Sample records for internal dose coefficients

  1. Comparison of fluence-to-dose conversion coefficients for deuterons, tritons and helions.

    PubMed

    Copeland, Kyle; Friedberg, Wallace; Sato, Tatsuhiko; Niita, Koji

    2012-02-01

    Secondary radiation in aircraft and spacecraft includes deuterons, tritons and helions. Two sets of fluence-to-effective dose conversion coefficients for isotropic exposure to these particles were compared: one used the particle and heavy ion transport code system (PHITS) radiation transport code coupled with the International Commission on Radiological Protection (ICRP) reference phantoms (PHITS-ICRP) and the other the Monte Carlo N-Particle eXtended (MCNPX) radiation transport code coupled with modified BodyBuilder™ phantoms (MCNPX-BB). Also, two sets of fluence-to-effective dose equivalent conversion coefficients calculated using the PHITS-ICRP combination were compared: one used quality factors based on linear energy transfer; the other used quality factors based on lineal energy (y). Finally, PHITS-ICRP effective dose coefficients were compared with PHITS-ICRP effective dose equivalent coefficients. The PHITS-ICRP and MCNPX-BB effective dose coefficients were similar, except at high energies, where MCNPX-BB coefficients were higher. For helions, at most energies effective dose coefficients were much greater than effective dose equivalent coefficients. For deuterons and tritons, coefficients were similar when their radiation weighting factor was set to 2.

  2. Neutron fluence-to-dose conversion coefficients for embryo and fetus.

    PubMed

    Chen, Jing; Meyerhof, Dorothy; Vlahovich, Slavica

    2004-01-01

    A problem of concern in radiation protection is the exposure of pregnant women to ionising radiation, because of the high radiosensitivity of the embryo and fetus. External neutron exposure is of concern when pregnant women travel by aeroplane. Dose assessments for neutrons frequently rely on fluence-to-dose conversion coefficients. While neutron fluence-to-dose conversion coefficients for adults are recommended in International Commission on Radiological Protection publications and International Commission on Radiological Units and Measurements reports, conversion coefficients for embryos and fetuses are not given in the publications. This study undertakes Monte Carlo calculations to determine the mean absorbed doses to the embryo and fetus when the mother is exposed to neutron fields. A new set of mathematical models for the embryo and fetus has been developed at Health Canada and is used together with mathematical phantoms of a pregnant female developed at Oak Ridge National Laboratory. Monoenergetic neutrons from 1 eV to 10 MeV are considered in this study. The irradiation geometries include antero-posterior (AP), postero-anterior (PA), lateral (LAT), rotational (ROT) and isotropic (ISO) geometries. At each of these standard irradiation geometries, absorbed doses to the fetal brain and body are calculated; for the embryo at 8 weeks and the fetus at 3, 6 or 9 months. Neutron fluence-to-absorbed dose conversion coefficients are derived for the four age groups. Neutron fluence-to-equivalent dose conversion coefficients are given for the AP irradiations which yield the highest radiation dose to the fetal body in the neutron energy range considered here. The results indicate that for neutrons <10 MeV more protection should be given to pregnant women in the first trimester due to the higher absorbed dose per unit neutron fluence to the fetus.

  3. WORKER INHALATION DOSE COEFFICIENTS FOR RADIONUCLIDES NOT PREVIOUSLY IDENTIFIED IN ICRP PUBLICATION 68

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McLaughlin, David A; Schwahn, Scott O

    2011-01-01

    While inhalation dose coefficients are provided for about 800 radionuclides in International Commission on Radiological Protection (ICRP) Publication 68, many radionuclides of practical dosimetric interest for facilities such as high-energy proton accelerators are not specifically addressed, nor are organ-specific dose coefficients tabulated. The ICRP Publication 68 methodology is used, along with updated radiological decay data and metabolic data, to identify committed equivalent dose coefficients [hT(50)] and committed effective dose coefficients [e(50)] for radionuclides produced at the Oak Ridge National Laboratory s Spallation Neutron Source.

  4. Personal Dose Equivalent Conversion Coefficients For Photons To 1 GEV

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Veinot, K. G.; Hertel, N. E.

    2010-09-27

    The personal dose equivalent, H{sub p}(d), is the quantity recommended by the International Commission on Radiation Units and Measurements (ICRU) to be used as an approximation of the protection quantity Effective Dose when performing personal dosemeter calibrations. The personal dose equivalent can be defined for any location and depth within the body. Typically, the location of interest is the trunk where personal dosemeters are usually worn and in this instance a suitable approximation is a 30 cm X 30 cm X 15 cm slab-type phantom. For this condition the personal dose equivalent is denoted as H{sub p,slab}(d) and the depths,more » d, are taken to be 0.007 cm for non-penetrating and 1 cm for penetrating radiation. In operational radiation protection a third depth, 0.3 cm, is used to approximate the dose to the lens of the eye. A number of conversion coefficients for photons are available for incident energies up to several MeV, however, data to higher energies are limited. In this work conversion coefficients up to 1 GeV have been calculated for H{sub p,slab}(10) and H{sub p,slab}(3) using both the kerma approximation and by tracking secondary charged particles. For H{sub p}(0.07) the conversion coefficients were calculated, but only to 10 MeV due to computational limitations. Additionally, conversions from air kerma to H{sub p,slab}(d) have been determined and are reported. The conversion coefficients were determined for discrete incident energies, but analytical fits of the coefficients over the energy range are provided. Since the inclusion of air can influence the production of secondary charged particles incident on the face of the phantom conversion coefficients have been determined both in vacuo and with the source and slab immersed within a sphere in air. The conversion coefficients for the personal dose equivalent are compared to the appropriate protection quantity, calculated according to the recommendations of the latest International Commission on

  5. Organ and effective dose coefficients for cranial and caudal irradiation geometries: Neutrons

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Veinot, K. G.; Eckerman, K. F.; Hertel, N. E.

    Dose coefficients based on the recommendations of International Commission on Radiological Protection (ICRP) Publication 103 were reported in ICRP Publication 116, the revision of ICRP Publication 74 and ICRU Publication 57 for the six reference irradiation geometries: anterior–posterior, posterior–anterior, right and left lateral, rotational and isotropic. In this work, dose coefficients for neutron irradiation of the body with parallel beams directed upward from below the feet (caudal) and downward from above the head (cranial) using the ICRP 103 methodology were computed using the MCNP 6.1 radiation transport code. The dose coefficients were determined for neutrons ranging in energy from 10more » –9 MeV to 10 GeV. Here, at energies below about 500 MeV, the cranial and caudal dose coefficients are less than those for the six reference geometries reported in ICRP Publication 116.« less

  6. Organ and effective dose coefficients for cranial and caudal irradiation geometries: Neutrons

    DOE PAGES

    Veinot, K. G.; Eckerman, K. F.; Hertel, N. E.; ...

    2016-08-29

    Dose coefficients based on the recommendations of International Commission on Radiological Protection (ICRP) Publication 103 were reported in ICRP Publication 116, the revision of ICRP Publication 74 and ICRU Publication 57 for the six reference irradiation geometries: anterior–posterior, posterior–anterior, right and left lateral, rotational and isotropic. In this work, dose coefficients for neutron irradiation of the body with parallel beams directed upward from below the feet (caudal) and downward from above the head (cranial) using the ICRP 103 methodology were computed using the MCNP 6.1 radiation transport code. The dose coefficients were determined for neutrons ranging in energy from 10more » –9 MeV to 10 GeV. Here, at energies below about 500 MeV, the cranial and caudal dose coefficients are less than those for the six reference geometries reported in ICRP Publication 116.« less

  7. Organ and effective dose rate coefficients for submersion exposure in occupational settings

    DOE PAGES

    Veinot, K. G.; Y-12 National Security Complex, Oak Ridge, TN; Dewji, S. A.; ...

    2017-08-24

    External dose coefficients for environmental exposure scenarios are often computed using assumption on infinite or semi-infinite radiation sources. For example, in the case of a person standing on contaminated ground, the source is assumed to be distributed at a given depth (or between various depths) and extending outwards to an essentially infinite distance. In the case of exposure to contaminated air, the person is modeled as standing within a cloud of infinite, or semi-infinite, source distribution. However, these scenarios do not mimic common workplace environments where scatter off walls and ceilings may significantly alter the energy spectrum and dose coefficients.more » In this study, dose rate coefficients were calculated using the International Commission on Radiological Protection (ICRP) reference voxel phantoms positioned in rooms of three sizes representing an office, laboratory, and warehouse. For each room size calculations using the reference phantoms were performed for photons, electrons, and positrons as the source particles to derive mono-energetic dose rate coefficients. Since the voxel phantoms lack the resolution to perform dose calculations at the sensitive depth for the skin, a mathematical phantom was developed and calculations were performed in each room size with the three source particle types. Coefficients for the noble gas radionuclides of ICRP Publication 107 (e.g., Ne, Ar, Kr, Xe, and Rn) were generated by folding the corresponding photon, electron, and positron emissions over the mono-energetic dose rate coefficients. Finally, results indicate that the smaller room sizes have a significant impact on the dose rate per unit air concentration compared to the semi-infinite cloud case. For example, for Kr-85 the warehouse dose rate coefficient is 7% higher than the office dose rate coefficient while it is 71% higher for Xe-133.« less

  8. Organ and effective dose rate coefficients for submersion exposure in occupational settings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Veinot, K. G.; Y-12 National Security Complex, Oak Ridge, TN; Dewji, S. A.

    External dose coefficients for environmental exposure scenarios are often computed using assumption on infinite or semi-infinite radiation sources. For example, in the case of a person standing on contaminated ground, the source is assumed to be distributed at a given depth (or between various depths) and extending outwards to an essentially infinite distance. In the case of exposure to contaminated air, the person is modeled as standing within a cloud of infinite, or semi-infinite, source distribution. However, these scenarios do not mimic common workplace environments where scatter off walls and ceilings may significantly alter the energy spectrum and dose coefficients.more » In this study, dose rate coefficients were calculated using the International Commission on Radiological Protection (ICRP) reference voxel phantoms positioned in rooms of three sizes representing an office, laboratory, and warehouse. For each room size calculations using the reference phantoms were performed for photons, electrons, and positrons as the source particles to derive mono-energetic dose rate coefficients. Since the voxel phantoms lack the resolution to perform dose calculations at the sensitive depth for the skin, a mathematical phantom was developed and calculations were performed in each room size with the three source particle types. Coefficients for the noble gas radionuclides of ICRP Publication 107 (e.g., Ne, Ar, Kr, Xe, and Rn) were generated by folding the corresponding photon, electron, and positron emissions over the mono-energetic dose rate coefficients. Finally, results indicate that the smaller room sizes have a significant impact on the dose rate per unit air concentration compared to the semi-infinite cloud case. For example, for Kr-85 the warehouse dose rate coefficient is 7% higher than the office dose rate coefficient while it is 71% higher for Xe-133.« less

  9. The computation of ICRP dose coefficients for intakes of radionuclides with PLEIADES: biokinetic aspects.

    PubMed

    Fell, T P

    2007-01-01

    The ICRP has published dose coefficients for the ingestion or inhalation of radionuclides in a series of reports covering intakes by workers and members of the public including children and pregnant or lactating women. The calculation of these coefficients conveniently divides into two distinct parts--the biokinetic and dosimetric. This paper gives a brief summary of the methods used to solve the biokinetic problem in the generation of dose coefficients on behalf of the ICRP, as implemented in the Health Protection Agency's internal dosimetry code PLEIADES.

  10. Organ dose conversion coefficients for pediatric reference computational phantoms in external photon radiation fields

    NASA Astrophysics Data System (ADS)

    Chang, Lienard A.

    In the event of a radiological accident or attack, it is important to estimate the organ doses to those exposed. In general, it is difficult to measure organ dose directly in the field and therefore dose conversion coefficients (DCC) are needed to convert measurable values such as air kerma to organ dose. Previous work on these coefficients has been conducted mainly for adults with a focus on radiation protection workers. Hence, there is a large gap in the literature for pediatric values. This study coupled a Monte Carlo N-Particle eXtended (MCNPX) code with International Council of Radiological Protection (ICRP)-adopted University of Florida and National Cancer Institute pediatric reference phantoms to calculate a comprehensive list of dose conversion coefficients (mGy/mGy) to convert air-kerma to organ dose. Parameters included ten phantoms (newborn, 1-year, 5-year, 10-year, 15-year old male and female), 28 organs over 33 energies between 0.01 and 20 MeV in six (6) irradiation geometries relevant to a child who might be exposed to a radiological release: anterior-posterior (AP), posterior-anterior (PA), right-lateral (RLAT), left-lateral (LLAT), rotational (ROT), and isotropic (ISO). Dose conversion coefficients to the red bone marrow over 36 skeletal sites were also calculated. It was hypothesized that the pediatric organ dose conversion coefficients would follow similar trends to the published adult values as dictated by human anatomy, but be of a higher magnitude. It was found that while the pediatric coefficients did yield similar patterns to that of the adult coefficients, depending on the organ and irradiation geometry, the pediatric values could be lower or higher than that of the adult coefficients.

  11. Dose conversion coefficients for electron exposure of the human eye lens

    NASA Astrophysics Data System (ADS)

    Behrens, R.; Dietze, G.; Zankl, M.

    2009-07-01

    Recent epidemiological studies suggest a rather low dose threshold (below 0.5 Gy) for the induction of a cataract of the eye lens. Some other studies even assume that there is no threshold at all. Therefore, protection measures have to be optimized and current dose limits for the eye lens may be reduced in the future. Two questions arise from this situation: first, which dose quantity is related to the risk of developing a cataract, and second, which personal dose equivalent quantity is appropriate for monitoring this dose quantity. While the dose equivalent quantity Hp(0.07) has often been seen as being sufficiently accurate for monitoring the dose to the lens of the eye, this would be questionable in the case when the dose limits were reduced and, thus, it may be necessary to generally use the dose equivalent quantity Hp(3) for this purpose. The basis for a decision, however, must be the knowledge of accurate conversion coefficients from fluence to equivalent dose to the lens. This is especially important for low-penetrating radiation, for example, electrons. Formerly published values of conversion coefficients are based on quite simple models of the eye. In this paper, quite a sophisticated model of the eye including the inner structure of the lens was used for the calculations and precise conversion coefficients for electrons with energies between 0.2 MeV and 12 MeV, and for angles of radiation incidence between 0° and 45° are presented. Compared to the values adopted in 1996 by the International Commission on Radiological Protection (ICRP), the new values are up to 1000 times smaller for electron energies below 1 MeV, nearly equal at 1 MeV and above 4 MeV, and by a factor of 1.5 larger at about 1.5 MeV electron energy.

  12. Dose conversion coefficients for electron exposure of the human eye lens.

    PubMed

    Behrens, R; Dietze, G; Zankl, M

    2009-07-07

    Recent epidemiological studies suggest a rather low dose threshold (below 0.5 Gy) for the induction of a cataract of the eye lens. Some other studies even assume that there is no threshold at all. Therefore, protection measures have to be optimized and current dose limits for the eye lens may be reduced in the future. Two questions arise from this situation: first, which dose quantity is related to the risk of developing a cataract, and second, which personal dose equivalent quantity is appropriate for monitoring this dose quantity. While the dose equivalent quantity H(p)(0.07) has often been seen as being sufficiently accurate for monitoring the dose to the lens of the eye, this would be questionable in the case when the dose limits were reduced and, thus, it may be necessary to generally use the dose equivalent quantity H(p)(3) for this purpose. The basis for a decision, however, must be the knowledge of accurate conversion coefficients from fluence to equivalent dose to the lens. This is especially important for low-penetrating radiation, for example, electrons. Formerly published values of conversion coefficients are based on quite simple models of the eye. In this paper, quite a sophisticated model of the eye including the inner structure of the lens was used for the calculations and precise conversion coefficients for electrons with energies between 0.2 MeV and 12 MeV, and for angles of radiation incidence between 0 degrees and 45 degrees are presented. Compared to the values adopted in 1996 by the International Commission on Radiological Protection (ICRP), the new values are up to 1000 times smaller for electron energies below 1 MeV, nearly equal at 1 MeV and above 4 MeV, and by a factor of 1.5 larger at about 1.5 MeV electron energy.

  13. Quantifying annual internal effective 137Cesium dose utilizing direct body-burden measurement and ecological dose modeling.

    PubMed

    Jelin, Benjamin A; Sun, Wenjie; Kravets, Alexandra; Naboka, Maryna; Stepanova, Eugenia I; Vdovenko, Vitaliy Y; Karmaus, Wilfried J; Lichosherstov, Alex; Svendsen, Erik R

    2016-11-01

    The Chernobyl Nuclear Power Plant (CNPP) accident represents one of the most significant civilian releases of 137 Cesium ( 137 Cs, radiocesium) in human history. In the Chernobyl-affected region, radiocesium is considered to be the greatest on-going environmental hazard to human health by radiobiologists and public health scientists. The goal of this study was to characterize dosimetric patterns and predictive factors for whole-body count (WBC)-derived radiocesium internal dose estimations in a CNPP-affected children's cohort, and cross-validate these estimations with a soil-based ecological dose estimation model. WBC data were used to estimate the internal effective dose using the International Commission on Radiological Protection (ICRP) 67 dose conversion coefficient for 137 Cs and MONDAL Version 3.01 software. Geometric mean dose estimates from each model were compared utilizing paired t-tests and intra-class correlation coefficients. Additionally, we developed predictive models for WBC-derived dose estimation in order to determine the appropriateness of EMARC to estimate dose for this population. The two WBC-derived dose predictive models identified 137 Cs soil concentration (P<0.0001) as the strongest predictor of annual internal effective dose from radiocesium validating the use of the soil-based EMARC model. The geometric mean internal effective dose estimate of the EMARC model (0.183 mSv/y) was the highest followed by the ICRP 67 dose estimates (0.165 mSv/y) and the MONDAL model estimates (0.149 mSv/y). All three models yielded significantly different geometric mean dose (P<0.05) estimates for this cohort when stratified by sex, age at time of exam and season of exam, except for the mean MONDAL and EMARC estimates for 15- and 16-year olds and mean ICRP and MONDAL estimates for children examined in Winter. Further prospective and retrospective radio-epidemiological studies utilizing refined WBC measurements and ecological model dose estimations, in

  14. Dose conversion coefficients for photon exposure of the human eye lens.

    PubMed

    Behrens, R; Dietze, G

    2011-01-21

    In recent years, several papers dealing with the eye lens dose have been published, because epidemiological studies implied that the induction of cataracts occurs even at eye lens doses of less than 500 mGy. Different questions were addressed: Which personal dose equivalent quantity is appropriate for monitoring the dose to the eye lens? Is a new definition of the dose quantity H(p)(3) based on a cylinder phantom to represent the human head necessary? Are current conversion coefficients from fluence to equivalent dose to the lens sufficiently accurate? To investigate the latter question, a realistic model of the eye including the inner structure of the lens was developed. Using this eye model, conversion coefficients for electrons have already been presented. In this paper, the same eye model-with the addition of the whole body-was used to calculate conversion coefficients from fluence (and air kerma) to equivalent dose to the lens for photon radiation from 5 keV to 10 MeV. Compared to the values adopted in 1996 by the International Commission on Radiological Protection (ICRP), the new values are similar between 40 keV and 1 MeV and lower by up to a factor of 5 and 7 for photon energies at about 10 keV and 10 MeV, respectively. Above 1 MeV, the new values (calculated without kerma approximation) should be applied in pure photon radiation fields, while the values adopted by the ICRP in 1996 (calculated with kerma approximation) should be applied in case a significant contribution from secondary electrons originating outside the body is present.

  15. Dose conversion coefficients for photon exposure of the human eye lens

    NASA Astrophysics Data System (ADS)

    Behrens, R.; Dietze, G.

    2011-01-01

    In recent years, several papers dealing with the eye lens dose have been published, because epidemiological studies implied that the induction of cataracts occurs even at eye lens doses of less than 500 mGy. Different questions were addressed: Which personal dose equivalent quantity is appropriate for monitoring the dose to the eye lens? Is a new definition of the dose quantity Hp(3) based on a cylinder phantom to represent the human head necessary? Are current conversion coefficients from fluence to equivalent dose to the lens sufficiently accurate? To investigate the latter question, a realistic model of the eye including the inner structure of the lens was developed. Using this eye model, conversion coefficients for electrons have already been presented. In this paper, the same eye model—with the addition of the whole body—was used to calculate conversion coefficients from fluence (and air kerma) to equivalent dose to the lens for photon radiation from 5 keV to 10 MeV. Compared to the values adopted in 1996 by the International Commission on Radiological Protection (ICRP), the new values are similar between 40 keV and 1 MeV and lower by up to a factor of 5 and 7 for photon energies at about 10 keV and 10 MeV, respectively. Above 1 MeV, the new values (calculated without kerma approximation) should be applied in pure photon radiation fields, while the values adopted by the ICRP in 1996 (calculated with kerma approximation) should be applied in case a significant contribution from secondary electrons originating outside the body is present.

  16. Comparison of monoenergetic photon organ dose rate coefficients for stylized and voxel phantoms submerged in air

    DOE PAGES

    Bellamy, Michael B.; Hiller, Mauritius M.; Dewji, Shaheen A.; ...

    2016-02-01

    As part of a broader effort to calculate effective dose rate coefficients for external exposure to photons and electrons emitted by radionuclides distributed in air, soil or water, age-specific stylized phantoms have been employed to determine dose coefficients relating dose rate to organs and tissues in the body. In this article, dose rate coefficients computed using the International Commission on Radiological Protection reference adult male voxel phantom are compared with values computed using the Oak Ridge National Laboratory adult male stylized phantom in an air submersion exposure geometry. Monte Carlo calculations for both phantoms were performed for monoenergetic source photonsmore » in the range of 30 keV to 5 MeV. Furthermore, these calculations largely result in differences under 10 % for photon energies above 50 keV, and it can be expected that both models show comparable results for the environmental sources of radionuclides.« less

  17. Comparison of monoenergetic photon organ dose rate coefficients for stylized and voxel phantoms submerged in air

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bellamy, Michael B.; Hiller, Mauritius M.; Dewji, Shaheen A.

    As part of a broader effort to calculate effective dose rate coefficients for external exposure to photons and electrons emitted by radionuclides distributed in air, soil or water, age-specific stylized phantoms have been employed to determine dose coefficients relating dose rate to organs and tissues in the body. In this article, dose rate coefficients computed using the International Commission on Radiological Protection reference adult male voxel phantom are compared with values computed using the Oak Ridge National Laboratory adult male stylized phantom in an air submersion exposure geometry. Monte Carlo calculations for both phantoms were performed for monoenergetic source photonsmore » in the range of 30 keV to 5 MeV. Furthermore, these calculations largely result in differences under 10 % for photon energies above 50 keV, and it can be expected that both models show comparable results for the environmental sources of radionuclides.« less

  18. Effective dose rate coefficients for exposure to contaminated soil

    DOE PAGES

    Veinot, Kenneth G.; Eckerman, Keith F.; Bellamy, Michael B.; ...

    2017-05-10

    The Oak Ridge National Laboratory Center for Radiation Protection Knowledge has undertaken calculations related to various environmental exposure scenarios. A previous paper reported the results for submersion in radioactive air and immersion in water using age-specific mathematical phantoms. This paper presents age-specific effective dose rate coefficients derived using stylized mathematical phantoms for exposure to contaminated soils. Dose rate coefficients for photon, electron, and positrons of discrete energies were calculated and folded with emissions of 1252 radionuclides addressed in ICRP Publication 107 to determine equivalent and effective dose rate coefficients. The MCNP6 radiation transport code was used for organ dose ratemore » calculations for photons and the contribution of electrons to skin dose rate was derived using point-kernels. Bremsstrahlung and annihilation photons of positron emission were evaluated as discrete photons. As a result, the coefficients calculated in this work compare favorably to those reported in the US Federal Guidance Report 12 as well as by other authors who employed voxel phantoms for similar exposure scenarios.« less

  19. Effective dose rate coefficients for exposure to contaminated soil

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Veinot, Kenneth G.; Eckerman, Keith F.; Bellamy, Michael B.

    The Oak Ridge National Laboratory Center for Radiation Protection Knowledge has undertaken calculations related to various environmental exposure scenarios. A previous paper reported the results for submersion in radioactive air and immersion in water using age-specific mathematical phantoms. This paper presents age-specific effective dose rate coefficients derived using stylized mathematical phantoms for exposure to contaminated soils. Dose rate coefficients for photon, electron, and positrons of discrete energies were calculated and folded with emissions of 1252 radionuclides addressed in ICRP Publication 107 to determine equivalent and effective dose rate coefficients. The MCNP6 radiation transport code was used for organ dose ratemore » calculations for photons and the contribution of electrons to skin dose rate was derived using point-kernels. Bremsstrahlung and annihilation photons of positron emission were evaluated as discrete photons. As a result, the coefficients calculated in this work compare favorably to those reported in the US Federal Guidance Report 12 as well as by other authors who employed voxel phantoms for similar exposure scenarios.« less

  20. Comparison of Monoenergetic Photon Organ Dose Rate Coefficients for the Female Stylized and Voxel Phantoms Submerged in Air

    DOE PAGES

    Hiller, Mauritius; Dewji, Shaheen Azim

    2017-02-16

    Dose rate coefficients computed using the International Commission on Radiological Protection (ICRP) reference adult female voxel phantom were compared with values computed using the Oak Ridge National Laboratory (ORNL) adult female stylized phantom in an air submersion exposure geometry. This is a continuation of previous work comparing monoenergetic organ dose rate coefficients for the male adult phantoms. With both the male and female data computed, effective dose rate as defined by ICRP Publication 103 was compared for both phantoms. Organ dose rate coefficients for the female phantom and ratios of organ dose rates for the voxel and stylized phantoms aremore » provided in the energy range from 30 to 5 MeV. Analysis of the contribution of the organs to effective dose is also provided. Lastly, comparison of effective dose rates between the voxel and stylized phantoms was within 8% at 100 keV and is <5% between 200 and 5000 keV.« less

  1. Comparison of Monoenergetic Photon Organ Dose Rate Coefficients for the Female Stylized and Voxel Phantoms Submerged in Air

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hiller, Mauritius; Dewji, Shaheen Azim

    Dose rate coefficients computed using the International Commission on Radiological Protection (ICRP) reference adult female voxel phantom were compared with values computed using the Oak Ridge National Laboratory (ORNL) adult female stylized phantom in an air submersion exposure geometry. This is a continuation of previous work comparing monoenergetic organ dose rate coefficients for the male adult phantoms. With both the male and female data computed, effective dose rate as defined by ICRP Publication 103 was compared for both phantoms. Organ dose rate coefficients for the female phantom and ratios of organ dose rates for the voxel and stylized phantoms aremore » provided in the energy range from 30 to 5 MeV. Analysis of the contribution of the organs to effective dose is also provided. Lastly, comparison of effective dose rates between the voxel and stylized phantoms was within 8% at 100 keV and is <5% between 200 and 5000 keV.« less

  2. Organ dose conversion coefficients for voxel models of the reference male and female from idealized photon exposures

    NASA Astrophysics Data System (ADS)

    Schlattl, H.; Zankl, M.; Petoussi-Henss, N.

    2007-04-01

    A new series of organ equivalent dose conversion coefficients for whole body external photon exposure is presented for a standardized couple of human voxel models, called Rex and Regina. Irradiations from broad parallel beams in antero-posterior, postero-anterior, left- and right-side lateral directions as well as from a 360° rotational source have been performed numerically by the Monte Carlo transport code EGSnrc. Dose conversion coefficients from an isotropically distributed source were computed, too. The voxel models Rex and Regina originating from real patient CT data comply in body and organ dimensions with the currently valid reference values given by the International Commission on Radiological Protection (ICRP) for the average Caucasian man and woman, respectively. While the equivalent dose conversion coefficients of many organs are in quite good agreement with the reference values of ICRP Publication 74, for some organs and certain geometries the discrepancies amount to 30% or more. Differences between the sexes are of the same order with mostly higher dose conversion coefficients in the smaller female model. However, much smaller deviations from the ICRP values are observed for the resulting effective dose conversion coefficients. With the still valid definition for the effective dose (ICRP Publication 60), the greatest change appears in lateral exposures with a decrease in the new models of at most 9%. However, when the modified definition of the effective dose as suggested by an ICRP draft is applied, the largest deviation from the current reference values is obtained in postero-anterior geometry with a reduction of the effective dose conversion coefficient by at most 12%.

  3. Organ and effective dose coefficients for cranial and caudal irradiation geometries: photons

    DOE PAGES

    Veinot, K. G.; Eckerman, K. F.; Hertel, N. E.

    2015-05-02

    With the introduction of new recommendations of the International Commission on Radiological Protection (ICRP) in Publication 103, the methodology for determining the protection quantity, effective dose, has been modified. The modifications include changes to the defined organs and tissues, the associated tissue weighting factors, radiation weighting factors and the introduction of reference sex-specific computational phantoms. Computations of equivalent doses in organs and tissues are now performed in both the male and female phantoms and the sex-averaged values used to determine the effective dose. Dose coefficients based on the ICRP 103 recommendations were reported in ICRP Publication 116, the revision ofmore » ICRP Publication 74 and ICRU Publication 57. The coefficients were determined for the following irradiation geometries: anterior-posterior (AP), posterior-anterior (PA), right and left lateral (RLAT and LLAT), rotational (ROT) and isotropic (ISO). In this work, the methodology of ICRP Publication 116 was used to compute dose coefficients for photon irradiation of the body with parallel beams directed upward from below the feet (caudal) and directed downward from above the head (cranial). These geometries may be encountered in the workplace from personnel standing on contaminated surfaces or volumes and from overhead sources. Calculations of organ and tissue kerma and absorbed doses for caudal and cranial exposures to photons ranging in energy from 10 keV to 10 GeV have been performed using the MCNP6.1 radiation transport code and the adult reference phantoms of ICRP Publication 110. As with calculations reported in ICRP 116, the effects of charged-particle transport are evident when compared with values obtained by using the kerma approximation. At lower energies the effective dose per particle fluence for cranial and caudal exposures is less than AP orientations while above similar to 30 MeV the cranial and caudal values are greater.« less

  4. Organ and effective dose coefficients for cranial and caudal irradiation geometries: photons

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Veinot, K. G.; Eckerman, K. F.; Hertel, N. E.

    With the introduction of new recommendations of the International Commission on Radiological Protection (ICRP) in Publication 103, the methodology for determining the protection quantity, effective dose, has been modified. The modifications include changes to the defined organs and tissues, the associated tissue weighting factors, radiation weighting factors and the introduction of reference sex-specific computational phantoms. Computations of equivalent doses in organs and tissues are now performed in both the male and female phantoms and the sex-averaged values used to determine the effective dose. Dose coefficients based on the ICRP 103 recommendations were reported in ICRP Publication 116, the revision ofmore » ICRP Publication 74 and ICRU Publication 57. The coefficients were determined for the following irradiation geometries: anterior-posterior (AP), posterior-anterior (PA), right and left lateral (RLAT and LLAT), rotational (ROT) and isotropic (ISO). In this work, the methodology of ICRP Publication 116 was used to compute dose coefficients for photon irradiation of the body with parallel beams directed upward from below the feet (caudal) and directed downward from above the head (cranial). These geometries may be encountered in the workplace from personnel standing on contaminated surfaces or volumes and from overhead sources. Calculations of organ and tissue kerma and absorbed doses for caudal and cranial exposures to photons ranging in energy from 10 keV to 10 GeV have been performed using the MCNP6.1 radiation transport code and the adult reference phantoms of ICRP Publication 110. As with calculations reported in ICRP 116, the effects of charged-particle transport are evident when compared with values obtained by using the kerma approximation. At lower energies the effective dose per particle fluence for cranial and caudal exposures is less than AP orientations while above similar to 30 MeV the cranial and caudal values are greater.« less

  5. Conversion coefficients for determining organ doses in paediatric spine radiography.

    PubMed

    Seidenbusch, Michael; Schneider, Karl

    2014-04-01

    Knowledge of organ and effective doses achieved during paediatric x-ray examinations is an important prerequisite for assessment of radiation burden to the patient. Conversion coefficients for reconstruction of organ and effective doses from entrance doses for segmental spine radiographs of 0-, 1-, 5-, 10-, 15- and 30-year-old patients are provided regarding the Guidelines of Good Radiographic Technique of the European Commission. Using the personal computer program PCXMC developed by the Finnish Centre for Radiation and Nuclear Safety (Säteilyturvakeskus STUK), conversion coefficients for conventional segmental spine radiographs were calculated performing Monte Carlo simulations in mathematical hermaphrodite phantom models describing patients of different ages. The clinical variation of beam collimation was taken into consideration by defining optimal and suboptimal radiation field settings. Conversion coefficients for the reconstruction of organ doses in about 40 organs and tissues from measured entrance doses during cervical, thoracic and lumbar spine radiographs of 0-, 1-, 5-, 10-, 15- and 30-year-old patients were calculated for the standard sagittal and lateral beam projections and the standard focus detector distance of 115 cm. The conversion coefficients presented may be used for organ dose assessments from entrance doses measured during spine radiographs of patients of all age groups and all field settings within the optimal and suboptimal standard field settings.

  6. Daily radionuclide ingestion and internal radiation doses in Aomori prefecture, Japan.

    PubMed

    Ohtsuka, Yoshihito; Kakiuchi, Hideki; Akata, Naofumi; Takaku, Yuichi; Hisamatsu, Shun'ichi

    2013-10-01

    To assess internal annual dose in the general public in Aomori Prefecture, Japan, 80 duplicate cooked diet samples, equivalent to the food consumed over a 400-d period by one person, were collected from 100 volunteers in Aomori City and the village of Rokkasho during 2006–2010 and were analyzed for 11 radionuclides. To obtain average rates of ingestion of radionuclides, the volunteers were selected from among office, fisheries, agricultural, and livestock farm workers. Committed effective doses from ingestion of the diet over a 1-y period were calculated from the analytical results and from International Commission on Radiological Protection dose coefficients; for 40K, an internal effective dose rate from the literature was used. Fisheries workers had significantly higher combined internal annual dose than the other workers, possibly because of high rates of ingestion of marine products known to have high 210Po concentrations. The average internal dose rate, weighted by the numbers of households in each worker group in Aomori Prefecture, was estimated at 0.47 mSv y-1. Polonium-210 contributed 49% of this value. The sum of committed effective dose rates for 210Po, 210Pb, 228Ra, and 14C and the effective dose rate of 40K accounted for approximately 99% of the average internal dose rate.

  7. Verification of Internal Dose Calculations.

    NASA Astrophysics Data System (ADS)

    Aissi, Abdelmadjid

    The MIRD internal dose calculations have been in use for more than 15 years, but their accuracy has always been questionable. There have been attempts to verify these calculations; however, these attempts had various shortcomings which kept the question of verification of the MIRD data still unanswered. The purpose of this research was to develop techniques and methods to verify the MIRD calculations in a more systematic and scientific manner. The research consisted of improving a volumetric dosimeter, developing molding techniques, and adapting the Monte Carlo computer code ALGAM to the experimental conditions and vice versa. The organic dosimetric system contained TLD-100 powder and could be shaped to represent human organs. The dosimeter possessed excellent characteristics for the measurement of internal absorbed doses, even in the case of the lungs. The molding techniques are inexpensive and were used in the fabrication of dosimetric and radioactive source organs. The adaptation of the computer program provided useful theoretical data with which the experimental measurements were compared. The experimental data and the theoretical calculations were compared for 6 source organ-7 target organ configurations. The results of the comparison indicated the existence of an agreement between measured and calculated absorbed doses, when taking into consideration the average uncertainty (16%) of the measurements, and the average coefficient of variation (10%) of the Monte Carlo calculations. However, analysis of the data gave also an indication that the Monte Carlo method might overestimate the internal absorbed doses. Even if the overestimate exists, at least it could be said that the use of the MIRD method in internal dosimetry was shown to lead to no unnecessary exposure to radiation that could be caused by underestimating the absorbed dose. The experimental and the theoretical data were also used to test the validity of the Reciprocity Theorem for heterogeneous

  8. Evaluation of Dimensionality in the Assessment of Internal Consistency Reliability: Coefficient Alpha and Omega Coefficients

    ERIC Educational Resources Information Center

    Green, Samuel B.; Yang, Yanyun

    2015-01-01

    In the lead article, Davenport, Davison, Liou, & Love demonstrate the relationship among homogeneity, internal consistency, and coefficient alpha, and also distinguish among them. These distinctions are important because too often coefficient alpha--a reliability coefficient--is interpreted as an index of homogeneity or internal consistency.…

  9. Delimiting Coefficient a from Internal Consistency and Unidimensionality

    ERIC Educational Resources Information Center

    Sijtsma, Klaas

    2015-01-01

    I discuss the contribution by Davenport, Davison, Liou, & Love (2015) in which they relate reliability represented by coefficient a to formal definitions of internal consistency and unidimensionality, both proposed by Cronbach (1951). I argue that coefficient a is a lower bound to reliability and that concepts of internal consistency and…

  10. Dose conversion coefficients based on the Chinese mathematical phantom and MCNP code for external photon irradiation.

    PubMed

    Qiu, Rui; Li, Junli; Zhang, Zhan; Liu, Liye; Bi, Lei; Ren, Li

    2009-02-01

    A set of conversion coefficients from kerma free-in-air to the organ-absorbed dose are presented for external monoenergetic photon beams from 10 keV to 10 MeV based on the Chinese mathematical phantom, a whole-body mathematical phantom model. The model was developed based on the methods of the Oak Ridge National Laboratory mathematical phantom series and data from the Chinese Reference Man and the Reference Asian Man. This work is carried out to obtain the conversion coefficients based on this model, which represents the characteristics of the Chinese population, as the anatomical parameters of the Chinese are different from those of Caucasians. Monte Carlo simulation with MCNP code is carried out to calculate the organ dose conversion coefficients. Before the calculation, the effects from the physics model and tally type are investigated, considering both the calculation efficiency and precision. In the calculation irradiation conditions include anterior-posterior, posterior-anterior, right lateral, left lateral, rotational and isotropic geometries. Conversion coefficients from this study are compared with those recommended in the Publication 74 of International Commission on Radiological Protection (ICRP74) since both the sets of data are calculated with mathematical phantoms. Overall, consistency between the two sets of data is observed and the difference for more than 60% of the data is below 10%. However, significant deviations are also found, mainly for the superficial organs (up to 65.9%) and bone surface (up to 66%). The big difference of the dose conversion coefficients for the superficial organs at high photon energy could be ascribed to kerma approximation for the data in ICRP74. Both anatomical variations between races and the calculation method contribute to the difference of the data for bone surface.

  11. Organ dose conversion coefficients for tube current modulated CT protocols for an adult population

    NASA Astrophysics Data System (ADS)

    Fu, Wanyi; Tian, Xiaoyu; Sahbaee, Pooyan; Zhang, Yakun; Segars, William Paul; Samei, Ehsan

    2016-03-01

    In computed tomography (CT), patient-specific organ dose can be estimated using pre-calculated organ dose conversion coefficients (organ dose normalized by CTDIvol, h factor) database, taking into account patient size and scan coverage. The conversion coefficients have been previously estimated for routine body protocol classes, grouped by scan coverage, across an adult population for fixed tube current modulated CT. The coefficients, however, do not include the widely utilized tube current (mA) modulation scheme, which significantly impacts organ dose. This study aims to extend the h factors and the corresponding dose length product (DLP) to create effective dose conversion coefficients (k factor) database incorporating various tube current modulation strengths. Fifty-eight extended cardiac-torso (XCAT) phantoms were included in this study representing population anatomy variation in clinical practice. Four mA profiles, representing weak to strong mA dependency on body attenuation, were generated for each phantom and protocol class. A validated Monte Carlo program was used to simulate the organ dose. The organ dose and effective dose was further normalized by CTDIvol and DLP to derive the h factors and k factors, respectively. The h factors and k factors were summarized in an exponential regression model as a function of body size. Such a population-based mathematical model can provide a comprehensive organ dose estimation given body size and CTDIvol. The model was integrated into an iPhone app XCATdose version 2, enhancing the 1st version based upon fixed tube current modulation. With the organ dose calculator, physicists, physicians, and patients can conveniently estimate organ dose.

  12. Dose estimation for astronauts using dose conversion coefficients calculated with the PHITS code and the ICRP/ICRU adult reference computational phantoms.

    PubMed

    Sato, Tatsuhiko; Endo, Akira; Sihver, Lembit; Niita, Koji

    2011-03-01

    Absorbed-dose and dose-equivalent rates for astronauts were estimated by multiplying fluence-to-dose conversion coefficients in the units of Gy.cm(2) and Sv.cm(2), respectively, and cosmic-ray fluxes around spacecrafts in the unit of cm(-2) s(-1). The dose conversion coefficients employed in the calculation were evaluated using the general-purpose particle and heavy ion transport code system PHITS coupled to the male and female adult reference computational phantoms, which were released as a common ICRP/ICRU publication. The cosmic-ray fluxes inside and near to spacecrafts were also calculated by PHITS, using simplified geometries. The accuracy of the obtained absorbed-dose and dose-equivalent rates was verified by various experimental data measured both inside and outside spacecrafts. The calculations quantitatively show that the effective doses for astronauts are significantly greater than their corresponding effective dose equivalents, because of the numerical incompatibility between the radiation quality factors and the radiation weighting factors. These results demonstrate the usefulness of dose conversion coefficients in space dosimetry. © Springer-Verlag 2010

  13. Estimation of internal organ motion-induced variance in radiation dose in non-gated radiotherapy

    NASA Astrophysics Data System (ADS)

    Zhou, Sumin; Zhu, Xiaofeng; Zhang, Mutian; Zheng, Dandan; Lei, Yu; Li, Sicong; Bennion, Nathan; Verma, Vivek; Zhen, Weining; Enke, Charles

    2016-12-01

    In the delivery of non-gated radiotherapy (RT), owing to intra-fraction organ motion, a certain degree of RT dose uncertainty is present. Herein, we propose a novel mathematical algorithm to estimate the mean and variance of RT dose that is delivered without gating. These parameters are specific to individual internal organ motion, dependent on individual treatment plans, and relevant to the RT delivery process. This algorithm uses images from a patient’s 4D simulation study to model the actual patient internal organ motion during RT delivery. All necessary dose rate calculations are performed in fixed patient internal organ motion states. The analytical and deterministic formulae of mean and variance in dose from non-gated RT were derived directly via statistical averaging of the calculated dose rate over possible random internal organ motion initial phases, and did not require constructing relevant histograms. All results are expressed in dose rate Fourier transform coefficients for computational efficiency. Exact solutions are provided to simplified, yet still clinically relevant, cases. Results from a volumetric-modulated arc therapy (VMAT) patient case are also presented. The results obtained from our mathematical algorithm can aid clinical decisions by providing information regarding both mean and variance of radiation dose to non-gated patients prior to RT delivery.

  14. Impact of the new nuclear decay data of ICRP publication 107 on inhalation dose coefficients for workers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Manabe, K.; Endo, Akira; Eckerman, Keith F

    2010-03-01

    The impact a revision of nuclear decay data had on dose coefficients was studied using data newly published in ICRP Publication 107 (ICRP 107) and existing data from ICRP Publication 38 (ICRP 38). Committed effective dose coefficients for occupational inhalation of radionuclides were calculated using two sets of decay data with the dose and risk calculation software DCAL for 90 elements, 774 nuclides and 1572 cases. The dose coefficients based on ICRP 107 increased by over 10 % compared with those based on ICRP 38 in 98 cases, and decreased by over 10 % in 54 cases. It was foundmore » that the differences in dose coefficients mainly originated from changes in the radiation energy emitted per nuclear transformation. In addition, revisions of the half-lives, radiation types and decay modes also resulted in changes in the dose coefficients.« less

  15. Practical applications of internal dose calculations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carbaugh, E.H.

    1994-06-01

    Accurate estimates of intake magnitude and internal dose are the goal for any assessment of an actual intake of radioactivity. When only one datum is available on which to base estimates, the choices for internal dose assessment become straight-forward: apply the appropriate retention or excretion function, calculate the intake, and calculate the dose. The difficulty comes when multiple data and different types of data become available. Then practical decisions must be made on how to interpret conflicting data, or how to adjust the assumptions and techniques underlying internal dose assessments to give results consistent with the data. This article describesmore » nine types of adjustments which can be incorporated into calculations of intake and internal dose, and then offers several practical insights to dealing with some real-world internal dose puzzles.« less

  16. COMPILATION OF CONVERSION COEFFICIENTS FOR THE DOSE TO THE LENS OF THE EYE.

    PubMed

    Behrens, R

    2017-04-28

    A compilation of fluence-to-absorbed dose conversion coefficients for the dose to the lens of the eye is presented. The compilation consists of both previously published data and newly calculated values: photon data (5 keV-50 MeV for both kerma approximation and full electron transport), electron data (10 keV-50 MeV), and positron data (1 keV-50 MeV) - neutron data will be published separately. Values are given for angles of incidence from 0° up to 90° in steps of 15° and for rotational irradiation. The data presented can be downloaded from this article's website and they are ready for use by Report Committee (RC) 26. This committee has been set up by the International Commission on Radiation Units and Measurements (ICRU) and is working on a 'proposal for a redefinition of the operational quantities for external radiation exposure'. © The Author 2016. Published by Oxford University Press.

  17. COMPILATION OF CONVERSION COEFFICIENTS FOR THE DOSE TO THE LENS OF THE EYE

    PubMed Central

    2017-01-01

    Abstract A compilation of fluence-to-absorbed dose conversion coefficients for the dose to the lens of the eye is presented. The compilation consists of both previously published data and newly calculated values: photon data (5 keV–50 MeV for both kerma approximation and full electron transport), electron data (10 keV–50 MeV), and positron data (1 keV–50 MeV) – neutron data will be published separately. Values are given for angles of incidence from 0° up to 90° in steps of 15° and for rotational irradiation. The data presented can be downloaded from this article's website and they are ready for use by Report Committee (RC) 26. This committee has been set up by the International Commission on Radiation Units and Measurements (ICRU) and is working on a ‘proposal for a redefinition of the operational quantities for external radiation exposure’. PMID:27542816

  18. Development of Monte Carlo simulations to provide scanner-specific organ dose coefficients for contemporary CT

    NASA Astrophysics Data System (ADS)

    Jansen, Jan T. M.; Shrimpton, Paul C.

    2016-07-01

    The ImPACT (imaging performance assessment of CT scanners) CT patient dosimetry calculator is still used world-wide to estimate organ and effective doses (E) for computed tomography (CT) examinations, although the tool is based on Monte Carlo calculations reflecting practice in the early 1990’s. Subsequent developments in CT scanners, definitions of E, anthropomorphic phantoms, computers and radiation transport codes, have all fuelled an urgent need for updated organ dose conversion factors for contemporary CT. A new system for such simulations has been developed and satisfactorily tested. Benchmark comparisons of normalised organ doses presently derived for three old scanners (General Electric 9800, Philips Tomoscan LX and Siemens Somatom DRH) are within 5% of published values. Moreover, calculated normalised values of CT Dose Index for these scanners are in reasonable agreement (within measurement and computational uncertainties of  ±6% and  ±1%, respectively) with reported standard measurements. Organ dose coefficients calculated for a contemporary CT scanner (Siemens Somatom Sensation 16) demonstrate potential deviations by up to around 30% from the surrogate values presently assumed (through a scanner matching process) when using the ImPACT CT Dosimetry tool for newer scanners. Also, illustrative estimates of E for some typical examinations and a range of anthropomorphic phantoms demonstrate the significant differences (by some 10’s of percent) that can arise when changing from the previously adopted stylised mathematical phantom to the voxel phantoms presently recommended by the International Commission on Radiological Protection (ICRP), and when following the 2007 ICRP recommendations (updated from 1990) concerning tissue weighting factors. Further simulations with the validated dosimetry system will provide updated series of dose coefficients for a wide range of contemporary scanners.

  19. Organ and Effective Dose Coefficients for Cranial and Caudal Irradiation Geometries: Neutrons

    NASA Astrophysics Data System (ADS)

    Veinot, K. G.; Eckerman, K. F.; Hertel, N. E.; Hiller, M. M.

    2017-09-01

    With the introduction of new recommendations by ICRP Publication 103, the methodology for determining the protection quantity, effective dose, has been modified. The modifications include changes to the defined organs and tissues, the associated tissue weighting factors, radiation weighting factors, and the introduction of reference sex-specific computational phantoms (ICRP Publication 110). Computations of equivalent doses in organs and tissues are now performed in both the male and female phantoms and the sex-averaged values used to determine the effective dose. Dose coefficients based on the ICRP 103 recommendations were reported in ICRP Publication 116, the revision of ICRP Publication 74 and ICRU Publication 57. The coefficients were determined for the following irradiation geometries: anterior-posterior (AP), posterior-anterior (PA), right and left lateral (RLAT and LLAT), rotational (ROT), and isotropic (ISO). In this work, the methodology of ICRP Publication 116 was used to compute dose coefficients for neutron irradiation of the body with parallel beams directed upward from below the feet (caudal) and directed downward from above the head (cranial). These geometries may be encountered in the workplace from personnel standing on contaminated surfaces or volumes and from overhead sources. Calculations of organ and tissue absorbed doses for caudal and cranial exposures to neutrons ranging in energy from 10-9 MeV to 10 GeV have been performed using the MCNP6 radiation transport code and the adult reference voxel phantoms of ICRP Publication 110. At lower energies the effective dose per particle fluence for cranial and caudal exposures is less than AP orientations while above about 30 MeV the cranial and caudal values are greater.

  20. Determining organ dose conversion coefficients for external neutron irradiation by using a voxel mouse model

    PubMed Central

    Zhang, Xiaomin; Xie, Xiangdong; Qu, Decheng; Ning, Jing; Zhou, Hongmei; Pan, Jie; Yang, Guoshan

    2016-01-01

    A set of fluence-to-dose conversion coefficients has been calculated for neutrons with energies <20 MeV using a developed voxel mouse model and Monte Carlo N-particle code (MCNP), for the purpose of neutron radiation effect evaluation. The calculation used 37 monodirectional monoenergetic neutron beams in the energy range 10−9 MeV to 20 MeV, under five different source irradiation configurations: left lateral, right lateral, dorsal–ventral, ventral–dorsal, and isotropic. Neutron fluence-to-dose conversion coefficients for selected organs of the body were presented in the paper, and the effect of irradiation geometry conditions, neutron energy and the organ location on the organ dose was discussed. The results indicated that neutron dose conversion coefficients clearly show sensitivity to irradiation geometry at neutron energy below 1 MeV. PMID:26661852

  1. JADA: a graphical user interface for comprehensive internal dose assessment in nuclear medicine.

    PubMed

    Grimes, Joshua; Uribe, Carlos; Celler, Anna

    2013-07-01

    The main objective of this work was to design a comprehensive dosimetry package that would keep all aspects of internal dose calculation within the framework of a single software environment and that would be applicable for a variety of dose calculation approaches. Our MATLAB-based graphical user interface (GUI) can be used for processing data obtained using pure planar, pure SPECT, or hybrid planar/SPECT imaging. Time-activity data for source regions are obtained using a set of tools that allow the user to reconstruct SPECT images, load images, coregister a series of planar images, and to perform two-dimensional and three-dimensional image segmentation. Curve fits are applied to the acquired time-activity data to construct time-activity curves, which are then integrated to obtain time-integrated activity coefficients. Subsequently, dose estimates are made using one of three methods. The organ level dose calculation subGUI calculates mean organ doses that are equivalent to dose assessment performed by OLINDA/EXM. Voxelized dose calculation options, which include the voxel S value approach and Monte Carlo simulation using the EGSnrc user code DOSXYZnrc, are available within the process 3D image data subGUI. The developed internal dosimetry software package provides an assortment of tools for every step in the dose calculation process, eliminating the need for manual data transfer between programs. This saves times and minimizes user errors, while offering a versatility that can be used to efficiently perform patient-specific internal dose calculations in a variety of clinical situations.

  2. Comparison of photon organ and effective dose coefficients for PIMAL stylized phantom in bent positions in standard irradiation geometries.

    PubMed

    Dewji, Shaheen; Reed, K Lisa; Hiller, Mauritius

    2017-08-01

    Computational phantoms with articulated arms and legs have been constructed to enable the estimation of radiation dose in different postures. Through a graphical user interface, the Phantom wIth Moving Arms and Legs (PIMAL) version 4.1.0 software can be employed to articulate the posture of a phantom and generate a corresponding input deck for the Monte Carlo N-Particle (MCNP) radiation transport code. In this work, photon fluence-to-dose coefficients were computed using PIMAL to compare organ and effective doses for a stylized phantom in the standard upright position with those for phantoms in realistic work postures. The articulated phantoms represent working positions including fully and half bent torsos with extended arms for both the male and female reference adults. Dose coefficients are compared for both the upright and bent positions across monoenergetic photon energies: 0.05, 0.1, 0.5, 1.0, and 5.0 MeV. Additionally, the organ doses are compared across the International Commission on Radiological Protection's standard external radiation exposure geometries: antero-posterior, postero-anterior, left and right lateral, and isotropic (AP, PA, LLAT, RLAT, and ISO). For the AP and PA irradiation geometries, differences in organ doses compared to the upright phantom become more profound with increasing bending angles and have doses largely overestimated for all organs except the brain in AP and bladder in PA. In LLAT and RLAT irradiation geometries, energy deposition for organs is more likely to be underestimated compared to the upright phantom, with no overall change despite increased bending angle. The ISO source geometry did not cause a significant difference in absorbed organ dose between the different phantoms, regardless of position. Organ and effective fluence-to-dose coefficients are tabulated. In the AP geometry, the effective dose at the 45° bent position is overestimated compared to the upright phantom below 1 MeV by as much as 27% and 82% in the 90

  3. Rapid Acute Dose Assessment Using MCNP6

    NASA Astrophysics Data System (ADS)

    Owens, Andrew Steven

    Acute radiation doses due to physical contact with a high-activity radioactive source have proven to be an occupational hazard. Multiple radiation injuries have been reported due to manipulating a radioactive source with bare hands or by placing a radioactive source inside a shirt or pants pocket. An effort to reconstruct the radiation dose must be performed to properly assess and medically manage the potential biological effects from such doses. Using the reference computational phantoms defined by the International Commission on Radiological Protection (ICRP) and the Monte Carlo N-Particle transport code (MCNP6), dose rate coefficients are calculated to assess doses for common acute doses due to beta and photon radiation sources. The research investigates doses due to having a radioactive source in either a breast pocket or pants back pocket. The dose rate coefficients are calculated for discrete energies and can be used to interpolate for any given energy of photon or beta emission. The dose rate coefficients allow for quick calculation of whole-body dose, organ dose, and/or skin dose if the source, activity, and time of exposure are known. Doses are calculated with the dose rate coefficients and compared to results from the International Atomic Energy Agency (IAEA) reports from accidents that occurred in Gilan, Iran and Yanango, Peru. Skin and organ doses calculated with the dose rate coefficients appear to agree, but there is a large discrepancy when comparing whole-body doses assessed using biodosimetry and whole-body doses assessed using the dose rate coefficients.

  4. Determining organ dose conversion coefficients for external neutron irradiation by using a voxel mouse model.

    PubMed

    Zhang, Xiaomin; Xie, Xiangdong; Qu, Decheng; Ning, Jing; Zhou, Hongmei; Pan, Jie; Yang, Guoshan

    2016-03-01

    A set of fluence-to-dose conversion coefficients has been calculated for neutrons with energies <20 MeV using a developed voxel mouse model and Monte Carlo N-particle code (MCNP), for the purpose of neutron radiation effect evaluation. The calculation used 37 monodirectional monoenergetic neutron beams in the energy range 10(-9) MeV to 20 MeV, under five different source irradiation configurations: left lateral, right lateral, dorsal-ventral, ventral-dorsal, and isotropic. Neutron fluence-to-dose conversion coefficients for selected organs of the body were presented in the paper, and the effect of irradiation geometry conditions, neutron energy and the organ location on the organ dose was discussed. The results indicated that neutron dose conversion coefficients clearly show sensitivity to irradiation geometry at neutron energy below 1 MeV. © The Author 2015. Published by Oxford University Press on behalf of The Japan Radiation Research Society and Japanese Society for Radiation Oncology.

  5. Dosimetric models of the eye and lens of the eye and their use in assessing dose coefficients for ocular exposures.

    PubMed

    Bolch, W E; Dietze, G; Petoussi-Henss, N; Zankl, M

    2015-06-01

    Based upon recent epidemiological studies of ocular exposure, the Main Commission of the International Commission on Radiological Protection (ICRP) in ICRP Publication 118 states that the threshold dose for radiation-induced cataracts is now considered to be approximately 0.5 Gy for both acute and fractionated exposures. Consequently, a reduction was also recommended for the occupational annual equivalent dose to the lens of the eye from 150 mSv to 20 mSv, averaged over defined periods of 5 years. To support ocular dose assessment and optimisation, Committee 2 included Annex F within ICRP Publication 116 . Annex F provides dose coefficients - absorbed dose per particle fluence - for photon, electron, and neutron irradiation of the eye and lens of the eye using two dosimetric models. The first approach uses the reference adult male and female voxel phantoms of ICRP Publication 110. The second approach uses the stylised eye model of Behrens et al., which itself is based on ocular dimensional data given in Charles and Brown. This article will review the data and models of Annex F with particular emphasis on how these models treat tissue regions thought to be associated with stem cells at risk. © The International Society for Prosthetics and Orthotics Reprints and permissions: sagepub.co.uk/journalsPermissions.nav.

  6. Absorbed dose in target cell nuclei and dose conversion coefficient of radon progeny in the human lung.

    PubMed

    Nikezic, D; Lau, B M F; Stevanovic, N; Yu, K N

    2006-01-01

    To calculate the absorbed dose in the human lung due to inhaled radon progeny, ICRP focussed on the layers containing the target cells, i.e., the basal and secretory cells. Such an approach did not consider details of the sensitive cells in the layers. The present work uses the microdosimetric approach and determines the absorbed alpha-particle energy in non-spherical nuclei of target cells (basal and secretory cells). The absorbed energy for alpha particles emitted by radon progeny in the human respiratory tract was calculated in basal- and secretory-cell nuclei, assuming conical and ellipsoidal forms for these cells. Distributions of specific energy for different combinations of alpha-particle sources, energies and targets are calculated and shown. The dose conversion coefficient for radon progeny is reduced for about 2mSv/WLM when conical and ellipsoidal cell nuclei are considered instead of the layers. While changes in the geometry of secretory-cell nuclei do not have significant effects on their absorbed dose, changes from spherical to conical basal-cell nuclei have significantly reduced their absorbed dose from approximately 4 to approximately 3mGy/WLM. This is expected because basal cells are situated close to the end of the range of 6MeV alpha particles. This also underlines the significance of better and more precise information on targets in the T-B tree. A further change in the dose conversion coefficient can be achieved if a different weighting scheme is adopted for the doses for the cells. The results demonstrate the necessity for better information on the target cells for more accurate dosimetry for radon progeny.

  7. Dose coefficients in pediatric and adult abdominopelvic CT based on 100 patient models.

    PubMed

    Tian, Xiaoyu; Li, Xiang; Segars, W Paul; Frush, Donald P; Paulson, Erik K; Samei, Ehsan

    2013-12-21

    Recent studies have shown the feasibility of estimating patient dose from a CT exam using CTDI(vol)-normalized-organ dose (denoted as h), DLP-normalized-effective dose (denoted as k), and DLP-normalized-risk index (denoted as q). However, previous studies were limited to a small number of phantom models. The purpose of this work was to provide dose coefficients (h, k, and q) across a large number of computational models covering a broad range of patient anatomy, age, size percentile, and gender. The study consisted of 100 patient computer models (age range, 0 to 78 y.o.; weight range, 2-180 kg) including 42 pediatric models (age range, 0 to 16 y.o.; weight range, 2-80 kg) and 58 adult models (age range, 18 to 78 y.o.; weight range, 57-180 kg). Multi-detector array CT scanners from two commercial manufacturers (LightSpeed VCT, GE Healthcare; SOMATOM Definition Flash, Siemens Healthcare) were included. A previously-validated Monte Carlo program was used to simulate organ dose for each patient model and each scanner, from which h, k, and q were derived. The relationships between h, k, and q and patient characteristics (size, age, and gender) were ascertained. The differences in conversion coefficients across the scanners were further characterized. CTDI(vol)-normalized-organ dose (h) showed an exponential decrease with increasing patient size. For organs within the image coverage, the average differences of h across scanners were less than 15%. That value increased to 29% for organs on the periphery or outside the image coverage, and to 8% for distributed organs, respectively. The DLP-normalized-effective dose (k) decreased exponentially with increasing patient size. For a given gender, the DLP-normalized-risk index (q) showed an exponential decrease with both increasing patient size and patient age. The average differences in k and q across scanners were 8% and 10%, respectively. This study demonstrated that the knowledge of patient information and CTDIvol/DLP values

  8. Dose coefficients in pediatric and adult abdominopelvic CT based on 100 patient models

    NASA Astrophysics Data System (ADS)

    Tian, Xiaoyu; Li, Xiang; Segars, W. Paul; Frush, Donald P.; Paulson, Erik K.; Samei, Ehsan

    2013-12-01

    Recent studies have shown the feasibility of estimating patient dose from a CT exam using CTDIvol-normalized-organ dose (denoted as h), DLP-normalized-effective dose (denoted as k), and DLP-normalized-risk index (denoted as q). However, previous studies were limited to a small number of phantom models. The purpose of this work was to provide dose coefficients (h, k, and q) across a large number of computational models covering a broad range of patient anatomy, age, size percentile, and gender. The study consisted of 100 patient computer models (age range, 0 to 78 y.o.; weight range, 2-180 kg) including 42 pediatric models (age range, 0 to 16 y.o.; weight range, 2-80 kg) and 58 adult models (age range, 18 to 78 y.o.; weight range, 57-180 kg). Multi-detector array CT scanners from two commercial manufacturers (LightSpeed VCT, GE Healthcare; SOMATOM Definition Flash, Siemens Healthcare) were included. A previously-validated Monte Carlo program was used to simulate organ dose for each patient model and each scanner, from which h, k, and q were derived. The relationships between h, k, and q and patient characteristics (size, age, and gender) were ascertained. The differences in conversion coefficients across the scanners were further characterized. CTDIvol-normalized-organ dose (h) showed an exponential decrease with increasing patient size. For organs within the image coverage, the average differences of h across scanners were less than 15%. That value increased to 29% for organs on the periphery or outside the image coverage, and to 8% for distributed organs, respectively. The DLP-normalized-effective dose (k) decreased exponentially with increasing patient size. For a given gender, the DLP-normalized-risk index (q) showed an exponential decrease with both increasing patient size and patient age. The average differences in k and q across scanners were 8% and 10%, respectively. This study demonstrated that the knowledge of patient information and CTDIvol/DLP values may

  9. Construction of new skin models and calculation of skin dose coefficients for electron exposures

    NASA Astrophysics Data System (ADS)

    Yeom, Yeon Soo; Kim, Chan Hyeong; Nguyen, Thang Tat; Choi, Chansoo; Han, Min Cheol; Jeong, Jong Hwi

    2016-08-01

    The voxel-type reference phantoms of the International Commission on Radiological Protection (ICRP), due to their limited voxel resolutions, cannot represent the 50- μm-thick radiosensitive target layer of the skin necessary for skin dose calculations. Alternatively, in ICRP Publication 116, the dose coefficients (DCs) for the skin were calculated approximately, averaging absorbed dose over the entire skin depth of the ICRP phantoms. This approximation is valid for highly-penetrating radiations such as photons and neutrons, but not for weakly penetrating radiations like electrons due to the high gradient in the dose distribution in the skin. To address the limitation, the present study introduces skin polygon-mesh (PM) models, which have been produced by converting the skin models of the ICRP voxel phantoms to a high-quality PM format and adding a 50- μm-thick radiosensitive target layer into the skin models. Then, the constructed skin PM models were implemented in the Geant4 Monte Carlo code to calculate the skin DCs for external exposures of electrons. The calculated values were then compared with the skin DCs of the ICRP Publication 116. The results of the present study show that for high-energy electrons (≥ 1 MeV), the ICRP-116 skin DCs are, indeed, in good agreement with the skin DCs calculated in the present study. For low-energy electrons (< 1 MeV), however, significant discrepancies were observed, and the ICRP-116 skin DCs underestimated the skin dose as much as 15 times for some energies. Besides, regardless of the small tissue weighting factor of the skin ( w T = 0.01), the discrepancies in the skin dose were found to result in significant discrepancies in the effective dose, demonstarting that the effective DCs in ICRP-116 are not reliable for external exposure to electrons.

  10. Organ dose conversion coefficients based on a voxel mouse model and MCNP code for external photon irradiation.

    PubMed

    Zhang, Xiaomin; Xie, Xiangdong; Cheng, Jie; Ning, Jing; Yuan, Yong; Pan, Jie; Yang, Guoshan

    2012-01-01

    A set of conversion coefficients from kerma free-in-air to the organ absorbed dose for external photon beams from 10 keV to 10 MeV are presented based on a newly developed voxel mouse model, for the purpose of radiation effect evaluation. The voxel mouse model was developed from colour images of successive cryosections of a normal nude male mouse, in which 14 organs or tissues were segmented manually and filled with different colours, while each colour was tagged by a specific ID number for implementation of mouse model in Monte Carlo N-particle code (MCNP). Monte Carlo simulation with MCNP was carried out to obtain organ dose conversion coefficients for 22 external monoenergetic photon beams between 10 keV and 10 MeV under five different irradiation geometries conditions (left lateral, right lateral, dorsal-ventral, ventral-dorsal, and isotropic). Organ dose conversion coefficients were presented in tables and compared with the published data based on a rat model to investigate the effect of body size and weight on the organ dose. The calculated and comparison results show that the organ dose conversion coefficients varying the photon energy exhibits similar trend for most organs except for the bone and skin, and the organ dose is sensitive to body size and weight at a photon energy approximately <0.1 MeV.

  11. SU-D-209-06: Study On the Dose Conversion Coefficients in Pediatric Radiography with the Development of Children Voxel Phantoms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Q; Shanghai General Hospital, Shanghai, Shanghai; Zhuo, W

    Purpose: Conversion coefficients of organ dose normalized to entrance skin dose (ESD) are widely used to evaluate the organ doses directly using ESD without time-consuming dose measurement, this work aims to investigate the dose conversion coefficients in pediatric chest and abdomen radiography with the development of 5 years and 10 years old children voxel phantoms. Methods: After segmentation of organs and tissues from CT slice images of ATOM tissue-equivalent phantoms, a 5-year-old and a 10-year-old children computational voxel phantoms were developed for Monte Carlo simulation. The organ doses and the entrance skin dose for pediatric chest postero-anterior projection and abdominalmore » antero-posterior projection were simulated at the same time, and then the organ dose conversion coefficients were calculated.To verify the simulated results, dose measurement was carried out with ATOM tissue-equivalent phantoms for 5 year chest radiography. Results: Simulated results and experimental results matched very well with each other, the result differences of all the organs covered in radiation field were below 16% for 5-year-old child in chest projection. I showed that the conversion coefficients of organs covered in the radiation field were much larger than organs out of the field for all the study cases, for example, the conversion coefficients of stomach, liver intestines, and pancreas are larger for abdomen radiography while conversion coefficients of lungs are larger for chest radiography. Conclusion: The voxel children phantoms were helpful to evaluate the radiation doses more accurately and efficiently. Radiation field was the essential factor that affects the organ dose, use reasonably small field should be encouraged for radiation protection. This work was supported by the National Natural Science Foundation of China(11475047)« less

  12. Dose Comparisons for a Site-specific Representative Person Using the Age-dependent Dose Coefficients in CAP88-PC Version 4.

    PubMed

    Stagich, Brooke H; Moore, Kelsey R; Newton, Joseph R; Dixon, Kenneth L; Jannik, G Timothy

    2017-04-01

    Most U.S. Department of Energy (DOE) facilities with radiological airborne releases use the U.S. Environmental Protection Agency's (EPA) environmental dosimetry code CAP88-PC to demonstrate compliance with regulations in 40CFR61, subpart H [National Emission Standards for Hazardous Air Pollutants: Radiological (NESHAP)]. In 2015, EPA released Version 4 of CAP88-PC, which included significant modifications that improved usability and age-dependent dose coefficients and usage factors for six age groups (infant, 1 y, 5 y, 10 y, 15 y, and adult). However, EPA has not yet provided specific guidance on how to use these age-dependent factors. For demonstrating compliance with DOE public dose regulations, the Savannah River Site (SRS) recently changed from using the maximally exposed individual (MEI) concept (adult male) to the representative person concept (age- and gender-averaged reference person). In this study, dose comparisons are provided between the MEI and a SRS-specific representative person using the age-specific dose coefficients and usage factors in CAP88-PC V.4. Dose comparisons also are provided for each of the six age groups using five radionuclides of interest at SRS (tritium oxide, Cs, Sr, Pu, and I). In general, the total effective dose increases about 11% for the representative person as compared to the current NESHAP MEI because of the inclusion of the more radiosensitive age groups.

  13. Assessing the reliability of dose coefficients for exposure to radioiodine by members of the public, accounting for dosimetric and risk model uncertainties.

    PubMed

    Puncher, M; Zhang, W; Harrison, J D; Wakeford, R

    2017-06-26

    Assessments of risk to a specific population group resulting from internal exposure to a particular radionuclide can be used to assess the reliability of the appropriate International Commission on Radiological Protection (ICRP) dose coefficients used as a radiation protection device for the specified exposure pathway. An estimate of the uncertainty on the associated risk is important for informing judgments on reliability; a derived uncertainty factor, UF, is an estimate of the 95% probable geometric difference between the best risk estimate and the nominal risk and is a useful tool for making this assessment. This paper describes the application of parameter uncertainty analysis to quantify uncertainties resulting from internal exposures to radioiodine by members of the public, specifically 1, 10 and 20-year old females from the population of England and Wales. Best estimates of thyroid cancer incidence risk (lifetime attributable risk) are calculated for ingestion or inhalation of 129 I and 131 I, accounting for uncertainties in biokinetic model and cancer risk model parameter values. These estimates are compared with the equivalent ICRP derived nominal age-, sex- and population-averaged estimates of excess thyroid cancer incidence to obtain UFs. Derived UF values for ingestion or inhalation of 131 I for 1 year, 10-year and 20-year olds are around 28, 12 and 6, respectively, when compared with ICRP Publication 103 nominal values, and 9, 7 and 14, respectively, when compared with ICRP Publication 60 values. Broadly similar results were obtained for 129 I. The uncertainties on risk estimates are largely determined by uncertainties on risk model parameters rather than uncertainties on biokinetic model parameters. An examination of the sensitivity of the results to the risk models and populations used in the calculations show variations in the central estimates of risk of a factor of around 2-3. It is assumed that the direct proportionality of excess thyroid cancer

  14. An overview of coefficient alpha and a reliability matrix for estimating adequacy of internal consistency coefficients with psychological research measures.

    PubMed

    Ponterotto, Joseph G; Ruckdeschel, Daniel E

    2007-12-01

    The present article addresses issues in reliability assessment that are often neglected in psychological research such as acceptable levels of internal consistency for research purposes, factors affecting the magnitude of coefficient alpha (alpha), and considerations for interpreting alpha within the research context. A new reliability matrix anchored in classical test theory is introduced to help researchers judge adequacy of internal consistency coefficients with research measures. Guidelines and cautions in applying the matrix are provided.

  15. Respirators, internal dose, and Oyster Creek

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Michal, R.

    1996-06-01

    This article looks at the experience of Oyster Creek in relaxing the requirements for the use of respirators in all facets of plant maintenance, on the overall dose received by plant maintenance personnel. For Roger Shaw, director of radiological controls for three years at GPU Nuclear Corporation`s Oyster Creek nuclear plant the correct dose balance is determined on a job-by-job basis: Does the job require a respirator, which is an effective means of decreasing worker inhalation of airborne radioactive particles? Will wearing a respirator slow down a worker, consequently increasing whole body radiation exposure by prolonging the time spent inmore » fields of high external radiation? How does respiratory protection affect worker safety and to what degree? While changes to the Nuclear Regulatory Commission`s 10CFR20 have updated the radiation protection requirements for the nuclear industry, certain of the revisions have been directed specifically at reducing worker dose, Shaw said. {open_quotes}It basically delineates that dose is dose,{close_quotes} Shaw said, {open_quotes}regardless of whether it is acquired externally or internally.{close_quotes} The revision of Part 20 changed the industry`s attitude toward internal dose, which had always been viewed negatively. {open_quotes}Internal dose was always seen as preventable by wearing respirators and by using engineering techniques such as ventilation control and decontamination,{close_quotes} Shaw said, {open_quotes}whereas external dose, although reduced where practical, was seen as a fact of the job.{close_quotes}« less

  16. The internal dosimetry code PLEIADES.

    PubMed

    Fell, T P; Phipps, A W; Smith, T J

    2007-01-01

    The International Commission on Radiological Protection (ICRP) has published dose coefficients for the ingestion or inhalation of radionuclides in a series of reports covering intakes by workers and members of the public, including children and pregnant or lactating women. The calculation of these coefficients divides naturally into two distinct parts-the biokinetic and dosimetric. This paper describes in detail the methods used to solve the biokinetic problem in the generation of dose coefficients on behalf of the ICRP, as implemented in the Health Protection Agency's internal dosimetry code PLEIADES. A summary of the dosimetric treatment is included.

  17. 10 CFR 835.203 - Combining internal and external equivalent doses.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 4 2010-01-01 2010-01-01 false Combining internal and external equivalent doses. 835.203 Section 835.203 Energy DEPARTMENT OF ENERGY OCCUPATIONAL RADIATION PROTECTION Standards for Internal and External Exposure § 835.203 Combining internal and external equivalent doses. (a) The total effective dose...

  18. Dose conversion coefficients for electron exposure of the human eye lens: calculations including a whole body phantom.

    PubMed

    Behrens, R

    2013-07-01

    In this work, conversion coefficients from electron fluence to absorbed dose to the eye lens were calculated using Monte Carlo simulations based on a detailed stylised eye model and a very simple but whole body phantom. These data supersede and complement data published earlier based on the simulation of only a single stylised eye. The new data differ from the old ones by not more than 3, 4, 7 and 16 % for angles of radiation incidence of α=0°, 15°, 30° and 45°, respectively, due to the inclusion of the whole body phantom. The data presented in the present work also complement those of a recent report of the International Commission on Radiological Protection (ICRP) (ICRP Publication 116), where conversion coefficients from electron fluence to absorbed dose to the lens of the eye are shown for solely 0°, 180° and isotropic radiation incidence (but for a much broader range of energies). In this article, values are provided for angles of incidence of 0° up to 180° in steps of 15° and for rotational geometry; no systematic deviation was observed from the values given in ICRP Publication 116 for 0° (based on the application of a bare eye) and 180° (based on the application of a voxel whole body phantom). Data are given for monoenergetic electrons from 0.1 up to 10 MeV and for a broad parallel beam geometry in vacuum.

  19. Fluence-to-dose conversion coefficients for heavy ions calculated using the PHITS code and the ICRP/ICRU adult reference computational phantoms.

    PubMed

    Sato, Tatsuhiko; Endo, Akira; Niita, Koji

    2010-04-21

    The fluence to organ-absorbed-dose and effective-dose conversion coefficients for heavy ions with atomic numbers up to 28 and energies from 1 MeV/nucleon to 100 GeV/nucleon were calculated using the PHITS code coupled to the ICRP/ICRU adult reference computational phantoms, following the instruction given in ICRP Publication 103 (2007 (Oxford: Pergamon)). The conversion coefficients for effective dose equivalents derived using the radiation quality factors of both Q(L) and Q(y) relationships were also estimated, utilizing the functions for calculating the probability densities of absorbed dose in terms of LET (L) and lineal energy (y), respectively, implemented in PHITS. The calculation results indicate that the effective dose can generally give a conservative estimation of the effective dose equivalent for heavy-ion exposure, although it is occasionally too conservative especially for high-energy lighter-ion irradiations. It is also found from the calculation that the conversion coefficients for the Q(y)-based effective dose equivalents are generally smaller than the corresponding Q(L)-based values because of the conceptual difference between LET and y as well as the numerical incompatibility between the Q(L) and Q(y) relationships. The calculated data of these dose conversion coefficients are very useful for the dose estimation of astronauts due to cosmic-ray exposure.

  20. [Estimators of internal consistency in health research: the use of the alpha coefficient].

    PubMed

    da Silva, Franciele Cascaes; Gonçalves, Elizandra; Arancibia, Beatriz Angélica Valdivia; Bento, Gisele Graziele; Castro, Thiago Luis da Silva; Hernandez, Salma Stephany Soleman; da Silva, Rudney

    2015-01-01

    Academic production has increased in the area of health, increasingly demanding high quality in publications of great impact. One of the ways to consider quality is through methods that increase the consistency of data analysis, such as reliability which, depending on the type of data, can be evaluated by different coefficients, especially the alpha coefficient. Based on this, the present review systematically gathers scientific articles produced in the last five years, which in a methodological manner gave the α coefficient psychometric use as an estimator of internal consistency and reliability in the processes of construction, adaptation and validation of instruments. The identification of the studies was conducted systematically in the databases BioMed Central Journals, Web of Science, Wiley Online Library, Medline, SciELO, Scopus, Journals@Ovid, BMJ and Springer, using inclusion and exclusion criteria. Data analyses were performed by means of triangulation, content analysis and descriptive analysis. It was found that most studies were conducted in Iran (f=3), Spain (f=2) and Brazil (f=2). These studies aimed to test the psychometric properties of instruments, with eight studies using the α coefficient to assess reliability and nine for assessing internal consistency. All studies were classified as methodological research when their objectives were analyzed. In addition, four studies were also classified as correlational and one as descriptive-correlational. It can be concluded that though the α coefficient is widely used as one of the main parameters for assessing internal consistency of questionnaires in health sciences, its use as an estimator of trust of the methodology used and internal consistency has some critiques that should be considered.

  1. AIR KERMA TO Hp(3) CONVERSION COEFFICIENTS FOR IEC 61267 RQR X-RAY RADIATION QUALITIES: APPLICATION TO DOSE MONITORING OF THE LENS OF THE EYE IN MEDICAL DIAGNOSTICS.

    PubMed

    Principi, S; Guardiola, C; Duch, M A; Ginjaume, M

    2016-09-01

    Recent studies highlight the fact that the new eye lens dose limit can be exceeded in interventional radiology procedures and that eye lens monitoring could be required for these workers. The recommended operational quantity for monitoring of eye lens exposure is the personal dose equivalent at 3 mm depth Hp(3) (ICRU 51). However, there are no available conversion coefficients in international standards, while in the literature coefficients have only been calculated for monoenergetic beams and for ISO 4037-1 X-ray qualities. The aim of this article is to provide air kerma to Hp(3) conversion coefficients for a cylindrical phantom made of ICRU-4 elements tissue-equivalent material for RQR radiation qualities (IEC-61267) from 40 to 120 kV and for angles of incidence from 0 to 180°, which are characteristic of medical workplace. Analytic calculations using interpolation techniques and Monte Carlo modelling have been compared. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  2. Dose conversion coefficients for monoenergetic electrons incident on a realistic human eye model with different lens cell populations

    NASA Astrophysics Data System (ADS)

    Nogueira, P.; Zankl, M.; Schlattl, H.; Vaz, P.

    2011-11-01

    The radiation-induced posterior subcapsular cataract has long been generally accepted to be a deterministic effect that does not occur at doses below a threshold of at least 2 Gy. Recent epidemiological studies indicate that the threshold for cataract induction may be much lower or that there may be no threshold at all. A thorough study of this subject requires more accurate dose estimates for the eye lens than those available in ICRP Publication 74. Eye lens absorbed dose per unit fluence conversion coefficients for electron irradiation were calculated using a geometrical model of the eye that takes into account different cell populations of the lens epithelium, together with the MCNPX Monte Carlo radiation transport code package. For the cell population most sensitive to ionizing radiation—the germinative cells—absorbed dose per unit fluence conversion coefficients were determined that are up to a factor of 4.8 higher than the mean eye lens absorbed dose conversion coefficients for electron energies below 2 MeV. Comparison of the results with previously published values for a slightly different eye model showed generally good agreement for all electron energies. Finally, the influence of individual anatomical variability was quantified by positioning the lens at various depths below the cornea. A depth difference of 2 mm between the shallowest and the deepest location of the germinative zone can lead to a difference between the resulting absorbed doses of up to nearly a factor of 5000 for electron energy of 0.7 MeV.

  3. Dose conversion coefficients for monoenergetic electrons incident on a realistic human eye model with different lens cell populations.

    PubMed

    Nogueira, P; Zankl, M; Schlattl, H; Vaz, P

    2011-11-07

    The radiation-induced posterior subcapsular cataract has long been generally accepted to be a deterministic effect that does not occur at doses below a threshold of at least 2 Gy. Recent epidemiological studies indicate that the threshold for cataract induction may be much lower or that there may be no threshold at all. A thorough study of this subject requires more accurate dose estimates for the eye lens than those available in ICRP Publication 74. Eye lens absorbed dose per unit fluence conversion coefficients for electron irradiation were calculated using a geometrical model of the eye that takes into account different cell populations of the lens epithelium, together with the MCNPX Monte Carlo radiation transport code package. For the cell population most sensitive to ionizing radiation-the germinative cells-absorbed dose per unit fluence conversion coefficients were determined that are up to a factor of 4.8 higher than the mean eye lens absorbed dose conversion coefficients for electron energies below 2 MeV. Comparison of the results with previously published values for a slightly different eye model showed generally good agreement for all electron energies. Finally, the influence of individual anatomical variability was quantified by positioning the lens at various depths below the cornea. A depth difference of 2 mm between the shallowest and the deepest location of the germinative zone can lead to a difference between the resulting absorbed doses of up to nearly a factor of 5000 for electron energy of 0.7 MeV.

  4. Air contamination measurements for the evaluation of internal dose to workers in nuclear medicine departments

    NASA Astrophysics Data System (ADS)

    De Massimi, B.; Bianchini, D.; Sarnelli, A.; D'Errico, V.; Marcocci, F.; Mezzenga, E.; Mostacci, D.

    2017-11-01

    Radionuclides handled in nuclear medicine departments are often characterized by high volatility and short half-life. It is generally difficult to monitor directly the intake of these short-lived radionuclides in hospital staff: this makes measuring air contamination of utmost interest. The aim of the present work is to provide a method for the evaluation of internal doses to workers in nuclear medicine, by means of an air activity sampling detector, to ensure that the limits prescribed by the relevant legislation are respected. A continuous air sampling system measures isotope concentration with a Nal(TI) detector. Energy efficiency of the system was assessed with GEANT4 and with known activities of 18F. Air is sampled in a number of areas of the nuclear medicine department of the IRST-IRCCS hospital (Meldola- Italy). To evaluate committed doses to hospital staff involved (doctors, technicians, nurses) different exposure situations (rooms, times, radionuclides etc) were considered. After estimating the intake, the committed effective dose has been evaluated, for the different radionuclides, using the dose coefficients mandated by the Italian legislation. Error propagation for the estimated intake and personal dose has been evaluated, starting from measurement statistics.

  5. Human biokinetics of strontium. Part I: intestinal absorption rate and its impact on the dose coefficient of 90Sr after ingestion.

    PubMed

    Li, Wei Bo; Höllriegl, Vera; Roth, Paul; Oeh, Uwe

    2006-07-01

    Intestinal absorption of strontium (Sr) in thirteen healthy adult German volunteers has been investigated by simultaneous oral and intravenous administration of two stable tracer isotopes, i.e. (84)Sr and (86)Sr. The measured Sr tracer concentration in plasma was analyzed using the convolution integral technique to obtain the intestinal absorption rate. The results showed that the Sr labeled in different foodstuffs was absorbed into the body fluids in a large range of difference. The maximum Sr absorption rates were observed within 60-120 min after administration. The rate of absorption is used to evaluate the intestinal absorption fraction, i.e. the f (1) value for various foodstuffs. The equivalent and effective dose coefficients for ingestion of (90)Sr were calculated using these f (1) values, and they were compared with those recommended by the International Commission on Radiological Protection (ICRP). The geometric and arithmetic means of the f (1) values are 0.38 and 0.45 associated with a geometric standard deviation and a standard deviation of 1.88 and 0.22, respectively. The 90% confidence interval of the f (1) values obtained in the present study ranges from 0.13 to 0.98. Expressed as the ratio of the 95 and 50% percentiles of the estimated probability, the uncertainty for the f (1) value corresponds to a factor of 2.58. The effective dose coefficients of (90)Sr after ingestion are 6.1 x 10(-9) Sv Bq(-1) for an f(1) value of 0.05, 1.0 x 10(-8) Sv Bq(-1) for 0.1, 1.9 x 10(-8) Sv Bq(-1) for 0.2, 2.8 x 10(-8) Sv Bq(-1) for 0.3, 3.6 x 10(-8) Sv Bq(-1) for 0.4, 5.3 x 10(-8) Sv Bq(-1) for 0.6, 7.1 x 10(-8) Sv Bq(-1) for 0.8, and 7.9 x 10(-8) Sv Bq(-1) for 0.9, respectively. Taking the effective dose coefficient of 2.8 x 10(-8) Sv Bq(-1) for an f (1) value of 0.3, which is recommended by the ICRP, as a reference, the effective dose coefficient of (90)Sr after ingestion varies by a factor of 2.8 when the f (1) value changes by a factor of 3, i.e. it decreases

  6. Fluence-to-dose conversion coefficients for neutrons and protons calculated using the PHITS code and ICRP/ICRU adult reference computational phantoms.

    PubMed

    Sato, Tatsuhiko; Endo, Akira; Zankl, Maria; Petoussi-Henss, Nina; Niita, Koji

    2009-04-07

    The fluence to organ-dose and effective-dose conversion coefficients for neutrons and protons with energies up to 100 GeV was calculated using the PHITS code coupled to male and female adult reference computational phantoms, which are to be released as a common ICRP/ICRU publication. For the calculation, the radiation and tissue weighting factors, w(R) and w(T), respectively, as revised in ICRP Publication 103 were employed. The conversion coefficients for effective dose equivalents derived using the radiation quality factors of both Q(L) and Q(y) relationships were also estimated, utilizing the functions for calculating the probability densities of the absorbed dose in terms of LET (L) and lineal energy (y), respectively, implemented in PHITS. By comparing these data with the corresponding data for the effective dose, we found that the numerical compatibilities of the revised w(R) with the Q(L) and Q(y) relationships are fairly established. The calculated data of these dose conversion coefficients are indispensable for constructing the radiation protection systems based on the new recommendations given in ICRP103 for aircrews and astronauts, as well as for workers in accelerators and nuclear facilities.

  7. Tritium internal dose estimation from measurements with liquid scintillators.

    PubMed

    Pántya, A; Dálnoki, Á; Imre, A R; Zagyvai, P; Pázmándi, T

    2018-07-01

    Tritium may exist in several chemical and physical forms in workplaces, common occurrences are in vapor or liquid form (as tritiated water) and in organic form (e.g. thymidine) which can get into the body by inhalation or by ingestion. For internal dose assessment it is usually assumed that urine samples for tritium analysis are obtained after the tritium concentration inside the body has reached equilibrium following intake. Comparison was carried out for two types of vials, two efficiency calculation methods and two available liquid scintillation devices to highlight the errors of the measurements. The results were used for dose estimation with MONDAL-3 software. It has been shown that concerning the accuracy of the final internal dose assessment, the uncertainties of the assumptions used in the dose assessment (for example the date and route of intake, the physical and chemical form) can be more influential than the errors of the measured data. Therefore, the improvement of the experimental accuracy alone is not the proper way to improve the accuracy of the internal dose estimation. Copyright © 2018 Elsevier Ltd. All rights reserved.

  8. Critical Dose of Internal Organs Internal Exposure - 13471

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grigoryan, G.; Amirjanyan, A.; Grigoryan, N.

    2013-07-01

    The health threat posed by radionuclides has stimulated increased efforts to developed characterization on the biological behavior of radionuclides in humans in all ages. In an effort motivated largely by the Chernobyl nuclear accident, the International Commission on Radiological Protection (ICRP) is assembling a set of age specific biokinetic models for environmentally important radioelements. Radioactive substances in the air, mainly through the respiratory system and digestive tract, is inside the body. Radioactive substances are unevenly distributed in various organs and tissues. Therefore, the degree of damage will depend not only on the dose of radiation have but also on themore » critical organ, which is the most accumulation of radioactive substances, which leads to the defeat of the entire human body. The main objective of radiation protection, to avoid exceeding the maximum permissible doses of external and internal exposure of a person to prevent the physical and genetic damage people. The maximum tolerated dose (MTD) of radiation is called a dose of radiation a person in uniform getting her for 50 years does not cause changes in the health of the exposed individual and his progeny. The following classification of critical organs, depending on the category of exposure on their degree of sensitivity to radiation: First group: the whole body, gonads and red bone marrow; Second group: muscle, fat, liver, kidney, spleen, gastrointestinal tract, lungs and lens of the eye; The third group: bone, thyroid and skin; Fourth group: the hands, forearms, feet. MTD exposure whole body, gonads and bone marrow represent the maximum exposures (5 rem per year) experienced by people in their normal activities. The purpose of this article is intended dose received from various internal organs of the radionuclides that may enter the body by inhalation, and gastrointestinal tract. The biokinetic model describes the time dependent distribution and excretion of different

  9. Define of internal recirculation coefficient for biological wastewater treatment in anoxic and aerobic bioreactors

    NASA Astrophysics Data System (ADS)

    Rossinskyi, Volodymyr

    2018-02-01

    The biological wastewater treatment technologies in anoxic and aerobic bioreactors with recycle of sludge mixture are used for the effective removal of organic compounds from wastewater. The change rate of sludge mixture recirculation between bioreactors leads to a change and redistribution of concentrations of organic compounds in sludge mixture in bioreactors and change hydrodynamic regimes in bioreactors. Determination of the coefficient of internal recirculation of sludge mixture between bioreactors is important for the choice of technological parameters of biological treatment (wastewater treatment duration in anoxic and aerobic bioreactors, flow capacity of recirculation pumps). Determination of the coefficient of internal recirculation of sludge mixture requires integrated consideration of hydrodynamic parameter (flow rate), kinetic parameter (rate of oxidation of organic compounds) and physical-chemical parameter of wastewater (concentration of organic compounds). The conducted numerical experiment from the proposed mathematical equations allowed to obtain analytical dependences of the coefficient of internal recirculation sludge mixture between bioreactors on the concentration of organic compounds in wastewater, the duration of wastewater treatment in bioreactors.

  10. Conversion coefficients for determination of dispersed photon dose during radiotherapy: NRUrad input code for MCNP.

    PubMed

    Shahmohammadi Beni, Mehrdad; Ng, C Y P; Krstic, D; Nikezic, D; Yu, K N

    2017-01-01

    Radiotherapy is a common cancer treatment module, where a certain amount of dose will be delivered to the targeted organ. This is achieved usually by photons generated by linear accelerator units. However, radiation scattering within the patient's body and the surrounding environment will lead to dose dispersion to healthy tissues which are not targets of the primary radiation. Determination of the dispersed dose would be important for assessing the risk and biological consequences in different organs or tissues. In the present work, the concept of conversion coefficient (F) of the dispersed dose was developed, in which F = (Dd/Dt), where Dd was the dispersed dose in a non-targeted tissue and Dt is the absorbed dose in the targeted tissue. To quantify Dd and Dt, a comprehensive model was developed using the Monte Carlo N-Particle (MCNP) package to simulate the linear accelerator head, the human phantom, the treatment couch and the radiotherapy treatment room. The present work also demonstrated the feasibility and power of parallel computing through the use of the Message Passing Interface (MPI) version of MCNP5.

  11. Conversion coefficients for determination of dispersed photon dose during radiotherapy: NRUrad input code for MCNP

    PubMed Central

    Krstic, D.; Nikezic, D.

    2017-01-01

    Radiotherapy is a common cancer treatment module, where a certain amount of dose will be delivered to the targeted organ. This is achieved usually by photons generated by linear accelerator units. However, radiation scattering within the patient’s body and the surrounding environment will lead to dose dispersion to healthy tissues which are not targets of the primary radiation. Determination of the dispersed dose would be important for assessing the risk and biological consequences in different organs or tissues. In the present work, the concept of conversion coefficient (F) of the dispersed dose was developed, in which F = (Dd/Dt), where Dd was the dispersed dose in a non-targeted tissue and Dt is the absorbed dose in the targeted tissue. To quantify Dd and Dt, a comprehensive model was developed using the Monte Carlo N-Particle (MCNP) package to simulate the linear accelerator head, the human phantom, the treatment couch and the radiotherapy treatment room. The present work also demonstrated the feasibility and power of parallel computing through the use of the Message Passing Interface (MPI) version of MCNP5. PMID:28362837

  12. Uncertainty of inhalation dose coefficients for representative physical and chemical forms of iodine-131

    NASA Astrophysics Data System (ADS)

    Harvey, Richard Paul, III

    Releases of radioactive material have occurred at various Department of Energy (DOE) weapons facilities and facilities associated with the nuclear fuel cycle in the generation of electricity. Many different radionuclides have been released to the environment with resulting exposure of the population to these various sources of radioactivity. Radioiodine has been released from a number of these facilities and is a potential public health concern due to its physical and biological characteristics. Iodine exists as various isotopes, but our focus is on 131I due to its relatively long half-life, its prevalence in atmospheric releases and its contribution to offsite dose. The assumption of physical and chemical form is speculated to have a profound impact on the deposition of radioactive material within the respiratory tract. In the case of iodine, it has been shown that more than one type of physical and chemical form may be released to, or exist in, the environment; iodine can exist as a particle or as a gas. The gaseous species can be further segregated based on chemical form: elemental, inorganic, and organic iodides. Chemical compounds in each class are assumed to behave similarly with respect to biochemistry. Studies at Oak Ridge National Laboratories have demonstrated that 131I is released as a particulate, as well as in elemental, inorganic and organic chemical form. The internal dose estimate from 131I may be very different depending on the effect that chemical form has on fractional deposition, gas uptake, and clearance in the respiratory tract. There are many sources of uncertainty in the estimation of environmental dose including source term, airborne transport of radionuclides, and internal dosimetry. Knowledge of uncertainty in internal dosimetry is essential for estimating dose to members of the public and for determining total uncertainty in dose estimation. Important calculational steps in any lung model is regional estimation of deposition fractions

  13. Noninvasive photoacoustic measurement of absorption coefficient using internal light irradiation of cylindrical diffusing fiber

    NASA Astrophysics Data System (ADS)

    Peng, Dong-qing; Zhu, Li-li; Li, Zhi-fang; Li, Hui

    2017-09-01

    Absorption coefficient of biological tissue is an important parameter in biomedicine, but its determination remains a challenge. In this paper, we propose a method using focusing photoacoustic imaging technique and internal light irradiation of cylindrical diffusing fiber (CDF) to quantify the target optical absorption coefficient. Absorption coefficients for ink absorbers are firstly determined through photoacoustic and spectrophotometric measurements at the same excitation, which demonstrates the feasibility of this method. Also, the optical absorption coefficients of ink absorbers with several concentrations are measured. Finally, the two-dimensional scanning photoacoustic image is obtained. Optical absorption coefficient measurement and simultaneous photoacoustic imaging of absorber non-invasively are the typical characteristics of the method. This method can play a significant role for non-invasive determination of blood oxygen saturation, the absorption-based imaging and therapy.

  14. The influence of patient size on dose conversion coefficients: a hybrid phantom study for adult cardiac catheterization

    NASA Astrophysics Data System (ADS)

    Johnson, Perry; Lee, Choonsik; Johnson, Kevin; Siragusa, Daniel; Bolch, Wesley E.

    2009-06-01

    In this study, the influence of patient size on organ and effective dose conversion coefficients (DCCs) was investigated for a representative interventional fluoroscopic procedure—cardiac catheterization. The study was performed using hybrid phantoms representing an underweight, average and overweight American adult male. Reference body sizes were determined using the NHANES III database and parameterized based on standing height and total body mass. Organ and effective dose conversion coefficients were calculated for anterior-posterior, posterior-anterior, left anterior oblique and right anterior oblique projections using the Monte Carlo code MCNPX 2.5.0 with the metric dose area product being used as the normalization factor. Results show body size to have a clear influence on DCCs which increased noticeably when body size decreased. It was also shown that if patient size is neglected when choosing a DCC, the organ and effective dose will be underestimated to an underweight patient and will be overestimated to an underweight patient, with errors as large as 113% for certain projections. Results were further compared with those published for a KTMAN-2 Korean patient-specific tomographic phantom. The published DCCs aligned best with the hybrid phantom which most closely matched in overall body size. These results highlighted the need for and the advantages of phantom-patient matching, and it is recommended that hybrid phantoms be used to create a more diverse library of patient-dependent anthropomorphic phantoms for medical dose reconstruction.

  15. Comparing Hp(3) evaluated from the conversion coefficients from air kerma to personal dose equivalent for eye lens dosimetry calibrated on a new cylindrical PMMA phantom

    NASA Astrophysics Data System (ADS)

    Esor, J.; Sudchai, W.; Monthonwattana, S.; Pungkun, V.; Intang, A.

    2017-06-01

    Based on a new occupational dose limit recommended by ICRP (2011), the annual dose limit for the lens of the eye for workers should be reduced from 150 mSv/y to 20 mSv/y averaged over 5 consecutive years in which no single year exceeding 50 mSv. This new dose limit directly affects radiologists and cardiologists whose work involves high radiation exposure over 20 mSv/y. Eye lens dosimetry (Hp(3)) has become increasingly important and should be evaluated directly based on dosimeters that are worn closely to the eye. Normally, Hp(3) dose algorithm was carried out by the combination of Hp(0.07) and Hp(10) values while dosimeters were calibrated on slab PMMA phantom. Recently, there were three reports from European Union that have shown the conversion coefficients from air kerma to Hp(3). These conversion coefficients carried out by ORAMED, PTB and CEA Saclay projects were performed by using a new cylindrical head phantom. In this study, various delivered doses were calculated using those three conversion coefficients while nanoDot, small OSL dosimeters, were used for Hp(3) measurement. These calibrations were performed with a standard X-ray generator at Secondary Standard Dosimetry Laboratory (SSDL). Delivered doses (Hp(3)) using those three conversion coefficients were compared with Hp(3) from nanoDot measurements. The results showed that percentage differences between delivered doses evaluated from the conversion coefficient of each project and Hp(3) doses evaluated from the nanoDots were found to be not exceeding -11.48 %, -8.85 % and -8.85 % for ORAMED, PTB and CEA Saclay project, respectively.

  16. A comprehensive dose reconstruction methodology for former rocketdyne/atomics international radiation workers.

    PubMed

    Boice, John D; Leggett, Richard W; Ellis, Elizabeth Dupree; Wallace, Phillip W; Mumma, Michael; Cohen, Sarah S; Brill, A Bertrand; Chadda, Bandana; Boecker, Bruce B; Yoder, R Craig; Eckerman, Keith F

    2006-05-01

    Incomplete radiation exposure histories, inadequate treatment of internally deposited radionuclides, and failure to account for neutron exposures can be important uncertainties in epidemiologic studies of radiation workers. Organ-specific doses from lifetime occupational exposures and radionuclide intakes were estimated for an epidemiologic study of 5,801 Rocketdyne/Atomics International (AI) radiation workers engaged in nuclear technologies between 1948 and 1999. The entire workforce of 46,970 Rocketdyne/AI employees was identified from 35,042 Kardex work histories cards, 26,136 electronic personnel listings, and 14,189 radiation folders containing individual exposure histories. To obtain prior and subsequent occupational exposure information, the roster of all workers was matched against nationwide dosimetry files from the Department of Energy, the Nuclear Regulatory Commission, the Landauer dosimetry company, the U.S. Army, and the U.S. Air Force. Dosimetry files of other worker studies were also accessed. Computation of organ doses from radionuclide intakes was complicated by the diversity of bioassay data collected over a 40-y period (urine and fecal samples, lung counts, whole-body counts, nasal smears, and wound and incident reports) and the variety of radionuclides with documented intake including isotopes of uranium, plutonium, americium, calcium, cesium, cerium, zirconium, thorium, polonium, promethium, iodine, zinc, strontium, and hydrogen (tritium). Over 30,000 individual bioassay measurements, recorded on 11 different bioassay forms, were abstracted. The bioassay data were evaluated using ICRP biokinetic models recommended in current or upcoming ICRP documents (modified for one inhaled material to reflect site-specific information) to estimate annual doses for 16 organs or tissues taking into account time of exposure, type of radionuclide, and excretion patterns. Detailed internal exposure scenarios were developed and annual internal doses were derived

  17. LINKING EXPOSURES TO INTERNAL DOSES USING BIOMARKERS

    EPA Science Inventory

    Biomonitoring is a useful tool to help assess human exposures/internal doses to chemicals in the environment. This research contributes to EPA's mission to protect human health by understanding what chemicals people are exposed to in their daily environments. In this task, we wil...

  18. Use of Internal Consistency Coefficients for Estimating Reliability of Experimental Tasks Scores

    PubMed Central

    Green, Samuel B.; Yang, Yanyun; Alt, Mary; Brinkley, Shara; Gray, Shelley; Hogan, Tiffany; Cowan, Nelson

    2017-01-01

    Reliabilities of scores for experimental tasks are likely to differ from one study to another to the extent that the task stimuli change, the number of trials varies, the type of individuals taking the task changes, the administration conditions are altered, or the focal task variable differs. Given reliabilities vary as a function of the design of these tasks and the characteristics of the individuals taking them, making inferences about the reliability of scores in an ongoing study based on reliability estimates from prior studies is precarious. Thus, it would be advantageous to estimate reliability based on data from the ongoing study. We argue that internal consistency estimates of reliability are underutilized for experimental task data and in many applications could provide this information using a single administration of a task. We discuss different methods for computing internal consistency estimates with a generalized coefficient alpha and the conditions under which these estimates are accurate. We illustrate use of these coefficients using data for three different tasks. PMID:26546100

  19. BODY SIZE-SPECIFIC EFFECTIVE DOSE CONVERSION COEFFICIENTS FOR CT SCANS.

    PubMed

    Romanyukha, Anna; Folio, Les; Lamart, Stephanie; Simon, Steven L; Lee, Choonsik

    2016-12-01

    Effective dose from computed tomography (CT) examinations is usually estimated using the scanner-provided dose-length product and using conversion factors, also known as k-factors, which correspond to scan regions and differ by age according to five categories: 0, 1, 5, 10 y and adult. However, patients often deviate from the standard body size on which the conversion factor is based. In this study, a method for deriving body size-specific k-factors is presented, which can be determined from a simple regression curve based on patient diameter at the centre of the scan range. Using the International Commission on Radiological Protection reference paediatric and adult computational phantoms paired with Monte Carlo simulation of CT X-ray beams, the authors derived a regression-based k-factor model for the following CT scan types: head-neck, head, neck, chest, abdomen, pelvis, abdomen-pelvis (AP) and chest-abdomen-pelvis (CAP). The resulting regression functions were applied to a total of 105 paediatric and 279 adult CT scans randomly sampled from patients who underwent chest, AP and CAP scans at the National Institutes of Health Clinical Center. The authors have calculated and compared the effective doses derived from the conventional age-specific k-factors with the values computed using their body size-specific k-factor. They found that by using the age-specific k-factor, paediatric patients tend to have underestimates (up to 3-fold) of effective dose, while underweight and overweight adult patients tend to have underestimates (up to 2.6-fold) and overestimates (up to 4.6-fold) of effective dose, respectively, compared with the effective dose determined from their body size-dependent factors. The authors present these size-specific k-factors as an alternative to the existing age-specific factors. The body size-specific k-factor will assess effective dose more precisely and on a more individual level than the conventional age-specific k-factors and, hence, improve

  20. Mean Glandular dose coefficients (DgN) for x-ray spectra used in contemporary breast imaging systems

    PubMed Central

    Nosratieh, Anita; Hernandez, Andrew; Shen, Sam Z.; Yaffe, Martin J.; Seibert, J. Anthony; Boone, John M.

    2015-01-01

    Purpose To develop tables of normalized glandular dose coefficients DgN for a range of anode–filter combinations and tube voltages used in contemporary breast imaging systems. Methods Previously published mono-energetic DgN values were used with various spectra to mathematically compute DgN coefficients. The tungsten anode spectra from TASMICS were used; Molybdenum and Rhodium anode-spectra were generated using MCNPx Monte Carlo code. The spectra were filtered with various thicknesses of Al, Rh, Mo or Cu. An initial HVL calculation was made using the anode and filter material. A range of the HVL values was produced with the addition of small thicknesses of polymethyl methacrylate (PMMA) as a surrogate for the breast compression paddle, to produce a range of HVL values at each tube voltage. Using a spectral weighting method, DgN coefficients for the generated spectra were calculated for breast glandular densities of 0%, 12.5%, 25%, 37.5%, 50% and 100% for a range of compressed breast thicknesses from 3 to 8 cm. Results Eleven tables of normalized glandular dose (DgN) coefficients were produced for the following anode/filter combinations: W + 50 μm Ag, W + 500 μm Al, W + 700 μm Al, W + 200 μm Cu, W + 300 μm Cu, W + 50 μm Rh, Mo + 400 μm Cu, Mo + 30 μm Mo, Mo + 25 μm Rh, Rh + 400 μm Cu and Rh + 25 μm Rh. Where possible, these results were compared to previously published DgN values and were found to be on average less than 2% different than previously reported values. Conclusion Over 200-pages of DgN coefficients were computed for modeled x-ray system spectra that are used in a number of new breast imaging applications. The reported values were found to be in excellent agreement when compared to published values. PMID:26348995

  1. Controlling the Internal Heat Transfer Coefficient by the Characteristics of External Flows

    NASA Astrophysics Data System (ADS)

    Zhuromskii, V. M.

    2018-01-01

    The engineering-physical fundamentals of substance synthesis in a boiling apparatus are presented. We have modeled a system of automatic stabilization of the maximum internal heat transfer coefficient in such an apparatus by the characteristics of external flows on the basis of adaptive seeking algorithms. The results of operation of the system in the shop are presented.

  2. Radiation dose management in thoracic CT: an international survey.

    PubMed

    Molinari, Francesco; Tack, Denis M; Boiselle, Philip; Ngo, Long; Mueller-Mang, Christina; Litmanovich, Diana; Bankier, Alexander A

    2013-01-01

    We aimed to examine current practice patterns of international thoracic radiologists regarding radiation dose management in adult thoracic computed tomography (CT) examinations. An electronic questionnaire was sent to 800 members of five thoracic radiology societies in North America, Europe, Asia, and Latin America addressing radiation dose training and education, standard kVp and mAs settings for thoracic CT, dose reduction practices, clinical scenarios, and demographics. Of the 800 radiologists, 146 responded to our survey. Nearly half (66/146, 45% [95% confidence interval, 37%-53%]) had no formal training in dose reduction, with "self-study of the literature" being the most common form of training (54/146, 37% [29%-45%]). One hundred and seventeen (80% [74%-87%]) had automatic exposure control, and 76 (65% [56%-74%]) used it in all patients. Notably, most respondents (89% [84%-94%]) used a 120 to 125 kVp standard setting, whereas none used 140 kVp. The most common average dose-length-product (DLP) value was 150 to 249 mGy.cm (75/146, 51% [43%-59%]), and 59% (51%-67%) delivered less than 250 mGy.cm in a 70 kg patient. There was a tendency towards higher DLP values with multidetector-row CT. Age, gender, and pregnancy were associated more with dose reduction than weight and clinical indication. Efforts for reducing patient radiation dose are highly prevalent among thoracic radiologists. Areas for improvement include reduction of default tube current settings, reduction of anatomical scan coverage, greater use of automatic exposure control, and eventually, reduction of current reference dose values. Our study emphasizes the need for international guidelines to foster greater conformity in dose reduction by thoracic radiologists.

  3. Factors that elevate the internal radionuclide and chemical retention, dose and health risks to infants and children in a radiological-nuclear emergency.

    PubMed

    Richardson, Richard B

    2009-06-01

    The factors that influence the dose and risk to vulnerable population groups from exposure and internal uptake of chemicals are examined and, in particular, the radionuclides released in chemical, biological, radiological, nuclear and explosive events. The paper seeks to identify the areas that would benefit from further research. The intake and body burdens of carbon and calcium were assessed as surrogates for contaminants that either act like or bind to hydrocarbons (e.g. tritium and (14)C) or bone-seeking radionuclides (e.g. (90)Sr and (239)Pu). The shortest turnover times for such materials in the whole body were evaluated for the newborn: 11 d and 0.5 y for carbon and calcium, respectively. However, their biokinetic behaviour is complicated by a particularly high percentage of the gut-absorbed dietary intake of carbon (approximately 16%) and calcium (approximately 100%) that is incorporated into the soft tissue and skeleton of the growing neonate. The International Commission on Radiological Protection dose coefficients (Sv Bq(-1)) were examined for 14 radionuclides, including 9 of concern because of their potential use in radiological dispersal devices. The dose coefficients for a 3-month-old are greater than those for adults (2-56 times more for ingestion and 2-12 times for inhalation). The age-dependent dose and exposure assessment of contaminant intakes would improve by accounting for gender and growth where it is currently neglected. Health risk is evaluated as the product of the exposure and hazard factors, the latter being about 10-fold greater in infants than in adults. The exposure factor is also approximately 10-fold higher for ingestion by infants than by adults, and unity for inhalation varying with the contaminant. Qualitative and quantitative physiological and epidemiological evidence supports infants being more vulnerable to cancer and neurological deficit than older children.

  4. ORGAN-SPECIFIC EXTERNAL DOSE COEFFICIENTS AND PROTECTIVE APRON TRANSMISSION FACTORS FOR HISTORICAL DOSE RECONSTRUCTION FOR MEDICAL PERSONNEL

    PubMed Central

    Simon, Steven L.

    2014-01-01

    While radiation absorbed dose (Gy) to the skin or other organs is sometimes estimated for patients from diagnostic radiologic examinations or therapeutic procedures, rarely is occupationally-received radiation absorbed dose to individual organs/tissues estimated for medical personnel, e.g., radiologic technologists or radiologists. Generally, for medical personnel, equivalent or effective radiation doses are estimated for compliance purposes. In the very few cases when organ doses to medical personnel are reconstructed, the data is usually for the purpose of epidemiologic studies, e.g., a study of historical doses and risks to a cohort of about 110,000 radiologic technologists presently underway at the U.S. National Cancer Institute. While ICRP and ICRU have published organ-specific external dose conversion coefficients (DCCs), i.e., absorbed dose to organs and tissues per unit air kerma and dose equivalent per unit air kerma, those factors have been primarily published for mono-energetic photons at selected energies. This presents two related problems for historical dose reconstruction, both of which are addressed here. It is necessary to derive conversion factors values for (i) continuous distributions of energy typical of diagnostic medical x rays (bremsstrahlung radiation), and (ii) for energies of particular radioisotopes used in medical procedures, neither of which are presented in published tables. For derivation of DCCs for bremsstrahlung radiation, combinations of x-ray tube potentials and filtrations were derived for different time periods based on a review of relevant literature. Three peak tube potentials (70 kV, 80 kV, and 90 kV) with four different amounts of beam filtration were determined to be applicable for historic dose reconstruction. The probability of these machine settings were assigned to each of the four time periods (earlier than 1949, 1949-1954, 1955-1968, and after 1968). Continuous functions were fit to each set of discrete values of

  5. Organ-specific external dose coefficients and protective apron transmission factors for historical dose reconstruction for medical personnel.

    PubMed

    Simon, Steven L

    2011-07-01

    While radiation absorbed dose (Gy) to the skin or other organs is sometimes estimated for patients from diagnostic radiologic examinations or therapeutic procedures, rarely is occupationally-received radiation absorbed dose to individual organs/tissues estimated for medical personnel; e.g., radiologic technologists or radiologists. Generally, for medical personnel, equivalent or effective radiation doses are estimated for compliance purposes. In the very few cases when organ doses to medical personnel are reconstructed, the data is usually for the purpose of epidemiologic studies; e.g., a study of historical doses and risks to a cohort of about 110,000 radiologic technologists presently underway at the U.S. National Cancer Institute. While ICRP and ICRU have published organ-specific external dose conversion coefficients (DCCs) (i.e., absorbed dose to organs and tissues per unit air kerma and dose equivalent per unit air kerma), those factors have been published primarily for mono-energetic photons at selected energies. This presents two related problems for historical dose reconstruction, both of which are addressed here. It is necessary to derive conversion factor values for (1) continuous distributions of energy typical of diagnostic medical x-rays (bremsstrahlung radiation), and (2) energies of particular radioisotopes used in medical procedures, neither of which are presented in published tables. For derivation of DCCs for bremsstrahlung radiation, combinations of x-ray tube potentials and filtrations were derived for different time periods based on a review of relevant literature. Three peak tube potentials (70 kV, 80 kV, and 90 kV) with four different amounts of beam filtration were determined to be applicable for historic dose reconstruction. The probabilities of these machine settings were assigned to each of the four time periods (earlier than 1949, 1949-1954, 1955-1968, and after 1968). Continuous functions were fit to each set of discrete values of the

  6. Organ and effective dose conversion coefficients for a sitting female hybrid computational phantom exposed to monoenergetic protons in idealized irradiation geometries.

    PubMed

    Alves, M C; Santos, W S; Lee, Choonsik; Bolch, Wesley E; Hunt, John G; Carvalho Júnior, A B

    2014-12-21

    The conversion coefficients (CCs) relate protection quantities, mean absorbed dose (DT) and effective dose (E), with physical radiation field quantities, such as fluence (Φ). The calculation of CCs through Monte Carlo simulations is useful for estimating the dose in individuals exposed to radiation. The aim of this work was the calculation of conversion coefficients for absorbed and effective doses per fluence (DT/ Φ and E/Φ) using a sitting and standing female hybrid phantom (UFH/NCI) exposure to monoenergetic protons with energy ranging from 2 MeV to 10 GeV. The radiation transport code MCNPX was used to develop exposure scenarios implementing the female UFH/NCI phantom in sitting and standing postures. Whole-body irradiations were performed using the recommended irradiation geometries by ICRP publication 116 (AP, PA, RLAT, LLAT, ROT and ISO). In most organs, the conversion coefficients DT/Φ were similar for both postures. However, relative differences were significant for organs located in the abdominal region, such as ovaries, uterus and urinary bladder, especially in the AP, RLAT and LLAT geometries. Anatomical differences caused by changing the posture of the female UFH/NCI phantom led an attenuation of incident protons with energies below 150 MeV by the thigh of the phantom in the sitting posture, for the front-to-back irradiation, and by the arms and hands of the phantom in the standing posture, for the lateral irradiation.

  7. Reduced Variance using ADVANTG in Monte Carlo Calculations of Dose Coefficients to Stylized Phantoms

    NASA Astrophysics Data System (ADS)

    Hiller, Mauritius; Bellamy, Michael; Eckerman, Keith; Hertel, Nolan

    2017-09-01

    The estimation of dose coefficients of external radiation sources to the organs in phantoms becomes increasingly difficult for lower photon source energies. This study focus on the estimation of photon emitters around the phantom. The computer time needed to calculate a result within a certain precision can be lowered by several orders of magnitude using ADVANTG compared to a standard run. Using ADVANTG which employs the DENOVO adjoint calculation package enables the user to create a fully populated set of weight windows and source biasing instructions for an MCNP calculation.

  8. ACUTE AND CHRONIC INTAKES OF FALLOUT RADIONUCLIDES BY MARSHALLESE FROM NUCLEAR WEAPONS TESTING AT BIKINI AND ENEWETAK AND RELATED INTERNAL RADIATION DOSES

    PubMed Central

    Simon, Steven L.; Bouville, André; Melo, Dunstana; Beck, Harold L.; Weinstock, Robert M.

    2014-01-01

    Annual internal radiation doses resulting from both acute and chronic intakes of all important dose-contributing radionuclides occurring in fallout from nuclear weapons testing at Bikini and Enewetak from 1946 through 1958 have been estimated for the residents living on all atolls and separate reef islands of the Marshall Islands. Internal radiation absorbed doses to the tissues most at risk to cancer induction (red bone marrow, thyroid, stomach, and colon) have been estimated for representative persons of all population communities for all birth years from 1929 through 1968, and for all years of exposure from 1948 through 1970. The acute intake estimates rely on a model using, as its basis, historical urine bioassay data, for members of the Rongelap Island and Ailinginae communities as well as for Rongerik residents. The model also utilizes fallout times of arrival and radionuclide deposition densities estimated for all tests and all atolls. Acute intakes of 63 radionuclides were estimated for the populations of the 20 inhabited atolls and for the communities that were relocated during the testing years for reasons of safety and decontamination. The model used for chronic intake estimates is based on reported whole-body, urine, and blood counting data for residents of Utrik and Rongelap. Dose conversion coefficients relating intake to organ absorbed dose were developed using internationally accepted models but specifically tailored for intakes of particulate fallout by consideration of literature-based evidence to choose the most appropriate alimentary tract absorption fraction (f1) values. Dose estimates were much higher for the thyroid gland than for red marrow, stomach wall, or colon. The highest thyroid doses to adults were about 7,600 mGy for the people exposed on Rongelap; thyroid doses to adults were much lower, by a factor of 100 or more, for the people exposed on the populated atolls of Kwajalein and Majuro. The estimates of radionuclide intake and

  9. Acute and chronic intakes of fallout radionuclides by Marshallese from nuclear weapons testing at Bikini and Enewetak and related internal radiation doses.

    PubMed

    Simon, Steven L; Bouville, André; Melo, Dunstana; Beck, Harold L; Weinstock, Robert M

    2010-08-01

    Annual internal radiation doses resulting from both acute and chronic intakes of all important dose-contributing radionuclides occurring in fallout from nuclear weapons testing at Bikini and Enewetak from 1946 through 1958 have been estimated for the residents living on all atolls and separate reef islands of the Marshall Islands. Internal radiation absorbed doses to the tissues most at risk to cancer induction (red bone marrow, thyroid, stomach, and colon) have been estimated for representative persons of all population communities for all birth years from 1929 through 1968, and for all years of exposure from 1948 through 1970. The acute intake estimates rely on a model using, as its basis, historical urine bioassay data, for members of the Rongelap Island and Ailinginae communities as well as for Rongerik residents. The model also utilizes fallout times of arrival and radionuclide deposition densities estimated for all tests and all atolls. Acute intakes of 63 radionuclides were estimated for the populations of the 20 inhabited atolls and for the communities that were relocated during the testing years for reasons of safety and decontamination. The model used for chronic intake estimates is based on reported whole-body, urine, and blood counting data for residents of Utrik and Rongelap. Dose conversion coefficients relating intake to organ absorbed dose were developed using internationally accepted models but specifically tailored for intakes of particulate fallout by consideration of literature-based evidence to choose the most appropriate alimentary tract absorption fraction (f1) values. Dose estimates were much higher for the thyroid gland than for red marrow, stomach wall, or colon. The highest thyroid doses to adults were about 7,600 mGy for the people exposed on Rongelap; thyroid doses to adults were much lower, by a factor of 100 or more, for the people exposed on the populated atolls of Kwajalein and Majuro. The estimates of radionuclide intake and

  10. Mean glandular dose coefficients (D(g)N) for x-ray spectra used in contemporary breast imaging systems.

    PubMed

    Nosratieh, Anita; Hernandez, Andrew; Shen, Sam Z; Yaffe, Martin J; Seibert, J Anthony; Boone, John M

    2015-09-21

    To develop tables of normalized glandular dose coefficients D(g)N for a range of anode-filter combinations and tube voltages used in contemporary breast imaging systems. Previously published mono-energetic D(g)N values were used with various spectra to mathematically compute D(g)N coefficients. The tungsten anode spectra from TASMICS were used; molybdenum and rhodium anode-spectra were generated using MCNPX Monte Carlo code. The spectra were filtered with various thicknesses of Al, Rh, Mo or Cu. An initial half value layer (HVL) calculation was made using the anode and filter material. A range of the HVL values was produced with the addition of small thicknesses of polymethyl methacrylate (PMMA) as a surrogate for the breast compression paddle, to produce a range of HVL values at each tube voltage. Using a spectral weighting method, D(g)N coefficients for the generated spectra were calculated for breast glandular densities of 0%, 12.5%, 25%, 37.5%, 50% and 100% for a range of compressed breast thicknesses from 3 to 8 cm. Eleven tables of normalized glandular dose (D(g)N) coefficients were produced for the following anode/filter combinations: W + 50 μm Ag, W + 500 μm Al, W + 700 μm Al, W + 200 μm Cu, W + 300 μm Cu, W + 50 μm Rh, Mo + 400 μm Cu, Mo + 30 μm Mo, Mo + 25 μm Rh, Rh + 400 μm Cu and Rh + 25 μm Rh. Where possible, these results were compared to previously published D(g)N values and were found to be on average less than 2% different than previously reported values.Over 200 pages of D(g)N coefficients were computed for modeled x-ray system spectra that are used in a number of new breast imaging applications. The reported values were found to be in excellent agreement when compared to published values.

  11. A quantitative property-property relationship for the internal diffusion coefficients of organic compounds in solid materials.

    PubMed

    Huang, L; Fantke, P; Ernstoff, A; Jolliet, O

    2017-11-01

    Indoor releases of organic chemicals encapsulated in solid materials are major contributors to human exposures and are directly related to the internal diffusion coefficient in solid materials. Existing correlations to estimate the diffusion coefficient are only valid for a limited number of chemical-material combinations. This paper develops and evaluates a quantitative property-property relationship (QPPR) to predict diffusion coefficients for a wide range of organic chemicals and materials. We first compiled a training dataset of 1103 measured diffusion coefficients for 158 chemicals in 32 consolidated material types. Following a detailed analysis of the temperature influence, we developed a multiple linear regression model to predict diffusion coefficients as a function of chemical molecular weight (MW), temperature, and material type (adjusted R 2 of .93). The internal validations showed the model to be robust, stable and not a result of chance correlation. The external validation against two separate prediction datasets demonstrated the model has good predicting ability within its applicability domain (Rext2>.8), namely MW between 30 and 1178 g/mol and temperature between 4 and 180°C. By covering a much wider range of organic chemicals and materials, this QPPR facilitates high-throughput estimates of human exposures for chemicals encapsulated in solid materials. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  12. 10 CFR 835.203 - Combining internal and external equivalent doses.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 4 2011-01-01 2011-01-01 false Combining internal and external equivalent doses. 835.203 Section 835.203 Energy DEPARTMENT OF ENERGY OCCUPATIONAL RADIATION PROTECTION Standards for Internal and... the radiation and tissue weighting factor values provided in § 835.2. [72 FR 31926, June 8, 2007] ...

  13. 10 CFR 835.203 - Combining internal and external equivalent doses.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 4 2014-01-01 2014-01-01 false Combining internal and external equivalent doses. 835.203 Section 835.203 Energy DEPARTMENT OF ENERGY OCCUPATIONAL RADIATION PROTECTION Standards for Internal and... the radiation and tissue weighting factor values provided in § 835.2. [72 FR 31926, June 8, 2007] ...

  14. 10 CFR 835.203 - Combining internal and external equivalent doses.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 4 2013-01-01 2013-01-01 false Combining internal and external equivalent doses. 835.203 Section 835.203 Energy DEPARTMENT OF ENERGY OCCUPATIONAL RADIATION PROTECTION Standards for Internal and... the radiation and tissue weighting factor values provided in § 835.2. [72 FR 31926, June 8, 2007] ...

  15. 10 CFR 835.203 - Combining internal and external equivalent doses.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 4 2012-01-01 2012-01-01 false Combining internal and external equivalent doses. 835.203 Section 835.203 Energy DEPARTMENT OF ENERGY OCCUPATIONAL RADIATION PROTECTION Standards for Internal and... the radiation and tissue weighting factor values provided in § 835.2. [72 FR 31926, June 8, 2007] ...

  16. Dose conversion coefficients for neutron exposure to the lens of the human eye.

    PubMed

    Manger, R P; Bellamy, M B; Eckerman, K F

    2012-03-01

    Dose conversion coefficients for the lens of the human eye have been calculated for neutron exposure at energies from 1 × 10(-9) to 20 MeV and several standard orientations: anterior-to-posterior, rotational and right lateral. MCNPX version 2.6.0, a Monte Carlo-based particle transport package, was used to determine the energy deposited in the lens of the eye. The human eyeball model was updated by partitioning the lens into sensitive and insensitive volumes as the anterior portion (sensitive volume) of the lens being more radiosensitive and prone to cataract formation. The updated eye model was used with the adult UF-ORNL mathematical phantom in the MCNPX transport calculations.

  17. Dose conversion coefficients for neutron exposure to the lens of the human eye

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Manger, Ryan P; Bellamy, Michael B; Eckerman, Keith F

    Dose conversion coefficients for the lens of the human eye have been calculated for neutron exposure at energies from 1 x 10{sup -9} to 20 MeV and several standard orientations: anterior-to-posterior, rotational and right lateral. MCNPX version 2.6.0, a Monte Carlo-based particle transport package, was used to determine the energy deposited in the lens of the eye. The human eyeball model was updated by partitioning the lens into sensitive and insensitive volumes as the anterior portion (sensitive volume) of the lens being more radiosensitive and prone to cataract formation. The updated eye model was used with the adult UF-ORNL mathematicalmore » phantom in the MCNPX transport calculations.« less

  18. Effective Dose of Positioning Scans for Five CBCT Devices

    DTIC Science & Technology

    2016-05-25

    CBCT. Journal of Dental Research , Dental Clinics , Dental Prospects 2014;8(2):107-10. 26. Kim D, Rashsuren O, Kim E. Conversion coefficients for the... International Journal of Oral & Maxillofacial Implants 2014;29:55-77. 10. Brooks SL. Radiation doses of common dental radiographic examinations: A review...dose was measured with metal–oxide–semiconductor field-effect transistor (MOSFET) dosimeters for five CBCT devices in a postgraduate dental clinic

  19. 10 CFR 20.1502 - Conditions requiring individual monitoring of external and internal occupational dose.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... internal occupational dose. 20.1502 Section 20.1502 Energy NUCLEAR REGULATORY COMMISSION STANDARDS FOR PROTECTION AGAINST RADIATION Surveys and Monitoring § 20.1502 Conditions requiring individual monitoring of external and internal occupational dose. Each licensee shall monitor exposures to radiation and radioactive...

  20. 10 CFR 20.1502 - Conditions requiring individual monitoring of external and internal occupational dose.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... internal occupational dose. 20.1502 Section 20.1502 Energy NUCLEAR REGULATORY COMMISSION STANDARDS FOR PROTECTION AGAINST RADIATION Surveys and Monitoring § 20.1502 Conditions requiring individual monitoring of external and internal occupational dose. Each licensee shall monitor exposures to radiation and radioactive...

  1. 10 CFR 20.1502 - Conditions requiring individual monitoring of external and internal occupational dose.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... internal occupational dose. 20.1502 Section 20.1502 Energy NUCLEAR REGULATORY COMMISSION STANDARDS FOR PROTECTION AGAINST RADIATION Surveys and Monitoring § 20.1502 Conditions requiring individual monitoring of external and internal occupational dose. Each licensee shall monitor exposures to radiation and radioactive...

  2. 10 CFR 20.1502 - Conditions requiring individual monitoring of external and internal occupational dose.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... internal occupational dose. 20.1502 Section 20.1502 Energy NUCLEAR REGULATORY COMMISSION STANDARDS FOR PROTECTION AGAINST RADIATION Surveys and Monitoring § 20.1502 Conditions requiring individual monitoring of external and internal occupational dose. Each licensee shall monitor exposures to radiation and radioactive...

  3. 10 CFR 20.1502 - Conditions requiring individual monitoring of external and internal occupational dose.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... internal occupational dose. 20.1502 Section 20.1502 Energy NUCLEAR REGULATORY COMMISSION STANDARDS FOR PROTECTION AGAINST RADIATION Surveys and Monitoring § 20.1502 Conditions requiring individual monitoring of external and internal occupational dose. Each licensee shall monitor exposures to radiation and radioactive...

  4. Assessment of intake and internal dose from iodine-131 for exposed workers handling radiopharmaceutical products.

    PubMed

    Bitar, A; Maghrabi, M; Doubal, A W

    2013-12-01

    Two methods for determination of internal dose due to (131)I intake during the preparation and handling of iodine radiopharmaceutical products have been compared. The first method was based on the measurement of (131)I in 24-hour urine samples while the second method was based on the measurement in vivo of (131)I in thyroid. The results have shown that urine analysis method can be used as a screening test but not for internal dose assessment of exposed workers. Thyroid monitoring method was found to be more reliable and accurate method for assessing internal dose from (131)I intake. In addition, the assessed internal dose showed that the annual internal effective dose for some workers was below 1 mSv with no risk classification, whereas the results of other group of workers were between 1 and 6 mSv with low risk classification. Only one worker reached 7.66 mSv with high risk classification; and this worker must be monitored individually. © 2013 Elsevier Ltd. All rights reserved.

  5. Ion chamber absorbed dose calibration coefficients, N{sub D,w}, measured at ADCLs: Distribution analysis and stability

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Muir, B. R., E-mail: Bryan.Muir@nrc-cnrc.gc.ca

    2015-04-15

    Purpose: To analyze absorbed dose calibration coefficients, N{sub D,w}, measured at accredited dosimetry calibration laboratories (ADCLs) for client ionization chambers to study (i) variability among N{sub D,w} coefficients for chambers of the same type calibrated at each ADCL to investigate ion chamber volume fluctuations and chamber manufacturing tolerances; (ii) equivalency of ion chamber calibration coefficients measured at different ADCLs by intercomparing N{sub D,w} coefficients for chambers of the same type; and (iii) the long-term stability of N{sub D,w} coefficients for different chamber types by investigating repeated chamber calibrations. Methods: Large samples of N{sub D,w} coefficients for several chamber types measuredmore » over the time period between 1998 and 2014 were obtained from the three ADCLs operating in the United States. These are analyzed using various graphical and numerical statistical tests for the four chamber types with the largest samples of calibration coefficients to investigate (i) and (ii) above. Ratios of calibration coefficients for the same chamber, typically obtained two years apart, are calculated to investigate (iii) above and chambers with standard deviations of old/new ratios less than 0.3% meet stability requirements for accurate reference dosimetry recommended in dosimetry protocols. Results: It is found that N{sub D,w} coefficients for a given chamber type compared among different ADCLs may arise from differing probability distributions potentially due to slight differences in calibration procedures and/or the transfer of the primary standard. However, average N{sub D,w} coefficients from different ADCLs for given chamber types are very close with percent differences generally less than 0.2% for Farmer-type chambers and are well within reported uncertainties. Conclusions: The close agreement among calibrations performed at different ADCLs reaffirms the Calibration Laboratory Accreditation Subcommittee process of

  6. Sensitivity of coefficients for converting entrance surface dose and kerma-area product to effective dose and energy imparted to the patient

    NASA Astrophysics Data System (ADS)

    Wise, K. N.; Sandborg, M.; Persliden, J.; Alm Carlsson, G.

    1999-08-01

    We investigate the sensitivity of the conversions from entrance surface dose (ESD) or kerma-area product (KAP) to effective dose (E) or to energy imparted to the patient (varepsilon) to the likely variations in tube potential, field size, patient size and sex which occur in clinical work. As part of a factorial design study for chest and lumbar spine examinations, the tube potentials were varied to be ±10% of the typical values for the examinations while field sizes and the positions of the field centres were varied to be representative of values drawn from measurements on patient images. Variation over sex and patient size was based on anthropomorphic phantoms representing males and females of ages 15 years (small adult) and 21 years (reference adult). All the conversion coefficients were estimated using a mathematical phantom programmed with the Monte Carlo code EGS4 for all factor combinations and analysed statistically to derive factor effects. In general, the factors studied behaved independently in the sense that interaction of the physical factors generally gave no more than a 5% variation in a conversion coefficient. Taken together, variation of patient size, sex, field size and field position can lead to significant variation of E/KAP by up to a factor of 2, of E/ESD by up to a factor of 3, of varepsilon/KAP by a factor of 1.3 and of varepsilon/ESD by up to a factor of 2. While KAP is preferred to determine varepsilon, the results show no strong preference of KAP over ESD in determining E. The mean absorbed dose (barD) in the patient obtained by dividing

  7. Ultrasound-Detected Thyroid Nodule Prevalence and Radiation Dose from Fallout

    PubMed Central

    Land, C. E.; Zhumadilov, Z.; Gusev, B. I.; Hartshorne, M. H.; Wiest, P. W.; Woodward, P. W.; Crooks, L. A.; Luckyanov, N. K.; Fillmore, C. M.; Carr, Z.; Abisheva, G.; Beck, H. L.; Bouville, A.; Langer, J.; Weinstock, R.; Gordeev, K. I.; Shinkarev, S.; Simon, S. L.

    2014-01-01

    Settlements near the Semipalatinsk Test Site (SNTS) in northeastern Kazakhstan were exposed to radioactive fallout during 1949–1962. Thyroid disease prevalence among 2994 residents of eight villages was ascertained by ultrasound screening. Malignancy was determined by cytopathology. Individual thyroid doses from external and internal radiation sources were reconstructed from fallout deposition patterns, residential histories and diet, including childhood milk consumption. Point estimates of individual external and internal dose averaged 0.04 Gy (range 0–0.65) and 0.31 Gy (0–9.6), respectively, with a Pearson correlation coefficient of 0.46. Ultrasound-detected thyroid nodule prevalence was 18% and 39% among males and females, respectively. It was significantly and independently associated with both external and internal dose, the main study finding. The estimated relative biological effectiveness of internal compared to external radiation dose was 0.33, with 95% confidence bounds of 0.09–3.11. Prevalence of papillary cancer was 0.9% and was not significantly associated with radiation dose. In terms of excess relative risk per unit dose, our dose–response findings for nodule prevalence are comparable to those from populations exposed to medical X rays and to acute radiation from the Hiroshima and Nagasaki atomic bombings. PMID:18363427

  8. Development of an effective dose coefficient database using a computational human phantom and Monte Carlo simulations to evaluate exposure dose for the usage of NORM-added consumer products.

    PubMed

    Yoo, Do Hyeon; Shin, Wook-Geun; Lee, Jaekook; Yeom, Yeon Soo; Kim, Chan Hyeong; Chang, Byung-Uck; Min, Chul Hee

    2017-11-01

    After the Fukushima accident in Japan, the Korean Government implemented the "Act on Protective Action Guidelines Against Radiation in the Natural Environment" to regulate unnecessary radiation exposure to the public. However, despite the law which came into effect in July 2012, an appropriate method to evaluate the equivalent and effective doses from naturally occurring radioactive material (NORM) in consumer products is not available. The aim of the present study is to develop and validate an effective dose coefficient database enabling the simple and correct evaluation of the effective dose due to the usage of NORM-added consumer products. To construct the database, we used a skin source method with a computational human phantom and Monte Carlo (MC) simulation. For the validation, the effective dose was compared between the database using interpolation method and the original MC method. Our result showed a similar equivalent dose across the 26 organs and a corresponding average dose between the database and the MC calculations of < 5% difference. The differences in the effective doses were even less, and the result generally show that equivalent and effective doses can be quickly calculated with the database with sufficient accuracy. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Simulation of internal contamination screening with dose rate meters

    NASA Astrophysics Data System (ADS)

    Fonseca, T. C. F.; Mendes, B. M.; Hunt, J. G.

    2017-11-01

    Assessing the intake of radionuclides after an accident in a nuclear power plant or after the intentional release of radionuclides in public places allows dose calculations and triage actions to be carried out for members of the public and for emergency response teams. Gamma emitters in the lung, thyroid or the whole body may be detected and quantified by making dose rate measurements at the surface of the internally contaminated person. In an accident scenario, quick measurements made with readily available portable equipment are a key factor for success. In this paper, the Monte Carlo program Visual Monte Carlo (VMC) and MCNPx code are used in conjunction with voxel phantoms to calculate the dose rate at the surface of a contaminated person due to internally deposited radionuclides. A whole body contamination with 137Cs and a thyroid contamination with 131I were simulated and the calibration factors in kBq per μSv/h were calculated. The calculated calibration factors were compared with real data obtained from the Goiania accident in the case of 137Cs and the Chernobyl accident in terms of the 131I. The close comparison of the calculated and real measurements indicates that the method may be applied to other radionuclides. Minimum detectable activities are discussed.

  10. Dose limits to the lens of the eye: International Basic Safety Standards and related guidance.

    PubMed

    Boal, T J; Pinak, M

    2015-06-01

    The International Atomic Energy Agency (IAEA) safety requirements: 'General Safety Requirements Part 3--Radiation protection and safety of radiation sources: International Basic Safety Standards' (BSS) was approved by the IAEA Board of Governors at its meeting in September 2011, and was issued as General Safety Requirements Part 3 in July 2014. The equivalent dose limit for the lens of the eye for occupational exposure in planned exposure situations was reduced from 150 mSv year(-1) to 20 mSv year(-1), averaged over defined periods of 5 years, with no annual dose in a single year exceeding 50 mSv. This reduction in the dose limit for the lens of the eye followed the recommendation of the International Commission on Radiological Protection in its statement on tissue reactions of 21 April 2011. IAEA has developed guidance on the implications of the new dose limit for the lens of the eye. This paper summarises the process that led to the inclusion of the new dose limit for the lens of the eye in the BSS, and the implications of the new dose limit. © The International Society for Prosthetics and Orthotics Reprints and permissions: sagepub.co.uk/journalsPermissions.nav.

  11. Comparison of internal dose estimates obtained using organ-level, voxel S value, and Monte Carlo techniques

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grimes, Joshua, E-mail: grimes.joshua@mayo.edu; Celler, Anna

    2014-09-15

    Purpose: The authors’ objective was to compare internal dose estimates obtained using the Organ Level Dose Assessment with Exponential Modeling (OLINDA/EXM) software, the voxel S value technique, and Monte Carlo simulation. Monte Carlo dose estimates were used as the reference standard to assess the impact of patient-specific anatomy on the final dose estimate. Methods: Six patients injected with{sup 99m}Tc-hydrazinonicotinamide-Tyr{sup 3}-octreotide were included in this study. A hybrid planar/SPECT imaging protocol was used to estimate {sup 99m}Tc time-integrated activity coefficients (TIACs) for kidneys, liver, spleen, and tumors. Additionally, TIACs were predicted for {sup 131}I, {sup 177}Lu, and {sup 90}Y assuming themore » same biological half-lives as the {sup 99m}Tc labeled tracer. The TIACs were used as input for OLINDA/EXM for organ-level dose calculation and voxel level dosimetry was performed using the voxel S value method and Monte Carlo simulation. Dose estimates for {sup 99m}Tc, {sup 131}I, {sup 177}Lu, and {sup 90}Y distributions were evaluated by comparing (i) organ-level S values corresponding to each method, (ii) total tumor and organ doses, (iii) differences in right and left kidney doses, and (iv) voxelized dose distributions calculated by Monte Carlo and the voxel S value technique. Results: The S values for all investigated radionuclides used by OLINDA/EXM and the corresponding patient-specific S values calculated by Monte Carlo agreed within 2.3% on average for self-irradiation, and differed by as much as 105% for cross-organ irradiation. Total organ doses calculated by OLINDA/EXM and the voxel S value technique agreed with Monte Carlo results within approximately ±7%. Differences between right and left kidney doses determined by Monte Carlo were as high as 73%. Comparison of the Monte Carlo and voxel S value dose distributions showed that each method produced similar dose volume histograms with a minimum dose covering 90% of the volume

  12. Estimates of internal-dose equivalent from inhalation and ingestion of selected radionuclides

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dunning, D.E.

    1982-01-01

    This report presents internal radiation dose conversion factors for radionuclides of interest in environmental assessments of nuclear fuel cycles. This volume provides an updated summary of estimates of committed dose equivalent for radionuclides considered in three previous Oak Ridge National Laboratory (ORNL) reports. Intakes by inhalation and ingestion are considered. The International Commission on Radiological Protection (ICRP) Task Group Lung Model has been used to simulate the deposition and retention of particulate matter in the respiratory tract. Results corresponding to activity median aerodynamic diameters (AMAD) of 0.3, 1.0, and 5.0 ..mu..m are given. The gastorintestinal (GI) tract has been representedmore » by a four-segment catenary model with exponential transfer of radioactivity from one segment to the next. Retention of radionuclides in systemic organs is characterized by linear combinations of decaying exponential functions, recommended in ICRP Publication 30. The first-year annual dose rate, maximum annual dose rate, and fifty-year dose commitment per microcurie intake of each radionuclide is given for selected target organs and the effective dose equivalent. These estimates include contributions from specified source organs plus the systemic activity residing in the rest of the body; cross irradiation due to penetrating radiations has been incorporated into these estimates. 15 references.« less

  13. Calculation of conversion coefficients using Chinese adult reference phantoms for air submersion and ground contamination.

    PubMed

    Lu, Wei; Qiu, Rui; Wu, Zhen; Li, Chunyan; Yang, Bo; Liu, Huan; Ren, Li; Li, Junli

    2017-03-21

    The effective and organ equivalent dose coefficients have been widely used to provide assessment of doses received by adult members of the public and by workers exposed to environmental radiation from nuclear facilities under normal or accidental situations. Advancements in phantom types, weighting factors, decay data, etc, have led to the publication of newer results in this regard. This paper presents a new set of conversion coefficients for air submersion and ground contamination (with the use of Geant4) for photons from 15 keV to 10 MeV using the Chinese and International Commission on Radiological Protection (ICRP) adult reference male and female phantoms. The radiation fields, except for energy spectrum at low energies, were validated by the data obtained from the Monte Carlo code YURI. The effective dose coefficients of monoenergetic photons, obtained for the ICRP adult reference phantoms, agree well with recently published data for air submersion and ground contamination with a plane source at a depth of 0.5 g cm -2 in soil, but an average difference of 36.5% is observed for ground surface contamination with the abovementioned radiation field. The average differences in organ equivalent dose coefficients between the Chinese and the ICRP adult reference phantoms are within 6% for most organs, but noticeable differences of up to 70% or even higher are found at photon energies below 30 keV under air submersion. The effective dose coefficients obtained with the Chinese adult reference phantoms are greater than those of the ICRP adult reference phantoms above 30 keV and 0.5 MeV for ground contamination and air submersion, respectively; the average differences from the Chinese adult reference phantoms are about 3.6% and 0.4% in the whole energy range with maximum differences of 31.8% and 27.6% at 15 keV for air submersion and ground contamination respectively. These differences are attributed to anatomical discrepancies in overlying tissue mass of an

  14. Calculation of conversion coefficients using Chinese adult reference phantoms for air submersion and ground contamination

    NASA Astrophysics Data System (ADS)

    Lu, Wei; Qiu, Rui; Wu, Zhen; Li, Chunyan; Yang, Bo; Liu, Huan; Ren, Li; Li, Junli

    2017-03-01

    The effective and organ equivalent dose coefficients have been widely used to provide assessment of doses received by adult members of the public and by workers exposed to environmental radiation from nuclear facilities under normal or accidental situations. Advancements in phantom types, weighting factors, decay data, etc, have led to the publication of newer results in this regard. This paper presents a new set of conversion coefficients for air submersion and ground contamination (with the use of Geant4) for photons from 15 keV to 10 MeV using the Chinese and International Commission on Radiological Protection (ICRP) adult reference male and female phantoms. The radiation fields, except for energy spectrum at low energies, were validated by the data obtained from the Monte Carlo code YURI. The effective dose coefficients of monoenergetic photons, obtained for the ICRP adult reference phantoms, agree well with recently published data for air submersion and ground contamination with a plane source at a depth of 0.5 g cm-2 in soil, but an average difference of 36.5% is observed for ground surface contamination with the abovementioned radiation field. The average differences in organ equivalent dose coefficients between the Chinese and the ICRP adult reference phantoms are within 6% for most organs, but noticeable differences of up to 70% or even higher are found at photon energies below 30 keV under air submersion. The effective dose coefficients obtained with the Chinese adult reference phantoms are greater than those of the ICRP adult reference phantoms above 30 keV and 0.5 MeV for ground contamination and air submersion, respectively; the average differences from the Chinese adult reference phantoms are about 3.6% and 0.4% in the whole energy range with maximum differences of 31.8% and 27.6% at 15 keV for air submersion and ground contamination respectively. These differences are attributed to anatomical discrepancies in overlying tissue mass of an

  15. Estimation of internal radiation dose from both immediate releases and continued exposures to contaminated materials.

    PubMed

    Napier, Bruce

    2012-03-01

    A brief description is provided of the basic concepts related to 'internal dose' and how it differs from doses that result from radioactive materials and direct radiation outside of the body. The principles of radiation dose reconstruction, as applied to both internal and external doses, are discussed on the basis of a recent publication prepared by the US National Council on Radiation Protection and Measurements. Finally, ideas are introduced related to residual radioactive contamination in the environment that has resulted from the releases from damaged reactors and also to the management of wastes that may be generated in both regional cleanup and decommissioning of the Fukushima nuclear power plant.

  16. The work of the ICRP dose calculational task group: Issues in implementation of the ICRP dosimetric methodology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eckerman, K.F.

    Committee 2 of the International Commission on Radiological Protection (ICRP) has had efforts underway to provide the radiation protection community with age-dependent dose coefficients, i.e.g, the dose per unit intake. The Task Group on Dose Calculations, chaired by the author, is responsible for the computation of these coefficients. The Task Group, formed in 1974 to produce ICRP Publication 30, is now international in its membership and its work load has been distributed among the institutions represented on the task group. This paper discusses: (1) recent advances in biokinetic modeling; (2) the recent changes in the dosimetric methodology; (3) the novelmore » computational problems with some of the ICRP quantities; and (4) quality assurance issues which the Task Group has encountered. Potential future developments of the dosimetric framework which might strengthen the relationships with the emerging understanding of radiation risk will also be discussed.« less

  17. Conversion coefficients from fluence to effective dose for heavy ions with energies up to 3 GeV/A.

    PubMed

    Sato, T; Tsuda, S; Sakamoto, Y; Yamaguchi, Y; Niita, K

    2003-01-01

    Radiological protection against high-energy heavy ions has been an essential issue in the planning of long-term space missions. The fluence to effective dose conversion coefficients have been calculated for heavy ions using the particle and heavy ion transport code system PHITS coupled with an anthropomorphic phantom of the MIRD5 type. The calculations were performed for incidences of protons and typical space heavy ions--deuterons, tritons, 3He, alpha particles, 12C, 20Ne, 40Ar, 40Ca and 56Fe--with energies up to 3 GeV/A in the isotropic and anterior-posterior irradiation geometries. A simple fitting formula that can predict the effective dose from almost all kinds of space heavy ions below 3 GeV/A within an accuracy of 30% is deduced from the results.

  18. Fluence-to-Absorbed Dose Conversion Coefficients for Use in Radiological Protection of Embryo and Foetus Against External Exposure to Muons from 20MeV to 50GeV

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen Jing

    2008-08-07

    This study used the Monte-Carlo code MCNPX to determine mean absorbed doses to the embryo and foetus when the mother is exposed to external muon fields. Monoenergetic muons ranging from 20 MeV to 50 GeV were considered. The irradiation geometries include anteroposterior (AP), postero-anterior (PA), lateral (LAT), rotational (ROT), isotropic (ISO), and top-down (TOP). At each of these irradiation geometries, absorbed doses to the foetal body were calculated for the embryo of 8 weeks and the foetus of 3, 6 or 9 months, respectively. Muon fluence-to-absorbed-dose conversion coefficients were derived for the four prenatal ages. Since such conversion coefficients aremore » yet unknown, the results presented here fill a data gap.« less

  19. Dose Calculation Evolution for Internal Organ Irradiation in Humans

    NASA Astrophysics Data System (ADS)

    Jimenez V., Reina A.

    2007-10-01

    The International Commission of Radiation Units (ICRU) has established through the years, a discrimination system regarding the security levels on the prescription and administration of doses in radiation treatments (Radiotherapy, Brach therapy, Nuclear Medicine). The first level is concerned with the prescription and posterior assurance of dose administration to a point of interest (POI), commonly located at the geometrical center of the region to be treated. In this, the effects of radiation around that POI, is not a priority. The second level refers to the dose specifications in a particular plane inside the patient, mostly the middle plane of the lesion. The dose is calculated to all the structures in that plane regardless if they are tumor or healthy tissue. In this case, the dose is not represented by a point value, but by level curves called "isodoses" as in a topographic map, so you can assure the level of doses to this particular plane, but it also leave with no information about how this values go thru adjacent planes. This is why the third level is referred to the volumetrical description of doses so these isodoses construct now a volume (named "cloud") that give us better assurance about tissue irradiation around the volume of the lesion and its margin (sub clinical spread or microscopic illness). This work shows how this evolution has resulted, not only in healthy tissue protection improvement but in a rise of tumor control, quality of life, better treatment tolerance and minimum permanent secuelae.

  20. Standardization and determination of the total internal conversion coefficient of In-111.

    PubMed

    Matos, Izabela T; Koskinas, Marina F; Nascimento, Tatiane S; Yamazaki, Ione M; Dias, Mauro S

    2014-05-01

    The standardization of (111)In by means of a 4πβ-γ coincidence system, composed of a proportional counter in 4π geometry, coupled to a 20% relative efficiency HPGe crystal, for measuring gamma-rays is presented. The data acquisition was performed by means of the software coincidence system (SCS) and the activity was determined by the extrapolation technique. Two gamma-ray windows were selected: at 171 keV and 245 keV total absorption peaks, allowing the determination of the total internal conversion coefficient for these two gamma transitions. The results were compared with those available in the literature. © 2013 Published by Elsevier Ltd.

  1. DOSE COEFFICIENTS FOR LIVER CHEMOEMBOLISATION PROCEDURES USING MONTE CARLO CODE.

    PubMed

    Karavasilis, E; Dimitriadis, A; Gonis, H; Pappas, P; Georgiou, E; Yakoumakis, E

    2016-12-01

    The aim of the present study is the estimation of radiation burden during liver chemoembolisation procedures. Organ dose and effective dose conversion factors, normalised to dose-area product (DAP), were estimated for chemoembolisation procedures using a Monte Carlo transport code in conjunction with an adult mathematical phantom. Exposure data from 32 patients were used to determine the exposure projections for the simulations. Equivalent organ (H T ) and effective (E) doses were estimated using individual DAP values. The organs receiving the highest amount of doses during these exams were lumbar spine, liver and kidneys. The mean effective dose conversion factor was 1.4 Sv Gy -1 m -2 Dose conversion factors can be useful for patient-specific radiation burden during chemoembolisation procedures. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  2. Air kerma to Hp(3) conversion coefficients for a new cylinder phantom for photon reference radiation qualities.

    PubMed

    Behrens, R

    2012-09-01

    The International Organization for Standardization (ISO) has issued a standard series on photon reference radiation qualities (ISO 4037). In this series, no conversion coefficients are contained for the quantity personal dose equivalent at a 3 mm depth, H(p)(3). In the past, for this quantity, a slab phantom was recommended as a calibration phantom; however, a cylinder phantom much better approximates the shape of a human head than a slab phantom. Therefore, in this work, the conversion coefficients from air kerma to H(p)(3) for the cylinder phantom are supplied for X- and gamma radiation qualities defined in ISO 4037.

  3. Internal versus External Dose for Describing Ternary Metal Mixture (Ni, Cu, Cd) Chronic Toxicity to Lemna minor.

    PubMed

    Gopalapillai, Yamini; Hale, Beverley A

    2017-05-02

    Simultaneous determinations of internal dose ([M] tiss ) and external doses ([M] tot , {M 2+ } in solution) were conducted to study ternary mixture (Ni, Cu, Cd) chronic toxicity to Lemna minor in alkaline solution (pH 8.3). Also, concentration addition (CA) based on internal dose was evaluated as a tool for risk assessment of metal mixture. Multiple regression analysis of dose versus root growth inhibition, as well as saturation binding kinetics, provided insight into interactions. Multiple regressions were simpler for [M] tiss than [M] tot and {M 2+ }, and along with saturation kinetics to the internal biotic ligand(s) in the cytoplasm, they indicated that Ni-Cu-Cd competed for uptake into plant, but once inside, only Cu-Cd shared a binding site. Copper inorganic complexes (hydroxides, carbonates) played a role in metal bioavailability in single metal exposure but not in mixtures. Regardless of interactions, the current regulatory approach of using CA based on [M] tot can sufficiently predict mixture toxicity (∑TU close to 1), but CA based on [M] tiss was closest to unity across a range of doses. Internal dose integrates all metal-metal interactions in solution and during uptake into the organism, thereby providing a more direct metric describing toxicity.

  4. External radiation dose and cancer mortality among French nuclear workers: considering potential confounding by internal radiation exposure.

    PubMed

    Fournier, L; Laurent, O; Samson, E; Caër-Lorho, S; Laroche, P; Le Guen, B; Laurier, D; Leuraud, K

    2016-11-01

    French nuclear workers have detailed records of their occupational exposure to external radiation that have been used to examine associations with subsequent cancer mortality. However, some workers were also exposed to internal contamination by radionuclides. This study aims to assess the potential for bias due to confounding by internal contamination of estimates of associations between external radiation exposure and cancer mortality. A cohort of 59,004 workers employed for at least 1 year between 1950 and 1994 by CEA (Commissariat à l'Energie Atomique), AREVA NC, or EDF (Electricité de France) and badge-monitored for external radiation exposure were followed through 2004 to assess vital status and cause of death. A flag based on a workstation-exposure matrix defined four levels of potential for internal contamination. Standardized mortality ratios were assessed for each level of the internal contamination indicator. Poisson regression was used to quantify associations between external radiation exposure and cancer mortality, adjusting for potential internal contamination. For solid cancer, the mortality deficit tended to decrease as the levels of potential for internal contamination increased. For solid cancer and leukemia excluding chronic lymphocytic leukemia, adjusting the dose-response analysis on the internal contamination indicator did not markedly change the excess relative risk per Sievert of external radiation dose. This study suggests that in this cohort, neglecting information on internal dosimetry while studying the association between external dose and cancer mortality does not generate a substantial bias. To investigate more specifically the health effects of internal contamination, an effort is underway to estimate organ doses due to internal contamination.

  5. 10 CFR 20.1202 - Compliance with requirements for summation of external and internal doses.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 1 2011-01-01 2011-01-01 false Compliance with requirements for summation of external and internal doses. 20.1202 Section 20.1202 Energy NUCLEAR REGULATORY COMMISSION STANDARDS FOR PROTECTION AGAINST RADIATION Occupational Dose Limits § 20.1202 Compliance with requirements for summation of...

  6. 10 CFR 20.1202 - Compliance with requirements for summation of external and internal doses.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 1 2014-01-01 2014-01-01 false Compliance with requirements for summation of external and internal doses. 20.1202 Section 20.1202 Energy NUCLEAR REGULATORY COMMISSION STANDARDS FOR PROTECTION AGAINST RADIATION Occupational Dose Limits § 20.1202 Compliance with requirements for summation of...

  7. 10 CFR 20.1202 - Compliance with requirements for summation of external and internal doses.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 1 2013-01-01 2013-01-01 false Compliance with requirements for summation of external and internal doses. 20.1202 Section 20.1202 Energy NUCLEAR REGULATORY COMMISSION STANDARDS FOR PROTECTION AGAINST RADIATION Occupational Dose Limits § 20.1202 Compliance with requirements for summation of...

  8. 10 CFR 20.1202 - Compliance with requirements for summation of external and internal doses.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 1 2012-01-01 2012-01-01 false Compliance with requirements for summation of external and internal doses. 20.1202 Section 20.1202 Energy NUCLEAR REGULATORY COMMISSION STANDARDS FOR PROTECTION AGAINST RADIATION Occupational Dose Limits § 20.1202 Compliance with requirements for summation of...

  9. 10 CFR 20.1202 - Compliance with requirements for summation of external and internal doses.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 1 2010-01-01 2010-01-01 false Compliance with requirements for summation of external and internal doses. 20.1202 Section 20.1202 Energy NUCLEAR REGULATORY COMMISSION STANDARDS FOR PROTECTION AGAINST RADIATION Occupational Dose Limits § 20.1202 Compliance with requirements for summation of...

  10. Internal thyroid doses to Fukushima residents—estimation and issues remaining

    PubMed Central

    Kim, Eunjoo; Kurihara, Osamu; Kunishima, Naoaki; Momose, Takumaro; Ishikawa, Tetsuo; Akashi, Makoto

    2016-01-01

    Enormous quantities of radionuclides were released into the environment following the disastrous accident at the Fukushima Daiichi Nuclear Power Plant (FDNPP) in March 2011. It is of great importance to determine the exposure doses received by the populations living in the radiologically affected areas; however, there has been significant difficulty in estimating the internal thyroid dose received through the intake of short-lived radionuclides (mainly, 131I), because of the lack of early measurements on people. An estimation by the National Institute of Radiological Sciences for 1 April 2012 to 31 March 2013 was thus performed using a combination of the following three sources: thyroid measurement data (131I) for 1080 children examined in the screening campaign, whole-body counter measurement data (134Cs, 137Cs) for 3000 adults, and atmospheric transport dispersion model simulations. In this study, the residents of Futaba town, Iitate village and Iwaki city were shown to have the highest thyroid equivalent dose, and their doses were estimated to be mostly below 30 mSv. However, this result involved a lot of uncertainties and provided only representative values for the residents. The present paper outlines a more recent dose estimation and preliminary analyses of personal behavior data used in the new method. PMID:27538842

  11. A simplified analytical dose calculation algorithm accounting for tissue heterogeneity for low-energy brachytherapy sources.

    PubMed

    Mashouf, Shahram; Lechtman, Eli; Beaulieu, Luc; Verhaegen, Frank; Keller, Brian M; Ravi, Ananth; Pignol, Jean-Philippe

    2013-09-21

    The American Association of Physicists in Medicine Task Group No. 43 (AAPM TG-43) formalism is the standard for seeds brachytherapy dose calculation. But for breast seed implants, Monte Carlo simulations reveal large errors due to tissue heterogeneity. Since TG-43 includes several factors to account for source geometry, anisotropy and strength, we propose an additional correction factor, called the inhomogeneity correction factor (ICF), accounting for tissue heterogeneity for Pd-103 brachytherapy. This correction factor is calculated as a function of the media linear attenuation coefficient and mass energy absorption coefficient, and it is independent of the source internal structure. Ultimately the dose in heterogeneous media can be calculated as a product of dose in water as calculated by TG-43 protocol times the ICF. To validate the ICF methodology, dose absorbed in spherical phantoms with large tissue heterogeneities was compared using the TG-43 formalism corrected for heterogeneity versus Monte Carlo simulations. The agreement between Monte Carlo simulations and the ICF method remained within 5% in soft tissues up to several centimeters from a Pd-103 source. Compared to Monte Carlo, the ICF methods can easily be integrated into a clinical treatment planning system and it does not require the detailed internal structure of the source or the photon phase-space.

  12. Dosimetric evaluation of internal shielding in a high dose rate skin applicator

    PubMed Central

    Granero, Domingo; Perez-Calatayud, Jose; Carmona, Vicente; Pujades, M Carmen; Ballester, Facundo

    2011-01-01

    Purpose The Valencia HDR applicators are accessories of the microSelectron HDR afterloading system (Nucletron) shaped as truncated cones. The base of the cone is either 2 or 3 cm diameter. They are intended to treat skin lesions, being the typical prescription depth 3 mm. In patients with eyelid lesions, an internal shielding is very useful to reduce the dose to the ocular globe. The purpose of this work was to evaluate the dose enhancement from potential backscatter and electron contamination due to the shielding. Material and methods Two methods were used: a) Monte Carlo simulation, performed with the GEANT4 code, 2 cm Valencia applicator was placed on the surface of a water phantom in which 2 mm lead slab was located at 3 mm depth; b) radiochromic EBT films, used to verify the Monte Carlo results, positioning the films at 1.5, 3, 5 and 7 mm depth, inside the phantom. Two irradiations, with and without the lead shielding slab, were carried out. Results The Monte Carlo results showed that due to the backscatter component from the lead, the dose level raised to about 200% with a depth range of 0.5 mm. Under the lead the dose level was enhanced to about 130% with a depth range of 1 mm. Two millimeters of lead reduce the dose under the slab with about 60%. These results agree with film measurements within uncertainties. Conclusions In conclusion, the use of 2 mm internal lead shielding in eyelid skin treatments with the Valencia applicators were evaluated using MC methods and EBT film dosimetry. The minimum bolus thickness that was needed above and below the shielding was 0.5 mm and 1 mm respectively, and the shielding reduced the absorbed dose delivered to the ocular globe by about 60%. PMID:27877198

  13. ESTIMATION OF EARLY INTERNAL DOSES TO FUKUSHIMA RESIDENTS AFTER THE NUCLEAR DISASTER BASED ON THE ATMOSPHERIC DISPERSION SIMULATION.

    PubMed

    Kim, Eunjoo; Tani, Kotaro; Kunishima, Naoaki; Kurihara, Osamu; Sakai, Kazuo; Akashi, Makoto

    2016-11-01

    Estimating the early internal doses to residents in the Fukushima Daiichi Nuclear Power Station accident is a difficult task because limited human/environmental measurement data are available. Hence, the feasibility of using atmospheric dispersion simulations created by the Worldwide version of System for Prediction of Environmental Emergency Dose Information 2nd Version (WSPEEDI-II) in the estimation was examined in the present study. This examination was done by comparing the internal doses evaluated based on the human measurements with those calculated using time series air concentration maps ( 131 I and 137 Cs) generated by WSPEEDI-II. The results showed that the latter doses were several times higher than the former doses. However, this discrepancy could be minimised by taking into account personal behaviour data that will be available soon. This article also presents the development of a prototype system for estimating the internal dose based on the simulations. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  14. Internal dose assessment of 238U contaminated soils based on in-vitro gastrointestinal protocol

    NASA Astrophysics Data System (ADS)

    Perama, Yasmin Mohd Idris; Rashid, Nur Shahidah Abdul; Majid, Amran Ab.; Siong, Khoo Kok

    2017-01-01

    Human exposure to natural radioactive uranium has been a great interest as more industrial rapidly growing contributes to radiation risks. The aim of this case study was to determine the internal dose in humans incorporated with ingestion of 238U contaminated soils. A gastrointestinal analogue test was employed to simulate the human digestive tract. In-vitro approach via German DIN 19738 model was developed in order to estimate the internal exposure of 238U due to ingestion of different types of soils. Synthetic gastrointestinal fluids assay via in-vitro method were produced to determine the concentration of 238U in various soils using ICP-MS. Based on the results, concentration of 238U in BRIS, laterite, peat and alluvium soils were in ranged between (0.0061 ± 0.0057 - 0.0488 ± 0.0148) ppm and (0.0005 ± 0.0004 - 0.0046 ± 0.0007) ppm in gastric and gastrointestinal phase respectively. Types of soil compositions and pH medium were some of the factors that influence mobilization and solubility of 238U contaminanted soil into the digestive juices that resembles human gastrointestinal tract. For the purpose of internal dose assessment, the committed efective dose from 238U intake in soils ranged between 1.237 × 10-11 - 9.8993 × 10-11 Sv y-1 for gastric phase and 1.0184 × 10-12 - 9.3294 × 10-12 Sv y-1 for gastric-intestinal phase. The internal dose measurements from this study were much lower from the recommended values. Hence, ingestion of 238U contaminated soils would not be expected to pose major health risk to humans.

  15. Dose-response relationships between internally-deposited uranium and select health outcomes in gaseous diffusion plant workers, 1948-2011.

    PubMed

    Yiin, James H; Anderson, Jeri L; Bertke, Stephen J; Tollerud, David J

    2018-05-09

    To examine dose-response relationships between internal uranium exposures and select outcomes among a cohort of uranium enrichment workers. Cox regression was conducted to examine associations between selected health outcomes and cumulative internal uranium with consideration for external ionizing radiation, work-related medical X-rays and contaminant radionuclides technetium ( 99 Tc) and plutonium ( 239 Pu) as potential confounders. Elevated and monotonically increasing mortality risks were observed for kidney cancer, chronic renal diseases, and multiple myeloma, and the association with internal uranium absorbed organ dose was statistically significant for multiple myeloma. Adjustment for potential confounders had minimal impact on the risk estimates. Kidney cancer, chronic renal disease, and multiple myeloma mortality risks were elevated with increasing internal uranium absorbed organ dose. The findings add to evidence of an association between internal exposure to uranium and cancer. Future investigation includes a study of cancer incidence in this cohort. © 2018 Wiley Periodicals, Inc.

  16. Impact of interpatient variability on organ dose estimates according to MIRD schema: Uncertainty and variance-based sensitivity analysis.

    PubMed

    Zvereva, Alexandra; Kamp, Florian; Schlattl, Helmut; Zankl, Maria; Parodi, Katia

    2018-05-17

    Variance-based sensitivity analysis (SA) is described and applied to the radiation dosimetry model proposed by the Committee on Medical Internal Radiation Dose (MIRD) for the organ-level absorbed dose calculations in nuclear medicine. The uncertainties in the dose coefficients thus calculated are also evaluated. A Monte Carlo approach was used to compute first-order and total-effect SA indices, which rank the input factors according to their influence on the uncertainty in the output organ doses. These methods were applied to the radiopharmaceutical (S)-4-(3- 18 F-fluoropropyl)-L-glutamic acid ( 18 F-FSPG) as an example. Since 18 F-FSPG has 11 notable source regions, a 22-dimensional model was considered here, where 11 input factors are the time-integrated activity coefficients (TIACs) in the source regions and 11 input factors correspond to the sets of the specific absorbed fractions (SAFs) employed in the dose calculation. The SA was restricted to the foregoing 22 input factors. The distributions of the input factors were built based on TIACs of five individuals to whom the radiopharmaceutical 18 F-FSPG was administered and six anatomical models, representing two reference, two overweight, and two slim individuals. The self-absorption SAFs were mass-scaled to correspond to the reference organ masses. The estimated relative uncertainties were in the range 10%-30%, with a minimum and a maximum for absorbed dose coefficients for urinary bladder wall and heart wall, respectively. The applied global variance-based SA enabled us to identify the input factors that have the highest influence on the uncertainty in the organ doses. With the applied mass-scaling of the self-absorption SAFs, these factors included the TIACs for absorbed dose coefficients in the source regions and the SAFs from blood as source region for absorbed dose coefficients in highly vascularized target regions. For some combinations of proximal target and source regions, the corresponding cross

  17. Clinical application of a OneDose MOSFET for skin dose measurements during internal mammary chain irradiation with high dose rate brachytherapy in carcinoma of the breast.

    PubMed

    Kinhikar, Rajesh A; Sharma, Pramod K; Tambe, Chandrashekhar M; Mahantshetty, Umesh M; Sarin, Rajiv; Deshpande, Deepak D; Shrivastava, Shyam K

    2006-07-21

    In our earlier study, we experimentally evaluated the characteristics of a newly designed metal oxide semiconductor field effect transistor (MOSFET) OneDose in-vivo dosimetry system for Ir-192 (380 keV) energy and the results were compared with thermoluminescent dosimeters (TLDs). We have now extended the same study to the clinical application of this MOSFET as an in-vivo dosimetry system. The MOSFET was used during high dose rate brachytherapy (HDRBT) of internal mammary chain (IMC) irradiation for a carcinoma of the breast. The aim of this study was to measure the skin dose during IMC irradiation with a MOSFET and a TLD and compare it with the calculated dose with a treatment planning system (TPS). The skin dose was measured for ten patients. All the patients' treatment was planned on a PLATO treatment planning system. TLD measurements were performed to compare the accuracy of the measured results from the MOSFET. The mean doses measured with the MOSFET and the TLD were identical (0.5392 Gy, 15.85% of the prescribed dose). The mean dose was overestimated by the TPS and was 0.5923 Gy (17.42% of the prescribed dose). The TPS overestimated the skin dose by 9% as verified by the MOSFET and TLD. The MOSFET provides adequate in-vivo dosimetry for HDRBT. Immediate readout after irradiation, small size, permanent storage of dose and ease of use make the MOSFET a viable alternative for TLDs.

  18. The feasibility of universal DLP-to-risk conversion coefficients for body CT protocols

    NASA Astrophysics Data System (ADS)

    Li, Xiang; Samei, Ehsan; Segars, W. Paul; Paulson, Erik K.; Frush, Donald P.

    2011-03-01

    The effective dose associated with computed tomography (CT) examinations is often estimated from dose-length product (DLP) using scanner-independent conversion coefficients. Such conversion coefficients are available for a small number of examinations, each covering an entire region of the body (e.g., head, neck, chest, abdomen and/or pelvis). Similar conversion coefficients, however, do not exist for examinations that cover a single organ or a sub-region of the body, as in the case of a multi-phase liver examination. In this study, we extended the DLP-to-effective dose conversion coefficient (k factor) to a wide range of body CT protocols and derived the corresponding DLP-to-cancer risk conversion coefficient (q factor). An extended cardiactorso (XCAT) computational model was used, which represented a reference adult male patient. A range of body CT protocols used in clinical practice were categorized based on anatomical regions examined into 10 protocol classes. A validated Monte Carlo program was used to estimate the organ dose associated with each protocol class. Assuming the reference model to be 20 years old, effective dose and risk index (an index of the total risk for cancer incidence) were then calculated and normalized by DLP to obtain the k and q factors. The k and q factors varied across protocol classes; the coefficients of variation were 28% and 9%, respectively. The small variation exhibited by the q factor suggested the feasibility of universal q factors for a wide range of body CT protocols.

  19. Application of ISO standard 27048: dose assessment for the monitoring of workers for internal radiation exposure.

    PubMed

    Henrichs, K

    2011-03-01

    Besides ongoing developments in the dosimetry of incorporated radionuclides, there are various efforts to improve the monitoring of workers for potential or real intakes of radionuclides. The disillusioning experience with numerous intercomparison projects identified substantial differences between national regulations, concepts, applied programmes and methods, and dose assessment procedures. Measured activities were not directly comparable because of significant differences between measuring frequencies and methods, but also results of case studies for dose assessments revealed differences of orders of magnitude. Besides the general common interest in reliable monitoring results, at least the cross-border activities of workers (e.g. nuclear power plant services) require consistent approaches and comparable results. The International Standardization Organization therefore initiated projects to standardise programmes for the monitoring of workers, the requirements for measuring laboratories and the processes for the quantitative evaluation of monitoring results in terms of internal assessed doses. The strength of the concepts applied by the international working group consists in a unified approach defining the requirements, databases and processes. This paper is intended to give a short introduction into the standardization project followed by a more detailed description of the dose assessment standard, which will be published in the very near future.

  20. Internal thyroid doses to Fukushima residents-estimation and issues remaining.

    PubMed

    Kim, Eunjoo; Kurihara, Osamu; Kunishima, Naoaki; Momose, Takumaro; Ishikawa, Tetsuo; Akashi, Makoto

    2016-08-01

    Enormous quantities of radionuclides were released into the environment following the disastrous accident at the Fukushima Daiichi Nuclear Power Plant (FDNPP) in March 2011. It is of great importance to determine the exposure doses received by the populations living in the radiologically affected areas; however, there has been significant difficulty in estimating the internal thyroid dose received through the intake of short-lived radionuclides (mainly, (131)I), because of the lack of early measurements on people. An estimation by the National Institute of Radiological Sciences for 1 April 2012 to 31 March 2013 was thus performed using a combination of the following three sources: thyroid measurement data ((131)I) for 1080 children examined in the screening campaign, whole-body counter measurement data ((134)Cs, (137)Cs) for 3000 adults, and atmospheric transport dispersion model simulations. In this study, the residents of Futaba town, Iitate village and Iwaki city were shown to have the highest thyroid equivalent dose, and their doses were estimated to be mostly below 30 mSv. However, this result involved a lot of uncertainties and provided only representative values for the residents. The present paper outlines a more recent dose estimation and preliminary analyses of personal behavior data used in the new method. © The Author 2016. Published by Oxford University Press on behalf of The Japan Radiation Research Society and Japanese Society for Radiation Oncology. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  1. Dose conversion factors for radon: recent developments.

    PubMed

    Marsh, James W; Harrison, John D; Laurier, Dominique; Blanchardon, Eric; Paquet, François; Tirmarche, Margot

    2010-10-01

    Epidemiological studies of the occupational exposure of miners and domestic exposures of the public have provided strong and complementary evidence of the risks of lung cancer following inhalation of radon progeny. Recent miner epidemiological studies, which include low levels of exposure, long duration of follow-up, and good quality of individual exposure data, suggest higher risks of lung cancer per unit exposure than assumed previously by the International Commission on Radiological Protection (ICRP). Although risks can be managed by controlling exposures, dose estimates are required for the control of occupational exposures and are also useful for comparing sources of public exposure. Currently, ICRP calculates doses from radon and its progeny using dose conversion factors from exposure (WLM) to dose (mSv) based on miner epidemiological studies, referred to as the epidemiological approach. Revision of these dose conversion factors using risk estimates based on the most recent epidemiological data gives values that are in good agreement with the results of calculations using ICRP biokinetic and dosimetric models, the dosimetric approach. ICRP now proposes to treat radon progeny in the same way as other radionuclides and to publish dose coefficients calculated using models, for use within the ICRP system of protection.

  2. 241Am Ingrowth and Its Effect on Internal Dose

    DOE PAGES

    Konzen, Kevin

    2016-07-01

    Generally, plutonium has been manufactured to support commercial and military applications involving heat sources, weapons and reactor fuel. This work focuses on three typical plutonium mixtures, while observing the potential of 241Am ingrowth and its effect on internal dose. The term “ingrowth” is used to describe 241Am production due solely from the decay of 241Pu as part of a plutonium mixture, where it is initially absent or present in a smaller quantity. Dose calculation models do not account for 241Am ingrowth unless the 241Pu quantity is specified. This work suggested that 241Am ingrowth be considered in bioassay analysis when theremore » is a potential of a 10% increase to the individual’s committed effective dose. It was determined that plutonium fuel mixtures, initially absent of 241Am, would likely exceed 10% for typical reactor grade fuel aged less than 30 years; however, heat source grade and aged weapons grade fuel would normally fall below this threshold. In conclusion, although this work addresses typical plutonium mixtures following separation, it may be extended to irradiated commercial uranium fuel and is expected to be a concern in the recycling of spent fuel.« less

  3. Outcomes of Direct Vision Internal Urethrotomy for Bulbar Urethral Strictures: Technique Modification with High Dose Triamcinolone Injection.

    PubMed

    Modh, Rishi; Cai, Peter Y; Sheffield, Alyssa; Yeung, Lawrence L

    2015-01-01

    Objective. To evaluate the recurrence rate of bulbar urethral strictures managed with cold knife direct vision internal urethrotomy and high dose corticosteroid injection. Methods. 28 patients with bulbar urethral strictures underwent direct vision internal urethrotomy with high dose triamcinolone injection into the periurethral tissue and were followed up for recurrence. Results. Our cohort had a mean age of 60 years and average stricture length of 1.85 cm, and 71% underwent multiple previous urethral stricture procedures with an average of 5.7 procedures each. Our technique modification of high dose corticosteroid injection had a recurrence rate of 29% at a mean follow-up of 20 months with a low rate of urinary tract infections. In patients who failed treatment, mean time to stricture recurrence was 7 months. Patients who were successfully treated had significantly better International Prostate Symptom Scores at 6, 9, and 12 months. There was no significant difference in maximum flow velocity on Uroflowmetry at last follow-up but there was significant difference in length of follow-up (p = 0.02). Conclusions. High dose corticosteroid injection at the time of direct vision internal urethrotomy is a safe and effective procedure to delay anatomical and symptomatic recurrence of bulbar urethral strictures, particularly in those who are poor candidates for urethroplasty.

  4. Fluence-to-absorbed-dose conversion coefficients for neutron beams from 0.001 eV to 100 GeV calculated for a set of pregnant female and fetus models

    NASA Astrophysics Data System (ADS)

    Taranenko, Valery; Xu, X. George

    2008-03-01

    Protection of fetuses against external neutron exposure is an important task. This paper reports a set of absorbed dose conversion coefficients for fetal and maternal organs for external neutron beams using the RPI-P pregnant female models and the MCNPX code. The newly developed pregnant female models represent an adult female with a fetus including its brain and skeleton at the end of each trimester. The organ masses were adjusted to match the reference values within 1%. For the 3 mm cubic voxel size, the models consist of 10-15 million voxels for 35 organs. External monoenergetic neutron beams of six standard configurations (AP, PA, LLAT, RLAT, ROT and ISO) and source energies 0.001 eV-100 GeV were considered. The results are compared with previous data that are based on simplified anatomical models. The differences in dose depend on source geometry, energy and gestation periods: from 20% up to 140% for the whole fetus, and up to 100% for the fetal brain. Anatomical differences are primarily responsible for the discrepancies in the organ doses. For the first time, the dependence of mother organ doses upon anatomical changes during pregnancy was studied. A maximum of 220% increase in dose was observed for the placenta in the nine months model compared to three months, whereas dose to the pancreas, small and large intestines decreases by 60% for the AP source for the same models. Tabulated dose conversion coefficients for the fetus and 27 maternal organs are provided.

  5. Shuttle radiation dose measurements in the International Space Station orbits

    NASA Technical Reports Server (NTRS)

    Badhwar, Gautam D.

    2002-01-01

    The International Space Station (ISS) is now a reality with the start of a permanent human presence on board. Radiation presents a serious risk to the health and safety of the astronauts, and there is a clear requirement for estimating their exposures prior to and after flights. Predictions of the dose rate at times other than solar minimum or solar maximum have not been possible, because there has been no method to calculate the trapped-particle spectrum at intermediate times. Over the last few years, a tissue-equivalent proportional counter (TEPC) has been flown at a fixed mid-deck location on board the Space Shuttle in 51.65 degrees inclination flights. These flights have provided data that cover the expected changes in the dose rates due to changes in altitude and changes in solar activity from the solar minimum to the solar maximum of the current 23rd solar cycle. Based on these data, a simple function of the solar deceleration potential has been derived that can be used to predict the galactic cosmic radiation (GCR) dose rates to within +/-10%. For altitudes to be covered by the ISS, the dose rate due to the trapped particles is found to be a power-law function, rho(-2/3), of the atmospheric density, rho. This relationship can be used to predict trapped dose rates inside these spacecraft to +/-10% throughout the solar cycle. Thus, given the shielding distribution for a location inside the Space Shuttle or inside an ISS module, this approach can be used to predict the combined GCR + trapped dose rate to better than +/-15% for quiet solar conditions.

  6. A Characteristic Dose Model for Historical Internal Dose Reconstruction in the Framework of the IAEC Compensation Programme.

    PubMed

    Kravchik, T; Abraham, A; Israeli, M; Yahel, E

    2017-04-25

    A model was developed at the Nuclear Research Centre Negev (NRCN) to assess historical doses from internal exposures by a relatively fast and simple procedure. These assessments are needed in the framework of a compensation programme for the Israeli Atomic Energy Commission (IAEC) workers, which were diagnosed for cancer diseases. This compensation programme was recently recommended by a public committee to avoid lengthy court procedures. The developed model is based on the recorded doses from external exposures of all the workers at the NRCN, who were divided into groups representing their different working environments. Each group of workers was characterised by three parameters: working period, working areas and occupation. The model uses several conservative assumptions in order to calculate the doses to various body organs in certain years, which are relevant to the calculation of the probability of causation (POC). The POC value serves as a main parameter in the compensation programme. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  7. Human exposure and internal dose assessments of acrylamide in food.

    PubMed

    Dybing, E; Farmer, P B; Andersen, M; Fennell, T R; Lalljie, S P D; Müller, D J G; Olin, S; Petersen, B J; Schlatter, J; Scholz, G; Scimeca, J A; Slimani, N; Törnqvist, M; Tuijtelaars, S; Verger, P

    2005-03-01

    This review provides a framework contributing to the risk assessment of acrylamide in food. It is based on the outcome of the ILSI Europe FOSIE process, a risk assessment framework for chemicals in foods and adds to the overall framework by focusing especially on exposure assessment and internal dose assessment of acrylamide in food. Since the finding that acrylamide is formed in food during heat processing and preparation of food, much effort has been (and still is being) put into understanding its mechanism of formation, on developing analytical methods and determination of levels in food, and on evaluation of its toxicity and potential toxicity and potential human health consequences. Although several exposure estimations have been proposed, a systematic review of key information relevant to exposure assessment is currently lacking. The European and North American branches of the International Life Sciences Institute, ILSI, discussed critical aspects of exposure assessment, parameters influencing the outcome of exposure assessment and summarised data relevant to the acrylamide exposure assessment to aid the risk characterisation process. This paper reviews the data on acrylamide levels in food including its formation and analytical methods, the determination of human consumption patterns, dietary intake of the general population, estimation of maximum intake levels and identification of groups of potentially high intakes. Possible options and consequences of mitigation efforts to reduce exposure are discussed. Furthermore the association of intake levels with biomarkers of exposure and internal dose, considering aspects of bioavailability, is reviewed, and a physiologically-based toxicokinetic (PBTK) model is described that provides a good description of the kinetics of acrylamide in the rat. Each of the sections concludes with a summary of remaining gaps and uncertainties.

  8. Effects of body habitus on internal radiation dose calculations using the 5-year-old anthropomorphic male models.

    PubMed

    Xie, Tianwu; Kuster, Niels; Zaidi, Habib

    2017-07-13

    Computational phantoms are commonly used in internal radiation dosimetry to assess the amount and distribution pattern of energy deposited in various parts of the human body from different internal radiation sources. Radiation dose assessments are commonly performed on predetermined reference computational phantoms while the argument for individualized patient-specific radiation dosimetry exists. This study aims to evaluate the influence of body habitus on internal dosimetry and to quantify the uncertainties in dose estimation correlated with the use of fixed reference models. The 5-year-old IT'IS male phantom was modified to match target anthropometric parameters, including body weight, body height and sitting height/stature ratio (SSR), determined from reference databases, thus enabling the creation of 125 5-year-old habitus-dependent male phantoms with 10th, 25th, 50th, 75th and 90th percentile body morphometries. We evaluated the absorbed fractions and the mean absorbed dose to the target region per unit cumulative activity in the source region (S-values) of F-18 in 46 source regions for the generated 125 anthropomorphic 5-year-old hybrid male phantoms using the Monte Carlo N-Particle eXtended general purpose Monte Carlo transport code and calculated the absorbed dose and effective dose of five 18 F-labelled radiotracers for children of various habitus. For most organs, the S-value of F-18 presents stronger statistical correlations with body weight, standing height and sitting height than BMI and SSR. The self-absorbed fraction and self-absorbed S-values of F-18 and the absorbed dose and effective dose of 18 F-labelled radiotracers present with the strongest statistical correlations with body weight. For 18 F-Amino acids, 18 F-Brain receptor substances, 18 F-FDG, 18 F-L-DOPA and 18 F-FBPA, the mean absolute effective dose differences between phantoms of different habitus and fixed reference models are 11.4%, 11.3%, 10.8%, 13.3% and 11.4%, respectively. Total

  9. Effects of body habitus on internal radiation dose calculations using the 5-year-old anthropomorphic male models

    NASA Astrophysics Data System (ADS)

    Xie, Tianwu; Kuster, Niels; Zaidi, Habib

    2017-08-01

    Computational phantoms are commonly used in internal radiation dosimetry to assess the amount and distribution pattern of energy deposited in various parts of the human body from different internal radiation sources. Radiation dose assessments are commonly performed on predetermined reference computational phantoms while the argument for individualized patient-specific radiation dosimetry exists. This study aims to evaluate the influence of body habitus on internal dosimetry and to quantify the uncertainties in dose estimation correlated with the use of fixed reference models. The 5-year-old IT’IS male phantom was modified to match target anthropometric parameters, including body weight, body height and sitting height/stature ratio (SSR), determined from reference databases, thus enabling the creation of 125 5-year-old habitus-dependent male phantoms with 10th, 25th, 50th, 75th and 90th percentile body morphometries. We evaluated the absorbed fractions and the mean absorbed dose to the target region per unit cumulative activity in the source region (S-values) of F-18 in 46 source regions for the generated 125 anthropomorphic 5-year-old hybrid male phantoms using the Monte Carlo N-Particle eXtended general purpose Monte Carlo transport code and calculated the absorbed dose and effective dose of five 18F-labelled radiotracers for children of various habitus. For most organs, the S-value of F-18 presents stronger statistical correlations with body weight, standing height and sitting height than BMI and SSR. The self-absorbed fraction and self-absorbed S-values of F-18 and the absorbed dose and effective dose of 18F-labelled radiotracers present with the strongest statistical correlations with body weight. For 18F-Amino acids, 18F-Brain receptor substances, 18F-FDG, 18F-L-DOPA and 18F-FBPA, the mean absolute effective dose differences between phantoms of different habitus and fixed reference models are 11.4%, 11.3%, 10.8%, 13.3% and 11.4%, respectively. Total body

  10. NEURAL NETWORK MODELLING OF CARDIAC DOSE CONVERSION COEFFICIENT FOR ARBITRARY X-RAY SPECTRA.

    PubMed

    Kadri, O; Manai, K

    2016-12-01

    In this article, an approach to compute the dose conversion coefficients (DCCs) is described for the computational voxel phantom 'High-Definition Reference Korean-Man' (HDRK-Man) using artificial neural networks (ANN). For this purpose, the voxel phantom was implemented into the Monte Carlo (MC) transport toolkit GEANT4, and the DCCs for more than 30 tissues and organs, due to a broad parallel beam of monoenergetic photons with energy ranging from 15 to 150 keV by a step of 5 keV, were calculated. To study the influence of patient size on DCC values, DCC calculation was performed, for a representative body size population, using five different sizes covering the range of 80-120 % magnification of the original HDRK-Man. The focus of the present study was on the computation of DCC for the human heart. ANN calculation and MC simulation results were compared, and good agreement was observed showing that ANNs can be used as an efficient tool for modelling DCCs for the computational voxel phantom. ANN approach appears to be a significant advance over the time-consuming MC methods for DCC calculation. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  11. Letter to the Editor: Appropriate selection of dose coefficients in radiological assessments: C-14 and Cl-36: response to the letter of G Smith and M Thorne (2015 J. Radiol. Prot. 35 737-40)

    DOE PAGES

    Harrison, John D.; Leggett, Richard Wayne

    2016-01-01

    This letter to the editor of Journal of Radiological Protection is in response to a letter to the editor from G. M. Smith and M. C. Thorne of Great Britain concerning the appropriate selection of dose coefficients for ingested carbon-14 and chlorine-36, two of the most important long-lived components of radioactive wastes. Smith and Thorne argue that current biokinetic models of the International Commission on Radiological Protection (ICRP) for carbon and chlorine are overly cautious models from the standpoint of radiation dose estimates for C-14 and Cl-36, and that more realistic models are needed for evaluation of the hazards ofmore » these radionuclides in nuclear wastes. We (Harrison and Leggett) point out that new biokinetic models for these and other elements (developed at ORNL) will soon appear in ICRP Publications. These new models generally are considerably more realistic than current ICRP models. Here, examples are given for C-14 inhaled as carbon dioxide or ingested in water as bicarbonate, carbonate, or carbon dioxide.« less

  12. Coefficient Alpha and Reliability of Scale Scores

    ERIC Educational Resources Information Center

    Almehrizi, Rashid S.

    2013-01-01

    The majority of large-scale assessments develop various score scales that are either linear or nonlinear transformations of raw scores for better interpretations and uses of assessment results. The current formula for coefficient alpha (a; the commonly used reliability coefficient) only provides internal consistency reliability estimates of raw…

  13. The dose from Compton backscatter screening.

    PubMed

    Rez, Peter; Metzger, Robert L; Mossman, Kenneth L

    2011-04-01

    Systems based on the detection of Compton backscattered X rays have been deployed for screening personnel for weapons and explosives. Similar principles are used for screening vehicles at border-crossing points. Based on well-established scattering cross sections and absorption coefficients in conjunction with reasonable estimates of the image contrast and resolution, the entrance skin dose and the dose at a depth of 1 cm can be calculated. The effective dose can be estimated using the same conversion coefficients as used to convert exposure measurements to the effective dose. It is shown that the effective dose is highly dependent on image resolution (i.e. pixel size).The effective doses for personnel screening systems are unlikely to be in compliance with the American National Standards Institute standard NS 43.17 unless the pixel sizes are >4 mm. Nevertheless, calculated effective doses are well below doses associated with health effects.

  14. 42 CFR 82.18 - How will NIOSH calculate internal dose to the primary cancer site(s)?

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... primary cancer site(s)? 82.18 Section 82.18 Public Health PUBLIC HEALTH SERVICE, DEPARTMENT OF HEALTH AND... Dose Reconstruction Process § 82.18 How will NIOSH calculate internal dose to the primary cancer site(s... cancer covered by a claim is in a tissue not covered by existing ICRP models, NIOSH will use the ICRP...

  15. 42 CFR 82.18 - How will NIOSH calculate internal dose to the primary cancer site(s)?

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... primary cancer site(s)? 82.18 Section 82.18 Public Health PUBLIC HEALTH SERVICE, DEPARTMENT OF HEALTH AND... Dose Reconstruction Process § 82.18 How will NIOSH calculate internal dose to the primary cancer site(s... cancer covered by a claim is in a tissue not covered by existing ICRP models, NIOSH will use the ICRP...

  16. 42 CFR 82.18 - How will NIOSH calculate internal dose to the primary cancer site(s)?

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... primary cancer site(s)? 82.18 Section 82.18 Public Health PUBLIC HEALTH SERVICE, DEPARTMENT OF HEALTH AND... Dose Reconstruction Process § 82.18 How will NIOSH calculate internal dose to the primary cancer site(s... cancer covered by a claim is in a tissue not covered by existing ICRP models, NIOSH will use the ICRP...

  17. 42 CFR 82.18 - How will NIOSH calculate internal dose to the primary cancer site(s)?

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... primary cancer site(s)? 82.18 Section 82.18 Public Health PUBLIC HEALTH SERVICE, DEPARTMENT OF HEALTH AND... Dose Reconstruction Process § 82.18 How will NIOSH calculate internal dose to the primary cancer site(s... cancer covered by a claim is in a tissue not covered by existing ICRP models, NIOSH will use the ICRP...

  18. 42 CFR 82.18 - How will NIOSH calculate internal dose to the primary cancer site(s)?

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... primary cancer site(s)? 82.18 Section 82.18 Public Health PUBLIC HEALTH SERVICE, DEPARTMENT OF HEALTH AND... Dose Reconstruction Process § 82.18 How will NIOSH calculate internal dose to the primary cancer site(s... cancer covered by a claim is in a tissue not covered by existing ICRP models, NIOSH will use the ICRP...

  19. Effective doses and organ doses in the MIRD-5 phantom exposed to monoenergetic 0.1 MeV to 200 MeV electrons in the LAT direction.

    PubMed

    Katagiri, M; Hikoji, M; Kitaichi, M; Aoki, Y; Sawamura, S

    2001-01-01

    Organ doses and effective doses were calculated using the EGS-4 Monte Carlo simulation code and a MIRD-5 mathematical human phantom placed in a vacuum. For broad right and left lateral beams of monoenergetic (0.1-200 MeV) electrons, conversion coefficients from the incident fluence to organ dose, to effective dose, and to effective dose equivalent were obtained. There were no clear differences between the conversion coefficients in the case of left-lateral (LLAT) and right-lateral (RLAT) irradiation. Therefore, when investigating lateral geometries for electron exposure, it is not necessary to evaluate both directions independently. In general, conversion coefficients for lateral irradiation (LAT) were smaller than those for AP and PA. The difference between the AP and PA conversion coefficients and LAT became smaller with increasing incident energy; at 200 MeV the conversion coefficients were almost independent of the irradiation geometry. The agreement between the results of the present study and those of other studies was acceptable within the statistical uncertainties.

  20. A reliability generalization meta-analysis of coefficient alpha and test-retest coefficient for the aging males' symptoms (AMS) scale.

    PubMed

    Lee, Chin-Pang; Chiu, Yu-Wen; Chu, Chun-Lin; Chen, Yu; Jiang, Kun-Hao; Chen, Jiun-Liang; Chen, Ching-Yen

    2016-12-01

    The aging males' symptoms (AMS) scale is an instrument used to determine the health-related quality of life in adult and elderly men. The purpose of this study was to synthesize internal consistency (Cronbach's alpha) and test-retest reliability for the AMS scale and its three subscales. Of the 123 studies reviewed, 12 provided alpha coefficients which were then used in the meta-analyses of internal consistency. Seven of the 12 included studies provided test-retest coefficients, and these were used in the meta-analyses of test-retest reliability. The AMS scale had excellent internal consistency [α = 0.89 (95% CI 0.88-0.90)]; the mean alpha estimates across the AMS subscales ranged from 0.79 to 0.82. The AMS scale also had good test-retest reliability [r = 0.85 (95% CI 0.82-0.88]; the test-retest reliability coefficients of the AMS subscales ranged from 0.76 to 0.83. There was significant heterogeneity among the included studies. The AMS scale and the three subscales had fairly good internal consistency and test-retest reliability. Future psychometric studies of the AMS scale should report important characteristics of the participants, details of item scores, and test-retest reliability.

  1. Fluence-to-dose conversion coefficients based on the posture modification of Adult Male (AM) and Adult Female (AF) reference phantoms of ICRP 110

    NASA Astrophysics Data System (ADS)

    Galeano, D. C.; Santos, W. S.; Alves, M. C.; Souza, D. N.; Carvalho, A. B.

    2016-04-01

    The aim of this work was to modify the standing posture of the anthropomorphic reference phantoms of ICRP publication 110, AM (Adult Male) and AF (Adult Female), to the sitting posture. The change of posture was performed using the Visual Monte Carlo software (VMC) to rotate the thigh region of the phantoms and position it between the region of the leg and trunk. Scion Image software was used to reconstruct and smooth the knee and hip contours of the phantoms in a sitting posture. For 3D visualization of phantoms, the VolView software was used. In the change of postures, the organ and tissue masses were preserved. The MCNPX was used to calculate the equivalent and effective dose conversion coefficients (CCs) per fluence for photons for six irradiation geometries suggested by ICRP publication 110 (AP, PA, RLAT, LLAT, ROT and ISO) and energy range 0.010-10 MeV. The results were compared between the standing and sitting postures, for both sexes, in order to evaluate the differences of scattering and absorption of radiation for different postures. Significant differences in the CCs for equivalent dose were observed in the gonads, colon, prostate, urinary bladder and uterus, which are present in the pelvic region, and in organs distributed throughout the body, such as the lymphatic nodes, muscle, skeleton and skin, for the phantoms of both sexes. CCs for effective dose showed significant differences of up to 16% in the AP irradiation geometry, 27% in the PA irradiation geometry and 13% in the ROT irradiation geometry. These results demonstrate the importance of using phantoms in different postures in order to obtain more precise conversion coefficients for a given exposure scenario.

  2. Establishing bounding internal dose estimates for thorium activities at Rocky Flats.

    PubMed

    Ulsh, Brant A; Rich, Bryce L; Chew, Melton H; Morris, Robert L; Sharfi, Mutty; Rolfes, Mark R

    2008-07-01

    As part of an evaluation of a Special Exposure Cohort petition filed on behalf of workers at the Rocky Flats Plant, the National Institute for Occupational Safety and Health (NIOSH) was required to demonstrate that bounding values could be established for radiation doses due to the potential intake of all radionuclides present at the facility. The main radioactive elements of interest at Rocky Flats were plutonium and uranium, but much smaller quantities of several other elements, including thorium, were occasionally handled at the site. Bounding potential doses from thorium has proven challenging at other sites due to the early historical difficulty in detecting this element through urinalysis methods and the relatively high internal dose delivered per unit intake. This paper reports the results of NIOSH's investigation of the uses of thorium at Rocky Flats and provides bounding dose reconstructions for these operations. During this investigation, NIOSH reviewed unclassified reports, unclassified extracts of classified materials, material balance and inventory ledgers, monthly progress reports from various groups, and health physics field logbooks, and conducted interviews with former Rocky Flats workers. Thorium operations included: (1) an experimental metal forming project with 240 kg of thorium in 1960; (2) the use of pre-formed parts in weapons mockups; (3) the removal of Th from U; (4) numerous analytical procedures involving trace quantities of thorium; and (5) the possible experimental use of thorium as a mold coating compound. The thorium handling operations at Rocky Flats were limited in scope, well-monitored and documented, and potential doses can be bounded.

  3. Internal conversion coefficients of high multipole transitions: Experiment and theories

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gerl, J.; Vijay Sai, K.; Sainath, M.

    A compilation of the available experimental internal conversion coefficients (ICCs), {alpha}{sub T}, {alpha}{sub K}, {alpha}{sub L}, and ratios K/L and K/LM of high multipole (L > 2) transitions for a number of elements in the range 21 {<=} Z {<=} 94 is presented. Our listing of experimental data includes 194 data sets on 110 E3 transitions, 10 data sets on 6 E4 transitions, 11 data sets on 7 E5 transitions, 38 data sets on 21 M3 transitions, and 132 data sets on 68 M4 transitions. Data with less than 10% experimental uncertainty have been selected for comparison with the theoreticalmore » values of Hager and Seltzer [R.S. Hager, E.C. Seltzer, Nucl. Data Tables A 4 (1968) 1], Rosel et al. [F. Roesel, H.M. Fries, K. Alder, H.C. Pauli, At. Data Nucl. Data Tables 21 (1978) 91], and BRICC. The relative percentage deviations (%{delta}) have been calculated for each of the above theories and the averages (%{delta}-bar) are estimated. The Band et al. [I.M. Band, M.B. Trzhaskovskaya, C.W. Nestor Jr., P.O. Tikkanen, S. Raman, At. Data Nucl. Data Tables 81 (2002) 1] tables, using the BRICC interpolation code, are seen to give theoretical ICCs closest to experimental values.« less

  4. Measurement of absorbed dose during the phantom torso experiment on the International Space Station

    NASA Astrophysics Data System (ADS)

    Semones, E.; Gibbons, F.; Golightly, M.; Weyland, M.; Johnson, A.; Smith, G.; Shelfer, T.; Zapp, N.

    The Phantom Torso Experiment (PTE) was flown on the International Space Station (ISS) during Increment 2 (April-August 2001). The experiment was located in the US Lab module Human Research Facility (HRF) rack. The objective of the passive dosimetry portion of the experiment was to measure spatial distributions of absorbed dose in the 34, 1 inch sections of a modified RandoTM phantom. In each section of the phantom, thermoluminescent detectors (TLDs) were placed at various locations (depths) to provide the spatial measurement. TLDs were also located at several radiosensitive organ locations (brain, thyroid, heart/lung, stomach and colon) and two locations on the surface (skin). Active silicon detectors were also placed at these organ locations to provide time resolved results of the absorbed dose rates. Using these detectors, it is possible to separate the trapped and galactic cosmic ray components of the absorbed dose. The TLD results of the spatial and organ dose measurements will be presented and comparisons of the TLD and silicon detector organ absorbed doses will be made.

  5. Effective radiation dose of ProMax 3D cone-beam computerized tomography scanner with different dental protocols.

    PubMed

    Qu, Xing-min; Li, Gang; Ludlow, John B; Zhang, Zu-yan; Ma, Xu-chen

    2010-12-01

    The aim of this study was to compare effective doses resulting from different scan protocols for cone-beam computerized tomography (CBCT) using International Commission on Radiological Protection (ICRP) 1990 and 2007 calculations of dose. Average tissue-absorbed dose, equivalent dose, and effective dose for a ProMax 3D CBCT with different dental protocols were calculated using thermoluminescent dosimeter chips in a human equivalent phantom. Effective doses were derived using ICRP 1990 and the superseding 2007 recommendations. Effective doses (ICRP 2007) for default patient sizes from small to large ranged from 102 to 298 μSv. The coefficient of determination (R(2)) between tube current and effective dose (ICRP 2007) was 0.90. When scanning with lower resolution settings, the effective doses were reduced significantly (P < .05). ProMax 3D can provide a wide range of radiation dose levels. Reduction in radiation dose can be achieved when using lower settings of exposure parameters. Copyright © 2010 Mosby, Inc. All rights reserved.

  6. MO-DE-204-00: International Symposium: Patient Dose Reduction in Diagnostic Radiology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    2016-06-15

    The main topic of the session is to show how dose optimization is being implemented in various regions of the world, including Europe, Australia, North America and other regions. A multi-national study conducted under International Atomic Energy Agency (IAEA) across more than 50 less resourced countries gave insight into patient radiation doses and safety practices in CT, mammography, radiography and interventional procedures, both for children and adults. An important outcome was the capability development on dose assessment and management. An overview of recent European projects related to CT radiation dose and optimization both to adults and children will be presented.more » Existing data on DRLs together with a European methodology proposed on establishing and using DRLs for paediatric radiodiagnostic imaging and interventional radiology practices will be shown. Compared with much of Europe at least, many Australian imaging practices are relatively new to the task of diagnostic imaging dose optimisation. In 2008 the Australian Government prescribed a requirement to periodically compare patient radiation doses with diagnostic reference levels (DRLs), where DRLs have been established. Until recently, Australia had only established DRLs for computed tomography (CT). Regardless, both professional society and individual efforts to improved data collection and develop optimisation strategies across a range of modalities continues. Progress in this field, principally with respect to CT and interventional fluoroscopy will be presented. In the US, dose reduction and optimization efforts for computed tomography have been promoted and mandated by several organizations and accrediting entities. This presentation will cover the general motivation, implementation, and implications of such efforts. Learning Objectives: Understand importance of the dose optimization in Diagnostic Radiology. See how this goal is achieved in different regions of the World. Learn about the

  7. Transport Properties of Bulk Thermoelectrics An International Round-Robin Study, Part I: Seebeck Coefficient and Electrical Resistivity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Hsin; Porter, Wallace D; Bottner, Harold

    2013-01-01

    Recent research and development of high temperature thermoelectric materials has demonstrated great potential of converting automobile exhaust heat directly into electricity. Thermoelectrics based on classic bismuth telluride have also started to impact the automotive industry by enhancing air conditioning efficiency and integrated cabin climate control. In addition to engineering challenges of making reliable and efficient devices to withstand thermal and mechanical cycling, the remaining issues in thermoelectric power generation and refrigeration are mostly materials related. The figure-of-merit, ZT, still needs to improve from the current value of 1.0 - 1.5 to above 2 to be competitive to other alternative technologies.more » In the meantime, the thermoelectric community could greatly benefit from the development of international test standards, improved test methods and better characterization tools. Internationally, thermoelectrics have been recognized by many countries as an important area for improving energy efficiency. The International Energy Agency (IEA) group under the implementing agreement for Advanced Materials for Transportation (AMT) identified thermoelectric materials as an important area in 2009. This paper is Part I of the international round-robin testing of transport properties of bulk thermoelectrics. The main focuses in Part I are on two electronic transport properties: Seebeck coefficient and electrical resistivity.« less

  8. Transport Properties of Bulk Thermoelectrics—An International Round-Robin Study, Part I: Seebeck Coefficient and Electrical Resistivity

    NASA Astrophysics Data System (ADS)

    Wang, Hsin; Porter, Wallace D.; Böttner, Harald; König, Jan; Chen, Lidong; Bai, Shengqiang; Tritt, Terry M.; Mayolet, Alex; Senawiratne, Jayantha; Smith, Charlene; Harris, Fred; Gilbert, Patricia; Sharp, Jeff W.; Lo, Jason; Kleinke, Holger; Kiss, Laszlo

    2013-04-01

    Recent research and development of high-temperature thermoelectric materials has demonstrated great potential for converting automobile exhaust heat directly into electricity. Thermoelectrics based on classic bismuth telluride have also started to impact the automotive industry by enhancing air-conditioning efficiency and integrated cabin climate control. In addition to engineering challenges of making reliable and efficient devices to withstand thermal and mechanical cycling, the remaining issues in thermoelectric power generation and refrigeration are mostly materials related. The dimensionless figure of merit, ZT, still needs to be improved from the current value of 1.0 to 1.5 to above 2.0 to be competitive with other alternative technologies. In the meantime, the thermoelectric community could greatly benefit from the development of international test standards, improved test methods, and better characterization tools. Internationally, thermoelectrics have been recognized by many countries as a key component for improving energy efficiency. The International Energy Agency (IEA) group under the Implementing Agreement for Advanced Materials for Transportation (AMT) identified thermoelectric materials as an important area in 2009. This paper is part I of the international round-robin testing of transport properties of bulk thermoelectrics. The main foci in part I are the measurement of two electronic transport properties: Seebeck coefficient and electrical resistivity.

  9. SU-E-T-157: Evaluation and Comparison of Doses to Pelvic Lymph Nodes and to Point B with 3D Image Guided Treatment Planning for High Dose Brachytherapy for Treatment of Cervical Cancer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bhandare, N.

    2014-06-01

    Purpose: To estimate and compare the doses received by the obturator, external and internal iliac lymph nodes and point Methods: CT-MR fused image sets of 15 patients obtained for each of 5 fractions of HDR brachytherapy using tandem and ring applicator, were used to generate treatment plans optimized to deliver a prescription dose to HRCTV-D90 and to minimize the doses to organs at risk (OARs). For each set of image, target volume (GTV, HRCTV) OARs (Bladder, Rectum, Sigmoid), and both left and right pelvic lymph nodes (obturator, external and internal iliac lymph nodes) were delineated. Dose-volume histograms (DVH) were generatedmore » for pelvic nodal groups (left and right obturator group, internal and external iliac chains) Per fraction DVH parameters used for dose comparison included dose to 100% volume (D100), and dose received by 2cc (D2cc), 1cc (D1cc) and 0.1 cc (D0.1cc) of nodal volume. Dose to point B was compared with each DVH parameter using 2 sided t-test. Pearson correlation were determined to examine relationship of point B dose with nodal DVH parameters. Results: FIGO clinical stage varied from 1B1 to IIIB. The median pretreatment tumor diameter measured on MRI was 4.5 cm (2.7– 6.4cm).The median dose to bilateral point B was 1.20 Gy ± 0.12 or 20% of the prescription dose. The correlation coefficients were all <0.60 for all nodal DVH parameters indicating low degree of correlation. Only 2 cc of obturator nodes was not significantly different from point B dose on t-test. Conclusion: Dose to point B does not adequately represent the dose to any specific pelvic nodal group. When using image guided 3D dose-volume optimized treatment nodal groups should be individually identified and delineated to obtain the doses received by pelvic nodes.« less

  10. Evaluation of organ doses and specific k effective dose of 64-slice CT thorax examination using an adult anthropomorphic phantom

    NASA Astrophysics Data System (ADS)

    Hashim, S.; Karim, M. K. A.; Bakar, K. A.; Sabarudin, A.; Chin, A. W.; Saripan, M. I.; Bradley, D. A.

    2016-09-01

    The magnitude of radiation dose in computed tomography (CT) depends on the scan acquisition parameters, investigated herein using an anthropomorphic phantom (RANDO®) and thermoluminescence dosimeters (TLD). Specific interest was in the organ doses resulting from CT thorax examination, the specific k coefficient for effective dose estimation for particular protocols also being determined. For measurement of doses representing five main organs (thyroid, lung, liver, esophagus and skin), TLD-100 (LiF:Mg, Ti) were inserted into selected holes in a phantom slab. Five CT thorax protocols were investigated, one routine (R1) and four that were modified protocols (R2 to R5). Organ doses were ranked from greatest to least, found to lie in the order: thyroid>skin>lung>liver>breast. The greatest dose, for thyroid at 25 mGy, was that in use of R1 while the lowest, at 8.8 mGy, was in breast tissue using R3. Effective dose (E) was estimated using three standard methods: the International Commission on Radiological Protection (ICRP)-103 recommendation (E103), the computational phantom CT-EXPO (E(CTEXPO)) method, and the dose-length product (DLP) based approach. E103 k factors were constant for all protocols, 8% less than that of the universal k factor. Due to inconsistency in tube potential and pitch factor the k factors from CTEXPO were found to vary between 0.015 and 0.010 for protocols R3 and R5. With considerable variation between scan acquisition parameters and organ doses, optimization of practice is necessary in order to reduce patient organ dose.

  11. Radiotherapy Dose Fractionation under Parameter Uncertainty

    NASA Astrophysics Data System (ADS)

    Davison, Matt; Kim, Daero; Keller, Harald

    2011-11-01

    In radiotherapy, radiation is directed to damage a tumor while avoiding surrounding healthy tissue. Tradeoffs ensue because dose cannot be exactly shaped to the tumor. It is particularly important to ensure that sensitive biological structures near the tumor are not damaged more than a certain amount. Biological tissue is known to have a nonlinear response to incident radiation. The linear quadratic dose response model, which requires the specification of two clinically and experimentally observed response coefficients, is commonly used to model this effect. This model yields an optimization problem giving two different types of optimal dose sequences (fractionation schedules). Which fractionation schedule is preferred depends on the response coefficients. These coefficients are uncertainly known and may differ from patient to patient. Because of this not only the expected outcomes but also the uncertainty around these outcomes are important, and it might not be prudent to select the strategy with the best expected outcome.

  12. An organ-based approach to dose calculation in the assessment of dose-dependent biological effects of ionising radiation in Arabidopsis thaliana.

    PubMed

    Biermans, Geert; Horemans, Nele; Vanhoudt, Nathalie; Vandenhove, Hildegarde; Saenen, Eline; Van Hees, May; Wannijn, Jean; Vives i Batlle, Jordi; Cuypers, Ann

    2014-07-01

    There is a need for a better understanding of biological effects of radiation exposure in non-human biota. Correct description of these effects requires a more detailed model of dosimetry than that available in current risk assessment tools, particularly for plants. In this paper, we propose a simple model for dose calculations in roots and shoots of Arabidopsis thaliana seedlings exposed to radionuclides in a hydroponic exposure setup. This model is used to compare absorbed doses for three radionuclides, (241)Am (α-radiation), (90)Sr (β-radiation) and (133)Ba (γ radiation). Using established dosimetric calculation methods, dose conversion coefficient values were determined for each organ separately based on uptake data from the different plant organs. These calculations were then compared to the DCC values obtained with the ERICA tool under equivalent geometry assumptions. When comparing with our new method, the ERICA tool appears to overestimate internal doses and underestimate external doses in the roots for all three radionuclides, though each to a different extent. These observations might help to refine dose-response relationships. The DCC values for (90)Sr in roots are shown to deviate the most. A dose-effect curve for (90)Sr β-radiation has been established on biomass and photosynthesis endpoints, but no significant dose-dependent effects are observed. This indicates the need for use of endpoints at the molecular and physiological scale. Copyright © 2013 Elsevier Ltd. All rights reserved.

  13. Atmospheric Extinction Coefficients in the Ic Band for Several Major International Observatories: Results from the BiSON Telescopes, 1984-2016

    NASA Astrophysics Data System (ADS)

    Hale, S. J.; Chaplin, W. J.; Davies, G. R.; Elsworth, Y. P.; Howe, R.; Lund, M. N.; Moxon, E. Z.; Thomas, A.; Pallé, P. L.; Rhodes, E. J., Jr.

    2017-09-01

    Over 30 years of solar data have been acquired by the Birmingham Solar Oscillations Network (BiSON), an international network of telescopes used to study oscillations of the Sun. Five of the six BiSON telescopes are located at major observatories. The observational sites are, in order of increasing longitude: Mount Wilson (Hale) Observatory (MWO), California, USA; Las Campanas Observatory, Chile; Observatorio del Teide, Izaña, Tenerife, Canary Islands; the South African Astronomical Observatory, Sutherland, South Africa; Carnarvon, Western Australia; and the Paul Wild Observatory, Narrabri, New South Wales, Australia. The BiSON data may be used to measure atmospheric extinction coefficients in the {{{I}}}{{c}} band (approximately 700-900 nm), and presented here are the derived atmospheric extinction coefficients from each site over the years 1984-2016.

  14. Internal friction between fluid particles of MHD tangent hyperbolic fluid with heat generation: Using coefficients improved by Cash and Karp

    NASA Astrophysics Data System (ADS)

    Salahuddin, T.; Khan, Imad; Malik, M. Y.; Khan, Mair; Hussain, Arif; Awais, Muhammad

    2017-05-01

    The present work examines the internal resistance between fluid particles of tangent hyperbolic fluid flow due to a non-linear stretching sheet with heat generation. Using similarity transformations, the governing system of partial differential equations is transformed into a coupled non-linear ordinary differential system with variable coefficients. Unlike the current analytical works on the flow problems in the literature, the main concern here is to numerically work out and find the solution by using Runge-Kutta-Fehlberg coefficients improved by Cash and Karp (Naseer et al., Alexandria Eng. J. 53, 747 (2014)). To determine the relevant physical features of numerous mechanisms acting on the deliberated problem, it is sufficient to have the velocity profile and temperature field and also the drag force and heat transfer rate all as given in the current paper.

  15. Typical doses and dose rates in studies pertinent to radiation risk inference at low doses and low dose rates

    PubMed Central

    Rühm, Werner; Azizova, Tamara; Bouffler, Simon; Cullings, Harry M; Grosche, Bernd; Little, Mark P; Shore, Roy S; Walsh, Linda; Woloschak, Gayle E

    2018-01-01

    Abstract In order to quantify radiation risks at exposure scenarios relevant for radiation protection, often extrapolation of data obtained at high doses and high dose rates down to low doses and low dose rates is needed. Task Group TG91 on ‘Radiation Risk Inference at Low-dose and Low-dose Rate Exposure for Radiological Protection Purposes’ of the International Commission on Radiological Protection is currently reviewing the relevant cellular, animal and human studies that could be used for that purpose. This paper provides an overview of dose rates and doses typically used or present in those studies, and compares them with doses and dose rates typical of those received by the A-bomb survivors in Japan. PMID:29432579

  16. Estimating varying coefficients for partial differential equation models.

    PubMed

    Zhang, Xinyu; Cao, Jiguo; Carroll, Raymond J

    2017-09-01

    Partial differential equations (PDEs) are used to model complex dynamical systems in multiple dimensions, and their parameters often have important scientific interpretations. In some applications, PDE parameters are not constant but can change depending on the values of covariates, a feature that we call varying coefficients. We propose a parameter cascading method to estimate varying coefficients in PDE models from noisy data. Our estimates of the varying coefficients are shown to be consistent and asymptotically normally distributed. The performance of our method is evaluated by a simulation study and by an empirical study estimating three varying coefficients in a PDE model arising from LIDAR data. © 2017, The International Biometric Society.

  17. Does the presence of an implant including expander with internal port alter radiation dose? An ex vivo model.

    PubMed

    Strang, Barbara; Murphy, Kyla; Seal, Shane; Cin, Arianna Dal

    2013-01-01

    There is a lack of literature examining the dosimetric implications of irradiating breast implants and expanders with internal ports inserted at the time of mastectomy. To determine whether the presence of breast expanders with port in saline or silicone implants affect the dose uniformity across the breast when irradiated with various photon and electron energies. One tissue-equivalent torso phantom with overlying tissue expanders in saline or silicone implants were irradiated using tangential fields with 6 MV and 18 MV photons and 9 MeV and 12 MeV electrons. All dose measurements were performed using thermoluminescent dosimeters (TLDs). The TLDs were arranged around the port and the perimeters of either the expander, or saline or silicone implant. Comparisons of measured radiation doses, and between the expected and measured doses of radiation from the TLDs on each prosthesis, were performed. Data were analyzed using two-tailed t tests. There were no differences in TLD measurements between the expander and the saline implant for all energy modalities, and for the expected versus actual measurements for the saline implant. Higher than anticipated measurements were recorded for a significant number of TLD positions around the silicone implants. Radiation doses around saline implants or expanders with internal port were unaltered, whereas dose recordings for silicone implants were higher than predicted in the present laboratory/ex vivo study.

  18. Does the presence of an implant including expander with internal port alter radiation dose? An ex vivo model

    PubMed Central

    Strang, Barbara; Murphy, Kyla; Seal, Shane; Cin, Arianna Dal

    2013-01-01

    BACKGROUND: There is a lack of literature examining the dosimetric implications of irradiating breast implants and expanders with internal ports inserted at the time of mastectomy. OBJECTIVE: To determine whether the presence of breast expanders with port in saline or silicone implants affect the dose uniformity across the breast when irradiated with various photon and electron energies. METHODS: One tissue-equivalent torso phantom with overlying tissue expanders in saline or silicone implants were irradiated using tangential fields with 6 MV and 18 MV photons and 9 MeV and 12 MeV electrons. All dose measurements were performed using thermoluminescent dosimeters (TLDs). The TLDs were arranged around the port and the perimeters of either the expander, or saline or silicone implant. Comparisons of measured radiation doses, and between the expected and measured doses of radiation from the TLDs on each prosthesis, were performed. Data were analyzed using two-tailed t tests. RESULTS: There were no differences in TLD measurements between the expander and the saline implant for all energy modalities, and for the expected versus actual measurements for the saline implant. Higher than anticipated measurements were recorded for a significant number of TLD positions around the silicone implants. CONCLUSIONS: Radiation doses around saline implants or expanders with internal port were unaltered, whereas dose recordings for silicone implants were higher than predicted in the present laboratory/ex vivo study. PMID:24431935

  19. Development of a web-based CT dose calculator: WAZA-ARI.

    PubMed

    Ban, N; Takahashi, F; Sato, K; Endo, A; Ono, K; Hasegawa, T; Yoshitake, T; Katsunuma, Y; Kai, M

    2011-09-01

    A web-based computed tomography (CT) dose calculation system (WAZA-ARI) is being developed based on the modern techniques for the radiation transport simulation and for software implementation. Dose coefficients were calculated in a voxel-type Japanese adult male phantom (JM phantom), using the Particle and Heavy Ion Transport code System. In the Monte Carlo simulation, the phantom was irradiated with a 5-mm-thick, fan-shaped photon beam rotating in a plane normal to the body axis. The dose coefficients were integrated into the system, which runs as Java servlets within Apache Tomcat. Output of WAZA-ARI for GE LightSpeed 16 was compared with the dose values calculated similarly using MIRD and ICRP Adult Male phantoms. There are some differences due to the phantom configuration, demonstrating the significance of the dose calculation with appropriate phantoms. While the dose coefficients are currently available only for limited CT scanner models and scanning options, WAZA-ARI will be a useful tool in clinical practice when development is finalised.

  20. Occupational radiation dose to eyes from interventional radiology procedures in light of the new eye lens dose limit from the International Commission on Radiological Protection

    PubMed Central

    Walsh, C; Gallagher, A; Dowling, A; Guiney, M; Ryan, J M; McEniff, N; O'Reilly, G

    2015-01-01

    Objective: In 2011, the International Commission on Radiological Protection (ICRP) recommended a substantial reduction in the equivalent dose limit for the lens of the eye, in line with a reduced threshold of absorbed dose for radiation-induced cataracts. This is of particular relevance in interventional radiology (IR) where it is well established that staff doses can be significant, however, there is a lack of data on IR eye doses in terms of Hp(3). Hp(3) is the personal dose equivalent at a depth of 3 mm in soft tissue and is used for measuring lens dose. We aimed to obtain a reliable estimate of eye dose to IR operators. Methods: Lens doses were measured for four interventional radiologists over a 3-month period using dosemeters specifically designed to measure Hp(3). Results: Based on their typical workloads, two of the four interventional radiologists would exceed the new ICRP dose limit with annual estimated doses of 31 and 45 mSv to their left eye. These results are for an “unprotected” eye, and for IR staff who routinely wear lead glasses, the dose beneath the glasses is likely to be significantly lower. Staff eye dose normalized to patient kerma–area product and eye dose per procedure have been included in the analysis. Conclusion: Eye doses to IR operators have been established using a dedicated Hp(3) dosemeter. Estimated annual doses have the potential to exceed the new ICRP limit. Advances in knowledge: We have estimated lens dose to interventional radiologists in terms of Hp(3) for the first time in an Irish hospital setting. PMID:25761211

  1. [ESTIMATION OF IONIZING RADIATION EFFECTIVE DOSES IN THE INTERNATIONAL SPACE STATION CREWS BY THE METHOD OF CALCULATION MODELING].

    PubMed

    Mitrikas, V G

    2015-01-01

    Monitoring of the radiation loading on cosmonauts requires calculation of absorbed dose dynamics with regard to the stay of cosmonauts in specific compartments of the space vehicle that differ in shielding properties and lack means of radiation measurement. The paper discusses different aspects of calculation modeling of radiation effects on human body organs and tissues and reviews the effective dose estimates for cosmonauts working in one or another compartment over the previous period of the International space station operation. It was demonstrated that doses measured by a real or personal dosimeters can be used to calculate effective dose values. Correct estimation of accumulated effective dose can be ensured by consideration for time course of the space radiation quality factor.

  2. GENERAL CONSIDERATIONS OF DOSE-EFFECT AND DOSE-RESPONSE RELATIONSHIPS

    EPA Science Inventory

    ABSTRACT In 2003, the International Union of Pure and Applied chemistry (IUPAC) issued a glossary of terms that included the defi nition of dose-effect and doseresponse relationships (Nordberg et al., 2004). Dose effect relationship is defined as an association between dose and...

  3. Thermal coefficients of the methyl groups within ubiquitin

    PubMed Central

    Sabo, T Michael; Bakhtiari, Davood; Walter, Korvin F A; McFeeters, Robert L; Giller, Karin; Becker, Stefan; Griesinger, Christian; Lee, Donghan

    2012-01-01

    Physiological processes such as protein folding and molecular recognition are intricately linked to their dynamic signature, which is reflected in their thermal coefficient. In addition, the local conformational entropy is directly related to the degrees of freedom, which each residue possesses within its conformational space. Therefore, the temperature dependence of the local conformational entropy may provide insight into understanding how local dynamics may affect the stability of proteins. Here, we analyze the temperature dependence of internal methyl group dynamics derived from the cross-correlated relaxation between dipolar couplings of two CH bonds within ubiquitin. Spanning a temperature range from 275 to 308 K, internal methyl group dynamics tend to increase with increasing temperature, which translates to a general increase in local conformational entropy. With this data measured over multiple temperatures, the thermal coefficient of the methyl group order parameter, the characteristic thermal coefficient, and the local heat capacity were obtained. By analyzing the distribution of methyl group thermal coefficients within ubiquitin, we found that the N-terminal region has relatively high thermostability. These results indicate that methyl groups contribute quite appreciably to the total heat capacity of ubiquitin through the regulation of local conformational entropy. PMID:22334336

  4. THE CHALLENGE OF CIEMAT INTERNAL DOSIMETRY SERVICE FOR ACCREDITATION ACCORDING TO ISO/IEC 17025 STANDARD, FOR IN VIVO AND IN VITRO MONITORING AND DOSE ASSESSMENT OF INTERNAL EXPOSURES.

    PubMed

    Lopez, M A; Martin, R; Hernandez, C; Navarro, J F; Navarro, T; Perez, B; Sierra, I

    2016-09-01

    The accreditation of an Internal Dosimetry Service (IDS) according to ISO/IEC 17025 Standard is a challenge. The aim of this process is to guarantee the technical competence for the monitoring of radionuclides incorporated in the body and for the evaluation of the associated committed effective dose E(50). This publication describes the main accreditation issues addressed by CIEMAT IDS regarding all the procedures involving good practice in internal dosimetry, focussing in the difficulties to ensure the traceability in the whole process, the appropriate calculation of detection limit of measurement techniques, the validation of methods (monitoring and dose assessments), the description of all the uncertainty sources and the interpretation of monitoring data to evaluate the intake and the committed effective dose. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  5. Simulation of photon attenuation coefficients for high effective shielding material Lead-Boron Polyethyene

    NASA Astrophysics Data System (ADS)

    Zhang, L.; Jia, M. C.; Gong, J. J.; Xia, W. M.

    2017-12-01

    The mass attenuation coefficient of various Lead-Boron Polyethylene samples which can be used as the photon shielding materials in marine reactor, have been simulated using the MCNP-5 code, and compared with the theoretical values at the photon energy range 0.001MeV—20MeV. A good agreement has been observed. The variations of mass attenuation coefficient, linear attenuation coefficient and mean free path with photon energy between 0.001MeV to 100MeV have been plotted. The result shows that all the coefficients strongly depends on the photon energy, material atomic composition and density. The dose transmission factors for source Cesium-137 and Cobalt-60 have been worked out and their variations with the thickness of various sample materials have also been plotted. The variations show that with the increase of materials thickness the dose transmission factors decrease continuously. The results of this paper can provide some reference for the use of the high effective shielding material Lead-Boron Polyethyene.

  6. Internal Dose from Food and Drink Ingestion in the Early Phase after the Accident

    NASA Astrophysics Data System (ADS)

    Kawai, Masaki; Yoshizawa, Nobuaki; Hirakawa, Sachiko; Murakami, Kana; Takizawa, Mari; Sato, Osamu; Takagi, Shunji; Miyatake, Hirokazu; Takahashi, Tomoyuki; Suzuki, Gen

    2017-09-01

    Activity concentrations in food and drink, represented by water and vegetables, have been monitored continuously since the Fukushima Daiichi Nuclear Power Plant accident, with a focus on radioactive cesium. On the other hand, iodine-131 was not measured systematically in the early phase after the accident. The activity concentrations of iodine-131 in food and drink are important to estimate internal exposure due to ingestion pathway. When the internal dose from ingestion in the evacuation areas is estimated, water is considered as the main ingestion pathway. In this study, we estimated the values of activity concentrations in water in the early phase after the accident, using a compartment model as an estimation method. The model uses measurement values of activity concentration and deposition rate of iodine-131 onto the ground, which is calculated from an atmospheric dispersion simulation. The model considers how drinking water would be affected by radionuclides deposited into water. We estimated the activity concentrations of water on Kawamata town and Minamisouma city during March of 2011 and the committed effective doses were 0.08 mSv and 0.06 mSv. We calculated the transfer parameters in the model for estimating the activity concentrations in the areas with a small amount of measurement data. In addition, we estimated the committed effective doses from vegetables using atmospheric dispersion simulation and FARMLAND model in case of eating certain vegetables as option information.

  7. Development of a tool for calculating early internal doses in the Fukushima Daiichi nuclear power plant accident based on atmospheric dispersion simulation

    NASA Astrophysics Data System (ADS)

    Kurihara, Osamu; Kim, Eunjoo; Kunishima, Naoaki; Tani, Kotaro; Ishikawa, Tetsuo; Furuyama, Kazuo; Hashimoto, Shozo; Akashi, Makoto

    2017-09-01

    A tool was developed to facilitate the calculation of the early internal doses to residents involved in the Fukushima Nuclear Disaster based on atmospheric transport and dispersion model (ATDM) simulations performed using Worldwide version of System for Prediction of Environmental Emergency Information 2nd version (WSPEEDI-II) together with personal behavior data containing the history of the whereabouts of individul's after the accident. The tool generates hourly-averaged air concentration data for the simulation grids nearest to an individual's whereabouts using WSPEEDI-II datasets for the subsequent calculation of internal doses due to inhalation. This paper presents an overview of the developed tool and provides tentative comparisons between direct measurement-based and ATDM-based results regarding the internal doses received by 421 persons from whom personal behavior data available.

  8. An international dosimetry exchange for boron neutron capture therapy. Part I: Absorbed dose measurements.

    PubMed

    Binns, P J; Riley, K J; Harling, O K; Kiger, W S; Munck af Rosenschöld, P M; Giusti, V; Capala, J; Sköld, K; Auterinen, I; Serén, T; Kotiluoto, P; Uusi-Simola, J; Marek, M; Viererbl, L; Spurny, F

    2005-12-01

    An international collaboration was organized to undertake a dosimetry exchange to enable the future combination of clinical data from different centers conducting neutron capture therapy trials. As a first step (Part I) the dosimetry group from the Americas, represented by MIT, visited the clinical centers at Studsvik (Sweden), VTT Espoo (Finland), and the Nuclear Research Institute (NRI) at Rez (Czech Republic). A combined VTT/NRI group reciprocated with a visit to MIT. Each participant performed a series of dosimetry measurements under equivalent irradiation conditions using methods appropriate to their clinical protocols. This entailed in-air measurements and dose versus depth measurements in a large water phantom. Thermal neutron flux as well as fast neutron and photon absorbed dose rates were measured. Satisfactory agreement in determining absorbed dose within the experimental uncertainties was obtained between the different groups although the measurement uncertainties are large, ranging between 3% and 30% depending upon the dose component and the depth of measurement. To improve the precision in the specification of absorbed dose amongst the participants, the individually measured dose components were normalized to the results from a single method. Assuming a boron concentration of 15 microg g(-1) that is typical of concentrations realized clinically with the boron delivery compound boronophenylalanine-fructose, systematic discrepancies in the specification of the total biologically weighted dose of up to 10% were apparent between the different groups. The results from these measurements will be used in future to normalize treatment plan calculations between the different clinical dosimetry protocols as Part II of this study.

  9. Stress Optical Coefficient, Test Methodology, and Glass Standard Evaluation

    DTIC Science & Technology

    2016-05-01

    identifying and mapping flaw size distributions on glass surfaces for predicting mechanical response. International Journal of Applied Glass ...ARL-TN-0756 ● MAY 2016 US Army Research Laboratory Stress Optical Coefficient, Test Methodology, and Glass Standard Evaluation...Stress Optical Coefficient, Test Methodology, and Glass Standard Evaluation by Clayton M Weiss Oak Ridge Institute for Science and Education

  10. SU-F-19A-10: Recalculation and Reporting Clinical HDR 192-Ir Head and Neck Dose Distributions Using Model Based Dose Calculation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carlsson Tedgren, A; Persson, M; Nilsson, J

    Purpose: To retrospectively re-calculate dose distributions for selected head and neck cancer patients, earlier treated with HDR 192Ir brachytherapy, using Monte Carlo (MC) simulations and compare results to distributions from the planning system derived using TG43 formalism. To study differences between dose to medium (as obtained with the MC code) and dose to water in medium as obtained through (1) ratios of stopping powers and (2) ratios of mass energy absorption coefficients between water and medium. Methods: The MC code Algebra was used to calculate dose distributions according to earlier actual treatment plans using anonymized plan data and CT imagesmore » in DICOM format. Ratios of stopping power and mass energy absorption coefficients for water with various media obtained from 192-Ir spectra were used in toggling between dose to water and dose to media. Results: Differences between initial planned TG43 dose distributions and the doses to media calculated by MC are insignificant in the target volume. Differences are moderate (within 4–5 % at distances of 3–4 cm) but increase with distance and are most notable in bone and at the patient surface. Differences between dose to water and dose to medium are within 1-2% when using mass energy absorption coefficients to toggle between the two quantities but increase to above 10% for bone using stopping power ratios. Conclusion: MC predicts target doses for head and neck cancer patients in close agreement with TG43. MC yields improved dose estimations outside the target where a larger fraction of dose is from scattered photons. It is important with awareness and a clear reporting of absorbed dose values in using model based algorithms. Differences in bone media can exceed 10% depending on how dose to water in medium is defined.« less

  11. Assessment of the Maximal Split-Half Coefficient to Estimate Reliability

    ERIC Educational Resources Information Center

    Thompson, Barry L.; Green, Samuel B.; Yang, Yanyun

    2010-01-01

    The maximal split-half coefficient is computed by calculating all possible split-half reliability estimates for a scale and then choosing the maximal value as the reliability estimate. Osburn compared the maximal split-half coefficient with 10 other internal consistency estimates of reliability and concluded that it yielded the most consistently…

  12. Reconstruction of paediatric organ doses from axial CT scans performed in the 1990s - range of doses as input to uncertainty estimates.

    PubMed

    Olerud, Hilde M; Toft, Benthe; Flatabø, Silje; Jahnen, Andreas; Lee, Choonsik; Thierry-Chef, Isabelle

    2016-09-01

    To assess the range of doses in paediatric CT scans conducted in the 1990s in Norway as input to an international epidemiology study: the EPI-CT study, http://epi-ct.iarc.fr/ . National Cancer Institute dosimetry system for Computed Tomography (NCICT) program based on pre-calculated organ dose conversion coefficients was used to convert CT Dose Index to organ doses in paediatric CT in the 1990s. Protocols reported from local hospitals in a previous Norwegian CT survey were used as input, presuming these were used without optimization for paediatric patients. Large variations in doses between different scanner models and local scan parameter settings are demonstrated. Small children will receive a factor of 2-3 times higher doses compared with adults if the protocols are not optimized for them. For common CT examinations, the doses to the active bone marrow, breast tissue and brain may have exceeded 30 mGy, 60 mGy and 100 mGy respectively, for the youngest children in the 1990s. The doses children received from non-optimised CT examinations during the 1990s are of such magnitude that they may provide statistically significant effects in the EPI-CT study, but probably do not reflect current practice. • Some organ doses from paediatric CT in the 1990s may have exceeded 100 mGy. • Small children may have received doses 2-3 times higher compared with adults. • Different scanner models varied by a factor of 2-3 in dose to patients. • Different local scan parameter settings gave dose variations of a factor 2-3. • Modern CTs and age-adjusted protocols will give much lower paediatric doses.

  13. Aspects of operational radiation protection during dismantling of nuclear facilities relevant for the estimation of internal doses.

    PubMed

    Labarta, T

    2007-01-01

    Operational radiation protection of workers during the dismantling of nuclear facilities is based on the same radiation protection principles as that applied in its exploitation period with the objective of ensuring proper implementation of the as-low-as-reasonably-achievable (ALARA) principle. These principles are: prior determination of the nature and magnitude of radiological risk; classification of workplaces and workers depending on the risks; implementation of control measures; monitoring of zones and working conditions, including, if necessary, individual monitoring. From the experiences and the lessons learned during the dismantling processes carried out in Spain, several important aspects in the practical implementation of these principles that directly influence and ensure an adequate prevention of exposures and the estimation of internal doses are pointed out, with special emphasis on the estimation of internal doses due to transuranic intakes.

  14. Occupational radiation dose to eyes from endoscopic retrograde cholangiopancreatography procedures in light of the revised eye lens dose limit from the International Commission on Radiological Protection.

    PubMed

    O'Connor, U; Gallagher, A; Malone, L; O'Reilly, G

    2013-02-01

    Endoscopic retrograde cholangiopancreatography (ERCP) is a common procedure that combines the use of X-ray fluoroscopy and endoscopy for examination of the bile duct. Published data on ERCP doses are limited, including staff eye dose from ERCP. Occupational eye doses are of particular interest now as the International Commission on Radiological Protection (ICRP) has recommended a reduction in the dose limit to the lens of the eye. The aim of this study was to measure occupational eye doses obtained from ERCP procedures. A new eye lens dosemeter (EYE-D(™), Radcard, Krakow, Poland) was used to measure the ERCP eye dose, H(p)(3), at two endoscopy departments in Ireland. A review of radiation protection practice at the two facilities was also carried out. The mean equivalent dose to the lens of the eye of a gastroenterologist is 0.01 mSv per ERCP procedure with an undercouch X-ray tube and 0.09 mSv per ERCP procedure with an overcouch X-ray tube. Staff eye dose normalised to patient kerma area product is also presented. Staff eye doses in ERCP have the potential to exceed the revised ICRP limit of 20 mSv per annum when an overcouch X-ray tube is used. The EYE-D dosemeter was found to be a convenient method for measuring lens dose. Eye doses in areas outside of radiology departments should be kept under review, particularly in light of the new ICRP eye dose limit. Occupational eye lens doses from ERCP procedures have been established using a new commercially available dedicated H(p)(3) dosemeter.

  15. Model-derived dose rates per unit concentration of radon in air in a generic plant geometry.

    PubMed

    Vives i Batlle, J; Smith, A; Vives-Lynch, S; Copplestone, D; Pröhl, G; Strand, T

    2011-11-01

    A model for the derivation of dose rates per unit radon concentration in plants was developed in line with the activities of a Task Group of the International Commission on Radiological Protection (ICRP), aimed at developing more realistic dosimetry for non-human biota. The model considers interception of the unattached and attached fractions of the airborne radon daughters by plant stomata, diffusion of radon gas through stomata, permeation through the plant's epidermis and translocation of deposited activity to plant interior. The endpoint of the model is the derivation of dose conversion coefficients relative to radon gas concentration at ground level. The model predicts that the main contributor to dose is deposition of (214)Po α-activity on the plant surface and that diffusion of radon daughters through the stomata is of relatively minor importance; hence, daily variations have a small effect on total dose.

  16. The Concentration Of Tritium In Urine And Internal Radiation Dose Estimation Of PTNBR Radiation Workers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tjahaja, Poppy Intan; Sukmabuana, Putu; Aisyah, Neneng Nur

    2010-12-23

    The operation of Triga 2000 reactor in Nuclear Technology Center for Materials and Radiometry (PTNBR BATAN) normally produce tritium radionuclide which is the activation product of deuterium atom in reactor primary cooling water. According to previous monitoring, tritium was detected with the concentration of 8.236{+-}0.677 kBq/L and 1.704{+-}0.046 Bq/L in the primary cooling water and in reactor hall air, respectively. The tritium in reactor hall air chronically can be inhaled by the workers. In this research, tritium content in radiation workers' urine was determined to estimate the internal radiation doses received by the workers. About 50-100 mL of urine samplesmore » were collected from 48 PTNBR workers that is classified as 24 radiation workers and 24 administration staffs as a control. Urine samples of 25 mL were then prepared by active charcoal and KMnO{sub 4} addition and followed with complete distillation. The 2 mL of distillate was added with 13 mL scintillator, shaked vigorously and remained in cool and dark condition for about 24 hours. The tritium in the samples was then measured using liquid scintillation counter (LSC) for 1 hour. From the measurement results it was obtained that the tritium concentration in the urine of radiation workers were in the range of not detected and 5.191 Bq/mL, whereas in the administration staffs the concentration were between not detected and 4.607 Bq/mL. Internally radiation doses were calculated using the tritium concentration data, and it was found the averages about 0.602 {mu}Sv/year and 0.532 {mu}Sv/year for radiation workers and administration staffs, respectively. The doses received by the workers were lower than that of the permissible doses from tritium, i.e. 40 {mu}Sv/year.« less

  17. Method for the prediction of the effective dose equivalent to the crew of the International Space Station

    NASA Astrophysics Data System (ADS)

    El-Jaby, Samy; Tomi, Leena; Sihver, Lembit; Sato, Tatsuhiko; Richardson, Richard B.; Lewis, Brent J.

    2014-03-01

    This paper describes a methodology for assessing the pre-mission exposure of space crew aboard the International Space Station (ISS) in terms of an effective dose equivalent. In this approach, the PHITS Monte Carlo code was used to assess the particle transport of galactic cosmic radiation (GCR) and trapped radiation for solar maximum and minimum conditions through an aluminum shield thickness. From these predicted spectra, and using fluence-to-dose conversion factors, a scaling ratio of the effective dose equivalent rate to the ICRU ambient dose equivalent rate at a 10 mm depth was determined. Only contributions from secondary neutrons, protons, and alpha particles were considered in this analysis. Measurements made with a tissue equivalent proportional counter (TEPC) located at Service Module panel 327, as captured through a semi-empirical correlation in the ISSCREM code, where then scaled using this conversion factor for prediction of the effective dose equivalent. This analysis shows that at this location within the service module, the total effective dose equivalent is 10-30% less than the total TEPC dose equivalent. Approximately 75-85% of the effective dose equivalent is derived from the GCR. This methodology provides an opportunity for pre-flight predictions of the effective dose equivalent and therefore offers a means to assess the health risks of radiation exposure on ISS flight crew.

  18. Comparison of conversion coefficients for equivalent dose in terms of air kerma for photons using a male adult voxel simulator in sitting and standing posture with geometry of irradiation antero-posterior

    NASA Astrophysics Data System (ADS)

    Galeano, D. C.; Cavalcante, F. R.; Carvalho, A. B.; Hunt, J.

    2014-02-01

    The dose conversion coefficient (DCC) is important to quantify and assess effective doses associated with medical, professional and public exposures. The calculation of DCCs using anthropomorphic simulators and radiation transport codes is justified since in-vivo measurement of effective dose is extremely difficult and not practical for occupational dosimetry. DCCs have been published by the ICRP using simulators in a standing posture, which is not always applicable to all exposure scenarios, providing an inaccurate dose estimation. The aim of this work was to calculate DCCs for equivalent dose in terms of air kerma (H/Kair) using the Visual Monte Carlo (VMC) code and the VOXTISS8 adult male voxel simulator in sitting and standing postures. In both postures, the simulator was irradiated by a plane source of monoenergetic photons in antero-posterior (AP) geometry. The photon energy ranged from 15 keV to 2 MeV. The DCCs for both postures were compared and the DCCs for the standing simulator were higher. For certain organs, the difference of DCCs were more significant, as in gonads (48% higher), bladder (16% higher) and colon (11% higher). As these organs are positioned in the abdominal region, the posture of the anthropomorphic simulator modifies the form in which the radiation is transported and how the energy is deposited. It was also noted that the average percentage difference of conversion coefficients was 33% for the bone marrow, 11% for the skin, 13% for the bone surface and 31% for the muscle. For other organs, the percentage difference of the DCCs for both postures was not relevant (less than 5%) due to no anatomical changes in the organs of the head, chest and upper abdomen. We can conclude that is important to obtain DCCs using different postures from those present in the scientific literature.

  19. Experimental research on friction coefficient between grain bulk and bamboo clappers

    NASA Astrophysics Data System (ADS)

    Tang, Gan; Sun, Ping; Zhao, Yanqi; Yin, Lingfeng; Zhuang, Hong

    2017-12-01

    A silo is an important piece of storage equipment, especially in the grain industry. The internal friction angle and the friction coefficient between the grain and the silo wall are the main parameters needed for calculating the lateral pressure of the silo wall. Bamboo is used in silo walls, but there are no provisions about the friction coefficient between bulk grain and bamboo clappers in existing codes. In this paper, the material of the silo wall is bamboo. The internal friction of five types of grain and the friction coefficient between the grain and the bamboo clappers were measured with an equal-strain direct shear apparatus. By comparing the experimental result values with the code values, the friction coefficient between the grain bulk and bamboo clappers is lower than that between grain and steel wall and that between grain and concrete wall. The differences in value are 0.21 and 0.09, respectively.

  20. Cytogenetic damage analysis in mice chronically exposed to low-dose internal tritium beta-particle radiation.

    PubMed

    Roch-Lefèvre, Sandrine; Grégoire, Eric; Martin-Bodiot, Cécile; Flegal, Matthew; Fréneau, Amélie; Blimkie, Melinda; Bannister, Laura; Wyatt, Heather; Barquinero, Joan-Francesc; Roy, Laurence; Benadjaoud, Mohamed; Priest, Nick; Jourdain, Jean-René; Klokov, Dmitry

    2018-06-08

    The aim of this study was to carry out a comprehensive examination of potential genotoxic effects of low doses of tritium delivered chronically to mice and to compare these effects to the ones resulting from equivalent doses of gamma-irradiation. Mice were chronically exposed for one or eight months to either tritiated water (HTO) or organically bound tritium (OBT) in drinking water at concentrations of 10 kBq/L, 1 MBq/L or 20 MBq/L. Dose rates of internal β-particle resulting from such tritium treatments were calculated and matching external gamma-exposures were carried out. We measured cytogenetic damage in bone marrow and in peripheral blood lymphocytes (PBLs) and the cumulative tritium doses (0.009 - 181 mGy) were used to evaluate the dose-response of OBT in PBLs, as well as its relative biological effectiveness (RBE). Neither tritium, nor gamma exposures produced genotoxic effects in bone marrow. However, significant increases in chromosome damage rates in PBLs were found as a result of chronic OBT exposures at 1 and 20 M Bq/L, but not at 10 kBq/L. When compared to an external acute gamma-exposure ex vivo , the RBE of OBT for chromosome aberrations induction was evaluated to be significantly higher than 1 at cumulative tritium doses below 10 mGy. Although found non-existent at 10 kBq/L (the WHO limit), the genotoxic potential of low doses of tritium (>10 kBq/L), mainly OBT, may be higher than currently assumed.

  1. NOTE: Clinical application of a OneDose™ MOSFET for skin dose measurements during internal mammary chain irradiation with high dose rate brachytherapy in carcinoma of the breast

    NASA Astrophysics Data System (ADS)

    Kinhikar, Rajesh A.; Sharma, Pramod K.; Tambe, Chandrashekhar M.; Mahantshetty, Umesh M.; Sarin, Rajiv; Deshpande, Deepak D.; Shrivastava, Shyam K.

    2006-07-01

    In our earlier study, we experimentally evaluated the characteristics of a newly designed metal oxide semiconductor field effect transistor (MOSFET) OneDose™ in-vivo dosimetry system for Ir-192 (380 keV) energy and the results were compared with thermoluminescent dosimeters (TLDs). We have now extended the same study to the clinical application of this MOSFET as an in-vivo dosimetry system. The MOSFET was used during high dose rate brachytherapy (HDRBT) of internal mammary chain (IMC) irradiation for a carcinoma of the breast. The aim of this study was to measure the skin dose during IMC irradiation with a MOSFET and a TLD and compare it with the calculated dose with a treatment planning system (TPS). The skin dose was measured for ten patients. All the patients' treatment was planned on a PLATO treatment planning system. TLD measurements were performed to compare the accuracy of the measured results from the MOSFET. The mean doses measured with the MOSFET and the TLD were identical (0.5392 Gy, 15.85% of the prescribed dose). The mean dose was overestimated by the TPS and was 0.5923 Gy (17.42% of the prescribed dose). The TPS overestimated the skin dose by 9% as verified by the MOSFET and TLD. The MOSFET provides adequate in-vivo dosimetry for HDRBT. Immediate readout after irradiation, small size, permanent storage of dose and ease of use make the MOSFET a viable alternative for TLDs.

  2. Calculated organ doses for Mayak production association central hall using ICRP and MCNP.

    PubMed

    Choe, Dong-Ok; Shelkey, Brenda N; Wilde, Justin L; Walk, Heidi A; Slaughter, David M

    2003-03-01

    As part of an ongoing dose reconstruction project, equivalent organ dose rates from photons and neutrons were estimated using the energy spectra measured in the central hall above the graphite reactor core located in the Russian Mayak Production Association facility. Reconstruction of the work environment was necessary due to the lack of personal dosimeter data for neutrons in the time period prior to 1987. A typical worker scenario for the central hall was developed for the Monte Carlo Neutron Photon-4B (MCNP) code. The resultant equivalent dose rates for neutrons and photons were compared with the equivalent dose rates derived from calculations using the conversion coefficients in the International Commission on Radiological Protection Publications 51 and 74 in order to validate the model scenario for this Russian facility. The MCNP results were in good agreement with the results of the ICRP publications indicating the modeling scenario was consistent with actual work conditions given the spectra provided. The MCNP code will allow for additional orientations to accurately reflect source locations.

  3. Exposure versus internal dose: Respiratory tract deposition modeling of inhaled asbestos fibers in rats and humans (Presentation Poster)

    EPA Science Inventory

    Exposure to asbestos is associated with respiratory diseases, including asbestosis, lung cancer and mesothelioma. Internal fiber dose depends on fiber inhalability and orientation, fiber density, length and width, and various deposition mechanisms (DM). Species-specific param...

  4. Impact of Internal Metallic Ports in Temporary Tissue Expanders on Postmastectomy Radiation Dose Distribution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Susie A.; Ogunleye, Tomiwa; Dhabbaan, Anees

    Purpose: Temporary tissue expanders (TTE) with an internal magnetic metal port (IMP) have been increasingly used for breast reconstruction in post-mastectomy patients who receive radiation therapy (XRT). We evaluated XRT plans of patients with IMP to determine its effect on XRT dose distribution. Methods and Materials: Original treatment plans with CT simulation scans of 24 consecutive patients who received XRT (ORI), planned without heterogeneity corrections, to a reconstructed breast containing an IMP were used. Two additional treatment plans were then generated: one treatment plan with the IMP assigned the electron density of the rare earth magnet, nickel plated neodymium-iron-boron (HET),more » and a second treatment plan with the IMP assigned a CT value of 1 to simulate a homogeneous breast without an IMP (BRS). All plans were prescribed 50 Gy to the reconstructed breast (CTV). Results: CTV coverage by 50 Gy was significantly lower in the HET (mean 87.7% CTV) than in either the ORI (mean 99.7% CTV, P<.001) or BRS plans (mean 95.0% CTV, P<.001). The effect of the port was more pronounced on CT slices containing the IMP with prescription dose coverage of the CTV being less in the HET than in either ORI (mean difference 33.6%, P<.01) or BRS plans (mean difference 30.1%, P<.001). HET had a less homogeneous and conformal dose distribution than BRS or ORI. Conclusion: IMPs increase dose heterogeneity and reduce dose to the breast CTV through attenuation of the beam. For optimal XRT treatment, heterogeneity corrections should be used in XRT planning for patients with TTE with IMP, as the IMP impacts dose distribution.« less

  5. SU-E-T-56: A Novel Approach to Computing Expected Value and Variance of Point Dose From Non-Gated Radiotherapy Delivery

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhou, S; Zhu, X; Zhang, M

    Purpose: Randomness in patient internal organ motion phase at the beginning of non-gated radiotherapy delivery may introduce uncertainty to dose received by the patient. Concerns of this dose deviation from the planned one has motivated many researchers to study this phenomenon although unified theoretical framework for computing it is still missing. This study was conducted to develop such framework for analyzing the effect. Methods: Two reasonable assumptions were made: a) patient internal organ motion is stationary and periodic; b) no special arrangement is made to start a non -gated radiotherapy delivery at any specific phase of patient internal organ motion.more » A statistical ensemble was formed consisting of patient’s non-gated radiotherapy deliveries at all equally possible initial organ motion phases. To characterize the patient received dose, statistical ensemble average method is employed to derive formulae for two variables: expected value and variance of dose received by a patient internal point from a non-gated radiotherapy delivery. Fourier Series was utilized to facilitate our analysis. Results: According to our formulae, the two variables can be computed from non-gated radiotherapy generated dose rate time sequences at the point’s corresponding locations on fixed phase 3D CT images sampled evenly in time over one patient internal organ motion period. The expected value of point dose is simply the average of the doses to the point’s corresponding locations on the fixed phase CT images. The variance can be determined by time integration in terms of Fourier Series coefficients of the dose rate time sequences on the same fixed phase 3D CT images. Conclusion: Given a non-gated radiotherapy delivery plan and patient’s 4D CT study, our novel approach can predict the expected value and variance of patient radiation dose. We expect it to play a significant role in determining both quality and robustness of patient non-gated radiotherapy plan.« less

  6. NCICT: a computational solution to estimate organ doses for pediatric and adult patients undergoing CT scans.

    PubMed

    Lee, Choonsik; Kim, Kwang Pyo; Bolch, Wesley E; Moroz, Brian E; Folio, Les

    2015-12-01

    We developed computational methods and tools to assess organ doses for pediatric and adult patients undergoing computed tomography (CT) examinations. We used the International Commission on Radiological Protection (ICRP) reference pediatric and adult phantoms combined with the Monte Carlo simulation of a reference CT scanner to establish comprehensive organ dose coefficients (DC), organ absorbed dose per unit volumetric CT Dose Index (CTDIvol) (mGy/mGy). We also developed methods to estimate organ doses with tube current modulation techniques and size specific dose estimates. A graphical user interface was designed to obtain user input of patient- and scan-specific parameters, and to calculate and display organ doses. A batch calculation routine was also integrated into the program to automatically calculate organ doses for a large number of patients. We entitled the computer program, National Cancer Institute dosimetry system for CT(NCICT). We compared our dose coefficients with those from CT-Expo, and evaluated the performance of our program using CT patient data. Our pediatric DCs show good agreements of organ dose estimation with those from CT-Expo except for thyroid. Our results support that the adult phantom in CT-Expo seems to represent a pediatric individual between 10 and 15 years rather than an adult. The comparison of CTDIvol values between NCICT and dose pages from 10 selected CT scans shows good agreements less than 12% except for two cases (up to 20%). The organ dose comparison between mean and modulated mAs shows that mean mAs-based calculation significantly overestimates dose (up to 2.4-fold) to the organs in close proximity to lungs in chest and chest-abdomen-pelvis scans. Our program provides more realistic anatomy based on the ICRP reference phantoms, higher age resolution, the most up-to-date bone marrow dosimetry, and several convenient features compared to previous tools. The NCICT will be available for research purpose in the near future.

  7. Evaluation of various approaches for assessing dose indicators and patient organ doses resulting from radiotherapy cone-beam CT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rampado, Osvaldo, E-mail: orampado@cittadellasalute.to.it; Giglioli, Francesca Romana; Rossetti, Veronica

    Purpose: The aim of this study was to evaluate various approaches for assessing patient organ doses resulting from radiotherapy cone-beam CT (CBCT), by the use of thermoluminescent dosimeter (TLD) measurements in anthropomorphic phantoms, a Monte Carlo based dose calculation software, and different dose indicators as presently defined. Methods: Dose evaluations were performed on a CBCT Elekta XVI (Elekta, Crawley, UK) for different protocols and anatomical regions. The first part of the study focuses on using PCXMC software (PCXMC 2.0, STUK, Helsinki, Finland) for calculating organ doses, adapting the input parameters to simulate the exposure geometry, and beam dose distribution inmore » an appropriate way. The calculated doses were compared to readouts of TLDs placed in an anthropomorphic Rando phantom. After this validation, the software was used for analyzing organ dose variability associated with patients’ differences in size and gender. At the same time, various dose indicators were evaluated: kerma area product (KAP), cumulative air-kerma at the isocenter (K{sub air}), cone-beam dose index, and central cumulative dose. The latter was evaluated in a single phantom and in a stack of three adjacent computed tomography dose index phantoms. Based on the different dose indicators, a set of coefficients was calculated to estimate organ doses for a range of patient morphologies, using their equivalent diameters. Results: Maximum organ doses were about 1 mGy for head and neck and 25 mGy for chest and pelvis protocols. The differences between PCXMC and TLDs doses were generally below 10% for organs within the field of view and approximately 15% for organs at the boundaries of the radiation beam. When considering patient size and gender variability, differences in organ doses up to 40% were observed especially in the pelvic region; for the organs in the thorax, the maximum differences ranged between 20% and 30%. Phantom dose indexes provided better correlation with

  8. Is Coefficient Alpha Robust to Non-Normal Data?

    PubMed Central

    Sheng, Yanyan; Sheng, Zhaohui

    2011-01-01

    Coefficient alpha has been a widely used measure by which internal consistency reliability is assessed. In addition to essential tau-equivalence and uncorrelated errors, normality has been noted as another important assumption for alpha. Earlier work on evaluating this assumption considered either exclusively non-normal error score distributions, or limited conditions. In view of this and the availability of advanced methods for generating univariate non-normal data, Monte Carlo simulations were conducted to show that non-normal distributions for true or error scores do create problems for using alpha to estimate the internal consistency reliability. The sample coefficient alpha is affected by leptokurtic true score distributions, or skewed and/or kurtotic error score distributions. Increased sample sizes, not test lengths, help improve the accuracy, bias, or precision of using it with non-normal data. PMID:22363306

  9. INDOS: conversational computer codes to implement ICRP-10-10A models for estimation of internal radiation dose to man

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Killough, G.G.; Rohwer, P.S.

    1974-03-01

    INDOS1, INDOS2, and INDOS3 (the INDOS codes) are conversational FORTRAN IV programs, implemented for use in time-sharing mode on the ORNL PDP-10 System. These codes use ICRP10-10A models to estimate the radiation dose to an organ of the body of Reference Man resulting from the ingestion or inhalation of any one of various radionuclides. Two patterns of intake are simulated: intakes at discrete times and continuous intake at a constant rate. The IND0S codes provide tabular output of dose rate and dose vs time, graphical output of dose vs time, and punched-card output of organ burden and dose vs time.more » The models of internal dose calculation are discussed and instructions for the use of the INDOS codes are provided. The INDOS codes are available from the Radiation Shielding Information Center, Oak Ridge National Laboratory, P. O. Box X, Oak Ridge, Tennessee 37830. (auth)« less

  10. IDACstar: A MCNP Application to Perform Realistic Dose Estimations from Internal or External Contamination of Radiopharmaceuticals.

    PubMed

    Ören, Ünal; Hiller, Mauritius; Andersson, M

    2017-04-28

    A Monte Carlo-based stand-alone program, IDACstar (Internal Dose Assessment by Computer), was developed, dedicated to perform radiation dose calculations using complex voxel simulations. To test the program, two irradiation situations were simulated, one hypothetical contamination case with 600 MBq of 99mTc and one extravasation case involving 370 MBq of 18F-FDG. The effective dose was estimated to be 0.042 mSv for the contamination case and 4.5 mSv for the extravasation case. IDACstar has demonstrated that dosimetry results from contamination or extravasation cases can be acquired with great ease. An effective tool for radiation protection applications is provided with IDACstar allowing physicists at nuclear medicine departments to easily quantify the radiation risk of stochastic effects when a radiation accident has occurred. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  11. Differential pencil beam dose computation model for photons.

    PubMed

    Mohan, R; Chui, C; Lidofsky, L

    1986-01-01

    Differential pencil beam (DPB) is defined as the dose distribution relative to the position of the first collision, per unit collision density, for a monoenergetic pencil beam of photons in an infinite homogeneous medium of unit density. We have generated DPB dose distribution tables for a number of photon energies in water using the Monte Carlo method. The three-dimensional (3D) nature of the transport of photons and electrons is automatically incorporated in DPB dose distributions. Dose is computed by evaluating 3D integrals of DPB dose. The DPB dose computation model has been applied to calculate dose distributions for 60Co and accelerator beams. Calculations for the latter are performed using energy spectra generated with the Monte Carlo program. To predict dose distributions near the beam boundaries defined by the collimation system as well as blocks, we utilize the angular distribution of incident photons. Inhomogeneities are taken into account by attenuating the primary photon fluence exponentially utilizing the average total linear attenuation coefficient of intervening tissue, by multiplying photon fluence by the linear attenuation coefficient to yield the number of collisions in the scattering volume, and by scaling the path between the scattering volume element and the computation point by an effective density.

  12. Assessment of the current internal dose due to 137Cs and 90Sr for people living within the Semipalatinsk Test Site, Kazakhstan.

    PubMed

    Semiochkina, N; Voigt, G; Mukusheva, M; Bruk, G; Travnikova, I; Strand, P

    2004-02-01

    The Semipalatinsk Test Site in Kazakhstan was one of the major sites used by the USSR for testing nuclear weapons for more than 40 y. Since the early 1990's, responsibility for the site has passed to the Kazakh authorities. There has been a gradual re-establishment of agricultural use such as horse and sheep farming. Therefore, it has become important to evaluate the current and future risk to people living on and using the contaminated area. Internal dose assessment is one of the main components of the total dose when deriving risk factors for population living within the test site. Internal doses based on food monitoring and whole body measurements were calculated for adults and are in the range of 13-500 microSv y(-1) due to radiocesium and radiostrontium.

  13. Pediatric chest and abdominopelvic CT: organ dose estimation based on 42 patient models.

    PubMed

    Tian, Xiaoyu; Li, Xiang; Segars, W Paul; Paulson, Erik K; Frush, Donald P; Samei, Ehsan

    2014-02-01

    To estimate organ dose from pediatric chest and abdominopelvic computed tomography (CT) examinations and evaluate the dependency of organ dose coefficients on patient size and CT scanner models. The institutional review board approved this HIPAA-compliant study and did not require informed patient consent. A validated Monte Carlo program was used to perform simulations in 42 pediatric patient models (age range, 0-16 years; weight range, 2-80 kg; 24 boys, 18 girls). Multidetector CT scanners were modeled on those from two commercial manufacturers (LightSpeed VCT, GE Healthcare, Waukesha, Wis; SOMATOM Definition Flash, Siemens Healthcare, Forchheim, Germany). Organ doses were estimated for each patient model for routine chest and abdominopelvic examinations and were normalized by volume CT dose index (CTDI(vol)). The relationships between CTDI(vol)-normalized organ dose coefficients and average patient diameters were evaluated across scanner models. For organs within the image coverage, CTDI(vol)-normalized organ dose coefficients largely showed a strong exponential relationship with the average patient diameter (R(2) > 0.9). The average percentage differences between the two scanner models were generally within 10%. For distributed organs and organs on the periphery of or outside the image coverage, the differences were generally larger (average, 3%-32%) mainly because of the effect of overranging. It is feasible to estimate patient-specific organ dose for a given examination with the knowledge of patient size and the CTDI(vol). These CTDI(vol)-normalized organ dose coefficients enable one to readily estimate patient-specific organ dose for pediatric patients in clinical settings. This dose information, and, as appropriate, attendant risk estimations, can provide more substantive information for the individual patient for both clinical and research applications and can yield more expansive information on dose profiles across patient populations within a practice.

  14. Pediatric Chest and Abdominopelvic CT: Organ Dose Estimation Based on 42 Patient Models

    PubMed Central

    Tian, Xiaoyu; Li, Xiang; Segars, W. Paul; Paulson, Erik K.; Frush, Donald P.

    2014-01-01

    Purpose To estimate organ dose from pediatric chest and abdominopelvic computed tomography (CT) examinations and evaluate the dependency of organ dose coefficients on patient size and CT scanner models. Materials and Methods The institutional review board approved this HIPAA–compliant study and did not require informed patient consent. A validated Monte Carlo program was used to perform simulations in 42 pediatric patient models (age range, 0–16 years; weight range, 2–80 kg; 24 boys, 18 girls). Multidetector CT scanners were modeled on those from two commercial manufacturers (LightSpeed VCT, GE Healthcare, Waukesha, Wis; SOMATOM Definition Flash, Siemens Healthcare, Forchheim, Germany). Organ doses were estimated for each patient model for routine chest and abdominopelvic examinations and were normalized by volume CT dose index (CTDIvol). The relationships between CTDIvol-normalized organ dose coefficients and average patient diameters were evaluated across scanner models. Results For organs within the image coverage, CTDIvol-normalized organ dose coefficients largely showed a strong exponential relationship with the average patient diameter (R2 > 0.9). The average percentage differences between the two scanner models were generally within 10%. For distributed organs and organs on the periphery of or outside the image coverage, the differences were generally larger (average, 3%–32%) mainly because of the effect of overranging. Conclusion It is feasible to estimate patient-specific organ dose for a given examination with the knowledge of patient size and the CTDIvol. These CTDIvol-normalized organ dose coefficients enable one to readily estimate patient-specific organ dose for pediatric patients in clinical settings. This dose information, and, as appropriate, attendant risk estimations, can provide more substantive information for the individual patient for both clinical and research applications and can yield more expansive information on dose profiles

  15. Health risk assessment of haloacetonitriles in drinking water based on internal dose.

    PubMed

    Zhang, Ying; Han, Xuemei; Niu, Zhiguang

    2018-05-01

    To estimate the health risk of haloacetonitriles in different kinds of drinking water, the concentrations of haloacetonitriles in tap water, boiled water and direct drinking water were detected. The physiologically based pharmacokinetic (PBPK) model was used to calculate internal dose in the human body for haloacetonitriles through ingestion, and the probability distributions of the non-carcinogenic risk of haloacetonitriles for human via drinking water were assessed. This study found that the mean concentrations of dichloroacetonitrile (DCAN) in tap water, boiled water and direct drinking water were 0.955 μg/L, 0.207 μg/L and 0.127 μg/L, and those of dibromoacetonitrile (DBAN) were 0.221 μg/L, 0.104 μg/L, 0.089 μg/L, respectively. In China, direct drinking water is used most frequently, so the concentrations of haloacetonitriles in direct drinking water were used to obtain data on the internal dose of haloacetonitriles. In addition, the simulation results for the PBPK model showed that the highest and lowest concentrations of DCAN occurred in the liver and venous blood, respectively. The peak concentrations of DBAN in each tissue were in the decreasing order liver > rapidly perfused tissue > kidney > slowly perfused tissues > fat > arterial blood (venous blood). In addition, the highest 95th percentile hazard quotients (HQ) value of haloacetonitriles via drinking water for humans was 8.89 × 10 -3 , much lower than 1. The 95th percentile hazard index (HI) was 0.046, which was also lower than 1, suggesting that there was no obvious non-carcinogenic risk. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Development of probabilistic internal dosimetry computer code

    NASA Astrophysics Data System (ADS)

    Noh, Siwan; Kwon, Tae-Eun; Lee, Jai-Ki

    2017-02-01

    Internal radiation dose assessment involves biokinetic models, the corresponding parameters, measured data, and many assumptions. Every component considered in the internal dose assessment has its own uncertainty, which is propagated in the intake activity and internal dose estimates. For research or scientific purposes, and for retrospective dose reconstruction for accident scenarios occurring in workplaces having a large quantity of unsealed radionuclides, such as nuclear power plants, nuclear fuel cycle facilities, and facilities in which nuclear medicine is practiced, a quantitative uncertainty assessment of the internal dose is often required. However, no calculation tools or computer codes that incorporate all the relevant processes and their corresponding uncertainties, i.e., from the measured data to the committed dose, are available. Thus, the objective of the present study is to develop an integrated probabilistic internal-dose-assessment computer code. First, the uncertainty components in internal dosimetry are identified, and quantitative uncertainty data are collected. Then, an uncertainty database is established for each component. In order to propagate these uncertainties in an internal dose assessment, a probabilistic internal-dose-assessment system that employs the Bayesian and Monte Carlo methods. Based on the developed system, we developed a probabilistic internal-dose-assessment code by using MATLAB so as to estimate the dose distributions from the measured data with uncertainty. Using the developed code, we calculated the internal dose distribution and statistical values ( e.g. the 2.5th, 5th, median, 95th, and 97.5th percentiles) for three sample scenarios. On the basis of the distributions, we performed a sensitivity analysis to determine the influence of each component on the resulting dose in order to identify the major component of the uncertainty in a bioassay. The results of this study can be applied to various situations. In cases of

  17. Awareness and knowledge among internal medicine house-staff for dose adjustment of commonly used medications in patients with CKD.

    PubMed

    Surana, Sikander; Kumar, Neeru; Vasudeva, Amita; Shaikh, Gulvahid; Jhaveri, Kenar D; Shah, Hitesh; Malieckal, Deepa; Fogel, Joshua; Sidhu, Gurwinder; Rubinstein, Sofia

    2017-01-17

    Drug dosing errors result in adverse patient outcomes and are more common in patients with chronic kidney disease (CKD). As internists treat the majority of patients with CKD, we study if Internal Medicine house-staff have awareness and knowledge about the correct dosage of commonly used medications for those with CKD. A cross-sectional survey was performed and included 341 participants. The outcomes were the awareness of whether a medication needs dose adjustment in patients with CKD and whether there was knowledge for the level of glomerular filtration rate (GFR) a medication needs to be adjusted. The overall pattern for all post-graduate year (PGY) groups in all medication classes was a lack of awareness and knowledge. For awareness, there were statistically significant increased mean differences for PGY2 and PGY3 as compared to PGY1 for allergy, endocrine, gastrointestinal, and rheumatologic medication classes but not for analgesic, cardiovascular, and neuropsychotropic medication classes. For knowledge, there were statistically significant increased mean differences for PGY2 and PGY3 as compared to PGY1 for allergy, cardiovascular, endocrine, and gastrointestinal, medication classes but not for analgesic, neuropsychotropic, and rheumatologic medication classes. Internal Medicine house-staff across all levels of training demonstrated poor awareness and knowledge for many medication classes in CKD patients. Internal Medicine house-staff should receive more nephrology exposure and formal didactic educational training during residency to better manage complex treatment regimens and prevent medication dosing errors.

  18. Medical imaging dose optimisation from ground up: expert opinion of an international summit.

    PubMed

    Samei, Ehsan; Järvinen, Hannu; Kortesniemi, Mika; Simantirakis, George; Goh, Charles; Wallace, Anthony; Vano, Eliseo; Bejan, Adrian; Rehani, Madan; Vassileva, Jenia

    2018-05-17

    As in any medical intervention, there is either a known or an anticipated benefit to the patient from undergoing a medical imaging procedure. This benefit is generally significant, as demonstrated by the manner in which medical imaging has transformed clinical medicine. At the same time, when it comes to imaging that deploys ionising radiation, there is a potential associated risk from radiation. Radiation risk has been recognised as a key liability in the practice of medical imaging, creating a motivation for radiation dose optimisation. The level of radiation dose and risk in imaging varies but is generally low. Thus, from the epidemiological perspective, this makes the estimation of the precise level of associated risk highly uncertain. However, in spite of the low magnitude and high uncertainty of this risk, its possibility cannot easily be refuted. Therefore, given the moral obligation of healthcare providers, 'first, do no harm,' there is an ethical obligation to mitigate this risk. Precisely how to achieve this goal scientifically and practically within a coherent system has been an open question. To address this need, in 2016, the International Atomic Energy Agency (IAEA) organised a summit to clarify the role of Diagnostic Reference Levels to optimise imaging dose, summarised into an initial report (Järvinen et al 2017 Journal of Medical Imaging 4 031214). Through a consensus building exercise, the summit further concluded that the imaging optimisation goal goes beyond dose alone, and should include image quality as a means to include both the benefit and the safety of the exam. The present, second report details the deliberation of the summit on imaging optimisation.

  19. A conversion method of air kerma from the primary, scatter, and leakage radiations to effective dose for calculating x-ray shielding barriers in mammography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kharrati, Hedi

    2005-05-01

    In this study, a new approach has been introduced for derivation of the effective dose from air kerma to calculate shielding requirements in mammography facilities. This new approach has been used to compute the conversion coefficients relating air kerma to the effective dose for the mammography reference beam series of the Netherlands Metrology Institute Van Swinden Laboratorium, National Institute of Standards and Technology, and International Atomic Energy Agency laboratories. The results show that, in all cases, the effective dose in mammography energy range is less than 25% of the incident air kerma for the primary and the scatter radiations andmore » does not exceed 75% for the leakage radiation.« less

  20. Method of predicting the mean lung dose based on a patient's anatomy and dose-volume histograms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zawadzka, Anna, E-mail: a.zawadzka@zfm.coi.pl; Nesteruk, Marta; Department of Radiation Oncology, University Hospital Zurich and University of Zurich, Zurich

    The aim of this study was to propose a method to predict the minimum achievable mean lung dose (MLD) and corresponding dosimetric parameters for organs-at-risk (OAR) based on individual patient anatomy. For each patient, the dose for 36 equidistant individual multileaf collimator shaped fields in the treatment planning system (TPS) was calculated. Based on these dose matrices, the MLD for each patient was predicted by the homemade DosePredictor software in which the solution of linear equations was implemented. The software prediction results were validated based on 3D conformal radiotherapy (3D-CRT) and volumetric modulated arc therapy (VMAT) plans previously prepared formore » 16 patients with stage III non–small-cell lung cancer (NSCLC). For each patient, dosimetric parameters derived from plans and the results calculated by DosePredictor were compared. The MLD, the maximum dose to the spinal cord (D{sub max} {sub cord}) and the mean esophageal dose (MED) were analyzed. There was a strong correlation between the MLD calculated by the DosePredictor and those obtained in treatment plans regardless of the technique used. The correlation coefficient was 0.96 for both 3D-CRT and VMAT techniques. In a similar manner, MED correlations of 0.98 and 0.96 were obtained for 3D-CRT and VMAT plans, respectively. The maximum dose to the spinal cord was not predicted very well. The correlation coefficient was 0.30 and 0.61 for 3D-CRT and VMAT, respectively. The presented method allows us to predict the minimum MLD and corresponding dosimetric parameters to OARs without the necessity of plan preparation. The method can serve as a guide during the treatment planning process, for example, as initial constraints in VMAT optimization. It allows the probability of lung pneumonitis to be predicted.« less

  1. Accuracy assessment of pharmacogenetically predictive warfarin dosing algorithms in patients of an academic medical center anticoagulation clinic.

    PubMed

    Shaw, Paul B; Donovan, Jennifer L; Tran, Maichi T; Lemon, Stephenie C; Burgwinkle, Pamela; Gore, Joel

    2010-08-01

    The objectives of this retrospective cohort study are to evaluate the accuracy of pharmacogenetic warfarin dosing algorithms in predicting therapeutic dose and to determine if this degree of accuracy warrants the routine use of genotyping to prospectively dose patients newly started on warfarin. Seventy-one patients of an outpatient anticoagulation clinic at an academic medical center who were age 18 years or older on a stable, therapeutic warfarin dose with international normalized ratio (INR) goal between 2.0 and 3.0, and cytochrome P450 isoenzyme 2C9 (CYP2C9) and vitamin K epoxide reductase complex subunit 1 (VKORC1) genotypes available between January 1, 2007 and September 30, 2008 were included. Six pharmacogenetic warfarin dosing algorithms were identified from the medical literature. Additionally, a 5 mg fixed dose approach was evaluated. Three algorithms, Zhu et al. (Clin Chem 53:1199-1205, 2007), Gage et al. (J Clin Ther 84:326-331, 2008), and International Warfarin Pharmacogenetic Consortium (IWPC) (N Engl J Med 360:753-764, 2009) were similar in the primary accuracy endpoints with mean absolute error (MAE) ranging from 1.7 to 1.8 mg/day and coefficient of determination R (2) from 0.61 to 0.66. However, the Zhu et al. algorithm severely over-predicted dose (defined as >or=2x or >or=2 mg/day more than actual dose) in twice as many (14 vs. 7%) patients as Gage et al. 2008 and IWPC 2009. In conclusion, the algorithms published by Gage et al. 2008 and the IWPC 2009 were the two most accurate pharmacogenetically based equations available in the medical literature in predicting therapeutic warfarin dose in our study population. However, the degree of accuracy demonstrated does not support the routine use of genotyping to prospectively dose all patients newly started on warfarin.

  2. Effect of Gold Nanoparticles on Prostate Dose Distribution under Ir-192 Internal and 18 MV External Radiotherapy Procedures Using Gel Dosimetry and Monte Carlo Method.

    PubMed

    Khosravi, H; Hashemi, B; Mahdavi, S R; Hejazi, P

    2015-03-01

    Gel polymers are considered as new dosimeters for determining radiotherapy dose distribution in three dimensions. The ability of a new formulation of MAGIC-f polymer gel was assessed by experimental measurement and Monte Carlo (MC) method for studying the effect of gold nanoparticles (GNPs) in prostate dose distributions under the internal Ir-192 and external 18MV radiotherapy practices. A Plexiglas phantom was made representing human pelvis. The GNP shaving 15 nm in diameter and 0.1 mM concentration were synthesized using chemical reduction method. Then, a new formulation of MAGIC-f gel was synthesized. The fabricated gel was poured in the tubes located at the prostate (with and without the GNPs) and bladder locations of the phantom. The phantom was irradiated to an Ir-192 source and 18 MV beam of a Varian linac separately based on common radiotherapy procedures used for prostate cancer. After 24 hours, the irradiated gels were read using a Siemens 1.5 Tesla MRI scanner. The absolute doses at the reference points and isodose curves resulted from the experimental measurement of the gels and MC simulations following the internal and external radiotherapy practices were compared. The mean absorbed doses measured with the gel in the presence of the GNPs in prostate were 15% and 8 % higher than the corresponding values without the GNPs under the internal and external radiation therapies, respectively. MC simulations also indicated a dose increase of 14 % and 7 % due to presence of the GNPs, for the same experimental internal and external radiotherapy practices, respectively. There was a good agreement between the dose enhancement factors (DEFs) estimated with MC simulations and experiment gel measurements due to the GNPs. The results indicated that the polymer gel dosimetry method as developed and used in this study, can be recommended as a reliable method for investigating the DEF of GNPs in internal and external radiotherapy practices.

  3. Estimation of patient radiation dose from whole body 18F- FDG PET/CT examination in cancer imaging: a preliminary study

    NASA Astrophysics Data System (ADS)

    Mahmud, M. H.; Nordin, A. J.; Saad, F. F. Ahmad; Fattah Azman, A. Z.

    2014-11-01

    This study aims to estimate the radiation effective dose resulting from whole body fluorine-18 flourodeoxyglucose Positron Emission Tomography (18F-FDG PET) scanning as compared to conservative Computed Tomography (CT) techniques in evaluating oncology patients. We reviewed 19 oncology patients who underwent 18F-FDG PET/CT at our centre for cancer staging. Internal and external doses were estimated using radioactivity of injected FDG and volume CT Dose Index (CTDIvol), respectively with employment of the published and modified dose coefficients. The median differences of dose among the conservative CT and PET protocols were determined using Kruskal Wallis test with p < 0.05 considered as significant. The median (interquartile range, IQR) effective doses of non-contrasted CT, contrasted CT and PET scanning protocols were 7.50 (9.35) mSv, 9.76 (3.67) mSv and 6.30 (1.20) mSv, respectively, resulting in the total dose of 21.46 (8.58) mSv. Statistically significant difference was observed in the median effective dose between the three protocols (p < 0.01). The effective doses of whole body 18F-FDG PET technique may be effective the lowest amongst the conventional CT imaging techniques.

  4. INTERNAL RADIATION DOSE MEASUREMENTS IN LIVE EXPERIMENTAL ANIMALS. PART II

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nold, M.M.; Hayes, R.L.; Comar, C.L.

    1960-12-01

    Silver phosphate glass dosimeter rods were implanted in various portions of the digestive tract and the radiation dose was measured after ingestion of a known amount of Y/sup 90/. It was found that a state of diarrhea reduced the average radiation dose by a factor of from 2 to 4. In the constipated animal the dose was increased by a factor of from 3 to 7. Investigation was made to determine the role of various processes governing the radiation dose delivered to gastrointestinal mucosa. The total dose to a particular site along the intestinal tract was obtained by determination ofmore » the time integral of the radioactive concentration. Serial sacrifices were made at specific times after administration of the radioactivity. Calculations in this manner agreed exceptionally well with the doses that were measured by the glass dosimeter method. It is estimated that 4 and 17 - c of Y/sup 90/ for the dog and goat, respectively, will deliver a 300mrad dose to the critical organ, the lower large intestine. The twelve-fold average difference in dose between the diarrhea and constipation groups of dogs emphasizes the importance of the physical state of bowel passages upon the dose delivered to the critical organ. (auth)« less

  5. Techniques For Measuring Absorption Coefficients In Crystalline Materials

    NASA Astrophysics Data System (ADS)

    Klein, Philipp H.

    1981-10-01

    Absorption coefficients smaller than 0.001 cm-1 can, with more or less difficulty, be measured by several techniques. With diligence, all methods can be refined to permit measurement of absorption coefficients as small as 0.00001 cm-1. Spectral data are most readily obtained by transmission (spectrophotometric) methods, using multiple internal reflection to increase effective sample length. Emissivity measurements, requiring extreme care in the elimination of detector noise and stray light, nevertheless afford the most accessible spectral data in the 0.0001 to 0.00001 cm-1 range. Single-wavelength informa-tion is most readily obtained with modifications of laser calorimetry. Thermo-couple detection of energy absorbed from a laser beam is convenient, but involves dc amplification techniques and is susceptible to stray-light problems. Photoacoustic detection, using ac methods, tends to diminish errors of these types, but at some expense in experimental complexity. Laser calorimetry has been used for measurements of absorption coefficients as small as 0.000003 cm-1. Both transmission and calorimetric data, taken as functions of intensity, have been used for measurement of nonlinear absorption coefficients.

  6. Internal dose assessment of 210Po using biokinetic modeling and urinary excretion measurement.

    PubMed

    Li, Wei Bo; Gerstmann, Udo; Giussani, Augusto; Oeh, Uwe; Paretzke, Herwig G

    2008-02-01

    The mysterious death of Mr. Alexander Litvinenko who was most possibly poisoned by Polonium-210 ((210)Po) in November 2006 in London attracted the attention of the public to the kinetics, dosimetry and the risk of this high radiotoxic isotope in the human body. In the present paper, the urinary excretion of seven persons who were possibly exposed to traces of (210)Po was monitored. The values measured in the GSF Radioanalytical Laboratory are in the range of natural background concentration. To assess the effective dose received by those persons, the time-dependence of the organ equivalent dose and the effective dose after acute ingestion and inhalation of (210)Po were calculated using the biokinetic model for polonium (Po) recommended by the International Commission on Radiological Protection (ICRP) and the one recently published by Leggett and Eckerman (L&E). The daily urinary excretion to effective dose conversion factors for ingestion and inhalation were evaluated based on the ICRP and L&E models for members of the public. The ingestion (inhalation) effective dose per unit intake integrated over one day is 1.7 x 10(-8) (1.4 x 10(-7)) Sv Bq(-1), 2.0 x 10(-7) (9.6 x 10(-7)) Sv Bq(-1) over 10 days, 5.2 x 10(-7) (2.0 x 10(-6)) Sv Bq(-1) over 30 days and 1.0 x 10(-6) (3.0 x 10(-6)) Sv Bq(-1) over 100 days. The daily urinary excretions after acute ingestion (inhalation) of 1 Bq of (210)Po are 1.1 x 10(-3) (1.0 x 10(-4)) on day 1, 2.0 x 10(-3) (1.9 x 10(-4)) on day 10, 1.3 x 10(-3) (1.7 x 10(-4)) on day 30 and 3.6 x 10(-4) (8.3 x 10(-5)) Bq d(-1) on day 100, respectively. The resulting committed effective doses range from 2.1 x 10(-3) to 1.7 x 10(-2) mSv by an assumption of ingestion and from 5.5 x 10(-2) to 4.5 x 10(-1) mSv by inhalation. For the case of Mr. Litvinenko, the mean organ absorbed dose as a function of time was calculated using both the above stated models. The red bone marrow, the kidneys and the liver were considered as the critical organs. Assuming a

  7. Analytic posteriors for Pearson's correlation coefficient.

    PubMed

    Ly, Alexander; Marsman, Maarten; Wagenmakers, Eric-Jan

    2018-02-01

    Pearson's correlation is one of the most common measures of linear dependence. Recently, Bernardo (11th International Workshop on Objective Bayes Methodology, 2015) introduced a flexible class of priors to study this measure in a Bayesian setting. For this large class of priors, we show that the (marginal) posterior for Pearson's correlation coefficient and all of the posterior moments are analytic. Our results are available in the open-source software package JASP.

  8. Ladtap XL Version 2017: A Spreadsheet For Estimating Dose Resulting From Aqueous Releases

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Minter, K.; Jannik, T.

    LADTAP XL© is an EXCEL© spreadsheet used to estimate dose to offsite individuals and populations resulting from routine and accidental releases of radioactive materials to the Savannah River. LADTAP XL© contains two worksheets: LADTAP and IRRIDOSE. The LADTAP worksheet estimates dose for environmental pathways including external exposure resulting from recreational activities on the Savannah River and internal exposure resulting from ingestion of water, fish, and invertebrates originating from the Savannah River. IRRIDOSE estimates offsite dose to individuals and populations from irrigation of foodstuffs with contaminated water from the Savannah River. In 2004, a complete description of the LADTAP XL© codemore » and an associated user’s manual was documented in LADTAP XL©: A Spreadsheet for Estimating Dose Resulting from Aqueous Release (WSRC-TR-2004-00059) and revised input parameters, dose coefficients, and radionuclide decay constants were incorporated into LADTAP XL© Version 2013 (SRNL-STI-2011-00238). LADTAP XL© Version 2017 is a slight modification to Version 2013 with minor changes made for more user-friendly parameter inputs and organization, updates in the time conversion factors used within the dose calculations, and fixed an issue with the expected time build-up parameter referenced within the population shoreline dose calculations. This manual has been produced to update the code description, verification of the models, and provide an updated user’s manual. LADTAP XL© Version 2017 has been verified by Minter (2017) and is ready for use at the Savannah River Site (SRS).« less

  9. Fetal and maternal dose assessment for diagnostic scans during pregnancy

    NASA Astrophysics Data System (ADS)

    Rafat Motavalli, Laleh; Miri Hakimabad, Hashem; Hoseinian Azghadi, Elie

    2016-05-01

    Despite the concerns about prenatal exposure to ionizing radiation, the number of nuclear medicine examinations performed for pregnant women increased in the past decade. This study attempts to better quantify radiation doses due to diagnostic nuclear medicine procedures during pregnancy with the help of our recently developed 3, 6, and 9 month pregnant hybrid phantoms. The reference pregnant models represent the adult female international commission on radiological protection (ICRP) reference phantom as a base template with a fetus in her gravid uterus. Six diagnostic scintigraphy scans using different radiopharmaceuticals were selected as typical diagnostic nuclear medicine procedures. Furthermore, the biokinetic data of radioiodine was updated in this study. A compartment representing iodide in fetal thyroid was addressed explicitly in the biokinetic model. Calculations were performed using the Monte Carlo transport method. Tabulated dose coefficients for both maternal and fetal organs are provided. The comparison was made with the previously published fetal doses calculated for stylized pregnant female phantoms. In general, the fetal dose in previous studies suffers from an underestimation of up to 100% compared to fetal dose at organ level in this study. A maximum of difference in dose was observed for the fetal thyroid compared to the previous studies, in which the traditional models did not contain the fetal thyroid. Cumulated activities of major source organs are primarily responsible for the discrepancies in the organ doses. The differences in fetal dose depend on several other factors including chord length distribution between fetal organs and maternal major source organs, and anatomical differences according to gestation periods. Finally, considering the results of this study, which was based on the realistic pregnant female phantoms, a more informed evaluation of the risks and benefits of the different procedures could be made.

  10. Structure coefficients for different initial metallicities for use in stellar analysis

    NASA Astrophysics Data System (ADS)

    Inlek, Gulay; Budding, Edwin; Demircan, Osman

    2017-09-01

    Internal structure coefficients for zero age Main Sequence (ZAMS) model stars with different initial metallicities are presented. A series of (Eggleton) stellar models with masses between 1-40 M_{⊙} and metallicities Z=0.0001, Z=0.001, Z=0.004, Z=0.01, Z=0.02, and Z=0.03 were used. We have also calculated the same coefficients for a recommended solar metallicity value Z=0.0134 (Asplund et al. in Annu. Rev. Astron. Astrophys. 47:481, 2009). For each model, values of the internal structure constants k2, k3, k4 and related coefficients have been derived by numerically integrating Radau's equation with the (FORTRAN) program RADAU. The (Eggleton) stellar models used come from the ` EZ-Web' compilation of the Dept. of Astronomy, University of Wisconsin, Madison. The calculations follow the procedure given by Inlek and Budding (Astrophys. Space Sci. 342:365, 2012). These new results were compared with others in the literature. We deduce that the current state of theoretical evaluation of structure coefficients is generally in sufficient agreement with data obtained from apsidal advance rates of selected well-observed eccentric eclipsing binary stars at the present time, given the probable errors of the latter. However, new results coming from more precise and extensive data sets in the wake of the Kepler Mission, or similar future surveys, may call for further theoretical specification or refinement. The derivation of structure coefficients from observations of apsidal motion in close eccentric binary systems requires specification of relevant parameters from light curve analysis. A self-consistent treatment then implies inclusion of the structure coefficients within the fitting function of such analysis.

  11. Measurement of micronuclei and internal dose in mice demonstrates that 3-monochloropropane-1,2-diol (3-MCPD) has no genotoxic potency in vivo.

    PubMed

    Aasa, Jenny; Törnqvist, Margareta; Abramsson-Zetterberg, Lilianne

    2017-11-01

    In this study 3-monochloropropane-1,2-diol (3-MCPD), a compound that appears as contaminant in refined cooking oils, has been studied with regard to genotoxicity in vivo (mice) with simultaneous measurement of internal dose using state-of-the-art methodologies. Genotoxicity (chromosomal aberrations) was measured by flow cytometry with dual lasers as the frequency of micronuclei in erythrocytes in peripheral blood from BalbC mice intraperitoneally exposed to 3-MCPD (0, 50, 75, 100, 125 mg/kg). The internal doses of 3-MCPD in the mice were calculated from N-(2,3-dihydroxypropyl)-valine adducts to hemoglobin (Hb), quantified at very low levels by high-resolution mass spectrometry. Convincing evidence for absence of genotoxic potency in correlation to measured internal doses in the mice was demonstrated, despite relatively high administered doses of 3-MCPD. The results are discussed in relation to another food contaminant that is formed as ester in parallel to 3-MCPD esters in oil processing, i.e. glycidol, which has been studied previously by us in a similar experimental setup. Glycidol has been shown to be genotoxic, and in addition to have ca. 1000 times higher rate of adduct formation compared to that observed for 3-MCPD. The conclusion is that at simultaneous exposure to 3-MCPD and glycidol the concern about genotoxicity would be glycidol. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Drug-Induced Nephrotoxicity and Dose Adjustment Recommendations: Agreement Among Four Drug Information Sources.

    PubMed

    Bicalho, Millena Drumond; Soares, Danielly Botelho; Botoni, Fernando Antonio; Reis, Adriano Max Moreira; Martins, Maria Auxiliadora Parreiras

    2015-09-09

    : Hospitalized patients require the use of a variety of drugs, many of which individually or in combination have the potential to cause kidney damage. The use of potentially nephrotoxic drugs is often unavoidable, and the need for dose adjustment should be evaluated. This study is aimed at assessing concordance in information on drug-induced nephrotoxicity and dose adjustment recommendations by comparing four drug information sources (DRUGDEX(®), UpToDate(®), Medscape(®) and the Brazilian Therapeutic Formulary) using the formulary of a Brazilian public hospital. A total of 218 drugs were investigated. The global Fleiss' kappa coefficient was 0.265 for nephrotoxicity (p < 0.001; CI 95%, 0.211-0.319) and 0.346 for recommendations (p < 0.001; CI 95%, 0.292-0.401), indicating fair concordance among the sources. Anti-infectives and anti-hypertensives were the main drugs cited as nephrotoxic by the different sources. There were no clear definitions for qualitative data or quantitative values for dose adjustments among the four information sources. There was no advice for dosing for a large number of the drugs in the international databases. The National Therapeutic Formulary offered imprecise dose adjustment recommendations for many nephrotoxic drugs. Discrepancies among information sources may have a clinical impact on patient care and contribute to drug-related morbidity and mortality.

  13. Classification of radiation effects for dose limitation purposes: history, current situation and future prospects

    PubMed Central

    Hamada, Nobuyuki; Fujimichi, Yuki

    2014-01-01

    Radiation exposure causes cancer and non-cancer health effects, each of which differs greatly in the shape of the dose–response curve, latency, persistency, recurrence, curability, fatality and impact on quality of life. In recent decades, for dose limitation purposes, the International Commission on Radiological Protection has divided such diverse effects into tissue reactions (formerly termed non-stochastic and deterministic effects) and stochastic effects. On the one hand, effective dose limits aim to reduce the risks of stochastic effects (cancer/heritable effects) and are based on the detriment-adjusted nominal risk coefficients, assuming a linear-non-threshold dose response and a dose and dose rate effectiveness factor of 2. On the other hand, equivalent dose limits aim to avoid tissue reactions (vision-impairing cataracts and cosmetically unacceptable non-cancer skin changes) and are based on a threshold dose. However, the boundary between these two categories is becoming vague. Thus, we review the changes in radiation effect classification, dose limitation concepts, and the definition of detriment and threshold. Then, the current situation is overviewed focusing on (i) stochastic effects with a threshold, (ii) tissue reactions without a threshold, (iii) target organs/tissues for circulatory disease, (iv) dose levels for limitation of cancer risks vs prevention of non-life-threatening tissue reactions vs prevention of life-threatening tissue reactions, (v) mortality or incidence of thyroid cancer, and (vi) the detriment for tissue reactions. For future discussion, one approach is suggested that classifies radiation effects according to whether effects are life threatening, and radiobiological research needs are also briefly discussed. PMID:24794798

  14. Superficial dose evaluation of four dose calculation algorithms

    NASA Astrophysics Data System (ADS)

    Cao, Ying; Yang, Xiaoyu; Yang, Zhen; Qiu, Xiaoping; Lv, Zhiping; Lei, Mingjun; Liu, Gui; Zhang, Zijian; Hu, Yongmei

    2017-08-01

    Accurate superficial dose calculation is of major importance because of the skin toxicity in radiotherapy, especially within the initial 2 mm depth being considered more clinically relevant. The aim of this study is to evaluate superficial dose calculation accuracy of four commonly used algorithms in commercially available treatment planning systems (TPS) by Monte Carlo (MC) simulation and film measurements. The superficial dose in a simple geometrical phantom with size of 30 cm×30 cm×30 cm was calculated by PBC (Pencil Beam Convolution), AAA (Analytical Anisotropic Algorithm), AXB (Acuros XB) in Eclipse system and CCC (Collapsed Cone Convolution) in Raystation system under the conditions of source to surface distance (SSD) of 100 cm and field size (FS) of 10×10 cm2. EGSnrc (BEAMnrc/DOSXYZnrc) program was performed to simulate the central axis dose distribution of Varian Trilogy accelerator, combined with measurements of superficial dose distribution by an extrapolation method of multilayer radiochromic films, to estimate the dose calculation accuracy of four algorithms in the superficial region which was recommended in detail by the ICRU (International Commission on Radiation Units and Measurement) and the ICRP (International Commission on Radiological Protection). In superficial region, good agreement was achieved between MC simulation and film extrapolation method, with the mean differences less than 1%, 2% and 5% for 0°, 30° and 60°, respectively. The relative skin dose errors were 0.84%, 1.88% and 3.90%; the mean dose discrepancies (0°, 30° and 60°) between each of four algorithms and MC simulation were (2.41±1.55%, 3.11±2.40%, and 1.53±1.05%), (3.09±3.00%, 3.10±3.01%, and 3.77±3.59%), (3.16±1.50%, 8.70±2.84%, and 18.20±4.10%) and (14.45±4.66%, 10.74±4.54%, and 3.34±3.26%) for AXB, CCC, AAA and PBC respectively. Monte Carlo simulation verified the feasibility of the superficial dose measurements by multilayer Gafchromic films. And the rank

  15. Calculation of conversion coefficients for clinical photon spectra using the MCNP code.

    PubMed

    Lima, M A F; Silva, A X; Crispim, V R

    2004-01-01

    In this work, the MCNP4B code has been employed to calculate conversion coefficients from air kerma to the ambient dose equivalent, H*(10)/Ka, for monoenergetic photon energies from 10 keV to 50 MeV, assuming the kerma approximation. Also estimated are the H*(10)/Ka for photon beams produced by linear accelerators, such as Clinac-4 and Clinac-2500, after transmission through primary barriers of radiotherapy treatment rooms. The results for the conversion coefficients for monoenergetic photon energies, with statistical uncertainty <2%, are compared with those in ICRP publication 74 and good agreements were obtained. The conversion coefficients calculated for real clinic spectra transmitted through walls of concrete of 1, 1.5 and 2 m thick, are in the range of 1.06-1.12 Sv Gy(-1).

  16. Fetus dose estimation in thyroid cancer post-surgical radioiodine therapy.

    PubMed

    Mianji, Fereidoun A; Diba, Jila Karimi; Babakhani, Asad

    2015-01-01

    Unrecognised pregnancy during radioisotope therapy of thyroid cancer results in hardly definable embryo/fetus exposures, particularly when the thyroid gland is already removed. Sources of such difficulty include uncertainty in data like pregnancy commencing time, amount and distribution of metastasized thyroid cells in body, effect of the thyroidectomy on the fetus dose coefficient etc. Despite all these uncertainties, estimation of the order of the fetus dose in most cases is enough for medical and legal decision-making purposes. A model for adapting the dose coefficients recommended by the well-known methods to the problem of fetus dose assessment in athyrotic patients is proposed. The model defines a correction factor for the problem and ensures that the fetus dose in athyrotic pregnant patients is less than the normal patients. A case of pregnant patient undergone post-surgical therapy by I-131 is then studied for quantitative comparison of the methods. The results draw a range for the fetus dose in athyrotic patients using the derived factor. This reduces the concerns on under- or over-estimation of the embryo/fetus dose and is helpful for personal and/or legal decision-making on abortion. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  17. Technical characterization of dialysis fluid flow and mass transfer rate in dialyzers with various filtration coefficients using dimensionless correlation equation.

    PubMed

    Fukuda, Makoto; Yoshimura, Kengo; Namekawa, Koki; Sakai, Kiyotaka

    2017-06-01

    The objective of the present study is to evaluate the effect of filtration coefficient and internal filtration on dialysis fluid flow and mass transfer coefficient in dialyzers using dimensionless mass transfer correlation equations. Aqueous solution of vitamin B 12 clearances were obtained for REXEED-15L as a low flux dialyzer, and APS-15EA and APS-15UA as high flux dialyzers. All the other design specifications were identical for these dialyzers except for filtration coefficient. The overall mass transfer coefficient was calculated, moreover, the exponents of Reynolds number (Re) and film mass transfer coefficient of the dialysis-side fluid (k D ) for each flow rate were derived from the Wilson plot and dimensionless correlation equation. The exponents of Re were 0.4 for the low flux dialyzer whereas 0.5 for the high flux dialyzers. Dialysis fluid of the low flux dialyzer was close to laminar flow because of its low filtration coefficient. On the other hand, dialysis fluid of the high flux dialyzers was assumed to be orthogonal flow. Higher filtration coefficient was associated with higher k D influenced by mass transfer rate through diffusion and internal filtration. Higher filtration coefficient of dialyzers and internal filtration affect orthogonal flow of dialysis fluid.

  18. Modeling of occupational exposure to accidentally released manufactured nanomaterials in a production facility and calculation of internal doses by inhalation

    PubMed Central

    Vaquero-Moralejo, Celina; Jaén, María; Lopez De Ipiña Peña, Jesús; Neofytou, Panagiotis

    2016-01-01

    Background Occupational exposure to manufactured nanomaterials (MNMs) and its potential health impacts are of scientific and practical interest, as previous epidemiological studies associate exposure to nanoparticles with health effects, including increased morbidity of the respiratory and the circulatory system. Objectives To estimate the occupational exposure and effective internal doses in a real production facility of TiO2 MNMs during hypothetical scenarios of accidental release. Methods Commercial software for geometry and mesh generation, as well as fluid flow and particle dispersion calculation, were used to estimate occupational exposure to MNMs. The results were introduced to in-house software to calculate internal doses in the human respiratory tract by inhalation. Results Depending on the accidental scenario, different areas of the production facility were affected by the released MNMs, with a higher dose exposure among individuals closer to the particles source. Conclusions Granted that the study of the accidental release of particles can only be performed by chance, this numerical approach provides valuable information regarding occupational exposure and contributes to better protection of personnel. The methodology can be used to identify occupational settings where the exposure to MNMs would be high during accidents, providing insight to health and safety officials. PMID:27670588

  19. Factor Scores, Structure Coefficients, and Communality Coefficients

    ERIC Educational Resources Information Center

    Goodwyn, Fara

    2012-01-01

    This paper presents heuristic explanations of factor scores, structure coefficients, and communality coefficients. Common misconceptions regarding these topics are clarified. In addition, (a) the regression (b) Bartlett, (c) Anderson-Rubin, and (d) Thompson methods for calculating factor scores are reviewed. Syntax necessary to execute all four…

  20. Psychometric Inferences from a Meta-Analysis of Reliability and Internal Consistency Coefficients

    ERIC Educational Resources Information Center

    Botella, Juan; Suero, Manuel; Gambara, Hilda

    2010-01-01

    A meta-analysis of the reliability of the scores from a specific test, also called reliability generalization, allows the quantitative synthesis of its properties from a set of studies. It is usually assumed that part of the variation in the reliability coefficients is due to some unknown and implicit mechanism that restricts and biases the…

  1. Emphysema quantification and lung volumetry in chest X-ray equivalent ultralow dose CT - Intra-individual comparison with standard dose CT.

    PubMed

    Messerli, Michael; Ottilinger, Thorsten; Warschkow, René; Leschka, Sebastian; Alkadhi, Hatem; Wildermuth, Simon; Bauer, Ralf W

    2017-06-01

    To determine whether ultralow dose chest CT with tin filtration can be used for emphysema quantification and lung volumetry and to assess differences in emphysema measurements and lung volume between standard dose and ultralow dose CT scans using advanced modeled iterative reconstruction (ADMIRE). 84 consecutive patients from a prospective, IRB-approved single-center study were included and underwent clinically indicated standard dose chest CT (1.7±0.6mSv) and additional single-energy ultralow dose CT (0.14±0.01mSv) at 100kV and fixed tube current at 70mAs with tin filtration in the same session. Forty of the 84 patients (48%) had no emphysema, 44 (52%) had emphysema. One radiologist performed fully automated software-based pulmonary emphysema quantification and lung volumetry of standard and ultralow dose CT with different levels of ADMIRE. Friedman test and Wilcoxon rank sum test were used for multiple comparison of emphysema and lung volume. Lung volumes were compared using the concordance correlation coefficient. The median low-attenuation areas (LAA) using filtered back projection (FBP) in standard dose was 4.4% and decreased to 2.6%, 2.1% and 1.8% using ADMIRE 3, 4, and 5, respectively. The median values of LAA in ultralow dose CT were 5.7%, 4.1% and 2.4% for ADMIRE 3, 4, and 5, respectively. There was no statistically significant difference between LAA in standard dose CT using FBP and ultralow dose using ADMIRE 4 (p=0.358) as well as in standard dose CT using ADMIRE 3 and ultralow dose using ADMIRE 5 (p=0.966). In comparison with standard dose FBP the concordance correlation coefficients of lung volumetry were 1.000, 0.999, and 0.999 for ADMIRE 3, 4, and 5 in standard dose, and 0.972 for ADMIRE 3, 4 and 5 in ultralow dose CT. Ultralow dose CT at chest X-ray equivalent dose levels allows for lung volumetry as well as detection and quantification of emphysema. However, longitudinal emphysema analyses should be performed with the same scan protocol and

  2. Monitoring the eye lens: which dose quantity is adequate?

    NASA Astrophysics Data System (ADS)

    Behrens, R.; Dietze, G.

    2010-07-01

    Recent epidemiological studies suggest a rather low dose threshold (below 0.5 Gy) for the induction of a cataract of the eye lens. Some other studies even assume that there is no threshold at all. Therefore, protection measures have to be optimized and current dose limits for the eye lens may be reduced in the future. The question of which personal dose equivalent quantity is appropriate for monitoring the dose to the eye lens arises from this situation. While in many countries dosemeters calibrated in terms of the dose equivalent quantity Hp(0.07) have been seen as being adequate for monitoring the dose to the eye lens, this might be questionable in the case of reduced dose limits and, thus, it may become necessary to use the dose equivalent quantity Hp(3) for this purpose. To discuss this question, the dose conversion coefficients for the equivalent dose of the eye lens (in the following eye lens dose) were determined for realistic photon and beta radiation fields and compared with the values of the corresponding conversion coefficients for the different operational quantities. The values obtained lead to the following conclusions: in radiation fields where most of the dose comes from photons, especially x-rays, it is appropriate to use dosemeters calibrated in terms of Hp(0.07) on a slab phantom, while in other radiation fields (dominated by beta radiation or unknown contributions of photon and beta radiation) dosemeters calibrated in terms of Hp(3) on a slab phantom should be used. As an alternative, dosemeters calibrated in terms of Hp(0.07) on a slab phantom could also be used; however, in radiation fields containing beta radiation with the end point energy near 1 MeV, an overestimation of the eye lens dose by up to a factor of 550 is possible.

  3. Monitoring the eye lens: which dose quantity is adequate?

    PubMed

    Behrens, R; Dietze, G

    2010-07-21

    Recent epidemiological studies suggest a rather low dose threshold (below 0.5 Gy) for the induction of a cataract of the eye lens. Some other studies even assume that there is no threshold at all. Therefore, protection measures have to be optimized and current dose limits for the eye lens may be reduced in the future. The question of which personal dose equivalent quantity is appropriate for monitoring the dose to the eye lens arises from this situation. While in many countries dosemeters calibrated in terms of the dose equivalent quantity H(p)(0.07) have been seen as being adequate for monitoring the dose to the eye lens, this might be questionable in the case of reduced dose limits and, thus, it may become necessary to use the dose equivalent quantity H(p)(3) for this purpose. To discuss this question, the dose conversion coefficients for the equivalent dose of the eye lens (in the following eye lens dose) were determined for realistic photon and beta radiation fields and compared with the values of the corresponding conversion coefficients for the different operational quantities. The values obtained lead to the following conclusions: in radiation fields where most of the dose comes from photons, especially x-rays, it is appropriate to use dosemeters calibrated in terms of H(p)(0.07) on a slab phantom, while in other radiation fields (dominated by beta radiation or unknown contributions of photon and beta radiation) dosemeters calibrated in terms of H(p)(3) on a slab phantom should be used. As an alternative, dosemeters calibrated in terms of H(p)(0.07) on a slab phantom could also be used; however, in radiation fields containing beta radiation with the end point energy near 1 MeV, an overestimation of the eye lens dose by up to a factor of 550 is possible.

  4. Hanford internal dosimetry program manual

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carbaugh, E.H.; Sula, M.J.; Bihl, D.E.

    1989-10-01

    This document describes the Hanford Internal Dosimetry program. Program Services include administrating the bioassay monitoring program, evaluating and documenting assessments of internal exposure and dose, ensuring that analytical laboratories conform to requirements, selecting and applying appropriate models and procedures for evaluating internal radionuclide deposition and the resulting dose, and technically guiding and supporting Hanford contractors in matters regarding internal dosimetry. 13 refs., 16 figs., 42 tabs.

  5. Measurement of 131I activity in air indoor Polish nuclear medical hospital as a tool for an internal dose assessment.

    PubMed

    Brudecki, K; Szczodry, A; Mróz, T; Kowalska, A; Mietelski, J W

    2018-03-01

    This paper presents results of 131 I air activity measurements performed within nuclear medical hospitals as a tool for internal dose assessment. The study was conducted at a place of preparation and administration of 131 I ("hot room") and at a nurse station. 131 I activity measurements were performed for 5 and 4 consecutive working days, at the "hot room" and nurse station, respectively. Iodine from the air was collected by a mobile HVS-30 aerosol sampler combined with a gas sampler. Both the gaseous and aerosol fractions were measurement. The activities in the gaseous fraction ranged from (28 ± 1 Bq m -3 ) to (492 ± 4) Bq m -3 . At both sampling sites, the activity of the gaseous iodine fraction trapped on activated charcoal was significantly higher than that of the aerosol fraction captured on Petrianov filter cloth. Based on these results, an attempt has been made to estimate annual inhalation effective doses, which were found to range from 0.47 mSv (nurse female) to 1.3 mSv (technician male). The highest annual inhalation equivalent doses have been found for thyroid as 32, 27, 13, and 11 mSv, respectively, for technician male, technical female, nurse male, and nurse female. The method presented here allows to fill the gaps in internal doses measurements. Moreover, because method has been successful used for many years in radioactive contamination monitoring of air in cases of serious nuclear accidents, it should also be used in nuclear medicine.

  6. Characterization of the ultrasonic attenuation coefficient and its frequency dependence in a polymer gel dosimeter.

    PubMed

    Crescenti, Remo A; Bamber, Jeffrey C; Partridge, Mike; Bush, Nigel L; Webb, Steve

    2007-11-21

    Research on polymer-gel dosimetry has been driven by the need for three-dimensional dosimetry, and because alternative dosimeters are unsatisfactory or too slow for that task. Magnetic resonance tomography is currently the most well-developed technique for determining radiation-induced changes in polymer structure, but quick low-cost alternatives remain of significant interest. In previous work, ultrasound attenuation and speed of sound were found to change as a function of absorbed radiation dose in polymer-gel dosimeters, although the investigations were restricted to one ultrasound frequency. Here, the ultrasound attenuation coefficient mu in one polymer gel (MAGIC) was investigated as a function of radiation dose D and as a function of ultrasonic frequency f in a frequency range relevant for imaging dose distributions. The nonlinearity of the frequency dependence was characterized, fitting a power-law model mu = af(b); the fitting parameters were examined for potential use as additional dose readout parameters. In the observed relationship between the attenuation coefficient and dose, the slopes in a quasi-linear dose range from 0 to 30 Gy were found to vary with the gel batch but lie between 0.0222 and 0.0348 dB cm(-1) Gy(-1) at 2.3 MHz, between 0.0447 and 0.0608 dB cm(-1) Gy(-1) at 4.1 MHz and between 0.0663 and 0.0880 dB cm(-1) Gy(-1) at 6.0 MHz. The mean standard deviation of the slope for all samples and frequencies was 15.8%. The slope was greater at higher frequencies, but so were the intra-batch fluctuations and intra-sample standard deviations. Further investigations are required to overcome the observed variability, which was largely associated with the sample preparation technique, before it can be determined whether any frequency is superior to others in terms of accuracy and precision in dose determination. Nevertheless, lower frequencies will allow measurements through larger samples. The fit parameter a of the frequency dependence, describing the

  7. Recent international regulations: low dose-low rate radiation protection and the demise of reason.

    PubMed

    Okkalides, Demetrios

    2008-01-01

    The radiation protection measures suggested by the International Committee for Radiation Protection (ICRP), national regulating bodies and experts, have been becoming ever more strict despite the decrease of any information supporting the existence of the Linear no Threshold model (LNT) and of any adverse effects of Low Dose Low Rate (LDLR) irradiation. This tendency arises from the disproportionate response of human society to hazards that are currently in fashion and is unreasonable. The 1 mSv/year dose limit for the public suggested by the ICRP corresponds to a 1/18,181 detriment-adjusted cancer risk and is much lower than other hazards that are faced by modern societies such as e.g. driving and smoking which carry corresponding rate risks of 1/2,100 and 1/2,000. Even worldwide deadly work accidents rate is higher at 1/ 8,065. Such excessive safety measures against minimal risks from man made radiation sources divert resources from very real and much greater hazards. In addition they undermine research and development of radiation technology and tend to subjugate science and the quest for understanding nature to phobic practices.

  8. VizieR Online Data Catalog: Rate coefficients for H2(v,j)+H2(v',j'

    NASA Astrophysics Data System (ADS)

    Mandy, M. E.

    2016-11-01

    State-specific rate coefficients for the dissociation of H2 result of collisions with H2 were calculated for all combinations of (v,j) with an internal energy below 1eV. Full-dimensional quasiclassical trajectories were calculated using the BMKP2 interaction potential with a minimum of 80000 trajectories at each translational energy. Additional large batches of trajectories were carried out to calculate the cross sections near the threshold to dissociation to attain the desired precision of the rate coefficients. A piecewise linear excitation function was used to calculate the rate coefficient between 100 and 100000K. The resulting state-specific rate coefficients, γ, were parametrized as a function of temperature over the range 600-10000K using: log10γ(t)=a+bz+cz2-d(1/t-1) where t=T/4500K and z=log10t. The values of the resulting rate coefficients were sensitive to the internal energy of both molecules, with initial vibrational energy having a slightly greater effect than rotational energy. This effect diminished as temperature increased. (15 data files).

  9. The use of spatial dose gradients and probability density function to evaluate the effect of internal organ motion for prostate IMRT treatment planning

    NASA Astrophysics Data System (ADS)

    Jiang, Runqing; Barnett, Rob B.; Chow, James C. L.; Chen, Jeff Z. Y.

    2007-03-01

    The aim of this study is to investigate the effects of internal organ motion on IMRT treatment planning of prostate patients using a spatial dose gradient and probability density function. Spatial dose distributions were generated from a Pinnacle3 planning system using a co-planar, five-field intensity modulated radiation therapy (IMRT) technique. Five plans were created for each patient using equally spaced beams but shifting the angular displacement of the beam by 15° increments. Dose profiles taken through the isocentre in anterior-posterior (A-P), right-left (R-L) and superior-inferior (S-I) directions for IMRT plans were analysed by exporting RTOG file data from Pinnacle. The convolution of the 'static' dose distribution D0(x, y, z) and probability density function (PDF), denoted as P(x, y, z), was used to analyse the combined effect of repositioning error and internal organ motion. Organ motion leads to an enlarged beam penumbra. The amount of percentage mean dose deviation (PMDD) depends on the dose gradient and organ motion probability density function. Organ motion dose sensitivity was defined by the rate of change in PMDD with standard deviation of motion PDF and was found to increase with the maximum dose gradient in anterior, posterior, left and right directions. Due to common inferior and superior field borders of the field segments, the sharpest dose gradient will occur in the inferior or both superior and inferior penumbrae. Thus, prostate motion in the S-I direction produces the highest dose difference. The PMDD is within 2.5% when standard deviation is less than 5 mm, but the PMDD is over 2.5% in the inferior direction when standard deviation is higher than 5 mm in the inferior direction. Verification of prostate organ motion in the inferior directions is essential. The margin of the planning target volume (PTV) significantly impacts on the confidence of tumour control probability (TCP) and level of normal tissue complication probability (NTCP

  10. The use of spatial dose gradients and probability density function to evaluate the effect of internal organ motion for prostate IMRT treatment planning.

    PubMed

    Jiang, Runqing; Barnett, Rob B; Chow, James C L; Chen, Jeff Z Y

    2007-03-07

    The aim of this study is to investigate the effects of internal organ motion on IMRT treatment planning of prostate patients using a spatial dose gradient and probability density function. Spatial dose distributions were generated from a Pinnacle3 planning system using a co-planar, five-field intensity modulated radiation therapy (IMRT) technique. Five plans were created for each patient using equally spaced beams but shifting the angular displacement of the beam by 15 degree increments. Dose profiles taken through the isocentre in anterior-posterior (A-P), right-left (R-L) and superior-inferior (S-I) directions for IMRT plans were analysed by exporting RTOG file data from Pinnacle. The convolution of the 'static' dose distribution D0(x, y, z) and probability density function (PDF), denoted as P(x, y, z), was used to analyse the combined effect of repositioning error and internal organ motion. Organ motion leads to an enlarged beam penumbra. The amount of percentage mean dose deviation (PMDD) depends on the dose gradient and organ motion probability density function. Organ motion dose sensitivity was defined by the rate of change in PMDD with standard deviation of motion PDF and was found to increase with the maximum dose gradient in anterior, posterior, left and right directions. Due to common inferior and superior field borders of the field segments, the sharpest dose gradient will occur in the inferior or both superior and inferior penumbrae. Thus, prostate motion in the S-I direction produces the highest dose difference. The PMDD is within 2.5% when standard deviation is less than 5 mm, but the PMDD is over 2.5% in the inferior direction when standard deviation is higher than 5 mm in the inferior direction. Verification of prostate organ motion in the inferior directions is essential. The margin of the planning target volume (PTV) significantly impacts on the confidence of tumour control probability (TCP) and level of normal tissue complication probability

  11. Long term neurocognitive impact of low dose prenatal methylmercury exposure in Hong Kong.

    PubMed

    Lam, Hugh Simon; Kwok, Ka Ming; Chan, Peggy Hiu Ying; So, Hung Kwan; Li, Albert Martin; Ng, Pak Cheung; Fok, Tai Fai

    2013-04-01

    International studies suggest that low dose prenatal methylmercury exposure (>29 nmol/L) has long-term adverse neurocognitive effects. There is evidence that the majority of children in Hong Kong exceed this level as a result of high fish consumption of mothers during pregnancy. To study whether there are any associations between low-dose prenatal methylmercury exposure and neurocognitive outcomes in Hong Kong children. All 1057 children from the original birth cohort were eligible for entry into the study, except children with conditions that would affect neurocognitive development, but were unrelated to methylmercury exposure. Subjects were assessed by a wide panel of tests covering a broad range of neurocognitive functions: Hong Kong Wechsler Intelligence Scale for Children (HK-WISC), Hong Kong List Learning Test (HKLLT), Tests of Everyday Attention for Children (TEACH), Boston Naming Test, and Grooved Pegboard Test. 608 subjects were recruited (median age 8.2 years, IQR 7.3, 8.8; 53.9% boys). After correction by confounders including child age and sex, multivariate analysis showed that cord blood mercury concentration was significantly associated with three subtests: Picture Arrangement of HK-WISC (coefficient -0.944, P=0.049) and Short and Long Delay Recall Difference of the HKLLT (coefficient -1.087, P=0.007 and coefficient -1.161, P=0.005, respectively), i.e., performance worsened with increasing prenatal methylmercury exposure in these subtests. Small, but statistically significant adverse associations between prenatal methylmercury exposure and long-term neurocognitive effects (a visual sequencing task and retention ability of verbal memory) were found in our study. These effects are compatible with findings of studies with higher prenatal methylmercury exposure levels and suggest that safe strategies to further reduce exposure levels in Hong Kong are desirable. Copyright © 2013 Elsevier Ltd. All rights reserved.

  12. The effect of dose heterogeneity on radiation risk in medical imaging.

    PubMed

    Samei, Ehsan; Li, Xiang; Chen, Baiyu; Reiman, Robert

    2013-06-01

    The current estimations of risk associated with medical imaging procedures rely on assessing the organ dose via direct measurements or simulation. The dose to each organ is assumed to be homogeneous. To take into account the differences in radiation sensitivities, the mean organ doses are weighted by a corresponding tissue-weighting coefficients provided by ICRP to calculate the effective dose, which has been used as a surrogate of radiation risk. However, those coefficients were derived under the assumption of a homogeneous dose distribution within each organ. That assumption is significantly violated in most medical-imaging procedures. In helical chest CT, for example, superficial organs (e.g. breasts) demonstrate a heterogeneous dose distribution, whereas organs on the peripheries of the irradiation field (e.g. liver) might possess a discontinuous dose profile. Projection radiography and mammography involve an even higher level of organ dose heterogeneity spanning up to two orders of magnitude. As such, mean dose or point measured dose values do not reflect the maximum energy deposited per unit volume of the organ. In this paper, the magnitude of the dose heterogeneity in both CT and projection X-ray imaging was reported, using Monte Carlo methods. The lung dose demonstrated factors of 1.7 and 2.2 difference between the mean and maximum dose for chest CT and radiography, respectively. The corresponding values for the liver were 1.9 and 3.5. For mammography and breast tomosynthesis, the difference between mean glandular dose and maximum glandular dose was 3.1. Risk models based on the mean dose were found to provide a reasonable reflection of cancer risk. However, for leukaemia, they were found to significantly under-represent the risk when the organ dose distribution is heterogeneous. A systematic study is needed to develop a risk model for heterogeneous dose distributions.

  13. Analytic expressions for ULF wave radiation belt radial diffusion coefficients

    PubMed Central

    Ozeke, Louis G; Mann, Ian R; Murphy, Kyle R; Jonathan Rae, I; Milling, David K

    2014-01-01

    We present analytic expressions for ULF wave-derived radiation belt radial diffusion coefficients, as a function of L and Kp, which can easily be incorporated into global radiation belt transport models. The diffusion coefficients are derived from statistical representations of ULF wave power, electric field power mapped from ground magnetometer data, and compressional magnetic field power from in situ measurements. We show that the overall electric and magnetic diffusion coefficients are to a good approximation both independent of energy. We present example 1-D radial diffusion results from simulations driven by CRRES-observed time-dependent energy spectra at the outer boundary, under the action of radial diffusion driven by the new ULF wave radial diffusion coefficients and with empirical chorus wave loss terms (as a function of energy, Kp and L). There is excellent agreement between the differential flux produced by the 1-D, Kp-driven, radial diffusion model and CRRES observations of differential electron flux at 0.976 MeV—even though the model does not include the effects of local internal acceleration sources. Our results highlight not only the importance of correct specification of radial diffusion coefficients for developing accurate models but also show significant promise for belt specification based on relatively simple models driven by solar wind parameters such as solar wind speed or geomagnetic indices such as Kp. Key Points Analytic expressions for the radial diffusion coefficients are presented The coefficients do not dependent on energy or wave m value The electric field diffusion coefficient dominates over the magnetic PMID:26167440

  14. Pulmonary disease in cystic fibrosis: assessment with chest CT at chest radiography dose levels.

    PubMed

    Ernst, Caroline W; Basten, Ines A; Ilsen, Bart; Buls, Nico; Van Gompel, Gert; De Wachter, Elke; Nieboer, Koenraad H; Verhelle, Filip; Malfroot, Anne; Coomans, Danny; De Maeseneer, Michel; de Mey, Johan

    2014-11-01

    To investigate a computed tomographic (CT) protocol with iterative reconstruction at conventional radiography dose levels for the assessment of structural lung abnormalities in patients with cystic fibrosis ( CF cystic fibrosis ). In this institutional review board-approved study, 38 patients with CF cystic fibrosis (age range, 6-58 years; 21 patients <18 years and 17 patients >18 years) underwent investigative CT (at minimal exposure settings combined with iterative reconstruction) as a replacement of yearly follow-up posteroanterior chest radiography. Verbal informed consent was obtained from all patients or their parents. CT images were randomized and rated independently by two radiologists with use of the Bhalla scoring system. In addition, mosaic perfusion was evaluated. As reference, the previous available conventional chest CT scan was used. Differences in Bhalla scores were assessed with the χ(2) test and intraclass correlation coefficients ( ICC intraclass correlation coefficient s). Radiation doses for CT and radiography were assessed for adults (>18 years) and children (<18 years) separately by using technical dose descriptors and estimated effective dose. Differences in dose were assessed with the Mann-Whitney U test. The median effective dose for the investigative protocol was 0.04 mSv (95% confidence interval [ CI confidence interval ]: 0.034 mSv, 0.10 mSv) for children and 0.05 mSv (95% CI confidence interval : 0.04 mSv, 0.08 mSv) for adults. These doses were much lower than those with conventional CT (median: 0.52 mSv [95% CI confidence interval : 0.31 mSv, 3.90 mSv] for children and 1.12 mSv [95% CI confidence interval : 0.57 mSv, 3.15 mSv] for adults) and of the same order of magnitude as those for conventional radiography (median: 0.012 mSv [95% CI confidence interval : 0.006 mSv, 0.022 mSv] for children and 0.012 mSv [95% CI confidence interval : 0.005 mSv, 0.031 mSv] for adults). All images were rated at least as diagnostically acceptable

  15. Awareness and Knowledge Among Internal Medicine Resident Trainees for Dose Adjustment of Analgesics and Neuropsychotropic Medications in CKD.

    PubMed

    Saad, Chadi Y; Fogel, Joshua; Rubinstein, Sofia

    2018-03-01

    Errors in drug dosing lead to poor patient outcomes and are common in patients with chronic kidney disease (CKD). Because the majority of patients with CKD are being treated by physicians specializing in internal medicine, we studied the awareness and knowledge that internal medicine resident trainees (IMRTs) have regarding the correct dosage of commonly used analgesic and neuropsychotropic medications for patients with CKD. We surveyed 353 IMRTs about their awareness of whether a medication needs dose adjustment in patients with CKD and knowledge for medication adjustment by level of glomerular filtration rate. There were high percentages for lack of awareness and knowledge. For analgesics, this lack of awareness/knowledge was highest for acetaminophen (awareness 83.0%, knowledge 90.9%). For neuropsychotropics, this was highest for paroxetine (awareness 74.5%, knowledge 91.5%). Analyses for postgraduate year (PGY) -1 trainees and PGY-2 trainees for analgesics showed higher odds for lack of awareness for tramadol (PGY-1 odds ratio [OR] 2.37, 95% confidence interval [CI] 1.2-4.62, P < 0.05; PGY-2 OR 2.34, 95% CI 1.16-4.72, P < 0.05) and for lack of knowledge for meperedine (PGY-1 OR 4.01, 95% CI 1.81-8.89, P < 0.05; PGY-2 OR 3.30, 95% CI 1.44-7.59, P < 0.05). Nephrology residency rotation for the neuropsychotropic medication of gabapentin showed lower odds for both lack of awareness (OR 0.56, 95% CI 0.32-0.97, P < 0.05) and knowledge (OR 0.52, 95% CI 0.27-0.997, P < 0.05). Awareness and knowledge are poor among IMRTs for dose adjustments of analgesics and neuropsychotropic medication classes in patients with CKD. There should be a renewed focus during IMRTs' residency on additional nephrology exposure and formal didactic educational training to help them better manage complex treatment regimens to prevent medication dosing errors.

  16. Internal dose assessment of 210Po using biokinetic modeling and urinary excretion measurement

    PubMed Central

    Gerstmann, Udo; Giussani, Augusto; Oeh, Uwe; Paretzke, Herwig G.

    2007-01-01

    The mysterious death of Mr. Alexander Litvinenko who was most possibly poisoned by Polonium-210 (210Po) in November 2006 in London attracted the attention of the public to the kinetics, dosimetry and the risk of this high radiotoxic isotope in the human body. In the present paper, the urinary excretion of seven persons who were possibly exposed to traces of 210Po was monitored. The values measured in the GSF Radioanalytical Laboratory are in the range of natural background concentration. To assess the effective dose received by those persons, the time-dependence of the organ equivalent dose and the effective dose after acute ingestion and inhalation of 210Po were calculated using the biokinetic model for polonium (Po) recommended by the International Commission on Radiological Protection (ICRP) and the one recently published by Leggett and Eckerman (L&E). The daily urinary excretion to effective dose conversion factors for ingestion and inhalation were evaluated based on the ICRP and L&E models for members of the public. The ingestion (inhalation) effective dose per unit intake integrated over one day is 1.7 × 10−8 (1.4 × 10−7) Sv Bq−1, 2.0 × 10−7 (9.6 × 10−7) Sv Bq−1 over 10 days, 5.2 × 10−7 (2.0 × 10−6) Sv Bq−1 over 30 days and 1.0 × 10−6 (3.0 × 10−6) Sv Bq−1 over 100 days. The daily urinary excretions after acute ingestion (inhalation) of 1 Bq of 210Po are 1.1 × 10−3 (1.0 × 10−4) on day 1, 2.0 × 10−3 (1.9 × 10−4) on day 10, 1.3 × 10−3 (1.7 × 10−4) on day 30 and 3.6 × 10−4 (8.3 × 10−5) Bq d−1 on day 100, respectively. The resulting committed effective doses range from 2.1 × 10−3 to 1.7 × 10−2 mSv by an assumption of ingestion and from 5.5 × 10−2 to 4.5 × 10−1 mSv by inhalation. For the case of Mr. Litvinenko, the mean organ absorbed dose as a function of time was calculated using both the above stated models. The red bone marrow, the

  17. Patient-specific dose estimation for pediatric abdomen-pelvis CT

    NASA Astrophysics Data System (ADS)

    Li, Xiang; Samei, Ehsan; Segars, W. Paul; Sturgeon, Gregory M.; Colsher, James G.; Frush, Donald P.

    2009-02-01

    The purpose of this study is to develop a method for estimating patient-specific dose from abdomen-pelvis CT examinations and to investigate dose variation across patients in the same weight group. Our study consisted of seven pediatric patients in the same weight/protocol group, for whom full-body computer models were previously created based on the patients' CT data obtained for clinical indications. Organ and effective dose of these patients from an abdomen-pelvis scan protocol (LightSpeed VCT scanner, 120-kVp, 85-90 mA, 0.4-s gantry rotation period, 1.375-pitch, 40-mm beam collimation, and small body scan field-of-view) was calculated using a Monte Carlo program previously developed and validated for the same CT system. The seven patients had effective dose of 2.4-2.8 mSv, corresponding to normalized effective dose of 6.6-8.3 mSv/100mAs (coefficient of variation: 7.6%). Dose variations across the patients were small for large organs in the scan coverage (mean: 6.6%; range: 4.9%-9.2%), larger for small organs in the scan coverage (mean: 10.3%; range: 1.4%-15.6%), and the largest for organs partially or completely outside the scan coverage (mean: 14.8%; range: 5.7%-27.7%). Normalized effective dose correlated strongly with body weight (correlation coefficient: r = -0.94). Normalized dose to the kidney and the adrenal gland correlated strongly with mid-liver equivalent diameter (kidney: r = -0.97; adrenal glands: r = -0.98). Normalized dose to the small intestine correlated strongly with mid-intestine equivalent diameter (r = -0.97). These strong correlations suggest that patient-specific dose may be estimated for any other child in the same size group who undergoes the abdomen-pelvis scan.

  18. Theoretical coefficient of restitution for planer impact of rough elasto-plastic bodies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stronge, W.J.

    1995-12-31

    During an inelastic collision the normal component of force between colliding bodies is a nonlinear function of indentation. In the cycle of loading and unloading which occurs in a collision this force exhibits hysteresis due to internal inelastic deformations near the contact point. Energy dissipation during impact can be calculated for any incident velocity and impact configuration by integration of rate-of-work throughout the contact period. In {open_quote}rigid body{close_quote} impact there is negligible displacement during the contact period - in this case work done by the normal component of contact force can be calculated to obtain the part of the initialmore » kinetic energy of relative motion that is lost to irreversible internal dissipation. This energy loss is directly related to the energetic coefficient of restitution. For a non-collinear collision between rough bodies, this paper obtains an analytical expression for the energetic coefficient of restitution; this expression is appropriate for moderate speed impacts between compact bodies where maximum indentation remains small. The coefficient of restitution depends on the incident relative velocity, material properties and an effective mass as well as a secondary effect of friction. For impacts that result in fully plastic indentation, this theory obtains a coefficient of restitution proportional to normal impact speed to the 1/4 power a result that agrees with Goldsmith`s compilation of experimental evidence.« less

  19. Internal Radiation Exposure Dose in Iwaki City, Fukushima Prefecture after the Accident at Fukushima Dai-ichi Nuclear Power Plant

    PubMed Central

    Orita, Makiko; Hayashida, Naomi; Nukui, Hiroshi; Fukuda, Naoko; Kudo, Takashi; Matsuda, Naoki; Fukushima, Yoshiko; Takamura, Noboru

    2014-01-01

    As a result of the accident at the Fukushima Daiichi Nuclear Power Plant (FNPP) on 11 March 2011, a huge amount of radionuclides, including radiocesium, was released and spread over a wide area of eastern Japan. Although three years have passed since the accident, residents around the FNPP are anxious about internal radiation exposure due to radiocesium. In this study, we screened internal radiation exposure doses in Iwaki city of Fukushima prefecture, using a whole-body counter. The first screening was conducted from October 2012 to February 2013, and the second screening was conducted from May to November 2013. Study participants were employees of ALPINE and their families who underwent examination. A total of 2,839 participants (1,366 men and 1,473 women, 1–86 years old) underwent the first screening, and 2,092 (1,022 men and 1,070 women, 1–86 years old) underwent the second screening. The results showed that 99% of subjects registered below 300 Bq per body in the first screening, and all subjects registered below 300 Bq per body in the second screening. The committed effective dose ranged from 0.01–0.06 mSv in the first screening and 0.01–0.02 mSv in the second screening. Long-term follow-up studies are needed to avoid unnecessary chronic internal exposure and to reduce anxiety among the residents by communicating radiation health risks. PMID:25478794

  20. Internal radiation exposure dose in Iwaki city, Fukushima prefecture after the accident at Fukushima Dai-ichi Nuclear Power Plant.

    PubMed

    Orita, Makiko; Hayashida, Naomi; Nukui, Hiroshi; Fukuda, Naoko; Kudo, Takashi; Matsuda, Naoki; Fukushima, Yoshiko; Takamura, Noboru

    2014-01-01

    As a result of the accident at the Fukushima Daiichi Nuclear Power Plant (FNPP) on 11 March 2011, a huge amount of radionuclides, including radiocesium, was released and spread over a wide area of eastern Japan. Although three years have passed since the accident, residents around the FNPP are anxious about internal radiation exposure due to radiocesium. In this study, we screened internal radiation exposure doses in Iwaki city of Fukushima prefecture, using a whole-body counter. The first screening was conducted from October 2012 to February 2013, and the second screening was conducted from May to November 2013. Study participants were employees of ALPINE and their families who underwent examination. A total of 2,839 participants (1,366 men and 1,473 women, 1-86 years old) underwent the first screening, and 2,092 (1,022 men and 1,070 women, 1-86 years old) underwent the second screening. The results showed that 99% of subjects registered below 300 Bq per body in the first screening, and all subjects registered below 300 Bq per body in the second screening. The committed effective dose ranged from 0.01-0.06 mSv in the first screening and 0.01-0.02 mSv in the second screening. Long-term follow-up studies are needed to avoid unnecessary chronic internal exposure and to reduce anxiety among the residents by communicating radiation health risks.

  1. Characterization of optically stimulated luminescence dosemeters to measure organ doses in diagnostic radiology

    PubMed Central

    Endo, A; Katoh, T; Kobayashi, I; Joshi, R; Sur, J; Okano, T

    2012-01-01

    Objective The aim of this study was to assess the characteristics of an optically stimulated luminescence dosemeter (OSLD) for use in diagnostic radiology and to apply the OSLD in measuring the organ doses by panoramic radiography. Methods The dose linearity, energy dependency and angular dependency of aluminium oxide-based OSLDs were examined using an X-ray generator to simulate various exposure settings in diagnostic radiology. The organ doses were then measured by inserting the dosemeters into an anthropomorphic phantom while using three panoramic machines. Results The dosemeters demonstrated consistent dose linearity (coefficient of variation<1.5%) and no significant energy dependency (coefficient of variation<1.5%) under the applied exposure conditions. They also exhibited negligible angular dependency (≤10%). The organ doses of the X-ray as a result of panoramic imaging by three machines were calculated using the dosemeters. Conclusion OSLDs can be utilized to measure the organ doses in diagnostic radiology. The availability of these dosemeters in strip form proves to be reliably advantageous. PMID:22116136

  2. Population dose near the Semipalatinsk test site.

    PubMed

    Hille, R; Hill, P; Bouisset, P; Calmet, D; Kluson, J; Seisebaev, A; Smagulov, S

    1998-10-01

    To determine the consequences of atmospheric atomic bomb tests for the population in the surroundings of the former nuclear weapons test site near Semipalatinsk in Kazakhstan, a pilot study was performed by an international cooperation between Kazakh, French, Czech and German institutions at two villages, Mostik and Maisk. Together with Kazakh scientists, eight experts from Europe carried out a field mission in September 1995 to assess, within the framework of a NATO supported project, the radiological situation as far as external doses, environmental contamination and body burden of man were concerned. A summary of the results obtained is presented. The actual radiological situation near the test site is characterized by fallout contaminations. Cs was found in upper soil layers in concentrations similar to those of the global fallout. Also Sr, Am and Co were observed. The resulting present dose to the population is low. Mean external doses from soil contamination for Maisk and Mostik (0.60-0.63 mSv/year) presently correspond to mean external doses in normal environments. Mean values of the annual internal doses observed in these two villages are below 2 microSv/year for 90Sr. For other radionuclides the internal doses are also negligible.

  3. Hanford Internal Dosimetry Project manual. Revision 1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carbaugh, E.H.; Bihl, D.E.; MacLellan, J.A.

    1994-07-01

    This document describes the Hanford Internal Dosimetry Project, as it is administered by Pacific Northwest Laboratory (PNL) in support of the US Department of Energy and its Hanford contractors. Project services include administrating the bioassay monitoring program, evaluating and documenting assessment of potential intakes and internal dose, ensuring that analytical laboratories conform to requirements, selecting and applying appropriate models and procedures for evaluating radionuclide deposition and the resulting dose, and technically guiding and supporting Hanford contractors in matters regarding internal dosimetry. Specific chapters deal with the following subjects: practices of the project, including interpretation of applicable DOE Orders, regulations, andmore » guidance into criteria for assessment, documentation, and reporting of doses; assessment of internal dose, including summary explanations of when and how assessments are performed; recording and reporting practices for internal dose; selection of workers for bioassay monitoring and establishment of type and frequency of bioassay measurements; capability and scheduling of bioassay monitoring services; recommended dosimetry response to potential internal exposure incidents; quality control and quality assurance provisions of the program.« less

  4. Analysis on Behaviour of Wavelet Coefficient during Fault Occurrence in Transformer

    NASA Astrophysics Data System (ADS)

    Sreewirote, Bancha; Ngaopitakkul, Atthapol

    2018-03-01

    The protection system for transformer has play significant role in avoiding severe damage to equipment when disturbance occur and ensure overall system reliability. One of the methodology that widely used in protection scheme and algorithm is discrete wavelet transform. However, characteristic of coefficient under fault condition must be analyzed to ensure its effectiveness. So, this paper proposed study and analysis on wavelet coefficient characteristic when fault occur in transformer in both high- and low-frequency component from discrete wavelet transform. The effect of internal and external fault on wavelet coefficient of both fault and normal phase has been taken into consideration. The fault signal has been simulate using transmission connected to transformer experimental setup on laboratory level that modelled after actual system. The result in term of wavelet coefficient shown a clearly differentiate between wavelet characteristic in both high and low frequency component that can be used to further design and improve detection and classification algorithm that based on discrete wavelet transform methodology in the future.

  5. Using the Monte Carlo technique to calculate dose conversion coefficients for medical professionals in interventional radiology

    NASA Astrophysics Data System (ADS)

    Santos, W. S.; Carvalho, A. B., Jr.; Hunt, J. G.; Maia, A. F.

    2014-02-01

    The objective of this study was to estimate doses in the physician and the nurse assistant at different positions during interventional radiology procedures. In this study, effective doses obtained for the physician and at points occupied by other workers were normalised by air kerma-area product (KAP). The simulations were performed for two X-ray spectra (70 kVp and 87 kVp) using the radiation transport code MCNPX (version 2.7.0), and a pair of anthropomorphic voxel phantoms (MASH/FASH) used to represent both the patient and the medical professional at positions from 7 cm to 47 cm from the patient. The X-ray tube was represented by a point source positioned in the anterior posterior (AP) and posterior anterior (PA) projections. The CC can be useful to calculate effective doses, which in turn are related to stochastic effects. With the knowledge of the values of CCs and KAP measured in an X-ray equipment, at a similar exposure, medical professionals will be able to know their own effective dose.

  6. Bayesian dose-response analysis for epidemiological studies with complex uncertainty in dose estimation.

    PubMed

    Kwon, Deukwoo; Hoffman, F Owen; Moroz, Brian E; Simon, Steven L

    2016-02-10

    Most conventional risk analysis methods rely on a single best estimate of exposure per person, which does not allow for adjustment for exposure-related uncertainty. Here, we propose a Bayesian model averaging method to properly quantify the relationship between radiation dose and disease outcomes by accounting for shared and unshared uncertainty in estimated dose. Our Bayesian risk analysis method utilizes multiple realizations of sets (vectors) of doses generated by a two-dimensional Monte Carlo simulation method that properly separates shared and unshared errors in dose estimation. The exposure model used in this work is taken from a study of the risk of thyroid nodules among a cohort of 2376 subjects who were exposed to fallout from nuclear testing in Kazakhstan. We assessed the performance of our method through an extensive series of simulations and comparisons against conventional regression risk analysis methods. When the estimated doses contain relatively small amounts of uncertainty, the Bayesian method using multiple a priori plausible draws of dose vectors gave similar results to the conventional regression-based methods of dose-response analysis. However, when large and complex mixtures of shared and unshared uncertainties are present, the Bayesian method using multiple dose vectors had significantly lower relative bias than conventional regression-based risk analysis methods and better coverage, that is, a markedly increased capability to include the true risk coefficient within the 95% credible interval of the Bayesian-based risk estimate. An evaluation of the dose-response using our method is presented for an epidemiological study of thyroid disease following radiation exposure. Copyright © 2015 John Wiley & Sons, Ltd.

  7. Monte Carlo calculation of the neutron dose to a fetus at commercial flight altitudes

    NASA Astrophysics Data System (ADS)

    Alves, M. C.; Galeano, D. C.; Santos, W. S.; Hunt, John G.; d'Errico, Francesco; Souza, S. O.; de Carvalho Júnior, A. B.

    2017-11-01

    Aircrew members are exposed to primary cosmic rays as well as to secondary radiations from the interaction of cosmic rays with the atmosphere and with the aircraft. The radiation field at flight altitudes comprises neutrons, protons, electrons, positrons, photons, muons and pions. Generally, 50% of the effective dose to airplane passengers is due to neutrons. Care must be taken especially with pregnant aircrew members and frequent fliers so that the equivalent dose to the fetus will not exceed prescribed limits during pregnancy (1 mSv according to ICRP, and 5 mSv according to NCRP). Therefore, it is necessary to evaluate the equivalent dose to a fetus in the maternal womb. Up to now, the equivalent dose rate to a fetus at commercial flight altitudes was obtained using stylized pregnant-female phantom models. The aim of this study was calculating neutron fluence to dose conversion coefficients for a fetus of six months of gestation age using a new, realistic pregnant-female mesh-phantom. The equivalent dose rate to a fetus during an intercontinental flight was also calculated by folding our conversion coefficients with published spectral neutron flux data. The calculated equivalent dose rate to the fetus was 2.35 μSv.h-1, that is 1.5 times higher than equivalent dose rates reported in the literature. The neutron fluence to dose conversion coefficients for the fetus calculated in this study were 2.7, 3.1 and 3.9 times higher than those from previous studies using fetus models of 3, 6 and 9 months of gestation age, respectively. The differences between our study and data from the literature highlight the importance of using more realistic anthropomorphic phantoms to estimate doses to a fetus in pregnant aircrew members.

  8. Coefficient alpha and interculture test selection.

    PubMed

    Thurber, Steven; Kishi, Yasuhiro

    2014-04-01

    The internal consistency reliability of a measure can be a focal point in an evaluation of the potential adequacy of an instrument for adaptation to another cultural setting. Cronbach's alpha (α) coefficient is often used as the statistical index for such a determination. However, alpha presumes a tau-equivalent test and may constitute an inaccurate population estimate for multidimensional tests. These notions are expanded and examined with a Japanese version of a questionnaire on nursing attitudes toward suicidal patients, originally constructed in Sweden using the English language. The English measure was reported to have acceptable internal consistency (α) albeit the dimensionality of the questionnaire was not addressed. The Japanese scale was found to lack tau-equivalence. An alternative to alpha, "composite reliability," was computed and found to be below acceptable standards in magnitude and precision. Implications for research application of the Japanese instrument are discussed. © The Author(s) 2012.

  9. Modern Radiation Therapy for Hodgkin Lymphoma: Field and Dose Guidelines From the International Lymphoma Radiation Oncology Group (ILROG)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Specht, Lena, E-mail: lena.specht@regionh.dk; Yahalom, Joachim; Illidge, Tim

    2014-07-15

    Radiation therapy (RT) is the most effective single modality for local control of Hodgkin lymphoma (HL) and an important component of therapy for many patients. These guidelines have been developed to address the use of RT in HL in the modern era of combined modality treatment. The role of reduced volumes and doses is addressed, integrating modern imaging with 3-dimensional (3D) planning and advanced techniques of treatment delivery. The previously applied extended field (EF) and original involved field (IF) techniques, which treated larger volumes based on nodal stations, have now been replaced by the use of limited volumes, based solelymore » on detectable nodal (and extranodal extension) involvement at presentation, using contrast-enhanced computed tomography, positron emission tomography/computed tomography, magnetic resonance imaging, or a combination of these techniques. The International Commission on Radiation Units and Measurements concepts of gross tumor volume, clinical target volume, internal target volume, and planning target volume are used for defining the targeted volumes. Newer treatment techniques, including intensity modulated radiation therapy, breath-hold, image guided radiation therapy, and 4-dimensional imaging, should be implemented when their use is expected to decrease significantly the risk for normal tissue damage while still achieving the primary goal of local tumor control. The highly conformal involved node radiation therapy (INRT), recently introduced for patients for whom optimal imaging is available, is explained. A new concept, involved site radiation therapy (ISRT), is introduced as the standard conformal therapy for the scenario, commonly encountered, wherein optimal imaging is not available. There is increasing evidence that RT doses used in the past are higher than necessary for disease control in this era of combined modality therapy. The use of INRT and of lower doses in early-stage HL is supported by available data

  10. Modern radiation therapy for Hodgkin lymphoma: field and dose guidelines from the international lymphoma radiation oncology group (ILROG).

    PubMed

    Specht, Lena; Yahalom, Joachim; Illidge, Tim; Berthelsen, Anne Kiil; Constine, Louis S; Eich, Hans Theodor; Girinsky, Theodore; Hoppe, Richard T; Mauch, Peter; Mikhaeel, N George; Ng, Andrea

    2014-07-15

    Radiation therapy (RT) is the most effective single modality for local control of Hodgkin lymphoma (HL) and an important component of therapy for many patients. These guidelines have been developed to address the use of RT in HL in the modern era of combined modality treatment. The role of reduced volumes and doses is addressed, integrating modern imaging with 3-dimensional (3D) planning and advanced techniques of treatment delivery. The previously applied extended field (EF) and original involved field (IF) techniques, which treated larger volumes based on nodal stations, have now been replaced by the use of limited volumes, based solely on detectable nodal (and extranodal extension) involvement at presentation, using contrast-enhanced computed tomography, positron emission tomography/computed tomography, magnetic resonance imaging, or a combination of these techniques. The International Commission on Radiation Units and Measurements concepts of gross tumor volume, clinical target volume, internal target volume, and planning target volume are used for defining the targeted volumes. Newer treatment techniques, including intensity modulated radiation therapy, breath-hold, image guided radiation therapy, and 4-dimensional imaging, should be implemented when their use is expected to decrease significantly the risk for normal tissue damage while still achieving the primary goal of local tumor control. The highly conformal involved node radiation therapy (INRT), recently introduced for patients for whom optimal imaging is available, is explained. A new concept, involved site radiation therapy (ISRT), is introduced as the standard conformal therapy for the scenario, commonly encountered, wherein optimal imaging is not available. There is increasing evidence that RT doses used in the past are higher than necessary for disease control in this era of combined modality therapy. The use of INRT and of lower doses in early-stage HL is supported by available data. Although the

  11. Dynamic absorption coefficients of chemically amplified resists and nonchemically amplified resists at extreme ultraviolet

    NASA Astrophysics Data System (ADS)

    Fallica, Roberto; Stowers, Jason K.; Grenville, Andrew; Frommhold, Andreas; Robinson, Alex P. G.; Ekinci, Yasin

    2016-07-01

    The dynamic absorption coefficients of several chemically amplified resists (CAR) and non-CAR extreme ultraviolet (EUV) photoresists are measured experimentally using a specifically developed setup in transmission mode at the x-ray interference lithography beamline of the Swiss Light Source. The absorption coefficient α and the Dill parameters ABC were measured with unprecedented accuracy. In general, the α of resists match very closely with the theoretical value calculated from elemental densities and absorption coefficients, whereas exceptions are observed. In addition, through the direct measurements of the absorption coefficients and dose-to-clear values, we introduce a new figure of merit called chemical sensitivity to account for all the postabsorption chemical reaction ongoing in the resist, which also predicts a quantitative clearing volume and clearing radius, due to the photon absorption in the resist. These parameters may help provide deeper insight into the underlying mechanisms of the EUV concepts of clearing volume and clearing radius, which are then defined and quantitatively calculated.

  12. Derivation of the chemical-equilibrium rate coefficient using scattering theory

    NASA Technical Reports Server (NTRS)

    Mickens, R. E.

    1977-01-01

    Scattering theory is applied to derive the equilibrium rate coefficient for a general homogeneous chemical reaction involving ideal gases. The reaction rate is expressed in terms of the product of a number of normalized momentum distribution functions, the product of the number of molecules with a given internal energy state, and the spin-averaged T-matrix elements. An expression for momentum distribution at equilibrium for an arbitrary molecule is presented, and the number of molecules with a given internal-energy state is represented by an expression which includes the partition function.

  13. Mapping of cosmic radiation dose in Croatia.

    PubMed

    Poje, M; Vuković, B; Radolić, V; Miklavčić, I; Faj, D; Varga Pajtler, M; Planinić, J

    2012-01-01

    The Earth is continually bombarded by high-energy particles coming from the outer space and the sun. These particles, termed cosmic radiation, interact with nuclei of atmospheric constituents and decrease in intensity with depth in the atmosphere. Measurements of photon and gamma radiation, performed with a Radiameter at 1 m above the ground, indicated dose rates of 50-100 nSv/h. The neutron dose rate was measured with the CR-39 track etch detector calibrated by the CERN-EU high-energy Reference Field (CERF) facility. Correlation between neutron dose rates and altitudes at 36 sites was examined in order to obtain a significant positive correlation coefficient; the resulting linear regression enabled estimation of a neutron dose at particular altitude. The measured neutron dose rate in Osijek (altitude of 89 m, latitude of 45.31° N) was 110 nSv/h. Copyright © 2011 Elsevier Ltd. All rights reserved.

  14. Radiation Dose to Post-Chernobyl Cleanup Workers

    Cancer.gov

    Radiation dose calculation for post-Chernobyl Cleanup Workers in Ukraine - both external radiation exposure due to fallout and internal doses due to inhalation (I131 intake) or ingestion of contaminated foodstuffs.

  15. Dose-Dependent Effects of Statins for Patients with Aneurysmal Subarachnoid Hemorrhage: Meta-Regression Analysis.

    PubMed

    To, Minh-Son; Prakash, Shivesh; Poonnoose, Santosh I; Bihari, Shailesh

    2018-05-01

    The study uses meta-regression analysis to quantify the dose-dependent effects of statin pharmacotherapy on vasospasm, delayed ischemic neurologic deficits (DIND), and mortality in aneurysmal subarachnoid hemorrhage. Prospective, retrospective observational studies, and randomized controlled trials (RCTs) were retrieved by a systematic database search. Summary estimates were expressed as absolute risk (AR) for a given statin dose or control (placebo). Meta-regression using inverse variance weighting and robust variance estimation was performed to assess the effect of statin dose on transformed AR in a random effects model. Dose-dependence of predicted AR with 95% confidence interval (CI) was recovered by using Miller's Freeman-Tukey inverse. The database search and study selection criteria yielded 18 studies (2594 patients) for analysis. These included 12 RCTs, 4 retrospective observational studies, and 2 prospective observational studies. Twelve studies investigated simvastatin, whereas the remaining studies investigated atorvastatin, pravastatin, or pitavastatin, with simvastatin-equivalent doses ranging from 20 to 80 mg. Meta-regression revealed dose-dependent reductions in Freeman-Tukey-transformed AR of vasospasm (slope coefficient -0.00404, 95% CI -0.00720 to -0.00087; P = 0.0321), DIND (slope coefficient -0.00316, 95% CI -0.00586 to -0.00047; P = 0.0392), and mortality (slope coefficient -0.00345, 95% CI -0.00623 to -0.00067; P = 0.0352). The present meta-regression provides weak evidence for dose-dependent reductions in vasospasm, DIND and mortality associated with acute statin use after aneurysmal subarachnoid hemorrhage. However, the analysis was limited by substantial heterogeneity among individual studies. Greater dosing strategies are a potential consideration for future RCTs. Copyright © 2018 Elsevier Inc. All rights reserved.

  16. Radiation dose to the esophagus from breast cancer radiation therapy, 1943-1996: an international population-based study of 414 patients.

    PubMed

    Lamart, Stephanie; Stovall, Marilyn; Simon, Steven L; Smith, Susan A; Weathers, Rita E; Howell, Rebecca M; Curtis, Rochelle E; Aleman, Berthe M P; Travis, Lois; Kwon, Deukwoo; Morton, Lindsay M

    2013-07-15

    To provide dosimetric data for an epidemiologic study on the risk of second primary esophageal cancer among breast cancer survivors, by reconstructing the radiation dose incidentally delivered to the esophagus of 414 women treated with radiation therapy for breast cancer during 1943-1996 in North America and Europe. We abstracted the radiation therapy treatment parameters from each patient's radiation therapy record. Treatment fields included direct chest wall (37% of patients), medial and lateral tangentials (45%), supraclavicular (SCV, 64%), internal mammary (IM, 44%), SCV and IM together (16%), axillary (52%), and breast/chest wall boosts (7%). The beam types used were (60)Co (45% of fields), orthovoltage (33%), megavoltage photons (11%), and electrons (10%). The population median prescribed dose to the target volume ranged from 21 Gy to 40 Gy. We reconstructed the doses over the length of the esophagus using abstracted patient data, water phantom measurements, and a computational model of the human body. Fields that treated the SCV and/or IM lymph nodes were used for 85% of the patients and delivered the highest doses within 3 regions of the esophagus: cervical (population median 38 Gy), upper thoracic (32 Gy), and middle thoracic (25 Gy). Other fields (direct chest wall, tangential, and axillary) contributed substantially lower doses (approximately 2 Gy). The cervical to middle thoracic esophagus received the highest dose because of its close proximity to the SCV and IM fields and less overlying tissue in that part of the chest. The location of the SCV field border relative to the midline was one of the most important determinants of the dose to the esophagus. Breast cancer patients in this study received relatively high incidental radiation therapy doses to the esophagus when the SCV and/or IM lymph nodes were treated, whereas direct chest wall, tangentials, and axillary fields contributed lower doses. Published by Elsevier Inc.

  17. Inhalation dose assessment of indoor radon progeny using biokinetic and dosimetric modeling and its application to Jordanian population.

    PubMed

    Al-Jundi, J; Li, W B; Abusini, M; Tschiersch, J; Hoeschen, C; Oeh, U

    2011-06-01

    High indoor radon concentrations in Jordan result in internal exposures of the residents due to the inhalation of radon and its short-lived progeny. It is therefore important to quantify the annual effective dose and further the radiation risk to the radon exposure. This study describes the methodology and the biokinetic and dosimetric models used for calculation of the inhalation doses exposed to radon progeny. The regional depositions of aerosol particles in the human respiratory tract were firstly calculated. For the attached progeny, the activity median aerodynamic diameters of 50 nm, 230 nm and 2500 nm were chosen to represent the nucleation, accumulation and coarse modes of the aerosol particles, respectively. For the unattached progeny, the activity median thermodynamic diameter of 1 nm was chosen to represent the free progeny nuclide in the room air. The biokinetic models developed by the International Commission on Radiological Protection (ICRP) were used to calculate the nuclear transformations of radon progeny in the human body, and then the dosimetric model was applied to estimate the organ equivalent doses and the effective doses with the specific effective energies derived from the mathematical anthropomorphic phantoms. The dose conversion coefficient estimated in this study was 15 mSv WLM(-1) which was in the range of the values of 6-20 mSv WLM(-1) reported by other investigators. Implementing the average indoor radon concentration in Jordan, the annual effective doses were calculated to be 4.1 mSv y(-1) and 0.08 mSv y(-1) due to the inhalation of radon progeny and radon gas, respectively. The total annual effective dose estimated for Jordanian population was 4.2 mSv y(-1). This high annual effective dose calculated by the dosimetric approach using ICRP biokinetic and dosimetric models resulted in an increase of a factor of two in comparison to the value by epidemiological study. This phenomenon was presented by the ICRP in its new published

  18. Octanol-air partition coefficients of polybrominated biphenyls.

    PubMed

    Hongxia, Zhao; Jingwen, Chen; Xie, Quan; Baocheng, Qu; Xinmiao, Liang

    2009-03-01

    The octanol-air partition coefficients (K(OA)) for PBB15, PBB26, PBB31, PBB49, PBB103 and PBB153 were determined as a function of temperature using a gas chromatographic retention time technique with 1,1,1-trichloro-2,2-bis (4-chlorophenyl) ethane (p,p'-DDT) as a reference substance. The internal energies of phase change from octanol to air (Delta(OA)U) were calculated for the six compounds and were in the range from 74 to 116 kJ mol(-1). Simple regression equations of log K(OA) versus relative retention times (RRTs) on gas chromatography (GC), and log K(OA) versus molecular connectivity indexes (MCI) were obtained, for which the correlation coefficients (r(2)) were greater than 0.985 at 283.15K and 298.15K. Thus the K(OA) values of the remaining PBBs can be predicted by using their RRTs and MCI according to these relationships.

  19. Methods for Probabilistic Radiological Dose Assessment at a High-Level Radioactive Waste Repository.

    NASA Astrophysics Data System (ADS)

    Maheras, Steven James

    Methods were developed to assess and evaluate the uncertainty in offsite and onsite radiological dose at a high-level radioactive waste repository to show reasonable assurance that compliance with applicable regulatory requirements will be achieved. Uncertainty in offsite dose was assessed by employing a stochastic precode in conjunction with Monte Carlo simulation using an offsite radiological dose assessment code. Uncertainty in onsite dose was assessed by employing a discrete-event simulation model of repository operations in conjunction with an occupational radiological dose assessment model. Complementary cumulative distribution functions of offsite and onsite dose were used to illustrate reasonable assurance. Offsite dose analyses were performed for iodine -129, cesium-137, strontium-90, and plutonium-239. Complementary cumulative distribution functions of offsite dose were constructed; offsite dose was lognormally distributed with a two order of magnitude range. However, plutonium-239 results were not lognormally distributed and exhibited less than one order of magnitude range. Onsite dose analyses were performed for the preliminary inspection, receiving and handling, and the underground areas of the repository. Complementary cumulative distribution functions of onsite dose were constructed and exhibited less than one order of magnitude range. A preliminary sensitivity analysis of the receiving and handling areas was conducted using a regression metamodel. Sensitivity coefficients and partial correlation coefficients were used as measures of sensitivity. Model output was most sensitive to parameters related to cask handling operations. Model output showed little sensitivity to parameters related to cask inspections.

  20. A kinematic model to estimate effective dose of radioactive substances in a human body

    NASA Astrophysics Data System (ADS)

    Sasaki, S.; Yamada, T.

    2013-05-01

    The great earthquake occurred in the north-east area in Japan in March 11, 2011. Facility system to control Fukushima Daiichi nuclear power station was completely destroyed by the following giant tsunami. From the damaged reactor containment vessels, an amount of radioactive substances had leaked and diffused in the vicinity of this station. Radiological internal exposure became a serious social issue both in Japan and all over the world. The present study provides an easily understandable, kinematic-based model to estimate the effective dose of radioactive substances in a human body by simplifying the complicated mechanism of metabolism. International Commission on Radiological Protection (ICRP) has developed a sophisticated model, which is well-known as a standard method to calculate the effective dose for radiological protection. However, owing to that ICRP method is fine, it is rather difficult for non-professional people of radiology to gasp the whole images of the movement and the influences of radioactive substances in a human body. Therefore, in the present paper we propose a newly-derived and easily-understandable model to estimate the effective dose. The present method is very similar with the traditional and conventional tank model in hydrology. Ingestion flux of radioactive substances corresponds to rain intensity and the storage of radioactive substances to the water storage in a basin in runoff analysis. The key of the present method is to estimate the energy radiated in the radioactive nuclear disintegration of an atom by using classical theory of β decay and special relativity for various kinds of radioactive atoms. The parameters used in this model are only physical half-time and biological half-time, and there are no operational parameters or coefficients to adjust our theoretical runoff to ICRP. Figure shows the time-varying effective dose with ingestion duration, and we can confirm the validity of our model. The time-varying effective dose with

  1. Estimation of breast dose reduction potential for organ-based tube current modulated CT with wide dose reduction arc

    NASA Astrophysics Data System (ADS)

    Fu, Wanyi; Sturgeon, Gregory M.; Agasthya, Greeshma; Segars, W. Paul; Kapadia, Anuj J.; Samei, Ehsan

    2017-03-01

    This study aimed to estimate the organ dose reduction potential for organ-dose-based tube current modulated (ODM) thoracic CT with wide dose reduction arc. Twenty-one computational anthropomorphic phantoms (XCAT, age range: 27- 75 years, weight range: 52.0-105.8 kg) were used to create a virtual patient population with clinical anatomic variations. For each phantom, two breast tissue compositions were simulated: 50/50 and 20/80 (glandular-to-adipose ratio). A validated Monte Carlo program was used to estimate the organ dose for standard tube current modulation (TCM) (SmartmA, GE Healthcare) and ODM (GE Healthcare) for a commercial CT scanner (Revolution, GE Healthcare) with explicitly modeled tube current modulation profile, scanner geometry, bowtie filtration, and source spectrum. Organ dose was determined using a typical clinical thoracic CT protocol. Both organ dose and CTDIvol-to-organ dose conversion coefficients (h factors) were compared between TCM and ODM. ODM significantly reduced all radiosensitive organ doses (p<0.01). The breast dose was reduced by 30+/-2%. For h factors, organs in the anterior region (e.g. thyroid, stomach) exhibited substantial decreases, and the medial, distributed, and posterior region either saw an increase or no significant change. The organ-dose-based tube current modulation significantly reduced organ doses especially for radiosensitive superficial anterior organs such as the breasts.

  2. Development of a primary standard for absorbed dose from unsealed radionuclide solutions

    NASA Astrophysics Data System (ADS)

    Billas, I.; Shipley, D.; Galer, S.; Bass, G.; Sander, T.; Fenwick, A.; Smyth, V.

    2016-12-01

    Currently, the determination of the internal absorbed dose to tissue from an administered radionuclide solution relies on Monte Carlo (MC) calculations based on published nuclear decay data, such as emission probabilities and energies. In order to validate these methods with measurements, it is necessary to achieve the required traceability of the internal absorbed dose measurements of a radionuclide solution to a primary standard of absorbed dose. The purpose of this work was to develop a suitable primary standard. A comparison between measurements and calculations of absorbed dose allows the validation of the internal radiation dose assessment methods. The absorbed dose from an yttrium-90 chloride (90YCl) solution was measured with an extrapolation chamber. A phantom was developed at the National Physical Laboratory (NPL), the UK’s National Measurement Institute, to position the extrapolation chamber as closely as possible to the surface of the solution. The performance of the extrapolation chamber was characterised and a full uncertainty budget for the absorbed dose determination was obtained. Absorbed dose to air in the collecting volume of the chamber was converted to absorbed dose at the centre of the radionuclide solution by applying a MC calculated correction factor. This allowed a direct comparison of the analytically calculated and experimentally determined absorbed dose of an 90YCl solution. The relative standard uncertainty in the measurement of absorbed dose at the centre of an 90YCl solution with the extrapolation chamber was found to be 1.6% (k  =  1). The calculated 90Y absorbed doses from published medical internal radiation dose (MIRD) and radiation dose assessment resource (RADAR) data agreed with measurements to within 1.5% and 1.4%, respectively. This study has shown that it is feasible to use an extrapolation chamber for performing primary standard absorbed dose measurements of an unsealed radionuclide solution. Internal radiation

  3. A dosimetric study of cardiac dose sparing using the reverse semi-decubitus technique for left breast and internal mammary chain irradiation.

    PubMed

    Niglas, Mark; McCann, Claire; Keller, Brian M; Makhani, Nadiya; Presutti, Joseph; Vesprini, Danny; Rakovitch, Eileen; Elzibak, Alyaa; Mashouf, Shahram; Lee, Justin

    2016-01-01

    Breath-hold techniques can reduce cardiac dose in breast radiotherapy. The reverse semi-decubitus (RSD) technique is an alternative free-breathing method used at our centre. This study compares the dosimetry of free-breathing supine, RSD and moderate deep inspiration breath-hold (mDIBH) techniques. Twelve patients with left-sided breast cancer who were simulated using standard supine, RSD and mDIBH techniques were identified retrospectively. New plans using standard breast tangents and techniques for internal mammary chain (IMC) nodal coverage were assessed. Using standard tangents, mean heart dose, heart V25Gy and mean left anterior descending artery (LAD) dose were found to be significantly lower for RSD and mDIBH when compared to free-breathing supine (p ⩽ 0.03). Using wide-tangents, the maximum LAD point dose was also lower for RSD and mDIBH (p ⩽ 0.02). There were no statistically significant dosimetric differences found between the RSD and mDIBH simulation techniques for standard breast-tangent plans, though organ-at-risk doses were lower for mDIBH in wide-tangent plans. There was no improvement in cardiac dosimetry between RSD and free-breathing supine when using an electron field IMC plan. For patients unable to tolerate breath-hold, the RSD technique is an alternative approach that can reduce cardiac dose. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  4. Response functions for computing absorbed dose to skeletal tissues from neutron irradiation

    NASA Astrophysics Data System (ADS)

    Bahadori, Amir A.; Johnson, Perry; Jokisch, Derek W.; Eckerman, Keith F.; Bolch, Wesley E.

    2011-11-01

    Spongiosa in the adult human skeleton consists of three tissues—active marrow (AM), inactive marrow (IM) and trabecularized mineral bone (TB). AM is considered to be the target tissue for assessment of both long-term leukemia risk and acute marrow toxicity following radiation exposure. The total shallow marrow (TM50), defined as all tissues lying within the first 50 µm of the bone surfaces, is considered to be the radiation target tissue of relevance for radiogenic bone cancer induction. For irradiation by sources external to the body, kerma to homogeneous spongiosa has been used as a surrogate for absorbed dose to both of these tissues, as direct dose calculations are not possible using computational phantoms with homogenized spongiosa. Recent micro-CT imaging of a 40 year old male cadaver has allowed for the accurate modeling of the fine microscopic structure of spongiosa in many regions of the adult skeleton (Hough et al 2011 Phys. Med. Biol. 56 2309-46). This microstructure, along with associated masses and tissue compositions, was used to compute specific absorbed fraction (SAF) values for protons originating in axial and appendicular bone sites (Jokisch et al 2011 Phys. Med. Biol. 56 6857-72). These proton SAFs, bone masses, tissue compositions and proton production cross sections, were subsequently used to construct neutron dose-response functions (DRFs) for both AM and TM50 targets in each bone of the reference adult male. Kerma conditions were assumed for other resultant charged particles. For comparison, AM, TM50 and spongiosa kerma coefficients were also calculated. At low incident neutron energies, AM kerma coefficients for neutrons correlate well with values of the AM DRF, while total marrow (TM) kerma coefficients correlate well with values of the TM50 DRF. At high incident neutron energies, all kerma coefficients and DRFs tend to converge as charged-particle equilibrium is established across the bone site. In the range of 10 eV to 100 Me

  5. RESPONSE FUNCTIONS FOR COMPUTING ABSORBED DOSE TO SKELETAL TISSUES FROM NEUTRON IRRADIATION

    PubMed Central

    Bahadori, Amir A.; Johnson, Perry; Jokisch, Derek W.; Eckerman, Keith F.; Bolch, Wesley E.

    2016-01-01

    Spongiosa in the adult human skeleton consists of three tissues - active marrow (AM), inactive marrow (IM), and trabecularized mineral bone (TB). Active marrow is considered to be the target tissue for assessment of both long-term leukemia risk and acute marrow toxicity following radiation exposure. The total shallow marrow (TM50), defined as all tissues laying within the first 50 μm the bone surfaces, is considered to be the radiation target tissue of relevance for radiogenic bone cancer induction. For irradiation by sources external to the body, kerma to homogeneous spongiosa has been used as a surrogate for absorbed dose to both of these tissues, as direct dose calculations are not possible using computational phantoms with homogenized spongiosa. Recent microCT imaging of a 40-year-old male cadaver has allowed for the accurate modeling of the fine microscopic structure of spongiosa in many regions of the adult skeleton [Hough et al PMB (2011)]. This microstructure, along with associated masses and tissue compositions, was used to compute specific absorbed fractions (SAF) values for protons originating in axial and appendicular bone sites [Jokisch et al PMB (submitted)]. These proton SAFs, bone masses, tissue compositions, and proton production cross-sections, were subsequently used to construct neutron dose response functions (DRFs) for both AM and TM50 targets in each bone of the reference adult male. Kerma conditions were assumed for other resultant charged particles. For comparison, active marrow, total shallow marrow, and spongiosa kerma coefficients were also calculated. At low incident neutron energies, AM kerma coefficients for neutrons correlate well with values of the AM DRF, while total marrow (TM) kerma coefficients correlate well with values of the TM50 DRF. At high incident neutron energies, all kerma coefficients and DRFs tend to converge as charged particle equilibrium (CPE) is established across the bone site. In the range of 10 eV to 100 Me

  6. Response functions for computing absorbed dose to skeletal tissues from neutron irradiation.

    PubMed

    Bahadori, Amir A; Johnson, Perry; Jokisch, Derek W; Eckerman, Keith F; Bolch, Wesley E

    2011-11-07

    Spongiosa in the adult human skeleton consists of three tissues-active marrow (AM), inactive marrow (IM) and trabecularized mineral bone (TB). AM is considered to be the target tissue for assessment of both long-term leukemia risk and acute marrow toxicity following radiation exposure. The total shallow marrow (TM(50)), defined as all tissues lying within the first 50 µm of the bone surfaces, is considered to be the radiation target tissue of relevance for radiogenic bone cancer induction. For irradiation by sources external to the body, kerma to homogeneous spongiosa has been used as a surrogate for absorbed dose to both of these tissues, as direct dose calculations are not possible using computational phantoms with homogenized spongiosa. Recent micro-CT imaging of a 40 year old male cadaver has allowed for the accurate modeling of the fine microscopic structure of spongiosa in many regions of the adult skeleton (Hough et al 2011 Phys. Med. Biol. 56 2309-46). This microstructure, along with associated masses and tissue compositions, was used to compute specific absorbed fraction (SAF) values for protons originating in axial and appendicular bone sites (Jokisch et al 2011 Phys. Med. Biol. 56 6857-72). These proton SAFs, bone masses, tissue compositions and proton production cross sections, were subsequently used to construct neutron dose-response functions (DRFs) for both AM and TM(50) targets in each bone of the reference adult male. Kerma conditions were assumed for other resultant charged particles. For comparison, AM, TM(50) and spongiosa kerma coefficients were also calculated. At low incident neutron energies, AM kerma coefficients for neutrons correlate well with values of the AM DRF, while total marrow (TM) kerma coefficients correlate well with values of the TM(50) DRF. At high incident neutron energies, all kerma coefficients and DRFs tend to converge as charged-particle equilibrium is established across the bone site. In the range of 10 eV to 100 Me

  7. Retrieving atmospheric transmissivity for biologically active daily dose, in various european sites

    NASA Astrophysics Data System (ADS)

    de La Casinière, A.; Touré, M. L.; Lenoble, J.; Cabot, T.

    2003-04-01

    In the frame of the European Project EDUCE, global UV irradiance spectra recorded all along the year in several European sites are stored in a common database located in Finland. From the spectra set of some of these stations, are calculated atmospheric transmissivities for daily doses of four biologically active UV radiation, namely: UV-B, erythema, DNA damage, and plant damage. A transmissivity is defined as the ratio of the ground level value of the daily dose of interest to its corresponding extra-atmospheric value. Multiple linear correlation of the various transmissivities with three predictors (daily sunshine fraction, cosine of the daily minimum SZA, and daily total ozone column) assumed to be independent variables, are done for year 2000. The coefficients obtained from year 2000 correlation in a given site are expected to retrieve, from the local predictors, the daily dose for year 2001 in the same site, the average error being lesser than 10% for monthly mean values, and lesser than 5% for three-monthly mean values, depending on the daily dose type. Comparison of yearly mean daily doses retrieved in a given site from coefficients obtained in other sites is also presented.

  8. Distinguishing dose, focus, and blur for lithography characterization and control

    NASA Astrophysics Data System (ADS)

    Ausschnitt, Christopher P.; Brunner, Timothy A.

    2007-03-01

    We derive a physical model to describe the dependence of pattern dimensions on dose, defocus and blur. The coefficients of our model are constants of a given lithographic process. Model inversion applied to dimensional measurements then determines effective dose, defocus and blur for wafers patterned with the same process. In practice, our approach entails the measurement of proximate grating targets of differing dose and focus sensitivity. In our embodiment, the measured attribute of one target is exclusively sensitive to dose, whereas the measured attributes of a second target are distinctly sensitive to defocus and blur. On step-and-scan exposure tools, z-blur is varied in a controlled manner by adjusting the across slit tilt of the image plane. The effects of z-blur and x,y-blur are shown to be equivalent. Furthermore, the exposure slit width is shown to determine the tilt response of the grating attributes. Thus, the response of the measured attributes can be characterized by a conventional focus-exposure matrix (FEM), over which the exposure tool settings are intentionally changed. The model coefficients are determined by a fit to the measured FEM response. The model then fully defines the response for wafers processed under "fixed" dose, focus and blur conditions. Model inversion applied to measurements from the same targets on all such wafers enables the simultaneous determination of effective dose and focus/tilt (DaFT) at each measurement site.

  9. The conversion of exposures due to radon into the effective dose: the epidemiological approach.

    PubMed

    Beck, T R

    2017-11-01

    The risks and dose conversion coefficients for residential and occupational exposures due to radon were determined with applying the epidemiological risk models to ICRP representative populations. The dose conversion coefficient for residential radon was estimated with a value of 1.6 mSv year -1 per 100 Bq m -3 (3.6 mSv per WLM), which is significantly lower than the corresponding value derived from the biokinetic and dosimetric models. The dose conversion coefficient for occupational exposures with applying the risk models for miners was estimated with a value of 14 mSv per WLM, which is in good accordance with the results of the dosimetric models. To resolve the discrepancy regarding residential radon, the ICRP approaches for the determination of risks and doses were reviewed. It could be shown that ICRP overestimates the risk for lung cancer caused by residential radon. This can be attributed to a wrong population weighting of the radon-induced risks in its epidemiological approach. With the approach in this work, the average risks for lung cancer were determined, taking into account the age-specific risk contributions of all individuals in the population. As a result, a lower risk coefficient for residential radon was obtained. The results from the ICRP biokinetic and dosimetric models for both, the occupationally exposed working age population and the whole population exposed to residential radon, can be brought in better accordance with the corresponding results of the epidemiological approach, if the respective relative radiation detriments and a radiation-weighting factor for alpha particles of about ten are used.

  10. Modeling individualized coefficient alpha to measure quality of test score data.

    PubMed

    Liu, Molei; Hu, Ming; Zhou, Xiao-Hua

    2018-05-23

    Individualized coefficient alpha is defined. It is item and subject specific and is used to measure the quality of test score data with heterogenicity among the subjects and items. A regression model is developed based on 3 sets of generalized estimating equations. The first set of generalized estimating equation models the expectation of the responses, the second set models the response's variance, and the third set is proposed to estimate the individualized coefficient alpha, defined and used to measure individualized internal consistency of the responses. We also use different techniques to extend our method to handle missing data. Asymptotic property of the estimators is discussed, based on which inference on the coefficient alpha is derived. Performance of our method is evaluated through simulation study and real data analysis. The real data application is from a health literacy study in Hunan province of China. Copyright © 2018 John Wiley & Sons, Ltd.

  11. Image gently, step lightly: increasing radiation dose awareness in pediatric interventions through an international social marketing campaign.

    PubMed

    Sidhu, Manrita K; Goske, Marilyn J; Coley, Brian J; Connolly, Bairbre; Racadio, John; Yoshizumi, Terry T; Utley, Tara; Strauss, Keith J

    2009-09-01

    In the past several decades, advances in imaging and interventional techniques have been accompanied by an increase in medical radiation dose to the public. Radiation exposure is even more important in children, who are more sensitive to radiation and have a longer lifespan during which effects may manifest. To address radiation safety in pediatric computed tomography, in 2008 the Alliance for Radiation Safety in Pediatric Imaging launched an international social marketing campaign entitled Image Gently. This article describes the next phase of the Image Gently campaign, entitled Step Lightly, which focuses on radiation safety in pediatric interventional radiology.

  12. [Low-dose rate brachytherapy with locally integrated beta emitters after internal urethrotomy. A pilot project using an animal model].

    PubMed

    Weidlich, P; Adam, C; Sroka, R; Lanzl, I; Assmann, W; Stief, C

    2007-09-01

    The treatment of urethral strictures represents an unsolved urological problem. The effect of a (32)P-coated urethral catheter in the sense of low-dose rate brachytherapy to modulate wound healing will be analyzed in an animal experiment. Unfortunately it is not possible to present any results because this is being studied for the first time and there are no experiences with low-dose rate brachytherapy and this form of application in the lower urinary tract. Furthermore the animal experiment will only start in the near future. Both decade-long experiences with radiotherapy to treat benign diseases and our own results of previous studies in otolaryngology and ophthalmology let us expect a significantly lower formation of urethral strictures after internal urethrotomy. This study will contribute to improving the treatment of urethral strictures as demanded in previous papers.

  13. Dosimetry investigation of MOSFET for clinical IMRT dose verification.

    PubMed

    Deshpande, Sudesh; Kumar, Rajesh; Ghadi, Yogesh; Neharu, R M; Kannan, V

    2013-06-01

    In IMRT, patient-specific dose verification is followed regularly at each centre. Simple and efficient dosimetry techniques play a very important role in routine clinical dosimetry QA. The MOSFET dosimeter offers several advantages over the conventional dosimeters such as its small detector size, immediate readout, immediate reuse, multiple point dose measurements. To use the MOSFET as routine clinical dosimetry system for pre-treatment dose verification in IMRT, a comprehensive set of experiments has been conducted, to investigate its linearity, reproducibility, dose rate effect and angular dependence for 6 MV x-ray beam. The MOSFETs shows a linear response with linearity coefficient of 0.992 for a dose range of 35 cGy to 427 cGy. The reproducibility of the MOSFET was measured by irradiating the MOSFET for ten consecutive irradiations in the dose range of 35 cGy to 427 cGy. The measured reproducibility of MOSFET was found to be within 4% up to 70 cGy and within 1.4% above 70 cGy. The dose rate effect on the MOSFET was investigated in the dose rate range 100 MU/min to 600 MU/min. The response of the MOSFET varies from -1.7% to 2.1%. The angular responses of the MOSFETs were measured at 10 degrees intervals from 90 to 270 degrees in an anticlockwise direction and normalized at gantry angle zero and it was found to be in the range of 0.98 ± 0.014 to 1.01 ± 0.014. The MOSFETs were calibrated in a phantom which was later used for IMRT verification. The measured calibration coefficients were found to be 1 mV/cGy and 2.995 mV/cGy in standard and high sensitivity mode respectively. The MOSFETs were used for pre-treatment dose verification in IMRT. Nine dosimeters were used for each patient to measure the dose in different plane. The average variation between calculated and measured dose at any location was within 3%. Dose verification using MOSFET and IMRT phantom was found to quick and efficient and well suited for a busy radiotherapy

  14. Radiation Dose to the Esophagus From Breast Cancer Radiation Therapy, 1943-1996: An International Population-Based Study of 414 Patients

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lamart, Stephanie, E-mail: stephanie.lamart@nih.gov; Stovall, Marilyn; Simon, Steven L.

    2013-07-15

    Purpose: To provide dosimetric data for an epidemiologic study on the risk of second primary esophageal cancer among breast cancer survivors, by reconstructing the radiation dose incidentally delivered to the esophagus of 414 women treated with radiation therapy for breast cancer during 1943-1996 in North America and Europe. Methods and Materials: We abstracted the radiation therapy treatment parameters from each patient’s radiation therapy record. Treatment fields included direct chest wall (37% of patients), medial and lateral tangentials (45%), supraclavicular (SCV, 64%), internal mammary (IM, 44%), SCV and IM together (16%), axillary (52%), and breast/chest wall boosts (7%). The beam typesmore » used were {sup 60}Co (45% of fields), orthovoltage (33%), megavoltage photons (11%), and electrons (10%). The population median prescribed dose to the target volume ranged from 21 Gy to 40 Gy. We reconstructed the doses over the length of the esophagus using abstracted patient data, water phantom measurements, and a computational model of the human body. Results: Fields that treated the SCV and/or IM lymph nodes were used for 85% of the patients and delivered the highest doses within 3 regions of the esophagus: cervical (population median 38 Gy), upper thoracic (32 Gy), and middle thoracic (25 Gy). Other fields (direct chest wall, tangential, and axillary) contributed substantially lower doses (approximately 2 Gy). The cervical to middle thoracic esophagus received the highest dose because of its close proximity to the SCV and IM fields and less overlying tissue in that part of the chest. The location of the SCV field border relative to the midline was one of the most important determinants of the dose to the esophagus. Conclusions: Breast cancer patients in this study received relatively high incidental radiation therapy doses to the esophagus when the SCV and/or IM lymph nodes were treated, whereas direct chest wall, tangentials, and axillary fields contributed

  15. Real-life GH dosing patterns in children with GHD, TS or born SGA: a report from the NordiNet® International Outcome Study.

    PubMed

    Blankenstein, Oliver; Snajderova, Marta; Blair, Jo; Pournara, Effie; Pedersen, Birgitte Tønnes; Petit, Isabelle Oliver

    2017-08-01

    To describe real-life dosing patterns in children with growth hormone deficiency (GHD), born small for gestational age (SGA) or with Turner syndrome (TS) receiving growth hormone (GH) and enrolled in the NordiNet International Outcome Study (IOS; Nbib960128) between 2006 and 2016. This non-interventional, multicentre study included paediatric patients diagnosed with GHD (isolated (IGHD) or multiple pituitary hormone deficiency (MPHD)), born SGA or with TS and treated according to everyday clinical practice from the Czech Republic (IGHD/MPHD/SGA/TS: n  = 425/61/316/119), France ( n  = 1404/188/970/206), Germany ( n  = 2603/351/1387/411) and the UK ( n  = 259/60/87/35). GH dosing was compared descriptively across countries and indications. Proportions of patients by GH dose group (low/medium/high) or GH dose change (decrease/increase/no change) during years 1 and 2 were also evaluated across countries and indications. In the Czech Republic, GH dosing was generally within recommended levels. In France, average GH doses were higher for patients with IGHD, MPHD and SGA than in other countries. GH doses in TS tended to be at the lower end of the recommended label range, especially in Germany and the UK; the majority of patients were in the low-dose group. A significant inverse association between baseline height standard deviation score and GH dose was shown ( P  < 0.05); shorter patients received higher doses. Changes in GH dose, particularly increases, were more common in the second (40%) than in the first year (25%). GH dosing varies considerably across countries and indications. In particular, almost half of girls with TS received GH doses below practice guidelines and label recommendations. © 2017 The authors.

  16. Real-life GH dosing patterns in children with GHD, TS or born SGA: a report from the NordiNet® International Outcome Study

    PubMed Central

    Snajderova, Marta; Blair, Jo; Pournara, Effie; Pedersen, Birgitte Tønnes; Petit, Isabelle Oliver

    2017-01-01

    Objective To describe real-life dosing patterns in children with growth hormone deficiency (GHD), born small for gestational age (SGA) or with Turner syndrome (TS) receiving growth hormone (GH) and enrolled in the NordiNet International Outcome Study (IOS; Nbib960128) between 2006 and 2016. Design This non-interventional, multicentre study included paediatric patients diagnosed with GHD (isolated (IGHD) or multiple pituitary hormone deficiency (MPHD)), born SGA or with TS and treated according to everyday clinical practice from the Czech Republic (IGHD/MPHD/SGA/TS: n = 425/61/316/119), France (n = 1404/188/970/206), Germany (n = 2603/351/1387/411) and the UK (n = 259/60/87/35). Methods GH dosing was compared descriptively across countries and indications. Proportions of patients by GH dose group (low/medium/high) or GH dose change (decrease/increase/no change) during years 1 and 2 were also evaluated across countries and indications. Results In the Czech Republic, GH dosing was generally within recommended levels. In France, average GH doses were higher for patients with IGHD, MPHD and SGA than in other countries. GH doses in TS tended to be at the lower end of the recommended label range, especially in Germany and the UK; the majority of patients were in the low-dose group. A significant inverse association between baseline height standard deviation score and GH dose was shown (P < 0.05); shorter patients received higher doses. Changes in GH dose, particularly increases, were more common in the second (40%) than in the first year (25%). Conclusions GH dosing varies considerably across countries and indications. In particular, almost half of girls with TS received GH doses below practice guidelines and label recommendations. PMID:28522645

  17. The estimation of absorbed dose rates for non-human biota : an extended inter-comparison.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Batlle, J. V. I.; Beaugelin-Seiller, K.; Beresford, N. A.

    An exercise to compare 10 approaches for the calculation of unweighted whole-body absorbed dose rates was conducted for 74 radionuclides and five of the ICRP's Reference Animals and Plants, or RAPs (duck, frog, flatfish egg, rat and elongated earthworm), selected for this exercise to cover a range of body sizes, dimensions and exposure scenarios. Results were analysed using a non-parametric method requiring no specific hypotheses about the statistical distribution of data. The obtained unweighted absorbed dose rates for internal exposure compare well between the different approaches, with 70% of the results falling within a range of variation of {+-}20%. Themore » variation is greater for external exposure, although 90% of the estimates are within an order of magnitude of one another. There are some discernible patterns where specific models over- or under-predicted. These are explained based on the methodological differences including number of daughter products included in the calculation of dose rate for a parent nuclide; source-target geometry; databases for discrete energy and yield of radionuclides; rounding errors in integration algorithms; and intrinsic differences in calculation methods. For certain radionuclides, these factors combine to generate systematic variations between approaches. Overall, the technique chosen to interpret the data enabled methodological differences in dosimetry calculations to be quantified and compared, allowing the identification of common issues between different approaches and providing greater assurance on the fundamental dose conversion coefficient approaches used in available models for assessing radiological effects to biota.« less

  18. Depth dose measurements with the Liulin-5 experiment inside the spherical phantom of the MATROSHKA-R project onboard the International Space Station

    NASA Astrophysics Data System (ADS)

    Semkova, J.; Koleva, R.; Maltchev, St.; Bankov, N.; Benghin, V.; Chernykh, I.; Shurshakov, V.; Petrov, V.; Drobyshev, S.; Nikolaev, I.

    2012-02-01

    The Liulin-5 experiment is a part of the international project MATROSHKA-R on the Russian segment of the ISS, which uses a tissue-equivalent spherical phantom equipped with a set of radiation detectors. The objective of the MATROSHKA-R project is to provide depth dose distribution of the radiation field inside the sphere in order to get more information on the distribution of dose in a human body. Liulin-5 is a charged particle telescope using three silicon detectors. It measures time resolved energy deposition spectra, linear energy transfer (LET) spectra, particle flux, and absorbed doses of electrons, protons and heavy ions, simultaneously at three depths along the radius of the phantom. Measurements during the minimum of the solar activity in cycle 23 show that the average absorbed daily doses at 40 mm depth in the phantom are between 180 μGy/day and 220 μGy/day. The absorbed doses at 165 mm depth in the phantom decrease by a factor of 1.6-1.8 compared to the doses at 40 mm depth due to the self-shielding of the phantom from trapped protons. The average dose equivalent at 40 mm depth is 590 ± 32 μSV/day and the galactic cosmic rays (GCR) contribute at least 70% of the total dose equivalent at that depth. Shown is that due to the South Atlantic Anomaly (SAA) trapped protons asymmetry and the direction of Liulin-5 lowest shielding zone the dose rates on ascending and descending nodes in SAA are different. The data obtained are compared to data from other radiation detectors on ISS.

  19. High-Dose Daptomycin Therapy for Left-Sided Infective Endocarditis: a Prospective Study from the International Collaboration on Endocarditis

    PubMed Central

    Bayer, Arnold S.; Miró, Josè M.; Park, Lawrence P.; Guimarães, Armenio C.; Skoutelis, Athanasios; Fortes, Claudio Q.; Durante-Mangoni, Emanuele; Hannan, Margaret M.; Nacinovich, Francisco; Fernández-Hidalgo, Nuria; Grossi, Paolo; Tan, Ru-San; Holland, Thomas; Fowler, Vance G.; Corey, Ralph G.; Chu, Vivian H.

    2013-01-01

    The use of daptomycin in Gram-positive left-sided infective endocarditis (IE) has significantly increased. The purpose of this study was to assess the influence of high-dose daptomycin on the outcome of left-sided IE due to Gram-positive pathogens. This was a prospective cohort study based on 1,112 cases from the International Collaboration on Endocarditis (ICE)-Plus database and the ICE-Daptomycin Substudy database from 2008 to 2010. Among patients with left-sided IE due to Staphylococcus aureus, coagulase-negative staphylococci, and Enterococcus faecalis, we compared those treated with daptomycin (cohort A) to those treated with standard-of-care (SOC) antibiotics (cohort B). The primary outcome was in-hospital mortality. Time to clearance of bacteremia, 6-month mortality, and adverse events (AEs) ascribable to daptomycin were also assessed. There were 29 and 149 patients included in cohort A and cohort B, respectively. Baseline comorbidities did not differ between the two cohorts, except for a significantly higher prevalence of diabetes and previous episodes of IE among patients treated with daptomycin. The median daptomycin dose was 9.2 mg/kg of body weight/day. Two-thirds of the patients treated with daptomycin had failed a previous antibiotic regimen. In-hospital and 6-month mortalities were similar in the two cohorts. In cohort A, median time to clearance of methicillin-resistant S. aureus (MRSA) bacteremia was 1.0 day, irrespective of daptomycin dose, representing a significantly faster bacteremia clearance compared to SOC (1.0 versus 5.0 days; P < 0.01). Regimens with higher daptomycin doses were not associated with increased incidence of AEs. In conclusion, higher-dose daptomycin may be an effective and safe alternative to SOC in the treatment of left-sided IE due to common Gram-positive pathogens. PMID:24080644

  20. Coefficient Alpha: A Reliability Coefficient for the 21st Century?

    ERIC Educational Resources Information Center

    Yang, Yanyun; Green, Samuel B.

    2011-01-01

    Coefficient alpha is almost universally applied to assess reliability of scales in psychology. We argue that researchers should consider alternatives to coefficient alpha. Our preference is for structural equation modeling (SEM) estimates of reliability because they are informative and allow for an empirical evaluation of the assumptions…

  1. Gas-film coefficients for streams

    USGS Publications Warehouse

    Rathbun, R.E.; Tai, D.Y.

    1983-01-01

    Equations for predicting the gas-film coefficient for the volatilization of organic solutes from streams are developed. The film coefficient is a function of windspeed and water temperature. The dependence of the coefficient on windspeed is determined from published information on the evaporation of water from a canal. The dependence of the coefficient on temperature is determined from laboratory studies on the evaporation of water. Procedures for adjusting the coefficients for different organic solutes are based on the molecular diffusion coefficient and the molecular weight. The molecular weight procedure is easiest to use because of the availability of molecular weights. However, the theoretical basis of the procedure is questionable. The diffusion coefficient procedure is supported by considerable data. Questions, however, remain regarding the exact dependence of the film coefficint on the diffusion coefficient. It is suggested that the diffusion coefficient procedure with a 0.68-power dependence be used when precise estimate of the gas-film coefficient are needed and that the molecular weight procedure be used when only approximate estimates are needed.

  2. The influence of the dose calculation resolution of VMAT plans on the calculated dose for eye lens and optic pathway.

    PubMed

    Park, Jong Min; Park, So-Yeon; Kim, Jung-In; Carlson, Joel; Kim, Jin Ho

    2017-03-01

    To investigate the effect of dose calculation grid on calculated dose-volumetric parameters for eye lenses and optic pathways. A total of 30 patients treated using the volumetric modulated arc therapy (VMAT) technique, were retrospectively selected. For each patient, dose distributions were calculated with calculation grids ranging from 1 to 5 mm at 1 mm intervals. Identical structures were used for VMAT planning. The changes in dose-volumetric parameters according to the size of the calculation grid were investigated. Compared to dose calculation with 1 mm grid, the maximum doses to the eye lens with calculation grids of 2, 3, 4 and 5 mm increased by 0.2 ± 0.2 Gy, 0.5 ± 0.5 Gy, 0.9 ± 0.8 Gy and 1.7 ± 1.5 Gy on average, respectively. The Spearman's correlation coefficient between dose gradients near structures vs. the differences between the calculated doses with 1 mm grid and those with 5 mm grid, were 0.380 (p < 0.001). For the accurate calculation of dose distributions, as well as efficiency, using a grid size of 2 mm appears to be the most appropriate choice.

  3. A study of dose-proportionality in the pharmacokinetics of the oral direct renin inhibitor aliskiren in healthy subjects.

    PubMed

    Limoges, D; Dieterich, H A; Yeh, C-M; Vaidyanathan, S; Howard, D; Dole, W P

    2008-05-01

    To evaluate the dose-proportionality of the pharmacokinetics of aliskiren, the first in a new class of orally active direct renin inhibitors approved for the treatment of hypertension. This was an open-label, single-center, single-dose, randomized, 4-period crossover study. Following a 21-day screening period, 32 healthy male or female subjects (ages 18 - 45 years) were randomized to 1 of 4 aliskiren dosing sequence groups (8 subjects per group): 75, 150, 300 and 600 mg. Blood samples were obtained for determination of plasma aliskiren concentrations (HPLC/MS/MS) for 96 h post dose. Log-transformed pharmacokinetic parameters AUC and C(max) were analyzed to determine dose-proportionality using the power model, parameter = A*(Dose)(beta), where A = intercept and beta = dose-proportionality coefficient. The predefined dose-proportionality criteria over the dose range 75 â 600 mg were 90% confidence intervals (CI) for beta contained within the range 0.89 - 1.11. AUC and Cmax values increased with increasing doses of aliskiren. Both AUC and C(max) were associated with high variability (coefficient of variation 55 - 64% for AUC and 59 - 117% for C(max)). The estimated proportionality coefficients (beta) for AUC(0-infiniti), AUC(0-t) and C(max) were 1.18 (90% CI 1.10, 1.25), 1.29 (90% CI 1.22, 1.36) and 1.42 (90% CI 1.31, 1.52), respectively. Dose-proportionality was, therefore, not demonstrated across the entire 8-fold dose range. For the clinical dose range of 150 â 300 mg, increases of 2.3- and 2.6-fold were observed for AUC and C(max), respectively. All doses of aliskiren were well tolerated. Exposure to aliskiren was greater than proportional over the dose range of 75 - 600 mg. Over the therapeutic dose range of 150 â 300 mg approved for the treatment of hypertension, AUC and Cmax increased by 2.3- and 2.6-fold, respectively. The pharmacokinetics of aliskiren show relatively high intersubject variability.

  4. Thermal dose dependent optical property changes of ex vivo chicken breast tissues between 500 and 1100 nm.

    PubMed

    Adams, Matthew T; Wang, Qi; Cleveland, Robin O; Roy, Ronald A

    2014-07-07

    This study examines the effectiveness of the thermal dose model in accurately predicting thermally induced optical property changes of ex vivo chicken breast between 500-1100 nm. The absorption coefficient, μa, and the reduced scattering coefficient, μ's, of samples are measured as a function of thermal dose over the range 50 °C-70 °C. Additionally, the maximum observable changes in μa and μ's are measured as a function of temperature in the range 50 °C-90 °C. Results show that the standard thermal dose model used in the majority of high-intensity focused ultrasound (HIFU) treatments is insufficient for modeling optical property changes, but that the isodose constant may be modified in order to better predict thermally induced changes. Additionally, results are presented that show a temperature dependence on changes in the two coefficients, with an apparent threshold effect occurring between 65 °C-70 °C.

  5. Dose estimates for the solid waste performance assessment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rittman, P.D.

    1994-08-30

    The Solid Waste Performance Assessment calculations by PNL in 1990 were redone to incorporate changes in methods and parameters since then. The ten scenarios found in their report were reduced to three, the Post-Drilling Resident, the Post-Excavation Resident, and an All Pathways Irrigator. In addition, estimates of population dose to people along the Columbia River are also included. The attached report describes the methods and parameters used in the calculations, and derives dose factors for each scenario. In addition, waste concentrations, ground water concentrations, and river water concentrations needed to reach the performance objectives of 100 mrem/yr and 500 person-rem/yrmore » are computed. Internal dose factors from DOE-0071 were applied when computing internal dose. External dose rate factors came from the GENII Version 1.485 software package. Dose calculations were carried out on a spreadsheet. The calculations are described in detail in the report for 63 nuclides, including 5 not presently in the GENII libraries. The spreadsheet calculations were checked by comparison with GENII, as described in Appendix D.« less

  6. A double-blind, placebo-controlled, randomised, parallel-group, dose-escalating, repeat dose study in healthy volunteers to evaluate the safety, tolerability, pharmacodynamic effects and pharmacokinetics of the once daily rectal application of NRL001 suppositories for 14 days.

    PubMed

    Bell, D; Duffin, A; Jacobs, A; Pediconi, C; Gruss, H J

    2014-03-01

    The 1R,2S stereoisomer of methoxamine hydrochloride, NRL001, is a highly selective α1-adrenoceptor agonist being developed for the local treatment of non-structural faecal incontinence caused by weak internal anal sphincter tone. This study investigated the steady state pharmacokinetics (PK) and safety of 2 g rectal suppositories containing NRL001 in different strengths (7.5, 10, 12.5 or 15 mg). Healthy volunteers aged 18-45 years received 14 daily doses of NRL001 2 g suppositories or matching placebo. In each dose group nine participants received NRL001 and three received placebo. Blood samples to determine NRL001 concentrations were taken on Days 1, 7 and 14. Cardiovascular parameters were collected via electrocardiograms, Holter monitoring (three lead Holter monitor) and vital signs. Forty-eight volunteers were enrolled; 43 completed the study and were included in the PK analysis population. AUC and Cmax broadly increased with increasing dose, Tmax generally occurred between 4.0 and 5.0 h. Although the data did not appear strongly dose proportional, dose proportionality analysis did not provide evidence against dose proportionality as the log(dose) coefficients were not significantly < 1. NRL001 did not accumulate over time for any dose. Increasing NRL001 concentrations were related to changes in vital sign variables, most notably decreased heart rate. The most commonly reported adverse events (AEs) in the active treatment groups were paraesthesia and piloerection. Treatment with NRL001 was generally well tolerated over 14 days once daily dosing and plasma NRL001 did not accumulate over time. Treatment was associated with changes in vital sign variables, most notably decreased heart rate. AEs commonly reported with NRL001 treatment were events indicative of a systemic α-adrenergic effect. Colorectal Disease © 2014 The Association of Coloproctology of Great Britain and Ireland.

  7. Radiocesium contamination and estimated internal exposure doses in edible wild plants in Kawauchi Village following the Fukushima nuclear disaster

    PubMed Central

    Tsuchiya, Rimi; Orita, Makiko; Fukushima, Yoshiko; Endo, Yuukou; Yamashita, Shunichi; Takamura, Noboru

    2017-01-01

    Kawauchi Village, in Fukushima Prefecture, is located within a 30-km radius of the nuclear disaster site of the Fukushima Daiichi Nuclear Power Plant (FDNPP). “Sansai” (edible wild plants) in this village have been evaluated by gamma spectrometry after the residents had returned to their homes, to determine the residents’ risk of internal exposure to artificial radionuclides due to consumption of these plants. The concentrations of radiocesium (cesium-134 and cesium-137) were measured in all 364 samples collected in spring 2015. Overall, 34 (9.3%) samples exceeded the regulatory limit of 100 Bq/kg established by Japanese guidelines, 80 (22.0%) samples registered between 100 Bq/kg and 20 Bq/kg, and 250 (68.7%) registered below 20 Bq/kg (the detection limit). The internal effective doses from edible wild plants were sufficiently low (less than 1 mSv/y), at 3.5±1.2 μSv/y for males and 3.2±0.9 μSv/y for females (2.7±1.5 μSv/y for children and 3.7±0.7 μSv/y for adults in 2015). Thus, the potential internal exposure doses due to consumption of these edible wild plants were below the applicable radiological standard limits for foods. However, high radiocesium levels were confirmed in specific species, such as Eleutherococcus sciadophylloides (“Koshiabura”) and Osmunda japonica (Asian royal fern, “Zenmai”). Consequently, a need still might exist for long-term follow-up such as environmental monitoring, physical and mental support to avoid unnecessary radiation exposure and to remove anxiety about adverse health effects due to radiation. The customs of residents, especially the “satoyama” (countryside) culture of ingesting “sansai,” also require consideration in the further reconstruction of areas such as Kawauchi Village that were affected by the nuclear disaster. PMID:29240794

  8. Radiocesium contamination and estimated internal exposure doses in edible wild plants in Kawauchi Village following the Fukushima nuclear disaster.

    PubMed

    Tsuchiya, Rimi; Taira, Yasuyuki; Orita, Makiko; Fukushima, Yoshiko; Endo, Yuukou; Yamashita, Shunichi; Takamura, Noboru

    2017-01-01

    Kawauchi Village, in Fukushima Prefecture, is located within a 30-km radius of the nuclear disaster site of the Fukushima Daiichi Nuclear Power Plant (FDNPP). "Sansai" (edible wild plants) in this village have been evaluated by gamma spectrometry after the residents had returned to their homes, to determine the residents' risk of internal exposure to artificial radionuclides due to consumption of these plants. The concentrations of radiocesium (cesium-134 and cesium-137) were measured in all 364 samples collected in spring 2015. Overall, 34 (9.3%) samples exceeded the regulatory limit of 100 Bq/kg established by Japanese guidelines, 80 (22.0%) samples registered between 100 Bq/kg and 20 Bq/kg, and 250 (68.7%) registered below 20 Bq/kg (the detection limit). The internal effective doses from edible wild plants were sufficiently low (less than 1 mSv/y), at 3.5±1.2 μSv/y for males and 3.2±0.9 μSv/y for females (2.7±1.5 μSv/y for children and 3.7±0.7 μSv/y for adults in 2015). Thus, the potential internal exposure doses due to consumption of these edible wild plants were below the applicable radiological standard limits for foods. However, high radiocesium levels were confirmed in specific species, such as Eleutherococcus sciadophylloides ("Koshiabura") and Osmunda japonica (Asian royal fern, "Zenmai"). Consequently, a need still might exist for long-term follow-up such as environmental monitoring, physical and mental support to avoid unnecessary radiation exposure and to remove anxiety about adverse health effects due to radiation. The customs of residents, especially the "satoyama" (countryside) culture of ingesting "sansai," also require consideration in the further reconstruction of areas such as Kawauchi Village that were affected by the nuclear disaster.

  9. EXPOSURES AND INTERNAL DOSES OF ...

    EPA Pesticide Factsheets

    The National Center for Environmental Assessment (NCEA) has released a final report that presents and applies a method to estimate distributions of internal concentrations of trihalomethanes (THMs) in humans resulting from a residential drinking water exposure. The report presents simulations of oral, dermal and inhalation exposures and demonstrates the feasibility of linking the US EPA’s information Collection Rule database with other databases on external exposure factors and physiologically based pharmacokinetic modeling to refine population-based estimates of exposure. Review Draft - by 2010, develop scientifically sound data and approaches to assess and manage risks to human health posed by exposure to specific regulated waterborne pathogens and chemicals, including those addressed by the Arsenic, M/DBP and Six-Year Review Rules.

  10. Patient-specific dose estimation for pediatric chest CT

    PubMed Central

    Li, Xiang; Samei, Ehsan; Segars, W. Paul; Sturgeon, Gregory M.; Colsher, James G.; Frush, Donald P.

    2008-01-01

    Current methods for organ and effective dose estimations in pediatric CT are largely patient generic. Physical phantoms and computer models have only been developed for standard/limited patient sizes at discrete ages (e.g., 0, 1, 5, 10, 15years old) and do not reflect the variability of patient anatomy and body habitus within the same size/age group. In this investigation, full-body computer models of seven pediatric patients in the same size/protocol group (weight: 11.9–18.2kg) were created based on the patients’ actual multi-detector array CT (MDCT) data. Organs and structures in the scan coverage were individually segmented. Other organs and structures were created by morphing existing adult models (developed from visible human data) to match the framework defined by the segmented organs, referencing the organ volume and anthropometry data in ICRP Publication 89. Organ and effective dose of these patients from a chest MDCT scan protocol (64 slice LightSpeed VCT scanner, 120kVp, 70 or 75mA, 0.4s gantry rotation period, pitch of 1.375, 20mm beam collimation, and small body scan field-of-view) was calculated using a Monte Carlo program previously developed and validated to simulate radiation transport in the same CT system. The seven patients had normalized effective dose of 3.7–5.3mSv∕100mAs (coefficient of variation: 10.8%). Normalized lung dose and heart dose were 10.4–12.6mGy∕100mAs and 11.2–13.3mGy∕100mAs, respectively. Organ dose variations across the patients were generally small for large organs in the scan coverage (<7%), but large for small organs in the scan coverage (9%–18%) and for partially or indirectly exposed organs (11%–77%). Normalized effective dose correlated weakly with body weight (correlation coefficient:r=−0.80). Normalized lung dose and heart dose correlated strongly with mid-chest equivalent diameter (lung: r=−0.99, heart: r=−0.93); these strong correlation relationships can be used to estimate patient

  11. Patient-specific dose estimation for pediatric chest CT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li Xiang; Samei, Ehsan; Segars, W. Paul

    2008-12-15

    Current methods for organ and effective dose estimations in pediatric CT are largely patient generic. Physical phantoms and computer models have only been developed for standard/limited patient sizes at discrete ages (e.g., 0, 1, 5, 10, 15 years old) and do not reflect the variability of patient anatomy and body habitus within the same size/age group. In this investigation, full-body computer models of seven pediatric patients in the same size/protocol group (weight: 11.9-18.2 kg) were created based on the patients' actual multi-detector array CT (MDCT) data. Organs and structures in the scan coverage were individually segmented. Other organs and structuresmore » were created by morphing existing adult models (developed from visible human data) to match the framework defined by the segmented organs, referencing the organ volume and anthropometry data in ICRP Publication 89. Organ and effective dose of these patients from a chest MDCT scan protocol (64 slice LightSpeed VCT scanner, 120 kVp, 70 or 75 mA, 0.4 s gantry rotation period, pitch of 1.375, 20 mm beam collimation, and small body scan field-of-view) was calculated using a Monte Carlo program previously developed and validated to simulate radiation transport in the same CT system. The seven patients had normalized effective dose of 3.7-5.3 mSv/100 mAs (coefficient of variation: 10.8%). Normalized lung dose and heart dose were 10.4-12.6 mGy/100 mAs and 11.2-13.3 mGy/100 mAs, respectively. Organ dose variations across the patients were generally small for large organs in the scan coverage (<7%), but large for small organs in the scan coverage (9%-18%) and for partially or indirectly exposed organs (11%-77%). Normalized effective dose correlated weakly with body weight (correlation coefficient: r=-0.80). Normalized lung dose and heart dose correlated strongly with mid-chest equivalent diameter (lung: r=-0.99, heart: r=-0.93); these strong correlation relationships can be used to estimate patient-specific organ

  12. Contralateral breast dose from chest wall and breast irradiation: local experience.

    PubMed

    Alzoubi, A S; Kandaiya, S; Shukri, A; Elsherbieny, E

    2010-06-01

    Second cancer induction in the contralateral breast (CB) is an issue of some concern in breast radiotherapy especially for women under the age of 45 years at the time of treatment. The CB dose from 2-field and 3-field techniques in post-mastectomy chest wall irradiations in an anthropomorphic phantom as well as in patients were measured using thermoluminescent dosimeters (TLDs) at the local radiotherapy center. Breast and chest wall radiotherapy treatments were planned conformally (3D-CRT) and delivered using 6-MV photons. The measured CB dose at the surface fell sharply with distance from the field edge. However, the average ratio of the measured to the calculated CB dose using the pencil beam algorithm at the surface was approximately 53%. The mean and median measured internal dose at the posterior border of CB in a phantom was 5.47+/-0.22 cGy and 5.44 cGy, respectively. The internal CB dose was relatively independent of depth. In the present study the internal CB dose is 2.1-4.1% of the prescribed dose which is comparable to the values reported by other authors.

  13. 10 CFR 835.207 - Occupational dose limits for minors.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 4 2010-01-01 2010-01-01 false Occupational dose limits for minors. 835.207 Section 835.207 Energy DEPARTMENT OF ENERGY OCCUPATIONAL RADIATION PROTECTION Standards for Internal and External Exposure § 835.207 Occupational dose limits for minors. The dose limits for minors occupationally exposed...

  14. Assessment of radiation doses from residential smoke detectors that contain americium-241

    NASA Astrophysics Data System (ADS)

    Odonnell, F. R.; Etnier, E. L.; Holton, G. A.; Travis, C. C.

    1981-10-01

    External dose equivalents and internal dose commitments were estimated for individuals and populations from annual distribution, use, and disposal of 10 million ionization chamber smoke detectors that contain 110 kBq americium-241 each. Under exposure scenarios developed for normal distribution, use, and disposal using the best available information, annual external dose equivalents to average individuals were estimated to range from 4 fSv to 20 nSv for total body and from 7 fSv to 40 nSv for bone. Internal dose commitments to individuals under post disposal scenarios were estimated to range from 0.006 to 80 micro-Sv (0.0006 to 8 mrem) to total body and from 0.06 to 800 micro-Sv to bone. The total collective dose (the sum of external dose equivalents and 50-year internal dose commitments) for all individuals involved with distribution, use, or disposal of 10 million smoke detectors was estimated to be about 0.38 person-Sv (38 person-rem) to total body and 00 ft squared.

  15. Comparison of Nine Statistical Model Based Warfarin Pharmacogenetic Dosing Algorithms Using the Racially Diverse International Warfarin Pharmacogenetic Consortium Cohort Database

    PubMed Central

    Liu, Rong; Li, Xi; Zhang, Wei; Zhou, Hong-Hao

    2015-01-01

    Objective Multiple linear regression (MLR) and machine learning techniques in pharmacogenetic algorithm-based warfarin dosing have been reported. However, performances of these algorithms in racially diverse group have never been objectively evaluated and compared. In this literature-based study, we compared the performances of eight machine learning techniques with those of MLR in a large, racially-diverse cohort. Methods MLR, artificial neural network (ANN), regression tree (RT), multivariate adaptive regression splines (MARS), boosted regression tree (BRT), support vector regression (SVR), random forest regression (RFR), lasso regression (LAR) and Bayesian additive regression trees (BART) were applied in warfarin dose algorithms in a cohort from the International Warfarin Pharmacogenetics Consortium database. Covariates obtained by stepwise regression from 80% of randomly selected patients were used to develop algorithms. To compare the performances of these algorithms, the mean percentage of patients whose predicted dose fell within 20% of the actual dose (mean percentage within 20%) and the mean absolute error (MAE) were calculated in the remaining 20% of patients. The performances of these techniques in different races, as well as the dose ranges of therapeutic warfarin were compared. Robust results were obtained after 100 rounds of resampling. Results BART, MARS and SVR were statistically indistinguishable and significantly out performed all the other approaches in the whole cohort (MAE: 8.84–8.96 mg/week, mean percentage within 20%: 45.88%–46.35%). In the White population, MARS and BART showed higher mean percentage within 20% and lower mean MAE than those of MLR (all p values < 0.05). In the Asian population, SVR, BART, MARS and LAR performed the same as MLR. MLR and LAR optimally performed among the Black population. When patients were grouped in terms of warfarin dose range, all machine learning techniques except ANN and LAR showed significantly

  16. Mean glandular dose to patients from stereotactic breast biopsy procedures.

    PubMed

    Paixão, Lucas; Chevalier, Margarita; Hurtado-Romero, Antonio E; Garayoa, Julia

    2018-06-07

    The aim of this work is to study the radiation doses delivered to a group of patients that underwent a stereotactic breast biopsy (SBB) procedure. Mean glandular doses (MGD) were estimated from the air-kerma measured at the breast surface entrance multiplying by specific conversion coefficients (DgN) that were estimated using Monte Carlo simulations. DgN were calculated for the 0º and ±15º projections used in SBB and for the particular beam quality. Data on 61 patients were collected showing that a typical SBB procedure is composed by 10 images. MGD was on average (4 ± 2) mGy with (0.38 ± 0.06) mGy per image. The use of specific conversion coefficients instead of typical DgN for mammography/tomosynthesis yields to obtain MGD values for SBB that are around a 65% lower on average. © 2018 Institute of Physics and Engineering in Medicine.

  17. Imaging doses in radiation therapy from kilovoltage cone-beam computed tomography

    NASA Astrophysics Data System (ADS)

    Hyer, Daniel Ellis

    represent the average dose in the acrylic phantom. By comparing this value to the measured organ doses, organ dose conversion coefficients were developed. These conversion coefficients allow specific organ doses to be estimated quickly and easily using readily available clinical equipment.

  18. On the characteristics of a residual external signal seen in coefficients of main geomagnetic field models

    NASA Astrophysics Data System (ADS)

    Stefan, Cristiana; Demetrescu, Crisan; Dobrica, Venera

    2014-05-01

    Several recently developed main geomagnetic field models, based on both observatory and satellite data (e.g. IGRF, CHAOS, GRIMM, COV-OBS), as well as the historical model gufm1, have been designed to describe only the internal part of the field, except for the COV-OBS that also accounts for the external dipole. In this paper we analyze data and coefficients from two main field models, namely gufm1 (Jackson et al., 2000) and COV-OBS (Gillet et al., 2013), by means of low pass filters with a cutoff period of 11-year, to evidence a residual signal with seemingly external sources, superimposed on the internal part of the field. The characteristics of the residual signal in the dipole and non-dipole coefficients are discussed.

  19. (32)P measurment of urine samples and internal dose assessment for radiation workers in life science laboratories.

    PubMed

    Yoon, S; Pak, M-J; Park, S; Yoo, J; Ha, W-H; Jang, H-K; Kim, J K

    2014-12-01

    (32)P measurements of urine samples and internal dose assessments were conducted for workers in life science laboratories. A procedure for sample pre-treatment was established and validation was performed to exclude interference and to detect (32)P levels accurately. The detection conditions for Cherenkov radiation were evaluated and the accuracy of Cherenkov radiation measurements validated. The analytical and measurement procedures were applied to urine samples collected from 11 workers from life sciences laboratories. The results of the measurements generally indicated very low background radiation levels, but daily urine samples from two workers were above the minimum detectable activity. The (32)P concentrations for two of the workers were 29.3  ±  10.4 Bq•d(-1) and 24.1  ±  11.8 Bq•d(-1), respectively, at intake levels of 4.12 kBq and 2.61 kBq. The effective doses for these two workers were 4.6 μSv and 2.9 μSv. Overall, the results indicate very low levels of radioactivity, except for cases related to specific working conditions.

  20. Measurement of 131I activity in thyroid of nuclear medical staff and internal dose assessment in a Polish nuclear medical hospital.

    PubMed

    Brudecki, K; Kowalska, A; Zagrodzki, P; Szczodry, A; Mroz, T; Janowski, P; Mietelski, J W

    2017-03-01

    This paper presents results of 131 I thyroid activity measurements in 30 members of the nuclear medicine personnel of the Department of Endocrinology and Nuclear Medicine Holy Cross Cancer Centre in Kielce, Poland. A whole-body spectrometer equipped with two semiconductor gamma radiation detectors served as the basic research instrument. In ten out of 30 examined staff members, the determined 131 I activity was found to be above the detection limit (DL = 5 Bq of 131 I in the thyroid). The measured activities ranged from (5 ± 2) Bq to (217 ± 56) Bq. The highest activities in thyroids were detected for technical and cleaning personnel, whereas the lowest values were recorded for medical doctors. Having measured the activities, an attempt has been made to estimate the corresponding annual effective doses, which were found to range from 0.02 to 0.8 mSv. The highest annual equivalent doses have been found for thyroid, ranging from 0.4 to 15.4 mSv, detected for a cleaner and a technician, respectively. The maximum estimated effective dose corresponds to 32% of the annual background dose in Poland, and to circa 4% of the annual limit for the effective dose due to occupational exposure of 20 mSv per year, which is in compliance with the value recommended by the International Commission on Radiological Protection.

  1. A parameterization scheme for the x-ray linear attenuation coefficient and energy absorption coefficient.

    PubMed

    Midgley, S M

    2004-01-21

    A novel parameterization of x-ray interaction cross-sections is developed, and employed to describe the x-ray linear attenuation coefficient and mass energy absorption coefficient for both elements and mixtures. The new parameterization scheme addresses the Z-dependence of elemental cross-sections (per electron) using a simple function of atomic number, Z. This obviates the need for a complicated mathematical formalism. Energy dependent coefficients describe the Z-direction curvature of the cross-sections. The composition dependent quantities are the electron density and statistical moments describing the elemental distribution. We show that it is possible to describe elemental cross-sections for the entire periodic table and at energies above the K-edge (from 6 keV to 125 MeV), with an accuracy of better than 2% using a parameterization containing not more than five coefficients. For the biologically important elements 1 < or = Z < or = 20, and the energy range 30-150 keV, the parameterization utilizes four coefficients. At higher energies, the parameterization uses fewer coefficients with only two coefficients needed at megavoltage energies.

  2. Development of a method to estimate organ doses for pediatric CT examinations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Papadakis, Antonios E., E-mail: apapadak@pagni.gr; Perisinakis, Kostas; Damilakis, John

    Purpose: To develop a method for estimating doses to primarily exposed organs in pediatric CT by taking into account patient size and automatic tube current modulation (ATCM). Methods: A Monte Carlo CT dosimetry software package, which creates patient-specific voxelized phantoms, accurately simulates CT exposures, and generates dose images depicting the energy imparted on the exposed volume, was used. Routine head, thorax, and abdomen/pelvis CT examinations in 92 pediatric patients, ranging from 1-month to 14-yr-old (49 boys and 43 girls), were simulated on a 64-slice CT scanner. Two sets of simulations were performed in each patient using (i) a fixed tubemore » current (FTC) value over the entire examination length and (ii) the ATCM profile extracted from the DICOM header of the reconstructed images. Normalized to CTDI{sub vol} organ dose was derived for all primary irradiated radiosensitive organs. Normalized dose data were correlated to patient’s water equivalent diameter using log-transformed linear regression analysis. Results: The maximum percent difference in normalized organ dose between FTC and ATCM acquisitions was 10% for eyes in head, 26% for thymus in thorax, and 76% for kidneys in abdomen/pelvis. In most of the organs, the correlation between dose and water equivalent diameter was significantly improved in ATCM compared to FTC acquisitions (P < 0.001). Conclusions: The proposed method employs size specific CTDI{sub vol}-normalized organ dose coefficients for ATCM-activated and FTC acquisitions in pediatric CT. These coefficients are substantially different between ATCM and FTC modes of operation and enable a more accurate assessment of patient-specific organ dose in the clinical setting.« less

  3. Normalized dose data for upper gastrointestinal tract contrast studies performed to infants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Damilakis, John; Stratakis, John; Raissaki, Maria

    The aim of the current study was to (a) provide normalized dose data for the estimation of the radiation dose from upper gastrointestinal tract contrast (UGIC) studies carried out to infants and (b) estimate the average patient dose and risks associated with radiation from UGIC examinations performed in our institution. Organ and effective doses, normalized to entrance skin dose (ESD) and dose area product (DAP) were estimated for UGIC procedures utilizing the Monte Carlo N-particle (MCNP) transport code and two mathematical phantoms, one corresponding to the size of a newborn and one to the size of a 1-year-old child. Themore » validity of the MCNP results was verified by comparison with dose data obtained in physical anthropomorphic phantoms simulating a newborn and a 1-year-old infant using thermoluminescence dosimetry (TLD). Data were also collected from 25 consecutive UGIC examinations performed to infants. Study participants were (a) 12 infants aged from 0.5 to 5.9 months (group 1) and (b) 13 infants aged from 6 to 15 months (group 2). For each examination, ESD and dose to comforters were measured using TLD. Patient effective doses were estimated using normalized dose data obtained in the simulation study. The risk for fatal cancer induction was estimated using appropriate coefficients. The results consist of tabulated dose data normalized to ESD or DAP for the estimation of patient dose. Conversion coefficients were estimated for various tube potentials and beam filtration values. The mean total fluoroscopy time was 1.26 and 1.62 min for groups 1 and 2, respectively. The average effective dose was 1.6 mSv for group 1 and 1.9 mSv for group 2. The risk of cancer attributable to the radiation exposure associated with a typical UGIC study was found to be up to 3 per 10 000 infants undergoing an UGIC examination. The mean radiation dose absorbed by the hands of comforters was 47 {mu}Gy. In conclusion, estimation of radiation doses associated with UGIC studies

  4. Telemedicine-guided, very low-dose international normalized ratio self-control in patients with mechanical heart valve implants.

    PubMed

    Koertke, Heinrich; Zittermann, Armin; Wagner, Otto; Secer, Songuel; Sciangula, Alfonso; Saggau, Werner; Sack, Falk-Udo; Ennker, Jürgen; Cremer, Jochen; Musumeci, Francesco; Gummert, Jan F

    2015-06-01

    To study in patients performing international normalized ratio (INR) self-control the efficacy and safety of an INR target range of 1.6-2.1 for aortic valve replacement (AVR) and 2.0-2.5 for mitral valve replacement (MVR) or double valve replacement (DVR). In total, 1304 patients undergoing AVR, 189 undergoing MVR and 78 undergoing DVR were randomly assigned to low-dose INR self-control (LOW group) (INR target range, AVR: 1.8-2.8; MVR/DVR: 2.5-3.5) or very low-dose INR self-control once a week (VLO group) and twice a week (VLT group) (INR target range, AVR: 1.6-2.1; MVR/DVR: 2.0-2.5), with electronically guided transfer of INR values. We compared grade III complications (major bleeding and thrombotic events; primary end-points) and overall mortality (secondary end-point) across the three treatment groups. Two-year freedom from bleedings in the LOW, VLO, and VLT groups was 96.3, 98.6, and 99.1%, respectively (P = 0.008). The corresponding values for thrombotic events were 99.0, 99.8, and 98.9%, respectively (P = 0.258). The risk-adjusted composite of grade III complications was in the per-protocol population (reference: LOW-dose group) as follows: hazard ratio = 0.307 (95% CI: 0.102-0.926; P = 0.036) for the VLO group and = 0.241 (95% CI: 0.070-0.836; P = 0.025) for the VLT group. The corresponding values of 2-year mortality were = 1.685 (95% CI: 0.473-5.996; P = 0.421) for the VLO group and = 4.70 (95% CI: 1.62-13.60; P = 0.004) for the VLT group. Telemedicine-guided very low-dose INR self-control is comparable with low-dose INR in thrombotic risk, and is superior in bleeding risk. Weekly testing is sufficient. Given the small number of MVR and DVR patients, results are only valid for AVR patients. Published on behalf of the European Society of Cardiology. All rights reserved. © The Author 2014. For permissions please email: journals.permissions@oup.com.

  5. A kinematic-based methodology for radiological protection: Runoff analysis to calculate the effective dose for internal exposure caused by ingestion of radioactive isotopes

    NASA Astrophysics Data System (ADS)

    Sasaki, Syota; Yamada, Tadashi; Yamada, Tomohito J.

    2014-05-01

    We aim to propose a kinematic-based methodology similar with runoff analysis for readily understandable radiological protection. A merit of this methodology is to produce sufficiently accurate effective doses by basic analysis. The great earthquake attacked the north-east area in Japan on March 11, 2011. The system of electrical facilities to control Fukushima Daiichi nuclear power plant was completely destroyed by the following tsunamis. From the damaged reactor containment vessels, an amount of radioactive isotopes had leaked and been diffused in the vicinity of the plant. Radiological internal exposure caused by ingestion of food containing radioactive isotopes has become an issue of great interest to the public, and has caused excessive anxiety because of a deficiency of fundamental knowledge concerning radioactivity. Concentrations of radioactivity in the human body and internal exposure have been studied extensively. Previous radiologic studies, for example, studies by International Commission on Radiological Protection(ICRP), employ a large-scale computational simulation including actual mechanism of metabolism in the human body. While computational simulation is a standard method for calculating exposure doses among radiology specialists, these methods, although exact, are too difficult for non-specialists to grasp the whole image owing to the sophistication. In this study, the human body is treated as a vessel. The number of radioactive atoms in the human body can be described by an equation of continuity, which is the only governing equation. Half-life, the period of time required for the amount of a substance decreases by half, is only parameter to calculate the number of radioactive isotopes in the human body. Half-life depends only on the kinds of nuclides, there are no arbitrary parameters. It is known that the number of radioactive isotopes decrease exponentially by radioactive decay (physical outflow). It is also known that radioactive isotopes

  6. A generic biokinetic model for noble gases with application to radon

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Leggett, Richard Wayne; Marsh, James; Gregoratto, Demetrio

    The International Commission for Radiological Protection (ICRP) currently uses a dose conversion coefficient to calculate effective dose per unit exposure to radon and its progeny. The coefficient is derived by dividing the detriment associated with unit exposure to radon, as estimated from epidemiological studies, by the detriment per unit effective dose, as estimated mainly from atomic bomb survivor data and animal studies. In a recent statement the ICRP indicated that future guidance on exposure to radon and its progeny will be developed in the same way as guidance for any other radionuclide. That is, intake of radon and progeny willmore » be limited on the basis of effective dose coefficients derived from biokinetic and dosimetric models. This paper proposes a biokinetic model for systemic (absorbed) radon for use in the calculation of dose coefficients for inhaled or ingested radon. The model is based largely on physical laws governing transfer of a non-reactive and soluble gas between materials. Model predictions are shown to be consistent with results of controlled studies of the fate of internally deposited radon in human subjects.« less

  7. 10 CFR 20.1204 - Determination of internal exposure.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 1 2012-01-01 2012-01-01 false Determination of internal exposure. 20.1204 Section 20.1204 Energy NUCLEAR REGULATORY COMMISSION STANDARDS FOR PROTECTION AGAINST RADIATION Occupational Dose Limits § 20.1204 Determination of internal exposure. (a) For purposes of assessing dose used to determine...

  8. 10 CFR 20.1204 - Determination of internal exposure.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 1 2014-01-01 2014-01-01 false Determination of internal exposure. 20.1204 Section 20.1204 Energy NUCLEAR REGULATORY COMMISSION STANDARDS FOR PROTECTION AGAINST RADIATION Occupational Dose Limits § 20.1204 Determination of internal exposure. (a) For purposes of assessing dose used to determine...

  9. 10 CFR 20.1204 - Determination of internal exposure.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 1 2011-01-01 2011-01-01 false Determination of internal exposure. 20.1204 Section 20.1204 Energy NUCLEAR REGULATORY COMMISSION STANDARDS FOR PROTECTION AGAINST RADIATION Occupational Dose Limits § 20.1204 Determination of internal exposure. (a) For purposes of assessing dose used to determine...

  10. 10 CFR 20.1204 - Determination of internal exposure.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 1 2013-01-01 2013-01-01 false Determination of internal exposure. 20.1204 Section 20.1204 Energy NUCLEAR REGULATORY COMMISSION STANDARDS FOR PROTECTION AGAINST RADIATION Occupational Dose Limits § 20.1204 Determination of internal exposure. (a) For purposes of assessing dose used to determine...

  11. 10 CFR 20.1204 - Determination of internal exposure.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 1 2010-01-01 2010-01-01 false Determination of internal exposure. 20.1204 Section 20.1204 Energy NUCLEAR REGULATORY COMMISSION STANDARDS FOR PROTECTION AGAINST RADIATION Occupational Dose Limits § 20.1204 Determination of internal exposure. (a) For purposes of assessing dose used to determine...

  12. Combined Use of a Patient Dose Monitoring System and a Real-Time Occupational Dose Monitoring System for Fluoroscopically Guided Interventions.

    PubMed

    Heilmaier, Christina; Kara, Levent; Zuber, Niklaus; Berthold, Christian; Weishaupt, Dominik

    2016-04-01

    To determine the effect on patient radiation exposure of the combined use of a patient dose monitoring system and real-time occupational dose monitoring during fluoroscopically guided interventions (FGIs). Patient radiation exposure, in terms of the kerma area product (KAP; Gy ∙ cm(2)), was measured in period 1 with a patient dose monitoring system, and a real-time occupational dose monitoring system was additionally applied in period 2. Mean/median KAP in 19 different types of FGIs was analyzed in both periods for two experienced interventional radiologists combined as well as individually. Patient dose and occupational dose were correlated, applying Pearson and Spearman correlation coefficients. Although FGIs were similar in numbers and types over both periods, a substantial decrease was found for period 2 in total mean ± SD/median KAP for both operators together (period 1, 47 Gy ∙ cm(2) ± 67/41 Gy ∙ cm(2); period 2, 37 Gy ∙ cm(2) ± 69/34 Gy ∙ cm(2)) as well as for each individual operator (for all, P < .05). Overall, KAP declined considerably in 15 of 19 types of FGIs in period 2. Mean accumulated dose per intervention was 4.6 µSv, and mean dose rate was 0.24 mSv/h. There was a strong positive correlation between patient and occupational dose (r = 0.88). Combined use of a patient dose monitoring system and a real-time occupational dose monitoring system in FGIs significantly lessens patient and operator doses. Copyright © 2016 SIR. Published by Elsevier Inc. All rights reserved.

  13. Exciton diffusion coefficient measurement in ZnO nanowires under electron beam irradiation.

    PubMed

    Donatini, Fabrice; Pernot, Julien

    2018-03-09

    In semiconductor nanowires (NWs) the exciton diffusion coefficient can be determined using a scanning electron microscope fitted with a cathodoluminescence system. High spatial and temporal resolution cathodoluminescence experiments are needed to measure independently the exciton diffusion length and lifetime in single NWs. However, both diffusion length and lifetime can be affected by the electron beam bombardment during observation and measurement. Thus, in this work the exciton lifetime in a ZnO NW is measured versus the electron beam dose (EBD) via a time-resolved cathodoluminescence experiment with a temporal resolution of 50 ps. The behavior of the measured exciton lifetime is consistent with our recent work on the EBD dependence of the exciton diffusion length in similar NWs investigated under comparable SEM conditions. Combining the two results, the exciton diffusion coefficient in ZnO is determined at room temperature and is found constant over the full span of EBD.

  14. Assessment of radiation doses from residential smoke detectors that contain americium-241

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    O'Donnell, F.R.; Etnier, E.L.; Holton, G.A.

    1981-10-01

    External dose equivalents and internal dose commitments were estimated for individuals and populations from annual distribution, use, and disposal of 10 million ionization chamber smoke detectors that contain 110 kBq (3 ..mu..Ci) americium-241 each. Under exposure scenarios developed for normal distribution, use, and disposal using the best available information, annual external dose equivalents to average individuals were estimated to range from 4 fSv (0.4 prem) to 20 nSv (2 ..mu..rem) for total body and from 7 fSv to 40 nSv for bone. Internal dose commitments to individuals under post disposal scenarios were estimated to range from 0.006 to 80 ..mu..Svmore » (0.0006 to 8 mrem) to total body and from 0.06 to 800 ..mu..Sv to bone. The total collective dose (the sum of external dose equivalents and 50-year internal dose commitments) for all individuals involved with distribution, use, or disposal of 10 million smoke detectors was estimated to be about 0.38 person-Sv (38 person-rem) to total body and 00 ft/sup 2/).« less

  15. Measurements of the neutron dose and energy spectrum on the International Space Station during expeditions ISS-16 to ISS-21.

    PubMed

    Smith, M B; Akatov, Yu; Andrews, H R; Arkhangelsky, V; Chernykh, I V; Ing, H; Khoshooniy, N; Lewis, B J; Machrafi, R; Nikolaev, I; Romanenko, R Y; Shurshakov, V; Thirsk, R B; Tomi, L

    2013-01-01

    As part of the international Matroshka-R and Radi-N experiments, bubble detectors have been used on board the ISS in order to characterise the neutron dose and the energy spectrum of neutrons. Experiments using bubble dosemeters inside a tissue-equivalent phantom were performed during the ISS-16, ISS-18 and ISS-19 expeditions. During the ISS-20 and ISS-21 missions, the bubble dosemeters were supplemented by a bubble-detector spectrometer, a set of six detectors that was used to determine the neutron energy spectrum at various locations inside the ISS. The temperature-compensated spectrometer set used is the first to be developed specifically for space applications and its development is described in this paper. Results of the dose measurements indicate that the dose received at two different depths inside the phantom is not significantly different, suggesting that bubble detectors worn by a person provide an accurate reading of the dose received inside the body. The energy spectra measured using the spectrometer are in good agreement with previous measurements and do not show a strong dependence on the precise location inside the station. To aid the understanding of the bubble-detector response to charged particles in the space environment, calculations have been performed using a Monte-Carlo code, together with data collected on the ISS. These calculations indicate that charged particles contribute <2% to the bubble count on the ISS, and can therefore be considered as negligible for bubble-detector measurements in space.

  16. Assessment of out-of-field absorbed dose and equivalent dose in proton fields

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Clasie, Ben; Wroe, Andrew; Kooy, Hanne

    2010-01-15

    Purpose: In proton therapy, as in other forms of radiation therapy, scattered and secondary particles produce undesired dose outside the target volume that may increase the risk of radiation-induced secondary cancer and interact with electronic devices in the treatment room. The authors implement a Monte Carlo model of this dose deposited outside passively scattered fields and compare it to measurements, determine the out-of-field equivalent dose, and estimate the change in the dose if the same target volumes were treated with an active beam scanning technique. Methods: Measurements are done with a thimble ionization chamber and the Wellhofer MatriXX detector insidemore » a Lucite phantom with field configurations based on the treatment of prostate cancer and medulloblastoma. The authors use a GEANT4 Monte Carlo simulation, demonstrated to agree well with measurements inside the primary field, to simulate fields delivered in the measurements. The partial contributions to the dose are separated in the simulation by particle type and origin. Results: The agreement between experiment and simulation in the out-of-field absorbed dose is within 30% at 10-20 cm from the field edge and 90% of the data agrees within 2 standard deviations. In passive scattering, the neutron contribution to the total dose dominates in the region downstream of the Bragg peak (65%-80% due to internally produced neutrons) and inside the phantom at distances more than 10-15 cm from the field edge. The equivalent doses using 10 for the neutron weighting factor at the entrance to the phantom and at 20 cm from the field edge are 2.2 and 2.6 mSv/Gy for the prostate cancer and cranial medulloblastoma fields, respectively. The equivalent dose at 15-20 cm from the field edge decreases with depth in passive scattering and increases with depth in active scanning. Therefore, active scanning has smaller out-of-field equivalent dose by factors of 30-45 in the entrance region and this factor decreases with

  17. SECOND LATIN AMERICAN INTERCOMPARISON ON INTERNAL DOSE ASSESSMENT.

    PubMed

    Rojo, A; Puerta, N; Gossio, S; Gómez Parada, I; Cruz Suarez, R; López, E; Medina, C; Lastra Boylan, J; Pinheiro Ramos, M; Mora Ramírez, E; Alves Dos Reis, A; Yánez, H; Rubio, J; Vironneau Janicek, L; Somarriba Vanegas, F; Puerta Ortiz, J; Salas Ramírez, M; López Bejerano, G; da Silva, T; Miri Oliveira, C; Terán, M; Alfaro, M; García, T; Angeles, A; Duré Romero, E; Farias de Lima, F

    2016-09-01

    Internal dosimetry intercomparisons are essential for the verification of applied models and the consistency of results'. To that aim, the First Regional Intercomparison was organised in 2005, and that results led to the Second Regional Intercomparison Exercise in 2013, which was organised in the frame of the RLA 9/066 and coordinated by Autoridad Regulatoria Nuclear of Argentina. Four simulated cases covering intakes of (131)I, (137)Cs and Tritium were proposed. Ninteen centres from thirteen different countries participated in this exercise. This paper analyses the participants' results in this second exercise in order to test their skills and acquired knowledge, particularly in the application of the IDEAS Guidelines. It is important to highlight the increased number of countries that participated in this exercise compared with the first one and, furthermore, the improvement in the overall performance. The impact of the International Atomic Energy Agency (IAEA) Projects since 2003 has led to a significant enhancement of internal dosimetry capabilities that strengthen the radiation protection of workers. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  18. Effect of respiratory motion on internal radiation dosimetry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xie, Tianwu; Zaidi, Habib, E-mail: habib.zaidi@hcuge.ch; Geneva Neuroscience Center, Geneva University, Geneva CH-1205

    Purpose: Estimation of the radiation dose to internal organs is essential for the assessment of radiation risks and benefits to patients undergoing diagnostic and therapeutic nuclear medicine procedures including PET. Respiratory motion induces notable internal organ displacement, which influences the absorbed dose for external exposure to radiation. However, to their knowledge, the effect of respiratory motion on internal radiation dosimetry has never been reported before. Methods: Thirteen computational models representing the adult male at different respiratory phases corresponding to the normal respiratory cycle were generated from the 4D dynamic XCAT phantom. Monte Carlo calculations were performed using the MCNP transportmore » code to estimate the specific absorbed fractions (SAFs) of monoenergetic photons/electrons, the S-values of common positron-emitting radionuclides (C-11, N-13, O-15, F-18, Cu-64, Ga-68, Rb-82, Y-86, and I-124), and the absorbed dose of {sup 18}F-fluorodeoxyglucose ({sup 18}F-FDG) in 28 target regions for both the static (average of dynamic frames) and dynamic phantoms. Results: The self-absorbed dose for most organs/tissues is only slightly influenced by respiratory motion. However, for the lung, the self-absorbed SAF is about 11.5% higher at the peak exhale phase than the peak inhale phase for photon energies above 50 keV. The cross-absorbed dose is obviously affected by respiratory motion for many combinations of source-target pairs. The cross-absorbed S-values for the heart contents irradiating the lung are about 7.5% higher in the peak exhale phase than the peak inhale phase for different positron-emitting radionuclides. For {sup 18}F-FDG, organ absorbed doses are less influenced by respiratory motion. Conclusions: Respiration-induced volume variations of the lungs and the repositioning of internal organs affect the self-absorbed dose of the lungs and cross-absorbed dose between organs in internal radiation dosimetry. The dynamic

  19. Internal and external generalizability of temporal dose-response relationships for xerostomia following IMRT for head and neck cancer

    PubMed Central

    Thor, Maria; Owosho, Adepitan A; Clark, Haley D; Oh, Jung Hun; Riaz, Nadeem; Hovan, Allan; Tsai, Jillian; Thomas, Steven D; Yom, Sae Hee K; Wu, Jonn S; Huryn, Joseph M; Moiseenko, Vitali; Lee, Nancy Y; Estilo, Cherry L; Deasy, Joseph O

    2016-01-01

    Background and Purpose To study internal and external generalizability of temporal dose-response relationships for xerostomia after intensity-modulated radiotherapy (IMRT) for head and neck cancer, and to investigate potential amendments of the QUANTEC guidelines. Material and Methods Objective xerostomia was assessed in 121 patients (nCohort1=55; nCohort2=66) treated to 70Gy@2Gy in 2006–2015. Univariate and multivariate analyses (UVA, MVA with 1000 bootstrap populations) were conducted in Cohort1, and generalizability of the best-performing MVA model was investigated in Cohort2 (performance: AUC, p-values, and Hosmer-Lemeshow p-values (pHL)). Ultimately and for clinical guidance, minimum mean dose thresholds to the contralateral and the ipsilateral parotid glands (Dmeancontra, Dmeanipsi) were estimated from the generated dose-response curves. Results The observed xerostomia rate was 38%/47% (3 months) and 19%/23% (11–12 months) in Cohort1/Cohort2. Risk of xerostomia at 3 months increased for higher Dmeancontra and Dmeanipsi (Cohort1: 0.17•Dmeancontra+0.11•Dmeanipsi−8.13; AUC=0.90±0.05; p=0.0002±0.002; pHL=0.22±0.23; Cohort2: AUC=0.81; p<0.0001; pHL=0.27). The identified minimum Dmeancontra thresholds were lower than in the QUANTEC guidelines (Cohort1/Cohort2: Dmeancontra=12/19 Gy; Dmeancontra, Dmeanipsi=16, 25/20, 26 Gy). Conclusions Increased Dmeancontra and Dmeanipsi explain short-term xerostomia following IMRT. Our results also suggest decreasing Dmeancontra to below 20 Gy, while keeping Dmeanipsi to around 25 Gy. Long-term xerostomia was less frequent, and no dose-response relationship was established for this follow-up time. PMID:27890427

  20. Internal and external generalizability of temporal dose-response relationships for xerostomia following IMRT for head and neck cancer.

    PubMed

    Thor, Maria; Owosho, Adepitan A; Clark, Haley D; Oh, Jung Hun; Riaz, Nadeem; Hovan, Allan; Tsai, Jillian; Thomas, Steven D; Yom, Sae Hee K; Wu, Jonn S; Huryn, Joseph M; Moiseenko, Vitali; Lee, Nancy Y; Estilo, Cherry L; Deasy, Joseph O

    2017-02-01

    To study internal and external generalizability of temporal dose-response relationships for xerostomia after intensity-modulated radiotherapy (IMRT) for head and neck cancer, and to investigate potential amendments of the QUANTEC guidelines. Objective xerostomia was assessed in 121 patients (n Cohort1 =55; n Cohort2 =66) treated to 70Gy@2Gy in 2006-2015. Univariate and multivariate analyses (UVA, MVA with 1000 bootstrap populations) were conducted in Cohort1, and generalizability of the best-performing MVA model was investigated in Cohort2 (performance: AUC, p-values, and Hosmer-Lemeshow p-values (p HL )). Ultimately and for clinical guidance, minimum mean dose thresholds to the contralateral and the ipsilateral parotid glands (Dmean contra , Dmean ipsi ) were estimated from the generated dose-response curves. The observed xerostomia rate was 38%/47% (3months) and 19%/23% (11-12months) in Cohort1/Cohort2. Risk of xerostomia at 3months increased for higher Dmean contra and Dmean ipsi (Cohort1: 0.17·Dmean contra +0.11·Dmean ipsi -8.13; AUC=0.90±0.05; p=0.0002±0.002; p HL =0.22±0.23; Cohort2: AUC=0.81; p<0.0001; p HL =0.27). The identified minimum Dmean contra thresholds were lower than in the QUANTEC guidelines (Cohort1/Cohort2: Dmean contra =12/19Gy; Dmean contra , Dmean ipsi =16, 25/20, 26Gy). Increased Dmean contra and Dmean ipsi explain short-term xerostomia following IMRT. Our results also suggest decreasing Dmean contra to below 20Gy, while keeping Dmean ipsi to around 25Gy. Long-term xerostomia was less frequent, and no dose-response relationship was established for this follow-up time. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  1. Extending the Constant Coefficient Solution Technique to Variable Coefficient Ordinary Differential Equations

    ERIC Educational Resources Information Center

    Mohammed, Ahmed; Zeleke, Aklilu

    2015-01-01

    We introduce a class of second-order ordinary differential equations (ODEs) with variable coefficients whose closed-form solutions can be obtained by the same method used to solve ODEs with constant coefficients. General solutions for the homogeneous case are discussed.

  2. Graph characterization via Ihara coefficients.

    PubMed

    Ren, Peng; Wilson, Richard C; Hancock, Edwin R

    2011-02-01

    The novel contributions of this paper are twofold. First, we demonstrate how to characterize unweighted graphs in a permutation-invariant manner using the polynomial coefficients from the Ihara zeta function, i.e., the Ihara coefficients. Second, we generalize the definition of the Ihara coefficients to edge-weighted graphs. For an unweighted graph, the Ihara zeta function is the reciprocal of a quasi characteristic polynomial of the adjacency matrix of the associated oriented line graph. Since the Ihara zeta function has poles that give rise to infinities, the most convenient numerically stable representation is to work with the coefficients of the quasi characteristic polynomial. Moreover, the polynomial coefficients are invariant to vertex order permutations and also convey information concerning the cycle structure of the graph. To generalize the representation to edge-weighted graphs, we make use of the reduced Bartholdi zeta function. We prove that the computation of the Ihara coefficients for unweighted graphs is a special case of our proposed method for unit edge weights. We also present a spectral analysis of the Ihara coefficients and indicate their advantages over other graph spectral methods. We apply the proposed graph characterization method to capturing graph-class structure and clustering graphs. Experimental results reveal that the Ihara coefficients are more effective than methods based on Laplacian spectra.

  3. Assessment of the efficacy of a novel tailored vitamin K dosing regimen in lowering the International Normalised Ratio in over-anticoagulated patients: a randomised clinical trial.

    PubMed

    Kampouraki, Emmanouela; Avery, Peter J; Wynne, Hilary; Biss, Tina; Hanley, John; Talks, Kate; Kamali, Farhad

    2017-09-01

    Current guidelines advocate using fixed-doses of oral vitamin K to reverse excessive anticoagulation in warfarinised patients who are either asymptomatic or have minor bleeds. Over-anticoagulated patients present with a wide range of International Normalised Ratio (INR) values and response to fixed doses of vitamin K varies. Consequently a significant proportion of patients remain outside their target INR after vitamin K administration, making them prone to either haemorrhage or thromboembolism. We compared the performance of a novel tailored vitamin K dosing regimen to that of a fixed-dose regimen with the primary measure being the proportion of over-anticoagulated patients returning to their target INR within 24 h. One hundred and eighty-one patients with an index INR > 6·0 (asymptomatic or with minor bleeding) were randomly allocated to receive oral administration of either a tailored dose (based upon index INR and body surface area) or a fixed-dose (1 or 2 mg) of vitamin K. A greater proportion of patients treated with the tailored dose returned to within target INR range compared to the fixed-dose regimen (68·9% vs. 52·8%; P = 0·026), whilst a smaller proportion of patients remained above target INR range (12·2% vs. 34·0%; P < 0·001). Individualised vitamin K dosing is more accurate than fixed-dose regimen in lowering INR to within target range in excessively anticoagulated patients. © 2017 John Wiley & Sons Ltd.

  4. Occupational exposure to radon for underground tourist routes in Poland: Doses to lung and the risk of developing lung cancer.

    PubMed

    Walczak, Katarzyna; Olszewski, Jerzy; Politański, Piotr; Zmyślony, Marek

    2017-07-14

    Radon concentrations for 31 Polish underground tourist routes were analyzed. The equivalent dose to the lung, the effective dose and the relative risk were calculated for employees of the analyzed routes on the grounds of information on radon concentrations, work time, etc. The relative risk for lung cancers was calculated using the Biological Effects of Ionizing Radiation (BEIR) VI Committee model. Equivalent doses to the lungs of workers were determined using the coefficients calculated by the Kendall and Smith. The conversion coefficient proposed by the International Atomic Energy Agency (IAEA) in the report No. 33 was used for estimating the effective doses. In 13 routes, the effective dose was found to be above 1 mSv/year, and in 3 routes, it exceeded 6 mSv/year. For 5 routes, the equivalent dose to lungs was higher than 100 mSv/year, and in 1 case it was as high as 490 mSv/year. In 22.6% of underground workplaces the risk of developing lung cancer among employees was about 2 times higher than that for the general population, and for 1 tourist route it was about 5 times higher. The geometric mean of the relative risk of lung cancer for all workers of underground tourist routes was 1.73 (95% confidence interval (CI): 1.6-1.87). Routes were divided into: caves, mines, post-military underground constructions and urban underground constructions. The difference between levels of the relative risk of developing lung cancer for all types of underground tourist routes was not found to be significant. If we include the professional group of the employees of underground tourist routes into the group of occupational exposure, the number of persons who are included in the Category A due to occupational exposure may increase by about 3/4. The professional group of the employees of underground tourist routes should be monitored for their exposure to radon. Int J Occup Med Environ Health 2017;30(5):687-694. This work is available in Open Access model and licensed under a CC

  5. Correlation of radiation dose and heart rate in dual-source computed tomography coronary angiography.

    PubMed

    Laspas, Fotios; Tsantioti, Dimitra; Roussakis, Arkadios; Kritikos, Nikolaos; Efthimiadou, Roxani; Kehagias, Dimitrios; Andreou, John

    2011-04-01

    Computed tomography coronary angiography (CTCA) has been widely used since the introduction of 64-slice scanners and dual-source CT technology, but the relatively high radiation dose remains a major concern. To evaluate the relationship between radiation exposure and heart rate (HR), in dual-source CTCA. Data from 218 CTCA examinations, performed with a dual-source 64-slices scanner, were statistically evaluated. Effective radiation dose, expressed in mSv, was calculated as the product of the dose-length product (DLP) times a conversion coefficient for the chest (mSv = DLPx0.017). Heart rate range and mean heart rate, expressed in beats per minute (bpm) of each individual during CTCA, were also provided by the system. Statistical analysis of effective dose and heart rate data was performed by using Pearson correlation coefficient and two-sample t-test. Mean HR and effective dose were found to have a borderline positive relationship. Individuals with a mean HR >65 bpm observed to receive a statistically significant higher effective dose as compared to those with a mean HR ≤65 bpm. Moreover, a strong correlation between effective dose and variability of HR of more than 20 bpm was observed. Dual-source CT scanners are considered to have the capability to provide diagnostic examinations even with high HR and arrhythmias. However, it is desirable to keep the mean heart rate below 65 bpm and heart rate fluctuation less than 20 bpm in order to reduce the radiation exposure.

  6. [Absorbed dose and the effective dose of panoramic temporo mandibular joint radiography].

    PubMed

    Matsuo, Ayae; Okano, Tsuneichi; Gotoh, Kenichi; Yokoi, Midori; Hirukawa, Akiko; Okumura, Shinji; Koyama, Syuji

    2011-01-01

    This study measured the radiation doses absorbed by the patient during Panoramic temporo mandibular joint radiography (Panoramic TMJ), Schüllers method and Orbitoramus projection. The dose of the frontal view in Panoramic TMJ was compared to that with Orbitoramus projection and the lateral view in Panoramic TMJ was compared to that with Schüllers method. We measured the doses received by various organs and calculated the effective doses using the guidelines of the International Commission on Radiological Protection in Publication 103. Organ absorbed doses were measured using an anthropomorphic phantom, loaded with thermoluminescent dosimeters (TLD), located at 160 sensitive sites. The dose shows the sum value of irradiation on both the right and left sides. In addition, we set a few different exposure field sizes. The effective dose for a frontal view in Panoramic TMJ was 11 µSv, and that for the lateral view was 14 µSv. The lens of the Orbitoramus projection was 40 times higher than the frontal view in Panoramic TMJ. Although the effective dose of the lateral view in Panoramic TMJ was 3 times higher than that of the small exposure field (10×10 cm on film) in Schüller's method, it was the same as that of a mid-sized exposure field. When the exposure field in the inferior 1/3 was reduced during panoramic TMJ, the effective doses could be decreased. Therefore we recommend that the size of the exposure field in Panoramic TMJ be decreased.

  7. Analysis of Exposure-Dose Variation of Inhaled Particles in Adult Subjects.

    EPA Science Inventory

    Although internal dose is a key factor for determining the health risk of inhaled pollutant particles, available dose information is largely limited to young healthy adults under a few typical exposure conditions. Extrapolation of the limited dose information to different populat...

  8. Material balance and diet in bioregenerative life support systems: connection with coefficient of closure.

    PubMed

    Manukovsky, N S; Kovalev, V S; Somova, L A; Gurevich, Yu L; Sadovsky, M G

    2005-01-01

    Bioregenerative life support systems (BLSS) with different coefficients of closure are considered. The 66.2% coefficient of closure achieved in "BIOS-3" facility experiments has been taken as a base value. The increase in coefficient of closure up to 72.6-93.0% is planned due to use of soil-like substrate (SLS) and concentrating of urine. Food values were estimated both in a base variant ("BIOS-3"), and with increases in the coefficient of closure. It is shown that food requirements will be more fully satisfied by internal crop production with an increase in the coefficient of closure of the BLSS. Changes of massflow rates on an 'input-output' and inside BLSS are considered. Equations of synthesis and degradation of organic substances in BLSS were examined using a stoichiometric model. The paper shows that at incomplete closure of BLSS containing SLS there is a problem of nitrogen balancing. To compensate for the removal of nitrogen from the system in urine and feces, it is necessary to introduce food and a nitrogen-containing additive. c2005 COSPAR. Published by Elsevier Ltd. All rights reserved.

  9. Internal additive noise effects in stochastic resonance using organic field effect transistor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Suzuki, Yoshiharu; Asakawa, Naoki; Matsubara, Kiyohiko

    Stochastic resonance phenomenon was observed in organic field effect transistor using poly(3-hexylthiophene), which enhances performance of signal transmission with application of noise. The enhancement of correlation coefficient between the input and output signals was low, and the variation of correlation coefficient was not remarkable with respect to the intensity of external noise, which was due to the existence of internal additive noise following the nonlinear threshold response. In other words, internal additive noise plays a positive role on the capability of approximately constant signal transmission regardless of noise intensity, which can be said “homeostatic” behavior or “noise robustness” against externalmore » noise. Furthermore, internal additive noise causes emergence of the stochastic resonance effect even on the threshold unit without internal additive noise on which the correlation coefficient usually decreases monotonically.« less

  10. Cervical Gross Tumor Volume Dose Predicts Local Control Using Magnetic Resonance Imaging/Diffusion-Weighted Imaging—Guided High-Dose-Rate and Positron Emission Tomography/Computed Tomography—Guided Intensity Modulated Radiation Therapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dyk, Pawel; Jiang, Naomi; Sun, Baozhou

    2014-11-15

    Purpose: Magnetic resonance imaging/diffusion weighted-imaging (MRI/DWI)-guided high-dose-rate (HDR) brachytherapy and {sup 18}F-fluorodeoxyglucose (FDG) — positron emission tomography/computed tomography (PET/CT)-guided intensity modulated radiation therapy (IMRT) for the definitive treatment of cervical cancer is a novel treatment technique. The purpose of this study was to report our analysis of dose-volume parameters predicting gross tumor volume (GTV) control. Methods and Materials: We analyzed the records of 134 patients with International Federation of Gynecology and Obstetrics stages IB1-IVB cervical cancer treated with combined MRI-guided HDR and IMRT from July 2009 to July 2011. IMRT was targeted to the metabolic tumor volume and lymph nodesmore » by use of FDG-PET/CT simulation. The GTV for each HDR fraction was delineated by use of T2-weighted or apparent diffusion coefficient maps from diffusion-weighted sequences. The D100, D90, and Dmean delivered to the GTV from HDR and IMRT were summed to EQD2. Results: One hundred twenty-five patients received all irradiation treatment as planned, and 9 did not complete treatment. All 134 patients are included in this analysis. Treatment failure in the cervix occurred in 24 patients (18.0%). Patients with cervix failures had a lower D100, D90, and Dmean than those who did not experience failure in the cervix. The respective doses to the GTV were 41, 58, and 136 Gy for failures compared with 67, 99, and 236 Gy for those who did not experience failure (P<.001). Probit analysis estimated the minimum D100, D90, and Dmean doses required for ≥90% local control to be 69, 98, and 260 Gy (P<.001). Conclusions: Total dose delivered to the GTV from combined MRI-guided HDR and PET/CT-guided IMRT is highly correlated with local tumor control. The findings can be directly applied in the clinic for dose adaptation to maximize local control.« less

  11. International collaborative study for the calibration of proposed International Standards for thromboplastin, rabbit, plain, and for thromboplastin, recombinant, human, plain.

    PubMed

    van den Besselaar, A M H P; Chantarangkul, V; Angeloni, F; Binder, N B; Byrne, M; Dauer, R; Gudmundsdottir, B R; Jespersen, J; Kitchen, S; Legnani, C; Lindahl, T L; Manning, R A; Martinuzzo, M; Panes, O; Pengo, V; Riddell, A; Subramanian, S; Szederjesi, A; Tantanate, C; Herbel, P; Tripodi, A

    2018-01-01

    Essentials Two candidate International Standards for thromboplastin (coded RBT/16 and rTF/16) are proposed. International Sensitivity Index (ISI) of proposed standards was assessed in a 20-centre study. The mean ISI for RBT/16 was 1.21 with a between-centre coefficient of variation of 4.6%. The mean ISI for rTF/16 was 1.11 with a between-centre coefficient of variation of 5.7%. Background The availability of International Standards for thromboplastin is essential for the calibration of routine reagents and hence the calculation of the International Normalized Ratio (INR). Stocks of the current Fourth International Standards are running low. Candidate replacement materials have been prepared. This article describes the calibration of the proposed Fifth International Standards for thromboplastin, rabbit, plain (coded RBT/16) and for thromboplastin, recombinant, human, plain (coded rTF/16). Methods An international collaborative study was carried out for the assignment of International Sensitivity Indexes (ISIs) to the candidate materials, according to the World Health Organization (WHO) guidelines for thromboplastins and plasma used to control oral anticoagulant therapy with vitamin K antagonists. Results Results were obtained from 20 laboratories. In several cases, deviations from the ISI calibration model were observed, but the average INR deviation attributabled to the model was not greater than 10%. Only valid ISI assessments were used to calculate the mean ISI for each candidate. The mean ISI for RBT/16 was 1.21 (between-laboratory coefficient of variation [CV]: 4.6%), and the mean ISI for rTF/16 was 1.11 (between-laboratory CV: 5.7%). Conclusions The between-laboratory variation of the ISI for candidate material RBT/16 was similar to that of the Fourth International Standard (RBT/05), and the between-laboratory variation of the ISI for candidate material rTF/16 was slightly higher than that of the Fourth International Standard (rTF/09). The candidate materials

  12. Non-vascular interventional procedures: effective dose to patient and equivalent dose to abdominal organs by means of DICOM images and Monte Carlo simulation.

    PubMed

    Longo, Mariaconcetta; Marchioni, Chiara; Insero, Teresa; Donnarumma, Raffaella; D'Adamo, Alessandro; Lucatelli, Pierleone; Fanelli, Fabrizio; Salvatori, Filippo Maria; Cannavale, Alessandro; Di Castro, Elisabetta

    2016-03-01

    This study evaluates X-ray exposure in patient undergoing abdominal extra-vascular interventional procedures by means of Digital Imaging and COmmunications in Medicine (DICOM) image headers and Monte Carlo simulation. The main aim was to assess the effective and equivalent doses, under the hypothesis of their correlation with the dose area product (DAP) measured during each examination. This allows to collect dosimetric information about each patient and to evaluate associated risks without resorting to in vivo dosimetry. The dose calculation was performed in 79 procedures through the Monte Carlo simulator PCXMC (A PC-based Monte Carlo program for calculating patient doses in medical X-ray examinations), by using the real geometrical and dosimetric irradiation conditions, automatically extracted from DICOM headers. The DAP measurements were also validated by using thermoluminescent dosemeters on an anthropomorphic phantom. The expected linear correlation between effective doses and DAP was confirmed with an R(2) of 0.974. Moreover, in order to easily calculate patient doses, conversion coefficients that relate equivalent doses to measurable quantities, such as DAP, were obtained. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  13. Determination and importance of temperature dependence of retention coefficient (RPHPLC) in QSAR model of nitrazepams' partition coefficient in bile acid micelles.

    PubMed

    Posa, Mihalj; Pilipović, Ana; Lalić, Mladena; Popović, Jovan

    2011-02-15

    Linear dependence between temperature (t) and retention coefficient (k, reversed phase HPLC) of bile acids is obtained. Parameters (a, intercept and b, slope) of the linear function k=f(t) highly correlate with bile acids' structures. Investigated bile acids form linear congeneric groups on a principal component (calculated from k=f(t)) score plot that are in accordance with conformations of the hydroxyl and oxo groups in a bile acid steroid skeleton. Partition coefficient (K(p)) of nitrazepam in bile acids' micelles is investigated. Nitrazepam molecules incorporated in micelles show modified bioavailability (depo effect, higher permeability, etc.). Using multiple linear regression method QSAR models of nitrazepams' partition coefficient, K(p) are derived on the temperatures of 25°C and 37°C. For deriving linear regression models on both temperatures experimentally obtained lipophilicity parameters are included (PC1 from data k=f(t)) and in silico descriptors of the shape of a molecule while on the higher temperature molecular polarisation is introduced. This indicates the fact that the incorporation mechanism of nitrazepam in BA micelles changes on the higher temperatures. QSAR models are derived using partial least squares method as well. Experimental parameters k=f(t) are shown to be significant predictive variables. Both QSAR models are validated using cross validation and internal validation method. PLS models have slightly higher predictive capability than MLR models. Copyright © 2010 Elsevier B.V. All rights reserved.

  14. Estimation of the total effective dose from low-dose CT scans and radiopharmaceutical administrations delivered to patients undergoing SPECT/CT explorations.

    PubMed

    Montes, Carlos; Tamayo, Pilar; Hernandez, Jorge; Gomez-Caminero, Felipe; García, Sofia; Martín, Carlos; Rosero, Angela

    2013-08-01

    Hybrid imaging, such as SPECT/CT, is used in routine clinical practice, allowing coregistered images of the functional and structural information provided by the two imaging modalities. However, this multimodality imaging may mean that patients are exposed to a higher radiation dose than those receiving SPECT alone. The study aimed to determine the radiation exposure of patients who had undergone SPECT/CT examinations and to relate this to the Background Equivalent Radiation Time (BERT). 145 SPECT/CT studies were used to estimate the total effective dose to patients due to both radiopharmaceutical administrations and low-dose CT scans. The CT contribution was estimated by the Dose-Length Product method. Specific conversion coefficients were calculated for SPECT explorations. The radiation dose from low-dose CTs ranged between 0.6 mSv for head and neck CT and 2.6 mSv for whole body CT scan, representing a maximum of 1 year of background radiation exposure. These values represent a decrease of 80-85% with respect to the radiation dose from diagnostic CT. The radiation exposure from radiopharmaceutical administration varied from 2.1 mSv for stress myocardial perfusion SPECT to 26 mSv for gallium SPECT in patients with lymphoma. The BERT ranged from 1 to 11 years. The contribution of low-dose CT scans to the total radiation dose to patients undergoing SPECT/CT examinations is relatively low compared with the effective dose from radiopharmaceutical administration. When a CT scan is only acquired for anatomical localization and attenuation correction, low-dose CT scan is justified on the basis of its lower dose.

  15. [Clinical applications of dosing algorithm in the predication of warfarin maintenance dose].

    PubMed

    Huang, Sheng-wen; Xiang, Dao-kang; An, Bang-quan; Li, Gui-fang; Huang, Ling; Wu, Hai-li

    2011-12-27

    To evaluate the feasibility of clinical application for genetic based dosing algorithm in the predication of warfarin maintenance dose in Chinese population. The clinical data were collected and blood samples harvested from a total of 126 patients undergoing heart valve replacement. The genotypes of VKORC1 and CYP2C9 were determined by melting curve analysis after PCR. They were divided randomly into the study and control groups. In the study group, the first three doses of warfarin were prescribed according to the predicted warfarin maintenance dose while warfarin was initiated at 2.5 mg/d in the control group. The warfarin doses were adjusted according to the measured international normalized ratio (INR) values. And all subjects were followed for 50 days after an initiation of warfarin therapy. At the end of a 50-day follow-up period, the proportions of the patients on a stable dose were 82.4% (42/51) and 62.5% (30/48) for the study and control groups respectively. The mean durations of reaching a stable dose of warfarin were (27.5 ± 1.8) and (34.7 ± 1.8) days and the median durations were (24.0 ± 1.7) and (33.0 ± 4.5) days in the study and control groups respectively. Significant differences existed in the durations of reaching a stable dose between the two groups (P = 0.012). Compared with the control group, the hazard ratio (HR) for the duration of reaching a stable dose was 1.786 in the study group (95%CI 1.088 - 2.875, P = 0.026). The predicted dosing algorithm incorporating genetic and non-genetic factors may shorten the duration of achieving efficiently a stable dose of warfarin. And the present study validates the feasibility of its clinical application.

  16. Dose Equivalents for Antipsychotic Drugs: The DDD Method.

    PubMed

    Leucht, Stefan; Samara, Myrto; Heres, Stephan; Davis, John M

    2016-07-01

    Dose equivalents of antipsychotics are an important but difficult to define concept, because all methods have weaknesses and strongholds. We calculated dose equivalents based on defined daily doses (DDDs) presented by the World Health Organisation's Collaborative Center for Drug Statistics Methodology. Doses equivalent to 1mg olanzapine, 1mg risperidone, 1mg haloperidol, and 100mg chlorpromazine were presented and compared with the results of 3 other methods to define dose equivalence (the "minimum effective dose method," the "classical mean dose method," and an international consensus statement). We presented dose equivalents for 57 first-generation and second-generation antipsychotic drugs, available as oral, parenteral, or depot formulations. Overall, the identified equivalent doses were comparable with those of the other methods, but there were also outliers. The major strength of this method to define dose response is that DDDs are available for most drugs, including old antipsychotics, that they are based on a variety of sources, and that DDDs are an internationally accepted measure. The major limitations are that the information used to estimate DDDS is likely to differ between the drugs. Moreover, this information is not publicly available, so that it cannot be reviewed. The WHO stresses that DDDs are mainly a standardized measure of drug consumption, and their use as a measure of dose equivalence can therefore be misleading. We, therefore, recommend that if alternative, more "scientific" dose equivalence methods are available for a drug they should be preferred to DDDs. Moreover, our summary can be a useful resource for pharmacovigilance studies. © The Author 2016. Published by Oxford University Press on behalf of the Maryland Psychiatric Research Center. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  17. Convolution-based estimation of organ dose in tube current modulated CT

    NASA Astrophysics Data System (ADS)

    Tian, Xiaoyu; Segars, W. Paul; Dixon, Robert L.; Samei, Ehsan

    2016-05-01

    Estimating organ dose for clinical patients requires accurate modeling of the patient anatomy and the dose field of the CT exam. The modeling of patient anatomy can be achieved using a library of representative computational phantoms (Samei et al 2014 Pediatr. Radiol. 44 460-7). The modeling of the dose field can be challenging for CT exams performed with a tube current modulation (TCM) technique. The purpose of this work was to effectively model the dose field for TCM exams using a convolution-based method. A framework was further proposed for prospective and retrospective organ dose estimation in clinical practice. The study included 60 adult patients (age range: 18-70 years, weight range: 60-180 kg). Patient-specific computational phantoms were generated based on patient CT image datasets. A previously validated Monte Carlo simulation program was used to model a clinical CT scanner (SOMATOM Definition Flash, Siemens Healthcare, Forchheim, Germany). A practical strategy was developed to achieve real-time organ dose estimation for a given clinical patient. CTDIvol-normalized organ dose coefficients ({{h}\\text{Organ}} ) under constant tube current were estimated and modeled as a function of patient size. Each clinical patient in the library was optimally matched to another computational phantom to obtain a representation of organ location/distribution. The patient organ distribution was convolved with a dose distribution profile to generate {{≤ft(\\text{CTD}{{\\text{I}}\\text{vol}}\\right)}\\text{organ, \\text{convolution}}} values that quantified the regional dose field for each organ. The organ dose was estimated by multiplying {{≤ft(\\text{CTD}{{\\text{I}}\\text{vol}}\\right)}\\text{organ, \\text{convolution}}} with the organ dose coefficients ({{h}\\text{Organ}} ). To validate the accuracy of this dose estimation technique, the organ dose of the original clinical patient was estimated using Monte Carlo program with TCM profiles explicitly modeled. The

  18. Dose accumulation of multiple high dose rate prostate brachytherapy treatments in two commercially available image registration systems.

    PubMed

    Poder, Joel; Yuen, Johnson; Howie, Andrew; Bece, Andrej; Bucci, Joseph

    2017-11-01

    The purpose of this study was to assess whether deformable image registration (DIR) is required for dose accumulation of multiple high dose rate prostate brachytherapy (HDRPBT) plans treated with the same catheter pattern on two different CT datasets. DIR was applied to 20 HDRPBT patients' planning CT images who received two treatment fractions on sequential days, on two different CT datasets, with the same implant. Quality of DIR in Velocity and MIM image registration systems was assessed by calculating the Dice Similarity Coefficient (DSC) and mean distance to agreement (MDA) for the prostate, urethra and rectum contours. Accumulated doses from each system were then calculated using the same DIR technique and dose volume histogram (DVH) parameters compared to manual addition with no DIR. The average DSC was found to be 0.83 (Velocity) and 0.84 (MIM), 0.80 (Velocity) and 0.80 (MIM), 0.80 (Velocity) and 0.81 (MIM), for the prostate, rectum and urethra contours, respectively. The average difference in calculated DVH parameters between the two systems using dose accumulation was less than 1%, and there was no statistically significant difference found between deformably accumulated doses in the two systems versus manual DVH addition with no DIR. Contour propagation using DIR in velocity and MIM was shown to be at least equivalent to inter-observer contouring variability on CT. The results also indicate that dose accumulation through manual addition of DVH parameters may be sufficient for HDRPBT treatments treated with the same catheter pattern on two different CT datasets. Crown Copyright © 2017. Published by Elsevier Ltd. All rights reserved.

  19. γ-H2AX Kinetic Profile in Mouse Lymphocytes Exposed to the Internal Emitters Cesium-137 and Strontium-90

    PubMed Central

    Turner, Helen C.; Shuryak, Igor; Weber, Waylon; Doyle-Eisele, Melanie; Melo, Dunstana; Guilmette, Raymond; Amundson, Sally A.; Brenner, David J.

    2015-01-01

    In the event of a dirty bomb scenario or an industrial nuclear accident, a significant dose of volatile radionuclides such as 137Cs and 90Sr may be dispersed into the atmosphere as a component of fallout and inhaled or ingested by hundreds and thousands of people. To study the effects of prolonged exposure to ingested radionuclides, we have performed long-term (30 day) internal-emitter mouse irradiations using soluble-injected 137CsCl and 90SrCl2 radioisotopes. The effect of ionizing radiation on the induction and repair of DNA double strand breaks (DSBs) in peripheral mouse lymphocytes in vivo was determined using the γ-H2AX biodosimetry marker. Using a serial sacrifice experimental design, whole-body radiation absorbed doses for 137Cs (0 to 10 Gy) and 90Sr (0 to 49 Gy) were delivered over 30 days following exposure to each radionuclide. The committed absorbed doses of the two internal emitters as a function of time post exposure were calculated based on their retention parameters and their derived dose coefficients for each specific sacrifice time. In order to measure the kinetic profile for γ-H2AX, peripheral blood samples were drawn at 5 specific timed dose points over the 30-day study period and the total γ-H2AX nuclear fluorescence per lymphocyte was determined using image analysis software. A key finding was that a significant γ-H2AX signal was observed in vivo several weeks after a single radionuclide exposure. A mechanistically-motivated model was used to analyze the temporal kinetics of γ-H2AX fluorescence. Exposure to either radionuclide showed two peaks of γ-H2AX: one within the first week, which may represent the death of mature, differentiated lymphocytes, and the second at approximately three weeks, which may represent the production of new lymphocytes from damaged progenitor cells. The complexity of the observed responses to internal irradiation is likely caused by the interplay between continual production and repair of DNA damage, cell cycle

  20. γ-H2AX Kinetic Profile in Mouse Lymphocytes Exposed to the Internal Emitters Cesium-137 and Strontium-90.

    PubMed

    Turner, Helen C; Shuryak, Igor; Weber, Waylon; Doyle-Eisele, Melanie; Melo, Dunstana; Guilmette, Raymond; Amundson, Sally A; Brenner, David J

    2015-01-01

    In the event of a dirty bomb scenario or an industrial nuclear accident, a significant dose of volatile radionuclides such as 137Cs and 90Sr may be dispersed into the atmosphere as a component of fallout and inhaled or ingested by hundreds and thousands of people. To study the effects of prolonged exposure to ingested radionuclides, we have performed long-term (30 day) internal-emitter mouse irradiations using soluble-injected 137CsCl and 90SrCl2 radioisotopes. The effect of ionizing radiation on the induction and repair of DNA double strand breaks (DSBs) in peripheral mouse lymphocytes in vivo was determined using the γ-H2AX biodosimetry marker. Using a serial sacrifice experimental design, whole-body radiation absorbed doses for 137Cs (0 to 10 Gy) and 90Sr (0 to 49 Gy) were delivered over 30 days following exposure to each radionuclide. The committed absorbed doses of the two internal emitters as a function of time post exposure were calculated based on their retention parameters and their derived dose coefficients for each specific sacrifice time. In order to measure the kinetic profile for γ-H2AX, peripheral blood samples were drawn at 5 specific timed dose points over the 30-day study period and the total γ-H2AX nuclear fluorescence per lymphocyte was determined using image analysis software. A key finding was that a significant γ-H2AX signal was observed in vivo several weeks after a single radionuclide exposure. A mechanistically-motivated model was used to analyze the temporal kinetics of γ-H2AX fluorescence. Exposure to either radionuclide showed two peaks of γ-H2AX: one within the first week, which may represent the death of mature, differentiated lymphocytes, and the second at approximately three weeks, which may represent the production of new lymphocytes from damaged progenitor cells. The complexity of the observed responses to internal irradiation is likely caused by the interplay between continual production and repair of DNA damage, cell cycle

  1. Convergence of Distributed Optimal Controls on the Internal Energy in Mixed Elliptic Problems when the Heat Transfer Coefficient Goes to Infinity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gariboldi, C.; E-mail: cgariboldi@exa.unrc.edu.ar; Tarzia, D.

    2003-05-21

    We consider a steady-state heat conduction problem P{sub {alpha}} with mixed boundary conditions for the Poisson equation depending on a positive parameter {alpha} , which represents the heat transfer coefficient on a portion {gamma} {sub 1} of the boundary of a given bounded domain in R{sup n} . We formulate distributed optimal control problems over the internal energy g for each {alpha}. We prove that the optimal control g{sub o}p{sub {alpha}} and its corresponding system u{sub go}p{sub {alpha}}{sub {alpha}} and adjoint p{sub go}p{sub {alpha}}{sub {alpha}} states for each {alpha} are strongly convergent to g{sub op},u{sub gop} and p{sub gop} ,more » respectively, in adequate functional spaces. We also prove that these limit functions are respectively the optimal control, and the system and adjoint states corresponding to another distributed optimal control problem for the same Poisson equation with a different boundary condition on the portion {gamma}{sub 1} . We use the fixed point and elliptic variational inequality theories.« less

  2. Response functions for computing absorbed dose to skeletal tissues from photon irradiation—an update

    NASA Astrophysics Data System (ADS)

    Johnson, Perry B.; Bahadori, Amir A.; Eckerman, Keith F.; Lee, Choonsik; Bolch, Wesley E.

    2011-04-01

    A comprehensive set of photon fluence-to-dose response functions (DRFs) is presented for two radiosensitive skeletal tissues—active and total shallow marrow—within 15 and 32 bone sites, respectively, of the ICRP reference adult male. The functions were developed using fractional skeletal masses and associated electron-absorbed fractions as reported for the UF hybrid adult male phantom, which in turn is based upon micro-CT images of trabecular spongiosa taken from a 40 year male cadaver. The new DRFs expand upon both the original set of seven functions produced in 1985, and a 2007 update calculated under the assumption of secondary electron escape from spongiosa. In this study, it is assumed that photon irradiation of the skeleton will yield charged particle equilibrium across all spongiosa regions at energies exceeding 200 keV. Kerma coefficients for active marrow, inactive marrow, trabecular bone and spongiosa at higher energies are calculated using the DRF algorithm setting the electron-absorbed fraction for self-irradiation to unity. By comparing kerma coefficients and DRF functions, dose enhancement factors and mass energy-absorption coefficient (MEAC) ratios for active marrow to spongiosa were derived. These MEAC ratios compared well with those provided by the NIST Physical Reference Data Library (mean difference of 0.8%), and the dose enhancement factors for active marrow compared favorably with values calculated in the well-known study published by King and Spiers (1985 Br. J. Radiol. 58 345-56) (mean absolute difference of 1.9 percentage points). Additionally, dose enhancement factors for active marrow were shown to correlate well with the shallow marrow volume fraction (R2 = 0.91). Dose enhancement factors for the total shallow marrow were also calculated for 32 bone sites representing the first such derivation for this target tissue.

  3. Response functions for computing absorbed dose to skeletal tissues from photon irradiation--an update.

    PubMed

    Johnson, Perry B; Bahadori, Amir A; Eckerman, Keith F; Lee, Choonsik; Bolch, Wesley E

    2011-04-21

    A comprehensive set of photon fluence-to-dose response functions (DRFs) is presented for two radiosensitive skeletal tissues-active and total shallow marrow-within 15 and 32 bone sites, respectively, of the ICRP reference adult male. The functions were developed using fractional skeletal masses and associated electron-absorbed fractions as reported for the UF hybrid adult male phantom, which in turn is based upon micro-CT images of trabecular spongiosa taken from a 40 year male cadaver. The new DRFs expand upon both the original set of seven functions produced in 1985, and a 2007 update calculated under the assumption of secondary electron escape from spongiosa. In this study, it is assumed that photon irradiation of the skeleton will yield charged particle equilibrium across all spongiosa regions at energies exceeding 200 keV. Kerma coefficients for active marrow, inactive marrow, trabecular bone and spongiosa at higher energies are calculated using the DRF algorithm setting the electron-absorbed fraction for self-irradiation to unity. By comparing kerma coefficients and DRF functions, dose enhancement factors and mass energy-absorption coefficient (MEAC) ratios for active marrow to spongiosa were derived. These MEAC ratios compared well with those provided by the NIST Physical Reference Data Library (mean difference of 0.8%), and the dose enhancement factors for active marrow compared favorably with values calculated in the well-known study published by King and Spiers (1985 Br. J. Radiol. 58 345-56) (mean absolute difference of 1.9 percentage points). Additionally, dose enhancement factors for active marrow were shown to correlate well with the shallow marrow volume fraction (R(2) = 0.91). Dose enhancement factors for the total shallow marrow were also calculated for 32 bone sites representing the first such derivation for this target tissue.

  4. Development and application of a complex numerical model and software for the computation of dose conversion factors for radon progenies.

    PubMed

    Farkas, Árpád; Balásházy, Imre

    2015-04-01

    A more exact determination of dose conversion factors associated with radon progeny inhalation was possible due to the advancements in epidemiological health risk estimates in the last years. The enhancement of computational power and the development of numerical techniques allow computing dose conversion factors with increasing reliability. The objective of this study was to develop an integrated model and software based on a self-developed airway deposition code, an own bronchial dosimetry model and the computational methods accepted by International Commission on Radiological Protection (ICRP) to calculate dose conversion coefficients for different exposure conditions. The model was tested by its application for exposure and breathing conditions characteristic of mines and homes. The dose conversion factors were 8 and 16 mSv WLM(-1) for homes and mines when applying a stochastic deposition model combined with the ICRP dosimetry model (named PM-A model), and 9 and 17 mSv WLM(-1) when applying the same deposition model combined with authors' bronchial dosimetry model and the ICRP bronchiolar and alveolar-interstitial dosimetry model (called PM-B model). User friendly software for the computation of dose conversion factors has also been developed. The software allows one to compute conversion factors for a large range of exposure and breathing parameters and to perform sensitivity analyses. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  5. The absorbed dose to blood from blood-borne activity

    NASA Astrophysics Data System (ADS)

    Hänscheid, H.; Fernández, M.; Lassmann, M.

    2015-01-01

    The radiation absorbed dose to blood and organs from activity in the blood is relevant for nuclear medicine dosimetry and for research in biodosimetry. The present study provides coefficients for the average absorbed dose rates to the blood from blood-borne activity for radionuclides frequently used in targeted radiotherapy and in PET diagnostics. The results were deduced from published data for vessel radius-dependent dose rate coefficients and reasonable assumptions on the blood-volume distribution as a function of the vessel radius. Different parts of the circulatory system were analyzed separately. Vessel size information for heart chambers, aorta, vena cava, pulmonary artery, and capillaries was taken from published results of morphometric measurements. The remaining blood not contained in the mentioned vessels was assumed to reside in fractal-like vascular trees, the smallest branches of which are the arterioles or venules. The applied vessel size distribution is consistent with recommendations of the ICRP on the blood-volume distribution in the human. The resulting average absorbed dose rates to the blood per nuclear disintegration per milliliter (ml) of blood are (in 10-11 Gy·s-1·Bq-1·ml) Y-90: 5.58, I-131: 2.49, Lu-177: 1.72, Sm-153: 2.97, Tc-99m: 0.366, C-11: 4.56, F-18: 3.61, Ga-68: 5.94, I-124: 2.55. Photon radiation contributes 1.1-1.2·10-11 Gy·s-1·Bq-1·ml to the total dose rate for positron emitters but significantly less for the other nuclides. Blood self-absorption of the energy emitted by ß-particles in the whole blood ranges from 37% for Y-90 to 80% for Tc-99m. The correspondent values in vascular trees, which are important for the absorbed dose to organs, range from 30% for Y-90 to 82% for Tc-99m.

  6. Correlation Between Minimum Apparent Diffusion Coefficient (ADCmin) and Tumor Cellularity: A Meta-analysis.

    PubMed

    Surov, Alexey; Meyer, Hans Jonas; Wienke, Andreas

    2017-07-01

    Diffusion-weighted imaging (DWI) is a magnetic resonance imaging (MRI) technique based on measure of water diffusion that can provide information about tissue microstructure, especially about cell count. Increase of cell density induces restriction of water diffusion and decreases apparent diffusion coefficient (ADC). ADC can be divided into three sub-parameters: ADC minimum or ADC min , mean ADC or ADC mean and ADC maximum or ADC max Some studies have suggested that ADC min shows stronger correlations with cell count in comparison to other ADC fractions and may be used as a parameter for estimation of tumor cellularity. The aim of the present meta-analysis was to summarize correlation coefficients between ADC min and cellularity in different tumors based on large patient data. For this analysis, MEDLINE database was screened for associations between ADC and cell count in different tumors up to September 2016. For this work, only data regarding ADC min were included. Overall, 12 publications with 317 patients were identified. Spearman's correlation coefficient was used to analyze associations between ADC min and cellularity. The reported Pearson correlation coefficients in some publications were converted into Spearman correlation coefficients. The pooled correlation coefficient for all included studies was ρ=-0.59 (95% confidence interval (CI)=-0.72 to -0.45), heterogeneity Tau 2 =0.04 (p<0.0001), I 2 =73%, test for overall effect Z=8.67 (p<0.00001). ADC min correlated moderately with tumor cellularity. The calculated correlation coefficient is not stronger in comparison to the reported coefficient for ADC mean and, therefore, ADC min does not represent a better means to reflect cellularity. Copyright© 2017, International Institute of Anticancer Research (Dr. George J. Delinasios), All rights reserved.

  7. Noise correlation in CBCT projection data and its application for noise reduction in low-dose CBCT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Hua; Ouyang, Luo; Wang, Jing, E-mail: jhma@smu.edu.cn, E-mail: jing.wang@utsouthwestern.edu

    2014-03-15

    Purpose: To study the noise correlation properties of cone-beam CT (CBCT) projection data and to incorporate the noise correlation information to a statistics-based projection restoration algorithm for noise reduction in low-dose CBCT. Methods: In this study, the authors systematically investigated the noise correlation properties among detector bins of CBCT projection data by analyzing repeated projection measurements. The measurements were performed on a TrueBeam onboard CBCT imaging system with a 4030CB flat panel detector. An anthropomorphic male pelvis phantom was used to acquire 500 repeated projection data at six different dose levels from 0.1 to 1.6 mAs per projection at threemore » fixed angles. To minimize the influence of the lag effect, lag correction was performed on the consecutively acquired projection data. The noise correlation coefficient between detector bin pairs was calculated from the corrected projection data. The noise correlation among CBCT projection data was then incorporated into the covariance matrix of the penalized weighted least-squares (PWLS) criterion for noise reduction of low-dose CBCT. Results: The analyses of the repeated measurements show that noise correlation coefficients are nonzero between the nearest neighboring bins of CBCT projection data. The average noise correlation coefficients for the first- and second-order neighbors are 0.20 and 0.06, respectively. The noise correlation coefficients are independent of the dose level. Reconstruction of the pelvis phantom shows that the PWLS criterion with consideration of noise correlation (PWLS-Cor) results in a lower noise level as compared to the PWLS criterion without considering the noise correlation (PWLS-Dia) at the matched resolution. At the 2.0 mm resolution level in the axial-plane noise resolution tradeoff analysis, the noise level of the PWLS-Cor reconstruction is 6.3% lower than that of the PWLS-Dia reconstruction. Conclusions: Noise is correlated among nearest

  8. Clustering Coefficients for Correlation Networks.

    PubMed

    Masuda, Naoki; Sakaki, Michiko; Ezaki, Takahiro; Watanabe, Takamitsu

    2018-01-01

    Graph theory is a useful tool for deciphering structural and functional networks of the brain on various spatial and temporal scales. The clustering coefficient quantifies the abundance of connected triangles in a network and is a major descriptive statistics of networks. For example, it finds an application in the assessment of small-worldness of brain networks, which is affected by attentional and cognitive conditions, age, psychiatric disorders and so forth. However, it remains unclear how the clustering coefficient should be measured in a correlation-based network, which is among major representations of brain networks. In the present article, we propose clustering coefficients tailored to correlation matrices. The key idea is to use three-way partial correlation or partial mutual information to measure the strength of the association between the two neighboring nodes of a focal node relative to the amount of pseudo-correlation expected from indirect paths between the nodes. Our method avoids the difficulties of previous applications of clustering coefficient (and other) measures in defining correlational networks, i.e., thresholding on the correlation value, discarding of negative correlation values, the pseudo-correlation problem and full partial correlation matrices whose estimation is computationally difficult. For proof of concept, we apply the proposed clustering coefficient measures to functional magnetic resonance imaging data obtained from healthy participants of various ages and compare them with conventional clustering coefficients. We show that the clustering coefficients decline with the age. The proposed clustering coefficients are more strongly correlated with age than the conventional ones are. We also show that the local variants of the proposed clustering coefficients (i.e., abundance of triangles around a focal node) are useful in characterizing individual nodes. In contrast, the conventional local clustering coefficients were strongly

  9. Clustering Coefficients for Correlation Networks

    PubMed Central

    Masuda, Naoki; Sakaki, Michiko; Ezaki, Takahiro; Watanabe, Takamitsu

    2018-01-01

    Graph theory is a useful tool for deciphering structural and functional networks of the brain on various spatial and temporal scales. The clustering coefficient quantifies the abundance of connected triangles in a network and is a major descriptive statistics of networks. For example, it finds an application in the assessment of small-worldness of brain networks, which is affected by attentional and cognitive conditions, age, psychiatric disorders and so forth. However, it remains unclear how the clustering coefficient should be measured in a correlation-based network, which is among major representations of brain networks. In the present article, we propose clustering coefficients tailored to correlation matrices. The key idea is to use three-way partial correlation or partial mutual information to measure the strength of the association between the two neighboring nodes of a focal node relative to the amount of pseudo-correlation expected from indirect paths between the nodes. Our method avoids the difficulties of previous applications of clustering coefficient (and other) measures in defining correlational networks, i.e., thresholding on the correlation value, discarding of negative correlation values, the pseudo-correlation problem and full partial correlation matrices whose estimation is computationally difficult. For proof of concept, we apply the proposed clustering coefficient measures to functional magnetic resonance imaging data obtained from healthy participants of various ages and compare them with conventional clustering coefficients. We show that the clustering coefficients decline with the age. The proposed clustering coefficients are more strongly correlated with age than the conventional ones are. We also show that the local variants of the proposed clustering coefficients (i.e., abundance of triangles around a focal node) are useful in characterizing individual nodes. In contrast, the conventional local clustering coefficients were strongly

  10. GPU-based ultra-fast dose calculation using a finite size pencil beam model.

    PubMed

    Gu, Xuejun; Choi, Dongju; Men, Chunhua; Pan, Hubert; Majumdar, Amitava; Jiang, Steve B

    2009-10-21

    Online adaptive radiation therapy (ART) is an attractive concept that promises the ability to deliver an optimal treatment in response to the inter-fraction variability in patient anatomy. However, it has yet to be realized due to technical limitations. Fast dose deposit coefficient calculation is a critical component of the online planning process that is required for plan optimization of intensity-modulated radiation therapy (IMRT). Computer graphics processing units (GPUs) are well suited to provide the requisite fast performance for the data-parallel nature of dose calculation. In this work, we develop a dose calculation engine based on a finite-size pencil beam (FSPB) algorithm and a GPU parallel computing framework. The developed framework can accommodate any FSPB model. We test our implementation in the case of a water phantom and the case of a prostate cancer patient with varying beamlet and voxel sizes. All testing scenarios achieved speedup ranging from 200 to 400 times when using a NVIDIA Tesla C1060 card in comparison with a 2.27 GHz Intel Xeon CPU. The computational time for calculating dose deposition coefficients for a nine-field prostate IMRT plan with this new framework is less than 1 s. This indicates that the GPU-based FSPB algorithm is well suited for online re-planning for adaptive radiotherapy.

  11. Study samples are too small to produce sufficiently precise reliability coefficients.

    PubMed

    Charter, Richard A

    2003-04-01

    In a survey of journal articles, test manuals, and test critique books, the author found that a mean sample size (N) of 260 participants had been used for reliability studies on 742 tests. The distribution was skewed because the median sample size for the total sample was only 90. The median sample sizes for the internal consistency, retest, and interjudge reliabilities were 182, 64, and 36, respectively. The author presented sample size statistics for the various internal consistency methods and types of tests. In general, the author found that the sample sizes that were used in the internal consistency studies were too small to produce sufficiently precise reliability coefficients, which in turn could cause imprecise estimates of examinee true-score confidence intervals. The results also suggest that larger sample sizes have been used in the last decade compared with those that were used in earlier decades.

  12. Response of selected binomial coefficients to varying degrees of matrix sparseness and to matrices with known data interrelationships

    USGS Publications Warehouse

    Archer, A.W.; Maples, C.G.

    1989-01-01

    Numerous departures from ideal relationships are revealed by Monte Carlo simulations of widely accepted binomial coefficients. For example, simulations incorporating varying levels of matrix sparseness (presence of zeros indicating lack of data) and computation of expected values reveal that not only are all common coefficients influenced by zero data, but also that some coefficients do not discriminate between sparse or dense matrices (few zero data). Such coefficients computationally merge mutually shared and mutually absent information and do not exploit all the information incorporated within the standard 2 ?? 2 contingency table; therefore, the commonly used formulae for such coefficients are more complicated than the actual range of values produced. Other coefficients do differentiate between mutual presences and absences; however, a number of these coefficients do not demonstrate a linear relationship to matrix sparseness. Finally, simulations using nonrandom matrices with known degrees of row-by-row similarities signify that several coefficients either do not display a reasonable range of values or are nonlinear with respect to known relationships within the data. Analyses with nonrandom matrices yield clues as to the utility of certain coefficients for specific applications. For example, coefficients such as Jaccard, Dice, and Baroni-Urbani and Buser are useful if correction of sparseness is desired, whereas the Russell-Rao coefficient is useful when sparseness correction is not desired. ?? 1989 International Association for Mathematical Geology.

  13. Ratios of transfer coefficients for radiocesium transport in ruminants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Assimakopoulos, P.A.; Ioannides, K.G.; Karamanis, D.

    1995-09-01

    A corollary of the multiple-compartment model for the transport of trace elements through animals was tested for cows, goats, and sheep. According to this corollary, for a given body {open_quotes}compartment{close_quotes} k of the animal (soft tissue, lung, liver, etc.), the ratio a(k)=f(k)/f(blood) of the transfer coefficients f, should exhibit similar values for physiologically similar animals. In order to verify this prediction, two experiments were performed at the Agricultural Research Station of Ioannina and at the facilities of Ria Pripyat in Pripyat, Ukranine. Eight animals in the first experiment and eighteen in the second were housed in individual pens and weremore » artificially contaminated with a constant daily dose of radiocesium until equilibrium was reached. the animals were then sacrificed and transfer coefficients f(k) to twelve body {open_quotes}compartments{close_quotes} k were measured. These data were used to calculate the ratios a(k). The results were in accordance with predictions of the model and average values of a(k) were extracted for ruminants. It is concluded that these values may be employed for the prediction of animal contamination in any body compartment through the measurement of blood samples. 7 refs., 8 tabs.« less

  14. Additivity of the coefficient of thermal expansion in silicate optical fibers.

    PubMed

    Cavillon, M; Dragic, P D; Ballato, J

    2017-09-15

    A model that predicts the material additivity of the thermal expansion coefficient in the binary silicate glasses most commonly used for present (GeO 2 -SiO 2 , P 2 O 5 -SiO 2 , B 2 O 3 -SiO 2 , and Al 2 O 3 -SiO 2 ) and emerging (BaO-SiO 2 ) optical fibers is proposed. This model is based on a derivation of the expression for the coefficient of thermal expansion in isotropic solids, and gives direct insight on the parameters that govern its additivity in silicate glasses. Furthermore, a consideration of the local structural environment of the glass system is necessary to fully describe its additivity behavior in the investigated systems. This Letter is important for better characterizing and understanding of the impact of temperature and internal stresses on the behavior of optical fibers.

  15. Measuring internal friction of an ultrafast-folding protein.

    PubMed

    Cellmer, Troy; Henry, Eric R; Hofrichter, James; Eaton, William A

    2008-11-25

    Nanosecond laser T-jump was used to measure the viscosity dependence of the folding kinetics of the villin subdomain under conditions where the viscogen has no effect on its equilibrium properties. The dependence of the unfolding/refolding relaxation time on solvent viscosity indicates a major contribution to the dynamics from internal friction. The internal friction increases with increasing temperature, suggesting a shift in the transition state along the reaction coordinate toward the native state with more compact structures, and therefore, a smaller diffusion coefficient due to increased landscape roughness. Fitting the data with an Ising-like model yields a relatively small position dependence for the diffusion coefficient. This finding is consistent with the excellent correlation found between experimental and calculated folding rates based on free energy barrier heights using the same diffusion coefficient for every protein.

  16. Radiological dose in Muria peninsula from SB-LOCA event

    NASA Astrophysics Data System (ADS)

    Sunarko; Suud, Zaki

    2017-01-01

    Dose assessment for accident condition is performed for Muria Peninsula region using source-term from Three-Mile Island unit 2 SB-LOCA accident. Xe-133, Kr-88, 1-131 and Cs-137 isotopes are considered in the calculation. The effluent is assumed to be released from a 50 m stack. Lagrangian particle dispersion method (LPDM) employing non-Gaussian dispersion coefficient in 3-dimensional mass-consistent wind-field is employed to obtain periodic surface-level concentration which is then time-integrated to obtain spatial distribution of ground-level dose. In 1-hour simulation, segmented plumes with 60 seconds duration with a total of 18.000 particles involved. Simulations using 6-hour worst-case meteorological data from Muria peninsula results in a peak external dose of around 1.668 mSv for low scenario and 6.892 mSv for high scenario in dry condition. In wet condition with 5 mm/hour and 10 mm/hour rain for the whole duration of the simulation provides only minor effect to dose. The peak external dose is below the regulatory limit of 50 mSv for effective skin dose from external gamma exposure.

  17. A stochastic approach to estimate the uncertainty of dose mapping caused by uncertainties in b-spline registration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hub, Martina; Thieke, Christian; Kessler, Marc L.

    2012-04-15

    Purpose: In fractionated radiation therapy, image guidance with daily tomographic imaging becomes more and more clinical routine. In principle, this allows for daily computation of the delivered dose and for accumulation of these daily dose distributions to determine the actually delivered total dose to the patient. However, uncertainties in the mapping of the images can translate into errors of the accumulated total dose, depending on the dose gradient. In this work, an approach to estimate the uncertainty of mapping between medical images is proposed that identifies areas bearing a significant risk of inaccurate dose accumulation. Methods: This method accounts formore » the geometric uncertainty of image registration and the heterogeneity of the dose distribution, which is to be mapped. Its performance is demonstrated in context of dose mapping based on b-spline registration. It is based on evaluation of the sensitivity of dose mapping to variations of the b-spline coefficients combined with evaluation of the sensitivity of the registration metric with respect to the variations of the coefficients. It was evaluated based on patient data that was deformed based on a breathing model, where the ground truth of the deformation, and hence the actual true dose mapping error, is known. Results: The proposed approach has the potential to distinguish areas of the image where dose mapping is likely to be accurate from other areas of the same image, where a larger uncertainty must be expected. Conclusions: An approach to identify areas where dose mapping is likely to be inaccurate was developed and implemented. This method was tested for dose mapping, but it may be applied in context of other mapping tasks as well.« less

  18. A stochastic approach to estimate the uncertainty of dose mapping caused by uncertainties in b-spline registration

    PubMed Central

    Hub, Martina; Thieke, Christian; Kessler, Marc L.; Karger, Christian P.

    2012-01-01

    Purpose: In fractionated radiation therapy, image guidance with daily tomographic imaging becomes more and more clinical routine. In principle, this allows for daily computation of the delivered dose and for accumulation of these daily dose distributions to determine the actually delivered total dose to the patient. However, uncertainties in the mapping of the images can translate into errors of the accumulated total dose, depending on the dose gradient. In this work, an approach to estimate the uncertainty of mapping between medical images is proposed that identifies areas bearing a significant risk of inaccurate dose accumulation. Methods: This method accounts for the geometric uncertainty of image registration and the heterogeneity of the dose distribution, which is to be mapped. Its performance is demonstrated in context of dose mapping based on b-spline registration. It is based on evaluation of the sensitivity of dose mapping to variations of the b-spline coefficients combined with evaluation of the sensitivity of the registration metric with respect to the variations of the coefficients. It was evaluated based on patient data that was deformed based on a breathing model, where the ground truth of the deformation, and hence the actual true dose mapping error, is known. Results: The proposed approach has the potential to distinguish areas of the image where dose mapping is likely to be accurate from other areas of the same image, where a larger uncertainty must be expected. Conclusions: An approach to identify areas where dose mapping is likely to be inaccurate was developed and implemented. This method was tested for dose mapping, but it may be applied in context of other mapping tasks as well. PMID:22482640

  19. Digitoxin medication and cancer; case control and internal dose-response studies

    PubMed Central

    Haux, Johan; Klepp, Olbjørn; Spigset, Olav; Tretli, Steinar

    2001-01-01

    Background Digitoxin induces apoptosis in different human malignant cell lines in vitro. In this paper we investigated if patients taking digitoxin for cardiac disease have a different cancer incidence compared to the general population. Methods Computer stored data on digitoxin concentrations in plasma from 9271 patients with cardiac disease were used to define a user population. Age and sex matched controls from the Norwegian Cancer Registry were used to calculate the number of expected cancer cases. Results The population on digitoxin showed a higher incidence of cancer compared to the control population. However, an additional analysis showed that the population on digitoxin had a general increased risk of cancer already, before the start on digitoxin. Leukemia/lymphoma were the cancer types which stood out with the highest risk in the digitoxin population before starting on digitoxin. This indicates that yet unknown risk factors exist for cardiovascular disease and lymphoproliferative cancer. An internal dose-response analysis revealed a relationship between high plasma concentration of digitoxin and a lower risk for leukemia/lymphoma and for cancer of the kidney/urinary tract. Conclusion Morbidity and mortality are high in the population on digitoxin, due to high age and cardiac disease.These factors disturb efforts to isolate an eventual anticancer effect of digitoxin in this setting. Still, the results may indicate an anticancer effect of digitoxin for leukemia/lymphoma and kidney/urinary tract cancers. Prospective clinical cancer trials have to be done to find out if digitoxin and other cardiac glycosides are useful as anticancer agents. PMID:11532201

  20. Collision-kerma conversion between dose-to-tissue and dose-to-water by photon energy-fluence corrections in low-energy brachytherapy.

    PubMed

    Giménez-Alventosa, Vicent; Antunes, Paula C G; Vijande, Javier; Ballester, Facundo; Pérez-Calatayud, José; Andreo, Pedro

    2017-01-07

    The AAPM TG-43 brachytherapy dosimetry formalism, introduced in 1995, has become a standard for brachytherapy dosimetry worldwide; it implicitly assumes that charged-particle equilibrium (CPE) exists for the determination of absorbed dose to water at different locations, except in the vicinity of the source capsule. Subsequent dosimetry developments, based on Monte Carlo calculations or analytical solutions of transport equations, do not rely on the CPE assumption and determine directly the dose to different tissues. At the time of relating dose to tissue and dose to water, or vice versa, it is usually assumed that the photon fluence in water and in tissues are practically identical, so that the absorbed dose in the two media can be related by their ratio of mass energy-absorption coefficients. In this work, an efficient way to correlate absorbed dose to water and absorbed dose to tissue in brachytherapy calculations at clinically relevant distances for low-energy photon emitting seeds is proposed. A correction is introduced that is based on the ratio of the water-to-tissue photon energy-fluences. State-of-the art Monte Carlo calculations are used to score photon fluence differential in energy in water and in various human tissues (muscle, adipose and bone), which in all cases include a realistic modelling of low-energy brachytherapy sources in order to benchmark the formalism proposed. The energy-fluence based corrections given in this work are able to correlate absorbed dose to tissue and absorbed dose to water with an accuracy better than 0.5% in the most critical cases (e.g. bone tissue).

  1. Collision-kerma conversion between dose-to-tissue and dose-to-water by photon energy-fluence corrections in low-energy brachytherapy

    NASA Astrophysics Data System (ADS)

    Giménez-Alventosa, Vicent; Antunes, Paula C. G.; Vijande, Javier; Ballester, Facundo; Pérez-Calatayud, José; Andreo, Pedro

    2017-01-01

    The AAPM TG-43 brachytherapy dosimetry formalism, introduced in 1995, has become a standard for brachytherapy dosimetry worldwide; it implicitly assumes that charged-particle equilibrium (CPE) exists for the determination of absorbed dose to water at different locations, except in the vicinity of the source capsule. Subsequent dosimetry developments, based on Monte Carlo calculations or analytical solutions of transport equations, do not rely on the CPE assumption and determine directly the dose to different tissues. At the time of relating dose to tissue and dose to water, or vice versa, it is usually assumed that the photon fluence in water and in tissues are practically identical, so that the absorbed dose in the two media can be related by their ratio of mass energy-absorption coefficients. In this work, an efficient way to correlate absorbed dose to water and absorbed dose to tissue in brachytherapy calculations at clinically relevant distances for low-energy photon emitting seeds is proposed. A correction is introduced that is based on the ratio of the water-to-tissue photon energy-fluences. State-of-the art Monte Carlo calculations are used to score photon fluence differential in energy in water and in various human tissues (muscle, adipose and bone), which in all cases include a realistic modelling of low-energy brachytherapy sources in order to benchmark the formalism proposed. The energy-fluence based corrections given in this work are able to correlate absorbed dose to tissue and absorbed dose to water with an accuracy better than 0.5% in the most critical cases (e.g. bone tissue).

  2. Sensitivity analysis for dose deposition in radiotherapy via a Fokker–Planck model

    DOE PAGES

    Barnard, Richard C.; Frank, Martin; Krycki, Kai

    2016-02-09

    In this paper, we study the sensitivities of electron dose calculations with respect to stopping power and transport coefficients. We focus on the application to radiotherapy simulations. We use a Fokker–Planck approximation to the Boltzmann transport equation. Equations for the sensitivities are derived by the adjoint method. The Fokker–Planck equation and its adjoint are solved numerically in slab geometry using the spherical harmonics expansion (P N) and an Harten-Lax-van Leer finite volume method. Our method is verified by comparison to finite difference approximations of the sensitivities. Finally, we present numerical results of the sensitivities for the normalized average dose depositionmore » depth with respect to the stopping power and the transport coefficients, demonstrating the increase in relative sensitivities as beam energy decreases. In conclusion, this in turn gives estimates on the uncertainty in the normalized average deposition depth, which we present.« less

  3. Evaluation of the radiation doses in newborn patients submitted to CT examinations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    De Souza Santos, William; Caldas, Linda V.E.; Belinato, Walmir

    The number of computed tomography (CT) scans available to the population is increasing, as well as the complexity of such exams. As a result, the radiation doses are increasing as well. Considering the population exposed to CT exams, pediatric patients are considerably more sensitive to radiation than adults. They have a longer life expectancy than adults, and may receive a higher radiation dose than necessary if the CT scan settings are not adjusted for their smaller body size. As a result of these considerations, the risk of developing cancer is of great concern when newborn patients are involved. The objectivemore » of this work was to study the radiation doses on radiosensitive organs of newborn patients undergoing a whole body CT examination, utilizing Monte Carlo simulations. The novelty of this work is the use of pediatric virtual anthropomorphic phantoms, developed at the Department of Nuclear Energy at the Federal University of Pernambuco (DEN/UFPE). The CT equipment utilized during the simulations was a Discovery VCT GE PET/CT system, with a tube voltage of 140 kVp. The X-ray spectrum of this CT scanner was generated by the SRS-78 software, which takes into account the X-ray beam energy used in PET/CT procedures. The absorbed organ doses were computed employing the F6 tally (MeV/g). The results were converted to dose coefficients (mGy/100 mA) for all the structures, considering all employed beams. The highest dose coefficients values were obtained for the brain and the thyroid. This work provides useful information regarding the risks involving ionizing radiation in newborn patients, employing a new and reliable technique. (authors)« less

  4. [Comparation study of incidental irradiation dose to the internal mammary chain during postmastectomy radiotherapy for patients treated with different irradiation techniques].

    PubMed

    Wang, W; Meng, Y T; Song, Y F; Sun, T; Xu, M; Shao, Q; Zhang, Y J; Li, J B

    2018-05-23

    Objective: To evaluated the unplanned coverage dose to the internal mammary chain (IMC) in patient treated with postmastectomy radiotherapy (PMRT). Methods: One hundred and thirty eight patients with breast cancer receiving radiotherapy (RT) in our hospital were retrospectively analyzed. Patients were divided into three groups: three-dimensional conformal radiotherapy (3D-CRT) group, forward intensity-modulated radiotherapy (F-IMRT) group and inverse IMRT (I-IMRT) group. The IMC were contoured according to Radiation Therapy Oncology Group (RTOG) consensus, and were not include into the planning target volume (PTV). The incidental irradiation dose to IMC among the three groups and the first three intercostal spaces IMC (ICS-IMC 1-3) were all compared, and explored the relationship between the mean doses (Dmean) of IMC and the OARs (ipsilateral lung and heart). Results: The dose delivered to IMC showed no difference in CRT, F-IMRT and I-IMRT(33.80 Gy, 29.65 Gy and 32.95 Gy). And 10.42%, 2.04%, and 9.76% patients achieved ≥45 Gy when treated with CRT, F-IMRT and I-IMRT. For the IMC dose in the first three intercostal spaces (ICS1-3), there was no difference to the three treatment plannings. The Dmean, V(20), V(30), V(40) and V(50) of the ICS-IMC2 and ICS-IMC3 were all obviously superior than ICS-IMC1 for all these three plannings. Moderate positive correlation was founded between Dmean for IMC and Dmean for heart for left breast cancer patients underwent CRT ( r =0.338, P =0.01). Whereas for F-IMRT and I-IMRT groups, positive correlation were founded between Dmean for IMC and Dmean and V(20) for ipsilateral lung for all patients (F-IMRT: r =0.366, P =0.010; r =0.318, P =0.026; I-IMRT: r =0.427, P =0.005; r =0.411, P =0.008). Conclusions: In 3D-CRT, F-IMRT and I-IMRT planning methods, partial patients get IMC irradiated doses that could achieve therapeutic doses. Compared with 3D-CRT, F-IMRT and I-IMRT further reduced the dose of irradiated organs. However, there is

  5. A finite-difference method for the variable coefficient Poisson equation on hierarchical Cartesian meshes

    NASA Astrophysics Data System (ADS)

    Raeli, Alice; Bergmann, Michel; Iollo, Angelo

    2018-02-01

    We consider problems governed by a linear elliptic equation with varying coefficients across internal interfaces. The solution and its normal derivative can undergo significant variations through these internal boundaries. We present a compact finite-difference scheme on a tree-based adaptive grid that can be efficiently solved using a natively parallel data structure. The main idea is to optimize the truncation error of the discretization scheme as a function of the local grid configuration to achieve second-order accuracy. Numerical illustrations are presented in two and three-dimensional configurations.

  6. Pentobarbital quantitation using EMIT serum barbiturate assay reagents: application to monitoring of high-dose pentobarbital therapy.

    PubMed

    Pape, B E; Cary, P L; Clay, L C; Godolphin, W

    1983-01-01

    Pentobarbital serum concentrations associated with a high-dose therapeutic regimen were determined using EMIT immunoassay reagents. Replicate analyses of serum controls resulted in a within-assay coefficient of variation of 5.0% and a between-assay coefficient of variation of 10%. Regression analysis of 44 serum samples analyzed by this technique (y) and a reference procedure (x) were y = 0.98x + 3.6 (r = 0.98; x = ultraviolet spectroscopy) and y = 1.04x + 2.4 (r = 0.96; x = high-performance liquid chromatography). Clinical evaluation of the results indicates the immunoassay is sufficiently sensitive and selective for pentobarbital to allow accurate quantitation within the therapeutic range associated with high-dose therapy.

  7. On effective dose for radiotherapy based on doses to nontarget organs and tissues

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Uselmann, Adam J., E-mail: ajuselmann@wisc.edu; Thomadsen, Bruce R.

    2015-02-15

    Purpose: The National Council for Radiation Protection and Measurement (NCRP) published estimates for the collective population dose and the mean effective dose to the population of the United States from medical imaging procedures for 1980/1982 and for 2006. The earlier report ignored the effective dose from radiotherapy and the latter gave a cursory discussion of the topic but again did not include it in the population exposure for various reasons. This paper explains the methodology used to calculate the effective dose in due to radiotherapy procedures in the latter NCRP report and revises the values based on more detailed modeling.more » Methods: This study calculated the dose to nontarget organs from radiotherapy for reference populations using CT images and published peripheral dose data. Results: Using International Commission on Radiological Protection (ICRP) 60 weighting factors, the total effective dose to nontarget organs in radiotherapy patients is estimated as 298 ± 194 mSv per patient, while the U.S. population effective dose is 0.939 ± 0.610 mSv per person, with a collective dose of 283 000 ± 184 000 person Sv per year. Using ICRP 103 weighting factors, the effective dose is 281 ± 183 mSv per patient, 0.887 ± 0.577 mSv per person in the U.S., and 268 000 ± 174 000 person Sv per year. The uncertainty in the calculations is largely governed by variations in patient size, which was accounted for by considering a range of patient sizes and taking the average treatment site to nontarget organ distance. Conclusions: The methods used to estimate the effective doses from radiotherapy used in NCRP Report No. 160 have been explained and the values updated.« less

  8. Internal dosimetry of inhaled iodine-131.

    PubMed

    Kiani Nasab, Mitra; Rafat Motavalli, Laleh; Miri Hakimabad, Hashem

    2018-01-01

    In this paper, the dose assessment for the iodine inhalation exposure in 19 aerosol sizes and three gas/vapor forms at three levels of thyroid uptake, was performed. Two different modes of work (light vs. heavy) and breathing (nose vs. mouth) for aerosol inhalation were investigated. In order to calculate the cumulated activities per unit of inhaled activity, a combined model which included the latest models of both human respiratory and alimentary tract was developed. The S values for 131 I were computed based on the ICRP adult male and female reference voxel phantoms by the Monte Carlo method. Then, the committed equivalent and committed effective dose coefficients were obtained (The data are available at http://www.um.ac.ir/∼mirihakim). In general, for the nonzero thyroid uptakes, the maximum cumulated activity was found in the thyroid. When the thyroid is blocked, however, the maximum depends on the work and breathing mode and radioisotope form. Overall, the maximum CED coefficient was evaluated for the inhalation of elemental iodine at thyroid uptake of ∼27% (2.8 × 10 -8 Sv/Bq). As for the particle inhalation per se, mouth breathing of 0.6 nm and 0.2 μm AMTD particles showed to have the maximum (2.8 × 10 -8 Sv/Bq) and minimum (6.4 × 10 -9 Sv/Bq) CED coefficients, respectively. Compared to the reference CED coefficients, the authors found an increase of about 58% for inhalation of the aerosols with AMAD of 1 μm and 70% for 5 μm. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Internal dosimetry technical basis manual

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1990-12-20

    The internal dosimetry program at the Savannah River Site (SRS) consists of radiation protection programs and activities used to detect and evaluate intakes of radioactive material by radiation workers. Examples of such programs are: air monitoring; surface contamination monitoring; personal contamination surveys; radiobioassay; and dose assessment. The objectives of the internal dosimetry program are to demonstrate that the workplace is under control and that workers are not being exposed to radioactive material, and to detect and assess inadvertent intakes in the workplace. The Savannah River Site Internal Dosimetry Technical Basis Manual (TBM) is intended to provide a technical and philosophicalmore » discussion of the radiobioassay and dose assessment aspects of the internal dosimetry program. Detailed information on air, surface, and personal contamination surveillance programs is not given in this manual except for how these programs interface with routine and special bioassay programs.« less

  10. Dose assessment of aircraft crew in The Netherlands.

    PubMed

    Van Dijk, J W E

    2003-01-01

    As the operator of the National Dose Registration and Information System, NRG has implemented a system for radiation exposure monitoring for the Dutch airlines. The system is based on the use of computer generated flight plans together with dose calculations using the CARI-6M program. Before installing the system a study was performed to estimate the uncertainty in the assessment of the annual dose of the crew members. It was concluded that the proposed system complies with international recommendations on the uncertainty in dose assessments in individual monitoring and that the operational costs of the system are low.

  11. SU-C-12A-05: Radiation Dose in High-Pitch Pediatric Cardiac CTA: Correlation Between Lung Dose and CTDIvol, DLP, and Size Specific Dose Estimates (SSDE)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, J; Kino, A; Newman, B

    2014-06-01

    Purpose: To investigate the radiation dose for pediatric high pitch cardiac CTA Methods: A total of 14 cases were included in this study, with mean age of 6.2 years (ranges from 2 months to 15 years). Cardiac CTA was performed using a dual-source CT system (Definition Flash, Siemens). Tube voltage (70, 80 and 100kV) was chosen based on patient weight. All patients were scanned using a high-pitch spiral mode (pitch ranges from 2.5 to 3) with tube current modulation technique (CareDose4D, Siemens). For each case, the three dimensional dose distributions were calculated using a Monte Carlo software package (IMPACT-MC, CTmore » Image GmbH). Scanning parameters of each exam, including tube voltage, tube current, beamshaping filters, beam collimation, were defined in the Monte Carlo calculation. Tube current profile along projection angles was obtained from projection data of each tube, which included data within the over-scanning range along z direction. The volume of lungs was segmented out with CT images (3DSlicer). Lung doses of all patients were calculated and compared with CTDIvol, DLP, and SSDE. Results: The average (range) of CTDIvol, DLP and SSDE of all patients was 1.19 mGy (0.58 to 3.12mGy), 31.54 mGy*cm (12.56 to 99 mGy*cm), 2.26 mGy (1.19 to 6.24 mGy), respectively. Radiation dose to the lungs ranged from 0.83 to 4.18 mGy. Lung doses correlated with CTDIvol, DLP and SSDE with correlation coefficients(k) at 0.98, 0.93, and 0.99. However, for the cases with CTDIvol less than 1mGy, only SSDE preserved a strong correlation with lung doses (k=0.83), while much weaker correlations were found for CTDIvol (k=0.29) and DLP (k=-0.47). Conclusion: Lung doses to pediatric patients during Cardiac CTA were estimated. SSDE showed the most robust correlation with lung doses in contrast to CTDIvol and DLP.« less

  12. A report from the 2013 international symposium: the evaluation of the effects of low-dose radiation exposure in the life span study of atomic bomb survivors and other similar studies.

    PubMed

    Grant, E J; Ozasa, K; Ban, N; de González, A Berrington; Cologne, J; Cullings, H M; Doi, K; Furukawa, K; Imaoka, T; Kodama, K; Nakamura, N; Niwa, O; Preston, D L; Rajaraman, P; Sadakane, A; Saigusa, S; Sakata, R; Sobue, T; Sugiyama, H; Ullrich, R; Wakeford, R; Yasumura, S; Milder, C M; Shore, R E

    2015-05-01

    The RERF International Low-Dose Symposium was held on 5-6 December 2013 at the RERF campus in Hiroshima, Japan, to discuss the issues facing the Life Span Study (LSS) and other low-dose studies. Topics included the current status of low-dose risk detection, strategies for low-dose epidemiological and statistical research, methods to improve communication between epidemiologists and biologists, and the current status of radiological studies and tools. Key points made by the participants included the necessity of pooling materials over multiple studies to gain greater insight where data from single studies are insufficient; generating models that reflect epidemiological, statistical, and biological principles simultaneously; understanding confounders and effect modifiers in the current data; and taking into consideration less studied factors such as the impact of dose rate. It is the hope of all participants that this symposium be used as a trigger for further studies, especially those using pooled data, in order to reach a greater understanding of the health effects of low-dose radiation.

  13. Efficacy of Low-dose (2 millicurie) versus Standard-dose (4 millicurie) Radioiodine Treatment for Cats with Mild-to-Moderate Hyperthyroidism.

    PubMed

    Lucy, J M; Peterson, M E; Randolph, J F; Scrivani, P V; Rishniw, M; Davignon, D L; Thompson, M S; Scarlett, J M

    2017-03-01

    Radioiodine ( 131 I) is effective treatment for hyperthyroidism in cats, but optimal dose to restore euthyroidism without inducing hypothyroidism is unclear. Treatment-induced hypothyroidism can lead to azotemia and reduced duration of survival. To compare efficacy and short-term outcomes of low-dose 131 I versus higher, standard-dose 131 I as treatment for hyperthyroidism. A total of 189 client-owned cats undergoing 131 I treatment for mild-to-moderate hyperthyroidism (serum T 4 ≥ 4.0 μg/dL and <13.0 μg/dL). Prospective, nonrandomized, cohort study comparing treatment with either low-dose (2 mCi, n = 150) or standard-dose (4 mCi, n = 39) 131 I. Serum T 4 , thyroid-stimulating hormone (TSH), and creatinine concentrations were measured after 1, 3, and 6 months to determine persistent hyperthyroidism, overt hypothyroidism (low T 4 , high TSH), subclinical hypothyroidism (normal T 4 , high TSH), and azotemia. There was no significant difference in prevalence of cats with persistent hyperthyroidism between standard- and low-dose treatment groups at 3 (0% versus 5.3%; P = .34) and 6 (0% versus 3.3%; P = .51) months. Overt (18% versus 1%; P = .0005) or subclinical (46% versus 21%; P = .004) hypothyroidism was more common in cats at 6 months after standard-dose 131 I. No difference in incidence of azotemia existed between groups, but cats treated with standard-dose 131 I had higher creatinine concentrations (P < .05) and higher percent rises in creatinine (P < .0001). Low-dose 131 I is safe and effective for cats with mild-to-moderate hyperthyroidism, as evidenced by a cure rate of >95% with reduced frequency of iatrogenic hypothyroidism and azotemia. Copyright © 2017 The Authors. Journal of Veterinary Internal Medicine published by Wiley Periodicals, Inc. on behalf of the American College of Veterinary Internal Medicine.

  14. Peripheral dose measurement in high-energy photon radiotherapy with the implementation of MOSFET.

    PubMed

    Vlachopoulou, Vassiliki; Malatara, Georgia; Delis, Harry; Theodorou, Kiki; Kardamakis, Dimitrios; Panayiotakis, George

    2010-11-28

    To study the peripheral dose (PD) from high-energy photon beams in radiotherapy using the metal oxide semiconductor field effect transistor (MOSFET) dose verification system. The radiation dose absorbed by the MOSFET detector was calculated taking into account the manufacturer's Correction Factor, the Calibration Factor and the threshold voltage shift. PD measurements were carried out for three different field sizes (5 cm × 5 cm, 10 cm × 10 cm and 15 cm × 15 cm) and for various depths with the source to surface distance set at 100 cm. Dose measurements were realized on the central axis and then at distances (1 to 18 cm) parallel to the edge of the field, and were expressed as the percentage PD (% PD) with respect to the maximum dose (d(max)). The accuracy of the results was evaluated with respect to a calibrated 0.3 cm(3) ionization chamber. The reproducibility was expressed in terms of standard deviation (s) and coefficient of variation. % PD is higher near the phantom surface and drops to a minimum at the depth of d(max), and then tends to become constant with depth. Internal scatter radiation is the predominant source of PD and the depth dependence is determined by the attenuation of the primary photons. Closer to the field edge, where internal scatter from the phantom dominates, the % PD increases with depth because the ratio of the scatter to primary increases with depth. A few centimeters away from the field, where collimator scatter and leakage dominate, the % PD decreases with depth, due to attenuation by the water. The % PD decreases almost exponentially with the increase of distance from the field edge. The decrease of the % PD is more than 60% and can reach up to 90% as the measurement point departs from the edge of the field. For a given distance, the % PD is significantly higher for larger field sizes, due to the increase of the scattering volume. Finally, the measured PD obtained with MOSFET is higher than that obtained with an ionization chamber

  15. Peripheral dose measurement in high-energy photon radiotherapy with the implementation of MOSFET

    PubMed Central

    Vlachopoulou, Vassiliki; Malatara, Georgia; Delis, Harry; Theodorou, Kiki; Kardamakis, Dimitrios; Panayiotakis, George

    2010-01-01

    AIM: To study the peripheral dose (PD) from high-energy photon beams in radiotherapy using the metal oxide semiconductor field effect transistor (MOSFET) dose verification system. METHODS: The radiation dose absorbed by the MOSFET detector was calculated taking into account the manufacturer’s Correction Factor, the Calibration Factor and the threshold voltage shift. PD measurements were carried out for three different field sizes (5 cm × 5 cm, 10 cm × 10 cm and 15 cm × 15 cm) and for various depths with the source to surface distance set at 100 cm. Dose measurements were realized on the central axis and then at distances (1 to 18 cm) parallel to the edge of the field, and were expressed as the percentage PD (% PD) with respect to the maximum dose (dmax). The accuracy of the results was evaluated with respect to a calibrated 0.3 cm3 ionization chamber. The reproducibility was expressed in terms of standard deviation (s) and coefficient of variation. RESULTS: % PD is higher near the phantom surface and drops to a minimum at the depth of dmax, and then tends to become constant with depth. Internal scatter radiation is the predominant source of PD and the depth dependence is determined by the attenuation of the primary photons. Closer to the field edge, where internal scatter from the phantom dominates, the % PD increases with depth because the ratio of the scatter to primary increases with depth. A few centimeters away from the field, where collimator scatter and leakage dominate, the % PD decreases with depth, due to attenuation by the water. The % PD decreases almost exponentially with the increase of distance from the field edge. The decrease of the % PD is more than 60% and can reach up to 90% as the measurement point departs from the edge of the field. For a given distance, the % PD is significantly higher for larger field sizes, due to the increase of the scattering volume. Finally, the measured PD obtained with MOSFET is higher than that obtained with an

  16. Construct validity and internal consistency in the Leisure Practices Scale (EPL) for adults.

    PubMed

    Andrade, Rubian Diego; Schwartz, Gisele Maria; Tavares, Giselle Helena; Pelegrini, Andreia; Teixeira, Clarissa Stefani; Felden, Érico Pereira Gomes

    2018-02-01

    This study proposes and analyzes the construct validity and internal consistency of the Leisure Practices Scale (EPL). This survey seeks to identify the preferences and involvement in in different leisure practices in adults. The instrument was formed based on the cultural leisure content (artistic, manual, physical, sports, intellectual, social, tourist, virtual and contemplation/leisure). The validation process was conducted with: a) content analysis by leisure experts, who evaluated the instrument for clarity of language and practical relevance, which allowed the calculation of the content validity coefficient (CVC); b) reproducibility test-retest with 51 subjects to calculate the temporal variation coefficient; c) internal consistency analysis with 885 participants. The evaluation presented appropriate coefficients, both with respect to language clarity (CVCt = 0.883) and practical relevance (CVCt = 0.879). The reproducibility coefficients were moderate to excellent. The scale showed adequate internal consistency (0.72). The EPL has psychometric quality and acceptable values in its structure, and can be used to investigate adult involvement in leisure activities.

  17. Dynamics of body burdens and doses due to internal irradiation from intakes of long-lived radionuclides by residents of Ozyorsk situated near Mayak PA.

    PubMed

    Suslova, K G; Romanov, S A; Efimov, A V; Sokolova, A B; Sneve, M; Smith, G

    2015-12-01

    This paper presents and discusses new autopsy results and other historic data from earlier autopsies and environmental monitoring linked to releases from the Mayak PA facilities in the Chelyabinsk oblast in the southern Urals. The focus is on residents of the town of Ozyorsk located near to Mayak PA and the dynamics of body burdens and radiation doses from inhalation of plutonium alpha and americium-241, and ingestion of strontium-90 and caesium-137. It is demonstrated that accumulation and exposure from these radionuclides was mainly due to unplanned releases in the 1950s and 60s. The mean content of plutonium alpha at the time of autopsy of people commencing residence in Ozyorsk from 1949 to 1959 was about 3.5 Bq, falling to 0.2 Bq in those arriving after 1990. A reducing trend was also seen for (241)Am. The highest (90)Sr content in Ozyorsk residents was measured in 1967. The (137)Cs body content of residents arriving in Ozyorsk at any time was in almost all cases below the limit of detection. The committed effective dose from internal exposure to these long-lived radionuclides which would have been accumulated in Ozyorsk residents if present from 1949 to 2013 is estimated to be 13 mSv. This dose is primarily attributed to intakes during 1949 to 1959 when the annual effective dose rate was approximately 1 mSv y(-1). The current value is about 0.1 mSv y(-1). This dose is about 20 times higher than the dose from global man-made fallout, which is about 0.005 mSv y(-1) at present, but much lower than that from natural background radiation, i.e. about 2 mSv y(-1). The experience gained from this work and continuing activities can contribute to the development of improved international guidance in legacy situations, particularly as regards the provision and use of monitoring data to test and thereby build confidence in prognostic models for radiation conditions and potential future exposures. The scope includes evidence for the rate of reduction in radionuclide

  18. Estimation and comparison of effective dose (E) in standard chest CT by organ dose measurements and dose-length-product methods and assessment of the influence of CT tube potential (energy dependency) on effective dose in a dual-source CT.

    PubMed

    Paul, Jijo; Banckwitz, Rosemarie; Krauss, Bernhard; Vogl, Thomas J; Maentele, Werner; Bauer, Ralf W

    2012-04-01

    To determine effective dose (E) during standard chest CT using an organ dose-based and a dose-length-product-based (DLP) approach for four different scan protocols including high-pitch and dual-energy in a dual-source CT scanner of the second generation. Organ doses were measured with thermo luminescence dosimeters (TLD) in an anthropomorphic male adult phantom. Further, DLP-based dose estimates were performed by using the standard 0.014mSv/mGycm conversion coefficient k. Examinations were performed on a dual-source CT system (Somatom Definition Flash, Siemens). Four scan protocols were investigated: (1) single-source 120kV, (2) single-source 100kV, (3) high-pitch 120kV, and (4) dual-energy with 100/Sn140kV with equivalent CTDIvol and no automated tube current modulation. E was then determined following recommendations of ICRP publication 103 and 60 and specific k values were derived. DLP-based estimates differed by 4.5-16.56% and 5.2-15.8% relatively to ICRP 60 and 103, respectively. The derived k factors calculated from TLD measurements were 0.0148, 0.015, 0.0166, and 0.0148 for protocol 1, 2, 3 and 4, respectively. Effective dose estimations by ICRP 103 and 60 for single-energy and dual-energy protocols show a difference of less than 0.04mSv. Estimates of E based on DLP work equally well for single-energy, high-pitch and dual-energy CT examinations. The tube potential definitely affects effective dose in a substantial way. Effective dose estimations by ICRP 103 and 60 for both single-energy and dual-energy examinations differ not more than 0.04mSv. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  19. Organ doses, effective doses, and risk indices in adult CT: Comparison of four types of reference phantoms across different examination protocols

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang Yakun; Li Xiang; Paul Segars, W.

    Purpose: Radiation exposure from computed tomography (CT) to the public has increased the concern among radiation protection professionals. Being able to accurately assess the radiation dose patients receive during CT procedures is a crucial step in the management of CT dose. Currently, various computational anthropomorphic phantoms are used to assess radiation dose by different research groups. It is desirable to better understand how the dose results are affected by different choices of phantoms. In this study, the authors assessed the uncertainties in CT dose and risk estimation associated with different types of computational phantoms for a selected group of representativemore » CT protocols. Methods: Routinely used CT examinations were categorized into ten body and three neurological examination categories. Organ doses, effective doses, risk indices, and conversion coefficients to effective dose and risk index (k and q factors, respectively) were estimated for these examinations for a clinical CT system (LightSpeed VCT, GE Healthcare). Four methods were used, each employing a different type of reference phantoms. The first and second methods employed a Monte Carlo program previously developed and validated in our laboratory. In the first method, the reference male and female extended cardiac-torso (XCAT) phantoms were used, which were initially created from the Visible Human data and later adjusted to match organ masses defined in ICRP publication 89. In the second method, the reference male and female phantoms described in ICRP publication 110 were used, which were initially developed from tomographic data of two patients and later modified to match ICRP 89 organ masses. The third method employed a commercial dosimetry spreadsheet (ImPACT group, London, England) with its own hermaphrodite stylized phantom. In the fourth method, another widely used dosimetry spreadsheet (CT-Expo, Medizinische Hochschule, Hannover, Germany) was employed together with its

  20. Organ doses, effective doses, and risk indices in adult CT: Comparison of four types of reference phantoms across different examination protocols

    PubMed Central

    Zhang, Yakun; Li, Xiang; Paul Segars, W.; Samei, Ehsan

    2012-01-01

    Purpose: Radiation exposure from computed tomography (CT) to the public has increased the concern among radiation protection professionals. Being able to accurately assess the radiation dose patients receive during CT procedures is a crucial step in the management of CT dose. Currently, various computational anthropomorphic phantoms are used to assess radiation dose by different research groups. It is desirable to better understand how the dose results are affected by different choices of phantoms. In this study, the authors assessed the uncertainties in CT dose and risk estimation associated with different types of computational phantoms for a selected group of representative CT protocols. Methods: Routinely used CT examinations were categorized into ten body and three neurological examination categories. Organ doses, effective doses, risk indices, and conversion coefficients to effective dose and risk index (k and q factors, respectively) were estimated for these examinations for a clinical CT system (LightSpeed VCT, GE Healthcare). Four methods were used, each employing a different type of reference phantoms. The first and second methods employed a Monte Carlo program previously developed and validated in our laboratory. In the first method, the reference male and female extended cardiac-torso (XCAT) phantoms were used, which were initially created from the Visible Human data and later adjusted to match organ masses defined in ICRP publication 89. In the second method, the reference male and female phantoms described in ICRP publication 110 were used, which were initially developed from tomographic data of two patients and later modified to match ICRP 89 organ masses. The third method employed a commercial dosimetry spreadsheet (ImPACT group, London, England) with its own hermaphrodite stylized phantom. In the fourth method, another widely used dosimetry spreadsheet (CT-Expo, Medizinische Hochschule, Hannover, Germany) was employed together with its associated

  1. The use of displacement damage dose to correlate degradation in solar cells exposed to different radiations

    NASA Technical Reports Server (NTRS)

    Summers, Geoffrey P.; Burke, Edward A.; Shapiro, Philip; Statler, Richard; Messenger, Scott R.; Walters, Robert J.

    1994-01-01

    It has been found useful in the past to use the concept of 'equivalent fluence' to compare the radiation response of different solar cell technologies. Results are usually given in terms of an equivalent 1 MeV electron or an equivalent 10 MeV proton fluence. To specify cell response in a complex space-radiation environment in terms of an equivalent fluence, it is necessary to measure damage coefficients for a number of representative electron and proton energies. However, at the last Photovoltaic Specialist Conference we showed that nonionizing energy loss (NIEL) could be used to correlate damage coefficients for protons, using measurements for GaAs as an example. This correlation means that damage coefficients for all proton energies except near threshold can be predicted from a measurement made at one particular energy. NIEL is the exact equivalent for displacement damage of linear energy transfer (LET) for ionization energy loss. The use of NIEL in this way leads naturally to the concept of 10 MeV equivalent proton fluence. The situation for electron damage is more complex, however. It is shown that the concept of 'displacement damage dose' gives a more general way of unifying damage coefficients. It follows that 1 MeV electron equivalent fluence is a special case of a more general quantity for unifying electron damage coefficients which we call the 'effective 1 MeV electron equivalent dose'.

  2. Methods for determining the internal thrust of scramjet engine modules from experimental data

    NASA Technical Reports Server (NTRS)

    Voland, Randall T.

    1990-01-01

    Methods for calculating zero-fuel internal drag of scramjet engine modules from experimental measurements are presented. These methods include two control-volume approaches, and a pressure and skin-friction integration. The three calculation techniques are applied to experimental data taken during tests of a version of the NASA parametric scramjet. The methods agree to within seven percent of the mean value of zero-fuel internal drag even though several simplifying assumptions are made in the analysis. The mean zero-fuel internal drag coefficient for this particular engine is calculated to be 0.150. The zero-fuel internal drag coefficient when combined with the change in engine axial force with and without fuel defines the internal thrust of an engine.

  3. Individualized adjustments to reference phantom internal organ dosimetry—scaling factors given knowledge of patient internal anatomy

    NASA Astrophysics Data System (ADS)

    Wayson, Michael B.; Bolch, Wesley E.

    2018-04-01

    Various computational tools are currently available that facilitate patient organ dosimetry in diagnostic nuclear medicine, yet they are typically restricted to reporting organ doses to ICRP-defined reference phantoms. The present study, while remaining computational phantom based, provides straightforward tools to adjust reference phantom organ dose for both internal photon and electron sources. A wide variety of monoenergetic specific absorbed fractions were computed using radiation transport simulations for tissue spheres of varying size and separation distance. Scaling methods were then constructed for both photon and electron self-dose and cross-dose, with data validation provided from patient-specific voxel phantom simulations, as well as via comparison to the scaling methodology given in MIRD Pamphlet No. 11. Photon and electron self-dose was found to be dependent on both radiation energy and sphere size. Photon cross-dose was found to be mostly independent of sphere size. Electron cross-dose was found to be dependent on sphere size when the spheres were in close proximity, owing to differences in electron range. The validation studies showed that this dataset was more effective than the MIRD 11 method at predicting patient-specific photon doses for at both high and low energies, but gave similar results at photon energies between 100 keV and 1 MeV. The MIRD 11 method for electron self-dose scaling was accurate for lower energies but began to break down at higher energies. The photon cross-dose scaling methodology developed in this study showed gains in accuracy of up to 9% for actual patient studies, and the electron cross-dose scaling methodology showed gains in accuracy up to 9% as well when only the bremsstrahlung component of the cross-dose was scaled. These dose scaling methods are readily available for incorporation into internal dosimetry software for diagnostic phantom-based organ dosimetry.

  4. Individualized adjustments to reference phantom internal organ dosimetry-scaling factors given knowledge of patient internal anatomy.

    PubMed

    Wayson, Michael B; Bolch, Wesley E

    2018-04-13

    Various computational tools are currently available that facilitate patient organ dosimetry in diagnostic nuclear medicine, yet they are typically restricted to reporting organ doses to ICRP-defined reference phantoms. The present study, while remaining computational phantom based, provides straightforward tools to adjust reference phantom organ dose for both internal photon and electron sources. A wide variety of monoenergetic specific absorbed fractions were computed using radiation transport simulations for tissue spheres of varying size and separation distance. Scaling methods were then constructed for both photon and electron self-dose and cross-dose, with data validation provided from patient-specific voxel phantom simulations, as well as via comparison to the scaling methodology given in MIRD Pamphlet No. 11. Photon and electron self-dose was found to be dependent on both radiation energy and sphere size. Photon cross-dose was found to be mostly independent of sphere size. Electron cross-dose was found to be dependent on sphere size when the spheres were in close proximity, owing to differences in electron range. The validation studies showed that this dataset was more effective than the MIRD 11 method at predicting patient-specific photon doses for at both high and low energies, but gave similar results at photon energies between 100 keV and 1 MeV. The MIRD 11 method for electron self-dose scaling was accurate for lower energies but began to break down at higher energies. The photon cross-dose scaling methodology developed in this study showed gains in accuracy of up to 9% for actual patient studies, and the electron cross-dose scaling methodology showed gains in accuracy up to 9% as well when only the bremsstrahlung component of the cross-dose was scaled. These dose scaling methods are readily available for incorporation into internal dosimetry software for diagnostic phantom-based organ dosimetry.

  5. Dose in x-ray computed tomography

    NASA Astrophysics Data System (ADS)

    Kalender, Willi A.

    2014-02-01

    Radiation dose in x-ray computed tomography (CT) has become a topic of high interest due to the increasing numbers of CT examinations performed worldwide. This review aims to present an overview of current concepts for both scanner output metrics and for patient dosimetry and will comment on their strengths and weaknesses. Controversial issues such as the appropriateness of the CT dose index (CTDI) are discussed in detail. A review of approaches to patient dose assessment presently in practice, of the dose levels encountered and options for further dose optimization are also given and discussed. Patient dose assessment remains a topic for further improvement and for international consensus. All approaches presently in use are based on Monte Carlo (MC) simulations. Estimates for effective dose are established, but they are crude and not patient-specific; organ dose estimates are rarely available. Patient- and organ-specific dose estimates can be provided with adequate accuracy and independent of CTDI phantom measurements by fast MC simulations. Such information, in particular on 3D dose distributions, is important and helpful in optimization efforts. Dose optimization has been performed very successfully in recent years and even resulted in applications with effective dose values of below 1 mSv. In general, a trend towards lower dose values based on technical innovations has to be acknowledged. Effective dose values are down to clearly below 10 mSv on average, and there are a number of applications such as cardiac and pediatric CT which are performed routinely below 1 mSv on modern equipment.

  6. Investigating bias in squared regression structure coefficients

    PubMed Central

    Nimon, Kim F.; Zientek, Linda R.; Thompson, Bruce

    2015-01-01

    The importance of structure coefficients and analogs of regression weights for analysis within the general linear model (GLM) has been well-documented. The purpose of this study was to investigate bias in squared structure coefficients in the context of multiple regression and to determine if a formula that had been shown to correct for bias in squared Pearson correlation coefficients and coefficients of determination could be used to correct for bias in squared regression structure coefficients. Using data from a Monte Carlo simulation, this study found that squared regression structure coefficients corrected with Pratt's formula produced less biased estimates and might be more accurate and stable estimates of population squared regression structure coefficients than estimates with no such corrections. While our findings are in line with prior literature that identified multicollinearity as a predictor of bias in squared regression structure coefficients but not coefficients of determination, the findings from this study are unique in that the level of predictive power, number of predictors, and sample size were also observed to contribute bias in squared regression structure coefficients. PMID:26217273

  7. The risk equivalent of an exposure to-, versus a dose of radiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bond, V.P.

    The long-term potential carcinogenic effects of low-level exposure (LLE) are addressed. The principal point discussed is linear, no-threshold dose-response curve. That the linear no-threshold, or proportional relationship is widely used is seen in the way in which the values for cancer risk coefficients are expressed - in terms of new cases, per million persons exposed, per year, per unit exposure or dose. This implies that the underlying relationship is proportional, i.e., ''linear, without threshold''. 12 refs., 9 figs., 1 tab.

  8. SU-E-T-513: Investigating Dose of Internal Target Volume After Correcting for Tissue Heterogeneity in SBRT Lung Plans with Homogeneity Calculation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Qi, P; Zhuang, T; Magnelli, A

    2015-06-15

    Purpose It was recommended to use the prescription of 54 Gy/3 with heterogeneity corrections for previously established dose scheme of 60 Gy/3 with homogeneity calculation. This study is to investigate dose coverage for the internal target volume (ITV) with and without heterogeneity correction. Methods Thirty patients who received stereotactic body radiotherapy (SBRT) to a dose of 60 Gy in 3 fractions with homogeneous planning for early stage non-small-cell lung cancer (NSCLC) were selected. ITV was created either from 4DCT scans or a fusion of multi-phase respiratory scans. Planning target volume (PTV) was a 5 mm expansion of the ITV. Formore » this study, we recalculated homogeneous clinical plans using heterogeneity corrections with monitor units set as clinically delivered. All plans were calculated with 3 mm dose grids and collapsed cone convolution algorithm. To account for uncertainties from tumor delineation and image-guided radiotherapy, a structure ITV2mm was created by expanding ITV with 2 mm margins. Dose coverage to the PTV, ITV and ITV2mm were compared with a student paired t-test. Results With heterogeneity corrections, the PTV V60Gy decreased by 10.1% ± 18.4% (p<0.01) while the maximum dose to the PTV increased by 3.7 ± 4.3% (p<0.01). With and without corrections, D99% was 65.8 ± 4.0 Gy and 66.7 ± 4.8 Gy (p=0.15) for the ITV, and 63.9 ± 3.4 Gy and 62.9 ± 4.6 Gy for the ITV2mm (p=0.22), respectively. The mean dose to the ITV and ITV2mm increased 3.6% ± 4.7% (p<0.01) and 2.3% ± 5.2% (p=0.01) with heterogeneity corrections. Conclusion After heterogeneity correction, the peripheral coverage of the PTV decreased to approximately 54 Gy, but D99% of the ITV and ITV2mm was unchanged and the mean dose to the ITV and ITV2mm was increased. Clinical implication of these results requires more investigation.« less

  9. Consideration of the ICRP 2006 revised tissue weighting factors on age-dependent values of the effective dose for external photons

    NASA Astrophysics Data System (ADS)

    Lee, Choonsik; Lee, Choonik; Han, Eun Young; Bolch, Wesley E.

    2007-01-01

    The effective dose recommended by the International Commission on Radiological Protection (ICRP) is the sum of organ equivalent doses weighted by corresponding tissue weighting factors, wT. ICRP is in the process of revising its 1990 recommendations on the effective dose where new values of organs and tissue weighting factors have been proposed and published in draft form for consultation by the radiological protection community. In its 5 June 2006 draft recommendations, new organs and tissues have been introduced in the effective dose which do not exist within the 1987 Oak Ridge National Laboratory (ORNL) phantom series (e.g., salivary glands). Recently, the investigators at University of Florida have updated the series of ORNL phantoms by implementing new organ models and adopting organ-specific elemental composition and densities. In this study, the effective dose changes caused by the transition from the current recommendation of ICRP Publication 60 to the 2006 draft recommendations were investigated for external photon irradiation across the range of ICRP reference ages (newborn, 1-year, 5-year, 10-year, 15-year and adult) and for six idealized irradiation geometries: anterior-posterior (AP), posterior-anterior (PA), left-lateral (LLAT), right-lateral (RLAT), rotational (ROT) and isotropic (ISO). Organ-absorbed doses were calculated by implementing the revised ORNL phantoms in the Monte Carlo radiation transport code, MCNPX2.5, after which effective doses were calculated under the 1990 and draft 2006 evaluation schemes of the ICRP. Effective doses calculated under the 2006 draft scheme were slightly higher than estimated under ICRP Publication 60 methods for all irradiation geometries exclusive of the AP geometry where an opposite trend was observed. The effective doses of the adult phantom were more greatly affected by the change in tissue weighting factors than that seen within the paediatric members of the phantom series. Additionally, dose conversion

  10. Measuring Seebeck Coefficient

    NASA Technical Reports Server (NTRS)

    Snyder, G. Jeffrey (Inventor)

    2015-01-01

    A high temperature Seebeck coefficient measurement apparatus and method with various features to minimize typical sources of errors is described. Common sources of temperature and voltage measurement errors which may impact accurate measurement are identified and reduced. Applying the identified principles, a high temperature Seebeck measurement apparatus and method employing a uniaxial, four-point geometry is described to operate from room temperature up to 1300K. These techniques for non-destructive Seebeck coefficient measurements are simple to operate, and are suitable for bulk samples with a broad range of physical types and shapes.

  11. A scalable and deformable stylized model of the adult human eye for radiation dose assessment

    NASA Astrophysics Data System (ADS)

    El Basha, Daniel; Furuta, Takuya; Iyer, Siva S. R.; Bolch, Wesley E.

    2018-05-01

    With recent changes in the recommended annual limit on eye lens exposures to ionizing radiation, there is considerable interest in predictive computational dosimetry models of the human eye and its various ocular structures including the crystalline lens, ciliary body, cornea, retina, optic nerve, and central retinal artery. Computational eye models to date have been constructed as stylized models, high-resolution voxel models, and polygon mesh models. Their common feature, however, is that they are typically constructed of nominal size and of a roughly spherical shape associated with the emmetropic eye. In this study, we present a geometric eye model that is both scalable (allowing for changes in eye size) and deformable (allowing for changes in eye shape), and that is suitable for use in radiation transport studies of ocular exposures and radiation treatments of eye disease. The model allows continuous and variable changes in eye size (axial lengths from 20 to 26 mm) and eye shape (diopters from  ‑12 to  +6). As an explanatory example of its use, five models (emmetropic eyes of small, average, and large size, as well as average size eyes of  ‑12D and  +6D) were constructed and subjected to normally incident beams of monoenergetic electrons and photons, with resultant energy-dependent dose coefficients presented for both anterior and posterior eye structures. Electron dose coefficients were found to vary with changes to both eye size and shape for the posterior eye structures, while their values for the crystalline lens were found to be sensitive to changes in only eye size. No dependence upon eye size or eye shape was found for photon dose coefficients at energies below 2 MeV. Future applications of the model can include more extensive tabulations of dose coefficients to all ocular structures (not only the lens) as a function of eye size and shape, as well as the assessment of x-ray therapies for ocular disease for patients with non

  12. Study of the Phototransference in GR-200 Dosimetric Material and its Convenience for Dose Re-estimation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baly, L.; Otazo, M. R.; Molina, D.

    2006-09-08

    A study of the phototransference of charges from deep to dosimetric traps in GR-200 material is presented and its convenience for dose re-estimation in the dose range between 2 and 100mSv is also analyzed. The recovering coefficient (RC) defined as the ratio between the phototransferred thermoluminescence (PTTL) and the original thermoluminescence (TL) of the dosimetric trap was used to evaluate the ratio of phototransferred charges from deep traps and the original charges in the dosimetric traps. The results show the convenience of this method for dose re-estimation for this material in the selected range of doses.

  13. The Evaluation of the 0.07 and 3 mm Dose Equivalent with a Portable Beta Spectrometer

    NASA Astrophysics Data System (ADS)

    Hoshi, Katsuya; Yoshida, Tadayoshi; Tsujimura, Norio; Okada, Kazuhiko

    Beta spectra of various nuclide species were measured using a commercially available compact spectrometer. The shape of the spectra obtained via the spectrometer was almost similar to that of the theoretical spectra. The beta dose equivalent at any depth was obtained as a product of the measured pulse height spectra and the appropriate conversion coefficients of ICRP Publication 74. The dose rates evaluated from the spectra were comparable with the reference dose rates of standard beta calibration sources. In addition, we were able to determine the dose equivalents with a relative error of indication of 10% without the need for complicated correction.

  14. Doses of external exposure in Jordan house due to gamma-emitting natural radionuclides in building materials.

    PubMed

    Al-Jundi, J; Ulanovsky, A; Pröhl, G

    2009-10-01

    The use of building materials containing naturally occurring radionuclides as (40)K, (232)Th, and (238)U and their progeny results in external exposures of the residents of such buildings. In the present study, indoor dose rates for a typical Jordan concrete room are calculated using Monte Carlo method. Uniform chemical composition of the walls, floor and ceiling as well as uniform mass concentrations of the radionuclides in walls, floor and ceiling are assumed. Using activity concentrations of natural radionuclides typical for the Jordan houses and assuming them to be in secular equilibrium with their progeny, the maximum annual effective doses are estimated to be 0.16, 0.12 and 0.22 mSv a(-1) for (40)K, (232)Th- and (238)U-series, respectively. In a total, the maximum annual effective indoor dose due to external gamma-radiation is 0.50 mSv a(-1). Additionally, organ dose coefficients are calculated for all organs considered in ICRP Publication 74. Breast, skin and eye lenses have the maximum equivalent dose rate values due to indoor exposures caused by the natural radionuclides, while equivalent dose rates for uterus, colon (LLI) and small intestine are found to be the smallest. More specifically, organ dose rates (nSv a(-1)per Bq kg(-1)) vary from 0.044 to 0.060 for (40)K, from 0.44 to 0.60 for radionuclides from (238)U-series and from 0.60 to 0.81 for radionuclides from (232)Th-series. The obtained organ and effective dose conversion coefficients can be conveniently used in practical dose assessment tasks for the rooms of similar geometry and varying activity concentrations and local-specific occupancy factors.

  15. Rotational characterization of methyl methacrylate: Internal dynamics and structure determination

    NASA Astrophysics Data System (ADS)

    Herbers, Sven; Wachsmuth, Dennis; Obenchain, Daniel A.; Grabow, Jens-Uwe

    2018-01-01

    Rotational constants, Watson's S centrifugal distortion coefficients, and internal rotation parameters of the two most stable conformers of methyl methacrylate were retrieved from the microwave spectrum. Splittings of rotational energy levels were caused by two non equivalent methyl tops. Constraining the centrifugal distortion coefficients and internal rotation parameters to the values of the main isotopologues, the rotational constants of all single substituted 13C and 18O isotopologues were determined. From these rotational constants the substitution structures and semi-empirical zero point structures of both conformers were precisely determined.

  16. Internal Energy Dependence of Molecular Condensation Coefficients Determined from Molecular Beam Surface Scattering Experiments

    DOE R&D Accomplishments Database

    Sibener, S. J.; Lee, Y. T.

    1978-05-01

    An experiment was performed which confirms the existence of an internal mode dependence of molecular sticking probabilities for collisions of molecules with a cold surface. The scattering of a velocity selected effusive beam of CCl{sub 4} from a 90 K CC1{sub 4} ice surface has been studied at five translational velocities and for two different internal temperatures. At a surface temperature of 90 K (approx. 99% sticking probability) a four fold increase in reflected intensity was observed for the internally excited (560 K) CC1{sub 4} relative to the room temperature (298 K) CC1{sub 4} at a translational velocity of 2.5 X 10{sup 4} cm/sec. For a surface temperature of 90 K all angular distributions were found to peak 15{sup 0} superspecularly independent of incident velocity.

  17. Radiation dose to the global flying population.

    PubMed

    Alvarez, Luis E; Eastham, Sebastian D; Barrett, Steven R H

    2016-03-01

    Civil airliner passengers and crew are exposed to elevated levels of radiation relative to being at sea level. Previous studies have assessed the radiation dose received in particular cases or for cohort studies. Here we present the first estimate of the total radiation dose received by the worldwide civilian flying population. We simulated flights globally from 2000 to 2013 using schedule data, applying a radiation propagation code to estimate the dose associated with each flight. Passengers flying in Europe and North America exceed the International Commission on Radiological Protection annual dose limits at an annual average of 510 or 420 flight hours per year, respectively. However, this falls to 160 or 120 h on specific routes under maximum exposure conditions.

  18. Internal Consistencies of the Original and Revised Beck Depression Inventory.

    ERIC Educational Resources Information Center

    Beck, Aaron, T.; Steer, Robert A.

    1984-01-01

    Compared versions of the Beck Depression Inventory in psychiatric patients. The alpha coefficient for 598 inpatients and outpatients on the 1961 version was .88, and the alpha coefficient for 248 outpatients on the 1978 version was .86. Concluded that the internal consistencies of both versions were comparable. (JAC)

  19. M-Bonomial Coefficients and Their Identities

    ERIC Educational Resources Information Center

    Asiru, Muniru A.

    2010-01-01

    In this note, we introduce M-bonomial coefficients or (M-bonacci binomial coefficients). These are similar to the binomial and the Fibonomial (or Fibonacci-binomial) coefficients and can be displayed in a triangle similar to Pascal's triangle from which some identities become obvious.

  20. Measurement of Soret coefficients in a ternary mixture of toluene-methanol-cyclohexane in convection-free environment

    NASA Astrophysics Data System (ADS)

    Mialdun, A.; Ryzhkov, I.; Khlybov, O.; Lyubimova, T.; Shevtsova, V.

    2018-01-01

    We report on the measurement of Soret (ST) coefficients in the ternary system toluene (T)-methanol (M)-cyclohexane (Ch) onboard the International Space Station in the experiment selectable optical diagnostic instrument/DCMIX2 (Diffusion Coefficients Measurement in ternary mIXtures). Nine experiments were conducted in the range of mean temperatures between 298.15 K and 306.15 K in the mixture with composition 0.62 (T)-0.31 (M)-0.07 (Ch) in mass fractions. A linear dependence of the Soret coefficients on temperature was established for the ternary mixture. It has also been found that, over considered range of mean temperatures, the Soret coefficients of toluene are small and positive, while the Soret coefficients for methanol are negative and, at least, two times larger. The present work also presents a comprehensive study of possible methodologies to process raw data from the Soret experiment in ternary mixtures. All the experiments were processed by seven different schemes and two of them were identified as the most reliable. We also investigate the error propagation and explain the reasons for the discrepancy of the results obtained by different schemes.

  1. Effective dose in the manufacturing process of rutile covered welding electrodes.

    PubMed

    Herranz, M; Rozas, S; Pérez, C; Idoeta, R; Núñez-Lagos, R; Legarda, F

    2013-03-01

    Shielded metal arc welding using covered electrodes is the most common welding process. Sometimes the covering contains naturally occurring radioactive materials (NORMs). In Spain the most used electrodes are those covered with rutile mixed with other materials. Rutile contains some detectable natural radionuclides, so it can be considered a NORM. This paper mainly focuses on the use of MCNP (Monte Carlo N-Particle Transport Code) as a predictive tool to obtain doses in a factory which produces this type of electrode and assess the radiological impact in a specific facility after estimating the internal dose.To do this, in the facility, areas of highest radiation and positions of workers were identified, radioactive content of rutile and rutile covered electrodes was measured, and, considering a worst possible scenario, external dose at working points has been calculated using MCNP. This procedure has been validated comparing the results obtained with those from a pressurised ionisation chamber and TLD dosimeters. The internal dose has been calculated using DCAL (dose and risk calculation). The doses range between 8.8 and 394 μSv yr(-1), always lower than the effective dose limit for the public, 1 mSv yr(-1). The highest dose corresponds to the mixing area.

  2. Stress intensity and displacement coefficients for radially cracked ring segments subject to three-point bending

    NASA Technical Reports Server (NTRS)

    Gross, B.; Srawley, J. E.

    1983-01-01

    The boudary collocation method was used to generate Mode 1 stress intensity and crack mouth displacement coefficients for internally and externally radially cracked ring segments (arc bend specimens) subjected to three point radial loading. Numerical results were obtained for ring segment outer to inner radius ratios (R sub o/ R sub i) ranging from 1.10 to 2.50 and crack length to width ratios (a/W) ranging from 0.1 to 0.8. Stress intensity and crack mouth displacement coefficients were found to depend on the ratios R sub o/R sub i and a/W as well as the included angle between the directions of the reaction forces.

  3. Effect of γ-irradiation on the temperature coefficient of surface resistivity of two-dimensional island platinum films

    NASA Astrophysics Data System (ADS)

    Bishay, A. G.; El-Gamal, S.

    2011-05-01

    Three sets (A, B and C) of two-dimensional island platinum films (2D-I(Pt)Fs) were prepared via the thermal evaporation technique, where the substrates are corning 7059 glass slides. The mass thickness ( d m) of the films of different sets is 5, 10 and 20 Å, respectively. The Pt films were exposed to γ-rays from 137Cs (0.662 MeV) radiation source of dose rate 0.5 Gy/min. and the different doses are 100, 200, 300, 500 and 700 Gy. The dependence of the surface resistivity ( ρ) on temperature over the range of 100-300 K was undertaken at different d m and doses then the temperature coefficient of surface resistivity ( α) was deduced. It was found that; (i) for particular d m and T, the absolute value of α decreases as the dose increases (ii) for particular dose and T, the absolute value of α decreases as d m increases (iii) for particular dose and d m, the absolute value of α decreases as T increases. Qualitative interpretation for the results was offered on the ground that the electrons transfer among islands takes place by the activated tunneling mechanism and the γ-irradiation has changed the shape of islands from spherical to prolate spheroid.

  4. International trends in forest products consumption: is there convergence?

    Treesearch

    Joseph Buongiorno

    2009-01-01

    International data from 1961 to 2005 showed that the coefficient of variation of consumption per- capita across countries had tended to decrease over time for all forest products except sawnwood.  This convergence of per-capita consumption was confirmed by the trends in Theil's inequality coefficients: the distribution of forest products consumption across...

  5. Peripheral organ doses from radiotherapy for heterotopic ossification of non-hip joints: is there a risk for radiation-induced malignancies?

    PubMed

    Berris, Theocharis; Mazonakis, Michalis; Kachris, Stefanos; Damilakis, John

    2014-05-01

    Radiotherapy, used for heterotopic ossification (HO) management, may increase radiation risk to patients. This study aimed to determine the peripheral dose to radiosensitive organs and the associated cancer risks due to radiotherapy of HO in common non-hip joints. A Monte Carlo model of a medical linear accelerator combined with a mathematical phantom representing an average adult patient were employed to simulate radiotherapy for HO with standard AP and PA fields in the regions of shoulder, elbow and knee. Radiation dose to all out-of-field radiosensitive organs defined by the International Commission on Radiological Protection was calculated. Cancer induction risk was estimated using organ-specific risk coefficients. Organ dose change with increased field dimensions was also evaluated. Radiation therapy for HO with a 7 Gy target dose in the sites of shoulder, elbow and knee, resulted in the following equivalent organ dose ranges of 0.85-62 mSv, 0.28-1.6 mSv and 0.04-1.6 mSv, respectively. Respective ranges for cancer risk were 0-5.1, 0-0.6 and 0-1.3 cases per 10(4) persons. Increasing the field size caused an average increase of peripheral doses by 15-20%. Individual organ dose increase depends upon the primary treatment site and the distance between organ of interest and treatment volume. Relatively increased risks of more than 1 case per 10,000 patients were found for skin, breast and thyroid malignancies after treatment in the region of shoulder and for skin cancer following elbow irradiation. The estimated risk for inducing any other malignant disease ranges from negligible to low. Copyright © 2013 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.

  6. Recovering DC coefficients in block-based DCT.

    PubMed

    Uehara, Takeyuki; Safavi-Naini, Reihaneh; Ogunbona, Philip

    2006-11-01

    It is a common approach for JPEG and MPEG encryption systems to provide higher protection for dc coefficients and less protection for ac coefficients. Some authors have employed a cryptographic encryption algorithm for the dc coefficients and left the ac coefficients to techniques based on random permutation lists which are known to be weak against known-plaintext and chosen-ciphertext attacks. In this paper we show that in block-based DCT, it is possible to recover dc coefficients from ac coefficients with reasonable image quality and show the insecurity of image encryption methods which rely on the encryption of dc values using a cryptoalgorithm. The method proposed in this paper combines dc recovery from ac coefficients and the fact that ac coefficients can be recovered using a chosen ciphertext attack. We demonstrate that a method proposed by Tang to encrypt and decrypt MPEG video can be completely broken.

  7. Effects of micro-sized and nano-sized WO3 on mass attenauation coefficients of concrete by using MCNPX code.

    PubMed

    Tekin, H O; Singh, V P; Manici, T

    2017-03-01

    In the present work the effect of tungsten oxide (WO 3 ) nanoparticles on mass attenauation coefficients of concrete has been investigated by using MCNPX (version 2.4.0). The validation of generated MCNPX simulation geometry has been provided by comparing the results with standard XCOM data for mass attenuation coefficients of concrete. A very good agreement between XCOM and MCNPX have been obtained. The validated geometry has been used for definition of nano-WO 3 and micro-WO 3 into concrete sample. The mass attenuation coefficients of pure concrete and WO 3 added concrete with micro-sized and nano-sized have been compared. It was observed that shielding properties of concrete doped with WO 3 increased. The results of mass attenauation coefficients also showed that the concrete doped with nano-WO 3 significanlty improve shielding properties than micro-WO 3 . It can be concluded that addition of nano-sized particles can be considered as another mechanism to reduce radiation dose. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Drag Coefficient Estimation in Orbit Determination

    NASA Astrophysics Data System (ADS)

    McLaughlin, Craig A.; Manee, Steve; Lichtenberg, Travis

    2011-07-01

    Drag modeling is the greatest uncertainty in the dynamics of low Earth satellite orbits where ballistic coefficient and density errors dominate drag errors. This paper examines fitted drag coefficients found as part of a precision orbit determination process for Stella, Starlette, and the GEOSAT Follow-On satellites from 2000 to 2005. The drag coefficients for the spherical Stella and Starlette satellites are assumed to be highly correlated with density model error. The results using MSIS-86, NRLMSISE-00, and NRLMSISE-00 with dynamic calibration of the atmosphere (DCA) density corrections are compared. The DCA corrections were formulated for altitudes of 200-600 km and are found to be inappropriate when applied at 800 km. The yearly mean fitted drag coefficients are calculated for each satellite for each year studied. The yearly mean drag coefficients are higher for Starlette than Stella, where Starlette is at a higher altitude. The yearly mean fitted drag coefficients for all three satellites decrease as solar activity decreases after solar maximum.

  9. Transatlantic Comparison of CT Radiation Doses in the Era of Radiation Dose-Tracking Software.

    PubMed

    Parakh, Anushri; Euler, Andre; Szucs-Farkas, Zsolt; Schindera, Sebastian T

    2017-12-01

    The purpose of this study is to compare diagnostic reference levels from a local European CT dose registry, using radiation-tracking software from a large patient sample, with preexisting European and North American diagnostic reference levels. Data (n = 43,761 CT scans obtained over the course of 2 years) for the European local CT dose registry were obtained from eight CT scanners at six institutions. Means, medians, and interquartile ranges of volumetric CT dose index (CTDI vol ), dose-length product (DLP), size-specific dose estimate, and effective dose values for CT examinations of the head, paranasal sinuses, thorax, pulmonary angiogram, abdomen-pelvis, renal-colic, thorax-abdomen-pelvis, and thoracoabdominal angiogram were obtained using radiation-tracking software. Metrics from this registry were compared with diagnostic reference levels from Canada and California (published in 2015), the American College of Radiology (ACR) dose index registry (2015), and national diagnostic reference levels from local CT dose registries in Switzerland (2010), the United Kingdom (2011), and Portugal (2015). Our local registry had a lower 75th percentile CTDI vol for all protocols than did the individual internationally sourced data. Compared with our study, the ACR dose index registry had higher 75th percentile CTDI vol values by 55% for head, 240% for thorax, 28% for abdomen-pelvis, 42% for thorax-abdomen-pelvis, 128% for pulmonary angiogram, 138% for renal-colic, and 58% for paranasal sinus studies. Our local registry had lower diagnostic reference level values than did existing European and North American diagnostic reference levels. Automated radiation-tracking software could be used to establish and update existing diagnostic reference levels because they are capable of analyzing large datasets meaningfully.

  10. [Estimation of Maximum Entrance Skin Dose during Cerebral Angiography].

    PubMed

    Kawauchi, Satoru; Moritake, Takashi; Hayakawa, Mikito; Hamada, Yusuke; Sakuma, Hideyuki; Yoda, Shogo; Satoh, Masayuki; Sun, Lue; Koguchi, Yasuhiro; Akahane, Keiichi; Chida, Koichi; Matsumaru, Yuji

    2015-09-01

    Using radio-photoluminescence glass dosimeter, we measured the entrance skin dose (ESD) in 46 cases and analyzed the correlations between maximum ESD and angiographic parameters [total fluoroscopic time (TFT); number of digital subtraction angiography (DSA) frames, air kerma at the interventional reference point (AK), and dose-area product (DAP)] to estimate the maximum ESD in real time. Mean (± standard deviation) maximum ESD, dose of the right lens, and dose of the left lens were 431.2 ± 135.8 mGy, 33.6 ± 15.5 mGy, and 58.5 ± 35.0 mGy, respectively. Correlation coefficients (r) between maximum ESD and TFT, number of DSA frames, AK, and DAP were r=0.379 (P<0.01), r=0.702 (P<0.001), r=0.825 (P<0.001), and r=0.709 (P<0.001), respectively. AK was identified as the most useful parameter for real-time prediction of maximum ESD. This study should contribute to the development of new diagnostic reference levels in our country.

  11. Dynamics analysis of SIR epidemic model with correlation coefficients and clustering coefficient in networks.

    PubMed

    Zhang, Juping; Yang, Chan; Jin, Zhen; Li, Jia

    2018-07-14

    In this paper, the correlation coefficients between nodes in states are used as dynamic variables, and we construct SIR epidemic dynamic models with correlation coefficients by using the pair approximation method in static networks and dynamic networks, respectively. Considering the clustering coefficient of the network, we analytically investigate the existence and the local asymptotic stability of each equilibrium of these models and derive threshold values for the prevalence of diseases. Additionally, we obtain two equivalent epidemic thresholds in dynamic networks, which are compared with the results of the mean field equations. Copyright © 2018 Elsevier Ltd. All rights reserved.

  12. Solubility of hot fuel particles from Chernobyl--influencing parameters for individual radiation dose calculations.

    PubMed

    Garger, Evgenii K; Meisenberg, Oliver; Odintsov, Oleksiy; Shynkarenko, Viktor; Tschiersch, Jochen

    2013-10-15

    Nuclear fuel particles of Chernobyl origin are carriers of increased radioactivity (hot particles) and are still present in the atmosphere of the Chernobyl exclusion zone. Workers in the zone may inhale these particles, which makes assessment necessary. The residence time in the lungs and the transfer in the blood of the inhaled radionuclides are crucial for inhalation dose assessment. Therefore, the dissolution of several kinds of nuclear fuel particles from air filters sampled in the Chernobyl exclusion zone was studied. For this purpose filter fragments with hot particles were submersed in simulated lung fluids (SLFs). The activities of the radionuclides (137)Cs, (90)Sr, (239+240)Pu and (241)Am were measured in the SLF and in the residuum of the fragments by radiometric methods after chemical treatment. Soluble fractions as well as dissolution rates of the nuclides were determined. The influence of the genesis of the hot particles, represented by the (137)Cs/(239+240)Pu ratio, on the availability of (137)Cs was demonstrated, whereas the dissolution of (90)Sr, (239+240)Pu and (241)Am proved to be independent of genesis. No difference in the dissolution of (137)Cs and (239+240)Pu was observed for the two applied types of SLF. Increased solubility was found for smaller hot particles. A two-component exponential model was used to describe the dissolution of the nuclides as a function of time. The results were applied for determining individual inhalation dose coefficients for the workers at the Chernobyl construction site. Greater dose coefficients for the respiratory tract and smaller coefficients for the other organs were calculated (compared to ICRP default values). The effective doses were in general lower for the considered radionuclides, for (241)Am even by one order of magnitude. © 2013 Elsevier B.V. All rights reserved.

  13. Standards for Standardized Logistic Regression Coefficients

    ERIC Educational Resources Information Center

    Menard, Scott

    2011-01-01

    Standardized coefficients in logistic regression analysis have the same utility as standardized coefficients in linear regression analysis. Although there has been no consensus on the best way to construct standardized logistic regression coefficients, there is now sufficient evidence to suggest a single best approach to the construction of a…

  14. Retention of ion-implanted-xenon in olivine: Dependence on implantation dose

    NASA Technical Reports Server (NTRS)

    Melcher, C. L.; Tombrello, T. A.; Burnett, D. S.

    1982-01-01

    The diffusion of Xe in olivine, a major mineral in both meteorites and lunar samples, was studied. Xe ions were implanted at 200 keV into single-crystal synthetic-forsterite targets and the depth profiles were measured by alpha particle backscattering before and after annealing for 1 hour at temperatures up to 1500 C. The fraction of implanted Xe retained following annealing was strongly dependent on the implantation dose. Maximum retention of 100% occurred for an implantion dose of 3 x 10 to the 15th power Xe ions/sq cm. Retention was less at lower doses, with (approximately more than or = 50% loss at one hundred trillion Xe ions/sq cm. Taking the diffusion coefficient at this dose as a lower limit, the minimum activation energy necessary for Xe retention in a 10 micrometer layer for ten million years was calculated as a function of metamorphic temperature.

  15. TH-A-18C-03: Noise Correlation in CBCT Projection Data and Its Application for Noise Reduction in Low-Dose CBCT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    ZHANG, H; Huang, J; Ma, J

    2014-06-15

    Purpose: To study the noise correlation properties of cone-beam CT (CBCT) projection data and to incorporate the noise correlation information to a statistics-based projection restoration algorithm for noise reduction in low-dose CBCT. Methods: In this study, we systematically investigated the noise correlation properties among detector bins of CBCT projection data by analyzing repeated projection measurements. The measurements were performed on a TrueBeam on-board CBCT imaging system with a 4030CB flat panel detector. An anthropomorphic male pelvis phantom was used to acquire 500 repeated projection data at six different dose levels from 0.1 mAs to 1.6 mAs per projection at threemore » fixed angles. To minimize the influence of the lag effect, lag correction was performed on the consecutively acquired projection data. The noise correlation coefficient between detector bin pairs was calculated from the corrected projection data. The noise correlation among CBCT projection data was then incorporated into the covariance matrix of the penalized weighted least-squares (PWLS) criterion for noise reduction of low-dose CBCT. Results: The analyses of the repeated measurements show that noise correlation coefficients are non-zero between the nearest neighboring bins of CBCT projection data. The average noise correlation coefficients for the first- and second- order neighbors are about 0.20 and 0.06, respectively. The noise correlation coefficients are independent of the dose level. Reconstruction of the pelvis phantom shows that the PWLS criterion with consideration of noise correlation (PWLS-Cor) results in a lower noise level as compared to the PWLS criterion without considering the noise correlation (PWLS-Dia) at the matched resolution. Conclusion: Noise is correlated among nearest neighboring detector bins of CBCT projection data. An accurate noise model of CBCT projection data can improve the performance of the statistics-based projection restoration algorithm for

  16. Optically Stimulated Luminescent Dosimetry for High Dose Rate Brachytherapy

    PubMed Central

    Tien, Christopher Jason; Ebeling, Robert; Hiatt, Jessica R.; Curran, Bruce; Sternick, Edward

    2012-01-01

    Purpose: The objective was to determine whether optically stimulated luminescent dosimeters (OSLDs) were appropriate for in vivo measurements in high dose rate brachytherapy. In order to make this distinction, three dosimetric characteristics were tested: dose linearity, dose rate dependence, and angular dependence. The Landauer nanoDot™ OSLDs were chosen due to their popularity and their availability commercially. Methods: To test the dose linearity, each OSLD was placed at a constant location and the dwell time was varied. Next, in order to test the dose rate dependence, each OSLD was placed at different OLSD-to-source distances and the dwell time was held constant. A curved geometry was created using a circular Accuboost® applicator in order to test angular dependence. Results: The OSLD response remained linear for high doses and was independent of dose rate. For doses up to 600 cGy, the linear coefficient of determination was 0.9988 with a response of 725 counts per cGy. The angular dependence was significant only in “edge-on” scenarios. Conclusion: OSLDs are conveniently read out using commercially available readers. OSLDs can be re-read and serve as a permanent record for clinical records or be annealed using conventional fluorescent light. Lastly, OSLDs are produced commercially for $5 each. Due to these convenient features, in conjunction with the dosimetric performance, OSLDs should be considered a clinically feasible and attractive tool for in vivo HDR brachytherapy measurements. PMID:22888476

  17. Implications of NGA for NEHRP site coefficients

    USGS Publications Warehouse

    Borcherdt, Roger D.

    2012-01-01

    Three proposals are provided to update tables 11.4-1 and 11.4-2 of Minimum Design Loads for Buildings and Other Structures (7-10), by the American Society of Civil Engineers (2010) (ASCE/SEI 7-10), with site coefficients implied directly by NGA (Next Generation Attenuation) ground motion prediction equations (GMPEs). Proposals include a recommendation to use straight-line interpolation to infer site coefficients at intermediate values of ̅vs (average shear velocity). Site coefficients are recommended to ensure consistency with ASCE/SEI 7-10 MCER (Maximum Considered Earthquake) seismic-design maps and simplified site-specific design spectra procedures requiring site classes with associated tabulated site coefficients and a reference site class with unity site coefficients. Recommended site coefficients are confirmed by independent observations of average site amplification coefficients inferred with respect to an average ground condition consistent with that used for the MCER maps. The NGA coefficients recommended for consideration are implied directly by the NGA GMPEs and do not require introduction of additional models.

  18. Irradiation dose detection of irradiated milk powder using visible and near-infrared spectroscopy and chemometrics.

    PubMed

    Kong, W W; Zhang, C; Liu, F; Gong, A P; He, Y

    2013-08-01

    The objective of this study was to examine the possibility of applying visible and near-infrared spectroscopy to the quantitative detection of irradiation dose of irradiated milk powder. A total of 150 samples were used: 100 for the calibration set and 50 for the validation set. The samples were irradiated at 5 different dose levels in the dose range 0 to 6.0 kGy. Six different pretreatment methods were compared. The prediction results of full spectra given by linear and nonlinear calibration methods suggested that Savitzky-Golay smoothing and first derivative were suitable pretreatment methods in this study. Regression coefficient analysis was applied to select effective wavelengths (EW). Less than 10 EW were selected and they were useful for portable detection instrument or sensor development. Partial least squares, extreme learning machine, and least squares support vector machine were used. The best prediction performance was achieved by the EW-extreme learning machine model with first-derivative spectra, and correlation coefficients=0.97 and root mean square error of prediction=0.844. This study provided a new approach for the fast detection of irradiation dose of milk powder. The results could be helpful for quality detection and safety monitoring of milk powder. Copyright © 2013 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  19. Towards tracer dose reduction in PET studies: Simulation of dose reduction by retrospective randomized undersampling of list-mode data.

    PubMed

    Gatidis, Sergios; Würslin, Christian; Seith, Ferdinand; Schäfer, Jürgen F; la Fougère, Christian; Nikolaou, Konstantin; Schwenzer, Nina F; Schmidt, Holger

    2016-01-01

    Optimization of tracer dose regimes in positron emission tomography (PET) imaging is a trade-off between diagnostic image quality and radiation exposure. The challenge lies in defining minimal tracer doses that still result in sufficient diagnostic image quality. In order to find such minimal doses, it would be useful to simulate tracer dose reduction as this would enable to study the effects of tracer dose reduction on image quality in single patients without repeated injections of different amounts of tracer. The aim of our study was to introduce and validate a method for simulation of low-dose PET images enabling direct comparison of different tracer doses in single patients and under constant influencing factors. (18)F-fluoride PET data were acquired on a combined PET/magnetic resonance imaging (MRI) scanner. PET data were stored together with the temporal information of the occurrence of single events (list-mode format). A predefined proportion of PET events were then randomly deleted resulting in undersampled PET data. These data sets were subsequently reconstructed resulting in simulated low-dose PET images (retrospective undersampling of list-mode data). This approach was validated in phantom experiments by visual inspection and by comparison of PET quality metrics contrast recovery coefficient (CRC), background-variability (BV) and signal-to-noise ratio (SNR) of measured and simulated PET images for different activity concentrations. In addition, reduced-dose PET images of a clinical (18)F-FDG PET dataset were simulated using the proposed approach. (18)F-PET image quality degraded with decreasing activity concentrations with comparable visual image characteristics in measured and in corresponding simulated PET images. This result was confirmed by quantification of image quality metrics. CRC, SNR and BV showed concordant behavior with decreasing activity concentrations for measured and for corresponding simulated PET images. Simulation of dose

  20. Effective doses to family members of patients treated with radioiodine-131

    NASA Astrophysics Data System (ADS)

    Zdraveska Kocovska, M.; Vaskova, O.; Majstorov, V.; Kuzmanovska, S.; Pop Gjorceva, D.; Spasic Jokic, V.

    2011-09-01

    The purpose of this study was to evaluate the effective dose to family members of thyroid cancer and hyperthyroid patients treated with radioiodine-131, and also to compare the results with dose constraints proposed by the International Commission of Radiological Protection (ICRP) and the Basic Safety Standards (BSS) of the International Atomic Energy Agency (IAEA). For the estimation of the effective doses, sixty family members of sixty patients, treated with radioiodine-131, and thermoluminiscent dosimeters (Model TLD 100) were used. Thyroid cancer patients were hospitalized for three days, while hyperthyroid patients were treated on out-patient basis. The family members wore TLD in front of the torso for seven days. The radiation doses to family members of thyroid cancer patients were well below the recommended dose constraint of 1 mSv. The mean value of effective dose was 0.21 mSv (min 0.02 - max 0.51 mSv). Effective doses, higher than 1 mSv, were detected for 11 family members of hyperthyroid patients. The mean value of effective dose of family members of hyperthyroid patients was 0.87 mSv (min 0.12 - max 6.79). The estimated effective doses to family members of hyperthyroid patients were higher than the effective doses to family members of thyroid carcinoma patients. These findings may be considered when establishing new national guidelines concerning radiation protection and release of patients after a treatment with radioiodine therapy.

  1. Investigation of internally finned LED heat sinks

    NASA Astrophysics Data System (ADS)

    Li, Bin; Xiong, Lun; Lai, Chuan; Tang, Yumei

    2018-03-01

    A novel heat sink is proposed, which is composed of a perforated cylinder and internally arranged fins. Numerical studies are performed on the natural convection heat transfer from internally finned heat sinks; experimental studies are carried out to validate the numerical results. To compare the thermal performances of internally finned heat sinks and externally finned heat sinks, the effects of the overall diameter, overall height, and installation direction on maximum temperature, air flow and heat transfer coefficient are investigated. The results demonstrate that internally finned heat sinks show better thermal performance than externally finned heat sinks; the maximum temperature of internally finned heat sinks decreases by up to 20% compared with the externally finned heat sinks. The existence of a perforated cylinder and the installation direction of the heat sink affect the thermal performance significantly; it is shown that the heat transfer coefficient of the heat sink with the perforated cylinder is improved greater than that with the imperforated cylinder by up to 34%, while reducing the mass of the heat sink by up to 13%. Project supported by the Scientific Research Fund of Sichuan Provincial Education Department (No. 18ZB0516) and the Sichuan University of Arts and Science (No. 2016KZ009Y).

  2. Validation of Monte Carlo simulation of mammography with TLD measurement and depth dose calculation with a detailed breast model

    NASA Astrophysics Data System (ADS)

    Wang, Wenjing; Qiu, Rui; Ren, Li; Liu, Huan; Wu, Zhen; Li, Chunyan; Li, Junli

    2017-09-01

    Mean glandular dose (MGD) is not only determined by the compressed breast thickness (CBT) and the glandular content, but also by the distribution of glandular tissues in breast. Depth dose inside the breast in mammography has been widely concerned as glandular dose decreases rapidly with increasing depth. In this study, an experiment using thermo luminescent dosimeters (TLDs) was carried out to validate Monte Carlo simulations of mammography. Percent depth doses (PDDs) at different depth values were measured inside simple breast phantoms of different thicknesses. The experimental values were well consistent with the values calculated by Geant4. Then a detailed breast model with a CBT of 4 cm and a glandular content of 50%, which has been constructed in previous work, was used to study the effects of the distribution of glandular tissues in breast with Geant4. The breast model was reversed in direction of compression to get a reverse model with a different distribution of glandular tissues. Depth dose distributions and glandular tissue dose conversion coefficients were calculated. It revealed that the conversion coefficients were about 10% larger when the breast model was reversed, for glandular tissues in the reverse model are concentrated in the upper part of the model.

  3. Adaptive Green-Kubo estimates of transport coefficients from molecular dynamics based on robust error analysis.

    PubMed

    Jones, Reese E; Mandadapu, Kranthi K

    2012-04-21

    We present a rigorous Green-Kubo methodology for calculating transport coefficients based on on-the-fly estimates of: (a) statistical stationarity of the relevant process, and (b) error in the resulting coefficient. The methodology uses time samples efficiently across an ensemble of parallel replicas to yield accurate estimates, which is particularly useful for estimating the thermal conductivity of semi-conductors near their Debye temperatures where the characteristic decay times of the heat flux correlation functions are large. Employing and extending the error analysis of Zwanzig and Ailawadi [Phys. Rev. 182, 280 (1969)] and Frenkel [in Proceedings of the International School of Physics "Enrico Fermi", Course LXXV (North-Holland Publishing Company, Amsterdam, 1980)] to the integral of correlation, we are able to provide tight theoretical bounds for the error in the estimate of the transport coefficient. To demonstrate the performance of the method, four test cases of increasing computational cost and complexity are presented: the viscosity of Ar and water, and the thermal conductivity of Si and GaN. In addition to producing accurate estimates of the transport coefficients for these materials, this work demonstrates precise agreement of the computed variances in the estimates of the correlation and the transport coefficient with the extended theory based on the assumption that fluctuations follow a Gaussian process. The proposed algorithm in conjunction with the extended theory enables the calculation of transport coefficients with the Green-Kubo method accurately and efficiently.

  4. Adaptive Green-Kubo estimates of transport coefficients from molecular dynamics based on robust error analysis

    NASA Astrophysics Data System (ADS)

    Jones, Reese E.; Mandadapu, Kranthi K.

    2012-04-01

    We present a rigorous Green-Kubo methodology for calculating transport coefficients based on on-the-fly estimates of: (a) statistical stationarity of the relevant process, and (b) error in the resulting coefficient. The methodology uses time samples efficiently across an ensemble of parallel replicas to yield accurate estimates, which is particularly useful for estimating the thermal conductivity of semi-conductors near their Debye temperatures where the characteristic decay times of the heat flux correlation functions are large. Employing and extending the error analysis of Zwanzig and Ailawadi [Phys. Rev. 182, 280 (1969)], 10.1103/PhysRev.182.280 and Frenkel [in Proceedings of the International School of Physics "Enrico Fermi", Course LXXV (North-Holland Publishing Company, Amsterdam, 1980)] to the integral of correlation, we are able to provide tight theoretical bounds for the error in the estimate of the transport coefficient. To demonstrate the performance of the method, four test cases of increasing computational cost and complexity are presented: the viscosity of Ar and water, and the thermal conductivity of Si and GaN. In addition to producing accurate estimates of the transport coefficients for these materials, this work demonstrates precise agreement of the computed variances in the estimates of the correlation and the transport coefficient with the extended theory based on the assumption that fluctuations follow a Gaussian process. The proposed algorithm in conjunction with the extended theory enables the calculation of transport coefficients with the Green-Kubo method accurately and efficiently.

  5. TU-F-CAMPUS-I-02: Validation of a CT X-Ray Source Characterization Technique for Dose Computation Using An Anthropomorphic Thorax Phantom

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sommerville, M; Tambasco, M; Poirier, Y

    2015-06-15

    Purpose: To experimentally validate a rotational kV x-ray source characterization technique by computing CT dose in an anthropomorphic thorax phantom using an in-house dose computation algorithm (kVDoseCalc). Methods: The lateral variation in incident energy spectra of a GE Optima big bore CT scanner was found by measuring the HVL along the internal, full bow-tie filter axis. The HVL and kVp were used to generate the x-ray spectra using Spektr software, while beam fluence was derived by dividing the integral product of the spectra and in-air mass-energy absorption coefficients by in-air dose measurements along the bow-tie filter axis. Beams produced bymore » the GE Optima scanner were modeled at 80 and 140 kVp tube settings. kVDoseCalc calculates dose by solving the linear Boltzmann transport equation using a combination of deterministic and stochastic methods. Relative doses in an anthropomorphic thorax phantom (E2E SBRT Phantom) irradiated by the GE Optima scanner were measured using a (0.015 cc) PTW Freiburg ionization chamber, and compared to computations from kVDoseCalc. Results: The agreement in relative dose between dose computation and measurement for points of interest (POIs) within the primary path of the beam was within experimental uncertainty for both energies, however points outside the primary beam were not. The average absolute percent difference for POIs within the primary path of the beam was 1.37% and 5.16% for 80 and 140 kVp, respectively. The minimum and maximum absolute percent difference for both energies and all POIs within the primary path of the beam was 0.151% and 6.41%, respectively. Conclusion: The CT x-ray source characterization technique based on HVL measurements and kVp can be used to accurately compute CT dose in an anthropomorphic thorax phantom.« less

  6. 76 FR 53847 - New International Commission on Radiological Protection; Recommendations on the Annual Dose Limit...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-30

    ... Radiological Protection; Recommendations on the Annual Dose Limit to the Lens of the Eye AGENCY: Nuclear... Protection (ICRP) recommendations for the limitation of annual dose to the lens of the eye. This significant... might be lower than previously considered. For the lens of the eye, the threshold in absorbed dose for...

  7. Calculation of local skin doses with ICRP adult mesh-type reference computational phantoms

    NASA Astrophysics Data System (ADS)

    Yeom, Yeon Soo; Han, Haegin; Choi, Chansoo; Nguyen, Thang Tat; Lee, Hanjin; Shin, Bangho; Kim, Chan Hyeong; Han, Min Cheol

    2018-01-01

    Recently, Task Group 103 of the International Commission on Radiological Protection (ICRP) developed new mesh-type reference computational phantoms (MRCPs) for adult males and females in order to address the limitations of the current voxel-type reference phantoms described in ICRP Publication 110 due to their limited voxel resolutions and the nature of the voxel geometry. One of the substantial advantages of the MRCPs over the ICRP-110 reference phantoms is the inclusion of a 50-μm-thick radiosensitive skin basal-cell layer; however, a methodology for calculating the local skin dose (LSD), i.e., the maximum dose to the basal layer averaged over a 1-cm2 area, has yet to be developed. In the present study, a dedicated program for the LSD calculation with the MRCPs was developed based on the mean shift algorithm and the Geant4 Monte Carlo code. The developed program was used to calculate local skin dose coefficients (LSDCs) for electrons and alpha particles, which were then compared with the values given in ICRP Publication 116 that were produced with a simple tissue-equivalent cube model. The results of the present study show that the LSDCs of the MRCPs are generally in good agreement with the ICRP-116 values for alpha particles, but for electrons, significant differences are found at energies higher than 0.15 MeV. The LSDCs of the MRCPs are greater than the ICRP-116 values by as much as 2.7 times at 10 MeV, which is due mainly to the different curvature between realistic MRCPs ( i.e., curved) and the simple cube model ( i.e., flat).

  8. A Shearlet-based algorithm for quantum noise removal in low-dose CT images

    NASA Astrophysics Data System (ADS)

    Zhang, Aguan; Jiang, Huiqin; Ma, Ling; Liu, Yumin; Yang, Xiaopeng

    2016-03-01

    Low-dose CT (LDCT) scanning is a potential way to reduce the radiation exposure of X-ray in the population. It is necessary to improve the quality of low-dose CT images. In this paper, we propose an effective algorithm for quantum noise removal in LDCT images using shearlet transform. Because the quantum noise can be simulated by Poisson process, we first transform the quantum noise by using anscombe variance stabilizing transform (VST), producing an approximately Gaussian noise with unitary variance. Second, the non-noise shearlet coefficients are obtained by adaptive hard-threshold processing in shearlet domain. Third, we reconstruct the de-noised image using the inverse shearlet transform. Finally, an anscombe inverse transform is applied to the de-noised image, which can produce the improved image. The main contribution is to combine the anscombe VST with the shearlet transform. By this way, edge coefficients and noise coefficients can be separated from high frequency sub-bands effectively. A number of experiments are performed over some LDCT images by using the proposed method. Both quantitative and visual results show that the proposed method can effectively reduce the quantum noise while enhancing the subtle details. It has certain value in clinical application.

  9. Dose, image quality and spine modeling assessment of biplanar EOS micro-dose radiographs for the follow-up of in-brace adolescent idiopathic scoliosis patients.

    PubMed

    Morel, Baptiste; Moueddeb, Sonia; Blondiaux, Eleonore; Richard, Stephen; Bachy, Manon; Vialle, Raphael; Ducou Le Pointe, Hubert

    2018-05-01

    The aim of this study was to compare the radiation dose, image quality and 3D spine parameter measurements of EOS low-dose and micro-dose protocols for in-brace adolescent idiopathic scoliosis (AIS) patients. We prospectively included 25 consecutive patients (20 females, 5 males) followed for AIS and undergoing brace treatment. The mean age was 12 years (SD 2 years, range 8-15 years). For each patient, in-brace biplanar EOS radiographs were acquired in a standing position using both the conventional low-dose and micro-dose protocols. Dose area product (DAP) was systematically recorded. Diagnostic image quality was qualitatively assessed by two radiologists for visibility of anatomical structures. The reliability of 3D spine modeling between two operators was quantitatively evaluated for the most clinically relevant 3D radiological parameters using intraclass correlation coefficient (ICC). The mean DAP for the posteroanterior and lateral acquisitions was 300 ± 134 and 433 ± 181 mGy cm 2 for the low-dose radiographs, and 41 ± 19 and 81 ± 39 mGy cm 2 for micro-dose radiographs. Image quality was lower with the micro-dose protocol. The agreement was "good" to "very good" for all measured clinical parameters when comparing the low-dose and micro-dose protocols (ICC > 0.73). The micro-dose protocol substantially reduced the delivered dose (by a factor of 5-7 compared to the low-dose protocol) in braced children with AIS. Although image quality was reduced, the micro-dose protocol proved to be adapted to radiological follow-up, with adequate image quality and reliable clinical measurements. These slides can be retrieved under Electronic Supplementary Material.

  10. Estimation of the simple correlation coefficient.

    PubMed

    Shieh, Gwowen

    2010-11-01

    This article investigates some unfamiliar properties of the Pearson product-moment correlation coefficient for the estimation of simple correlation coefficient. Although Pearson's r is biased, except for limited situations, and the minimum variance unbiased estimator has been proposed in the literature, researchers routinely employ the sample correlation coefficient in their practical applications, because of its simplicity and popularity. In order to support such practice, this study examines the mean squared errors of r and several prominent formulas. The results reveal specific situations in which the sample correlation coefficient performs better than the unbiased and nearly unbiased estimators, facilitating recommendation of r as an effect size index for the strength of linear association between two variables. In addition, related issues of estimating the squared simple correlation coefficient are also considered.

  11. Determination of optimal drug dose and light dose index to achieve minimally invasive focal ablation of localised prostate cancer using WST11-vascular-targeted photodynamic (VTP) therapy.

    PubMed

    Moore, Caroline M; Azzouzi, Abel-Rahmene; Barret, Eric; Villers, Arnauld; Muir, Gordon H; Barber, Neil J; Bott, Simon; Trachtenberg, John; Arumainayagam, Nimalan; Gaillac, Bertrand; Allen, Clare; Schertz, Avigdor; Emberton, Mark

    2015-12-01

    To determine the optimal drug and light dose for prostate ablation using WST11 (TOOKAD Soluble) for vascular-targeted photodynamic (VTP) therapy in men with low-risk prostate cancer. In all, 42 men with low-risk prostate cancer were enrolled in the study but two who underwent anaesthesia for the procedure did not receive the drug or light dose. Thus, 40 men received a single dose of 2, 4 or 6 mg/kg WST11 activated by 200 J/cm light at 753 nm. WST11 was given as a 10-min intravenous infusion. The light dose was delivered using cylindrical diffusing fibres within hollow plastic needles positioned in the prostate using transrectal ultrasonography (TRUS) guidance and a brachytherapy template. Magnetic resonance imaging (MRI) was used to assess treatment effect at 7 days, with assessment of urinary function (International Prostate Symptom Score [IPSS]), sexual function (International Index of Erectile Function [IIEF]) and adverse events at 7 days, 1, 3 and 6 months after VTP. TRUS-guided biopsies were taken at 6 months. In all, 39 of the 40 treated men completed the follow-up. The Day-7 MRI showed maximal treatment effect (95% of the planned treatment volume) in men who had a WST11 dose of 4 mg/kg, light dose of 200 J/cm and light density index (LDI) of >1. In the 12 men treated with these parameters, the negative biopsy rate was 10/12 (83%) at 6 months, compared with 10/26 (45%) for the men who had either a different drug dose (10 men) or an LDI of <1 (16). Transient urinary symptoms were seen in most of the men, with no significant difference in IPSS score between baseline and 6 months after VTP. IIEF scores were not significantly different between baseline and 6 months after VTP. Treatment with 4 mg/kg TOOKAD Soluble activated by 753 nm light at a dose of 200 J/cm and an LDI of >1 resulted in treatment effect in 95% of the planned treatment volume and a negative biopsy rate at 6 months of 10/12 men (83%). © 2014 The Authors BJU International © 2014 BJU

  12. IMPROVEMENT OF EXPOSURE-DOSE MODELS: APPLICATION OF CONTINUOUS BREATH SAMPLING TO DETERMINE VOC DOSE AND BODY BURDEN

    EPA Science Inventory

    This is a continuation of an Internal Grant research project with the focus on completing the research due to initial funding delays and then analyzing and reporting the research results. This project will employ a new continuous breath sampling methodology to investigate dose a...

  13. Dependence of pentobarbital kinetics upon the dose of the drug and its pharmacodynamic effects.

    PubMed

    Kozlowski, K H; Szaykowski, A; Danysz, A

    1977-01-01

    Pentobarbital (PB), at dose range of 20--50 mg/kg, displays in rabbits non-linear, dose-dependent kinetics. Pharmacokinetics parameters of drug elimination depend largely upon the dose, while the distribution phase is dose-independent. The rate of disappearance of PB from the central compartment (plasma) decreases with the increase of the dose. The analysis of pharmacodynamic parameters has shown that this dose-dependent retardation of PB elimination is probably caused by an impairment of metabolic processes, resulting from disturbance of the circulatory system. A close correlation has been found between the hypotensive effect of PB and the elimination constant, k13, and also between the hypotensive effect and beta.Vd(extrap), a coefficient proportional to the rate of metabolism of PB [23, 29]. The results indicate the necessity of considering the changes in the functional state of the organism, related to the action of a drug, in pharmacokinetic studies.

  14. Field and bioassay indicators for internal dose intervention therapy.

    PubMed

    Carbaugh, Eugene H

    2007-05-01

    Guidance is presented that is used at the U.S. Department of Energy Hanford Site to identify the potential need for medical intervention in response to intakes of radioactivity. The guidance, based on ICRP Publication 30 models and committed effective dose equivalents of 20 mSv and 200 mSv, is expressed as numerical workplace measurements and derived first-day bioassay results for large intakes. It is used by facility radiation protection staff and on-call dosimetry support staff during the first few days following an intake.

  15. Field and Bioassay Indicators for Internal Dose Intervention Therapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carbaugh, Eugene H.

    2007-05-01

    Guidance is presented that is used at the U.S. Department of Energy Hanford Site to identify the potential need for medical intervention in response to intakes of radioactivity. The guidance, based on ICRP Publication 30 models and committed effective dose equivalents of 20 mSv and 200 mSv, is expressed as numerical workplace measurements and derived first-day bioassay results for large intakes. It is used by facility radiation protection staff and on-call dosimetry support staff during the first few days following an intake.

  16. Determination of the electron-capture coefficients and the concentration of free electrons in GaN from time-resolved photoluminescence

    PubMed Central

    Reshchikov, M. A.; McNamara, J. D.; Toporkov, M.; Avrutin, V.; Morkoç, H.; Usikov, A.; Helava, H.; Makarov, Yu.

    2016-01-01

    Point defects in high-purity GaN layers grown by hydride vapor phase epitaxy are studied by steady-state and time-resolved photoluminescence (PL). The electron-capture coefficients for defects responsible for the dominant defect-related PL bands in this material are found. The capture coefficients for all the defects, except for the green luminescence (GL1) band, are independent of temperature. The electron-capture coefficient for the GL1 band significantly changes with temperature because the GL1 band is caused by an internal transition in the related defect, involving an excited state acting as a giant trap for electrons. By using the determined electron-capture coefficients, the concentration of free electrons can be found at different temperatures by a contactless method. A new classification system is suggested for defect-related PL bands in undoped GaN. PMID:27901025

  17. A method of estimating conceptus doses resulting from multidetector CT examinations during all stages of gestation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Damilakis, John; Tzedakis, Antonis; Perisinakis, Kostas

    Purpose: Current methods for the estimation of conceptus dose from multidetector CT (MDCT) examinations performed on the mother provide dose data for typical protocols with a fixed scan length. However, modified low-dose imaging protocols are frequently used during pregnancy. The purpose of the current study was to develop a method for the estimation of conceptus dose from any MDCT examination of the trunk performed during all stages of gestation. Methods: The Monte Carlo N-Particle (MCNP) radiation transport code was employed in this study to model the Siemens Sensation 16 and Sensation 64 MDCT scanners. Four mathematical phantoms were used, simulatingmore » women at 0, 3, 6, and 9 months of gestation. The contribution to the conceptus dose from single simulated scans was obtained at various positions across the phantoms. To investigate the effect of maternal body size and conceptus depth on conceptus dose, phantoms of different sizes were produced by adding layers of adipose tissue around the trunk of the mathematical phantoms. To verify MCNP results, conceptus dose measurements were carried out by means of three physical anthropomorphic phantoms, simulating pregnancy at 0, 3, and 6 months of gestation and thermoluminescence dosimetry (TLD) crystals. Results: The results consist of Monte Carlo-generated normalized conceptus dose coefficients for single scans across the four mathematical phantoms. These coefficients were defined as the conceptus dose contribution from a single scan divided by the CTDI free-in-air measured with identical scanning parameters. Data have been produced to take into account the effect of maternal body size and conceptus position variations on conceptus dose. Conceptus doses measured with TLD crystals showed a difference of up to 19% compared to those estimated by mathematical simulations. Conclusions: Estimation of conceptus doses from MDCT examinations of the trunk performed on pregnant patients during all stages of gestation can be

  18. Procrustes Matching by Congruence Coefficients

    ERIC Educational Resources Information Center

    Korth, Bruce; Tucker, L. R.

    1976-01-01

    Matching by Procrustes methods involves the transformation of one matrix to match with another. A special least squares criterion, the congruence coefficient, has advantages as a criterion for some factor analytic interpretations. A Procrustes method maximizing the congruence coefficient is given. (Author/JKS)

  19. Determination of effective doses in image-guided radiation therapy system

    NASA Astrophysics Data System (ADS)

    Pyone, Y. Y.; Suriyapee, S.; Sanghangthum, T.; Oonsiri, S.; Tawonwong, T.

    2016-03-01

    The organ and effective doses in image-guided radiotherapy system are determined in this study. For 2D imaging, incident air kerma (Ki) was measured by 6cc ionization chamber with Accu-Pro dosimeter. The entrance surface air kerma (ESAK) was calculated by multiplying Ki with backscatter factor. The effective dose was calculated by multiplying ESAK with conversion coefficient. For 3D imaging, computed tomography/cone-beam dose index (CTDI/CBDI) measurements were performed by using 100mm pencil ionization chamber with Accu-Pro dosimeter. The dose index in air and in CTDI phantom from planning CT and cone- beam CT were measured. Then, effective dose was calculated by ImPACT software. The effective doses from 2D conventional simulator for anteroposterior and lateral projections were 01 and 0.02mSv for head, 0.15 and 0.16mSv for thorax, 0.22 and 0.21mSv for pelvis, respectively. The effective doses from 3D, planning CT and CBCT, were 3.3 and 0.1mSv for head, 13 and 2.4mSv for thorax and 7.2 and 4.9mSv for pelvis, respectively. Based on 30 fractions of treatment course, total effective dose (3D CT, 2D setup verification and 6 times CBCT) of head, thorax and pelvis were 3.93, 27.71 and 37.03mSv, respectively. Therefore, IGRT should be administered with significant parameters to reduce the dose.

  20. An agreement coefficient for image comparison

    USGS Publications Warehouse

    Ji, Lei; Gallo, Kevin

    2006-01-01

    Combination of datasets acquired from different sensor systems is necessary to construct a long time-series dataset for remotely sensed land-surface variables. Assessment of the agreement of the data derived from various sources is an important issue in understanding the data continuity through the time-series. Some traditional measures, including correlation coefficient, coefficient of determination, mean absolute error, and root mean square error, are not always optimal for evaluating the data agreement. For this reason, we developed a new agreement coefficient for comparing two different images. The agreement coefficient has the following properties: non-dimensional, bounded, symmetric, and distinguishable between systematic and unsystematic differences. The paper provides examples of agreement analyses for hypothetical data and actual remotely sensed data. The results demonstrate that the agreement coefficient does include the above properties, and therefore is a useful tool for image comparison.

  1. Radiation dose to workers due to the inhalation of dust during granite fabrication.

    PubMed

    Zwack, L M; McCarthy, W B; Stewart, J H; McCarthy, J F; Allen, J G

    2014-03-01

    There has been very little research conducted to determine internal radiation doses resulting from worker exposure to ionising radiation in granite fabrication shops. To address this issue, we estimated the effective radiation dose of granite workers in US fabrication shops who were exposed to the maximum respirable dust and silica concentrations allowed under current US regulations, and also to concentrations reported in the literature. Radiation doses were calculated using standard methods developed by the International Commission on Radiological Protection. The calculated internal doses were very low, and below both US occupational standards (50 mSv yr(-1)) and limits applicable to the general public (1 mSv yr(-1)). Workers exposed to respirable granite dust concentrations at the US Occupational Safety and Health Administration (OSHA) respirable dust permissible exposure limit (PEL) of 5 mg m(-3) over a full year had an estimated radiation dose of 0.062 mSv yr(-1). Workers exposed to respirable granite dust concentrations at the OSHA silica PEL and at the American Conference of Governmental Industrial Hygienists Threshold Limit Value for a full year had expected radiation doses of 0.007 mSv yr(-1) and 0.002 mSv yr(-1), respectively. Using data from studies of respirable granite dust and silica concentrations measured in granite fabrication shops, we calculated median expected radiation doses that ranged from <0.001 to 0.101 mSv yr(-1).

  2. Study on degenerate coefficient and degeneration evaluation of lithium-ion battery

    NASA Astrophysics Data System (ADS)

    Li, Bei; Li, Xiaopeng

    2017-07-01

    Some characteristic parameters were epurated in this paper by analyzing internal and external factors of the degradation degree of lithium-ion battery. These characteristic parameters include open circuit voltage (OCV), state of charge (SOC) and ambient temperature. The degradation degree was evaluated by discrete degree of the array, which is composed of the above parameters. The epurated parameters were verified through adaptive neuro-fuzzy inference system (ANFIS) model building. The expression of degradation coefficient was finally determined. The simulation results show that the expression is reasonable and precise to describe the degradation degree.

  3. Correlation-study about the ambient dose rate and the weather conditions

    NASA Astrophysics Data System (ADS)

    Furuya, Masato; Hatano, Yuko; Aoyama, Tomoo; Igarashi, Yasuhito; Kita, Kazuyuki; Ishizuka, Masahide

    2016-04-01

    The long-term radiation risks are believed to be heavily affected by the resuspension process. We therefore focus on the surface-atmosphere exchange process of released radioactive materials in this study. Radioactive materials were deposited on the soil and float in the air, and such complicated process are influenced by the weather conditions deeply. We need to reveal the correlation between the weather conditions and the ambient dose rate. In this study, we study the correlation between the weather conditions and the ambient dose rate with the correction of the decrease due to the radioactive decay. We found that there is a negative correlation between the ambient dose rate and the soil water content by the correlation coefficient. Using this result, we reconstruct the ambient dose rate from the weather conditions by the multiple regression analysis and found that the reconstructed data agree with the observation very well. Using Kalman filter, which can be sequentially updates the state estimate, we obtained such a good agreement.

  4. Radiological assessment. A textbook on environmental dose analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Till, J.E.; Meyer, H.R.

    1983-09-01

    Radiological assessment is the quantitative process of estimating the consequences to humans resulting from the release of radionuclides to the biosphere. It is a multidisciplinary subject requiring the expertise of a number of individuals in order to predict source terms, describe environmental transport, calculate internal and external dose, and extrapolate dose to health effects. Up to this time there has been available no comprehensive book describing, on a uniform and comprehensive level, the techniques and models used in radiological assessment. Radiological Assessment is based on material presented at the 1980 Health Physics Society Summer School held in Seattle, Washington. Themore » material has been expanded and edited to make it comprehensive in scope and useful as a text. Topics covered include (1) source terms for nuclear facilities and Medical and Industrial sites; (2) transport of radionuclides in the atmosphere; (3) transport of radionuclides in surface waters; (4) transport of radionuclides in groundwater; (5) terrestrial and aquatic food chain pathways; (6) reference man; a system for internal dose calculations; (7) internal dosimetry; (8) external dosimetry; (9) models for special-case radionuclides; (10) calculation of health effects in irradiated populations; (11) evaluation of uncertainties in environmental radiological assessment models; (12) regulatory standards for environmental releases of radionuclides; (13) development of computer codes for radiological assessment; and (14) assessment of accidental releases of radionuclides.« less

  5. Entrance loss coefficients and exit coefficients for a physical model of the glottis with convergent angles

    PubMed Central

    Fulcher, Lewis P.; Scherer, Ronald C.; Anderson, Nicholas V.

    2014-01-01

    Pressure distributions were obtained for 5°, 10°, and 20° convergent angles with a static physical model (M5) of the glottis. Measurements were made for minimal glottal diameters from d = 0.005–0.32 cm with a range of transglottal pressures of interest for phonation. Entrance loss coefficients were calculated at the glottal entrance for each minimal diameter and transglottal pressure to measure how far the flows in this region deviate from Bernoulli flow. Exit coefficients were also calculated to determine the presence and magnitude of pressure recovery near the glottal exit. The entrance loss coefficients for the three convergent angles vary from values near 2.3–3.4 for d = 0.005 cm to values near 0.6 for d = 0.32 cm. These coefficients extend the tables of entrance loss and exit coefficients obtained for the uniform glottis according to Fulcher, Scherer, and Powell [J. Acoust. Soc. Am. 129, 1548–1553 (2011)]. PMID:25190404

  6. Dose evaluation of organs at risk (OAR) cervical cancer using dose volume histogram (DVH) on brachytherapy

    NASA Astrophysics Data System (ADS)

    Arif Wibowo, R.; Haris, Bambang; Inganatul Islamiyah, dan

    2017-05-01

    Brachytherapy is one way to cure cervical cancer. It works by placing a radioactive source near the tumor. However, there are some healthy tissues or organs at risk (OAR) such as bladder and rectum which received radiation also. This study aims to evaluate the radiation dose of the bladder and rectum. There were 12 total radiation dose data of the bladder and rectum obtained from patients’ brachytherapy. The dose of cervix for all patients was 6 Gy. Two-dimensional calculation of the radiation dose was based on the International Commission on Radiation Units and Measurements (ICRU) points or called DICRU while the 3-dimensional calculation derived from Dose Volume Histogram (DVH) on a volume of 2 cc (D2cc). The radiation dose of bladder and rectum from both methods were analysed using independent t test. The mean DICRU of bladder was 4.33730 Gy and its D2cc was4.78090 Gy. DICRU and D2cc bladder did not differ significantly (p = 0.144). The mean DICRU of rectum was 3.57980 Gy and 4.58670 Gy for D2cc. The mean DICRU of rectum differed significantly from D2cc of rectum (p = 0.000). The three-dimensional method radiation dose of the bladder and rectum was higher than the two-dimensional method with ratios 1.10227 for bladder and 1.28127 for rectum. The radiation dose of the bladder and rectum was still below the tolerance dose. Two-dimensional calculation of the bladder and rectum dose was lower than three-dimension which was more accurate due to its calculation at the whole volume of the organs.

  7. Accuracy of a dose-area product compared to an absorbed dose to water at a point in a 2 cm diameter field

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dufreneix, S.; Ostrowsky, A.; Rapp, B.

    Purpose: Graphite calorimeters with a core diameter larger than the beam can be used to establish dosimetric references in small fields. The dose-area product (DAP) measured can theoretically be linked to an absorbed dose at a point by the determination of a profile correction. This study aims at comparing the DAP-based protocol to the usual absorbed dose at a point protocol in a 2 cm diameter field for which both references exist. Methods: Two calorimeters were used, respectively, with a sensitive volume of 0.6 cm (for the absorbed dose at a point measurement) and 3 cm diameter (for the DAPmore » measurement). Profile correction was calculated from a 2D dose mapping using three detectors: a PinPoint chamber, a synthetic diamond, and EBT3 films. A specific protocol to read EBT3 films was implemented and the dose-rate and energy dependences were studied to assure a precise measurement, especially in the penumbra and out-of-field regions. Results: EBT3 films were found independent on dose rates over the range studied but showed a strong under-response (18%) at low energies. Depending on the dosimeter used for calculating the profile correction, a deviation of 0.8% (PinPoint chamber), 0.9% (diamond), or 1.9% (EBT3 films) was observed between the calibration coefficient derived from DAP measurements and the one directly established in terms of absorbed dose to water at a point. Conclusions: The DAP method can currently be linked to the classical dosimetric reference system based in an absorbed dose at a point only with a confidence interval of 95% (k = 2). None of the detectors studied can be used to determine an absorbed dose to water at a point from a DAP measurement with an uncertainty smaller than 1.2%.« less

  8. Comparing analgesia and μ-opioid receptor internalization produced by intrathecal enkephalin

    PubMed Central

    Chen, Wenling; Song, Bingbing; Lao, Lijun; Pérez, Orlando A.; Kim, Woojae; Marvizón, Juan Carlos G.

    2007-01-01

    Summary Opioid receptors in the spinal cord produce strong analgesia, but the mechanisms controlling their activation by endogenous opioids remain unclear. We have previously shown in spinal cord slices that peptidases preclude μ-opioid receptor (MOR) internalization by opioids. Our present goals were to investigate whether enkephalin-induced analgesia is also precluded by peptidases, and whether it is mediated by MORs or δ-opioid receptors (DORs). Tail-flick analgesia and MOR internalization were measured in rats injected intrathecally with Leu-enkephalin and peptidase inhibitors. Without peptidase inhibitors, Leu-enkephalin produced neither analgesia nor MOR internalization at doses up to 100 nmol, whereas with peptidase inhibitors it produced analgesia at 0.3 nmol and MOR internalization at 1 nmol. Leu-enkephalin was ten times more potent to produce analgesia than to produce MOR internalization, suggesting that DORs were involved. Selective MOR or DOR antagonists completely blocked the analgesia elicited by 0.3 nmol Leu-enkephalin (a dose that produced little MOR internalization), indicating that it involved these two receptors, possibly by an additive or synergistic interaction. The selective MOR agonist endomorphin-2 produced analgesia even in the presence of a DOR antagonist, but at doses substantially higher than Leu-enkephalin. Unlike Leu-enkephalin, endomorphin-2 had the same potencies to induce analgesia and MOR internalization. We concluded that low doses of enkephalins produce analgesia by activating both MORs and DORs. Analgesia can also be produced exclusively by MORs at higher agonist doses. Since peptidases prevent the activation of spinal opioid receptors by enkephalins, the coincident release of opioids and endogenous peptidase inhibitors may be required for analgesia. PMID:17845806

  9. Is patient size important in dose determination and optimization in cardiology?

    NASA Astrophysics Data System (ADS)

    Reay, J.; Chapple, C. L.; Kotre, C. J.

    2003-12-01

    Patient dose determination and optimization have become more topical in recent years with the implementation of the Medical Exposures Directive into national legislation, the Ionising Radiation (Medical Exposure) Regulations. This legislation incorporates a requirement for new equipment to provide a means of displaying a measure of patient exposure and introduces the concept of diagnostic reference levels. It is normally assumed that patient dose is governed largely by patient size; however, in cardiology, where procedures are often very complex, the significance of patient size is less well understood. This study considers over 9000 cardiology procedures, undertaken throughout the north of England, and investigates the relationship between patient size and dose. It uses simple linear regression to calculate both correlation coefficients and significance levels for data sorted by both room and individual clinician for the four most common examinations, left ventrical and/or coronary angiography, single vessel stent insertion and single vessel angioplasty. This paper concludes that the correlation between patient size and dose is weak for the procedures considered. It also illustrates the use of an existing method for removing the effect of patient size from dose survey data. This allows typical doses and, therefore, reference levels to be defined for the purposes of dose optimization.

  10. Meta-Analysis of Coefficient Alpha

    ERIC Educational Resources Information Center

    Rodriguez, Michael C.; Maeda, Yukiko

    2006-01-01

    The meta-analysis of coefficient alpha across many studies is becoming more common in psychology by a methodology labeled reliability generalization. Existing reliability generalization studies have not used the sampling distribution of coefficient alpha for precision weighting and other common meta-analytic procedures. A framework is provided for…

  11. Patient-specific radiation dose and cancer risk estimation in pediatric chest CT: a study in 30 patients

    NASA Astrophysics Data System (ADS)

    Li, Xiang; Samei, Ehsan; Segars, W. Paul; Sturgeon, Gregory M.; Colsher, James G.; Frush, Donald P.

    2010-04-01

    Radiation-dose awareness and optimization in CT can greatly benefit from a dosereporting system that provides radiation dose and cancer risk estimates specific to each patient and each CT examination. Recently, we reported a method for estimating patientspecific dose from pediatric chest CT. The purpose of this study is to extend that effort to patient-specific risk estimation and to a population of pediatric CT patients. Our study included thirty pediatric CT patients (16 males and 14 females; 0-16 years old), for whom full-body computer models were recently created based on the patients' clinical CT data. Using a validated Monte Carlo program, organ dose received by the thirty patients from a chest scan protocol (LightSpeed VCT, 120 kVp, 1.375 pitch, 40-mm collimation, pediatric body scan field-of-view) was simulated and used to estimate patient-specific effective dose. Risks of cancer incidence were calculated for radiosensitive organs using gender-, age-, and tissue-specific risk coefficients and were used to derive patientspecific effective risk. The thirty patients had normalized effective dose of 3.7-10.4 mSv/100 mAs and normalized effective risk of 0.5-5.8 cases/1000 exposed persons/100 mAs. Normalized lung dose and risk of lung cancer correlated strongly with average chest diameter (correlation coefficient: r = -0.98 to -0.99). Normalized effective risk also correlated strongly with average chest diameter (r = -0.97 to -0.98). These strong correlations can be used to estimate patient-specific dose and risk prior to or after an imaging study to potentially guide healthcare providers in justifying CT examinations and to guide individualized protocol design and optimization.

  12. Use of Transportable Radiation Detection Instruments to Assess Internal Contamination from Intakes of Radionuclides Part II: Calibration Factors and ICAT Computer Program.

    PubMed

    Anigstein, Robert; Olsher, Richard H; Loomis, Donald A; Ansari, Armin

    2016-12-01

    The detonation of a radiological dispersion device or other radiological incidents could result in widespread releases of radioactive materials and intakes of radionuclides by affected individuals. Transportable radiation monitoring instruments could be used to measure radiation from gamma-emitting radionuclides in the body for triaging individuals and assigning priorities to their bioassay samples for in vitro assessments. The present study derived sets of calibration factors for four instruments: the Ludlum Model 44-2 gamma scintillator, a survey meter containing a 2.54 × 2.54-cm NaI(Tl) crystal; the Captus 3000 thyroid uptake probe, which contains a 5.08 × 5.08-cm NaI(Tl) crystal; the Transportable Portal Monitor Model TPM-903B, which contains two 3.81 × 7.62 × 182.9-cm polyvinyltoluene plastic scintillators; and a generic instrument, such as an ionization chamber, that measures exposure rates. The calibration factors enable these instruments to be used for assessing inhaled or ingested intakes of any of four radionuclides: Co, I, Cs, and Ir. The derivations used biokinetic models embodied in the DCAL computer software system developed by the Oak Ridge National Laboratory and Monte Carlo simulations using the MCNPX radiation transport code. The three physical instruments were represented by MCNP models that were developed previously. The affected individuals comprised children of five ages who were represented by the revised Oak Ridge National Laboratory pediatric phantoms, and adult men and adult women represented by the Adult Reference Computational Phantoms described in Publication 110 of the International Commission on Radiological Protection. These calibration factors can be used to calculate intakes; the intakes can be converted to committed doses by the use of tabulated dose coefficients. These calibration factors also constitute input data to the ICAT computer program, an interactive Microsoft Windows-based software package that estimates intakes of

  13. USE OF TRANSPORTABLE RADIATION DETECTION INSTRUMENTS TO ASSESS INTERNAL CONTAMINATION FROM INTAKES OF RADIONUCLIDES PART II: CALIBRATION FACTORS AND ICAT COMPUTER PROGRAM

    PubMed Central

    Anigstein, Robert; Olsher, Richard H.; Loomis, Donald A.; Ansari, Armin

    2017-01-01

    The detonation of a radiological dispersion device or other radiological incidents could result in widespread releases of radioactive materials and intakes of radionuclides by affected individuals. Transportable radiation monitoring instruments could be used to measure radiation from gamma-emitting radionuclides in the body for triaging individuals and assigning priorities to their bioassay samples for in vitro assessments. The present study derived sets of calibration factors for four instruments: the Ludlum Model 44-2 gamma scintillator, a survey meter containing a 2.54 × 2.54-cm NaI(Tl) crystal; the Captus 3000 thyroid uptake probe, which contains a 5.08 × 5.08-cm NaI(Tl) crystal; the Transportable Portal Monitor Model TPM-903B, which contains two 3.81 × 7.62 × 182.9-cm polyvinyltoluene plastic scintillators; and a generic instrument, such as an ionization chamber, that measures exposure rates. The calibration factors enable these instruments to be used for assessing inhaled or ingested intakes of any of four radionuclides: 60Co, 131I, 137Cs, and 192Ir. The derivations used biokinetic models embodied in the DCAL computer software system developed by the Oak Ridge National Laboratory and Monte Carlo simulations using the MCNPX radiation transport code. The three physical instruments were represented by MCNP models that were developed previously. The affected individuals comprised children of five ages who were represented by the revised Oak Ridge National Laboratory pediatric phantoms, and adult men and adult women represented by the Adult Reference Computational Phantoms described in Publication 110 of the International Commission on Radiological Protection. These calibration factors can be used to calculate intakes; the intakes can be converted to committed doses by the use of tabulated dose coefficients. These calibration factors also constitute input data to the ICAT computer program, an interactive Microsoft Windows-based software package that estimates

  14. Recommended de minimis radiation dose rates for Canada. Report No. INFO-0355

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1990-01-01

    A de minimis dose or dose rate as used in this report represents a level of risk which is generally accepted as being of no significance to an individual, or in the case of a population, of no significance to society. The report describes the risk of biological effects from radiation; radiation from natural and man-made sources; normal incidences of cancer and genetic defects; initiatives by other agencies in the U.S., the U.K. and internationally; the importance of collective dose and dose rate; assigning values to the de minimis dose rates; and application of the de minimis dose rates.

  15. Direct dose mapping versus energy/mass transfer mapping for 4D dose accumulation: fundamental differences and dosimetric consequences.

    PubMed

    Li, Haisen S; Zhong, Hualiang; Kim, Jinkoo; Glide-Hurst, Carri; Gulam, Misbah; Nurushev, Teamour S; Chetty, Indrin J

    2014-01-06

    The direct dose mapping (DDM) and energy/mass transfer (EMT) mapping are two essential algorithms for accumulating the dose from different anatomic phases to the reference phase when there is organ motion or tumor/tissue deformation during the delivery of radiation therapy. DDM is based on interpolation of the dose values from one dose grid to another and thus lacks rigor in defining the dose when there are multiple dose values mapped to one dose voxel in the reference phase due to tissue/tumor deformation. On the other hand, EMT counts the total energy and mass transferred to each voxel in the reference phase and calculates the dose by dividing the energy by mass. Therefore it is based on fundamentally sound physics principles. In this study, we implemented the two algorithms and integrated them within the Eclipse treatment planning system. We then compared the clinical dosimetric difference between the two algorithms for ten lung cancer patients receiving stereotactic radiosurgery treatment, by accumulating the delivered dose to the end-of-exhale (EE) phase. Specifically, the respiratory period was divided into ten phases and the dose to each phase was calculated and mapped to the EE phase and then accumulated. The displacement vector field generated by Demons-based registration of the source and reference images was used to transfer the dose and energy. The DDM and EMT algorithms produced noticeably different cumulative dose in the regions with sharp mass density variations and/or high dose gradients. For the planning target volume (PTV) and internal target volume (ITV) minimum dose, the difference was up to 11% and 4% respectively. This suggests that DDM might not be adequate for obtaining an accurate dose distribution of the cumulative plan, instead, EMT should be considered.

  16. Direct dose mapping versus energy/mass transfer mapping for 4D dose accumulation: fundamental differences and dosimetric consequences

    NASA Astrophysics Data System (ADS)

    Li, Haisen S.; Zhong, Hualiang; Kim, Jinkoo; Glide-Hurst, Carri; Gulam, Misbah; Nurushev, Teamour S.; Chetty, Indrin J.

    2014-01-01

    The direct dose mapping (DDM) and energy/mass transfer (EMT) mapping are two essential algorithms for accumulating the dose from different anatomic phases to the reference phase when there is organ motion or tumor/tissue deformation during the delivery of radiation therapy. DDM is based on interpolation of the dose values from one dose grid to another and thus lacks rigor in defining the dose when there are multiple dose values mapped to one dose voxel in the reference phase due to tissue/tumor deformation. On the other hand, EMT counts the total energy and mass transferred to each voxel in the reference phase and calculates the dose by dividing the energy by mass. Therefore it is based on fundamentally sound physics principles. In this study, we implemented the two algorithms and integrated them within the Eclipse treatment planning system. We then compared the clinical dosimetric difference between the two algorithms for ten lung cancer patients receiving stereotactic radiosurgery treatment, by accumulating the delivered dose to the end-of-exhale (EE) phase. Specifically, the respiratory period was divided into ten phases and the dose to each phase was calculated and mapped to the EE phase and then accumulated. The displacement vector field generated by Demons-based registration of the source and reference images was used to transfer the dose and energy. The DDM and EMT algorithms produced noticeably different cumulative dose in the regions with sharp mass density variations and/or high dose gradients. For the planning target volume (PTV) and internal target volume (ITV) minimum dose, the difference was up to 11% and 4% respectively. This suggests that DDM might not be adequate for obtaining an accurate dose distribution of the cumulative plan, instead, EMT should be considered.

  17. An original method for characterizing internal waves

    NASA Astrophysics Data System (ADS)

    Casagrande, Gaëlle; Varnas, Alex Warn; Folégot, Thomas; Stéphan, Yann

    This study consisted in the characterization of internal waves in the south of the Strait of Messina (Italy). The observational data consisted in thermistor string profiles from the Coastal Ocean Acoustic Changes at High frequencies (COACH06) sea trial. An empirical orthogonal function analysis is applied to the data. The first two spatial empirical modes represent over 99% of the variability, and their corresponding time-dependent expansion coefficients take higher absolute values during internal wave events. In order to check how the expansion coefficients vary during an internal wave event, their time derivative, called here changing rates, are computed. It shows that each wave of an internal wave train is characterized by a double oscillation of the changing rates. At the front of the wave, both changing rates increase in absolute value with opposite sign, and then decrease to become null at the maximum amplitude of the wave. At the rear of the wave, the changing rates describe another period, again with opposite sign. This double oscillation can be used as a detector of internal waves, but it can also give information on the width of the wave, by measuring the length of the oscillation, as this information may sometimes be hard to read straight out of the data. When plotting the changing rates one versus another, the resulting scatter diagram puts on a butterfly shape that illustrates well this behaviour.

  18. Transport Coefficients from Large Deviation Functions

    NASA Astrophysics Data System (ADS)

    Gao, Chloe; Limmer, David

    2017-10-01

    We describe a method for computing transport coefficients from the direct evaluation of large deviation function. This method is general, relying on only equilibrium fluctuations, and is statistically efficient, employing trajectory based importance sampling. Equilibrium fluctuations of molecular currents are characterized by their large deviation functions, which is a scaled cumulant generating function analogous to the free energy. A diffusion Monte Carlo algorithm is used to evaluate the large deviation functions, from which arbitrary transport coefficients are derivable. We find significant statistical improvement over traditional Green-Kubo based calculations. The systematic and statistical errors of this method are analyzed in the context of specific transport coefficient calculations, including the shear viscosity, interfacial friction coefficient, and thermal conductivity.

  19. Transonic Blunt Body Aerodynamic Coefficients Computation

    NASA Astrophysics Data System (ADS)

    Sancho, Jorge; Vargas, M.; Gonzalez, Ezequiel; Rodriguez, Manuel

    2011-05-01

    In the framework of EXPERT (European Experimental Re-entry Test-bed) accurate transonic aerodynamic coefficients are of paramount importance for the correct trajectory assessment and parachute deployment. A combined CFD (Computational Fluid Dynamics) modelling and experimental campaign strategy was selected to obtain accurate coefficients. A preliminary set of coefficients were obtained by CFD Euler inviscid computation. Then experimental campaign was performed at DNW facilities at NLR. A profound review of the CFD modelling was done lighten up by WTT results, aimed to obtain reliable values of the coefficients in the future (specially the pitching moment). Study includes different turbulence modelling and mesh sensitivity analysis. Comparison with the WTT results is explored, and lessons learnt are collected.

  20. Gut Microbiota and Tacrolimus Dosing in Kidney Transplantation

    PubMed Central

    Lee, John R.; Muthukumar, Thangamani; Dadhania, Darshana; Taur, Ying; Jenq, Robert R.; Toussaint, Nora C.; Ling, Lilan; Pamer, Eric; Suthanthiran, Manikkam

    2015-01-01

    Tacrolimus dosing to establish therapeutic levels in recipients of organ transplants is a challenging task because of much interpatient and intrapatient variability in drug absorption, metabolism, and disposition. In view of the reported impact of gut microbial species on drug metabolism, we investigated the relationship between the gut microbiota and tacrolimus dosing requirements in this pilot study of adult kidney transplant recipients. Serial fecal specimens were collected during the first month of transplantation from 19 kidney transplant recipients who either required a 50% increase from initial tacrolimus dosing during the first month of transplantation (Dose Escalation Group, n=5) or did not require such an increase (Dose Stable Group, n=14). We characterized bacterial composition in the fecal specimens by deep sequencing of the PCR amplified 16S rRNA V4-V5 region and we investigated the hypothesis that gut microbial composition is associated with tacrolimus dosing requirements. Initial tacrolimus dosing was similar in the Dose Escalation Group and in the Stable Group (4.2±1.1 mg/day vs. 3.8±0.8 mg/day, respectively, P=0.61, two-way between-group ANOVA using contrasts) but became higher in the Dose Escalation Group than in the Dose Stable Group by the end of the first transplantation month (9.6±2.4 mg/day vs. 3.3±1.5 mg/day, respectively, P<0.001). Our systematic characterization of the gut microbial composition identified that fecal Faecalibacterium prausnitzii abundance in the first week of transplantation was 11.8% in the Dose Escalation Group and 0.8% in the Dose Stable Group (P=0.002, Wilcoxon Rank Sum test, P<0.05 after Benjamini-Hochberg correction for multiple hypotheses). Fecal Faecalibacterium prausnitzii abundance in the first week of transplantation was positively correlated with future tacrolimus dosing at 1 month (R=0.57, P=0.01) and had a coefficient±standard error of 1.0±0.6 (P=0.08) after multivariable linear regression. Our novel

  1. Pc 5 Spectral Density at ULTIMA stataions and its Radial Diffusion Coefficients for REE

    NASA Astrophysics Data System (ADS)

    Fujimoto, A.; Tokunaga, T.; Abe, S.; Uozumi, T.; Yoshikawa, A.; Mann, I. R.; Chi, P. J.; Engebretson, M. J.; Yumoto, K.

    2009-12-01

    Pc 5 magnetic pulsations with frequencies between 1.67 and 6.67 mHz, are believed to contribute to the Relativistic Electron Enhancement (REE) in the outer radiation belt during magnetic storms. Ground-based observations suggested that high-speed solar wind and large-amplitude Pc 5 waves with a long duration during the storm recovery phase are closely associated with the production of relativistic electrons [Baker et al., 1998; Rostoker et al., 1998; Mathie and Mann, 2000; O’Brien et al., 2001, 2003]. On the other hand, many relativistic electron acceleration mechanisms have been proposed theoretically. They are separated roughly into two themes: in situ acceleration at L lower than 6.6 by wave particle interactions (as internal source acceleration mechanisms) [Liu et al., 1999; Summers et al., 1999; Summers and Ma, 2000] and acceleration by radial diffusion to transport and accelerate a source population of electrons from the outer to the inner magnetosphere (as external source acceleration mechanisms) [Elkington et al., 1999, 2003; Hudson et al., 2000; Kim et al., 2001]. One possible external source acceleration mechanism is the resonant interaction with ULF toroidal and poloidal waves. In order to verify which of the two mechanisms is more effective for the REE, we have to examine the time variation of electron phase space density. Electron phase space density is not directly measured, but we can estimate radial diffusion coefficients using observational electric and magnetic data. The goal of this paper is to get more reliable radial diffusion coefficient from ground-based observational magnetic field and to show reasonability of it for radial diffusion model. We use the global magnetometer data obtained from ULTIMA (Ultra Large Terrestrial International Magnetic Array, see http://www.serc.kyushu-u.ac.jp/ultima/ultima.html) stations, to precisely define the radial diffusion timescales. The ULTIMA includes McMAC, CARISAM, 210MM and MAGDAS/CPMN magnetometer

  2. Current dosing of low-molecular-weight heparins does not reflect licensed product labels: an international survey

    PubMed Central

    Barras, Michael A; Kirkpatrick, Carl M J; Green, Bruce

    2010-01-01

    AIMS Low-molecular-weight heparins (LMWHs) are used globally to treat thromboembolic diseases; however, there is much debate on how to prescribe effectively for patients who have renal impairment and/or obesity. We aimed to investigate the strategies used to dose-individualize LMWH therapy. METHODS We conducted an online survey of selected hospitals in Australia, New Zealand (NZ), United Kingdom (UK) and the United States (US). Outcome measures included: the percentage of hospitals which recommended that LMWHs were prescribed according to the product label (PL), the percentage of hospitals that dose-individualized LMWHs outside the PL based on renal function, body weight and anti-Xa activity and a summary of methods used to dose-individualize therapy. RESULTS A total of 257 surveys were suitable for analysis: 84 (33%) from Australia, 79 (31%) from the UK, 73 (28%) from the US and 21 (8%) from NZ. Formal dosing protocols were used in 207 (81%) hospitals, of which 198 (96%) did not adhere to the PL. Of these 198 hospitals, 175 (87%) preferred to dose-individualize based on renal function, 128 (62%) on body weight and 48 (23%) by monitoring anti-Xa activity. All three of these variables were used in 29 (14%) hospitals, 98 (47%) used two variables and 71 (34%) used only one variable. CONCLUSIONS Dose-individualization strategies for LMWHs, which contravene the PL, were present in 96% of surveyed hospitals. Common individualization methods included dose-capping, use of lean body size descriptors to calculate renal function and the starting dose, followed by post dose anti-Xa monitoring. PMID:20573088

  3. Current dosing of low-molecular-weight heparins does not reflect licensed product labels: an international survey.

    PubMed

    Barras, Michael A; Kirkpatrick, Carl M J; Green, Bruce

    2010-05-01

    Low-molecular-weight heparins (LMWHs) are used globally to treat thromboembolic diseases; however, there is much debate on how to prescribe effectively for patients who have renal impairment and/or obesity. We aimed to investigate the strategies used to dose-individualize LMWH therapy. We conducted an online survey of selected hospitals in Australia, New Zealand (NZ), United Kingdom (UK) and the United States (US). Outcome measures included: the percentage of hospitals which recommended that LMWHs were prescribed according to the product label (PL), the percentage of hospitals that dose-individualized LMWHs outside the PL based on renal function, body weight and anti-Xa activity and a summary of methods used to dose-individualize therapy. A total of 257 surveys were suitable for analysis: 84 (33%) from Australia, 79 (31%) from the UK, 73 (28%) from the US and 21 (8%) from NZ. Formal dosing protocols were used in 207 (81%) hospitals, of which 198 (96%) did not adhere to the PL. Of these 198 hospitals, 175 (87%) preferred to dose-individualize based on renal function, 128 (62%) on body weight and 48 (23%) by monitoring anti-Xa activity. All three of these variables were used in 29 (14%) hospitals, 98 (47%) used two variables and 71 (34%) used only one variable. Dose-individualization strategies for LMWHs, which contravene the PL, were present in 96% of surveyed hospitals. Common individualization methods included dose-capping, use of lean body size descriptors to calculate renal function and the starting dose, followed by post dose anti-Xa monitoring.

  4. Multiple anatomy optimization of accumulated dose

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Watkins, W. Tyler, E-mail: watkinswt@virginia.edu; Siebers, Jeffrey V.; Moore, Joseph A.

    Purpose: To investigate the potential advantages of multiple anatomy optimization (MAO) for lung cancer radiation therapy compared to the internal target volume (ITV) approach. Methods: MAO aims to optimize a single fluence to be delivered under free-breathing conditions such that the accumulated dose meets the plan objectives, where accumulated dose is defined as the sum of deformably mapped doses computed on each phase of a single four dimensional computed tomography (4DCT) dataset. Phantom and patient simulation studies were carried out to investigate potential advantages of MAO compared to ITV planning. Through simulated delivery of the ITV- and MAO-plans, target dosemore » variations were also investigated. Results: By optimizing the accumulated dose, MAO shows the potential to ensure dose to the moving target meets plan objectives while simultaneously reducing dose to organs at risk (OARs) compared with ITV planning. While consistently superior to the ITV approach, MAO resulted in equivalent OAR dosimetry at planning objective dose levels to within 2% volume in 14/30 plans and to within 3% volume in 19/30 plans for each lung V20, esophagus V25, and heart V30. Despite large variations in per-fraction respiratory phase weights in simulated deliveries at high dose rates (e.g., treating 4/10 phases during single fraction beams) the cumulative clinical target volume (CTV) dose after 30 fractions and per-fraction dose were constant independent of planning technique. In one case considered, however, per-phase CTV dose varied from 74% to 117% of prescription implying the level of ITV-dose heterogeneity may not be appropriate with conventional, free-breathing delivery. Conclusions: MAO incorporates 4DCT information in an optimized dose distribution and can achieve a superior plan in terms of accumulated dose to the moving target and OAR sparing compared to ITV-plans. An appropriate level of dose heterogeneity in MAO plans must be further investigated.« less

  5. Multidisciplinary European Low Dose Initiative (MELODI): strategic research agenda for low dose radiation risk research.

    PubMed

    Kreuzer, M; Auvinen, A; Cardis, E; Durante, M; Harms-Ringdahl, M; Jourdain, J R; Madas, B G; Ottolenghi, A; Pazzaglia, S; Prise, K M; Quintens, R; Sabatier, L; Bouffler, S

    2018-03-01

    MELODI (Multidisciplinary European Low Dose Initiative) is a European radiation protection research platform with focus on research on health risks after exposure to low-dose ionising radiation. It was founded in 2010 and currently includes 44 members from 18 countries. A major activity of MELODI is the continuous development of a long-term European Strategic Research Agenda (SRA) on low-dose risk for radiation protection. The SRA is intended to identify priorities for national and European radiation protection research programs as a basis for the preparation of competitive calls at the European level. Among those key priorities is the improvement of health risk estimates for exposures close to the dose limits for workers and to reference levels for the population in emergency situations. Another activity of MELODI is to ensure the availability of European key infrastructures for research activities, and the long-term maintenance of competences in radiation research via an integrated European approach for training and education. The MELODI SRA identifies three key research topics in low dose or low dose-rate radiation risk research: (1) dose and dose rate dependence of cancer risk, (2) radiation-induced non-cancer effects and (3) individual radiation sensitivity. The research required to improve the evidence base for each of the three key topics relates to three research lines: (1) research to improve understanding of the mechanisms contributing to radiogenic diseases, (2) epidemiological research to improve health risk evaluation of radiation exposure and (3) research to address the effects and risks associated with internal exposures, differing radiation qualities and inhomogeneous exposures. The full SRA and associated documents can be downloaded from the MELODI website ( http://www.melodi-online.eu/sra.html ).

  6. Space radiation absorbed dose distribution in a human phantom

    NASA Technical Reports Server (NTRS)

    Badhwar, G. D.; Atwell, W.; Badavi, F. F.; Yang, T. C.; Cleghorn, T. F.

    2002-01-01

    The radiation risk to astronauts has always been based on measurements using passive thermoluminescent dosimeters (TLDs). The skin dose is converted to dose equivalent using an average radiation quality factor based on model calculations. The radiological risk estimates, however, are based on organ and tissue doses. This paper describes results from the first space flight (STS-91, 51.65 degrees inclination and approximately 380 km altitude) of a fully instrumented Alderson Rando phantom torso (with head) to relate the skin dose to organ doses. Spatial distributions of absorbed dose in 34 1-inch-thick sections measured using TLDs are described. There is about a 30% change in dose as one moves from the front to the back of the phantom body. Small active dosimeters were developed specifically to provide time-resolved measurements of absorbed dose rates and quality factors at five organ locations (brain, thyroid, heart/lung, stomach and colon) inside the phantom. Using these dosimeters, it was possible to separate the trapped-proton and the galactic cosmic radiation components of the doses. A tissue-equivalent proportional counter (TEPC) and a charged-particle directional spectrometer (CPDS) were flown next to the phantom torso to provide data on the incident internal radiation environment. Accurate models of the shielding distributions at the site of the TEPC, the CPDS and a scalable Computerized Anatomical Male (CAM) model of the phantom torso were developed. These measurements provided a comprehensive data set to map the dose distribution inside a human phantom, and to assess the accuracy and validity of radiation transport models throughout the human body. The results show that for the conditions in the International Space Station (ISS) orbit during periods near the solar minimum, the ratio of the blood-forming organ dose rate to the skin absorbed dose rate is about 80%, and the ratio of the dose equivalents is almost one. The results show that the GCR model dose

  7. Prediction of stream volatilization coefficients

    USGS Publications Warehouse

    Rathbun, Ronald E.

    1990-01-01

    Equations are developed for predicting the liquid-film and gas-film reference-substance parameters for quantifying volatilization of organic solutes from streams. Molecular weight and molecular-diffusion coefficients of the solute are used as correlating parameters. Equations for predicting molecular-diffusion coefficients of organic solutes in water and air are developed, with molecular weight and molal volume as parameters. Mean absolute errors of prediction for diffusion coefficients in water are 9.97% for the molecular-weight equation, 6.45% for the molal-volume equation. The mean absolute error for the diffusion coefficient in air is 5.79% for the molal-volume equation. Molecular weight is not a satisfactory correlating parameter for diffusion in air because two equations are necessary to describe the values in the data set. The best predictive equation for the liquid-film reference-substance parameter has a mean absolute error of 5.74%, with molal volume as the correlating parameter. The best equation for the gas-film parameter has a mean absolute error of 7.80%, with molecular weight as the correlating parameter.

  8. Orthogonality of spherical harmonic coefficients

    NASA Astrophysics Data System (ADS)

    McLeod, M. G.

    1980-08-01

    Orthogonality relations are obtained for the spherical harmonic coefficients of functions defined on the surface of a sphere. Following a brief discussion of the orthogonality of Fourier series coefficients, consideration is given to the values averaged over all orientations of the coordinate system of the spherical harmonic coefficients of a function defined on the surface of a sphere that can be expressed in terms of Legendre polynomials for the special case where the function is the sum of two delta functions located at two different points on the sphere, and for the case of an essentially arbitrary function. It is noted that the orthogonality relations derived have found applications in statistical studies of the geomagnetic field.

  9. High-energy neutron depth-dose distribution experiment.

    PubMed

    Ferenci, M S; Hertel, N E

    2003-01-01

    A unique set of high-energy neutron depth-dose benchmark experiments were performed at the Los Alamos Neutron Science Center/Weapons Neutron Research (LANSCE/WNR) complex. The experiments consisted of filtered neutron beams with energies up to 800 MeV impinging on a 30 x 30 x 30 cm3 liquid, tissue-equivalent phantom. The absorbed dose was measured in the phantom at various depths with tissue-equivalent ion chambers. This experiment is intended to serve as a benchmark experiment for the testing of high-energy radiation transport codes for the international radiation protection community.

  10. Benchmarking pediatric cranial CT protocols using a dose tracking software system: a multicenter study.

    PubMed

    De Bondt, Timo; Mulkens, Tom; Zanca, Federica; Pyfferoen, Lotte; Casselman, Jan W; Parizel, Paul M

    2017-02-01

    To benchmark regional standard practice for paediatric cranial CT-procedures in terms of radiation dose and acquisition parameters. Paediatric cranial CT-data were retrospectively collected during a 1-year period, in 3 different hospitals of the same country. A dose tracking system was used to automatically gather information. Dose (CTDI and DLP), scan length, amount of retakes and demographic data were stratified by age and clinical indication; appropriate use of child-specific protocols was assessed. In total, 296 paediatric cranial CT-procedures were collected. Although the median dose of each hospital was below national and international diagnostic reference level (DRL) for all age categories, statistically significant (p-value < 0.001) dose differences among hospitals were observed. The hospital with lowest dose levels showed smallest dose variability and used age-stratified protocols for standardizing paediatric head exams. Erroneous selection of adult protocols for children still occurred, mostly in the oldest age-group. Even though all hospitals complied with national and international DRLs, dose tracking and benchmarking showed that further dose optimization and standardization is possible by using age-stratified protocols for paediatric cranial CT. Moreover, having a dose tracking system revealed that adult protocols are still applied for paediatric CT, a practice that must be avoided. • Significant differences were observed in the delivered dose between age-groups and hospitals. • Using age-adapted scanning protocols gives a nearly linear dose increase. • Sharing dose-data can be a trigger for hospitals to reduce dose levels.

  11. Relaxation of structural parameters and potential coefficients of nonrigid molecules. General symmetry properties and application to ab initio study of 1,2-difluoroethane

    NASA Astrophysics Data System (ADS)

    Ha, T.-K.; Günthard, H. H.

    1989-07-01

    Structural parameters like bond length, bond angles, etc. and harmonic and anharmonic potential coefficients of molecules with internal rotation, inversion or puckering modes are generally assumed to vary with the large amplitude internal coordinates in a concerted manner (relaxation). Taking the coordinate vectors of the nuclear configuration of semirigid molecules with relaxation (SRMRs) as functions of relaxing structural parameters and finite amplitude internal coordinate, the isometric group of SRMRs is discussed and the irreducible representations of the latter are shown to classify into engendered and nonengendered ones. On this basis a concept of equivalent sets of nuclei SRMRs is introduced and an analytical expression is derived which defines the most general functional form of relaxation increments of all common types of structural parameters compatible with isometric symmetry. This formula is shown to be a close analog of an analytical expression defining the transformations induced by the isometric group of infinitesimal internal coordinates associated with typical structural parameters. Furthermore analogous formulae are given for the most general form of the relaxation of harmonic potential coefficients as a function of finite internal coordinates. The general relations are illustrated by ab initio calculations for 1,2-difluoroethane at the MP4/DZP//HF/4-31G* level for twelve values of the dihedral angle including complete structure optimization. The potential to internal rotation is found to be in essential agreement with experimentally derived data. For a complete set of ab initio structural parameters the associated relaxation increments are represented as Fourier series, which are shown to confirm the form predicted by the general formula and the isometric group of 1,2-difluoroethane. Depending on type of the structural parameters (bond length, bond angles, etc.), the associated relaxation increments appear to follow some simple rules. Similarly

  12. The near optimality of the stabilizing control in a weakly nonlinear system with state-dependent coefficients

    NASA Astrophysics Data System (ADS)

    Dmitriev, Mikhail G.; Makarov, Dmitry A.

    2016-08-01

    We carried out analysis of near optimality of one computationally effective nonlinear stabilizing control built for weakly nonlinear systems with coefficients depending on the state and the formal small parameter. First investigation of that problem was made in [M. G. Dmitriev, and D. A. Makarov, "The suboptimality of stabilizing regulator in a quasi-linear system with state-depended coefficients," in 2016 International Siberian Conference on Control and Communications (SIBCON) Proceedings, National Research University, Moscow, 2016]. In this paper, another optimal control and gain matrix representations were used and theoretical results analogous to cited work above were obtained. Also as in the cited work above the form of quality criterion on which this close-loop control is optimal was constructed.

  13. Experimental Method Development for Estimating Solid-phase Diffusion Coefficients and Material/Air Partition Coefficients of SVOCs

    EPA Science Inventory

    The solid-phase diffusion coefficient (Dm) and material-air partition coefficient (Kma) are key parameters for characterizing the sources and transport of semivolatile organic compounds (SVOCs) in the indoor environment. In this work, a new experimental method was developed to es...

  14. Childhood physical maltreatment, perceived social isolation, and internalizing symptoms: a longitudinal, three-wave, population-based study.

    PubMed

    Sheikh, Mashhood Ahmed

    2018-04-01

    A number of cross-sectional studies have consistently shown a correlation between childhood physical maltreatment, perceived social isolation and internalizing symptoms. Using a longitudinal, three-wave design, this study sought to assess the mediating role of perceived social isolation in adulthood in the association between childhood physical maltreatment and internalizing symptoms in adulthood. The study has a three-wave design. We used data collected from 1994 to 2008 within the framework of the Tromsø Study (N = 4530), a representative prospective cohort study of men and women. Perceived social isolation was measured at a mean age of 54.7 years, and internalizing symptoms were measured at a mean age of 61.7 years. The difference-in-coefficients method was used to assess the indirect effects and the proportion (%) of mediated effects. Childhood physical maltreatment was associated with an up to 68% [relative risk (RR) = 1.68, 95% confidence interval (CI): 1.33-2.13] higher risk of perceived social isolation in adulthood. Childhood physical maltreatment and perceived social isolation in adulthood were associated with greater levels of internalizing symptoms in adulthood (p < 0.01). A dose-response association was observed between childhood physical maltreatment and internalizing symptoms in adulthood (p < 0.001). Perceived social isolation in adulthood mediated up to 14.89% (p < 0.05) of the association between childhood physical maltreatment and internalizing symptoms in adulthood. The results of this study indicate the need to take perceived social isolation into account when considering the impact of childhood physical maltreatment on internalizing symptoms.

  15. Towards quantitative imaging: stability of fully automated nodule segmentation across varied dose levels and reconstruction parameters in a low-dose CT screening patient cohort

    NASA Astrophysics Data System (ADS)

    Wahi-Anwar, M. Wasil; Emaminejad, Nastaran; Hoffman, John; Kim, Grace H.; Brown, Matthew S.; McNitt-Gray, Michael F.

    2018-02-01

    Quantitative imaging in lung cancer CT seeks to characterize nodules through quantitative features, usually from a region of interest delineating the nodule. The segmentation, however, can vary depending on segmentation approach and image quality, which can affect the extracted feature values. In this study, we utilize a fully-automated nodule segmentation method - to avoid reader-influenced inconsistencies - to explore the effects of varied dose levels and reconstruction parameters on segmentation. Raw projection CT images from a low-dose screening patient cohort (N=59) were reconstructed at multiple dose levels (100%, 50%, 25%, 10%), two slice thicknesses (1.0mm, 0.6mm), and a medium kernel. Fully-automated nodule detection and segmentation was then applied, from which 12 nodules were selected. Dice similarity coefficient (DSC) was used to assess the similarity of the segmentation ROIs of the same nodule across different reconstruction and dose conditions. Nodules at 1.0mm slice thickness and dose levels of 25% and 50% resulted in DSC values greater than 0.85 when compared to 100% dose, with lower dose leading to a lower average and wider spread of DSC values. At 0.6mm, the increased bias and wider spread of DSC values from lowering dose were more pronounced. The effects of dose reduction on DSC for CAD-segmented nodules were similar in magnitude to reducing the slice thickness from 1.0mm to 0.6mm. In conclusion, variation of dose and slice thickness can result in very different segmentations because of noise and image quality. However, there exists some stability in segmentation overlap, as even at 1mm, an image with 25% of the lowdose scan still results in segmentations similar to that seen in a full-dose scan.

  16. Drag coefficients for loose reactor parts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shi, L.; Doster, J.M.; Mayo, C.W.

    1997-12-01

    Loose-part monitoring systems are capable of providing estimates of loose-part mass and energy as well as impact location. Additional information regarding potentially damaging loose parts can be obtained by estimating loose-part velocity on the basis of free motion dynamics within the flow. To estimate the loose-part velocity, the drag coefficient of the part must be known. Traditionally, drag coefficients of three-dimensional bodies are measured in wind tunnels, by towing in free air or liquids, and with drop tests. These methods have disadvantages with respect to measuring drag coefficients for loose parts in that they require a fixed orientation, or themore » flow field is inconsistent with the turbulent flow conditions found in reactor systems. Though drag coefficients for some regularly shaped objects can be found in the literature, many shapes representative of typical loose parts have not been investigated. In this work, drag coefficients are measured for typical loose-part shapes, including bolts, nuts, pins, and hand tools within the flow conditions expected in reactor coolant systems.« less

  17. Simple Method to Estimate Mean Heart Dose From Hodgkin Lymphoma Radiation Therapy According to Simulation X-Rays

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nimwegen, Frederika A. van; Cutter, David J.; Oxford Cancer Centre, Oxford University Hospitals NHS Trust, Oxford

    Purpose: To describe a new method to estimate the mean heart dose for Hodgkin lymphoma patients treated several decades ago, using delineation of the heart on radiation therapy simulation X-rays. Mean heart dose is an important predictor for late cardiovascular complications after Hodgkin lymphoma (HL) treatment. For patients treated before the era of computed tomography (CT)-based radiotherapy planning, retrospective estimation of radiation dose to the heart can be labor intensive. Methods and Materials: Patients for whom cardiac radiation doses had previously been estimated by reconstruction of individual treatments on representative CT data sets were selected at random from a case–controlmore » study of 5-year Hodgkin lymphoma survivors (n=289). For 42 patients, cardiac contours were outlined on each patient's simulation X-ray by 4 different raters, and the mean heart dose was estimated as the percentage of the cardiac contour within the radiation field multiplied by the prescribed mediastinal dose and divided by a correction factor obtained by comparison with individual CT-based dosimetry. Results: According to the simulation X-ray method, the medians of the mean heart doses obtained from the cardiac contours outlined by the 4 raters were 30 Gy, 30 Gy, 31 Gy, and 31 Gy, respectively, following prescribed mediastinal doses of 25-42 Gy. The absolute-agreement intraclass correlation coefficient was 0.93 (95% confidence interval 0.85-0.97), indicating excellent agreement. Mean heart dose was 30.4 Gy with the simulation X-ray method, versus 30.2 Gy with the representative CT-based dosimetry, and the between-method absolute-agreement intraclass correlation coefficient was 0.87 (95% confidence interval 0.80-0.95), indicating good agreement between the two methods. Conclusion: Estimating mean heart dose from radiation therapy simulation X-rays is reproducible and fast, takes individual anatomy into account, and yields results comparable to the labor

  18. Simple method to estimate mean heart dose from Hodgkin lymphoma radiation therapy according to simulation X-rays.

    PubMed

    van Nimwegen, Frederika A; Cutter, David J; Schaapveld, Michael; Rutten, Annemarieke; Kooijman, Karen; Krol, Augustinus D G; Janus, Cécile P M; Darby, Sarah C; van Leeuwen, Flora E; Aleman, Berthe M P

    2015-05-01

    To describe a new method to estimate the mean heart dose for Hodgkin lymphoma patients treated several decades ago, using delineation of the heart on radiation therapy simulation X-rays. Mean heart dose is an important predictor for late cardiovascular complications after Hodgkin lymphoma (HL) treatment. For patients treated before the era of computed tomography (CT)-based radiotherapy planning, retrospective estimation of radiation dose to the heart can be labor intensive. Patients for whom cardiac radiation doses had previously been estimated by reconstruction of individual treatments on representative CT data sets were selected at random from a case-control study of 5-year Hodgkin lymphoma survivors (n=289). For 42 patients, cardiac contours were outlined on each patient's simulation X-ray by 4 different raters, and the mean heart dose was estimated as the percentage of the cardiac contour within the radiation field multiplied by the prescribed mediastinal dose and divided by a correction factor obtained by comparison with individual CT-based dosimetry. According to the simulation X-ray method, the medians of the mean heart doses obtained from the cardiac contours outlined by the 4 raters were 30 Gy, 30 Gy, 31 Gy, and 31 Gy, respectively, following prescribed mediastinal doses of 25-42 Gy. The absolute-agreement intraclass correlation coefficient was 0.93 (95% confidence interval 0.85-0.97), indicating excellent agreement. Mean heart dose was 30.4 Gy with the simulation X-ray method, versus 30.2 Gy with the representative CT-based dosimetry, and the between-method absolute-agreement intraclass correlation coefficient was 0.87 (95% confidence interval 0.80-0.95), indicating good agreement between the two methods. Estimating mean heart dose from radiation therapy simulation X-rays is reproducible and fast, takes individual anatomy into account, and yields results comparable to the labor-intensive representative CT-based method. This simpler method may produce a

  19. Prospective estimation of organ dose in CT under tube current modulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tian, Xiaoyu, E-mail: xt3@duke.edu; Li, Xiang; Segars, W. Paul

    Purpose: Computed tomography (CT) has been widely used worldwide as a tool for medical diagnosis and imaging. However, despite its significant clinical benefits, CT radiation dose at the population level has become a subject of public attention and concern. In this light, optimizing radiation dose has become a core responsibility for the CT community. As a fundamental step to manage and optimize dose, it may be beneficial to have accurate and prospective knowledge about the radiation dose for an individual patient. In this study, the authors developed a framework to prospectively estimate organ dose for chest and abdominopelvic CT examsmore » under tube current modulation (TCM). Methods: The organ dose is mainly dependent on two key factors: patient anatomy and irradiation field. A prediction process was developed to accurately model both factors. To model the anatomical diversity and complexity in the patient population, the authors used a previously developed library of computational phantoms with broad distributions of sizes, ages, and genders. A selected clinical patient, represented by a computational phantom in the study, was optimally matched with another computational phantom in the library to obtain a representation of the patient’s anatomy. To model the irradiation field, a previously validated Monte Carlo program was used to model CT scanner systems. The tube current profiles were modeled using a ray-tracing program as previously reported that theoretically emulated the variability of modulation profiles from major CT machine manufacturers Li et al., [Phys. Med. Biol. 59, 4525–4548 (2014)]. The prediction of organ dose was achieved using the following process: (1) CTDI{sub vol}-normalized-organ dose coefficients (h{sub organ}) for fixed tube current were first estimated as the prediction basis for the computational phantoms; (2) each computation phantom, regarded as a clinical patient, was optimally matched with one computational phantom in the

  20. Radiation dose to physicians’ eye lens during interventional radiology

    NASA Astrophysics Data System (ADS)

    Bahruddin, N. A.; Hashim, S.; Karim, M. K. A.; Sabarudin, A.; Ang, W. C.; Salehhon, N.; Bakar, K. A.

    2016-03-01

    The demand of interventional radiology has increased, leading to significant risk of radiation where eye lens dose assessment becomes a major concern. In this study, we investigate physicians' eye lens doses during interventional procedures. Measurement were made using TLD-100 (LiF: Mg, Ti) dosimeters and was recorded in equivalent dose at a depth of 0.07 mm, Hp(0.07). Annual Hp(0.07) and annual effective dose were estimated using workload estimation for a year and Von Boetticher algorithm. Our results showed the mean Hp(0.07) dose of 0.33 mSv and 0.20 mSv for left and right eye lens respectively. The highest estimated annual eye lens dose was 29.33 mSv per year, recorded on left eye lens during fistulogram procedure. Five physicians had exceeded 20 mSv dose limit as recommended by international commission of radiological protection (ICRP). It is suggested that frequent training and education on occupational radiation exposure are necessary to increase knowledge and awareness of the physicians’ thus reducing dose during the interventional procedure.