Science.gov

Sample records for internal dose assessment

  1. A real-time internal dose assessment exercise.

    PubMed

    Bingham, Derek; Bull, Richard K

    2013-01-01

    A real-time internal dose assessment exercise has been conducted in which participants were required to make decisions about sampling requirements, seek relevant information about the 'incident' and make various interim dose assessments. At the end of the exercise, each participant was requested to make a formal assessment, providing statements of the methods, models and assumptions used in that assessment. In this paper we describe how the hypothetical assessment case was set up and the exercise was conducted, the responses of the participants and the assessments of dose that they made. Finally we discuss the lessons learnt from the exercise and suggest how the exercise may be adapted to a wider range of participants.

  2. Guidance on internal dose assessments from monitoring data (project IDEAS).

    PubMed

    Doerfel, H; Andrasi, A; Bailey, M; Berkovski, V; Castellani, C M; Hurtgen, C; Jourdain, J R; LeGuen, B

    2003-01-01

    Several international inter-comparison exercises on intake and internal dose assessments from monitoring data led to the conclusion that the results calculated by different participants varied significantly, mainly due to the broad variety of methods and assumptions applied in the assessment procedure. Based on these experiences, the need of harmonisation of the procedures has been formulated as an EU research project under the 5th Framework Programme, with the aim of developing general guidelines for standardising assessments of intakes and internal doses. In the IDEAS project, eight institutions from seven European countries are participating, also using inputs from internal dosimetry professionals from across Europe to ensure broad consensus in the outcome of the project. To ensure that the guidelines are applicable to a wide range of practical situations, the first step will be to compile a database on well documented cases of internal contamination. In parallel, an improved version of existing software will be developed and distributed to the partners for further use. Many cases from the database will be evaluated independently by more partners using the same software and the results will be discussed and the draft guidelines prepared. The guidelines will then be revised and refined on the basis of the experiences and discussions of two workshops, and an intercomparison exercise organised in the frame of the project which will be open to all internal dosimetry professionals.

  3. Assessment and interpretation of internal doses: uncertainty and variability.

    PubMed

    Paquet, F; Bailey, M R; Leggett, R W; Harrison, J D

    2016-06-01

    Internal doses are calculated on the basis of knowledge of intakes and/or measurements of activity in bioassay samples, typically using reference biokinetic and dosimetric models recommended by the International Commission on Radiological Protection (ICRP). These models describe the behaviour of the radionuclides after ingestion, inhalation, and absorption to the blood, and the absorption of the energy resulting from their nuclear transformations. They are intended to be used mainly for the purpose of radiological protection: that is, optimisation and demonstration of compliance with dose limits. These models and parameter values are fixed by convention and are not subject to uncertainty. Over the past few years, ICRP has devoted a considerable amount of effort to the revision and improvement of models to make them more physiologically realistic. ICRP models are now sufficiently sophisticated for calculating organ and tissue absorbed doses for scientific purposes, and in many other areas, including toxicology, pharmacology and medicine. In these specific cases, uncertainties in parameters and variability between individuals need to be taken into account.

  4. A structured approach for the assessment of internal dose: the IDEAS guidelines.

    PubMed

    Doerfel, H; Andrasi, A; Bailey, M; Berkovski, V; Blanchardon, E; Castellani, C-M; Cruz-Suarez, R; Hurtgen, C; LeGuen, B; Malatova, I; Marsh, J; Stather, J; Zeger, J

    2007-01-01

    The need for harmonisation of the procedures for internal dose assessment has been recognised within an EU research project under the 5th Framework Programme. The aim of the IDEAS project was to develop general guidelines for standardising assessments of intakes and internal doses. It started in October 2001 and ended in June 2005. The project is closely related to some goals of the work of Committee 2 of the International Commission on Radiological Protection and since 2003 there has been close co-operation between the two groups. The general philosophy of the guidelines is focusing on the principles of harmonisation, accuracy and proportionality. The proposed system of 'level of task' to structure the approach of internal dose evaluation is also reported. Some details of the internal structure of the guidelines for the different pathways of intake are provided.

  5. SECOND LATIN AMERICAN INTERCOMPARISON ON INTERNAL DOSE ASSESSMENT.

    PubMed

    Rojo, A; Puerta, N; Gossio, S; Gómez Parada, I; Cruz Suarez, R; López, E; Medina, C; Lastra Boylan, J; Pinheiro Ramos, M; Mora Ramírez, E; Alves Dos Reis, A; Yánez, H; Rubio, J; Vironneau Janicek, L; Somarriba Vanegas, F; Puerta Ortiz, J; Salas Ramírez, M; López Bejerano, G; da Silva, T; Miri Oliveira, C; Terán, M; Alfaro, M; García, T; Angeles, A; Duré Romero, E; Farias de Lima, F

    2016-09-01

    Internal dosimetry intercomparisons are essential for the verification of applied models and the consistency of results'. To that aim, the First Regional Intercomparison was organised in 2005, and that results led to the Second Regional Intercomparison Exercise in 2013, which was organised in the frame of the RLA 9/066 and coordinated by Autoridad Regulatoria Nuclear of Argentina. Four simulated cases covering intakes of (131)I, (137)Cs and Tritium were proposed. Ninteen centres from thirteen different countries participated in this exercise. This paper analyses the participants' results in this second exercise in order to test their skills and acquired knowledge, particularly in the application of the IDEAS Guidelines. It is important to highlight the increased number of countries that participated in this exercise compared with the first one and, furthermore, the improvement in the overall performance. The impact of the International Atomic Energy Agency (IAEA) Projects since 2003 has led to a significant enhancement of internal dosimetry capabilities that strengthen the radiation protection of workers.

  6. SECOND LATIN AMERICAN INTERCOMPARISON ON INTERNAL DOSE ASSESSMENT.

    PubMed

    Rojo, A; Puerta, N; Gossio, S; Gómez Parada, I; Cruz Suarez, R; López, E; Medina, C; Lastra Boylan, J; Pinheiro Ramos, M; Mora Ramírez, E; Alves Dos Reis, A; Yánez, H; Rubio, J; Vironneau Janicek, L; Somarriba Vanegas, F; Puerta Ortiz, J; Salas Ramírez, M; López Bejerano, G; da Silva, T; Miri Oliveira, C; Terán, M; Alfaro, M; García, T; Angeles, A; Duré Romero, E; Farias de Lima, F

    2016-09-01

    Internal dosimetry intercomparisons are essential for the verification of applied models and the consistency of results'. To that aim, the First Regional Intercomparison was organised in 2005, and that results led to the Second Regional Intercomparison Exercise in 2013, which was organised in the frame of the RLA 9/066 and coordinated by Autoridad Regulatoria Nuclear of Argentina. Four simulated cases covering intakes of (131)I, (137)Cs and Tritium were proposed. Ninteen centres from thirteen different countries participated in this exercise. This paper analyses the participants' results in this second exercise in order to test their skills and acquired knowledge, particularly in the application of the IDEAS Guidelines. It is important to highlight the increased number of countries that participated in this exercise compared with the first one and, furthermore, the improvement in the overall performance. The impact of the International Atomic Energy Agency (IAEA) Projects since 2003 has led to a significant enhancement of internal dosimetry capabilities that strengthen the radiation protection of workers. PMID:26503854

  7. Internal dosimetry performing dose assessments via bioassay measurements

    SciTech Connect

    Bailey, K.M.

    1993-05-11

    The Internal Dosimetry Department at the Y-12 Plant maintains a state-of-the-art bioassay program managed under the guidance and regulations of the Department of Energy. The two major bioassay techniques currently used at Y-12 are the in vitro (urinalysis) and in vivo (lung counting) programs. Fecal analysis (as part of the in vitro program) is another alternative; however, since both urine and fecal analysis provide essentially the same capabilities for detecting exposures to uranium, the urinalysis is the main choice primarily for aesthetic reasons. The bioassay frequency is based on meeting NCRP 87 objectives which are to monitor the accumulation of radioactive material in exposed individuals, and to ensure that significant depositions are detected.

  8. Application of ISO standard 27048: dose assessment for the monitoring of workers for internal radiation exposure.

    PubMed

    Henrichs, K

    2011-03-01

    Besides ongoing developments in the dosimetry of incorporated radionuclides, there are various efforts to improve the monitoring of workers for potential or real intakes of radionuclides. The disillusioning experience with numerous intercomparison projects identified substantial differences between national regulations, concepts, applied programmes and methods, and dose assessment procedures. Measured activities were not directly comparable because of significant differences between measuring frequencies and methods, but also results of case studies for dose assessments revealed differences of orders of magnitude. Besides the general common interest in reliable monitoring results, at least the cross-border activities of workers (e.g. nuclear power plant services) require consistent approaches and comparable results. The International Standardization Organization therefore initiated projects to standardise programmes for the monitoring of workers, the requirements for measuring laboratories and the processes for the quantitative evaluation of monitoring results in terms of internal assessed doses. The strength of the concepts applied by the international working group consists in a unified approach defining the requirements, databases and processes. This paper is intended to give a short introduction into the standardization project followed by a more detailed description of the dose assessment standard, which will be published in the very near future. PMID:21212077

  9. General guidelines for the assessment of internal dose from monitoring data: progress of the IDEAS project.

    PubMed

    Doerfel, H; Andrasi, A; Bailey, M; Blanchardon, E; Cruz-Suarez, R; Berkovski, V; Castellani, C-M; Hurtgen, C; LeGuen, B; Malatova, I; Marsh, J; Stather, J; Zeger, J

    2007-01-01

    In recent major international intercomparison exercises on intake and internal dose assessments from monitoring data, the results calculated by different participants varied significantly. Based on this experience the need for harmonisation of the procedures has been formulated within an EU 5th Framework Programme research project. The aim of the project, IDEAS, is to develop general guidelines for standardising assessments of intakes and internal doses. The IDEAS project started in October 2001 and ended in June 2005. The project is closely related to some goals of the work of Committee 2 of the ICRP and since 2003 there has been close cooperation between the two groups. To ensure that the guidelines are applicable to a wide range of practical situations, the first step was to compile a database of well-documented cases of internal contamination. In parallel, an improved version of an existing software package was developed and distributed to the partners for further use. A large number of cases from the database was evaluated independently by the partners and the results reviewed. Based on these evaluations, guidelines were drafted and discussed with dosimetry professionals from around the world by means of a virtual workshop on the Internet early in 2004. The guidelines have been revised and refined on the basis of the experiences and discussions in this virtual workshop. The general philosophy of the Guidelines is presented here, focusing on the principles of harmonisation, optimisation and proportionality. Finally, the proposed Levels of Task to structure the approach of internal dose evaluation are reported.

  10. Internal dose assessment -- Operation Crossroads. Technical report, 11 January 1984-15 April 1985

    SciTech Connect

    Phillips, J.; Klemm, J.; Goetz, J.

    1985-10-30

    The radiation dose commitment to ten body organs/parts, due to inhalation of resuspended nuclear contaminants from target ships exposed to the underwater burst (Test Baker) is determined for personnel who worked on the ships during and after Operation CROSSROADS. Four representative ships, INDEPENDENCE, NEW YORK, PENSACOLA and SALT LAKE CITY, are examined for the personnel activities associated with post-BAKER reboarding. Additionally, the dose due to internal emitters is assessed for personnel who unloaded ammunition from twenty target ships at Kwajalein, and for shipyard workers exposed to eight of the higher intensity ships at Pearl Harbor, Puget Sound, and San Francisco Naval Shipyards. For almost all activities, fifty-year bone dose commitments are less than 0.15 rem from any annual period of exposure.

  11. Skin sensitization in chemical risk assessment: report of a WHO/IPCS international workshop focusing on dose-response assessment.

    PubMed

    van Loveren, Henk; Cockshott, Amanda; Gebel, Tom; Gundert-Remy, Ursula; de Jong, Wim H; Matheson, Joanna; McGarry, Helen; Musset, Laurence; Selgrade, Maryjane K; Vickers, Carolyn

    2008-03-01

    An international workshop was held in 2006 to evaluate experimental techniques for hazard identification and hazard characterization of sensitizing agents in terms of their ability to produce data, including dose-response information, to inform risk assessment. Human testing to identify skin sensitizers is discouraged for ethical reasons. Animal-free alternatives, such as quantitative structure-activity relationships and in vitro testing approaches, have not been sufficiently developed for such application. Guinea pig tests do not generally include dose-response assessment and are therefore not designed for the assessment of potency, defined as the relative ability of a chemical to induce sensitization in a previously naive individual. In contrast, the mouse local lymph node assay does include dose-response assessment and is appropriate for this purpose. Epidemiological evidence can be used only under certain circumstances for the evaluation of the sensitizing potency of chemicals, as it reflects degree of exposure as well as intrinsic potency. Nevertheless, human diagnostic patch test data and quantitative elicitation data have provided very important information in reducing allergic contact dermatitis risk and sensitization in the general population. It is therefore recommended that clinical data, particularly dose-response data derived from sensitized patients, be included in risk assessment.

  12. Application of IDEAS guidelines: the IDEAS/IAEA intercomparison exercise on internal dose assessment.

    PubMed

    Hurtgen, C; Andrasi, A; Bailey, M R; Birchall, A; Blanchardon, E; Berkovski, V; Castellani, C M; Cruz-Suarez, R; Davis, K; Doerfel, H; Leguen, B; Malatova, I; Marsh, J; Zeger, J

    2007-01-01

    As part of the EU Fifth Framework Programme IDEAS project 'General Guidelines for the Evaluation of Incorporation Monitoring Data', and in collaboration with the International Atomic Energy Agency, a new intercomparison exercise for the assessment of doses from intakes of radionuclides was organised. Several cases were selected, to cover a wide range of practices in the nuclear fuel cycle and medical applications. The cases were: (1) acute intake of HTO, (2) acute inhalation of the fission products 137Cs and 90Sr, (3) acute inhalation of 60Co, (4) repeated intakes of 131I, (5) intake of enriched uranium and (6) single intake of Pu isotopes and 241Am. This intercomparison exercise especially focused on the effect of the Guidelines proposed by the IDEAS project for harmonisation of internal dosimetry.

  13. Revised series of stylized anthropometric phantoms for internal and external radiation dose assessment

    NASA Astrophysics Data System (ADS)

    Han, Eunyoung

    At present, the dosimetry systems of both the International Commission on Radiological Protection, and the Society of Nuclear Medicine's Medical Internal Radiation Dose Committee utilize a series of stylized or mathematical anthropometric models of patient anatomy developed in 1987 at the Oak Ridge National Laboratory (ORNL). In this study, substantial revisions to the ORNL phantom series are reported with tissue compositions, tissue densities, and organ masses adjusted to match their most recent values in the literature. In addition, both the ICRP and MIRD systems of internal dosimetry implicitly consider that electron and beta-particle energy emitted within the source organs of the patient are fully deposited within these organs. With the development of the revised ORNL phantom series, three additional applications were explored as part of this dissertation research. First, the phantoms were used in combination to assess external radiation exposures to family members caring or interacting with patients released from the hospital following radionuclide therapy with I-131. Values of family member effective dose are then compared to values obtained using NRC guidance and based on a simple point-source methodology which ignores the effects of photon attenuation and scatter within both the source individual (patient) and the target individual (family member). Second, the anatomical structures of the extrathoracic airways and thoracic airways (exclusive of the lungs themselves) have been included in the entire revised ORNL phantom series of pediatric individuals. Values of cross-region photon dose are explored for use in radioactive aerosol inhalation exposures to members of the general public, and comparisons are made to values given by the ICRP in which surrogate organ assignments were made in the absence of explicit models of these airways. Finally, the revised ORNL phantoms of the adult male and adult female are used to determine internal photon exposures to

  14. [The assessment of accumulated internal irradiation doses of the inhabitants of the populated areas in Republik Belarus after Chernobyl accident].

    PubMed

    Chunikhin, L A; Drozdov, D N

    2012-01-01

    A new system of evaluation methods has been developed for the assessment of the accumulated internal irradiation doses in the inhabitants of the populated areas of the Republic of Belarus that were contaminated by the Chernobyl radionuclides. The system is based on the results of WBC measurements. The model is based on the WBC-results of the State Dosimetric Register for the period of 1987-2010. The dose assessment model is based on the classification of the populated areas, on the regional features of the soils through which 137Cs can enter into the locally grown and produced foods. The model is also based on building the regressive correlations of accumulated internal doses to the contamination density of the territory of a populated area. Such regressive correlations are made for each region. The influence of indirect factors of dose forming was taken into consideration in the dose assessment. Among these factors are the population of the area, and the amount of forested territory around it, which were taken as correction coefficients. The coefficients were determined from the regressive correlation of the correction coefficients to a specific area of forest for each region. So called "countermeasure factor" was used for specification of other model results.

  15. Physiologically based toxicokinetic models and their application in human exposure and internal dose assessment.

    PubMed

    Kim, David; Nylander-French, Leena A

    2009-01-01

    Human populations may exhibit large interindividual variation in toxicokinetic response to chemical exposures. Rapid developments in dosimetry research have brought medicine and public health closer to understanding the biological basis of this heterogeneity. The toxicokinetic behavior of chemicals is, in part, controlled by the properties of the epithelium surrounding organs, some of which are effective barriers to penetration into the systemic circulation. Physiologically based toxicokinetic (PBTK) models have been developed and used to simulate the mechanism of uptake into the systemic circulation, to extrapolate between doses and exposure routes, and to estimate internal dosimetry and sources of heterogeneity in animals and humans. Recent improvements to PBTK models include descriptions of active transport across biological membranes, carrier-mediated clearance, and fractal kinetics. The expanding area of toxicogenetics has provided valuable insight for delineating toxicokinetic differences between individuals; genetic differences include inherited single nucleotide polymorphisms, copy number variants, and dynamic changes in the methylation pattern of imprinted genes. This chapter discusses the structure of PBTK models and how toxicogenetic information and newer biological descriptions have improved our understanding of variability in response to toxicant exposures. PMID:19157057

  16. An adaptable internal dose model for risk assessment of dietary and soil dioxin exposures in young children.

    PubMed

    Kerger, Brent D; Leung, Hon-Wing; Scott, Paul K; Paustenbach, Dennis J

    2007-11-01

    An adaptable model is presented for assessing the blood lipid concentrations of polychlorodibenzodioxins and polychlorodibenzofurans (PCDD/Fs) from dietary (breast milk, formula, milk, and other foods) and soil pathway exposures (soil ingestion and dermal contact) utilizing age-specific exposure and intake estimates for young children. The approach includes a simple one-compartment (adipose volume) toxicokinetic model that incorporates empirical data on age-dependent half-lives and bioavailability of PCDD/F congeners, child body size and intake rates, and recent data on breast milk and food dioxin levels. Users can enter site-specific soil concentration data on 2,3,7,8-chlorinated PCDD/F congeners for specific assessment of body burden changes from soil pathways in combination with background dietary exposures from birth through age 7 years. The model produces a profile of the estimated PCDD/F concentration in blood lipid (in World Health Organization 1998 dioxin toxic equivalents) versus time for a child from birth through age 7 years. The peak and time-weighted average (TWA) internal dose (defined as blood lipid dioxin toxic equivalents) for a variety of specific child exposure assumptions can then be compared to safe internal dose benchmarks for risk assessment purposes, similar to an approach taken by United States Environmental Protection Agency for assessing child lead exposures. We conclude that this adaptable toxicokinetic model can provide a more comprehensive assessment of potential health risks of PCDD/Fs to children because it integrates recent empirical findings on PCDD/F kinetics in humans and allows users to assess contributions from varied dietary and site-specific environmental exposure assumptions.

  17. Internal dose assessment for 211At α-emitter in isotonic solution as radiopharmaceutical

    NASA Astrophysics Data System (ADS)

    Yuminov, O. A.; Fotina, O. V.; Priselkova, A. B.; Tultaev, A. V.; Platonov, S. Yu.; Eremenko, D. O.; Drozdov, V. A.

    2003-12-01

    The functional fitness of the α-emitter 211At for radiotherapy of the thyroid gland cancer is evaluated. Radiation doses are calculated using the MIRD method and previously obtained pharmacokinetic data for 211At in isotonic solution and for 123I as sodium iodide. Analysis of the 211At radiation dose to the thyroid gland suggests that this radiopharmaceutical may be predominantly used for the treatment of the thyroid cancer.

  18. Optimisation of internal radiation dose assessment on uncertain dosimetric parameters in interpretation of bioassay results.

    PubMed

    Lee, Jongil; Lee, Jaiki; Chang, Siyoung; Kim, Janglyul

    2013-07-01

    Estimates of the committed effective dose (E50) from an intake of a radionuclide strongly depends on several dosimetric parameters such as the intake pathway, f1 value, the absorption type, activity median aerodynamic diameter and the time after an intake. A misuse of the dosimetric parameters can result in a significant error in the evaluated value of a committed effective dose. In order to reduce the potential error and to get optimised values of E50, better bioassay methods and better (or worse) bioassay measurement times due to the uncertain dosimetric parameters were suggested for the various radionuclides, including (57)Co, (58)Co, (60)Co, (131)I, (134)Cs, (137)Cs, (89)Sr, (90)Sr, (32)P and (235)U. This strategy was applied for the case of multiple unknown parameters as well as a single unknown parameter and provided the committed effective doses with the least potential error.

  19. Use of international data sets to evaluate and validate pathway assessment models applicable to exposure and dose reconstruction at DOE facilities. Progress report, August 1993--January 1994

    SciTech Connect

    Hendrickson, S.M.; Hoffman, F.O.

    1994-03-01

    This project, ``Use of International Data Sets to Evaluate and Validate Pathway Assessment Models Applicable to Exposure and Dose Reconstruction at DOE Facilities,`` grew out of several activities being conducted by the Principal Investigator Dr. F Owen Hoffman. One activity was originally part of the Chernobyl Studies Project and began as Task 7.1D, ``Internal Dose From Direct Contamination of Terrestrial Food Sources.`` The objective of Task 7.1D was to (1) establish a collaborative US USSR effort to improve and validate our methods of forecasting doses and dose commitments from the direct contamination of food sources, and (2) perform experiments and validation studies to improve our ability to predict rapidly and accurately the long-term internal dose from the contamination of agricultural soil. The latter was to include the consideration of remedial measures to block contamination of food grown on contaminated soil. The current objective of this project is to evaluate and validate pathway-assessment models applicable to exposure and dose reconstruction at DOE facilities through use of international data sets. This project incorporates the activity of Task 7.1D into a multinational effort to evaluate data used for the prediction of radionuclide transfer through agricultural and aquatic systems to humans. It also includes participation in two multinational studies, BIOMOVS (BIOspheric MOdel Validation Study) with the Swedish National Institute for Radiation Protection and VAMP (VAlidation of Model Predictions) with the International Atomic Energy Agency, that address testing the performance of models of radionuclide transport through foodchains.

  20. A mobile bioassay laboratory for the assessment of internal doses based on in vivo and in vitro measurements.

    PubMed

    Dantas, B M; Lucena, E A; Dantas, A L A; Santos, M S; Julião, L Q C; Melo, D R; Sousa, W O; Fernandes, P C; Mesquita, S A

    2010-10-01

    Internal exposures may occur in nuclear power plants, radioisotope production, and in medicine and research laboratories. Such practices require quick response in case of accidents of a wide range of magnitudes. This work presents the design and calibration of a mobile laboratory for the assessment of accidents involving workers and the population as well as for routine monitoring. The system was set up in a truck with internal dimensions of 3.30 m × 1.60 m × 1.70 m and can identify photon emitters in the energy range of 100-3,000 keV in the whole body, organs, and in urine. A thyroid monitor consisting of a lead-collimated NaI(Tl)3" × 3" (7.62 × 7.62 cm) detector was calibrated with a neck-thyroid phantom developed at the IRD (Instituto de Radioproteção e Dosimetria). Whole body measurements were performed with a NaI(Tl)8" × 4" (20.32 × 10.16 cm) detector calibrated with a plastic-bottle phantom. Urine samples were measured with another NaI(Tl) 3" × 3" (7.62 × 7.62 cm) detector set up in a steel support. Standard solutions were provided by the National Laboratory for Metrology of Ionizing Radiation of the IRD. Urine measurements are based on a calibration of efficiency vs. energy for standard volumes. Detection limits were converted to minimum committed effective doses for the radionuclides of interest using standard biokinetic and dosimetric models in order to evaluate the applicability and limitations of the system. Sensitivities for high-energy activation and fission products show that the system is suitable for use in emergency and routine monitoring of individuals under risk of internal exposure by such radionuclides. PMID:20838084

  1. Verification of Internal Dose Calculations.

    NASA Astrophysics Data System (ADS)

    Aissi, Abdelmadjid

    The MIRD internal dose calculations have been in use for more than 15 years, but their accuracy has always been questionable. There have been attempts to verify these calculations; however, these attempts had various shortcomings which kept the question of verification of the MIRD data still unanswered. The purpose of this research was to develop techniques and methods to verify the MIRD calculations in a more systematic and scientific manner. The research consisted of improving a volumetric dosimeter, developing molding techniques, and adapting the Monte Carlo computer code ALGAM to the experimental conditions and vice versa. The organic dosimetric system contained TLD-100 powder and could be shaped to represent human organs. The dosimeter possessed excellent characteristics for the measurement of internal absorbed doses, even in the case of the lungs. The molding techniques are inexpensive and were used in the fabrication of dosimetric and radioactive source organs. The adaptation of the computer program provided useful theoretical data with which the experimental measurements were compared. The experimental data and the theoretical calculations were compared for 6 source organ-7 target organ configurations. The results of the comparison indicated the existence of an agreement between measured and calculated absorbed doses, when taking into consideration the average uncertainty (16%) of the measurements, and the average coefficient of variation (10%) of the Monte Carlo calculations. However, analysis of the data gave also an indication that the Monte Carlo method might overestimate the internal absorbed doses. Even if the overestimate exists, at least it could be said that the use of the MIRD method in internal dosimetry was shown to lead to no unnecessary exposure to radiation that could be caused by underestimating the absorbed dose. The experimental and the theoretical data were also used to test the validity of the Reciprocity Theorem for heterogeneous

  2. Mayak Worker Dosimetry System 2008 (MWDS-2008): assessment of internal dose from measurement results of plutonium activity in urine.

    PubMed

    Khokhryakov, Victor V; Khokhryakov, Valentin F; Suslova, Klara G; Vostrotin, Vadim V; Vvedensky, Vladimir E; Sokolova, Alexandra B; Krahenbuhl, Melinda P; Birchall, Alan; Miller, Scott C; Schadilov, Anatoly E; Ephimov, Alexander V

    2013-04-01

    A new modification of the prior human lung compartment plutonium model, Doses-2005, has been described. The modified model was named "Mayak Worker Dosimetry System-2008" (MWDS-2008). In contrast to earlier models developed for workers at the Mayak Production Association (Mayak PA), the new model more correctly describes plutonium biokinetics and metabolism in pulmonary lymph nodes. The MWDS-2008 also provides two sets of doses estimates: one based on bioassay data and the other based on autopsy data, where available. The algorithm of internal dose calculation from autopsy data will be described in a separate paper. Results of comparative analyses of Doses-2005 and MWDS-2008 are provided. Perspectives on the further development of plutonium dosimetry are discussed.

  3. Utirik Atoll Dose Assessment

    SciTech Connect

    Robison, W.L.; Conrado, C.L.; Bogen, K.T

    1999-10-06

    On March 1, 1954, radioactive fallout from the nuclear test at Bikini Atoll code-named BRAVO was deposited on Utirik Atoll which lies about 187 km (300 miles) east of Bikini Atoll. The residents of Utirik were evacuated three days after the fallout started and returned to their atoll in May 1954. In this report we provide a final dose assessment for current conditions at the atoll based on extensive data generated from samples collected in 1993 and 1994. The estimated population average maximum annual effective dose using a diet including imported foods is 0.037 mSv y{sup -1} (3.7 mrem y{sup -1}). The 95% confidence limits are within a factor of three of their population average value. The population average integrated effective dose over 30-, 50-, and 70-y is 0.84 mSv (84, mrem), 1.2 mSv (120 mrem), and 1.4 mSv (140 mrem), respectively. The 95% confidence limits on the population-average value post 1998, i.e., the 30-, 50-, and 70-y integral doses, are within a factor of two of the mean value and are independent of time, t, for t > 5 y. Cesium-137 ({sup 137}Cs) is the radionuclide that contributes most of this dose, mostly through the terrestrial food chain and secondarily from external gamma exposure. The dose from weapons-related radionuclides is very low and of no consequence to the health of the population. The annual background doses in the U. S. and Europe are 3.0 mSv (300 mrem), and 2.4 mSv (240 mrem), respectively. The annual background dose in the Marshall Islands is estimated to be 1.4 mSv (140 mrem). The total estimated combined Marshall Islands background dose plus the weapons-related dose is about 1.5 mSv y{sup -1} (150 mrem y{sup -1}) which can be directly compared to the annual background effective dose of 3.0 mSv y{sup -1} (300 mrem y{sup -1}) for the U. S. and 2.4 mSv y{sup -1} (240 mrem y{sup -1}) for Europe. Moreover, the doses listed in this report are based only on the radiological decay of {sup 137}Cs (30.1 y half-life) and other

  4. Experimental assessment of absorbed dose to mineralized bone tissue from internal emitters: An electron paramagnetic resonance study

    SciTech Connect

    Desrosiers, M.F.

    1994-12-31

    EPR resonances attributable to radiation-induced centers in hydroxyapatite were not detectable in bone samples supplied by the USTUR. These centers are the basis for imaging and dose assessment. Presumable, the short range of the alpha particles emitted precluded the formation of appreciable amounts of hydroxyapatite centers. However, one bone sample did offer a suggestion of hydroxyapatite centers and newly-developed methods to extract this information will be pursued.

  5. Implications of the ICRP Task Group's proposed lung model for internal dose assessments in the mineral sands industry

    SciTech Connect

    James, A.C. ); Birchall, A. )

    1990-09-01

    The ICRP Task Group on Respiratory Tract Models for Radiological Projection is proposing a model to describe the deposition, clearance, retention and dosimetry of inhaled radionuclides for dose-intake calculations and interpretation of bioassay data. The deposition model takes into account new data on the regional deposition of aerosol particles in human lung and the inhalability of large particles. The clearance model treats clearance as competition between mechanical transport, which moves particles to the gastro-intestinal tract and lymph nodes, and the translocation of material to blood. This provides a realistic estimate of the amount of a given material (such as mineral sand) that is absorbed systemically, and its variation with aerosol size. The proposed dosimetry model takes into account the relative sensitivities of the various tissue components of the respiratory tract. A new treatment of dose received by epithelia in the tracheo-bronchiolar and extrathoracic regions is proposed. This paper outlines the novel features of the task group model, and then examines the impact that adoption of the model may have on the assessment of doses from occupational exposures to mineral sands and thoron progeny. 39 refs., 15 figs., 6 tabs.

  6. LESSONS LEARNED FROM THE EURADOS SURVEY ON INDIVIDUAL MONITORING DATA AND INTERNAL DOSE ASSESSMENTS OF FOREIGNERS EXPOSED IN JAPAN FOLLOWING THE FUKUSHIMA DAIICHI NPP ACCIDENT.

    PubMed

    Lopez, M A; Fojtik, P; Franck, D; Osko, J; Gerstmann, U; Scholl, C; Lebacq, A L; Breustedt, B; Del Risco Norrlid, L

    2016-09-01

    European Radiation Dosimetry Group e.V. (EURADOS) survey on individual monitoring data and dose assessment has been carried out for 550 foreigners returning home after being exposed in Japan to intakes of radionuclides (mainly (131)I, (132)I, (132)Te, (134)Cs and (137)Cs) as a consequence of the Fukushima Daiichi NPP accident. In vivo and in vitro measurements were performed in their respective countries at an early stage after that accident. Intakes of radionuclides were detected in 208 persons from Europe and Canada, but the committed effective dose E(50) was below the annual dose limit for the public (<1 mSv) in all the cases. Lessons learned from this EURADOS survey are presented here regarding not only internal dosimetry issues, but also the management of the emergency situation, the perception of the risk of health effects due to radiation and the communication with exposed persons who showed anxiety and lack of trust in monitoring data and dose assessments. PMID:26705360

  7. THE CHALLENGE OF CIEMAT INTERNAL DOSIMETRY SERVICE FOR ACCREDITATION ACCORDING TO ISO/IEC 17025 STANDARD, FOR IN VIVO AND IN VITRO MONITORING AND DOSE ASSESSMENT OF INTERNAL EXPOSURES.

    PubMed

    Lopez, M A; Martin, R; Hernandez, C; Navarro, J F; Navarro, T; Perez, B; Sierra, I

    2016-09-01

    The accreditation of an Internal Dosimetry Service (IDS) according to ISO/IEC 17025 Standard is a challenge. The aim of this process is to guarantee the technical competence for the monitoring of radionuclides incorporated in the body and for the evaluation of the associated committed effective dose E(50). This publication describes the main accreditation issues addressed by CIEMAT IDS regarding all the procedures involving good practice in internal dosimetry, focussing in the difficulties to ensure the traceability in the whole process, the appropriate calculation of detection limit of measurement techniques, the validation of methods (monitoring and dose assessments), the description of all the uncertainty sources and the interpretation of monitoring data to evaluate the intake and the committed effective dose. PMID:26433182

  8. Code System for Emergency Response Dose Assessment.

    2002-01-16

    Version: 00 A dose assessment model for emergency response applications. Dose pathways represented in the model are those that are most likely to be important during and immediately following a release (hours) rather than over an extended time frame (days or weeks). The doses computed include: external dose resulting from exposure to radiation emitted by radionuclides in the air and deposited on the ground, internal dose commitment resulting from inhalation, and total whole-body dose. Threemore » preprocessors are included. RSFPREP generates the MESORAD run specification (input) file, METWR creates the meteorological data file, and RELPREP prepares the release definition file. PRNT is a postprocessor for generating printer or screen-compatible output. All four programs run interactively. MESORAD was developed from version 2.0 of the MESOI atmospheric dispersion model (NESC 9862) retaining its modular nature.« less

  9. Use of international data sets to evaluate and validate pathway assessment models applicable to exposure and dose reconstruction at DOE facilities. Progress report, March--May 1994

    SciTech Connect

    Anspaugh, L.R.; Hendrickson, S.M.; Hoffman, F.O.

    1994-06-01

    The project described in this report was the result of a Memorandum of Cooperation between the US and the former-USSR following the accident at the Chernobyl Nuclear Power Plant Unit 4. A joint program was established to improve the safety of nuclear power plants and to understand the implications of environmental releases. The task of Working Group 7 was ``to develop jointly methods to project rapidly the health effects of any future nuclear reactor accident.`` The current objective of this project is to evaluate and validate pathway-assessment models applicable to exposure and dose reconstruction at DOE facilities through use of international data sets. This project incorporates data used for the prediction of radionuclide transfer through agricultural and aquatic systems to humans. It also includes participation in two multinational studies, BIOMOVS (Biospheric Model Validation Study) with the Swedish National Institute for Radiation Protection and VAMP (Validation of Model Predictions) with the International Atomic Energy Agency, that address testing the performance of models of radionuclide transport through foodchains. In the future, this project will be considered separately from the Chernobyl Studies Project and the essential activities of former Task 7.1D will be folded within the broader umbrella of the BIOMOVS and VAMP projects. The Working Group Leader of Task 7.1D will continue to provide oversight for this project.

  10. Respirators, internal dose, and Oyster Creek

    SciTech Connect

    Michal, R.

    1996-06-01

    This article looks at the experience of Oyster Creek in relaxing the requirements for the use of respirators in all facets of plant maintenance, on the overall dose received by plant maintenance personnel. For Roger Shaw, director of radiological controls for three years at GPU Nuclear Corporation`s Oyster Creek nuclear plant the correct dose balance is determined on a job-by-job basis: Does the job require a respirator, which is an effective means of decreasing worker inhalation of airborne radioactive particles? Will wearing a respirator slow down a worker, consequently increasing whole body radiation exposure by prolonging the time spent in fields of high external radiation? How does respiratory protection affect worker safety and to what degree? While changes to the Nuclear Regulatory Commission`s 10CFR20 have updated the radiation protection requirements for the nuclear industry, certain of the revisions have been directed specifically at reducing worker dose, Shaw said. {open_quotes}It basically delineates that dose is dose,{close_quotes} Shaw said, {open_quotes}regardless of whether it is acquired externally or internally.{close_quotes} The revision of Part 20 changed the industry`s attitude toward internal dose, which had always been viewed negatively. {open_quotes}Internal dose was always seen as preventable by wearing respirators and by using engineering techniques such as ventilation control and decontamination,{close_quotes} Shaw said, {open_quotes}whereas external dose, although reduced where practical, was seen as a fact of the job.{close_quotes}

  11. Assessment of internal exposure doses in Fukushima by a whole body counter within one month after the nuclear power plant accident.

    PubMed

    Matsuda, Naoki; Kumagai, Atsushi; Ohtsuru, Akira; Morita, Naoko; Miura, Miwa; Yoshida, Masahiro; Kudo, Takashi; Takamura, Noboru; Yamashita, Shunichi

    2013-06-01

    Information on early internal radiation doses in Fukushima after the nuclear power plant accident on March 11, 2011, is quite limited due to initial organizational difficulties, high background radiation and contamination of radiation measuring devices. In Nagasaki, approximately 1,200 km away from Fukushima, the internal radioactivity in evacuees and short-term visitors to Fukushima has been measured by a whole body counter (WBC) since March 15, 2011. A horizontal bed-type scanning WBC equipped with two NaI(Tl) scintillation detectors was used for 173 people who stayed in the Fukushima prefecture between March 11 and April 10, 2011. The average length of stay was 4.8 days. The internal radioactivity was converted to an estimated amount of intake according to the scenario of acute inhalation, and then the committed effective dose and the thyroid dose were evaluated. (131)I, (134)Cs and (137)Cs were detected in more than 30% of examined individuals. In subjects who stayed in Fukushima from March 12 to March 18, the detection rate was approximately 50% higher for each radionuclide and 44% higher for all three nuclides. The maximum committed effective dose and thyroid equivalent dose were 1 mSv and 20 mSv, respectively. Although the number of subjects and settlements in the study are limited, the results suggest that the internal radiation exposure in Fukushima due to the intake of radioactive materials shortly after the accident will probably not result in any deterministic or stochastic health effects.

  12. AGING FACILITY WORKER DOSE ASSESSMENT

    SciTech Connect

    R.L. Thacker

    2005-03-24

    The purpose of this calculation is to estimate radiation doses received by personnel working in the Aging Facility performing operations to transfer aging casks to the aging pads for thermal and logistical management, stage empty aging casks, and retrieve aging casks from the aging pads for further processing in other site facilities. Doses received by workers due to aging cask surveillance and maintenance operations are also included. The specific scope of work contained in this calculation covers both collective doses and individual worker group doses on an annual basis, and includes the contributions due to external and internal radiation from normal operation. There are no Category 1 event sequences associated with the Aging Facility (BSC 2004 [DIRS 167268], Section 7.2.1). The results of this calculation will be used to support the design of the Aging Facility and to provide occupational dose estimates for the License Application. The calculations contained in this document were developed by Environmental and Nuclear Engineering of the Design and Engineering Organization and are intended solely for the use of the Design and Engineering Organization in its work regarding facility operation. Yucca Mountain Project personnel from the Environmental and Nuclear Engineering should be consulted before use of the calculations for purposes other than those stated herein or use by individuals other than authorized personnel in Environmental and Nuclear Engineering.

  13. Radiological dose assessment for vault storage concepts

    SciTech Connect

    Richard, R.F.

    1997-02-25

    This radiological dose assessment presents neutron and photon dose rates in support of project W-460. Dose rates are provided for a single 3013 container, the ``infloor`` storage vault concept, and the ``cubicle`` storage vault concept.

  14. Fukushima simulation experiment: assessing the effects of chronic low-dose-rate internal 137Cs radiation exposure on litter size, sex ratio, and biokinetics in mice.

    PubMed

    Nakajima, Hiroo; Yamaguchi, Yoshiaki; Yoshimura, Takashi; Fukumoto, Manabu; Todo, Takeshi

    2015-12-01

    To investigate the transgenerational effects of chronic low-dose-rate internal radiation exposure after the Fukushima Daiichi Nuclear Power Plant accident in Japan, 18 generations of mice were maintained in a radioisotope facility, with free access to drinking water containing (137)CsCl (0 and 100 Bq/ml). The (137)Cs distribution in the organs of the mice was measured after long-term ad libitum intake of the (137)CsCl water. The litter size and the sex ratio of the group ingesting the (137)Cs water were compared with those of the control group, for all 18 generations of mice. No significant difference was noted in the litter size or the sex ratio between the mice in the control group and those in the group ingesting the (137)Cs water. The fixed internal exposure doses were ∼160 Bq/g and 80 Bq/g in the muscles and other organs, respectively. PMID:26825299

  15. Fukushima simulation experiment: assessing the effects of chronic low-dose-rate internal 137Cs radiation exposure on litter size, sex ratio, and biokinetics in mice

    PubMed Central

    Nakajima, Hiroo; Yamaguchi, Yoshiaki; Yoshimura, Takashi; Fukumoto, Manabu; Todo, Takeshi

    2015-01-01

    To investigate the transgenerational effects of chronic low-dose-rate internal radiation exposure after the Fukushima Daiichi Nuclear Power Plant accident in Japan, 18 generations of mice were maintained in a radioisotope facility, with free access to drinking water containing 137CsCl (0 and 100 Bq/ml). The 137Cs distribution in the organs of the mice was measured after long-term ad libitum intake of the 137CsCl water. The litter size and the sex ratio of the group ingesting the 137Cs water were compared with those of the control group, for all 18 generations of mice. No significant difference was noted in the litter size or the sex ratio between the mice in the control group and those in the group ingesting the 137Cs water. The fixed internal exposure doses were ∼160 Bq/g and 80 Bq/g in the muscles and other organs, respectively. PMID:26825299

  16. Internal dose assessment of natural uranium from drinking water based on biokinetic modeling and individual bioassay monitoring: a study of a Finnish family.

    PubMed

    Li, Wei Bo; Salonen, Laina; Muikku, Maarit; Wahl, Wolfgang; Höllriegl, Vera; Oeh, Uwe; Roth, Paul; Rahola, Tua

    2006-06-01

    Since the later 1960's, a nationwide survey on natural radionuclides in drinking water showed high concentrations of natural uranium (U) in Finland, especially in uraniferous granite areas. In order to assess the radiation dose from the natural uranium to individuals, the concentrations of natural uranium in drinking water of the drilled wells were determined by radiochemical and alpha spectrometric methods. Uranium contents were measured in the urinary samples of five members of a Finnish family by means of inductively coupled plasma-mass spectrometry. Correspondingly, theoretical biokinetic modeling of natural uranium incorporated for the same persons were performed with the aid of follow-up interviews. The ICRP biokinetic compartmental model and the age-dependent transfer rates for uranium were used to model the intake, transfer, distribution, retention, and excretion of (234)U and (238)U, respectively, from the drinking water for each person of the family. The organ absorbed dose, equivalent dose, and effective dose were evaluated for each family member at time intervals using specific effective energy values calculated by the SEECAL program and compared with recommended values. The modeled urinary excretion rates were found to be mostly higher than the measured values by a factor of three. The mean annual effective dose for this family is 8 muSv y(-1). By comparing the measured and calculated data, estimation of retrospective radiation exposure based on biokinetic modeling and bioassay method is enhanced and, vice versa, the biokinetic and dosimetric models are tested and verified.

  17. Critical Dose of Internal Organs Internal Exposure - 13471

    SciTech Connect

    Grigoryan, G.; Amirjanyan, A.; Grigoryan, N.

    2013-07-01

    The health threat posed by radionuclides has stimulated increased efforts to developed characterization on the biological behavior of radionuclides in humans in all ages. In an effort motivated largely by the Chernobyl nuclear accident, the International Commission on Radiological Protection (ICRP) is assembling a set of age specific biokinetic models for environmentally important radioelements. Radioactive substances in the air, mainly through the respiratory system and digestive tract, is inside the body. Radioactive substances are unevenly distributed in various organs and tissues. Therefore, the degree of damage will depend not only on the dose of radiation have but also on the critical organ, which is the most accumulation of radioactive substances, which leads to the defeat of the entire human body. The main objective of radiation protection, to avoid exceeding the maximum permissible doses of external and internal exposure of a person to prevent the physical and genetic damage people. The maximum tolerated dose (MTD) of radiation is called a dose of radiation a person in uniform getting her for 50 years does not cause changes in the health of the exposed individual and his progeny. The following classification of critical organs, depending on the category of exposure on their degree of sensitivity to radiation: First group: the whole body, gonads and red bone marrow; Second group: muscle, fat, liver, kidney, spleen, gastrointestinal tract, lungs and lens of the eye; The third group: bone, thyroid and skin; Fourth group: the hands, forearms, feet. MTD exposure whole body, gonads and bone marrow represent the maximum exposures (5 rem per year) experienced by people in their normal activities. The purpose of this article is intended dose received from various internal organs of the radionuclides that may enter the body by inhalation, and gastrointestinal tract. The biokinetic model describes the time dependent distribution and excretion of different

  18. Radioactive Dose Assessment and NRC Verification of Licensee Dose Calculation.

    1994-09-16

    Version 00 PCDOSE was developed for the NRC to perform calculations to determine radioactive dose due to the annual averaged offsite release of liquid and gaseous effluent by U.S commercial nuclear power facilities. Using NRC approved dose assessment methodologies, it acts as an inspector's tool for verifying the compliance of the facility's dose assessment software. PCDOSE duplicates the calculations of the GASPAR II mainframe code as well as calculations using the methodologices of Reg. Guidemore » 1.109 Rev. 1 and NUREG-0133 by optional choice.« less

  19. VOXMAT: Hybrid Computational Phantom for Dose Assessment

    SciTech Connect

    Akkurt, Hatice; Eckerman, Keith F

    2007-01-01

    The Oak Ridge National Laboratory (ORNL) computational phantoms have been the standard for assessing the radiation dose due to internal and external exposure over the past three decades. In these phantoms, the body surface and each organ are approximated by mathematical equations; hence, some of the organs are not necessarily realistic in their shape. Over the past two decades, these phantoms have been revised and updated: some of the missing internal organs have been added and the locations of the existing organs have been revised (e.g., thyroid). In the original phantom, only three elemental compositions were used to describe all body tissues. Recently, the compositions of the organs have been updated based on ICRP-89 standards. During the past decade, phantoms based on CT scans were developed for use in dose assessment. Although their shapes are realistic, some computational challenges are noted; including increased computational times and increased memory requirements. For good spatial resolution, more than several million voxels are used to represent the human body. Moreover, when CT scans are obtained, the subject is in a supine position with arms at the side. In some occupational exposure cases, it is necessary to evaluate the dose with the arms and legs in different positions. It will be very difficult and inefficient to reposition the voxels defining the arms and legs to simulate these exposure geometries. In this paper, a new approach for computational phantom development is presented. This approach utilizes the combination of a mathematical phantom and a voxelized phantom for the representation of the anatomy.

  20. Influence of DTPA Treatment on Internal Dose Estimates.

    PubMed

    Davesne, Estelle; Blanchardon, Eric; Peleau, Bernadette; Correze, Philippe; Bohand, Sandra; Franck, Didier

    2016-06-01

    In case of internal contamination with plutonium materials, a treatment with diethylene triamine pentaacetic acid (DTPA) can be administered in order to reduce plutonium body burden and consequently avoid some radiation dose. DTPA intravenous injections or inhalation can start almost immediately after intake, in parallel with urinary and fecal bioassay sampling for dosimetric follow-up. However, urine and feces excretion will be significantly enhanced by the DTPA treatment. As internal dose is calculated from bioassay results, the DTPA effect on excretion has to be taken into account. A common method to correct bioassay data is to divide it by a factor representing the excretion enhancement under DTPA treatment by intravenous injection. Its value may be based on a nominal reference or observed after a break in the treatment. The aim of this study was to estimate the influence of this factor on internal dose by comparing the dose estimated using default or upper and lower values of the enhancement factor for 11 contamination cases. The observed upper and lower values of the enhancement factor were 18.7 and 63.0 for plutonium and 24.9 and 28.8 for americium. For americium, a default factor of 25 is proposed. This work demonstrates that the use of a default DTPA enhancement factor allows the determination of the magnitude of the contamination because dose estimated could vary by a factor of 2 depending on the value of the individual DTPA enhancement factor. In case of significant intake, an individual enhancement factor should be determined to obtain a more reliable dose assessment. PMID:27115221

  1. Assessing the impact of the duration and intensity of inhalation exposure on the magnitude of the variability of internal dose metrics in children and adults.

    PubMed

    Valcke, Mathieu; Krishnan, Kannan

    2011-12-01

    The objective of this study was to assess the impact of the exposure duration and intensity on the human kinetic adjustment factor (HKAF). A physiologically based pharmacokinetic model was used to compute target dose metrics (i.e. maximum blood concentration (C(max)) and amount metabolized/L liver/24  h (Amet)) in adults, neonates (0-30 days), toddlers (1-3 years), and pregnant women following inhalation exposure to benzene, styrene, 1,1,1-trichloroethane and 1,4-dioxane. Exposure scenarios simulated involved various concentrations based on the chemical's reference concentration (low) and six of U.S. EPA's Acute Exposure Guideline Levels (AEGLs) (high), for durations of 10  min, 60  min, 8  h, and 24  h, as well as at steady-state. Distributions for body weight (BW), height (H), and hepatic CYP2E1 content were obtained from the literature or from P3M software, whereas blood flows and tissue volumes were calculated from BW and H. The HKAF was computed based on distributions of dose metrics obtained by Monte Carlo simulations [95th percentile in each subpopulation/median in adults]. At low levels of exposure, ranges of C(max)-based HKAF were 1-6.8 depending on the chemical, with 1,4-dioxane exhibiting the greatest values. At high levels of exposure, this range was 1.1-5.2, with styrene exhibiting the greatest value. Neonates were always the most sensitive subpopulation based on C(max), and pregnant women were most sensitive based on Amet in the majority of the cases (1.3-2.1). These results have shown that the chemical-specific HKAF varies as a function of exposure duration and intensity of inhalation exposures, and sometimes exceeds the default value used in risk assessments. PMID:22084919

  2. Ingestion of Nevada Test Site Fallout: Internal dose estimates

    SciTech Connect

    Whicker, F.W.; Kirchner, T.B.; Anspaugh, L.R.

    1996-10-01

    This paper summarizes individual and collective dose estimates for the internal organs of hypothetical yet representative residents of selected communities that received measurable fallout from nuclear detonations at the Nevada Test Site. The doses, which resulted from ingestion of local and regional food products contaminated with over 20 radionuclides, were estimated with use of the PATHWAY food-chain-transport model to provide estimates of central tendency and uncertainty. The thyroid gland received much higher doses than other internal organs and tissues. In a avery few cases, infants might have received thyroid doses in excess of 1 Gy, depending on location, diet, and timing of fallout. {sup 131}I was the primary thyroid dose contributor, and fresh milk was the main exposure pathway. With the exception of the thyroid, organ doses from the ingestion pathway were much smaller (<3%) than those from external gamma exposure to deposited fallout. Doses to residents living closest to the Nevada Test Site were contributed mainly by a few fallout events; doses to more distantly located people were generally smaller, but a greater number of events provided measurable contributions. The effectiveness of different fallout events in producing internal organ doses through ingestion varied dramatically with seasonal timing of the test, with maximum dose per unit fallout occurring for early summer depositions when milk cows were on pasture and fresh, local vegetables were used. Within specific communities, internal doses differed by age, sex, and lifestyle. Collective internal dose estimates for specific geographic areas are provided.

  3. Use of international data sets to evaluate and validate pathway assessment models applicable to exposure and dose reconstruction at DOE facilities. Monthly progress reports and final report, October--December 1994

    SciTech Connect

    Hoffman, F.O.

    1995-04-01

    The objective of Task 7.lD was to (1) establish a collaborative US-USSR effort to improve and validate our methods of forecasting doses and dose commitments from the direct contamination of food sources, and (2) perform experiments and validation studies to improve our ability to predict rapidly and accurately the long-term internal dose from the contamination of agricultural soil. At early times following an accident, the direct contamination of pasture and food stuffs, particularly leafy vegetation and grain, can be of great importance. This situation has been modeled extensively. However, models employed then to predict the deposition, retention and transport of radionuclides in terrestrial environments employed concepts and data bases that were more than a decade old. The extent to which these models have been tested with independent data sets was limited. The data gathered in the former-USSR (and elsewhere throughout the Northern Hemisphere) offered a unique opportunity to test model predictions of wet and dry deposition, agricultural foodchain bioaccumulation, and short- and long-term retention, redistribution, and resuspension of radionuclides from a variety of natural and artificial surfaces. The current objective of this project is to evaluate and validate pathway-assessment models applicable to exposure and dose reconstruction at DOE facilities through use of international data sets. This project incorporates the activity of Task 7.lD into a multinational effort to evaluate models and data used for the prediction of radionuclide transfer through agricultural and aquatic systems to humans. It also includes participation in two studies, BIOMOVS (BIOspheric MOdel Validation Study) with the Swedish National Institute for Radiation Protection and VAMP (VAlidation of Model Predictions) with the International Atomic Energy Agency, that address testing the performance of models of radionuclide transport through foodchains.

  4. Biodosimetry and assessment of radiation dose

    PubMed Central

    Crespo, Rafael Herranz; Domene, Mercedes Moreno; Rodríguez, María Jesús Prieto

    2011-01-01

    Aim When investigating radiation accidents, it is very important to determine the exposition dose to the individuals. In the case of exposures over 1 Gy, clinicians may expect deterministic effects arising the following weeks and months, in these cases dose estimation will help physicians in the planning of therapy. Nevertheless, for doses below 1 Gy, biodosimetry data are important due to the risk of developing late stochastic effects. Finally, some accidental overexposures are lack of physical measurements and the only way of quantifying dose is by biological dosimetry. Background The analysis of chromosomal aberrations by different techniques is the most developed method of quantifying dose to individuals exposed to ionising radiations.1,2 Furthermore, the analysis of dicentric chromosomes observed in metaphases from peripheral lymphocytes is the routine technique used in case of acute exposures to assess radiation doses. Materials and methods Solid stain of chromosomes is used to determine dicentric yields for dose estimation. Fluorescence in situ hybridization (FISH) for translocations analysis is used when delayed sampling or suspected chronically irradiation dose assessment. Recommendations in technical considerations are based mainly in the IAEA Technical Report No. 405.2 Results Experience in biological dosimetry at Gregorio Marañón General Hospital is described, including own calibration curves used for dose estimation, background studies and real cases of overexposition. Conclusion Dose assessment by biological dosimeters requires a large previous standardization work and a continuous update. Individual dose assessment involves high qualification professionals and its long time consuming, therefore requires specific Centres. For large mass casualties cooperation among specialized Institutions is needed. PMID:24376970

  5. An updated dose assessment for Rongelap Island

    SciTech Connect

    Robison, W.L.; Conrado, C.L.; Bogen, K.T.

    1994-07-01

    We have updated the radiological dose assessment for Rongelap Island at Rongelap Atoll using data generated from field trips to the atoll during 1986 through 1993. The data base used for this dose assessment is ten fold greater than that available for the 1982 assessment. Details of each data base are presented along with details about the methods used to calculate the dose from each exposure pathway. The doses are calculated for a resettlement date of January 1, 1995. The maximum annual effective dose is 0.26 mSv y{sup {minus}1} (26 mrem y{sup {minus}1}). The estimated 30-, 50-, and 70-y integral effective doses are 0.0059 Sv (0.59 rem), 0.0082 Sv (0.82 rem), and 0.0097 Sv (0.97 rem), respectively. More than 95% of these estimated doses are due to 137-Cesium ({sup 137}Cs). About 1.5% of the estimated dose is contributed by 90-Strontium ({sup 90}Sr), and about the same amount each by 239+240-Plutonium ({sup 239+240}PU), and 241-Americium ({sup 241}Am).

  6. CANISTER HANDLING FACILITY WORKER DOSE ASSESSMENT

    SciTech Connect

    D.T. Dexheimer

    2004-02-27

    The purpose of this calculation is to estimate radiation doses received by personnel working in the Canister Handling Facility (CHF) performing operations to receive transportation casks, transfer wastes, prepare waste packages, perform associated equipment maintenance. The specific scope of work contained in this calculation covers individual worker group doses on an annual basis, and includes the contributions due to external and internal radiation. The results of this calculation will be used to support the design of the CHF and provide occupational dose estimates for the License Application.

  7. Assessing dose rate distributions in VMAT plans.

    PubMed

    Mackeprang, P-H; Volken, W; Terribilini, D; Frauchiger, D; Zaugg, K; Aebersold, D M; Fix, M K; Manser, P

    2016-04-21

    Dose rate is an essential factor in radiobiology. As modern radiotherapy delivery techniques such as volumetric modulated arc therapy (VMAT) introduce dynamic modulation of the dose rate, it is important to assess the changes in dose rate. Both the rate of monitor units per minute (MU rate) and collimation are varied over the course of a fraction, leading to different dose rates in every voxel of the calculation volume at any point in time during dose delivery. Given the radiotherapy plan and machine specific limitations, a VMAT treatment plan can be split into arc sectors between Digital Imaging and Communications in Medicine control points (CPs) of constant and known MU rate. By calculating dose distributions in each of these arc sectors independently and multiplying them with the MU rate, the dose rate in every single voxel at every time point during the fraction can be calculated. Independently calculated and then summed dose distributions per arc sector were compared to the whole arc dose calculation for validation. Dose measurements and video analysis were performed to validate the calculated datasets. A clinical head and neck, cranial and liver case were analyzed using the tool developed. Measurement validation of synthetic test cases showed linac agreement to precalculated arc sector times within ±0.4 s and doses ±0.1 MU (one standard deviation). Two methods for the visualization of dose rate datasets were developed: the first method plots a two-dimensional (2D) histogram of the number of voxels receiving a given dose rate over the course of the arc treatment delivery. In similarity to treatment planning system display of dose, the second method displays the dose rate as color wash on top of the corresponding computed tomography image, allowing the user to scroll through the variation over time. Examining clinical cases showed dose rates spread over a continuous spectrum, with mean dose rates hardly exceeding 100 cGy min(-1) for conventional fractionation

  8. Assessing dose rate distributions in VMAT plans

    NASA Astrophysics Data System (ADS)

    Mackeprang, P.-H.; Volken, W.; Terribilini, D.; Frauchiger, D.; Zaugg, K.; Aebersold, D. M.; Fix, M. K.; Manser, P.

    2016-04-01

    Dose rate is an essential factor in radiobiology. As modern radiotherapy delivery techniques such as volumetric modulated arc therapy (VMAT) introduce dynamic modulation of the dose rate, it is important to assess the changes in dose rate. Both the rate of monitor units per minute (MU rate) and collimation are varied over the course of a fraction, leading to different dose rates in every voxel of the calculation volume at any point in time during dose delivery. Given the radiotherapy plan and machine specific limitations, a VMAT treatment plan can be split into arc sectors between Digital Imaging and Communications in Medicine control points (CPs) of constant and known MU rate. By calculating dose distributions in each of these arc sectors independently and multiplying them with the MU rate, the dose rate in every single voxel at every time point during the fraction can be calculated. Independently calculated and then summed dose distributions per arc sector were compared to the whole arc dose calculation for validation. Dose measurements and video analysis were performed to validate the calculated datasets. A clinical head and neck, cranial and liver case were analyzed using the tool developed. Measurement validation of synthetic test cases showed linac agreement to precalculated arc sector times within  ±0.4 s and doses  ±0.1 MU (one standard deviation). Two methods for the visualization of dose rate datasets were developed: the first method plots a two-dimensional (2D) histogram of the number of voxels receiving a given dose rate over the course of the arc treatment delivery. In similarity to treatment planning system display of dose, the second method displays the dose rate as color wash on top of the corresponding computed tomography image, allowing the user to scroll through the variation over time. Examining clinical cases showed dose rates spread over a continuous spectrum, with mean dose rates hardly exceeding 100 cGy min-1 for conventional

  9. Considerations of beta and electron transport in internal dose calculations

    SciTech Connect

    Bolch, W.E.; Poston, J.W. Sr. . Dept. of Nuclear Engineering)

    1990-12-01

    Ionizing radiation has broad uses in modern science and medicine. These uses often require the calculation of energy deposition in the irradiated media and, usually, the medium of interest is the human body. Energy deposition from radioactive sources within the human body and the effects of such deposition are considered in the field of internal dosimetry. In July of 1988, a three-year research project was initiated by the Nuclear Engineering Department at Texas A M University under the sponsorship of the US Department of Energy. The main thrust of the research was to consider, for the first time, the detailed spatial transport of electron and beta particles in the estimation of average organ doses under the Medical Internal Radiation Dose (MIRD) schema. At the present time (December of 1990), research activities are continuing within five areas. Several are new initiatives begun within the second or third year of the current contract period. They include: (1) development of small-scale dosimetry; (2) development of a differential volume phantom; (3) development of a dosimetric bone model; (4) assessment of the new ICRP lung model; and (5) studies into the mechanisms of DNA damage. A progress report is given for each of these tasks within the Comprehensive Report. In each use, preliminary results are very encouraging and plans for further research are detailed within this document. 22 refs., 13 figs., 1 tab.

  10. Considerations of beta and electron transport in internal dose calculations

    SciTech Connect

    Bolch, W.E.; Poston, J.W. Sr.

    1990-12-01

    Ionizing radiation has broad uses in modern science and medicine. These uses often require the calculation of energy deposition in the irradiated media and, usually, the medium of interest is the human body. Energy deposition from radioactive sources within the human body and the effects of such deposition are considered in the field of internal dosimetry. In July of 1988, a three-year research project was initiated by the Nuclear Engineering Department at Texas A M University under the sponsorship of the US Department of Energy. The main thrust of the research was to consider, for the first time, the detailed spatial transport of electron and beta particles in the estimation of average organ doses under the Medical Internal Radiation Dose (MIRD) schema. At the present time (December of 1990), research activities are continuing within five areas. Several are new initiatives begun within the second or third year of the current contract period. They include: (1) development of small-scale dosimetry; (2) development of a differential volume phantom; (3) development of a dosimetric bone model; (4) assessment of the new ICRP lung model; and (5) studies into the mechanisms of DNA damage. A progress report is given for each of these tasks within the Comprehensive Report. In each case, preliminary results are very encouraging and plans for further research are detailed within this document.

  11. Daily radionuclide ingestion and internal radiation doses in Aomori prefecture, Japan.

    PubMed

    Ohtsuka, Yoshihito; Kakiuchi, Hideki; Akata, Naofumi; Takaku, Yuichi; Hisamatsu, Shun'ichi

    2013-10-01

    To assess internal annual dose in the general public in Aomori Prefecture, Japan, 80 duplicate cooked diet samples, equivalent to the food consumed over a 400-d period by one person, were collected from 100 volunteers in Aomori City and the village of Rokkasho during 2006–2010 and were analyzed for 11 radionuclides. To obtain average rates of ingestion of radionuclides, the volunteers were selected from among office, fisheries, agricultural, and livestock farm workers. Committed effective doses from ingestion of the diet over a 1-y period were calculated from the analytical results and from International Commission on Radiological Protection dose coefficients; for 40K, an internal effective dose rate from the literature was used. Fisheries workers had significantly higher combined internal annual dose than the other workers, possibly because of high rates of ingestion of marine products known to have high 210Po concentrations. The average internal dose rate, weighted by the numbers of households in each worker group in Aomori Prefecture, was estimated at 0.47 mSv y-1. Polonium-210 contributed 49% of this value. The sum of committed effective dose rates for 210Po, 210Pb, 228Ra, and 14C and the effective dose rate of 40K accounted for approximately 99% of the average internal dose rate. PMID:23982610

  12. Radiological assessment. A textbook on environmental dose analysis

    SciTech Connect

    Till, J.E.; Meyer, H.R.

    1983-09-01

    Radiological assessment is the quantitative process of estimating the consequences to humans resulting from the release of radionuclides to the biosphere. It is a multidisciplinary subject requiring the expertise of a number of individuals in order to predict source terms, describe environmental transport, calculate internal and external dose, and extrapolate dose to health effects. Up to this time there has been available no comprehensive book describing, on a uniform and comprehensive level, the techniques and models used in radiological assessment. Radiological Assessment is based on material presented at the 1980 Health Physics Society Summer School held in Seattle, Washington. The material has been expanded and edited to make it comprehensive in scope and useful as a text. Topics covered include (1) source terms for nuclear facilities and Medical and Industrial sites; (2) transport of radionuclides in the atmosphere; (3) transport of radionuclides in surface waters; (4) transport of radionuclides in groundwater; (5) terrestrial and aquatic food chain pathways; (6) reference man; a system for internal dose calculations; (7) internal dosimetry; (8) external dosimetry; (9) models for special-case radionuclides; (10) calculation of health effects in irradiated populations; (11) evaluation of uncertainties in environmental radiological assessment models; (12) regulatory standards for environmental releases of radionuclides; (13) development of computer codes for radiological assessment; and (14) assessment of accidental releases of radionuclides.

  13. Assessment of doses to game animals in Finland.

    PubMed

    Vetikko, Virve; Kostiainen, Eila

    2013-11-01

    A study was carried out to assess the dose rates to game animals in Finland affected by the radioactive caesium deposition that occurred after the accident at the Chernobyl nuclear power plant in Ukraine in 1986. The aim of this assessment was to obtain new information on the dose rates to mammals and birds under Finnish conditions. Dose rates were calculated using the ERICA Assessment Tool developed within the EC 6th Framework Programme. The input data consisted of measured activity concentrations of (137)Cs and (134)Cs in soil and lake water samples and in flesh samples of selected animal species obtained for environmental monitoring. The study sites were located in the municipality of Lammi, Southern Finland, where the average (137)Cs deposition was 46.5 kBq m(-2) (1 October 1987). The study sites represented the areas receiving the highest deposition in Finland after the Chernobyl accident. The selected species included moose (Alces alces), arctic hare (Lepus timidus) and several bird species: black grouse (Tetrao tetrix), hazel hen (Bonasia bonasia), mallard (Anas platurhynchos), goldeneye (Bucephala clangula) and teal (Anas crecca). For moose, dose rates were calculated for the years 1986-1990 and for the 2000s. For all other species, maximal measured activity concentrations were used. The results showed that the dose rates to these species did not exceed the default screening level of 10 μGy h(-1) used as a protection criterion. The highest total dose rate (internal and external summed), 3.7 μGy h(-1), was observed for the arctic hare in 1986. Although the dose rate of 3.7 μGy h(-1) cannot be considered negligible given the uncertainties involved in predicting the dose rates, the possible harmful effects related to this dose rate are too small to be assessed based on current knowledge on the biological effects of low doses in mammals.

  14. Assessments for High Dose Radionuclide Therapy Treatment Planning

    SciTech Connect

    Fisher, Darrell R.

    2003-10-01

    Advances in the biotechnology of cell-specific targeting of cancer, and the increased number of clinical trials involving treatment of cancer patients with radiolabeled antibodies, peptides, and similar delivery vehicles have led to an increase in the number of high-dose radionuclide therapy procedures. Optimized radionuclide therapy for cancer treatment is based on the concept of absorbed dose to the dose-limiting normal organ or tissue. The limiting normal tissue is often the red marrow, but it may sometimes be lungs, liver, intestinal tract, or kidneys. Appropriate treatment planning requires assessment of radiation dose to several internal organs and tissues, and usually involves biodistribution studies in the patient using a tracer amount of radionuclide bound to the targeting agent and imaged at sequential time points using a planar gamma camera. Time-activity curves are developed from the imaging data for the major organs tissues of concern, for the whole body, and sometimes for selected tumors. Patient-specific factors often require that dose estimates be customized for each patient. The Food and Drug Administration regulates the experimental use of investigational new drugs and requires reasonable calculation of radiation absorbed dose to the whole body and to critical organs using methods prescribed by the Medical Internal Radiation Dose (MIRD) Committee of the Society of Nuclear Medicine. Review of high-dose studies in the U.S. and elsewhere shows that 1) some studies are conducted with minimal dosimetry, 2) the marrow dose is difficult to establish and is subject to large uncertainties, and 3) despite the general availability of MIRD software, internal dosimetry methods are often inconsistent from one clinical center to another.

  15. Risk assessment in international operations

    SciTech Connect

    Stricklin, Daniela L.

    2008-11-15

    During international peace-keeping missions, a diverse number of non-battle hazards may be encountered, which range from heavily polluted areas, endemic disease, toxic industrial materials, local violence, traffic, and even psychological factors. Hence, elevated risk levels from a variety of sources are encountered during deployments. With the emphasis within the Swedish military moving from national defense towards prioritization of international missions in atypical environments, the risk of health consequences, including long term health effects, has received greater consideration. The Swedish military is interested in designing an optimal approach for assessment of health threats during deployments. The Medical Intelligence group at FOI CBRN Security and Defence in Umea has, on request from and in collaboration with the Swedish Armed Forces, reviewed a variety of international health threat and risk assessment models for military operations. Application of risk assessment methods used in different phases of military operations will be reviewed. An overview of different international approaches used in operational risk management (ORM) will be presented as well as a discussion of the specific needs and constraints for health risk assessment in military operations. This work highlights the specific challenges of risk assessment that are unique to the deployment setting such as the assessment of exposures to a variety of diverse hazards concurrently.

  16. Risk assessment in international operations.

    PubMed

    Stricklin, Daniela L

    2008-11-15

    During international peace-keeping missions, a diverse number of non-battle hazards may be encountered, which range from heavily polluted areas, endemic disease, toxic industrial materials, local violence, traffic, and even psychological factors. Hence, elevated risk levels from a variety of sources are encountered during deployments. With the emphasis within the Swedish military moving from national defense towards prioritization of international missions in atypical environments, the risk of health consequences, including long term health effects, has received greater consideration. The Swedish military is interested in designing an optimal approach for assessment of health threats during deployments. The Medical Intelligence group at FOI CBRN Security and Defence in Umeå has, on request from and in collaboration with the Swedish Armed Forces, reviewed a variety of international health threat and risk assessment models for military operations. Application of risk assessment methods used in different phases of military operations will be reviewed. An overview of different international approaches used in operational risk management (ORM) will be presented as well as a discussion of the specific needs and constraints for health risk assessment in military operations. This work highlights the specific challenges of risk assessment that are unique to the deployment setting such as the assessment of exposures to a variety of diverse hazards concurrently. PMID:18325560

  17. DRY TRANSFER FACILITY WORKER DOSE ASSESSMENT

    SciTech Connect

    J.S. Tang

    2004-09-23

    The purpose of this calculation is to estimate radiation doses received by personnel working in the Dry Transfer Facility No.1 (DTF-1) performing operations to receive transportation casks, transfer wastes, prepare waste packages, and ship out loaded waste packages and empty casks. Doses received by workers due to maintenance operations are also included in this revision. The specific scope of work contained in this calculation covers both collective doses and individual worker group doses on an annual basis, and includes the contributions due to external and internal radiation from normal operation, excluding the remediation area of the building. The results of this calculation will be used to support the design of the DTF-1 and to provide occupational dose estimates for the License Application. The calculations contained in this document were developed by Environmental and Nuclear Engineering of the Design and Engineering Organization and are intended solely for the use of the Design and Engineering Organization in its work regarding facility operation. Yucca Mountain Project personnel from the Environmental and Nuclear Engineering should be consulted before use of the calculations for purposes other than those stated herein or use by individuals other than authorized personnel in the Environmental and Nuclear Engineering.

  18. Ivermectin dose assessment without weighing scales.

    PubMed Central

    Alexander, N. D.; Cousens, S. N.; Yahaya, H.; Abiose, A.; Jones, B. R.

    1993-01-01

    Described are two alternatives to the weighing of patients for assessing the dose of ivermectin for use in mass chemotherapy campaigns against onchocerciasis. The first method uses height to separate patients into four dosing categories (1/2, 1, 11/2 and 2 tablets), while the second involves estimating one of these dosing categories according to an individual's physical appearance, without making any measurements. Data for the height-based method were obtained from 6373 people who were taking part in a placebo-controlled trial of ivermectin in northern Nigeria. Use of an arbitrary trade-off of approximately 100 people "overdosed" for every person "underdosed" would lead to 0.5% of the population being underdosed by 1/2 tablet, 46.5% being dosed correctly, 51.7% being overdosed by 1/2 tablet, and 1.2% being overdosed by 1 tablet. The physical appearance approach involved three observers and 779 subjects. A total of 82% of the observers' estimates were "correct", with all the incorrect dosing deviating by only 1/2 tablet from the dose that the subjects should have received. PMID:8324855

  19. Dose estimates for the solid waste performance assessment

    SciTech Connect

    Rittman, P.D.

    1994-08-30

    The Solid Waste Performance Assessment calculations by PNL in 1990 were redone to incorporate changes in methods and parameters since then. The ten scenarios found in their report were reduced to three, the Post-Drilling Resident, the Post-Excavation Resident, and an All Pathways Irrigator. In addition, estimates of population dose to people along the Columbia River are also included. The attached report describes the methods and parameters used in the calculations, and derives dose factors for each scenario. In addition, waste concentrations, ground water concentrations, and river water concentrations needed to reach the performance objectives of 100 mrem/yr and 500 person-rem/yr are computed. Internal dose factors from DOE-0071 were applied when computing internal dose. External dose rate factors came from the GENII Version 1.485 software package. Dose calculations were carried out on a spreadsheet. The calculations are described in detail in the report for 63 nuclides, including 5 not presently in the GENII libraries. The spreadsheet calculations were checked by comparison with GENII, as described in Appendix D.

  20. Computed Tomography: Image and Dose Assessment

    NASA Astrophysics Data System (ADS)

    Valencia-Ortega, F.; Ruiz-Trejo, C.; Rodríguez-Villafuerte, M.; Buenfil, A. E.; Mora-Hernández, L. A.

    2006-09-01

    In this work an experimental evaluation of image quality and dose imparted during a computed tomography study in a Public Hospital in Mexico City is presented; The measurements required the design and construction of two phantoms at the Institute of Physics, UNAM, according to the recommendations of American Association of Physicists in Medicine (AAPM). Image assessment was performed in terms the spatial resolution and image contrast. Dose measurements were carried out using LiF: Mg,Ti (TLD-100) dosemeters and pencil-shaped ionisation chamber; The results for a computed tomography head study in single and multiple detector modes are presented.

  1. Reassessing benzene risks using internal doses and Monte-Carlo uncertainty analysis.

    PubMed Central

    Cox, L A

    1996-01-01

    Human cancer risks from benzene have been estimated from epidemiological data, with supporting evidence from animal bioassay data. This article reexamines the animal-based risk assessments using physiologically based pharmacokinetic (PBPK) models of benzene metabolism in animals and humans. Internal doses (total benzene metabolites) from oral gavage experiments in mice are well predicted by the PBPK model. Both the data and the PBPK model outputs are also well described by a simple nonlinear (Michaelis-Menten) regression model, as previously used by Bailer and Hoel [Metabolite-based internal doses used in risk assessment of benzene. Environ Health Perspect 82:177-184 (1989)]. Refitting the multistage model family to internal doses changes the maximum-likelihood estimate (MLE) dose-response curve for mice from linear-quadratic to purely cubic, so that low-dose risk estimates are smaller than in previous risk assessments. In contrast to Bailer and Hoel's findings using interspecies dose conversion, the use of internal dose estimates for humans from a PBPK model reduces estimated human risks at low doses. Sensitivity analyses suggest that the finding of a nonlinear MLE dose-response curve at low doses is robust to changes in internal dose definitions and more consistent with epidemiological data than earlier risk models. A Monte-Carlo uncertainty analysis based on maximum-entropy probabilities and Bayesian conditioning is used to develop an entire probability distribution for the true but unknown dose-response function. This allows the probability of a positive low-dose slope to be quantified: It is about 10%. An upper 95% confidence limit on the low-dose slope of excess risk is also obtained directly from the posterior distribution and is similar to previous q1* values. This approach suggests that the excess risk due to benzene exposure may be nonexistent (or even negative) at sufficiently low doses. Two types of biological information about benzene effects

  2. Two Realistic Beagle Models for Dose Assessment.

    PubMed

    Stabin, Michael G; Kost, Susan D; Segars, William P; Guilmette, Raymond A

    2015-09-01

    Previously, the authors developed a series of eight realistic digital mouse and rat whole body phantoms based on NURBS technology to facilitate internal and external dose calculations in various species of rodents. In this paper, two body phantoms of adult beagles are described based on voxel images converted to NURBS models. Specific absorbed fractions for activity in 24 organs are presented in these models. CT images were acquired of an adult male and female beagle. The images were segmented, and the organs and structures were modeled using NURBS surfaces and polygon meshes. Each model was voxelized at a resolution of 0.75 × 0.75 × 2 mm. The voxel versions were implemented in GEANT4 radiation transport codes to calculate specific absorbed fractions (SAFs) using internal photon and electron sources. Photon and electron SAFs were then calculated for relevant organs in both models. The SAFs for photons and electrons were compatible with results observed by others. Absorbed fractions for electrons for organ self-irradiation were significantly less than 1.0 at energies above 0.5 MeV, as expected for many of these small-sized organs, and measurable cross irradiation was observed for many organ pairs for high-energy electrons (as would be emitted by nuclides like 32P, 90Y, or 188Re). The SAFs were used with standardized decay data to develop dose factors (DFs) for radiation dose calculations using the RADAR Method. These two new realistic models of male and female beagle dogs will be useful in radiation dosimetry calculations for external or internal simulated sources. PMID:26222214

  3. Gamma dose from activation of internal shields in IRIS reactor.

    PubMed

    Agosteo, Stefano; Cammi, Antonio; Garlati, Luisella; Lombardi, Carlo; Padovani, Enrico

    2005-01-01

    The International Reactor Innovative and Secure is a modular pressurised water reactor with an integral design. This means that all the primary system components, such as the steam generators, pumps, pressuriser and control rod drive mechanisms, are located inside the reactor vessel, which requires a large diameter. For the sake of better reliability and safety, it is desirable to achieve the reduction of vessel embrittlement as well as the lowering of the dose beyond the vessel. The former can be easily accomplished by the presence of a wide downcomer, filled with water, which surrounds the core region, while the latter needs the presence of additional internal shields. An optimal shielding configuration is under investigation, for reducing the ex-vessel dose due to activated internals and for limiting the amount of the biological shielding. MCNP 4C calculations were performed to evaluate the neutron and the gamma dose during operation and the 60Co activation of various shields configurations. The gamma dose beyond the vessel from activation of its structural components was estimated in a shutdown condition, with the Monte Carlo code FLUKA 2002 and the MicroShield software. The results of the two codes are in agreement and show that the dose is sufficiently low, even without an additional shield.

  4. Multi-component assessment of chronic obstructive pulmonary disease: an evaluation of the ADO and DOSE indices and the global obstructive lung disease categories in international primary care data sets.

    PubMed

    Jones, Rupert C; Price, David; Chavannes, Niels H; Lee, Amanda J; Hyland, Michael E; Ställberg, Björn; Lisspers, Karin; Sundh, Josefin; van der Molen, Thys; Tsiligianni, Ioanna

    2016-04-07

    Suitable tools for assessing the severity of chronic obstructive pulmonary disease (COPD) include multi-component indices and the global initiative for chronic obstructive lung disease (GOLD) categories. The aim of this study was to evaluate the dyspnoea, obstruction, smoking, exacerbation (DOSE) and the age, dyspnoea, obstruction (ADO) indices and GOLD categories as measures of current health status and future outcomes in COPD patients. This was an observational cohort study comprising 5,114 primary care COPD patients across three databases from UK, Sweden and Holland. The associations of DOSE and ADO indices with (i) health status using the Clinical COPD Questionnaire (CCQ) and St George's Respiratory Questionnaire (SGRQ) and COPD Assessment test (CAT) and with (ii) current and future exacerbations, admissions and mortality were assessed in GOLD categories and DOSE and ADO indices. DOSE and ADO indices were significant predictors of future exacerbations: incident rate ratio was 1.52 (95% confidence intervals 1.46-1.57) for DOSE, 1.16 (1.12-1.20) for ADO index and 1.50 (1.33-1.68) and 1.23 (1.10-1.39), respectively, for hospitalisations. Negative binomial regression showed that the DOSE index was a better predictor of future admissions than were its component items. The hazard ratios for mortality were generally higher for ADO index groups than for DOSE index groups. The GOLD categories produced widely differing assessments for future exacerbation risk or for hospitalisation depending on the methods used to calculate them. None of the assessment systems were excellent at predicting future risk in COPD; the DOSE index appears better than the ADO index for predicting many outcomes, but not mortality. The GOLD categories predict future risk inconsistently. The DOSE index and the GOLD categories using exacerbation frequency may be used to identify those at high risk for exacerbations and admissions.

  5. Dose Calculation Evolution for Internal Organ Irradiation in Humans

    SciTech Connect

    Jimenez V, Reina A.

    2007-10-26

    The International Commission of Radiation Units (ICRU) has established through the years, a discrimination system regarding the security levels on the prescription and administration of doses in radiation treatments (Radiotherapy, Brach therapy, Nuclear Medicine). The first level is concerned with the prescription and posterior assurance of dose administration to a point of interest (POI), commonly located at the geometrical center of the region to be treated. In this, the effects of radiation around that POI, is not a priority. The second level refers to the dose specifications in a particular plane inside the patient, mostly the middle plane of the lesion. The dose is calculated to all the structures in that plane regardless if they are tumor or healthy tissue. In this case, the dose is not represented by a point value, but by level curves called 'isodoses' as in a topographic map, so you can assure the level of doses to this particular plane, but it also leave with no information about how this values go thru adjacent planes. This is why the third level is referred to the volumetrical description of doses so these isodoses construct now a volume (named 'cloud') that give us better assurance about tissue irradiation around the volume of the lesion and its margin (sub clinical spread or microscopic illness). This work shows how this evolution has resulted, not only in healthy tissue protection improvement but in a rise of tumor control, quality of life, better treatment tolerance and minimum permanent secuelae.

  6. Assessment of dose during an SGTR

    SciTech Connect

    Adams, J.P.

    1993-01-01

    The Nuclear Regulatory Commission requires utilities to determine the response of a pressurized water reactor to a steam generator tube rupture (SGTR) as part of the safety analysis for the plant. The SGTR analysis includes assumptions regarding the iodine concentration in the reactor coolant system (RCS) due to iodine spikes, primary flashing and bypass fractions, and iodine partitioning in the secondary coolant system (SCS). Experimental and analytical investigations have recently been completed wherein these assumptions were tested to determine whether and to what degree they were conservative (that is, whether they result in a calculated iodine source term/dose that is at least as large or larger than that expected during an actual event). The current study has the objective to assess the overall effects of the results of these investigations on the calculated iodine dose to the environment during an SGTR. To assist in this study, a computer program, DOSE, was written. This program uses a simple, non-mechanistic model to calculate the iodine source term to the environment during an SGTR as a function of water mass inventories and flow rates and iodine concentrations in the RCS and SCS. The principal conclusion of this study is that the iodine concentration in the RCS is the dominant parameter, due to the dominance of primary flashing on the iodine source term.

  7. Dose assessment of aircrew using passive detectors.

    PubMed

    Hajek, M; Berger, T; Schöner, W; Summerer, L; Vana, N

    2002-01-01

    Radiation exposure of aircrew is a serious concern which has been given special emphasis in the European Council directive 96/29/Euratom. The cosmic ray induced neutron component can contribute more than 50% to the biologically relevant dose at aviation altitudes. Various computational approaches to route dose assessment, e.g. CARI, are in use nowadays and are compared with experimental data. Measurements of aircrew exposure usually involve extensive instrumentation in order to cover the whole particle spectrum and energy range present inside aircraft. Due to their small size and easy handling, thermoluminescence dosemeters represent an appropriate alternative. Previous measurements onboard aircraft applying the high-temperature ratio method with LiF:Mg,Ti dosemeters for the determination of an 'averaged' linear energy transfer of mixed radiation fields demonstrate the ability of this method to evaluate the dose equivalent, according to the Q(LETinfinity) relationship proposed by the ICRP. Measurements with CaF2:Tm dosemeters are currently in progress and are discussed here.

  8. Internal dose conversion factors for calculation of dose to the public

    SciTech Connect

    Not Available

    1988-07-01

    This publication contains 50-year committed dose equivalent factors, in tabular form. The document is intended to be used as the primary reference by the US Department of Energy (DOE) and its contractors for calculating radiation dose equivalents for members of the public, resulting from ingestion or inhalation of radioactive materials. Its application is intended specifically for such materials released to the environment during routine DOE operations, except in those instances where compliance with 40 CFR 61 (National Emission Standards for Hazardous Air Pollutants) requires otherwise. However, the calculated values may be equally applicable to unusual releases or to occupational exposures. The use of these committed dose equivalent tables should ensure that doses to members of the public from internal exposures are calculated in a consistent manner at all DOE facilities.

  9. Assessment of out-of-field absorbed dose and equivalent dose in proton fields

    SciTech Connect

    Clasie, Ben; Wroe, Andrew; Kooy, Hanne; Depauw, Nicolas; Flanz, Jay; Paganetti, Harald; Rosenfeld, Anatoly

    2010-01-15

    . Conclusions: The dose deposited immediately downstream of the primary field, in these cases, is dominated by internally produced neutrons; therefore, scattered and scanned fields may have similar risk of second cancer in this region. The authors confirm that there is a reduction in the out-of-field dose in active scanning but the effect decreases with depth. GEANT4 is suitable for simulating the dose deposited outside the primary field. The agreement with measurements is comparable to or better than the agreement reported for other implementations of Monte Carlo models. Depending on the position, the absorbed dose outside the primary field is dominated by contributions from primary protons that may or may not have scattered in the brass collimating devices. This is noteworthy as the quality factor of the low LET protons is well known and the relative dose risk in this region can thus be assessed accurately.

  10. Preliminary dose assessment of the Chernobyl accident

    SciTech Connect

    Hull, A.P.

    1987-01-01

    From the major accident at Unit 4 of the Chernobyl nuclear power station, a plume of airborne radioactive fission products was initially carried northwesterly toward Poland, thence toward Scandinavia and into Central Europe. Reports of the levels of radioactivity in a variety of media and of external radiation levels were collected in the Department of Energy's Emergency Operations Center and compiled into a data bank. Portions of these and other data which were obtained directly from published and official reports were utilized to make a preliminary assessment of the extent and magnitude of the external dose to individuals downwind from Chernobyl. Radioactive /sup 131/I was the predominant fission product. The time of arrival of the plume and the maximum concentrations of /sup 131/I in air, vegetation and milk and the maximum reported depositions and external radiation levels have been tabulated country by country. A large amount of the total activity in the release was apparently carried to a significant elevation. The data suggest that in areas where rainfall occurred, deposition levels were from ten to one-hundred times those observed in nearby ''dry'' locations. Sufficient spectral data were obtained to establish average release fractions and to establish a reference spectra of the other nuclides in the release. Preliminary calculations indicated that the collective dose equivalent to the population in Scandinavia and Central Europe during the first year after the Chernobyl accident would be about 8 x 10/sup 6/ person-rem. From the Soviet report, it appears that a first year population dose of about 2 x 10/sup 7/ person-rem (2 x 10/sup 5/ Sv) will be received by the population who were downwind of Chernobyl within the U.S.S.R. during the accident and its subsequent releases over the following week. 32 refs., 14 figs., 20 tabs.

  11. Interactive Rapid Dose Assessment Model (IRDAM): scenarios for comparing dose-assessment models. Vol. 3

    SciTech Connect

    Poeton, R.W.; Moeller, M.P.; Laughlin, G.J.; Desrosiers, A.E.

    1983-05-01

    The Interactive Rapid Dose Assessment Model (IRDAM) is a micro-computer based program designed to provide rapid assessments of the radiological impact of accidents at nuclear power plants. The main body of this document consists of 28 examples of IRDAM input and output, representing various types of accidents and releases. These examples are intended to provide a basis for comparison with other models or for testing IRDAM itself. Figures are included which show dose rates calculated by IRDAM for each scenario. Figures are also included which show calculations made using the computer codes WRAITH (Scherpelz, Borst and Hoenes, 1980) and RADPUR (Dabbert, et. al., 1982). Two other companion volumes to this one provide additional information on IRDAM. The User's Guide (NUREG/CR-3012, Volume 1) describes the setup and operation of equipment necessary to run IRDAM. Reactor Accident Assessment Methods (NUREG/CR-3012, Volume 2) describes the technical bases for IRDAM including methods, models and assumptions used in calculations.

  12. Construction of Taiwanese Adult Reference Phantoms for Internal Dose Evaluation.

    PubMed

    Chang, Shu-Jun; Hung, Shih-Yen; Liu, Yan-Lin; Jiang, Shiang-Huei

    2016-01-01

    In the internal dose evaluation, the specific absorbed fraction (SAF) and S-value are calculated from the reference phantom based on Caucasian data. The differences in height and weight between Caucasian and Asian may lead to inaccurate dose estimation. In this study, we developed the Taiwanese reference phantoms. 40 volunteers were recruited. Magnetic resonance images (MRI) were obtained, and the contours of 15 organs were drawn. The Taiwanese reference man (TRM) and Taiwanese reference woman (TRW) were constructed. For the SAF calculation, the differences in the self-absorption SAF (self-SAF) between the TRM, TRW, and Oak Ridge National Laboratory (ORNL) adult phantom were less than 10% when the difference in organ mass was less than 20%. The average SAF from liver to pancreas of TRM was 38% larger than that of the ORNL adult phantom, and the result of TRW was 2.02 times higher than that of the ORNL adult phantom. For the S-value calculation, the ratios of TRW and ORNL adult phantom ranged from 0.91 to 1.57, and the ratios of TRM and ORNL adult phantom ranged from 1.04 to 2.29. The SAF and S-value results were dominantly affected by the height, weight, organ mass, and geometric relationship between organs. By using the TRM and TRW, the accuracy of internal dose evaluation can be increased for radiation protection and nuclear medicine.

  13. Construction of Taiwanese Adult Reference Phantoms for Internal Dose Evaluation

    PubMed Central

    Chang, Shu-Jun; Hung, Shih-Yen; Liu, Yan-Lin; Jiang, Shiang-Huei

    2016-01-01

    In the internal dose evaluation, the specific absorbed fraction (SAF) and S-value are calculated from the reference phantom based on Caucasian data. The differences in height and weight between Caucasian and Asian may lead to inaccurate dose estimation. In this study, we developed the Taiwanese reference phantoms. 40 volunteers were recruited. Magnetic resonance images (MRI) were obtained, and the contours of 15 organs were drawn. The Taiwanese reference man (TRM) and Taiwanese reference woman (TRW) were constructed. For the SAF calculation, the differences in the self-absorption SAF (self-SAF) between the TRM, TRW, and Oak Ridge National Laboratory (ORNL) adult phantom were less than 10% when the difference in organ mass was less than 20%. The average SAF from liver to pancreas of TRM was 38% larger than that of the ORNL adult phantom, and the result of TRW was 2.02 times higher than that of the ORNL adult phantom. For the S-value calculation, the ratios of TRW and ORNL adult phantom ranged from 0.91 to 1.57, and the ratios of TRM and ORNL adult phantom ranged from 1.04 to 2.29. The SAF and S-value results were dominantly affected by the height, weight, organ mass, and geometric relationship between organs. By using the TRM and TRW, the accuracy of internal dose evaluation can be increased for radiation protection and nuclear medicine. PMID:27618708

  14. Construction of Taiwanese Adult Reference Phantoms for Internal Dose Evaluation.

    PubMed

    Chang, Shu-Jun; Hung, Shih-Yen; Liu, Yan-Lin; Jiang, Shiang-Huei

    2016-01-01

    In the internal dose evaluation, the specific absorbed fraction (SAF) and S-value are calculated from the reference phantom based on Caucasian data. The differences in height and weight between Caucasian and Asian may lead to inaccurate dose estimation. In this study, we developed the Taiwanese reference phantoms. 40 volunteers were recruited. Magnetic resonance images (MRI) were obtained, and the contours of 15 organs were drawn. The Taiwanese reference man (TRM) and Taiwanese reference woman (TRW) were constructed. For the SAF calculation, the differences in the self-absorption SAF (self-SAF) between the TRM, TRW, and Oak Ridge National Laboratory (ORNL) adult phantom were less than 10% when the difference in organ mass was less than 20%. The average SAF from liver to pancreas of TRM was 38% larger than that of the ORNL adult phantom, and the result of TRW was 2.02 times higher than that of the ORNL adult phantom. For the S-value calculation, the ratios of TRW and ORNL adult phantom ranged from 0.91 to 1.57, and the ratios of TRM and ORNL adult phantom ranged from 1.04 to 2.29. The SAF and S-value results were dominantly affected by the height, weight, organ mass, and geometric relationship between organs. By using the TRM and TRW, the accuracy of internal dose evaluation can be increased for radiation protection and nuclear medicine. PMID:27618708

  15. Shuttle radiation dose measurements in the International Space Station orbits

    NASA Technical Reports Server (NTRS)

    Badhwar, Gautam D.

    2002-01-01

    The International Space Station (ISS) is now a reality with the start of a permanent human presence on board. Radiation presents a serious risk to the health and safety of the astronauts, and there is a clear requirement for estimating their exposures prior to and after flights. Predictions of the dose rate at times other than solar minimum or solar maximum have not been possible, because there has been no method to calculate the trapped-particle spectrum at intermediate times. Over the last few years, a tissue-equivalent proportional counter (TEPC) has been flown at a fixed mid-deck location on board the Space Shuttle in 51.65 degrees inclination flights. These flights have provided data that cover the expected changes in the dose rates due to changes in altitude and changes in solar activity from the solar minimum to the solar maximum of the current 23rd solar cycle. Based on these data, a simple function of the solar deceleration potential has been derived that can be used to predict the galactic cosmic radiation (GCR) dose rates to within +/-10%. For altitudes to be covered by the ISS, the dose rate due to the trapped particles is found to be a power-law function, rho(-2/3), of the atmospheric density, rho. This relationship can be used to predict trapped dose rates inside these spacecraft to +/-10% throughout the solar cycle. Thus, given the shielding distribution for a location inside the Space Shuttle or inside an ISS module, this approach can be used to predict the combined GCR + trapped dose rate to better than +/-15% for quiet solar conditions.

  16. Shuttle radiation dose measurements in the International Space Station orbits.

    PubMed

    Badhwar, Gautam D

    2002-01-01

    The International Space Station (ISS) is now a reality with the start of a permanent human presence on board. Radiation presents a serious risk to the health and safety of the astronauts, and there is a clear requirement for estimating their exposures prior to and after flights. Predictions of the dose rate at times other than solar minimum or solar maximum have not been possible, because there has been no method to calculate the trapped-particle spectrum at intermediate times. Over the last few years, a tissue-equivalent proportional counter (TEPC) has been flown at a fixed mid-deck location on board the Space Shuttle in 51.65 degrees inclination flights. These flights have provided data that cover the expected changes in the dose rates due to changes in altitude and changes in solar activity from the solar minimum to the solar maximum of the current 23rd solar cycle. Based on these data, a simple function of the solar deceleration potential has been derived that can be used to predict the galactic cosmic radiation (GCR) dose rates to within +/-10%. For altitudes to be covered by the ISS, the dose rate due to the trapped particles is found to be a power-law function, rho(-2/3), of the atmospheric density, rho. This relationship can be used to predict trapped dose rates inside these spacecraft to +/-10% throughout the solar cycle. Thus, given the shielding distribution for a location inside the Space Shuttle or inside an ISS module, this approach can be used to predict the combined GCR + trapped dose rate to better than +/-15% for quiet solar conditions.

  17. Perspectives on Numeracy: Reflections from International Assessments

    ERIC Educational Resources Information Center

    Tout, Dave; Gal, Iddo

    2015-01-01

    This paper examines perspectives regarding the mathematical skills expected of adults and school graduates, comparing ideas developed as part of two major multinational comparative assessments of skills: the Programme for International Student Assessment and the Programme for International Assessment of Adult Competencies (also known as the OECD…

  18. International assessment of PCA codes

    SciTech Connect

    Neymotin, L.; Lui, C.; Glynn, J.; Archarya, S.

    1993-11-01

    Over the past three years (1991-1993), an extensive international exercise for intercomparison of a group of six Probabilistic Consequence Assessment (PCA) codes was undertaken. The exercise was jointly sponsored by the Commission of European Communities (CEC) and OECD Nuclear Energy Agency. This exercise was a logical continuation of a similar effort undertaken by OECD/NEA/CSNI in 1979-1981. The PCA codes are currently used by different countries for predicting radiological health and economic consequences of severe accidents at nuclear power plants (and certain types of non-reactor nuclear facilities) resulting in releases of radioactive materials into the atmosphere. The codes participating in the exercise were: ARANO (Finland), CONDOR (UK), COSYMA (CEC), LENA (Sweden), MACCS (USA), and OSCAAR (Japan). In parallel with this inter-code comparison effort, two separate groups performed a similar set of calculations using two of the participating codes, MACCS and COSYMA. Results of the intercode and inter-MACCS comparisons are presented in this paper. The MACCS group included four participants: GREECE: Institute of Nuclear Technology and Radiation Protection, NCSR Demokritos; ITALY: ENEL, ENEA/DISP, and ENEA/NUC-RIN; SPAIN: Universidad Politecnica de Madrid (UPM) and Consejo de Seguridad Nuclear; USA: Brookhaven National Laboratory, US NRC and DOE.

  19. 241Am INGROWTH AND ITS EFFECT ON INTERNAL DOSE.

    PubMed

    Konzen, Kevin

    2016-07-01

    Generally, plutonium has been manufactured to support commercial and military applications involving heat sources, weapons, and reactor fuel. This work focuses on three typical plutonium mixtures while observing the potential of Am ingrowth and its effect on internal dose. The term "ingrowth" is used to describe Am production due solely to the decay of Pu as part of a plutonium mixture, where it is initially absent or present in a smaller quantity. Dose calculation models do not account for Am ingrowth unless the Pu quantity is specified. This work suggested that Am ingrowth be considered in bioassay analysis when there is a potential of a 10% increase to the individual's committed effective dose. It was determined that plutonium fuel mixtures, initially absent of Am, would likely exceed 10% for typical reactor grade fuel aged less than 30 y; however, heat source grade and aged weapons grade fuel would normally fall below this threshold. Although this work addresses typical plutonium mixtures following separation, it may be extended to irradiated commercial uranium fuel and is expected to be a concern in the recycling of spent fuel. PMID:27218291

  20. 241Am INGROWTH AND ITS EFFECT ON INTERNAL DOSE.

    PubMed

    Konzen, Kevin

    2016-07-01

    Generally, plutonium has been manufactured to support commercial and military applications involving heat sources, weapons, and reactor fuel. This work focuses on three typical plutonium mixtures while observing the potential of Am ingrowth and its effect on internal dose. The term "ingrowth" is used to describe Am production due solely to the decay of Pu as part of a plutonium mixture, where it is initially absent or present in a smaller quantity. Dose calculation models do not account for Am ingrowth unless the Pu quantity is specified. This work suggested that Am ingrowth be considered in bioassay analysis when there is a potential of a 10% increase to the individual's committed effective dose. It was determined that plutonium fuel mixtures, initially absent of Am, would likely exceed 10% for typical reactor grade fuel aged less than 30 y; however, heat source grade and aged weapons grade fuel would normally fall below this threshold. Although this work addresses typical plutonium mixtures following separation, it may be extended to irradiated commercial uranium fuel and is expected to be a concern in the recycling of spent fuel.

  1. Expanding the role of internal facility assessments

    SciTech Connect

    Kolpa, R.L.; Levenson, J.B.; Weaver, M.A.

    1996-05-01

    The US Air Force (USAF) Environmental Compliance Assessment and Management Program (ECAMP) is an effective and comprehensive system to evaluate environmental compliance at individual USAF installations. The ECAMP assessment is typically performed by a team of experts from the installation`s Major Command (MAJCOM) Headquarters, and is often augmented with technical contractor support. As directed by Air Force policy, an external ECAMP assessment is required at a minimum of every three years for each installation. In the intervening years, each installation is required to perform an internal ECAMP assessment, with its own personnel and resources. Even though team composition differs, the internal and external ECAMP assessments are likely to be very similar in scope, objectives, and deliverables. For over nine years, Argonne National Laboratory (ANL) has supported several Air Force MAJCOMs in performing their external ECAMP assessments. More recently, ANL has also had the opportunity to provide technical support and training at individual installations during their preparation and conduct of internal ECAMP assessments. From that experience, the authors have learned that the quality and value of the internal assessment is enhanced by making it a vehicle for training, planning, and interaction among organizations. Various strategies and techniques have been successfully employed to derive maximum benefit and insight from the internal assessment process. Experiences that involve expanding the scope and objectives of internal assessments to meet specific goals are presented. The expansion of scope and objectives include preassessment training, planning, and evaluator interactions as part of the overall internal assessment process.

  2. OCCUPATIONAL DOSE ASSESSMENT IN INTERVENTIONAL CARDIOLOGY IN SERBIA.

    PubMed

    Kaljevic, J; Ciraj-Bjelac, O; Stankovic, J; Arandjic, D; Bozovic, P; Antic, V

    2016-09-01

    The objective of this work is to assess the occupational dose in interventional cardiology in a large hospital in Belgrade, Serbia. A double-dosimetry method was applied for the estimation of whole-body dose, using thermoluminescent dosemeters, calibrated in terms of the personal dose equivalent Hp(10). Besides the double-dosimetry method, eye dose was also estimated by means of measuring ambient dose equivalent, H*(10), and doses per procedure were reported. Doses were assessed for 13 physicians, 6 nurses and 10 radiographers, for 2 consequent years. The maximum annual effective dose assessed was 4.3, 2.1 and 1.3 mSv for physicians, nurses and radiographers, respectively. The maximum doses recorded by the dosemeter worn at the collar level (over the apron) were 16.8, 11.9 and 4.5 mSv, respectively. This value was used for the eye lens dose assessment. Estimated doses are in accordance with or higher than annual dose limits for the occupational exposure. PMID:26464526

  3. International Business Program Needs Assessment.

    ERIC Educational Resources Information Center

    Oakland Community Coll., Farmington, MI. Office of Institutional Planning and Analysis.

    In 1991, a study was conducted by Oakland Community College to evaluate the need for a proposed International Business program. General information was obtained from a literature search, various governmental and public interest agencies involved in international business, and other southeast Michigan community colleges. In addition, a survey was…

  4. MESORAD dose assessment of the Chernobyl reactor accident

    SciTech Connect

    Ramsdell, J.V.; Hubbe, J.M.; Athey, G.F.; Davis, W.E.

    1989-12-01

    An accident involving Unit 4 of the Chernobylskaya Atomic Energy Station resulted in the release of a large amount of radioactive material to the atmosphere. This report describes the results of an assessment of the doses near the site (within 80 km) made at the Pacific Northwest Laboratory using the MESORAD Dose Assessment model. 6 refs., 10 figs., 5 tabs.

  5. 10 CFR 20.1502 - Conditions requiring individual monitoring of external and internal occupational dose.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... internal occupational dose. 20.1502 Section 20.1502 Energy NUCLEAR REGULATORY COMMISSION STANDARDS FOR... external and internal occupational dose. Each licensee shall monitor exposures to radiation and radioactive material at levels sufficient to demonstrate compliance with the occupational dose limits of this part....

  6. 10 CFR 20.1502 - Conditions requiring individual monitoring of external and internal occupational dose.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... internal occupational dose. 20.1502 Section 20.1502 Energy NUCLEAR REGULATORY COMMISSION STANDARDS FOR... external and internal occupational dose. Each licensee shall monitor exposures to radiation and radioactive material at levels sufficient to demonstrate compliance with the occupational dose limits of this part....

  7. 10 CFR 20.1502 - Conditions requiring individual monitoring of external and internal occupational dose.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... internal occupational dose. 20.1502 Section 20.1502 Energy NUCLEAR REGULATORY COMMISSION STANDARDS FOR... external and internal occupational dose. Each licensee shall monitor exposures to radiation and radioactive material at levels sufficient to demonstrate compliance with the occupational dose limits of this part....

  8. 10 CFR 20.1502 - Conditions requiring individual monitoring of external and internal occupational dose.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... internal occupational dose. 20.1502 Section 20.1502 Energy NUCLEAR REGULATORY COMMISSION STANDARDS FOR... external and internal occupational dose. Each licensee shall monitor exposures to radiation and radioactive material at levels sufficient to demonstrate compliance with the occupational dose limits of this part....

  9. 10 CFR 20.1502 - Conditions requiring individual monitoring of external and internal occupational dose.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... internal occupational dose. 20.1502 Section 20.1502 Energy NUCLEAR REGULATORY COMMISSION STANDARDS FOR... external and internal occupational dose. Each licensee shall monitor exposures to radiation and radioactive material at levels sufficient to demonstrate compliance with the occupational dose limits of this part....

  10. Personnel Dose Assessment during Active Interrogation

    SciTech Connect

    Miller, Thomas Martin; Akkurt, Hatice; Patton, Bruce W

    2010-01-01

    A leading candidate in the detection of special nuclear material (SNM) is active interrogation (AI). Unlike passive interrogation, AI uses a source to enhance or create a detectable signal from SNM (usually fission), particularly in shielded scenarios or scenarios where the SNM has a low activity. The use of AI thus makes the detection of SNM easier or, in some scenarios, even enables previously impossible detection. During the development of AI sources, significant effort is put into determining the source strength required to detect SNM in specific scenarios. Usually during this process, but not always, an evaluation of personnel dose is also completed. In this instance personnel dose could involve any of the following: (1) personnel performing the AI; (2) unknown stowaways who are inside the object being interrogated; or (3) in clandestine interrogations, personnel who are known to be inside the object being interrogated but are unaware of the interrogation. In most instances, dose to anyone found smuggling SNM will be a secondary issue. However, for the organizations performing the AI, legal if not moral considerations should make dose to the personnel performing the AI, unknown stowaways, or innocent bystanders in clandestine interrogations a serious concern.

  11. Iodine-129 Dose in LLW Disposal Facility Performance Assessments

    SciTech Connect

    Wilhite, E.L.

    1999-10-15

    Iodine-129 has the lowest Performance Assessment derived inventory limit in SRS disposal facilities. Because iodine is concentrated in the body to one organ, the thyroid, it has been thought that dilution with stable iodine would reduce the dose effects of 129I.Examination of the dose model used to establish the Dose conversion factor for 129I shows that, at the levels considered in performance assessments of low-level waste disposal facilities, the calculated 129I dose already accounts for ingestion of stable iodine. At higher than normal iodine ingestion rates, the uptake of iodine by the thyroid itself decrease, which effectively cancels out the isotopic dilution effect.

  12. Mathematical phantoms for evaluation of age-specific internal dose

    SciTech Connect

    Cristy, M.

    1980-01-01

    A series of mathematical phantoms representing children has been developed for use with photon transport codes. These phantoms, patterned after the Fisher-Snyder adult phantom, consist of simple mathematical expressions for the boundaries of the major organs and body sections. The location and shape of the organs are consistent with drawings depicting developmental anatomy, with the organ volumes assigned such that the masses at the various ages conform closely with the data presented in Reference Man. The explicit mathematical expressions for the various ages overcome the potential misrepresentation of organ sizes that occurred in phantoms derived from simple mathematical transformations of the adult phantom. Female breast tissue has been added to the phantoms, including the adult, now allowing assessment of doses to this organ.

  13. Measurement and assessment of radiation dose of astronauts in space

    NASA Astrophysics Data System (ADS)

    Zhang, Binquan; Sun, Yue-qiang; Yang, Chuibai; Zhang, Shenyi; Liang, Jinbao

    Astronauts in flight are exposed by the space radiation, which is mainly composed of proton, electron, heavy ion, and neutron. To assess the radiation risk, measurement and assessment of radiation dose of astronauts is indispensable. Especially, measurement for heavy ion radiation is most important as it contributes the major dose. Until now, most of the measurements and assessments of radiation dose of astronauts are based on the LET (Linear Energy Transfer) spectrum of space radiation. However, according to the ICRP Publication 123, energy and charge number of heavy ions should be measured in order to assess space radiation exposure to astronauts. In addition, from the publication, quality factors for each organs or tissues of astronauts are different and they should be calculated or measured independently. Here, a method to measure the energy and charge number of heavy ion and a voxel phantom based on the anatomy of Chinese adult male are presented for radiation dose assessment of astronauts.

  14. Preliminary radiation dose assessment to WIPP waste handling personnel

    SciTech Connect

    Harvill, J P

    1985-02-01

    For CH TRU waste handling operations, the receipt and unloading of the TRUPACT is estimated to result in doses to the waste handlers and radiation control personnel of 4.46 man-rem and 0.45 man-rem, respectively. Another portion of the CH TRU waste handling operation which is estimated to result in a relatively high percentage of the total dose is the transfer of CH TRU waste containers from the hoist cage area and subsequent storage in the underground areas. The doses calculated for waste handling and radiation control personnel are 1.87 and 0.45 man-rem, respectivley. These doses represent 24% and 30% of the total CH TRU waste handling doses for these two occupational groups. For RH TRU waste handling the doses are more evenly distributed over the operational steps. The only operational segment which may be clearly considered as resulting in a large percentage of the total RH TRU waste handling dose is the emplacement operation. The series of steps comprising the emplacement operation result in 0.35 man-rem and 0.034 man-rem to the waste handlers and radiation control personnel, respectively. Annual, external wholebody doses for all waste handling operations and support activities are estimated as 11.02 man-rem for waste handlers and 2.41 man-rem for radiation control personnel. With current manpower levels of 16 waste handlers and 8 radiation control personnel, the calculated dose per worker is 0.69 rem for waste handlers and 0.30 rem for radiation control personnel. Combining the highest calculated organ dose with the external wholebody dose, the total dose to the bone per worker is 0.81 rem for waste handlers and 0.45 rem for radiation control personnel. These estimated doses fall below the Department of Energy design requirement that the combined external and internal doses be less than ones rem per person per year.

  15. A Framework for "Fit for Purpose" Dose Response Assessment

    EPA Science Inventory

    The NRC report Science and Decisions: Advancing Risk Assessment made several recommendations to improve chemical risk assessment, with a focus on in-depth chronic dose-response assessments conducted by the U.S. Environmental Protection Agency. The recommendations addressed two ...

  16. Method for the prediction of the effective dose equivalent to the crew of the International Space Station

    NASA Astrophysics Data System (ADS)

    El-Jaby, Samy; Tomi, Leena; Sihver, Lembit; Sato, Tatsuhiko; Richardson, Richard B.; Lewis, Brent J.

    2014-03-01

    This paper describes a methodology for assessing the pre-mission exposure of space crew aboard the International Space Station (ISS) in terms of an effective dose equivalent. In this approach, the PHITS Monte Carlo code was used to assess the particle transport of galactic cosmic radiation (GCR) and trapped radiation for solar maximum and minimum conditions through an aluminum shield thickness. From these predicted spectra, and using fluence-to-dose conversion factors, a scaling ratio of the effective dose equivalent rate to the ICRU ambient dose equivalent rate at a 10 mm depth was determined. Only contributions from secondary neutrons, protons, and alpha particles were considered in this analysis. Measurements made with a tissue equivalent proportional counter (TEPC) located at Service Module panel 327, as captured through a semi-empirical correlation in the ISSCREM code, where then scaled using this conversion factor for prediction of the effective dose equivalent. This analysis shows that at this location within the service module, the total effective dose equivalent is 10-30% less than the total TEPC dose equivalent. Approximately 75-85% of the effective dose equivalent is derived from the GCR. This methodology provides an opportunity for pre-flight predictions of the effective dose equivalent and therefore offers a means to assess the health risks of radiation exposure on ISS flight crew.

  17. Interactive Rapid Dose Assessment Model (IRDAM): user's guide

    SciTech Connect

    Poeton, R.W.; Moeller, M.P.; Laughlin, G.J.; Desrosiers, A.E.

    1983-05-01

    As part of the continuing emphasis on emergency preparedness the US Nuclear Regulatory Commission (NRC) sponsored the development of a rapid dose assessment system by Pacific Northwest Laboratory (PNL). This system, the Interactive Rapid Dose Assessment Model (IRDAM) is a micro-computer based program for rapidly assessing the radiological impact of accidents at nuclear power plants. This User's Guide provides instruction in the setup and operation of the equipment necessary to run IRDAM. Instructions are also given on how to load the magnetic disks and access the interactive part of the program. Two other companion volumes to this one provide additional information on IRDAM. Reactor Accident Assessment Methods (NUREG/CR-3012, Volume 2) describes the technical bases for IRDAM including methods, models and assumptions used in calculations. Scenarios for Comparing Dose Assessment Models (NUREG/CR-3012, Volume 3) provides the results of calculations made by IRDAM and other models for specific accident scenarios.

  18. Comparison of internal dose estimates obtained using organ-level, voxel S value, and Monte Carlo techniques

    SciTech Connect

    Grimes, Joshua; Celler, Anna

    2014-09-15

    Purpose: The authors’ objective was to compare internal dose estimates obtained using the Organ Level Dose Assessment with Exponential Modeling (OLINDA/EXM) software, the voxel S value technique, and Monte Carlo simulation. Monte Carlo dose estimates were used as the reference standard to assess the impact of patient-specific anatomy on the final dose estimate. Methods: Six patients injected with{sup 99m}Tc-hydrazinonicotinamide-Tyr{sup 3}-octreotide were included in this study. A hybrid planar/SPECT imaging protocol was used to estimate {sup 99m}Tc time-integrated activity coefficients (TIACs) for kidneys, liver, spleen, and tumors. Additionally, TIACs were predicted for {sup 131}I, {sup 177}Lu, and {sup 90}Y assuming the same biological half-lives as the {sup 99m}Tc labeled tracer. The TIACs were used as input for OLINDA/EXM for organ-level dose calculation and voxel level dosimetry was performed using the voxel S value method and Monte Carlo simulation. Dose estimates for {sup 99m}Tc, {sup 131}I, {sup 177}Lu, and {sup 90}Y distributions were evaluated by comparing (i) organ-level S values corresponding to each method, (ii) total tumor and organ doses, (iii) differences in right and left kidney doses, and (iv) voxelized dose distributions calculated by Monte Carlo and the voxel S value technique. Results: The S values for all investigated radionuclides used by OLINDA/EXM and the corresponding patient-specific S values calculated by Monte Carlo agreed within 2.3% on average for self-irradiation, and differed by as much as 105% for cross-organ irradiation. Total organ doses calculated by OLINDA/EXM and the voxel S value technique agreed with Monte Carlo results within approximately ±7%. Differences between right and left kidney doses determined by Monte Carlo were as high as 73%. Comparison of the Monte Carlo and voxel S value dose distributions showed that each method produced similar dose volume histograms with a minimum dose covering 90% of the volume (D90

  19. Estradiol valerate and alcohol intake: dose-response assessments

    PubMed Central

    Quirarte, Gina L; Reid, Larry D; de la Teja, I Sofía Ledesma; Reid, Meta L; Sánchez, Marco A; Díaz-Trujillo, Arnulfo; Aguilar-Vazquez, Azucena; Prado-Alcalá, Roberto A

    2007-01-01

    Background An injection of estradiol valerate (EV) provides estradiol for a prolonged period. Recent research indicates that a single 2.0 mg injection of EV modifies a female rat's appetite for alcoholic beverages. This research extends the initial research by assessing 8 doses of EV (from .001 to 2.0 mg/female rat), as well assessing the effects of 2.0 mg EV in females with ovariectomies. Results With the administration of EV, there was a dose-related loss of bodyweight reaching the maximum loss, when it occurred, at about 4 days after injections. Subsequently, rats returned to gaining weight regularly. Of the doses tested, only the 2.0 mg dose produced a consistent increase in intake of ethanol during the time previous research indicated that the rats would show enhanced intakes. There was, however, a dose-related trend for smaller doses to enhance intakes. Rats with ovariectomies showed a similar pattern of effects, to intact rats, with the 2 mg dose. After extensive histories of intake of alcohol, both placebo and EV-treated females had estradiol levels below the average measured in females without a history of alcohol-intake. Conclusion The data support the conclusion that pharmacological doses of estradiol can produce enduring changes that are manifest as an enhanced appetite for alcoholic beverages. The effect can occur among females without ovaries. PMID:17335585

  20. Automated size-specific CT dose monitoring program: Assessing variability in CT dose

    SciTech Connect

    Christianson, Olav; Li Xiang; Frush, Donald; Samei, Ehsan

    2012-11-15

    Purpose: The potential health risks associated with low levels of ionizing radiation have created a movement in the radiology community to optimize computed tomography (CT) imaging protocols to use the lowest radiation dose possible without compromising the diagnostic usefulness of the images. Despite efforts to use appropriate and consistent radiation doses, studies suggest that a great deal of variability in radiation dose exists both within and between institutions for CT imaging. In this context, the authors have developed an automated size-specific radiation dose monitoring program for CT and used this program to assess variability in size-adjusted effective dose from CT imaging. Methods: The authors radiation dose monitoring program operates on an independent health insurance portability and accountability act compliant dosimetry server. Digital imaging and communication in medicine routing software is used to isolate dose report screen captures and scout images for all incoming CT studies. Effective dose conversion factors (k-factors) are determined based on the protocol and optical character recognition is used to extract the CT dose index and dose-length product. The patient's thickness is obtained by applying an adaptive thresholding algorithm to the scout images and is used to calculate the size-adjusted effective dose (ED{sub adj}). The radiation dose monitoring program was used to collect data on 6351 CT studies from three scanner models (GE Lightspeed Pro 16, GE Lightspeed VCT, and GE Definition CT750 HD) and two institutions over a one-month period and to analyze the variability in ED{sub adj} between scanner models and across institutions. Results: No significant difference was found between computer measurements of patient thickness and observer measurements (p= 0.17), and the average difference between the two methods was less than 4%. Applying the size correction resulted in ED{sub adj} that differed by up to 44% from effective dose estimates

  1. Respiratory dose assessment of inhaled particles: continuing progress

    EPA Science Inventory

    Internal dose is a key factor for determining the health risk ofinhaled pollutant particles on the one hand and the efficacy ofdrug inhalantsonthe other. Accurateestimation ofrespiratorydose, however, is a difficult task because multiple factors come to play roles in the process....

  2. Assessment of receptor internalization and recycling.

    PubMed

    Koenig, Jennifer A

    2004-01-01

    Internalization of G-protein-coupled receptors (GPCRs) occurs in response to agonist activation of the receptors and causes a redistribution of receptors away from the plasma membrane toward endosomes. Internalization of lower-affinity small molecule GPCRs such as muscarinic acetylcholine and adrenergic receptors has been measured using hydrophilic antagonist radioligands that are membrane impermeant. In contrast, internalization of peptide hormone receptors is assessed by measuring the internalization of a radiolabeled- or fluorescently labeled peptide hormone. More recently, the use of epitope-tagged receptors has allowed the measurement of changes in receptor subcellular distribution by the use of immunoassay and immunofluorescence confocal microscopy. This chapter describes each of these approaches to the measurement of receptor internalization and describes the advantages and disadvantages of each method.

  3. Angular absorbed dose dependence of internal radiation-generating devices in radiotherapy.

    PubMed

    Bevelacqua, J J

    2012-01-01

    The angular dependence of the absorbed dose from internal radiation-generating devices located within a tumor mass is investigated. Given the systematics of proton and heavy-ion differential scattering cross sections, candidate internal radiation-generating devices will have a relatively constant absorbed dose output beyond a critical angle. Inside this angle, the absorbed dose output is suppressed because elastic and inelastic differential cross sections are peaked in the beam direction. This peaking increases in severity as the particle energy increases and suggests internal radiation-generating devices must have a limited rotation capability to compensate for the depression in the absorbed dose for angles near the beam direction.

  4. Internal Mammary Lymph Node Irradiation Contributes to Heart Dose in Breast Cancer

    SciTech Connect

    Chargari, Cyrus; Castadot, Pierre; MacDermed, Dhara; Vandekerkhove, Christophe; Bourgois, Nicolas; Van Houtte, Paul; Magne, Nicolas

    2010-10-01

    We assessed the impact of internal mammary chain radiotherapy (IMC RT) to the radiation dose received by the heart in terms of heart dose-volume histogram (DVH). Thirty-six consecutive breast cancer patients presenting with indications for IMC RT were enrolled in a prospective study. The IMC was treated by a standard conformal RT technique (50 Gy). For each patient, a cardiac DVH was generated by taking into account the sole contribution of IMC RT. Cardiac HDV were compared according to breast cancer laterality and the type of previous surgical procedure, simple mastectomy or breast conservative therapy (BCT). The contribution of IMC RT to the heart dose was significantly greater for patients with left-sided versus right-sided tumors (13.8% and 12.8% for left-sided tumors versus 3.9% and 4.2% for right-sided tumors in the BCT group and the mastectomy group, respectively; p < 0.0001). There was no statistically significant difference in IMC contribution depending on the initial surgical procedure. IMC RT contributes to cardiac dose for both left-sided and right-sided breast cancers, although the relative contribution is greater in patients with left-sided tumors.

  5. Identification and dose assessment of irradiated cumin by EPR spectrometry.

    PubMed

    Abdel-Fattah, A A

    2002-03-01

    The use of electron paramagnetic resonance spectroscopy to accurately distinguish irradiated from unirradiated cumin and assess the absorbed dose to radiation-processed cumin is examined. The results were successful for identifying both irradiated and unirradiated cumin. Additive reirradiation of the cumin produces a reproducible dose response function, which can be used to assess the initial dose by back-extrapolation. Third-degree polynomial and exponential functions were used to fit the EPR signal/dose curves. It was found that the 3rd degree polynomial function provides satisfactory results without correction for decay of free radicals. The exponential fit to the data cannot be used without correction of decay of free radicals. The stability of the radiation-induced EPR signal of irradiated cumin was studied over a storage period of 6 months. The additive reirradiation of some samples was carried out at different storage times (10, 20 and 30 days) after initial irradiation.

  6. Methemoglobin-Based Biological Dose Assessment for Human Blood.

    PubMed

    Zhang, Xiao-Hong; Hu, Xiao-Dan; Zhao, Su-Ying; Xie, Li-Hua; Miao, Yu-Ji; Li, Qun; Min, Rui; Liu, Pei-Dang; Zhang, Hai-Qian

    2016-07-01

    Methemoglobin is an oxidative form of hemoglobin in erythrocytes. The authors' aim was to develop a new biological dosimeter based on a methemoglobin assay. Methemoglobin in peripheral blood (of females or males) that was exposed to a Co source (0.20 Gy min) was quantified using an enzyme-linked immunosorbent assay. The dose range was 0.5-8.0 Gy. In a time-course experiment, the time points 0, 0.02, 1, 2, 3, 7, 15, 21, and 30 d after 4-Gy irradiation of heparinized peripheral blood were used. Methemoglobin levels in a lysed erythrocyte pellet from the irradiated blood of females and males increased with the increasing dose. Methemoglobin levels in female blood irradiated with γ-doses more than 4 Gy were significantly higher than those in male samples at the same doses. Two dose-response relations were fitted to the straight line: one is with the correlation coefficient of 0.98 for females, and the other is with the correlation coefficient of 0.99 for males. The lower limit of dose assessment based on methemoglobin is about 1 Gy. Methemoglobin levels in blood as a result of auto-oxidation increase after 7-d storage at -20 °C. The upregulation of methemoglobin induced by γ-radiation persists for ∼3 d. The absorbed doses that were estimated using the two dose-response relations were close to the actual doses. The results suggest that methemoglobin can be used as a rapid and accurate biological dosimeter for early assessment of absorbed γ-dose in human blood. PMID:27218292

  7. External dose assessment in the Ukraine following the Chernobyl accident

    NASA Astrophysics Data System (ADS)

    Frazier, Remi Jordan Lesartre

    While the physiological effects of radiation exposure have been well characterized in general, it remains unclear what the relationship is between large-scale radiological events and psychosocial behavior outcomes in individuals or populations. To investigate this, the National Science Foundation funded a research project in 2008 at the University of Colorado in collaboration with Colorado State University to expand the knowledge of complex interactions between radiation exposure, perception of risk, and psychosocial behavior outcomes by modeling outcomes for a representative sample of the population of the Ukraine which had been exposed to radiocontaminant materials released by the reactor accident at Chernobyl on 26 April 1986. In service of this project, a methodology (based substantially on previously published models specific to the Chernobyl disaster and the Ukrainian population) was developed for daily cumulative effective external dose and dose rate assessment for individuals in the Ukraine for as a result of the Chernobyl disaster. A software platform was designed and produced to estimate effective external dose and dose rate for individuals based on their age, occupation, and location of residence on each day between 26 April 1986 and 31 December 2009. A methodology was developed to transform published 137Cs soil deposition contour maps from the Comprehensive Atlas of Caesium Deposition on Europe after the Chernobyl Accident into a geospatial database to access these data as a radiological source term. Cumulative effective external dose and dose rate were computed for each individual in a 703-member cohort of Ukrainians randomly selected to be representative of the population of the country as a whole. Error was estimated for the resulting individual dose and dose rate values with Monte Carlo simulations. Distributions of input parameters for the dose assessment methodology were compared to computed dose and dose rate estimates to determine which

  8. Peak Dose Assessment for Proposed DOE-PPPO Authorized Limits

    SciTech Connect

    Maldonado, Delis

    2012-06-01

    The Oak Ridge Institute for Science and Education (ORISE), a U.S. Department of Energy (DOE) prime contractor, was contracted by the DOE Portsmouth/Paducah Project Office (DOE-PPPO) to conduct a peak dose assessment in support of the Authorized Limits Request for Solid Waste Disposal at Landfill C-746-U at the Paducah Gaseous Diffusion Plant (DOE-PPPO 2011a). The peak doses were calculated based on the DOE-PPPO Proposed Single Radionuclides Soil Guidelines and the DOE-PPPO Proposed Authorized Limits (AL) Volumetric Concentrations available in DOE-PPPO 2011a. This work is provided as an appendix to the Dose Modeling Evaluations and Technical Support Document for the Authorized Limits Request for the C-746-U Landfill at the Paducah Gaseous Diffusion Plant, Paducah, Kentucky (ORISE 2012). The receptors evaluated in ORISE 2012 were selected by the DOE-PPPO for the additional peak dose evaluations. These receptors included a Landfill Worker, Trespasser, Resident Farmer (onsite), Resident Gardener, Recreational User, Outdoor Worker and an Offsite Resident Farmer. The RESRAD (Version 6.5) and RESRAD-OFFSITE (Version 2.5) computer codes were used for the peak dose assessments. Deterministic peak dose assessments were performed for all the receptors and a probabilistic dose assessment was performed only for the Offsite Resident Farmer at the request of the DOE-PPPO. In a deterministic analysis, a single input value results in a single output value. In other words, a deterministic analysis uses single parameter values for every variable in the code. By contrast, a probabilistic approach assigns parameter ranges to certain variables, and the code randomly selects the values for each variable from the parameter range each time it calculates the dose (NRC 2006). The receptor scenarios, computer codes and parameter input files were previously used in ORISE 2012. A few modifications were made to the parameter input files as appropriate for this effort. Some of these changes

  9. Estimation of internal radiation dose from both immediate releases and continued exposures to contaminated materials.

    PubMed

    Napier, Bruce

    2012-03-01

    A brief description is provided of the basic concepts related to 'internal dose' and how it differs from doses that result from radioactive materials and direct radiation outside of the body. The principles of radiation dose reconstruction, as applied to both internal and external doses, are discussed on the basis of a recent publication prepared by the US National Council on Radiation Protection and Measurements. Finally, ideas are introduced related to residual radioactive contamination in the environment that has resulted from the releases from damaged reactors and also to the management of wastes that may be generated in both regional cleanup and decommissioning of the Fukushima nuclear power plant.

  10. Estimation of Internal Radiation Dose from both Immediate Releases and Continued Exposures to Contaminated Materials

    SciTech Connect

    Napier, Bruce A.

    2012-03-26

    A brief description is provided of the basic concepts related to 'internal dose' and how it differs from doses that result from radioactive materials and direct radiation outside of the body. The principles of radiation dose reconstruction, as applied to both internal and external doses, is discussed based upon a recent publication prepared by the US National Council on Radiation Protection and Measurements. Finally, ideas are introduced related to residual radioactive contamination in the environment that has resulted from the releases from the damaged reactors and also to the management of wastes that may be generated in both regional cleanup and NPP decommissioning.

  11. Estimation of internal radiation dose from both immediate releases and continued exposures to contaminated materials.

    PubMed

    Napier, Bruce

    2012-03-01

    A brief description is provided of the basic concepts related to 'internal dose' and how it differs from doses that result from radioactive materials and direct radiation outside of the body. The principles of radiation dose reconstruction, as applied to both internal and external doses, are discussed on the basis of a recent publication prepared by the US National Council on Radiation Protection and Measurements. Finally, ideas are introduced related to residual radioactive contamination in the environment that has resulted from the releases from damaged reactors and also to the management of wastes that may be generated in both regional cleanup and decommissioning of the Fukushima nuclear power plant. PMID:22395282

  12. Fetal and maternal dose assessment for diagnostic scans during pregnancy

    NASA Astrophysics Data System (ADS)

    Rafat Motavalli, Laleh; Miri Hakimabad, Hashem; Hoseinian Azghadi, Elie

    2016-05-01

    Despite the concerns about prenatal exposure to ionizing radiation, the number of nuclear medicine examinations performed for pregnant women increased in the past decade. This study attempts to better quantify radiation doses due to diagnostic nuclear medicine procedures during pregnancy with the help of our recently developed 3, 6, and 9 month pregnant hybrid phantoms. The reference pregnant models represent the adult female international commission on radiological protection (ICRP) reference phantom as a base template with a fetus in her gravid uterus. Six diagnostic scintigraphy scans using different radiopharmaceuticals were selected as typical diagnostic nuclear medicine procedures. Furthermore, the biokinetic data of radioiodine was updated in this study. A compartment representing iodide in fetal thyroid was addressed explicitly in the biokinetic model. Calculations were performed using the Monte Carlo transport method. Tabulated dose coefficients for both maternal and fetal organs are provided. The comparison was made with the previously published fetal doses calculated for stylized pregnant female phantoms. In general, the fetal dose in previous studies suffers from an underestimation of up to 100% compared to fetal dose at organ level in this study. A maximum of difference in dose was observed for the fetal thyroid compared to the previous studies, in which the traditional models did not contain the fetal thyroid. Cumulated activities of major source organs are primarily responsible for the discrepancies in the organ doses. The differences in fetal dose depend on several other factors including chord length distribution between fetal organs and maternal major source organs, and anatomical differences according to gestation periods. Finally, considering the results of this study, which was based on the realistic pregnant female phantoms, a more informed evaluation of the risks and benefits of the different procedures could be made.

  13. Application of the International Life Sciences Institute Key Events Dose-Response Framework to food contaminants.

    PubMed

    Fenner-Crisp, Penelope A

    2012-12-01

    Contaminants are undesirable constituents in food. They may be formed during production of a processed food, present as a component in a source material, deliberately added to substitute for the proper substance, or the consequence of poor food-handling practices. Contaminants may be chemicals or pathogens. Chemicals generally degrade over time and become of less concern as a health threat. Pathogens have the ability to multiply, potentially resulting in an increased threat level. Formal structures have been lacking for systematically generating and evaluating hazard and exposure data for bioactive agents when problem situations arise. We need to know what the potential risk may be to determine whether intervention to reduce or eliminate contact with the contaminant is warranted. We need tools to aid us in assembling and assessing all available relevant information in an expeditious and scientifically sound manner. One such tool is the International Life Sciences Institute (ILSI) Key Events Dose-Response Framework (KEDRF). Developed as an extension of the WHO's International Program on Chemical Safety/ILSI mode of action/human relevance framework, it allows risk assessors to understand not only how a contaminant exerts its toxicity but also the dose response(s) for each key event and the ultimate outcome, including whether a threshold exists. This presentation will illustrate use of the KEDRF with case studies included in its development (chloroform and Listeriaonocytogenes) after its publication in the peer-reviewed scientific literature (chromium VI) and in a work in progress (3-monochloro-1, 2-propanediol). PMID:23077190

  14. Dose Measurement Results Obtained by Radiation Monitoring System of Russian Segment of International Space Station

    NASA Astrophysics Data System (ADS)

    Petrov, V. M.; Benghin, V. V.; Volkov, A. N.; Aleksandrin, A. P.; Lyagushin, V. I.; Panasyuk, M. I.; Tel'Tsov, M. V.; Kutuzov, Yu. V.

    Radiation monitoring system RMS being deployed on the International Space Station is a part of radiation safety system of the station The purpose of the RMS is to provide information for assessment of radiation doses absorbed by the crews during space flights Radiation monitoring system RMS has worked on board of the International Space Station ISS practically continuously beginning from August 2001 RMS consist of 7 units begin itemize item The R-16 dosimeter Two ionization chambers are the sensitive elements of the R-16 dosimeter item Four DB-8 dosimeters with semiconductor radiation detectors item Data collection unit and Utility unit destined for processing and analysis of measurement results end itemize RMS with other ISS systems integration permits to downlink telemetry information and to display radiation parameters to crew In June 2005 the software of data collection unit was updated It permits the RMS telemetry information upgrading to alert the crew when exposure rates exceed set threshold to supply an opportunity of interactive communication the crew and RMS The report contains information on performance of equipment and dose rate measured since August 2001 till December 2005 both in quiet time and during solar proton events Comparison with MIR station R-16 data registered since 1991 year is carried out

  15. Integrated Worker Radiation Dose Assessment for the K Basins

    SciTech Connect

    NELSON, J.V.

    1999-10-27

    This report documents an assessment of the radiation dose workers at the K Basins are expected to receive in the process of removing spent nuclear fuel from the storage basins. The K Basins (K East and K West) are located in the Hanford 100K Area.

  16. The Assessment of Effective Dose Equivalent Using Personnel Dosimeters

    NASA Astrophysics Data System (ADS)

    Xu, Xie

    From January 1994, U.S. nuclear plants must develop a technically rigorous approach for determining the effective dose equivalent for their work forces. This dissertation explains concepts associated with effective dose equivalent and describes how to assess effective dose equivalent by using conventional personnel dosimetry measurements. A Monte Carlo computer code, MCNP, was used to calculate photon transport through a model of the human body. Published mathematical phantoms of the human adult male and female were used to simulate irradiation from a variety of external radiation sources in order to calculate organ and tissue doses, as well as effective dose equivalent using weighting factors from ICRP Publication 26. The radiation sources considered were broad parallel photon beams incident on the body from 91 different angles and isotropic point sources located at 234 different locations in contact with or near the body. Monoenergetic photons of 0.08, 0.3, and 1.0 MeV were considered for both sources. Personnel dosimeters were simulated on the surface of the body and exposed to with the same sources. From these data, the influence of dosimeter position on dosimeter response was investigated. Different algorithms for assessing effective dose equivalent from personnel dosimeter responses were proposed and evaluated. The results indicate that the current single-badge approach is satisfactory for most common exposure situations encountered in nuclear plants, but additional conversion factors may be used when more accurate results become desirable. For uncommon exposures involving source situated at the back of the body or source located overhead, the current approach of using multi-badges and assigning the highest dose is overly conservative and unnecessarily expensive. For these uncommon exposures, a new algorithm, based on two dosimeters, one on the front of the body and another one on the back of the body, has been shown to yield conservative assessment of

  17. Code System for Calculating Internal and External Doses Resulting from an Atmospheric Release of Radioactive Material.

    1982-06-15

    WRAITH calculates the atmospheric transport of radioactive material to each of a number of downwind receptor points and the external and internal doses to a reference man at each of the receptor points.

  18. Evaluating Uncertainty Estimates Produced by Dose Assessment Models

    NASA Astrophysics Data System (ADS)

    Meyer, P. D.; Orr, S.

    2001-05-01

    Assessments of the dose and/or risk from contaminated sites and waste disposal facilities may rely on the use of relatively simplified models of subsurface flow and transport. Common simplifications include steady-state, one-dimensional flow; homogeneous and isotropic transport medium properties; and unit hydraulic gradient in the unsaturated zone. Because of their relative computational speed, such simplified models are particularly attractive when the impact of uncertainty in flow and transport needs to be evaluated. Simplifications in the representation of flow and transport have the potential to result in an unrepresentative estimate of uncertainty in dose/risk. `Unrepresentative' is used here to describe an estimate of uncertainty that significantly misrepresents the actual uncertainty. Such misrepresentation may have important consequences for decisions based on the dose/risk assessments. The significance of this concern is evaluated here by comparing test case results from uncertainty assessments conducted using a simplified modeling approach and a more complex/realistic modeling approach. The test case follows the U.S. Nuclear Regulatory Commission's framework for site decommissioning analyses. Subsurface properties are derived from data obtained in the Las Cruces Trench experiments with source term data reflecting an actual decommissioning case. Comparisons between the two approaches include the probability distribution of peak dose, the relative importance of parameters, and the value of site-specific data in reducing uncertainty.

  19. Developability assessment of clinical drug products with maximum absorbable doses.

    PubMed

    Ding, Xuan; Rose, John P; Van Gelder, Jan

    2012-05-10

    Maximum absorbable dose refers to the maximum amount of an orally administered drug that can be absorbed in the gastrointestinal tract. Maximum absorbable dose, or D(abs), has proved to be an important parameter for quantifying the absorption potential of drug candidates. The purpose of this work is to validate the use of D(abs) in a developability assessment context, and to establish appropriate protocol and interpretation criteria for this application. Three methods for calculating D(abs) were compared by assessing how well the methods predicted the absorption limit for a set of real clinical candidates. D(abs) was calculated for these clinical candidates by means of a simple equation and two computer simulation programs, GastroPlus and an program developed at Eli Lilly and Company. Results from single dose escalation studies in Phase I clinical trials were analyzed to identify the maximum absorbable doses for these compounds. Compared to the clinical results, the equation and both simulation programs provide conservative estimates of D(abs), but in general D(abs) from the computer simulations are more accurate, which may find obvious advantage for the simulations in developability assessment. Computer simulations also revealed the complex behavior associated with absorption saturation and suggested in most cases that the D(abs) limit is not likely to be achieved in a typical clinical dose range. On the basis of the validation findings, an approach is proposed for assessing absorption potential, and best practices are discussed for the use of D(abs) estimates to inform clinical formulation development strategies.

  20. Is internal target volume accurate for dose evaluation in lung cancer stereotactic body radiotherapy?

    PubMed Central

    Peng, Jiayuan; Zhang, Zhen; Wang, Jiazhou; Xie, Jiang; Hu, Weigang

    2016-01-01

    Purpose 4DCT delineated internal target volume (ITV) was applied to determine the tumor motion and used as planning target in treatment planning in lung cancer stereotactic body radiotherapy (SBRT). This work is to study the accuracy of using ITV to predict the real target dose in lung cancer SBRT. Materials and methods Both for phantom and patient cases, the ITV and gross tumor volumes (GTVs) were contoured on the maximum intensity projection (MIP) CT and ten CT phases, respectively. A SBRT plan was designed using ITV as the planning target on average projection (AVG) CT. This plan was copied to each CT phase and the dose distribution was recalculated. The GTV_4D dose was acquired through accumulating the GTV doses over all ten phases and regarded as the real target dose. To analyze the ITV dose error, the ITV dose was compared to the real target dose by endpoints of D99, D95, D1 (doses received by the 99%, 95% and 1% of the target volume), and dose coverage endpoint of V100(relative volume receiving at least the prescription dose). Results The phantom study shows that the ITV underestimates the real target dose by 9.47%∼19.8% in D99, 4.43%∼15.99% in D95, and underestimates the dose coverage by 5% in V100. The patient cases show that the ITV underestimates the real target dose and dose coverage by 3.8%∼10.7% in D99, 4.7%∼7.2% in D95, and 3.96%∼6.59% in V100 in motion target cases. Conclusions Cautions should be taken that ITV is not accurate enough to predict the real target dose in lung cancer SBRT with large tumor motions. Restricting the target motion or reducing the target dose heterogeneity could reduce the ITV dose underestimation effect in lung SBRT. PMID:26968812

  1. Patient doses in {gamma}-intracoronary radiotherapy: The Radiation Burden Assessment Study

    SciTech Connect

    Thierens, Hubert . E-mail: hubert.thierens@Ughent.be; Reynaert, Nick; Bacher, Klaus; Eijkeren, Marc van; Taeymans, Yves

    2004-10-01

    Purpose: To determine accurately the radiation burden of both patients and staff from intracoronary radiotherapy (IRT) with {sup 192}Ir and to investigate the importance of IRT in the patient dose compared with interventional X-rays. Methods and materials: The Radiation Burden Assessment Study (RABAS) population consisted of 9 patients undergoing {gamma}-IRT after percutaneous transluminal coronary angioplasty and 14 patients undergoing percutaneous transluminal coronary angioplasty only as the control group. For each patient, the dose to the organs and tissues from the internal and external exposure was determined in detail by Monte Carlo N-particle simulations. Patient skin dose measurements with thermoluminescence dosimeters served as verification. Staff dosimetry was performed with electronic dosimeters, thermoluminescence dosimeters, and double film badge dosimetry. Results: With respect to the patient dose from IRT, the critical organs are the thymus (58 mGy), lungs (31 mGy), and esophagus (27 mGy). The mean effective dose from IRT was 8 mSv. The effective dose values from interventional X-rays showed a broad range (2-28 mSv), with mean values of 8 mSv for the IRT patients and 13 mSv for the control group. The mean dose received by the radiotherapist from IRT was 4 {mu}Sv/treatment. The doses to the other staff members were completely negligible. Conclusion: Our results have shown that the patient and personnel doses in {gamma}-IRT remain at an acceptable level. The patient dose from IRT was within the variations in dose from the accompanying interventional X-rays.

  2. Field and Bioassay Indicators for Internal Dose Intervention Therapy

    SciTech Connect

    Carbaugh, Eugene H.

    2007-05-01

    Guidance is presented that is used at the U.S. Department of Energy Hanford Site to identify the potential need for medical intervention in response to intakes of radioactivity. The guidance, based on ICRP Publication 30 models and committed effective dose equivalents of 20 mSv and 200 mSv, is expressed as numerical workplace measurements and derived first-day bioassay results for large intakes. It is used by facility radiation protection staff and on-call dosimetry support staff during the first few days following an intake.

  3. Assessing International Learning: A Mixed Methodological Approach to Assessing Curricular and Extracurricular International Experiences

    ERIC Educational Resources Information Center

    Cooper, Garth; Niu, Rui

    2010-01-01

    This essay is anchored on the challenges institutions face in attempting to assess international learning outcomes. It documents Michigan State University's efforts to seek and pilot new measurement tools to confront this challenge. Based on Michigan's assessment experience, it provides lessons others might consider for the success of their…

  4. Food-chain and dose model, CALDOS, for assessing Canada's Nuclear Fuel Waste Management concept.

    PubMed

    Zach, R; Sheppard, S C

    1991-05-01

    The food-chain and dose model, CALculation of DOSe (CALDOS), was developed for assessing Canada's concept for nuclear fuel waste disposal in a vault deep in crystalline rock of the Canadian Shield. The model is very general and based on the Shield as a whole. The critical group is totally self-sufficient and represented by ICRP (1975) Reference Man for dose prediction. CALDOS assumes steady-state conditions and deals with variation and uncertainty through Monte Carlo simulation techniques. Ingrowth of some radioactive daughters is considered during food-chain transfer. A limit is set on root uptake to avoid unrealistic plant concentrations. Integrated ingestion and inhalation rates of man are calculated in a unique way, based on energy needs. Soil ingestion by man and external exposure from building material are unique pathways considered. Tritium, 129I, and 222Rn are treated through special models, and 14C and 129I involve unique geosphere dose limits. All transfer coefficients are lognormally distributed, and the plant/soil concentration ratio is correlated with the soil partition coefficient. Animals' ingestion rates are normally distributed and correlated with each other. Comprehensive sets of internal and external dose conversion factors were calculated for CALDOS. Sample calculations show that dose distributions tend to be strongly right-skewed. Many features of CALDOS are relevant for environmental assessment in general. PMID:2019495

  5. Food-chain and dose model, CALDOS, for assessing Canada's Nuclear Fuel Waste Management concept.

    PubMed

    Zach, R; Sheppard, S C

    1991-05-01

    The food-chain and dose model, CALculation of DOSe (CALDOS), was developed for assessing Canada's concept for nuclear fuel waste disposal in a vault deep in crystalline rock of the Canadian Shield. The model is very general and based on the Shield as a whole. The critical group is totally self-sufficient and represented by ICRP (1975) Reference Man for dose prediction. CALDOS assumes steady-state conditions and deals with variation and uncertainty through Monte Carlo simulation techniques. Ingrowth of some radioactive daughters is considered during food-chain transfer. A limit is set on root uptake to avoid unrealistic plant concentrations. Integrated ingestion and inhalation rates of man are calculated in a unique way, based on energy needs. Soil ingestion by man and external exposure from building material are unique pathways considered. Tritium, 129I, and 222Rn are treated through special models, and 14C and 129I involve unique geosphere dose limits. All transfer coefficients are lognormally distributed, and the plant/soil concentration ratio is correlated with the soil partition coefficient. Animals' ingestion rates are normally distributed and correlated with each other. Comprehensive sets of internal and external dose conversion factors were calculated for CALDOS. Sample calculations show that dose distributions tend to be strongly right-skewed. Many features of CALDOS are relevant for environmental assessment in general.

  6. Food-chain and dose model, CALDOS, for assessing Canada's Nuclear Fuel Waste Management concept

    SciTech Connect

    Zach, R.; Sheppard, S.C. )

    1991-05-01

    The food-chain and dose model, CALculation of DOSe (CALDOS), was developed for assessing Canada's concept for nuclear fuel waste disposal in a vault deep in crystalline rock of the Canadian Shield. The model is very general and based on the Shield as a whole. The critical group is totally self-sufficient and represented by ICRP (1975) Reference Man for dose prediction. CALDOS assumes steady-state conditions and deals with variation and uncertainty through Monte Carlo simulation techniques. Ingrowth of some radioactive daughters is considered during food-chain transfer. A limit is set on root uptake to avoid unrealistic plant concentrations. Integrated ingestion and inhalation rates of man are calculated in a unique way, based on energy needs. Soil ingestion by man and external exposure from building material are unique pathways considered. Tritium, {sup 129}I, and {sup 222}Rn are treated through special models, and {sup 14}C and {sup 129}I involve unique geosphere dose limits. All transfer coefficients are lognormally distributed, and the plant/soil concentration ratio is correlated with the soil partition coefficient. Animals' ingestion rates are normally distributed and correlated with each other. Comprehensive sets of internal and external dose conversion factors were calculated for CALDOS. Sample calculations show that dose distributions tend to be strongly right-skewed. Many features of CALDOS are relevant for environmental assessment in general.

  7. Estimating the Radiation Dose to the Fetus in Prophylactic Internal Iliac Artery Balloon Occlusion: Three Cases

    PubMed Central

    Kai, Kentaro; Hamada, Tomohiro; Yuge, Akitoshi; Kiyosue, Hiro; Nishida, Yoshihiro; Nasu, Kaei; Narahara, Hisashi

    2015-01-01

    Background. Although radiation exposure is of great concern to expecting patients, little information is available on the fetal radiation dose associated with prophylactic internal iliac artery balloon occlusion (IIABO). Here we estimated the fetal radiation dose associated with prophylactic IIABO in Caesarean section (CS). Cases. We report our experience with the IIABO procedure in three consecutive patients with suspected placenta previa/accreta. Fetal radiation dose measurements were conducted prior to each CS by using an anthropomorphic phantom. Based on the simulated value, we calculated the fetal radiation dose as the absorbed dose. We found that the fetal radiation doses ranged from 12.88 to 31.6 mGy. The fetal radiation dose during the prophylactic IIABOs did not exceed 50 mGy. Conclusion. The IIABO procedure could result in a very small increase in the risk of harmful effects to the fetus. PMID:26180648

  8. Absorbed dose assessment in newborns during x-ray examinations

    NASA Astrophysics Data System (ADS)

    Taipe, Patricia K.; Berrocal, Mariella J.; Carita, Raúl F.

    2012-02-01

    Often a newborn presents breathing problems during the early days of life, i.e. bronchopneumonia, wich are caused in most of cases, by aspirating a mixture of meconium and amniotic fluid. In these cases, it is necessary to make use of a radiograph, requested by the physician to reach a diagnosis. This paper seeks to evaluate the absorbed doses in neonates undergoing a radiograph. For this reason we try to simulate the real conditions in a X-ray room from Lima hospitals. With this finality we perform a simulation made according a questionnaire related to technical data of X-ray equipment, distance between the source and the neonate, and its position to be irradiated. The information obtained has been used to determine the absorbed dose by infants, using the MCNP code. Finally, the results are compared with reference values of international health agencies.

  9. Dose estimation for internal organs during boron neutron capture therapy for body-trunk tumors.

    PubMed

    Sakurai, Y; Tanaka, H; Suzuki, M; Masunaga, S; Kinashi, Y; Kondo, N; Ono, K; Maruhashi, A

    2014-06-01

    Radiation doses during boron neutron capture therapy for body-trunk tumors were estimated for various internal organs, using data from patients treated at Kyoto University Research Reactor Institute. Dose-volume histograms were constructed for tissues of the lung, liver, kidney, pancreas, and bowel. For pleural mesothelioma, the target total dose to the normal lung tissues on the diseased side is 5Gy-Eq in average for the whole lung. It was confirmed that the dose to the liver should be carefully considered in cases of right lung disease.

  10. Dose assessment during complex meteorology in the Texas panhandle

    SciTech Connect

    Schalk, W.W. III; Foster, K.

    1989-06-01

    Recently the opportunity arose to perform a radiological assessment during complex meteorological conditions in the panhandle region of Texas. The complex conditions consisted of the formation of an occluded front from a trof and its passage from the southwest, a southwest to northeast trof formation northwest of the assessment point, an area of low pressure centered to the west, and severe thunderstorms at the assessment time at and near the study region while under watch box notification. Most of these features can be seen on the 17 May 89 surface analysis. The assessment included a normalized release rate of tritiated water vapor in which the 50 year committed effective whole body integrated air dose plots were compared over time. 2 refs., 2 figs.

  11. 78 FR 14912 - International Aviation Safety Assessment (IASA) Program Change

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-03-08

    ... Federal Aviation Administration 14 CFR Part 129 International Aviation Safety Assessment (IASA) Program Change AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Policy statement. SUMMARY: This statement describes a policy change to the FAA's International Aviation Safety Assessment (IASA)...

  12. TRIAGE DOSE ASSESSMENT FOR PARTIAL-BODY EXPOSURE: DICENTRIC ANALYSIS

    PubMed Central

    Moroni, Maria; Pellmar, Terry C.

    2009-01-01

    Partial-body biodosimetry is likely to be required after a radiological or nuclear exposure. Clinical signs and symptoms, distribution of dicentrics in circulating blood cells, organ-specific biomarkers, physical signals in teeth and nails all can provide indications of non-homogeneous exposures. Organ specific biomarkers may provide early warning regarding physiological systems at risk after radiation injury. Use of a combination of markers and symptoms will be needed for clinical insights for therapeutic approaches. Analysis of dicentrics, a marker specific for radiation injury, is the “Gold standard” of biodosimetry and can reveal partial-body exposures. Automation of sample processing for dicentric analysis can increase throughput with customization of off-the-shelf technologies for cytogenetic sample processing and information management. Automated analysis of the metaphase spreads is currently limited but improvements are in development. Our efforts bridge the technological gaps to allow the use of dicentric chromosome assay (DCA) for risk-based stratification of mass casualties. This article summarizes current knowledge on partial-body cytogenetic dose assessment synthesizing information leading to the proposal of an approach to triage dose prediction in radiation mass casualties, based on equivalent whole-body doses under partial-body exposure conditions and assesses the validity of using this model. An initial screening using only 20 metaphase spreads per subject can confirm irradiation above 2-Gy. A subsequent increase to 50 metaphases improves dose determination to allow risk stratification for clinical triage. Metaphases evaluated for inhomogeneous distribution of dicentrics can reveal partial-body exposures. We tested the validity of this approach in an in vitro model that simulates partial-body irradiation by mixing irradiated and un-irradiated lymphocytes in various proportions. Our preliminary results support the notion that this approach will

  13. Radon dose assessment in underground mines in Brazil.

    PubMed

    Santos, T O; Rocha, Z; Cruz, P; Gouvea, V A; Siqueira, J B; Oliveira, A H

    2014-07-01

    Underground miners are internally exposed to radon, thoron and their short-lived decay products during the mineral processing. There is also an external exposure due to the gamma emitters present in the rock and dust of the mine. However, the short-lived radon decay products are recognised as the main radiation health risk. When inhaled, they are deposited in the respiratory system and may cause lung cancer. To address this concern, concentration measurements of radon and its progeny were performed, the equilibrium factor was determined and the effective dose received was estimated in six Brazilian underground mines. The radon concentration was measured by using E-PERM, AlphaGUARD and CR-39 detectors. The radon progeny was determined by using DOSEman. The annual effective dose for the miners was estimated according to United Nations Scientific Committee on the Effects of Atomic Radiation methodologies. The mean value of the equilibrium factor was 0.4. The workers' estimated effective dose ranged from 1 to 21 mSv a(-1) (mean 9 mSv a(-1)).

  14. Radon dose assessment in underground mines in Brazil.

    PubMed

    Santos, T O; Rocha, Z; Cruz, P; Gouvea, V A; Siqueira, J B; Oliveira, A H

    2014-07-01

    Underground miners are internally exposed to radon, thoron and their short-lived decay products during the mineral processing. There is also an external exposure due to the gamma emitters present in the rock and dust of the mine. However, the short-lived radon decay products are recognised as the main radiation health risk. When inhaled, they are deposited in the respiratory system and may cause lung cancer. To address this concern, concentration measurements of radon and its progeny were performed, the equilibrium factor was determined and the effective dose received was estimated in six Brazilian underground mines. The radon concentration was measured by using E-PERM, AlphaGUARD and CR-39 detectors. The radon progeny was determined by using DOSEman. The annual effective dose for the miners was estimated according to United Nations Scientific Committee on the Effects of Atomic Radiation methodologies. The mean value of the equilibrium factor was 0.4. The workers' estimated effective dose ranged from 1 to 21 mSv a(-1) (mean 9 mSv a(-1)). PMID:24723186

  15. Electron paramagnetic resonance radiation dose assessment in fingernails of the victim exposed to high dose as result of an accident.

    PubMed

    Romanyukha, Alexander; Trompier, François; Reyes, Ricardo A; Christensen, Doran M; Iddins, Carol J; Sugarman, Stephen L

    2014-11-01

    In this paper, we report results of radiation dose measurements in fingernails of a worker who sustained a radiation injury to his right thumb while using 130 kVp X-ray for nondestructive testing. Clinically estimated absorbed dose was about 20-25 Gy. Electron paramagnetic resonance (EPR) dose assessment was independently carried out by two laboratories, the Naval Dosimetry Center (NDC) and French Institut de Radioprotection et de Sûreté Nucléaire (IRSN). The laboratories used different equipments and protocols to estimate doses in the same fingernail samples. NDC used an X-band transportable EPR spectrometer, e-scan produced by Bruker BioSpin, and a universal dose calibration curve. In contrast, IRSN used a more sensitive Q-band stationary spectrometer (EMXplus) with a new approach for the dose assessment (dose saturation method), derived by additional dose irradiation to known doses. The protocol used by NDC is significantly faster than that used by IRSN, nondestructive, and could be done in field conditions, but it is probably less accurate and requires more sample for the measurements. The IRSN protocol, on the other hand, potentially is more accurate and requires very small amount of sample but requires more time and labor. In both EPR laboratories, the intense radiation-induced signal was measured in the accidentally irradiated fingernails and the resulting dose assessments were different. The dose on the fingernails from the right thumb was estimated as 14 ± 3 Gy at NDC and as 19 ± 6 Gy at IRSN. Both EPR dose assessments are given in terms of tissue kerma. This paper discusses the experience gained by using EPR for dose assessment in fingernails with a stationary spectrometer versus a portable one, the reasons for the observed discrepancies in dose, and potential advantages and disadvantages of each approach for EPR measurements in fingernails.

  16. Source term calculations for assessing radiation dose to equipment

    SciTech Connect

    Denning, R.S.; Freeman-Kelly, R.; Cybulskis, P.; Curtis, L.A.

    1989-07-01

    This study examines results of analyses performed with the Source Term Code Package to develop updated source terms using NUREG-0956 methods. The updated source terms are to be used to assess the adequacy of current regulatory source terms used as the basis for equipment qualification. Time-dependent locational distributions of radionuclides within a containment following a severe accident have been developed. The Surry reactor has been selected in this study as representative of PWR containment designs. Similarly, the Peach Bottom reactor has been used to examine radionuclide distributions in boiling water reactors. The time-dependent inventory of each key radionuclide is provided in terms of its activity in curies. The data are to be used by Sandia National Laboratories to perform shielding analyses to estimate radiation dose to equipment in each containment design. See NUREG/CR-5175, Beta and Gamma Dose Calculations for PWR and BWR Containments.'' 6 refs., 11 tabs.

  17. ARAC: A flexible real-time dose consequence assessment system

    SciTech Connect

    Ellis, J.S.; Sullivan, T.J.

    1993-10-07

    Since its beginning, the Atmospheric Release Advisory Capability (ARAC), an emergency radiological dose assessment service of the US Government, has been called on to do consequence assessments for releases into the atmosphere of radionuclides and a variety of other substances. Some of the more noteworthy emergency responses have been for the Three Mile Island and Chernobyl nuclear power reactor accidents, and more recently, for a cloud of gases from a rail-car spill into the Sacramento river of the herbicide metam sodium, smoke from hundreds of burning oil wells in Kuwait, and ash clouds from the eruption of Mt. Pinatubo. The spatial scales of these responses range from local, to regional, to global, and the response periods from hours, to weeks, to months. Because of the variety of requirements of each unique assessment, ARAC has developed and maintains a flexible system of people, computer software and hardware.

  18. Toxicological dose assessment and acute health effect criteria

    SciTech Connect

    Stalker, A.C.; White, B.

    1992-01-01

    The use of hazardous materials requires the means of assessing doses from postulated accidental exposures to the hazardous materials. Hazardous materials include radiological and toxicological substances. Health effects are often divided into either acute (short term exposure) or chronic (long-term-exposure)-categories. Dose assessments and health effects are used in Hazard Classification, Safety Analysis Reports and Unreviewed Safety Question Determinations. The use of hazardous substances requires a means of assessing the potential health effects from exposure. Two types of toxicological data exist. The first is measured effects from human exposure, either accidentally or studies. The second consists of data from toxicity and lethality studies on mammals, often mice or rats. Because the data for human exposure is severely limited, an approach is needed that uses basic toxicity and lethality data from animal studies to estimate acute health effects in humans. The approach chosen is the one suggested jointly by the EPA, FEMA, and DOT in their Technical Guidance for Hazards Analysis'', December 1987.

  19. Toxicological dose assessment and acute health effect criteria

    SciTech Connect

    Stalker, A.C.; White, B.

    1992-09-01

    The use of hazardous materials requires the means of assessing doses from postulated accidental exposures to the hazardous materials. Hazardous materials include radiological and toxicological substances. Health effects are often divided into either acute (short term exposure) or chronic (long-term-exposure)-categories. Dose assessments and health effects are used in Hazard Classification, Safety Analysis Reports and Unreviewed Safety Question Determinations. The use of hazardous substances requires a means of assessing the potential health effects from exposure. Two types of toxicological data exist. The first is measured effects from human exposure, either accidentally or studies. The second consists of data from toxicity and lethality studies on mammals, often mice or rats. Because the data for human exposure is severely limited, an approach is needed that uses basic toxicity and lethality data from animal studies to estimate acute health effects in humans. The approach chosen is the one suggested jointly by the EPA, FEMA, and DOT in their ``Technical Guidance for Hazards Analysis``, December 1987.

  20. Habitability Assessment of International Space Station

    NASA Technical Reports Server (NTRS)

    Thaxton, Sherry

    2015-01-01

    The purpose of this study is to assess habitability during the International Space Station 1-year mission, and subsequent 6-month missions, in order to better prepare for future long-duration spaceflights to destinations such as Near Earth Asteroid (NEA) and Mars, which will require crewmembers to live and work in a confined spacecraft environment for over a year. Data collected using Space Habitability Observation Reporting Tool (iSHORT), crew-collected videos, questionnaires, and PI conferences will help characterize the current state of habitability for the ISS. These naturalistic techniques provide crewmembers with the opportunity to self-report habitability and human factors observations in near real-time, which is not systematically done during ISS missions at present.

  1. Mixed species radioiodine air sampling readout and dose assessment system

    DOEpatents

    Distenfeld, Carl H.; Klemish, Jr., Joseph R.

    1978-01-01

    This invention provides a simple, reliable, inexpensive and portable means and method for determining the thyroid dose rate of mixed airborne species of solid and gaseous radioiodine without requiring highly skilled personnel, such as health physicists or electronics technicians. To this end, this invention provides a means and method for sampling a gas from a source of a mixed species of solid and gaseous radioiodine for collection of the mixed species and readout and assessment of the emissions therefrom by cylindrically, concentrically and annularly molding the respective species around a cylindrical passage for receiving a conventional probe-type Geiger-Mueller radiation detector.

  2. RADAR Realistic Animal Model Series for Dose Assessment

    PubMed Central

    Keenan, Mary A.; Stabin, Michael G.; Segars, William P.; Fernald, Michael J.

    2010-01-01

    Rodent species are widely used in the testing and approval of new radiopharmaceuticals, necessitating murine phantom models. As more therapy applications are being tested in animal models, calculating accurate dose estimates for the animals themselves becomes important to explain and control potential radiation toxicity or treatment efficacy. Historically, stylized and mathematically based models have been used for establishing doses to small animals. Recently, a series of anatomically realistic human phantoms was developed using body models based on nonuniform rational B-spline. Realistic digital mouse whole-body (MOBY) and rat whole-body (ROBY) phantoms were developed on the basis of the same NURBS technology and were used in this study to facilitate dose calculations in various species of rodents. Methods Voxel-based versions of scaled MOBY and ROBY models were used with the Vanderbilt multinode computing network (Advanced Computing Center for Research and Education), using geometry and tracking radiation transport codes to calculate specific absorbed fractions (SAFs) with internal photon and electron sources. Photon and electron SAFs were then calculated for relevant organs in all models. Results The SAF results were compared with values from similar studies found in reference literature. Also, the SAFs were used with standardized decay data to develop dose factors to be used in radiation dose calculations. Representative plots were made of photon electron SAFs, evaluating the traditional assumption that all electron energy is absorbed in the source organs. Conclusion The organ masses in the MOBY and ROBY models are in reasonable agreement with models presented by other investigators noting that considerable variation can occur between reported masses. Results consistent with those found by other investigators show that absorbed fractions for electrons for organ self-irradiation were significantly less than 1.0 at energies above 0.5 MeV, as expected for many of

  3. Internal Film Receiver systems assessment study

    SciTech Connect

    Anderson, J.V.

    1988-03-01

    This report documents SERI's Internal Film Receiver (IFR) design study and system assessment effort; and it compares the performance and economic potential of this system to conventional salt-in-tube receivers and to systems with the direct absorption receiver (DAR). SPECO, Inc., under contract to SERI, performed the receiver configuration work and their final report is included as Appendix A. The IFR is similar to the DAR in that both use films flowing over nearly vertical plates to absorb the solar energy. However, in the IFR the radiation strikes the outside of the absorber plate and the working fluid flows down the inside. The results of the system-level assessment indicate that the IFR concept has the potential to deliver levelized energy costs (LEC) on the order of 5%--7% lower than the salt-in-tube receiver. Although the potential economic benefits of the IFR are not as great as those for the DAR, which shows more than a 15% improvement in LEC over the salt-in-tube receiver system, this may be offset by the lower technical risks with the IFR. 3 refs., 2 figs., 7 tabs.

  4. Evaluation of the Emergency Response Dose Assessment System(ERDAS)

    NASA Technical Reports Server (NTRS)

    Evans, Randolph J.; Lambert, Winifred C.; Manobianco, John T.; Taylor, Gregory E.; Wheeler, Mark M.; Yersavich, Ann M.

    1996-01-01

    The emergency response dose assessment system (ERDAS) is a protype software and hardware system configured to produce routine mesoscale meteorological forecasts and enhanced dispersion estimates on an operational basis for the Kennedy Space Center (KSC)/Cape Canaveral Air Station (CCAS) region. ERDAS provides emergency response guidance to operations at KSC/CCAS in the case of an accidental hazardous material release or an aborted vehicle launch. This report describes the evaluation of ERDAS including: evaluation of sea breeze predictions, comparison of launch plume location and concentration predictions, case study of a toxic release, evaluation of model sensitivity to varying input parameters, evaluation of the user interface, assessment of ERDA's operational capabilities, and a comparison of ERDAS models to the ocean breeze dry gultch diffusion model.

  5. Delivered dose estimate to standardize airway hyperresponsiveness assessment in mice.

    PubMed

    Robichaud, Annette; Fereydoonzad, Liah; Schuessler, Thomas F

    2015-04-15

    Airway hyperresponsiveness often constitutes a primary outcome in respiratory studies in mice. The procedure commonly employs aerosolized challenges, and results are typically reported in terms of bronchoconstrictor concentrations loaded into the nebulizer. Yet, because protocols frequently differ across studies, especially in terms of aerosol generation and delivery, direct study comparisons are difficult. We hypothesized that protocol variations could lead to differences in aerosol delivery efficiency and, consequently, in the dose delivered to the subject, as well as in the response. Thirteen nebulization patterns containing common protocol variations (nebulization time, duty cycle, particle size spectrum, air humidity, and/or ventilation profile) and using increasing concentrations of methacholine and broadband forced oscillations (flexiVent, SCIREQ, Montreal, Qc, Canada) were created, characterized, and studied in anesthetized naïve A/J mice. A delivered dose estimate calculated from nebulizer-, ventilator-, and subject-specific characteristics was introduced and used to account for protocol variations. Results showed that nebulization protocol variations significantly affected the fraction of aerosol reaching the subject site and the delivered dose, as well as methacholine reactivity and sensitivity in mice. From the protocol variants studied, addition of a slow deep ventilation profile during nebulization was identified as a key factor for optimization of the technique. The study also highlighted sensitivity differences within the lung, as well as the possibility that airway responses could be selectively enhanced by adequate control of nebulizer and ventilator settings. Reporting results in terms of delivered doses represents an important standardizing element for assessment of airway hyperresponsiveness in mice. PMID:25637610

  6. Pantak Therapax SXT 150: performance assessment and dose determination using IAEA TRS-398 protocol.

    PubMed

    Jurado, D; Eudaldo, T; Carrasco, P; Jornet, N; Ruiz, A; Ribas, M

    2005-08-01

    The performance assessment and beam characteristics of the Therapax SXT 150 unit, which encompass both low and medium-energy beams, were evaluated. Dose determination was carried out by implementing the International Atomic Energy Agency (IAEA) TRS-398 protocol and measuring all the dosimetric parameters in order to have a solid, consistent and reliable data set for the unit. Mechanical movements, interlocks and applicator characteristics agreed with specifications. The timer exhibited good accuracy and linearity. The output was very stable, with good repeatability, long-term reproducibility and no dependence on tube head orientation. The measured dosimetric parameters included beam first and second half-value layers (HVLs), absorbed dose rate to water under reference conditions, central axis depth dose distributions, output factors and beam profiles. Measured first HVLs agreed with comparable published data, but the homogeneity coefficients were low in comparison with typical values found in the literature. The timer error was significant for all filters and should be taken into consideration for the absorbed dose rate determination under reference conditions as well as for the calculation of treatment times. Percentage depth-dose (PDD) measurements are strongly recommended for each filter-applicator combination. The output factor definition of the IAEA TRS-398 protocol for medium-energy X-ray qualities involves the use of data that is difficult to measure. Beam profiles had small penumbras and good symmetry and flatness except for the lowest energy beam, for which a heel effect was observed. PMID:16046424

  7. Radiological characterization of tap waters in Croatia and the age dependent dose assessment.

    PubMed

    Rožmarić, Martina; Rogić, Matea; Benedik, Ljudmila; Barišić, Delko; Planinšek, Petra

    2014-09-01

    Activity concentrations of (234)U, (238)U, (226)Ra, (228)Ra, (210)Po and (210)Pb in tap waters, originating from various geological regions of Croatia, were determined. Activity concentrations of measured radionuclides are in general decreasing in this order: (238)U≈(234)U>(228)Ra≈(210)Pb>(226)Ra≈(210)Po. Based on the radionuclide activity concentrations average total annual internal doses for infants, children and adults, as well as contribution of each particular radionuclide to total dose, were assessed and discussed. The highest doses were calculated for infants, which makes them the most critical group of population. All values for each population group were well below the recommended reference dose level (RDL) of 0.1mSv from one year's consumption of drinking water according to European Commission recommendations from 1998. Contribution of each particular radionuclide to total doses varied among different age groups but for each group the lowest contribution was found for (226)Ra and the highest for (228)Ra. PMID:24997928

  8. International exchange of emergency phase information and assessments: an aid to national/international decision makers.

    PubMed

    Sullivan, Thomas J; Chino, Masamichi; Ehrhardt, Joachim; Shershakov, Vyacheslav

    2004-01-01

    This paper discusses a collaborative project (1) to demonstrate the feasibility and benefit of a system seeking early review, in a 'quasi peer review' mode, of nuclear accident plume and dose assessment predictions by four major international nuclear accident emergency response systems before release of calculations to respective national authorities followed by (2) sharing these results with responsible national/international authorities, (3) development of an affordable/accessible system to distribute results to countries without prediction capabilities and (4) utilisation for exercises and collaboration studies. The project exploits Internet browser technology and low-cost PC hardware, incorporates an Internet node, with access control, for depositing a minimal set of XML-based graphics files for presentation in an identical map format. Side-by-side viewing and televideo conferencing will permit rapid evaluation, data elaboration and recalculation (if necessary) and should produce strong consensus among decision makers. Successful completion affords easy utilisation by national/international organisations and non-nuclear states at risk of trans-boundary incursion.

  9. Assessing the effect of electron density in photon dose calculations

    SciTech Connect

    Seco, J.; Evans, P. M.

    2006-02-15

    Photon dose calculation algorithms (such as the pencil beam and collapsed cone, CC) model the attenuation of a primary photon beam in media other than water, by using pathlength scaling based on the relative mass density of the media to water. In this study, we assess if differences in the electron density between the water and media, with different atomic composition, can influence the accuracy of conventional photon dose calculations algorithms. A comparison is performed between an electron-density scaling method and the standard mass-density scaling method for (i) tissues present in the human body (such as bone, muscle, etc.), and for (ii) water-equivalent plastics, used in radiotherapy dosimetry and quality assurance. We demonstrate that the important material property that should be taken into account by photon dose algorithms is the electron density, and not the mass density. The mass-density scaling method is shown to overestimate, relative to electron-density predictions, the primary photon fluence for tissues in the human body and water-equivalent plastics, where 6%-7% and 10% differences were observed respectively for bone and air. However, in the case of patients, differences are expected to be smaller due to the large complexity of a treatment plan and of the patient anatomy and atomic composition and of the smaller thickness of bone/air that incident photon beams of a treatment plan may have to traverse. Differences have also been observed for conventional dose algorithms, such as CC, where an overestimate of the lung dose occurs, when irradiating lung tumors. The incorrect lung dose can be attributed to the incorrect modeling of the photon beam attenuation through the rib cage (thickness of 2-3 cm in bone upstream of the lung tumor) and through the lung and the oversimplified modeling of electron transport in convolution algorithms. In the present study, the overestimation of the primary photon fluence, using the mass-density scaling method, was shown

  10. 10 CFR 20.1202 - Compliance with requirements for summation of external and internal doses.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 1 2012-01-01 2012-01-01 false Compliance with requirements for summation of external and internal doses. 20.1202 Section 20.1202 Energy NUCLEAR REGULATORY COMMISSION STANDARDS FOR PROTECTION... absorption. Note: The intake through intact skin has been included in the calculation of DAC for...

  11. 10 CFR 20.1202 - Compliance with requirements for summation of external and internal doses.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 1 2011-01-01 2011-01-01 false Compliance with requirements for summation of external and internal doses. 20.1202 Section 20.1202 Energy NUCLEAR REGULATORY COMMISSION STANDARDS FOR PROTECTION... absorption. Note: The intake through intact skin has been included in the calculation of DAC for...

  12. 10 CFR 20.1202 - Compliance with requirements for summation of external and internal doses.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 1 2013-01-01 2013-01-01 false Compliance with requirements for summation of external and internal doses. 20.1202 Section 20.1202 Energy NUCLEAR REGULATORY COMMISSION STANDARDS FOR PROTECTION... absorption. Note: The intake through intact skin has been included in the calculation of DAC for...

  13. 10 CFR 20.1202 - Compliance with requirements for summation of external and internal doses.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 1 2010-01-01 2010-01-01 false Compliance with requirements for summation of external and internal doses. 20.1202 Section 20.1202 Energy NUCLEAR REGULATORY COMMISSION STANDARDS FOR PROTECTION... absorption. Note: The intake through intact skin has been included in the calculation of DAC for...

  14. International Developments in Environmental and Social Impact Assessment

    EPA Science Inventory

    The author has been involved in international developments in comprehensive impact assessment since 1995. During that time she has participated in ISO 14040 series development, initiated and co-chaired three international workshops, participated in Society of Environmental Toxic...

  15. A comprehensive dose reconstruction methodology for former rocketdyne/atomics international radiation workers.

    PubMed

    Boice, John D; Leggett, Richard W; Ellis, Elizabeth Dupree; Wallace, Phillip W; Mumma, Michael; Cohen, Sarah S; Brill, A Bertrand; Chadda, Bandana; Boecker, Bruce B; Yoder, R Craig; Eckerman, Keith F

    2006-05-01

    Incomplete radiation exposure histories, inadequate treatment of internally deposited radionuclides, and failure to account for neutron exposures can be important uncertainties in epidemiologic studies of radiation workers. Organ-specific doses from lifetime occupational exposures and radionuclide intakes were estimated for an epidemiologic study of 5,801 Rocketdyne/Atomics International (AI) radiation workers engaged in nuclear technologies between 1948 and 1999. The entire workforce of 46,970 Rocketdyne/AI employees was identified from 35,042 Kardex work histories cards, 26,136 electronic personnel listings, and 14,189 radiation folders containing individual exposure histories. To obtain prior and subsequent occupational exposure information, the roster of all workers was matched against nationwide dosimetry files from the Department of Energy, the Nuclear Regulatory Commission, the Landauer dosimetry company, the U.S. Army, and the U.S. Air Force. Dosimetry files of other worker studies were also accessed. Computation of organ doses from radionuclide intakes was complicated by the diversity of bioassay data collected over a 40-y period (urine and fecal samples, lung counts, whole-body counts, nasal smears, and wound and incident reports) and the variety of radionuclides with documented intake including isotopes of uranium, plutonium, americium, calcium, cesium, cerium, zirconium, thorium, polonium, promethium, iodine, zinc, strontium, and hydrogen (tritium). Over 30,000 individual bioassay measurements, recorded on 11 different bioassay forms, were abstracted. The bioassay data were evaluated using ICRP biokinetic models recommended in current or upcoming ICRP documents (modified for one inhaled material to reflect site-specific information) to estimate annual doses for 16 organs or tissues taking into account time of exposure, type of radionuclide, and excretion patterns. Detailed internal exposure scenarios were developed and annual internal doses were derived

  16. Guidelines for application of chemical-specific adjustment factors in dose/concentration-response assessment.

    PubMed

    Meek, M E; Renwick, A; Ohanian, E; Dourson, M; Lake, B; Naumann, B D; Vu, V

    2002-12-27

    This manuscript addresses guidance in the use of kinetic and dynamic data to inform quantitatively extrapolations for interspecies differences and human variability in dose-response assessment developed in a project of the International Programme on Chemical Safety (IPCS) initiative on Harmonisation of Approaches to the Assessment of Risk from Exposure to Chemicals. The guidance has been developed and refined through a series of planning and technical meetings and larger workshops of a broad range of participants from academia, government agencies and the private sector. The guidance for adequacy of data for replacement of common defaults for interspecies differences and human variability is presented in the context of several generic categories including: determination of the active chemical species, choice of the appropriate metric (kinetic components) or endpoint (dynamic components) and nature of experimental data, the latter which includes reference to the relevance of population, route and dose and the adequacy of the number of subjects/samples. The principal objective of this guidance developed primarily as a resource for risk assessors, is to foster better understanding of the components of and criteria for adequacy of chemical-specific data to quantitate interspecies differences and human variability in kinetics and dynamics. It is anticipated that this guidance will also encourage the development of appropriate data and facilitate their incorporation in a consistent fashion in dose-response assessment for regulatory purposes (IPCS, 2001). PMID:12505295

  17. Interactive Rapid Dose Assessment Model (IRDAM): reactor-accident assessment methods. Vol. 2

    SciTech Connect

    Poeton, R.W.; Moeller, M.P.; Laughlin, G.J.; Desrosiers, A.E.

    1983-05-01

    As part of the continuing emphasis on emergency preparedness, the US Nuclear Regulatory Commission (NRC) sponsored the development of a rapid dose assessment system by Pacific Northwest Laboratory (PNL). This system, the Interactive Rapid Dose Assessment Model (IRDAM) is a micro-computer based program for rapidly assessing the radiological impact of accidents at nuclear power plants. This document describes the technical bases for IRDAM including methods, models and assumptions used in calculations. IRDAM calculates whole body (5-cm depth) and infant thyroid doses at six fixed downwind distances between 500 and 20,000 meters. Radionuclides considered primarily consist of noble gases and radioiodines. In order to provide a rapid assessment capability consistent with the capacity of the Osborne-1 computer, certain simplifying approximations and assumptions are made. These are described, along with default values (assumptions used in the absence of specific input) in the text of this document. Two companion volumes to this one provide additional information on IRDAM. The user's Guide (NUREG/CR-3012, Volume 1) describes the setup and operation of equipment necessary to run IRDAM. Scenarios for Comparing Dose Assessment Models (NUREG/CR-3012, Volume 3) provides the results of calculations made by IRDAM and other models for specific accident scenarios.

  18. EXPOSURES AND INTERNAL DOSES OF TRIHALOMETHANES IN HUMANS: MULTI-ROUTE CONTRIBUTIONS FROM DRINKING WATER (FINAL)

    EPA Science Inventory

    The National Center for Environmental Assessment (NCEA) has released a final report that presents and applies a method to estimate distributions of internal concentrations of trihalomethanes (THMs) in humans resulting from a residential drinking water exposure. The report presen...

  19. International Exchange of Emergency Phase Information and Assessment: An Aid to Inter/National Decision Makers

    SciTech Connect

    Sullivan, T J; Chino, M; Ehrhardt, J; Shershakov, V

    2003-09-01

    This paper discusses a collaborative project whose purpose is (1) to demonstrate the technical feasibility and mutual benefit of a system seeking early review or preview, in a ''quasi peer review'' mode, of nuclear accident plume and dose assessment predictions by four major international nuclear accident emergency response systems before release of their calculations to their respective national authorities followed by (2) sharing these results with responsible international authorities. The extreme sensitivity of the general public to any nuclear accident information has been a strong motivation to seek peer review prior to public release. Another intended objective of this work is (3) the development of an affordable/accessible system for distribution of prediction results to countries having no prediction capabilities and (4) utilization of the link for exercises and collaboration studies. The project exploits the Internet as a ubiquitous communications medium, browser technology as a simple, user friendly interface, and low-cost PC level hardware. The participants are developing a web based dedicated node with ID and password access control, where the four systems can deposit a minimal set of XML-based data and graphics files, which are then displayed in a common identical map format. Side-by-side viewing and televideo conferencing will permit rapid evaluation, correction or elaboration of data, recalculation (if necessary) and should produce a strong level of consensus to assist international decision makers. Successful completion of this work could lead to easy utilization by national and international organizations, such as the IAEA and WHO, as well as by non-nuclear states at risk of a trans-boundary incursion on their territory.

  20. Calculation of internal dose from ingested soil-derived uranium in humans: Application of a new method.

    PubMed

    Träber, S C; Li, W B; Höllriegl, V; Nebelung, K; Michalke, B; Rühm, W; Oeh, U

    2015-08-01

    The aim of the present study was to determine the internal dose in humans after the ingestion of soil highly contaminated with uranium. Therefore, an in vitro solubility assay was performed to estimate the bioaccessibility of uranium for two types of soil. Based on the results, the corresponding bioavailabilities were assessed by using a recently published method. Finally, these bioavailability data were used together with the biokinetic model of uranium to assess the internal doses for a hypothetical but realistic scenario characterized by a daily ingestion of 10 mg of soil over 1 year. The investigated soil samples were from two former uranium mining sites of Germany with (238)U concentrations of about 460 and 550 mg/kg. For these soils, the bioavailabilities of (238)U were quantified as 0.18 and 0.28 % (geometric mean) with 2.5th percentiles of 0.02 and 0.03 % and 97.5th percentiles of 1.48 and 2.34 %, respectively. The corresponding calculated annual committed effective doses for the assumed scenario were 0.4 and 0.6 µSv (GM) with 2.5th percentiles of 0.2 and 0.3 µSv and 97.5th percentiles of 1.6 and 3.0 µSv, respectively. These annual committed effective doses are similar to those from natural uranium intake by food and drinking water, which is estimated to be 0.5 µSv. Based on the present experimental data and the selected ingestion scenario, the investigated soils-although highly contaminated with uranium-are not expected to pose any major health risk to humans related to radiation.

  1. Screening level dose assessment of aquatic biota downstream of the Marcoule nuclear complex in southern France

    SciTech Connect

    St-Pierre, S.; Chambers, D.B.; Lowe, L.M.; Bontoux, J.G.

    1999-09-01

    Aquatic biota in the Rhone River downstream of the Marcoule nuclear complex in France are exposed to natural sources of radiation and to radioactivity released from the Marcoule complex. A simple conservative screening level model was used to estimate the range of concentrations in aquatic media of both artificial and natural radionuclides and the consequent absorbed dose rates for aquatic organisms. Five categories of aquatic organisms were studied, namely, submerged aquatic plants (phanerogam), non-bottom-feeding fish, bottom-feeding fish, mollusca, and fish-eating birds. The analysis was based on the radionuclide concentrations reported in four consecutive annual radioecological monitoring reports published by French agencies with nuclear regulatory responsibilities. The results of this assessment were used to determine, qualitatively, the magnitude of any potential health impacts on each of the five categories of aquatic organisms studied. The range of dose rate estimates ranged over three orders of magnitude, with maximum dose rates estimated to be in the order of 1 to 10 {micro}Gy h{sup {minus}1}. These maximum dose rates are a factor 40 or more below the international guideline intended to ensure the protection of aquatic populations, and a factor ten or more below the level which may trigger the need for a more detailed evaluation of potential ecological consequences to the exposed populations.

  2. Technology Assessment and Roadmap for the Emergency Radiation Dose Assessment Program

    SciTech Connect

    Turteltaub, K W; Hartman-Siantar, C; Easterly, C; Blakely, W

    2005-10-03

    A Joint Interagency Working Group (JIWG) under the auspices of the Department of Homeland Security Office of Research and Development conducted a technology assessment of emergency radiological dose assessment capabilities as part of the overall need for rapid emergency medical response in the event of a radiological terrorist event in the United States. The goal of the evaluation is to identify gaps and recommend general research and development needs to better prepare the Country for mitigating the effects of such an event. Given the capabilities and roles for responding to a radiological event extend across many agencies, a consensus of gaps and suggested development plans was a major goal of this evaluation and road-mapping effort. The working group consisted of experts representing the Departments of Homeland Security, Health and Human Services (Centers for Disease Control and the National Institutes of Health), Food and Drug Administration, Department of Defense and the Department of Energy's National Laboratories (see appendix A for participants). The specific goals of this Technology Assessment and Roadmap were to: (1) Describe the general context for deployment of emergency radiation dose assessment tools following terrorist use of a radiological or nuclear device; (2) Assess current and emerging dose assessment technologies; and (3) Put forward a consensus high-level technology roadmap for interagency research and development in this area. This report provides a summary of the consensus of needs, gaps and recommendations for a research program in the area of radiation dosimetry for early response, followed by a summary of the technologies available and on the near-term horizon. We then present a roadmap for a research program to bring present and emerging near-term technologies to bear on the gaps in radiation dose assessment and triage. Finally we present detailed supporting discussion on the nature of the threats we considered, the status of technology

  3. Diffuse and fugitive emission dose assessment on the Hanford Site

    SciTech Connect

    Davis, W.E.; Schmidt, J.W.; Gleckler, B.P.; Rhoads, K.

    1995-01-01

    On February 3, 1993, the US Department of Energy, Richland Operations Office (RL), received a Compliance Order and Information Request from the Director of the Air and Toxics Division of the US Environmental Protection Agency (EPA), Region 10. The Compliance Order requires RL to (1) evaluate all radionuclide emission points at the Hanford Site to determine which are subject to continuous emission measurement requirements in 40 Code of Federal Regulations (CFR) 61, Subpart H, and (2) continuously measure radionuclide emissions in accordance with 40 CFR 61.93. The Information Request requires RL to provide a written Compliance Plan to meet the requirements of the Compliance Order. The RL Compliance Plan included as one of its milestones the requirement to develop a Federal Facility Compliance Agreement (FFCA). An FFCA was negotiated between RL and the EPA, Region 10, and was entered into on February 7, 1994. One of the milestones was to provide EPA, Region 10, with a copy of the Federal Clean Air Act Title V operating air permit application and Air Emission Inventory (AEI) concurrent with its submission to the Washington State Department of Ecology. The AEI will include an assessment of the diffuse and fugitive emissions from the Hanford Site. This assessment does not identify any diffuse or fugitive emission source that would cause an effective dose equivalent greater than 0.1 mrem/yr.

  4. A Needs Assessment of International Students' Wives

    ERIC Educational Resources Information Center

    Martens, Vonda Plett; Grant, Peter R.

    2008-01-01

    Despite the unique adjustment challenges facing international students' spouses, little research has focused on their adjustment experiences or their programming needs. Understanding the adjustment of these individuals is important both in itself and because spouses play a key role in the adjustment and academic success of international students.…

  5. ASSESSING POPULATION EXPOSURES TO MULTIPLE AIR POLLUTANTS USING A MECHANISTIC SOURCE-TO-DOSE MODELING FRAMEWORK

    EPA Science Inventory

    The Modeling Environment for Total Risks studies (MENTOR) system, combined with an extension of the SHEDS (Stochastic Human Exposure and Dose Simulation) methodology, provide a mechanistically consistent framework for conducting source-to-dose exposure assessments of multiple pol...

  6. Absorbed dose calculations to blood and blood vessels for internally deposited radionuclides

    SciTech Connect

    Akabani, G. ); Poston, J.W. . Dept. of Nuclear Engineering)

    1991-05-01

    At present, absorbed dose calculations for radionuclides in the human circulatory system used relatively simple models and are restricted in their applications. To determine absorbed doses to the blood and to the surface of the blood vessel wall, EGS4 Monte Carlo calculations were performed. Absorbed doses were calculated for the blood and the blood vessel wall (lumen) for different blood vessels sizes. The radionuclides chosen for this study were those commonly used in nuclear medicine. No diffusion of the radionuclide into the blood vessel was assumed nor cross fire between vessel was assumed. Results are useful in assessing the dose in blood and blood vessel walls for different nuclear medicine procedures. 6 refs., 6 figs., 5 tabs.

  7. Absorbed dose calculations to blood and blood vessels for internally deposited radionuclides

    SciTech Connect

    Akabani, G.; Poston, J.W. Sr. )

    1991-05-01

    At present, absorbed dose calculations for radionuclides in the human circulatory system used relatively simple models and are restricted in their applications. To determine absorbed doses to the blood and to the surface of the blood vessel wall, EGS4 Monte Carlo calculations were performed. Absorbed doses were calculated for the blood and the blood vessel wall (lumen) for different blood vessels sizes. The radionuclides chosen for this study were those commonly used in nuclear medicine. No penetration of the radionuclide into the blood vessel was assumed nor was cross fire between the vessel assumed. The results are useful in assessing the dose to blood and blood vessel walls for different nuclear medicine procedures.

  8. High-Dose Daptomycin Therapy for Left-Sided Infective Endocarditis: a Prospective Study from the International Collaboration on Endocarditis

    PubMed Central

    Bayer, Arnold S.; Miró, Josè M.; Park, Lawrence P.; Guimarães, Armenio C.; Skoutelis, Athanasios; Fortes, Claudio Q.; Durante-Mangoni, Emanuele; Hannan, Margaret M.; Nacinovich, Francisco; Fernández-Hidalgo, Nuria; Grossi, Paolo; Tan, Ru-San; Holland, Thomas; Fowler, Vance G.; Corey, Ralph G.; Chu, Vivian H.

    2013-01-01

    The use of daptomycin in Gram-positive left-sided infective endocarditis (IE) has significantly increased. The purpose of this study was to assess the influence of high-dose daptomycin on the outcome of left-sided IE due to Gram-positive pathogens. This was a prospective cohort study based on 1,112 cases from the International Collaboration on Endocarditis (ICE)-Plus database and the ICE-Daptomycin Substudy database from 2008 to 2010. Among patients with left-sided IE due to Staphylococcus aureus, coagulase-negative staphylococci, and Enterococcus faecalis, we compared those treated with daptomycin (cohort A) to those treated with standard-of-care (SOC) antibiotics (cohort B). The primary outcome was in-hospital mortality. Time to clearance of bacteremia, 6-month mortality, and adverse events (AEs) ascribable to daptomycin were also assessed. There were 29 and 149 patients included in cohort A and cohort B, respectively. Baseline comorbidities did not differ between the two cohorts, except for a significantly higher prevalence of diabetes and previous episodes of IE among patients treated with daptomycin. The median daptomycin dose was 9.2 mg/kg of body weight/day. Two-thirds of the patients treated with daptomycin had failed a previous antibiotic regimen. In-hospital and 6-month mortalities were similar in the two cohorts. In cohort A, median time to clearance of methicillin-resistant S. aureus (MRSA) bacteremia was 1.0 day, irrespective of daptomycin dose, representing a significantly faster bacteremia clearance compared to SOC (1.0 versus 5.0 days; P < 0.01). Regimens with higher daptomycin doses were not associated with increased incidence of AEs. In conclusion, higher-dose daptomycin may be an effective and safe alternative to SOC in the treatment of left-sided IE due to common Gram-positive pathogens. PMID:24080644

  9. Assessment Issues in Singapore. NCME International News.

    ERIC Educational Resources Information Center

    Poh, Sui Hoi

    1999-01-01

    Describes educational assessment in Singapore and discusses changes planned to focus assessment on more real-life situations while taking into account research on learning and critical thinking. (SLD)

  10. Assessment of the Annual Additional Effective Doses amongst Minamisoma Children during the Second Year after the Fukushima Daiichi Nuclear Power Plant Disaster

    PubMed Central

    Tsubokura, Masaharu; Kato, Shigeaki; Morita, Tomohiro; Nomura, Shuhei; Kami, Masahiro; Sakaihara, Kikugoro; Hanai, Tatsuo; Oikawa, Tomoyoshi; Kanazawa, Yukio

    2015-01-01

    An assessment of the external and internal radiation exposure levels, which includes calculation of effective doses from chronic radiation exposure and assessment of long-term radiation-related health risks, has become mandatory for residents living near the nuclear power plant in Fukushima, Japan. Data for all primary and secondary children in Minamisoma who participated in both external and internal screening programs were employed to assess the annual additional effective dose acquired due to the Fukushima Daiichi nuclear power plant disaster. In total, 881 children took part in both internal and external radiation exposure screening programs between 1st April 2012 to 31st March 2013. The level of additional effective doses ranged from 0.025 to 3.49 mSv/year with the median of 0.70 mSv/year. While 99.7% of the children (n = 878) were not detected with internal contamination, 90.3% of the additional effective doses was the result of external radiation exposure. This finding is relatively consistent with the doses estimated by the United Nations Scientific Committee on the Effects of Atomic Radiation (UNSCEAR). The present study showed that the level of annual additional effective doses among children in Minamisoma has been low, even after the inter-individual differences were taken into account. The dose from internal radiation exposure was negligible presumably due to the success of contaminated food control. PMID:26053271

  11. Assessment of the Annual Additional Effective Doses amongst Minamisoma Children during the Second Year after the Fukushima Daiichi Nuclear Power Plant Disaster.

    PubMed

    Tsubokura, Masaharu; Kato, Shigeaki; Morita, Tomohiro; Nomura, Shuhei; Kami, Masahiro; Sakaihara, Kikugoro; Hanai, Tatsuo; Oikawa, Tomoyoshi; Kanazawa, Yukio

    2015-01-01

    An assessment of the external and internal radiation exposure levels, which includes calculation of effective doses from chronic radiation exposure and assessment of long-term radiation-related health risks, has become mandatory for residents living near the nuclear power plant in Fukushima, Japan. Data for all primary and secondary children in Minamisoma who participated in both external and internal screening programs were employed to assess the annual additional effective dose acquired due to the Fukushima Daiichi nuclear power plant disaster. In total, 881 children took part in both internal and external radiation exposure screening programs between 1st April 2012 to 31st March 2013. The level of additional effective doses ranged from 0.025 to 3.49 mSv/year with the median of 0.70 mSv/year. While 99.7% of the children (n = 878) were not detected with internal contamination, 90.3% of the additional effective doses was the result of external radiation exposure. This finding is relatively consistent with the doses estimated by the United Nations Scientific Committee on the Effects of Atomic Radiation (UNSCEAR). The present study showed that the level of annual additional effective doses among children in Minamisoma has been low, even after the inter-individual differences were taken into account. The dose from internal radiation exposure was negligible presumably due to the success of contaminated food control. PMID:26053271

  12. Non-Linear Dose-Response Relationships in Biology, Toxicology and Medicine - An International Conference

    SciTech Connect

    Calabrese, Edward J.; Kostecki, Paul T.

    2002-05-28

    Conference abstract book contains seven sections: Plenary-4 abstracts; Chemical-9 abstracts; Radiation-7 abstracts; Ultra Low Doses and Medicine-6 abstracts; Biomedical-11 abstracts; Risk Assessment-5 abstracts and Poster Sessions-25 abstracts. Each abstract was provided by the author/presenter participating in the conference.

  13. The Internal Consultant Model for Assessment

    ERIC Educational Resources Information Center

    Lewis, Kristi L.; Swerdzewski, Peter J.

    2009-01-01

    Many universities rely on a committee approach to assessment in which a group of faculty, staff, and administrators is tapped to provide guidance for assessment projects on behalf of various university programs or departments or the entire university. However, other organizational approaches to achieving strong programs of assessment are…

  14. Environmental dose assessment methods for normal operations at DOE nuclear sites

    SciTech Connect

    Strenge, D.L.; Kennedy, W.E. Jr.; Corley, J.P.

    1982-09-01

    Methods for assessing public exposure to radiation from normal operations at DOE facilities are reviewed in this report. The report includes a discussion of environmental doses to be calculated, a review of currently available environmental pathway models and a set of recommended models for use when environmental pathway modeling is necessary. Currently available models reviewed include those used by DOE contractors, the Environmental Protection Agency (EPA), the Nuclear Regulatory Commission (NRC), and other organizations involved in environmental assessments. General modeling areas considered for routine releases are atmospheric transport, airborne pathways, waterborne pathways, direct exposure to penetrating radiation, and internal dosimetry. The pathway models discussed in this report are applicable to long-term (annual) uniform releases to the environment: they do not apply to acute releases resulting from accidents or emergency situations.

  15. History of the international societies in health technology assessment: International Society for Technology Assessment in Health Care and Health Technology Assessment International.

    PubMed

    Banta, David; Jonsson, Egon; Childs, Paul

    2009-07-01

    The International Society for Technology Assessment in Health Care (ISTAHC) was formed in 1985. It grew out of the increasing awareness of the international dimensions of health technology assessment (HTA) and the need for new communication methods at the international level. The main function of ISTAHC was to present an annual conference, which gradually grew in size, and also to generally improve in quality from to year. ISTAHC overextended itself financially early in the first decade of the 2000s and had to cease its existence. A new society, Health Technology Assessment international (HTAi), based on many of the same ideas and people, grew up beginning in the year 2003. The two societies have played a large role in making the field of HTA visible to people around the world and providing a forum for discussion on the methods and role of HTA.

  16. Occupational radiation dose to eyes from interventional radiology procedures in light of the new eye lens dose limit from the International Commission on Radiological Protection

    PubMed Central

    Walsh, C; Gallagher, A; Dowling, A; Guiney, M; Ryan, J M; McEniff, N; O'Reilly, G

    2015-01-01

    Objective: In 2011, the International Commission on Radiological Protection (ICRP) recommended a substantial reduction in the equivalent dose limit for the lens of the eye, in line with a reduced threshold of absorbed dose for radiation-induced cataracts. This is of particular relevance in interventional radiology (IR) where it is well established that staff doses can be significant, however, there is a lack of data on IR eye doses in terms of Hp(3). Hp(3) is the personal dose equivalent at a depth of 3 mm in soft tissue and is used for measuring lens dose. We aimed to obtain a reliable estimate of eye dose to IR operators. Methods: Lens doses were measured for four interventional radiologists over a 3-month period using dosemeters specifically designed to measure Hp(3). Results: Based on their typical workloads, two of the four interventional radiologists would exceed the new ICRP dose limit with annual estimated doses of 31 and 45 mSv to their left eye. These results are for an “unprotected” eye, and for IR staff who routinely wear lead glasses, the dose beneath the glasses is likely to be significantly lower. Staff eye dose normalized to patient kerma–area product and eye dose per procedure have been included in the analysis. Conclusion: Eye doses to IR operators have been established using a dedicated Hp(3) dosemeter. Estimated annual doses have the potential to exceed the new ICRP limit. Advances in knowledge: We have estimated lens dose to interventional radiologists in terms of Hp(3) for the first time in an Irish hospital setting. PMID:25761211

  17. Radiological Dose Assessment - Nonuniform Skin Dose, Radioactive Skin Contamination, and Multiple Dosimetry

    SciTech Connect

    W. C. Inkret; M. E. Schillaci

    1999-03-01

    Radioactive skin contamination with {beta}- and {gamma}-emitting radionuclides may result in biologically significant absorbed doses to the skin. A specific exposure scenario of interest is a nonuniform skin dose delivered by {beta}- and {gamma}-emissions from radioactive skin contamination. The United States Department of Energy requires a formal evaluation and reporting of nonuniform skin doses. The United States Department of Energy also requires specific, formal procedures for evaluating the results from the placement or use of multiple dosimeters. Action levels relative to potential absorbed doses for the contamination survey instrumentation in use at Los Alamos and formal procedures for evaluating nonuniform skin doses and multiple dosimeters are developed and presented here.

  18. Internal thyroid doses to Fukushima residents—estimation and issues remaining

    PubMed Central

    Kim, Eunjoo; Kurihara, Osamu; Kunishima, Naoaki; Momose, Takumaro; Ishikawa, Tetsuo; Akashi, Makoto

    2016-01-01

    Enormous quantities of radionuclides were released into the environment following the disastrous accident at the Fukushima Daiichi Nuclear Power Plant (FDNPP) in March 2011. It is of great importance to determine the exposure doses received by the populations living in the radiologically affected areas; however, there has been significant difficulty in estimating the internal thyroid dose received through the intake of short-lived radionuclides (mainly, 131I), because of the lack of early measurements on people. An estimation by the National Institute of Radiological Sciences for 1 April 2012 to 31 March 2013 was thus performed using a combination of the following three sources: thyroid measurement data (131I) for 1080 children examined in the screening campaign, whole-body counter measurement data (134Cs, 137Cs) for 3000 adults, and atmospheric transport dispersion model simulations. In this study, the residents of Futaba town, Iitate village and Iwaki city were shown to have the highest thyroid equivalent dose, and their doses were estimated to be mostly below 30 mSv. However, this result involved a lot of uncertainties and provided only representative values for the residents. The present paper outlines a more recent dose estimation and preliminary analyses of personal behavior data used in the new method. PMID:27538842

  19. Establishing bounding internal dose estimates for thorium activities at Rocky Flats.

    PubMed

    Ulsh, Brant A; Rich, Bryce L; Chew, Melton H; Morris, Robert L; Sharfi, Mutty; Rolfes, Mark R

    2008-07-01

    As part of an evaluation of a Special Exposure Cohort petition filed on behalf of workers at the Rocky Flats Plant, the National Institute for Occupational Safety and Health (NIOSH) was required to demonstrate that bounding values could be established for radiation doses due to the potential intake of all radionuclides present at the facility. The main radioactive elements of interest at Rocky Flats were plutonium and uranium, but much smaller quantities of several other elements, including thorium, were occasionally handled at the site. Bounding potential doses from thorium has proven challenging at other sites due to the early historical difficulty in detecting this element through urinalysis methods and the relatively high internal dose delivered per unit intake. This paper reports the results of NIOSH's investigation of the uses of thorium at Rocky Flats and provides bounding dose reconstructions for these operations. During this investigation, NIOSH reviewed unclassified reports, unclassified extracts of classified materials, material balance and inventory ledgers, monthly progress reports from various groups, and health physics field logbooks, and conducted interviews with former Rocky Flats workers. Thorium operations included: (1) an experimental metal forming project with 240 kg of thorium in 1960; (2) the use of pre-formed parts in weapons mockups; (3) the removal of Th from U; (4) numerous analytical procedures involving trace quantities of thorium; and (5) the possible experimental use of thorium as a mold coating compound. The thorium handling operations at Rocky Flats were limited in scope, well-monitored and documented, and potential doses can be bounded.

  20. Internal thyroid doses to Fukushima residents-estimation and issues remaining.

    PubMed

    Kim, Eunjoo; Kurihara, Osamu; Kunishima, Naoaki; Momose, Takumaro; Ishikawa, Tetsuo; Akashi, Makoto

    2016-08-01

    Enormous quantities of radionuclides were released into the environment following the disastrous accident at the Fukushima Daiichi Nuclear Power Plant (FDNPP) in March 2011. It is of great importance to determine the exposure doses received by the populations living in the radiologically affected areas; however, there has been significant difficulty in estimating the internal thyroid dose received through the intake of short-lived radionuclides (mainly, (131)I), because of the lack of early measurements on people. An estimation by the National Institute of Radiological Sciences for 1 April 2012 to 31 March 2013 was thus performed using a combination of the following three sources: thyroid measurement data ((131)I) for 1080 children examined in the screening campaign, whole-body counter measurement data ((134)Cs, (137)Cs) for 3000 adults, and atmospheric transport dispersion model simulations. In this study, the residents of Futaba town, Iitate village and Iwaki city were shown to have the highest thyroid equivalent dose, and their doses were estimated to be mostly below 30 mSv. However, this result involved a lot of uncertainties and provided only representative values for the residents. The present paper outlines a more recent dose estimation and preliminary analyses of personal behavior data used in the new method. PMID:27538842

  1. Numerical model for computation of effective and ambient dose equivalent at flight altitudes. Application for dose assessment during GLEs

    NASA Astrophysics Data System (ADS)

    Mishev, Alexander; Usoskin, Ilya

    2015-05-01

    A numerical model for assessment of the effective dose and ambient dose equivalent produced by secondary cosmic ray particles of galactic and solar origin at commercial aircraft altitudes is presented. The model represents a full chain analysis based on ground-based measurements of cosmic rays, from particle spectral and angular characteristics to dose estimation. The model is based on newly numerically computed yield functions and realistic propagation of cosmic ray in the Earth magnetosphere. The yield functions are computed using a straightforward full Monte Carlo simulation of the atmospheric cascade induced by primary protons and α-particles and subsequent conversion of secondary particle fluence (neutrons, protons, gammas, electrons, positrons, muons and charged pions) to effective dose or the ambient dose equivalent. The ambient dose equivalent is compared with reference data at various conditions such as rigidity cut-off and level of solar activity. The method is applied for computation of the effective dose rate at flight altitude during the ground level enhancement of 13 December 2006. The solar proton spectra are derived using neutron monitor data. The computation of the effective dose rate during the event explicitly considers the derived anisotropy i.e. the pitch angle distribution as well as the propagation of the solar protons in the magnetosphere of the Earth.

  2. An international dosimetry exchange for boron neutron capture therapy. Part I: Absorbed dose measurements.

    PubMed

    Binns, P J; Riley, K J; Harling, O K; Kiger, W S; Munck af Rosenschöld, P M; Giusti, V; Capala, J; Sköld, K; Auterinen, I; Serén, T; Kotiluoto, P; Uusi-Simola, J; Marek, M; Viererbl, L; Spurny, F

    2005-12-01

    An international collaboration was organized to undertake a dosimetry exchange to enable the future combination of clinical data from different centers conducting neutron capture therapy trials. As a first step (Part I) the dosimetry group from the Americas, represented by MIT, visited the clinical centers at Studsvik (Sweden), VTT Espoo (Finland), and the Nuclear Research Institute (NRI) at Rez (Czech Republic). A combined VTT/NRI group reciprocated with a visit to MIT. Each participant performed a series of dosimetry measurements under equivalent irradiation conditions using methods appropriate to their clinical protocols. This entailed in-air measurements and dose versus depth measurements in a large water phantom. Thermal neutron flux as well as fast neutron and photon absorbed dose rates were measured. Satisfactory agreement in determining absorbed dose within the experimental uncertainties was obtained between the different groups although the measurement uncertainties are large, ranging between 3% and 30% depending upon the dose component and the depth of measurement. To improve the precision in the specification of absorbed dose amongst the participants, the individually measured dose components were normalized to the results from a single method. Assuming a boron concentration of 15 microg g(-1) that is typical of concentrations realized clinically with the boron delivery compound boronophenylalanine-fructose, systematic discrepancies in the specification of the total biologically weighted dose of up to 10% were apparent between the different groups. The results from these measurements will be used in future to normalize treatment plan calculations between the different clinical dosimetry protocols as Part II of this study.

  3. Assessment of Dose to the Nursing Infant from Radionuclides in Breast Milk

    SciTech Connect

    Leggett, Richard Wayne; Eckerman, Keith F

    2010-03-01

    A computer software package was developed to predict tissue doses to an infant due to intake of radionuclides in breast milk based on bioassay measurements and exposure data for the mother. The package is intended mainly to aid in decisions regarding the safety of breast feeding by a mother who has been acutely exposed to a radionuclide during lactation or pregnancy, but it may be applied to previous intakes during the mother s adult life. The package includes biokinetic and dosimetric information needed to address intake of Co-60, Sr-90, Cs-134, Cs-137, Ir-192, Pu-238, Pu-239, Am-241, or Cf-252 by the mother. It has been designed so that the library of biokinetic and dosimetric files can be expanded to address a more comprehensive set of radionuclides without modifying the basic computational module. The methods and models build on the approach used in Publication 95 of the International Commission on Radiological Protection (ICRP 2004), Doses to Infants from Ingestion of Radionuclides in Mothers Milk . The software package allows input of case-specific information or judgments such as chemical form or particle size of an inhaled aerosol. The package is expected to be more suitable than ICRP Publication 95 for dose assessment for real events or realistic planning scenarios in which measurements of the mother s excretion or body burden are available.

  4. The Northern Marshall Islands radiological survey: Data and dose assessments

    SciTech Connect

    Robison, W.L.; Noshkin, V.E.; Conrado, C.L.

    1997-07-01

    Fallout from atmospheric nuclear tests, especially from those conducted at the Pacific Proving Grounds between 1946 and 1958, contaminated areas of the Northern Marshall Islands. A radiological survey at some Northern Marshall Islands was conducted from September through November 1978 to evaluate the extent of residual radioactive contamination. The atolls included in the Northern Marshall Islands Radiological Survey (NMIRS) were Likiep, Ailuk, Utirik, Wotho, Ujelang, Taka, Rongelap, Rongerik, Bikar, Ailinginae, and Mejit and Jemo Islands. The original test sites, Bikini and Enewetak Atolls, were also visited on the survey. An aerial survey was conducted to determine the external gamma exposure rate. Terrestrial (soil, food crops, animals, and native vegetation), cistern and well water samples, and marine (sediment, seawater, fish and clams) samples were collected to evaluate radionuclide concentrations in the atoll environment. Samples were processed and analyzed for {sup 137}Cs, {sup 90}Sr, {sup 239+240}Pu and {sup 241}Am. The dose from the ingestion pathway was calculated using the radionuclide concentration data and a diet model for local food, marine, and water consumption. The ingestion pathway contributes 70% to 90% of the estimated dose. Approximately 95% of the dose is from {sup 137}Cs accounts for about 10% to 30% of the dose. {sup 239+240}Pu and {sup 241}Am are the major contributors to dose via the inhalation pathway; however, inhalation accounts for only about 1% of the total estimated dose, based on surface soil levels and resuspension studies. All doses are computed for concentrations decay corrected to 1996. The maximum annual effective dose from manmade radionuclides at these atolls ranges from .02 mSv y{sup -1}. The background dose in the Marshall Islands is estimated to be 2.4 mSv y{sup -1} to 4.5 mSv y{sup -1}. The 50-y integral dose ranges from 0.5 to 65 mSv. 35 refs., 2 figs., 9 tabs.

  5. LIFE CYCLE ASSESSMENT: AN INTERNATIONAL EXPERIENCE

    EPA Science Inventory

    Life Cycle Assessment (LCA) is used to evaluate environmental burdens associated with a product, process or activity by identifying and quantifying relevant inputs and outputs of the defined system and evaluating their potential impacts. This article outlines the four components ...

  6. Metabolically consistent breathing rates for use in dose assessments

    SciTech Connect

    Layton, D.W. )

    1993-01-01

    Assessments of doses resulting from exposures to airborne gases and particles are based almost exclusively on inhalation rates that are inconsistent with the quantities of oxygen needed to metabolize dietary intakes of fats, carbohydrates, and protein. This inconsistency leads to erroneous estimates of inhalation exposures and can distort the relative importance of inhalation and ingestion-based exposures to environmental contaminants that are present in foods, air, and water. As a means of dealing with this problem, a new methodology for estimating breathing rates is presented that is based on the oxygen uptake associated with energy expenditures and a ventilatory equivalent that relates minute volume to oxygen uptake. Three alternative energy-based approaches for estimating daily inhalation rates are examined: (1) average daily intakes of food energy from dietary surveys, adjusted for under reporting of foods; (2) average daily energy expenditure calculated from ratios of total daily expenditure to basal metabolism; and (3) daily energy expenditures determined from a time-activity survey. Under the first two approaches, inhalation rates for adult females in different age cohorts ranged from 9.7 to 11 m3 d-1, whereas for adult males the range was 13 to 17 m3 d-1. Inhalation rates for adults determined from activity patterns were higher (i.e., 13 to 18 m3 d-1), however, those rates were shown to be quite sensitive to the energy expenditures used to represent light and sedentary activities. In contrast to the above estimates, the ICRP 23 reference values for adult females and males are 21 and 23 m3 d-1 (Snyder et al. 1975). Finally, the paper provides a technique for determining the short-term breathing rates of individuals based on their basal metabolic rate and level of physical activity.

  7. KREAM: Korean Radiation Exposure Assessment Model for Aviation Route Dose

    NASA Astrophysics Data System (ADS)

    Hwang, J.; Dokgo, K.; Choi, E. J.; Kim, K. C.; Kim, H. P.; Cho, K. S. F.

    2014-12-01

    Since Korean Air has begun to use the polar route from Seoul/ICN airport to New York/JFK airport on August 2006, there are explosive needs for the estimation and prediction against cosmic radiation exposure for Korean aircrew and passengers in South Korea from public. To keep pace with those needs of public, Korean government made the law on safety standards and managements of cosmic radiation for the flight attendants and the pilots in 2013. And we have begun to develop our own Korean Radiation Exposure Assessment Model (KREAM) for aviation route dose since last year funded by Korea Meteorological Administration (KMA). GEANT4 model and NRLMSIS 00 model are used for calculation of the energetic particles' transport in the atmosphere and for obtaining the background atmospheric neutral densities depending on altitude. For prediction the radiation exposure in many routes depending on the various space weather effects, we constructed a database from pre-arranged simulations using all possible combinations of R, S, and G, which are the space weather effect scales provided by the National Oceanic and Atmospheric Administration (NOAA). To get the solar energetic particles' spectrum at the 100 km altitude which we set as a top of the atmospheric layers in the KREAM, we use ACE and GOES satellites' proton flux observations. We compare the results between KREAM and the other cosmic radiation estimation programs such as CARI-6M which is provided by the Federal Aviation Agency (FAA). We also validate KREAM's results by comparison with the measurement from Liulin-6K LET spectrometer onboard Korean commercial flights and Korean Air Force reconnaissance flights.

  8. Austrian dose measurements onboard space station MIR and the International Space Station--overview and comparison.

    PubMed

    Berger, T; Hajek, M; Summerer, L; Vana, N; Akatov, Y; Shurshakov, V; Arkhangelsky, V

    2004-01-01

    The Atominstitute of the Austrian Universities has conducted various space research missions in the last 12 years in cooperation with the Institute for Biomedical Problems in Moscow. They dealt with the exact determination of the radiation hazards for cosmonauts and the development of precise measurement devices. Special emphasis will be laid on the last experiment on space station MIR the goal of which was the determination of the depth distribution of absorbed dose and dose equivalent in a water filled Phantom. The first results from dose measurements onboard the International Space Station (ISS) will also be discussed. The spherical Phantom with a diameter of 35 cm was developed at the Institute for Biomedical Problems and had 4 channels where dosimeters can be exposed in different depths. The exposure period covered the timeframe from May 1997 to February 1999. Thermoluminescent dosimeters (TLDs) were exposed inside the Phantom, either parallel or perpendicular to the hull of the spacecraft. For the evaluation of the linear energy transfer (LET), the high temperature ratio (HTR) method was applied. Based on this method a mean quality factor and, subsequently, the dose equivalent is calculated according to the Q(LET infinity) relationship proposed in ICRP 26. An increased contribution of neutrons could be detected inside the Phantom. However the total dose equivalent did not increase over the depth of the Phantom. As the first Austrian measurements on the ISS dosimeter packages were exposed for 248 days, starting in February 2001 at six different locations onboard the ISS. The Austrian dosimeter sets for this first exposure on the ISS contained five different kinds of passive thermoluminescent dosimeters. First results showed a position dependent absorbed dose rate at the ISS. PMID:15881783

  9. Impact of Internal Metallic Ports in Temporary Tissue Expanders on Postmastectomy Radiation Dose Distribution

    SciTech Connect

    Chen, Susie A.; Ogunleye, Tomiwa; Dhabbaan, Anees; Huang, Eugene H.; Losken, Albert; Gabram, Sheryl; Davis, Lawrence; Torres, Mylin A.

    2013-03-01

    Purpose: Temporary tissue expanders (TTE) with an internal magnetic metal port (IMP) have been increasingly used for breast reconstruction in post-mastectomy patients who receive radiation therapy (XRT). We evaluated XRT plans of patients with IMP to determine its effect on XRT dose distribution. Methods and Materials: Original treatment plans with CT simulation scans of 24 consecutive patients who received XRT (ORI), planned without heterogeneity corrections, to a reconstructed breast containing an IMP were used. Two additional treatment plans were then generated: one treatment plan with the IMP assigned the electron density of the rare earth magnet, nickel plated neodymium-iron-boron (HET), and a second treatment plan with the IMP assigned a CT value of 1 to simulate a homogeneous breast without an IMP (BRS). All plans were prescribed 50 Gy to the reconstructed breast (CTV). Results: CTV coverage by 50 Gy was significantly lower in the HET (mean 87.7% CTV) than in either the ORI (mean 99.7% CTV, P<.001) or BRS plans (mean 95.0% CTV, P<.001). The effect of the port was more pronounced on CT slices containing the IMP with prescription dose coverage of the CTV being less in the HET than in either ORI (mean difference 33.6%, P<.01) or BRS plans (mean difference 30.1%, P<.001). HET had a less homogeneous and conformal dose distribution than BRS or ORI. Conclusion: IMPs increase dose heterogeneity and reduce dose to the breast CTV through attenuation of the beam. For optimal XRT treatment, heterogeneity corrections should be used in XRT planning for patients with TTE with IMP, as the IMP impacts dose distribution.

  10. Austrian dose measurements onboard space station MIR and the International Space Station--overview and comparison.

    PubMed

    Berger, T; Hajek, M; Summerer, L; Vana, N; Akatov, Y; Shurshakov, V; Arkhangelsky, V

    2004-01-01

    The Atominstitute of the Austrian Universities has conducted various space research missions in the last 12 years in cooperation with the Institute for Biomedical Problems in Moscow. They dealt with the exact determination of the radiation hazards for cosmonauts and the development of precise measurement devices. Special emphasis will be laid on the last experiment on space station MIR the goal of which was the determination of the depth distribution of absorbed dose and dose equivalent in a water filled Phantom. The first results from dose measurements onboard the International Space Station (ISS) will also be discussed. The spherical Phantom with a diameter of 35 cm was developed at the Institute for Biomedical Problems and had 4 channels where dosimeters can be exposed in different depths. The exposure period covered the timeframe from May 1997 to February 1999. Thermoluminescent dosimeters (TLDs) were exposed inside the Phantom, either parallel or perpendicular to the hull of the spacecraft. For the evaluation of the linear energy transfer (LET), the high temperature ratio (HTR) method was applied. Based on this method a mean quality factor and, subsequently, the dose equivalent is calculated according to the Q(LET infinity) relationship proposed in ICRP 26. An increased contribution of neutrons could be detected inside the Phantom. However the total dose equivalent did not increase over the depth of the Phantom. As the first Austrian measurements on the ISS dosimeter packages were exposed for 248 days, starting in February 2001 at six different locations onboard the ISS. The Austrian dosimeter sets for this first exposure on the ISS contained five different kinds of passive thermoluminescent dosimeters. First results showed a position dependent absorbed dose rate at the ISS.

  11. Use of in vivo counting measurements to estimate internal doses from (241)Am in workers from the Mayak production association.

    PubMed

    Sokolova, Alexandra B; Suslova, Klara G; Efimov, Alexander V; Miller, Scott C

    2014-08-01

    Comparisons between results of in vivo counting measurements of americium burden and results from radiochemical analyses of organ samples taken at autopsy of 11 cases of former Mayak workers were made. The in vivo counting measurements were performed 3-8 y before death. The best agreement between in vivo counting measurements for americium and autopsy data was observed for the skull. For lungs and liver, the ratios of burden measured by in vivo counting to those obtained from radiochemical analyses data ranged from 0.7-3.8, while those for the skull were from 1.0-1.1. There was a good correlation between the estimates of americium burden in the entire skeleton obtained from in vivo counting with those obtained from autopsy data. Specifically, the skeletal burden ratio, in vivo counting/autopsy, averaged 0.9 ± 0.1. The prior human americium model, D-Am2010, used in vivo counting measurements for americium in the skeleton to estimate the contents of americium and plutonium at death. The results using this model indicate that in vivo counting measurements of the skull can be used to estimate internal doses from americium in the Mayak workers. Additionally, these measurements may also be used to provide a qualitative assessment of internal doses from plutonium. PMID:24978284

  12. Toxicity from repeated doses of acetaminophen in children: assessment of causality and dose in reported cases.

    PubMed

    Heard, Kennon; Bui, Alison; Mlynarchek, Sara L; Green, Jody L; Bond, G Randall; Clark, Richard F; Kozer, Eran; Koff, Raymond S; Dart, Richard C

    2014-01-01

    Liver injury has been reported in children treated with repeated doses of acetaminophen. The objective of this study was to identify and validate reports of liver injury or death in children younger than 6 years who were administered repeated therapeutic doses of acetaminophen. We reviewed US Poison Center data, peer-reviewed literature, US Food and Drug Administration Adverse Event Reports, and US Manufacturer Safety Reports describing adverse effects after acetaminophen administration. Reports that described hepatic abnormalities (description of liver injury or abnormal laboratory testing) or death after acetaminophen administration to children younger than 6 years were included. The identified reports were double abstracted and then reviewed by an expert panel to determine if the hepatic injury was related to acetaminophen and whether the dose of acetaminophen was therapeutic (≤75 mg/kg) or supratherapeutic. Our search yielded 2531 reports of adverse events associated with acetaminophen use. From these cases, we identified 76 cases of hepatic injury and 26 deaths associated with repeated acetaminophen administration. There were 6 cases of hepatic abnormalities and no deaths associated with what our panel determined to be therapeutic doses. A large proportion of cases could not be fully evaluated due to incomplete case reporting. Although we identified numerous examples of liver injury and death after repeated doses of acetaminophen, all the deaths and all but 6 cases of hepatic abnormalities involved doses more than 75 mg/kg per day. This study suggests that the doses of less than 75 mg/kg per day of acetaminophen are safe for children younger than 6 years.

  13. Radiation Dose-Response Relationships and Risk Assessment

    SciTech Connect

    Strom, Daniel J.

    2005-07-05

    The notion of a dose-response relationship was probably invented shortly after the discovery of poisons, the invention of alcoholic beverages, and the bringing of fire into a confined space in the forgotten depths of ancient prehistory. The amount of poison or medicine ingested can easily be observed to affect the behavior, health, or sickness outcome. Threshold effects, such as death, could be easily understood for intoxicants, medicine, and poisons. As Paracelsus (1493-1541), the 'father' of modern toxicology said, 'It is the dose that makes the poison.' Perhaps less obvious is the fact that implicit in such dose-response relationships is also the notion of dose rate. Usually, the dose is administered fairly acutely, in a single injection, pill, or swallow; a few puffs on a pipe; or a meal of eating or drinking. The same amount of intoxicants, medicine, or poisons administered over a week or month might have little or no observable effect. Thus, before the discovery of ionizing radiation in the late 19th century, toxicology ('the science of poisons') and pharmacology had deeply ingrained notions of dose-response relationships. This chapter demonstrates that the notion of a dose-response relationship for ionizing radiation is hopelessly simplistic from a scientific standpoint. While useful from a policy or regulatory standpoint, dose-response relationships cannot possibly convey enough information to describe the problem from a quantitative view of radiation biology, nor can they address societal values. Three sections of this chapter address the concepts, observations, and theories that contribute to the scientific input to the practice of managing risks from exposure to ionizing radiation. The presentation begins with irradiation regimes, followed by responses to high and low doses of ionizing radiation, and a discussion of how all of this can inform radiation risk management. The knowledge that is really needed for prediction of individual risk is presented

  14. The Radiobiological Basis for Improvements in Radiotherapy and Low Dose Risk Assessment

    SciTech Connect

    Hei, Tom K

    2009-12-09

    Overall Goal: This conference grant was proposed to organize and host an international conference at Columbia University in New York to critically assess the cellular and molecular signaling events and tissue response following radiation damage. The conference would also serve as a venue to play tribute to the more than forty years contributions made by Professor Eric J. Hall to the radiation biology field. The goals of the meeting were to examine tumor hypoxia and sensitizer development; recent advances made in clinical radiotherapy; addressed several low dose phenomena, including genomic instability and bystander effects that are important in radiation risk assessment. Study and Results: The symposium was held on October 13th and 14th, 2008 at the Alfred Lerner Hall in the Morningside campus of Columbia University. The symposium, entitled “From Beans to Genes: A Forty Year Odyssey in Radiation Biology” was attended by more than 120 faculty, scientists, clinicians, fellows and students. The symposium, spanned over a day and a half, covered four scientific themes. These included tumor hypoxia and radiosensitizers; low dose radiation response; radiation biology in the practice of radiotherapy, and radiation hazard in space and genetic predisposition to cancer. The program of the symposium is as follow:

  15. Development of mathematical pediatric phantoms for internal dose calculations: designs, limitations, and prospects

    SciTech Connect

    Cristy, M.

    1980-01-01

    Mathematical phantoms of the human body at various ages are employed with Monte Carlo radiation transport codes for calculation of photon specific absorbed fractions. The author has developed a pediatric phantom series based on the design of the adult phantom, but with explicit equations for each organ so that organ sizes and marrow distributions could be assigned properly. Since the phantoms comprise simple geometric shapes, predictive dose capability is limited when geometry is critical to the calculation. Hence, there is a demand for better phantom design in situations where geometry is critical, such as for external irradiation or for internal emitters with low energy photons. Recent advances in computerized axial tomography (CAT) present the potential for derivation of anatomical information, which is so critical to development of phantoms, and ongoing developmental work on compuer architecture to handle large arrays for Monte Carlo calculations should make complex-geometry dose calculations economically feasible within this decade.

  16. Assessment of International Work on Organizational Factors

    SciTech Connect

    Wall, Ian

    2002-06-01

    This report describes the concept of organizational factors and includes a consensus definition. It summarizes existing methods for assessing organizations from a safety culture perspective, for analyzing past incidents at plants to assess the role of safety culture, and for using such incident analysis to provide a database supporting organizational factors models. It describes existing methods that potentially could be extended to quantify organizational factors in a Probabilistic Safety Analysis. It concludes that no method is clearly superior for this purpose and recommends the organization of a workshop to clarify important issues prior to selecting a method.

  17. INTEGRATED RISK ASSESSMENT - RESULTS OF AN INTERNATIONAL WORKSHOP

    EPA Science Inventory

    The UNEP/ILO/WHO International Programme on Chemical Safety (IPCS), the Organization for Economic Cooperation and Development (OECD), and the U.S. Environmental Protection Agency (USEPA) have developed a collaborative partnership to foster integration of assessment approaches to ...

  18. Bladder dose-surface maps and urinary toxicity: Robustness with respect to motion in assessing local dose effects.

    PubMed

    Palorini, F; Botti, A; Carillo, V; Gianolini, S; Improta, I; Iotti, C; Rancati, T; Cozzarini, C; Fiorino, C

    2016-03-01

    The purpose of this study was to quantify the impact of inter-fraction modifications of bladder during RT of prostate cancer on bladder dose surface maps (DSM). Eighteen patients treated with daily image-guided Tomotherapy and moderate hypofractionation (70-72.8Gy at 2.5-2.6Gy/fr in 28 fractions and full bladder) were considered. Bladder contours were delineated on co-registered daily Megavoltage CT (MVCT) by a single observer and copied on the planning CT to generate dose-volume/surface histograms (DVH/DSH) and bladder DSMs. Discrepancies between planned and daily absorbed doses were analyzed through the average of individual systematic errors, the population systematic errors and the population random errors for the DVH/DSHs and DSMs. In total, 477 DVH/DSH and 472 DSM were available. DSH and DVH showed small population systematic errors of absolute surfaces (<3.4cm(2)) and volumes (<8.4cm(3)) at the highest doses. The dose to the posterior bladder base assessed on DSMs showed a mean systematic error below 1Gy, with population systematic and random errors within 4 and 3Gy, respectively. The region surrounding this area shows higher mean systematic errors (1-3Gy), population systematic (8-11Gy) and random (5-7Gy) errors. In conclusion, DVH/DSH and DSMs are quite stable with respect to inter-fraction variations in the high-dose region, within about 2cm from bladder base. Larger systematic variations occur in the anterior portion and cranially 2.5-3.5cm from the base. Results suggest that dose predictors related to the high dose area (including the trigone dose) are likely to be sufficiently reliable with respect to the expected variations due to variable bladder filling.

  19. Radiological dose assessments of atolls in the Northern Marshall Islands

    SciTech Connect

    Robison, W.L.

    1983-11-01

    Methods and models used to estimate the radiation doses to a returning population of the atolls in the Marshall Islands are presented. In this environment natural processes have acted on source-term radionuclides for nearly 30 years. The data bases developed for the models, and the results of the radiological dose analyses at the various atolls are described. The major radionuclides in order of their contribution to the total estimated doses were /sup 137/Cs, /sup 90/Sr, /sup 239/ /sup 240/Pu, /sup 241/Am, and /sup 60/Co. Exposure pathways in order of their contribution to the estimated doses were: terrestrial food chain, external ..gamma.., marine food chain, inhalation, and cistern water and ground water. 56 references, 13 figures, 16 tables.

  20. Occupational radiation dose to eyes from endoscopic retrograde cholangiopancreatography procedures in light of the revised eye lens dose limit from the International Commission on Radiological Protection

    PubMed Central

    Gallagher, A; Malone, L; O’Reilly, G

    2013-01-01

    Objective: Endoscopic retrograde cholangiopancreatography (ERCP) is a common procedure that combines the use of X-ray fluoroscopy and endoscopy for examination of the bile duct. Published data on ERCP doses are limited, including staff eye dose from ERCP. Occupational eye doses are of particular interest now as the International Commission on Radiological Protection (ICRP) has recommended a reduction in the dose limit to the lens of the eye. The aim of this study was to measure occupational eye doses obtained from ERCP procedures. Methods: A new eye lens dosemeter (EYE-D™, Radcard, Krakow, Poland) was used to measure the ERCP eye dose, Hp(3), at two endoscopy departments in Ireland. A review of radiation protection practice at the two facilities was also carried out. Results: The mean equivalent dose to the lens of the eye of a gastroenterologist is 0.01 mSv per ERCP procedure with an undercouch X-ray tube and 0.09 mSv per ERCP procedure with an overcouch X-ray tube. Staff eye dose normalised to patient kerma area product is also presented. Conclusion: Staff eye doses in ERCP have the potential to exceed the revised ICRP limit of 20 mSv per annum when an overcouch X-ray tube is used. The EYE-D dosemeter was found to be a convenient method for measuring lens dose. Eye doses in areas outside of radiology departments should be kept under review, particularly in light of the new ICRP eye dose limit. Advances in knowledge: Occupational eye lens doses from ERCP procedures have been established using a new commercially available dedicated Hp(3) dosemeter. PMID:23385992

  1. The Concentration Of Tritium In Urine And Internal Radiation Dose Estimation Of PTNBR Radiation Workers

    NASA Astrophysics Data System (ADS)

    Tjahaja, Poppy Intan; Sukmabuana, Putu; Aisyah, Neneng Nur

    2010-12-01

    The operation of Triga 2000 reactor in Nuclear Technology Center for Materials and Radiometry (PTNBR BATAN) normally produce tritium radionuclide which is the activation product of deuterium atom in reactor primary cooling water. According to previous monitoring, tritium was detected with the concentration of 8.236±0.677 kBq/L and 1.704±0.046 Bq/L in the primary cooling water and in reactor hall air, respectively. The tritium in reactor hall air chronically can be inhaled by the workers. In this research, tritium content in radiation workers' urine was determined to estimate the internal radiation doses received by the workers. About 50-100 mL of urine samples were collected from 48 PTNBR workers that is classified as 24 radiation workers and 24 administration staffs as a control. Urine samples of 25 mL were then prepared by active charcoal and KMnO4 addition and followed with complete distillation. The 2 mL of distillate was added with 13 mL scintillator, shaked vigorously and remained in cool and dark condition for about 24 hours. The tritium in the samples was then measured using liquid scintillation counter (LSC) for 1 hour. From the measurement results it was obtained that the tritium concentration in the urine of radiation workers were in the range of not detected and 5.191 Bq/mL, whereas in the administration staffs the concentration were between not detected and 4.607 Bq/mL. Internally radiation doses were calculated using the tritium concentration data, and it was found the averages about 0.602 μSv/year and 0.532 μSv/year for radiation workers and administration staffs, respectively. The doses received by the workers were lower than that of the permissible doses from tritium, i.e. 40 μSv/year.

  2. The Concentration Of Tritium In Urine And Internal Radiation Dose Estimation Of PTNBR Radiation Workers

    SciTech Connect

    Tjahaja, Poppy Intan; Sukmabuana, Putu; Aisyah, Neneng Nur

    2010-12-23

    The operation of Triga 2000 reactor in Nuclear Technology Center for Materials and Radiometry (PTNBR BATAN) normally produce tritium radionuclide which is the activation product of deuterium atom in reactor primary cooling water. According to previous monitoring, tritium was detected with the concentration of 8.236{+-}0.677 kBq/L and 1.704{+-}0.046 Bq/L in the primary cooling water and in reactor hall air, respectively. The tritium in reactor hall air chronically can be inhaled by the workers. In this research, tritium content in radiation workers' urine was determined to estimate the internal radiation doses received by the workers. About 50-100 mL of urine samples were collected from 48 PTNBR workers that is classified as 24 radiation workers and 24 administration staffs as a control. Urine samples of 25 mL were then prepared by active charcoal and KMnO{sub 4} addition and followed with complete distillation. The 2 mL of distillate was added with 13 mL scintillator, shaked vigorously and remained in cool and dark condition for about 24 hours. The tritium in the samples was then measured using liquid scintillation counter (LSC) for 1 hour. From the measurement results it was obtained that the tritium concentration in the urine of radiation workers were in the range of not detected and 5.191 Bq/mL, whereas in the administration staffs the concentration were between not detected and 4.607 Bq/mL. Internally radiation doses were calculated using the tritium concentration data, and it was found the averages about 0.602 {mu}Sv/year and 0.532 {mu}Sv/year for radiation workers and administration staffs, respectively. The doses received by the workers were lower than that of the permissible doses from tritium, i.e. 40 {mu}Sv/year.

  3. Needs Assessment of International Students at Eastern Oregon State College.

    ERIC Educational Resources Information Center

    Eid, Mamoud Taha; Jordan-Domschot, Theresa

    The purpose of the research project was to assess the needs, satisfaction, and concerns of international students attending Eastern Oregon State College. The international student population consisted of students from Micronesia, Netherlands, Somalia, Saudi Arabia, Jordan, Iran, Japan, Thailand, Zimbabwe, Belgium, Canada, Nigeria, China,…

  4. International Civic and Citizenship Education Study: Assessment Framework

    ERIC Educational Resources Information Center

    Schulz, Wolfram; Fraillon, Julian; Ainley, John; Losito, Bruno; Kerr, David

    2008-01-01

    This document outlines the framework and assessment design for the International Civic and Citizenship Education Study (ICCS) sponsored by the International Association for the Evaluation of Educational Achievement (IEA). Over the past 50 years, IEA has conducted comparative research studies focusing on educational policies, practices, and…

  5. Population Pharmacokinetic Assessment and Pharmacodynamic Implications of Pediatric Cefepime Dosing for Susceptible-Dose-Dependent Organisms

    PubMed Central

    Shoji, Kensuke; Bradley, John S.; Reed, Michael D.; van den Anker, John N.; Domonoske, Christine

    2016-01-01

    The Clinical and Laboratory Standards Institute (CLSI) revised cefepime (CFP) breakpoints for Enterobacteriaceae in 2014, and MICs of 4 and 8 μg/ml were reclassified as susceptible-dose dependent (SDD). Pediatric dosing to provide therapeutic concentrations against SDD organisms has not been defined. CFP pharmacokinetics (PK) data from published pediatric studies were analyzed. Population PK parameters were determined using NONMEM, and Monte Carlo simulation was performed to determine an appropriate CFP dosage regimen for SDD organisms in children. A total of 664 CFP plasma concentrations from 91 neonates, infants, and children were included in this analysis. The median patient age was 1.0 month (interquartile range [IQR], 0.2 to 11.2 months). Serum creatinine (SCR) and postmenstrual age (PMA) were covariates in the final PK model. Simulations indicated that CFP dosing at 50 mg/kg every 8 h (q8h) (as 0.5-h intravenous [i.v.] infusions) will maintain free-CFP concentrations in serum of >4 and 8 μg/ml for >60% of the dose interval in 87.1% and 68.6% of pediatric patients (age, ≥30 days), respectively, and extending the i.v. infusion duration to 3 h results in 92.3% of patients with free-CFP levels above 8 μg/ml for >60% of the dose interval. CFP clearance (CL) is significantly correlated with PMA and SCR. A dose of 50 mg/kg of CFP every 8 to 12 h does not achieve adequate serum exposure for older children with serious infections caused by Gram-negative bacilli with a MIC of 8 μg/ml. Prolonged i.v. infusions may be useful for this population. PMID:26810655

  6. Electron paramagnetic resonance in irradiated fingernails: variability of dose dependence and possibilities of initial dose assessment.

    PubMed

    Reyes, R A; Romanyukha, Alexander; Olsen, C; Trompier, F; Benevides, L A

    2009-08-01

    The results of electron paramagnetic resonance (EPR) measurements in irradiated fingernails are presented. In total, 83 samples of different fingernails were studied. Five different groups of samples were selected based on the collection time of fingernail samples, their level of mechanical stress, and the number and size of clippings: (1) recently (<24 h) cut, irradiated and measured with EPR without any treatment of samples, and with rigorous control of size and number of clippings (stressed-fresh, controlled); (2) recently (<24 h) cut, irradiated and measured with EPR after application of a special treatment (10 min of water soaking, 5 min of drying time) to reduce the mechanical stress caused by cutting the samples, and with rigorous control of size and number of clippings (unstressed-fresh, controlled); (3) previously (>24 h) cut, stored at room temperature, additionally cut into small pieces immediately prior to study, irradiated and measured with EPR without any treatment of samples, and with rigorous control of size and number of clippings (stressed-old, controlled); (4) previously (>24 h) cut, stored at room temperature, additionally cut into small pieces immediately prior to the study, irradiated and measured with EPR after application of a special treatment to reduce mechanical stress caused by cut, and with rigorous control of size and number of clippings (unstressed-old, controlled); and (5) recently (<24 h) cut, irradiated and measured with EPR after application of a special treatment to reduce the mechanical stress caused by cut, and without rigorous control of size and number of clippings (unstressed-fresh, uncontrolled). Except for the fifth selected group, variability of the dose dependence inside all groups was found to be not statistically significant, although the variability among the different groups was significant. Comparison of the mean dose dependences obtained for each group allowed selection of key factors responsible for radiation

  7. Radiological dose assessments in the northern Marshall Islands (1989--1991)

    SciTech Connect

    Sun, L.C.; Meinhold, C.B.; Moorthy, A.R.; Clinton, J.H.; Kaplan, E.

    1992-01-01

    The present Brookhaven National Laboratory (BNL) Marshall Islands Radiological Safety Program (MIRSP) began in 1987 with funding from the US Department of Energy (DOE). The objectives of the MIRSP are to determine the radionuclides present in the bodies of those people potentially exposed to residual radionuclide from weapon tests and fallout, and to assess their present and lifetime dose from external and internal sources. Field bioassay missions involving whole body counting (WBC) and urine sample collection have, therefore, been important components of the program. WBC is used to measure {gamma}-emitters, such as {sup 40}K, {sup 60}Co and {sup 137}Cs, present in individuals. Urine samples are used to measure {alpha} and {beta}-emitting nuclides, such as {sup 239}Pu and {sup 90}Sr, that are undetectable by WBC routine methods.

  8. Nuclear Decay Data in the MIRD (Medical Internal Radiation Dose) Format

    DOE Data Explorer

    MIRD is a database of evaluated nuclear decay data for over 2,100 radioactive nuclei. Data are extracted from ENSDF, processed by the program RadList, and used for medical internal radiation dose calculations. When using the MIRD interface, tables of nuclear and atomic radiations from nuclear decay and decay scheme drawings will be produced in the MIRD format from the Evaluated Nuclear Structure Data File (ENSDF) for the specified nuclide. Output may be either HTML-formatted tables and JPEG drawings, PostScript tables and drawings, or PDF tables and drawings.

  9. Exposure versus internal dose: Respiratory tract deposition modeling of inhaled asbestos fibers in rats and humans (Presentation Poster)

    EPA Science Inventory

    Exposure to asbestos is associated with respiratory diseases, including asbestosis, lung cancer and mesothelioma. Internal fiber dose depends on fiber inhalability and orientation, fiber density, length and width, and various deposition mechanisms (DM). Species-specific param...

  10. Establishing bounding internal dose estimates for thorium activities at Rocky Flats.

    PubMed

    Ulsh, Brant A; Rich, Bryce L; Chew, Melton H; Morris, Robert L; Sharfi, Mutty; Rolfes, Mark R

    2008-07-01

    As part of an evaluation of a Special Exposure Cohort petition filed on behalf of workers at the Rocky Flats Plant, the National Institute for Occupational Safety and Health (NIOSH) was required to demonstrate that bounding values could be established for radiation doses due to the potential intake of all radionuclides present at the facility. The main radioactive elements of interest at Rocky Flats were plutonium and uranium, but much smaller quantities of several other elements, including thorium, were occasionally handled at the site. Bounding potential doses from thorium has proven challenging at other sites due to the early historical difficulty in detecting this element through urinalysis methods and the relatively high internal dose delivered per unit intake. This paper reports the results of NIOSH's investigation of the uses of thorium at Rocky Flats and provides bounding dose reconstructions for these operations. During this investigation, NIOSH reviewed unclassified reports, unclassified extracts of classified materials, material balance and inventory ledgers, monthly progress reports from various groups, and health physics field logbooks, and conducted interviews with former Rocky Flats workers. Thorium operations included: (1) an experimental metal forming project with 240 kg of thorium in 1960; (2) the use of pre-formed parts in weapons mockups; (3) the removal of Th from U; (4) numerous analytical procedures involving trace quantities of thorium; and (5) the possible experimental use of thorium as a mold coating compound. The thorium handling operations at Rocky Flats were limited in scope, well-monitored and documented, and potential doses can be bounded. PMID:18545032

  11. Reading Achievement and Science Proficiency: International Comparisons from the Programme on International Student Assessment

    ERIC Educational Resources Information Center

    Cromley, Jennifer G.

    2009-01-01

    Students need to develop scientific literacy in order to participate fully as citizens, community members, and in the globalized economy. But what is the relationship between scientific literacy and reading literacy? Three international data sets from the Programme on International Student Assessment (PISA) were used to calculate correlations…

  12. Computational assessment of effective dose and patient specific doses for kilovoltage stereotactic radiosurgery of wet age-related macular degeneration

    NASA Astrophysics Data System (ADS)

    Hanlon, Justin Mitchell

    Age-related macular degeneration (AMD) is a leading cause of vision loss and a major health problem for people over the age of 50 in industrialized nations. The current standard of care, ranibizumab, is used to help slow and in some cases stabilize the process of AMD, but requires frequent invasive injections into the eye. Interest continues for stereotactic radiosurgery (SRS), an option that provides a non-invasive treatment for the wet form of AMD, through the development of the IRay(TM) (Oraya Therapeutics, Inc., Newark, CA). The goal of this modality is to destroy choroidal neovascularization beneath the pigment epithelium via delivery of three 100 kVp photon beams entering through the sclera and overlapping on the macula delivering up to 24 Gy of therapeutic dose over a span of approximately 5 minutes. The divergent x-ray beams targeting the fovea are robotically positioned and the eye is gently immobilized by a suction-enabled contact lens. Device development requires assessment of patient effective dose, reference patient mean absorbed doses to radiosensitive tissues, and patient specific doses to the lens and optic nerve. A series of head phantoms, including both reference and patient specific, was derived from CT data and employed in conjunction with the MCNPX 2.5.0 radiation transport code to simulate treatment and evaluate absorbed doses to potential tissues-at-risk. The reference phantoms were used to evaluate effective dose and mean absorbed doses to several radiosensitive tissues. The optic nerve was modeled with changeable positions based on individual patient variability seen in a review of head CT scans gathered. Patient specific phantoms were used to determine the effect of varying anatomy and gaze. The results showed that absorbed doses to the non-targeted tissues were below the threshold levels for serious complications; specifically the development of radiogenic cataracts and radiation induced optic neuropathy (RON). The effective dose

  13. Lung cancer and internal lung doses among plutonium workers at the Rocky Flats Plant: a case-control study.

    PubMed

    Brown, Shannon C; Schonbeck, Margaret F; McClure, David; Barón, Anna E; Navidi, William C; Byers, Tim; Ruttenber, A James

    2004-07-15

    The authors conducted a nested case-control study of the association between lung cancer mortality and cumulative internal lung doses among a cohort of workers employed at the Rocky Flats Plant in Colorado from 1951 to 1989. Cases (n = 180) were individually matched with controls (n = 720) on age, sex, and birth year. Annual doses to the lung from plutonium, americium, and uranium isotopes were calculated for each worker with an internal dosimetry model. Lung cancer risk was elevated among workers with cumulative internal lung doses of more than 400 mSv in several different analytical models. The dose-response relation was not consistent at high doses. Restricting analysis to those employed for 15-25 years produced a statistically significant linear trend with dose (chi-square = 67.2, p < 0.001), suggesting a strong healthy worker survivor effect. The association between age at first internal lung dose and lung cancer mortality was statistically significant (odds ratio = 1.05, 95% confidence interval: 1.01, 1.10). No associations were found between lung cancer mortality and cumulative external penetrating radiation dose or cumulative exposures to asbestos, beryllium, hexavalent chromium, or nickel. PMID:15234938

  14. 42 CFR 82.18 - How will NIOSH calculate internal dose to the primary cancer site(s)?

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... primary cancer site(s)? 82.18 Section 82.18 Public Health PUBLIC HEALTH SERVICE, DEPARTMENT OF HEALTH AND... Dose Reconstruction Process § 82.18 How will NIOSH calculate internal dose to the primary cancer site(s... cancer covered by a claim is in a tissue not covered by existing ICRP models, NIOSH will use the...

  15. 42 CFR 82.18 - How will NIOSH calculate internal dose to the primary cancer site(s)?

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... primary cancer site(s)? 82.18 Section 82.18 Public Health PUBLIC HEALTH SERVICE, DEPARTMENT OF HEALTH AND... Dose Reconstruction Process § 82.18 How will NIOSH calculate internal dose to the primary cancer site(s... cancer covered by a claim is in a tissue not covered by existing ICRP models, NIOSH will use the...

  16. 42 CFR 82.18 - How will NIOSH calculate internal dose to the primary cancer site(s)?

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... primary cancer site(s)? 82.18 Section 82.18 Public Health PUBLIC HEALTH SERVICE, DEPARTMENT OF HEALTH AND... Dose Reconstruction Process § 82.18 How will NIOSH calculate internal dose to the primary cancer site(s... cancer covered by a claim is in a tissue not covered by existing ICRP models, NIOSH will use the...

  17. 42 CFR 82.18 - How will NIOSH calculate internal dose to the primary cancer site(s)?

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... primary cancer site(s)? 82.18 Section 82.18 Public Health PUBLIC HEALTH SERVICE, DEPARTMENT OF HEALTH AND... Dose Reconstruction Process § 82.18 How will NIOSH calculate internal dose to the primary cancer site(s... cancer covered by a claim is in a tissue not covered by existing ICRP models, NIOSH will use the...

  18. 42 CFR 82.18 - How will NIOSH calculate internal dose to the primary cancer site(s)?

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... primary cancer site(s)? 82.18 Section 82.18 Public Health PUBLIC HEALTH SERVICE, DEPARTMENT OF HEALTH AND... Dose Reconstruction Process § 82.18 How will NIOSH calculate internal dose to the primary cancer site(s... cancer covered by a claim is in a tissue not covered by existing ICRP models, NIOSH will use the...

  19. Revised assessment of cancer risk to dichloromethane: part I Bayesian PBPK and dose-response modeling in mice.

    PubMed

    Marino, Dale J; Clewell, Harvey J; Gentry, P Robinan; Covington, Tammie R; Hack, C Eric; David, Raymond M; Morgott, David A

    2006-06-01

    The current USEPA cancer risk assessment for dichloromethane (DCM) is based on deterministic physiologically based pharmacokinetic (PBPK) modeling involving comparative metabolism of DCM by the GST pathway in the lung and liver of humans and mice. Recent advances in PBPK modeling include probabilistic methods and, in particular, Bayesian inference to quantitatively address variability and uncertainty separately. Although Bayesian analysis of human PBPK models has been published, no such efforts have been reported specifically addressing the mouse, apart from results included in the OSHA final rule on DCM. Certain aspects of the OSHA model, however, are not consistent with current approaches or with the USEPA's current DCM cancer risk assessment. Therefore, Bayesian analysis of the mouse PBPK model and dose-response modeling was undertaken to support development of an improved cancer risk assessment for DCM. A hierarchical population model was developed and prior parameter distributions were selected to reflect parameter values that were considered the most appropriate and best available. Bayesian modeling was conducted using MCSim, a publicly available software program for Markov Chain Monte Carlo analysis. Mean posterior values from the calibrated model were used to develop internal dose metrics, i.e., mg DCM metabolized by the GST pathway/L tissue/day in the lung and liver using exposure concentrations and results from the NTP mouse bioassay, consistent with the approach used by the USEPA for its current DCM cancer risk assessment. Internal dose metrics were 3- to 4-fold higher than those that support the current USEPA IRIS assessment. A decrease of similar magnitude was also noted in dose-response modeling results. These results show that the Bayesian PBPK model in the mouse provides an improved basis for a cancer risk assessment of DCM.

  20. International Large-Scale Assessments: What Uses, What Consequences?

    ERIC Educational Resources Information Center

    Johansson, Stefan

    2016-01-01

    Background: International large-scale assessments (ILSAs) are a much-debated phenomenon in education. Increasingly, their outcomes attract considerable media attention and influence educational policies in many jurisdictions worldwide. The relevance, uses and consequences of these assessments are often the focus of research scrutiny. Whilst some…

  1. An International Discussion about Cross-Cultural Career Assessment

    ERIC Educational Resources Information Center

    Osborn, Debra S.

    2012-01-01

    Career assessments are a common resource used by career practitioners internationally to help inform individuals' career decision-making. Research on the topic of cross-cultural career assessment has been mostly limited to the applicability of an established inventory to a different culture. The purpose of this paper is to summarize the existing…

  2. Ambient and biological monitoring of cokeoven workers: determinants of the internal dose of polycyclic aromatic hydrocarbons.

    PubMed

    Jongeneelen, F J; van Leeuwen, F E; Oosterink, S; Anzion, R B; van der Loop, F; Bos, R P; van Veen, H G

    1990-07-01

    Polycyclic aromatic hydrocarbons (PAH) were measured in the breathing zone air of 56 battery workers at two cokeovens during three consecutive days. The concentration of total PAH ranged up to 186 micrograms/m3. Preshift and end of shift urine samples were collected to determine 1-hydroxypyrene, a metabolite of pyrene. Control urine samples were available from 44 workers in the shipping yard of a hot rolling mill. The median values of 1-hydroxypyrene in urine of smoking and non-smoking controls were 0.51 and 0.17 mumol/mol creatinine, respectively. Concentrations of 1-hydroxypyrene up to 11.2 mumol/mol were found in the urine of the cokeoven workers. At the start of the three day working period after 32 hours off work, the 1-hydroxypyrene concentrations were four times higher and at the end of the working period 10 times higher compared with control concentrations. Excretion of 1-hydroxypyrene occurred with a half life of 6-35 hours. Both the ambient air monitoring data and the biological monitoring data showed that the topside workers were the heaviest exposed workers. The relation between air monitoring data and biological monitoring data was not strong. Multiple regression analysis was performed to identify determinants of the internal dose. The combination of exposure and smoking amplify each other and the use of a protective airstream helmet decreases the internal dose. An effect of alcohol consumption and the use of medication on the toxicokinetics of pyrene was not found.

  3. Estimating dose rates to organs as a function of age following internal exposure to radionuclides

    SciTech Connect

    Leggett, R.W.; Eckerman, K.F.; Dunning, D.E. Jr.; Cristy, M.; Crawford-Brown, D.J.; Williams, L.R.

    1984-03-01

    The AGEDOS methodology allows estimates of dose rates, as a function of age, to radiosensitive organs and tissues in the human body at arbitrary times during or after internal exposure to radioactive material. Presently there are few, if any, radionuclides for which sufficient metabolic information is available to allow full use of all features of the methodology. The intention has been to construct the methodology so that optimal information can be gained from a mixture of the limited amount of age-dependent, nuclide-specific data and the generally plentiful age-dependent physiological data now available. Moreover, an effort has been made to design the methodology so that constantly accumulating metabolic information can be incorporated with minimal alterations in the AGEDOS computer code. Some preliminary analyses performed by the authors, using the AGEDOS code in conjunction with age-dependent risk factors developed from the A-bomb survivor data and other studies, has indicated that the doses and subsequent risks of eventually experiencing radiogenic cancers may vary substantially with age for some exposure scenarios and may be relatively invariant with age for other scenarios. We believe that the AGEDOS methodology provides a convenient and efficient means for performing the internal dosimetry.

  4. Assessment and Minimization of Contralateral Breast Dose for Conventional and Intensity Modulated Breast Radiotherapy

    SciTech Connect

    Burmeister, Jay Alvarado, Nicole; Way, Sarah; McDermott, Patrick; Bossenberger, Todd; Jaenisch, Harriett; Patel, Rajiv; Washington, Tara

    2008-04-01

    Breast radiotherapy is associated with an increased risk of contralateral breast cancer (CBC) in women under age 45 at the time of treatment. This risk increases with increasing absorbed dose to the contralateral breast. The use of intensity modulated radiotherapy (IMRT) is expected to substantially reduce the dose to the contralateral breast by eliminating scattered radiation from physical beam modifiers. The absorbed dose to the contralateral breast was measured for 5 common radiotherapy techniques, including paired 15 deg. wedges, lateral 30 deg. wedge only, custom-designed physical compensators, aperture based (field-within-field) IMRT with segments chosen by the planner, and inverse planned IMRT with segments chosen by a leaf sequencing algorithm after dose volume histogram (DVH)-based fluence map optimization. Further reduction in contralateral breast dose through the use of lead shielding was also investigated. While shielding was observed to have the most profound impact on surface dose, the radiotherapy technique proved to be most important in determining internal dose. Paired wedges or compensators result in the highest contralateral breast doses (nearly 10% of the prescription dose on the medial surface), while use of IMRT or removal of the medial wedge results in significantly lower doses. Aperture-based IMRT results in the lowest internal doses, primarily due to the decrease in the number of monitor units required and the associated reduction in leakage dose. The use of aperture-based IMRT reduced the average dose to the contralateral breast by greater than 50% in comparison to wedges or compensators. Combined use of IMRT and 1/8-inch-thick lead shielding reduced the dose to the interior and surface of the contralateral breast by roughly 60% and 85%, respectively. This reduction may warrant the use of IMRT for younger patients who have a statistically significant risk of contralateral breast cancer associated with breast radiotherapy.

  5. Ultrasound attenuation computed tomography assessment of PAGAT gel dose

    NASA Astrophysics Data System (ADS)

    Khoei, S.; Trapp, J. V.; Langton, C. M.

    2014-08-01

    Ultrasound has been previously investigated as an alternative readout method for irradiated polymer gel dosimeters, with authors reporting varying dose responses. We extend previous work utilizing a new computed tomography ultrasound scanner comprising of two identical 5 MHz, 128-element linear-array ultrasound transducers, co-axially aligned and submerged in water as a coupling agent, with rotational of the gel dosimeter between the transducers facilitated by a robotic arm. We have investigated the dose-dependence of both ultrasound bulk attenuation and broadband ultrasound attenuation (BUA) for the PAGAT gel dosimeter. The ultrasound bulk attenuation dose sensitivity was found to be 1.46  ±  0.04 dB m -1 Gy -1, being in agreement with previously published results for PAG and MAGIC gels. BUA was also found to be dose dependent and was measured to be 0.024  ±  0.003 dB MHz -1 Gy -1 the advantage of BUA being its insensitivity to frequency-independent attenuation mechanisms including reflection and refraction, thereby minimizing image reconstruction artefacts.

  6. Assessment of gamma-dose rate in city of Kermanshah

    PubMed Central

    Tavakoli, Mohamad Bagher; Kodamoradi, Ehsan; Shaneh, Zahra

    2012-01-01

    Introduction: Environmental natural radiation measurement is of great importance and interest especially for human health. The induction of genetic disorder and cancer appears to be the most important in an exposed population. Materials and Methods: Measurements of background gamma rays were performed using a mini-rad environmental survey meter at 25 different locations around the city of Kermanshah (a city in the west of Iran). The measurements were also performed at two different time of day one in the morning and the other in the afternoon. At each location and time measurements were repeated for five times and the mean was considered as the background dose at that location. Results and Discussions: Comparison between the measured results in the morning and afternoon has not shown any significant difference (P > 0.95). The maximum and minimum obtained results were 2.63 mSv/y and 1.49 mSv/y, respectively. From the total measurements at 25 sites mean and SD background radiation dose to the population is 2.24 ± 0.25 mSv. Conclusion: The mean radiation dose to the population is about 2.5 times of the world average total external exposure cosmic rays and terrestrial gamma rays dose reported by UNSCEAR. PMID:23555133

  7. A dose assessment associated with landspreading petroleum industry NORM.

    SciTech Connect

    Arnish, J. J.; Smith, K. P.; Blunt, D. L.; Environmental Assessment

    2002-04-01

    As a result of oil and gas production and processing operations, naturally occurring radioactive material (NORM) sometimes accumulates at elevated concentrations in byproduct waste streams. The primary radionuclide of concern in NORM wastes are radium-226 (Ra-226) of the uranium-238 decay series; radium-228 of the thorium-232 decay series is also present, but usually at lower concentrations. The production waste streams most likely to be contaminated by elevated radium concentrations include produced water, scale, and sludge. Scales and sludges removed from production equipment sometimes are disposed of by landspreading, a method in which wastes are spread over the soil surface to allow the hydrocarbon component of the wastes to degrade. The disposal of NORM-contaminated wastes by landspreading was modeled to evaluate potential radiological doses to the general public. A variety of future land use scenarios - including residential, industrial, recreational, and agricultural scenarios - were considered. The waste streams considered included scales and sludges containing NORM above background levels. The RESRAD computer code was used to estimate the radiological doses for the maximally exposed receptor for each scenario. Depending on the land-use scenario, potential exposure pathways evaluated for the general public included external radiation; inhalation of contaminated particulates; inhalation of indoor and outdoor radon-222; inadvertent ingestion of contaminated soil; and ingestion of crops, milk, and meat grown on the property. Potential doses were modeled for a unit concentration of 1 Bq g{sup -1} of Ra-226 in soil. Because dose increases linearly with radium concentration, doses were extrapolated for a range of radium concentrations.

  8. Internal fiducial markers can assist dose escalation in treatment of prostate cancer: result of organ motion simulations

    NASA Astrophysics Data System (ADS)

    Zhang, M.; Moiseenko, V.; Liu, M.; Craig, T.

    2006-01-01

    Use of internal fiducial markers and electronic portal imaging (EPI) to realign patients has been shown to significantly reduce positioning uncertainties in prostate radiation treatment. This creates the possibility of improving the treatment by decreasing the planning target volume (PTV) margin added to the clinical target volume (CTV), which in turn may allow dose escalation. Conformal treatment plans for three prostate cancer patients were evaluated by using different PTV margins with dose prescription of 70 Gy/35 fr initially. Two beam arrangements, 4-field-box (4FB) and 4-field-oblique (4FO), were used. Then, two dose escalation schemes, 74 Gy and 78 Gy, with tighter PTV margins, were chosen from the first simulation and were tested. A Monte Carlo model was developed to simulate the daily geometric uncertainty and calculate the dose to each organ. After the whole treatment, dose-volume histograms were produced and tumour control probability, prostate equivalent uniform dose and the effective dose to critical organs were calculated. By comparing these radiobiological metrics, optimized dose escalation schemes were found. The results show that using internal fiducial markers and EPI, the prescription dose can be escalated to 78 Gy/39 fr with a 4 mm PTV margin. Based on the available dose-response data for intermediate risk prostate patients, this is estimated to result in a 20% increase of local control and significantly reduced rectal complications.

  9. Overview of Dose Assessment Developments and the Health of Riverside Residents Close to the “Mayak” PA Facilities, Russia

    PubMed Central

    Standring, William J.F.; Dowdall, Mark; Strand, Per

    2009-01-01

    The Norwegian Radiation Protection Authority (NRPA) has been involved in studies related to the Mayak PA and the consequences of activities undertaken at the site for a number of years. This paper strives to present an overview of past and present activities at the Mayak PA and subsequent developments in the quantification of health effects on local populations caused by discharges of radioactive waste into the Techa River. Assessments of doses to affected populations have relied on the development of dose reconstruction techniques for both external and internal doses. Contamination levels are typically inhomogeneous and decrease with increasing distance from the discharge point. Citations made in this paper give a comprehensive, though not exhaustive, basis for further reading about this topic. PMID:19440276

  10. Climate Change Impact Assessments for International Market Systems (CLIMARK)

    NASA Astrophysics Data System (ADS)

    Winkler, J. A.; Andresen, J.; Black, J.; Bujdoso, G.; Chmielewski, F.; Kirschke, D.; Kurlus, R.; Liszewska, M.; Loveridge, S.; Niedzwiedz, T.; Nizalov, D.; Rothwell, N.; Tan, P.; Ustrnul, Z.; von Witzke, H.; Zavalloni, C.; Zhao, J.; Zhong, S.

    2012-12-01

    The vast majority of climate change impact assessments evaluate how local or regional systems and processes may be affected by a future climate. Alternative strategies that extend beyond the local or regional scale are needed when assessing the potential impacts of climate change on international market systems, including agricultural commodities. These industries have multiple production regions that are distributed worldwide and are likely to be differentially impacted by climate change. Furthermore, for many industries and market systems, especially those with long-term climate-dependent investments, temporal dynamics need to be incorporated into the assessment process, including changing patterns of international trade, consumption and production, and evolving adaptation strategies by industry stakeholder groups. A framework for conducting climate change assessments for international market systems, developed as part of the CLIMARK (Climate Change and International Markets) project is outlined, and progress toward applying the framework for an impact assessment for the international tart cherry industry is described. The tart cherry industry was selected for analysis in part because tart cherries are a perennial crop requiring long-term investments by the producer. Components of the project include the preparation of fine resolution climate scenarios, evaluation of phenological models for diverse production regions, the development of a yield model for tart cherry production, new methods for incorporating individual decision making and adaptation options into impact assessments, and modification of international trade models for use in impact studies. Innovative aspects of the project include linkages between model components and evaluation of the mega-uncertainty surrounding the assessment outcomes. Incorporation of spatial and temporal dynamics provides a more comprehensive evaluation of climate change impacts and an assessment product of potentially greater

  11. International core data sets for integrated environmental assessment

    SciTech Connect

    Singh, A.

    1996-12-31

    Integrated environmental assessments are needed to provide policy relevant information for decision making at national, regional and international scales and the means for priority setting and action planning. One of the important components of integrated assessment is the critical examination of Pressure-State-Impact-Response (PSIR) model in key assessment areas. The paper highlights some of the initiatives of the United Nations Environment Program (UNEP) in assembling the platform of information necessary for constructing an integrated assessment framework for State of the Environment (SOE) reporting. The current status of international core data sets such as land use/land cover, demographics, hydrology, topography, climatology, infrastructure, economy, soils, air quality and water quality, needed for such assessments is also briefly described.

  12. Development of the voxel computational phantoms of pediatric patients and their application to organ dose assessment

    NASA Astrophysics Data System (ADS)

    Lee, Choonik

    A series of realistic voxel computational phantoms of pediatric patients were developed and then used for the radiation risk assessment for various exposure scenarios. The high-resolution computed tomographic images of live patients were utilized for the development of the five voxel phantoms of pediatric patients, 9-month male, 4-year female, 8-year female, 11-year male, and 14-year male. The phantoms were first developed as head and torso phantoms and then extended into whole body phantoms by utilizing computed tomographic images of a healthy adult volunteer. The whole body phantom series was modified to have the same anthropometrics with the most recent reference data reported by the international commission on radiological protection. The phantoms, named as the University of Florida series B, are the first complete set of the pediatric voxel phantoms having reference organ masses and total heights. As part of the dosimetry study, the investigation on skeletal tissue dosimetry methods was performed for better understanding of the radiation dose to the active bone marrow and bone endosteum. All of the currently available methodologies were inter-compared and benchmarked with the paired-image radiation transport model. The dosimetric characteristics of the phantoms were investigated by using Monte Carlo simulation of the broad parallel beams of external phantom in anterior-posterior, posterior-anterior, left lateral, right lateral, rotational, and isotropic angles. Organ dose conversion coefficients were calculated for extensive photon energies and compared with the conventional stylized pediatric phantoms of Oak Ridge National Laboratory. The multi-slice helical computed tomography exams were simulated using Monte Carlo simulation code for various exams protocols, head, chest, abdomen, pelvis, and chest-abdomen-pelvis studies. Results have found realistic estimates of the effective doses for frequently used protocols in pediatric radiology. The results were very

  13. Using the Monte Carlo method for assessing the tissue and organ doses of patients in dental radiography

    NASA Astrophysics Data System (ADS)

    Makarevich, K. O.; Minenko, V. F.; Verenich, K. A.; Kuten, S. A.

    2016-05-01

    This work is dedicated to modeling dental radiographic examinations to assess the absorbed doses of patients and effective doses. For simulating X-ray spectra, the TASMIP empirical model is used. Doses are assessed on the basis of the Monte Carlo method by using MCNP code for voxel phantoms of ICRP. The results of the assessment of doses to individual organs and effective doses for different types of dental examinations and features of X-ray tube are presented.

  14. Assessment of radiation doses from residential smoke detectors that contain americium-241

    SciTech Connect

    O'Donnell, F.R.; Etnier, E.L.; Holton, G.A.; Travis, C.C.

    1981-10-01

    External dose equivalents and internal dose commitments were estimated for individuals and populations from annual distribution, use, and disposal of 10 million ionization chamber smoke detectors that contain 110 kBq (3 ..mu..Ci) americium-241 each. Under exposure scenarios developed for normal distribution, use, and disposal using the best available information, annual external dose equivalents to average individuals were estimated to range from 4 fSv (0.4 prem) to 20 nSv (2 ..mu..rem) for total body and from 7 fSv to 40 nSv for bone. Internal dose commitments to individuals under post disposal scenarios were estimated to range from 0.006 to 80 ..mu..Sv (0.0006 to 8 mrem) to total body and from 0.06 to 800 ..mu..Sv to bone. The total collective dose (the sum of external dose equivalents and 50-year internal dose commitments) for all individuals involved with distribution, use, or disposal of 10 million smoke detectors was estimated to be about 0.38 person-Sv (38 person-rem) to total body and 00 ft/sup 2/).

  15. Biosphere model for assessing doses from nuclear waste disposal

    SciTech Connect

    Sheppard, M.I.; Zach, R.; Sheppard, S.C.; Amiro, B.D.

    1996-12-01

    In Canada`s nuclear fuel waste disposal concept, the waste would be placed in corrosion-resistant metal containers, surrounded by clay-based buffer and backfill materials, in a vault deep in plutonic rock of the Canadian Shield. The engineered and natural barriers of the disposal system are designed to isolate the waste from the surface environment. Nevertheless, isolation may not be complete for all time and nuclides could reach the surface environment. Because this would likely occur far in the future, the impact on the environment and humans must be predicted with the help of mathematical models. The Atomic Energy Control Board (AECB), a key regulator of Canada`s nuclear industry, requires that quantitative model simulations extend to at least 10,000 years. The AECB has established an individual risk limit for human exposure of 10{sup -6} serious health effects per year. This limit corresponds to a radiological dose of 0.05 mSv/a or about 2.5% of the natural background dose, based on the AECB`s risk conversion factor of 0.02. To demonstrate environmental and human safety, radiological doses are predicted to a member of a self-sufficient critical group, the most exposed people for up to 10,000 years. For times longer than 10,000 years, reasoned arguments are required to show that no sudden or dramatic increases will occur that would be unacceptable by today`s standards. Our predictions are based on linked vault, geosphere and biosphere models, which compose the system model.

  16. EMP Attachment 3 DOE-SC PNNL Site Dose Assessment Guidance

    SciTech Connect

    Snyder, Sandra F.

    2011-12-21

    This Dose Assessment Guidance (DAG) describes methods to use to determine the Maximally-Exposed Individual (MEI) location and to estimate dose impact to that individual under the U.S. Department of Energy Office of Science (DOE-SC) Pacific Northwest National Laboratory (PNNL) Site Environmental Monitoring Plan (EMP). This guidance applies to public dose from radioactive material releases to the air from PNNL Site operations. This document is an attachment to the Pacific Northwest National Laboratory (PNNL) Environmental Monitoring Plan (EMP) and describes dose assessment guidance for radiological air emissions. The impact of radiological air emissions from the U.S. Department of Energy Office of Science (DOE-SC) PNNL Site is indicated by dose estimates to a maximally exposed member of the public, referred to as the maximally exposed individual (MEI). Reporting requirements associated with dose to members of the public from radiological air emissions are in 40 CFR Part 61.94, WAC 246-247-080, and DOE Order 458.1. The DOE Order and state standards for dose from radioactive air emissions are consistent with U.S. Environmental Protection Agency (EPA) dose standards in 40 CFR 61.92 (i.e., 10 mrem/yr to a MEI). Despite the fact that the current Contract Requirements Document (CRD) for the DOE-SC PNNL Site operations does not include the requirement to meet DOE CRD 458.1, paragraph 2.b, public dose limits, the DOE dose limits would be met when EPA limits are met.

  17. Use of AERIN code for determining internal doses of transuranic isotopes

    SciTech Connect

    King, W.C.

    1980-06-13

    The AERIN computer code is a mathematical expression of the ICRP Lung Model. The code was developed at the Lawrence Livermore National Laboratory to compute the body organ burdens and absorbed radiation doses resulting from the inhalation of transuranic isotopes and to predict the amount of activity excreted in the urine and feces as a function of time. Over forty cases of internal exposure have been studied using the AERIN code. The code, as modified, has proven to be extremely versatile. The case studies presented demonstrate the excellent correlation that can be obtained between code predictions and observed bioassay data. In one case study a discrepancy was observed between an in vivo count of the whole body and the application of the code using urine and fecal data as input. The discrepancy was resolved by in vivo skull counts that showed the code had predicted the correct skeletal burden.

  18. Estimating Toxicity Pathway Activating Doses for High Throughput Chemical Risk Assessments

    EPA Science Inventory

    Estimating a Toxicity Pathway Activating Dose (TPAD) from in vitro assays as an analog to a reference dose (RfD) derived from in vivo toxicity tests would facilitate high throughput risk assessments of thousands of data-poor environmental chemicals. Estimating a TPAD requires def...

  19. QUANTITATION OF MOLECULAR ENDPOINTS FOR THE DOSE-RESPONSE COMPONENT OF CANCER RISK ASSESSMENT

    EPA Science Inventory

    Cancer risk assessment involves the steps of hazard identification, dose-response assessment, exposure assessment and risk characterization. The rapid advances in the use of molecular biology approaches has had an impact on all four components, but the greatest overall current...

  20. Radiation dose assessment from ingestion pathway in Saudi Arabia

    SciTech Connect

    Abdul-Majid, S.; Abdul-Fattah, A.R.A.F.; Abulfaraj, W.H. )

    1992-01-01

    Levels of radioactivities in foodstuffs in the local market have been measured for the period from November 1987 until end of June 1988. Out of the 674 samples analyzed there were 83 milk powder, 85 infant milk powder, 54 infant cereals, 89 meat, 16 lentils, 14 wheat, and 26 macaroni samples. The average radioactivity concentration of {sup 137}Cs and {sup 134}Cs, in these samples in Bq/kg were 19, 13, 18, 6, 10, 25 and 13 respectively. The rest adults and infant foodstuffs had negligible radioactivity levels. The calculated annual doses from ingestion pathway due to {sup 137}Cs and {sup 134}Cs for adults were 3.13 {times} 10{sup {minus}5} Sv and 2.1 {times} 10{sup {minus}5} Sv while for one year old infant they were 12 {times} 10{sup {minus}5} Sv and 8 {times} 10{sup {minus}5} Sv respectively. The estimated accumulated dose for 50 years from {sup 90}Sr due to one year food ingestion for adults and one year old infants were 3.76 {times} 3.76 {times} 10{sup {minus}5} Sv and 5.2 {times} 10{sup {minus}5} Sv respectively.

  1. Assessment of medical occupational radiation doses in Costa Rica.

    PubMed

    Mora, P; Acuña, M

    2011-09-01

    Participation of the University of Costa Rica (UCR) in activities in an IAEA Regional Project RLA/9/066 through training, equipment and expert missions, has enabled to setting up of a national personal monitoring laboratory. Since 2007, the UCR has been in charge of monitoring around 1800 medical radiation workers of the Social Security System. Individual external doses are measured with thermoluminescent dosemeter using a Harshaw 6600 Plus reader. The service has accreditation with ISO/IEC 17025:2005. Distribution of monitored medical personnel is as follows: 83 % in diagnostic radiology, 6 % in nuclear medicine and 6 % in radiotherapy. Preliminary values for the 75 percentile of annual H(p)(10) in mSv are: radiology 0.37; interventional radiology 0.41; radiotherapy 0.53 and nuclear medicine 1.55. The service provided by the UCR in a steady and reliable way can help to implement actions to limit the doses received by the medical workers and optimise their radiation protection programs. PMID:21856694

  2. Improving Exposure Science and Dose Metrics for Toxicity Testing, Screening, Prioritizing, and Risk Assessment

    EPA Science Inventory

    Advance the characterization of exposure and dose metrics required to translate advances and findings in computational toxicology to information that can be directly used to support exposure and risk assessment for decision making and improved public health.

  3. ASSESSING RESIDENTIAL EXPOSURE USING THE STOCHASTIC HUMAN EXPOSURE AND DOSE SIMULATION (SHEDS) MODEL

    EPA Science Inventory

    As part of a workshop sponsored by the Environmental Protection Agency's Office of Research and Development and Office of Pesticide Programs, the Aggregate Stochastic Human Exposure and Dose Simulation (SHEDS) Model was used to assess potential aggregate residential pesticide e...

  4. Dose assessment for sheep exposed to fallout from nuclear test Nancy

    SciTech Connect

    Sasser, L.B.; Soldat, J.K.; Kennedy, W.E. Jr.; Murphy, D.W.

    1982-10-01

    Radiation doses were estimated for sheep wintering on Nevada ranges during the testing at the Nevada Test Site of the nuclear weapon Nancy on March 24, 1953. Exposure pathways considered were inhalation of radionuclides from both cloud passage and resuspension, external exposure of the total body and skin, and ingestion of contaminated forage and soil. Physiological, metabolic, and dosimetric data needed for these calculations were obtained from data appropriate for the sheep. Dose rate and radionuclide deposition values for shot Nancy were used. Radionuclide deposition and retention on the desert vegetation were obtained from data collected during several nuclear tests at the Nevada Test Site. Existing dosimetric computer programs, whose libraries were modified to include the sheep data, and specially developed models were used to estimate the dose commitment for the sheep. The total-body dose for reference sheep located within the 40-mR/hr (H+12) isopleth from all modes of exposure was estimated to be 2.6 rad. Ingestion of fallout on edible vegetation contributed the majority of the dose, whereas inhalation of radionuclides and consumption of contaminated soil from the ground contributed little to the internal doses. The dose to the thyroid of ewes from radioiodine and other radionuclides reaching the thyroid was approximately 400 rad. The calculated uniform dose to the reticulo-rumen was 4 rad; however, if fallout particles were assumed to concentrate in the ventral rumen, a localized dose of 200 rad could have been received by the rumen wall. Estimated dose to the bare skin of ewes was 120 rad. The dose to the fetal thyroid from radioiodine ingested by a pregnant ewe grazing at a location where the dose rate was 40 mR/hr (H+12) was estimated to be 700 rad, or approximately twice the dose to the maternal thyroid.

  5. [International trend of guidance for nanomaterial risk assessment].

    PubMed

    Hirose, Akihiko

    2013-01-01

    In the past few years, several kinds of opinions or recommendations on the nanomaterial safety assessment have been published from international or national bodies. Among the reports, the first practical guidance of risk assessment from the regulatory body was published from the European Food Safety Authorities in May 2011, which included the determination of exposure scenario and toxicity testing strategy. In October 2011, European Commission (EC) adopted the definition of "nanomaterial" for regulation. And more recently, Scientific Committee on Consumer Safety of EC released guidance for assessment of nanomaterials in cosmetics in June 2012. A series of activities in EU marks an important step towards realistic safety assessment of nanomaterials. On the other hand, the US FDA announced a draft guidance for industry in June 2011, and then published draft guidance documents for both "Cosmetic Products" and "Food Ingredients and Food Contact Substances" in April 2012. These draft documents do not restrictedly define the physical properties of nanomaterials, but when manufacturing changes alter the dimensions, properties, or effects of an FDA-regulated product, the products are treated as new products. Such international movements indicate that most of nanomaterials with any new properties would be assessed or regulated as new products by most of national authorities in near future, although the approaches are still case by case basis. We will introduce such current international activities and consideration points for regulatory risk assessment.

  6. Strategically Assessing International Business Course-Specific Learning Aims

    ERIC Educational Resources Information Center

    Kashlak, Roger; Lorenzi, Peter; Cummings, Jeffrey

    2007-01-01

    During the past 30 years, there have been calls for universities and business schools to internationalize curriculum, students and faculty. As most U.S. business schools have added international components to their respective programs, the assessment of these programs was subsequently recommended from accreditation and competitive perspectives. To…

  7. [Internal and external assessment of nursing home residents' satisfaction].

    PubMed

    Sanchez, Stéphane; Cohen, Nadia; Bertin-Hugault, François; Sanchez, Marc Antoine; Dramé, Moustapha; Denormandie, Philippe

    2016-01-01

    Quality improvement procedures and measuring the satisfaction of nursing home residents is a major priority. A study assessed the differences between the results of a survey conducted by internal staff and of one carried out by an external service provider to evaluate the satisfaction of the residents of a nursing home.

  8. International Computer and Information Literacy Study: Assessment Framework

    ERIC Educational Resources Information Center

    Fraillon, Julian; Schulz, Wolfram; Ainley, John

    2013-01-01

    The purpose of the International Computer and Information Literacy Study 2013 (ICILS 2013) is to investigate, in a range of countries, the ways in which young people are developing "computer and information literacy" (CIL) to support their capacity to participate in the digital age. To achieve this aim, the study will assess student…

  9. AN INTERNATIONAL WORKSHOP ON LIFE CYCLE IMPACT ASSESSMENT SOPHISTICATION

    EPA Science Inventory

    On November 29-30,1998 in Brussels, an international workshop was held to discuss Life Cycle Impact Assessment (LCIA) Sophistication. Approximately 50 LCA experts attended the workshop from North America, Europe, and Asia. Prominant practicioners and researchers were invited to ...

  10. Assessing Student Learning Outcomes Internationally: Insights and Frontiers

    ERIC Educational Resources Information Center

    Coates, Hamish

    2016-01-01

    As higher education systems and institutions expand, more energy is being invested in ensuring that sufficient learning has been achieved to warrant the award of a qualification. Many commonly used assessment approaches do not scale well, and there remains a pressing need for reform. This paper distils insights from international investigations of…

  11. Internal Medicine Residents Do Not Accurately Assess Their Medical Knowledge

    ERIC Educational Resources Information Center

    Jones, Roger; Panda, Mukta; Desbiens, Norman

    2008-01-01

    Background: Medical knowledge is essential for appropriate patient care; however, the accuracy of internal medicine (IM) residents' assessment of their medical knowledge is unknown. Methods: IM residents predicted their overall percentile performance 1 week (on average) before and after taking the in-training exam (ITE), an objective and well…

  12. Dosimetric models of the eye and lens of the eye and their use in assessing dose coefficients for ocular exposures.

    PubMed

    Bolch, W E; Dietze, G; Petoussi-Henss, N; Zankl, M

    2015-06-01

    Based upon recent epidemiological studies of ocular exposure, the Main Commission of the International Commission on Radiological Protection (ICRP) in ICRP Publication 118 states that the threshold dose for radiation-induced cataracts is now considered to be approximately 0.5 Gy for both acute and fractionated exposures. Consequently, a reduction was also recommended for the occupational annual equivalent dose to the lens of the eye from 150 mSv to 20 mSv, averaged over defined periods of 5 years. To support ocular dose assessment and optimisation, Committee 2 included Annex F within ICRP Publication 116 . Annex F provides dose coefficients - absorbed dose per particle fluence - for photon, electron, and neutron irradiation of the eye and lens of the eye using two dosimetric models. The first approach uses the reference adult male and female voxel phantoms of ICRP Publication 110. The second approach uses the stylised eye model of Behrens et al., which itself is based on ocular dimensional data given in Charles and Brown. This article will review the data and models of Annex F with particular emphasis on how these models treat tissue regions thought to be associated with stem cells at risk.

  13. The Chernobyl Accident 20 Years On: An Assessment of the Health Consequences and the International Response

    PubMed Central

    Baverstock, Keith; Williams, Dillwyn

    2006-01-01

    Background The Chernobyl accident in 1986 caused widespread radioactive contamination and enormous concern. Twenty years later, the World Health Organization and the International Atomic Energy Authority issued a generally reassuring statement about the consequences. Accurate assessment of the consequences is important to the current debate on nuclear power. Objectives Our objectives in this study were to evaluate the health impact of the Chernobyl accident, assess the international response to the accident, and consider how to improve responses to future accidents. Discussion So far, radiation to the thyroid from radioisotopes of iodine has caused several thousand cases of thyroid cancer but very few deaths; exposed children were most susceptible. The focus on thyroid cancer has diverted attention from possible nonthyroid effects, such as mini-satellite instability, which is potentially important. The international response to the accident was inadequate and uncoordinated, and has been unjustifiably reassuring. Accurate assessment of Chernobyl’s future health effects is not currently possible in the light of dose uncertainties, current debates over radiation actions, and the lessons from the late consequences of atomic bomb exposure. Conclusions Because of the uncertainties over the dose from and the consequences of the Chernobyl accident, it is essential that investigations of its effects should be broadened and supported for the long term. Because of the problems with the international response to Chernobyl, the United Nations should initiate an independent review of the actions and assignments of the agencies concerned, with recommendations for dealing with future international-scale accidents. These should involve independent scientists and ensure cooperation rather than rivalry. PMID:16966081

  14. 4D cone beam CT-based dose assessment for SBRT lung cancer treatment.

    PubMed

    Cai, Weixing; Dhou, Salam; Cifter, Fulya; Myronakis, Marios; Hurwitz, Martina H; Williams, Christopher L; Berbeco, Ross I; Seco, Joao; Lewis, John H

    2016-01-21

    The purpose of this research is to develop a 4DCBCT-based dose assessment method for calculating actual delivered dose for patients with significant respiratory motion or anatomical changes during the course of SBRT. To address the limitation of 4DCT-based dose assessment, we propose to calculate the delivered dose using time-varying ('fluoroscopic') 3D patient images generated from a 4DCBCT-based motion model. The method includes four steps: (1) before each treatment, 4DCBCT data is acquired with the patient in treatment position, based on which a patient-specific motion model is created using a principal components analysis algorithm. (2) During treatment, 2D time-varying kV projection images are continuously acquired, from which time-varying 'fluoroscopic' 3D images of the patient are reconstructed using the motion model. (3) Lateral truncation artifacts are corrected using planning 4DCT images. (4) The 3D dose distribution is computed for each timepoint in the set of 3D fluoroscopic images, from which the total effective 3D delivered dose is calculated by accumulating deformed dose distributions. This approach is validated using six modified XCAT phantoms with lung tumors and different respiratory motions derived from patient data. The estimated doses are compared to that calculated using ground-truth XCAT phantoms. For each XCAT phantom, the calculated delivered tumor dose values generally follow the same trend as that of the ground truth and at most timepoints the difference is less than 5%. For the overall delivered dose, the normalized error of calculated 3D dose distribution is generally less than 3% and the tumor D95 error is less than 1.5%. XCAT phantom studies indicate the potential of the proposed method to accurately estimate 3D tumor dose distributions for SBRT lung treatment based on 4DCBCT imaging and motion modeling. Further research is necessary to investigate its performance for clinical patient data.

  15. 4D cone beam CT-based dose assessment for SBRT lung cancer treatment

    NASA Astrophysics Data System (ADS)

    Cai, Weixing; Dhou, Salam; Cifter, Fulya; Myronakis, Marios; Hurwitz, Martina H.; Williams, Christopher L.; Berbeco, Ross I.; Seco, Joao; Lewis, John H.

    2016-01-01

    The purpose of this research is to develop a 4DCBCT-based dose assessment method for calculating actual delivered dose for patients with significant respiratory motion or anatomical changes during the course of SBRT. To address the limitation of 4DCT-based dose assessment, we propose to calculate the delivered dose using time-varying (‘fluoroscopic’) 3D patient images generated from a 4DCBCT-based motion model. The method includes four steps: (1) before each treatment, 4DCBCT data is acquired with the patient in treatment position, based on which a patient-specific motion model is created using a principal components analysis algorithm. (2) During treatment, 2D time-varying kV projection images are continuously acquired, from which time-varying ‘fluoroscopic’ 3D images of the patient are reconstructed using the motion model. (3) Lateral truncation artifacts are corrected using planning 4DCT images. (4) The 3D dose distribution is computed for each timepoint in the set of 3D fluoroscopic images, from which the total effective 3D delivered dose is calculated by accumulating deformed dose distributions. This approach is validated using six modified XCAT phantoms with lung tumors and different respiratory motions derived from patient data. The estimated doses are compared to that calculated using ground-truth XCAT phantoms. For each XCAT phantom, the calculated delivered tumor dose values generally follow the same trend as that of the ground truth and at most timepoints the difference is less than 5%. For the overall delivered dose, the normalized error of calculated 3D dose distribution is generally less than 3% and the tumor D95 error is less than 1.5%. XCAT phantom studies indicate the potential of the proposed method to accurately estimate 3D tumor dose distributions for SBRT lung treatment based on 4DCBCT imaging and motion modeling. Further research is necessary to investigate its performance for clinical patient data.

  16. ANDROS: A code for Assessment of Nuclide Doses and Risks with Option Selection

    SciTech Connect

    Begovich, C.L.; Sjoreen, A.L.; Ohr, S.Y.; Chester, R.O.

    1986-11-01

    ANDROS (Assessment of Nuclide Doses and Risks with Option Selection) is a computer code written to compute doses and health effects from atmospheric releases of radionuclides. ANDROS has been designed as an integral part of the CRRIS (Computerized Radiological Risk Investigation System). ANDROS reads air concentrations and environmental concentrations of radionuclides to produce tables of specified doses and health effects to selected organs via selected pathways (e.g., ingestion or air immersion). The calculation may be done for an individual at a specific location or for the population of the whole assessment grid. The user may request tables of specific effects for every assessment grid location. Along with the radionuclide concentrations, the code requires radionuclide decay data, dose and risk factors, and location-specific data, all of which are available within the CRRIS. This document is a user manual for ANDROS and presents the methodology used in this code.

  17. A biosphere modeling methodology for dose assessments of the potential Yucca Mountain deep geological high level radioactive waste repository.

    PubMed

    Watkins, B M; Smith, G M; Little, R H; Kessler, J

    1999-04-01

    Recent developments in performance standards for proposed high level radioactive waste disposal at Yucca Mountain suggest that health risk or dose rate limits will likely be part of future standards. Approaches to the development of biosphere modeling and dose assessments for Yucca Mountain have been relatively lacking in previous performance assessments due to the absence of such a requirement. This paper describes a practical methodology used to develop a biosphere model appropriate for calculating doses from use of well water by hypothetical individuals due to discharges of contaminated groundwater into a deep well. The biosphere model methodology, developed in parallel with the BIOMOVS II international study, allows a transparent recording of the decisions at each step, from the specification of the biosphere assessment context through to model development and analysis of results. A list of features, events, and processes relevant to Yucca Mountain was recorded and an interaction matrix developed to help identify relationships between them. Special consideration was given to critical/potential exposure group issues and approaches. The conceptual model of the biosphere system was then developed, based on the interaction matrix, to show how radionuclides migrate and accumulate in the biosphere media and result in potential exposure pathways. A mathematical dose assessment model was specified using the flexible AMBER software application, which allows users to construct their own compartment models. The starting point for the biosphere calculations was a unit flux of each radionuclide from the groundwater in the geosphere into the drinking water in the well. For each of the 26 radionuclides considered, the most significant exposure pathways for hypothetical individuals were identified. For 14 of the radionuclides, the primary exposure pathways were identified as consumption of various crops and animal products following assumed agricultural use of the contaminated

  18. [ESTIMATION OF IONIZING RADIATION EFFECTIVE DOSES IN THE INTERNATIONAL SPACE STATION CREWS BY THE METHOD OF CALCULATION MODELING].

    PubMed

    Mitrikas, V G

    2015-01-01

    Monitoring of the radiation loading on cosmonauts requires calculation of absorbed dose dynamics with regard to the stay of cosmonauts in specific compartments of the space vehicle that differ in shielding properties and lack means of radiation measurement. The paper discusses different aspects of calculation modeling of radiation effects on human body organs and tissues and reviews the effective dose estimates for cosmonauts working in one or another compartment over the previous period of the International space station operation. It was demonstrated that doses measured by a real or personal dosimeters can be used to calculate effective dose values. Correct estimation of accumulated effective dose can be ensured by consideration for time course of the space radiation quality factor. PMID:26292419

  19. [ESTIMATION OF IONIZING RADIATION EFFECTIVE DOSES IN THE INTERNATIONAL SPACE STATION CREWS BY THE METHOD OF CALCULATION MODELING].

    PubMed

    Mitrikas, V G

    2015-01-01

    Monitoring of the radiation loading on cosmonauts requires calculation of absorbed dose dynamics with regard to the stay of cosmonauts in specific compartments of the space vehicle that differ in shielding properties and lack means of radiation measurement. The paper discusses different aspects of calculation modeling of radiation effects on human body organs and tissues and reviews the effective dose estimates for cosmonauts working in one or another compartment over the previous period of the International space station operation. It was demonstrated that doses measured by a real or personal dosimeters can be used to calculate effective dose values. Correct estimation of accumulated effective dose can be ensured by consideration for time course of the space radiation quality factor.

  20. WRAITH - A Computer Code for Calculating Internal and External Doses Resulting From An Atmospheric Release of Radioactive Material

    SciTech Connect

    Scherpelz, R. I.; Borst, F. J.; Hoenes, G. R.

    1980-12-01

    WRAITH is a FORTRAN computer code which calculates the doses received by a standard man exposed to an accidental release of radioactive material. The movement of the released material through the atmosphere is calculated using a bivariate straight-line Gaussian distribution model, with Pasquill values for standard deviations. The quantity of material in the released cloud is modified during its transit time to account for radioactive decay and daughter production. External doses due to exposure to the cloud can be calculated using a semi-infinite cloud approximation. In situations where the semi-infinite cloud approximation is not a good one, the external dose can be calculated by a "finite plume" three-dimensional point-kernel numerical integration technique. Internal doses due to acute inhalation are cal.culated using the ICRP Task Group Lung Model and a four-segmented gastro-intestinal tract model. Translocation of the material between body compartments and retention in the body compartments are calculated using multiple exponential retention functions. Internal doses to each organ are calculated as sums of cross-organ doses, with each target organ irradiated by radioactive material in a number of source organs. All doses are calculated in rads, with separate values determined for high-LET and low-LET radiation.

  1. Tritium Dose Assessments with Regulatory and Advanced Computer Models for the Potential European ITER Site Vandellos (Spain)

    SciTech Connect

    Raskob, W.; Velarde, M.; Perlado, J.M

    2005-07-15

    Deterministic and probabilistic dose assessments for releases of tritium have been performed for the potential European ITER Site of Vandellos (Spain). Besides national regulatory models, internationally accepted computer codes such as NORMTRI (for normal conditions) and UFOTRI (for incidental/accidental conditions) were used for the calculations. The paper concentrates on releases of tritium in either HT or HTO form. Source terms from the ITER documentation (GSSR vol. IV and VII) have been used for the HT/HTO releases.The data base of NORMTRI/UFOTRI was adapted to the national regulatory prescriptions. This comprised in particular ingestion habits and dose conversion factors. Important for the calculations was also the selection of meteorological, demographic, nutritional and agricultural data. Meteorological data over a period of one year was used for the probabilistic calculations. Deterministic scenarios were selected to be as close as possible to other studies performed in the frame of ITER. Results of the assessments were early and chronic doses which have been evaluated for the Most Exposed Individual at particular distance bands from the release point.Of particular importance was the comparison between the regulatory and the advanced assessment models. Regulatory models for tritium are sometimes simplistic and are either too conservative or do not consider important processes which might lead to underestimation of the dose. This is for example the case with organically bound tritium which is often not considered in regulatory models but may dominate the dose from ingestion pathways. Therefore, this comparison provided the opportunity to evaluate the appropriateness of a national accepted tool. As the site of ITER was still to be defined, such a comparison was vital and might be also necessary for any other site to assure public confidence in the licensing procedure.

  2. Displaying 3D radiation dose on endoscopic video for therapeutic assessment and surgical guidance.

    PubMed

    Qiu, Jimmy; Hope, Andrew J; Cho, B C John; Sharpe, Michael B; Dickie, Colleen I; DaCosta, Ralph S; Jaffray, David A; Weersink, Robert A

    2012-10-21

    We have developed a method to register and display 3D parametric data, in particular radiation dose, on two-dimensional endoscopic images. This registration of radiation dose to endoscopic or optical imaging may be valuable in assessment of normal tissue response to radiation, and visualization of radiated tissues in patients receiving post-radiation surgery. Electromagnetic sensors embedded in a flexible endoscope were used to track the position and orientation of the endoscope allowing registration of 2D endoscopic images to CT volumetric images and radiation doses planned with respect to these images. A surface was rendered from the CT image based on the air/tissue threshold, creating a virtual endoscopic view analogous to the real endoscopic view. Radiation dose at the surface or at known depth below the surface was assigned to each segment of the virtual surface. Dose could be displayed as either a colorwash on this surface or surface isodose lines. By assigning transparency levels to each surface segment based on dose or isoline location, the virtual dose display was overlaid onto the real endoscope image. Spatial accuracy of the dose display was tested using a cylindrical phantom with a treatment plan created for the phantom that matched dose levels with grid lines on the phantom surface. The accuracy of the dose display in these phantoms was 0.8-0.99 mm. To demonstrate clinical feasibility of this approach, the dose display was also tested on clinical data of a patient with laryngeal cancer treated with radiation therapy, with estimated display accuracy of ∼2-3 mm. The utility of the dose display for registration of radiation dose information to the surgical field was further demonstrated in a mock sarcoma case using a leg phantom. With direct overlay of radiation dose on endoscopic imaging, tissue toxicities and tumor response in endoluminal organs can be directly correlated with the actual tissue dose, offering a more nuanced assessment of normal tissue

  3. International Global Crop Condition Assessments in the framework of GEOGLAM

    NASA Astrophysics Data System (ADS)

    Becker-Reshef, I.; Justice, C. O.; Vermote, E.; Whitcraft, A. K.; Claverie, M.

    2013-12-01

    The Group on Earth Observations (partnership of governments and international organizations) developed the Global Agricultural Monitoring (GEOGLAM) initiative in response to the growing calls for improved agricultural information. The goal of GEOGLAM is to strengthen the international community's capacity to produce and disseminate relevant, timely and accurate forecasts of agricultural production at national, regional and global scales through the use of Earth observations. This initiative is designed to build on existing agricultural monitoring initiatives at national, regional and global levels and to enhance and strengthen them through international networking, operationally focused research, and data/method sharing. GEOGLAM was adopted by the G20 as part of the action plan on food price volatility and agriculture and is being implemented through building on the extensive GEO Agricultural Community of Practice (CoP) that was initiated in 2007 and includes key national and international agencies, organizations, and universities involved in agricultural monitoring. One of the early GEOGLAM activities is to provide harmonized global crop outlooks that offer timely qualitative consensus information on crop status and prospects. This activity is being developed in response to a request from the G-20 Agricultural Market Information System (AMIS) and is implemented within the global monitoring systems component of GEOGLAM. The goal is to develop a transparent, international, multi-source, consensus assessment of crop growing conditions, status, and agro-climatic conditions, likely to impact global production. These assessments are focused on the four primary crop types (corn, wheat, soy and rice) within the main agricultural producing regions of the world. The GEOGLAM approach is to bring together international experts from global, regional and national monitoring systems that can share and discuss information from a variety of independent complementary sources in

  4. [Environmental damage assessment: international regulations and revelation to China].

    PubMed

    Zhang, Hong-zhen; Cao, Dong; Yu, Fang; Wang, Jin-nan; Qi, Ji; Jia, Qian; Zhang, Tian-zhu; Luo, Yong-ming

    2013-05-01

    As the whole society gradually realizes the scarcity of nature resources and environmental value, countries all over the world have evolved and improved the system of environmental damage assessment through the practices of pollution prevention and ecological environmental protection. On one hand, in the research prospective, the practices of environmental damage assessment brought new challenges to environmental law, environmental economics, environmental science, environmental engineering, etc. On the other hand, they constantly promoted and developed relevant laws and regulations, techniques, working mechanism, and guidelines on procedure in practice. On the hasis of comparison and analysis of international practices and experiences from US, EU, and Japan, etc., this article identified relevant concepts, content, and scope of environmental damage assessment, and presented its scientific positioning and development direction. At present, both theory and practice of environmental damage assessment in China are in their infancy period. Considering current environmental situation and socioeconomic development features of China, learning international practices and experiences and raising the orientation of environmental damage assessment have great meaning in exploring the suitable environmental damage assessment system. PMID:23914513

  5. Environmental impact assessment: National approaches and international needs.

    PubMed

    Burton, I; Wilson, J; Munn, R E

    1983-06-01

    This paper examines the spread and development of 'environmental impact assessment' (EIA) since the enactment of the U.S. Environmental Policy Act on January 1, 1970, which established for the first time under any jurisdiction the formal requirement that an EIA be made and that an 'environmental impact statement' (EIS) be filed prior to implementation of certain major development projects.The paper is divided into three parts. In the first part, we briefly review the forms of EIA introduced in the western industrial countries and contrast these with developments in the socialist countries of Eastern Europe, and in the Third World. The approaches to EIA adopted by five countries - the United States, Australia, Canada, the Federal Republic of Germany, and the Soviet Union - are used to illustrate the types of national approaches that have been followed. In the second part of the paper, we use some questions raised by impact assessments as codified in legislation or regulations at the national level to highlight some of the limitations of impact assessment. Finally, we turn to international impact assessments and describe the modest progress made to date. Key impediments to the development of appropriate conceptual and institutional frameworks and methodologies for international EIAs are noted.In conclusion, we offer some suggestions about needed actions at both the national and international levels.

  6. Gene Expression Response of Mice after a Single Dose of 137Cs as an Internal Emitter

    PubMed Central

    Paul, Sunirmal; Ghandhi, Shanaz A.; Weber, Waylon; Doyle-Eisele, Melanie; Melo, Dunstana; Guilmette, Raymond; Amundson, Sally A.

    2014-01-01

    Cesium-137 is a radionuclide of concern in fallout from reactor accidents or nuclear detonations. When ingested or inhaled, it can expose the entire body for an extended period of time, potentially contributing to serious health consequences ranging from acute radiation syndrome to increased cancer risks. To identify changes in gene expression that may be informative for detecting such exposure, and to begin examining the molecular responses involved, we have profiled global gene expression in blood of male C57BL/6 mice injected with 137CsCl. We extracted RNA from the blood of control or 137CsCl-injected mice at 2, 3, 5, 20 or 30 days after exposure. Gene expression was measured using Agilent Whole Mouse Genome Microarrays, and the data was analyzed using BRB-ArrayTools. Between 466–6,213 genes were differentially expressed, depending on the time after 137Cs administration. At early times (2–3 days), the majority of responsive genes were expressed above control levels, while at later times (20–30 days) most responding genes were expressed below control levels. Numerous genes were overexpressed by day 2 or 3, and then underexpressed by day 20 or 30, including many Tp53-regulated genes. The same pattern was seen among significantly enriched gene ontology categories, including those related to nucleotide binding, protein localization and modification, actin and the cytoskeleton, and in the integrin signaling canonical pathway. We compared the expression of several genes three days after 137CsCl injection and three days after an acute external gamma-ray exposure, and found that the internal exposure appeared to produce a more sustained response. Many common radiation-responsive genes are altered by internally administered 137Cs, but the gene expression pattern resulting from continued irradiation at a decreasing dose rate is extremely complex, and appears to involve a late reversal of much of the initial response. PMID:25162453

  7. Brief International Cognitive Assessment for MS (BICAMS): international standards for validation

    PubMed Central

    2012-01-01

    An international expert consensus committee recently recommended a brief battery of tests for cognitive evaluation in multiple sclerosis. The Brief International Cognitive Assessment for MS (BICAMS) battery includes tests of mental processing speed and memory. Recognizing that resources for validation will vary internationally, the committee identified validation priorities, to facilitate international acceptance of BICAMS. Practical matters pertaining to implementation across different languages and countries were discussed. Five steps to achieve optimal psychometric validation were proposed. In Step 1, test stimuli should be standardized for the target culture or language under consideration. In Step 2, examiner instructions must be standardized and translated, including all information from manuals necessary for administration and interpretation. In Step 3, samples of at least 65 healthy persons should be studied for normalization, matched to patients on demographics such as age, gender and education. The objective of Step 4 is test-retest reliability, which can be investigated in a small sample of MS and/or healthy volunteers over 1–3 weeks. Finally, in Step 5, criterion validity should be established by comparing MS and healthy controls. At this time, preliminary studies are underway in a number of countries as we move forward with this international assessment tool for cognition in MS. PMID:22799620

  8. Objective assessment of image quality and dose reduction in CT iterative reconstruction

    SciTech Connect

    Vaishnav, J. Y. Jung, W. C.; Popescu, L. M.; Zeng, R.; Myers, K. J.

    2014-07-15

    Purpose: Iterative reconstruction (IR) algorithms have the potential to reduce radiation dose in CT diagnostic imaging. As these algorithms become available on the market, a standardizable method of quantifying the dose reduction that a particular IR method can achieve would be valuable. Such a method would assist manufacturers in making promotional claims about dose reduction, buyers in comparing different devices, physicists in independently validating the claims, and the United States Food and Drug Administration in regulating the labeling of CT devices. However, the nonlinear nature of commercially available IR algorithms poses challenges to objectively assessing image quality, a necessary step in establishing the amount of dose reduction that a given IR algorithm can achieve without compromising that image quality. This review paper seeks to consolidate information relevant to objectively assessing the quality of CT IR images, and thereby measuring the level of dose reduction that a given IR algorithm can achieve. Methods: The authors discuss task-based methods for assessing the quality of CT IR images and evaluating dose reduction. Results: The authors explain and review recent literature on signal detection and localization tasks in CT IR image quality assessment, the design of an appropriate phantom for these tasks, possible choices of observers (including human and model observers), and methods of evaluating observer performance. Conclusions: Standardizing the measurement of dose reduction is a problem of broad interest to the CT community and to public health. A necessary step in the process is the objective assessment of CT image quality, for which various task-based methods may be suitable. This paper attempts to consolidate recent literature that is relevant to the development and implementation of task-based methods for the assessment of CT IR image quality.

  9. The role of international environmental agreements in metered-dose inhaler technology changes.

    PubMed

    Forte, R; Dibble, C

    1999-12-01

    Introduced in the 1950s, metered dose inhalers (MDIs) became a revolutionary way to deliver medication directly to the lungs of patients with asthma and chronic obstructive pulmonary disease. Since their initial introduction, MDIs have used chlorofluorocarbons to propel the medication out of the canister into a patient's lungs. This article presents an overview of the global transition away from the use of chlorofluorocarbon propellants in MDIs to non-ozone-depleting substitutes including hydrofluoroalkane (outside of the pharmaceutical industry and in the context of Montreal Protocol and Kyoto Protocol discussions, these gases are referred to as hydrofluorocarbons; hydrofluoroalkane-134a, for example, is referred to as hydrofluorocarbon-134a) propellants, in accordance with the terms of the international environmental agreement the Montreal Protocol on substances that deplete the ozone layer (the Montreal Protocol). This article will also describe the environmental characteristics of chlorofluorocarbons and hydrofluoroalkanes when they are used as MDI propellants. Finally, the article will review key provisions of the pending Kyoto Protocol to the United Nations Framework Convention on Climate Change (the Kyoto Protocol) that may affect the future of hydrofluoroalkanes.

  10. Assessment of the dose from radon and its decay products in the Bozkov dolomite cave.

    PubMed

    Rovenská, K; Thinová, L; Zdímal, V

    2008-01-01

    The dose from radon and its progeny remains a frequently discussed problem. ICRP 65 provides a commonly used methodology to calculate the dose from radon. Our work focuses on a cave environment and on assessing the doses in public open caves. The differences in conditions (aerosol size distribution, humidity, radon and its progeny ratio, etc.) are described by the so-called cave factor j. The cave factor is used to correct the dose for workers which is calculated using the ICRP 65 recommendation. In this work, the authors have brought together measured data of aerosol size distribution, unattached and attached fraction activity, and have calculated the so-called cave factor for the Bozkov dolomite cave environment. The dose conversion factors based on measured data and used for evaluating the cave factor were calculated by LUDEP software, which implements HRTM ICRP66.

  11. Radiological dose assessment related to management of naturally occurring radioactive materials generated by the petroleum industry

    SciTech Connect

    Smith, K.P.; Blunt, D.L.; Williams, G.P.; Tebes, C.L.

    1996-09-01

    A preliminary radiological dose assessment of equipment decontamination, subsurface disposal, landspreading, equipment smelting, and equipment burial was conducted to address concerns regarding the presence of naturally occurring radioactive materials (NORM) in production waste streams. The assessment estimated maximum individual dose equivalents for workers and the general public. Sensitivity analyses of certain input parameters also were conducted. On the basis of this assessment, it is concluded that (1) regulations requiring workers to wear respiratory protection during equipment cleaning operations are likely to result in lower worker doses, (2) underground injection and downhole encapsulation of NORM wastes present a negligible risk to the general public, and (3) potential doses to workers and the general public related to smelting NORM-contaminated equipment can be controlled by limiting the contamination level of the initial feed. It is recommended that (1) NORM wastes be further characterized to improve studies of potential radiological doses; (2) states be encouraged to permit subsurface disposal of NORM more readily, provided further assessments support this study; results; (3) further assessment of landspreading NORM wastes be conducted; and (4) the political, economic, sociological, and nonradiological issues related to smelting NORM-contaminated equipment be studied to fully examine the feasibility of this disposal option.

  12. Identification and dose assessment of irradiated cardamom and cloves by EPR spectrometry

    NASA Astrophysics Data System (ADS)

    Beshir, W. B.

    2014-03-01

    The use of electron paramagnetic resonance spectroscopy to accurately distinguish irradiated from unirradiated cardamom and cloves and assesses the absorbed dose to radiation processed cardamom and cloves are examined. The results were successful for identifying both irradiated and unirradiated cardamom and cloves. Additive reirradiation of cardamom and cloves produces reproducible dose-response functions, which can be used to assess the initial dose by back-extrapolation. Third degree polynomial function was used to fit the EPR signal/dose curves. It was found that this 3rd degree polynomial function provides satisfactory results without correction of decay for free radicals. The stability of the radiation induced EPR signal of irradiated cardamom and cloves were studied over a storage period of almost 8 months.

  13. Cancer risk assessment: Optimizing human health through linear dose-response models.

    PubMed

    Calabrese, Edward J; Shamoun, Dima Yazji; Hanekamp, Jaap C

    2015-07-01

    This paper proposes that generic cancer risk assessments be based on the integration of the Linear Non-Threshold (LNT) and hormetic dose-responses since optimal hormetic beneficial responses are estimated to occur at the dose associated with a 10(-4) risk level based on the use of a LNT model as applied to animal cancer studies. The adoption of the 10(-4) risk estimate provides a theoretical and practical integration of two competing risk assessment models whose predictions cannot be validated in human population studies or with standard chronic animal bioassay data. This model-integration reveals both substantial protection of the population from cancer effects (i.e. functional utility of the LNT model) while offering the possibility of significant reductions in cancer incidence should the hormetic dose-response model predictions be correct. The dose yielding the 10(-4) cancer risk therefore yields the optimized toxicologically based "regulatory sweet spot". PMID:25916915

  14. Outcomes of Direct Vision Internal Urethrotomy for Bulbar Urethral Strictures: Technique Modification with High Dose Triamcinolone Injection

    PubMed Central

    Modh, Rishi; Cai, Peter Y.; Sheffield, Alyssa; Yeung, Lawrence L.

    2015-01-01

    Objective. To evaluate the recurrence rate of bulbar urethral strictures managed with cold knife direct vision internal urethrotomy and high dose corticosteroid injection. Methods. 28 patients with bulbar urethral strictures underwent direct vision internal urethrotomy with high dose triamcinolone injection into the periurethral tissue and were followed up for recurrence. Results. Our cohort had a mean age of 60 years and average stricture length of 1.85 cm, and 71% underwent multiple previous urethral stricture procedures with an average of 5.7 procedures each. Our technique modification of high dose corticosteroid injection had a recurrence rate of 29% at a mean follow-up of 20 months with a low rate of urinary tract infections. In patients who failed treatment, mean time to stricture recurrence was 7 months. Patients who were successfully treated had significantly better International Prostate Symptom Scores at 6, 9, and 12 months. There was no significant difference in maximum flow velocity on Uroflowmetry at last follow-up but there was significant difference in length of follow-up (p = 0.02). Conclusions. High dose corticosteroid injection at the time of direct vision internal urethrotomy is a safe and effective procedure to delay anatomical and symptomatic recurrence of bulbar urethral strictures, particularly in those who are poor candidates for urethroplasty. PMID:26576148

  15. Outcomes of Direct Vision Internal Urethrotomy for Bulbar Urethral Strictures: Technique Modification with High Dose Triamcinolone Injection.

    PubMed

    Modh, Rishi; Cai, Peter Y; Sheffield, Alyssa; Yeung, Lawrence L

    2015-01-01

    Objective. To evaluate the recurrence rate of bulbar urethral strictures managed with cold knife direct vision internal urethrotomy and high dose corticosteroid injection. Methods. 28 patients with bulbar urethral strictures underwent direct vision internal urethrotomy with high dose triamcinolone injection into the periurethral tissue and were followed up for recurrence. Results. Our cohort had a mean age of 60 years and average stricture length of 1.85 cm, and 71% underwent multiple previous urethral stricture procedures with an average of 5.7 procedures each. Our technique modification of high dose corticosteroid injection had a recurrence rate of 29% at a mean follow-up of 20 months with a low rate of urinary tract infections. In patients who failed treatment, mean time to stricture recurrence was 7 months. Patients who were successfully treated had significantly better International Prostate Symptom Scores at 6, 9, and 12 months. There was no significant difference in maximum flow velocity on Uroflowmetry at last follow-up but there was significant difference in length of follow-up (p = 0.02). Conclusions. High dose corticosteroid injection at the time of direct vision internal urethrotomy is a safe and effective procedure to delay anatomical and symptomatic recurrence of bulbar urethral strictures, particularly in those who are poor candidates for urethroplasty.

  16. Does the presence of an implant including expander with internal port alter radiation dose? An ex vivo model

    PubMed Central

    Strang, Barbara; Murphy, Kyla; Seal, Shane; Cin, Arianna Dal

    2013-01-01

    BACKGROUND: There is a lack of literature examining the dosimetric implications of irradiating breast implants and expanders with internal ports inserted at the time of mastectomy. OBJECTIVE: To determine whether the presence of breast expanders with port in saline or silicone implants affect the dose uniformity across the breast when irradiated with various photon and electron energies. METHODS: One tissue-equivalent torso phantom with overlying tissue expanders in saline or silicone implants were irradiated using tangential fields with 6 MV and 18 MV photons and 9 MeV and 12 MeV electrons. All dose measurements were performed using thermoluminescent dosimeters (TLDs). The TLDs were arranged around the port and the perimeters of either the expander, or saline or silicone implant. Comparisons of measured radiation doses, and between the expected and measured doses of radiation from the TLDs on each prosthesis, were performed. Data were analyzed using two-tailed t tests. RESULTS: There were no differences in TLD measurements between the expander and the saline implant for all energy modalities, and for the expected versus actual measurements for the saline implant. Higher than anticipated measurements were recorded for a significant number of TLD positions around the silicone implants. CONCLUSIONS: Radiation doses around saline implants or expanders with internal port were unaltered, whereas dose recordings for silicone implants were higher than predicted in the present laboratory/ex vivo study. PMID:24431935

  17. Qualitative and quantitative approaches in the dose-response assessment of genotoxic carcinogens.

    PubMed

    Fukushima, Shoji; Gi, Min; Kakehashi, Anna; Wanibuchi, Hideki; Matsumoto, Michiharu

    2016-05-01

    Qualitative and quantitative approaches are important issues in field of carcinogenic risk assessment of the genotoxic carcinogens. Herein, we provide quantitative data on low-dose hepatocarcinogenicity studies for three genotoxic hepatocarcinogens: 2-amino-3,8-dimethylimidazo[4,5-f]quinoxaline (MeIQx), 2-amino-3-methylimidazo[4,5-f]quinoline (IQ) and N-nitrosodiethylamine (DEN). Hepatocarcinogenicity was examined by quantitative analysis of glutathione S-transferase placental form (GST-P) positive foci, which are the preneoplastic lesions in rat hepatocarcinogenesis and the endpoint carcinogenic marker in the rat liver medium-term carcinogenicity bioassay. We also examined DNA damage and gene mutations which occurred through the initiation stage of carcinogenesis. For the establishment of points of departure (PoD) from which the cancer-related risk can be estimated, we analyzed the above events by quantitative no-observed-effect level and benchmark dose approaches. MeIQx at low doses induced formation of DNA-MeIQx adducts; somewhat higher doses caused elevation of 8-hydroxy-2'-deoxyquanosine levels; at still higher doses gene mutations occurred; and the highest dose induced formation of GST-P positive foci. These data indicate that early genotoxic events in the pathway to carcinogenesis showed the expected trend of lower PoDs for earlier events in the carcinogenic process. Similarly, only the highest dose of IQ caused an increase in the number of GST-P positive foci in the liver, while IQ-DNA adduct formation was observed with low doses. Moreover, treatment with DEN at low doses had no effect on development of GST-P positive foci in the liver. These data on PoDs for the markers contribute to understand whether genotoxic carcinogens have a threshold for their carcinogenicity. The most appropriate approach to use in low dose-response assessment must be approved on the basis of scientific judgment.

  18. Assessment of dose during the life cycle of natural stone production.

    PubMed

    Turtiainen, Tuukka; Weltner, Anne

    2007-01-01

    The environmental impact during the life cycle of natural stone production was studied. One of the points of interest was radiation. Natural stone samples from 23 quarries were surveyed for the radioactivity. One quarry was selected for a case study where the effective dose to the workers was assessed. The use of these stones in buildings was also evaluated with respect to the excess dose caused to the residents. According to the results the excess effective dose to the workers does not exceed 1 mSv a(-1) at the quarries. In buildings, all natural stones studied can be used safely as surfacing materials.

  19. Assessing the clinical impact of approximations in analytical dose calculations for proton therapy

    PubMed Central

    Schuemann, J.; Giantsoudi, D.; Grassberger, C.; Moteabbed, M.; Min, C.H.; Paganetti, H.

    2015-01-01

    Purpose To assess the impact of approximations in current analytical dose calculation methods (ADCs) on tumor control probability (TCP) in proton therapy. Methods Dose distributions planned with ADC were compared to delivered dose distributions (as determined by Monte Carlo simulations). A total of 50 patients were investigated in this analysis with 10 patients per site for 5 treatment sites (head-and-neck, lung, breast, prostate, liver). Differences were evaluated using dosimetric indices based on a dose-volume-histogram analysis, a γ-index analysis and estimations of TCP. Results We find that ADC overestimates the target doses on average by 1–2% for all patients considered. The mean dose, D95, D50 and D02 (the dose value covering 95%, 50% and 2% of the target volume, respectively) are predicted within 5% of the delivered dose. The γ-index passing rate for target volumes was above 96% for a 3%/3mm criteria. Differences in TCP were up to 2%, 2.5%, 6%, 6.5%, and 11% for liver and breast, prostate, head-and-neck and lung patients, respectively. Differences in normal tissue complication probabilities for bladder and anterior-rectum of prostate patients were less than 3%. Conclusion Our results indicate that current dose calculation algorithms lead to underdosage of the target by as much as 5%, resulting in differences in TCP of up to 11%. In order to ensure full target coverage, advanced dose-calculation methods like Monte Carlo simulations may be necessary in proton therapy. Monte Carlo simulations may also be required in order to avoid biases due to systematic discrepancies in calculated dose distributions for clinical trials comparing proton therapy to conventional radiotherapy. PMID:26025779

  20. Assessing the Clinical Impact of Approximations in Analytical Dose Calculations for Proton Therapy

    SciTech Connect

    Schuemann, Jan Giantsoudi, Drosoula; Grassberger, Clemens; Moteabbed, Maryam; Min, Chul Hee; Paganetti, Harald

    2015-08-01

    Purpose: To assess the impact of approximations in current analytical dose calculation methods (ADCs) on tumor control probability (TCP) in proton therapy. Methods: Dose distributions planned with ADC were compared with delivered dose distributions as determined by Monte Carlo simulations. A total of 50 patients were investigated in this analysis with 10 patients per site for 5 treatment sites (head and neck, lung, breast, prostate, liver). Differences were evaluated using dosimetric indices based on a dose-volume histogram analysis, a γ-index analysis, and estimations of TCP. Results: We found that ADC overestimated the target doses on average by 1% to 2% for all patients considered. The mean dose, D95, D50, and D02 (the dose value covering 95%, 50% and 2% of the target volume, respectively) were predicted within 5% of the delivered dose. The γ-index passing rate for target volumes was above 96% for a 3%/3 mm criterion. Differences in TCP were up to 2%, 2.5%, 6%, 6.5%, and 11% for liver and breast, prostate, head and neck, and lung patients, respectively. Differences in normal tissue complication probabilities for bladder and anterior rectum of prostate patients were less than 3%. Conclusion: Our results indicate that current dose calculation algorithms lead to underdosage of the target by as much as 5%, resulting in differences in TCP of up to 11%. To ensure full target coverage, advanced dose calculation methods like Monte Carlo simulations may be necessary in proton therapy. Monte Carlo simulations may also be required to avoid biases resulting from systematic discrepancies in calculated dose distributions for clinical trials comparing proton therapy with conventional radiation therapy.

  1. Evaluating quantitative formulas for dose-response assessment of chemical mixtures.

    PubMed Central

    Hertzberg, Richard C; Teuschler, Linda K

    2002-01-01

    Risk assessment formulas are often distinguished from dose-response models by being rough but necessary. The evaluation of these rough formulas is described here, using the example of mixture risk assessment. Two conditions make the dose-response part of mixture risk assessment difficult, lack of data on mixture dose-response relationships, and the need to address risk from combinations of chemicals because of public demands and statutory requirements. Consequently, the U.S. Environmental Protection Agency has developed methods for carrying out quantitative dose-response assessment for chemical mixtures that require information only on the toxicity of single chemicals and of chemical pair interactions. These formulas are based on plausible ideas and default parameters but minimal supporting data on whole mixtures. Because of this lack of mixture data, the usual evaluation of accuracy (predicted vs. observed) cannot be performed. Two approaches to the evaluation of such formulas are to consider fundamental biological concepts that support the quantitative formulas (e.g., toxicologic similarity) and to determine how well the proposed method performs under simplifying constraints (e.g., as the toxicologic interactions disappear). These ideas are illustrated using dose addition and two weight-of-evidence formulas for incorporating toxicologic interactions. PMID:12634126

  2. The Chernobyl accident 20 years on: an assessment of the health consequences and the international response.

    PubMed

    Baverstock, Keith; Williams, Dillwyn

    2007-01-01

    Twenty years after the Chernobyl accident the WHO and the International Atomic Energy Authority issued a reassuring statement about the consequences. Our objectives in this study were to evaluate the health impact of the Chernobyl accident, assess the international response to the accident, and consider how to improve responses to future accidents. So far, radiation to the thyroid from radioisotopes of iodine has caused several thousand cases of thyroid cancer but very few deaths; exposed children were most susceptible. The focus on thyroid cancer has diverted attention from possible nonthyroid effects. The international response to the accident was inadequate and uncoordinated, and has been unjustifiably reassuring. Accurate assessment in future health effects is not currently possible in the light of dose uncertainties, current debates over radiation actions, and the lessons from the late consequences of atomic bomb exposure. Because of the uncertainties from and the consequences of the accident, it is essential that investigations of its effects should be broadened and supported for the long term. The United Nations should initiate an independent review of the actions and assignments of the agencies concerned, with recommendations for dealing with future international-scale accidents. These should involve independent scientists and ensure cooperation rather than rivalry. PMID:17680126

  3. An updated dose assessment for a U.S. Nuclear Test Site - Bikini Atoll

    SciTech Connect

    Robison, W.L.; Bogen, K.T.; Conrado, C.L.

    1995-10-01

    On March 1, 1954, a nuclear weapon test, code-named BRAVO, conducted at Bikini Atoll in the northern Marshall Islands contaminated the major residence island. There has been a continuing effort since 1977 to refine dose assessments for resettlement options at Bikini Atoll. Here we provide a radiological dose assessment for the main residence island, Bikini, using extensive radionuclide concentration data derived from analysis of food crops, ground water, cistern water, fish and other marine species, animals, air, and soil collected at Bikini Island as part of our continuing research and monitoring program that began in 1975. The unique composition of coral soil greatly alters the relative contribution of cesium-137 ({sup 137}Cs) and strontium-90 ({sup 90}Sr) to the total estimated dose relative to expectations based on North American and European soils. Without counter measures, cesium-137 produces 96% of the estimated dose for returning residents, mostly through uptake from the soil to terrestrial food crops but also from external gamma exposure. The doses are calculated assuming a resettlement date of 1999. The estimated maximum annual effective dose for current island conditions is 4.0 mSv when imported foods, which are now an established part of the diet, are available. The corresponding 30-, 50-, and 70-y integral effective doses are 9.1 cSv, 13 cSv, and 15 cSv, respectively. A corresponding uncertainty analysis showed that after about 5 y of residence, the 95% confidence limits on population-average dose would be {plus_minus}35% of its expected value. We have evaluated various countermeasures to reduce {sup 137}Cs in food crops. Treatment with potassium reduces the uptake of {sup 137}Cs into food crops, and therefore the ingestion dose, to about 5% of pretreatment levels and has essentially no negative environmental consequences.

  4. Dose Assessment in Computed Tomography Examination and Establishment of Local Diagnostic Reference Levels in Mazandaran, Iran

    PubMed Central

    Janbabanezhad Toori, A.; Shabestani-Monfared, A.; Deevband, M.R.; Abdi, R.; Nabahati, M.

    2015-01-01

    Background Medical X-rays are the largest man-made source of public exposure to ionizing radiation. While the benefits of Computed Tomography (CT) are well known in accurate diagnosis, those benefits are not risk-free. CT is a device with higher patient dose in comparison with other conventional radiation procedures. Objective This study is aimed at evaluating radiation dose to patients from Computed Tomography (CT) examination in Mazandaran hospitals and defining diagnostic reference level (DRL). Methods Patient-related data on CT protocol for four common CT examinations including brain, sinus, chest and abdomen & pelvic were collected. In each center, Computed Tomography Dose Index (CTDI) measurements were performed using pencil ionization chamber and CT dosimetry phantom according to AAPM report No. 96 for those techniques. Then, Weighted Computed Tomography Dose Index (CTDIW), Volume Computed Tomography Dose Index (CTDI vol) and Dose Length Product (DLP) were calculated. Results The CTDIw for brain, sinus, chest and abdomen & pelvic ranged (15.6-73), (3.8-25. 8), (4.5-16.3) and (7-16.3), respectively. Values of DLP had a range of (197.4-981), (41.8-184), (131-342.3) and (283.6-486) for brain, sinus, chest and abdomen & pelvic, respectively. The 3rd quartile of CTDIW, derived from dose distribution for each examination is the proposed quantity for DRL. The DRLs of brain, sinus, chest and abdomen & pelvic are measured 59.5, 17, 7.8 and 11 mGy, respectively. Conclusion Results of this study demonstrated large scales of dose for the same examination among different centers. For all examinations, our values were lower than international reference doses. PMID:26688796

  5. Development and application of a tomographic model from CT images for calculating internal dose to a pregnant woman

    NASA Astrophysics Data System (ADS)

    Shi, Chengyu

    Assessment of radiation dose and possible risk to a pregnant woman and her fetus is an important task in radiation protection. Although stylized models for male and female patients of different ages have been developed, tomographic models for pregnant women have not been developed to date. This dissertation presents an effort to construct a partial-body model of a pregnant woman from a set of CT images. The patient was 30-weeks pregnant, and the CT scan covered the portion of the body between the lower breast and the upper thigh in 70 slices, each 7 mm thick. The image resolution was 512 x 512 pixels in a 48 cm x 48 cm field. The images were carefully segmented to identify 34 organs and tissues, It has been found that the masses are different from the Reference Woman. The characteristics of the resulting model is discussed and compared with one existing stylized mathematical model for pregnant women. Based on this tomographic model, a Monte Carlo code, EGS4-VLSI, was used to derive Specific Absorbed Fractions. Monoenergetic and isotropic photon and electron emitters distributed in different source organs were assumed and the energies ranged from 10 keV to 4 MeV for photons and from 100 keV to 4 MeV for electrons. The results for high energy (>50 keV) photons showed general agreement with previous studies, however, the results for lower energy (<50 keV) photons showed differences of up to several hundreds percent for some source and target organs. For electron results, several tens of percent differences were found. Those differences can be explained by mass differences and the relative geometry differences between source and target organs. In summary, the stylized models for pregnant women are satisfactory for a very large size patient for most of the photon energies (between 50 keV and 4 MeV). However, a tomographic model has to be used to obtain acceptable dose assessments for electrons. The newly calculated SAF data set can provide the nuclear medicine dosimetry

  6. Effect of low-dose CT and iterative reconstruction on trabecular bone microstructure assessment

    NASA Astrophysics Data System (ADS)

    Kopp, Felix K.; Baum, Thomas; Nasirudin, Radin A.; Mei, Kai; Garcia, Eduardo G.; Burgkart, Rainer; Rummeny, Ernst J.; Bauer, Jan S.; Noël, Peter B.

    2016-03-01

    The trabecular bone microstructure is an important factor in the development of osteoporosis. It is well known that its deterioration is one effect when osteoporosis occurs. Previous research showed that the analysis of trabecular bone microstructure enables more precise diagnoses of osteoporosis compared to a sole measurement of the mineral density. Microstructure parameters are assessed on volumetric images of the bone acquired either with high-resolution magnetic resonance imaging, high-resolution peripheral quantitative computed tomography or high-resolution computed tomography (CT), with only CT being applicable to the spine, which is one of clinically most relevant fracture sites. However, due to the high radiation exposure for imaging the whole spine these measurements are not applicable in current clinical routine. In this work, twelve vertebrae from three different donors were scanned with standard and low radiation dose. Trabecular bone microstructure parameters were assessed for CT images reconstructed with statistical iterative reconstruction (SIR) and analytical filtered backprojection (FBP). The resulting structure parameters were correlated to the biomechanically determined fracture load of each vertebra. Microstructure parameters assessed for low-dose data reconstructed with SIR significantly correlated with fracture loads as well as parameters assessed for standard-dose data reconstructed with FBP. Ideal results were achieved with low to zero regularization strength yielding microstructure parameters not significantly different from those assessed for standard-dose FPB data. Moreover, in comparison to other approaches, superior noise-resolution trade-offs can be found with the proposed methods.

  7. Lifetime Effective Dose Assessment Based on Background Outdoor Gamma Exposure in Chihuahua City, Mexico.

    PubMed

    Luevano-Gurrola, Sergio; Perez-Tapia, Angelica; Pinedo-Alvarez, Carmelo; Carrillo-Flores, Jorge; Montero-Cabrera, Maria Elena; Renteria-Villalobos, Marusia

    2015-10-01

    Determining ionizing radiation in a geographic area serves to assess its effects on a population's health. The aim of this study was to evaluate the spatial distribution of the background environmental outdoor gamma dose rates in Chihuahua City. This study also estimated the annual effective dose and the lifetime cancer risks of the population of this city. To determine the outdoor gamma dose rate in air, the annual effective dose and the lifetime cancer risk, 48 sampling points were randomly selected in Chihuahua City. Outdoor gamma dose rate measurements were carried out by using a Geiger-Müller counter. Outdoor gamma dose rates ranged from 113 to 310 nGy·h(-1). At the same sites, 48 soil samples were taken to obtain the activity concentrations of (226)Ra, (232)Th and (40)K and to calculate their terrestrial gamma dose rates. Radioisotope activity concentrations were determined by gamma spectrometry. Calculated gamma dose rates ranged from 56 to 193 nGy·h(-1). Results indicated that the lifetime effective dose of the inhabitants of Chihuahua City is on average 19.8 mSv, resulting in a lifetime cancer risk of 0.001. In addition, the mean of the activity concentrations in soil were 52, 73 and 1097 Bq·kg(-1), for (226)Ra, (232)Th and (40)K, respectively. From the analysis, the spatial distribution of (232)Th, (226)Ra and (40)K is to the north, to the north-center and to the south of city, respectively. In conclusion, the natural background gamma dose received by the inhabitants of Chihuahua City is high and mainly due to the geological characteristics of the zone. From the radiological point of view, this kind of study allows us to identify the importance of manmade environments, which are often highly variable and difficult to characterize. PMID:26437425

  8. Lifetime Effective Dose Assessment Based on Background Outdoor Gamma Exposure in Chihuahua City, Mexico

    PubMed Central

    Luevano-Gurrola, Sergio; Perez-Tapia, Angelica; Pinedo-Alvarez, Carmelo; Carrillo-Flores, Jorge; Montero-Cabrera, Maria Elena; Renteria-Villalobos, Marusia

    2015-01-01

    Determining ionizing radiation in a geographic area serves to assess its effects on a population’s health. The aim of this study was to evaluate the spatial distribution of the background environmental outdoor gamma dose rates in Chihuahua City. This study also estimated the annual effective dose and the lifetime cancer risks of the population of this city. To determine the outdoor gamma dose rate in air, the annual effective dose and the lifetime cancer risk, 48 sampling points were randomly selected in Chihuahua City. Outdoor gamma dose rate measurements were carried out by using a Geiger-Müller counter. Outdoor gamma dose rates ranged from 113 to 310 nGy·h−1. At the same sites, 48 soil samples were taken to obtain the activity concentrations of 226Ra, 232Th and 40K and to calculate their terrestrial gamma dose rates. Radioisotope activity concentrations were determined by gamma spectrometry. Calculated gamma dose rates ranged from 56 to 193 nGy·h−1. Results indicated that the lifetime effective dose of the inhabitants of Chihuahua City is on average 19.8 mSv, resulting in a lifetime cancer risk of 0.001. In addition, the mean of the activity concentrations in soil were 52, 73 and 1097 Bq·kg−1, for 226Ra, 232Th and 40K, respectively. From the analysis, the spatial distribution of 232Th, 226Ra and 40K is to the north, to the north-center and to the south of city, respectively. In conclusion, the natural background gamma dose received by the inhabitants of Chihuahua City is high and mainly due to the geological characteristics of the zone. From the radiological point of view, this kind of study allows us to identify the importance of manmade environments, which are often highly variable and difficult to characterize. PMID:26437425

  9. Effect of Low-Dose MDCT and Iterative Reconstruction on Trabecular Bone Microstructure Assessment.

    PubMed

    Kopp, Felix K; Holzapfel, Konstantin; Baum, Thomas; Nasirudin, Radin A; Mei, Kai; Garcia, Eduardo G; Burgkart, Rainer; Rummeny, Ernst J; Kirschke, Jan S; Noël, Peter B

    2016-01-01

    We investigated the effects of low-dose multi detector computed tomography (MDCT) in combination with statistical iterative reconstruction algorithms on trabecular bone microstructure parameters. Twelve donated vertebrae were scanned with the routine radiation exposure used in our department (standard-dose) and a low-dose protocol. Reconstructions were performed with filtered backprojection (FBP) and maximum-likelihood based statistical iterative reconstruction (SIR). Trabecular bone microstructure parameters were assessed and statistically compared for each reconstruction. Moreover, fracture loads of the vertebrae were biomechanically determined and correlated to the assessed microstructure parameters. Trabecular bone microstructure parameters based on low-dose MDCT and SIR significantly correlated with vertebral bone strength. There was no significant difference between microstructure parameters calculated on low-dose SIR and standard-dose FBP images. However, the results revealed a strong dependency on the regularization strength applied during SIR. It was observed that stronger regularization might corrupt the microstructure analysis, because the trabecular structure is a very small detail that might get lost during the regularization process. As a consequence, the introduction of SIR for trabecular bone microstructure analysis requires a specific optimization of the regularization parameters. Moreover, in comparison to other approaches, superior noise-resolution trade-offs can be found with the proposed methods.

  10. Effect of Low-Dose MDCT and Iterative Reconstruction on Trabecular Bone Microstructure Assessment.

    PubMed

    Kopp, Felix K; Holzapfel, Konstantin; Baum, Thomas; Nasirudin, Radin A; Mei, Kai; Garcia, Eduardo G; Burgkart, Rainer; Rummeny, Ernst J; Kirschke, Jan S; Noël, Peter B

    2016-01-01

    We investigated the effects of low-dose multi detector computed tomography (MDCT) in combination with statistical iterative reconstruction algorithms on trabecular bone microstructure parameters. Twelve donated vertebrae were scanned with the routine radiation exposure used in our department (standard-dose) and a low-dose protocol. Reconstructions were performed with filtered backprojection (FBP) and maximum-likelihood based statistical iterative reconstruction (SIR). Trabecular bone microstructure parameters were assessed and statistically compared for each reconstruction. Moreover, fracture loads of the vertebrae were biomechanically determined and correlated to the assessed microstructure parameters. Trabecular bone microstructure parameters based on low-dose MDCT and SIR significantly correlated with vertebral bone strength. There was no significant difference between microstructure parameters calculated on low-dose SIR and standard-dose FBP images. However, the results revealed a strong dependency on the regularization strength applied during SIR. It was observed that stronger regularization might corrupt the microstructure analysis, because the trabecular structure is a very small detail that might get lost during the regularization process. As a consequence, the introduction of SIR for trabecular bone microstructure analysis requires a specific optimization of the regularization parameters. Moreover, in comparison to other approaches, superior noise-resolution trade-offs can be found with the proposed methods. PMID:27447827

  11. Effect of Low-Dose MDCT and Iterative Reconstruction on Trabecular Bone Microstructure Assessment

    PubMed Central

    Baum, Thomas; Nasirudin, Radin A.; Mei, Kai; Garcia, Eduardo G.; Burgkart, Rainer; Rummeny, Ernst J.; Kirschke, Jan S.; Noël, Peter B.

    2016-01-01

    We investigated the effects of low-dose multi detector computed tomography (MDCT) in combination with statistical iterative reconstruction algorithms on trabecular bone microstructure parameters. Twelve donated vertebrae were scanned with the routine radiation exposure used in our department (standard-dose) and a low-dose protocol. Reconstructions were performed with filtered backprojection (FBP) and maximum-likelihood based statistical iterative reconstruction (SIR). Trabecular bone microstructure parameters were assessed and statistically compared for each reconstruction. Moreover, fracture loads of the vertebrae were biomechanically determined and correlated to the assessed microstructure parameters. Trabecular bone microstructure parameters based on low-dose MDCT and SIR significantly correlated with vertebral bone strength. There was no significant difference between microstructure parameters calculated on low-dose SIR and standard-dose FBP images. However, the results revealed a strong dependency on the regularization strength applied during SIR. It was observed that stronger regularization might corrupt the microstructure analysis, because the trabecular structure is a very small detail that might get lost during the regularization process. As a consequence, the introduction of SIR for trabecular bone microstructure analysis requires a specific optimization of the regularization parameters. Moreover, in comparison to other approaches, superior noise-resolution trade-offs can be found with the proposed methods. PMID:27447827

  12. Comparison of 50-year and 70-year internal-dose-conversion factors

    SciTech Connect

    Ryan, M.T.; Dunning, D.E. Jr.

    1981-03-01

    The 50-year inhalation and ingestion dose commitments associated with an acute intake (of a radionuclide) of 3.7 x 10/sup 4/ Bq (1 ..mu..Ci) in one day were compared with the corresponding dose commitments calculated for a 70-year integration period resulting from a chronic intake of the same amount at a rate of 101 Bq/d (0.00274 ..mu..Ci/d) for one year. These values, known as dose conversion factors, estimate the dose accumulated during a given period of time following a unit of intake of a radionuclide. It was demonstrated that the acute intake of 3.7 x 10/sup 4/ Bq in one day and the chronic intake of 101 Bq/d for one year (a total intake of 3.7 x 10/sup 4/ Bq) result in essentially the same dose commitment for a relatively long integration period. Therefore, the comparison of 50-year acute dose conversion factors and 70-year chronic dose conversion factors is essentially only a measure of the additional dose accumulated in the 50 to 70 year period. It was found that for radionuclides with atomic mass less than 200 the percent difference in the 70-year and 50-year dose conversion factors was essentially zero in most cases. Differences of approximately 5 to 50% were obtained for dose conversion factors for most alpha emitters with atomic masses of greater than 200. Comparisons were made on the basis of both organ dose equivalent and effective dose equivalent. The implications and significance of these results are discussed.

  13. A A field test for extremity dose assessment during outages at Korean nuclear power plants.

    PubMed

    Kim, Hee Geun; Kong, Tae Young

    2013-05-01

    During maintenance on the water chamber of a steam generator, the pressuriser heater and the pressure tube feeder in nuclear power plants, workers are likely to receive high radiation doses due to the severe workplace conditions. In particular, it is expected that workers' hands would receive the highest radiation doses because of their contact with the radioactive materials. In this study, field tests for extremity dose assessments in radiation workers undertaking contact tasks with high radiation doses were conducted during outages at pressurised water reactors and pressurised heavy water reactors in Korea. In the test, the radiation workers were required to wear additional thermoluminescent dosemeters (TLDs) on their backs and wrists and an extremity dosemeter on the finger, as well as a main TLD on the chest while performing the maintenance tasks. PMID:23091221

  14. Applying International Standards for Hydrokinetic Energy Resource Assessments

    NASA Astrophysics Data System (ADS)

    Haas, K. A.

    2015-12-01

    The extraction of hydrokinetic energy is the conversion of the kinetic energy of moving water into another more useful form of energy, frequently electricity. This water motion may be in the form of waves, tides, ocean currents or river flows. In addition to the development of the technology, the successful extraction of hydrokinetic energy requires a better understanding of physical, environmental and social aspects of the resource and their interactions with the technology. To assist with the development of the hydrokinetic industry as a whole, much work over the past decade has been completed developing international technical standards which can be used by the full range of stakeholders in the hydrokinetic industry. To support the design of projects for tidal energy extraction, a new International Electrotechnical Commission (IEC) Technical Specification (TS) has recently been published outlining a standardized methodology for performing resource assessments. In addition, presently work is ongoing on producing another TS for performing resource assessments on in-stream river projects. While the specific technology for extracting the energy from tidal and river flows may be similar, the methodologies for performing the respective resource assessments is quite different due to the differing nature of the physical processes involved. This presentation will discuss both the tidal and in-stream river methodologies, highlighting their respective key aspects. In addition, a case study illustrating the use of the published tidal TS will be presented.

  15. Revisions to US EPA Superfund Risk and Dose Assessment Models and Guidance - 13403

    SciTech Connect

    Walker, Stuart A.

    2013-07-01

    The U.S. Environmental Protection Agency (EPA) Superfund program's six Preliminary Remediation Goal (PRG) and Dose Compliance Concentration (DCC) internet based calculators for risk and dose assessment at Superfund sites are being revised to reflect better science, revisions to existing exposure scenarios and new scenarios, and changes to match up more closely with the EPA chemical regional screening level calculator. A revised version of the 1999 guidance document that provides an overview for the Superfund risk assessment process at radioactively contaminated sites, 'Radiation Risk Assessment At CERCLA Sites: Q and A', is being completed that will reflect Superfund recommended guidance and other technical documents issued over the past 13 years. EPA is also issuing a series of fact sheets in the document 'Superfund Radiation Risk Assessment: A Community Tool-kit'. This presentation would go over those changes that are expected to be finished by this spring. (authors)

  16. Comprehensive assessment of radiation dose estimates for the CORE320 study.

    PubMed

    Rybicki, Frank J; Mather, Richard T; Kumamaru, Kanako K; Brinker, Jeffrey; Chen, Marcus Y; Cox, Christopher; Matheson, Matthew B; Dewey, Marc; DiCarli, Marcelo F; Miller, Julie M; Geleijns, Jacob; George, Richard T; Paul, Narinder; Texter, John; Vavere, Andrea; Yaw, Tan Swee; Lima, Joao A C; Clouse, Melvin E

    2015-01-01

    OBJECTIVE. The purpose of this study was to comprehensively study estimated radiation doses for subjects included in the main analysis of the Combined Non-invasive Coronary Angiography and Myocardial Perfusion Imaging Using 320 Detector Computed Tomography (CORE320) study ( ClinicalTrials.gov identifier NCT00934037), a clinical trial comparing combined CT angiography (CTA) and perfusion CT with the reference standard catheter angiography plus myocardial perfusion SPECT. SUBJECTS AND METHODS. Prospectively acquired data on 381 CORE320 subjects were analyzed in four groups of testing related to radiation exposure. Radiation dose estimates were compared between modalities for combined CTA and perfusion CT with respect to covariates known to influence radiation exposure and for the main clinical outcomes defined by the trial. The final analysis assessed variations in radiation dose with respect to several factors inherent to the trial. RESULTS. The mean radiation dose estimate for the combined CTA and perfusion CT protocol (8.63 mSv) was significantly (p < 0.0001 for both) less than the average dose delivered from SPECT (10.48 mSv) and the average dose from diagnostic catheter angiography (11.63 mSv). There was no significant difference in estimated CTA-perfusion CT radiation dose for subjects who had false-positive or false-negative results in the CORE320 main analyses in a comparison with subjects for whom the CTA-perfusion CT findings were in accordance with the reference standard SPECT plus catheter angiographic findings. CONCLUSION. Radiation dose estimates from CORE320 support clinical implementation of a combined CT protocol for assessing coronary anatomy and myocardial perfusion. PMID:25539270

  17. MOVING FROM EXTERNAL EXPOSURE CONCENTRATION TO INTERNAL DOSE: DURATION EXTRAPOLATION BASED ON PHYSIOLOGICALLY-BASED PHARMACOKINETIC-MODEL DERIVED ESTIMATES OF INTERNAL DOSE

    EPA Science Inventory

    The potential human health risk(s) from exposure to chemicals under conditions for which adequate human or animal data are not available must frequently be assessed. Exposure scenario is particularly important for the acute neurotoxic effects of volatile organic compounds (VOCs)...

  18. Benchmark dose profiles for joint-action continuous data in quantitative risk assessment.

    PubMed

    Deutsch, Roland C; Piegorsch, Walter W

    2013-09-01

    Benchmark analysis is a widely used tool in biomedical and environmental risk assessment. Therein, estimation of minimum exposure levels, called benchmark doses (BMDs), that induce a prespecified benchmark response (BMR) is well understood for the case of an adverse response to a single stimulus. For cases where two agents are studied in tandem, however, the benchmark approach is far less developed. This paper demonstrates how the benchmark modeling paradigm can be expanded from the single-agent setting to joint-action, two-agent studies. Focus is on continuous response outcomes. Extending the single-exposure setting, representations of risk are based on a joint-action dose-response model involving both agents. Based on such a model, the concept of a benchmark profile-a two-dimensional analog of the single-dose BMD at which both agents achieve the specified BMR-is defined for use in quantitative risk characterization and assessment.

  19. Toward a Molecular Equivalent Dose: Use of the Medaka Model in Comparative Risk Assessment.

    EPA Science Inventory

    Recent challenges in risk assessment underscore the need to compare the results of toxicity and dose-response testing among a growing list of animal models and, possibly, an array of in vitro screening assays. Assays that quantify types of DNA damage that are directly relevant to...

  20. RESPIRATORY DOSE TO SUSCEPTIBLE POPULATIONS ASSESSED BY EXPOSURE AND DOSIMETRY STUDIES

    EPA Science Inventory

    Respiratory Dose to Susceptible Populations Assessed by Exposure and Dosimetry Studies

    Chong Kim1 and Ronald Williams2, 1USEPA National Health and Environmental Effects Research Laboratory and 2USEPA National Exposure Research Laboratory, RTP, NC.

    Rationale: Parti...

  1. Toward a molecular equivalent dose: use of the medaka model in comparative risk assessment

    EPA Science Inventory

    Recent challenges in risk assessment underscore the need to compare the results of toxicity and dose-response testing among a growing list of animal models and, possibly, an array of in vitro screening assays. Assays that quantify types of DNA damage that are directly relevant to...

  2. Occupational radiation dose assessment for a non site specific spent fuel storage facility

    SciTech Connect

    Hadley, J.; Eble, R.G. Jr.

    1997-12-01

    To expedite the licensing process of the non site specific Centralized Interim Storage Facility (CISF) the Department of Energy has completed a phase I CISF Topical Safety Analysis Report (TSAR). The TSAR will be used in licensing the phase I CISF if a site is designated. An occupational radiation does assessment of the facility operations is performed as part of the phase I CISF design. The first phase of the CISF has the capability to receive, transfer, and store SNF in dual-purpose cask/canister systems (DPC`s). Currently there are five vendor technologies under consideration. The preliminary dose assessment is based on estimated occupational exposures using traditional power plant ISFSI and transport cask handling processes. The second step in the process is to recommend ALARA techniques to reduce potential exposures. A final dose assessment is completed implementing the ALARA techniques and a review is performed to ensure that the design is in compliance with regulatory criteria. The dose assessment and ALARA evaluation are determined using the following input information: Dose estimates from vendor SAR`s; ISFSI experience with similar systems; Traditional methods of operations; Expected CISF cask receipt rates; and feasible ALARA techniques. 5 refs., 1 tab.

  3. Toxicokinetics to identify nonlinearities in dose-response and implications for risk assessment

    EPA Science Inventory

    For presentation at the 45th Annual Symposium of the Society of Toxicology of Canada. The meeting will be held on 4-5 December 2013 at the Ottawa Convention Centre. Toxicokinetics to identify nonlinearities in dose-response and implications for risk assessment. Rory Conolly, Offi...

  4. A dose assessment for a U.S. nuclear test site -- Bikini Atoll

    SciTech Connect

    Robison, W.L.; Bogen, K.T.; Conrado, C.L.

    1993-07-01

    On March 1, 1954, a nuclear weapon test, code-named BRAVO, conducted at Bikini Atoll in the northern Marshall Islands contaminated the major residence island. Here the authors provide a radiological dose assessment for the main residence island, Bikini, using extensive radionuclide concentration data derived from analysis of food crops, ground water, cistern water, fish and other marine species, animals, air, and soil collected at Bikini Island. The unique composition of coral soil greatly alters the relative contribution of cesium-137 and strontium-90 to the total estimated dose relative to expectations based on North American and European soils. Cesium-137 produces 96% of the estimated dose for returning residents, mostly through uptake from the soil to terrestrial food crops but also from external gamma exposure. The estimated maximum annual effective dose is 4.4 mSv y{sup {minus}1} when imported foods, which are now an established part of the diet, are available. The 30-, 50-, and 70-y integral effective doses are 10 cSv, 14 cSv, and 16 cSv, respectively. An analysis of interindividual variability in 0- to 30-y expected integral dose indicates that 95% of Bikini residents would have expected doses within a factor of 3.4 above and 4.8 below the population-average value. A corresponding uncertainty analysis showed that after about 5 y of residence, the 95% confidence limits on population-average dose would be {+-}35% of its expected value. The authors have evaluated various countermeasures to reduce {sup 137}Cs in food crops. Treatment with potassium reduces the uptake of {sup 137}Cs into food crops, and therefore the ingestion dose, to less than 10% of pretreatment levels and has essentially no negative environmental consequences.

  5. Coca and cocaine in Peru: an international policy assessment.

    PubMed

    Morales, E

    Using part of a set of ethnographic data gathered over a 5-year period on the political economy of cocaine in Peru, the study examines the impact of coca and cocaine on the social and economic policies of Peru. Before assessing the Peruvian government's role in international drug policy, the article briefly surveys the traditional use of coca and production, trafficking, and abuse of cocaine within the context of a much larger national problem. The paper concludes with a critical evaluation of the limited investment in crop substitution and eradication programs supported by the American government. PMID:2289840

  6. INFOMAT: The international materials assessment and application centre's internet gateway

    NASA Astrophysics Data System (ADS)

    Branquinho, Carmen Lucia; Colodete, Leandro Tavares

    2004-08-01

    INFOMAT is an electronic directory structured to facilitate the search and retrieval of materials science and technology information sources. Linked to the homepage of the International Materials Assessment and Application Centre, INFOMAT presents descriptions of 392 proprietary databases with links to their host systems as well as direct links to over 180 public domain databases and over 2,400 web sites. Among the web sites are associations/unions, governmental and non-governmental institutions, industries, library holdings, market statistics, news services, on-line publications, standardization and intellectual property organizations, and universities/research groups.

  7. Measurements of radioactivity and dose assessments in some building materials in Bitlis, Turkey.

    PubMed

    Kayakökü, Halime; Karatepe, Şule; Doğru, Mahmut

    2016-09-01

    In this study, samples of perlite, pumice and Ahlat stones (Ignimbrite) extracted from mines in Bitlis and samples of other building materials produced in facilities in Bitlis were collected and analyzed. Activity concentrations of (226)Ra, (232)Th and (40)K in samples of building materials were measured using NaI detector (NaI(Tl)) with an efficiency of 24%. The radon measurements of building material samples were determined using CR-39 nuclear track detectors. (226)Ra, (232)Th and (40)K radioactivity concentrations ranged from (29.6±5.9 to 228.2±38.1Bq/kg), (10.8±5.4 to 95.5±26.1Bq/kg) and (249.3±124.7 to 2580.1±266.9Bq/kg), respectively. Radon concentration, radium equivalent activities, absorbed dose rate, excess lifetime cancer risk and the values of hazard indices were calculated for the measured samples to assess the radiation hazards arising from using those materials in the construction of dwellings. Radon concentration ranged between 89.2±12.0Bq/m(3) and 1141.0±225.0Bq/m(3). It was determined that Raeq values of samples conformed to world standards except for perlite and single samples of brick and Ahlat stone. Calculated values of absorbed dose rate ranged from 81.3±20.5 to 420.6±42.8nGy/h. ELCR values ranged from (1.8±0.3)×10(-3) to (9.0±1.0)×10(-3). All samples had ELCR values higher than the world average. The values of Hin and Hex varied from 0.35±0.11 to 1.78±0.18 and from 0.37±0.09 to 1.17±0.13, respectively. The results were compared with standard radioactivity values determined by international organizations and with similar studies. There would be a radiation risk for people living in buildings made of perlite, Ahlat-1 and Brick-3.

  8. Measurements of radioactivity and dose assessments in some building materials in Bitlis, Turkey.

    PubMed

    Kayakökü, Halime; Karatepe, Şule; Doğru, Mahmut

    2016-09-01

    In this study, samples of perlite, pumice and Ahlat stones (Ignimbrite) extracted from mines in Bitlis and samples of other building materials produced in facilities in Bitlis were collected and analyzed. Activity concentrations of (226)Ra, (232)Th and (40)K in samples of building materials were measured using NaI detector (NaI(Tl)) with an efficiency of 24%. The radon measurements of building material samples were determined using CR-39 nuclear track detectors. (226)Ra, (232)Th and (40)K radioactivity concentrations ranged from (29.6±5.9 to 228.2±38.1Bq/kg), (10.8±5.4 to 95.5±26.1Bq/kg) and (249.3±124.7 to 2580.1±266.9Bq/kg), respectively. Radon concentration, radium equivalent activities, absorbed dose rate, excess lifetime cancer risk and the values of hazard indices were calculated for the measured samples to assess the radiation hazards arising from using those materials in the construction of dwellings. Radon concentration ranged between 89.2±12.0Bq/m(3) and 1141.0±225.0Bq/m(3). It was determined that Raeq values of samples conformed to world standards except for perlite and single samples of brick and Ahlat stone. Calculated values of absorbed dose rate ranged from 81.3±20.5 to 420.6±42.8nGy/h. ELCR values ranged from (1.8±0.3)×10(-3) to (9.0±1.0)×10(-3). All samples had ELCR values higher than the world average. The values of Hin and Hex varied from 0.35±0.11 to 1.78±0.18 and from 0.37±0.09 to 1.17±0.13, respectively. The results were compared with standard radioactivity values determined by international organizations and with similar studies. There would be a radiation risk for people living in buildings made of perlite, Ahlat-1 and Brick-3. PMID:27389882

  9. Radiological dose assessments in the northern Marshall Islands (1989--1991)

    SciTech Connect

    Sun, L.C.; Meinhold, C.B.; Moorthy, A.R.; Clinton, J.H.; Kaplan, E.

    1991-12-01

    The Republic of the Marshall Islands (RMI) is located in the central Pacific Ocean about 3500 km southeast of Hawaii and 4500 km east of Manila, Philippines. It consists of 34 atolls and 2 coral island, having a total land area of about 180 km{sup 2}, distributed over more than 2.5 {times} 10{sup 6} km{sup 2} of ocean. Between 1946 and 1958 the United States conducted nuclear tests there: 43 at Enewetak and 23 at Bikini. Thirty-three years after the cessation of nuclear testing in the RMI, the impact of these operations on the health and radiological safety of the people living in or planing to return to their contaminated homelands is still an important concern. The present Brookhaven National Laboratory (BNL) Marshall Islands Radiological Safety Program (MIRSP) began in 1987 with funding from the US Department of Energy (DOE). The objectives of the MIRSP are to determine the radionuclides present in the bodies of those people potentially exposed to residual radionuclide from weapon tests and fallout, and to assess their present and lifetime dose from external and internal sources. Field bioassay missions involving whole-body counting (WBC) and urine sample collection have, therefore, been important components of the program. WBC is used to measure {gamma}-emitters, such as {sup 40}K, {sup 60}Co and {sup 137}Cs, present in individuals. Urine samples are used to measure {alpha} and {beta}-emitting nuclides, such as {sup 239}Pu and {sup 90}Sr, that are undetectable by WBC routine methods. 6 refs.

  10. Radiological dose assessments in the northern Marshall Islands (1989--1991)

    SciTech Connect

    Sun, L.C.; Meinhold, C.B.; Moorthy, A.R.; Clinton, J.H.; Kaplan, E.

    1991-11-01

    The Republic of the Marshall Islands (RMI) is located in the central Pacific Ocean about 3500 km southwest of Hawaii and 4500 km east of Manila, Philippines. It consists of 34 atolls and 2 coral islands, having a total land area of about 180 km{sup 2}, distributed over more than 2.5 {times} 10{sup 6} of ocean. Between 1946 and 1958 the United states conducted nuclear tests there: 43 at Enewetak and 23 at Bikini. Thirty-three years after the cessation of nuclear testing in the RMI, the impact of these operations on the health and radiological safety of the people living in or planning to return to their contaminated homelands is still an important concern. The present Brookhaven National Laboratory (BNL) Marshall Islands Radiological Safety Program (MIRSP) began in 1987 with funding from the US Department of Energy (DOE). The objectives of the MIRSP are to determine the radionuclides present in the bodies of those people potentially exposed to residual radionuclide from weapon tests and fallout, and to assess their present and lifetime dose from external and internal sources. Field bioassay missions involving whole-body counting (WBC) and urine sample collection have, therefore, been important components of the program. WBC is used to measure {gamma}-emitters, such as {sup 40}K, {sup 60}Co and {sup 137}Cs, present in individuals. Urine samples are used to measure {alpha} and {beta}-emitting nuclides such as {sup 239}Pu and {sup 90}Sr, that are undetectable by WBC routine methods.

  11. Radiological dose assessments in the northern Marshall Islands (1989--1991). Revision

    SciTech Connect

    Sun, L.C.; Meinhold, C.B.; Moorthy, A.R.; Clinton, J.H.; Kaplan, E.

    1991-11-01

    The Republic of the Marshall Islands (RMI) is located in the central Pacific Ocean about 3500 km southwest of Hawaii and 4500 km east of Manila, Philippines. It consists of 34 atolls and 2 coral islands, having a total land area of about 180 km{sup 2}, distributed over more than 2.5 {times} 10{sup 6} of ocean. Between 1946 and 1958 the United states conducted nuclear tests there: 43 at Enewetak and 23 at Bikini. Thirty-three years after the cessation of nuclear testing in the RMI, the impact of these operations on the health and radiological safety of the people living in or planning to return to their contaminated homelands is still an important concern. The present Brookhaven National Laboratory (BNL) Marshall Islands Radiological Safety Program (MIRSP) began in 1987 with funding from the US Department of Energy (DOE). The objectives of the MIRSP are to determine the radionuclides present in the bodies of those people potentially exposed to residual radionuclide from weapon tests and fallout, and to assess their present and lifetime dose from external and internal sources. Field bioassay missions involving whole-body counting (WBC) and urine sample collection have, therefore, been important components of the program. WBC is used to measure {gamma}-emitters, such as {sup 40}K, {sup 60}Co and {sup 137}Cs, present in individuals. Urine samples are used to measure {alpha} and {beta}-emitting nuclides such as {sup 239}Pu and {sup 90}Sr, that are undetectable by WBC routine methods.

  12. Radiological dose assessments in the northern Marshall Islands (1989--1991). Revision

    SciTech Connect

    Sun, L.C.; Meinhold, C.B.; Moorthy, A.R.; Clinton, J.H.; Kaplan, E.

    1991-12-01

    The Republic of the Marshall Islands (RMI) is located in the central Pacific Ocean about 3500 km southeast of Hawaii and 4500 km east of Manila, Philippines. It consists of 34 atolls and 2 coral island, having a total land area of about 180 km{sup 2}, distributed over more than 2.5 {times} 10{sup 6} km{sup 2} of ocean. Between 1946 and 1958 the United States conducted nuclear tests there: 43 at Enewetak and 23 at Bikini. Thirty-three years after the cessation of nuclear testing in the RMI, the impact of these operations on the health and radiological safety of the people living in or planing to return to their contaminated homelands is still an important concern. The present Brookhaven National Laboratory (BNL) Marshall Islands Radiological Safety Program (MIRSP) began in 1987 with funding from the US Department of Energy (DOE). The objectives of the MIRSP are to determine the radionuclides present in the bodies of those people potentially exposed to residual radionuclide from weapon tests and fallout, and to assess their present and lifetime dose from external and internal sources. Field bioassay missions involving whole-body counting (WBC) and urine sample collection have, therefore, been important components of the program. WBC is used to measure {gamma}-emitters, such as {sup 40}K, {sup 60}Co and {sup 137}Cs, present in individuals. Urine samples are used to measure {alpha} and {beta}-emitting nuclides, such as {sup 239}Pu and {sup 90}Sr, that are undetectable by WBC routine methods. 6 refs.

  13. Impact of acquired immunity and dose-dependent probability of illness on quantitative microbial risk assessment.

    PubMed

    Havelaar, A H; Swart, A N

    2014-10-01

    Dose-response models in microbial risk assessment consider two steps in the process ultimately leading to illness: from exposure to (asymptomatic) infection, and from infection to (symptomatic) illness. Most data and theoretical approaches are available for the exposure-infection step; the infection-illness step has received less attention. Furthermore, current microbial risk assessment models do not account for acquired immunity. These limitations may lead to biased risk estimates. We consider effects of both dose dependency of the conditional probability of illness given infection, and acquired immunity to risk estimates, and demonstrate their effects in a case study on exposure to Campylobacter jejuni. To account for acquired immunity in risk estimates, an inflation factor is proposed. The inflation factor depends on the relative rates of loss of protection over exposure. The conditional probability of illness given infection is based on a previously published model, accounting for the within-host dynamics of illness. We find that at low (average) doses, the infection-illness model has the greatest impact on risk estimates, whereas at higher (average) doses and/or increased exposure frequencies, the acquired immunity model has the greatest impact. The proposed models are strongly nonlinear, and reducing exposure is not expected to lead to a proportional decrease in risk and, under certain conditions, may even lead to an increase in risk. The impact of different dose-response models on risk estimates is particularly pronounced when introducing heterogeneity in the population exposure distribution.

  14. Deterministic vs. probabilistic analyses to identify sensitive parameters in dose assessment using RESRAD.

    PubMed

    Kamboj, Sunita; Cheng, Jing-Jy; Yu, Charley

    2005-05-01

    The dose assessments for sites containing residual radioactivity usually involve the use of computer models that employ input parameters describing the physical conditions of the contaminated and surrounding media and the living and consumption patterns of the receptors in analyzing potential doses to the receptors. The precision of the dose results depends on the precision of the input parameter values. The identification of sensitive parameters that have great influence on the dose results would help set priorities in research and information gathering for parameter values so that a more precise dose assessment can be conducted. Two methods of identifying site-specific sensitive parameters, deterministic and probabilistic, were compared by applying them to the RESRAD computer code for analyzing radiation exposure for a residential farmer scenario. The deterministic method has difficulty in evaluating the effect of simultaneous changes in a large number of input parameters on the model output results. The probabilistic method easily identified the most sensitive parameters, but the sensitivity measure of other parameters was obscured. The choice of sensitivity analysis method would depend on the availability of site-specific data. Generally speaking, the deterministic method would identify the same set of sensitive parameters as the probabilistic method when 1) the baseline values used in the deterministic method were selected near the mean or median value of each parameter and 2) the selected range of parameter values used in the deterministic method was wide enough to cover the 5th to 95th percentile values from the distribution of that parameter.

  15. (Considerations of beta and electron transport in internal dose calculations): (Progress report)

    SciTech Connect

    Poston, J.W.

    1989-01-01

    This task involved use of the code INDOSE-EGS for calculation of S-values for radionuclides of importance in nuclear medicine. This task was proposed to proceed in a logical fashion as outlined below: identification of radionuclides for which more refined dose estimates are required; identification of the target and source combinations for which the previous assumption is clearly invalid; production of a base of data for monoenergetic radiations with sufficient accuracy to be used in dose calculations; calculation of revised dose estimates, i.e., S-values. The extension of this code to include head and neck models, gall bladder models, and kidney models are discussed. 2 refs.

  16. VARSKIN MOD 2 and SADDE MOD2: Computer codes for assessing skin dose from skin contamination

    SciTech Connect

    Durham, J.S. )

    1992-12-01

    The computer code VARSKIN has been modified to calculate dose to skin from three-dimensional sources, sources separated from the skin by layers of protective clothing, and gamma dose from certain radionuclides correction for backscatter has also been incorporated for certain geometries. This document describes the new code, VARSKIN Mod 2, including installation and operation instructions, provides detailed descriptions of the models used, and suggests methods for avoiding misuse of the code. The input data file for VARSKIN Mod 2 has been modified to reflect current physical data, to include the contribution to dose from internal conversion and Auger electrons, and to reflect a correction for low-energy electrons. In addition, the computer code SADDE: Scaled Absorbed Dose Distribution Evaluator has been modified to allow the generation of scaled absorbed dose distributions for mixtures of radionuclides and intereat conversion and Auger electrons. This new code, SADDE Mod 2, is also described in this document. Instructions for installation and operation of the code and detailed descriptions of the models used in the code are provided.

  17. International Symposia on Integrated Exposure Assessment for Hazardous Materials

    PubMed Central

    Kwon, Ho-Jang; Ha, Mina

    2012-01-01

    Objectives On September 2, 2010 and November 25, 2011, the Korean Research Project on Integrated Exposure Assessment to Hazardous Materials for Food Safety (KRIEFS) organized two international symposia in Seoul, Korea. KRIEFS, established by the Korean Food and Drug Administration in March 2010, envisioned these international symposia as means to obtain advanced experiences from other countries and to reflect on and refine the KRIEFS's survey design and methods. Methods For the first symposium KRIEFS invited human biomonitoring (HBM) experts from Germany, the US, and Canada. The visiting HBM experts shared the details of their national studies while the KRIEFS discussed study design, as well as the methods, results and policymaking processes of the KRIEFS project. The second symposium was organized to share the survey design and results on endocrine disruptors from Taiwan. Results The Speaker from Germany introduced the German Environmental Survey and shared their experiences in HBM design, such as the process of developing reference values, and discussed the new HBM plan in Germany and the European Union. The Representative from Canada shared insights from national HBM approach. In the case of the US, the speaker focused on risk communication with subjects in epidemiological studies. In the second international symposium, the speaker shared the experience of endocrine disruptors'studies from Taiwan. Conclusions KRIEFS was able to better understand previous nationwide HBM research designs, policy making process, and risk communication with research subjects.

  18. Detection and original dose assessment of egg powders subjected to gamma irradiation by using ESR technique

    NASA Astrophysics Data System (ADS)

    Aydın, Talat

    2015-09-01

    ESR (electron spin resonance) techniques were applied for detection and original dose estimation to radiation-processed egg powders. The un-irradiated (control) egg powders showed a single resonance line centered at g=2.0086±0.0005, 2.0081±0.0005, 2.0082±0.0005 (native signal) for yolk, white and whole egg, respectively. Irradiation induced at least one additional intense singlet overlapping to the control signal and caused a significant increase in signal intensity without any changes in spectral patterns. Responses of egg powders to different gamma radiation doses in the range 0-10 kGy were examined. The stability of the radiation-induced ESR signal of irradiated egg powders were investigated over a storage period of about 5 months. Additive reirradiation of the egg powders produces a reproducible dose response function, which can be used to assess the initial dose by back-extrapolation. The additive dose method gives an estimation of the original dose within ±12% at the end of the 720 h storage period.

  19. Assessment of radiation dose in nuclear cardiovascular imaging using realistic computational models

    SciTech Connect

    Xie, Tianwu; Lee, Choonsik; Bolch, Wesley E.; Zaidi, Habib

    2015-06-15

    Purpose: Nuclear cardiology plays an important role in clinical assessment and has enormous impact on the management of a variety of cardiovascular diseases. Pediatric patients at different age groups are exposed to a spectrum of radiation dose levels and associated cancer risks different from those of adults in diagnostic nuclear medicine procedures. Therefore, comprehensive radiation dosimetry evaluations for commonly used myocardial perfusion imaging (MPI) and viability radiotracers in target population (children and adults) at different age groups are highly desired. Methods: Using Monte Carlo calculations and biological effects of ionizing radiation VII model, we calculate the S-values for a number of radionuclides (Tl-201, Tc-99m, I-123, C-11, N-13, O-15, F-18, and Rb-82) and estimate the absorbed dose and effective dose for 12 MPI radiotracers in computational models including the newborn, 1-, 5-, 10-, 15-yr-old, and adult male and female computational phantoms. Results: For most organs, {sup 201}Tl produces the highest absorbed dose whereas {sup 82}Rb and {sup 15}O-water produce the lowest absorbed dose. For the newborn baby and adult patient, the effective dose of {sup 82}Rb is 48% and 77% lower than that of {sup 99m}Tc-tetrofosmin (rest), respectively. Conclusions: {sup 82}Rb results in lower effective dose in adults compared to {sup 99m}Tc-labeled tracers. However, this advantage is less apparent in children. The produced dosimetric databases for various radiotracers used in cardiovascular imaging, using new generation of computational models, can be used for risk-benefit assessment of a spectrum of patient population in clinical nuclear cardiology practice.

  20. International physical protection self-assessment tool for chemical facilities.

    SciTech Connect

    Tewell, Craig R.; Burdick, Brent A.; Stiles, Linda L.; Lindgren, Eric Richard

    2010-09-01

    This report is the final report for Laboratory Directed Research and Development (LDRD) Project No.130746, International Physical Protection Self-Assessment Tool for Chemical Facilities. The goal of the project was to develop an exportable, low-cost, computer-based risk assessment tool for small to medium size chemical facilities. The tool would assist facilities in improving their physical protection posture, while protecting their proprietary information. In FY2009, the project team proposed a comprehensive evaluation of safety and security regulations in the target geographical area, Southeast Asia. This approach was later modified and the team worked instead on developing a methodology for identifying potential targets at chemical facilities. Milestones proposed for FY2010 included characterizing the international/regional regulatory framework, finalizing the target identification and consequence analysis methodology, and developing, reviewing, and piloting the software tool. The project team accomplished the initial goal of developing potential target categories for chemical facilities; however, the additional milestones proposed for FY2010 were not pursued and the LDRD funding therefore was redirected.

  1. Radiation dose assessment in a 320-detector-row CT scanner used in cardiac imaging

    SciTech Connect

    Goma, Carles; Ruiz, Agustin; Jornet, Nuria; Latorre, Artur; Pallerol, Rosa M.; Carrasco, Pablo; Eudaldo, Teresa; Ribas, Montserrat

    2011-03-15

    Purpose: In the present era of cone-beam CT scanners, the use of the standardized CTDI{sub 100} as a surrogate of the idealized CTDI is strongly discouraged and, consequently, so should be the use of the dose-length product (DLP) as an estimate of the total energy imparted to the patient. However, the DLP is still widely used as a reference quantity to normalize the effective dose for a given scan protocol mainly because the CTDI{sub 100} is an easy-to-measure quantity. The aim of this article is therefore to describe a method for radiation dose assessment in large cone-beam single axial scans, which leads to a straightforward estimation of the total energy imparted to the patient. The authors developed a method accessible to all medical physicists and easy to implement in clinical practice in an attempt to update the bridge between CT dosimetry and the estimation of the effective dose. Methods: The authors used commercially available material and a simple mathematical model. The method described herein is based on the dosimetry paradigm introduced by the AAPM Task Group 111. It consists of measuring the dose profiles at the center and the periphery of a long body phantom with a commercial solid-state detector. A weighted dose profile is then calculated from these measurements. To calculate the CT dosimetric quantities analytically, a Gaussian function was fitted to the dose profile data. Furthermore, the Gaussian model has the power to condense the z-axis information of the dose profile in two parameters: The single-scan central dose, f(0), and the width of the profile, {sigma}. To check the energy dependence of the solid-state detector, the authors compared the dose profiles to measurements made with a small volume ion chamber. To validate the overall method, the authors compared the CTDI{sub 100} calculated analytically to the measurement made with a 100 mm pencil ion chamber. Results: For the central and weighted dose profiles, the authors found a good

  2. Assessment of Intern's Performance: A Key To Enhance School Leader Preparation Programs.

    ERIC Educational Resources Information Center

    Ovando, Martha N.

    This paper examines the assessment of interns' performance in a university-based internship program. A group of 46 school administrators (mainly principals) who supervised interns in a variety of school settings as part of a university-based school leader preparation program completed the Assessment of Interns' Performance form. The assessment was…

  3. Toward Increasing Fairness in Score Scale Calibrations Employed in International Large-Scale Assessments

    ERIC Educational Resources Information Center

    Oliveri, Maria Elena; von Davier, Matthias

    2014-01-01

    In this article, we investigate the creation of comparable score scales across countries in international assessments. We examine potential improvements to current score scale calibration procedures used in international large-scale assessments. Our approach seeks to improve fairness in scoring international large-scale assessments, which often…

  4. 12 CFR 630.5 - Accuracy of reports and assessment of internal control over financial reporting.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... CREDIT SYSTEM General § 630.5 Accuracy of reports and assessment of internal control over financial... assessment of internal control over financial reporting. (1) Annual reports must include a report by the Funding Corporation's management assessing the effectiveness of the internal control over...

  5. Historical development and evolution of EPRI's post-closure dose assessment of potential releases to the biosphere from the proposed HLW repository at Yucca Mountain.

    PubMed

    Smith, Graham; Kozak, Matthew W

    2011-12-01

    This paper describes the development and evolution of the Electric Power Research Institute's (EPRI) post-closure dose assessment for potential releases of radionuclides from the proposed High Level Waste repository at Yucca Mountain. The starting point for this work was the 1995 publication of Technical Bases for Yucca Mountain Standards by the Commission on Geosciences, Environment and Resources of the National Research Council. This report proposed the development and application of an individual risk-based standard for releases from the repository to replace the existing one, which was based on radionuclide release limits. This in turn implied the development and application of methods to assess radiation doses to humans. Accordingly, EPRI produced a methodology for such dose assessment as part of its Total System Performance Assessment program for the proposed Yucca Mountain repository site. The methodology initially addressed releases via groundwater and then releases associated with extrusive igneous events. The methodology was updated and applied over the following years to take account of regulatory developments, changes in estimates of the source term to the biosphere, peer review through international model comparison exercises, new site generic data, and new data concerning conditions at the point of compliance in Amargosa Valley. The main outputs were Biosphere Dose Conversion Factors, which relate radionuclide levels in environmental media to the annual individual doses to a member of a hypothetical critical group and to the regulator-defined Reasonably Maximally Exposed Individual. Most recently, consideration has been given to uncertainty in the dose estimates based on a probabilistic analysis. The paper provides a perspective on the evolution of the dose assessments in response to the developments listed above. PMID:22048489

  6. Historical development and evolution of EPRI's post-closure dose assessment of potential releases to the biosphere from the proposed HLW repository at Yucca Mountain.

    PubMed

    Smith, Graham; Kozak, Matthew W

    2011-12-01

    This paper describes the development and evolution of the Electric Power Research Institute's (EPRI) post-closure dose assessment for potential releases of radionuclides from the proposed High Level Waste repository at Yucca Mountain. The starting point for this work was the 1995 publication of Technical Bases for Yucca Mountain Standards by the Commission on Geosciences, Environment and Resources of the National Research Council. This report proposed the development and application of an individual risk-based standard for releases from the repository to replace the existing one, which was based on radionuclide release limits. This in turn implied the development and application of methods to assess radiation doses to humans. Accordingly, EPRI produced a methodology for such dose assessment as part of its Total System Performance Assessment program for the proposed Yucca Mountain repository site. The methodology initially addressed releases via groundwater and then releases associated with extrusive igneous events. The methodology was updated and applied over the following years to take account of regulatory developments, changes in estimates of the source term to the biosphere, peer review through international model comparison exercises, new site generic data, and new data concerning conditions at the point of compliance in Amargosa Valley. The main outputs were Biosphere Dose Conversion Factors, which relate radionuclide levels in environmental media to the annual individual doses to a member of a hypothetical critical group and to the regulator-defined Reasonably Maximally Exposed Individual. Most recently, consideration has been given to uncertainty in the dose estimates based on a probabilistic analysis. The paper provides a perspective on the evolution of the dose assessments in response to the developments listed above.

  7. New model for assessing dose, dose rate, and temperature sensitivity of radiation-induced absorption in glasses

    SciTech Connect

    Gilard, Olivier; Quadri, Gianandrea; Caussanel, Matthieu; Duval, Herve; Reynaud, Francois

    2010-11-15

    A new theoretical approach is proposed to explain the dose, dose rate and temperature sensitivity of the radiation-induced absorption (RIA) in glasses. In this paper, a {beta}{sup th}-order dispersive kinetic model is used to simulate the growth of the density of color centers in irradiated glasses. This model yields an explanation for the power-law dependence on dose and dose rate usually observed for the RIA in optical fibers. It also leads to an Arrhenius-like relationship between the RIA and the glass temperature during irradiation. With a very limited number of adjustable parameters, the model succeeds in explaining, with a good agreement, the RIA growth of two different optical fiber references over wide ranges of dose, dose rate and temperature.

  8. 3D delivered dose assessment using a 4DCT-based motion model

    SciTech Connect

    Cai, Weixing; Hurwitz, Martina H.; Williams, Christopher L.; Dhou, Salam; Berbeco, Ross I.; Mishra, Pankaj E-mail: jhlewis@lroc.harvard.edu; Lewis, John H. E-mail: jhlewis@lroc.harvard.edu; Seco, Joao

    2015-06-15

    reconstructed from kV and MV projections compared to the ground truth, which is clinically comparable to 4DCT (0.093%). For the second XCAT phantom that has an irregular breathing pattern, the errors are 0.81% and 1.75% for kV and MV reconstructions, both of which are better than that of 4DCT (4.01%). In the case of real patient, although it is impossible to obtain the actual delivered dose, the dose estimation is clinically reasonable and demonstrates differences between 4DCT and MV reconstruction-based dose estimates. Conclusions: With the availability of kV or MV projection images, the proposed approach is able to assess delivered doses for all respiratory phases during treatment. Compared to the planning dose based on 4DCT, the dose estimation using reconstructed 3D fluoroscopic images was as good as 4DCT for regular respiratory pattern and was a better dose estimation for the irregular respiratory pattern.

  9. 3D delivered dose assessment using a 4DCT-based motion model

    PubMed Central

    Cai, Weixing; Hurwitz, Martina H.; Williams, Christopher L.; Dhou, Salam; Berbeco, Ross I.; Seco, Joao; Mishra, Pankaj; Lewis, John H.

    2015-01-01

    reconstructed from kV and MV projections compared to the ground truth, which is clinically comparable to 4DCT (0.093%). For the second XCAT phantom that has an irregular breathing pattern, the errors are 0.81% and 1.75% for kV and MV reconstructions, both of which are better than that of 4DCT (4.01%). In the case of real patient, although it is impossible to obtain the actual delivered dose, the dose estimation is clinically reasonable and demonstrates differences between 4DCT and MV reconstruction-based dose estimates. Conclusions: With the availability of kV or MV projection images, the proposed approach is able to assess delivered doses for all respiratory phases during treatment. Compared to the planning dose based on 4DCT, the dose estimation using reconstructed 3D fluoroscopic images was as good as 4DCT for regular respiratory pattern and was a better dose estimation for the irregular respiratory pattern. PMID:26127043

  10. Assessment of Annual Effective Dose for Natural Radioactivity of Gamma Emitters in Biscuit Samples in Iraq.

    PubMed

    Abojassim, Ali Abid; Al-Alasadi, Lubna A; Shitake, Ahmed R; Al-Tememie, Faeq A; Husain, Afnan A

    2015-09-01

    Biscuits are an important type of food, widely consumed by babies in Iraq and other countries. This work uses gamma spectroscopy to measure the natural radioactivity due to long-lived gamma emitters in children's biscuits; it also estimates radiation hazard indices, that is, the radium equivalent activity, the representative of gamma level index, the internal hazard index, and the annual effective dose in children. Ten samples were collected from the Iraqi market from different countries of origin. The average specific activities for (226)Ra, (232)Th, and (40)K were 9.390, 3.1213, and 214.969 Bq/kg, respectively, but the average of the radium equivalent activity and the internal hazard index were 33.101 Bq/kg and 0.107, respectively. The total average annual effective dose from consumption by adults, children, and infants is estimated to be 0.655, 1.009, and 0.875 mSv, respectively. The values found for specific activity, radiation hazard indices, and annual effective dose in all samples in this study were lower than worldwide median values for all groups; therefore, these values are found to be safe.

  11. Assessing patient dose in interventional fluoroscopy using patient-dependent hybrid phantoms

    NASA Astrophysics Data System (ADS)

    Johnson, Perry Barnett

    Interventional fluoroscopy uses ionizing radiation to guide small instruments through blood vessels or other body pathways to sites of clinical interest. The technique represents a tremendous advantage over invasive surgical procedures, as it requires only a small incision, thus reducing the risk of infection and providing for shorter recovery times. The growing use and increasing complexity of interventional procedures, however, has resulted in public health concerns regarding radiation exposures, particularly with respect to localized skin dose. Tracking and documenting patient-specific skin and internal organ dose has been specifically identified for interventional fluoroscopy where extended irradiation times, multiple projections, and repeat procedures can lead to some of the largest doses encountered in radiology. Furthermore, inprocedure knowledge of localized skin doses can be of significant clinical importance to managing patient risk and in training radiology residents. In this dissertation, a framework is presented for monitoring the radiation dose delivered to patients undergoing interventional procedures. The framework is built around two key points, developing better anthropomorphic models, and designing clinically relevant software systems for dose estimation. To begin, a library of 50 hybrid patient-dependent computational phantoms was developed based on the UF hybrid male and female reference phantoms. These phantoms represent a different type of anthropomorphic model whereby anthropometric parameters from an individual patient are used during phantom selection. The patient-dependent library was first validated and then used in two patient-phantom matching studies focused on cumulative organ and local skin dose. In terms of organ dose, patient-phantom matching was shown most beneficial for estimating the dose to large patients where error associated with soft tissue attenuation differences could be minimized. For small patients, inherent difference

  12. Ethnic sensitivity assessment of pharmacokinetics and pharmacodynamics of omalizumab with dosing table expansion.

    PubMed

    Honma, Wataru; Gautier, Aurélie; Paule, Ines; Yamaguchi, Masayuki; Lowe, Philip J

    2016-06-01

    A three-part license expansion for omalizumab (Xolair(®)), humanized anti-IgE antibody, was recently made in Japan for paediatric use, additional higher doses and revised dosing frequency in allergic asthma. The dosing level and frequency of omalizumab are guided by a dosing table based on the total serum IgE and bodyweight. Nonlinear mixed-effect pharmacokinetic (PK) and pharmacodynamic (PD) modeling and simulation techniques described the binding between omalizumab and its target IgE. The population PKPD analysis was conducted using data from the nine studies included originally in the European application of dosing table expansion together with three Japanese clinical studies to assess the influence of the ethnicity. Statistically significant differences between the ethnic groups were detected. These were small, within or close to bioequivalence criteria. The model described the primary pharmacology in Caucasian and Japanese patients, both adult and paediatric, with simulations showing that the interplay between the clearance, volume and binding affinity parameters was such that there was no clinical impact of the Japanese ethnic differences on either drug PK or free IgE suppression and hence the required posology. PMID:27238573

  13. Information-theoretic model-averaged benchmark dose analysis in environmental risk assessment

    PubMed Central

    Piegorsch, Walter W.; An, Lingling; Wickens, Alissa A.; West, R. Webster; Peña, Edsel A.; Wu, Wensong

    2013-01-01

    An important objective in environmental risk assessment is estimation of minimum exposure levels, called Benchmark Doses (BMDs), that induce a pre-specified Benchmark Response (BMR) in a dose-response experiment. In such settings, representations of the risk are traditionally based on a specified parametric model. It is a well-known concern, however, that existing parametric estimation techniques are sensitive to the form employed for modeling the dose response. If the chosen parametric model is in fact misspecified, this can lead to inaccurate low-dose inferences. Indeed, avoiding the impact of model selection was one early motivating issue behind development of the BMD technology. Here, we apply a frequentist model averaging approach for estimating benchmark doses, based on information-theoretic weights. We explore how the strategy can be used to build one-sided lower confidence limits on the BMD, and we study the confidence limits’ small-sample properties via a simulation study. An example from environmental carcinogenicity testing illustrates the calculations. It is seen that application of this information-theoretic, model averaging methodology to benchmark analysis can improve environmental health planning and risk regulation when dealing with low-level exposures to hazardous agents. PMID:24039461

  14. Benchmark dose profiles for joint-action quantal data in quantitative risk assessment.

    PubMed

    Deutsch, Roland C; Piegorsch, Walter W

    2012-12-01

    Benchmark analysis is a widely used tool in public health risk analysis. Therein, estimation of minimum exposure levels, called Benchmark Doses (BMDs), that induce a prespecified Benchmark Response (BMR) is well understood for the case of an adverse response to a single stimulus. For cases where two agents are studied in tandem, however, the benchmark approach is far less developed. This article demonstrates how the benchmark modeling paradigm can be expanded from the single-dose setting to joint-action, two-agent studies. Focus is on response outcomes expressed as proportions. Extending the single-exposure setting, representations of risk are based on a joint-action dose-response model involving both agents. Based on such a model, the concept of a benchmark profile (BMP) - a two-dimensional analog of the single-dose BMD at which both agents achieve the specified BMR - is defined for use in quantitative risk characterization and assessment. The resulting, joint, low-dose guidelines can improve public health planning and risk regulation when dealing with low-level exposures to combinations of hazardous agents.

  15. Ethnic sensitivity assessment of pharmacokinetics and pharmacodynamics of omalizumab with dosing table expansion.

    PubMed

    Honma, Wataru; Gautier, Aurélie; Paule, Ines; Yamaguchi, Masayuki; Lowe, Philip J

    2016-06-01

    A three-part license expansion for omalizumab (Xolair(®)), humanized anti-IgE antibody, was recently made in Japan for paediatric use, additional higher doses and revised dosing frequency in allergic asthma. The dosing level and frequency of omalizumab are guided by a dosing table based on the total serum IgE and bodyweight. Nonlinear mixed-effect pharmacokinetic (PK) and pharmacodynamic (PD) modeling and simulation techniques described the binding between omalizumab and its target IgE. The population PKPD analysis was conducted using data from the nine studies included originally in the European application of dosing table expansion together with three Japanese clinical studies to assess the influence of the ethnicity. Statistically significant differences between the ethnic groups were detected. These were small, within or close to bioequivalence criteria. The model described the primary pharmacology in Caucasian and Japanese patients, both adult and paediatric, with simulations showing that the interplay between the clearance, volume and binding affinity parameters was such that there was no clinical impact of the Japanese ethnic differences on either drug PK or free IgE suppression and hence the required posology.

  16. Realistic retrospective dose assessments to members of the public around Spanish nuclear facilities.

    PubMed

    Jiménez, M A; Martín-Valdepeñas, J M; García-Talavera, M; Martín-Matarranz, J L; Salas, M R; Serrano, J I; Ramos, L M

    2011-11-01

    In the frame of an epidemiological study carried out in the influence areas around the Spanish nuclear facilities (ISCIII-CSN, 2009. Epidemiological Study of The Possible Effect of Ionizing Radiations Deriving from The Operation of Spanish Nuclear Fuel Cycle Facilities on The Health of The Population Living in Their Vicinity. Final report December 2009. Ministerio de Ciencia e Innovación, Instituto de Salud Carlos III, Consejo de Seguridad Nuclear. Madrid. Available from: http://www.csn.es/images/stories/actualidad_datos/especiales/epidemiologico/epidemiological_study.pdf), annual effective doses to public have been assessed by the Spanish Nuclear Safety Council (CSN) for over 45 years using a retrospective realistic-dose methodology. These values are compared with data from natural radiation exposure. For the affected population, natural radiation effective doses are in average 2300 times higher than effective doses due to the operation of nuclear installations (nuclear power stations and fuel cycle facilities). When considering the impact on the whole Spanish population, effective doses attributable to nuclear facilities represent in average 3.5×10(-5)mSv/y, in contrast to 1.6mSv/y from natural radiation or 1.3mSv/y from medical exposures.

  17. A comparison of independently conducted dose assessments to determine compliance and resettlement options for the people of Rongelap Atoll.

    PubMed

    Simon, S L; Robison, W L; Thorne, M C; Toburen, L H; Franke, B; Baverstock, K F; Pettingill, H J

    1997-07-01

    Rongelap Island was the home of Marshallese people numbering less than 120 in 1954; 67 were on the island and severely exposed to radioactive fallout from an atomic weapons test in March of that year. Those resident on Rongelap were evacuated 50 h after the test, returned 3 y later, then voluntarily left their home island in 1985 due to their ongoing fear of radiation exposure from residual radioactive contamination. Following international negotiations in 1991, a Memorandum of Understanding (MOU) was signed in early 1992 between the Republic of the Marshall Islands Government, the Rongelap Atoll Local Government, the U.S. Department of Energy, and the U.S. Department of the Interior. In this MOU it was agreed that the Republic of the Marshall Islands, with the aid of the U.S. Department of Energy, would carry out independent dose assessments for the purpose of assisting and advising the Rongelap community on radiological issues related to a safe resettlement of Rongelap. The MOU enacted two action levels which were agreed to be used to establish whether mitigation should be considered as a condition for resettlement of Rongelap Island: (1) no individual should receive an annual dose in the future of 1 mSv or more, above that from natural background radiation, assuming that his/her diet consists of only locally produced foods, and (2) the total surface soil concentration of plutonium and other transuranic elements must be less than 629 Bq kg(-1) (averaged over the top 5 cm). Environmental radiological data and dietary information were collected over two years (1992-1993) for the purpose of predicting future potential doses to Rongelapese who might resettle. In 1994, four independent assessments were reported, including one from each of the following entities: Marshall Islands Nationwide Radiological Study; Lawrence Livermore National Laboratory; an independent advisor from the United Kingdom (MCT); and a committee of the National Research Council. All four

  18. Estimating internal dose due to ingestion of radionuclides from Nevada Test Site fallout

    SciTech Connect

    Kirchner, T.B.; Whicker, F.W.; Anspaugh, L.R.

    1996-10-01

    The U.S. Department of Energy initiated the Radiation Exposure Review Project to provide a critical reexamination of radiation doses to people resulting from testing nuclear devices at the Nevada Test Site. One part of this effort focused on the dose resulting from the ingestion of contaminated food. The PATHWAY radionuclide transport model was developed to provide estimates of food concentrations for 20 radionuclides for each of 86 test events and 15 agricultural scenarios. These results were then used as input to the Human Ingestion model to provide dose estimates for individuals and populations in 9 western states. The model considered the life-style and age of the people, and accounted for the transport of milk between locations. Estimates of uncertainty were provided for all doses using Monte Carlo simulation techniques. Propagation of uncertainty between the PATHWAY model and the Human Ingestion model required the development of special strategies to ensure that the inherent correlations between concentrations of the radionuclides in foods were handled properly. In addition, the size of the input data base (60 megabytes), the number of cases to consider (over 30,000), and the number of Monte Carlo simulations (over 6 million) required the development of efficient and reliable methods of data access and storage while running simulations concurrently on up to 14 UNIX workstations. The problems encountered in this effort are likely to be typical of any dose reconstruction involving geographically heterogeneous environmental conditions. This paper documents the methods used to disaggregate the system to achieve computation efficiency, the methods used to propagate uncertainty through the model system, and the techniques used to manage data in a distributed computing environment. The radionuclide and age specific dose factors used in the analysis are also provided.

  19. Dose assessment, radioecology, and community interaction at former nuclear test sites

    SciTech Connect

    Robison, W.L.

    1994-11-01

    The US conducted a nuclear testing program at Bikini and Enewetak Atolls in the Marshall Islands from 1946 through 1958. A total of 66 nuclear devices were tested--23 at Bikini Atoll (total yield of 77 megatons) and 43 at Enewetak Atoll (total yield of 33 megatons). This resulted in contamination of many of the islands at each atoll. The BRAVO test (yield 15 megatons) on March 1, 1954 contaminated several atolls to the east of Bikini Atoll some of which were inhabited. The author has conducted an experimental, monitoring, and dose assessment program at atolls in the northern Marshall Islands for the past 20 years. The goals have been to: (1) determine the radiological conditions at the atolls; (2) provide dose assessments for resettlement options and alternate living patterns; (3) develop and evaluate remedial measures to reduce the dose to people reinhabiting the atolls; and (4) discuss the results with each of the communities and the Republic of the Marshall Islands government officials to help them understand the data as a basis for resettlement decisions. The remaining radionuclides at the atolls that contribute any significant dose are {sup 137}Cs, {sup 90}Sr, {sup 239+240}Pu, and {sup 241}Am.

  20. Outdoor solar UVA dose assessment with EBT2 radiochromic film using spectrophotometer and densitometer measurements.

    PubMed

    Abukassem, I; Bero, M A

    2015-04-01

    Direct measurements of solar ultraviolet radiations (UVRs) have an important role in the protection of humans against UVR hazard. This work presents simple technique based on the application of EBT2 GAFCHROMIC(®) film for direct solar UVA dose assessment. It demonstrates the effects of different parts of the solar spectrum (UVB, visible and infrared) on performed UVA field measurements and presents the measurement uncertainty budget. The gradient of sunlight exposure level permitted the authors to establish the mathematical relationships between the measured solar UVA dose and two measured quantities: the first was the changes in spectral absorbance at the wavelength 633 nm (A633) and the second was the optical density (OD). The established standard relations were also applied to calculate the solar UVA dose variations during the whole day; 15 min of exposure each hour between 8:00 and 17:00 was recorded. Results show that both applied experimental methods, spectrophotometer absorbance and densitometer OD, deliver comparable figures for EBT2 solar UVA dose assessment with relative uncertainty of 11% for spectral absorbance measurements and 15% for OD measurements. PMID:25500756

  1. Exposure and dose assessment to particle components among an elderly population

    NASA Astrophysics Data System (ADS)

    Almeida-Silva, M.; Almeida, S. M.; Pegas, P. N.; Nunes, T.; Alves, C. A.; Wolterbeek, H. T.

    2015-02-01

    People spend the majority of their time indoors and the composition and toxicity of indoor particles is very complex and present significant differences comparing with outdoor aerosols. Consequently, ambient particles cannot represent a real exposure. The aim of this work was to determine the daily exposure and the daily inhaled dose to particle components of elders living in Elderly Care Centers. A questionnaire was applied to 193 institutionalized elders in order to achieve their daily time pattern and to define the micro-environments where PM10 and its components (carbonaceous components and trace elements) were assessed. Daily exposure was calculated by integrating the elder's time spend in each micro-environment and the concentration of the pollutants for the period of interest. This parameter, together with the inhalation rate and the standard body weight, were used to calculate the daily inhaled dose. PM10 daily exposure and daily inhaled dose ranged between 11 - 16 μg m-3 and 20 × 10-3 - 28 × 10-3 μg kg-1, respectively. This work not only allowed a fully quantification of the magnitude of the elders exposure, but also showed that the assessment of the integrated exposure to PM components is determinant to accomplish the dose inhaled by elders living in ECCs.

  2. Radiation therapy for stage IIA and IIB testicular seminoma: peripheral dose calculations and risk assessments

    NASA Astrophysics Data System (ADS)

    Mazonakis, Michalis; Berris, Theocharris; Lyraraki, Efrossyni; Damilakis, John

    2015-03-01

    This study was conducted to calculate the peripheral dose to critical structures and assess the radiation risks from modern radiotherapy for stage IIA/IIB testicular seminoma. A Monte Carlo code was used for treatment simulation on a computational phantom representing an average adult. The initial treatment phase involved anteroposterior and posteroanaterior modified dog-leg fields exposing para-aortic and ipsilateral iliac lymph nodes followed by a cone-down phase for nodal mass irradiation. Peripheral doses were calculated using different modified dog-leg field dimensions and an extended conventional dog-leg portal. The risk models of the BEIR-VII report and ICRP-103 were combined with dosimetric calculations to estimate the probability of developing stochastic effects. Radiotherapy for stage IIA seminoma with a target dose of 30 Gy resulted in a range of 23.0-603.7 mGy to non-targeted peripheral tissues and organs. The corresponding range for treatment of stage IIB disease to a cumulative dose of 36 Gy was 24.2-633.9 mGy. A dose variation of less than 13% was found by altering the field dimensions. Radiotherapy with the conventional instead of the modern modified dog-leg field increased the peripheral dose up to 8.2 times. The calculated heart doses of 589.0-632.9 mGy may increase the risk for developing cardiovascular diseases whereas the testicular dose of more than 231.9 mGy may lead to a temporary infertility. The probability of birth abnormalities in the offspring of cancer survivors was below 0.13% which is much lower than the spontaneous mutation rate. Abdominoplevic irradiation may increase the lifetime intrinsic risk for the induction of secondary malignancies by 0.6-3.9% depending upon the site of interest, patient’s age and tumor dose. Radiotherapy for stage IIA/IIB seminoma with restricted fields and low doses is associated with an increased morbidity. These data may allow the definition of a risk-adapted follow-up scheme for long

  3. Applications of the International Space Station Probabilistic Risk Assessment Model

    NASA Technical Reports Server (NTRS)

    Grant, Warren; Lutomski, Michael G.

    2011-01-01

    Recently the International Space Station (ISS) has incorporated more Probabilistic Risk Assessments (PRAs) in the decision making process for significant issues. Future PRAs will have major impact to ISS and future spacecraft development and operations. These PRAs will have their foundation in the current complete ISS PRA model and the current PRA trade studies that are being analyzed as requested by ISS Program stakeholders. ISS PRAs have recently helped in the decision making process for determining reliability requirements for future NASA spacecraft and commercial spacecraft, making crew rescue decisions, as well as making operational requirements for ISS orbital orientation, planning Extravehicular activities (EVAs) and robotic operations. This paper will describe some applications of the ISS PRA model and how they impacted the final decision. This paper will discuss future analysis topics such as life extension, requirements of new commercial vehicles visiting ISS.

  4. International Caries Detection and Assessment System (ICDAS): A New Concept

    PubMed Central

    Pandit, IK; Srivastava, Nikhil; Gupta, Monika; Sharma, Megha

    2011-01-01

    Dental caries is a complex multifactorial disease of the calcified tissues of the teeth, caused by interaction of various factors including the host, agent, substrate and time as demonstrated by the Keyes circle. Detecting carious lesion at the earliest possible stage of its development is definitely helpful in appropriate treatment planning for the same. The lack of consistency among the contemporary criteria systems for detecting carious lesions limits the comparability of outcomes measured in epidemiological and clinical studies. Therefore, the ICDAS criteria was developed by an international team of caries researchers to integrate several new criteria systems into one standard system for caries detection and assessment. It is a clinical scoring system for use in dental education, clinical practice, research, and epidemiology, and provides a framework to support and enable personalized total caries management for improved long-term health outcomes.

  5. Linking National and International Educational Assessments: NAEP and TIMSS

    NASA Astrophysics Data System (ADS)

    Rahman, Taslima

    2013-03-01

    In an increasingly global economy, comparisons of student achievement in the United States to student achievement in other countries are of interest to the nation. The National Center for Education Statistics (NCES) reports on mathematics and science achievement of 4th- and 8th-grade students for the all U.S. states and 60 countries. However, the reports are based on two separate assessments. Results for the U.S. states are based on the National Assessment of Educational Progress (NAEP) and results for the other countries are based on the Trends in International Mathematics and Science Study (TIMSS). Further, unlike NAEP, TIMSS does not have an on-going state component. Thus, U.S. states cannot compare performance of their students with those of the students in other countries. To enable such comparisons, NCES launched a NAEP-TIMSS Linking study where the goal is to project TIMSS mathematics and science scores for the students in the 50 states that participated in NAEP. This linking study targeted eighth-grade students. NAEP assessments of mathematics and science were conducted in winter 2011 (January-March) and TIMSS assessments of mathematics and science were conducted in spring 2011 (April-June). Three approaches-- statistical moderation, calibration, and projection--are applied in linking the two scales. In this presentation, discussion will focus on the study design and approaches applied. In addition, results will be shared if released to the public by the NCES before March 2013. Otherwise results of earlier linking study conducted by the American Institutes for Research in 2007 using the statistical moderation technique will be shared.

  6. Dose assessment for inhalation intakes in complex, energetic environments: experience from the US Capstone study.

    PubMed

    Guilmette, Raymond A; Parkhurst, Mary Ann

    2007-01-01

    Because of the lack of existing information needed to evaluate the risks from inhalation exposures to depleted uranium (DU) aerosols of US soldiers during the 1991 Persian Gulf War, the US Department of Defense funded an experimental study to measure the characteristics of DU aerosols created when Abrams tanks and Bradley fighting vehicles are struck with large-caliber DU penetrators, and a dose and risk assessment for individuals present in such vehicles. This paper describes some of the difficulties experienced in dose assessment modelling of the very complex DU aerosols created in the Capstone studies, e.g. high concentrations, heterogeneous aerosol properties, non-lognormal particle size distributions, triphasic in vitro dissolution and rapid time-varying functions of both DU air concentration and particle size. The approaches used to solve these problems along with example results are presented.

  7. Radiation-induced biomarkers for the detection and assessment of absorbed radiation doses

    PubMed Central

    Rana, Sudha; Kumar, Raj; Sultana, Sarwat; Sharma, Rakesh Kumar

    2010-01-01

    Radiation incident involving living organisms is an uncommon but a very serious situation. The first step in medical management including triage is high-throughput assessment of the radiation dose received. Radiation exposure levels can be assessed from viability of cells, cellular organelles such as chromosome and different intermediate metabolites. Oxidative damages by ionizing radiation result in carcinogenesis, lowering of the immune response and, ultimately, damage to the hematopoietic system, gastrointestinal system and central nervous system. Biodosimetry is based on the measurement of the radiation-induced changes, which can correlate them with the absorbed dose. Radiation biomarkers such as chromosome aberration are most widely used. Serum enzymes such as serum amylase and diamine oxidase are the most promising biodosimeters. The level of gene expression and protein are also good biomarkers of radiation. PMID:21829314

  8. Lake fish as the main contributor of internal dose to lakeshore residents in the Chernobyl contaminated area.

    PubMed

    Travnikova, I G; Bazjukin, A N; Bruk, G Ja; Shutov, V N; Balonov, M I; Skuterud, L; Mehli, H; Strand, P

    2004-01-01

    Two field expeditions in 1996 studied 137Cs intake patterns and its content in the bodies of adult residents from the village Kozhany in the Bryansk region, Russia, located on the shore of a drainless peat lake in an area subjected to significant radioactive contamination after the 1986 Chernobyl accident. The 137Cs contents in lake water and fish were two orders of magnitude greater than in local rivers and flow-through lakes, 10 years after Chernobyl radioactive contamination, and remain stable. The 137Cs content in lake fish and a mixture of forest mushrooms was between approximately 10-20 kBq/kg, which exceeded the temporary Russian permissible levels for these products by a factor of 20-40. Consumption of lake fish gave the main contribution to internal doses (40-50%) for Kozhany village inhabitants Simple countermeasures, such as Prussian blue doses for dairy cows and pre-boiling mushrooms and fish before cooking, halved the 137Cs internal dose to inhabitants, even 10 years after the radioactive fallout.

  9. Comparison of Nine Statistical Model Based Warfarin Pharmacogenetic Dosing Algorithms Using the Racially Diverse International Warfarin Pharmacogenetic Consortium Cohort Database

    PubMed Central

    Liu, Rong; Li, Xi; Zhang, Wei; Zhou, Hong-Hao

    2015-01-01

    Objective Multiple linear regression (MLR) and machine learning techniques in pharmacogenetic algorithm-based warfarin dosing have been reported. However, performances of these algorithms in racially diverse group have never been objectively evaluated and compared. In this literature-based study, we compared the performances of eight machine learning techniques with those of MLR in a large, racially-diverse cohort. Methods MLR, artificial neural network (ANN), regression tree (RT), multivariate adaptive regression splines (MARS), boosted regression tree (BRT), support vector regression (SVR), random forest regression (RFR), lasso regression (LAR) and Bayesian additive regression trees (BART) were applied in warfarin dose algorithms in a cohort from the International Warfarin Pharmacogenetics Consortium database. Covariates obtained by stepwise regression from 80% of randomly selected patients were used to develop algorithms. To compare the performances of these algorithms, the mean percentage of patients whose predicted dose fell within 20% of the actual dose (mean percentage within 20%) and the mean absolute error (MAE) were calculated in the remaining 20% of patients. The performances of these techniques in different races, as well as the dose ranges of therapeutic warfarin were compared. Robust results were obtained after 100 rounds of resampling. Results BART, MARS and SVR were statistically indistinguishable and significantly out performed all the other approaches in the whole cohort (MAE: 8.84–8.96 mg/week, mean percentage within 20%: 45.88%–46.35%). In the White population, MARS and BART showed higher mean percentage within 20% and lower mean MAE than those of MLR (all p values < 0.05). In the Asian population, SVR, BART, MARS and LAR performed the same as MLR. MLR and LAR optimally performed among the Black population. When patients were grouped in terms of warfarin dose range, all machine learning techniques except ANN and LAR showed significantly

  10. Doses from radiation exposure.

    PubMed

    Menzel, H-G; Harrison, J D

    2012-01-01

    Practical implementation of the International Commission on Radiological Protection's (ICRP) system of protection requires the availability of appropriate methods and data. The work of Committee 2 is concerned with the development of reference data and methods for the assessment of internal and external radiation exposure of workers and members of the public. This involves the development of reference biokinetic and dosimetric models, reference anatomical models of the human body, and reference anatomical and physiological data. Following ICRP's 2007 Recommendations, Committee 2 has focused on the provision of new reference dose coefficients for external and internal exposure. As well as specifying changes to the radiation and tissue weighting factors used in the calculation of protection quantities, the 2007 Recommendations introduced the use of reference anatomical phantoms based on medical imaging data, requiring explicit sex averaging of male and female organ-equivalent doses in the calculation of effective dose. In preparation for the calculation of new dose coefficients, Committee 2 and its task groups have provided updated nuclear decay data (ICRP Publication 107) and adult reference computational phantoms (ICRP Publication 110). New dose coefficients for external exposures of workers are complete (ICRP Publication 116), and work is in progress on a series of reports on internal dose coefficients to workers from inhaled and ingested radionuclides. Reference phantoms for children will also be provided and used in the calculation of dose coefficients for public exposures. Committee 2 also has task groups on exposures to radiation in space and on the use of effective dose.

  11. Evaluating the Probabilistic Land-Use Scenarios in the Radiological Dose Assessment for License Termination

    SciTech Connect

    Chen, S.Y.; Yu, C.; Kamboj, S.; Allison, T.; LePoire, D.; Mo, T.

    2006-07-01

    A recent trend in establishing regulatory policy regarding environmental cleanup has been the adoption of a risk-informed decision approach. This approach places an emphasis on the development of a defensible technical basis upon which cleanup decisions can be understood and accepted by stakeholders. The process has been exemplified by the U.S. Nuclear Regulatory Commission's (NRC's) approach to implement its License Termination Rule in Title 10, Part 20, Subpart E of the Code of Federal Regulations (10 CFR 20, Subpart E), for which probabilistic radiological dose assessment has been a key technical element for demonstrating compliance. Further guidance including NUREG-1757 and its supplemental document are also prepared for this purpose. The approach also entails extensive data collection to cover the range of parameter variability, along with interpretations of the probabilistic dose results and demonstration of compliance. One major remaining issue, however, involves the future use of the land following cleanup. Land use is a key factor that may profoundly influence dose assessment, which in turn will affect the level of cleanup and therefore the associated costs. Despite this, incorporation of land-use considerations into the current probabilistic dose assessment approach has not actually been performed in the regulatory process. In order to address the issue, a study was initiated to evaluate the potential influence of land use on dose analysis, to understand the possible ramifications in cleanup decision-making. A probabilistic distribution based on land use was developed as input into the probabilistic RESRAD analysis for the demonstration of this approach.. This results in an understanding of the characteristics of dose distributions as exhibited by various land-use scenarios. By factoring in the probability distribution of land-use scenarios, the potential 'levels of conservatism' can be explicitly defined and evaluated. The results allow the

  12. Magnitude of Residual Internal Anatomy Motion on Heavy Charged Particle Dose Distribution in Respiratory Gated Lung Therapy

    SciTech Connect

    Mori, Shinichiro Asakura, Hiroshi; Kandatsu, Susumu; Kumagai, Motoki; Baba, Masayuki; Endo, Masahiro

    2008-06-01

    Purpose: To assess the variation in carbon beam dose distribution due to residual motion in lung cancer patients undergoing respiratory-gated radiotherapy. Methods and Materials: A total of 11 lung cancer patients underwent four-dimensional computed tomography with a 256-multislice computed tomography scanner under free-breathing conditions. A compensating bolus was designed to cover the treatment beam for all planning target volumes during a 30% duty cycle centered on exhalation (gating window). This bolus was applied to the four-dimensional computed tomography data for one respiratory cycle, and then the carbon beam dose distribution was calculated. Results: A water equivalent pathlength variation of <5 mm was observed in the gating window, but this increased to {<=}20 mm on inhalation. As a result, beam overshoot/undershoot occurred around inhalation, which increased the excessive dosing to normal tissues and the organs at risk. The dose for >95% volume irradiation is dependent on the respiratory phase but not the gating window. However, the dose for >95% volume irradiation correlated well with the tumor displacement distance. More than 90% of the dose for >95% volume irradiation could be delivered in the gating window with <4-mm tumor displacement resulting from exhalation. Conclusion: The results of our study have shown that even when the treatment beam delivery occurs outside the gating window, the prescribed dose to the target is not affected in patients with a tumor displacement of <4 mm. Thus, respiratory gating is not required in radiotherapy for patients with <4-mm tumor displacement in a respiratory cycle.

  13. Low-temperature Swelling in LWR Internal Components: Current Data and Modeling Assessment

    SciTech Connect

    Stoller, Roger E; Barashev, Alexander V; Golubov, Stanislav I

    2012-09-01

    Recent experimental observations have made it clear that cavity formation can occur in light-water reactor internal components fabricated from austenitic stainless during the course of their service life. In order to assess the potential for cavity swelling in these components at end-of-life doses, it is necessary to develop a validated computational model that incorporates the relevant physical mechanisms and accounts for recent experiment data. Such a modeling activity is underway; the model development and some preliminary results are described. For the relatively low temperatures involved, cavity formation is shown to be sensitive to both the temperature and the rate of helium production by nuclear transmutation reactions. This report includes a brief review of the relevant microstructural data, discussion of the current model s status and planned further development, and a description of the microstructural modeling that is planned to fully define the potential for cavity evolution under light water reactor operating conditions.

  14. Measurements of the neutron dose and energy spectrum on the International Space Station during expeditions ISS-16 to ISS-21.

    PubMed

    Smith, M B; Akatov, Yu; Andrews, H R; Arkhangelsky, V; Chernykh, I V; Ing, H; Khoshooniy, N; Lewis, B J; Machrafi, R; Nikolaev, I; Romanenko, R Y; Shurshakov, V; Thirsk, R B; Tomi, L

    2013-01-01

    As part of the international Matroshka-R and Radi-N experiments, bubble detectors have been used on board the ISS in order to characterise the neutron dose and the energy spectrum of neutrons. Experiments using bubble dosemeters inside a tissue-equivalent phantom were performed during the ISS-16, ISS-18 and ISS-19 expeditions. During the ISS-20 and ISS-21 missions, the bubble dosemeters were supplemented by a bubble-detector spectrometer, a set of six detectors that was used to determine the neutron energy spectrum at various locations inside the ISS. The temperature-compensated spectrometer set used is the first to be developed specifically for space applications and its development is described in this paper. Results of the dose measurements indicate that the dose received at two different depths inside the phantom is not significantly different, suggesting that bubble detectors worn by a person provide an accurate reading of the dose received inside the body. The energy spectra measured using the spectrometer are in good agreement with previous measurements and do not show a strong dependence on the precise location inside the station. To aid the understanding of the bubble-detector response to charged particles in the space environment, calculations have been performed using a Monte-Carlo code, together with data collected on the ISS. These calculations indicate that charged particles contribute <2% to the bubble count on the ISS, and can therefore be considered as negligible for bubble-detector measurements in space.

  15. An assessment of bias and uncertainty in recorded dose from external sources of radiation for workers at the Hanford Site

    SciTech Connect

    Fix, J.J.; Gilbert, E.S.; Baumgartner, W.V.

    1994-08-01

    Worker dose estimates are used in epidemiologic studies of nuclear workers. A major objective of these studies is to provide a direct assessment of the carcinogenic risk of exposure to ionizing radiation at low doses and dose rates. If dose estimates used in analyses of worker data are biased, then risk estimates expressed per unit of dose will also be biased. In addition, random error in dose estimates may lead to underestimation of risk coefficients and can also distort dose-response analyses. Analyses of data from nuclear worker studies, including Hanford, have typically not been adjusted for biases and uncertainties in dose estimates in part because of the lack of adequate information on the nature and magnitude of these biases and uncertainties. This report describes an approach used to assess bias and uncertainty in radiation dose for Hanford dosimetry systems. The approach can be considered as an elaboration of work conducted by a technical committee appointed by the National Academy of Sciences (NAS) used to quantify the bias and uncertainty in estimated doses for personnel exposed to radiation as a result of atmospheric testing of nuclear weapons between 1945 and 1962. In addition, laboratory studies were conducted to measure bias for selected sources of photon radiation resulting from angular response characteristics of Hanford dosimeter systems. An overall assessment is presented of bias and uncertainty for photon radiation greater than 100 keV. This radiation is expected to have caused the vast majority of recorded dose for Hanford workers.

  16. Internal radiation exposure dose in Iwaki city, Fukushima prefecture after the accident at Fukushima Dai-ichi Nuclear Power Plant.

    PubMed

    Orita, Makiko; Hayashida, Naomi; Nukui, Hiroshi; Fukuda, Naoko; Kudo, Takashi; Matsuda, Naoki; Fukushima, Yoshiko; Takamura, Noboru

    2014-01-01

    As a result of the accident at the Fukushima Daiichi Nuclear Power Plant (FNPP) on 11 March 2011, a huge amount of radionuclides, including radiocesium, was released and spread over a wide area of eastern Japan. Although three years have passed since the accident, residents around the FNPP are anxious about internal radiation exposure due to radiocesium. In this study, we screened internal radiation exposure doses in Iwaki city of Fukushima prefecture, using a whole-body counter. The first screening was conducted from October 2012 to February 2013, and the second screening was conducted from May to November 2013. Study participants were employees of ALPINE and their families who underwent examination. A total of 2,839 participants (1,366 men and 1,473 women, 1-86 years old) underwent the first screening, and 2,092 (1,022 men and 1,070 women, 1-86 years old) underwent the second screening. The results showed that 99% of subjects registered below 300 Bq per body in the first screening, and all subjects registered below 300 Bq per body in the second screening. The committed effective dose ranged from 0.01-0.06 mSv in the first screening and 0.01-0.02 mSv in the second screening. Long-term follow-up studies are needed to avoid unnecessary chronic internal exposure and to reduce anxiety among the residents by communicating radiation health risks.

  17. Internal Radiation Exposure Dose in Iwaki City, Fukushima Prefecture after the Accident at Fukushima Dai-ichi Nuclear Power Plant

    PubMed Central

    Orita, Makiko; Hayashida, Naomi; Nukui, Hiroshi; Fukuda, Naoko; Kudo, Takashi; Matsuda, Naoki; Fukushima, Yoshiko; Takamura, Noboru

    2014-01-01

    As a result of the accident at the Fukushima Daiichi Nuclear Power Plant (FNPP) on 11 March 2011, a huge amount of radionuclides, including radiocesium, was released and spread over a wide area of eastern Japan. Although three years have passed since the accident, residents around the FNPP are anxious about internal radiation exposure due to radiocesium. In this study, we screened internal radiation exposure doses in Iwaki city of Fukushima prefecture, using a whole-body counter. The first screening was conducted from October 2012 to February 2013, and the second screening was conducted from May to November 2013. Study participants were employees of ALPINE and their families who underwent examination. A total of 2,839 participants (1,366 men and 1,473 women, 1–86 years old) underwent the first screening, and 2,092 (1,022 men and 1,070 women, 1–86 years old) underwent the second screening. The results showed that 99% of subjects registered below 300 Bq per body in the first screening, and all subjects registered below 300 Bq per body in the second screening. The committed effective dose ranged from 0.01–0.06 mSv in the first screening and 0.01–0.02 mSv in the second screening. Long-term follow-up studies are needed to avoid unnecessary chronic internal exposure and to reduce anxiety among the residents by communicating radiation health risks. PMID:25478794

  18. Internal radiation exposure dose in Iwaki city, Fukushima prefecture after the accident at Fukushima Dai-ichi Nuclear Power Plant.

    PubMed

    Orita, Makiko; Hayashida, Naomi; Nukui, Hiroshi; Fukuda, Naoko; Kudo, Takashi; Matsuda, Naoki; Fukushima, Yoshiko; Takamura, Noboru

    2014-01-01

    As a result of the accident at the Fukushima Daiichi Nuclear Power Plant (FNPP) on 11 March 2011, a huge amount of radionuclides, including radiocesium, was released and spread over a wide area of eastern Japan. Although three years have passed since the accident, residents around the FNPP are anxious about internal radiation exposure due to radiocesium. In this study, we screened internal radiation exposure doses in Iwaki city of Fukushima prefecture, using a whole-body counter. The first screening was conducted from October 2012 to February 2013, and the second screening was conducted from May to November 2013. Study participants were employees of ALPINE and their families who underwent examination. A total of 2,839 participants (1,366 men and 1,473 women, 1-86 years old) underwent the first screening, and 2,092 (1,022 men and 1,070 women, 1-86 years old) underwent the second screening. The results showed that 99% of subjects registered below 300 Bq per body in the first screening, and all subjects registered below 300 Bq per body in the second screening. The committed effective dose ranged from 0.01-0.06 mSv in the first screening and 0.01-0.02 mSv in the second screening. Long-term follow-up studies are needed to avoid unnecessary chronic internal exposure and to reduce anxiety among the residents by communicating radiation health risks. PMID:25478794

  19. Assessment of phase based dose modulation for improved dose efficiency in cardiac CT on an anthropomorphic motion phantom

    NASA Astrophysics Data System (ADS)

    Budde, Adam; Nilsen, Roy; Nett, Brian

    2014-03-01

    State of the art automatic exposure control modulates the tube current across view angle and Z based on patient anatomy for use in axial full scan reconstructions. Cardiac CT, however, uses a fundamentally different image reconstruction that applies a temporal weighting to reduce motion artifacts. This paper describes a phase based mA modulation that goes beyond axial and ECG modulation; it uses knowledge of the temporal view weighting applied within the reconstruction algorithm to improve dose efficiency in cardiac CT scanning. Using physical phantoms and synthetic noise emulation, we measure how knowledge of sinogram temporal weighting and the prescribed cardiac phase can be used to improve dose efficiency. First, we validated that a synthetic CT noise emulation method produced realistic image noise. Next, we used the CT noise emulation method to simulate mA modulation on scans of a physical anthropomorphic phantom where a motion profile corresponding to a heart rate of 60 beats per minute was used. The CT noise emulation method matched noise to lower dose scans across the image within 1.5% relative error. Using this noise emulation method to simulate modulating the mA while keeping the total dose constant, the image variance was reduced by an average of 11.9% on a scan with 50 msec padding, demonstrating improved dose efficiency. Radiation dose reduction in cardiac CT can be achieved while maintaining the same level of image noise through phase based dose modulation that incorporates knowledge of the cardiac reconstruction algorithm.

  20. Comparison of internal doses calculated using the specific absorbed fractions of the average adult Japanese male phantom with those of the reference computational phantom-adult male of ICRP publication 110

    NASA Astrophysics Data System (ADS)

    Manabe, Kentaro; Sato, Kaoru; Endo, Akira

    2014-03-01

    In order to study the effects of body sizes and masses of organs and tissues on internal dose assessment, the values corresponding to effective dose coefficients for intakes of radionuclides were calculated using the specific absorbed fractions (SAFs) of two phantoms: the average adult Japanese male phantom (JM-103) and the reference computational phantom-adult male (RCP-AM) of the International Commission on Radiological Protection. SAFs were evaluated using the phantoms and Monte Carlo radiation transport code MCNPX or were taken from published data. As a result of a comparison for 2894 cases of 923 radionuclides, the maximum discrepancy in the effective dose coefficients between the JM-103 and RCP-AM was about 40%. However, the discrepancies were smaller than 10% in 97% of all cases.

  1. Developing International Guidelines on Volcanic Hazard Assessments for Nuclear Facilities

    NASA Astrophysics Data System (ADS)

    Connor, Charles

    2014-05-01

    Worldwide, tremendous progress has been made in recent decades in forecasting volcanic events, such as episodes of volcanic unrest, eruptions, and the potential impacts of eruptions. Generally these forecasts are divided into two categories. Short-term forecasts are prepared in response to unrest at volcanoes, rely on geophysical monitoring and related observations, and have the goal of forecasting events on timescales of hours to weeks to provide time for evacuation of people, shutdown of facilities, and implementation of related safety measures. Long-term forecasts are prepared to better understand the potential impacts of volcanism in the future and to plan for potential volcanic activity. Long-term forecasts are particularly useful to better understand and communicate the potential consequences of volcanic events for populated areas around volcanoes and for siting critical infrastructure, such as nuclear facilities. Recent work by an international team, through the auspices of the International Atomic Energy Agency, has focused on developing guidelines for long-term volcanic hazard assessments. These guidelines have now been implemented for hazard assessment for nuclear facilities in nations including Indonesia, the Philippines, Armenia, Chile, and the United States. One any time scale, all volcanic hazard assessments rely on a geologically reasonable conceptual model of volcanism. Such conceptual models are usually built upon years or decades of geological studies of specific volcanic systems, analogous systems, and development of a process-level understanding of volcanic activity. Conceptual models are used to bound potential rates of volcanic activity, potential magnitudes of eruptions, and to understand temporal and spatial trends in volcanic activity. It is these conceptual models that provide essential justification for assumptions made in statistical model development and the application of numerical models to generate quantitative forecasts. It is a

  2. Dose assessment for inhaling hafnium particles based on laboratory rats study.

    PubMed

    Zhou, Y; Cheng, Y S

    2003-04-01

    Internal radiation from inhalation of hafnium tritide aerosols may be a significant radiation protection problem encountered by nuclear facility workers. Based on experimental results of the rat intratracheally instilled with hafnium tritide particles and on a self-absorption factor of beta particles determined by a numerical method, a biokinetic model was developed for inhaled particles of hafnium tritide. Results show that lung burdens of the tritide are well represented by a two-component exponential equation; biological half-lives derived for the retention of 3H in lung were 4.9 d and 1,257 d for the short- and long-term clearance, respectively. The tritium clearance rate via urine or feces was described by bi-phase exponential components. At the end of the experiment (180 d after instillation), only approximately 30% of the initial lung burden of 3H had been eliminated, of which approximately 98% was excreted via feces and 2% in urine, but none through exhaled air. Results also showed that a large percentage (70%) of the hafnium tritide initially present in lung still remained in the organ 6 mo after the exposure. The calculation of the radiation dose indicates that the cumulative dose to the lung directly from the tritide particles was approximately 10(6) times the lung dose from the dissolved tritium in the lung region. The committed effective dose to the lung was estimated to be 5.41 x 10(-10) Sv Bq(-1), which is over 99% of that to the whole body. The dose to the liver was 6.00 x 10(-15) Sv Bq(-1). This information will be useful in developing new guidelines for radiation protection purposes.

  3. Testing for All: The Emergence and Development of International Assessment of Student Achievement, 1958-2012

    ERIC Educational Resources Information Center

    Pizmony-Levy, Oren

    2013-01-01

    This dissertation examines a vital catalyst in the globalization of education: international assessments--that involve testing and rankings--of student achievement in academic subjects. Nearly all high-income countries participate in international assessments such as Trends in International Mathematics and Science Study (TIMSS), Progress in…

  4. Cultural, Social, and Economic Capital Constructs in International Assessments: An Evaluation Using Exploratory Structural Equation Modeling

    ERIC Educational Resources Information Center

    Caro, Daniel H.; Sandoval-Hernández, Andrés; Lüdtke, Oliver

    2014-01-01

    The article employs exploratory structural equation modeling (ESEM) to evaluate constructs of economic, cultural, and social capital in international large-scale assessment (LSA) data from the Progress in International Reading Literacy Study (PIRLS) 2006 and the Programme for International Student Assessment (PISA) 2009. ESEM integrates the…

  5. Large-Scale Assessment Systems: Design Principles Drawn from International Comparisons

    ERIC Educational Resources Information Center

    Black, P.; Wiliam, D.

    2007-01-01

    In recent years, a number of analyses assessments used in different countries have appeared. Analyses emerging from international comparisons such as Trends in International Mathematics and Science Study (TIMSS) and Programme for International Student Assessment (PISA) have focused on what might be termed "cross-sectional" comparisons; examining…

  6. [Spatial distribution of local absorbed doses inside the Russian segment of the International Space Station].

    PubMed

    Bondarenko, V A; Mitrikas, V G; Tsetlin, V V

    2011-01-01

    The article discusses the procedure of operational radiation safety monitoring with the use of portable Pille-MKS dosimeters, presents the results of ISS dose measurements from September 22, 2003 (after Pille deployment on board the ISS) to March 16, 2011 (completion of the ISS-25 mission). The necessity of continuous dynamic tracking of the radiation environment in ISS compartments arises from the character and uniqueness of space ionizing radiation effects on crew. Radiation loading in the ISS compartments was analyzed and results of using different dosimeters were compared. Experimental radiation studies of the ISS piloted compartments are needed for reliable prediction of doses for the crew that still defy precise estimation. PMID:21970039

  7. Personnel neutron dose assessment upgrade: Volume 2, Field neutron spectrometer for health physics applications

    SciTech Connect

    Brackenbush, L.W.; Reece, W.D.; Miller, S.D.; Endres, G.W.R.; Durham, J.S.; Scherpelz, R.I.; Tomeraasen, P.L.; Stroud, C.M.; Faust, L.G.; Vallario, E.J.

    1988-07-01

    Both the (ICRP) and the (NCPR) have recommended an increase in neutron quality factors and the adoption of effective dose equivalent methods. The series of reports entitled Personnel Neutron Dose Assessment Upgrade (PNL-6620) addresses these changes. Volume 1 in this series of reports (Personnel Neutron Dosimetry Assessment) provided guidance on the characteristics, use, and calibration of personnel neutron dosimeters in order to meet the new recommendations. This report, Volume 2: Field Neutron Spectrometer for Health Physics Applications describes the development of a portable field spectrometer which can be set up for use in a few minutes by a single person. The field spectrometer described herein represents a significant advance in improving the accuracy of neutron dose assessment. It permits an immediate analysis of the energy spectral distribution associated with the radiation from which neutron quality factor can be determined. It is now possible to depart from the use of maximum Q by determining and realistically applying a lower Q based on spectral data. The field spectrometer is made up of two modules: a detector module with built-in electronics and an analysis module with a IBM PC/reg sign/-compatible computer to control the data acquisition and analysis of data in the field. The unit is simple enough to allow the operator to perform spectral measurements with minimal training. The instrument is intended for use in steady-state radiation fields with neutrons energies covering the fission spectrum range. The prototype field spectrometer has been field tested in plutonium processing facilities, and has been proven to operate satisfactorily. The prototype field spectrometer uses a /sup 3/He proportional counter to measure the neutron energy spectrum between 50 keV and 5 MeV and a tissue equivalent proportional counter (TEPC) to measure absorbed neutron dose.

  8. Indoor aerosol modeling for assessment of exposure and respiratory tract deposited dose

    NASA Astrophysics Data System (ADS)

    Hussein, Tareq; Wierzbicka, Aneta; Löndahl, Jakob; Lazaridis, Mihalis; Hänninen, Otto

    2015-04-01

    Air pollution is one of the major environmental problems that influence people's health. Exposure to harmful particulate matter (PM) occurs both outdoors and indoors, but while people spend most of their time indoors, the indoor exposures tend to dominate. Moreover, higher PM concentrations due to indoor sources and tightness of indoor environments may substantially add to the outdoor originating exposures. Empirical and real-time assessment of human exposure is often impossible; therefore, indoor aerosol modeling (IAM) can be used as a superior method in exposure and health effects studies. This paper presents a simple approach in combining available aerosol-based modeling techniques to evaluate the real-time exposure and respiratory tract deposited dose based on particle size. Our simple approach consists of outdoor aerosol data base, IAM simulations, time-activity pattern data-base, physical-chemical properties of inhaled aerosols, and semi-empirical deposition fraction of aerosols in the respiratory tract. These modeling techniques allow the characterization of regional deposited dose in any metric: particle mass, particle number, and surface area. The first part of this presentation reviews recent advances in simple mass-balance based modeling methods that are needed in analyzing the health relevance of indoor exposures. The second part illustrates the use of IAM in the calculations of exposure and deposited dose. Contrary to previous methods, the approach presented is a real-time approach and it goes beyond the exposure assessment to provide the required information for the health risk assessment, which is the respiratory tract deposited dose. This simplified approach is foreseen to support epidemiological studies focusing on exposures originating from both indoor and outdoor sources.

  9. Drug Dose Adjustment in Dialysis Patients Admitted in Clinics Other Than Internal Medicine.

    PubMed

    Solak, Yalcin; Biyik, Zeynep; Gaipov, Abduzhappar; Kayrak, Mehmet; Ciray, Hilal; Cizmecioglu, Ahmet; Tonbul, Halil Zeki; Turk, Suleyman

    2016-01-01

    Many drugs that are administered during hospitalization are metabolized or excreted through kidneys, consequently require dosage adjustment. We aimed to investigate inappropriate prescription of drugs requiring renal dose adjustment (RDA) in various surgical and medical inpatient clinics. We retrospectively determined dialysis patients hospitalized between January 2007 and December 2010. Inpatient clinics, including cardiology, pulmonary medicine, neurology, infectious diseases (medical clinics) and cardiovascular surgery, orthopedics, general surgery, obstetrics and gynecology, and neurosurgery (surgical clinics), were screened via electronic database. Total and RDA medications were determined. RDA drugs correctly adjusted to creatinine clearance were labeled as RDA-A (appropriate), otherwise as RDA-I (inappropriate). Renal doses of RDA medications were based on the "American College of Physicians Drug Prescribing in Renal Failure, fifth Edition." Two hundred seventeen hospitalization records of 172 dialysis patients (92 men and 80 women) were included in the analysis. Mean age of patients was 59.4 ± 14.6 years, and the mean hospitalization duration was 8.5 ± 7.8 days. In total, 247 (84.3%, percentage in drugs requiring dose adjustment) and 175 (46.2%) drugs have been inadequately dosed in surgical and medical clinics, respectively. The percentage of patients to whom at least 1 RDA-I drug was ordered was 92% and 91.4% for surgical and medical clinics, respectively (P > 0.05). Nephrology consultation numbers were 8 (7.1%) in surgical and 32 (30.4%) in medical clinics. The most common RDA-I drugs were aspirin and famotidine. A significant portion of RDA drugs was ordered inappropriately both in surgical and medical clinics. Nephrology consultation rate was very low. Measures to increase physician awareness are required to improve results.

  10. Dosimetry concepts for scanner quality assurance and tissue dose assessment in micro-CT

    SciTech Connect

    Hupfer, Martin; Kolditz, Daniel; Nowak, Tristan; Eisa, Fabian; Brauweiler, Robert; Kalender, Willi A.

    2012-02-15

    Purpose: At present, no established methods exist for dosimetry in micro computed tomography (micro-CT). The purpose of this study was therefore to investigate practical concepts for both dosimetric scanner quality assurance and tissue dose assessment for micro-CT. Methods: The computed tomography dose index (CTDI) was adapted to micro-CT and measurements of the CTDI both free in air and in the center of cylindrical polymethyl methacrylate (PMMA) phantoms of 20 and 32 mm diameter were performed in a 6 month interval with a 100 mm pencil ionization chamber calibrated for low tube voltages. For tissue dose assessment, z-profile measurements using thermoluminescence dosimeters (TLDs) were performed and both profile and CTDI measurements were compared to Monte Carlo (MC) dose calculations to validate an existing MC tool for use in micro-CT. The consistency of MC calculations and TLD measurements was further investigated in two mice cadavers. Results: CTDI was found to be a reproducible quantity for constancy tests on the micro-CT system under study, showing a linear dependence on tube voltage and being by definition proportional to mAs setting and z-collimation. The CTDI measured free in air showed larger systematic deviations after the 6 month interval compared to the CTDI measured in PMMA phantoms. MC calculations were found to match CTDI measurements within 3% when using x-ray spectra measured at our micro-CT installation and better than 10% when using x-ray spectra calculated from semi-empirical models. Visual inspection revealed good agreement for all z-profiles. The consistency of MC calculations and TLD measurements in mice was found to be better than 10% with a mean deviation of 4.5%. Conclusions: Our results show the CTDI implemented for micro-CT to be a promising candidate for dosimetric quality assurance measurements as it linearly reflects changes in tube voltage, mAs setting, and collimation used during the scan, encouraging further studies on a variety of

  11. A New Model for Biological Dose Assessment in Cases of Heterogeneous Exposures to Ionizing Radiation.

    PubMed

    Pujol, Mònica; Barrios, Leonardo; Puig, Pedro; Caballín, María Rosa; Barquinero, Joan-Francesc

    2016-02-01

    In biological dosimetry by dicentric analysis, an exposure to radiation is considered non-homogeneous if the dicentric cell distribution shows overdispersion with respect to Poisson distribution. Traditionally, when this occurs, all non-homogeneous exposures are considered as partial-body exposures, assuming that there is only a mixture of irradiated and nonirradiated cells. The methods to estimate the dose in the irradiated fraction and the initial fraction of irradiated cells are based on separating which part of the cells without aberrations comes from the nonirradiated or irradiated fractions. In this study we show a new approach based on a mixed Poisson model, which allows for a distinction to be made between partial and heterogeneous exposures. To validate this approach blood samples from two donors, a male and a female, irradiated at different doses, were mixed at a 1:1 proportion to simulate partial and heterogeneous exposures. The results show a good agreement between the observed proportion of male and female cells and the proportion estimated by the model. Additionally, a good agreement was observed between the delivered doses, the initial fraction of cells and the ones estimated by the model. This good agreement was also observed after very high-dose irradiation (up to 17 Gy), when the lymphocyte cultures were treated with caffeine. Based on these results, we propose the use of this mixed Poisson model for a more accurate assessment of non-homogeneous exposures.

  12. Assessment of the exposure to and dose from radon decay products in normally occupied homes

    SciTech Connect

    Hopke, P.K.; Jensen, B.; Li, C.S.; Montassier, N.; Wasiolek, P.; Cavallo, A.J.; Gatsby, K.; Socolow, R.H.; James, A.C.

    1995-05-01

    The exposure to radon decay products has been assessed in seven homes in the northeastern United States and southeastern Canada. In two of the houses, there was a single individual who smoked cigarettes. There were a variety of heating and cooking appliances among these homes. These studies have provide 565 measurements of the activity-weighted size distributions in these houses. The median value for the equilibrium factor was 0.408 as compared with the previously employed value of 0.50. Using the recently adopted ICRP lung deposition and dosimetry model, the hourly equivalent lung dose rate per unit, radon exposure was estimated for each measured size distribution. Differences between houses with smokers present and absent were noted in the exposure conditions, but the resulting dose rate per unit of radon gas concentration was essentially the same for the two groups. Expressed in terms of ICRP`s unit of effective dose for members of the public, the mean dose rate conversion coefficient with respect to radon gas concentration found in this study was 3.8 nSv h{sup -} Bq{sup -} m{sup -3}. 26 refs., 8 figs., 3 tabs.

  13. Evidence for dose-additive effects of a type II pyrethroid mixture. In vitro assessment.

    PubMed

    Romero, A; Ares, I; Ramos, E; Castellano, V; Martínez, M; Martínez-Larrañaga, M R; Anadón, A; Martínez, M A

    2015-04-01

    Despite the widespread use of pyrethroid insecticides that led to common exposure in the population, few studies have been conducted to quantitatively assess dose-additive effects of pyrethroids using a funcional measure involved in the common toxic mode of action. The aim of this study was to evaluate the potency and efficacy of 6 Type II pyretroids (α-cypermethrin, cyfluthrin, λ-cyhalothrin, deltamethrin, cyphenothrin and esfenvalerate) to evoke induction of both nitric oxide and lipid peroxides levels measured as malondialdehyde in three in vitro models (SH-SY5Y, HepG2 and Caco-2 human cells) as well as to test the hypothesis of dose additivity for mixtures of these same 6 pyrethroids. Concentration-responses for 6 pyrethroids were determined as well as the response to mixtures of all 6 pyrethroids. Additivity was tested assuming a dose-additive model. The human neuroblastoma SH-SY5Y cell line was the most sensitive in vitro model. The rank order of potency for cell SH-SY5Y viability MTT assay was deltamethrin>cyphenothrin>λ-cyhalothrin>cyfluthrin>esfenvalerate>α-cypermethrin. When 6 pyrethroids were present in the mixture at an equitoxic mixing ratio, the action on nitric oxide (NO) and lipid peroxides measured as malondialdehyde (MDA) production was consistent with a dose-additive model. The results of the present study are consistent with previous reports of additivity of pyrethroids in vivo e in vitro.

  14. A New Model for Biological Dose Assessment in Cases of Heterogeneous Exposures to Ionizing Radiation.

    PubMed

    Pujol, Mònica; Barrios, Leonardo; Puig, Pedro; Caballín, María Rosa; Barquinero, Joan-Francesc

    2016-02-01

    In biological dosimetry by dicentric analysis, an exposure to radiation is considered non-homogeneous if the dicentric cell distribution shows overdispersion with respect to Poisson distribution. Traditionally, when this occurs, all non-homogeneous exposures are considered as partial-body exposures, assuming that there is only a mixture of irradiated and nonirradiated cells. The methods to estimate the dose in the irradiated fraction and the initial fraction of irradiated cells are based on separating which part of the cells without aberrations comes from the nonirradiated or irradiated fractions. In this study we show a new approach based on a mixed Poisson model, which allows for a distinction to be made between partial and heterogeneous exposures. To validate this approach blood samples from two donors, a male and a female, irradiated at different doses, were mixed at a 1:1 proportion to simulate partial and heterogeneous exposures. The results show a good agreement between the observed proportion of male and female cells and the proportion estimated by the model. Additionally, a good agreement was observed between the delivered doses, the initial fraction of cells and the ones estimated by the model. This good agreement was also observed after very high-dose irradiation (up to 17 Gy), when the lymphocyte cultures were treated with caffeine. Based on these results, we propose the use of this mixed Poisson model for a more accurate assessment of non-homogeneous exposures. PMID:26771173

  15. Assessing small-volume spinal cord dose for repeat spinal stereotactic body radiotherapy treatments

    NASA Astrophysics Data System (ADS)

    Ma, Lijun; Kirby, Neil; Korol, Renee; Larson, David A.; Sahgal, Arjun

    2012-12-01

    Spinal cord biologically effective dose (BED) limits are critical to safe spine stereotactic body radiotherapy (SBRT) delivery. In particular, when repeating SBRT to the same site, the problem of adding non-uniform BED distributions within small volumes of spinal cord has yet to be solved. We report a probability-based generalized BED (gBED) model to guide repeat spine SBRT treatment planning. The gBED was formulated by considering the sequential damaging probabilities of repeat spine SBRT treatments. Parameters from the standard linear-quadratic model, such as α/β = 2 Gy for the spinal cord, were applied. We tested the model based on SBRT specific spinal cord tolerance using a simulated and ten clinical repeat SBRT cases. The gBED provides a consistent solution for superimposing non-uniform dose distributions from different fractionation schemes, analogous to the BED for uniform dose distributions. Based on ten clinical cases, the gBED was observed to eliminate discrepancies in the cumulative BED of approximately 5% to 20% within small volumes (e.g. 0.1-2.0 cc) of spinal cord, as compared to a conventional calculation method. When assessing spinal cord tolerance for repeat spinal SBRT treatments, caution should be exercised when applying conventional BED calculations for small volumes of spinal cord irradiated, and the gBED potentially provides more conservative and consistently derived dose surrogates to guide safe treatment planning and treatment outcome modeling.

  16. Rapid assessment of radiobiological doses for terrestrial and interplanetary space missions.

    PubMed

    Melkonian, G; Bourrieau, J

    1994-11-01

    This paper presents the doses levels expected in orbits in chart form, covering the range 300-800 km of altitude and 0-90 degrees of inclination behind shieldings similar to the Hermes spacecraft and the EVA spacesuit matter distributions. These charts allow users to rapidly find the radiobiological dose received in the most critical organs of the human body either in normal situations or during a large solar event. Outside the magnetosphere, during interplanetary or lunar missions, when the dose received during crossing of the radiation belts become negligible, the dose is due to galactic cosmic rays (GCR) and solar flares. The correct radiobiological assessment of the components of this radiation field becomes a major problem. On the Moon a permanent ground-based station can be shielded by lunar materials against meteoroids and radiations. The radiobiological hazard, essentially linked to the solar flare risk during the transfer phase and the extra-station activities, may be solved by mission planning. For interplanetary flights the problem comes from both increased risk of solar events and from the continuous exposure to GCR. These energetic particles cannot be easily stopped by shieldings; cost considerations imply that more effective materials must be used. Impact on the vehicle design and the mission planning is important.

  17. Assessing dose-response relationships for endocrine disrupting chemicals (EDCs): a focus on non-monotonicity.

    PubMed

    Zoeller, R Thomas; Vandenberg, Laura N

    2015-01-01

    The fundamental principle in regulatory toxicology is that all chemicals are toxic and that the severity of effect is proportional to the exposure level. An ancillary assumption is that there are no effects at exposures below the lowest observed adverse effect level (LOAEL), either because no effects exist or because they are not statistically resolvable, implying that they would not be adverse. Chemicals that interfere with hormones violate these principles in two important ways: dose-response relationships can be non-monotonic, which have been reported in hundreds of studies of endocrine disrupting chemicals (EDCs); and effects are often observed below the LOAEL, including all environmental epidemiological studies examining EDCs. In recognition of the importance of this issue, Lagarde et al. have published the first proposal to qualitatively assess non-monotonic dose response (NMDR) relationships for use in risk assessments. Their proposal represents a significant step forward in the evaluation of complex datasets for use in risk assessments. Here, we comment on three elements of the Lagarde proposal that we feel need to be assessed more critically and present our arguments: 1) the use of Klimisch scores to evaluate study quality, 2) the concept of evaluating study quality without topical experts' knowledge and opinions, and 3) the requirement of establishing the biological plausibility of an NMDR before consideration for use in risk assessment. We present evidence-based logical arguments that 1) the use of the Klimisch score should be abandoned for assessing study quality; 2) evaluating study quality requires experts in the specific field; and 3) an understanding of mechanisms should not be required to accept observable, statistically valid phenomena. It is our hope to contribute to the important and ongoing debate about the impact of NMDRs on risk assessment with positive suggestions. PMID:25971795

  18. Evolving Adjustments to External (Gamma) Slope Factors for CERCLA Risk and Dose Assessments - 12290

    SciTech Connect

    Walker, Stuart

    2012-07-01

    To model the external exposure pathway in risk and dose assessments of radioactive contamination at Superfund sites, the U.S. Environmental Protection Agency (EPA) uses slope factors (SFs), also known as risk coefficients, and dose conversion factors (DCFs). Without any adjustment these external radiation exposure pathways effectively assumes that an individual is exposed to a source geometry that is effectively an infinite slab. The concept of an 'infinite slab' means that the thickness of the contaminated zone and its aerial extent are so large that it behaves as if it were infinite in its physical dimensions. EPA has been making increasingly complex adjustments to account for the extent of the contamination and its corresponding radiation field to provide more accurate risk and dose assessment modeling when using its calculators. In most instances, the more accurate modeling results derived from these gamma adjustments are less conservative. The notable exception are for some radionuclides in rooms with contaminated walls, ceiling, and floors, and the receptor is in location of the room with the highest amount of radiation exposure, usually the corner of small rooms and the center of large conference rooms. (authors)

  19. Use of effective dose.

    PubMed

    Harrison, J D; Balonov, M; Martin, C J; Ortiz Lopez, P; Menzel, H-G; Simmonds, J R; Smith-Bindman, R; Wakeford, R

    2016-06-01

    International Commission on Radiological Protection (ICRP) Publication 103 provided a detailed explanation of the purpose and use of effective dose and equivalent dose to individual organs and tissues. Effective dose has proven to be a valuable and robust quantity for use in the implementation of protection principles. However, questions have arisen regarding practical applications, and a Task Group has been set up to consider issues of concern. This paper focusses on two key proposals developed by the Task Group that are under consideration by ICRP: (1) confusion will be avoided if equivalent dose is no longer used as a protection quantity, but regarded as an intermediate step in the calculation of effective dose. It would be more appropriate for limits for the avoidance of deterministic effects to the hands and feet, lens of the eye, and skin, to be set in terms of the quantity, absorbed dose (Gy) rather than equivalent dose (Sv). (2) Effective dose is in widespread use in medical practice as a measure of risk, thereby going beyond its intended purpose. While doses incurred at low levels of exposure may be measured or assessed with reasonable reliability, health effects have not been demonstrated reliably at such levels but are inferred. However, bearing in mind the uncertainties associated with risk projection to low doses or low dose rates, it may be considered reasonable to use effective dose as a rough indicator of possible risk, with the additional consideration of variation in risk with age, sex and population group. PMID:26980800

  20. Use of effective dose.

    PubMed

    Harrison, J D; Balonov, M; Martin, C J; Ortiz Lopez, P; Menzel, H-G; Simmonds, J R; Smith-Bindman, R; Wakeford, R

    2016-06-01

    International Commission on Radiological Protection (ICRP) Publication 103 provided a detailed explanation of the purpose and use of effective dose and equivalent dose to individual organs and tissues. Effective dose has proven to be a valuable and robust quantity for use in the implementation of protection principles. However, questions have arisen regarding practical applications, and a Task Group has been set up to consider issues of concern. This paper focusses on two key proposals developed by the Task Group that are under consideration by ICRP: (1) confusion will be avoided if equivalent dose is no longer used as a protection quantity, but regarded as an intermediate step in the calculation of effective dose. It would be more appropriate for limits for the avoidance of deterministic effects to the hands and feet, lens of the eye, and skin, to be set in terms of the quantity, absorbed dose (Gy) rather than equivalent dose (Sv). (2) Effective dose is in widespread use in medical practice as a measure of risk, thereby going beyond its intended purpose. While doses incurred at low levels of exposure may be measured or assessed with reasonable reliability, health effects have not been demonstrated reliably at such levels but are inferred. However, bearing in mind the uncertainties associated with risk projection to low doses or low dose rates, it may be considered reasonable to use effective dose as a rough indicator of possible risk, with the additional consideration of variation in risk with age, sex and population group.

  1. A Design to Improve Internal Validity of Assessments of Teaching Demonstrations

    ERIC Educational Resources Information Center

    Bartsch, Robert A.; Engelhardt Bittner, Wendy M.; Moreno, Jesse E., Jr.

    2008-01-01

    Internal validity is important in assessing teaching demonstrations both for one's knowledge and for quality assessment demanded by outside sources. We describe a method to improve the internal validity of assessments of teaching demonstrations: a 1-group pretest-posttest design with alternative forms. This design is often more practical and…

  2. Is it useful to assess annual effective doses that are less than 100 mSv?

    SciTech Connect

    Strom, Daniel J.; Cameron, John R.

    2002-03-07

    It is useful to assess annual effective doses less than 100 mSv. Beyond the''score-keeping'' needs of regulatory compliance, there are at least seven other valid reasons for performing personnel monitoring, many of which fall into the category of''no news is good news,'' or more aptly,''null news, as long as you can prove it, is good news.'' These are performance measures for contractual compliance, diagnosis of problems with radiation protection programs, health surveillance and occupational epidemiology, prevention of and support for litigation, demonstration of management commitment and safety, worker counseling, ensuring peace of mind. Furthermore, it is shown that there is very reasonable expectation that detriment may be associated with doses smaller than 100 mSv per year.

  3. Assessment of natural radioactivity concentrations and gamma dose levels around Shorapur, Karnataka

    SciTech Connect

    Rajesh, S.; Avinash, P.; Kerur, B. R.; Anilkumar, S.

    2015-08-28

    This study assesses the level of background radiation around Shorapur. The study region locates the western part of the Yadgir district of Karnataka. Shorapur and Shahapur talukas are mostly composed of clay, shale sandstone, granite rock and part of study area is black soil. Thirty sample locations were selected along the length and breadth of Shorapur and Shahapur taluka. Natural radionuclide activity concentrations in soil samples were determined using 4'X4' NaI (Tl) gamma spectroscopy. Outdoor gamma dose measurements in air at 1 m above ground level were determined using Rad Eye PRD survey meter. Estimated dose values are compared with the survey meter values and found to be good agreement between them and also with the data obtained from different other areas of Karnataka and India. The average values were found to be slightly higher in the present investigation.

  4. RADON AND PROGENY SOURCED DOSE ASSESSMENT OF SPA EMPLOYEES IN BALNEOLOGICAL SITES.

    PubMed

    Uzun, Sefa Kemal; Demiröz, Işık

    2016-09-01

    This study was conducted in the scope of IAEA project with the name 'Establishing a Systematic Radioactivity Survey and Total Effective Dose Assessment in Natural Balneological Sites' (TUR/9/018), at the Health Physics department of Sarayköy Nuclear Research and Training Center (SANAEM). The aim of this study is estimation of radon and progeny sourced effective dose for the people who are working at the spa facilities by measuring radon activity concentration (RAC) at the ambient air of indoor spa pools and dressing rooms. As it is known, the source of the radon gas is the radium content of the earth crust. Therefore, thermal waters coming from ground may contain dissolved radon and the radon can diffuse water to air. So the ambient air of spa pools can contain serious RAC that depends on a lot of parameters. In this regard, RAC measurements were executed at the 70 spa facilities in Turkey. The measurements were done with both active and passive methods at ambient air of spa pools and dressing rooms. Thus, active measurements were carried out by using the Alphaguard(®) with diffusion mode during half an hour, and passive measurements were carried out by using the humidity resistive CR-39 radon detectors during 2 months. Results show that RAC values at ambient air of spa pools varies between 13 Bq m(-3) and 10 kBq m(-3) Because long-term measurements are more reliable, if it is available, for dose calculations passive radon measurements (with CR-39 detectors) at ambient air of spa pools and dressing rooms were used, otherwise active measurement results were used. With the measurement by the conversion coefficients of ICRP 65 and occupational data of the employees has got from questionary forms, effective dose values were calculated. According to the calculations, spa employees are exposed to annual average dose between 0.05 and 29 mSv because of radon and progeny.

  5. RADON AND PROGENY SOURCED DOSE ASSESSMENT OF SPA EMPLOYEES IN BALNEOLOGICAL SITES.

    PubMed

    Uzun, Sefa Kemal; Demiröz, Işık

    2016-09-01

    This study was conducted in the scope of IAEA project with the name 'Establishing a Systematic Radioactivity Survey and Total Effective Dose Assessment in Natural Balneological Sites' (TUR/9/018), at the Health Physics department of Sarayköy Nuclear Research and Training Center (SANAEM). The aim of this study is estimation of radon and progeny sourced effective dose for the people who are working at the spa facilities by measuring radon activity concentration (RAC) at the ambient air of indoor spa pools and dressing rooms. As it is known, the source of the radon gas is the radium content of the earth crust. Therefore, thermal waters coming from ground may contain dissolved radon and the radon can diffuse water to air. So the ambient air of spa pools can contain serious RAC that depends on a lot of parameters. In this regard, RAC measurements were executed at the 70 spa facilities in Turkey. The measurements were done with both active and passive methods at ambient air of spa pools and dressing rooms. Thus, active measurements were carried out by using the Alphaguard(®) with diffusion mode during half an hour, and passive measurements were carried out by using the humidity resistive CR-39 radon detectors during 2 months. Results show that RAC values at ambient air of spa pools varies between 13 Bq m(-3) and 10 kBq m(-3) Because long-term measurements are more reliable, if it is available, for dose calculations passive radon measurements (with CR-39 detectors) at ambient air of spa pools and dressing rooms were used, otherwise active measurement results were used. With the measurement by the conversion coefficients of ICRP 65 and occupational data of the employees has got from questionary forms, effective dose values were calculated. According to the calculations, spa employees are exposed to annual average dose between 0.05 and 29 mSv because of radon and progeny. PMID:26424134

  6. Initial assessment of image quality for low-dose PET: evaluation of lesion detectability

    NASA Astrophysics Data System (ADS)

    Schaefferkoetter, Joshua D.; Yan, Jianhua; Townsend, David W.; Conti, Maurizio

    2015-07-01

    In the context of investigating the potential of low-dose PET imaging for screening applications, we developed methods to assess small lesion detectability as a function of the number of counts in the scan. We present here our methods and preliminary validation using tuberculosis cases. FDG-PET data from seventeen patients presenting diffuse hyper-metabolic lung lesions were selected for the study, to include a wide range of lesion sizes and contrasts. Reduced doses were simulated by randomly discarding events in the PET list mode, and ten realizations at each simulated dose were generated and reconstructed. The data were grouped into 9 categories determined by the number of included true events, from  >40 M to  <250 k counts. The images reconstructed from the original full statistical set were used to identify lung lesions, and each was, at every simulated dose, quantified by 6 parameters: lesion metabolic volume, lesion-to-background contrast, mean lesion tracer uptake, standard deviation of activity measurements (across realizations), lesion signal-to-noise ratio (SNR), and Hotelling observer SNR. Additionally, a lesion-detection task including 550 images was presented to several experienced image readers for qualitative assessment. Human observer performances were ranked using receiver operating characteristic analysis. The observer results were correlated with the lesion image measurements and used to train mathematical observer models. Absolute sensitivities and specificities of the human observers, as well as the area under the ROC curve, showed clustering and performance similarities among images produced from 5 million or greater counts. The results presented here are from a clinically realistic but highly constrained experiment, and more work is needed to validate these findings with a larger patient population.

  7. Computerized Radiological Risk Investigation System for Assessing Doses and Health Risks from Atmospheric Releases of Radionuclides.

    1998-11-10

    Version: 00 CRRIS consists of eight fully integrated computer codes which calculate environmental transport of atmospheric releases of radionuclides and resulting doses and health risks to individuals or populations. Each code may be used alone for various assessment applications. Because of its modular structure, CRRIS allows assessments to be tailored to the user's needs. Radionuclides are handled by CRRIS either in terms of the released radionuclides or the exposure radionuclides which consist of both themore » released nuclides and decay products that build up during environmental transport. Atmospheric dispersion calculations are performed by the ANEMOS computer code for distances less than 100 km and by the RETADD-II computer code for regional-scale distances. Both codes estimate annual-average air concentrations and ground deposition rates by location. SUMIT will translate and scale multiple ANEMOS runs onto a master grid. TERRA reads radionuclide air concentrations and deposition rates to estimate concentrations of radionuclides in food and surface soil. Radiologic decay and ingrowth, soil leaching, and transport through the food chain are included in the calculations. MLSOIL computes an effective radionuclide ground-surface concentration to be used in computing external health effects. The five-layer model of radionuclide transport through soil in MLSOIL provides an alternative to the single-layer model used in TERRA. DFSOIL computes dose factors used in MLSOIL to compute doses from the five soil layers and from the ground surface. ANDROS reads environmental concentrations of radionuclides computed by the other CRRIS codes and produces tables of doses and risks to individuals or populations from atmospheric releases of radionuclides.« less

  8. Computerized Radiological Risk Investigation System for Assessing Doses and Health Risks from Atmospheric Releases of Radionuclides.

    SciTech Connect

    RAINE, III, DUDLEY A.

    1998-11-10

    Version: 00 CRRIS consists of eight fully integrated computer codes which calculate environmental transport of atmospheric releases of radionuclides and resulting doses and health risks to individuals or populations. Each code may be used alone for various assessment applications. Because of its modular structure, CRRIS allows assessments to be tailored to the user's needs. Radionuclides are handled by CRRIS either in terms of the released radionuclides or the exposure radionuclides which consist of both the released nuclides and decay products that build up during environmental transport. Atmospheric dispersion calculations are performed by the ANEMOS computer code for distances less than 100 km and by the RETADD-II computer code for regional-scale distances. Both codes estimate annual-average air concentrations and ground deposition rates by location. SUMIT will translate and scale multiple ANEMOS runs onto a master grid. TERRA reads radionuclide air concentrations and deposition rates to estimate concentrations of radionuclides in food and surface soil. Radiologic decay and ingrowth, soil leaching, and transport through the food chain are included in the calculations. MLSOIL computes an effective radionuclide ground-surface concentration to be used in computing external health effects. The five-layer model of radionuclide transport through soil in MLSOIL provides an alternative to the single-layer model used in TERRA. DFSOIL computes dose factors used in MLSOIL to compute doses from the five soil layers and from the ground surface. ANDROS reads environmental concentrations of radionuclides computed by the other CRRIS codes and produces tables of doses and risks to individuals or populations from atmospheric releases of radionuclides.

  9. Personnel neutron dose assessment upgrade: Volume 1, Personnel neutron dosimetry assessment: (Final report)

    SciTech Connect

    Hadlock, D.E.; Brackenbush, L.W.; Griffith, R.V.; Hankins, D.E.; Parkhurst, M.A.; Stroud, C.M.; Faust, L.G.; Vallario, E.J.

    1988-07-01

    This report provides guidance on the characteristics, use, and calibration criteria for personnel neutron dosimeters. The report is applicable for neutrons with energies ranging from thermal to less than 20 MeV. Background for general neutron dosimetry requirements is provided, as is relevant federal regulations and other standards. The characteristics of personnel neutron dosimeters are discussed, with particular attention paid to passive neutron dosimetry systems. Two of the systems discussed are used at DOE and DOE-contractor facilities (nuclear track emulsion and thermoluminescent-albedo) and another (the combination TLD/TED) was recently developed. Topics discussed in the field applications of these dosimeters include their theory of operation, their processing, readout, and interpretation, and their advantages and disadvantages for field use. The procedures required for occupational neutron dosimetry are discussed, including radiation monitoring and the wearing of dosimeters, their exchange periods, dose equivalent evaluations, and the documenting of neutron exposures. The coverage of dosimeter testing, maintenance, and calibration includes guidance on the selection of calibration sources, the effects of irradiation geometries, lower limits of detectability, fading, frequency of calibration, spectrometry, and quality control. 49 refs., 6 figs., 8 tabs.

  10. "The Dose Makes the Poison": Informing Consumers About the Scientific Risk Assessment of Food Additives.

    PubMed

    Bearth, Angela; Cousin, Marie-Eve; Siegrist, Michael

    2016-01-01

    Intensive risk assessment is required before the approval of food additives. During this process, based on the toxicological principle of "the dose makes the poison,ˮ maximum usage doses are assessed. However, most consumers are not aware of these efforts to ensure the safety of food additives and are therefore sceptical, even though food additives bring certain benefits to consumers. This study investigated the effect of a short video, which explains the scientific risk assessment and regulation of food additives, on consumers' perceptions and acceptance of food additives. The primary goal of this study was to inform consumers and enable them to construct their own risk-benefit assessment and make informed decisions about food additives. The secondary goal was to investigate whether people have different perceptions of food additives of artificial (i.e., aspartame) or natural origin (i.e., steviolglycoside). To attain these research goals, an online experiment was conducted on 185 Swiss consumers. Participants were randomly assigned to either the experimental group, which was shown a video about the scientific risk assessment of food additives, or the control group, which was shown a video about a topic irrelevant to the study. After watching the video, the respondents knew significantly more, expressed more positive thoughts and feelings, had less risk perception, and more acceptance than prior to watching the video. Thus, it appears that informing consumers about complex food safety topics, such as the scientific risk assessment of food additives, is possible, and using a carefully developed information video is a successful strategy for informing consumers. PMID:25951078

  11. "The Dose Makes the Poison": Informing Consumers About the Scientific Risk Assessment of Food Additives.

    PubMed

    Bearth, Angela; Cousin, Marie-Eve; Siegrist, Michael

    2016-01-01

    Intensive risk assessment is required before the approval of food additives. During this process, based on the toxicological principle of "the dose makes the poison,ˮ maximum usage doses are assessed. However, most consumers are not aware of these efforts to ensure the safety of food additives and are therefore sceptical, even though food additives bring certain benefits to consumers. This study investigated the effect of a short video, which explains the scientific risk assessment and regulation of food additives, on consumers' perceptions and acceptance of food additives. The primary goal of this study was to inform consumers and enable them to construct their own risk-benefit assessment and make informed decisions about food additives. The secondary goal was to investigate whether people have different perceptions of food additives of artificial (i.e., aspartame) or natural origin (i.e., steviolglycoside). To attain these research goals, an online experiment was conducted on 185 Swiss consumers. Participants were randomly assigned to either the experimental group, which was shown a video about the scientific risk assessment of food additives, or the control group, which was shown a video about a topic irrelevant to the study. After watching the video, the respondents knew significantly more, expressed more positive thoughts and feelings, had less risk perception, and more acceptance than prior to watching the video. Thus, it appears that informing consumers about complex food safety topics, such as the scientific risk assessment of food additives, is possible, and using a carefully developed information video is a successful strategy for informing consumers.

  12. The Use of Mode of Action Information in Risk Assessment: Quantitative Key Events/Dose-Response Framework for Modeling the Dose-Response for Key Events

    EPA Science Inventory

    The HESI RISK21 project formed the Dose-Response/Mode-of-Action Subteam to develop strategies for using all available data (in vitro, in vivo, and in silico) to advance the next-generation of chemical risk assessments. A goal of the Subteam is to enhance the existing Mode of Act...

  13. A Review of International Large-Scale Assessments in Education: Assessing Component Skills and Collecting Contextual Data. PISA for Development

    ERIC Educational Resources Information Center

    Cresswell, John; Schwantner, Ursula; Waters, Charlotte

    2015-01-01

    This report reviews the major international and regional large-scale educational assessments, including international surveys, school-based surveys and household-based surveys. The report compares and contrasts the cognitive and contextual data collection instruments and implementation methods used by the different assessments in order to identify…

  14. Modern Radiation Therapy for Hodgkin Lymphoma: Field and Dose Guidelines From the International Lymphoma Radiation Oncology Group (ILROG)

    SciTech Connect

    Specht, Lena; Yahalom, Joachim; Illidge, Tim; Berthelsen, Anne Kiil; Constine, Louis S.; Eich, Hans Theodor; Girinsky, Theodore; Hoppe, Richard T.; Mauch, Peter; Mikhaeel, N. George; Ng, Andrea

    2014-07-15

    Radiation therapy (RT) is the most effective single modality for local control of Hodgkin lymphoma (HL) and an important component of therapy for many patients. These guidelines have been developed to address the use of RT in HL in the modern era of combined modality treatment. The role of reduced volumes and doses is addressed, integrating modern imaging with 3-dimensional (3D) planning and advanced techniques of treatment delivery. The previously applied extended field (EF) and original involved field (IF) techniques, which treated larger volumes based on nodal stations, have now been replaced by the use of limited volumes, based solely on detectable nodal (and extranodal extension) involvement at presentation, using contrast-enhanced computed tomography, positron emission tomography/computed tomography, magnetic resonance imaging, or a combination of these techniques. The International Commission on Radiation Units and Measurements concepts of gross tumor volume, clinical target volume, internal target volume, and planning target volume are used for defining the targeted volumes. Newer treatment techniques, including intensity modulated radiation therapy, breath-hold, image guided radiation therapy, and 4-dimensional imaging, should be implemented when their use is expected to decrease significantly the risk for normal tissue damage while still achieving the primary goal of local tumor control. The highly conformal involved node radiation therapy (INRT), recently introduced for patients for whom optimal imaging is available, is explained. A new concept, involved site radiation therapy (ISRT), is introduced as the standard conformal therapy for the scenario, commonly encountered, wherein optimal imaging is not available. There is increasing evidence that RT doses used in the past are higher than necessary for disease control in this era of combined modality therapy. The use of INRT and of lower doses in early-stage HL is supported by available data. Although the

  15. Factors in International Space Station Integration Feasibility Assessments

    NASA Technical Reports Server (NTRS)

    Watson, Patricia M.; Dunn, James

    2002-01-01

    The International Space Station, ISS, is a growing vehicle. The ISS configuration changes internally and externally with each ISS flight. Each flight adds resources and capabilities such as docking/berthing ports, power, stowage volume, heat rejection, and data processing capability. The configuration, capabilities and performance characteristics of the vehicle will be in flux until assembly complete. At the same time the knowledge about what is required to support humans involved in long duration space flight is also being greatly expanded. In addition to the changes occurring on-orbit, the situation on the ground is also very dynamic. Proposals for new ISS elements, proposed deletions of elements, changes to the ISS requirements, and changes to the planned configuration are always under evaluation. Furthermore, budgetary issues have driven the need to explore alternative options for the ISS . This environment has made the role of the technical integrator in the ISS program unique in that the baseline against which proposals are evaluated is always changing. The nature of the International Space Station Program adds another dimension to the integrators task. ISS program activities are spread across several centers: KSC, MSFC, GRC, DFRC, ARC and JSc. There are six International Partners/participants each with their own unique organizations. The prime contractor is in Texas, California and Alabama. And, the Space Shuttle Program as the launch vehicle provider is another major interface. In spite of the fluidity of the technical baseline, projections and organizational complexity, in the course of evaluating proposals and producing feasibility assessments there are factors, which frequently emerge as significant. These factors tend to be the limiting conditions when they come into play. The finite resources, which tend to limit the options for ISS are: upmass, life support and crew rescue capability, crew time, utilities, exercise equipment, and docking

  16. Assessment of the Technologies for Molecular Biodosimetry for Human Low-Dose Radiation Exposure Symposium

    SciTech Connect

    Matthew A. Coleman Ph.D.; Narayani Ramakrishnan, Ph.D.; Sally A. Amundson; James D. Tucker, Ph.D.; Stephen D. Dertinger, Ph.D.; Natalia I. Ossetrova, Ph.D.; Tao Chen

    2009-11-16

    Exposure to ionizing radiation produces few immediate outwardly-visible clinical signs, yet, depending on dose, can severely damage vital physiological functions within days to weeks and produce long-lasting health consequences among survivors. In the event of a radiological accident, the rapid evaluation of the individual absorbed dose is paramount to discriminate the worried but unharmed from those individuals who must receive medical attention. Physical, clinical and biological dosimetry are usually combined for the best dose assessment. However, because of the practical limits of physical and clinical dosimetry, many attempts have been made to develop a dosimetry system based on changes in biological parameters, including techniques for hematology, biochemistry, immunology, cytogenetics, etc. Lymphocyte counts and chromosome aberrations analyses are among the methods that have been routinely used for estimating radiation dose. However, these assays require several days to a week to be completed and therefore cannot be used to obtain a fast estimate of the dose during the first few days after exposure when the information would be most critical for identifying victims of radiation accidents who could benefit the most by medical intervention. The steadily increasing sophistication in our understanding of the early biochemical responses of irradiated cells and tissues provides the opportunity for developing mechanism-based biosignatures of exposure. Compelling breakthroughs have been made in the technologies for genome-scale analysis of cellular transcriptional and proteomic profiles. There have also been major strides in the mechanistic understanding of the early events in DNA damage and radiation damage products, as well as in the cellular pathways that lead to radiation injury. New research with genomic- and proteomic-wide tools is showing that within minutes to hours after exposure to ionizing radiation protein machines are modified and activated, and large

  17. Performance assessment of the BEBIG MultiSource high dose rate brachytherapy treatment unit.

    PubMed

    Palmer, Antony; Mzenda, Bongile

    2009-12-21

    A comprehensive system characterisation was performed of the Eckert & Ziegler BEBIG GmbH MultiSource High Dose Rate (HDR) brachytherapy treatment unit with an (192)Ir source. The unit is relatively new to the UK market, with the first installation in the country having been made in the summer of 2009. A detailed commissioning programme was devised and is reported including checks of the fundamental parameters of source positioning, dwell timing, transit doses and absolute dosimetry of the source. Well chamber measurements, autoradiography and video camera analysis techniques were all employed. The absolute dosimetry was verified by the National Physical Laboratory, UK, and compared to a measurement based on a calibration from PTB, Germany, and the supplied source certificate, as well as an independent assessment by a visiting UK centre. The use of the 'Krieger' dosimetry phantom has also been evaluated. Users of the BEBIG HDR system should take care to avoid any significant bend in the transfer tube, as this will lead to positioning errors of the source, of up to 1.0 mm for slight bends, 2.0 mm for moderate bends and 5.0 mm for extreme curvature (depending on applicators and transfer tube used) for the situations reported in this study. The reason for these errors and the potential clinical impact are discussed. Users should also note the methodology employed by the system for correction of transit doses, and that no correction is made for the initial and final transit doses. The results of this investigation found that the uncorrected transit doses lead to small errors in the delivered dose at the first dwell position, of up to 2.5 cGy at 2 cm (5.6 cGy at 1 cm) from a 10 Ci source, but the transit dose correction for other dwells was accurate within 0.2 cGy. The unit has been mechanically reliable, and source positioning accuracy and dwell timing have been reproducible, with overall performance similar to other existing HDR equipment. The unit is capable of high

  18. Needs Assessment for the Establishment of a Masters of Arts Program in International Studies with a Concentration in International Security and a Specialization in International Terrorism

    ERIC Educational Resources Information Center

    Gray, David H.

    2008-01-01

    Since the attacks of September 11, national and international security has been driven to the center stage of our present-day society, thus becoming a primary concern and focus in the United States. The purpose of this study was to conduct an instructional needs assessment for the establishment of a Masters of Arts program in International Studies…

  19. Dose assessment for various coals in the coal-fired power plant

    SciTech Connect

    Antic, D.; Sokcic-Kostic, M. )

    1993-01-01

    The radiation exposure of the public in the vicinity of a coal-fired power plant has been studied. The experimental data on uranium, thorium, and potassium content in selected coals from Serbia and Bosnia have been used to calculate the release rates of natural radionuclides from the power plant. A generalized model for analysis of radiological impact of an energy source that includes the two-dimensional version of the cloud model simulates the transport of radionuclides released to the atmosphere. The inhalation dose rates are assessed for various meteorological conditions.

  20. Internal medicine interns' and residents' pressure ulcer prevention and assessment attitudes and abilities: results of an exploratory study .

    PubMed

    Suen, Winnie; Parker, Victoria A; Harney, Lauren; Nevin, Siobhan; Jansen, Jane; Alexander, Linda; Berlowitz, Dan

    2012-04-01

     To evaluate and determine differences between attitudes of internal medicine interns and residents toward pressure ulcer (PU) prevention and to evaluate the interns' abilities to accurately identify wounds and stage PUs, an exploratory, quantitative study was conducted in a 639-bed, safety net academic center. Participants (21 internal medicine interns and 21 internal medicine residents) attending an educational session on PU prevention and care were eligible to participate. The 1-hour conference session was prepared and provided by a physician and wound care nurses. Before the lecture, participants were asked to complete an 11-question paper-and-pencil PU attitude survey. Following the lecture, they were asked to identify 11 wounds and stage PUs using the inpatient admission history and physical template used in the hospital's electronic medical record. An audience response system was used to record correct and incorrect responses. Nineteen (19) interns and 20 residents completed the survey. Twenty-one (21) interns successfully completed the wound assessment quiz. Descriptive statistics were used to examine the survey data and residents' and interns' average attitude scores were compared using independent group t-test. The results suggest that interns and residents have a positive attitude toward and are concerned about PU prevention. The significantly higher overall score among interns compared to residents (average 43.8 versus 38.8 respectively, P = 0.002) suggests interns have a more positive attitude than residents. Statistically significant differences between item scores showed that, compared to residents, interns perceived PU prevention to be more time-consuming (P = 0.01), less of a concern in practice (P = 0.02), and a lower priority than other areas of care (P = 0.003). Compared to residents, interns also were more likely to agree to with statement, "In my opinion, patients tend to not get as many pressure

  1. Image quality and dose assessment in digital breast tomosynthesis: A Monte Carlo study

    NASA Astrophysics Data System (ADS)

    Baptista, M.; Di Maria, S.; Oliveira, N.; Matela, N.; Janeiro, L.; Almeida, P.; Vaz, P.

    2014-11-01

    Mammography is considered a standard technique for the early detection of breast cancer. However, its sensitivity is limited essentially due to the issue of the overlapping breast tissue. This limitation can be partially overcome, with a relatively new technique, called digital breast tomosynthesis (DBT). For this technique, optimization of acquisition parameters which maximize image quality, whilst complying with the ALARA principle, continues to be an area of considerable research. The aim of this work was to study the best quantum energies that optimize the image quality with the lowest achievable dose in DBT and compare these results with the digital mammography (DM) ones. Monte Carlo simulations were performed using the state-of-the-art computer program MCNPX 2.7.0 in order to generate several 2D cranio-caudal (CC) projections obtained during an acquisition of a standard DBT examination. Moreover, glandular absorbed doses and photon flux calculations, for each projection image, were performed. A homogeneous breast computational phantom with 50%/50% glandular/adipose tissue composition was used and two compressed breast thicknesses were evaluated: 4 cm and 8 cm. The simulated projection images were afterwards reconstructed with an algebraic reconstruction tool and the signal difference to noise ratio (SDNR) was calculated in order to evaluate the image quality in DBT and DM. Finally, a thorough comparison between the results obtained in terms of SDNR and dose assessment in DBT and DM was performed.

  2. Radiological dose assessment of the disposal of NORM wastes via landspreading.

    SciTech Connect

    Smith, K. P.

    1998-12-18

    Petroleum production activities sometimes result in the accumulation of naturally occurring radioactive materials (NORM) at elevated concentrations in by-product waste streams, such as scale and sludge. In the past, the petroleum industry commonly disposed of these wastes via landspreading, a practice consisting of spreading the waste over the soil surface and, sometimes, mixing it into the top layer of soil. Potential radiological doses to workers and the general public from landspreading of NORM waste have been assessed for a variety of scenarios, including the landspreading worker scenario and future residential, industrial, recreational, and agricultural scenarios. The exposure pathways evaluated include external radiation, inhalation of resuspended dust and radon, ingestion of soil and groundwater, and ingestion of contaminated foodstuff grown on the property. In general, potential doses to landspreading workers and members of the general public exposed through future recreational or agricultural use of the property are negligible. Potential doses to future residential or industrial users can vary greatly, depending on such factors as type of building construction, presence or absence of clean cover material, and on-site erosion rates. On the basis of the results presented in this paper, it is recommended that (a) any landspreading activity that would result in radium-226 concentrations in soil above 10 pCi/g be evaluated on a case-by-case basis to estimate potential future risk to the public and (b) states should consider policies to restrict future land use or advise future land owners where landspreading of NORM wastes has occurred.

  3. Assessment of dose during an SGTR. [Steam Generator Tube Rupture (SGTR)

    SciTech Connect

    Adams, J.P.

    1993-01-01

    The Nuclear Regulatory Commission requires utilities to determine the response of a pressurized water reactor to a steam generator tube rupture (SGTR) as part of the safety analysis for the plant. The SGTR analysis includes assumptions regarding the iodine concentration in the reactor coolant system (RCS) due to iodine spikes, primary flashing and bypass fractions, and iodine partitioning in the secondary coolant system (SCS). Experimental and analytical investigations have recently been completed wherein these assumptions were tested to determine whether and to what degree they were conservative (that is, whether they result in a calculated iodine source term/dose that is at least as large or larger than that expected during an actual event). The current study has the objective to assess the overall effects of the results of these investigations on the calculated iodine dose to the environment during an SGTR. To assist in this study, a computer program, DOSE, was written. This program uses a simple, non-mechanistic model to calculate the iodine source term to the environment during an SGTR as a function of water mass inventories and flow rates and iodine concentrations in the RCS and SCS. The principal conclusion of this study is that the iodine concentration in the RCS is the dominant parameter, due to the dominance of primary flashing on the iodine source term.

  4. Application of physiologically based pharmacokinetic (PBPK) model of trichloroethylene in rats for estimation of internal dose

    EPA Science Inventory

    Potential human health risk from chemical exposure must often be assessed for conditions for which suitable human or animal data are not available, requiring extrapolation across duration and concentration. The default method for exposure-duration adjustment is based on Haber's r...

  5. A Signal-to-Noise Crossover Dose as the Point of Departure for Health Risk Assessment

    PubMed Central

    Portier, Christopher J.; Krewski, Daniel

    2011-01-01

    Background: The U.S. National Toxicology Program (NTP) cancer bioassay database provides an opportunity to compare both existing and new approaches to determining points of departure (PoDs) for establishing reference doses (RfDs). Objectives: The aims of this study were a) to investigate the risk associated with the traditional PoD used in human health risk assessment [the no observed adverse effect level (NOAEL)]; b) to present a new approach based on the signal-to-noise crossover dose (SNCD); and c) to compare the SNCD and SNCD-based RfD with PoDs and RfDs based on the NOAEL and benchmark dose (BMD) approaches. Methods: The complete NTP database was used as the basis for these analyses, which were performed using the Hill model. We determined NOAELs and estimated corresponding extra risks. Lower 95% confidence bounds on the BMD (BMDLs) corresponding to extra risks of 1%, 5%, and 10% (BMDL01, BMDL05, and BMDL10, respectively) were also estimated. We introduce the SNCD as a new PoD, defined as the dose where the additional risk is equal to the “background noise” (the difference between the upper and lower bounds of the two-sided 90% confidence interval on absolute risk) or a specified fraction thereof. Results: The median risk at the NOAEL was approximately 10%, and the default uncertainty factor (UF = 100) was considered most applicable to the BMDL10. Therefore, we chose a target risk of 1/1,000 (0.1/100) to derive an SNCD-based RfD by linear extrapolation. At the median, this approach provided the same RfD as the BMDL10 divided by the default UF. Conclusions: Under a standard BMD approach, the BMDL10 is considered to be the most appropriate PoD. The SNCD approach, which is based on the lowest dose at which the signal can be reliably detected, warrants further development as a PoD for human health risk assessment. PMID:21813365

  6. Nutrititional Status Assessment of International Space Station Crew Members

    NASA Technical Reports Server (NTRS)

    Smith, S. M.; Zwart, S. R.; Block, G.; Rice, B. I.; Davis-Street, J. F.

    2005-01-01

    Defining optimal nutrient requirements is imperative to ensure crew health on long-duration space exploration missions. To date, nutrient requirement data have been extremely limited because of small sample sizes and difficulties associated with collecting biological samples. In this study, we examined changes in body composition, bone metabolism, hematology, general blood chemistry, and blood levels of selected vitamins and minerals after long-duration (128-195 d) space flight aboard the International Space Station. Crew members consumed an average of 80% of the recommended energy intakes, and on landing day their body weight had decreased (P=0.051). After flight, hematocrit was less, and serum femtin was greater than before flight (P<0.01). Serum iron, ferritin saturation, and transferrin had decreased after flight. The finding that other acute-phase proteins, including ceruloplasmin, retinol binding protein, transthyretin, and albumin were not changed after flight suggests that the changes in iron metabolism may not be strictly due to an inflammatory response. Urinary 8- hydroxy-2'-deoxyguanosine concentration was greater and superoxide dismutase was less after flight, indicating that oxidative damage had increased (P<0.05). Despite the reported use of vitamin D supplements during flight, serum 25-hydroxyvitamin D was significantly decreased after flight (P<0.01). Bone resorption was increased after flight, as indicated by several urinary markers of bone resorption. Bone formation, assessed by serum concentration of bone-specific alkaline phosphatase, was elevated only in crew members who landed in Russia, probably because of the longer time lapse between landing and sample collection. These data provide evidence that bone loss, compromised vitamin D status, and oxidative damage remain critical concerns for long-duration space flight.

  7. Radiation Dose Assessments of Solar Particle Events with Spectral Representation at High Energies for the Improvement of Radiation Protection

    NASA Astrophysics Data System (ADS)

    Kim, Myung-Hee Y.; Atwell, William; Tylka, Allan J.; Dietrich, William; Cucinotta, Francis A.

    For radiation dose assessments of major solar particle events (SPEs), spectral functional forms of SPEs have been made by fitting available satellite measurements up to 100 MeV. However, very high-energy protons (above 500 MeV) have been observed with neutron monitors (NMs) in ground level enhancements (GLEs), which generally present the most severe radiation hazards to astronauts. Due to technical difficulties in converting NM data into absolutely normalized fluence measurements, those functional forms were made with little or no use of NM data. A new analysis of NM data has found that a double power law in rigidity (the so-called Band function) generally provides a satisfactory representation of the combined satellite and NM data from 10 MeV to 10 GeV in major SPEs (Tylka and Dietrich, the 31st International Cosmic Ray Conference, Lodz, Poland, July 7-15, 2009). We use the Band function fits to re-assess human exposures from large SPEs. Using different spectral representations of large SPEs, variations of exposure levels were compared. The results can be applied to the development of approaches of improved radiation protection for astronauts, as well as the optimization of mission planning and shielding for future space missions.

  8. Quantitative assessment of inhalation exposure and deposited dose of aerosol from nanotechnology-based consumer sprays†

    PubMed Central

    Nazarenko, Yevgen; Lioy, Paul J.; Mainelis, Gediminas

    2015-01-01

    This study provides a quantitative assessment of inhalation exposure and deposited aerosol dose in the 14 nm to 20 μm particle size range based on the aerosol measurements conducted during realistic usage simulation of five nanotechnology-based and five regular spray products matching the nano-products by purpose of application. The products were also examined using transmission electron microscopy. In seven out of ten sprays, the highest inhalation exposure was observed for the coarse (2.5–10 μm) particles while being minimal or below the detection limit for the remaining three sprays. Nanosized aerosol particles (14–100 nm) were released, which resulted in low but measurable inhalation exposures from all of the investigated consumer sprays. Eight out of ten products produced high total deposited aerosol doses on the order of 101–103 ng kg−1 bw per application, ~85–88% of which were in the head airways, only <10% in the alveolar region and <8% in the tracheobronchial region. One nano and one regular spray produced substantially lower total deposited doses (by 2–4 orders of magnitude less), only ~52–64% of which were in the head while ~29–40% in the alveolar region. The electron microscopy data showed nanosized objects in some products not labeled as nanotechnology-based and conversely did not find nano-objects in some nano-sprays. We found no correlation between nano-object presence and abundance as per the electron microscopy data and the determined inhalation exposures and deposited doses. The findings of this study and the reported quantitative exposure data will be valuable for the manufacturers of nanotechnology-based consumer sprays to minimize inhalation exposure from their products, as well as for the regulators focusing on protecting the public health. PMID:25621175

  9. Organ Dose Assessment and Evaluation of Cancer Risk on Mars Surface

    NASA Technical Reports Server (NTRS)

    Kim, Myung-Hee; Cucinotta, Francis A.

    2011-01-01

    Organ specific fluence spectra and doses for large solar particle events (SPE) and galactic cosmic rays (GCR) at various levels of solar activity are simulated on the surface of Mars using the HZETRN/QMSFRG computer code and the 2010 version of the Badhwar and O Neill GCR model. The NASA JSC propensity model of SPE fluence and occurrence is used to consider upper bounds on SPE fluence for increasing mission lengths. To account for the radiation transmission through the Mars atmosphere, a vertical distribution of Mars atmospheric thickness is calculated from the temperature and pressure data of Mars Global Surveyor. To describe the spherically distributed atmospheric distance on the Mars surface at each elevation, the directional cosine distribution is implemented. The resultant directional shielding by Mars atmosphere at each elevation is then coupled with vehicle and body shielding for organ dose estimates. Finally, cancer risks for astronauts exploring Mars can be assessed by applying the NASA Space Radiation Cancer Risk 2010 model with the resultant organ dose estimates. Variations of organ doses and cancer risk quantities on the surface of Mars, which are due to a 16-km elevation range between the Tharsis Montes and the Hellas impact basin, are visualized on the global topography of Mars measured by the Mars Orbiter Laser Altimeter. It is found that cancer incidence risks are about 2-fold higher than mortality risks with a disproportionate increase in skin and thyroid cancers for male and female astronauts and in breast cancer for female astronauts. The number of safe days, defined by the upper 95% percent confidence level to be below cancer limits, on Mars is analyzed for several Mars mission design scenarios.

  10. Dose-response relationships of rat fetal skeleton variations: Relevance for risk assessment.

    PubMed

    Chahoud, Ibrahim; Paumgartten, Francisco J R

    2009-10-01

    In developmental toxicity studies, skeleton abnormalities found in fetuses at term are classified as variations or malformations. The relevance of skeleton variations for human risk assessment, however, is a controversial issue. This paper is a contribution to the discussion on the interpretation of fetal skeleton variations in the context of risk assessment. Dose-response relationships of skeleton variations and malformations induced by three antineoplastic drugs (FUDR: 5-fluoro-2'-deoxyuridine, HU: hydroxyurea and 6-MPr: 6-mercaptopurine-riboside) were evaluated. FUDR (0, 3, 14, 25, 35, 45, 55 and 65mg/kg body wt sc) and HU (0, 250, 300, 350, 400, 450, 500 and 550mg/kg body wt ip) were administered to rats on gestation day 11 (GD 11) while 6-MPr (0, 3, 7, 10 and 14mg/kg body wt sc) was given on GD 11, or on GD 12. Caesarean sections were performed on GD 21 and all fetuses were cleared and stained with alizarin red S for skeleton examination. Drugs given on GD 11 increased the incidence of thoracic and lumbar vertebra (dumbbell-shaped and bipartite ossification center (o.c.) and sternum (misaligned sternebrae) variations in a dose-dependent manner. Occurrence of zygomatic bone fused with maxilla (a variation in our rats) was also increased by HU and 6-MPr (GD 11) but it was not altered by FUDR. Spontaneous occurrence of wavy ribs was reduced by all treatments. Malformations such as cleft palate, tympanic bone absent and tibia absent were also increased in a dose-dependent manner by the three compounds. No observed effect levels (NOEL) for variations, irrespective of the compound administered, were generally lower than NOELs for malformations. In the discussion, we supported the view that any dose-related increase in the incidence of variations should be taken into account for determination of NOELs in routine studies. Increased occurrences of skeleton variations in term fetuses are also to be considered in risk assessment, unless experimental evidence exists that

  11. Teacher Assessment Literacy: A Review of International Standards and Measures

    ERIC Educational Resources Information Center

    DeLuca, Christopher; LaPointe-McEwan, Danielle; Luhanga, Ulemu

    2016-01-01

    Assessment literacy is a core professional requirement across educational systems. Hence, measuring and supporting teachers' assessment literacy have been a primary focus over the past two decades. At present, there are a multitude of assessment standards across the world and numerous assessment literacy measures that represent different…

  12. An international model validation exercise on radionuclide transfer and doses to freshwater biota.

    SciTech Connect

    Yankovich, T. L.; Vives i Batlle, J.; Vives-Lynch, S.; Beresford, N. A.; Barnett, C. L.; Beaugelin-Seiller, K.; Brown, J. E.; Cheng, J.-J.; Copplestone, D.; Heling, R.; Hosseini, A.; Howard, B. J.; Kamboj, S.; Kryshev, A. I.; Nedveckaite, T.; Smith, J. T.; Wood, M. D.; Environmental Science Division; AREVA Resources; Environmental Science, Westlakes Scientific Consulting Ltd.; Centre for Ecology and Hydrology; IRSN; Norwegian Radiation Protection Authority; The Environment Agency; Nuclear Research and Consultancy Group; Univ. of Liverpool; School of Earth and Environmental Sciences; Inst. of Physics, Lithuania; State Enterprise Scientific Production Association

    2010-06-09

    Under the International Atomic Energy Agency (IAEA)'s EMRAS (Environmental Modelling for Radiation Safety) program, activity concentrations of {sup 60}Co, {sup 90}Sr, {sup 137}Cs and {sup 3}H in Perch Lake at Atomic Energy of Canada Limited's Chalk River Laboratories site were predicted, in freshwater primary producers, invertebrates, fishes, herpetofauna and mammals using eleven modelling approaches. Comparison of predicted radionuclide concentrations in the different species types with measured values highlighted a number of areas where additional work and understanding is required to improve the predictions of radionuclide transfer. For some species, the differences could be explained by ecological factors such as trophic level or the influence of stable analogues. Model predictions were relatively poor for mammalian species and herpetofauna compared with measured values, partly due to a lack of relevant data. In addition, concentration ratios are sometimes under-predicted when derived from experiments performed under controlled laboratory conditions representative of conditions in other water bodies.

  13. Dose assessment for management alternatives for NORM-contaminated equipment within the petroleum industry

    SciTech Connect

    Blunt, D.L.; Smith, K.P.

    1995-08-01

    The contamination of drilling and production equipment by naturally occurring radioactive material (NORM) is a growing concern for the petroleum industry and regulators. Large volumes of NORM-contaminated scrap metal are generated by the industry each year. The contamination generally occurs as surface contamination on the interior of water-handling equipment. The source of this contamination is accumulation of by-product wastes, in the form of scale and sludge contaminated with NORM that are generated by extraction processes. The primary radionuclides of concern in petroleum industry NORM-wastes are radium-226 (Ra-226), and radium-228 (Ra-228). These isotopes are members of the uranium-238 and thorium-232 decay series, respectively. The uranium and thorium isotopes, which are naturally present in the subsurface formations from which hydrocarbons are extracted, are largely immobile and remain in the subsurface. The more soluble radium can become mobilized in the formation water and be transported to the surface in the produced water waste stream. The radium either remains in solution or precipitates in scale or sludge deposits, depending on water salinity and on temperature and pressure phase changes. NORM-containing scale consists of radium that has coprecipitated with barium, calcium, or strontium sulfates, and sludge typically consists of radium-containing silicates and carbonates. This assessment is limited to the evaluation of potential radiological doses from management options that specifically involve recycle and reuse of contaminated metal. Doses from disposal of contaminated equipment are not addressed. Radiological doses were estimated for workers and the general public for equipment decontamination and smelting. Results of this assessment can be used to examine policy issues concerning the regulation and management of NORM-contaminated wastes generated by the petroleum industry.

  14. The Art of Making Assessment Anti-Venom: Injecting Assessment in Small Doses to Create a Faculty Culture of Assessment

    ERIC Educational Resources Information Center

    Kramer, Philip I.

    2009-01-01

    Many college faculty react to student outcomes assessment the way most people react when they see a rattlesnake within striking distance. Common faculty reactions to the perceived threat of assessment include metaphorically running away and throwing rocks or sticks at it. Like a hiker in the desert doing her best to avoid being struck when she…

  15. Effects of Low-Dose Microwave on Healing of Fractures with Titanium Alloy Internal Fixation: An Experimental Study in a Rabbit Model

    PubMed Central

    Zhang, Han; Fu, Tengfei; Jiang, Lan; Bai, Yuehong

    2013-01-01

    Background Microwave is a method for improving fracture repair. However, one of the contraindications for microwave treatment listed in the literature is surgically implanted metal plates in the treatment field. The reason is that the reflection of electromagnetic waves and the eddy current stimulated by microwave would increase the temperature of magnetic implants and cause heat damage in tissues. Comparing with traditional medical stainless steel, titanium alloy is a kind of medical implants with low magnetic permeability and electric conductivity. But the effects of microwave treatment on fracture with titanium alloy internal fixation in vivo were not reported. The aim of this article was to evaluate the security and effects of microwave on healing of a fracture with titanium alloy internal fixation. Methods Titanium alloy internal fixation systems were implanted in New Zealand rabbits with a 3.0 mm bone defect in the middle of femur. We applied a 30-day microwave treatment (2,450MHz, 25W, 10 min per day) to the fracture 3 days after operation. Temperature changes of muscle tissues around implants were measured during the irradiation. Normalized radiographic density of the fracture gap was measured on the 10th day and 30th day of the microwave treatment. All of the animals were killed after 10 and 30 days microwave treatment with histologic and histomorphometric examinations performed on the harvested tissues. Findings The temperatures did not increase significantly in animals with titanium alloy implants. The security of microwave treatment was also supported by histology of muscles, nerve and bone around the implants. Radiographic assessment, histologic and histomorphometric examinations revealed significant improvement in the healing bone. Conclusion Our results suggest that, in the healing of fracture with titanium alloy internal fixation, a low dose of microwave treatment may be a promising method. PMID:24086626

  16. Assessing International (Post)Graduate Education: A Research Agenda

    ERIC Educational Resources Information Center

    Blumenfield, Tami; Nerad, Maresi

    2012-01-01

    "Internationalisation" has become the new buzzword for universities around the world, with jointly offered degrees as well as smaller-scale exchanges for students. Despite this rapid expansion of international campuses and programmes, and the increasing acceptance and encouragement of international experiences for [post]graduate students, little…

  17. Implications of Psychometric Laboratories for Training Interns in Psychological Assessment.

    ERIC Educational Resources Information Center

    Fox, Ronald E.

    Changes have occurred in the training of interns and the functioning of psychologists at Ohio State University Medical School, some of which was effected by their psychometric laboratory. The number of tests administered by interns has decreased markedly. The existence of the laboratory changed training experiences and opportunities. Psychologists…

  18. Radon dispersion modeling and dose assessment for uranium mine ventilation shaft exhausts under neutral atmospheric stability.

    PubMed

    Xie, Dong; Wang, Hanqing; Kearfott, Kimberlee J; Liu, Zehua; Mo, Shunquan

    2014-03-01

    In the present study, the roles of atmospheric wind profiles in the neutral atmosphere and surface roughness parameters in a complex terrain were examined to determine their impacts on radon ((222)Rn) dispersion from an actual uranium mine ventilation shaft. Simulations were completed on (222)Rn dispersion extending from the shaft to a vulnerable distance, near the location of an occupied farmhouse. The eight dispersion scenarios for the ventilation shaft source included four downwind velocities (0.5, 1.0, 2.0 and 4.0 m s(-1)) and two underlying surface roughness characteristics (0.1 m and 1.0 m). (222)Rn distributions and elevated pollution regions were identified. Effective dose estimation methods involving a historical weighting of wind speeds in the direction of interest coupled to the complex dispersion model were proposed. Using this approach, the radiation effects on the residents assumed to be outside at the location of the farm house 250 m downwind from the ventilation shaft outlet were computed. The maximum effective dose rate calculated for the residents at the outside of the farm house was 2.2 mSv y(-1), which is less than the low limit action level of 3-10 mSv y(-1) recommended by the International Commission on Radiological Protection (ICRP) occupational exposure action level for radon.

  19. [Assessment of the exposure dose value displayed on operator console in a computed tomography system deciding exposure dose from positioning image].

    PubMed

    Sanai, Hiroyasu; Tomomitsu, Tatsushi; Ikenaga, Hiroyuki; Suemori, Shinji; Yanagimoto, Shinichi

    2012-01-01

    The aim of this study was to assess the exposure dose value (DLP) displayed on the operator console in a computed tomography system with automatic exposure control (CT-AEC) which decides the exposure dose from a positioning image. We measured exposure dose with two kinds of CT systems and evaluated the error of the displayed DLP value on the operator console against the measured DLP value. The assessment was performed in three sites: head and neck, upper chest, and lower abdomen. As a result, the errors of displayed value with CT-AEC against the error without CT-AEC in system A (4.09%) were significantly different on two assessment sites (head and neck: -4.02%, upper chest: 6.60%). There is no significant difference on the third assessment site (lower abdomen: 0.06%). On the other hand, those values in system B (8.38%) were almost similar with no significant differences (head and neck: -1.12%, upper chest: -1.85%, lower abdomen: -0.64%). The results show that there were significant differences noted between the errors of displayed value with CT-AEC and without CT-AEC in system A for the head and neck and the upper chest. In conclusion, displayed value with CT-AEC and without CT-AEC were about the same error. However, the possibility that the error depended on a model and the examination site of CT was shown.

  20. Estimating exposure and dose to characterize health risks: the role of human tissue monitoring in exposure assessment.

    PubMed Central

    Sexton, K; Callahan, M A; Bryan, E F

    1995-01-01

    Exposure assessment is an integral part of health risk characterization. Exposure assessments typically address three critical aspects of exposure: the number of people exposed to the environmental toxicant, at specific concentrations, for the time period of interest; the resulting dose; and the relative contribution of important sources and pathways to exposure/dose. Because historically both "point-of-contact" measurements and information about dose and related pharmacokinetic processes have been lacking, exposure assessments have had to rely on construction of "scenarios" to estimate exposure and dose. This could change, however, as advances in development of biologic markers of exposure and dose make it possible to measure and interpret toxicant concentrations in accessible human tissues. The increasing availability of "biomarkers," coupled with improvements in pharmacokinetic understanding, present opportunities to estimate ("reconstruct") exposure from measurements of dose and knowledge of intake and uptake parameters. Human tissue monitoring, however, is not a substitute for more traditional methods of measuring exposure, but rather a complementary approach. A combination of exposure measurements and dose measurements provides the most credible scientific basis for exposure assessment. PMID:7635107

  1. Commentary on the OECD's Programme for International Student Assessment 2012

    ERIC Educational Resources Information Center

    Froese-Germain, Bernie

    2013-01-01

    Every three years the focus of the international education community shifts to the release of the Programme for International Student Assessment (PISA) study conducted by the Organisation for Economic Co-operation and Development (OECD). No other international study of education commands as much attention as PISA. In an age of intense global…

  2. Success in the US: Are Cambridge International Assessments Good Preparation for University Study?

    ERIC Educational Resources Information Center

    Shaw, Stuart; Bailey, Clare

    2011-01-01

    This article focuses on the research being conducted by University of Cambridge International Examinations (Cambridge) to ensure that its international assessments prepare students as well as Advanced Placement and International Baccalaureate for continued studies in colleges and universities. The primary purpose of the research is to highlight…

  3. The ITT International Fellowship Program: An Assessment after Ten Years. IIE Research Report Number Four.

    ERIC Educational Resources Information Center

    Zikopoulos, Marianthi; Barber, Elinor

    Findings of an assessment of the ITT International Fellowship Program (i.e., International Telephone and Telegraph) are presented. The study conducted during the program's tenth year was designed to determine the effect of the program on its participants and to gain insight into the impact of international education in general. Questionnaires were…

  4. Assessment of low-dose cisplatin as a model of nausea and emesis in beagle dogs, potential for repeated administration.

    PubMed

    Kenward, Hannah; Pelligand, Ludovic; Elliott, Jonathan

    2014-08-01

    Cisplatin is a highly emetogenic cancer chemotherapy agent, which is often used to induce nausea and emesis in animal models. The cytotoxic properties of cisplatin also cause adverse events that negatively impact on animal welfare preventing repeated administration of cisplatin. In this study, we assessed whether a low (subclinical) dose of cisplatin could be utilized as a model of nausea and emesis in the dog while decreasing the severity of adverse events to allow repeated administration. The emetic, nausea-like behavior and potential biomarker response to both the clinical dose (70 mg/m2) and low dose (15 mg/m2) of cisplatin was assessed. Plasma creatinine concentrations and granulocyte counts were used to assess adverse effects on the kidneys and bone marrow, respectively. Nausea-like behavior and emesis was induced by both doses of cisplatin, but the latency to onset was greater in the low-dose group. No significant change in plasma creatinine was detected for either dose groups. Granulocytes were significantly reduced compared with baseline (P = 0.000) following the clinical, but not the low-dose cisplatin group. Tolerability of repeated administration was assessed with 4 administrations of an 18 mg/m2 dose cisplatin. Plasma creatinine did not change significantly. Cumulative effects on the granulocytes occurred, they were significantly decreased (P = 0.03) from baseline at 3 weeks following cisplatin for the 4th administration only. Our results suggest that subclinical doses (15 and 18 mg/m2) of cisplatin induce nausea-like behavior and emesis but have reduced adverse effects compared with the clinical dose allowing for repeated administration in crossover studies.

  5. Development of Internal System of Education Quality Assessment at a University

    ERIC Educational Resources Information Center

    Kalimullin, Aydar M.; Khodyreva, Elena ?.; Koinova-Zoellner, Julia

    2016-01-01

    The urgency of the research is determined by the need to ensure the quality of higher education an essential factor of which is development of the internal assessment system for educational activities at universities. The aim of the article is validation of the model of development of the internal assessment system for educational activities at…

  6. Learning Outcomes Assessment: Extrapolating from Study Abroad to International Service-Learning

    ERIC Educational Resources Information Center

    Rubin, Donald L.; Matthews, Paul H.

    2013-01-01

    For international service-learning to thrive, it must document student learning outcomes that accrue to participants. The approaches to international service-learning assessment must be compelling to a variety of stakeholders. Recent large-scale projects in study abroad learning outcomes assessment--including the Georgia Learning Outcomes of…

  7. Student Views of Peer Assessment at the International School of Lausanne

    ERIC Educational Resources Information Center

    Foley, Simon

    2013-01-01

    This article explores student attitudes and perceptions relating to peer assessment, as observed at the International School of Lausanne, where the case study was restricted to students in the International Baccalaureate (IB) Diploma Economics course of the programme. Informed by a review of literature on the relative merits of peer assessment,…

  8. International Large-Scale Assessments: Challenges in Reporting and Potentials for Secondary Analysis

    ERIC Educational Resources Information Center

    Torney-Purta, Judith; Amadeo, Jo-Ann

    2013-01-01

    International Large-Scale Assessments (ILSAs) have been used to draw comparisons among countries on a variety of topics in education and, more broadly, for example, in adolescent development. These assessments can inform the public about influential factors on the micro and macro levels, foster interdisciplinary and international collaboration,…

  9. The Impact of the Programme for International Student Assessment on Academic Journals

    ERIC Educational Resources Information Center

    Dominguez, Maria; Vieira, Maria-Jose; Vidal, Javier

    2012-01-01

    The aim of this study is to assess the impact of PISA (Programme for International Student Assessment) on international scientific journals. A bibliometric analysis was conducted of publications included in three main scientific publication databases: Eric, EBSCOhost and the ISI Web of Knowledge, from 2002 to 2010. The paper focused on four main…

  10. Hanford internal dosimetry program manual

    SciTech Connect

    Carbaugh, E.H.; Sula, M.J.; Bihl, D.E.; Aldridge, T.L.

    1989-10-01

    This document describes the Hanford Internal Dosimetry program. Program Services include administrating the bioassay monitoring program, evaluating and documenting assessments of internal exposure and dose, ensuring that analytical laboratories conform to requirements, selecting and applying appropriate models and procedures for evaluating internal radionuclide deposition and the resulting dose, and technically guiding and supporting Hanford contractors in matters regarding internal dosimetry. 13 refs., 16 figs., 42 tabs.

  11. International approach to the assessment of chemical risks.

    PubMed

    Mercier, M

    1991-01-01

    One of the main objectives of the International Programme on Chemical Safety, a joint venture of the World Health Organization, the United Nations Environment Programme and the International Labour Organization, is to carry out and disseminate evaluations of the risk to human health and the environment from exposure to chemicals, mixtures of chemicals, or combinations of chemicals and physical and biological agents. These evaluations, performed by groups of internationally reputed and independent experts, provide a scientific and objective basis that national authorities may be able to use for planning and for the development of control measures, such as the establishment of exposure limits for chemical pollutants.

  12. Comparative risk assessment: an international comparison of methodologies and results.

    PubMed

    Morgenstern, R D; Shih, J; Sessions, S L

    2000-11-01

    Comparative risk assessment (CRA) is a systematic procedure for evaluating the environmental problems affecting a geographic area. This paper looks beyond the U.S. border and examines the experience with CRAs conducted in various developing countries and economies in transition, including Bangkok, Thailand, Cairo, Egypt and Quito, Ecuador, as well as other locations in Eastern Europe, Asia and Central and South America. A recent pilot CRA conducted in Taiwan is also considered. Comparisons are made of both the methodologies and the results across the relatively diverse international literature. The most robust finding is that conventional air pollutants (e.g., particulate matter and lead) consistently rank as high health risks across all of the CRAs examined. Given the varied nature of the settings studied in the CRAs, including level of economic development, urban-rural differences, and climate, this finding is particularly significant. Problems involving drinking water are also ranked as a high or medium health risk in almost all the countries studied. This is consistent with the results of analyses conducted by the World Bank suggesting contamination, limited coverage and erratic service by water supply systems. Beyond the major air pollutants and drinking water, the CRA results diverge significantly across countries. A number of problems involving toxic chemicals, e. g., hazardous air pollutants, rank as high health risks in the US but do not appear as consistent areas of concerns in the other countries studied. This likely reflects the so-called "risk transition" - the shift from sanitation and infection disease problems to those involving industry, vehicles and toxic substances - that often occurs with economic development. It may also reflect the greater information about sources of toxic pollutants in the U.S. For other problems, there are important differences across the developing countries and economies in transition. For example, hazardous and

  13. Measurement of the natural radioactivity in building materials used in Ankara and assessment of external doses.

    PubMed

    Turhan, S; Baykan, U N; Sen, K

    2008-03-01

    A total of 183 samples of 20 different commonly used structural and covering building materials were collected from housing and other building construction sites and from suppliers in Ankara to measure the natural radioactivity due to the presence of (226)Ra, (232)Th and (40)K. The measurements were carried out using gamma-ray spectrometry with two HPGe detectors. The specific activities of the different building materials studied varied from 0.5 +/- 0.1 to 144.9 +/- 4.9 Bq kg(-1), 0.6 +/- 0.2 to 169.9 +/- 6.6 Bq kg(-1) and 2.0 +/- 0.1 to 1792.3 +/- 60.8 Bq kg(-1) for (226)Ra, (232)Th and (40)K, respectively. The results show that the lowest mean values of the specific activity of (226)Ra, (232)Th and (40)K are 0.8 +/- 0.5, 0.9 +/- 0.4 and 4.1 +/- 1.4 Bq kg(-1), respectively, measured in travertine tile while the highest mean values of the specific activity of the same radionuclides are 78.5 +/- 18.1 (ceramic wall tile), 77.4 +/- 53.0 (granite tile) and 923.4 +/- 161.0 (white brick), respectively. The radium equivalent activity (Ra(eq)), the gamma-index, the indoor absorbed dose rate and the corresponding annual effective dose were evaluated to assess the potential radiological hazard associated with these building materials. The mean values of the gamma-index and the estimated annual effective dose due to external gamma radiation inside the room for structural building materials ranged from 0.15 to 0.89 and 0.2 to 1.1 mSv, respectively. Applying criteria recently recommended for building materials in the literature, four materials meet the exemption annual dose criterion of 0.3 mSv, five materials meet the annual dose limit of 1 mSv and only one material slightly exceeds this limit. The mean values of the gamma-index for all building materials were lower than the upper limit of 1. PMID:18309197

  14. Measurement of the natural radioactivity in building materials used in Ankara and assessment of external doses.

    PubMed

    Turhan, S; Baykan, U N; Sen, K

    2008-03-01

    A total of 183 samples of 20 different commonly used structural and covering building materials were collected from housing and other building construction sites and from suppliers in Ankara to measure the natural radioactivity due to the presence of (226)Ra, (232)Th and (40)K. The measurements were carried out using gamma-ray spectrometry with two HPGe detectors. The specific activities of the different building materials studied varied from 0.5 +/- 0.1 to 144.9 +/- 4.9 Bq kg(-1), 0.6 +/- 0.2 to 169.9 +/- 6.6 Bq kg(-1) and 2.0 +/- 0.1 to 1792.3 +/- 60.8 Bq kg(-1) for (226)Ra, (232)Th and (40)K, respectively. The results show that the lowest mean values of the specific activity of (226)Ra, (232)Th and (40)K are 0.8 +/- 0.5, 0.9 +/- 0.4 and 4.1 +/- 1.4 Bq kg(-1), respectively, measured in travertine tile while the highest mean values of the specific activity of the same radionuclides are 78.5 +/- 18.1 (ceramic wall tile), 77.4 +/- 53.0 (granite tile) and 923.4 +/- 161.0 (white brick), respectively. The radium equivalent activity (Ra(eq)), the gamma-index, the indoor absorbed dose rate and the corresponding annual effective dose were evaluated to assess the potential radiological hazard associated with these building materials. The mean values of the gamma-index and the estimated annual effective dose due to external gamma radiation inside the room for structural building materials ranged from 0.15 to 0.89 and 0.2 to 1.1 mSv, respectively. Applying criteria recently recommended for building materials in the literature, four materials meet the exemption annual dose criterion of 0.3 mSv, five materials meet the annual dose limit of 1 mSv and only one material slightly exceeds this limit. The mean values of the gamma-index for all building materials were lower than the upper limit of 1.

  15. Dose-response and risk assessment of airborne hexavalent chromium and lung cancer mortality.

    PubMed

    Crump, Casey; Crump, Kenny; Hack, Eric; Luippold, Rose; Mundt, Kenneth; Liebig, Elizabeth; Panko, Julie; Paustenbach, Dennis; Proctor, Deborah

    2003-12-01

    This study evaluates the dose-response relationship for inhalation exposure to hexavalent chromium [Cr(VI)] and lung cancer mortality for workers of a chromate production facility, and provides estimates of the carcinogenic potency. The data were analyzed using relative risk and additive risk dose-response models implemented with both Poisson and Cox regression. Potential confounding by birth cohort and smoking prevalence were also assessed. Lifetime cumulative exposure and highest monthly exposure were the dose metrics evaluated. The estimated lifetime additional risk of lung cancer mortality associated with 45 years of occupational exposure to 1 microg/m3 Cr(VI) (occupational exposure unit risk) was 0.00205 (90%CI: 0.00134, 0.00291) for the relative risk model and 0.00216 (90%CI: 0.00143, 0.00302) for the additive risk model assuming a linear dose response for cumulative exposure with a five-year lag. Extrapolating these findings to a continuous (e.g., environmental) exposure scenario yielded an environmental unit risk of 0.00978 (90%CI: 0.00640, 0.0138) for the relative risk model [e.g., a cancer slope factor of 34 (mg/kg-day)-1] and 0.0125 (90%CI: 0.00833, 0.0175) for the additive risk model. The relative risk model is preferred because it is more consistent with the expected trend for lung cancer risk with age. Based on statistical tests for exposure-related trend, there was no statistically significant increased lung cancer risk below lifetime cumulative occupational exposures of 1.0 mg-yr/m3, and no excess risk for workers whose highest average monthly exposure did not exceed the current Permissible Exposure Limit (52 microg/m3). It is acknowledged that this study had limited power to detect increases at these low exposure levels. These cancer potency estimates are comparable to those developed by U.S. regulatory agencies and should be useful for assessing the potential cancer hazard associated with inhaled Cr(VI).

  16. Assessment of potential doses to workers during postulated accident conditions at the Waste Isolation Pilot Plant

    SciTech Connect

    Hoover, M.D.; Farrell, R.F.; Newton, G.J.

    1995-12-01

    The recent 1995 WIPP Safety Analysis Report (SAR) Update provided detailed analyses of potential radiation doses to members of the public at the site boundary during postulated accident scenarios at the U.S. Department of Energy`s Waste Isolation Pilot Plant (WIPP). The SAR Update addressed the complete spectrum of potential accidents associated with handling and emplacing transuranic waste at WIPP, including damage to waste drums from fires, punctures, drops, and other disruptions. The report focused on the adequacy of the multiple layers of safety practice ({open_quotes}defense-in-depth{close_quotes}) at WIPP, which are designed to (1) reduce the likelihood of accidents and (2) limit the consequences of those accidents. The safeguards which contribute to defense-in-depth at WIPP include a substantial array of inherent design features, engineered controls, and administrative procedures. The SAR Update confirmed that the defense-in-depth at WIPP is adequate to assure the protection of the public and environment. As a supplement to the 1995 SAR Update, we have conducted additional analyses to confirm that these controls will also provide adequate protection to workers at the WIPP. The approaches and results of the worker dose assessment are summarized here. In conformance with the guidance of DOE Standard 3009-94, we emphasize that use of these evaluation guidelines is not intended to imply that these numbers constitute acceptable limits for worker exposures under accident conditions. However, in conjunction with the extensive safety assessment in the 1995 SAR Update, these results indicate that the Carlsbad Area Office strategy for the assessment of hazards and accidents assures the protection of workers, members of the public, and the environment.

  17. Potential radionuclide emissions from stacks on the Hanford site, Part 1: Dose assessment

    SciTech Connect

    Davis, W.E.; Barnett, J.M.

    1995-02-01

    On February 3, 1993, the U.S. Department of Energy, Richland Operations Office received a Compliance Order and Information Request from the Director of the Air and Toxics Division of the U.S. Environmental Protection Agency, Region 10. The Compliance Order requires RL to evaluate all radionuclide emission points at the Hanford Site to determine which are subject to continuous emission monitoring requirements in 40 CFR 61, Subpart H, and to continuously monitor radionuclide emissions in accordance with requirements in 40 CFR 61.93. The Information Request required RL to provide a written Compliance Plan to meet the requirements of the Compliance Order. A Compliance Plan was submitted to EPA, Region 10, on April 30, 1993. The Compliance Plan specified that a dose assessment would be performed for 84 Westinghouse Hanford Company stacks registered with the Washington State Department of Health on the Hanford Site. Stacks that have the potential emissions to cause an effective dose equivalent to a maximum exposed individual greater than 0.1 mrem/y must be monitored continuously for radionuclide emissions. Five methods were approved by EPA, Region 10 for performing the assessments: Release Fractions from Appendix D of 40 CFR 61, Back Calculations Using A HEPA Filtration Factor, Nondestructive Assay of HEPA Filters, A Spill Release Fraction, and Upstream of HEPA Filter Air Concentrations. The first two methods were extremely conservative for estimating releases. The third method, which used a state-of-the-art portable gamma spectrometer, yielded surprising results from the distribution of radionuclides on the HEPA filters. All five methods are described. Assessments using a HEPA Filtration Factor for back calculations identified 32 stacks that would have emissions that would cause an EDE to the MEI greater than 0.1 mrem y{sup {minus}1}. The number was reduced to 15 stacks when the other methods were applied. The paper discusses reasons for the overestimates.

  18. U.S. EPA Superfund Program's Policy for Risk and Dose Assessment

    SciTech Connect

    Walker, Stuart

    2008-01-15

    The Environmental Protection Agency (EPA) Office of Superfund Remediation and Technology Innovation (OSRTI) has primary responsibility for implementing the long-term (non-emergency) portion of a key U.S. law regulating cleanup: the Comprehensive Environmental Response, Compensation and Liability Act, CERCLA, nicknamed 'Superfund'. The purpose of the Superfund program is to protect human health and the environment over the long term from releases or potential releases of hazardous substances from abandoned or uncontrolled hazardous waste sites. The focus of this paper is on risk and dose assessment policies and tools for addressing radioactively contaminated sites by the Superfund program. EPA has almost completed two risk assessment tools that are particularly relevant to decommissioning activities conducted under CERCLA authority. These are the: 1. Building Preliminary Remediation Goals for Radionuclides (BPRG) electronic calculator, and 2. Radionuclide Outdoor Surfaces Preliminary Remediation Goals (SPRG) electronic calculator. EPA developed the BPRG calculator to help standardize the evaluation and cleanup of radiologically contaminated buildings at which risk is being assessed for occupancy. BPRGs are radionuclide concentrations in dust, air and building materials that correspond to a specified level of human cancer risk. The intent of SPRG calculator is to address hard outside surfaces such as building slabs, outside building walls, sidewalks and roads. SPRGs are radionuclide concentrations in dust and hard outside surface materials. EPA is also developing the 'Radionuclide Ecological Benchmark' calculator. This calculator provides biota concentration guides (BCGs), also known as ecological screening benchmarks, for use in ecological risk assessments at CERCLA sites. This calculator is intended to develop ecological benchmarks as part of the EPA guidance 'Ecological Risk Assessment Guidance for Superfund: Process for Designing and Conducting Ecological Risk

  19. Principles for social impact assessment: A critical comparison between the international and US documents

    SciTech Connect

    Vanclay, Frank . E-mail: Frank.Vanclay@utas.edu.au

    2006-01-15

    The 'International Principles for Social Impact Assessment' and the 'Principles and Guidelines for Social Impact Assessment in the USA', both developed under the auspices of the International Association for Impact Assessment and published in 2003, are compared. Major differences in the definition and approach to social impact assessment (SIA) are identified. The US Principles and Guidelines is shown to be positivist/technocratic while the International Principles is identified as being democratic, participatory and constructivist. Deficiencies in both documents are identified. The field of SIA is changing to go beyond the prevention of negative impacts, to include issues of building social capital, capacity building, good governance, community engagement and social inclusion.

  20. Urinary Metabolomics Revealed Arsenic Internal Dose-Related Metabolic Alterations: A Proof-of-Concept Study in a Chinese Male Cohort

    PubMed Central

    2015-01-01

    Urinary biomonitoring provides the most accurate arsenic exposure assessment; however, to improve the risk assessment, arsenic-related metabolic biomarkers are required to understand the internal processes that may be perturbed, which may, in turn, link the exposure to a specific health outcome. This study aimed to investigate arsenic-related urinary metabolome changes and identify dose-dependent metabolic biomarkers as a proof-of-concept of the information that could be obtained by combining metabolomics and targeted analyses. Urinary arsenic species such as inorganic arsenic, methylarsonic acid, dimethylarsinic acid and arsenobetaine were quantified using high performance liquid chromatography (HPLC)-inductively coupled plasma-mass spectrometry in a Chinese adult male cohort. Urinary metabolomics was conducted using HPLC-quadrupole time-of-flight mass spectrometry. Arsenic-related metabolic biomarkers were investigated by comparing the samples of the first and fifth quintiles of arsenic exposure classifications using a partial least-squares discriminant model. After the adjustments for age, body mass index, smoking, and alcohol consumption, five potential biomarkers related to arsenic exposure (i.e., testosterone, guanine, hippurate, acetyl-N-formyl-5-methoxykynurenamine, and serine) were identified from 61 candidate metabolites; these biomarkers suggested that endocrine disruption and oxidative stress were associated with urinary arsenic levels. Testosterone, guanine, and hippurate showed a high or moderate ability to discriminate the first and fifth quintiles of arsenic exposure with area-under-curve (AUC) values of 0.89, 0.87, and 0.83, respectively; their combination pattern showed an AUC value of 0.91 with a sensitivity of 88% and a specificity of 80%. Arsenic dose-dependent AUC value changes were also observed. This study demonstrated that metabolomics can be used to investigate arsenic-related biomarkers of metabolic changes; the dose-dependent trends of

  1. Integrated assessment in international policy-making. Final technical report, September 15, 1994--September 14, 1996

    SciTech Connect

    Parson, E.A.

    1997-08-01

    This project undertook a preliminary investigation of the conduct and use of assessments, particularly integrated assessments, in international negotiation and policy-making. The research involved review of existing secondary literatures including related theoretical literatures of negotiation analysis and multi-party bargaining; review of archival and documentary material on a few international assessment cases; and interviews in North America and Europe with assessment managers and users. The project sought to identify empirical regularities in the relationships between assessment characteristics and the manner and extent of their contribution to policy-making; to specify and critically assess a set of candidate mechanisms through which assessments influence and assist international policy-making; and to derive from these investigations preliminary practical guidance for assessment design.

  2. RESEARCH TOWARD THE DEVELOPMENT OF A BIOLOGICALLY BASED DOSE RESPONSE ASSESSMENT FOR INORGANIC ARSENIC CARCINOGENICITY: A PROGRESS REPORT

    EPA Science Inventory

    Cancer risk assessments for inorganic arsenic have been based on human epidemiological data, assuming a linear dose-response below the range of observation of tumors. Part of the reason for the continued use of the linear approach in arsenic risk assessments is the lack of an ad...

  3. Dose assessment of population groups exposed to elevated radon levels in radioactive Italian spas

    SciTech Connect

    Sciocchetti, G.; Tosti, S.; Baldassini, P.G.; Sarao, R.; Soldano, E.

    1992-12-31

    The natural spring waters on the Isle of Ischia are among the most radioactive in the world. Therapeutic application of these waters, which contain very high radon concentrations, increases the radon exposure of people treated with them. People who live and work at radioactive spas may be good subjects for testing to evaluate detectable biological effects, especially because their exposures will be less influenced by synergistic factors than those of underground miners. The aim of our investigation was to characterize radon exposure for population groups exposed to high radon levels. Our approach takes into account some peculiar requirements of our epidemiological investigations. To obtain representative dose values, workers were classified into groups to obtain significant results suitable for epidemiological pilot studies. Investigations were carried out on the geological aspects of radon sources, environmental parameters, physical and dosimetric factors which influence radon levels, and related exposures in therapeutic facilities in order to model patterns of radon exposures for the various population groups. We inventoried hyper-radioactive springs on the island. We identified workers in radon spas who were exposed to radiation from inhaled radon daughters and retrospectively assessed their radon exposures. Results showed that, under some conditions, spa employees may have been exposed to much higher than usual levels of radon, which produced up to about 60 mSv y{sup -1} effective dose equivalent.

  4. Thyroid Dose Estimates for a Cohort of Belarusian Children Exposed to (131)I from the Chernobyl Accident: Assessment of Uncertainties.

    PubMed

    Drozdovitch, Vladimir; Minenko, Victor; Golovanov, Ivan; Khrutchinsky, Arkady; Kukhta, Tatiana; Kutsen, Semion; Luckyanov, Nickolas; Ostroumova, Evgenia; Trofimik, Sergey; Voillequé, Paul; Simon, Steven L; Bouville, André

    2015-08-01

    Deterministic thyroid radiation doses due to iodine-131 ((131)I) intake were reconstructed in a previous article for 11,732 participants of the Belarusian-American cohort study of thyroid cancer and other thyroid diseases in individuals exposed during childhood or adolescence to fallout from the Chernobyl accident. The current article describes an assessment of uncertainties in reconstructed thyroid doses that accounts for the shared and unshared errors. Using a Monte Carlo simulation procedure, 1,000 sets of cohort thyroid doses due to (131)I intake were calculated. The arithmetic mean of the stochastic thyroid doses for the entire cohort was 0.68 Gy. For two-thirds of the cohort the arithmetic mean of individual stochastic thyroid doses was less than 0.5 Gy. The geometric standard deviation of stochastic doses varied among cohort members from 1.33 to 5.12 with an arithmetic mean of 1.76 and a geometric mean of 1.73. The uncertainties in thyroid dose were driven by the unshared errors associated with the estimates of values of thyroid mass and of the (131)I activity in the thyroid of the subject; the contribution of shared errors to the overall uncertainty was small. These multiple sets of cohort thyroid doses will be used to evaluate the radiation risks of thyroid cancer and noncancer thyroid diseases, taking into account the structure of the errors in the dose estimates.

  5. Thyroid Dose Estimates for a Cohort of Belarusian Children Exposed to 131I from the Chernobyl Accident: Assessment of Uncertainties

    PubMed Central

    Drozdovitch, Vladimir; Minenko, Victor; Golovanov, Ivan; Khrutchinsky, Arkady; Kukhta, Tatiana; Kutsen, Semion; Luckyanov, Nickolas; Ostroumova, Evgenia; Trofimik, Sergey; Voillequé, Paul; Simon, Steven L.; Bouville, André

    2015-01-01

    Deterministic thyroid radiation doses due to iodine-131 (131I) intake were reconstructed in a previous article for 11,732 participants of the Belarusian–American cohort study of thyroid cancer and other thyroid diseases in individuals exposed during childhood or adolescence to fallout from the Chernobyl accident. The current article describes an assessment of uncertainties in reconstructed thyroid doses that accounts for the shared and unshared errors. Using a Monte Carlo simulation procedure, 1,000 sets of cohort thyroid doses due to 131I intake were calculated. The arithmetic mean of the stochastic thyroid doses for the entire cohort was 0.68 Gy. For two-thirds of the cohort the arithmetic mean of individual stochastic thyroid doses was less than 0.5 Gy. The geometric standard deviation of stochastic doses varied among cohort members from 1.33 to 5.12 with an arithmetic mean of 1.76 and a geometric mean of 1.73. The uncertainties in thyroid dose were driven by the unshared errors associated with the estimates of values of thyroid mass and of the 131I activity in the thyroid of the subject; the contribution of shared errors to the overall uncertainty was small. These multiple sets of cohort thyroid doses will be used to evaluate the radiation risks of thyroid cancer and non-cancer thyroid diseases, taking into account the structure of the errors in the dose estimates. PMID:26207684

  6. Assessment of personnel absorbed dose at production of medical radioisotopes by a cyclotron.

    PubMed

    Sadat-Eshkevar, S M; Karimian, A; Mirzaee, M

    2011-09-01

    The medical radioisotope (201)Tl is produced by a cyclotron through the (203)Tl(p, 3n)(201)Pb reaction in the nuclear medicine research group of Agricultural, Medical and Industrial Research Schools in Iran. The produced (201)Pb decays to (201)Tl by electron capture. One of the most important problems that may occur is malfunction of a part of target or beam line, so that it needs the bombardment to be stopped and the problem fixed. In this work, induced radioactivity of the target, aluminium case of target, beam line and concrete walls of the thallium target room were calculated by Monte Carlo method. Then by using the results of the Monte Carlo simulation, the whole body absorbed dose to cyclotron personnel during repair and after stopping the bombardment, were assessed at different places of target room.

  7. Three Mile Island epidemiologic radiation dose assessment revisited: 25 years after the accident.

    PubMed

    Field, R William

    2005-01-01

    Over the past 25 years, public health concerns following the Three Mile Island (TMI) accident prompted several epidemiologic investigations in the vicinity of TMI. One of these studies is ongoing. This commentary suggests that the major source of radiation exposure to the population has been ignored as a potential confounding factor or effect modifying factor in previous and ongoing TMI epidemiologic studies that explore whether or not TMI accidental plant radiation releases caused an increase in lung cancer in the community around TMI. The commentary also documents the observation that the counties around TMI have the highest regional radon potential in the United States and concludes that radon progeny exposure should be included as part of the overall radiation dose assessment in future studies of radiation-induced lung cancer resulting from the TMI accident. PMID:15657112

  8. Ultrasonic assessment of cumulative internal damage in filled polymers (II)

    SciTech Connect

    Knollman, G.C.; Martinson, R.H.; Bellin, J.L.

    1980-06-01

    An ultrasonic technique previously developed for studying dewetting and cumulative internal damage in filled polymers, such as solid rocket propellents, has been improved. The previous theoretical treatment is here expanded to include internal vacuoles of general spheroidal (rather than spherical) shape. Experimental measurements of sound speed and attenuation in a solid propellant material are utilized together with the modified theoretical model to calculate the internal damage parameters of effective vacuole size and number density as functions of applied uniaxial tensile strain. Results obtained from the model near the point of material failure are in excellent agreement with those provided by independent microscopic observations made on several rupture surfaces of propellant samples stressed to failure.

  9. Early and late assessment of internal drainage of chronic dacryocystitis.

    PubMed

    Mansour, Khaled; Janssen, Alfred G; van Bijsterveld, O Paul

    2003-01-01

    To evaluate the efficacy of internal drainage of a lacrimal abscess, we treated 10 patients with pyocele of the lacrimal sac, who did not want to undergo operative intervention. A temporary nasolacrimal stent was placed in the nasolacrimal duct, and the pussy material was collected for microbiological examination to adjust the preliminary antibiotic treatment which was given systemically and locally. The stents were removed after the infection had subsided clinically. Three years later, there was a recurrence of the infection in only 1 patient. This internal drainage of the lacrimal sac, combined with systemic and local antibiotics, was successful in 90% of the patients. PMID:12566875

  10. Early and late assessment of internal drainage of chronic dacryocystitis.

    PubMed

    Mansour, Khaled; Janssen, Alfred G; van Bijsterveld, O Paul

    2003-01-01

    To evaluate the efficacy of internal drainage of a lacrimal abscess, we treated 10 patients with pyocele of the lacrimal sac, who did not want to undergo operative intervention. A temporary nasolacrimal stent was placed in the nasolacrimal duct, and the pussy material was collected for microbiological examination to adjust the preliminary antibiotic treatment which was given systemically and locally. The stents were removed after the infection had subsided clinically. Three years later, there was a recurrence of the infection in only 1 patient. This internal drainage of the lacrimal sac, combined with systemic and local antibiotics, was successful in 90% of the patients.

  11. An assessment of PTV margin based on actual accumulated dose for prostate cancer radiotherapy

    NASA Astrophysics Data System (ADS)

    Wen, Ning; Kumarasiri, Akila; Nurushev, Teamour; Burmeister, Jay; Xing, Lei; Liu, Dezhi; Glide-Hurst, Carri; Kim, Jinkoo; Zhong, Hualiang; Movsas, Benjamin; Chetty, Indrin J.

    2013-11-01

    The purpose of this work is to present the results of a margin reduction study involving dosimetric and radiobiologic assessment of cumulative dose distributions, computed using an image guided adaptive radiotherapy based framework. Eight prostate cancer patients, treated with 7-9, 6 MV, intensity modulated radiation therapy (IMRT) fields, were included in this study. The workflow consists of cone beam CT (CBCT) based localization, deformable image registration of the CBCT to simulation CT image datasets (SIM-CT), dose reconstruction and dose accumulation on the SIM-CT, and plan evaluation using radiobiological models. For each patient, three IMRT plans were generated with different margins applied to the CTV. The PTV margin for the original plan was 10 mm and 6 mm at the prostate/anterior rectal wall interface (10/6 mm) and was reduced to: (a) 5/3 mm, and (b) 3 mm uniformly. The average percent reductions in predicted tumor control probability (TCP) in the accumulated (actual) plans in comparison to the original plans over eight patients were 0.4%, 0.7% and 11.0% with 10/6 mm, 5/3 mm and 3 mm uniform margin respectively. The mean increase in predicted normal tissue complication probability (NTCP) for grades 2/3 rectal bleeding for the actual plans in comparison to the static plans with margins of 10/6, 5/3 and 3 mm uniformly was 3.5%, 2.8% and 2.4% respectively. For the actual dose distributions, predicted NTCP for late rectal bleeding was reduced by 3.6% on average when the margin was reduced from 10/6 mm to 5/3 mm, and further reduced by 1.0% on average when the margin was reduced to 3 mm. The average reduction in complication free tumor control probability (P+) in the actual plans in comparison to the original plans with margins of 10/6, 5/3 and 3 mm was 3.7%, 2.4% and 13.6% correspondingly. The significant reduction of TCP and P+ in the actual plan with 3 mm margin came from one outlier, where individualizing patient treatment plans through margin adaptation

  12. Assessment of inhalation and ingestion doses from exposure to radon gas using passive and active detecting techniques

    SciTech Connect

    Ismail, A. H.; Jafaar, M. S.

    2011-07-01

    The aim of this study was to assess an environmental hazard of radon exhalation rate from the samples of soil and drinking water in selected locations in Iraqi Kurdistan, passive (CR-39NTDs) and active (RAD7) detecting techniques has been employed. Long and short term measurements of emitted radon concentrations were estimated for 124 houses. High and lower radon concentration in soil samples was in the cities of Hajyawa and Er. Tyrawa, respectively. Moreover, for drinking water, high and low radon concentration was in the cities of Similan and Kelak, respectively. A comparison between our results with that mentioned in international reports had been done. Average annual dose equivalent to the bronchial epithelium, stomach and whole body in the cities of Kelak and Similan are estimated, and it was varied from 0.04{+-}0.01 mSv to 0.547{+-}0.018 mSv, (2.832{+-}0.22)x10{sup -5} to (11.972{+-}2.09)x10{sup -5} mSv, and (0.056 {+-}0.01) x10{sup -5} to (0.239{+-}0.01)x10{sup -5} mSv, respectively. This indicated that the effects of dissolved radon on the bronchial epithelium are much than on the stomach and whole body. (authors)

  13. Assessment of the safety of a third dose of pneumococcal polysaccharide vaccine in the Vaccine Safety Datalink population.

    PubMed

    Jackson, Lisa A; Nelson, Jennifer C; Whitney, Cynthia G; Neuzil, Kathleen M; Benson, Patti; Malais, Darren; Baggs, James; Mullooly, John; Black, Steve; Shay, David K

    2006-01-12

    There is little information on the safety of administration of a third dose of pneumococcal polysaccharide vaccine (PPV). The authors conducted a retrospective assessment of 316,995 adult members of three health maintenance organizations who had received one, two, or three PPV doses. Medical encounters associated with diagnosis codes potentially indicative of an injection site reaction in the week following a first, second, or third PPV dose were identified. These presumptive events occurred in 0.3% (911/279504) of the first PPV group, 0.7% (257/36888) of the second PPV group, and 0.5% (3/603) of the third PPV group (p>0.5 for both comparisons with the third PPV group). These findings do not suggest that a third PPV dose is associated with an increased risk of medically attended injection site reactions compared with a first or second PPV dose.

  14. EDITORIAL: THE INTERNATIONAL CONFERENCE ON LIFE CYCLE ASSESSMENT

    EPA Science Inventory

    This is a special issue of Journal of Life Cycle Assessment that includes selected papers from the Internatonal Conference and Exhibition on Life Cycle Assessment (InLCA). In April 2000, the EPA, with co-organizer IERE, held the InLCA conferencethat attracted over 265 attendees (...

  15. Internal Indpendent Assessment Report - CASTLE-PX SQA

    SciTech Connect

    Whitney, D. M.; Dancy, L. L.; Pope, V. L.

    2015-04-01

    This IIA assessed the flow down of institutional 830 Software Quality Assurance requirements through three required document templates to the CASTLE-PX software effort and the implementation of those SQA requirements. The templates flow down the DOE O 414.1D consensus standard requirements for Safety Software. This assessment did not include the flow down of NAP-24, Weapon Quality Policy, requirements. The assessment focused on the CASTLE-PX project’s software development and release processes. It did not assess Pantex’s acceptance or usage of the software. The assessment resulted in 3 Deficiencies, 5 Observations, 1 Recommendation, and 3 Strengths. Overall the CASTLE-PX team demonstrated it values quality and has worked to integrate quality practices into its software development processes. Improvement in documentation will enhance their SQA implementation.

  16. Establishment of an x-ray standard calibration curve by conventional dicentric analysis as prerequisite for accurate radiation dose assessment.

    PubMed

    Beinke, Christina; Braselmann, Herbert; Meineke, Viktor

    2010-02-01

    The dicentric assay was established to carry out cytogenetic biodosimetry after suspected radiation overexposure, including a comprehensive documentation system to record the processing of the specimen, all data, results, and stored information. As an essential prerequisite for retrospective radiation dose assessment, a dose-response curve for dicentric induction by in vitro x-ray irradiation of peripheral blood samples was produced. The accelerating potential was 240 kV (maximum photon energy: 240 keV). A total of 8,377 first-division metaphases of four healthy volunteers were analyzed after exposure to doses ranging from 0.2 to 4.0 Gy at a dose rate of 1.0 Gy min. The background level of aberrations at 0-dose was determined by the analysis of 14,522 first-division metaphases obtained from unirradiated blood samples of 10 healthy volunteers. The dose-response relationship follows a linear-quadratic equation, Y = c + alphaD + betaD, with the coefficients c = 0.0005 +/- 0.0002, alpha = 0.043 +/- 0.006, and beta = 0.063 +/- 0.004. The technical competence and the quality of the calibration curve were assessed by determination of the dose prediction accuracy in an in vitro experiment simulating whole-body exposures within a range of 0.2 to 2.0 Gy. Dose estimations were derived by scoring up to 500-1,000 metaphase spreads or more (full estimation mode) and by evaluating only 50 metaphase spreads (triage mode) per subject. The triage mode was applied by performing manifold evaluations of the full estimation data in order to test the robustness of the curve for triage purposes and to assess possible variations among the estimated doses referring to a single exposure and preparation.

  17. Between Pandemonium and Order: Assessing International Organizations and Multiethnic Societies.

    ERIC Educational Resources Information Center

    Lauren, Paul Gordon

    1996-01-01

    Provides a concise and fascinating overview of the historical development of international efforts responding to incidents of atrocities and oppression. Traces this humanitarian impulse from the mid-19th century, through the League of Nations, to the current United Nations. Considers the limitations and potentialities of current endeavors. (MJP)

  18. A petrologic assessment of internal zonation in granitic pegmatites

    NASA Astrophysics Data System (ADS)

    London, David

    2014-01-01

    Cameron et al. (1949) devised the nomenclature and delineated the patterns of internal zonation within granitic pegmatites that are in use today. Zonation in pegmatites is manifested both in mineralogy and in fabric (mineral habits and rock texture). Although internal zonation is a conspicuous and distinctive attribute of pegmatites, there has been no thorough effort to explain that mineralogical and textural evolution in relation to the zoning sequence presented by Cameron et al. (1949), or in terms of the comprehensive petrogenesis of pegmatite bodies (pressure, temperature, and whole-rock composition). This overview of internal zonation within granitic pegmatites consists of four principal parts: (1) a historic review of the subject, (2) a summary of the current understanding of the pegmatite-forming environment, (3) the processes that determine mineralogical and textural zonation in pegmatites, and (4) the applications of those processes to each of the major zones of pegmatites. Based on the concepts presented in London (2008), the fundamental determinates of the internal evolution of pegmatite zones are: (1) the bulk composition of melt, (2) the magnitude of liquidus undercooling prior to the onset of crystallization, (3) subsolidus isothermal fractional crystallization, by which eutectic or minimum melts fractionate by sequential, non-eutectic crystallization, (4) constitutional zone refining via the creation of a boundary layer liquid, chemically distinct from but continuous with the bulk melt at the crystallization front, and (5) far-field chemical diffusion, the long-range and coordinated diffusion of ions, particularly of alkalis and alkaline earths, through melt.

  19. Planning for Change: Assessing Internal and External Environmental Factors.

    ERIC Educational Resources Information Center

    Coffey, Janis Cox

    This report provides, first, an overview of the external and internal environmental factors affecting planning in California's community colleges; and, second, an examination of the influence of the demographics of the Los Rios Community College District (LRCCD). After an executive summary, introductory material discusses ways in which change can…

  20. International News Communication Research: A Meta-Analytic Assessment.

    ERIC Educational Resources Information Center

    Tsang, Kuo-jen

    A survey of "Journalism Quarterly,""Gazette,""Public Opinion Quarterly,""Journal of Broadcasting," and "Journal of Communication" reveals that the early research on international news flow or coverage emphasized two aspects of news: (1) how the United States was portrayed in the media of other nations, and (2) what the effect of American society…

  1. Assessing Domestic vs. International Student Perceptions and Attitudes of Plagiarism

    ERIC Educational Resources Information Center

    Doss, Daniel Adrian; Henley, Russ; Gokaraju, Balakrishna; McElreath, David; Lackey, Hilliard; Hong, Qiuqi; Miller, Lauren

    2016-01-01

    The authors examined students' perceptions of plagiarism from a higher education teaching institution within the U.S. southeast. This study employed a five-point Likert-scale to examine differences of perceptions between domestic versus international students. Statistically significant outcomes were observed regarding the notions that plagiarism…

  2. Internal and External Ethnic Assessments in Eastern Europe

    ERIC Educational Resources Information Center

    Ahmed, Patricia; Feliciano, Cynthia; Emigh, Rebecca Jean

    2007-01-01

    Survey data for majority and minority ethnicities in Bulgaria, Hungary, Romania and Russia illustrate how internal ethnic identification and other social characteristics influence external ethnic classification. Logistic regressions show how interviewers use negative social characteristics (poverty, low education) to classify respondents as Roma…

  3. Predictive Bayesian microbial dose-response assessment based on suggested self-organization in primary illness response: Cryptosporidium parvum.

    PubMed

    Englehardt, James D; Swartout, Jeff

    2006-04-01

    The probability of illness caused by very low doses of pathogens cannot generally be tested due to the numbers of subjects that would be needed, though such assessments of illness dose response are needed to evaluate drinking water standards. A predictive Bayesian dose-response assessment method was proposed previously to assess the unconditional probability of illness from available information and avoid the inconsistencies of confidence-based approaches. However, the method uses knowledge of the conditional dose-response form, and this form is not well established for the illness endpoint. A conditional parametric dose-response function for gastroenteric illness is proposed here based on simple numerical models of self-organized host-pathogen systems and probabilistic arguments. In the models, illnesses terminate when the host evolves by processes of natural selection to a self-organized critical value of wellness. A generalized beta-Poisson illness dose-response form emerges for the population as a whole. Use of this form is demonstrated in a predictive Bayesian dose-response assessment for cryptosporidiosis. Results suggest that a maximum allowable dose of 5.0 x 10(-7) oocysts/exposure (e.g., 2.5 x 10(-7) oocysts/L water) would correspond with the original goals of the U.S. Environmental Protection Agency Surface Water Treatment Rule, considering only primary illnesses resulting from Poisson-distributed pathogen counts. This estimate should be revised to account for non-Poisson distributions of Cryptosporidium parvum in drinking water and total response, considering secondary illness propagation in the population. PMID:16573639

  4. International Code Assessment and Applications Program: Summary of code assessment studies concerning RELAP5/MOD2, RELAP5/MOD3, and TRAC-B. International Agreement Report

    SciTech Connect

    Schultz, R.R.

    1993-12-01

    Members of the International Code Assessment Program (ICAP) have assessed the US Nuclear Regulatory Commission (USNRC) advanced thermal-hydraulic codes over the past few years in a concerted effort to identify deficiencies, to define user guidelines, and to determine the state of each code. The results of sixty-two code assessment reviews, conducted at INEL, are summarized. Code deficiencies are discussed and user recommended nodalizations investigated during the course of conducting the assessment studies and reviews are listed. All the work that is summarized was done using the RELAP5/MOD2, RELAP5/MOD3, and TRAC-B codes.

  5. Participation in International Large-Scale Assessments from a US Perspective

    ERIC Educational Resources Information Center

    Plisko, Valena White

    2013-01-01

    International large-scale assessments (ILSAs) play a distinct role in the United States' decentralized federal education system. Separate from national and state assessments, they offer an external, objective measure for the United States to assess student performance comparatively with other countries and over time. The US engagement in…

  6. International Space Station (ISS) Plasma Contactor Unit (PCU) Utilization Plan Assessment Update

    NASA Technical Reports Server (NTRS)

    Hernandez-Pellerano, Amri; Iannello, Christopher J.; Wollack, Edward J.; Wright, Kenneth H.; Garrett, Henry B.; Ging, Andrew T.; Katz, Ira; Keith, R. Lloyd; Minow, Joseph I.; Willis, Emily M.; Schneider, Todd A.; Whittlesey, Albert C.

    2014-01-01

    The NASA Engineering and Safety Center (NESC) received a request to support the Assessment of the International Space Station (ISS) Plasma Contactor Unit (PCU) Utilization Update. The NESC conducted an earlier assessment of the use of the PCU in 2009. This document contains the outcome of the assessment update.

  7. Assessment for Learning in International Contexts: Exploring Shared and Divergent Dimensions in Teacher Values and Practices

    ERIC Educational Resources Information Center

    Warwick, Paul; Shaw, Stuart; Johnson, Martin

    2015-01-01

    The Assessment for Learning in International Contexts (ALIC) project sought to extend knowledge around teachers' understandings of Assessment for Learning (AfL). Using a modified version of a survey item devised by James and Pedder for use with teachers in England, evidence was gathered about the assessment practices that were highly valued…

  8. Dose Estimation for a Study of Nuclear Workers in France, the United Kingdom and the United States of America: Methods for the International Nuclear Workers Study (INWORKS)

    PubMed Central

    Thierry-Chef, I.; Richardson, D. B.; Daniels, R. D.; Gillies, M.; Hamra, G. B.; Haylock, R.; Kesminiene, A.; Laurier, D.; Leuraud, K.; Moissonnier, M.; O'Hagan, J.; Schubauer-Berigan, M. K.; Cardis, E.

    2016-01-01

    In the framework of the International Nuclear Workers Study conducted in France, the UK and the U.S. (INWORKS), updated and expanded methods were developed to convert recorded doses of ionizing radiation to estimates of organ doses or individual personal dose equivalent [Hp(10)] for a total number of 308,297 workers, including 40,035 women. This approach accounts for differences in dosimeter response to predominant workplace energy and geometry of exposure and for the recently published ICRP report on dose coefficients for men and women separately. The overall mean annual individual personal dose equivalent, including zero doses, is 1.73 mSv [median = 0.42; interquartile range (IQR): 0.07, 1.59]. Associated individual organ doses were estimated. INWORKS includes workers who had potential for exposure to neutrons. Therefore, we analyzed neutron dosimetry data to identify workers potentially exposed to neutrons. We created a time-varying indicator for each worker, classifying them according to whether they had a positive recorded neutron dose and if so, whether their neutron dose ever exceeded 10% of their total external penetrating radiation dose. The number of workers flagged as being exposed to neutrons was 13% for the full cohort, with 15% of the cohort in France, 12% of the cohort in the UK and 14% in the U.S. We also used available information on in vivo and bioassay monitoring to identify workers with known depositions or suspected internal contaminations. As a result of this work, information is now available that will allow various types of sensitivity analyses. PMID:26010707

  9. Dose Estimation for a Study of Nuclear Workers in France, the United Kingdom and the United States of America: Methods for the International Nuclear Workers Study (INWORKS).

    PubMed

    Thierry-Chef, I; Richardson, D B; Daniels, R D; Gillies, M; Hamra, G B; Haylock, R; Kesminiene, A; Laurier, D; Leuraud, K; Moissonnier, M; O'Hagan, J; Schubauer-Berigan, M K; Cardis, E

    2015-06-01

    In the framework of the International Nuclear Workers Study conducted in France, the UK and the U.S. (INWORKS), updated and expanded methods were developed to convert recorded doses of ionizing radiation to estimates of organ doses or individual personal dose equivalent [H(p)(10)] for a total number of 308,297 workers, including 40,035 women. This approach accounts for differences in dosimeter response to predominant workplace energy and geometry of exposure and for the recently published ICRP report on dose coefficients for men and women separately. The overall mean annual individual personal dose equivalent, including zero doses, is 1.73 mSv [median = 0.42; interquartile range (IQR): 0.07, 1.59]. Associated individual organ doses were estimated. INWORKS includes workers who had potential for exposure to neutrons. Therefore, we analyzed neutron dosimetry data to identify workers potentially exposed to neutrons. We created a time-varying indicator for each worker, classifying them according to whether they had a positive recorded neutron dose and if so, whether their neutron dose ever exceeded 10% of their total external penetrating radiation dose. The number of workers flagged as being exposed to neutrons was 13% for the full cohort, with 15% of the cohort in France, 12% of the cohort in the UK and 14% in the U.S. We also used available information on in vivo and bioassay monitoring to identify workers with known depositions or suspected internal contaminations. As a result of this work, information is now available that will allow various types of sensitivity analyses.

  10. Application of a generic biosphere model for dose assessments to five European sites.

    PubMed

    Chen, Q; Kowe, R; Mobbs, S F; Pröhl, G; Olyslaegers, G; Zeevaert, T; Kanyar, B; Pinedo, P; Simón, I; Bergström, U; Hallberg, B; Jones, J A; Oatway, W B; Watson, S J

    2006-06-01

    The BIOMOSA (BIOsphere MOdels for Safety Assessment of radioactive waste disposal) project was part of the EC fifth framework research programme. The main goal of this project was to improve the scientific basis for the application of biosphere models in the framework of long-term safety studies of radioactive waste disposal facilities and to enhance the confidence in using biosphere models for performance assessments. The study focused on the development and application of a generic biosphere tool BIOGEM (BIOsphere GEneric Model) using the IAEA BIOMASS reference biosphere methodology, and the comparison between BIOGEM and five site-specific biosphere models. The site-specific models and the generic model were applied to five typical locations in Europe, resulting in estimates of the annual effective individual doses to the critical groups and the ranking of the importance of the exposure pathways for each of the sites. Uncertainty in the results was also estimated by means of stochastic calculations based on variation of the site-specific parameter values. This paper describes the generic model and the deterministic and stochastic results obtained when it was applied to the five sites. Details of the site-specific models and the corresponding results are described in two companion papers. This paper also presents a comparison of the results between the generic model and site-specific models. In general, there was an acceptable agreement of the BIOGEM for both the deterministic and stochastic results with the results from the site-specific models.

  11. Radionuclides in the adriatic sea and related dose-rate assessment for marine biota.

    PubMed

    Petrinec, Branko; Strok, Marko; Franic, Zdenko; Smodis, Borut; Pavicic-Hamer, Dijana

    2013-01-01

    Artificial and natural radionuclides were determined in the Adriatic Sea in the seawater and sediment samples in the period from 2007 to 2011. The sampling areas were coastal waters of Slovenia, Croatia and Albania, together with the deepest part of the Adriatic in South Adriatic Pit and Otranto strait. Sampling locations were chosen to take into account all major geological and geographical features of this part of the Adriatic Sea and possible coastal influences. After initial sample preparation steps, samples were measured by gamma-ray spectrometry. In the seawater ⁴⁰K activity concentrations were in the range from 6063 to 10519 Bq m⁻³, ¹³⁷Cs from 1.6 to 3.8 Bq m⁻³, ²²⁶Ra from 23 to 31 Bq m⁻³, ²²⁸Ra from 1 to 25 Bq m⁻³ and ²³⁸U from 64 to 490 Bq m⁻³. The results of sediment samples showed that ⁴⁰K was in the range from 87 to 593 Bq kg⁻¹, ¹³⁷Cs from 0.8 to 7.3 Bq kg⁻¹, ²²⁶Ra from 18 to 35 Bq kg⁻¹, ²²⁸Ra from 4 to 29 Bq kg⁻¹ and ²³⁸U from 14 to 120 Bq kg⁻¹. In addition, the ERICA Assessment Tool was used for the assessment of dose rates for reference marine organisms using the activity concentrations of the determined radionuclides in seawater. The assessment showed that for the most of the organisms, the dose rates were within the background levels, indicating that the determined values for seawater does not pose a significant risk for the most of marine biota. In the study, the results are critically discussed and compared with other similar studies worldwide. Generally, the activity concentrations of the examined radionuclides did not differ from those reported for the rest of the Mediterranean Sea.

  12. Radiation Hormesis: Historical Perspective and Implications for Low-Dose Cancer Risk Assessment

    PubMed Central

    Vaiserman, Alexander M.

    2010-01-01

    Current guidelines for limiting exposure of humans to ionizing radiation are based on the linear-no-threshold (LNT) hypothesis for radiation carcinogenesis under which cancer risk increases linearly as the radiation dose increases. With the LNT model even a very small dose could cause cancer and the model is used in establishing guidelines for limiting radiation exposure of humans. A slope change at low doses and dose rates is implemented using an empirical dose and dose rate effectiveness factor (DDREF). This imposes usually unacknowledged nonlinearity but not a threshold in the dose-response curve for cancer induction. In contrast, with the hormetic model, low doses of radiation reduce the cancer incidence while it is elevated after high doses. Based on a review of epidemiological and other data for exposure to low radiation doses and dose rates, it was found that the LNT model fails badly. Cancer risk after ordinarily encountered radiation exposure (medical X-rays, natural background radiation, etc.) is much lower than projections based on the LNT model and is often less than the risk for spontaneous cancer (a hormetic response). Understanding the mechanistic basis for hormetic responses will provide new insights about both risks and benefits from low-dose radiation exposure. PMID:20585444

  13. CANCER RISKS ATTRIBUTABLE TO LOW DOSES OF IONIZING RADIATION - ASSESSING WHAT WE REALLY KNOW?

    EPA Science Inventory

    Cancer Risks Attributable to Low Doses of Ionizing Radiation - What Do We Really Know?

    Abstract
    High doses of ionizing radiation clearly produce deleterious consequences in humans including, but not exclusively, cancer induction. At very low radiation doses the situatio...

  14. Radioactive contamination in the Arctic--sources, dose assessment and potential risks.

    PubMed

    Strand, P; Howard, B J; Aarkrog, A; Balonov, M; Tsaturov, Y; Bewers, J M; Salo, A; Sickel, M; Bergman, R; Rissanen, K

    2002-01-01

    Arctic residents, whose diets comprise a large proportion of traditional terrestrial and freshwater foodstuffs, have received the highest radiation exposures to artificial radionuclides in the Arctic. Doses to members of both the average population and selected indigenous population groups in the Arctic depend on the rates of consumption of locally-derived terrestrial and freshwater foodstuffs, including reindeer/caribou meat, freshwater fish, goat cheese, berries, mushrooms and lamb. The vulnerability of arctic populations, especially indigenous peoples, to radiocaesium deposition is much greater than for temperate populations due to the importance of terrestrial, semi-natural exposure pathways where there is high radiocaesium transfer and a long ecological half-life for this radionuclide. In contrast, arctic residents with diets largely comprising marine foodstuffs have received comparatively low radiation exposures because of the lower levels of contamination of marine organisms. Using arctic-specific information, the predicted collective dose is five times higher than that estimated by UNSCEAR for temperate areas. The greatest threats to human health and the environment posed by human and industrial activities in the Arctic are associated with the potential for accidents in the civilian and military nuclear sectors. Of most concern are the consequences of potential accidents in nuclear power plant reactors, during the handling and storage of nuclear weapons, in the decommissioning of nuclear submarines and in the disposal of spent nuclear fuel from vessels. It is important to foster a close association between risk assessment and practical programmes for the purposes of improving monitoring, formulating response strategies and implementing action plans. PMID:11936613

  15. Web-based training course for evaluating radiological dose assessment in NRC's license termination process.

    PubMed

    Lepoire, D; Richmond, P; Cheng, J-J; Kamboj, S; Arnish, J; Chen, S Y; Barr, C; McKenney, C

    2008-08-01

    As part of the requirement for terminating the licenses of nuclear power plants or other nuclear facilities, license termination plans or decommissioning plans are submitted by the licensee to the U.S. Nuclear Regulatory Commission (NRC) for review and approval. Decommissioning plans generally refer to the decommissioning of nonreactor facilities, while license termination plans specifically refer to the decommissioning of nuclear reactor facilities. To provide a uniform and consistent review of dose modeling aspects of these plans and to address NRC-wide knowledge management issues, the NRC, in 2006, commissioned Argonne National Laboratory to develop a Web-based training course on reviewing radiological dose assessments for license termination. The course, which had first been developed in 2005 to target specific aspects of the review processes for license termination plans and decommissioning plans, evolved from a live classroom course into a Web-based training course in 2006. The objective of the Web-based training course is to train NRC staff members (who have various relevant job functions and are located at headquarters, regional offices, and site locations) to conduct an effective review of dose modeling in accordance with the latest NRC guidance, including NUREG-1757, Volumes 1 and 2. The exact size of the staff population who will receive the training has not yet been accurately determined but will depend on various factors such as the decommissioning activities at the NRC. This Web-based training course is designed to give NRC staff members modern, flexible access to training. To this end, the course is divided into 16 modules: 9 core modules that deal with basic topics, and 7 advanced modules that deal with complex issues or job-specific topics. The core and advanced modules are tailored to various NRC staff members with different job functions. The Web-based system uses the commercially available software Articulate, which incorporates audio, video

  16. Web-based training course for evaluating radiological dose assessment in NRC's license termination process.

    PubMed

    Lepoire, D; Richmond, P; Cheng, J-J; Kamboj, S; Arnish, J; Chen, S Y; Barr, C; McKenney, C

    2008-08-01

    As part of the requirement for terminating the licenses of nuclear power plants or other nuclear facilities, license termination plans or decommissioning plans are submitted by the licensee to the U.S. Nuclear Regulatory Commission (NRC) for review and approval. Decommissioning plans generally refer to the decommissioning of nonreactor facilities, while license termination plans specifically refer to the decommissioning of nuclear reactor facilities. To provide a uniform and consistent review of dose modeling aspects of these plans and to address NRC-wide knowledge management issues, the NRC, in 2006, commissioned Argonne National Laboratory to develop a Web-based training course on reviewing radiological dose assessments for license termination. The course, which had first been developed in 2005 to target specific aspects of the review processes for license termination plans and decommissioning plans, evolved from a live classroom course into a Web-based training course in 2006. The objective of the Web-based training course is to train NRC staff members (who have various relevant job functions and are located at headquarters, regional offices, and site locations) to conduct an effective review of dose modeling in accordance with the latest NRC guidance, including NUREG-1757, Volumes 1 and 2. The exact size of the staff population who will receive the training has not yet been accurately determined but will depend on various factors such as the decommissioning activities at the NRC. This Web-based training course is designed to give NRC staff members modern, flexible access to training. To this end, the course is divided into 16 modules: 9 core modules that deal with basic topics, and 7 advanced modules that deal with complex issues or job-specific topics. The core and advanced modules are tailored to various NRC staff members with different job functions. The Web-based system uses the commercially available software Articulate, which incorporates audio, video

  17. Assessing the carcinogenic potential of low-dose exposures to chemical mixtures in the environment: the challenge ahead.

    PubMed

    Goodson, William H; Lowe, Leroy; Carpenter, David O; Gilbertson, Michael; Manaf Ali, Abdul; Lopez de Cerain Salsamendi, Adela; Lasfar, Ahmed; Carnero, Amancio; Azqueta, Amaya; Amedei, Amedeo; Charles, Amelia K; Collins, Andrew R; Ward, Andrew; Salzberg, Anna C; Colacci, Annamaria; Olsen, Ann-Karin; Berg, Arthur; Barclay, Barry J; Zhou, Binhua P; Blanco-Aparicio, Carmen; Baglole, Carolyn J; Dong, Chenfang; Mondello, Chiara; Hsu, Chia-Wen; Naus, Christian C; Yedjou, Clement; Curran, Colleen S; Laird, Dale W; Koch, Daniel C; Carlin, Danielle J; Felsher, Dean W; Roy, Debasish; Brown, Dustin G; Ratovitski, Edward; Ryan, Elizabeth P; Corsini, Emanuela; Rojas, Emilio; Moon, Eun-Yi; Laconi, Ezio; Marongiu, Fabio; Al-Mulla, Fahd; Chiaradonna, Ferdinando; Darroudi, Firouz; Martin, Francis L; Van Schooten, Frederik J; Goldberg, Gary S; Wagemaker, Gerard; Nangami, Gladys N; Calaf, Gloria M; Williams, Graeme; Wolf, Gregory T; Koppen, Gudrun; Brunborg, Gunnar; Lyerly, H Kim; Krishnan, Harini; Ab Hamid, Hasiah; Yasaei, Hemad; Sone, Hideko; Kondoh, Hiroshi; Salem, Hosni K; Hsu, Hsue-Yin; Park, Hyun Ho; Koturbash, Igor; Miousse, Isabelle R; Scovassi, A Ivana; Klaunig, James E; Vondráček, Jan; Raju, Jayadev; Roman, Jesse; Wise, John Pierce; Whitfield, Jonathan R; Woodrick, Jordan; Christopher, Joseph A; Ochieng, Josiah; Martinez-Leal, Juan Fernando; Weisz, Judith; Kravchenko, Julia; Sun, Jun; Prudhomme, Kalan R; Narayanan, Kannan Badri; Cohen-Solal, Karine A; Moorwood, Kim; Gonzalez, Laetitia; Soucek, Laura; Jian, Le; D'Abronzo, Leandro S; Lin, Liang-Tzung; Li, Lin; Gulliver, Linda; McCawley, Lisa J; Memeo, Lorenzo; Vermeulen, Louis; Leyns, Luc; Zhang, Luoping; Valverde, Mahara; Khatami, Mahin; Romano, Maria Fiammetta; Chapellier, Marion; Williams, Marc A; Wade, Mark; Manjili, Masoud H; Lleonart, Matilde E; Xia, Menghang; Gonzalez, Michael J; Karamouzis, Michalis V; Kirsch-Volders, Micheline; Vaccari, Monica; Kuemmerle, Nancy B; Singh, Neetu; Cruickshanks, Nichola; Kleinstreuer, Nicole; van Larebeke, Nik; Ahmed, Nuzhat; Ogunkua, Olugbemiga; Krishnakumar, P K; Vadgama, Pankaj; Marignani, Paola A; Ghosh, Paramita M; Ostrosky-Wegman, Patricia; Thompson, Patricia A; Dent, Paul; Heneberg, Petr; Darbre, Philippa; Sing Leung, Po; Nangia-Makker, Pratima; Cheng, Qiang Shawn; Robey, R Brooks; Al-Temaimi, Rabeah; Roy, Rabindra; Andrade-Vieira, Rafaela; Sinha, Ranjeet K; Mehta, Rekha; Vento, Renza; Di Fiore, Riccardo; Ponce-Cusi, Richard; Dornetshuber-Fleiss, Rita; Nahta, Rita; Castellino, Robert C; Palorini, Roberta; Abd Hamid, Roslida; Langie, Sabine A S; Eltom, Sakina E; Brooks, Samira A; Ryeom, Sandra; Wise, Sandra S; Bay, Sarah N; Harris, Shelley A; Papagerakis, Silvana; Romano, Simona; Pavanello, Sofia; Eriksson, Staffan; Forte, Stefano; Casey, Stephanie C; Luanpitpong, Sudjit; Lee, Tae-Jin; Otsuki, Takemi; Chen, Tao; Massfelder, Thierry; Sanderson, Thomas; Guarnieri, Tiziana; Hultman, Tove; Dormoy, Valérian; Odero-Marah, Valerie; Sabbisetti, Venkata; Maguer-Satta, Veronique; Rathmell, W Kimryn; Engström, Wilhelm; Decker, William K; Bisson, William H; Rojanasakul, Yon; Luqmani, Yunus; Chen, Zhenbang; Hu, Zhiwei

    2015-06-01

    Lifestyle factors are responsible for a considerable portion of cancer incidence worldwide, but credible estimates from the World Health Organization and the International Agency for Research on Cancer (IARC) suggest that the fraction of cancers attributable to toxic environmental exposures is between 7% and 19%. To explore the hypothesis that low-dose exposures to mixtures of chemicals in the environment may be combining to contribute to environmental carcinogenesis, we reviewed 11 hallmark phenotypes of cancer, multiple priority target sites for disruption in each area and prototypical chemical disruptors for all targets, this included dose-response characterizations, evidence of low-dose effects and cross-hallmark effects for all targets and chemicals. In total, 85 examples of chemicals were reviewed for actions on key pathways/mechanisms related to carcinogenesis. Only 15% (13/85) were found to have evidence of a dose-response threshold, whereas 59% (50/85) exerted low-dose effects. No dose-response information was found for the remaining 26% (22/85). Our analysis suggests that the cumulative effects of individual (non-carcinogenic) chemicals acting on different pathways, and a variety of related systems, organs, tissues and cells could plausibly conspire to produce carcinogenic synergies. Additional basic research on carcinogenesis and research focused on low-dose effects of chemical mixtures needs to be rigorously pursued before the merits of this hypothesis can be further advanced. However, the structure of the World Health Organization International Programme on Chemical Safety 'Mode of Action' framework should be revisited as it has inherent weaknesses that are not fully aligned with our current understanding of cancer biology. PMID:26106142

  18. Assessing the carcinogenic potential of low-dose exposures to chemical mixtures in the environment: the challenge ahead

    PubMed Central

    Goodson, William H.; Lowe, Leroy; Carpenter, David O.; Gilbertson, Michael; Manaf Ali, Abdul; Lopez de Cerain Salsamendi, Adela; Lasfar, Ahmed; Carnero, Amancio; Azqueta, Amaya; Amedei, Amedeo; Charles, Amelia K.; Collins, Andrew R.; Ward, Andrew; Salzberg, Anna C.; Colacci, Anna Maria; Olsen, Ann-Karin; Berg, Arthur; Barclay, Barry J.; Zhou, Binhua P.; Blanco-Aparicio, Carmen; Baglole, Carolyn J.; Dong, Chenfang; Mondello, Chiara; Hsu, Chia-Wen; Naus, Christian C.; Yedjou, Clement; Curran, Colleen S.; Laird, Dale W.; Koch, Daniel C.; Carlin, Danielle J.; Felsher, Dean W.; Roy, Debasish; Brown, Dustin G.; Ratovitski, Edward; Ryan, Elizabeth P.; Corsini, Emanuela; Rojas, Emilio; Moon, Eun-Yi; Laconi, Ezio; Marongiu, Fabio; Al-Mulla, Fahd; Chiaradonna, Ferdinando; Darroudi, Firouz; Martin, Francis L.; Van Schooten, Frederik J.; Goldberg, Gary S.; Wagemaker, Gerard; Nangami, Gladys N.; Calaf, Gloria M.; Williams, Graeme P.; Wolf, Gregory T.; Koppen, Gudrun; Brunborg, Gunnar; Lyerly, H. Kim; Krishnan, Harini; Ab Hamid, Hasiah; Yasaei, Hemad; Sone, Hideko; Kondoh, Hiroshi; Salem, Hosni K.; Hsu, Hsue-Yin; Park, Hyun Ho; Koturbash, Igor; Miousse, Isabelle R.; Scovassi, A.Ivana; Klaunig, James E.; Vondráček, Jan; Raju, Jayadev; Roman, Jesse; Wise, John Pierce; Whitfield, Jonathan R.; Woodrick, Jordan; Christopher, Joseph A.; Ochieng, Josiah; Martinez-Leal, Juan Fernando; Weisz, Judith; Kravchenko, Julia; Sun, Jun; Prudhomme, Kalan R.; Narayanan, Kannan Badri; Cohen-Solal, Karine A.; Moorwood, Kim; Gonzalez, Laetitia; Soucek, Laura; Jian, Le; D’Abronzo, Leandro S.; Lin, Liang-Tzung; Li, Lin; Gulliver, Linda; McCawley, Lisa J.; Memeo, Lorenzo; Vermeulen, Louis; Leyns, Luc; Zhang, Luoping; Valverde, Mahara; Khatami, Mahin; Romano, Maria Fiammetta; Chapellier, Marion; Williams, Marc A.; Wade, Mark; Manjili, Masoud H.; Lleonart, Matilde E.; Xia, Menghang; Gonzalez Guzman, Michael J.; Karamouzis, Michalis V.; Kirsch-Volders, Micheline; Vaccari, Monica; Kuemmerle, Nancy B.; Singh, Neetu; Cruickshanks, Nichola; Kleinstreuer, Nicole; van Larebeke, Nik; Ahmed, Nuzhat; Ogunkua, Olugbemiga; Krishnakumar, P.K.; Vadgama, Pankaj; Marignani, Paola A.; Ghosh, Paramita M.; Ostrosky-Wegman, Patricia; Thompson, Patricia A.; Dent, Paul; Heneberg, Petr; Darbre, Philippa; Leung, Po Sing; Nangia-Makker, Pratima; Cheng, Qiang (Shawn); Robey, R.Brooks; Al-Temaimi, Rabeah; Roy, Rabindra; Andrade-Vieira, Rafaela; Sinha, Ranjeet K.; Mehta, Rekha; Vento, Renza; Di Fiore, Riccardo; Ponce-Cusi, Richard; Dornetshuber-Fleiss, Rita; Nahta, Rita; Castellino, Robert C.; Palorini, Roberta; Hamid, Roslida A.; Langie, Sabine A.S.; Eltom, Sakina E.; Brooks, Samira A.; Ryeom, Sandra; Wise, Sandra S.; Bay, Sarah N.; Harris, Shelley A.; Papagerakis, Silvana; Romano, Simona; Pavanello, Sofia; Eriksson, Staffan; Forte, Stefano; Casey, Stephanie C.; Luanpitpong, Sudjit; Lee, Tae-Jin; Otsuki, Takemi; Chen, Tao; Massfelder, Thierry; Sanderson, Thomas; Guarnieri, Tiziana; Hultman, Tove; Dormoy, Valérian; Odero-Marah, Valerie; Sabbisetti, Venkata; Maguer-Satta, Veronique; Rathmell, W.Kimryn; Engström, Wilhelm; Decker, William K.; Bisson, William H.; Rojanasakul, Yon; Luqmani, Yunus; Chen, Zhenbang; Hu, Zhiwei

    2015-01-01

    Lifestyle factors are responsible for a considerable portion of cancer incidence worldwide, but credible estimates from the World Health Organization and the International Agency for Research on Cancer (IARC) suggest that the fraction of cancers attributable to toxic environmental exposures is between 7% and 19%. To explore the hypothesis that low-dose exposures to mixtures of chemicals in the environment may be combining to contribute to environmental carcinogenesis, we reviewed 11 hallmark phenotypes of cancer, multiple priority target sites for disruption in each area and prototypical chemical disruptors for all targets, this included dose-response characterizations, evidence of low-dose effects and cross-hallmark effects for all targets and chemicals. In total, 85 examples of chemicals were reviewed for actions on key pathways/mechanisms related to carcinogenesis. Only 15% (13/85) were found to have evidence of a dose-response threshold, whereas 59% (50/85) exerted low-dose effects. No dose-response information was found for the remaining 26% (22/85). Our analysis suggests that the cumulative effects of individual (non-carcinogenic) chemicals acting on different pathways, and a variety of related systems, organs, tissues and cells could plausibly conspire to produce carcinogenic synergies. Additional basic research on carcinogenesis and research focused on low-dose effects of chemical mixtures needs to be rigorously pursued before the merits of this hypothesis can be further advanced. However, the structure of the World Health Organization International Programme on Chemical Safety ‘Mode of Action’ framework should be revisited as it has inherent weaknesses that are not fully aligned with our current understanding of cancer biology. PMID:26106142

  19. Assessing the carcinogenic potential of low-dose exposures to chemical mixtures in the environment: the challenge ahead.

    PubMed

    Goodson, William H; Lowe, Leroy; Carpenter, David O; Gilbertson, Michael; Manaf Ali, Abdul; Lopez de Cerain Salsamendi, Adela; Lasfar, Ahmed; Carnero, Amancio; Azqueta, Amaya; Amedei, Amedeo; Charles, Amelia K; Collins, Andrew R; Ward, Andrew; Salzberg, Anna C; Colacci, Annamaria; Olsen, Ann-Karin; Berg, Arthur; Barclay, Barry J; Zhou, Binhua P; Blanco-Aparicio, Carmen; Baglole, Carolyn J; Dong, Chenfang; Mondello, Chiara; Hsu, Chia-Wen; Naus, Christian C; Yedjou, Clement; Curran, Colleen S; Laird, Dale W; Koch, Daniel C; Carlin, Danielle J; Felsher, Dean W; Roy, Debasish; Brown, Dustin G; Ratovitski, Edward; Ryan, Elizabeth P; Corsini, Emanuela; Rojas, Emilio; Moon, Eun-Yi; Laconi, Ezio; Marongiu, Fabio; Al-Mulla, Fahd; Chiaradonna, Ferdinando; Darroudi, Firouz; Martin, Francis L; Van Schooten, Frederik J; Goldberg, Gary S; Wagemaker, Gerard; Nangami, Gladys N; Calaf, Gloria M; Williams, Graeme; Wolf, Gregory T; Koppen, Gudrun; Brunborg, Gunnar; Lyerly, H Kim; Krishnan, Harini; Ab Hamid, Hasiah; Yasaei, Hemad; Sone, Hideko; Kondoh, Hiroshi; Salem, Hosni K; Hsu, Hsue-Yin; Park, Hyun Ho; Koturbash, Igor; Miousse, Isabelle R; Scovassi, A Ivana; Klaunig, James E; Vondráček, Jan; Raju, Jayadev; Roman, Jesse; Wise, John Pierce; Whitfield, Jonathan R; Woodrick, Jordan; Christopher, Joseph A; Ochieng, Josiah; Martinez-Leal, Juan Fernando; Weisz, Judith; Kravchenko, Julia; Sun, Jun; Prudhomme, Kalan R; Narayanan, Kannan Badri; Cohen-Solal, Karine A; Moorwood, Kim; Gonzalez, Laetitia; Soucek, Laura; Jian, Le; D'Abronzo, Leandro S; Lin, Liang-Tzung; Li, Lin; Gulliver, Linda; McCawley, Lisa J; Memeo, Lorenzo; Vermeulen, Louis; Leyns, Luc; Zhang, Luoping; Valverde, Mahara; Khatami, Mahin; Romano, Maria Fiammetta; Chapellier, Marion; Williams, Marc A; Wade, Mark; Manjili, Masoud H; Lleonart, Matilde E; Xia, Menghang; Gonzalez, Michael J; Karamouzis, Michalis V; Kirsch-Volders, Micheline; Vaccari, Monica; Kuemmerle, Nancy B; Singh, Neetu; Cruickshanks, Nichola; Kleinstreuer, Nicole; van Larebeke, Nik; Ahmed, Nuzhat; Ogunkua, Olugbemiga; Krishnakumar, P K; Vadgama, Pankaj; Marignani, Paola A; Ghosh, Paramita M; Ostrosky-Wegman, Patricia; Thompson, Patricia A; Dent, Paul; Heneberg, Petr; Darbre, Philippa; Sing Leung, Po; Nangia-Makker, Pratima; Cheng, Qiang Shawn; Robey, R Brooks; Al-Temaimi, Rabeah; Roy, Rabindra; Andrade-Vieira, Rafaela; Sinha, Ranjeet K; Mehta, Rekha; Vento, Renza; Di Fiore, Riccardo; Ponce-Cusi, Richard; Dornetshuber-Fleiss, Rita; Nahta, Rita; Castellino, Robert C; Palorini, Roberta; Abd Hamid, Roslida; Langie, Sabine A S; Eltom, Sakina E; Brooks, Samira A; Ryeom, Sandra; Wise, Sandra S; Bay, Sarah N; Harris, Shelley A; Papagerakis, Silvana; Romano, Simona; Pavanello, Sofia; Eriksson, Staffan; Forte, Stefano; Casey, Stephanie C; Luanpitpong, Sudjit; Lee, Tae-Jin; Otsuki, Takemi; Chen, Tao; Massfelder, Thierry; Sanderson, Thomas; Guarnieri, Tiziana; Hultman, Tove; Dormoy, Valérian; Odero-Marah, Valerie; Sabbisetti, Venkata; Maguer-Satta, Veronique; Rathmell, W Kimryn; Engström, Wilhelm; Decker, William K; Bisson, William H; Rojanasakul, Yon; Luqmani, Yunus; Chen, Zhenbang; Hu, Zhiwei

    2015-06-01

    Lifestyle factors are responsible for a considerable portion of cancer incidence worldwide, but credible estimates from the World Health Organization and the International Agency for Research on Cancer (IARC) suggest that the fraction of cancers attributable to toxic environmental exposures is between 7% and 19%. To explore the hypothesis that low-dose exposures to mixtures of chemicals in the environment may be combining to contribute to environmental carcinogenesis, we reviewed 11 hallmark phenotypes of cancer, multiple priority target sites for disruption in each area and prototypical chemical disruptors for all targets, this included dose-response characterizations, evidence of low-dose effects and cross-hallmark effects for all targets and chemicals. In total, 85 examples of chemicals were reviewed for actions on key pathways/mechanisms related to carcinogenesis. Only 15% (13/85) were found to have evidence of a dose-response threshold, whereas 59% (50/85) exerted low-dose effects. No dose-response information was found for the remaining 26% (22/85). Our analysis suggests that the cumulative effects of individual (non-carcinogenic) chemicals acting on different pathways, and a variety of related systems, organs, tissues and cells could plausibly conspire to produce carcinogenic synergies. Additional basic research on carcinogenesis and research focused on low-dose effects of chemical mixtures needs to be rigorously pursued before the merits of this hypothesis can be further advanced. However, the structure of the World Health Organization International Programme on Chemical Safety 'Mode of Action' framework should be revisited as it has inherent weaknesses that are not fully aligned with our current understanding of cancer biology.

  20. LANDSCAPE SCIENCES FOR ENVIRONMENTAL ASSESSMENT: A NATO FRAMEWORK FOR INTERNATIONAL COOPERATION

    EPA Science Inventory

    An international pilot study has been developed to explore the possibility of quantifying and assessing environmental condition, processes of land degradation, and subsequent impacts on natural and human resources by combining the advanced technologies of remote sensing, geograph...

  1. International Space Station Columbus Payload SoLACES Degradation Assessment

    NASA Technical Reports Server (NTRS)

    Hartman, William A.; Schmidl, William D.; Mikatarian, Ron; Soares, Carlos; Schmidtke, Gerhard; Erhardt, Christian

    2016-01-01

    SOLAR is a European Space Agency (ESA) payload deployed on the International Space Station (ISS) and located on the Columbus Laboratory. It is located on the Columbus External Payload Facility in a zenith location. The objective of the SOLAR payload is to study the Sun. The SOLAR payload consists of three instruments that allow for measurement of virtually the entire electromagnetic spectrum (17 nm to 2900 nm). The three payload instruments are SOVIM (SOlar Variable and Irradiance Monitor), SOLSPEC (SOLar SPECctral Irradiance measurements), and SolACES (SOLar Auto-Calibrating Extreme UV/UV Spectrophotometers).

  2. Assessment of internal conversion coefficients for anomalous electric dipole transitions.

    PubMed

    Gorozhankin, V M; Bé, M-M

    2008-01-01

    Sound quantitative knowledge of internal conversion coefficients (ICCs) is important when establishing decay schemes. ICCs are normally derived from efficiency tables and calculation, but for anomalous transitions and some electric dipole transitions (E1) in particular, theoretical values can differ considerably from the few available measured values. Experimentally measured ICCs and their ratios have been compiled, and these data have been used to propose a method based on the existence of measured ratios to determine the total ICC for such transitions. Comparisons have been made with the existing measured values, and good agreement was observed within the uncertainty limits.

  3. Scoping assessment of radiological doses to aquatic organisms and wildlife -- N Springs. [N Springs

    SciTech Connect

    Poston, T.M.; Soldat, J.K.

    1992-10-01

    Estimated does rates were determined for endemic biota inhabiting the N Springs area based primarily on spring water data collected from the first 6 months of 1991. Radiological dose estimates were computed from measured values of specific radionuclides and modeled levels of radionuclides using established computer codes. The highest doses were predicted in hypothetical populations of clams, fish-eating ducks, and rabbits. The calculated dose estimates did not exceed 1 rad/d, an administrative dose rate established by the US Department of Energy for the protection of native aquatic biota. An administrative dose rate has not been established for terrestrial wildlife.

  4. Scoping assessment of radiological doses to aquatic organisms and wildlife -- N Springs

    SciTech Connect

    Poston, T.M.; Soldat, J.K.

    1992-10-01

    Estimated does rates were determined for endemic biota inhabiting the N Springs area based primarily on spring water data collected from the first 6 months of 1991. Radiological dose estimates were computed from measured values of specific radionuclides and modeled levels of radionuclides using established computer codes. The highest doses were predicted in hypothetical populations of clams, fish-eating ducks, and rabbits. The calculated dose estimates did not exceed 1 rad/d, an administrative dose rate established by the US Department of Energy for the protection of native aquatic biota. An administrative dose rate has not been established for terrestrial wildlife.

  5. Assessment of Rationality of Fixed Dose Combinations Approved in CDSCO List

    PubMed Central

    Ganguly, Barna; Gor, Alpa

    2016-01-01

    Introduction Fixed Dose Combination (FDC) is highly popular in the Indian pharmaceutical market and has been particularly flourishing in the last few years. Though rationality status is not clear, the pharmaceutical industry has been manufacturing and marketing FDCs. Aim To assess rationality of FDCs enlisted in CDSCO list and marketing in India according to pharmacokinetic (FD) and pharmacodynamic (FD) reasoning and WHO rationality criteria. Materials and Methods In this study, 264 FDCs marketed in India from 2009 to 2014 from CDSCO list 2014 were included. Assessment was done on the basis of following parameters: 1) Year and system of FDC; 2) Dosage form; 3) Number of Active Pharmacological Ingredient (API); 4) Schedule of FDC; 5) The presence of the FDC and its ingredients in the WHO Essential Medicine List 2013 and National Essential Medicine List, India 2011; 6) FD and PK parameters of APIs of combination; 7) PK and PD interaction; 8) Safety parameters of ingredients in combination. Descriptive statistics in terms of frequency counts and percentages were used for variables. Results Out of total 264 FDCs selected, maximum number of combinations (112) were approved in 2010. System wise selection showed 51 (19.31%) FDCs were from cardiovascular system followed by 46 (17.42%) from pain/musculoskeletal system. Oral dosage form was found to be maximum with 200 (75.75%) combinations. According to schedules, 154 (58.33%) combinations were categorized under schedule H. There were 210 (79.54%) FDCs that had two API which was found to be maximum, whereas, only 3 (1.13%) combinations had 5 API. We could find possible PK and PD interactions in between API of 10 (3.78%) and 73 (27.65%) combinations respectively on basis of standard textbooks and references. Similarly dose reduction in API was seen in 58 (21.96%) FDCs. There were 123 (46.59%) FDCs had chances of increased ADRs due to its API. Out of 264 combinations, 52 combinations were rational (6-9), 75 combinations were

  6. Assessment of Professional Training Programmes in International Agricultural Research Institutions: The Case of ICRAF

    ERIC Educational Resources Information Center

    Wanjiku, Julliet; Mairura, Franklin; Place, Frank

    2010-01-01

    The following survey was undertaken in 2005 to assess the effectiveness of professional training activities in international agricultural research organizations that were undertaken between 1999 and 2002 at ICRAF (International Centre for Research in Agroforestry), now World Agroforestry Centre, Nairobi. Trainees were randomly selected from…

  7. Investigating the Impact of Cambridge International Assessments on U.S. Stakeholders: Student and Teacher Perceptions

    ERIC Educational Resources Information Center

    Shaw, Stuart

    2011-01-01

    As part of the continuing program to study the impact of its international assessments, the University of Cambridge International Examinations ("Cambridge") has undertaken a series of studies investigating the impact on a range of US stakeholders. This paper reports on research designed to respond to a series of washback and impact questions…