ClinicalTrials.gov identifier NCT00934037), a clinical trial comparing combined CT angiography (CTA) and perfusion CT with the reference standard catheter angiography plus myocardial perfusion SPECT. SUBJECTS AND METHODS. Prospectively acquired data on 381 CORE320 subjects were analyzed in four groups of testing related to radiation exposure. Radiation dose estimates were compared between modalities for combined CTA and perfusion CT with respect to covariates known to influence radiation exposure and for the main clinical outcomes defined by the trial. The final analysis assessed variations in radiation dose with respect to several factors inherent to the trial. RESULTS. The mean radiation dose estimate for the combined CTA and perfusion CT protocol (8.63 mSv) was significantly (p < 0.0001 for both) less than the average dose delivered from SPECT (10.48 mSv) and the average dose from diagnostic catheter angiography (11.63 mSv). There was no significant difference in estimated CTA-perfusion CT radiation dose for subjects who had false-positive or false-negative results in the CORE320 main analyses in a comparison with subjects for whom the CTA-perfusion CT findings were in accordance with the reference standard SPECT plus catheter angiographic findings. CONCLUSION. Radiation dose estimates from CORE320 support clinical implementation of a combined CT protocol for assessing coronary anatomy and myocardial perfusion.

  8. Assessment of opacimeter calibration according to International Standard Organization 10155.

    PubMed

    Gomes, J F

    2001-01-01

    This paper compares the calibration method for opacimeters issued by the International Standard Organization (ISO) 10155 with the manual reference method for determination of dust content in stack gases. ISO 10155 requires at least nine operational measurements, corresponding to three operational measurements per each dust emission range within the stack. The procedure is assessed by comparison with previous calibration methods for opacimeters using only two operational measurements from a set of measurements made at stacks from pulp mills. The results show that even if the international standard for opacimeter calibration requires that the calibration curve is to be obtained using 3 x 3 points, a calibration curve derived using 3 points could be, at times, acceptable in statistical terms, provided that the amplitude of individual measurements is low.

  9. International Space Station End-of-Life Probabilistic Risk Assessment

    NASA Technical Reports Server (NTRS)

    Duncan, Gary

    2014-01-01

    Although there are ongoing efforts to extend the ISS life cycle through 2028, the International Space Station (ISS) end-of-life (EOL) cycle is currently scheduled for 2020. The EOL for the ISS will require de-orbiting the ISS. This will be the largest manmade object ever to be de-orbited, therefore safely de-orbiting the station will be a very complex problem. This process is being planned by NASA and its international partners. Numerous factors will need to be considered to accomplish this such as target corridors, orbits, altitude, drag, maneuvering capabilities, debris mapping etc. The ISS EOL Probabilistic Risk Assessment (PRA) will play a part in this process by estimating the reliability of the hardware supplying the maneuvering capabilities. The PRA will model the probability of failure of the systems supplying and controlling the thrust needed to aid in the de-orbit maneuvering.

  10. International Space Station End-of-Life Probabilistic Risk Assessment

    NASA Technical Reports Server (NTRS)

    Duncan, Gary W.

    2014-01-01

    The International Space Station (ISS) end-of-life (EOL) cycle is currently scheduled for 2020, although there are ongoing efforts to extend ISS life cycle through 2028. The EOL for the ISS will require deorbiting the ISS. This will be the largest manmade object ever to be de-orbited therefore safely deorbiting the station will be a very complex problem. This process is being planned by NASA and its international partners. Numerous factors will need to be considered to accomplish this such as target corridors, orbits, altitude, drag, maneuvering capabilities etc. The ISS EOL Probabilistic Risk Assessment (PRA) will play a part in this process by estimating the reliability of the hardware supplying the maneuvering capabilities. The PRA will model the probability of failure of the systems supplying and controlling the thrust needed to aid in the de-orbit maneuvering.

  11. Applying International Standards for Hydrokinetic Energy Resource Assessments

    NASA Astrophysics Data System (ADS)

    Haas, K. A.

    2015-12-01

    The extraction of hydrokinetic energy is the conversion of the kinetic energy of moving water into another more useful form of energy, frequently electricity. This water motion may be in the form of waves, tides, ocean currents or river flows. In addition to the development of the technology, the successful extraction of hydrokinetic energy requires a better understanding of physical, environmental and social aspects of the resource and their interactions with the technology. To assist with the development of the hydrokinetic industry as a whole, much work over the past decade has been completed developing international technical standards which can be used by the full range of stakeholders in the hydrokinetic industry. To support the design of projects for tidal energy extraction, a new International Electrotechnical Commission (IEC) Technical Specification (TS) has recently been published outlining a standardized methodology for performing resource assessments. In addition, presently work is ongoing on producing another TS for performing resource assessments on in-stream river projects. While the specific technology for extracting the energy from tidal and river flows may be similar, the methodologies for performing the respective resource assessments is quite different due to the differing nature of the physical processes involved. This presentation will discuss both the tidal and in-stream river methodologies, highlighting their respective key aspects. In addition, a case study illustrating the use of the published tidal TS will be presented.

  12. Preliminary Assessment of ICRP Dose Conversion Factor Recommendations for Accident Analysis Applications

    SciTech Connect

    Vincent, A.M.

    2002-03-13

    Accident analysis for U.S. Department of Energy (DOE) nuclear facilities is an integral part of the overall safety basis developed by the contractor to demonstrate facility operation can be conducted safely. An appropriate documented safety analysis for a facility discusses accident phenomenology, quantifies source terms arising from postulated process upset conditions, and applies a standardized, internationally-recognized database of dose conversion factors (DCFs) to evaluate radiological conditions to offsite receptors.

  13. Aspects of operational radiation protection during dismantling of nuclear facilities relevant for the estimation of internal doses.

    PubMed

    Labarta, T

    2007-01-01

    Operational radiation protection of workers during the dismantling of nuclear facilities is based on the same radiation protection principles as that applied in its exploitation period with the objective of ensuring proper implementation of the as-low-as-reasonably-achievable (ALARA) principle. These principles are: prior determination of the nature and magnitude of radiological risk; classification of workplaces and workers depending on the risks; implementation of control measures; monitoring of zones and working conditions, including, if necessary, individual monitoring. From the experiences and the lessons learned during the dismantling processes carried out in Spain, several important aspects in the practical implementation of these principles that directly influence and ensure an adequate prevention of exposures and the estimation of internal doses are pointed out, with special emphasis on the estimation of internal doses due to transuranic intakes.

  14. Austrian radiation dose measurements onboard space station mir and the international space station iss - overview and comparison

    NASA Astrophysics Data System (ADS)

    Berger, T.; Hajek, M.; Summerer, L.; Vana, N.; Akatov, Y.; Shurshakov, V.; Arkhangelsky, V.

    The Atominstitut of the Austrian Universities has conducted various space research missions in the last 12 years in cooperation with the Institute for Biomedical Problems in Moscow. They dealt with the exact determination of the radiation hazards for cosmonauts and the development o precise measurement devices.f Special emphasis will be laid on the last experiment on space station MIR the goal of which was the determination of the depth distribution of absorbed dose and dose equivalent in a water filled phantom. The first results from dose measurements onboard the International Space Station will also be discussed.. The phantom with a diameter of 35 cm was developed at the Institute for Biomedical Problems and had 4 channels where dosemeters can be exposed in different depths. The exp osure period covered the timeframe from May 1997 to February 1999. Thermoluminescent dosemeters (TLDs) were exposed inside the phantom, either parallel or perpendicular to the hull of the spacecraft. For the evaluation of the linear energy transfer (LET), the High Temperature Ratio (HTR) - method was applied. Based on this method a mean quality factor and, subsequently, the dose equivalent is calculated according to the Q(LET ) relationship proposed in ICRP 26. An increased contribution of neutrons could be detected inside the phantom. However the total dose equivalent did not increase over the depth of the phantom. As the first Austrian measurements on the ISS dosemeter packages were exposed for 248 days, starting in February 2001 at six different locations onboard the ISS. The Austrian dosemeter sets for this first exposure on the ISS contained 5 different kinds of passive thermoluminescent dosemeters. First results showed a position dependent absorbed dose rate and LET at the ISS. Dose rates ranged from 180 to 280 μGy/d. The differences in dose measurements onboard the 2 space stations will be discussed.

  15. RESPIRATORY DOSE TO SUSCEPTIBLE POPULATIONS ASSESSED BY EXPOSURE AND DOSIMETRY STUDIES

    EPA Science Inventory

    Respiratory Dose to Susceptible Populations Assessed by Exposure and Dosimetry Studies

    Chong Kim1 and Ronald Williams2, 1USEPA National Health and Environmental Effects Research Laboratory and 2USEPA National Exposure Research Laboratory, RTP, NC.

    Rationale: Parti...

  16. Toxicokinetics to identify nonlinearities in dose-response and implications for risk assessment

    EPA Science Inventory

    For presentation at the 45th Annual Symposium of the Society of Toxicology of Canada. The meeting will be held on 4-5 December 2013 at the Ottawa Convention Centre. Toxicokinetics to identify nonlinearities in dose-response and implications for risk assessment. Rory Conolly, Offi...

  17. Toward a Molecular Equivalent Dose: Use of the Medaka Model in Comparative Risk Assessment.

    EPA Science Inventory

    Recent challenges in risk assessment underscore the need to compare the results of toxicity and dose-response testing among a growing list of animal models and, possibly, an array of in vitro screening assays. Assays that quantify types of DNA damage that are directly relevant to...

  18. Toward a molecular equivalent dose: use of the medaka model in comparative risk assessment

    EPA Science Inventory

    Recent challenges in risk assessment underscore the need to compare the results of toxicity and dose-response testing among a growing list of animal models and, possibly, an array of in vitro screening assays. Assays that quantify types of DNA damage that are directly relevant to...

  19. Transcriptomic Dose-Response Analysis for Mode of Action and Risk Assessment

    EPA Science Inventory

    Microarray and RNA-seq technologies can play an important role in assessing the health risks associated with environmental exposures. The utility of gene expression data to predict hazard has been well documented. Early toxicogenomics studies used relatively high, single doses w...

  20. Measurements of radioactivity and dose assessments in some building materials in Bitlis, Turkey.

    PubMed

    Kayakökü, Halime; Karatepe, Şule; Doğru, Mahmut

    2016-09-01

    In this study, samples of perlite, pumice and Ahlat stones (Ignimbrite) extracted from mines in Bitlis and samples of other building materials produced in facilities in Bitlis were collected and analyzed. Activity concentrations of (226)Ra, (232)Th and (40)K in samples of building materials were measured using NaI detector (NaI(Tl)) with an efficiency of 24%. The radon measurements of building material samples were determined using CR-39 nuclear track detectors. (226)Ra, (232)Th and (40)K radioactivity concentrations ranged from (29.6±5.9 to 228.2±38.1Bq/kg), (10.8±5.4 to 95.5±26.1Bq/kg) and (249.3±124.7 to 2580.1±266.9Bq/kg), respectively. Radon concentration, radium equivalent activities, absorbed dose rate, excess lifetime cancer risk and the values of hazard indices were calculated for the measured samples to assess the radiation hazards arising from using those materials in the construction of dwellings. Radon concentration ranged between 89.2±12.0Bq/m(3) and 1141.0±225.0Bq/m(3). It was determined that Raeq values of samples conformed to world standards except for perlite and single samples of brick and Ahlat stone. Calculated values of absorbed dose rate ranged from 81.3±20.5 to 420.6±42.8nGy/h. ELCR values ranged from (1.8±0.3)×10(-3) to (9.0±1.0)×10(-3). All samples had ELCR values higher than the world average. The values of Hin and Hex varied from 0.35±0.11 to 1.78±0.18 and from 0.37±0.09 to 1.17±0.13, respectively. The results were compared with standard radioactivity values determined by international organizations and with similar studies. There would be a radiation risk for people living in buildings made of perlite, Ahlat-1 and Brick-3.

  1. Assessment of bilateral filter on 1/2-dose chest-pelvis CT views.

    PubMed

    Al-Hinnawi, Abdel Razzak; Daear, Mohammed; Huwaijah, Said

    2013-07-01

    A bilateral filter (BF) is a non-linear filter that has been proved to de-noise images without overrunning edges. Multi-slice computerized tomography (CT) may employ a BF to participate in dose reduction. This paper quantifies the role of the BF in achieving this objective on 1/2-dose CT. Two sets of CT images are acquired for the chest-pelvis at two different radiation doses. The BF was applied on the 1/2-dose CT images by use of various window sizes. Each time, a set of values of the BF range was fixed while the BF domain was modified. The goal was to observe the behavior of the BF on 1/2-dose CT images in comparison with full-dose CT images. The comparison was carried out by use of four co-occurrence matrix descriptors. Additionally, the peak signal-to-noise ratio (PSNR) and the mean square error (MSE) were reported. The study was applied to the sagittal, coronal, and axial CT views. The results showed that the impact of applying a BF varies among different CT views. The BF can retrieve only part of the signal being lost due to reduction of the radiation dose by one half. Yet, the BF improves the appearance of the 1/2-dose chest-pelvis CT examination. Thus, the BF can contribute to a 50% dose reduction. A procedure for employing the BF on CT machines is proposed. The results also showed that texture descriptors are similar to the PSNR and MSE in providing quantities for assessing medical image quality.

  2. A dose assessment for a U.S. nuclear test site -- Bikini Atoll

    SciTech Connect

    Robison, W.L.; Bogen, K.T.; Conrado, C.L.

    1993-07-01

    On March 1, 1954, a nuclear weapon test, code-named BRAVO, conducted at Bikini Atoll in the northern Marshall Islands contaminated the major residence island. Here the authors provide a radiological dose assessment for the main residence island, Bikini, using extensive radionuclide concentration data derived from analysis of food crops, ground water, cistern water, fish and other marine species, animals, air, and soil collected at Bikini Island. The unique composition of coral soil greatly alters the relative contribution of cesium-137 and strontium-90 to the total estimated dose relative to expectations based on North American and European soils. Cesium-137 produces 96% of the estimated dose for returning residents, mostly through uptake from the soil to terrestrial food crops but also from external gamma exposure. The estimated maximum annual effective dose is 4.4 mSv y{sup {minus}1} when imported foods, which are now an established part of the diet, are available. The 30-, 50-, and 70-y integral effective doses are 10 cSv, 14 cSv, and 16 cSv, respectively. An analysis of interindividual variability in 0- to 30-y expected integral dose indicates that 95% of Bikini residents would have expected doses within a factor of 3.4 above and 4.8 below the population-average value. A corresponding uncertainty analysis showed that after about 5 y of residence, the 95% confidence limits on population-average dose would be {+-}35% of its expected value. The authors have evaluated various countermeasures to reduce {sup 137}Cs in food crops. Treatment with potassium reduces the uptake of {sup 137}Cs into food crops, and therefore the ingestion dose, to less than 10% of pretreatment levels and has essentially no negative environmental consequences.

  3. Radiological dose assessments in the northern Marshall Islands (1989--1991)

    SciTech Connect

    Sun, L.C.; Meinhold, C.B.; Moorthy, A.R.; Clinton, J.H.; Kaplan, E.

    1991-11-01

    The Republic of the Marshall Islands (RMI) is located in the central Pacific Ocean about 3500 km southwest of Hawaii and 4500 km east of Manila, Philippines. It consists of 34 atolls and 2 coral islands, having a total land area of about 180 km{sup 2}, distributed over more than 2.5 {times} 10{sup 6} of ocean. Between 1946 and 1958 the United states conducted nuclear tests there: 43 at Enewetak and 23 at Bikini. Thirty-three years after the cessation of nuclear testing in the RMI, the impact of these operations on the health and radiological safety of the people living in or planning to return to their contaminated homelands is still an important concern. The present Brookhaven National Laboratory (BNL) Marshall Islands Radiological Safety Program (MIRSP) began in 1987 with funding from the US Department of Energy (DOE). The objectives of the MIRSP are to determine the radionuclides present in the bodies of those people potentially exposed to residual radionuclide from weapon tests and fallout, and to assess their present and lifetime dose from external and internal sources. Field bioassay missions involving whole-body counting (WBC) and urine sample collection have, therefore, been important components of the program. WBC is used to measure {gamma}-emitters, such as {sup 40}K, {sup 60}Co and {sup 137}Cs, present in individuals. Urine samples are used to measure {alpha} and {beta}-emitting nuclides such as {sup 239}Pu and {sup 90}Sr, that are undetectable by WBC routine methods.

  4. Radiological dose assessments in the northern Marshall Islands (1989--1991)

    SciTech Connect

    Sun, L.C.; Meinhold, C.B.; Moorthy, A.R.; Clinton, J.H.; Kaplan, E.

    1991-12-01

    The Republic of the Marshall Islands (RMI) is located in the central Pacific Ocean about 3500 km southeast of Hawaii and 4500 km east of Manila, Philippines. It consists of 34 atolls and 2 coral island, having a total land area of about 180 km{sup 2}, distributed over more than 2.5 {times} 10{sup 6} km{sup 2} of ocean. Between 1946 and 1958 the United States conducted nuclear tests there: 43 at Enewetak and 23 at Bikini. Thirty-three years after the cessation of nuclear testing in the RMI, the impact of these operations on the health and radiological safety of the people living in or planing to return to their contaminated homelands is still an important concern. The present Brookhaven National Laboratory (BNL) Marshall Islands Radiological Safety Program (MIRSP) began in 1987 with funding from the US Department of Energy (DOE). The objectives of the MIRSP are to determine the radionuclides present in the bodies of those people potentially exposed to residual radionuclide from weapon tests and fallout, and to assess their present and lifetime dose from external and internal sources. Field bioassay missions involving whole-body counting (WBC) and urine sample collection have, therefore, been important components of the program. WBC is used to measure {gamma}-emitters, such as {sup 40}K, {sup 60}Co and {sup 137}Cs, present in individuals. Urine samples are used to measure {alpha} and {beta}-emitting nuclides, such as {sup 239}Pu and {sup 90}Sr, that are undetectable by WBC routine methods. 6 refs.

  5. Radiological dose assessments in the northern Marshall Islands (1989--1991). Revision

    SciTech Connect

    Sun, L.C.; Meinhold, C.B.; Moorthy, A.R.; Clinton, J.H.; Kaplan, E.

    1991-12-01

    The Republic of the Marshall Islands (RMI) is located in the central Pacific Ocean about 3500 km southeast of Hawaii and 4500 km east of Manila, Philippines. It consists of 34 atolls and 2 coral island, having a total land area of about 180 km{sup 2}, distributed over more than 2.5 {times} 10{sup 6} km{sup 2} of ocean. Between 1946 and 1958 the United States conducted nuclear tests there: 43 at Enewetak and 23 at Bikini. Thirty-three years after the cessation of nuclear testing in the RMI, the impact of these operations on the health and radiological safety of the people living in or planing to return to their contaminated homelands is still an important concern. The present Brookhaven National Laboratory (BNL) Marshall Islands Radiological Safety Program (MIRSP) began in 1987 with funding from the US Department of Energy (DOE). The objectives of the MIRSP are to determine the radionuclides present in the bodies of those people potentially exposed to residual radionuclide from weapon tests and fallout, and to assess their present and lifetime dose from external and internal sources. Field bioassay missions involving whole-body counting (WBC) and urine sample collection have, therefore, been important components of the program. WBC is used to measure {gamma}-emitters, such as {sup 40}K, {sup 60}Co and {sup 137}Cs, present in individuals. Urine samples are used to measure {alpha} and {beta}-emitting nuclides, such as {sup 239}Pu and {sup 90}Sr, that are undetectable by WBC routine methods. 6 refs.

  6. Radiological dose assessments in the northern Marshall Islands (1989--1991). Revision

    SciTech Connect

    Sun, L.C.; Meinhold, C.B.; Moorthy, A.R.; Clinton, J.H.; Kaplan, E.

    1991-11-01

    The Republic of the Marshall Islands (RMI) is located in the central Pacific Ocean about 3500 km southwest of Hawaii and 4500 km east of Manila, Philippines. It consists of 34 atolls and 2 coral islands, having a total land area of about 180 km{sup 2}, distributed over more than 2.5 {times} 10{sup 6} of ocean. Between 1946 and 1958 the United states conducted nuclear tests there: 43 at Enewetak and 23 at Bikini. Thirty-three years after the cessation of nuclear testing in the RMI, the impact of these operations on the health and radiological safety of the people living in or planning to return to their contaminated homelands is still an important concern. The present Brookhaven National Laboratory (BNL) Marshall Islands Radiological Safety Program (MIRSP) began in 1987 with funding from the US Department of Energy (DOE). The objectives of the MIRSP are to determine the radionuclides present in the bodies of those people potentially exposed to residual radionuclide from weapon tests and fallout, and to assess their present and lifetime dose from external and internal sources. Field bioassay missions involving whole-body counting (WBC) and urine sample collection have, therefore, been important components of the program. WBC is used to measure {gamma}-emitters, such as {sup 40}K, {sup 60}Co and {sup 137}Cs, present in individuals. Urine samples are used to measure {alpha} and {beta}-emitting nuclides such as {sup 239}Pu and {sup 90}Sr, that are undetectable by WBC routine methods.

  7. INFOMAT: The international materials assessment and application centre's internet gateway

    NASA Astrophysics Data System (ADS)

    Branquinho, Carmen Lucia; Colodete, Leandro Tavares

    2004-08-01

    INFOMAT is an electronic directory structured to facilitate the search and retrieval of materials science and technology information sources. Linked to the homepage of the International Materials Assessment and Application Centre, INFOMAT presents descriptions of 392 proprietary databases with links to their host systems as well as direct links to over 180 public domain databases and over 2,400 web sites. Among the web sites are associations/unions, governmental and non-governmental institutions, industries, library holdings, market statistics, news services, on-line publications, standardization and intellectual property organizations, and universities/research groups.

  8. 76 FR 53847 - New International Commission on Radiological Protection; Recommendations on the Annual Dose Limit...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-30

    ... REIRS database (NUREG-0713, ``Occupational Radiation Exposure at Commercial Nuclear Power Reactors and... From the Federal Register Online via the Government Publishing Office NUCLEAR REGULATORY... Annual Dose Limit to the Lens of the Eye AGENCY: Nuclear Regulatory Commission. ACTION: Request...

  9. VARSKIN MOD 2 and SADDE MOD2: Computer codes for assessing skin dose from skin contamination

    SciTech Connect

    Durham, J.S. )

    1992-12-01

    The computer code VARSKIN has been modified to calculate dose to skin from three-dimensional sources, sources separated from the skin by layers of protective clothing, and gamma dose from certain radionuclides correction for backscatter has also been incorporated for certain geometries. This document describes the new code, VARSKIN Mod 2, including installation and operation instructions, provides detailed descriptions of the models used, and suggests methods for avoiding misuse of the code. The input data file for VARSKIN Mod 2 has been modified to reflect current physical data, to include the contribution to dose from internal conversion and Auger electrons, and to reflect a correction for low-energy electrons. In addition, the computer code SADDE: Scaled Absorbed Dose Distribution Evaluator has been modified to allow the generation of scaled absorbed dose distributions for mixtures of radionuclides and intereat conversion and Auger electrons. This new code, SADDE Mod 2, is also described in this document. Instructions for installation and operation of the code and detailed descriptions of the models used in the code are provided.

  10. Radioactivity in food and the environment: calculations of UK radiation doses using integrated assessment methods.

    PubMed

    Camplin, W C; Brownless, G P; Round, G D; Winpenny, K; Hunt, G J

    2002-12-01

    A new method for estimating radiation doses to UK critical groups is proposed for discussion. Amongst others, the Food Standards Agency (FSA) and the Scottish Environment Protection Agency (SEPA) undertake surveillance of UK food and the environment as a check on the effect of discharges of radioactive wastes. Discharges in gaseous and liquid form are made under authorisation by the Environment Agency and SEPA under powers in the Radioactive Substance Act. Results of surveillance by the FSA and SEPA are published in the Radioactivity in Food and the Environment (RIFE) report series. In these reports, doses to critical groups are normally estimated separately for gaseous and liquid discharge pathways. Simple summation of these doses would tend to overestimate doses actually received. Three different methods of combining the effects of both types of discharge in an integrated assessment are considered and ranked according to their ease of application, transparency, scientific rigour and presentational issues. A single integrated assessment method is then chosen for further study. Doses are calculated for surveillance data for the calendar year 2000 and compared with those from the existing RIFE method.

  11. Deterministic vs. probabilistic analyses to identify sensitive parameters in dose assessment using RESRAD.

    PubMed

    Kamboj, Sunita; Cheng, Jing-Jy; Yu, Charley

    2005-05-01

    The dose assessments for sites containing residual radioactivity usually involve the use of computer models that employ input parameters describing the physical conditions of the contaminated and surrounding media and the living and consumption patterns of the receptors in analyzing potential doses to the receptors. The precision of the dose results depends on the precision of the input parameter values. The identification of sensitive parameters that have great influence on the dose results would help set priorities in research and information gathering for parameter values so that a more precise dose assessment can be conducted. Two methods of identifying site-specific sensitive parameters, deterministic and probabilistic, were compared by applying them to the RESRAD computer code for analyzing radiation exposure for a residential farmer scenario. The deterministic method has difficulty in evaluating the effect of simultaneous changes in a large number of input parameters on the model output results. The probabilistic method easily identified the most sensitive parameters, but the sensitivity measure of other parameters was obscured. The choice of sensitivity analysis method would depend on the availability of site-specific data. Generally speaking, the deterministic method would identify the same set of sensitive parameters as the probabilistic method when 1) the baseline values used in the deterministic method were selected near the mean or median value of each parameter and 2) the selected range of parameter values used in the deterministic method was wide enough to cover the 5th to 95th percentile values from the distribution of that parameter.

  12. Detection and original dose assessment of egg powders subjected to gamma irradiation by using ESR technique

    NASA Astrophysics Data System (ADS)

    Aydın, Talat

    2015-09-01

    ESR (electron spin resonance) techniques were applied for detection and original dose estimation to radiation-processed egg powders. The un-irradiated (control) egg powders showed a single resonance line centered at g=2.0086±0.0005, 2.0081±0.0005, 2.0082±0.0005 (native signal) for yolk, white and whole egg, respectively. Irradiation induced at least one additional intense singlet overlapping to the control signal and caused a significant increase in signal intensity without any changes in spectral patterns. Responses of egg powders to different gamma radiation doses in the range 0-10 kGy were examined. The stability of the radiation-induced ESR signal of irradiated egg powders were investigated over a storage period of about 5 months. Additive reirradiation of the egg powders produces a reproducible dose response function, which can be used to assess the initial dose by back-extrapolation. The additive dose method gives an estimation of the original dose within ±12% at the end of the 720 h storage period.

  13. Preliminary assessment of the dose to the interventional radiologist in fluoro-CT-guided procedures.

    PubMed

    Pereira, M F; Alves, J G; Sarmento, S; Santos, J A M; Sousa, M J; Gouvêa, M; Oliveira, A D; Cardoso, J V; Santos, L M

    2011-03-01

    A preliminary assessment of the occupational dose to the intervention radiologist received in fluoroscopy computerised tomography (CT) used to guide the collection of lung and bone biopsies is presented. The main aim of this work was to evaluate the capability of the reading system as well as of the available whole-body (WB) and extremity dosemeters used in routine monthly monitoring periods to measure per procedure dose values. The intervention radiologist was allocated 10 WB detectors (LiF: Mg, Ti, TLD-100) placed at chest and abdomen levels above and below the lead apron, and at both right and left arms, knees and feet. A special glove was developed with casings for the insertion of 11 extremity detectors (LiF:Mg, Cu, P, TLD-100H) for the identification of the most highly exposed fingers. The H(p)(10) dose values received above the lead apron (ranged 0.20-0.02 mSv) depend mainly on the duration of the examination and on the placement of physician relative to the beam, while values below the apron are relatively low. The left arm seems to receive a higher dose value. H(p)(0.07) values to the hand (ranged 36.30-0.06 mSv) show that the index, middle and ring fingers are the most highly exposed. In this study, the wrist dose was negligible compared with the finger dose. These results are preliminary and further studies are needed to better characterise the dose assessment in CT fluoroscopy.

  14. Assessment of radiation dose in nuclear cardiovascular imaging using realistic computational models

    PubMed Central

    Xie, Tianwu; Lee, Choonsik; Bolch, Wesley E.; Zaidi, Habib

    2015-01-01

    Purpose: Nuclear cardiology plays an important role in clinical assessment and has enormous impact on the management of a variety of cardiovascular diseases. Pediatric patients at different age groups are exposed to a spectrum of radiation dose levels and associated cancer risks different from those of adults in diagnostic nuclear medicine procedures. Therefore, comprehensive radiation dosimetry evaluations for commonly used myocardial perfusion imaging (MPI) and viability radiotracers in target population (children and adults) at different age groups are highly desired. Methods: Using Monte Carlo calculations and biological effects of ionizing radiation VII model, we calculate the S-values for a number of radionuclides (Tl-201, Tc-99m, I-123, C-11, N-13, O-15, F-18, and Rb-82) and estimate the absorbed dose and effective dose for 12 MPI radiotracers in computational models including the newborn, 1-, 5-, 10-, 15-yr-old, and adult male and female computational phantoms. Results: For most organs, 201Tl produces the highest absorbed dose whereas 82Rb and 15O-water produce the lowest absorbed dose. For the newborn baby and adult patient, the effective dose of 82Rb is 48% and 77% lower than that of 99mTc-tetrofosmin (rest), respectively. Conclusions: 82Rb results in lower effective dose in adults compared to 99mTc-labeled tracers. However, this advantage is less apparent in children. The produced dosimetric databases for various radiotracers used in cardiovascular imaging, using new generation of computational models, can be used for risk-benefit assessment of a spectrum of patient population in clinical nuclear cardiology practice. PMID:26127049

  15. Assessment of radiation dose in nuclear cardiovascular imaging using realistic computational models

    SciTech Connect

    Xie, Tianwu; Lee, Choonsik; Bolch, Wesley E.; Zaidi, Habib

    2015-06-15

    Purpose: Nuclear cardiology plays an important role in clinical assessment and has enormous impact on the management of a variety of cardiovascular diseases. Pediatric patients at different age groups are exposed to a spectrum of radiation dose levels and associated cancer risks different from those of adults in diagnostic nuclear medicine procedures. Therefore, comprehensive radiation dosimetry evaluations for commonly used myocardial perfusion imaging (MPI) and viability radiotracers in target population (children and adults) at different age groups are highly desired. Methods: Using Monte Carlo calculations and biological effects of ionizing radiation VII model, we calculate the S-values for a number of radionuclides (Tl-201, Tc-99m, I-123, C-11, N-13, O-15, F-18, and Rb-82) and estimate the absorbed dose and effective dose for 12 MPI radiotracers in computational models including the newborn, 1-, 5-, 10-, 15-yr-old, and adult male and female computational phantoms. Results: For most organs, {sup 201}Tl produces the highest absorbed dose whereas {sup 82}Rb and {sup 15}O-water produce the lowest absorbed dose. For the newborn baby and adult patient, the effective dose of {sup 82}Rb is 48% and 77% lower than that of {sup 99m}Tc-tetrofosmin (rest), respectively. Conclusions: {sup 82}Rb results in lower effective dose in adults compared to {sup 99m}Tc-labeled tracers. However, this advantage is less apparent in children. The produced dosimetric databases for various radiotracers used in cardiovascular imaging, using new generation of computational models, can be used for risk-benefit assessment of a spectrum of patient population in clinical nuclear cardiology practice.

  16. Age-dependent dose assessment of 226Ra from bottled water intake.

    PubMed

    Bronzovic, Maja; Marovic, Gordana

    2005-05-01

    Water may present a source of prolonged exposure to naturally occurring radionuclides. One of the most frequently occurring radionuclides in natural mineral and spring waters is 226Ra and its decay products. The contribution of drinking water to the total exposure is very small, at about 5% of the average effective dose attributable annually to natural background radiation, but that exposure contributes to the risk of adverse health consequences. In this study the mean values of 226Ra concentration determined in natural mineral and spring bottled waters range from 6 to 412 mBq L(-1), which is in accord with Croatian legislation. 226Ra effective doses per year from spring water consumption range up to 86 microSv, while 226Ra effective doses per year from mineral water consumption show much higher values. The highest 226Ra effective doses per year from mineral waters consumption, which are up to seven times higher than the dose recommended by WHO (100 microSv), were found in infants and teens. Based on this study, drinking of certain brands of bottled mineral water is not recommended for these age groups because assessed 226Ra effective doses per year exceed the recommended limits. From other research it is known that testosterone appears in elevated concentration during these life periods and affects bone calcification. Therefore, testosterone could affect the retention of 226Ra into the bone. To make more precise conclusions further research is necessary. Adults and especially elderly people are much less susceptible to the presence of 226Ra. According to the results obtained in this study, 226Ra effective doses per year assessed for these age groups were considerably lower (i.e., 10 microSv).

  17. Radiation dose assessment in a 320-detector-row CT scanner used in cardiac imaging

    SciTech Connect

    Goma, Carles; Ruiz, Agustin; Jornet, Nuria; Latorre, Artur; Pallerol, Rosa M.; Carrasco, Pablo; Eudaldo, Teresa; Ribas, Montserrat

    2011-03-15

    Purpose: In the present era of cone-beam CT scanners, the use of the standardized CTDI{sub 100} as a surrogate of the idealized CTDI is strongly discouraged and, consequently, so should be the use of the dose-length product (DLP) as an estimate of the total energy imparted to the patient. However, the DLP is still widely used as a reference quantity to normalize the effective dose for a given scan protocol mainly because the CTDI{sub 100} is an easy-to-measure quantity. The aim of this article is therefore to describe a method for radiation dose assessment in large cone-beam single axial scans, which leads to a straightforward estimation of the total energy imparted to the patient. The authors developed a method accessible to all medical physicists and easy to implement in clinical practice in an attempt to update the bridge between CT dosimetry and the estimation of the effective dose. Methods: The authors used commercially available material and a simple mathematical model. The method described herein is based on the dosimetry paradigm introduced by the AAPM Task Group 111. It consists of measuring the dose profiles at the center and the periphery of a long body phantom with a commercial solid-state detector. A weighted dose profile is then calculated from these measurements. To calculate the CT dosimetric quantities analytically, a Gaussian function was fitted to the dose profile data. Furthermore, the Gaussian model has the power to condense the z-axis information of the dose profile in two parameters: The single-scan central dose, f(0), and the width of the profile, {sigma}. To check the energy dependence of the solid-state detector, the authors compared the dose profiles to measurements made with a small volume ion chamber. To validate the overall method, the authors compared the CTDI{sub 100} calculated analytically to the measurement made with a 100 mm pencil ion chamber. Results: For the central and weighted dose profiles, the authors found a good

  18. International physical protection self-assessment tool for chemical facilities.

    SciTech Connect

    Tewell, Craig R.; Burdick, Brent A.; Stiles, Linda L.; Lindgren, Eric Richard

    2010-09-01

    This report is the final report for Laboratory Directed Research and Development (LDRD) Project No.130746, International Physical Protection Self-Assessment Tool for Chemical Facilities. The goal of the project was to develop an exportable, low-cost, computer-based risk assessment tool for small to medium size chemical facilities. The tool would assist facilities in improving their physical protection posture, while protecting their proprietary information. In FY2009, the project team proposed a comprehensive evaluation of safety and security regulations in the target geographical area, Southeast Asia. This approach was later modified and the team worked instead on developing a methodology for identifying potential targets at chemical facilities. Milestones proposed for FY2010 included characterizing the international/regional regulatory framework, finalizing the target identification and consequence analysis methodology, and developing, reviewing, and piloting the software tool. The project team accomplished the initial goal of developing potential target categories for chemical facilities; however, the additional milestones proposed for FY2010 were not pursued and the LDRD funding therefore was redirected.

  19. Toward Increasing Fairness in Score Scale Calibrations Employed in International Large-Scale Assessments

    ERIC Educational Resources Information Center

    Oliveri, Maria Elena; von Davier, Matthias

    2014-01-01

    In this article, we investigate the creation of comparable score scales across countries in international assessments. We examine potential improvements to current score scale calibration procedures used in international large-scale assessments. Our approach seeks to improve fairness in scoring international large-scale assessments, which often…

  20. 12 CFR 630.5 - Accuracy of reports and assessment of internal control over financial reporting.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... CREDIT SYSTEM General § 630.5 Accuracy of reports and assessment of internal control over financial... assessment of internal control over financial reporting. (1) Annual reports must include a report by the Funding Corporation's management assessing the effectiveness of the internal control over...

  1. 49 CFR 192.927 - What are the requirements for using Internal Corrosion Direct Assessment (ICDA)?

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... Corrosion Direct Assessment (ICDA)? 192.927 Section 192.927 Transportation Other Regulations Relating to... Internal Corrosion Direct Assessment (ICDA)? (a) Definition. Internal Corrosion Direct Assessment (ICDA) is... on the locations in covered segments where internal corrosion is most likely to exist. The...

  2. Assessment of knowledge, attitude, and practices on fixed dose combinations among postgraduate dental students

    PubMed Central

    Vinnakota, Narayana R.; Krishna, V.; Viswanath, V.; Ahmed, Zaheer; Shaik, Kamal S.; Boppana, Naveen K.

    2016-01-01

    Aim: To assess the knowledge, attitude, and practices of fixed dose combination drugs among postgraduate dental students. Materials and Methods: A cross-sectional study was carried out among postgraduate dental students of dental colleges in coastal Andhra Pradesh. Three colleges were randomly selected and students of all the three years were included. Data was collected from the specialities of oral medicine and radiology, oral surgery, endodontics, pedodontics, periodontics, and public health dentistry. The total sample was 90 postgraduate students; informed consent was obtained from the participants, and a pretested questionnaire was distributed to them. Data was analyzed using the Statistical Package for the Social Sciences version 20 software. Results: Out of 90 postgraduates, 33 were males and 57 were females. Thirty-five percent were aware of the essential medical list (EML), among them 11% were from oral medicine and radiology and 6.7% were from pedodontics. However, most of them were unaware of the number of fixed dose combination drugs present in the World Health Organization EML. None of them were able to name at least a single banned fixed dose combination drug. Most of them were unaware of the advantages and disadvantages of using fixed dose combination drugs. Amoxicillin with clavulanic acid was the most common drug prescribed by students (73.3%) followed by ofloxacin with ornidazole (54.4%), ibuprofen with paracetamol (53.3%), and sulfamethoxazole with trimethoprim (6%). Most of them were unaware of the rationality in using fixed dose combination drugs. Common sources of information were medical representatives 43 (47.8%), internet 39 (43.3%), and 12 (13.3%) reported using WHO EML. Conclusion: There is an urgent need to improve knowledge on the rationality for using fixed dose combination, EML, and banned fixed dose combination in India to the promote rational use of fixed dose combination. PMID:28217544

  3. The use of mode of action information in risk assessment: quantitative key events/dose-response framework for modeling the dose-response for key events.

    PubMed

    Simon, Ted W; Simons, S Stoney; Preston, R Julian; Boobis, Alan R; Cohen, Samuel M; Doerrer, Nancy G; Fenner-Crisp, Penelope A; McMullin, Tami S; McQueen, Charlene A; Rowlands, J Craig

    2014-08-01

    The HESI RISK21 project formed the Dose-Response/Mode-of-Action Subteam to develop strategies for using all available data (in vitro, in vivo, and in silico) to advance the next-generation of chemical risk assessments. A goal of the Subteam is to enhance the existing Mode of Action/Human Relevance Framework and Key Events/Dose Response Framework (KEDRF) to make the best use of quantitative dose-response and timing information for Key Events (KEs). The resulting Quantitative Key Events/Dose-Response Framework (Q-KEDRF) provides a structured quantitative approach for systematic examination of the dose-response and timing of KEs resulting from a dose of a bioactive agent that causes a potential adverse outcome. Two concepts are described as aids to increasing the understanding of mode of action-Associative Events and Modulating Factors. These concepts are illustrated in two case studies; 1) cholinesterase inhibition by the pesticide chlorpyrifos, which illustrates the necessity of considering quantitative dose-response information when assessing the effect of a Modulating Factor, that is, enzyme polymorphisms in humans, and 2) estrogen-induced uterotrophic responses in rodents, which demonstrate how quantitative dose-response modeling for KE, the understanding of temporal relationships between KEs and a counterfactual examination of hypothesized KEs can determine whether they are Associative Events or true KEs.

  4. Historical development and evolution of EPRI's post-closure dose assessment of potential releases to the biosphere from the proposed HLW repository at Yucca Mountain.

    PubMed

    Smith, Graham; Kozak, Matthew W

    2011-12-01

    This paper describes the development and evolution of the Electric Power Research Institute's (EPRI) post-closure dose assessment for potential releases of radionuclides from the proposed High Level Waste repository at Yucca Mountain. The starting point for this work was the 1995 publication of Technical Bases for Yucca Mountain Standards by the Commission on Geosciences, Environment and Resources of the National Research Council. This report proposed the development and application of an individual risk-based standard for releases from the repository to replace the existing one, which was based on radionuclide release limits. This in turn implied the development and application of methods to assess radiation doses to humans. Accordingly, EPRI produced a methodology for such dose assessment as part of its Total System Performance Assessment program for the proposed Yucca Mountain repository site. The methodology initially addressed releases via groundwater and then releases associated with extrusive igneous events. The methodology was updated and applied over the following years to take account of regulatory developments, changes in estimates of the source term to the biosphere, peer review through international model comparison exercises, new site generic data, and new data concerning conditions at the point of compliance in Amargosa Valley. The main outputs were Biosphere Dose Conversion Factors, which relate radionuclide levels in environmental media to the annual individual doses to a member of a hypothetical critical group and to the regulator-defined Reasonably Maximally Exposed Individual. Most recently, consideration has been given to uncertainty in the dose estimates based on a probabilistic analysis. The paper provides a perspective on the evolution of the dose assessments in response to the developments listed above.

  5. New model for assessing dose, dose rate, and temperature sensitivity of radiation-induced absorption in glasses

    SciTech Connect

    Gilard, Olivier; Quadri, Gianandrea; Caussanel, Matthieu; Duval, Herve; Reynaud, Francois

    2010-11-15

    A new theoretical approach is proposed to explain the dose, dose rate and temperature sensitivity of the radiation-induced absorption (RIA) in glasses. In this paper, a {beta}{sup th}-order dispersive kinetic model is used to simulate the growth of the density of color centers in irradiated glasses. This model yields an explanation for the power-law dependence on dose and dose rate usually observed for the RIA in optical fibers. It also leads to an Arrhenius-like relationship between the RIA and the glass temperature during irradiation. With a very limited number of adjustable parameters, the model succeeds in explaining, with a good agreement, the RIA growth of two different optical fiber references over wide ranges of dose, dose rate and temperature.

  6. Dose verification of intensity-modulated arc therapy using an ERGO++ treatment planning system and Elekta internal multileaf collimators for prostate cancer treatment.

    PubMed

    Yoda, K; Nakagawa, K; Shiraishi, K; Okano, Y; Ohtomo, K; Pellegrini, R G

    2009-04-01

    Dose verification of intensity-modulated arc therapy using an ERGO++ treatment planning system and Elekta internal multileaf collimators is described. Prostate intensity-modulated arc therapy was planned using the arc modulation optimization algorithm inverse planning module of ERGO++. After transferring the plan to Elekta Synergy's controller (Elekta Ltd, Crawley, UK), the isocentre dose was measured and compared with a calculated dose using a pinpoint chamber and a water phantom in a cylindrical acrylic enclosure. Subsequently, an EDR2 film was placed inside a multilayer plastic phantom, and total dose distributions were measured in three axial planes as well as in the coronal and sagittal planes to compare the actual dose with the calculated dose. The dose discrepancy at the isocentre was 1.7%. The calculated gamma indices were less than 1 over 90% of the three axial planes, as well as in the coronal and sagittal planes, having a dose greater than 50% of the maximum target dose.

  7. [Comparative assessment of the doses received by patients during radiodiagnosis of the urinary system].

    PubMed

    Nemiro, E A; Viderman, M; Gubatova, D Ia; Gushak, V; Krastynia, A K; Lidova, L N; Trunova, N I

    1989-01-01

    The authors present some literature data, estimated data and results of phantom measurements in order to give comparative assessment of radiation exposure of patients during radio-contrast and radionuclide investigation of the urinary system. The importance and distribution of doses absorbed by organs and tissues (HT) and effective equivalent doses (HE) in two most commonly used radiodiagnostic methods were studied. In radiocontrast urography (RCUG) the maximum values of tissue doses were noted for the female gonads and the organs adjacent to the kidneys (the liver, pancreas, etc.). However, in radionuclide investigation (RNI) of the urinary system HT reached its maximum directly in the organs under study (the kidneys and urinary bladder). Considerable difference in the patients' HE was also revealed. In view of the above data, RNI is recommended for clinical use even at the first stage of diagnosis of diseases of the urinary system. Diagnostic information obtained with RNI makes it possible to give up RCUG in some cases.

  8. Assessment of Annual Effective Dose for Natural Radioactivity of Gamma Emitters in Biscuit Samples in Iraq.

    PubMed

    Abojassim, Ali Abid; Al-Alasadi, Lubna A; Shitake, Ahmed R; Al-Tememie, Faeq A; Husain, Afnan A

    2015-09-01

    Biscuits are an important type of food, widely consumed by babies in Iraq and other countries. This work uses gamma spectroscopy to measure the natural radioactivity due to long-lived gamma emitters in children's biscuits; it also estimates radiation hazard indices, that is, the radium equivalent activity, the representative of gamma level index, the internal hazard index, and the annual effective dose in children. Ten samples were collected from the Iraqi market from different countries of origin. The average specific activities for (226)Ra, (232)Th, and (40)K were 9.390, 3.1213, and 214.969 Bq/kg, respectively, but the average of the radium equivalent activity and the internal hazard index were 33.101 Bq/kg and 0.107, respectively. The total average annual effective dose from consumption by adults, children, and infants is estimated to be 0.655, 1.009, and 0.875 mSv, respectively. The values found for specific activity, radiation hazard indices, and annual effective dose in all samples in this study were lower than worldwide median values for all groups; therefore, these values are found to be safe.

  9. 3D delivered dose assessment using a 4DCT-based motion model

    SciTech Connect

    Cai, Weixing; Hurwitz, Martina H.; Williams, Christopher L.; Dhou, Salam; Berbeco, Ross I.; Mishra, Pankaj E-mail: jhlewis@lroc.harvard.edu; Lewis, John H. E-mail: jhlewis@lroc.harvard.edu; Seco, Joao

    2015-06-15

    reconstructed from kV and MV projections compared to the ground truth, which is clinically comparable to 4DCT (0.093%). For the second XCAT phantom that has an irregular breathing pattern, the errors are 0.81% and 1.75% for kV and MV reconstructions, both of which are better than that of 4DCT (4.01%). In the case of real patient, although it is impossible to obtain the actual delivered dose, the dose estimation is clinically reasonable and demonstrates differences between 4DCT and MV reconstruction-based dose estimates. Conclusions: With the availability of kV or MV projection images, the proposed approach is able to assess delivered doses for all respiratory phases during treatment. Compared to the planning dose based on 4DCT, the dose estimation using reconstructed 3D fluoroscopic images was as good as 4DCT for regular respiratory pattern and was a better dose estimation for the irregular respiratory pattern.

  10. 3D delivered dose assessment using a 4DCT-based motion model

    PubMed Central

    Cai, Weixing; Hurwitz, Martina H.; Williams, Christopher L.; Dhou, Salam; Berbeco, Ross I.; Seco, Joao; Mishra, Pankaj; Lewis, John H.

    2015-01-01

    reconstructed from kV and MV projections compared to the ground truth, which is clinically comparable to 4DCT (0.093%). For the second XCAT phantom that has an irregular breathing pattern, the errors are 0.81% and 1.75% for kV and MV reconstructions, both of which are better than that of 4DCT (4.01%). In the case of real patient, although it is impossible to obtain the actual delivered dose, the dose estimation is clinically reasonable and demonstrates differences between 4DCT and MV reconstruction-based dose estimates. Conclusions: With the availability of kV or MV projection images, the proposed approach is able to assess delivered doses for all respiratory phases during treatment. Compared to the planning dose based on 4DCT, the dose estimation using reconstructed 3D fluoroscopic images was as good as 4DCT for regular respiratory pattern and was a better dose estimation for the irregular respiratory pattern. PMID:26127043

  11. The road to linearity: why linearity at low doses became the basis for carcinogen risk assessment.

    PubMed

    Calabrese, Edward J

    2009-03-01

    This article assesses the historical foundations of how linearity at low dose became accepted by the scientific/regulatory communities. While the threshold model was used in the 1920s/1930s in establishing radiation health standards, its foundations were challenged by the genetics community who argued that radiation induced mutations in reproductive cells followed a linear response, were cumulative and deleterious. Scientific foundations of linearity for gonadal mutations were based on non-conclusive evidence as well as not being conducted at low doses. Following years of debate, leaders in the genetics community participated in the U.S. National Academy of Sciences (NAS) (1956) Biological Effects of Atomic Radiation (BEAR) BEAR I Committee, getting their perspectives accepted, incorporating linearity for radiation-induced mutational effects in risk assessment. Overtime the concept of linearity was generalized to include somatic effects induced by radiation based on a protectionist philosophy. This affected the course of radiation-induced and later chemically-induced carcinogen risk assessment. Acceptance of linearity at low dose from chemical carcinogens was strongly influenced by the NAS Safe Drinking Water Committee report of 1977 which provided the critical guidance to the U.S. EPA to adopt linear at low dose modeling for risk assessment for chemical carcinogens with little supportive data, much of which has been either discredited or seriously weakened over the past 3 decades. Nonetheless, there has been little practical change of regulatory policy concerning carcinogen risk assessment. These observations suggest that while scientific disciplines are self correcting, that regulatory 'science' fails to display the same self-correcting mechanism despite contradictory data.

  12. Computed isotopic inventory and dose assessment for SRS fuel and target assemblies

    SciTech Connect

    Chandler, M.C.; Ketusky, E.T.; Thoman, D.C.

    1995-06-19

    Past studies have identified and evaluated important radionuclide contributors to dose from reprocessed spent fuel sent to waste for Mark 16B and 22 fuel assemblies and for Mark 31 A and 31B target assemblies. Fission-product distributions after a 5- and 15-year decay time were calculated for a ``representative`` set of irradiation conditions (i.e., reactor power, irradiation time, and exposure) for each type of assembly. The numerical calculations were performed using the SHIELD/GLASS system of codes. The sludge and supernate source terms for dose were studied separately with the significant radionuclide contributors for each identified and evaluated. Dose analysis considered both inhalation and ingestion pathways: The inhalation pathway was analyzed for both evaporative and volatile releases. Analysis of evaporative releases utilized release fractions for the individual radionuclides as defined in the ICRP-30 by DOE guidance. A release fraction of unity was assumed for each radionuclide under volatile-type releases, which would encompass internally initiated events (e.g., fires, explosions), process-initiated events, and externally initiated events. Radionuclides which contributed at least 1% to the overall dose were designated as significant contributors. The present analysis extends and complements the past analyses through considering a broader spectrum of fuel types and a wider range of irradiation conditions. The results provide for a more thorough understanding of the influences of fuel composition and irradiation parameters on fission product distributions (at 2 years or more). Additionally, the present work allows for a more comprehensive evaluation of radionuclide contributions to dose and an estimation of the variability in the radionuclide composition of the dose source term that results from the spent fuel sent to waste encompassing a broad spectrum of fuel compositions and irradiation conditions.

  13. Assessing patient dose in interventional fluoroscopy using patient-dependent hybrid phantoms

    NASA Astrophysics Data System (ADS)

    Johnson, Perry Barnett

    Interventional fluoroscopy uses ionizing radiation to guide small instruments through blood vessels or other body pathways to sites of clinical interest. The technique represents a tremendous advantage over invasive surgical procedures, as it requires only a small incision, thus reducing the risk of infection and providing for shorter recovery times. The growing use and increasing complexity of interventional procedures, however, has resulted in public health concerns regarding radiation exposures, particularly with respect to localized skin dose. Tracking and documenting patient-specific skin and internal organ dose has been specifically identified for interventional fluoroscopy where extended irradiation times, multiple projections, and repeat procedures can lead to some of the largest doses encountered in radiology. Furthermore, inprocedure knowledge of localized skin doses can be of significant clinical importance to managing patient risk and in training radiology residents. In this dissertation, a framework is presented for monitoring the radiation dose delivered to patients undergoing interventional procedures. The framework is built around two key points, developing better anthropomorphic models, and designing clinically relevant software systems for dose estimation. To begin, a library of 50 hybrid patient-dependent computational phantoms was developed based on the UF hybrid male and female reference phantoms. These phantoms represent a different type of anthropomorphic model whereby anthropometric parameters from an individual patient are used during phantom selection. The patient-dependent library was first validated and then used in two patient-phantom matching studies focused on cumulative organ and local skin dose. In terms of organ dose, patient-phantom matching was shown most beneficial for estimating the dose to large patients where error associated with soft tissue attenuation differences could be minimized. For small patients, inherent difference

  14. The monetary value of the averted dose for public exposure assessed by the willingness to pay.

    PubMed

    Katona, Tünde; Kanyár, Béla; Eged, Katalin; Kis, Zoltan; Nényei, Arpád; Bodnár, Robert

    2003-05-01

    The monetary value of the unit averted collective dose at an individual reference dose (as alpha(base)-value) and the aversion against the high individual exposure were assessed by the WTP (Willingness To Pay) method. The original questionnaire and methodology were developed by the CEPN, France, for specialists in the nuclear field. Modifications to the questionnaire were introduced in 2000 to take into account the Hungarian aspects. In 2001, the questionnaire was further modified for use with the public in Hungary. The present paper refers to the results from the most recent studies on public exposure. The questionnaire was provided to 118 persons living in four different regions of Hungary, one near the U-mining site, one near a nuclear power plant, and two others far away from nuclear affected sites. Conversion of the questionnaire to be understandable by the public involved intensive modifications both in form and content. Only 83 to 86 respondents provided usable answers to questions related to the monetary value of the averted dose and the aversion coefficient. The alpha(base)-value was determined from the statistical value of life assessed by the willingness to pay of the respondents for the risk of fatal cancer averted. The mathematical form used to assess the aversion coefficient was a power function with respect to the individual dose, as already introduced in our earlier papers. The advantage of the power function is that the aversion coefficient is independent of the individual reference dose. According to the current results, the mean value of the lognormally distributed alpha-value at the individual reference dose (alpha(base)) takes 10,000 US dollars (person Sv)(-1) with large confidence bounds. The alpha(base)-value is about 50% higher than the alpha(base)-value estimated among the radiation specialists in Hungary, but 5-10 times less than the values obtained in highly developed countries like in France. The normally distributed aversion coefficient

  15. An international review of autism knowledge assessment measures.

    PubMed

    Harrison, Ashley J; Slane, Mylissa M; Hoang, Linh; Campbell, Jonathan M

    2017-04-01

    Autism spectrum disorder-specific knowledge deficits contribute to current disparities in the timing and quality of autism spectrum disorder services throughout the United States and globally. This study conducted a systematic review of Western and International literature to examine measures used to assess autism spectrum disorder knowledge. This review identified 44 unique autism spectrum disorder knowledge measures across 67 studies conducted in 21 countries. Measures used in each study were evaluated in terms of psychometric strength. Of the 67 studies reviewed, only 7% were rated as using a measure with strong psychometric support compared to 45% that were rated as using a measure with no reported psychometric support. Additionally, we examined content overlap and subdomains of autism spectrum disorder knowledge assessed (e.g. etiology, symptoms) and cross-cultural adaptation procedures utilized in the field. Based on these findings, the need for a cross-culturally valid and psychometrically sound measure of autism spectrum disorder knowledge is discussed and recommendations for improving current assessment methods are presented, including suggestions for measure subdomains.

  16. Realistic retrospective dose assessments to members of the public around Spanish nuclear facilities.

    PubMed

    Jiménez, M A; Martín-Valdepeñas, J M; García-Talavera, M; Martín-Matarranz, J L; Salas, M R; Serrano, J I; Ramos, L M

    2011-11-01

    In the frame of an epidemiological study carried out in the influence areas around the Spanish nuclear facilities (ISCIII-CSN, 2009. Epidemiological Study of The Possible Effect of Ionizing Radiations Deriving from The Operation of Spanish Nuclear Fuel Cycle Facilities on The Health of The Population Living in Their Vicinity. Final report December 2009. Ministerio de Ciencia e Innovación, Instituto de Salud Carlos III, Consejo de Seguridad Nuclear. Madrid. Available from: http://www.csn.es/images/stories/actualidad_datos/especiales/epidemiologico/epidemiological_study.pdf), annual effective doses to public have been assessed by the Spanish Nuclear Safety Council (CSN) for over 45 years using a retrospective realistic-dose methodology. These values are compared with data from natural radiation exposure. For the affected population, natural radiation effective doses are in average 2300 times higher than effective doses due to the operation of nuclear installations (nuclear power stations and fuel cycle facilities). When considering the impact on the whole Spanish population, effective doses attributable to nuclear facilities represent in average 3.5×10(-5)mSv/y, in contrast to 1.6mSv/y from natural radiation or 1.3mSv/y from medical exposures.

  17. Dose assessment, radioecology, and community interaction at former nuclear test sites

    SciTech Connect

    Robison, W.L.

    1994-11-01

    The US conducted a nuclear testing program at Bikini and Enewetak Atolls in the Marshall Islands from 1946 through 1958. A total of 66 nuclear devices were tested--23 at Bikini Atoll (total yield of 77 megatons) and 43 at Enewetak Atoll (total yield of 33 megatons). This resulted in contamination of many of the islands at each atoll. The BRAVO test (yield 15 megatons) on March 1, 1954 contaminated several atolls to the east of Bikini Atoll some of which were inhabited. The author has conducted an experimental, monitoring, and dose assessment program at atolls in the northern Marshall Islands for the past 20 years. The goals have been to: (1) determine the radiological conditions at the atolls; (2) provide dose assessments for resettlement options and alternate living patterns; (3) develop and evaluate remedial measures to reduce the dose to people reinhabiting the atolls; and (4) discuss the results with each of the communities and the Republic of the Marshall Islands government officials to help them understand the data as a basis for resettlement decisions. The remaining radionuclides at the atolls that contribute any significant dose are {sup 137}Cs, {sup 90}Sr, {sup 239+240}Pu, and {sup 241}Am.

  18. Radiation therapy for stage IIA and IIB testicular seminoma: peripheral dose calculations and risk assessments

    NASA Astrophysics Data System (ADS)

    Mazonakis, Michalis; Berris, Theocharris; Lyraraki, Efrossyni; Damilakis, John

    2015-03-01

    This study was conducted to calculate the peripheral dose to critical structures and assess the radiation risks from modern radiotherapy for stage IIA/IIB testicular seminoma. A Monte Carlo code was used for treatment simulation on a computational phantom representing an average adult. The initial treatment phase involved anteroposterior and posteroanaterior modified dog-leg fields exposing para-aortic and ipsilateral iliac lymph nodes followed by a cone-down phase for nodal mass irradiation. Peripheral doses were calculated using different modified dog-leg field dimensions and an extended conventional dog-leg portal. The risk models of the BEIR-VII report and ICRP-103 were combined with dosimetric calculations to estimate the probability of developing stochastic effects. Radiotherapy for stage IIA seminoma with a target dose of 30 Gy resulted in a range of 23.0-603.7 mGy to non-targeted peripheral tissues and organs. The corresponding range for treatment of stage IIB disease to a cumulative dose of 36 Gy was 24.2-633.9 mGy. A dose variation of less than 13% was found by altering the field dimensions. Radiotherapy with the conventional instead of the modern modified dog-leg field increased the peripheral dose up to 8.2 times. The calculated heart doses of 589.0-632.9 mGy may increase the risk for developing cardiovascular diseases whereas the testicular dose of more than 231.9 mGy may lead to a temporary infertility. The probability of birth abnormalities in the offspring of cancer survivors was below 0.13% which is much lower than the spontaneous mutation rate. Abdominoplevic irradiation may increase the lifetime intrinsic risk for the induction of secondary malignancies by 0.6-3.9% depending upon the site of interest, patient’s age and tumor dose. Radiotherapy for stage IIA/IIB seminoma with restricted fields and low doses is associated with an increased morbidity. These data may allow the definition of a risk-adapted follow-up scheme for long

  19. Linking Different Exposure Patterns to Internal Lung Dose for Heterogeneous Ambient Aerosols

    EPA Science Inventory

    Particulate matter (PM) in the ambient air is a complex mixture of particles with different sizes and chemical compositions. Because potential health effects are known to be different for different size particles, specific dose of size-fractionated PM under realistic exposure con...

  20. 10 CFR 20.1202 - Compliance with requirements for summation of external and internal doses.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... section. (Note: The dose equivalents for the lens of the eye, the skin, and the extremities are not... it in demonstrating compliance with the limits. (d) Intake through wounds or absorption through skin. The licensee shall evaluate and, to the extent practical, account for intakes through wounds or...

  1. 10 CFR 20.1202 - Compliance with requirements for summation of external and internal doses.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... section. (Note: The dose equivalents for the lens of the eye, the skin, and the extremities are not... it in demonstrating compliance with the limits. (d) Intake through wounds or absorption through skin. The licensee shall evaluate and, to the extent practical, account for intakes through wounds or...

  2. 42 CFR 460.136 - Internal quality assessment and performance improvement activities.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 42 Public Health 4 2013-10-01 2013-10-01 false Internal quality assessment and performance...) PROGRAMS OF ALL-INCLUSIVE CARE FOR THE ELDERLY (PACE) Quality Assessment and Performance Improvement § 460.136 Internal quality assessment and performance improvement activities. (a) Quality assessment...

  3. 42 CFR 460.136 - Internal quality assessment and performance improvement activities.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 42 Public Health 4 2010-10-01 2010-10-01 false Internal quality assessment and performance...) PROGRAMS OF ALL-INCLUSIVE CARE FOR THE ELDERLY (PACE) Quality Assessment and Performance Improvement § 460.136 Internal quality assessment and performance improvement activities. (a) Quality assessment...

  4. 42 CFR 460.136 - Internal quality assessment and performance improvement activities.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 42 Public Health 4 2014-10-01 2014-10-01 false Internal quality assessment and performance...) PROGRAMS OF ALL-INCLUSIVE CARE FOR THE ELDERLY (PACE) Quality Assessment and Performance Improvement § 460.136 Internal quality assessment and performance improvement activities. (a) Quality assessment...

  5. 42 CFR 460.136 - Internal quality assessment and performance improvement activities.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 42 Public Health 4 2012-10-01 2012-10-01 false Internal quality assessment and performance...) PROGRAMS OF ALL-INCLUSIVE CARE FOR THE ELDERLY (PACE) Quality Assessment and Performance Improvement § 460.136 Internal quality assessment and performance improvement activities. (a) Quality assessment...

  6. 42 CFR 460.136 - Internal quality assessment and performance improvement activities.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 42 Public Health 4 2011-10-01 2011-10-01 false Internal quality assessment and performance...) PROGRAMS OF ALL-INCLUSIVE CARE FOR THE ELDERLY (PACE) Quality Assessment and Performance Improvement § 460.136 Internal quality assessment and performance improvement activities. (a) Quality assessment...

  7. Magnitude of Residual Internal Anatomy Motion on Heavy Charged Particle Dose Distribution in Respiratory Gated Lung Therapy

    SciTech Connect

    Mori, Shinichiro Asakura, Hiroshi; Kandatsu, Susumu; Kumagai, Motoki; Baba, Masayuki; Endo, Masahiro

    2008-06-01

    Purpose: To assess the variation in carbon beam dose distribution due to residual motion in lung cancer patients undergoing respiratory-gated radiotherapy. Methods and Materials: A total of 11 lung cancer patients underwent four-dimensional computed tomography with a 256-multislice computed tomography scanner under free-breathing conditions. A compensating bolus was designed to cover the treatment beam for all planning target volumes during a 30% duty cycle centered on exhalation (gating window). This bolus was applied to the four-dimensional computed tomography data for one respiratory cycle, and then the carbon beam dose distribution was calculated. Results: A water equivalent pathlength variation of <5 mm was observed in the gating window, but this increased to {<=}20 mm on inhalation. As a result, beam overshoot/undershoot occurred around inhalation, which increased the excessive dosing to normal tissues and the organs at risk. The dose for >95% volume irradiation is dependent on the respiratory phase but not the gating window. However, the dose for >95% volume irradiation correlated well with the tumor displacement distance. More than 90% of the dose for >95% volume irradiation could be delivered in the gating window with <4-mm tumor displacement resulting from exhalation. Conclusion: The results of our study have shown that even when the treatment beam delivery occurs outside the gating window, the prescribed dose to the target is not affected in patients with a tumor displacement of <4 mm. Thus, respiratory gating is not required in radiotherapy for patients with <4-mm tumor displacement in a respiratory cycle.

  8. Radiation-induced biomarkers for the detection and assessment of absorbed radiation doses

    PubMed Central

    Rana, Sudha; Kumar, Raj; Sultana, Sarwat; Sharma, Rakesh Kumar

    2010-01-01

    Radiation incident involving living organisms is an uncommon but a very serious situation. The first step in medical management including triage is high-throughput assessment of the radiation dose received. Radiation exposure levels can be assessed from viability of cells, cellular organelles such as chromosome and different intermediate metabolites. Oxidative damages by ionizing radiation result in carcinogenesis, lowering of the immune response and, ultimately, damage to the hematopoietic system, gastrointestinal system and central nervous system. Biodosimetry is based on the measurement of the radiation-induced changes, which can correlate them with the absorbed dose. Radiation biomarkers such as chromosome aberration are most widely used. Serum enzymes such as serum amylase and diamine oxidase are the most promising biodosimeters. The level of gene expression and protein are also good biomarkers of radiation. PMID:21829314

  9. Measurements of the neutron dose and energy spectrum on the International Space Station during expeditions ISS-16 to ISS-21.

    PubMed

    Smith, M B; Akatov, Yu; Andrews, H R; Arkhangelsky, V; Chernykh, I V; Ing, H; Khoshooniy, N; Lewis, B J; Machrafi, R; Nikolaev, I; Romanenko, R Y; Shurshakov, V; Thirsk, R B; Tomi, L

    2013-01-01

    As part of the international Matroshka-R and Radi-N experiments, bubble detectors have been used on board the ISS in order to characterise the neutron dose and the energy spectrum of neutrons. Experiments using bubble dosemeters inside a tissue-equivalent phantom were performed during the ISS-16, ISS-18 and ISS-19 expeditions. During the ISS-20 and ISS-21 missions, the bubble dosemeters were supplemented by a bubble-detector spectrometer, a set of six detectors that was used to determine the neutron energy spectrum at various locations inside the ISS. The temperature-compensated spectrometer set used is the first to be developed specifically for space applications and its development is described in this paper. Results of the dose measurements indicate that the dose received at two different depths inside the phantom is not significantly different, suggesting that bubble detectors worn by a person provide an accurate reading of the dose received inside the body. The energy spectra measured using the spectrometer are in good agreement with previous measurements and do not show a strong dependence on the precise location inside the station. To aid the understanding of the bubble-detector response to charged particles in the space environment, calculations have been performed using a Monte-Carlo code, together with data collected on the ISS. These calculations indicate that charged particles contribute <2% to the bubble count on the ISS, and can therefore be considered as negligible for bubble-detector measurements in space.

  10. Internal Radiation Exposure Dose in Iwaki City, Fukushima Prefecture after the Accident at Fukushima Dai-ichi Nuclear Power Plant

    PubMed Central

    Orita, Makiko; Hayashida, Naomi; Nukui, Hiroshi; Fukuda, Naoko; Kudo, Takashi; Matsuda, Naoki; Fukushima, Yoshiko; Takamura, Noboru

    2014-01-01

    As a result of the accident at the Fukushima Daiichi Nuclear Power Plant (FNPP) on 11 March 2011, a huge amount of radionuclides, including radiocesium, was released and spread over a wide area of eastern Japan. Although three years have passed since the accident, residents around the FNPP are anxious about internal radiation exposure due to radiocesium. In this study, we screened internal radiation exposure doses in Iwaki city of Fukushima prefecture, using a whole-body counter. The first screening was conducted from October 2012 to February 2013, and the second screening was conducted from May to November 2013. Study participants were employees of ALPINE and their families who underwent examination. A total of 2,839 participants (1,366 men and 1,473 women, 1–86 years old) underwent the first screening, and 2,092 (1,022 men and 1,070 women, 1–86 years old) underwent the second screening. The results showed that 99% of subjects registered below 300 Bq per body in the first screening, and all subjects registered below 300 Bq per body in the second screening. The committed effective dose ranged from 0.01–0.06 mSv in the first screening and 0.01–0.02 mSv in the second screening. Long-term follow-up studies are needed to avoid unnecessary chronic internal exposure and to reduce anxiety among the residents by communicating radiation health risks. PMID:25478794

  11. Internal radiation exposure dose in Iwaki city, Fukushima prefecture after the accident at Fukushima Dai-ichi Nuclear Power Plant.

    PubMed

    Orita, Makiko; Hayashida, Naomi; Nukui, Hiroshi; Fukuda, Naoko; Kudo, Takashi; Matsuda, Naoki; Fukushima, Yoshiko; Takamura, Noboru

    2014-01-01

    As a result of the accident at the Fukushima Daiichi Nuclear Power Plant (FNPP) on 11 March 2011, a huge amount of radionuclides, including radiocesium, was released and spread over a wide area of eastern Japan. Although three years have passed since the accident, residents around the FNPP are anxious about internal radiation exposure due to radiocesium. In this study, we screened internal radiation exposure doses in Iwaki city of Fukushima prefecture, using a whole-body counter. The first screening was conducted from October 2012 to February 2013, and the second screening was conducted from May to November 2013. Study participants were employees of ALPINE and their families who underwent examination. A total of 2,839 participants (1,366 men and 1,473 women, 1-86 years old) underwent the first screening, and 2,092 (1,022 men and 1,070 women, 1-86 years old) underwent the second screening. The results showed that 99% of subjects registered below 300 Bq per body in the first screening, and all subjects registered below 300 Bq per body in the second screening. The committed effective dose ranged from 0.01-0.06 mSv in the first screening and 0.01-0.02 mSv in the second screening. Long-term follow-up studies are needed to avoid unnecessary chronic internal exposure and to reduce anxiety among the residents by communicating radiation health risks.

  12. Applications of the International Space Station Probabilistic Risk Assessment Model

    NASA Technical Reports Server (NTRS)

    Grant, Warren; Lutomski, Michael G.

    2011-01-01

    Recently the International Space Station (ISS) has incorporated more Probabilistic Risk Assessments (PRAs) in the decision making process for significant issues. Future PRAs will have major impact to ISS and future spacecraft development and operations. These PRAs will have their foundation in the current complete ISS PRA model and the current PRA trade studies that are being analyzed as requested by ISS Program stakeholders. ISS PRAs have recently helped in the decision making process for determining reliability requirements for future NASA spacecraft and commercial spacecraft, making crew rescue decisions, as well as making operational requirements for ISS orbital orientation, planning Extravehicular activities (EVAs) and robotic operations. This paper will describe some applications of the ISS PRA model and how they impacted the final decision. This paper will discuss future analysis topics such as life extension, requirements of new commercial vehicles visiting ISS.

  13. Implementation and Evaluation 
of a High-Dose Cytarabine Neurologic Assessment Tool.

    PubMed

    Szoch, Stephanie; Snow Kaiser, Karen

    2015-06-01

    Patients receiving high-dose cytarabine as part of their chemotherapy regimen have a chance of experiencing neurotoxicities. Prompt identification of signs and symptoms can greatly reduce the chance of patients sustaining permanent neurologic damage. This article describes the development and successful implementation of an evidence-based, standardized neurologic assessment and documentation tool that was evaluated using a clinical utility questionnaire and an adherence audit.

  14. Comparison of Risk Predicted by Multiple Norovirus Dose-Response Models and Implications for Quantitative Microbial Risk Assessment.

    PubMed

    Van Abel, Nicole; Schoen, Mary E; Kissel, John C; Meschke, J Scott

    2016-06-10

    The application of quantitative microbial risk assessments (QMRAs) to understand and mitigate risks associated with norovirus is increasingly common as there is a high frequency of outbreaks worldwide. A key component of QMRA is the dose-response analysis, which is the mathematical characterization of the association between dose and outcome. For Norovirus, multiple dose-response models are available that assume either a disaggregated or an aggregated intake dose. This work reviewed the dose-response models currently used in QMRA, and compared predicted risks from waterborne exposures (recreational and drinking) using all available dose-response models. The results found that the majority of published QMRAs of norovirus use the 1 F1 hypergeometric dose-response model with α = 0.04, β = 0.055. This dose-response model predicted relatively high risk estimates compared to other dose-response models for doses in the range of 1-1,000 genomic equivalent copies. The difference in predicted risk among dose-response models was largest for small doses, which has implications for drinking water QMRAs where the concentration of norovirus is low. Based on the review, a set of best practices was proposed to encourage the careful consideration and reporting of important assumptions in the selection and use of dose-response models in QMRA of norovirus. Finally, in the absence of one best norovirus dose-response model, multiple models should be used to provide a range of predicted outcomes for probability of infection.

  15. Low-temperature Swelling in LWR Internal Components: Current Data and Modeling Assessment

    SciTech Connect

    Stoller, Roger E; Barashev, Alexander V; Golubov, Stanislav I

    2012-09-01

    Recent experimental observations have made it clear that cavity formation can occur in light-water reactor internal components fabricated from austenitic stainless during the course of their service life. In order to assess the potential for cavity swelling in these components at end-of-life doses, it is necessary to develop a validated computational model that incorporates the relevant physical mechanisms and accounts for recent experiment data. Such a modeling activity is underway; the model development and some preliminary results are described. For the relatively low temperatures involved, cavity formation is shown to be sensitive to both the temperature and the rate of helium production by nuclear transmutation reactions. This report includes a brief review of the relevant microstructural data, discussion of the current model s status and planned further development, and a description of the microstructural modeling that is planned to fully define the potential for cavity evolution under light water reactor operating conditions.

  16. Probabilistic assessment of the influence of lake properties in long-term radiation doses to humans.

    PubMed

    Pohjola, Jari; Turunen, Jari; Lipping, Tarmo; Ikonen, Ari T K

    2016-11-01

    The assessment processes concerning the safety of nuclear waste repositories include the modelling of radionuclide transport in biosphere and the evaluation of the doses to the most affected humans. In this paper, a scenario, in which a contaminated lake is the water source for drinking water, irrigation water and watering of livestock, is presented. The objective of the paper is to probabilistically study the influence of lake properties as parameters in the assessment scenario. The properties of the lake are a result of previously conducted probabilistic studies, where the land uplift of the terrain surrounding the repositories and the formation of water bodies were studied in a 10,000-year time span using Monte Carlo simulation. The lake is formed at 3000 years from present day and the changing properties of the lake have been used in the study. The studied radionuclides (36)Cl, (135)Cs, (129)I, (237)Np, (90)Sr, (99)Tc and (238)U enter the lake with a rate of 1 Bq/year. The transport process from the lake water to humans is described and the doses (dose conversion factors) to adult humans are evaluated based on a study on average food consumption. Sensitivity analysis is used for identifying the parameters having the most influence on the outcome of the dose. Based on the results from the sensitivity analysis, the volumetric outflow rate of the lake and the volume of the lake were taken into closer consideration. The results show the influence of probabilistically derived geomorphic lake input parameters on the dose.

  17. Image gently, step lightly: increasing radiation dose awareness in pediatric interventions through an international social marketing campaign.

    PubMed

    Sidhu, Manrita K; Goske, Marilyn J; Coley, Brian J; Connolly, Bairbre; Racadio, John; Yoshizumi, Terry T; Utley, Tara; Strauss, Keith J

    2009-09-01

    In the past several decades, advances in imaging and interventional techniques have been accompanied by an increase in medical radiation dose to the public. Radiation exposure is even more important in children, who are more sensitive to radiation and have a longer lifespan during which effects may manifest. To address radiation safety in pediatric computed tomography, in 2008 the Alliance for Radiation Safety in Pediatric Imaging launched an international social marketing campaign entitled Image Gently. This article describes the next phase of the Image Gently campaign, entitled Step Lightly, which focuses on radiation safety in pediatric interventional radiology.

  18. Phototoxic Risk Assessments on Benzophenone Derivatives: Photobiochemical Assessments and Dermal Cassette-Dosing Pharmacokinetic Study.

    PubMed

    Seto, Yoshiki; Ohtake, Hiroto; Kato, Masashi; Onoue, Satomi

    2015-08-01

    This study aimed to qualify photosafety screening on the basis of photochemical and pharmacokinetic (PK) data on dermally applied chemicals. Six benzophenone derivatives (BZPs) were selected as model compounds, and in vitro photochemical/phototoxic characterization and dermal cassette-dosing PK study were carried out. For comparison, an in vivo phototoxicity test was also conducted. All of the BZPs exhibited strong UVA/UVB absorption with molar extinction coefficients of over 2000 M(-1) × cm(-1), and benzophenone and ketoprofen exhibited significant reactive oxygen species (ROS) generation upon exposure to simulated sunlight (about 2.0 mW/cm(2)); however, ROS generation from sulisobenzone and dioxybenzone was negligible. To verify in vitro phototoxicity, a 3T3 neutral red uptake phototoxicity test was carried out, and benzophenone and ketoprofen were categorized to be phototoxic chemicals. The dermal PK parameters of ketoprofen were indicative of the highest dermal distribution of all BZPs tested. On the basis of its in vitro photochemical/phototoxic and PK data, ketoprofen was deduced to be highly phototoxic. The rank of predicted phototoxic risk of BZPs on the basis of the proposed screening strategy was almost in agreement with the results from the in vivo phototoxicity test. The combined use of photochemical and cassette-dosing PK data would provide reliable predictions of phototoxic risk for candidates with high productivity.

  19. Technology Assessment and Roadmap for the Emergency Radiation Dose Assessment Program (ERDAP)

    DTIC Science & Technology

    2005-06-01

    research, development, test , and evaluation services between the U.S. Department of Energy and the Regents of the University of California as operator of...assessment technologies. Conduct a demonstration program to assess the value of existing and proposed technologies • Conduct field tests and leverage...cost, size/weight, and ruggedness) in realistic test scenarios. • Luminescence, particularly Optically Stimulated Luminescence (OSL) and Electron

  20. Standardizing Benchmark Dose Calculations to Improve Science-Based Decisions in Human Health Assessments

    PubMed Central

    Wignall, Jessica A.; Shapiro, Andrew J.; Wright, Fred A.; Woodruff, Tracey J.; Chiu, Weihsueh A.; Guyton, Kathryn Z.

    2014-01-01

    Background: Benchmark dose (BMD) modeling computes the dose associated with a prespecified response level. While offering advantages over traditional points of departure (PODs), such as no-observed-adverse-effect-levels (NOAELs), BMD methods have lacked consistency and transparency in application, interpretation, and reporting in human health assessments of chemicals. Objectives: We aimed to apply a standardized process for conducting BMD modeling to reduce inconsistencies in model fitting and selection. Methods: We evaluated 880 dose–response data sets for 352 environmental chemicals with existing human health assessments. We calculated benchmark doses and their lower limits [10% extra risk, or change in the mean equal to 1 SD (BMD/L10/1SD)] for each chemical in a standardized way with prespecified criteria for model fit acceptance. We identified study design features associated with acceptable model fits. Results: We derived values for 255 (72%) of the chemicals. Batch-calculated BMD/L10/1SD values were significantly and highly correlated (R2 of 0.95 and 0.83, respectively, n = 42) with PODs previously used in human health assessments, with values similar to reported NOAELs. Specifically, the median ratio of BMDs10/1SD:NOAELs was 1.96, and the median ratio of BMDLs10/1SD:NOAELs was 0.89. We also observed a significant trend of increasing model viability with increasing number of dose groups. Conclusions: BMD/L10/1SD values can be calculated in a standardized way for use in health assessments on a large number of chemicals and critical effects. This facilitates the exploration of health effects across multiple studies of a given chemical or, when chemicals need to be compared, providing greater transparency and efficiency than current approaches. Citation: Wignall JA, Shapiro AJ, Wright FA, Woodruff TJ, Chiu WA, Guyton KZ, Rusyn I. 2014. Standardizing benchmark dose calculations to improve science-based decisions in human health assessments. Environ Health

  1. Developing International Guidelines on Volcanic Hazard Assessments for Nuclear Facilities

    NASA Astrophysics Data System (ADS)

    Connor, Charles

    2014-05-01

    Worldwide, tremendous progress has been made in recent decades in forecasting volcanic events, such as episodes of volcanic unrest, eruptions, and the potential impacts of eruptions. Generally these forecasts are divided into two categories. Short-term forecasts are prepared in response to unrest at volcanoes, rely on geophysical monitoring and related observations, and have the goal of forecasting events on timescales of hours to weeks to provide time for evacuation of people, shutdown of facilities, and implementation of related safety measures. Long-term forecasts are prepared to better understand the potential impacts of volcanism in the future and to plan for potential volcanic activity. Long-term forecasts are particularly useful to better understand and communicate the potential consequences of volcanic events for populated areas around volcanoes and for siting critical infrastructure, such as nuclear facilities. Recent work by an international team, through the auspices of the International Atomic Energy Agency, has focused on developing guidelines for long-term volcanic hazard assessments. These guidelines have now been implemented for hazard assessment for nuclear facilities in nations including Indonesia, the Philippines, Armenia, Chile, and the United States. One any time scale, all volcanic hazard assessments rely on a geologically reasonable conceptual model of volcanism. Such conceptual models are usually built upon years or decades of geological studies of specific volcanic systems, analogous systems, and development of a process-level understanding of volcanic activity. Conceptual models are used to bound potential rates of volcanic activity, potential magnitudes of eruptions, and to understand temporal and spatial trends in volcanic activity. It is these conceptual models that provide essential justification for assumptions made in statistical model development and the application of numerical models to generate quantitative forecasts. It is a

  2. Testing for All: The Emergence and Development of International Assessment of Student Achievement, 1958-2012

    ERIC Educational Resources Information Center

    Pizmony-Levy, Oren

    2013-01-01

    This dissertation examines a vital catalyst in the globalization of education: international assessments--that involve testing and rankings--of student achievement in academic subjects. Nearly all high-income countries participate in international assessments such as Trends in International Mathematics and Science Study (TIMSS), Progress in…

  3. Cultural, Social, and Economic Capital Constructs in International Assessments: An Evaluation Using Exploratory Structural Equation Modeling

    ERIC Educational Resources Information Center

    Caro, Daniel H.; Sandoval-Hernández, Andrés; Lüdtke, Oliver

    2014-01-01

    The article employs exploratory structural equation modeling (ESEM) to evaluate constructs of economic, cultural, and social capital in international large-scale assessment (LSA) data from the Progress in International Reading Literacy Study (PIRLS) 2006 and the Programme for International Student Assessment (PISA) 2009. ESEM integrates the…

  4. Large-Scale Assessment Systems: Design Principles Drawn from International Comparisons

    ERIC Educational Resources Information Center

    Black, P.; Wiliam, D.

    2007-01-01

    In recent years, a number of analyses assessments used in different countries have appeared. Analyses emerging from international comparisons such as Trends in International Mathematics and Science Study (TIMSS) and Programme for International Student Assessment (PISA) have focused on what might be termed "cross-sectional" comparisons;…

  5. Cancer dose--response assessment for acrylonitrile based upon rodent brain tumor incidence: use of epidemiologic, mechanistic, and pharmacokinetic support for nonlinearity.

    PubMed

    Kirman, C R; Gargas, M L; Marsh, G M; Strother, D E; Klaunig, J E; Collins, J J; Deskin, R

    2005-10-01

    A cancer dose-response assessment was conducted for acrylonitrile (AN) using updated information on mechanism of action, epidemiology, toxicity, and pharmacokinetics. Although more than 10 chronic bioassays indicate that AN produces multiple tumors in rats and mice, a number of large, well-conducted epidemiology studies provide no evidence of a causal association between AN exposure and cancer mortality of any type. The epidemiological data include early industry exposures that are far higher than occur today and that approach or exceed levels found to be tumorigenic in animals. Despite the absence of positive findings in the epidemiology data, a dose-response assessment was conducted for AN based on brain tumors in rats. Mechanistic studies implicate the involvement of oxidative stress in rat brain due to a metabolite (2-cyanoethylene oxide or CEO, cyanide), but do not conclusively rule out a potential role for the direct genotoxicity of CEO. A PBPK model was used to predict internal doses (peak CEO in brain) for 12 data sets, which were pooled together to provide a consistent characterization of the dose-response relationship for brain tumor incidence in the rat. The internal dose corresponding to a 5% increase in extra risk (ED 05=0.017 mg/L brain) and its lower confidence limit (LED 05=0.014 mg/L brain) was used as the point of departure. The weight-of-evidence supports the use of a nonlinear extrapolation for the cancer dose-response assessment. A quantitative comparison of the epidemiology exposure-response data (lung and brain cancer mortality) to the rat brain tumor data in terms of internal dose adds to the confidence in the nonlinear extrapolation. Uncertainty factors of 200 and 220 (for the oral and inhalation routes, respectively) were applied to the LED 05 to account for interspecies variation, intraspecies variation, and the severity of the response measure. Accordingly, oral doses below 0.009 mg/kg-day and air concentrations below 0.1mg/m(3) are not

  6. Personnel neutron dose assessment upgrade: Volume 2, Field neutron spectrometer for health physics applications

    SciTech Connect

    Brackenbush, L.W.; Reece, W.D.; Miller, S.D.; Endres, G.W.R.; Durham, J.S.; Scherpelz, R.I.; Tomeraasen, P.L.; Stroud, C.M.; Faust, L.G.; Vallario, E.J.

    1988-07-01

    Both the (ICRP) and the (NCPR) have recommended an increase in neutron quality factors and the adoption of effective dose equivalent methods. The series of reports entitled Personnel Neutron Dose Assessment Upgrade (PNL-6620) addresses these changes. Volume 1 in this series of reports (Personnel Neutron Dosimetry Assessment) provided guidance on the characteristics, use, and calibration of personnel neutron dosimeters in order to meet the new recommendations. This report, Volume 2: Field Neutron Spectrometer for Health Physics Applications describes the development of a portable field spectrometer which can be set up for use in a few minutes by a single person. The field spectrometer described herein represents a significant advance in improving the accuracy of neutron dose assessment. It permits an immediate analysis of the energy spectral distribution associated with the radiation from which neutron quality factor can be determined. It is now possible to depart from the use of maximum Q by determining and realistically applying a lower Q based on spectral data. The field spectrometer is made up of two modules: a detector module with built-in electronics and an analysis module with a IBM PC/reg sign/-compatible computer to control the data acquisition and analysis of data in the field. The unit is simple enough to allow the operator to perform spectral measurements with minimal training. The instrument is intended for use in steady-state radiation fields with neutrons energies covering the fission spectrum range. The prototype field spectrometer has been field tested in plutonium processing facilities, and has been proven to operate satisfactorily. The prototype field spectrometer uses a /sup 3/He proportional counter to measure the neutron energy spectrum between 50 keV and 5 MeV and a tissue equivalent proportional counter (TEPC) to measure absorbed neutron dose.

  7. Indoor aerosol modeling for assessment of exposure and respiratory tract deposited dose

    NASA Astrophysics Data System (ADS)

    Hussein, Tareq; Wierzbicka, Aneta; Löndahl, Jakob; Lazaridis, Mihalis; Hänninen, Otto

    2015-04-01

    Air pollution is one of the major environmental problems that influence people's health. Exposure to harmful particulate matter (PM) occurs both outdoors and indoors, but while people spend most of their time indoors, the indoor exposures tend to dominate. Moreover, higher PM concentrations due to indoor sources and tightness of indoor environments may substantially add to the outdoor originating exposures. Empirical and real-time assessment of human exposure is often impossible; therefore, indoor aerosol modeling (IAM) can be used as a superior method in exposure and health effects studies. This paper presents a simple approach in combining available aerosol-based modeling techniques to evaluate the real-time exposure and respiratory tract deposited dose based on particle size. Our simple approach consists of outdoor aerosol data base, IAM simulations, time-activity pattern data-base, physical-chemical properties of inhaled aerosols, and semi-empirical deposition fraction of aerosols in the respiratory tract. These modeling techniques allow the characterization of regional deposited dose in any metric: particle mass, particle number, and surface area. The first part of this presentation reviews recent advances in simple mass-balance based modeling methods that are needed in analyzing the health relevance of indoor exposures. The second part illustrates the use of IAM in the calculations of exposure and deposited dose. Contrary to previous methods, the approach presented is a real-time approach and it goes beyond the exposure assessment to provide the required information for the health risk assessment, which is the respiratory tract deposited dose. This simplified approach is foreseen to support epidemiological studies focusing on exposures originating from both indoor and outdoor sources.

  8. Assessment of gamma dose rate over a suspected uranium mineralisation area of Jebel Mun, Western Sudan.

    PubMed

    Sam, A K; Sirelkhatim, D A; Hassona, R K; Hassan, R E; Hag Musa, E; Ahmed, M M O

    2002-01-01

    This study was conducted at the request of authorities in western Darfour State, to address the public concern about the levels of radioactivity in the area of Jebel Mun situated at Sudan-Chad international boundaries. It has been identified as a high background radiation area through aerial geological surveys conducted in late 1970s. The ambient gamma dose in the area was measured with the aid of a hand-held dose rate meter (Mini-Rad, Series 1000) and the surface rock samples were collected and analysed for their radioactivity content using a high-resolution gamma spectrometry equipped with HPGe with relative efficiency of 18%. The activity concentrations of 238U, 232Th and 40K were found to range from 39-253 Bq.kg(-1), 41-527 Bq.kg(-1) and 77-3027 Bq.kg(-1), respectively. From the values of the standard deviation it was concluded that the activity concentration of the considered primordial radionuclides was highly scattered (localised) which in turn indicates non-uniformity in the geological features and/or formations. 238U activity concentration corresponds to equivalent mass concentration of 7.77+/-6.12 ppm (3.19-20.73 ppm), which is of no economic importance. Samples are enriched in thorium relative to uranium as reflected by the Th:U mass ratio which ranges from 3 to 17. The absorbed dose rate in air as estimated from the measured activity concentrations of the primordial radionuclides using the DRCFs (dose rate conversion factors) falls within the range of 70-522 nGy.h(-1) with an average of 221+/-130 nGy.h(-1). It corresponds to an annual effective dose equivalent averaged of 0.27 mSv. The regression analysis has shown that the correlation between calculated and the measured ambient dose rate is marginally significant (r2 = 0.59). The 232Th series is the major producer of the surface radioactivity followed by 40K as they contribute 48% and 32% of the total absorbed dose, respectively.

  9. Dosimetry concepts for scanner quality assurance and tissue dose assessment in micro-CT

    SciTech Connect

    Hupfer, Martin; Kolditz, Daniel; Nowak, Tristan; Eisa, Fabian; Brauweiler, Robert; Kalender, Willi A.

    2012-02-15

    Purpose: At present, no established methods exist for dosimetry in micro computed tomography (micro-CT). The purpose of this study was therefore to investigate practical concepts for both dosimetric scanner quality assurance and tissue dose assessment for micro-CT. Methods: The computed tomography dose index (CTDI) was adapted to micro-CT and measurements of the CTDI both free in air and in the center of cylindrical polymethyl methacrylate (PMMA) phantoms of 20 and 32 mm diameter were performed in a 6 month interval with a 100 mm pencil ionization chamber calibrated for low tube voltages. For tissue dose assessment, z-profile measurements using thermoluminescence dosimeters (TLDs) were performed and both profile and CTDI measurements were compared to Monte Carlo (MC) dose calculations to validate an existing MC tool for use in micro-CT. The consistency of MC calculations and TLD measurements was further investigated in two mice cadavers. Results: CTDI was found to be a reproducible quantity for constancy tests on the micro-CT system under study, showing a linear dependence on tube voltage and being by definition proportional to mAs setting and z-collimation. The CTDI measured free in air showed larger systematic deviations after the 6 month interval compared to the CTDI measured in PMMA phantoms. MC calculations were found to match CTDI measurements within 3% when using x-ray spectra measured at our micro-CT installation and better than 10% when using x-ray spectra calculated from semi-empirical models. Visual inspection revealed good agreement for all z-profiles. The consistency of MC calculations and TLD measurements in mice was found to be better than 10% with a mean deviation of 4.5%. Conclusions: Our results show the CTDI implemented for micro-CT to be a promising candidate for dosimetric quality assurance measurements as it linearly reflects changes in tube voltage, mAs setting, and collimation used during the scan, encouraging further studies on a variety of

  10. Assessment of the exposure to and dose from radon decay products in normally occupied homes

    SciTech Connect

    Hopke, P.K.; Jensen, B.; Li, C.S.; Montassier, N.; Wasiolek, P.; Cavallo, A.J.; Gatsby, K.; Socolow, R.H.; James, A.C.

    1995-05-01

    The exposure to radon decay products has been assessed in seven homes in the northeastern United States and southeastern Canada. In two of the houses, there was a single individual who smoked cigarettes. There were a variety of heating and cooking appliances among these homes. These studies have provide 565 measurements of the activity-weighted size distributions in these houses. The median value for the equilibrium factor was 0.408 as compared with the previously employed value of 0.50. Using the recently adopted ICRP lung deposition and dosimetry model, the hourly equivalent lung dose rate per unit, radon exposure was estimated for each measured size distribution. Differences between houses with smokers present and absent were noted in the exposure conditions, but the resulting dose rate per unit of radon gas concentration was essentially the same for the two groups. Expressed in terms of ICRP`s unit of effective dose for members of the public, the mean dose rate conversion coefficient with respect to radon gas concentration found in this study was 3.8 nSv h{sup -} Bq{sup -} m{sup -3}. 26 refs., 8 figs., 3 tabs.

  11. Radiological dose assessment of NORM disposal in Class II injection wells

    SciTech Connect

    Smith, K.P.; Williams, G.P.; Blunt, D.L.; Arnish, J.J.

    1997-09-01

    Subsurface disposal of petroleum industry wastes containing naturally occurring radioactive material (NORM) via injection into Class II wells was modeled to estimate potential radiological doses to individuals consuming water from a shallow aquifer. A generic model was developed for the injection of 100,000 barrels of NORM waste containing 2,000 picocuries per liter of radium into a layered geologic system. In separate modeling runs, it was assumed that a casing failure released the entire volume of NORM into each successive geologic layer, including the shallow aquifer. Radionuclide concentrations and related potential doses were calculated for receptors located in the shallow aquifer from 0 to 20 miles down gradient of the injection well. The results indicated that even under conservative assumptions, calculated radionuclide concentrations and potential doses associated with subsurface disposal of NORM in Class II wells were below levels of regulatory concern. The preliminary results from a dose assessment of a specific project entailing injection of NORM into Class II wells support the conclusions of the generic study.

  12. Evolving Adjustments to External (Gamma) Slope Factors for CERCLA Risk and Dose Assessments - 12290

    SciTech Connect

    Walker, Stuart

    2012-07-01

    To model the external exposure pathway in risk and dose assessments of radioactive contamination at Superfund sites, the U.S. Environmental Protection Agency (EPA) uses slope factors (SFs), also known as risk coefficients, and dose conversion factors (DCFs). Without any adjustment these external radiation exposure pathways effectively assumes that an individual is exposed to a source geometry that is effectively an infinite slab. The concept of an 'infinite slab' means that the thickness of the contaminated zone and its aerial extent are so large that it behaves as if it were infinite in its physical dimensions. EPA has been making increasingly complex adjustments to account for the extent of the contamination and its corresponding radiation field to provide more accurate risk and dose assessment modeling when using its calculators. In most instances, the more accurate modeling results derived from these gamma adjustments are less conservative. The notable exception are for some radionuclides in rooms with contaminated walls, ceiling, and floors, and the receptor is in location of the room with the highest amount of radiation exposure, usually the corner of small rooms and the center of large conference rooms. (authors)

  13. Effect of the reduction of skin contamination on the internal dose of creosote workers exposed to polycyclic aromatic hydrocarbons.

    PubMed

    Van Rooij, J G; Van Lieshout, E M; Bodelier-Bade, M M; Jongeneelen, F J

    1993-06-01

    Ten creosote-exposed workers of a wood impregnation plant participated in this study, which took place in two consecutive weeks on a Monday, after a weekend off. On one of the two days each worker wore Tyvek coveralls underneath his normal workclothes. Dermal contamination measurements (pyrene on exposure pads) and biological monitoring (urinary 1-OH-pyrene) were performed to measure the reduction of both the skin contamination and the internal dose. The total pyrene skin contamination of workers not wearing coveralls ranged between 47 and 1510 micrograms.d-1 (0.2-7.5 mumol.d-1). On the average, the coveralls reduced the pyrene contamination on the workers' skin by about 35 (SD 63)%. The excreted amount of 1-OH-pyrene in urine decreased significantly from 6.6 to 3.2 micrograms (30.2 to 14.7 nmol). Multiple regression analysis showed that skin contamination by polycyclic aromatic hydrocarbons is the main determinant of the internal exposure dose of creosote workers.

  14. In vivo assessment of the gastric mucosal tolerance dose after single fraction, small volume irradiation of liver malignancies by computed tomography-guided, high-dose-rate brachytherapy

    SciTech Connect

    Streitparth, Florian; Pech, Maciej; Boehmig, Michael; Ruehl, Ricarda; Peters, Nils; Wieners, Gero; Steinberg, Johannes; Lopez-Haenninen, Enrique; Felix, Roland; Wust, Peter; Ricke, Jens . E-mail: jens.ricke@medizin.uni-magdeburg.de

    2006-08-01

    Purpose: The aim of this study was to assess the tolerance dose of gastric mucosa for single-fraction computed tomography (CT)-guided, high-dose-rate (HDR) brachytherapy of liver malignancies. Methods and Materials: A total of 33 patients treated by CT-guided HDR brachytherapy of liver malignancies in segments II and/or III were included. Dose planning was performed upon a three-dimensional CT data set acquired after percutaneous applicator positioning. All patients received gastric protection post-treatment. For further analysis, the contours of the gastric wall were defined in every CT slice using Brachyvision Software. Dose-volume histograms were calculated for each treatment and correlated with clinical data derived from questionnaires assessing Common Toxicity Criteria (CTC). All patients presenting symptoms of upper GI toxicity were examined endoscopically. Results: Summarizing all patients the minimum dose applied to 1 ml of the gastric wall (D{sub 1ml}) ranged from 6.3 to 34.2 Gy; median, 14.3 Gy. Toxicity was present in 18 patients (55%). We found nausea in 16 (69%), emesis in 9 (27%), cramping in 13 (39%), weight loss in 12 (36%), gastritis in 4 (12%), and ulceration in 5 patients (15%). We found a threshold dose D{sub 1ml} of 11 Gy for general gastric toxicity and 15.5 Gy for gastric ulceration verified by an univariate analysis (p = 0.01). Conclusions: For a single fraction, small volume irradiation we found in the upper abdomen a threshold dose D{sub 1ml} of 15.5 Gy for the clinical endpoint ulceration of the gastric mucosa. This in vivo assessment is in accordance with previously published tolerance data.

  15. Modern Radiation Therapy for Hodgkin Lymphoma: Field and Dose Guidelines From the International Lymphoma Radiation Oncology Group (ILROG)

    SciTech Connect

    Specht, Lena; Yahalom, Joachim; Illidge, Tim; Berthelsen, Anne Kiil; Constine, Louis S.; Eich, Hans Theodor; Girinsky, Theodore; Hoppe, Richard T.; Mauch, Peter; Mikhaeel, N. George; Ng, Andrea

    2014-07-15

    Radiation therapy (RT) is the most effective single modality for local control of Hodgkin lymphoma (HL) and an important component of therapy for many patients. These guidelines have been developed to address the use of RT in HL in the modern era of combined modality treatment. The role of reduced volumes and doses is addressed, integrating modern imaging with 3-dimensional (3D) planning and advanced techniques of treatment delivery. The previously applied extended field (EF) and original involved field (IF) techniques, which treated larger volumes based on nodal stations, have now been replaced by the use of limited volumes, based solely on detectable nodal (and extranodal extension) involvement at presentation, using contrast-enhanced computed tomography, positron emission tomography/computed tomography, magnetic resonance imaging, or a combination of these techniques. The International Commission on Radiation Units and Measurements concepts of gross tumor volume, clinical target volume, internal target volume, and planning target volume are used for defining the targeted volumes. Newer treatment techniques, including intensity modulated radiation therapy, breath-hold, image guided radiation therapy, and 4-dimensional imaging, should be implemented when their use is expected to decrease significantly the risk for normal tissue damage while still achieving the primary goal of local tumor control. The highly conformal involved node radiation therapy (INRT), recently introduced for patients for whom optimal imaging is available, is explained. A new concept, involved site radiation therapy (ISRT), is introduced as the standard conformal therapy for the scenario, commonly encountered, wherein optimal imaging is not available. There is increasing evidence that RT doses used in the past are higher than necessary for disease control in this era of combined modality therapy. The use of INRT and of lower doses in early-stage HL is supported by available data. Although the

  16. Measurement of alpha radioactivity and dose assessment in common food crops with SSNTD.

    PubMed

    Ghosh, Dipak; Deb, Argha; Sengupta, Rosalima; Bera, Sukumar; Haldar, Subrata; Maitii, Sunil

    2011-01-01

    Radioactivity is present everywhere in the environment including soil, from where it transfers to vegetation and plants. These vegetations when taken as food result in transfer of the radioactivity to human beings which may cause health hazards. Thus information about the presence of radioactivity in vegetation, plants and soil is highly desirable. In this context, measurements of alpha radioactivity present in soil as well as in some of the staple food crops which form the main components of the composite Indian diet are presented in this study. Assessment of effective dose rate has also been done. The total alpha activity in soil has been found within 100-700 Bq kg(-1) and in food within 10-200 Bq kg(-1). The annual effective dose rate in food crops has been estimated in the range of 0.8-300 ì S v.

  17. Numerical system utilising a Monte Carlo calculation method for accurate dose assessment in radiation accidents.

    PubMed

    Takahashi, F; Endo, A

    2007-01-01

    A system utilising radiation transport codes has been developed to derive accurate dose distributions in a human body for radiological accidents. A suitable model is quite essential for a numerical analysis. Therefore, two tools were developed to setup a 'problem-dependent' input file, defining a radiation source and an exposed person to simulate the radiation transport in an accident with the Monte Carlo calculation codes-MCNP and MCNPX. Necessary resources are defined by a dialogue method with a generally used personal computer for both the tools. The tools prepare human body and source models described in the input file format of the employed Monte Carlo codes. The tools were validated for dose assessment in comparison with a past criticality accident and a hypothesized exposure.

  18. Assessment of natural radioactivity concentrations and gamma dose levels around Shorapur, Karnataka

    SciTech Connect

    Rajesh, S.; Avinash, P.; Kerur, B. R.; Anilkumar, S.

    2015-08-28

    This study assesses the level of background radiation around Shorapur. The study region locates the western part of the Yadgir district of Karnataka. Shorapur and Shahapur talukas are mostly composed of clay, shale sandstone, granite rock and part of study area is black soil. Thirty sample locations were selected along the length and breadth of Shorapur and Shahapur taluka. Natural radionuclide activity concentrations in soil samples were determined using 4'X4' NaI (Tl) gamma spectroscopy. Outdoor gamma dose measurements in air at 1 m above ground level were determined using Rad Eye PRD survey meter. Estimated dose values are compared with the survey meter values and found to be good agreement between them and also with the data obtained from different other areas of Karnataka and India. The average values were found to be slightly higher in the present investigation.

  19. The Use of Mode of Action Information in Risk Assessment: Quantitative Key Events/Dose-Response Framework for Modeling the Dose-Response for Key Events

    EPA Science Inventory

    The HESI RISK21 project formed the Dose-Response/Mode-of-Action Subteam to develop strategies for using all available data (in vitro, in vivo, and in silico) to advance the next-generation of chemical risk assessments. A goal of the Subteam is to enhance the existing Mode of Act...

  20. Assessment of Regional Pediatric Computed Tomography Dose Indices in Tamil Nadu

    PubMed Central

    Saravanakumar, A.; Vaideki, K.; Govindarajan, K. N.; Jayakumar, S.; Devanand, B.

    2017-01-01

    The aim of this article is to assess Tamil Nadu pediatric computed tomography (CT) diagnostic reference levels (DRLs) by collecting radiation dose data for the most commonly performed CT examinations. This work was performed for thirty CT scanners installed in various parts of the Tamil Nadu region. The patient cohort was divided into two age groups: <1 year, and 1–5 years. CT dose indices were measured using a 10 cm3 pencil ion chamber with pediatric head and body polymethyl methacrylate phantoms. Dose data such as volumetric CT dose index (CTDIv) and dose length product (DLP) on a minimum of twenty average-sized pediatric patients in each category were recorded to calculate a mean site CTDIv and DLP value. The rounded 75th percentile was used to calculate a pediatric DRL for each hospital, and then region by compiling all results. Data were collected for 3600 pediatric patients. Pediatric CT DRL for two age groups: <1 year (CTDIv and DLP of head [20 mGy, 352 mGy.cm], chest [7 mGy, 120 mGy.cm] and abdomen [12 mGy, 252 mGy.cm]), and 1–5 years (CTDIv and DLP of head [38 mGy, 505 mGy.cm], chest [8 mGy, 132 mGy.cm] and abdomen [14 mGy, 270 mGy.cm]) for select procedures have been calculated. Proposed pediatric DRLs of CTDIv and DLP for head procedure were lower, and for chest and abdomen procedures were higher than European pediatric DRLs for both age groups.

  1. RADON AND PROGENY SOURCED DOSE ASSESSMENT OF SPA EMPLOYEES IN BALNEOLOGICAL SITES.

    PubMed

    Uzun, Sefa Kemal; Demiröz, Işık

    2016-09-01

    This study was conducted in the scope of IAEA project with the name 'Establishing a Systematic Radioactivity Survey and Total Effective Dose Assessment in Natural Balneological Sites' (TUR/9/018), at the Health Physics department of Sarayköy Nuclear Research and Training Center (SANAEM). The aim of this study is estimation of radon and progeny sourced effective dose for the people who are working at the spa facilities by measuring radon activity concentration (RAC) at the ambient air of indoor spa pools and dressing rooms. As it is known, the source of the radon gas is the radium content of the earth crust. Therefore, thermal waters coming from ground may contain dissolved radon and the radon can diffuse water to air. So the ambient air of spa pools can contain serious RAC that depends on a lot of parameters. In this regard, RAC measurements were executed at the 70 spa facilities in Turkey. The measurements were done with both active and passive methods at ambient air of spa pools and dressing rooms. Thus, active measurements were carried out by using the Alphaguard(®) with diffusion mode during half an hour, and passive measurements were carried out by using the humidity resistive CR-39 radon detectors during 2 months. Results show that RAC values at ambient air of spa pools varies between 13 Bq m(-3) and 10 kBq m(-3) Because long-term measurements are more reliable, if it is available, for dose calculations passive radon measurements (with CR-39 detectors) at ambient air of spa pools and dressing rooms were used, otherwise active measurement results were used. With the measurement by the conversion coefficients of ICRP 65 and occupational data of the employees has got from questionary forms, effective dose values were calculated. According to the calculations, spa employees are exposed to annual average dose between 0.05 and 29 mSv because of radon and progeny.

  2. Initial assessment of image quality for low-dose PET: evaluation of lesion detectability

    NASA Astrophysics Data System (ADS)

    Schaefferkoetter, Joshua D.; Yan, Jianhua; Townsend, David W.; Conti, Maurizio

    2015-07-01

    In the context of investigating the potential of low-dose PET imaging for screening applications, we developed methods to assess small lesion detectability as a function of the number of counts in the scan. We present here our methods and preliminary validation using tuberculosis cases. FDG-PET data from seventeen patients presenting diffuse hyper-metabolic lung lesions were selected for the study, to include a wide range of lesion sizes and contrasts. Reduced doses were simulated by randomly discarding events in the PET list mode, and ten realizations at each simulated dose were generated and reconstructed. The data were grouped into 9 categories determined by the number of included true events, from  >40 M to  <250 k counts. The images reconstructed from the original full statistical set were used to identify lung lesions, and each was, at every simulated dose, quantified by 6 parameters: lesion metabolic volume, lesion-to-background contrast, mean lesion tracer uptake, standard deviation of activity measurements (across realizations), lesion signal-to-noise ratio (SNR), and Hotelling observer SNR. Additionally, a lesion-detection task including 550 images was presented to several experienced image readers for qualitative assessment. Human observer performances were ranked using receiver operating characteristic analysis. The observer results were correlated with the lesion image measurements and used to train mathematical observer models. Absolute sensitivities and specificities of the human observers, as well as the area under the ROC curve, showed clustering and performance similarities among images produced from 5 million or greater counts. The results presented here are from a clinically realistic but highly constrained experiment, and more work is needed to validate these findings with a larger patient population.

  3. "The Dose Makes the Poison": Informing Consumers About the Scientific Risk Assessment of Food Additives.

    PubMed

    Bearth, Angela; Cousin, Marie-Eve; Siegrist, Michael

    2016-01-01

    Intensive risk assessment is required before the approval of food additives. During this process, based on the toxicological principle of "the dose makes the poison,ˮ maximum usage doses are assessed. However, most consumers are not aware of these efforts to ensure the safety of food additives and are therefore sceptical, even though food additives bring certain benefits to consumers. This study investigated the effect of a short video, which explains the scientific risk assessment and regulation of food additives, on consumers' perceptions and acceptance of food additives. The primary goal of this study was to inform consumers and enable them to construct their own risk-benefit assessment and make informed decisions about food additives. The secondary goal was to investigate whether people have different perceptions of food additives of artificial (i.e., aspartame) or natural origin (i.e., steviolglycoside). To attain these research goals, an online experiment was conducted on 185 Swiss consumers. Participants were randomly assigned to either the experimental group, which was shown a video about the scientific risk assessment of food additives, or the control group, which was shown a video about a topic irrelevant to the study. After watching the video, the respondents knew significantly more, expressed more positive thoughts and feelings, had less risk perception, and more acceptance than prior to watching the video. Thus, it appears that informing consumers about complex food safety topics, such as the scientific risk assessment of food additives, is possible, and using a carefully developed information video is a successful strategy for informing consumers.

  4. Personnel neutron dose assessment upgrade: Volume 1, Personnel neutron dosimetry assessment: (Final report)

    SciTech Connect

    Hadlock, D.E.; Brackenbush, L.W.; Griffith, R.V.; Hankins, D.E.; Parkhurst, M.A.; Stroud, C.M.; Faust, L.G.; Vallario, E.J.

    1988-07-01

    This report provides guidance on the characteristics, use, and calibration criteria for personnel neutron dosimeters. The report is applicable for neutrons with energies ranging from thermal to less than 20 MeV. Background for general neutron dosimetry requirements is provided, as is relevant federal regulations and other standards. The characteristics of personnel neutron dosimeters are discussed, with particular attention paid to passive neutron dosimetry systems. Two of the systems discussed are used at DOE and DOE-contractor facilities (nuclear track emulsion and thermoluminescent-albedo) and another (the combination TLD/TED) was recently developed. Topics discussed in the field applications of these dosimeters include their theory of operation, their processing, readout, and interpretation, and their advantages and disadvantages for field use. The procedures required for occupational neutron dosimetry are discussed, including radiation monitoring and the wearing of dosimeters, their exchange periods, dose equivalent evaluations, and the documenting of neutron exposures. The coverage of dosimeter testing, maintenance, and calibration includes guidance on the selection of calibration sources, the effects of irradiation geometries, lower limits of detectability, fading, frequency of calibration, spectrometry, and quality control. 49 refs., 6 figs., 8 tabs.

  5. A revised model of the kidney for medical internal radiation dose calculations

    SciTech Connect

    Patel, J.S.

    1988-12-01

    Presently, there is a need for a revised model for the kidneys which clearly distinguishes major regions and structures in the kidneys. This model is needed since radionuclides used currently in nuclear medicine have marked preferences for various regions of the kidneys, and the radiation dose to one or more of these regions is of primary importance. At this time the kidneys are modeled as solid organs of uniform density by the ALGAM computer code, which uses Monte Carlo techniques to calculate absorbed fractions. This presentation will introduce a model in which the source regions will be the cortex, medulla and the papillae, while the target regions will be these regions as well as the other organs of the body. This research presents for the first time estimates of the specific absorbed fractions in various organs of the body from a source in the specific region of the kidneys. 17 refs., 8 figs., 10 tabs.

  6. International DSM and DSM program evaluation: An INDEEP assessment

    SciTech Connect

    Vine, E.

    1995-04-01

    This paper discusses the current level of demand-side management (DSM) occurring in selected European countries and reviews the availability of information on DSM programs and program evaluation. Next, thirteen European DSM programs are compared by examining such factors as: motivations for program implementation, marketing methods, participation rates, total energy savings, and program costs. The transfer of DSM program results and experiences found in these case studies is also discussed, as well as the lessons learned during the design, implementation, and evaluation of these programs. This paper represents a preliminary assessment of the state of DSM and DSM program evaluation in Europe. The findings from this work also represent the first steps in a joint international effort to compile and analyze the measured results of energy efficiency programs in a consistent and comprehensive fashion. The authors find that these programs represent cost-effective resources: the cost of energy saved by the programs ranged from a low of 0.0005 ECUs/kWh (0.01 {cents}/kWh) to a high of 0.077 ECUs/kWh (9.7 {cents}/kWh), with an average cost of 0.027 ECUs/kWh (3.3 {cents}/kWh). Weighted by energy savings, the average cost of energy saved by the programs was 0.014 ECUs/kWh (1.8 {cents}/kWh).

  7. A Review of International Large-Scale Assessments in Education: Assessing Component Skills and Collecting Contextual Data. PISA for Development

    ERIC Educational Resources Information Center

    Cresswell, John; Schwantner, Ursula; Waters, Charlotte

    2015-01-01

    This report reviews the major international and regional large-scale educational assessments, including international surveys, school-based surveys and household-based surveys. The report compares and contrasts the cognitive and contextual data collection instruments and implementation methods used by the different assessments in order to identify…

  8. Performance assessment of the BEBIG MultiSource high dose rate brachytherapy treatment unit.

    PubMed

    Palmer, Antony; Mzenda, Bongile

    2009-12-21

    A comprehensive system characterisation was performed of the Eckert & Ziegler BEBIG GmbH MultiSource High Dose Rate (HDR) brachytherapy treatment unit with an (192)Ir source. The unit is relatively new to the UK market, with the first installation in the country having been made in the summer of 2009. A detailed commissioning programme was devised and is reported including checks of the fundamental parameters of source positioning, dwell timing, transit doses and absolute dosimetry of the source. Well chamber measurements, autoradiography and video camera analysis techniques were all employed. The absolute dosimetry was verified by the National Physical Laboratory, UK, and compared to a measurement based on a calibration from PTB, Germany, and the supplied source certificate, as well as an independent assessment by a visiting UK centre. The use of the 'Krieger' dosimetry phantom has also been evaluated. Users of the BEBIG HDR system should take care to avoid any significant bend in the transfer tube, as this will lead to positioning errors of the source, of up to 1.0 mm for slight bends, 2.0 mm for moderate bends and 5.0 mm for extreme curvature (depending on applicators and transfer tube used) for the situations reported in this study. The reason for these errors and the potential clinical impact are discussed. Users should also note the methodology employed by the system for correction of transit doses, and that no correction is made for the initial and final transit doses. The results of this investigation found that the uncorrected transit doses lead to small errors in the delivered dose at the first dwell position, of up to 2.5 cGy at 2 cm (5.6 cGy at 1 cm) from a 10 Ci source, but the transit dose correction for other dwells was accurate within 0.2 cGy. The unit has been mechanically reliable, and source positioning accuracy and dwell timing have been reproducible, with overall performance similar to other existing HDR equipment. The unit is capable of high

  9. Factors in International Space Station Integration Feasibility Assessments

    NASA Technical Reports Server (NTRS)

    Watson, Patricia M.; Dunn, James

    2002-01-01

    The International Space Station, ISS, is a growing vehicle. The ISS configuration changes internally and externally with each ISS flight. Each flight adds resources and capabilities such as docking/berthing ports, power, stowage volume, heat rejection, and data processing capability. The configuration, capabilities and performance characteristics of the vehicle will be in flux until assembly complete. At the same time the knowledge about what is required to support humans involved in long duration space flight is also being greatly expanded. In addition to the changes occurring on-orbit, the situation on the ground is also very dynamic. Proposals for new ISS elements, proposed deletions of elements, changes to the ISS requirements, and changes to the planned configuration are always under evaluation. Furthermore, budgetary issues have driven the need to explore alternative options for the ISS . This environment has made the role of the technical integrator in the ISS program unique in that the baseline against which proposals are evaluated is always changing. The nature of the International Space Station Program adds another dimension to the integrators task. ISS program activities are spread across several centers: KSC, MSFC, GRC, DFRC, ARC and JSc. There are six International Partners/participants each with their own unique organizations. The prime contractor is in Texas, California and Alabama. And, the Space Shuttle Program as the launch vehicle provider is another major interface. In spite of the fluidity of the technical baseline, projections and organizational complexity, in the course of evaluating proposals and producing feasibility assessments there are factors, which frequently emerge as significant. These factors tend to be the limiting conditions when they come into play. The finite resources, which tend to limit the options for ISS are: upmass, life support and crew rescue capability, crew time, utilities, exercise equipment, and docking

  10. Application of physiologically based pharmacokinetic (PBPK) model of trichloroethylene in rats for estimation of internal dose

    EPA Science Inventory

    Potential human health risk from chemical exposure must often be assessed for conditions for which suitable human or animal data are not available, requiring extrapolation across duration and concentration. The default method for exposure-duration adjustment is based on Haber's r...

  11. SU-E-T-616: Plan Quality Assessment of Both Treatment Planning System Dose and Measurement-Based 3D Reconstructed Dose in the Patient

    SciTech Connect

    Olch, A

    2015-06-15

    Purpose: Systematic radiotherapy plan quality assessment promotes quality improvement. Software tools can perform this analysis by applying site-specific structure dose metrics. The next step is to similarly evaluate the quality of the dose delivery. This study defines metrics for acceptable doses to targets and normal organs for a particular treatment site and scores each plan accordingly. The input can be the TPS or the measurement-based 3D patient dose. From this analysis, one can determine whether the delivered dose distribution to the patient receives a score which is comparable to the TPS plan score, otherwise replanning may be indicated. Methods: Eleven neuroblastoma patient plans were exported from Eclipse to the Quality Reports program. A scoring algorithm defined a score for each normal and target structure based on dose-volume parameters. Each plan was scored by this algorithm and the percentage of total possible points was obtained. Each plan also underwent IMRT QA measurements with a Mapcheck2 or ArcCheck. These measurements were input into the 3DVH program to compute the patient 3D dose distribution which was analyzed using the same scoring algorithm as the TPS plan. Results: The mean quality score for the TPS plans was 75.37% (std dev=14.15%) compared to 71.95% (std dev=13.45%) for the 3DVH dose distribution. For 3/11 plans, the 3DVH-based quality score was higher than the TPS score, by between 0.5 to 8.4 percentage points. Eight/11 plans scores decreased based on IMRT QA measurements by 1.2 to 18.6 points. Conclusion: Software was used to determine the degree to which the plan quality score differed between the TPS and measurement-based dose. Although the delivery score was generally in good agreement with the planned dose score, there were some that improved while there was one plan whose delivered dose quality was significantly less than planned. This methodology helps evaluate both planned and delivered dose quality. Sun Nuclear Corporation has

  12. Internal medicine interns' and residents' pressure ulcer prevention and assessment attitudes and abilities: results of an exploratory study .

    PubMed

    Suen, Winnie; Parker, Victoria A; Harney, Lauren; Nevin, Siobhan; Jansen, Jane; Alexander, Linda; Berlowitz, Dan

    2012-04-01

     To evaluate and determine differences between attitudes of internal medicine interns and residents toward pressure ulcer (PU) prevention and to evaluate the interns' abilities to accurately identify wounds and stage PUs, an exploratory, quantitative study was conducted in a 639-bed, safety net academic center. Participants (21 internal medicine interns and 21 internal medicine residents) attending an educational session on PU prevention and care were eligible to participate. The 1-hour conference session was prepared and provided by a physician and wound care nurses. Before the lecture, participants were asked to complete an 11-question paper-and-pencil PU attitude survey. Following the lecture, they were asked to identify 11 wounds and stage PUs using the inpatient admission history and physical template used in the hospital's electronic medical record. An audience response system was used to record correct and incorrect responses. Nineteen (19) interns and 20 residents completed the survey. Twenty-one (21) interns successfully completed the wound assessment quiz. Descriptive statistics were used to examine the survey data and residents' and interns' average attitude scores were compared using independent group t-test. The results suggest that interns and residents have a positive attitude toward and are concerned about PU prevention. The significantly higher overall score among interns compared to residents (average 43.8 versus 38.8 respectively, P = 0.002) suggests interns have a more positive attitude than residents. Statistically significant differences between item scores showed that, compared to residents, interns perceived PU prevention to be more time-consuming (P = 0.01), less of a concern in practice (P = 0.02), and a lower priority than other areas of care (P = 0.003). Compared to residents, interns also were more likely to agree to with statement, "In my opinion, patients tend to not get as many pressure

  13. Assessment of long-term subacute exposure to dimethoate by hair analysis of dialkyl phosphates DMP and DMTP in exposed rabbits: The effects of dose, dose duration and hair colour.

    PubMed

    Margariti, Maria G; Tsatsakis, Aristidis M

    2009-10-01

    Hair analysis for dialkyl phosphates' (DAPs) residues could provide a measure of chronic exposure to organophosphate pesticides (OPs). The aim of this study was to determine whether these metabolites can be internally incorporated into the hair of rabbits exposed to dimethoate and also to investigate the influence of dose and dose duration of this OP, as well as the effect of hair colour on the concentrations of its DAPs in hair. Two-coloured rabbits were daily exposed to dimethoate (0, 12 or 24mgkg(-1) body weight) via their drinking water. Hair samples of both colours were obtained 4 and 6 months after the beginning of exposure from the back of all treated rabbits, and each hair colour sample was analyzed for dimethyl phosphate (DMP) and dimethyl thiophosphate (DMTP) by gas chromatography-mass spectrometry (GC-MS). Analysis revealed the incorporation of these metabolites into the rabbit hair in a dose-dependent manner. The mean concentrations found ranged from 0.18 to 0.77ngmg(-1) for DMP and from 0.43 to 1.53ngmg(-1) for DMTP. Mixed results for the significance of the relationship between dose duration and the levels of the two DAPs in hair are observed. Hair pigmentation does not appear to affect the concentration values of DMTP, whereas it seems to be a critical factor in the incorporation of DMP into hair. These data confirm the ability of hair testing to assess chronic OP exposure by the detection of DAPs.

  14. Dose assessment for reentry or reoccupancy and recovery of urban areas contaminated by a radiological dispersal device: the need for a consensus approach.

    PubMed

    Sullivan, T; Musolino, S V; DeFranco, J

    2008-05-01

    Should an attack occur in an urban area with a Radiological Dispersal Device (RDD), guidance is available on the acceptable total dose equivalent for reentering the contaminated zone, and there is an accepted methodology for plume projection in the model used by the Federal Radiological Monitoring and Assessment Center (FRMAC). After initial characterization of the impact of the plume caused by an RDD, there will be considerable pressure from the public to allow them to return and quickly collect their belongings, and, eventually, to reoccupy residences and to reopen businesses. The FRMAC procedures principally deal with early and intermediate phase dose assessment, but do include late phase assessment procedures. However, the late phase assessments do not include complex geometries, such as the internal structure of buildings. This paper identifies areas where more specificity is needed to rapidly provide assessments to health officials and senior decision-makers. In this regard, there is no national consensus method to calculate projected dose inside buildings after an RDD event that addresses selecting the exposure pathways, scenarios, key parameters, etc. Therefore, to demonstrate an approach that exemplifies some of the technical and policy issues, which are unresolved, four exposure scenarios (residential, industrial, public park, park worker) were evaluated to determine the level of contamination that would deliver a dose equivalent of 10 mSv in the first year, excluding exposure during the first 4 d (emergency phase). In addition, the retrieval of personal belongings was simulated by assessing a 1-h exposure for the residential and industrial scenarios. RESRAD-BUILD was used to calculate the surface concentration of 60Co, 90Sr, 137Cs, 192Ir, 226Ra, 238Pu, 241Am, and 252Cf that would lead to a 10 mSv reference dose for these exposure periods. These example studies are intended to provide insights and guidance on how a municipal health agency can begin to

  15. Assessment of dose during an SGTR. [Steam Generator Tube Rupture (SGTR)

    SciTech Connect

    Adams, J.P.

    1993-01-01

    The Nuclear Regulatory Commission requires utilities to determine the response of a pressurized water reactor to a steam generator tube rupture (SGTR) as part of the safety analysis for the plant. The SGTR analysis includes assumptions regarding the iodine concentration in the reactor coolant system (RCS) due to iodine spikes, primary flashing and bypass fractions, and iodine partitioning in the secondary coolant system (SCS). Experimental and analytical investigations have recently been completed wherein these assumptions were tested to determine whether and to what degree they were conservative (that is, whether they result in a calculated iodine source term/dose that is at least as large or larger than that expected during an actual event). The current study has the objective to assess the overall effects of the results of these investigations on the calculated iodine dose to the environment during an SGTR. To assist in this study, a computer program, DOSE, was written. This program uses a simple, non-mechanistic model to calculate the iodine source term to the environment during an SGTR as a function of water mass inventories and flow rates and iodine concentrations in the RCS and SCS. The principal conclusion of this study is that the iodine concentration in the RCS is the dominant parameter, due to the dominance of primary flashing on the iodine source term.

  16. Image quality and dose assessment in digital breast tomosynthesis: A Monte Carlo study

    NASA Astrophysics Data System (ADS)

    Baptista, M.; Di Maria, S.; Oliveira, N.; Matela, N.; Janeiro, L.; Almeida, P.; Vaz, P.

    2014-11-01

    Mammography is considered a standard technique for the early detection of breast cancer. However, its sensitivity is limited essentially due to the issue of the overlapping breast tissue. This limitation can be partially overcome, with a relatively new technique, called digital breast tomosynthesis (DBT). For this technique, optimization of acquisition parameters which maximize image quality, whilst complying with the ALARA principle, continues to be an area of considerable research. The aim of this work was to study the best quantum energies that optimize the image quality with the lowest achievable dose in DBT and compare these results with the digital mammography (DM) ones. Monte Carlo simulations were performed using the state-of-the-art computer program MCNPX 2.7.0 in order to generate several 2D cranio-caudal (CC) projections obtained during an acquisition of a standard DBT examination. Moreover, glandular absorbed doses and photon flux calculations, for each projection image, were performed. A homogeneous breast computational phantom with 50%/50% glandular/adipose tissue composition was used and two compressed breast thicknesses were evaluated: 4 cm and 8 cm. The simulated projection images were afterwards reconstructed with an algebraic reconstruction tool and the signal difference to noise ratio (SDNR) was calculated in order to evaluate the image quality in DBT and DM. Finally, a thorough comparison between the results obtained in terms of SDNR and dose assessment in DBT and DM was performed.

  17. Radiological dose assessment of the disposal of NORM wastes via landspreading.

    SciTech Connect

    Smith, K. P.

    1998-12-18

    Petroleum production activities sometimes result in the accumulation of naturally occurring radioactive materials (NORM) at elevated concentrations in by-product waste streams, such as scale and sludge. In the past, the petroleum industry commonly disposed of these wastes via landspreading, a practice consisting of spreading the waste over the soil surface and, sometimes, mixing it into the top layer of soil. Potential radiological doses to workers and the general public from landspreading of NORM waste have been assessed for a variety of scenarios, including the landspreading worker scenario and future residential, industrial, recreational, and agricultural scenarios. The exposure pathways evaluated include external radiation, inhalation of resuspended dust and radon, ingestion of soil and groundwater, and ingestion of contaminated foodstuff grown on the property. In general, potential doses to landspreading workers and members of the general public exposed through future recreational or agricultural use of the property are negligible. Potential doses to future residential or industrial users can vary greatly, depending on such factors as type of building construction, presence or absence of clean cover material, and on-site erosion rates. On the basis of the results presented in this paper, it is recommended that (a) any landspreading activity that would result in radium-226 concentrations in soil above 10 pCi/g be evaluated on a case-by-case basis to estimate potential future risk to the public and (b) states should consider policies to restrict future land use or advise future land owners where landspreading of NORM wastes has occurred.

  18. Polonium in size fractionated mainstream cigarette smoke, predicted deposition and associated internal radiation dose.

    PubMed

    Tiwari, M; Sahu, S K; Bhangare, R C; Pandit, G G

    2016-10-01

    In this study, size fractionated mass and (210)Po activity concentrations in mainstream cigarette smoke (MCS) were monitored for three popular cigarette brands. Size segregated collection of MCS was carried out using a cascade type impactor, while mass and (210)Po activity concentration were analyzed gravimetrically and alpha spectrometry (following the radiochemical separation) respectively. Multiple-Path Particle Dosimetry (MPPD V2.11) model is used for prediction of deposition fraction calculations for the MCS deposition in different compartment of human respiratory tract. The activity concentration of (210)Po is founds 10.56 ± 2.46 mBq per cigarette for the tested cigarette brands. (210)Po size distribution indicates most of this associates with fine fraction (Dp < 2.23 μm) of cigarette smoke. The committed annual effective dose to smokers (smoking on an average 20 cigarette a day), considering the (210)Po and (210)Pb concentrations (assuming it is in secular equilibrium with (210)Po) in MCS, was estimated between 0.22 and 0.40 mSv, with mean value of 0.30 mSv for tested cigarette brands. Considering the risk factor of fatal cancer due to radiation exposure of lung (exposure time of 30 years); the average collective estimated fatal cancer risk is estimated as 1.5 × 10(-4) due to (210)Po and (210)Pb exposure to smokers.

  19. An international model validation exercise on radionuclide transfer and doses to freshwater biota.

    SciTech Connect

    Yankovich, T. L.; Vives i Batlle, J.; Vives-Lynch, S.; Beresford, N. A.; Barnett, C. L.; Beaugelin-Seiller, K.; Brown, J. E.; Cheng, J.-J.; Copplestone, D.; Heling, R.; Hosseini, A.; Howard, B. J.; Kamboj, S.; Kryshev, A. I.; Nedveckaite, T.; Smith, J. T.; Wood, M. D.; Environmental Science Division; AREVA Resources; Environmental Science, Westlakes Scientific Consulting Ltd.; Centre for Ecology and Hydrology; IRSN; Norwegian Radiation Protection Authority; The Environment Agency; Nuclear Research and Consultancy Group; Univ. of Liverpool; School of Earth and Environmental Sciences; Inst. of Physics, Lithuania; State Enterprise Scientific Production Association

    2010-06-09

    Under the International Atomic Energy Agency (IAEA)'s EMRAS (Environmental Modelling for Radiation Safety) program, activity concentrations of {sup 60}Co, {sup 90}Sr, {sup 137}Cs and {sup 3}H in Perch Lake at Atomic Energy of Canada Limited's Chalk River Laboratories site were predicted, in freshwater primary producers, invertebrates, fishes, herpetofauna and mammals using eleven modelling approaches. Comparison of predicted radionuclide concentrations in the different species types with measured values highlighted a number of areas where additional work and understanding is required to improve the predictions of radionuclide transfer. For some species, the differences could be explained by ecological factors such as trophic level or the influence of stable analogues. Model predictions were relatively poor for mammalian species and herpetofauna compared with measured values, partly due to a lack of relevant data. In addition, concentration ratios are sometimes under-predicted when derived from experiments performed under controlled laboratory conditions representative of conditions in other water bodies.

  20. Toward a molecular equivalent dose: use of the medaka model in comparative risk assessment.

    PubMed

    Hobbie, Kristen R; Deangelo, Anthony B; King, Leon C; Winn, Richard N; Law, J McHugh

    2009-03-01

    Recent changes in the risk assessment landscape underscore the need to be able to compare the results of toxicity and dose-response testing between a growing list of animal models and, quite possibly, an array of in vitro screening assays. How do we compare test results for a given compound between vastly different species? For example, what dose level in the ambient water of a small fish model would be equivalent to 10 ppm of a given compound in the rat's drinking water? Where do we begin? To initially address these questions, and in order to compare dose-response tests in a standard rodent model with a fish model, we used the concept of molecular dose. Assays that quantify types of DNA damage that are directly relevant to carcinogenesis integrate the factors such as chemical exposure, uptake, distribution, metabolism, etc. that tend to vary so widely between different phyletic levels. We performed parallel exposures in F344 rats and Japanese medaka (Oryzias latipes) to the alkylating hepatocarcinogen, dimethylnitrosamine (DMN). In both models, we measured the DNA adducts 8-hydroxyguanine, N(7)-methylguanine and O(6)-methylguanine in the liver; mutation frequency using lambda cII transgenic medaka and lambda cII transgenic (Big Blue(R)) rats; and early morphological changes in the livers of both models using histopathology and immunohistochemistry. Pulse dose levels in fish were 0, 10, 25, 50, or 100 ppm DMN in the ambient water for 14 days. Since rats are reported to be especially sensitive to DMN, they received 0, 0.1, 1, 5, 10, or 25 ppm DMN in the drinking water for the same time period. While liver DNA adduct concentrations were similar in magnitude, mutant frequencies in the DMN-exposed medaka were up to 20 times higher than in the Big Blue rats. Future work with other compounds will generate a more complete picture of comparative dose response between different phyletic levels and will help guide risk assessors using "alternative" models.

  1. Organ Dose Assessment and Evaluation of Cancer Risk on Mars Surface

    NASA Technical Reports Server (NTRS)

    Kim, Myung-Hee; Cucinotta, Francis A.

    2011-01-01

    Organ specific fluence spectra and doses for large solar particle events (SPE) and galactic cosmic rays (GCR) at various levels of solar activity are simulated on the surface of Mars using the HZETRN/QMSFRG computer code and the 2010 version of the Badhwar and O Neill GCR model. The NASA JSC propensity model of SPE fluence and occurrence is used to consider upper bounds on SPE fluence for increasing mission lengths. To account for the radiation transmission through the Mars atmosphere, a vertical distribution of Mars atmospheric thickness is calculated from the temperature and pressure data of Mars Global Surveyor. To describe the spherically distributed atmospheric distance on the Mars surface at each elevation, the directional cosine distribution is implemented. The resultant directional shielding by Mars atmosphere at each elevation is then coupled with vehicle and body shielding for organ dose estimates. Finally, cancer risks for astronauts exploring Mars can be assessed by applying the NASA Space Radiation Cancer Risk 2010 model with the resultant organ dose estimates. Variations of organ doses and cancer risk quantities on the surface of Mars, which are due to a 16-km elevation range between the Tharsis Montes and the Hellas impact basin, are visualized on the global topography of Mars measured by the Mars Orbiter Laser Altimeter. It is found that cancer incidence risks are about 2-fold higher than mortality risks with a disproportionate increase in skin and thyroid cancers for male and female astronauts and in breast cancer for female astronauts. The number of safe days, defined by the upper 95% percent confidence level to be below cancer limits, on Mars is analyzed for several Mars mission design scenarios.

  2. Quantitative assessment of inhalation exposure and deposited dose of aerosol from nanotechnology-based consumer sprays†

    PubMed Central

    Nazarenko, Yevgen; Lioy, Paul J.; Mainelis, Gediminas

    2015-01-01

    This study provides a quantitative assessment of inhalation exposure and deposited aerosol dose in the 14 nm to 20 μm particle size range based on the aerosol measurements conducted during realistic usage simulation of five nanotechnology-based and five regular spray products matching the nano-products by purpose of application. The products were also examined using transmission electron microscopy. In seven out of ten sprays, the highest inhalation exposure was observed for the coarse (2.5–10 μm) particles while being minimal or below the detection limit for the remaining three sprays. Nanosized aerosol particles (14–100 nm) were released, which resulted in low but measurable inhalation exposures from all of the investigated consumer sprays. Eight out of ten products produced high total deposited aerosol doses on the order of 101–103 ng kg−1 bw per application, ~85–88% of which were in the head airways, only <10% in the alveolar region and <8% in the tracheobronchial region. One nano and one regular spray produced substantially lower total deposited doses (by 2–4 orders of magnitude less), only ~52–64% of which were in the head while ~29–40% in the alveolar region. The electron microscopy data showed nanosized objects in some products not labeled as nanotechnology-based and conversely did not find nano-objects in some nano-sprays. We found no correlation between nano-object presence and abundance as per the electron microscopy data and the determined inhalation exposures and deposited doses. The findings of this study and the reported quantitative exposure data will be valuable for the manufacturers of nanotechnology-based consumer sprays to minimize inhalation exposure from their products, as well as for the regulators focusing on protecting the public health. PMID:25621175

  3. Nutrititional Status Assessment of International Space Station Crew Members

    NASA Technical Reports Server (NTRS)

    Smith, S. M.; Zwart, S. R.; Block, G.; Rice, B. I.; Davis-Street, J. F.

    2005-01-01

    Defining optimal nutrient requirements is imperative to ensure crew health on long-duration space exploration missions. To date, nutrient requirement data have been extremely limited because of small sample sizes and difficulties associated with collecting biological samples. In this study, we examined changes in body composition, bone metabolism, hematology, general blood chemistry, and blood levels of selected vitamins and minerals after long-duration (128-195 d) space flight aboard the International Space Station. Crew members consumed an average of 80% of the recommended energy intakes, and on landing day their body weight had decreased (P=0.051). After flight, hematocrit was less, and serum femtin was greater than before flight (P<0.01). Serum iron, ferritin saturation, and transferrin had decreased after flight. The finding that other acute-phase proteins, including ceruloplasmin, retinol binding protein, transthyretin, and albumin were not changed after flight suggests that the changes in iron metabolism may not be strictly due to an inflammatory response. Urinary 8- hydroxy-2'-deoxyguanosine concentration was greater and superoxide dismutase was less after flight, indicating that oxidative damage had increased (P<0.05). Despite the reported use of vitamin D supplements during flight, serum 25-hydroxyvitamin D was significantly decreased after flight (P<0.01). Bone resorption was increased after flight, as indicated by several urinary markers of bone resorption. Bone formation, assessed by serum concentration of bone-specific alkaline phosphatase, was elevated only in crew members who landed in Russia, probably because of the longer time lapse between landing and sample collection. These data provide evidence that bone loss, compromised vitamin D status, and oxidative damage remain critical concerns for long-duration space flight.

  4. Radon dispersion modeling and dose assessment for uranium mine ventilation shaft exhausts under neutral atmospheric stability.

    PubMed

    Xie, Dong; Wang, Hanqing; Kearfott, Kimberlee J; Liu, Zehua; Mo, Shunquan

    2014-03-01

    In the present study, the roles of atmospheric wind profiles in the neutral atmosphere and surface roughness parameters in a complex terrain were examined to determine their impacts on radon ((222)Rn) dispersion from an actual uranium mine ventilation shaft. Simulations were completed on (222)Rn dispersion extending from the shaft to a vulnerable distance, near the location of an occupied farmhouse. The eight dispersion scenarios for the ventilation shaft source included four downwind velocities (0.5, 1.0, 2.0 and 4.0 m s(-1)) and two underlying surface roughness characteristics (0.1 m and 1.0 m). (222)Rn distributions and elevated pollution regions were identified. Effective dose estimation methods involving a historical weighting of wind speeds in the direction of interest coupled to the complex dispersion model were proposed. Using this approach, the radiation effects on the residents assumed to be outside at the location of the farm house 250 m downwind from the ventilation shaft outlet were computed. The maximum effective dose rate calculated for the residents at the outside of the farm house was 2.2 mSv y(-1), which is less than the low limit action level of 3-10 mSv y(-1) recommended by the International Commission on Radiological Protection (ICRP) occupational exposure action level for radon.

  5. Toxicological assessment of refined naphthenic acids in a repeated dose/developmental toxicity screening test.

    PubMed

    McKee, Richard H; North, Colin M; Podhasky, Paula; Charlap, Jeffrey H; Kuhl, Adam

    2014-01-01

    Naphthenic acids (NAs) are primarily cycloaliphatic carboxylic acids with 10 to 16 carbons. To characterize the potential of refined NAs (>70% purity) to cause reproductive and/or developmental effects, Sprague-Dawley rats (12/group) were given oral doses of 100, 300, or 900 mg/kg/d, beginning 14 days prior to mating, then an additional 14 days for males or through lactation day 3 for females (up to 53 days) in a repeated dose/reproductive toxicity test (Organization for Economic Cooperation and Development [OECD] 422). Potential mutagenic effects were assessed using Salmonella (OECD 471) and in in vivo micronucleus tests (OECD 474) using bone marrow taken from treated animals in the screening study described previously. Systemic effects included reduced terminal body weights, increased liver weights, and changes in a number of blood cell parameters. The overall no effect level for all target organ effects was 100 mg/kg/d. In the reproductive/developmental toxicity assessment, there were significant reductions in numbers of live born offspring in groups exposed to 300 and 900 mg/kg/d. The overall no effect level for developmental effects was 100 mg/kg/d. The data from the Salmonella and micronucleus tests provide evidence that refined NAs are not genotoxic.

  6. The Art of Making Assessment Anti-Venom: Injecting Assessment in Small Doses to Create a Faculty Culture of Assessment

    ERIC Educational Resources Information Center

    Kramer, Philip I.

    2009-01-01

    Many college faculty react to student outcomes assessment the way most people react when they see a rattlesnake within striking distance. Common faculty reactions to the perceived threat of assessment include metaphorically running away and throwing rocks or sticks at it. Like a hiker in the desert doing her best to avoid being struck when she…

  7. Implications of Psychometric Laboratories for Training Interns in Psychological Assessment.

    ERIC Educational Resources Information Center

    Fox, Ronald E.

    Changes have occurred in the training of interns and the functioning of psychologists at Ohio State University Medical School, some of which was effected by their psychometric laboratory. The number of tests administered by interns has decreased markedly. The existence of the laboratory changed training experiences and opportunities. Psychologists…

  8. An Assessment of Class Participation by International Graduate Students.

    ERIC Educational Resources Information Center

    Kao, Chi-wen; Gansneder, Bruce

    1995-01-01

    International graduate students' speaking frequency in U.S. classrooms and reasons that deterred them from participating in class discussion were examined. Implications for those who work with international graduate students about ways to assist them with participating in class discussions (e.g., ESL instruction curriculum) are considered. (LKS)

  9. Teacher Assessment Literacy: A Review of International Standards and Measures

    ERIC Educational Resources Information Center

    DeLuca, Christopher; LaPointe-McEwan, Danielle; Luhanga, Ulemu

    2016-01-01

    Assessment literacy is a core professional requirement across educational systems. Hence, measuring and supporting teachers' assessment literacy have been a primary focus over the past two decades. At present, there are a multitude of assessment standards across the world and numerous assessment literacy measures that represent different…

  10. DOSIS & DOSIS 3D: long-term dose monitoring onboard the Columbus Laboratory of the International Space Station (ISS)

    NASA Astrophysics Data System (ADS)

    Berger, Thomas; Przybyla, Bartos; Matthiä, Daniel; Reitz, Günther; Burmeister, Sönke; Labrenz, Johannes; Bilski, Pawel; Horwacik, Tomasz; Twardak, Anna; Hajek, Michael; Fugger, Manfred; Hofstätter, Christina; Sihver, Lembit; Palfalvi, Jozsef K.; Szabo, Julianna; Stradi, Andrea; Ambrozova, Iva; Kubancak, Jan; Brabcova, Katerina Pachnerova; Vanhavere, Filip; Cauwels, Vanessa; Van Hoey, Olivier; Schoonjans, Werner; Parisi, Alessio; Gaza, Ramona; Semones, Edward; Yukihara, Eduardo G.; Benton, Eric R.; Doull, Brandon A.; Uchihori, Yukio; Kodaira, Satoshi; Kitamura, Hisashi; Boehme, Matthias

    2016-11-01

    The radiation environment encountered in space differs in nature from that on Earth, consisting mostly of highly energetic ions from protons up to iron, resulting in radiation levels far exceeding the ones present on Earth for occupational radiation workers. Since the beginning of the space era, the radiation exposure during space missions has been monitored with various active and passive radiation instruments. Also onboard the International Space Station (ISS), a number of area monitoring devices provide data related to the spatial and temporal variation of the radiation field in and outside the ISS. The aim of the DOSIS (2009-2011) and the DOSIS 3D (2012-ongoing) experiments was and is to measure the radiation environment within the European Columbus Laboratory of the ISS. These measurements are, on the one hand, performed with passive radiation detectors mounted at 11 locations within Columbus for the determination of the spatial distribution of the radiation field parameters and, on the other, with two active radiation detectors mounted at a fixed position inside Columbus for the determination of the temporal variation of the radiation field parameters. Data measured with passive radiation detectors showed that the absorbed dose values inside the Columbus Laboratory follow a pattern, based on the local shielding configuration of the radiation detectors, with minimum dose values observed in the year 2010 of 195-270 μGy/day and maximum values observed in the year 2012 with values ranging from 260 to 360 μGy/day. The absorbed dose is modulated by (a) the variation in solar activity and (b) the changes in ISS altitude.

  11. Estimating exposure and dose to characterize health risks: the role of human tissue monitoring in exposure assessment.

    PubMed Central

    Sexton, K; Callahan, M A; Bryan, E F

    1995-01-01

    Exposure assessment is an integral part of health risk characterization. Exposure assessments typically address three critical aspects of exposure: the number of people exposed to the environmental toxicant, at specific concentrations, for the time period of interest; the resulting dose; and the relative contribution of important sources and pathways to exposure/dose. Because historically both "point-of-contact" measurements and information about dose and related pharmacokinetic processes have been lacking, exposure assessments have had to rely on construction of "scenarios" to estimate exposure and dose. This could change, however, as advances in development of biologic markers of exposure and dose make it possible to measure and interpret toxicant concentrations in accessible human tissues. The increasing availability of "biomarkers," coupled with improvements in pharmacokinetic understanding, present opportunities to estimate ("reconstruct") exposure from measurements of dose and knowledge of intake and uptake parameters. Human tissue monitoring, however, is not a substitute for more traditional methods of measuring exposure, but rather a complementary approach. A combination of exposure measurements and dose measurements provides the most credible scientific basis for exposure assessment. PMID:7635107

  12. Hanford internal dosimetry program manual

    SciTech Connect

    Carbaugh, E.H.; Sula, M.J.; Bihl, D.E.; Aldridge, T.L.

    1989-10-01

    This document describes the Hanford Internal Dosimetry program. Program Services include administrating the bioassay monitoring program, evaluating and documenting assessments of internal exposure and dose, ensuring that analytical laboratories conform to requirements, selecting and applying appropriate models and procedures for evaluating internal radionuclide deposition and the resulting dose, and technically guiding and supporting Hanford contractors in matters regarding internal dosimetry. 13 refs., 16 figs., 42 tabs.

  13. The Impact of the Programme for International Student Assessment on Academic Journals

    ERIC Educational Resources Information Center

    Dominguez, Maria; Vieira, Maria-Jose; Vidal, Javier

    2012-01-01

    The aim of this study is to assess the impact of PISA (Programme for International Student Assessment) on international scientific journals. A bibliometric analysis was conducted of publications included in three main scientific publication databases: Eric, EBSCOhost and the ISI Web of Knowledge, from 2002 to 2010. The paper focused on four main…

  14. 76 FR 39811 - International Center for Technology Assessment and the Center for Food Safety; Noxious Weed...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-07

    ... International Center for Technology Assessment and the Center for Food Safety (the petitioners) requested that...; ] DEPARTMENT OF AGRICULTURE Animal and Plant Health Inspection Service International Center for Technology Assessment and the Center for Food Safety; Noxious Weed Status of Kentucky Bluegrass Genetically...

  15. Student Views of Peer Assessment at the International School of Lausanne

    ERIC Educational Resources Information Center

    Foley, Simon

    2013-01-01

    This article explores student attitudes and perceptions relating to peer assessment, as observed at the International School of Lausanne, where the case study was restricted to students in the International Baccalaureate (IB) Diploma Economics course of the programme. Informed by a review of literature on the relative merits of peer assessment,…

  16. Getting It "Better": The Importance of Improving Background Questionnaires in International Large-Scale Assessment

    ERIC Educational Resources Information Center

    Rutkowski, Leslie; Rutkowski, David

    2010-01-01

    In addition to collecting achievement data, international large-scale assessment programmes gather auxiliary information from students and schools regarding the context of teaching and learning. In an effort to clarify some of the opacity surrounding international large-scale assessment programmes and the potential problems associated with less…

  17. Development of Internal System of Education Quality Assessment at a University

    ERIC Educational Resources Information Center

    Kalimullin, Aydar M.; Khodyreva, Elena ?.; Koinova-Zoellner, Julia

    2016-01-01

    The urgency of the research is determined by the need to ensure the quality of higher education an essential factor of which is development of the internal assessment system for educational activities at universities. The aim of the article is validation of the model of development of the internal assessment system for educational activities at…

  18. Program for International Student Assessment (PISA) 2000: Analysis of Questionnaire Data from United States Students

    ERIC Educational Resources Information Center

    Ngwudike, Benjamin C.

    2005-01-01

    The Program for International Student Assessment 2000 (PISA) is an International Examination that was developed by the Organization for Economic Cooperation and Development (OECD) to assess the reading, mathematics, and science literacy of students in participating countries, including the United States. PISA is a two-hour paper-and-pencil…

  19. Pantex Plant Cell 12-44-1 tritium release: Re-assessment of environmental doses for 1990 to 1992

    SciTech Connect

    Snyder, S.F.; Hwang, S.T.

    1994-03-01

    A release of tritium gas occurred within Cell 12-44-1 at the Pantex Plant on May 17, 1989. The release was the result of a nuclear component containment failure. This document summarizes past assessments and characterization of the release. From 1990 to 1992, the average annual dose to the offsite maximally exposed individual (MEI), re-assessed using updated methods and data, ranged from 9E-6 to 2E-4 mrem/y. Doses at this level are well below the regulatory dose limit and support the discontinuation of the distinct calculation of the MEI doses from the cell`s tritium releases in future Pantex Annual Site Environmental Reports. Additional information provides guidance for the evaluation of similar releases in the future. Improved Environmental Protection Department sampling plans and assessment goals will increase the value of the data collected during future incidents.

  20. Hypothetical Use of Multidimensional Adaptive Testing for the Assessment of Student Achievement in the Programme for International Student Assessment

    ERIC Educational Resources Information Center

    Frey, Andreas; Seitz, Nicki-Nils

    2011-01-01

    The usefulness of multidimensional adaptive testing (MAT) for the assessment of student literacy in the Programme for International Student Assessment (PISA) was examined within a real data simulation study. The responses of N = 14,624 students who participated in the PISA assessments of the years 2000, 2003, and 2006 in Germany were used to…

  1. ERUPTION TO DOSE: COUPLING A TEPHRA DISPERSAL MODEL WITHIN A PERFORMANCE ASSESSMENT FRAMEWORK

    SciTech Connect

    G. N. Keating, J. Pelletier

    2005-08-26

    The tephra dispersal model used by the Yucca Mountain Project (YMP) to evaluate the potential consequences of a volcanic eruption through the waste repository must incorporate simplifications in order to function within a large Monte-Carlo style performance assessment framework. That is, the explicit physics of the conduit, vent, and eruption column processes are abstracted to a 2-D, steady-state advection-dispersion model (ASHPLUME) that can be run quickly over thousands of realizations of the overall system model. Given the continuous development of tephra dispersal modeling techniques in the last few years, we evaluated the adequacy of this simplified model for its intended purpose within the YMP total system performance assessment (TSPA) model. We evaluated uncertainties inherent in model simplifications including (1) instantaneous, steady-state vs. unsteady eruption, which affects column height, (2) constant wind conditions, and (3) power-law distribution of the tephra blanket; comparisons were made to other models and published ash distributions. Spatial statistics are useful for evaluating differences in these model output vs. results using more complex wind, column height, and tephra deposition patterns. However, in order to assess the adequacy of the model for its intended use in TSPA, we evaluated the propagation of these uncertainties through FAR, the YMP ash redistribution model, which utilizes ASHPLUME tephra deposition results to calculate the concentration of nuclear waste-contaminated tephra at a dose-receptor population as a result of sedimentary transport and mixing processes on the landscape. Questions we sought to answer include: (1) what conditions of unsteadiness, wind variability, or departure from simplified tephra distribution result in significant effects on waste concentration (related to dose calculated for the receptor population)? (2) What criteria can be established for the adequacy of a tephra dispersal model within the TSPA

  2. Potential radionuclide emissions from stacks on the Hanford site, Part 1: Dose assessment

    SciTech Connect

    Davis, W.E.; Barnett, J.M.

    1995-02-01

    On February 3, 1993, the U.S. Department of Energy, Richland Operations Office received a Compliance Order and Information Request from the Director of the Air and Toxics Division of the U.S. Environmental Protection Agency, Region 10. The Compliance Order requires RL to evaluate all radionuclide emission points at the Hanford Site to determine which are subject to continuous emission monitoring requirements in 40 CFR 61, Subpart H, and to continuously monitor radionuclide emissions in accordance with requirements in 40 CFR 61.93. The Information Request required RL to provide a written Compliance Plan to meet the requirements of the Compliance Order. A Compliance Plan was submitted to EPA, Region 10, on April 30, 1993. The Compliance Plan specified that a dose assessment would be performed for 84 Westinghouse Hanford Company stacks registered with the Washington State Department of Health on the Hanford Site. Stacks that have the potential emissions to cause an effective dose equivalent to a maximum exposed individual greater than 0.1 mrem/y must be monitored continuously for radionuclide emissions. Five methods were approved by EPA, Region 10 for performing the assessments: Release Fractions from Appendix D of 40 CFR 61, Back Calculations Using A HEPA Filtration Factor, Nondestructive Assay of HEPA Filters, A Spill Release Fraction, and Upstream of HEPA Filter Air Concentrations. The first two methods were extremely conservative for estimating releases. The third method, which used a state-of-the-art portable gamma spectrometer, yielded surprising results from the distribution of radionuclides on the HEPA filters. All five methods are described. Assessments using a HEPA Filtration Factor for back calculations identified 32 stacks that would have emissions that would cause an EDE to the MEI greater than 0.1 mrem y{sup {minus}1}. The number was reduced to 15 stacks when the other methods were applied. The paper discusses reasons for the overestimates.

  3. Assessment of potential doses to workers during postulated accident conditions at the Waste Isolation Pilot Plant

    SciTech Connect

    Hoover, M.D.; Farrell, R.F.; Newton, G.J.

    1995-12-01

    The recent 1995 WIPP Safety Analysis Report (SAR) Update provided detailed analyses of potential radiation doses to members of the public at the site boundary during postulated accident scenarios at the U.S. Department of Energy`s Waste Isolation Pilot Plant (WIPP). The SAR Update addressed the complete spectrum of potential accidents associated with handling and emplacing transuranic waste at WIPP, including damage to waste drums from fires, punctures, drops, and other disruptions. The report focused on the adequacy of the multiple layers of safety practice ({open_quotes}defense-in-depth{close_quotes}) at WIPP, which are designed to (1) reduce the likelihood of accidents and (2) limit the consequences of those accidents. The safeguards which contribute to defense-in-depth at WIPP include a substantial array of inherent design features, engineered controls, and administrative procedures. The SAR Update confirmed that the defense-in-depth at WIPP is adequate to assure the protection of the public and environment. As a supplement to the 1995 SAR Update, we have conducted additional analyses to confirm that these controls will also provide adequate protection to workers at the WIPP. The approaches and results of the worker dose assessment are summarized here. In conformance with the guidance of DOE Standard 3009-94, we emphasize that use of these evaluation guidelines is not intended to imply that these numbers constitute acceptable limits for worker exposures under accident conditions. However, in conjunction with the extensive safety assessment in the 1995 SAR Update, these results indicate that the Carlsbad Area Office strategy for the assessment of hazards and accidents assures the protection of workers, members of the public, and the environment.

  4. U.S. EPA Superfund Program's Policy for Risk and Dose Assessment

    SciTech Connect

    Walker, Stuart

    2008-01-15

    The Environmental Protection Agency (EPA) Office of Superfund Remediation and Technology Innovation (OSRTI) has primary responsibility for implementing the long-term (non-emergency) portion of a key U.S. law regulating cleanup: the Comprehensive Environmental Response, Compensation and Liability Act, CERCLA, nicknamed 'Superfund'. The purpose of the Superfund program is to protect human health and the environment over the long term from releases or potential releases of hazardous substances from abandoned or uncontrolled hazardous waste sites. The focus of this paper is on risk and dose assessment policies and tools for addressing radioactively contaminated sites by the Superfund program. EPA has almost completed two risk assessment tools that are particularly relevant to decommissioning activities conducted under CERCLA authority. These are the: 1. Building Preliminary Remediation Goals for Radionuclides (BPRG) electronic calculator, and 2. Radionuclide Outdoor Surfaces Preliminary Remediation Goals (SPRG) electronic calculator. EPA developed the BPRG calculator to help standardize the evaluation and cleanup of radiologically contaminated buildings at which risk is being assessed for occupancy. BPRGs are radionuclide concentrations in dust, air and building materials that correspond to a specified level of human cancer risk. The intent of SPRG calculator is to address hard outside surfaces such as building slabs, outside building walls, sidewalks and roads. SPRGs are radionuclide concentrations in dust and hard outside surface materials. EPA is also developing the 'Radionuclide Ecological Benchmark' calculator. This calculator provides biota concentration guides (BCGs), also known as ecological screening benchmarks, for use in ecological risk assessments at CERCLA sites. This calculator is intended to develop ecological benchmarks as part of the EPA guidance 'Ecological Risk Assessment Guidance for Superfund: Process for Designing and Conducting Ecological Risk

  5. Comparative risk assessment: an international comparison of methodologies and results.

    PubMed

    Morgenstern, R D; Shih, J; Sessions, S L

    2000-11-03

    Comparative risk assessment (CRA) is a systematic procedure for evaluating the environmental problems affecting a geographic area. This paper looks beyond the U.S. border and examines the experience with CRAs conducted in various developing countries and economies in transition, including Bangkok, Thailand, Cairo, Egypt and Quito, Ecuador, as well as other locations in Eastern Europe, Asia and Central and South America. A recent pilot CRA conducted in Taiwan is also considered. Comparisons are made of both the methodologies and the results across the relatively diverse international literature. The most robust finding is that conventional air pollutants (e.g., particulate matter and lead) consistently rank as high health risks across all of the CRAs examined. Given the varied nature of the settings studied in the CRAs, including level of economic development, urban-rural differences, and climate, this finding is particularly significant. Problems involving drinking water are also ranked as a high or medium health risk in almost all the countries studied. This is consistent with the results of analyses conducted by the World Bank suggesting contamination, limited coverage and erratic service by water supply systems. Beyond the major air pollutants and drinking water, the CRA results diverge significantly across countries. A number of problems involving toxic chemicals, e. g., hazardous air pollutants, rank as high health risks in the US but do not appear as consistent areas of concerns in the other countries studied. This likely reflects the so-called "risk transition" - the shift from sanitation and infection disease problems to those involving industry, vehicles and toxic substances - that often occurs with economic development. It may also reflect the greater information about sources of toxic pollutants in the U.S. For other problems, there are important differences across the developing countries and economies in transition. For example, hazardous and

  6. Urinary Metabolomics Revealed Arsenic Internal Dose-Related Metabolic Alterations: A Proof-of-Concept Study in a Chinese Male Cohort

    PubMed Central

    2015-01-01

    Urinary biomonitoring provides the most accurate arsenic exposure assessment; however, to improve the risk assessment, arsenic-related metabolic biomarkers are required to understand the internal processes that may be perturbed, which may, in turn, link the exposure to a specific health outcome. This study aimed to investigate arsenic-related urinary metabolome changes and identify dose-dependent metabolic biomarkers as a proof-of-concept of the information that could be obtained by combining metabolomics and targeted analyses. Urinary arsenic species such as inorganic arsenic, methylarsonic acid, dimethylarsinic acid and arsenobetaine were quantified using high performance liquid chromatography (HPLC)-inductively coupled plasma-mass spectrometry in a Chinese adult male cohort. Urinary metabolomics was conducted using HPLC-quadrupole time-of-flight mass spectrometry. Arsenic-related metabolic biomarkers were investigated by comparing the samples of the first and fifth quintiles of arsenic exposure classifications using a partial least-squares discriminant model. After the adjustments for age, body mass index, smoking, and alcohol consumption, five potential biomarkers related to arsenic exposure (i.e., testosterone, guanine, hippurate, acetyl-N-formyl-5-methoxykynurenamine, and serine) were identified from 61 candidate metabolites; these biomarkers suggested that endocrine disruption and oxidative stress were associated with urinary arsenic levels. Testosterone, guanine, and hippurate showed a high or moderate ability to discriminate the first and fifth quintiles of arsenic exposure with area-under-curve (AUC) values of 0.89, 0.87, and 0.83, respectively; their combination pattern showed an AUC value of 0.91 with a sensitivity of 88% and a specificity of 80%. Arsenic dose-dependent AUC value changes were also observed. This study demonstrated that metabolomics can be used to investigate arsenic-related biomarkers of metabolic changes; the dose-dependent trends of

  7. A voxel-based mouse for internal dose calculations using Monte Carlo simulations (MCNP)

    NASA Astrophysics Data System (ADS)

    Bitar, A.; Lisbona, A.; Thedrez, P.; Sai Maurel, C.; LeForestier, D.; Barbet, J.; Bardies, M.

    2007-02-01

    Murine models are useful for targeted radiotherapy pre-clinical experiments. These models can help to assess the potential interest of new radiopharmaceuticals. In this study, we developed a voxel-based mouse for dosimetric estimates. A female nude mouse (30 g) was frozen and cut into slices. High-resolution digital photographs were taken directly on the frozen block after each section. Images were segmented manually. Monoenergetic photon or electron sources were simulated using the MCNP4c2 Monte Carlo code for each source organ, in order to give tables of S-factors (in Gy Bq-1 s-1) for all target organs. Results obtained from monoenergetic particles were then used to generate S-factors for several radionuclides of potential interest in targeted radiotherapy. Thirteen source and 25 target regions were considered in this study. For each source region, 16 photon and 16 electron energies were simulated. Absorbed fractions, specific absorbed fractions and S-factors were calculated for 16 radionuclides of interest for targeted radiotherapy. The results obtained generally agree well with data published previously. For electron energies ranging from 0.1 to 2.5 MeV, the self-absorbed fraction varies from 0.98 to 0.376 for the liver, and from 0.89 to 0.04 for the thyroid. Electrons cannot be considered as 'non-penetrating' radiation for energies above 0.5 MeV for mouse organs. This observation can be generalized to radionuclides: for example, the beta self-absorbed fraction for the thyroid was 0.616 for I-131; absorbed fractions for Y-90 for left kidney-to-left kidney and for left kidney-to-spleen were 0.486 and 0.058, respectively. Our voxel-based mouse allowed us to generate a dosimetric database for use in preclinical targeted radiotherapy experiments.

  8. Principles for social impact assessment: A critical comparison between the international and US documents

    SciTech Connect

    Vanclay, Frank . E-mail: Frank.Vanclay@utas.edu.au

    2006-01-15

    The 'International Principles for Social Impact Assessment' and the 'Principles and Guidelines for Social Impact Assessment in the USA', both developed under the auspices of the International Association for Impact Assessment and published in 2003, are compared. Major differences in the definition and approach to social impact assessment (SIA) are identified. The US Principles and Guidelines is shown to be positivist/technocratic while the International Principles is identified as being democratic, participatory and constructivist. Deficiencies in both documents are identified. The field of SIA is changing to go beyond the prevention of negative impacts, to include issues of building social capital, capacity building, good governance, community engagement and social inclusion.

  9. Development of probabilistic internal dosimetry computer code

    NASA Astrophysics Data System (ADS)

    Noh, Siwan; Kwon, Tae-Eun; Lee, Jai-Ki

    2017-02-01

    Internal radiation dose assessment involves biokinetic models, the corresponding parameters, measured data, and many assumptions. Every component considered in the internal dose assessment has its own uncertainty, which is propagated in the intake activity and internal dose estimates. For research or scientific purposes, and for retrospective dose reconstruction for accident scenarios occurring in workplaces having a large quantity of unsealed radionuclides, such as nuclear power plants, nuclear fuel cycle facilities, and facilities in which nuclear medicine is practiced, a quantitative uncertainty assessment of the internal dose is often required. However, no calculation tools or computer codes that incorporate all the relevant processes and their corresponding uncertainties, i.e., from the measured data to the committed dose, are available. Thus, the objective of the present study is to develop an integrated probabilistic internal-dose-assessment computer code. First, the uncertainty components in internal dosimetry are identified, and quantitative uncertainty data are collected. Then, an uncertainty database is established for each component. In order to propagate these uncertainties in an internal dose assessment, a probabilistic internal-dose-assessment system that employs the Bayesian and Monte Carlo methods. Based on the developed system, we developed a probabilistic internal-dose-assessment code by using MATLAB so as to estimate the dose distributions from the measured data with uncertainty. Using the developed code, we calculated the internal dose distribution and statistical values ( e.g. the 2.5th, 5th, median, 95th, and 97.5th percentiles) for three sample scenarios. On the basis of the distributions, we performed a sensitivity analysis to determine the influence of each component on the resulting dose in order to identify the major component of the uncertainty in a bioassay. The results of this study can be applied to various situations. In cases of

  10. Quantitative assessment of Pulmonary Alveolar Proteinosis (PAP) with ultra-dose CT and correlation with Pulmonary Function Tests (PFTs)

    PubMed Central

    Sui, Xin; Du, Qianni; Xu, Kai-feng; Tian, Xinlun; Song, Lan; Wang, Xiao; Xu, Xiaoli; Wang, Zixing; Wang, Yuyan; Gu, Jun; Song, Wei; Jin, Zhengyu

    2017-01-01

    Background The purpose of this study was to investigate whether ultra-low-dose chest computed tomography (CT) can be used for visual assessment of CT features in patients with pulmonary alveolar proteinosis (PAP) and to evaluate the relationship between the quantitative analysis of the ultra-low-dose CT scans and the pulmonary function tests (PFTs). Methods Thirty-eight patients (mean [SD] age, 44.47 [12.28] years; 29 males, 9 females) with PAP were enrolled and subjected to two scans each with low-dose CT (reference parameters: 120 kV and 50 mAs) and ultra-low-dose CT (reference parameters, 80 kV, 25 mAs). Images were reconstructed via filtered back projection (FBP) for low-dose CT and iterative reconstruction (IR) for ultra-low-dose CT. All patients underwent PFT. The Visual analysis for ground glass opacity (GGO) is performed. The quantitative CT and PFT results were analyzed by canonical correlations. Results The mean body mass index (BMI) was 25.37±3.26 kg/m2. The effective radiation doses were 2.30±0.46 and 0.24±0.05 mSv for low-dose and ultra-low-dose CT, respectively. The size-specific dose estimates were 5.81±0.81 and 0.62±0.09 mSv for low-dose and ultra-low-dose CT. GGOs and interlobular septal thickening were observed bilaterally in all patients. The average visual GGO score was lower in the upper field (2.67±1.24) but higher in the middle and lower fields (3.08±1.32 and 3.08±0.97, respectively). The average score for the whole lung was 2.94±1.19. There is a significant correlation between PFTs and quantitative of ultra-low-dose CT (canonical loading = 0.78). Conclusions Ultra-low-dose CT has the potential to quantify the lung parenchyma changes of PAP. This technique could provide a sensitive and objective assessment of PAP and has good relation with PFTs. In addition, the radiation dose of ultra-low-dose CT was very low. PMID:28301535

  11. RESEARCH TOWARD THE DEVELOPMENT OF A BIOLOGICALLY BASED DOSE RESPONSE ASSESSMENT FOR INORGANIC ARSENIC CARCINOGENICITY: A PROGRESS REPORT

    EPA Science Inventory

    Cancer risk assessments for inorganic arsenic have been based on human epidemiological data, assuming a linear dose-response below the range of observation of tumors. Part of the reason for the continued use of the linear approach in arsenic risk assessments is the lack of an ad...

  12. Carcinogenic risk assessment: comparison of estimated safe doses for rats and mice

    SciTech Connect

    Chen, J.J.; Gaylor, D.W.

    1987-06-01

    Data from the National Cancer Institute/National Toxicology Program (NCI/NTP) carcinogenesis bioassays were examined to compare cancer risks in rats and mice. Only those bioassays where chemicals were administered orally were used. The ratios for rats to mice of the virtually safe dose (VSD) levels associated with a risk of 10/sup -6/ were compared. Comparisons of the ratios were made for those chemicals that NCI/NTP determined to be carcinogenic in at least one species and that showed a dose response trend in the same sex at the same tissue/organ site in the other species. In all, 69 comparisons from 38 carcinogens were performed. The overall geometric mean of the VSD ratios is 1.27 in terms of concentration (ppm); the mean and the standard deviation in logarithm are 0.24 and 1.83, respectively. The VSD ratios vary from 1:51 to 49:1. Without the restriction of the same sex and site, the geometric mean of the minimum VSDs is 1.38, and the standard deviation in logarithm is 1.79. By directly comparing the VSDs for rats and mice (as they are performed for risk assessment), this study showed a probability of 0.10 that the ratio of VSDs is greater than 10, and the ratio is greater than 20 with a probability of 0.05 when a chemical is carcinogenic in both species.

  13. The Initial Assessment of Daily Insulin Dose in Chinese Newly Diagnosed Type 2 Diabetes

    PubMed Central

    Zhou, Huan; Xu, Hua; Chen, Xie; Teng, Xiangyu; Liu, Qianjing; Liu, Wei

    2016-01-01

    Background. It has been well accepted that insulin therapy is the ideal treatment for newly diagnosed diabetic patients. However, there was no study about assessment of the initial insulin dosage in new onset Chinese patients with type 2 diabetes. Research Design and Methods. 65 newly diagnosed patients with type 2 diabetes (39 males/26 females; HbA1c ≥ 11.80 ± 0.22%) were investigated. All patients had random hyperglycaemia (at 21.8 ± 3.9 mmol/L) on the first day of admission and received insulin infusion intravenously (5 U/per hour). When the blood glucose level dropped to around 10 mmol/L, patients were then transferred to continuous subcutaneous insulin infusion (CSII). The reduction of blood glucose levels in response to per unit of insulin (RBG/RI) was recorded. The target glucose level was achieved in about 3 days. The total daily insulin dose (TDD) and basal insulin dose (TBD) were calculated. Results. TDD was 45.97 ± 1.28 units and TBD was 19.00 ± 0.54 units. TBD was about 40% of the total daily insulin requirement. There was a negative correlation between the ratio of RBG/RI and TDD. Conclusions. TDD was correlated with blood glucose reduction in response to intravenous insulin infusion in Chinese new onset patients with type 2 diabetes. PMID:26697503

  14. Analysis of CMM - Based Appraisal for Internal Process Improvement (CBA IPI) Assessment Feedback

    DTIC Science & Technology

    2001-11-01

    assessment team mem- bers, and Lead Assessors who are interested in learning about other assessors ’ experiences in order to improve their own...Internal Process Improvement (CBA IPI) Assessment Feedback Donna K. Dunaway, PhD Michele Baker November 2001 Pittsburgh, PA 15213...3890 Analysis of CMM®-Based Appraisal for Internal Process Improvement (CBA IPI) Assessment Feedback CMU/SEI-2001-TR-021 ESC-TR

  15. Assessment of inhalation and ingestion doses from exposure to radon gas using passive and active detecting techniques

    SciTech Connect

    Ismail, A. H.; Jafaar, M. S.

    2011-07-01

    The aim of this study was to assess an environmental hazard of radon exhalation rate from the samples of soil and drinking water in selected locations in Iraqi Kurdistan, passive (CR-39NTDs) and active (RAD7) detecting techniques has been employed. Long and short term measurements of emitted radon concentrations were estimated for 124 houses. High and lower radon concentration in soil samples was in the cities of Hajyawa and Er. Tyrawa, respectively. Moreover, for drinking water, high and low radon concentration was in the cities of Similan and Kelak, respectively. A comparison between our results with that mentioned in international reports had been done. Average annual dose equivalent to the bronchial epithelium, stomach and whole body in the cities of Kelak and Similan are estimated, and it was varied from 0.04{+-}0.01 mSv to 0.547{+-}0.018 mSv, (2.832{+-}0.22)x10{sup -5} to (11.972{+-}2.09)x10{sup -5} mSv, and (0.056 {+-}0.01) x10{sup -5} to (0.239{+-}0.01)x10{sup -5} mSv, respectively. This indicated that the effects of dissolved radon on the bronchial epithelium are much than on the stomach and whole body. (authors)

  16. SU-E-T-508: Internal Organ Motion Effect On Radiation Dose to a Point Under Half-Beam Block Match Line

    SciTech Connect

    Zhou, S; Zhu, X; Zhang, M; Zheng, D; Lei, Y; Zhang, Q; Li, S; Driewer, J; Wang, S; Enke, C

    2015-06-15

    Purpose Half-beam block is a field matching technique frequently used in radiotherapy. With no setup error, a well calibrated linac, and no internal organ motion, two photon fields can be matched seamlessly dosimetry-wise with their central axes passing the match line. However, in actual clinical situations, internal organ motion is often inevitable. This study was conducted to investigate its influence on radiation dose to patient internal points directly under the matching line. Methods A clinical setting is modeled as two half-space (x<0 and x<0) radiation fields that are turned on sequentially with a time gap of integer times of the patient internal organ motion period (T{sub 0}). Our point of interest moves with patient internal organs periodically and evenly in and out of the radiation fields, resulting in an average location at x=0. When the fields are delivered without any motion management, the initial phase of the point’s movement is unknown. Statistical methods are used to compute the expected value () and variance (σ) of the point dose given the uncertainty. Results Analytical solutions are obtained for and s of dose received by a point directly under the match line. is proportional to the total beam-on time (T1), and σ demonstrates previously unknown periodic behavior. /dose can be zero or double of the expected value. Conclusion We have analytically analyzed the internal organ motion effect on radiation dose received by a patient internal point directly under a half-beam block match line. Our results help us to better understand this phenomenon and facilitate the reduction of point dosimetric uncertainties in our clinical practice.

  17. An assessment of PTV margin based on actual accumulated dose for prostate cancer radiotherapy

    PubMed Central

    Wen, Ning; Kumarasiri, Akila; Nurushev, Teamour; Burmeister, Jay; Xing, Lei; Liu, Dezhi; Glide-Hurst, Carri; Kim, Jinkoo; Zhong, Hualiang; Movsas, Benjamin; Chetty, Indrin J

    2014-01-01

    The purpose of this work is to present the results of a margin reduction study involving dosimetric and radiobiologic assessment of cumulative dose distributions, computed using an image guided adaptive radiotherapy based framework. Eight prostate cancer patients, treated with 7–9, 6 MV, intensity modulated radiation therapy (IMRT) fields, were included in this study. The workflow consists of cone beam CT (CBCT) based localization, deformable image registration of the CBCT to simulation CT image datasets (SIMCT), dose reconstruction and dose accumulation on the SIM-CT, and plan evaluation using radiobiological models. For each patient, three IMRT plans were generated with different margins applied to the CTV. The PTV margin for the original plan was 10 mm and 6 mm at the prostate/anterior rectal wall interface (10/6 mm) and was reduced to: (a) 5/3 mm, and (b) 3 mm uniformly. The average percent reductions in predicted tumor control probability (TCP) in the accumulated (actual) plans in comparison to the original plans over eight patients were 0.4%, 0.7% and 11.0% with 10/6 mm, 5/3 mm and 3 mm uniform margin respectively. The mean increase in predicted normal tissue complication probability (NTCP) for grades 2/3 rectal bleeding for the actual plans in comparison to the static plans with margins of 10/6, 5/3 and 3 mm uniformly was 3.5%, 2.8% and 2.4% respectively. For the actual dose distributions, predicted NTCP for late rectal bleeding was reduced by 3.6% on average when the margin was reduced from 10/6 mm to 5/3 mm, and further reduced by 1.0% on average when the margin was reduced to 3 mm. The average reduction in complication free tumor control probability (P+) in the actual plans in comparison to the original plans with margins of 10/6, 5/3 and 3 mm was 3.7%, 2.4% and 13.6% correspondingly. The significant reduction of TCP and P+ in the actual plan with 3 mm margin came from one outlier, where individualizing patient treatment plans through margin adaptation

  18. An assessment of PTV margin based on actual accumulated dose for prostate cancer radiotherapy

    NASA Astrophysics Data System (ADS)

    Wen, Ning; Kumarasiri, Akila; Nurushev, Teamour; Burmeister, Jay; Xing, Lei; Liu, Dezhi; Glide-Hurst, Carri; Kim, Jinkoo; Zhong, Hualiang; Movsas, Benjamin; Chetty, Indrin J.

    2013-11-01

    The purpose of this work is to present the results of a margin reduction study involving dosimetric and radiobiologic assessment of cumulative dose distributions, computed using an image guided adaptive radiotherapy based framework. Eight prostate cancer patients, treated with 7-9, 6 MV, intensity modulated radiation therapy (IMRT) fields, were included in this study. The workflow consists of cone beam CT (CBCT) based localization, deformable image registration of the CBCT to simulation CT image datasets (SIM-CT), dose reconstruction and dose accumulation on the SIM-CT, and plan evaluation using radiobiological models. For each patient, three IMRT plans were generated with different margins applied to the CTV. The PTV margin for the original plan was 10 mm and 6 mm at the prostate/anterior rectal wall interface (10/6 mm) and was reduced to: (a) 5/3 mm, and (b) 3 mm uniformly. The average percent reductions in predicted tumor control probability (TCP) in the accumulated (actual) plans in comparison to the original plans over eight patients were 0.4%, 0.7% and 11.0% with 10/6 mm, 5/3 mm and 3 mm uniform margin respectively. The mean increase in predicted normal tissue complication probability (NTCP) for grades 2/3 rectal bleeding for the actual plans in comparison to the static plans with margins of 10/6, 5/3 and 3 mm uniformly was 3.5%, 2.8% and 2.4% respectively. For the actual dose distributions, predicted NTCP for late rectal bleeding was reduced by 3.6% on average when the margin was reduced from 10/6 mm to 5/3 mm, and further reduced by 1.0% on average when the margin was reduced to 3 mm. The average reduction in complication free tumor control probability (P+) in the actual plans in comparison to the original plans with margins of 10/6, 5/3 and 3 mm was 3.7%, 2.4% and 13.6% correspondingly. The significant reduction of TCP and P+ in the actual plan with 3 mm margin came from one outlier, where individualizing patient treatment plans through margin adaptation

  19. Dose Estimation for a Study of Nuclear Workers in France, the United Kingdom and the United States of America: Methods for the International Nuclear Workers Study (INWORKS)

    PubMed Central

    Thierry-Chef, I.; Richardson, D. B.; Daniels, R. D.; Gillies, M.; Hamra, G. B.; Haylock, R.; Kesminiene, A.; Laurier, D.; Leuraud, K.; Moissonnier, M.; O'Hagan, J.; Schubauer-Berigan, M. K.; Cardis, E.

    2016-01-01

    In the framework of the International Nuclear Workers Study conducted in France, the UK and the U.S. (INWORKS), updated and expanded methods were developed to convert recorded doses of ionizing radiation to estimates of organ doses or individual personal dose equivalent [Hp(10)] for a total number of 308,297 workers, including 40,035 women. This approach accounts for differences in dosimeter response to predominant workplace energy and geometry of exposure and for the recently published ICRP report on dose coefficients for men and women separately. The overall mean annual individual personal dose equivalent, including zero doses, is 1.73 mSv [median = 0.42; interquartile range (IQR): 0.07, 1.59]. Associated individual organ doses were estimated. INWORKS includes workers who had potential for exposure to neutrons. Therefore, we analyzed neutron dosimetry data to identify workers potentially exposed to neutrons. We created a time-varying indicator for each worker, classifying them according to whether they had a positive recorded neutron dose and if so, whether their neutron dose ever exceeded 10% of their total external penetrating radiation dose. The number of workers flagged as being exposed to neutrons was 13% for the full cohort, with 15% of the cohort in France, 12% of the cohort in the UK and 14% in the U.S. We also used available information on in vivo and bioassay monitoring to identify workers with known depositions or suspected internal contaminations. As a result of this work, information is now available that will allow various types of sensitivity analyses. PMID:26010707

  20. Assessing the Value of U.S. Army International Activities

    DTIC Science & Technology

    2006-01-01

    of U.S. Army International Activities Tajfel , Henri , Human Groups and Social Categories, Cambridge, U.K.: Cambridge University Press, 1981. Taw...more recent treatment, see Fearon (1997, pp. 68–90). 3 For general discussions, see Tajfel (1981, p. 36), Hogg and Abrams (1998, pp. 31–63), and Goffman

  1. Cell Surface Protein Detection to Assess Receptor Internalization

    PubMed Central

    Czarnecka, Magdalena; Kitlinska, Joanna

    2017-01-01

    The migration of membrane receptors upon exposure to different stimulants/inhibitors is of great importance. Among others, the internalization of membrane receptors affects their accessibility to ligands and cell responsiveness to environmental cues. Experimentally, receptor internalization can be used as a measure of their activation. In our studies, we employed this approach to explore cross-talk between a seven transmembrane domain receptor for neuropeptide Y (NPY), Y5R, and a tyrosine kinase receptor for brain-derived neurotrophic factor (BDNF), TrkB. To this end, we measured the internalization of Y5R upon stimulation with the TrkB ligand, BDNF. Upon treatment with BDNF, the cells were exposed to a membrane impermeable, biotinylation reagent that selectively labels surface proteins. Subsequently, the biotinylated membrane proteins were affinity-purified on columns with avidin resins and analyzed by Western blot. Differences in the fraction of receptors present on the cell surface of control and ligand-treated cells served as a measure of their internalization and response to particular stimuli.

  2. Assessing Domestic vs. International Student Perceptions and Attitudes of Plagiarism

    ERIC Educational Resources Information Center

    Doss, Daniel Adrian; Henley, Russ; Gokaraju, Balakrishna; McElreath, David; Lackey, Hilliard; Hong, Qiuqi; Miller, Lauren

    2016-01-01

    The authors examined students' perceptions of plagiarism from a higher education teaching institution within the U.S. southeast. This study employed a five-point Likert-scale to examine differences of perceptions between domestic versus international students. Statistically significant outcomes were observed regarding the notions that plagiarism…

  3. A petrologic assessment of internal zonation in granitic pegmatites

    NASA Astrophysics Data System (ADS)

    London, David

    2014-01-01

    Cameron et al. (1949) devised the nomenclature and delineated the patterns of internal zonation within granitic pegmatites that are in use today. Zonation in pegmatites is manifested both in mineralogy and in fabric (mineral habits and rock texture). Although internal zonation is a conspicuous and distinctive attribute of pegmatites, there has been no thorough effort to explain that mineralogical and textural evolution in relation to the zoning sequence presented by Cameron et al. (1949), or in terms of the comprehensive petrogenesis of pegmatite bodies (pressure, temperature, and whole-rock composition). This overview of internal zonation within granitic pegmatites consists of four principal parts: (1) a historic review of the subject, (2) a summary of the current understanding of the pegmatite-forming environment, (3) the processes that determine mineralogical and textural zonation in pegmatites, and (4) the applications of those processes to each of the major zones of pegmatites. Based on the concepts presented in London (2008), the fundamental determinates of the internal evolution of pegmatite zones are: (1) the bulk composition of melt, (2) the magnitude of liquidus undercooling prior to the onset of crystallization, (3) subsolidus isothermal fractional crystallization, by which eutectic or minimum melts fractionate by sequential, non-eutectic crystallization, (4) constitutional zone refining via the creation of a boundary layer liquid, chemically distinct from but continuous with the bulk melt at the crystallization front, and (5) far-field chemical diffusion, the long-range and coordinated diffusion of ions, particularly of alkalis and alkaline earths, through melt.

  4. Assessment of Student Learning: Moving from Compliance to Internalization

    ERIC Educational Resources Information Center

    Sutton, Rosemary E.

    2005-01-01

    Because assessment of student learning is mandated by accrediting bodies, many faculty and administrators feel coerced and so resist or even undermine assessment activities on campuses. In this article, the author describes how a prominent motivation theory called "self-determination theory" can be helpful in understanding the attitudes and…

  5. Internal Indpendent Assessment Report - CASTLE-PX SQA

    SciTech Connect

    Whitney, D. M.; Dancy, L. L.; Pope, V. L.

    2015-04-01

    This IIA assessed the flow down of institutional 830 Software Quality Assurance requirements through three required document templates to the CASTLE-PX software effort and the implementation of those SQA requirements. The templates flow down the DOE O 414.1D consensus standard requirements for Safety Software. This assessment did not include the flow down of NAP-24, Weapon Quality Policy, requirements. The assessment focused on the CASTLE-PX project’s software development and release processes. It did not assess Pantex’s acceptance or usage of the software. The assessment resulted in 3 Deficiencies, 5 Observations, 1 Recommendation, and 3 Strengths. Overall the CASTLE-PX team demonstrated it values quality and has worked to integrate quality practices into its software development processes. Improvement in documentation will enhance their SQA implementation.

  6. Study of the radiation dose reduction capability of a CT reconstruction algorithm: LCD performance assessment using mathematical model observers

    NASA Astrophysics Data System (ADS)

    Fan, Jiahua; Tseng, Hsin-Wu; Kupinski, Matthew; Cao, Guangzhi; Sainath, Paavana; Hsieh, Jiang

    2013-03-01

    Radiation dose on patient has become a major concern today for Computed Tomography (CT) imaging in clinical practice. Various hardware and algorithm solutions have been designed to reduce dose. Among them, iterative reconstruction (IR) has been widely expected to be an effective dose reduction approach for CT. However, there is no clear understanding on the exact amount of dose saving an IR approach can offer for various clinical applications. We know that quantitative image quality assessment should be task-based. This work applied mathematical model observers to study detectability performance of CT scan data reconstructed using an advanced IR approach as well as the conventional filtered back-projection (FBP) approach. The purpose of this work is to establish a practical and robust approach for CT IR detectability image quality evaluation and to assess the dose saving capability of the IR method under study. Low contrast (LC) objects imbedded in head size and body size phantoms were imaged multiple times with different dose levels. Independent signal present and absent pairs were generated for model observer study training and testing. Receiver Operating Characteristic (ROC) curves for location known exact and location ROC (LROC) curves for location unknown as well as their corresponding the area under the curve (AUC) values were calculated. Results showed approximately 3 times dose reduction has been achieved using the IR method under study.

  7. International Code Assessment and Applications Program: Summary of code assessment studies concerning RELAP5/MOD2, RELAP5/MOD3, and TRAC-B. International Agreement Report

    SciTech Connect

    Schultz, R.R.

    1993-12-01

    Members of the International Code Assessment Program (ICAP) have assessed the US Nuclear Regulatory Commission (USNRC) advanced thermal-hydraulic codes over the past few years in a concerted effort to identify deficiencies, to define user guidelines, and to determine the state of each code. The results of sixty-two code assessment reviews, conducted at INEL, are summarized. Code deficiencies are discussed and user recommended nodalizations investigated during the course of conducting the assessment studies and reviews are listed. All the work that is summarized was done using the RELAP5/MOD2, RELAP5/MOD3, and TRAC-B codes.

  8. International Space Station (ISS) Plasma Contactor Unit (PCU) Utilization Plan Assessment Update

    NASA Technical Reports Server (NTRS)

    Hernandez-Pellerano, Amri; Iannello, Christopher J.; Wollack, Edward J.; Wright, Kenneth H.; Garrett, Henry B.; Ging, Andrew T.; Katz, Ira; Keith, R. Lloyd; Minow, Joseph I.; Willis, Emily M.; Schneider, Todd A.; Whittlesey, Albert C.

    2014-01-01

    The NASA Engineering and Safety Center (NESC) received a request to support the Assessment of the International Space Station (ISS) Plasma Contactor Unit (PCU) Utilization Update. The NESC conducted an earlier assessment of the use of the PCU in 2009. This document contains the outcome of the assessment update.

  9. Participation in International Large-Scale Assessments from a US Perspective

    ERIC Educational Resources Information Center

    Plisko, Valena White

    2013-01-01

    International large-scale assessments (ILSAs) play a distinct role in the United States' decentralized federal education system. Separate from national and state assessments, they offer an external, objective measure for the United States to assess student performance comparatively with other countries and over time. The US engagement in ILSAs…

  10. Assessment for Learning in International Contexts: Exploring Shared and Divergent Dimensions in Teacher Values and Practices

    ERIC Educational Resources Information Center

    Warwick, Paul; Shaw, Stuart; Johnson, Martin

    2015-01-01

    The Assessment for Learning in International Contexts (ALIC) project sought to extend knowledge around teachers' understandings of Assessment for Learning (AfL). Using a modified version of a survey item devised by James and Pedder for use with teachers in England, evidence was gathered about the assessment practices that were highly valued by…

  11. Key Principles of Peer Assessments: A Feedback Strategy to Engage the Postgraduate International Learner

    ERIC Educational Resources Information Center

    Nagori, Roopa; Cooper, Matthew

    2014-01-01

    The paper reports the findings of a project that assessed the benefits of peer feedback as a formative assessment intervention for postgraduate international learners in the United Kingdom. The aim was to improve participants' understanding of quality in academic writing, and hence improve the summative assessment scores, by improving the quantity…

  12. Incorporating Low-dose Epidemiology Data in a Chlorpyrifos Risk Assessment

    PubMed Central

    Goodman, Julie E.; Prueitt, Robyn L.; Rhomberg, Lorenz R.

    2013-01-01

    USEPA assessed whether epidemiology data suggest that fetal or early-life chlorpyrifos exposure causes neurodevelopmental effects and, if so, whether they occur at exposures below those causing the current most sensitive endpoint, 10% inhibition of blood acetylcholinesterase (AChE). We previously conducted a hypothesis-based weight-of-evidence analysis and found that a proposed causal association between chlorpyrifos exposure and neurodevelopmental effects in the absence of AChE inhibition does not have a substantial basis in existing animal or in vitro studies, and there is no plausible basis for invoking such effects in humans at their far lower exposure levels. The epidemiology studies fail to show consistent patterns; the few associations are likely attributable to alternative explanations. Human data are inappropriate for a dose-response assessment because biomarkers were only measured at one time point, may reflect exposure to other pesticides, and many values are at or below limits of quantification. When considered with pharmacokinetic data, however, these biomarkers provide information on exposure levels relative to those in experimental studies and indicate a margin of exposure of at least 1,000. Because animal data take into account the most sensitive lifestages, the use of AChE inhibition as a regulatory endpoint is protective of adverse effects in sensitive populations. PMID:23930102

  13. Application of a generic biosphere model for dose assessments to five European sites.

    PubMed

    Chen, Q; Kowe, R; Mobbs, S F; Pröhl, G; Olyslaegers, G; Zeevaert, T; Kanyar, B; Pinedo, P; Simón, I; Bergström, U; Hallberg, B; Jones, J A; Oatway, W B; Watson, S J

    2006-06-01

    The BIOMOSA (BIOsphere MOdels for Safety Assessment of radioactive waste disposal) project was part of the EC fifth framework research programme. The main goal of this project was to improve the scientific basis for the application of biosphere models in the framework of long-term safety studies of radioactive waste disposal facilities and to enhance the confidence in using biosphere models for performance assessments. The study focused on the development and application of a generic biosphere tool BIOGEM (BIOsphere GEneric Model) using the IAEA BIOMASS reference biosphere methodology, and the comparison between BIOGEM and five site-specific biosphere models. The site-specific models and the generic model were applied to five typical locations in Europe, resulting in estimates of the annual effective individual doses to the critical groups and the ranking of the importance of the exposure pathways for each of the sites. Uncertainty in the results was also estimated by means of stochastic calculations based on variation of the site-specific parameter values. This paper describes the generic model and the deterministic and stochastic results obtained when it was applied to the five sites. Details of the site-specific models and the corresponding results are described in two companion papers. This paper also presents a comparison of the results between the generic model and site-specific models. In general, there was an acceptable agreement of the BIOGEM for both the deterministic and stochastic results with the results from the site-specific models.

  14. Radionuclides in the adriatic sea and related dose-rate assessment for marine biota.

    PubMed

    Petrinec, Branko; Strok, Marko; Franic, Zdenko; Smodis, Borut; Pavicic-Hamer, Dijana

    2013-01-01

    Artificial and natural radionuclides were determined in the Adriatic Sea in the seawater and sediment samples in the period from 2007 to 2011. The sampling areas were coastal waters of Slovenia, Croatia and Albania, together with the deepest part of the Adriatic in South Adriatic Pit and Otranto strait. Sampling locations were chosen to take into account all major geological and geographical features of this part of the Adriatic Sea and possible coastal influences. After initial sample preparation steps, samples were measured by gamma-ray spectrometry. In the seawater ⁴⁰K activity concentrations were in the range from 6063 to 10519 Bq m⁻³, ¹³⁷Cs from 1.6 to 3.8 Bq m⁻³, ²²⁶Ra from 23 to 31 Bq m⁻³, ²²⁸Ra from 1 to 25 Bq m⁻³ and ²³⁸U from 64 to 490 Bq m⁻³. The results of sediment samples showed that ⁴⁰K was in the range from 87 to 593 Bq kg⁻¹, ¹³⁷Cs from 0.8 to 7.3 Bq kg⁻¹, ²²⁶Ra from 18 to 35 Bq kg⁻¹, ²²⁸Ra from 4 to 29 Bq kg⁻¹ and ²³⁸U from 14 to 120 Bq kg⁻¹. In addition, the ERICA Assessment Tool was used for the assessment of dose rates for reference marine organisms using the activity concentrations of the determined radionuclides in seawater. The assessment showed that for the most of the organisms, the dose rates were within the background levels, indicating that the determined values for seawater does not pose a significant risk for the most of marine biota. In the study, the results are critically discussed and compared with other similar studies worldwide. Generally, the activity concentrations of the examined radionuclides did not differ from those reported for the rest of the Mediterranean Sea.

  15. Shrimp viral diseases, import risk assessment and international trade.

    PubMed

    Karunasagar, Iddya; Ababouch, Lahsen

    2012-09-01

    Shrimp is an important commodity in international trade accounting for 15 % in terms of value of internationally traded seafood products which reached $102.00 billion in 2008. Aquaculture contributes to over 50 % of global shrimp production. One of the major constraints faced by shrimp aquaculture is the loss due to viral diseases like white spot syndrome, yellow head disease, and Taura syndrome. There are several examples of global spread of shrimp diseases due to importation of live shrimp for aquaculture. Though millions of tonnes of frozen or processed shrimp have been traded internationally during the last two decades despite prevalence of viral diseases in shrimp producing areas in Asia and the Americas, there is no evidence of diseases having been transmitted through shrimp imported for human consumption. The guidelines developed by the World Animal Health Organisation for movement of live animals for aquaculture, frozen crustaceans for human consumption, and the regulations implemented by some shrimp importing regions in the world are reviewed.

  16. Radiation Hormesis: Historical Perspective and Implications for Low-Dose Cancer Risk Assessment

    PubMed Central

    Vaiserman, Alexander M.

    2010-01-01

    Current guidelines for limiting exposure of humans to ionizing radiation are based on the linear-no-threshold (LNT) hypothesis for radiation carcinogenesis under which cancer risk increases linearly as the radiation dose increases. With the LNT model even a very small dose could cause cancer and the model is used in establishing guidelines for limiting radiation exposure of humans. A slope change at low doses and dose rates is implemented using an empirical dose and dose rate effectiveness factor (DDREF). This imposes usually unacknowledged nonlinearity but not a threshold in the dose-response curve for cancer induction. In contrast, with the hormetic model, low doses of radiation reduce the cancer incidence while it is elevated after high doses. Based on a review of epidemiological and other data for exposure to low radiation doses and dose rates, it was found that the LNT model fails badly. Cancer risk after ordinarily encountered radiation exposure (medical X-rays, natural background radiation, etc.) is much lower than projections based on the LNT model and is often less than the risk for spontaneous cancer (a hormetic response). Understanding the mechanistic basis for hormetic responses will provide new insights about both risks and benefits from low-dose radiation exposure. PMID:20585444

  17. CANCER RISKS ATTRIBUTABLE TO LOW DOSES OF IONIZING RADIATION - ASSESSING WHAT WE REALLY KNOW?

    EPA Science Inventory

    Cancer Risks Attributable to Low Doses of Ionizing Radiation - What Do We Really Know?

    Abstract
    High doses of ionizing radiation clearly produce deleterious consequences in humans including, but not exclusively, cancer induction. At very low radiation doses the situatio...

  18. Radioactive contamination in the Arctic--sources, dose assessment and potential risks.

    PubMed

    Strand, P; Howard, B J; Aarkrog, A; Balonov, M; Tsaturov, Y; Bewers, J M; Salo, A; Sickel, M; Bergman, R; Rissanen, K

    2002-01-01

    Arctic residents, whose diets comprise a large proportion of traditional terrestrial and freshwater foodstuffs, have received the highest radiation exposures to artificial radionuclides in the Arctic. Doses to members of both the average population and selected indigenous population groups in the Arctic depend on the rates of consumption of locally-derived terrestrial and freshwater foodstuffs, including reindeer/caribou meat, freshwater fish, goat cheese, berries, mushrooms and lamb. The vulnerability of arctic populations, especially indigenous peoples, to radiocaesium deposition is much greater than for temperate populations due to the importance of terrestrial, semi-natural exposure pathways where there is high radiocaesium transfer and a long ecological half-life for this radionuclide. In contrast, arctic residents with diets largely comprising marine foodstuffs have received comparatively low radiation exposures because of the lower levels of contamination of marine organisms. Using arctic-specific information, the predicted collective dose is five times higher than that estimated by UNSCEAR for temperate areas. The greatest threats to human health and the environment posed by human and industrial activities in the Arctic are associated with the potential for accidents in the civilian and military nuclear sectors. Of most concern are the consequences of potential accidents in nuclear power plant reactors, during the handling and storage of nuclear weapons, in the decommissioning of nuclear submarines and in the disposal of spent nuclear fuel from vessels. It is important to foster a close association between risk assessment and practical programmes for the purposes of improving monitoring, formulating response strategies and implementing action plans.

  19. A method for independent modelling in support of regulatory review of dose assessments.

    PubMed

    Dverstorp, Björn; Xu, Shulan

    2017-03-22

    Several countries consider geological disposal facilities as the preferred option for spent nuclear fuel due to their potential to provide isolation from the surface environment on very long timescales. In 2011 the Swedish Nuclear Fuel & Waste Management Co. (SKB) submitted a license application for construction of a spent nuclear fuel repository. The disposal method involves disposing spent fuel in copper canisters with a cast iron insert at about 500 m depth in crystalline basement rock, and each canister is surrounded by a buffer of swelling bentonite clay. SKB's license application is supported by a post-closure safety assessment, SR-Site. SR-Site has been reviewed by the Swedish Radiation Safety Authority (SSM) for five years. The main method for review of SKB's license application is document review, which is carried out by SSM's staff and supported by SSM's external experts. The review has proven a challenging task due to its broad scope, complexity and multidisciplinary nature. SSM and its predecessors have, for several decades, been developing independent models to support regulatory reviews of post-closure safety assessments for geological repositories. For the review of SR-Site, SSM has developed a modelling approach with a structured application of independent modelling activities, including replication modelling, use of alternative conceptual models and bounding calculations, to complement the traditional document review. This paper describes this scheme and its application to biosphere and dose assessment modelling. SSM's independent modelling has provided important insights regarding quality and reasonableness of SKB's rather complex biosphere modelling and has helped quantifying conservatisms and highlighting conceptual uncertainty.

  20. Web-based training course for evaluating radiological dose assessment in NRC's license termination process.

    PubMed

    Lepoire, D; Richmond, P; Cheng, J-J; Kamboj, S; Arnish, J; Chen, S Y; Barr, C; McKenney, C

    2008-08-01

    As part of the requirement for terminating the licenses of nuclear power plants or other nuclear facilities, license termination plans or decommissioning plans are submitted by the licensee to the U.S. Nuclear Regulatory Commission (NRC) for review and approval. Decommissioning plans generally refer to the decommissioning of nonreactor facilities, while license termination plans specifically refer to the decommissioning of nuclear reactor facilities. To provide a uniform and consistent review of dose modeling aspects of these plans and to address NRC-wide knowledge management issues, the NRC, in 2006, commissioned Argonne National Laboratory to develop a Web-based training course on reviewing radiological dose assessments for license termination. The course, which had first been developed in 2005 to target specific aspects of the review processes for license termination plans and decommissioning plans, evolved from a live classroom course into a Web-based training course in 2006. The objective of the Web-based training course is to train NRC staff members (who have various relevant job functions and are located at headquarters, regional offices, and site locations) to conduct an effective review of dose modeling in accordance with the latest NRC guidance, including NUREG-1757, Volumes 1 and 2. The exact size of the staff population who will receive the training has not yet been accurately determined but will depend on various factors such as the decommissioning activities at the NRC. This Web-based training course is designed to give NRC staff members modern, flexible access to training. To this end, the course is divided into 16 modules: 9 core modules that deal with basic topics, and 7 advanced modules that deal with complex issues or job-specific topics. The core and advanced modules are tailored to various NRC staff members with different job functions. The Web-based system uses the commercially available software Articulate, which incorporates audio, video

  1. Assessing the carcinogenic potential of low-dose exposures to chemical mixtures in the environment: the challenge ahead.

    PubMed

    Goodson, William H; Lowe, Leroy; Carpenter, David O; Gilbertson, Michael; Manaf Ali, Abdul; Lopez de Cerain Salsamendi, Adela; Lasfar, Ahmed; Carnero, Amancio; Azqueta, Amaya; Amedei, Amedeo; Charles, Amelia K; Collins, Andrew R; Ward, Andrew; Salzberg, Anna C; Colacci, Annamaria; Olsen, Ann-Karin; Berg, Arthur; Barclay, Barry J; Zhou, Binhua P; Blanco-Aparicio, Carmen; Baglole, Carolyn J; Dong, Chenfang; Mondello, Chiara; Hsu, Chia-Wen; Naus, Christian C; Yedjou, Clement; Curran, Colleen S; Laird, Dale W; Koch, Daniel C; Carlin, Danielle J; Felsher, Dean W; Roy, Debasish; Brown, Dustin G; Ratovitski, Edward; Ryan, Elizabeth P; Corsini, Emanuela; Rojas, Emilio; Moon, Eun-Yi; Laconi, Ezio; Marongiu, Fabio; Al-Mulla, Fahd; Chiaradonna, Ferdinando; Darroudi, Firouz; Martin, Francis L; Van Schooten, Frederik J; Goldberg, Gary S; Wagemaker, Gerard; Nangami, Gladys N; Calaf, Gloria M; Williams, Graeme; Wolf, Gregory T; Koppen, Gudrun; Brunborg, Gunnar; Lyerly, H Kim; Krishnan, Harini; Ab Hamid, Hasiah; Yasaei, Hemad; Sone, Hideko; Kondoh, Hiroshi; Salem, Hosni K; Hsu, Hsue-Yin; Park, Hyun Ho; Koturbash, Igor; Miousse, Isabelle R; Scovassi, A Ivana; Klaunig, James E; Vondráček, Jan; Raju, Jayadev; Roman, Jesse; Wise, John Pierce; Whitfield, Jonathan R; Woodrick, Jordan; Christopher, Joseph A; Ochieng, Josiah; Martinez-Leal, Juan Fernando; Weisz, Judith; Kravchenko, Julia; Sun, Jun; Prudhomme, Kalan R; Narayanan, Kannan Badri; Cohen-Solal, Karine A; Moorwood, Kim; Gonzalez, Laetitia; Soucek, Laura; Jian, Le; D'Abronzo, Leandro S; Lin, Liang-Tzung; Li, Lin; Gulliver, Linda; McCawley, Lisa J; Memeo, Lorenzo; Vermeulen, Louis; Leyns, Luc; Zhang, Luoping; Valverde, Mahara; Khatami, Mahin; Romano, Maria Fiammetta; Chapellier, Marion; Williams, Marc A; Wade, Mark; Manjili, Masoud H; Lleonart, Matilde E; Xia, Menghang; Gonzalez, Michael J; Karamouzis, Michalis V; Kirsch-Volders, Micheline; Vaccari, Monica; Kuemmerle, Nancy B; Singh, Neetu; Cruickshanks, Nichola; Kleinstreuer, Nicole; van Larebeke, Nik; Ahmed, Nuzhat; Ogunkua, Olugbemiga; Krishnakumar, P K; Vadgama, Pankaj; Marignani, Paola A; Ghosh, Paramita M; Ostrosky-Wegman, Patricia; Thompson, Patricia A; Dent, Paul; Heneberg, Petr; Darbre, Philippa; Sing Leung, Po; Nangia-Makker, Pratima; Cheng, Qiang Shawn; Robey, R Brooks; Al-Temaimi, Rabeah; Roy, Rabindra; Andrade-Vieira, Rafaela; Sinha, Ranjeet K; Mehta, Rekha; Vento, Renza; Di Fiore, Riccardo; Ponce-Cusi, Richard; Dornetshuber-Fleiss, Rita; Nahta, Rita; Castellino, Robert C; Palorini, Roberta; Abd Hamid, Roslida; Langie, Sabine A S; Eltom, Sakina E; Brooks, Samira A; Ryeom, Sandra; Wise, Sandra S; Bay, Sarah N; Harris, Shelley A; Papagerakis, Silvana; Romano, Simona; Pavanello, Sofia; Eriksson, Staffan; Forte, Stefano; Casey, Stephanie C; Luanpitpong, Sudjit; Lee, Tae-Jin; Otsuki, Takemi; Chen, Tao; Massfelder, Thierry; Sanderson, Thomas; Guarnieri, Tiziana; Hultman, Tove; Dormoy, Valérian; Odero-Marah, Valerie; Sabbisetti, Venkata; Maguer-Satta, Veronique; Rathmell, W Kimryn; Engström, Wilhelm; Decker, William K; Bisson, William H; Rojanasakul, Yon; Luqmani, Yunus; Chen, Zhenbang; Hu, Zhiwei

    2015-06-01

    Lifestyle factors are responsible for a considerable portion of cancer incidence worldwide, but credible estimates from the World Health Organization and the International Agency for Research on Cancer (IARC) suggest that the fraction of cancers attributable to toxic environmental exposures is between 7% and 19%. To explore the hypothesis that low-dose exposures to mixtures of chemicals in the environment may be combining to contribute to environmental carcinogenesis, we reviewed 11 hallmark phenotypes of cancer, multiple priority target sites for disruption in each area and prototypical chemical disruptors for all targets, this included dose-response characterizations, evidence of low-dose effects and cross-hallmark effects for all targets and chemicals. In total, 85 examples of chemicals were reviewed for actions on key pathways/mechanisms related to carcinogenesis. Only 15% (13/85) were found to have evidence of a dose-response threshold, whereas 59% (50/85) exerted low-dose effects. No dose-response information was found for the remaining 26% (22/85). Our analysis suggests that the cumulative effects of individual (non-carcinogenic) chemicals acting on different pathways, and a variety of related systems, organs, tissues and cells could plausibly conspire to produce carcinogenic synergies. Additional basic research on carcinogenesis and research focused on low-dose effects of chemical mixtures needs to be rigorously pursued before the merits of this hypothesis can be further advanced. However, the structure of the World Health Organization International Programme on Chemical Safety 'Mode of Action' framework should be revisited as it has inherent weaknesses that are not fully aligned with our current understanding of cancer biology.

  2. Assessing the carcinogenic potential of low-dose exposures to chemical mixtures in the environment: the challenge ahead

    PubMed Central

    Goodson, William H.; Lowe, Leroy; Carpenter, David O.; Gilbertson, Michael; Manaf Ali, Abdul; Lopez de Cerain Salsamendi, Adela; Lasfar, Ahmed; Carnero, Amancio; Azqueta, Amaya; Amedei, Amedeo; Charles, Amelia K.; Collins, Andrew R.; Ward, Andrew; Salzberg, Anna C.; Colacci, Anna Maria; Olsen, Ann-Karin; Berg, Arthur; Barclay, Barry J.; Zhou, Binhua P.; Blanco-Aparicio, Carmen; Baglole, Carolyn J.; Dong, Chenfang; Mondello, Chiara; Hsu, Chia-Wen; Naus, Christian C.; Yedjou, Clement; Curran, Colleen S.; Laird, Dale W.; Koch, Daniel C.; Carlin, Danielle J.; Felsher, Dean W.; Roy, Debasish; Brown, Dustin G.; Ratovitski, Edward; Ryan, Elizabeth P.; Corsini, Emanuela; Rojas, Emilio; Moon, Eun-Yi; Laconi, Ezio; Marongiu, Fabio; Al-Mulla, Fahd; Chiaradonna, Ferdinando; Darroudi, Firouz; Martin, Francis L.; Van Schooten, Frederik J.; Goldberg, Gary S.; Wagemaker, Gerard; Nangami, Gladys N.; Calaf, Gloria M.; Williams, Graeme P.; Wolf, Gregory T.; Koppen, Gudrun; Brunborg, Gunnar; Lyerly, H. Kim; Krishnan, Harini; Ab Hamid, Hasiah; Yasaei, Hemad; Sone, Hideko; Kondoh, Hiroshi; Salem, Hosni K.; Hsu, Hsue-Yin; Park, Hyun Ho; Koturbash, Igor; Miousse, Isabelle R.; Scovassi, A.Ivana; Klaunig, James E.; Vondráček, Jan; Raju, Jayadev; Roman, Jesse; Wise, John Pierce; Whitfield, Jonathan R.; Woodrick, Jordan; Christopher, Joseph A.; Ochieng, Josiah; Martinez-Leal, Juan Fernando; Weisz, Judith; Kravchenko, Julia; Sun, Jun; Prudhomme, Kalan R.; Narayanan, Kannan Badri; Cohen-Solal, Karine A.; Moorwood, Kim; Gonzalez, Laetitia; Soucek, Laura; Jian, Le; D’Abronzo, Leandro S.; Lin, Liang-Tzung; Li, Lin; Gulliver, Linda; McCawley, Lisa J.; Memeo, Lorenzo; Vermeulen, Louis; Leyns, Luc; Zhang, Luoping; Valverde, Mahara; Khatami, Mahin; Romano, Maria Fiammetta; Chapellier, Marion; Williams, Marc A.; Wade, Mark; Manjili, Masoud H.; Lleonart, Matilde E.; Xia, Menghang; Gonzalez Guzman, Michael J.; Karamouzis, Michalis V.; Kirsch-Volders, Micheline; Vaccari, Monica; Kuemmerle, Nancy B.; Singh, Neetu; Cruickshanks, Nichola; Kleinstreuer, Nicole; van Larebeke, Nik; Ahmed, Nuzhat; Ogunkua, Olugbemiga; Krishnakumar, P.K.; Vadgama, Pankaj; Marignani, Paola A.; Ghosh, Paramita M.; Ostrosky-Wegman, Patricia; Thompson, Patricia A.; Dent, Paul; Heneberg, Petr; Darbre, Philippa; Leung, Po Sing; Nangia-Makker, Pratima; Cheng, Qiang (Shawn); Robey, R.Brooks; Al-Temaimi, Rabeah; Roy, Rabindra; Andrade-Vieira, Rafaela; Sinha, Ranjeet K.; Mehta, Rekha; Vento, Renza; Di Fiore, Riccardo; Ponce-Cusi, Richard; Dornetshuber-Fleiss, Rita; Nahta, Rita; Castellino, Robert C.; Palorini, Roberta; Hamid, Roslida A.; Langie, Sabine A.S.; Eltom, Sakina E.; Brooks, Samira A.; Ryeom, Sandra; Wise, Sandra S.; Bay, Sarah N.; Harris, Shelley A.; Papagerakis, Silvana; Romano, Simona; Pavanello, Sofia; Eriksson, Staffan; Forte, Stefano; Casey, Stephanie C.; Luanpitpong, Sudjit; Lee, Tae-Jin; Otsuki, Takemi; Chen, Tao; Massfelder, Thierry; Sanderson, Thomas; Guarnieri, Tiziana; Hultman, Tove; Dormoy, Valérian; Odero-Marah, Valerie; Sabbisetti, Venkata; Maguer-Satta, Veronique; Rathmell, W.Kimryn; Engström, Wilhelm; Decker, William K.; Bisson, William H.; Rojanasakul, Yon; Luqmani, Yunus; Chen, Zhenbang; Hu, Zhiwei

    2015-01-01

    Lifestyle factors are responsible for a considerable portion of cancer incidence worldwide, but credible estimates from the World Health Organization and the International Agency for Research on Cancer (IARC) suggest that the fraction of cancers attributable to toxic environmental exposures is between 7% and 19%. To explore the hypothesis that low-dose exposures to mixtures of chemicals in the environment may be combining to contribute to environmental carcinogenesis, we reviewed 11 hallmark phenotypes of cancer, multiple priority target sites for disruption in each area and prototypical chemical disruptors for all targets, this included dose-response characterizations, evidence of low-dose effects and cross-hallmark effects for all targets and chemicals. In total, 85 examples of chemicals were reviewed for actions on key pathways/mechanisms related to carcinogenesis. Only 15% (13/85) were found to have evidence of a dose-response threshold, whereas 59% (50/85) exerted low-dose effects. No dose-response information was found for the remaining 26% (22/85). Our analysis suggests that the cumulative effects of individual (non-carcinogenic) chemicals acting on different pathways, and a variety of related systems, organs, tissues and cells could plausibly conspire to produce carcinogenic synergies. Additional basic research on carcinogenesis and research focused on low-dose effects of chemical mixtures needs to be rigorously pursued before the merits of this hypothesis can be further advanced. However, the structure of the World Health Organization International Programme on Chemical Safety ‘Mode of Action’ framework should be revisited as it has inherent weaknesses that are not fully aligned with our current understanding of cancer biology. PMID:26106142

  3. Scoping assessment of radiological doses to aquatic organisms and wildlife -- N Springs

    SciTech Connect

    Poston, T.M.; Soldat, J.K.

    1992-10-01

    Estimated does rates were determined for endemic biota inhabiting the N Springs area based primarily on spring water data collected from the first 6 months of 1991. Radiological dose estimates were computed from measured values of specific radionuclides and modeled levels of radionuclides using established computer codes. The highest doses were predicted in hypothetical populations of clams, fish-eating ducks, and rabbits. The calculated dose estimates did not exceed 1 rad/d, an administrative dose rate established by the US Department of Energy for the protection of native aquatic biota. An administrative dose rate has not been established for terrestrial wildlife.

  4. Scoping assessment of radiological doses to aquatic organisms and wildlife -- N Springs. [N Springs

    SciTech Connect

    Poston, T.M.; Soldat, J.K.

    1992-10-01

    Estimated does rates were determined for endemic biota inhabiting the N Springs area based primarily on spring water data collected from the first 6 months of 1991. Radiological dose estimates were computed from measured values of specific radionuclides and modeled levels of radionuclides using established computer codes. The highest doses were predicted in hypothetical populations of clams, fish-eating ducks, and rabbits. The calculated dose estimates did not exceed 1 rad/d, an administrative dose rate established by the US Department of Energy for the protection of native aquatic biota. An administrative dose rate has not been established for terrestrial wildlife.

  5. Assessing the Parameters for Determining Mission Accomplishment of the Philippine Marine Corps in Internal Security Operations

    DTIC Science & Technology

    2009-01-01

    the Philippine Marine Corps in Internal Security Operations 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR( S ) 5d. PROJECT...It is worthy to note that the Marine Corps perceive" s ISO primarily as a mere force on force employment (combat operations) against armed internal ...Virginia 22134-5068 MASTERS OF MILITARY STUDIES ASSESSING THE PARAMETERS FOR DETERMINING MISSION ACCOMPLISHMENT 011 THE PHILIPPINE MARINE CORPS IN INTERNAL

  6. LANDSCAPE SCIENCES FOR ENVIRONMENTAL ASSESSMENT: A NATO FRAMEWORK FOR INTERNATIONAL COOPERATION

    EPA Science Inventory

    An international pilot study has been developed to explore the possibility of quantifying and assessing environmental condition, processes of land degradation, and subsequent impacts on natural and human resources by combining the advanced technologies of remote sensing, geograph...

  7. Assessment of Rationality of Fixed Dose Combinations Approved in CDSCO List

    PubMed Central

    Ganguly, Barna; Gor, Alpa

    2016-01-01

    Introduction Fixed Dose Combination (FDC) is highly popular in the Indian pharmaceutical market and has been particularly flourishing in the last few years. Though rationality status is not clear, the pharmaceutical industry has been manufacturing and marketing FDCs. Aim To assess rationality of FDCs enlisted in CDSCO list and marketing in India according to pharmacokinetic (FD) and pharmacodynamic (FD) reasoning and WHO rationality criteria. Materials and Methods In this study, 264 FDCs marketed in India from 2009 to 2014 from CDSCO list 2014 were included. Assessment was done on the basis of following parameters: 1) Year and system of FDC; 2) Dosage form; 3) Number of Active Pharmacological Ingredient (API); 4) Schedule of FDC; 5) The presence of the FDC and its ingredients in the WHO Essential Medicine List 2013 and National Essential Medicine List, India 2011; 6) FD and PK parameters of APIs of combination; 7) PK and PD interaction; 8) Safety parameters of ingredients in combination. Descriptive statistics in terms of frequency counts and percentages were used for variables. Results Out of total 264 FDCs selected, maximum number of combinations (112) were approved in 2010. System wise selection showed 51 (19.31%) FDCs were from cardiovascular system followed by 46 (17.42%) from pain/musculoskeletal system. Oral dosage form was found to be maximum with 200 (75.75%) combinations. According to schedules, 154 (58.33%) combinations were categorized under schedule H. There were 210 (79.54%) FDCs that had two API which was found to be maximum, whereas, only 3 (1.13%) combinations had 5 API. We could find possible PK and PD interactions in between API of 10 (3.78%) and 73 (27.65%) combinations respectively on basis of standard textbooks and references. Similarly dose reduction in API was seen in 58 (21.96%) FDCs. There were 123 (46.59%) FDCs had chances of increased ADRs due to its API. Out of 264 combinations, 52 combinations were rational (6-9), 75 combinations were

  8. International Space Station Columbus Payload SoLACES Degradation Assessment

    NASA Technical Reports Server (NTRS)

    Hartman, William A.; Schmidl, William D.; Mikatarian, Ron; Soares, Carlos; Schmidtke, Gerhard; Erhardt, Christian

    2016-01-01

    SOLAR is a European Space Agency (ESA) payload deployed on the International Space Station (ISS) and located on the Columbus Laboratory. It is located on the Columbus External Payload Facility in a zenith location. The objective of the SOLAR payload is to study the Sun. The SOLAR payload consists of three instruments that allow for measurement of virtually the entire electromagnetic spectrum (17 nm to 2900 nm). The three payload instruments are SOVIM (SOlar Variable and Irradiance Monitor), SOLSPEC (SOLar SPECctral Irradiance measurements), and SolACES (SOLar Auto-Calibrating Extreme UV/UV Spectrophotometers).

  9. Assessment of Professional Training Programmes in International Agricultural Research Institutions: The Case of ICRAF

    ERIC Educational Resources Information Center

    Wanjiku, Julliet; Mairura, Franklin; Place, Frank

    2010-01-01

    The following survey was undertaken in 2005 to assess the effectiveness of professional training activities in international agricultural research organizations that were undertaken between 1999 and 2002 at ICRAF (International Centre for Research in Agroforestry), now World Agroforestry Centre, Nairobi. Trainees were randomly selected from…

  10. Commentary on the OECD's Programme for International Student Assessment (PISA) 2009 Study

    ERIC Educational Resources Information Center

    Froese-Germain, Bernie

    2011-01-01

    This paper presents some of the major issues raised in Education International's preliminary analysis of the overall PISA (Programme for International Student Assessment) 2009 study. Some of these issues are: (1) PISA has serious limitations. The study does not cover the full curriculum, focusing on a narrow set of subject areas, neglecting such…

  11. Globalization and the Growth of International Educational Testing and National Assessment

    ERIC Educational Resources Information Center

    Kamens, David H.; McNeely, Connie L.

    2010-01-01

    In this article, the authors develop an argument about the global forces that have led to the explosive growth of national educational assessment and international testing. In particular, the authors argue that the international acceptance of testing comes from key ideological forces in the world polity that are associated with the accelerating…

  12. Effectiveness of UK and International A-Level Assessment in Predicting Performance in Engineering

    ERIC Educational Resources Information Center

    Birch, David M.; Rienties, Bart

    2014-01-01

    In many universities, admissions decisions are made based upon the advanced-level (A-Level) results. The purpose of this study was to assess the value of A-level and international equivalents as a predictor of early achievement in higher education. About 135 UK and 92 international undergraduate engineering students from 35 countries were assessed…

  13. Contracting Processes, Internal Controls, and Procurement Fraud: A Knowledge Assessment (Briefing Charts)

    DTIC Science & Technology

    2015-05-01

    Contracting Processes, Internal Controls, and Procurement Fraud: A Knowledge Assessment Juanita M. Rendon Rene G. Rendon Report... Knowledge Assessment 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d. PROJECT NUMBER 5e. TASK NUMBER 5f. WORK UNIT...fraud • Knowledge of the procurement process and internal controls and their relationship to fraud vulnerabilities are critical 5

  14. Organ dose assessment in pediatric fluoroscopy and CT via a tomographic computational phantom of the newborn patient

    NASA Astrophysics Data System (ADS)

    Staton, Robert J.

    Of the various types of imaging modalities used in pediatric radiology, fluoroscopy and computed tomography (CT) have the highest associated radiation dose. While these examinations are commonly used for pediatric patients, little data exists on the magnitude of the organ and effective dose values for these procedures. Calculation of these dose values is necessary because of children's increased sensitivity to radiation and their long life expectancy for which to express radiation's latent effects. In this study, a newborn tomographic phantom has been implemented in a radiation transport code to evaluate organ and effective doses for newborn patients in commonly performed fluoroscopy and CT examinations. Organ doses were evaluated for voiding cystourethrogram (VCUG) fluoroscopy studies of infant patients. Time-sequence analysis was performed for videotaped VCUG studies of five different patients. Organ dose values were then estimated for each patient through Monte Carlo (MC) simulations. The effective dose values of the VCUG examination for five patients ranged from 0.6 mSv to 3.2 mSv, with a mean of 1.8 +/- 0.9 mSv. Organ doses were also assessed for infant upper gastrointestinal (UGI) fluoroscopy exams. The effective dose values of the UGI examinations for five patients ranged from 1.05 mSv to 5.92 mSv, with a mean of 2.90 +/- 1.97 mSv. MC simulations of helical multislice CT (MSCT) exams were also completed using, the newborn tomographic phantom and a stylized newborn phantom. The helical path of the source, beam shaping filter, beam profile, patient table, were all included in the MC simulations of the helical MSCT scanner. Organ doses and effective doses and their dependence on scan parameters were evaluated for newborn patients. For all CT scans, the effective dose was found to range approximately 1-13 mSv, with the largest values occurring for CAP scans. Tube current modulation strategies to reduce patient dose were also evaluated for newborn patients

  15. International Microgrid Assessment. Governance, INcentives, and Experience (IMAGINE)

    SciTech Connect

    Marnay, Chris; Zhou, Nan; Qu, Min; Romankiewicz, John

    2012-06-01

    Microgrids can provide an avenue for increasing the amount of distributed generation and delivery of electricity, where control is more dispersed and quality of service is locally tailored to end-use requirements. Much of this functionality is very different from the predominant utility model to date of centralized power production which is then transmitted and distributed across long distances with a uniform quality of service. This different functionality holds much promise for positive change, in terms of increasing reliability, energy efficiency, and renewable energy while decreasing and carbon emissions. All of these functions should provide direct cost savings for customers and utilities as well as positive externalities for society. As we have seen from the international experience, allowing microgrids to function in parallel with the grid requires some changes in electricity governance and incentives to capture cost savings and actively price in positive externalities. If China can manage to implement these governance changes and create those incentive policies, it will go beyond the establishment of a successful microgrid demonstration program and become an international leader in microgrid deployment.

  16. First international comparison of primary absorbed dose to water standards in the medium-energy X-ray range

    NASA Astrophysics Data System (ADS)

    Büermann, Ludwig; Guerra, Antonio Stefano; Pimpinella, Maria; Pinto, Massimo; de Pooter, Jacco; de Prez, Leon; Jansen, Bartel; Denoziere, Marc; Rapp, Benjamin

    2016-01-01

    This report presents the results of the first international comparison of primary measurement standards of absorbed dose to water for the medium-energy X-ray range. Three of the participants (VSL, PTB, LNE-LNHB) used their existing water calorimeter based standards and one participant (ENEA) recently developed a new standard based on a water-graphite calorimeter. The participants calibrated three transfer chambers of the same type in terms of absorbed dose to water (NDw) and in addition in terms of air kerma (NK) using the CCRI radiation qualities in the range 100 kV to 250 kV. The additional NK values were intended to be used for a physical analysis of the ratios NDw/NK. All participants had previously participated in the BIPM.RI(I)-K3 key comparison of air kerma standards. Ratios of pairs of NMI's NK results of the current comparison were found to be consistent with the corresponding key comparison results within the expanded uncertainties of 0.6 % - 1 %. The NDw results were analysed in terms of the degrees of equivalence with the comparison reference values which were calculated for each beam quality as the weighted means of all results. The participant's results were consistent with the reference value within the expanded uncertainties. However, these expanded uncertainties varied significantly and ranged between about 1-1.8 % for the water calorimeter based standards and were estimated at 3.7 % for the water-graphite calorimeter. It was shown previously that the ratios NDw/NK for the type of ionization chamber used as transfer chamber in this comparison were very close (within less than 1 %) to the calculated values of (bar muen/ρ)w,ad, the mean values of the water-to-air ratio of the mass-energy-absorption coefficients at the depth d in water. Some of the participant's results deviated significantly from the expected behavior. Main text To reach the main text of this paper, click on Final Report. Note that this text is that which appears in Appendix B of

  17. Assessing Students' Learning of Internal Controls: Closing the Loop

    ERIC Educational Resources Information Center

    Amer, T. S.; Mohrweis, Lawrence C.

    2009-01-01

    This study describes the multifaceted components of an assessment process. The paper explains a novel approach in which an advisory council participated in a "fun," hands-on activity to rank-order learning outcomes. The top ranked learning competency, as identified by the advisory council, was the need for students to gain a better…

  18. LIFE CYCLE IMPACT ASSESSMENT AN INTRODUCTION AND INTERNATIONAL UPDATE

    EPA Science Inventory

    Research within the field of Life Cycle Impact Assessment (LCIA) has greatly improved since the work of Heijungs and Guinee in 1992. Within the UNEP / SETAC Life Cycle Initiative an effort is underway to provide recommendations about the direction of research and selection of LC...

  19. Assessment of Administrative Interns: A Problem for Philosophy.

    ERIC Educational Resources Information Center

    Karst, Ralph R.

    This paper focuses on the philosophical implications of assessment methodologies by describing problems that occurred during internship programs for school administrators in Louisiana. A state conference internship's guidelines lacked a formalized learning contract for participants. At the time, more teachers sought access to administrative…

  20. Assessment of patient dose reduction by bismuth shielding in CT using measurements, GEANT4 and MCNPX simulations.

    PubMed

    Mendes, M; Costa, F; Figueira, C; Madeira, P; Teles, P; Vaz, P

    2015-07-01

    This work reports on the use of two different Monte Carlo codes (GEANT4 and MCNPX) for assessing the dose reduction using bismuth shields in computer tomography (CT) procedures in order to protect radiosensitive organs such as eye lens, thyroid and breast. Measurements were performed using head and body PMMA phantoms and an ionisation chamber placed in five different positions of the phantom. Simulations were performed to estimate Computed Tomography Dose Index values using GEANT4 and MCNPX. The relative differences between measurements and simulations were <10 %. The dose reduction arising from the use of bismuth shielding ranges from 2 to 45 %, depending on the position of the bismuth shield. The percentage of dose reduction was more significant for the area covered by the bismuth shielding (36 % for eye lens, 39 % for thyroid and 45 % for breast shields).

  1. [Perspective of predictive toxicity assessment of in vivo repeated dose toxicity using structural activity relationship].

    PubMed

    Ono, Atsushi

    2010-01-01

    Tens of thousands of existing chemicals have been widely used for manufacture, agriculture, household and other purposes in worldwide. Only approximately 10% of chemicals have been assessed for human health hazard. The health hazard assessment of residual large number of chemicals for which little or no information of their toxicity is available is urgently needed for public health. However, the conduct of traditional toxicity tests which involves using animals for all of these chemicals would be economically impractical and ethically unacceptable. (Quantitative) Structure-Activity Relationships [(Q)SARs] are expected as method to have the potential to estimate hazards of chemicals from their structure, while reducing time, cost and animal testing currently needed. Therefore, our studies have been focused on evaluation of available (Q)SAR systems for estimating in vivo repeated toxicity on the liver. The results from our preliminary analysis showed the distribution for LogP of the chemicals which have potential to induce liver toxicity was bell-shape and indicating the possibility to estimate liver toxicity of chemicals from their physicochemical property. We have developed (Q)SAR models to in vivo liver toxicity using three commercially available systems (DEREK, ADMEWorks and MultiCASE) as well as combinatorial use of publically available chemoinformatic tools (CDK, MOSS and WEKA). Distinct data-sets of the 28-day repeated dose toxicity test of new and existing chemicals evaluated in Japan were used for model development and performance test. The results that concordances of commercial systems and public tools were almost same which below 70% may suggest currently attainable knowledge of in silico estimation of complex biological process, though it possible to obtain complementary and enhanced performance by combining predictions from different programs. In future, the combinatorial application of in silico and in vitro tests might provide more accurate

  2. ACUTE AND CHRONIC INTAKES OF FALLOUT RADIONUCLIDES BY MARSHALLESE FROM NUCLEAR WEAPONS TESTING AT BIKINI AND ENEWETAK AND RELATED INTERNAL RADIATION DOSES

    PubMed Central

    Simon, Steven L.; Bouville, André; Melo, Dunstana; Beck, Harold L.; Weinstock, Robert M.

    2014-01-01

    Annual internal radiation doses resulting from both acute and chronic intakes of all important dose-contributing radionuclides occurring in fallout from nuclear weapons testing at Bikini and Enewetak from 1946 through 1958 have been estimated for the residents living on all atolls and separate reef islands of the Marshall Islands. Internal radiation absorbed doses to the tissues most at risk to cancer induction (red bone marrow, thyroid, stomach, and colon) have been estimated for representative persons of all population communities for all birth years from 1929 through 1968, and for all years of exposure from 1948 through 1970. The acute intake estimates rely on a model using, as its basis, historical urine bioassay data, for members of the Rongelap Island and Ailinginae communities as well as for Rongerik residents. The model also utilizes fallout times of arrival and radionuclide deposition densities estimated for all tests and all atolls. Acute intakes of 63 radionuclides were estimated for the populations of the 20 inhabited atolls and for the communities that were relocated during the testing years for reasons of safety and decontamination. The model used for chronic intake estimates is based on reported whole-body, urine, and blood counting data for residents of Utrik and Rongelap. Dose conversion coefficients relating intake to organ absorbed dose were developed using internationally accepted models but specifically tailored for intakes of particulate fallout by consideration of literature-based evidence to choose the most appropriate alimentary tract absorption fraction (f1) values. Dose estimates were much higher for the thyroid gland than for red marrow, stomach wall, or colon. The highest thyroid doses to adults were about 7,600 mGy for the people exposed on Rongelap; thyroid doses to adults were much lower, by a factor of 100 or more, for the people exposed on the populated atolls of Kwajalein and Majuro. The estimates of radionuclide intake and

  3. Acute and chronic intakes of fallout radionuclides by Marshallese from nuclear weapons testing at Bikini and Enewetak and related internal radiation doses.

    PubMed

    Simon, Steven L; Bouville, André; Melo, Dunstana; Beck, Harold L; Weinstock, Robert M

    2010-08-01

    Annual internal radiation doses resulting from both acute and chronic intakes of all important dose-contributing radionuclides occurring in fallout from nuclear weapons testing at Bikini and Enewetak from 1946 through 1958 have been estimated for the residents living on all atolls and separate reef islands of the Marshall Islands. Internal radiation absorbed doses to the tissues most at risk to cancer induction (red bone marrow, thyroid, stomach, and colon) have been estimated for representative persons of all population communities for all birth years from 1929 through 1968, and for all years of exposure from 1948 through 1970. The acute intake estimates rely on a model using, as its basis, historical urine bioassay data, for members of the Rongelap Island and Ailinginae communities as well as for Rongerik residents. The model also utilizes fallout times of arrival and radionuclide deposition densities estimated for all tests and all atolls. Acute intakes of 63 radionuclides were estimated for the populations of the 20 inhabited atolls and for the communities that were relocated during the testing years for reasons of safety and decontamination. The model used for chronic intake estimates is based on reported whole-body, urine, and blood counting data for residents of Utrik and Rongelap. Dose conversion coefficients relating intake to organ absorbed dose were developed using internationally accepted models but specifically tailored for intakes of particulate fallout by consideration of literature-based evidence to choose the most appropriate alimentary tract absorption fraction (f1) values. Dose estimates were much higher for the thyroid gland than for red marrow, stomach wall, or colon. The highest thyroid doses to adults were about 7,600 mGy for the people exposed on Rongelap; thyroid doses to adults were much lower, by a factor of 100 or more, for the people exposed on the populated atolls of Kwajalein and Majuro. The estimates of radionuclide intake and

  4. RODES software for dose assessment of rats and mice contaminated with radionuclides.

    PubMed

    Locatelli, Maxime; Miloudi, Hanane; Autret, Gwennhael; Balvay, Daniel; Desbrée, Aurélie; Blanchardon, Eric; Bertho, Jean-Marc

    2017-03-20

    In order to support animal experiments of chronic radionuclides intake with realistic dosimetry, voxel-based three-dimensional computer models of mice and rats of both sexes and three ages were built from magnetic resonance imaging. Radiation transport of mono-energetic photons of 11 energies and electrons of 7 energies was simulated with MCNPX 2.6c to assess specific absorbed fractions (SAFs) of energy emitted from 13 source regions and absorbed in 28 target regions. RODES software was developed to combine SAF with radiation emission spectra and user-supplied biokinetic data to calculate organ absorbed doses per nuclear transformation of radionuclides in source regions (S-factors) and for specific animal experiments with radionuclides. This article presents the design of RODES software including the simulation of the particles in the created rodent voxel phantoms. SAF and S-factor values were compared favourably with published results from similar studies. The results are discussed for rodents of different ages and sexes.

  5. Dose Assessment and Considerations When a Radioactive Seed is Unrecoverable in a Breast Surgical Patient.

    PubMed

    Harvey, Richard P

    2016-11-01

    Excision of non-palpable breast tumors in cancer patients has been routinely performed using surgical clips and wires placed under mammographic or ultrasound guidance. An alternative method exists for performing these surgeries without surgical wires and this approach has become more widely used at Oncology Centers in the United States. Roswell Park Cancer Institute (RPCI) performs many of their breast surgeries with radioactive seeds and has enjoyed favorable outcomes along with an enhanced patient experience. There are some inherent difficulties with using radioactive seeds, and seed tracking can be a problem during surgical procedures. When a seed is misplaced, an extensive search is conducted in an effort to locate the misplaced seed. Every attempt to recover these radioactive seeds should be made unless patient safety is jeopardized. If the seed is unrecoverable, then a dose assessment must be performed and corrective action determined. It is important to have adequate policies and procedures in place to prevent these rare occurrences. They should be treated as a radioactive medical event.

  6. Post-Remediation Radiological Dose Assessment, Linde Site, Tonawanda, New York

    SciTech Connect

    Kamboj, Sunita; Durham, Lisa A.

    2014-06-01

    A post-remediation radiological dose assessment was conducted for the Formerly Utilized Sites Remedial Action Program (FUSRAP) Linde Site by using the measured residual concentrations of the radionuclides of concern following the completion of the soils remedial action. The site’s FUSRAP-related contaminants of concern (COCs) are radionuclides associated with uranium processing activities conducted by the Manhattan Engineer District (MED) in support of the Nation’s early atomic energy and weapons program and include radium-226 (Ra-226), thorium-230 (Th-230), and total uranium (Utotal). Remedial actions to address Linde Site soils and structures were conducted in accordance with the Record of Decision for the Linde Site, Tonawanda, New York (ROD) (USACE 2000a). In the ROD, the U.S. Army Corps of Engineers (USACE) determined that the cleanup standards found in Title 40, Part 192 of the Code of Federal Regulations (40 CFR Part 192), the standards for cleanup of uranium mill sites designated under the Uranium Mill Tailings Radiation Control Act (UMTRCA), and the Nuclear Regulatory Commission (NRC) standards for decommissioning of licensed uranium and thorium mills, found in 10 CFR Part 40, Appendix A, Criterion 6(6), are Applicable or Relevant and Appropriate Requirements (ARARs) for cleanup of MED-related contamination at the Linde Site. The major elements of this remedy will involve excavation of the soils with COCs above soil cleanup levels and placement of clean materials to meet the other criteria of 40 CFR Part 192.

  7. Evaluation of backscatter dose from internal lead shielding in clinical electron beams using EGSnrc Monte Carlo simulations.

    PubMed

    De Vries, Rowen J; Marsh, Steven

    2015-11-08

    Internal lead shielding is utilized during superficial electron beam treatments of the head and neck, such as lip carcinoma. Methods for predicting backscattered dose include the use of empirical equations or performing physical measurements. The accuracy of these empirical equations required verification for the local electron beams. In this study, a Monte Carlo model of a Siemens Artiste linac was developed for 6, 9, 12, and 15 MeV electron beams using the EGSnrc MC package. The model was verified against physical measurements to an accuracy of better than 2% and 2mm. Multiple MC simulations of lead interfaces at different depths, corresponding to mean electron energies in the range of 0.2-14 MeV at the interfaces, were performed to calculate electron backscatter values. The simulated electron backscatter was compared with current empirical equations to ascertain their accuracy. The major finding was that the current set of backscatter equations does not accurately predict electron backscatter, particularly in the lower energies region. A new equation was derived which enables estimation of electron backscatter factor at any depth upstream from the interface for the local treatment machines. The derived equation agreed to within 1.5% of the MC simulated electron backscatter at the lead interface and upstream positions. Verification of the equation was performed by comparing to measurements of the electron backscatter factor using Gafchromic EBT2 film. These results show a mean value of 0.997 ± 0.022 to 1σ of the predicted values of electron backscatter. The new empirical equation presented can accurately estimate electron backscatter factor from lead shielding in the range of 0.2 to 14 MeV for the local linacs.

  8. Evaluation of backscatter dose from internal lead shielding in clinical electron beams using EGSnrc Monte Carlo simulations.

    PubMed

    de Vries, Rowen J; Marsh, Steven

    2015-11-01

    Internal lead shielding is utilized during superficial electron beam treatments of the head and neck, such as lip carcinoma. Methods for predicting backscattered dose include the use of empirical equations or performing physical measurements. The accuracy of these empirical equations required verification for the local electron beams. In this study, a Monte Carlo model of a Siemens Artiste linac was developed for 6, 9, 12, and 15 MeV electron beams using the EGSnrc MC package. The model was verified against physical measurements to an accuracy of better than 2% and 2 mm. Multiple MC simulations of lead interfaces at different depths, corresponding to mean electron energies in the range of 0.2-14 MeV at the interfaces, were performed to calculate electron backscatter values. The simulated electron backscatter was compared with current empirical equations to ascertain their accuracy. The major finding was that the current set of backscatter equations does not accurately predict electron backscatter, particularly in the lower energies region. A new equation was derived which enables estimation of electron backscatter factor at any depth upstream from the interface for the local treatment machines. The derived equation agreed to within 1.5% of the MC simulated electron backscatter at the lead interface and upstream positions. Verification of the equation was performed by comparing to measurements of the electron backscatter factor using Gafchromic EBT2 film. These results show a mean value of 0.997±0.022 to 1σ of the predicted values of electron backscatter. The new empirical equation presented can accurately estimate electron backscatter factor from lead shielding in the range of 0.2 to 14 MeV for the local linacs. PACS numbers: 87.53.Bn, 87.55.K-, 87.56.bd.

  9. A Technical Approach to Expedited Processing of NTPR Radiation Dose Assessments

    DTIC Science & Technology

    2011-10-01

    18 2.5.3 Variations in Screening Dose Values ......................................................18 2.5.4...development of the currently used processes for expediting RDAs. The variation of PC with dose, age of the individual at exposure and the time between...those cancers are established and are not part of the scope of this report. 2.5.3 Variations in Screening Dose Values The risk of cancer to

  10. Experimental assessment of gold nanoparticle-mediated dose enhancement in radiation therapy beams using electron spin resonance dosimetry

    NASA Astrophysics Data System (ADS)

    Wolfe, T.; Guidelli, E. J.; Gómez, J. A.; Baffa, O.; Nicolucci, P.

    2015-06-01

    In this work, we aim to experimentally assess increments of dose due to nanoparticle-radiation interactions via electron spin resonance (ESR) dosimetry performed with a biological-equivalent sensitive material. We employed 2-Methyl-Alanine (2MA) in powder form to compose the radiation sensitive medium embedding gold nanoparticles (AuNPs) 5 nm in diameter. Dosimeters manufactured with 0.1% w/w of AuNPs or no nanoparticles were irradiated with clinically utilized 250 kVp orthovoltage or 6 MV linac x-rays in dosimetric conditions. Amplitude peak-to-peak (App) at the central ESR spectral line was used for dosimetry. Dose-response curves were obtained for samples with or without nanoparticles and each energy beam. Dose increments due to nanoparticles were analyzed in terms of absolute dose enhancements (DEs), calculated as App ratios for each dose/beam condition, or relative dose enhancement factors (DEFs) calculated as the slopes of the dose-response curves. Dose enhancements were observed to present an amplified behavior for small doses (between 0.1-0.5 Gy), with this effect being more prominent with the kV beam. For doses between 0.5-5 Gy, dose-independent trends were observed for both beams, stable around (2.1   ±   0.7) and (1.3   ±   0.4) for kV and MV beams, respectively. We found DEFs of (1.62   ±   0.04) or (1.27   ±   0.03) for the same beams. Additionally, we measured no interference between AuNPs and the ESR apparatus, including the excitation microwaves, the magnetic fields and the paramagnetic radicals. 2MA was demonstrated to be a feasible paramagnetic radiation-sensitive material for dosimetry in the presence of AuNPs, and ESR dosimetry a powerful experimental method for further verifications of increments in nanoparticle-mediated doses of biological interest. Ultimately, gold nanoparticles can cause significant and detectable dose enhancements in biological-like samples irradiated at both

  11. ASSESSING CHILDREN'S EXPOSURES TO PESTICIDES: AN IMPORTANT APPLICATION OF THE STOCHASTIC HUMAN EXPOSURE AND DOSE SIMULATION MODEL (SHEDS)

    EPA Science Inventory

    Accurately quantifying human exposures and doses of various populations to environmental pollutants is critical for the Agency to assess and manage human health risks. For example, the Food Quality Protection Act of 1996 (FQPA) requires EPA to consider aggregate human exposure ...

  12. Avoiding Pitfalls in the Use of the Benchmark Dose Approach to Chemical Risk Assessments; Some Illustrative Case Studies (Presentation)

    EPA Science Inventory

    The USEPA's benchmark dose software (BMDS) version 1.2 has been available over the Internet since April, 2000 (epa.gov/ncea/bmds.htm), and has already been used in risk assessments of some significant environmental pollutants (e.g., diesel exhaust, dichloropropene, hexachlorocycl...

  13. Progress in Assessing Air Pollutant Risks from In Vitro Exposures: Matching Ozone Dose and Effect in Human Air Way Cells

    EPA Science Inventory

    In vitro exposures to air pollutants could, in theory, facilitate a rapid and detailed assessment of molecular mechanisms of toxicity. However, it is difficult to ensure that the dose of a gaseous pollutant to cells in tissue culture is similar to that of the same cells during in...

  14. Nonmonotonic Dose Responses as They Apply to Estrogen, Androgen, and Thyroid Pathways and EPA Testing and Assessment Procedures

    EPA Pesticide Factsheets

    A state of the science document providing a judgment on the degree to which nonmonotonic dose-responses are evidenced in the scientific literature and to evaluate the extent to which they may impact U.S. EPA’s chemical testing and risk assessment.

  15. Agreement between quantitative microbial risk assessment and epidemiology at low doses during waterborne outbreaks of protozoan disease

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Quantitative microbial risk assessment (QMRA) is a valuable complement to epidemiology for understanding the health impacts of waterborne pathogens. The approach works by extrapolating available data in two ways. First, dose-response data are typically extrapolated from feeding studies, which use ...

  16. Radiation transport modeling and assessment to better predict radiation exposure, dose, and toxicological effects to human organs on long duration space flights

    NASA Technical Reports Server (NTRS)

    Denkins, P.; Badhwar, G.; Obot, V.; Wilson, B.; Jejelewo, O.

    2001-01-01

    NASA is very interested in improving its ability to monitor and forecast the radiation levels that pose a health risk to space-walking astronauts as they construct the International Space Station and astronauts that will participate in long-term and deep-space missions. Human exploratory missions to the moon and Mars within the next quarter century, will expose crews to transient radiation from solar particle events which include high-energy galactic cosmic rays and high-energy protons. Because the radiation levels in space are high and solar activity is presently unpredictable, adequate shielding is needed to minimize the deleterious health effects of exposure to radiation. Today, numerous models have been developed and used to predict radiation exposure. Such a model is the Space Environment Information Systems (SPENVIS) modeling program, developed by the Belgian Institute for Space Aeronautics. SPENVIS, which has been assessed to be an excellent tool in characterizing the radiation environment for microelectronics and investigating orbital debris, is being evaluated for its usefulness with determining the dose and dose-equivalent for human exposure. Thus far. the calculations for dose-depth relations under varying shielding conditions have been in agreement with calculations done using HZETRN and PDOSE, which are well-known and widely used models for characterizing the environments for human exploratory missions. There is disagreement when assessing the impact of secondary radiation particles since SPENVIS does a crude estimation of the secondary radiation particles when calculating LET versus Flux. SPENVIS was used to model dose-depth relations for the blood-forming organs. Radiation sickness and cancer are life-threatening consequences resulting from radiation exposure. In space. exposure to radiation generally includes all of the critical organs. Biological and toxicological impacts have been included for discussion along with alternative risk mitigation

  17. Radiation transport modeling and assessment to better predict radiation exposure, dose, and toxicological effects to human organs on long duration space flights.

    PubMed

    Denkins, P; Badhwar, G; Obot, V; Wilson, B; Jejelewo, O

    2001-01-01

    NASA is very interested in improving its ability to monitor and forecast the radiation levels that pose a health risk to space-walking astronauts as they construct the International Space Station and astronauts that will participate in long-term and deep-space missions. Human exploratory missions to the moon and Mars within the next quarter century, will expose crews to transient radiation from solar particle events which include high-energy galactic cosmic rays and high-energy protons. Because the radiation levels in space are high and solar activity is presently unpredictable, adequate shielding is needed to minimize the deleterious health effects of exposure to radiation. Today, numerous models have been developed and used to predict radiation exposure. Such a model is the Space Environment Information Systems (SPENVIS) modeling program, developed by the Belgian Institute for Space Aeronautics. SPENVIS, which has been assessed to be an excellent tool in characterizing the radiation environment for microelectronics and investigating orbital debris, is being evaluated for its usefulness with determining the dose and dose-equivalent for human exposure. Thus far. the calculations for dose-depth relations under varying shielding conditions have been in agreement with calculations done using HZETRN and PDOSE, which are well-known and widely used models for characterizing the environments for human exploratory missions. There is disagreement when assessing the impact of secondary radiation particles since SPENVIS does a crude estimation of the secondary radiation particles when calculating LET versus Flux. SPENVIS was used to model dose-depth relations for the blood-forming organs. Radiation sickness and cancer are life-threatening consequences resulting from radiation exposure. In space. exposure to radiation generally includes all of the critical organs. Biological and toxicological impacts have been included for discussion along with alternative risk mitigation

  18. Solubility of uranium and thorium from a healing earth in synthetic gut fluids: a case study for use in dose assessments.

    PubMed

    Höllriegl, Vera; Li, Wei Bo; Leopold, Karsten; Gerstmann, Udo; Oeh, Uwe

    2010-11-01

    The aim of this case study was to estimate the bioaccessibility of uranium ((238)U) and thorium ((232)Th) from a healing earth by analysing the solubility of these radionuclides in synthetic gastric and intestinal fluids. An easy applicable in vitro test system was used to investigate the fractional mobilization of the soil contaminants being potentially available for absorption under human in vivo conditions. These findings provided the basis for a prospective dose assessment. The solubility experiments were performed using two different in vitro digestion methods. The concentrations of (238)U and (232)Th in the solutions extracted from the soil were measured by inductively coupled plasma mass spectrometry (ICP-MS). The dissolved fractions in the synthetic gastrointestinal fluid ranged in average from 10.3% to 13.8% for (238)U and from 0.3% to 1.6% for (232)Th, respectively, depending on the digestion method. Subsequently, the committed effective doses from intake of (238)U and (232)Th after ingestion of the healing earth during 1 year were evaluated for adult persons. Thereby ingestion dose coefficients calculated as a function of bioaccessibility were used. The dose assessments ranged between 4.3 × 10(-7)-1.9 × 10(-6) Sv y(-1) for (238)U and 5.6 × 10(-7)-3.3 × 10(-6) Sv y(-1) for (232)Th, respectively. On the basis of the assumptions and estimations made, the present work indicates a relatively low radiation risk due to (238)U and (232)Th after internal exposure of the healing earth.

  19. Mayak Worker Dosimetry System (MWDS-2013): Phase I-Quality Assurance of Organ Doses and Excretion Rates From Internal Exposures of Plutonium-239 for the Mayak Worker Cohort.

    PubMed

    Dorrian, M-D; Birchall, A; Vostrotin, V

    2016-06-20

    The calculation of reliable and realistic doses for use in epidemiological studies for the quantification of risk from internal exposure to radioactive material is fundamental to the development of advice, guidance and regulations for the control and use of radioactive material. Thus, any programme of work carried out which requires the calculation of doses for use by epidemiologists ideally should contain a rigorous program of quality assurance (QA). This paper describes the initial QA (Phase I) implemented by Public Health England (PHE) and the Southern Urals Biophysics Institute (SUBI) as part of the work programme on internal dosimetry in the Joint Coordinating Committee for Radiation Effects Research Project 2.4 for the 2013 Mayak Worker Dosimetry System. SUBI designed and implemented new software (PANDORA) to include the latest Mayak Worker Dosimetry System and to calculate organ burdens, urinary excretion rates, intakes and absorbed doses, while PHE modified their commercially available IMBA Professional Plus software package. Comparisons of output from the two codes for the Mayak Worker Dosimetry System 2013 showed calculated values of absorbed doses, intakes, organ burdens and urinary excretion agreed to within 1%. The 1% discrepancy can be explained by the approximation used in IMBA to speed up dose calculations.

  20. Landscape modeling for dose calculations in the safety assessment of a repository for spent nuclear fuel

    SciTech Connect

    Lindborg, Tobias; Kautsky, Ulrik; Brydsten, Lars

    2007-07-01

    The Swedish Nuclear Fuel and Waste Management Co.,(SKB), pursues site investigations for the final repository for spent nuclear fuel at two sites in the south eastern part of Sweden, the Forsmark- and the Laxemar site. Data from the two site investigations are used to build site descriptive models of the areas. These models describe the bedrock and surface system properties important for designing the repository, the environmental impact assessment, and the long-term safety, i.e. up to 100,000 years, in a safety assessment. In this paper we discuss the methodology, and the interim results for, the landscape model, used in the safety assessment to populate the Forsmark site in the numerical dose models. The landscape model is built upon ecosystem types, e.g. a lake or a mire, (Biosphere Objects) that are connected in the landscape via surface hydrology. Each of the objects have a unique set of properties derived from the site description. The objects are identified by flow transport modeling, giving discharge points at the surface for all possible flow paths from the hypothetical repository in the bedrock. The landscape development is followed through time by using long-term processes e.g. shoreline displacement and sedimentation. The final landscape model consists of a number of maps for each chosen time period and a table of properties that describe the individual objects which constitutes the landscape. The results show a landscape that change over time during 20,000 years. The time period used in the model equals the present interglacial and can be used as an analogue for a future interglacial. Historically, the model area was covered by sea, and then gradually changes into a coastal area and, in the future, into a terrestrial inland landscape. Different ecosystem types are present during the lands