1983-06-01
PANEL WORKING GROUP 14 on SUITABLE AVERAGING TECHNIQUES IN NON-UNIFORM INTERNAL FLOWS Edited by M.Pianko Office National d’Etudes et de...d’Etudes et de Recherches Aerospatiales Pratt and Whitney Government Products Division Rocketdyne Division of Rockwell International , Inc. Teledyne CAE...actions exerted by individual components on the gas flow must be known. These specific component effects are distributed internally within the
Analytical and experimental studies of flow-induced vibration of SSME components
NASA Technical Reports Server (NTRS)
Chen, S. S.; Jendrzejczyk, J. A.; Wambsganss, M. W.
1987-01-01
Components of the Space Shuttle Main Engines (SSMEs) are subjected to a severe environment that includes high-temperature, high-velocity flows. Such flows represent a source of energy that can induce and sustain large-amplitude vibratory stresses and/or result in fluidelastic instabilities. Three components are already known to have experienced failures in evaluation tests as a result of flow-induced structural motion. These components include the liquid-oxygen (LOX) posts, the fuel turbine bellows shield, and the internal inlet tee splitter vane. Researchers considered the dynamic behavior of each of these components with varying degrees of effort: (1) a theoretical and experimental study of LOX post vibration excited by a fluid flow; (2) an assessment of the internal inlet tee splitter vane vibration (referred to as the 4000-Hz vibration problem); and (3) a preliminary consideration of the bellows shield problem. Efforts to resolve flow-induced vibration problems associated with the SSMEs are summarized.
Vibrational response of a rectangular duct of finite length excited by a turbulent internal flow
NASA Astrophysics Data System (ADS)
David, Antoine; Hugues, Florian; Dauchez, Nicolas; Perrey-Debain, Emmanuel
2018-05-01
Gas transport ductwork in industrial plants or air conditioning networks can be subject to vibrations induced by the internal flow. Most studies in this matter have been carried out on circular ducts. This paper focuses specifically on the vibratory response of a rectangular duct of finite length excited by an internal turbulent flow. A semi-analytical model taking into account the modal response of the structure due to both aerodynamic and acoustic contributions is derived. The aerodynamic component of the excitation is applied on the basis of Corcos model where the power spectral density of the wall pressure is determined experimentally. The acoustic component is based on the propagating modes in the duct where the acoustic modal contribution are extracted via cross-spectral densities. The vibrational response is given for a 0.2 × 0.1 × 0.5 m3 duct made of 3 mm steel plates excited by 20 m/s or 30 m/s flows. Comparisons between experimental results and numerical predictions show a good agreement. The competition between acoustic and aerodynamic components is highlighted.
Bi-Component Droplet Combustion in Reduced Gravity
NASA Technical Reports Server (NTRS)
Shaw, Benjamin D.
2004-01-01
This research deals with reduced-gravity combustion of bi-component droplets initially in the mm size range or larger. The primary objectives of the research are to study the effects of droplet internal flows, thermal and solutal Marangoni stresses, and species volatility differences on liquid species transport and overall combustion phenomena (e.g., gas-phase unsteadiness, burning rates, sooting, radiation, and extinction). The research program utilizes a reduced gravity environment so that buoyancy effects are rendered negligible. Use of large droplets also facilitates visualization of droplet internal flows, which is important for this research. In the experiments, droplets composed of low- and high-volatility species are burned. The low-volatility components are initially present in small amounts. As combustion of a droplet proceeds, the liquid surface mass fraction of the low-volatility component will increase with time, resulting in a sudden and temporary decrease in droplet burning rates as the droplet rapidly heats to temperatures close to the boiling point of the low-volatility component. This decrease in burning rates causes a sudden and temporary contraction of the flame. The decrease in burning rates and the flame contraction can be observed experimentally. Measurements of burning rates as well as the onset time for flame contraction allow effective liquid-phase species diffusivities to be calculated, e.g., using asymptotic theory. It is planned that droplet internal flows will be visualized in flight and ground-based experiments. In this way, effective liquid species diffusivities can be related to droplet internal flow characteristics. This program is a continuation of extensive ground-based experimental and theoretical research on bi-component droplet combustion that has been ongoing for several years. The focal point of this program is a flight experiment (Bi-Component Droplet Combustion Experiment, BCDCE). This flight experiment is under development. However, supporting ground-based studies have been performed. Some of the most recent ground-based research is summarized.
Bi-Component Droplet Combustion in Reduced Gravity
NASA Technical Reports Server (NTRS)
Shaw, B. D.
2001-01-01
This research deals with reduced-gravity combustion of bi-component droplets initially in the mm size range or larger. The primary objectives of the research are to study the effects of droplet internal flows, thermal and solutal Marangoni stresses, and species volatility differences on liquid species transport and overall combustion phenomena (e.g., gas-phase unsteadiness, burning rates, sooting, radiation, and extinction). The research program utilizes a reduced-gravity environment so that buoyancy effects are rendered negligible. Use of large droplets also facilitates visualization of droplet internal flows, which is important for this research. In the experiments, droplets composed of low- and high-volatility species are burned. The low-volatility components are initially present in small amounts. As combustion of a droplet proceeds, the liquid surface mass fraction of the low-volatility component will increase with time, resulting in a sudden and temporary decrease in droplet burning rates as the droplet rapidly heats to temperatures close to the boiling point of the low-volatility component. This decrease in burning rates causes a sudden and temporary contraction of the flame. The decrease in burning rates and the flame contraction can be observed experimentally. Measurements of burning rates as well as the onset time for flame contraction allow effective liquid-phase species diffusivities to be calculated, e.g., using asymptotic theory. It is planned that droplet internal flows will be visualized in future flight and ground-based experiments. In this way, effective liquid species diffusivities can be related to droplet internal flow characteristics. This program is a continuation of extensive ground based experimental and theoretical research on bi-component droplet combustion that has been ongoing for several years. The focal point of this program is a flight experiment (Bi-Component Droplet Combustion Experiment, BCDCE). This flight experiment is under development. However, supporting studies have been performed. Because of space limitations, only some of the research performed over the last two years (since the 5th Microgravity Combustion Workshop) is summarized here.
NASA Technical Reports Server (NTRS)
Bozak, Richard F.
2017-01-01
In February 2017, aerodynamic and acoustic testing was completed on a scale-model high bypass ratio turbofan rotor, R4, in an internal flow component test facility. The objective of testing was to determine the aerodynamic and acoustic impact of fan casing treatments designed to reduce noise. The baseline configuration consisted of the R4 rotor with a hardwall fan case. Data are presented for a baseline acoustic run with fan exit instrumentation removed to give a clean acoustic configuration.
Computational methods for internal flows with emphasis on turbomachinery
NASA Technical Reports Server (NTRS)
Mcnally, W. D.; Sockol, P. M.
1981-01-01
Current computational methods for analyzing flows in turbomachinery and other related internal propulsion components are presented. The methods are divided into two classes. The inviscid methods deal specifically with turbomachinery applications. Viscous methods, deal with generalized duct flows as well as flows in turbomachinery passages. Inviscid methods are categorized into the potential, stream function, and Euler aproaches. Viscous methods are treated in terms of parabolic, partially parabolic, and elliptic procedures. Various grids used in association with these procedures are also discussed.
Convective heat transfer and infrared thermography.
Carlomagno, Giovanni M; Astarita, Tommaso; Cardone, Gennaro
2002-10-01
Infrared (IR) thermography, because of its two-dimensional and non-intrusive nature, can be exploited in industrial applications as well as in research. This paper deals with measurement of convective heat transfer coefficients (h) in three complex fluid flow configurations that concern the main aspects of both internal and external cooling of turbine engine components: (1) flow in ribbed, or smooth, channels connected by a 180 degrees sharp turn, (2) a jet in cross-flow, and (3) a jet impinging on a wall. The aim of this study was to acquire detailed measurements of h distribution in complex flow configurations related to both internal and external cooling of turbine components. The heated thin foil technique, which involves the detection of surface temperature by means of an IR scanning radiometer, was exploited to measure h. Particle image velocimetry was also used in one of the configurations to precisely determine the velocity field.
Numerical study of aerodynamic effects on road vehicles lifting surfaces
NASA Astrophysics Data System (ADS)
Cernat, Mihail Victor; Cernat Bobonea, Andreea
2017-01-01
The aerodynamic performance analysis of road vehicles depends on the study of engine intake and cooling flow, internal ventilation, tire cooling, and overall external flow as the motion of air around a moving vehicle affects all of its components in one form or another. Due to the complex geometry of these, the aerodynamic interaction between the various body components is significant, resulting in vortex flow and lifting surface shapes. The present study, however focuses on the effects of external aerodynamics only, and in particular on the flow over the lifting surfaces of a common compact car, designed especially for this study.
NASA Technical Reports Server (NTRS)
Hirsch, David B.
2011-01-01
The scope of this International Technical Specification is to provide a method to determine the ignition susceptibility of materials and components to particle impact. The method can be used to determine the conditions at which ignition and consumption of a specimen material occurs when impacted by single or multiple particles entrained in a flow of gaseous oxygen (GOX). Alternatively, the method can be used to determine if a specific material or component is subject to ignition and sustained combustion in a given flow environment when impacted by single or multiple particles entrained in a flow of GOX.
Graphical Language for Data Processing
NASA Technical Reports Server (NTRS)
Alphonso, Keith
2011-01-01
A graphical language for processing data allows processing elements to be connected with virtual wires that represent data flows between processing modules. The processing of complex data, such as lidar data, requires many different algorithms to be applied. The purpose of this innovation is to automate the processing of complex data, such as LIDAR, without the need for complex scripting and programming languages. The system consists of a set of user-interface components that allow the user to drag and drop various algorithmic and processing components onto a process graph. By working graphically, the user can completely visualize the process flow and create complex diagrams. This innovation supports the nesting of graphs, such that a graph can be included in another graph as a single step for processing. In addition to the user interface components, the system includes a set of .NET classes that represent the graph internally. These classes provide the internal system representation of the graphical user interface. The system includes a graph execution component that reads the internal representation of the graph (as described above) and executes that graph. The execution of the graph follows the interpreted model of execution in that each node is traversed and executed from the original internal representation. In addition, there are components that allow external code elements, such as algorithms, to be easily integrated into the system, thus making the system infinitely expandable.
Steam generator for liquid metal fast breeder reactor
Gillett, James E.; Garner, Daniel C.; Wineman, Arthur L.; Robey, Robert M.
1985-01-01
Improvements in the design of internal components of J-shaped steam generators for liquid metal fast breeder reactors. Complex design improvements have been made to the internals of J-shaped steam generators which improvements are intended to reduce tube vibration, tube jamming, flow problems in the upper portion of the steam generator, manufacturing complexities in tube spacer attachments, thermal stripping potentials and difficulties in the weld fabrication of certain components.
Global Qualitative Flow-Path Modeling for Local State Determination in Simulation and Analysis
NASA Technical Reports Server (NTRS)
Malin, Jane T. (Inventor); Fleming, Land D. (Inventor)
1998-01-01
For qualitative modeling and analysis, a general qualitative abstraction of power transmission variables (flow and effort) for elements of flow paths includes information on resistance, net flow, permissible directions of flow, and qualitative potential is discussed. Each type of component model has flow-related variables and an associated internal flow map, connected into an overall flow network of the system. For storage devices, the implicit power transfer to the environment is represented by "virtual" circuits that include an environmental junction. A heterogeneous aggregation method simplifies the path structure. A method determines global flow-path changes during dynamic simulation and analysis, and identifies corresponding local flow state changes that are effects of global configuration changes. Flow-path determination is triggered by any change in a flow-related device variable in a simulation or analysis. Components (path elements) that may be affected are identified, and flow-related attributes favoring flow in the two possible directions are collected for each of them. Next, flow-related attributes are determined for each affected path element, based on possibly conflicting indications of flow direction. Spurious qualitative ambiguities are minimized by using relative magnitudes and permissible directions of flow, and by favoring flow sources over effort sources when comparing flow tendencies. The results are output to local flow states of affected components.
Ford, C H; Tsaltas, G C; Osborne, P A; Addetia, K
1996-03-01
A flow cytometric method of studying the internalization of a monoclonal antibody (Mab) directed against carcinoembryonic antigen (CEA) has been compared with Western blotting, using three human colonic cancer cell lines which express varying amounts of the target antigen. Cell samples incubated for increasing time intervals with fluoresceinated or unlabelled Mab were analyzed using flow cytometry or polyacrylamide gel electrophoresis and Western blotting. SDS/PAGE analysis of cytosolic and membrane components of solubilized cells from the cell lines provided evidence of non-degraded internalized anti-CEA Mab throughout seven half hour intervals, starting at 5 min. Internalized anti-CEA was detected in the case of high CEA expressing cell lines (LS174T, SKCO1). Very similar results were obtained with an anti-fluorescein flow cytometric assay. Given that these two methods consistently provided comparable results, use of flow cytometry for the detection of internalized antibody is suggested as a rapid alternative to most currently used methods for assessing antibody internalization. The question of the endocytic route followed by CEA-anti-CEA complexes was addressed by using hypertonic medium to block clathrin mediated endocytosis.
Impeller leakage flow modeling for mechanical vibration control
NASA Technical Reports Server (NTRS)
Palazzolo, Alan B.
1996-01-01
HPOTP and HPFTP vibration test results have exhibited transient and steady characteristics which may be due to impeller leakage path (ILP) related forces. For example, an axial shift in the rotor could suddenly change the ILP clearances and lengths yielding dynamic coefficient and subsequent vibration changes. ILP models are more complicated than conventional-single component-annular seal models due to their radial flow component (coriolis and centrifugal acceleration), complex geometry (axial/radial clearance coupling), internal boundary (transition) flow conditions between mechanical components along the ILP and longer length, requiring moment as well as force coefficients. Flow coupling between mechanical components results from mass and energy conservation applied at their interfaces. Typical components along the ILP include an inlet seal, curved shroud, and an exit seal, which may be a stepped labyrinth type. Von Pragenau (MSFC) has modeled labyrinth seals as a series of plain annular seals for leakage and dynamic coefficient prediction. These multi-tooth components increase the total number of 'flow coupled' components in the ILP. Childs developed an analysis for an ILP consisting of a single, constant clearance shroud with an exit seal represented by a lumped flow-loss coefficient. This same geometry was later extended to include compressible flow. The objective of the current work is to: supply ILP leakage-force impedance-dynamic coefficient modeling software to MSFC engineers, base on incompressible/compressible bulk flow theory; design the software to model a generic geometry ILP described by a series of components lying along an arbitrarily directed path; validate the software by comparison to available test data, CFD and bulk models; and develop a hybrid CFD-bulk flow model of an ILP to improve modeling accuracy within practical run time constraints.
NASA Technical Reports Server (NTRS)
Ahmad, Rashid A.; McCool, Alex (Technical Monitor)
2001-01-01
An enhanced performance solid rocket booster concept for the space shuttle system has been proposed. The concept booster will have strong commonality with the existing, proven, reliable four-segment Space Shuttle Reusable Solid Rocket Motors (RSRM) with individual component design (nozzle, insulator, etc.) optimized for a five-segment configuration. Increased performance is desirable to further enhance safety/reliability and/or increase payload capability. Performance increase will be achieved by adding a fifth propellant segment to the current four-segment booster and opening the throat to accommodate the increased mass flow while maintaining current pressure levels. One development concept under consideration is the static test of a "standard" RSRM with a fifth propellant segment inserted and appropriate minimum motor modifications. Feasibility studies are being conducted to assess the potential for any significant departure in component performance/loading from the well-characterized RSRM. An area of concern is the aft motor (submerged nozzle inlet, aft dome, etc.) where the altered internal flow resulting from the performance enhancing features (25% increase in mass flow rate, higher Mach numbers, modified subsonic nozzle contour) may result in increased component erosion and char. To assess this issue and to define the minimum design changes required to successfully static test a fifth segment RSRM engineering test motor, internal flow studies have been initiated. Internal aero-thermal environments were quantified in terms of conventional convective heating and discrete phase alumina particle impact/concentration and accretion calculations via Computational Fluid Dynamics (CFD) simulation. Two sets of comparative CFD simulations of the RSRM and the five-segment (IBM) concept motor were conducted with CFD commercial code FLUENT. The first simulation involved a two-dimensional axi-symmetric model of the full motor, initial grain RSRM. The second set of analyses included three-dimensional models of the RSRM and FSM aft motors with four-degree vectored nozzles.
RSRM and ETM03 Internal Flow Simulations and Comparisons
NASA Technical Reports Server (NTRS)
Ahmad, R. A.; Morstadt, R. A.; Eaton, A. M.
2003-01-01
ETM03 (Engineering Test Motor-03) is an extended length RSRM (Reusable Solid Rocket Motor) designed to increase motor performance and create more severe internal environments compared with the standard four-segment RSRM motor configuration. This is achieved primarily through three unique design features. First is the incorporation of an additional RSRM center segment, second is a slight increase in throat diameter, and third is the use of an Extended Aft Exit Cone (EAEC). As a result of these design features, parameters such as web time, action time, head end pressure, web time average pressure, maximum thrust, mass flow rate, centerline Mach number, pressure and thrust integrals have all increased compared with nominal RSRM values. In some cases these increases are substantial. The primary objective of the ETM03 test program is to provide a platform for RSRM component margin testing. Test results will not only provide direct data concerning component performance under more adverse conditions, but serve as a second design data point for developing, validating and enhancing component analytical modeling techniques. To help component designers assess how the changes in motor environment will affect performance, internal flow simulations for both the nominal RSRM and ETM03 motor designs were completed to obtain comparisons of aero-thermal boundary conditions and system loads. Full geometries for both motors were characterized with two-dimensional axi-symmetric models at burn times of 1, 20, 54, 67 and 80-seconds. A sixth set considered burn times of 110 and 117-seconds for RSRM and ETM03, respectively. The simulations were performed using the computational fluid dynamics (CFD) commercial code FLUENT (trademark). Of particular interest were any differences between the two motor environments that could lead to a significant increase in system loads, or in internal insulation and/or nozzle component charring and erosion in ETM03 compared with RSRM. Based on these comparative analyses conducted in this study, the objective of ETM03 will be achieved by providing a more adverse operating environment for motor components than the nominal RSRM environment. For example: Higher chamber pressure drop in ETM03 than in RSRM; higher centerline Mach numbers approaching the nozzle in ETM03 than in RSRM; higher heat transfer rates for the internal insulation and nozzle components in ETM03 than in RSRM; and higher levels of droplet impingement and slag accumulation in ETM03 than in the RSRM.
NASA Technical Reports Server (NTRS)
Mclallin, K. L.; Kofskey, M. G.; Civinskas, K. C.
1983-01-01
The performance of a variable-area stator, axial flow power turbine was determined in a cold-air component research rig for two inlet duct configurations. The two ducts were an interstage diffuser duct and an accelerated-flow inlet duct which produced stator inlet boundary layer flow blockages of 11 percent and 3 percent, respectively. Turbine blade total efficiency at design point was measured to be 5.3 percent greater with the accelerated-flow inlet duct installed due to the reduction in inlet blockage. Blade component measurements show that of this performance improvement, 35 percent occurred in the stator and 65 percent occurred in the rotor. Analysis of inlet duct internal flow using an Axisymmetric Diffuser Duct Code (ADD Code) were in substantial agreement with the test data.
Pulsatile turbulent flow through pipe bends at high Dean and Womersley numbers
NASA Astrophysics Data System (ADS)
Kalpakli, Athanasia; Örlü, Ramis; Tillmark, Nils; Alfredsson, P. Henrik
2011-12-01
Turbulent pulsatile flows through pipe bends are prevalent in internal combustion engine components which consist of bent pipe sections and branching conduits. Nonetheless, most of the studies related to pulsatile flows in pipe bends focus on incompressible, low Womersley and low Dean number flows, primarily because they aim in modeling blood flow, while internal combustion engine related flows have mainly been addressed in terms of integral quantities and consist of single point measurements. The present study aims at bridging the gap between these two fields by means of time-resolved stereoscopic particle image velocimetry measurements in a pipe bend with conditions that are close to those encountered in exhaust manifolds. The time/phase-resolved three-dimensional cross-sectional flow-field 3 pipe diameters downstream the pipe bend is captured and the interplay between different secondary motions throughout a pulse cycle is discussed.
Euler Flow Computations on Non-Matching Unstructured Meshes
NASA Technical Reports Server (NTRS)
Gumaste, Udayan
1999-01-01
Advanced fluid solvers to predict aerodynamic performance-coupled treatment of multiple fields are described. The interaction between the fluid and structural components in the bladed regions of the engine is investigated with respect to known blade failures caused by either flutter or forced vibrations. Methods are developed to describe aeroelastic phenomena for internal flows in turbomachinery by accounting for the increased geometric complexity, mutual interaction between adjacent structural components and presence of thermal and geometric loading. The computer code developed solves the full three dimensional aeroelastic problem of-stage. The results obtained show that flow computations can be performed on non-matching finite-volume unstructured meshes with second order spatial accuracy.
Innovation and Idea Flow at U.S. International Campuses
ERIC Educational Resources Information Center
Martin, Justin D.
2014-01-01
This article explores some of the components of innovation that U.S. universities abroad can seize, or in some cases have seized, upon to maximize information flow, productivity, and idea generation at their overseas institutions. Using research in psychology, education, economics, and other fields, the article identifies the following as among…
NASA Technical Reports Server (NTRS)
Hasan, Mohammad; Balasubramaniam, R.; Nahra, Henry; Mackey, Jeff; Hall, Nancy; Frankenfield, Bruce; Harpster, George; May, Rochelle; Mudawar, Issam; Kharangate, Chirag R.;
2016-01-01
A ground-based experimental facility to perform flow boiling and condensation experiments is built in support of the development of the long duration Flow Boiling and Condensation Experiment (FBCE) destined for operation on board of the International Space Station (ISS) Fluid Integrated Rack (FIR). We performed tests with the condensation test module oriented horizontally and vertically. Using FC-72 as the test fluid and water as the cooling fluid, we evaluated the operational characteristics of the condensation module and generated ground based data encompassing the range of parameters of interest to the condensation experiment to be performed on the ISS. During this testing, we also evaluated the pressure drop profile across different components of the fluid subsystem, heater performance, on-orbit degassing subsystem, and the heat loss from different components. In this presentation, we discuss representative results of performance testing of the FBCE flow loop. These results will be used in the refinement of the flight system design and build-up of the FBCE which is scheduled for flight in 2019.
A Conceptual Framework for Analysis of Communication in Rural Social Systems.
ERIC Educational Resources Information Center
Axinn, George H.
This paper describes a five-component system with ten major internal linkages which may be used as a model for studying information flow in any rural agricultural social system. The major components are production, supply, marketing, research, and extension education. In addition, definitions are offered of the crucial variables affecting…
NASA Technical Reports Server (NTRS)
Steinbrenner, John P.; Chawner, John R.
1992-01-01
GRIDGEN is a government domain software package for interactive generation of multiple block grids around general configurations. Though it has been freely available since 1989, it has not been widely embraced by the internal flow community due to a misconception that it was designed for external flow use only. In reality GRIDGEN has always worked for internal flow applications, and GRIDGEN ongoing enhancements are increasing the quality of and efficiency with which grids for external and internal flow problems may be constructed. The software consists of four codes used to perform the four steps of the grid generation process. GRIDBLOCK is first used to decompose the flow domain into a collection of component blocks and then to establish interblock connections and flow solver boundary conditions. GRIDGEN2D is then used to generate surface grids on the outer shell of each component block. GRIDGEN3D generates grid points on the interior of each block, and finally GRIDVUE3D is used to inspect the resulting multiple block grid. Three of these codes (GRIDBLOCK, GRIDGEN2D, and GRIDVUE3D) are highly interactive and graphical in nature, and currently run on Silicon Graphics, Inc., and IBM RS/6000 workstations. The lone batch code (GRIDGEN3D) may be run on any of several Unix based platforms. Surface grid generation in GRIDGEN2D is being improved with the addition of higher order surface definitions (NURBS and parametric surfaces input in IGES format and bicubic surfaces input in PATRAN Neutral File format) and double precision mathematics. In addition, two types of automation have been added to GRIDGEN2D that reduce the learning curve slope for new users and eliminate work for experienced users. Volume grid generation using GRIDGEN3D has been improved via the addition of an advanced hybrid control function formulation that provides both orthogonality and clustering control at the block faces and clustering control on the block interior.
On the coupled evolution of oceanic internal waves and quasi-geostrophic flow
NASA Astrophysics Data System (ADS)
Wagner, Gregory LeClaire
Oceanic motion outside thin boundary layers is primarily a mixture of quasi-geostrophic flow and internal waves with either near-inertial frequencies or the frequency of the semidiurnal lunar tide. This dissertation seeks a deeper understanding of waves and flow through reduced models that isolate their nonlinear and coupled evolution from the Boussinesq equations. Three physical-space models are developed: an equation that describes quasi-geostrophic evolution in an arbitrary and prescribed field of hydrostatic internal waves; a three-component model that couples quasi-geostrophic flow to both near-inertial waves and the near-inertial second harmonic; and a model for the slow evolution of hydrostatic internal tides in quasi-geostrophic flow of near-arbitrary scale. This slow internal tide equation opens the path to a coupled model for the energetic interaction of quasi-geostrophic flow and oceanic internal tides. Four results emerge. First, the wave-averaged quasi-geostrophic equation reveals that finite-amplitude waves give rise to a mean flow that advects quasi-geostrophic potential vorticity. Second is the definition of a new material invariant: Available Potential Vorticity, or APV. APV isolates the part of Ertel potential vorticity available for balanced-flow evolution in Eulerian frames and proves necessary in the separating waves and quasi-geostrophic flow. The third result, hashed out for near-inertial waves and quasi-geostrophic flow, is that wave-flow interaction leads to energy exchange even under conditions of weak nonlinearity. For storm-forced oceanic near-inertial waves the interaction often energizes waves at the expense of flow. We call this extraction of balanced quasi-geostrophic energy 'stimulated generation' since it requires externally-forced rather than spontaneously-generated waves. The fourth result is that quasi-geostrophic flow can encourage or 'catalyze' a nonlinear interaction between a near-inertial wave field and its second harmonic that transfers energy to the small near-inertial vertical scales of wave breaking and mixing.
Flow-accelerated corrosion 2016 international conference
NASA Astrophysics Data System (ADS)
Tomarov, G. V.; Shipkov, A. A.
2017-05-01
The paper discusses materials and results of the most representative world forum on the problems of flow-accelerated metal corrosion in power engineering—Flow-Accelerated Corrosion (FAC) 2016, the international conference, which was held in Lille (France) from May 23 through May 27, 2016, sponsored by EdF-DTG with the support of the International Atomic Energy Agency (IAEA) and the World Association of Nuclear Operators (WANO). The information on major themes of reports and materials of the exhibition arranged within the framework of the congress is presented. The statistics on operation time and intensity of FAC wall thinning of NPP pipelines and equipment in the world is set out. The paper describes typical examples of flow-accelerated corrosion damage of condensate-feed and wet-steam pipeline components of nuclear and thermal power plants that caused forced shutdowns or accidents. The importance of research projects on the problem of flow-accelerated metal corrosion of nuclear power units coordinated by the IAEA with the participation of leading experts in this field from around the world is considered. The reports presented at the conference considered issues of implementation of an FAC mechanism in single- and two-phase flows, the impact of hydrodynamic and water-chemical factors, the chemical composition of the metal, and other parameters on the intensity and location of FAC wall thinning localized areas in pipeline components and power equipment. Features and patterns of local and general FAC leading to local metal thinning and contamination of the working environment with ferriferous compounds are considered. Main trends of modern practices preventing FAC wear of NPP pipelines and equipment are defined. An increasing role of computer codes for the assessment and prediction of FAC rate, as well as software systems of support of the NPP personnel for the inspection planning and prevention of FAC wall thinning of equipment operating in singleand two-phase flows, is accepted. Different lines of attack on the problem of FAC of pipelines and equipment components of existing and future nuclear power units are reviewed. Promising methods of nondestructive inspection of pipelines and equipment are presented.
W-8 Acoustic Casing Treatment Test Overview
NASA Technical Reports Server (NTRS)
Bozak, Rick; Podboy, Gary; Dougherty, Robert
2017-01-01
During February 2017, aerodynamic and acoustic testing was performed on a scale-model high bypass ratio turbofan rotor, R4, in an internal flow component test facility. An overview of the testing completed is presented.
NASA Astrophysics Data System (ADS)
Winkler, Gerfried; Wagner, Thomas; Pauritsch, Marcus; Birk, Steffen; Kellerer-Pirklbauer, Andreas; Benischke, Ralf; Leis, Albrecht; Morawetz, Rainer; Schreilechner, Marcellus G.; Hergarten, Stefan
2016-06-01
More than 2,600 relict rock glaciers are known in the Austrian Alps but the knowledge of their hydraulic properties is severely limited. The relict Schöneben Rock Glacier (Niedere Tauern Range, Austria), with an extension of 0.17 km2, was investigated based on spring data (2006-2014) and seismic refraction survey. Spring-discharge hydrographs and natural and artificial tracer data suggest a heterogeneous aquifer with a layered internal structure for the relict rock glacier. The discharge behavior exhibits a fast and a delayed flow component. The spring discharge responds to recharge events within a few hours but a mean residence time of several months can also be observed. The internal structure of the rock glacier (up to several tens of meters thick) consists of: an upper blocky layer with a few meters of thickness, which lacks fine-grained sediments; a main middle layer with coarse and finer-grained sediments, allowing for fast flow; and an approximately 10-m-thick basal till layer as the main aquifer body responsible for the base flow. The base-flow component is controlled by (fine) sandy to silty sediments with low hydraulic conductivity and high storage capacity, exhibiting a difference in hydraulic conductivity to the upper layer of about three orders of magnitude. The high storage capacity of relict rock glaciers has an impact on water resources management in alpine catchments and potentially regulates the risk of natural hazards such as floods and related debris flows. Thus, the results highlight the importance of such aquifer systems in alpine catchments.
Modeling the Gas Dynamics Environment in a Subscale Solid Rocket Test Motor
NASA Technical Reports Server (NTRS)
Eaton, Andrew M.; Ewing, Mark E.; Bailey, Kirk M.; McCool, Alex (Technical Monitor)
2001-01-01
Subscale test motors are often used for the evaluation of solid rocket motor component materials such as internal insulation. These motors are useful for characterizing insulation performance behavior, screening insulation material candidates and obtaining material thermal and ablative property design data. One of the primary challenges associated with using subscale motors however, is the uncertainty involved when extrapolating the results to full-scale motor conditions. These uncertainties are related to differences in such phenomena as turbulent flow behavior and boundary layer development, propellant particle interactions with the wall, insulation off-gas mixing and thermochemical reactions with the bulk flow, radiation levels, material response to the local environment, and other anomalous flow conditions. In addition to the need for better understanding of physical mechanisms, there is also a need to better understand how to best simulate these phenomena using numerical modeling approaches such as computational fluid dynamics (CFD). To better understand and model interactions between major phenomena in a subscale test motor, a numerical study of the internal flow environment of a representative motor was performed. Simulation of the environment included not only gas dynamics, but two-phase flow modeling of entrained alumina particles like those found in an aluminized propellant, and offgassing from wall surfaces similar to an ablating insulation material. This work represents a starting point for establishing the internal environment of a subscale test motor using comprehensive modeling techniques, and lays the groundwork for improving the understanding of the applicability of subscale test data to full-scale motors. It was found that grid resolution, and inclusion of phenomena in addition to gas dynamics, such as two-phase and multi-component gas composition are all important factors that can effect the overall flow field predictions.
Spanwise loading distribution and wake velocity surveys of a semi-span wing
NASA Technical Reports Server (NTRS)
Felker, F. F., III; Piziali, R. A.; Gall, J. K.
1982-01-01
The spanwise distribution of bound circulation on a semi-span wing and the flow velocities in its wake were measured in a wind tunnel. Particular attention was given to documenting the flow velocities in and around the development tip vortex. A two-component laser velocimeter was used to make the velocity measurements. The spanwise distribution of bound circulation, three components of the time-averaged velocities throughout the near wake their standard deviations, and the integrated forces and moments on a metric tip as measured by an internal strain gage balance are presented without discussion.
Space Station Crew Conducts Spacewalk to Change Cooling Components
2018-05-16
Outside the International Space Station, Expedition 55 NASA Flight Engineers Drew Feustel and Ricky Arnold conducted a spacewalk May 16 to swap out a failed cooling system component called a pump flow control subassembly (PFCS) for a spare. The PFCS is one of several on the truss structure of the station designed to regulate the flow of ammonia coolant through the cooling loops on the station to maintain the proper temperature for critical systems. It was the 210th spacewalk in support of space station assembly, maintenance and upgrades, the eighth in Feustel’s career and the fourth for Arnold.
Experimental and numerical investigation of HyperVapotron heat transfer
NASA Astrophysics Data System (ADS)
Wang, Weihua; Deng, Haifei; Huang, Shenghong; Chu, Delin; Yang, Bin; Mei, Luoqin; Pan, Baoguo
2014-12-01
The divertor first wall and neutral beam injection (NBI) components of tokamak devices require high heat flux removal up to 20-30 MW m-2 for future fusion reactors. The water cooled HyperVapotron (HV) structure, which relies on internal grooves or fins and boiling heat transfer to maximize the heat transfer capability, is the most promising candidate. The HV devices, that are able to transfer large amounts of heat (1-20 MW m-2) efficiently, have therefore been developed specifically for this application. Until recently, there have been few attempts to observe the detailed bubble characteristics and vortex evolvement of coolant flowing inside their various parts and understand of the internal two-phase complex heat transfer mechanism behind the vapotron effect. This research builds the experimental facilities of HyperVapotron Loop-I (HVL-I) and Pressure Water HyperVapotron Loop-II (PWHL-II) to implement the subcooled boiling principle experiment in terms of typical flow parameters, geometrical parameters of test section and surface heat flux, which are similar to those of the ITER-like first wall and NBI components (EAST and MAST). The multiphase flow and heat transfer phenomena on the surface of grooves and triangular fins when the subcooled water flowed through were observed and measured with the planar laser induced fluorescence (PLIF) and high-speed photography (HSP) techniques. Particle image velocimetry (PIV) was selected to reveal vortex formation, the flow structure that promotes the vapotron effect during subcooled boiling. The coolant flow data for contributing to the understanding of the vapotron phenomenon and the assessment of how the design and operational conditions that might affect the thermal performance of the devices were collected and analysed. The subcooled flow boiling model and methods of HV heat transfer adopted in the considered computational fluid dynamics (CFD) code were evaluated by comparing the calculated wall temperatures with the experimentally measured values. It was discovered that the bubble and vortex characteristics in the HV are clearly heavily dependent on the internal geometry, flow conditions and input heat flux. The evaporation latent heat is the primary heat transfer mechanism of HV flow under the condition of high heat flux, and the heat transfer through convection is very limited. The percentage of wall heat flux going into vapour production is almost 70%. These relationships between the flow phenomena and thermal performance of the HV device are essential to study the mechanisms for the flow structure alterations for design optimization and improvements of the ITER-like devices' water cooling structure and plasma facing components for future fusion reactors.
NASA Technical Reports Server (NTRS)
Glaze, Lori S.; Baloga, S. M.; Garvin, James B.; Quick, Lynnae C.
2014-01-01
Investigation of lava flow deposits is a key component of Investigation II.A.1 in the VEXAG Goals, Objectives and Investigations. Because much of the Venus surface is covered in lava flows, characterization of lava flow emplacement conditions(eruption rate and eruption duration) is critical for understanding the mechanisms through which magma is stored and released onto the surface as well as for placing constraints on rates of volcanic resurfacing throughout the geologic record preserved at the surface.
Ference, Edward W.; Houtman, John L.; Waldby, Robert N.
1977-01-01
A nuclear reactor, particularly a liquid-metal breeder reactor whose upper internals include provision for channeling the liquid metal flowing from the core-component assemblies to the outlet plenum in vertical paths in direction generally along the direction of the respective assemblies. The metal is channeled by chimneys, each secured to, and extending from, a grid through whose openings the metal emitted by a plurality of core-component assemblies encompassed by the grid flows. To reduce the stresses resulting from structural interaction, or the transmissive of thermal strains due to large temperature differences in the liquid metal emitted from neighboring core-component assemblies, throughout the chimneys and the other components of the upper internals, the grids and the chimneys are supported from the heat plate and the core barrel by support columns (double portal support) which are secured to the head plate at the top and to a member, which supports the grids and is keyed to the core barrel, at the bottom. In addition to being restrained from lateral flow by the chimneys, the liquid metal is also restrained from flowing laterally by a peripheral seal around the top of the core. This seal limits the flow rate of liquid metal, which may be sharply cooled during a scram, to the outlet nozzles. The chimneys and the grids are formed of a highly-refractory, high corrosion-resistant nickel-chromium-iron alloy which can withstand the stresses produced by temperature differences in the liquid metal. The chimneys are supported by pairs of plates, each pair held together by hollow stubs coaxial with, and encircling, the chimneys. The plates and stubs are a welded structure but, in the interest of economy, are composed of stainless steel which is not weld compatible with the refractory metal. The chimneys and stubs are secured together by shells of another nickel-chromium-iron alloy which is weld compatible with, and is welded to, the stubs and has about the same coefficient of expansion as the highly-refractory, high corrosion-resistant alloy.
Analysis and improvement measures of flight delay in China
NASA Astrophysics Data System (ADS)
Zang, Yuhang
2017-03-01
Firstly, this paper establishes the principal component regression model to analyze the data quantitatively, based on principal component analysis to get the three principal component factors of flight delays. Then the least square method is used to analyze the factors and obtained the regression equation expression by substitution, and then found that the main reason for flight delays is airlines, followed by weather and traffic. Aiming at the above problems, this paper improves the controllable aspects of traffic flow control. For reasons of traffic flow control, an adaptive genetic queuing model is established for the runway terminal area. This paper, establish optimization method that fifteen planes landed simultaneously on the three runway based on Beijing capital international airport, comparing the results with the existing FCFS algorithm, the superiority of the model is proved.
Computational Modeling of the Ames 11-Ft Transonic Wind Tunnel in Conjunction with IofNEWT
NASA Technical Reports Server (NTRS)
Djomehri, M. Jahed; Buning, Pieter G.; Erickson, Larry L.; George, Michael W. (Technical Monitor)
1995-01-01
Technical advances in Computational Fluid Dynamics have now made it possible to simulate complex three-dimensional internal flows about models of various size placed in a Transonic Wind Tunnel. TWT wall interference effects have been a source of error in predicting flight data from actual wind tunnel measured data. An advantage of such internal CFD calculations is to directly compare numerical results with the actual tunnel data for code assessment and tunnel flow analysis. A CFD capability has recently been devised for flow analysis of the NASA/Ames 11-Ft TWT facility. The primary objectives of this work are to provide a CFD tool to study the NASA/Ames 11-Ft TWT flow characteristics, to understand the slotted wall interference effects, and to validate CFD codes. A secondary objective is to integrate the internal flowfield calculations with the Pressure Sensitive Paint data, a surface pressure distribution capability in Ames' production wind tunnels. The effort has been part of the Ames IofNEWT, Integration of Numerical and Experimental Wind Tunnels project, which is aimed at providing further analytical tools for industrial application. We used the NASA/Ames OVERFLOW code to solve the thin-layer Navier-Stokes equations. Viscosity effects near the model are captured by Baldwin-Lomax or Baldwin-Barth turbulence models. The solver was modified to model the flow behavior in the vicinity of the tunnel longitudinal slotted walls. A suitable porous type wall boundary condition was coded to account for the cross-flow through the test section. Viscous flow equations were solved in generalized coordinates with a three-factor implicit central difference scheme in conjunction with the Chimera grid procedure. The internal flow field about the model and the tunnel walls were descretized by the Chimera overset grid system. This approach allows the application of efficient grid generation codes about individual components of the configuration; separate minor grids were developed to resolve the model and overset onto a main grid which discretizes the interior of the tunnel test section. Individual grid components axe not required to have mesh boundaries joined in any special way to each other or to the main tunnel grid. Programs have been developed to rotate the model about the tunnel pivot point and rotation axis, similar to that of the tunnel turntable mechanism for adjusting the pitch of the physical model in the test section.
Development and Capabilities of ISS Flow Boiling and Condensation Experiment
NASA Technical Reports Server (NTRS)
Nahra, Henry; Hasan, Mohammad; Balasubramaniam, R.; Patania, Michelle; Hall, Nancy; Wagner, James; Mackey, Jeffrey; Frankenfield, Bruce; Hauser, Daniel; Harpster, George;
2015-01-01
An experimental facility to perform flow boiling and condensation experiments in long duration microgravity environment is being designed for operation on the International Space Station (ISS). This work describes the design of the subsystems of the FBCE including the Fluid subsystem modules, data acquisition, controls, and diagnostics. Subsystems and components are designed within the constraints of the ISS Fluid Integrated Rack in terms of power availability, cooling capability, mass and volume, and most importantly the safety requirements. In this work we present the results of ground-based performance testing of the FBCE subsystem modules and test module which consist of the two condensation modules and the flow boiling module. During this testing, we evaluated the pressure drop profile across different components of the fluid subsystem, heater performance, on-orbit degassing subsystem, heat loss from different modules and components, and performance of the test modules. These results will be used in the refinement of the flight system design and build-up of the FBCE which is manifested for flight in late 2017-early 2018.
Hodge Decomposition of Information Flow on Small-World Networks.
Haruna, Taichi; Fujiki, Yuuya
2016-01-01
We investigate the influence of the small-world topology on the composition of information flow on networks. By appealing to the combinatorial Hodge theory, we decompose information flow generated by random threshold networks on the Watts-Strogatz model into three components: gradient, harmonic and curl flows. The harmonic and curl flows represent globally circular and locally circular components, respectively. The Watts-Strogatz model bridges the two extreme network topologies, a lattice network and a random network, by a single parameter that is the probability of random rewiring. The small-world topology is realized within a certain range between them. By numerical simulation we found that as networks become more random the ratio of harmonic flow to the total magnitude of information flow increases whereas the ratio of curl flow decreases. Furthermore, both quantities are significantly enhanced from the level when only network structure is considered for the network close to a random network and a lattice network, respectively. Finally, the sum of these two ratios takes its maximum value within the small-world region. These findings suggest that the dynamical information counterpart of global integration and that of local segregation are the harmonic flow and the curl flow, respectively, and that a part of the small-world region is dominated by internal circulation of information flow.
The wire-mesh sensor as a two-phase flow meter
NASA Astrophysics Data System (ADS)
Shaban, H.; Tavoularis, S.
2015-01-01
A novel gas and liquid flow rate measurement method is proposed for use in vertical upward and downward gas-liquid pipe flows. This method is based on the analysis of the time history of area-averaged void fraction that is measured using a conductivity wire-mesh sensor (WMS). WMS measurements were collected in vertical upward and downward air-water flows in a pipe with an internal diameter of 32.5 mm at nearly atmospheric pressure. The relative frequencies and the power spectral density of area-averaged void fraction were calculated and used as representative properties. Independent features, extracted from these properties using Principal Component Analysis and Independent Component Analysis, were used as inputs to artificial neural networks, which were trained to give the gas and liquid flow rates as outputs. The present method was shown to be accurate for all four encountered flow regimes and for a wide range of flow conditions. Besides providing accurate predictions for steady flows, the method was also tested successfully in three flows with transient liquid flow rates. The method was augmented by the use of the cross-correlation function of area-averaged void fraction determined from the output of a dual WMS unit as an additional representative property, which was found to improve the accuracy of flow rate prediction.
NASA Technical Reports Server (NTRS)
Esker, Barbara S.; Debonis, James R.
1991-01-01
Flow through a combined ventral and axial exhaust nozzle system was studied experimentally and analytically. The work is part of an ongoing propulsion technology effort at NASA Lewis Research Center for short takeoff, vertical landing (STOVL) aircraft. The experimental investigation was done on the NASA Lewis Powered Lift Facility. The experiment consisted of performance testing over a range of tailpipe pressure ratios from 1 to 3.2 and flow visualization. The analytical investigation consisted of modeling the same configuration and solving for the flow using the PARC3D computational fluid dynamics program. The comparison of experimental and analytical results was very good. The ventral nozzle performance coefficients obtained from both the experimental and analytical studies agreed within 1.2 percent. The net horizontal thrust of the nozzle system contained a significant reverse thrust component created by the flow overturning in the ventral duct. This component resulted in a low net horizontal thrust coefficient. The experimental and analytical studies showed very good agreement in the internal flow patterns.
Characteristics of the Swirling Flow Generated by an Axial Swirler
NASA Technical Reports Server (NTRS)
Fu, Yongqiang; Jeng, San-Mou; Tacina, Robert
2005-01-01
An experimental investigation was conducted to study the aerodynamic characteristics of the confined, non-reacting, swirling flow field. The flow was generated by a helicoidal axial-vaned swirler with a short internal convergent-divergent venturi, which was confined within 2-inch square test section. A series of helicoidal axial-vaned swirlers have been designed with tip vane angles of 40 deg., 45 deg., 50 deg., 55 deg., 60 deg. and 65 deg.. The swirler with the tip vane angle of 60 deg. was combined with several simulated fuel nozzle insertions of varying lengths. A two-component Laser Doppler Velocimetry (LDV) system was employed to measure the three-component mean velocities and Reynolds stresses. Detailed data are provided to enhance understanding swirling flow with different swirl degrees and geometries and to support the development of more accurate physicaVnumerica1 models. The data indicated that the degree of swirl had a clear impact on the mean and turbulent flow fields. The swirling flow fields changed significantly with the addition of a variety of simulated fuel nozzle insertion lengths
NASA Astrophysics Data System (ADS)
Chen, Wilbur Y.; van den Dool, Huug M.
1997-03-01
A substantial asymmetric impact of tropical Pacific SST anomalies on the internal variability of the extratropical atmosphere is found. A variety of diagnoses is performed to help reveal the dynamical processes leading to the large impact. Thirty-five years of geopotential heights and 29 years of wind fields analyzed operationally at the National Centers for Environmental Prediction (NCEP), formerly the National Meteorological Center, and three sets of 10-yr-long perpetual January integrations run with a low-resolution NCEP global spectral model are investigated in detail for the impact of the SST anomalies on the blocking flows over the North Pacific. The impact on large-scale deep trough flows is also examined.Both the blocking and deep trough flows develop twice as much over the North Pacific during La Niña as during El Niño winters. Consequently, the internal dynamics associated low-frequency variability (LFV), with timescales between 7 and 61 days examined in this study, display distinct characteristics: much larger magnitude for the La Niña than the El Niño winters over the eastern North Pacific, where the LFV is highest in general.The diagnosis of the localized Eliassen-Palm fluxes and their divergence reveals that the high-frequency transient eddies (1-7 days) at high latitudes are effective in forming and maintaining the large-scale blocking flows, while the midlatitude transients are less effective. The mean deformation field over the North Pacific is much more diffluent for the La Niña than the El Niño winters, resulting in more blocking flows being developed and maintained during La Niña by the high-frequency transients over the central North Pacific.In addition to the above dynamical process operating on the high-frequency end of the spectrum, the local barotropic energy conversion between the LFV components and the time-mean flows is also operating and playing a crucial role. The kinetic energy conversion represented by the scalar product between the E vector of the low-frequency components and the deformation D vector of the time-mean flow reveals that, on average, the low-frequency components extract energy from the time-mean flow during La Niña winters while they lose energy to the time-mean flow during El Niño winters. This local barotropic energy conversion on the low-frequency end of the spectrum, together with the forcing of the high-frequency transients on blocking flows on the high-frequency end, explain why there is a large difference in the magnitude of low-frequency variability between the La Niña and the El Niño winters.
Nuclear Thermal Rocket Element Environmental Simulator (NTREES) Upgrade Activities
NASA Technical Reports Server (NTRS)
Emrich, William
2013-01-01
A key technology element in Nuclear Thermal Propulsion is the development of fuel materials and components which can withstand extremely high temperatures while being exposed to flowing hydrogen. NTREES provides a cost effective method for rapidly screening of candidate fuel components with regard to their viability for use in NTR systems. The NTREES is designed to mimic the conditions (minus the radiation) to which nuclear rocket fuel elements and other components would be subjected to during reactor operation. The NTREES consists of a water cooled ASME code stamped pressure vessel and its associated control hardware and instrumentation coupled with inductive heaters to simulate the heat provided by the fission process. The NTREES has been designed to safely allow hydrogen gas to be injected into internal flow passages of an inductively heated test article mounted in the chamber.
2006-04-21
C. M., and Prendergast, J. P., 2002, "Thermial Analysis of Hypersonic Inlet Flow with Exergy -Based Design Methods," International Journal of Applied...parametric study of the PS and its components is first presented in order to show the type of detailed information on internal system losses which an exergy ...Thermoeconomic Isolation Applied to the Optimal Synthesis/Design of an Advanced Fighter Aircraft System," International Journal of Thermodynamics, ICAT
Size-selective sampling performance of six low-volume “total” suspended particulate (TSP) inlets
Several low-volume inlets (flow rates ≤ 16.7 liters per minute (Lpm)) are commercially available as components of low-cost, portable ambient particulate matter samplers. Because the inlets themselves do not contain internal fractionators, they are often assumed to representati...
NASA Technical Reports Server (NTRS)
DeWitt, Keneth J.
1996-01-01
An experimental study to determine the convective heat transfer coefficient from castings made from ice-roughened plates is reported. A corresponding topic, 'Measurements of the Convective Heat Transfer Coefficient from Ice Roughened Surfaces in Parallel and Accelerated Flows,' is presented.
Potential for water-quality degradation of interconnected aquifers in west-central Florida
Metz, P.A.; Brendle, D.L.
1996-01-01
Thousands of deep artesian wells were drilled into the Upper Floridan aquifer in west-central Florida prior to well-drilling regulations adopted in the 1970's. The wells were usually completed with a short length of casing through the unconsolidated sediments and were left open to multiple aquifers containing water of varying quality. These open boreholes serve as a potential source of water-quality degradation within the aquifers when vertical internal borehole flow is induced by hydraulic-head differences. Thispotential for water-quality degradation exists in west-central Florida where both the intermediate aquifer system and Upper Floridan aquifer exist. Measurements of caliper, temperature, gamma, fluid conductivity, and flow were obtained in 87 wells throughout west-central Florida to determine the occurrence of interaquifer borehole flow between the intermediate aquifer system and the Upper Floridan aquifer. Flow measurements were made using an impeller flowmeter, a heat-pulse flowmeter, and a video camera with an impeller flowmeter attachment. Of the 87 wells measured with the impeller flowmeter, 17 had internal flow which ranged from 10 to 300 gallons per minute. A heat-pulse flowmeter was used in 19 wells in which flow was not detected using the impeller flowmeter. Of these 19 wells, 18 had internal flow which ranged from 0.3 to 10gallons per minute. Additionally, water-quality samples were collected from specific contributing zones in wells that had internal flow. Analysis of geophysical and water-quality data indicates degradation of water quality has occurred from mineralized ground water flowing upward from the Upper Floridan aquifer into the intermediate aquifer system through both uncased boreholes and corroded black-iron well casings. In areas where there is a downward component of flow, data indicate that potable water from the intermediate aquifer system is artificially recharging the Upper Floridan aquifer through open boreholes. A geographical area was defined where there is a potential for water- quality degradation due to improperly cased wells. This area was delineated based on where there is an upward component of ground-water flow and where there is an occurrence of poor-quality water. The delineated area includes parts of Hillsborough, Manatee, Sarasota, Charlotte, De Soto, and Hardee Counties. To prevent further contamination of the aquifers, the Southwest Florida Water Management District began the Quality of Water Improvement Program in 1974 to restore hydrologic conditions altered by improperly constructed wells or deteriorating casings. As of May 1994, more than 3,000 wells have been inspected and approximately 1,350 have been plugged. To minimize interaquifer contamination, existing wells, especially ones with black-iron casing, should be inspected and, if necessary, repaired with new casing or plugged.
NASA Technical Reports Server (NTRS)
VanZante, Dale E.; Podboy, Gary G.; Miller, Christopher J.; Thorp, Scott A.
2009-01-01
A 1/5 scale model rotor representative of a current technology, high bypass ratio, turbofan engine was installed and tested in the W8 single-stage, high-speed, compressor test facility at NASA Glenn Research Center (GRC). The same fan rotor was tested previously in the GRC 9x15 Low Speed Wind Tunnel as a fan module consisting of the rotor and outlet guide vanes mounted in a flight-like nacelle. The W8 test verified that the aerodynamic performance and detailed flow field of the rotor as installed in W8 were representative of the wind tunnel fan module installation. Modifications to W8 were necessary to ensure that this internal flow facility would have a flow field at the test package that is representative of flow conditions in the wind tunnel installation. Inlet flow conditioning was designed and installed in W8 to lower the fan face turbulence intensity to less than 1.0 percent in order to better match the wind tunnel operating environment. Also, inlet bleed was added to thin the casing boundary layer to be more representative of a flight nacelle boundary layer. On the 100 percent speed operating line the fan pressure rise and mass flow rate agreed with the wind tunnel data to within 1 percent. Detailed hot film surveys of the inlet flow, inlet boundary layer and fan exit flow were compared to results from the wind tunnel. The effect of inlet casing boundary layer thickness on fan performance was quantified. Challenges and lessons learned from testing this high flow, low static pressure rise fan in an internal flow facility are discussed.
Development of a 13 kW Hall Thruster Propulsion System Performance Model for AEPS
NASA Technical Reports Server (NTRS)
Stanley, Steven; Allen, May; Goodfellow, Keith; Chew, Gilbert; Rapetti, Ryan; Tofil, Todd; Herman, Dan; Jackson, Jerry; Myers, Roger
2017-01-01
The Advanced Electric Propulsion System (AEPS) program will develop a flight 13kW Hall thruster propulsion system based on NASA's HERMeS thruster. The AEPS system includes the Hall Thruster, the Power Processing Unit (PPU) and the Xenon Flow Controller (XFC). These three primary components must operate together to ensure that the system generates the required combinations of thrust and specific impulse at the required system efficiencies for the desired system lifetime. At the highest level, the AEPS system will be integrated into the spacecraft and will receive power, propellant, and commands from the spacecraft. Power and propellant flow rates will be determined by the throttle set points commanded by the spacecraft. Within the system, the major control loop is between the mass flow rate and thruster current, with time-dependencies required to handle all expected transients, and additional, much slower interactions between the thruster and cathode temperatures, flow controller and PPU. The internal system interactions generally occur on shorter timescales than the spacecraft interactions, though certain failure modes may require rapid responses from the spacecraft. The AEPS system performance model is designed to account for all these interactions in a way that allows evaluation of the sensitivity of the system to expected changes over the planned mission as well as to assess the impacts of normal component and assembly variability during the production phase of the program. This effort describes the plan for the system performance model development, correlation to NASA test data, and how the model will be used to evaluate the critical internal and external interactions. The results will ensure the component requirements do not unnecessarily drive the system cost or overly constrain the development program. Finally, the model will be available to quickly troubleshoot any future unforeseen development challenges.
Trophic Structure Over the Northern Mid-Atlantic Ridge: The Bathypelagic Zone Really Matters
We present preliminary results and ongoing efforts to characterize the trophic structure and energy flow of the pelagic ecosystems of the northern Mid-Atlantic Ridge (MAR), from Iceland to the Azores. This study is one component of the international CoML field project MAR-ECO (ww...
NASA Technical Reports Server (NTRS)
Vonglahn, U. H.
1978-01-01
Combustion chamber acoustic power levels inferred from internal fluctuating pressure measurements are correlated with operating conditions and chamber geometries over a wide range. The variables include considerations of chamber design (can, annular, and reverse-flow annular) and size, number of fuel nozzles, burner staging and fuel split, airflow and heat release rates, and chamber inlet pressure and temperature levels. The correlated data include those obtained with combustion component development rigs as well as engines.
Development of a 5-Component Balance for Water Tunnel Applications
NASA Technical Reports Server (NTRS)
Suarez, Carlos J.; Kramer, Brian R.; Smith, Brooke C.
1999-01-01
The principal objective of this research/development effort was to develop a multi-component strain gage balance to measure both static and dynamic forces and moments on models tested in flow visualization water tunnels. A balance was designed that allows measuring normal and side forces, and pitching, yawing and rolling moments (no axial force). The balance mounts internally in the model and is used in a manner typical of wind tunnel balances. The key differences between a water tunnel balance and a wind tunnel balance are the requirement for very high sensitivity since the loads are very low (typical normal force is 90 grams or 0.2 lbs), the need for water proofing the gage elements, and the small size required to fit into typical water tunnel models. The five-component balance was calibrated and demonstrated linearity in the responses of the primary components to applied loads, very low interactions between the sections and no hysteresis. Static experiments were conducted in the Eidetics water tunnel with delta wings and F/A-18 models. The data were compared to forces and moments from wind tunnel tests of the same or similar configurations. The comparison showed very good agreement, providing confidence that loads can be measured accurately in the water tunnel with a relatively simple multi-component internal balance. The success of the static experiments encouraged the use of the balance for dynamic experiments. Among the advantages of conducting dynamic tests in a water tunnel are less demanding motion and data acquisition rates than in a wind tunnel test (because of the low-speed flow) and the capability of performing flow visualization and force/moment (F/M) measurements simultaneously with relative simplicity. This capability of simultaneous flow visualization and for F/M measurements proved extremely useful to explain the results obtained during these dynamic tests. In general, the development of this balance should encourage the use of water tunnels for a wider range of quantitative and qualitative experiments, especially during the preliminary phase of aircraft design.
Failure and life cycle evaluation of watering valves.
Gonzalez, David M; Graciano, Sandy J; Karlstad, John; Leblanc, Mathias; Clark, Tom; Holmes, Scott; Reuter, Jon D
2011-09-01
Automated watering systems provide a reliable source of ad libitum water to animal cages. Our facility uses an automated water delivery system to support approximately 95% of the housed population (approximately 14,000 mouse cages). Drinking valve failure rates from 2002 through 2006 never exceeded the manufacturer standard of 0.1% total failure, based on monthly cage census and the number of floods. In 2007, we noted an increase in both flooding and cases of clinical dehydration in our mouse population. Using manufacturer's specifications for a water flow rate of 25 to 50 mL/min, we initiated a wide-scale screening of all valves used. During a 4-mo period, approximately 17,000 valves were assessed, of which 2200 failed according to scoring criteria (12.9% overall; 7.2% low flow; 1.6% no flow; 4.1% leaky). Factors leading to valve failures included residual metal shavings, silicone flash, introduced debris or bedding, and (most common) distortion of the autoclave-rated internal diaphragm and O-ring. Further evaluation revealed that despite normal autoclave conditions of heat, pressure, and steam, an extreme negative vacuum pull caused the valves' internal silicone components (diaphragm and O-ring) to become distorted and water-permeable. Normal flow rate often returned after a 'drying out' period, but components then reabsorbed water while on the animal rack or during subsequent autoclave cycles to revert to a variable flow condition. On the basis of our findings, we recalibrated autoclaves and initiated a preventative maintenance program to mitigate the risk of future valve failure.
Failure and Life Cycle Evaluation of Watering Valves
Gonzalez, David M; Graciano, Sandy J; Karlstad, John; Leblanc, Mathias; Clark, Tom; Holmes, Scott; Reuter, Jon D
2011-01-01
Automated watering systems provide a reliable source of ad libitum water to animal cages. Our facility uses an automated water delivery system to support approximately 95% of the housed population (approximately 14,000 mouse cages). Drinking valve failure rates from 2002 through 2006 never exceeded the manufacturer standard of 0.1% total failure, based on monthly cage census and the number of floods. In 2007, we noted an increase in both flooding and cases of clinical dehydration in our mouse population. Using manufacturer's specifications for a water flow rate of 25 to 50 mL/min, we initiated a wide-scale screening of all valves used. During a 4-mo period, approximately 17,000 valves were assessed, of which 2200 failed according to scoring criteria (12.9% overall; 7.2% low flow; 1.6% no flow; 4.1% leaky). Factors leading to valve failures included residual metal shavings, silicone flash, introduced debris or bedding, and (most common) distortion of the autoclave-rated internal diaphragm and O-ring. Further evaluation revealed that despite normal autoclave conditions of heat, pressure, and steam, an extreme negative vacuum pull caused the valves’ internal silicone components (diaphragm and O-ring) to become distorted and water-permeable. Normal flow rate often returned after a ‘drying out’ period, but components then reabsorbed water while on the animal rack or during subsequent autoclave cycles to revert to a variable flow condition. On the basis of our findings, we recalibrated autoclaves and initiated a preventative maintenance program to mitigate the risk of future valve failure. PMID:22330720
Use of DES in mildly separated internal flow: dimples in a turbulent channel
NASA Astrophysics Data System (ADS)
Tay, Chien Ming Jonathan; Khoo, Boo Cheong; Chew, Yong Tian
2017-12-01
Detached eddy simulation (DES) is investigated as a means to study an array of shallow dimples with depth to diameter ratios of 1.5% and 5% in a turbulent channel. The DES captures large-scale flow features relatively well, but is unable to predict skin friction accurately due to flow modelling near the wall. The current work instead relies on the accuracy of DES to predict large-scale flow features, as well as its well-documented reliability in predicting flow separation regions to support the proposed mechanism that dimples reduce drag by introducing spanwise flow components near the wall through the addition of streamwise vorticity. Profiles of the turbulent energy budget show the stabilising effect of the dimples on the flow. The presence of flow separation however modulates the net drag reduction. Increasing the Reynolds number can reduce the size of the separated region and experiments show that this increases the overall drag reduction.
Reitz, Meredith; Sanford, Ward E.; Senay, Gabriel; Cazenas, J.
2017-01-01
This study presents new data-driven, annual estimates of the division of precipitation into the recharge, quick-flow runoff, and evapotranspiration (ET) water budget components for 2000-2013 for the contiguous United States (CONUS). The algorithms used to produce these maps ensure water budget consistency over this broad spatial scale, with contributions from precipitation influx attributed to each component at 800 m resolution. The quick-flow runoff estimates for the contribution to the rapidly varying portion of the hydrograph are produced using data from 1,434 gaged watersheds, and depend on precipitation, soil saturated hydraulic conductivity, and surficial geology type. Evapotranspiration estimates are produced from a regression using water balance data from 679 gaged watersheds and depend on land cover, temperature, and precipitation. The quick-flow and ET estimates are combined to calculate recharge as the remainder of precipitation. The ET and recharge estimates are checked against independent field data, and the results show good agreement. Comparisons of recharge estimates with groundwater extraction data show that in 15% of the country, groundwater is being extracted at rates higher than the local recharge. These maps of the internally consistent water budget components of recharge, quick-flow runoff, and ET, being derived from and tested against data, are expected to provide reliable first-order estimates of these quantities across the CONUS, even where field measurements are sparse.
The art and science of flow control - case studies using flow visualization methods
NASA Astrophysics Data System (ADS)
Alvi, F. S.; Cattafesta, L. N., III
2010-04-01
Active flow control (AFC) has been the focus of significant research in the last decade. This is mainly due to the potentially substantial benefits it affords. AFC applications range from the subsonic to the supersonic (and beyond) regime for both internal and external flows. These applications are wide and varied, such as controlling flow transition and separation over various external components of the aircraft to active management of separation and flow distortion in engine components and over turbine and compressor blades. High-speed AFC applications include control of flow oscillations in cavity flows, supersonic jet screech, impinging jets, and jet-noise control. In this paper we review some of our recent applications of AFC through a number of case studies that illustrate the typical benefits as well as limitations of present AFC methods. The case studies include subsonic and supersonic canonical flowfields such as separation control over airfoils, control of supersonic cavity flows and impinging jets. In addition, properties of zero-net mass-flux (ZNMF) actuators are also discussed as they represent one of the most widely studied actuators used for AFC. In keeping with the theme of this special issue, the flowfield properties and their response to actuation are examined through the use of various qualitative and quantitative flow visualization methods, such as smoke, shadowgraph, schlieren, planar-laser scattering, and Particle image velocimetry (PIV). The results presented here clearly illustrate the merits of using flow visualization to gain significant insight into the flow and its response to AFC.
Comparison of Orbiter PRCS Plume Flow Fields Using CFD and Modified Source Flow Codes
NASA Technical Reports Server (NTRS)
Rochelle, Wm. C.; Kinsey, Robin E.; Reid, Ethan A.; Stuart, Phillip C.; Lumpkin, Forrest E.
1997-01-01
The Space Shuttle Orbiter will use Reaction Control System (RCS) jets for docking with the planned International Space Station (ISS). During approach and backout maneuvers, plumes from these jets could cause high pressure, heating, and thermal loads on ISS components. The object of this paper is to present comparisons of RCS plume flow fields used to calculate these ISS environments. Because of the complexities of 3-D plumes with variable scarf-angle and multi-jet combinations, NASA/JSC developed a plume flow-field methodology for all of these Orbiter jets. The RCS Plume Model (RPM), which includes effects of scarfed nozzles and dual jets, was developed as a modified source-flow engineering tool to rapidly generate plume properties and impingement environments on ISS components. This paper presents flow-field properties from four PRCS jets: F3U low scarf-angle single jet, F3F high scarf-angle single jet, DTU zero scarf-angle dual jet, and F1F/F2F high scarf-angle dual jet. The RPM results compared well with plume flow fields using four CFD programs: General Aerodynamic Simulation Program (GASP), Cartesian (CART), Unified Solution Algorithm (USA), and Reacting and Multi-phase Program (RAMP). Good comparisons of predicted pressures are shown with STS 64 Shuttle Plume Impingement Flight Experiment (SPIFEX) data.
Diamantides, N D; Constantinou, S T
1989-07-01
"A model is presented of international migration that is based on the concept of a pool of potential emigrants at the origin created by push-pull forces and by the establishment of information feedback between origin and destination. The forces can be economic, political, or both, and are analytically expressed by the 'mediating factor'. The model is macrodynamic in nature and provides both for the main secular component of the migratory flow and for transient components caused by extraordinary events. The model is expressed in a Bernoulli-type differential equation through which quantitative weights can be derived for each of the operating causes. Out-migration from the Republic of Cyprus is used to test the tenets of the model." excerpt
Scott-Hamilton, John; Schutte, Nicola S; Brown, Rhonda F
2016-03-01
This study investigated whether mindfulness training increases athletes' mindfulness and flow experience and decreases sport-specific anxiety and sport-specific pessimism. Cyclists were assigned to an eight-week mindfulness intervention, which incorporated a mindful spin-bike training component, or a wait-list control condition. Participants completed baseline and post-test measures of mindfulness, flow, sport-anxiety, and sport-related pessimistic attributions. Analyses of covariance showed significant positive effects on mindfulness, flow, and pessimism for the 27 cyclists in the mindfulness intervention condition compared with the 20 cyclists in the control condition. Changes in mindfulness experienced by the intervention participants were positively associated with changes in flow. Results suggest that mindfulness-based interventions tailored to specific athletic pursuits can be effective in facilitating flow experiences. © 2016 The International Association of Applied Psychology.
A simple microfluidic Coriolis effect flowmeter for operation at high pressure and high temperature.
Harrison, Christopher; Jundt, Jacques
2016-08-01
We describe a microfluidic Coriolis effect flowmeter that is simple to assemble, operates at elevated temperature and pressure, and can be operated with a lock-in amplifier. The sensor has a flow rate sensitivity greater than 2° of phase shift per 1 g/min of mass flow and is benchmarked with flow rates ranging from 0.05 to 2.0 g/min. The internal volume is 15 μl and uses off-the-shelf optical components to measure the tube motion. We demonstrate that fluid density can be calculated from the frequency of the resonating element with proper calibration.
NASA Astrophysics Data System (ADS)
Baba, S.; Sakai, T.; Sawada, K.; Kubota, C.; Wada, Y.; Shinmoto, Y.; Ohta, H.; Asano, H.; Kawanami, O.; Suzuki, K.; Imai, R.; Kawasaki, H.; Fujii, K.; Takayanagi, M.; Yoda, S.
2011-12-01
Boiling is one of the efficient modes of heat transfer due to phase change, and is regarded as promising means to be applied for the thermal management systems handling a large amount of waste heat under high heat flux. However, gravity effects on the two-phase flow phenomena and corresponding heat transfer characteristics have not been clarified in detail. The experiments onboard Japanese Experiment Module "KIBO" in International Space Station on boiling two-phase flow under microgravity conditions are proposed to clarify both of heat transfer and flow characteristics under microgravity conditions. To verify the feasibility of ISS experiments on boiling two-phase flow, the Bread Board Model is assembled and its performance and the function of components installed in a test loop are examined.
Documenting Models for Interoperability and Reusability ...
Many modeling frameworks compartmentalize science via individual models that link sets of small components to create larger modeling workflows. Developing integrated watershed models increasingly requires coupling multidisciplinary, independent models, as well as collaboration between scientific communities, since component-based modeling can integrate models from different disciplines. Integrated Environmental Modeling (IEM) systems focus on transferring information between components by capturing a conceptual site model; establishing local metadata standards for input/output of models and databases; managing data flow between models and throughout the system; facilitating quality control of data exchanges (e.g., checking units, unit conversions, transfers between software languages); warning and error handling; and coordinating sensitivity/uncertainty analyses. Although many computational software systems facilitate communication between, and execution of, components, there are no common approaches, protocols, or standards for turn-key linkages between software systems and models, especially if modifying components is not the intent. Using a standard ontology, this paper reviews how models can be described for discovery, understanding, evaluation, access, and implementation to facilitate interoperability and reusability. In the proceedings of the International Environmental Modelling and Software Society (iEMSs), 8th International Congress on Environmental Mod
Variation of turbulence in a coastal thermal internal boundary layer
DOE Office of Scientific and Technical Information (OSTI.GOV)
SethuRaman, S.; Raynor, G.S.; Brown, R.M.
1981-01-01
Internal boundary layers (IBL) form when an air mass encounters a change in surface characteristics. There are essentially two types of internal boundary layers - one caused by the change in surface roughness and the other by the variation in surface heating. The former is known as the aerodynamic internal boundary layer (AIBL) and the latter the thermal internal boundary layer (TIBL). Change in shear stress generally characterizes the AIBL and change in turbulence the TIBL. Results of some observations of the vertical component of turbulence made in a coastal TIBL over Long Island, New York from 1974 to 1978more » are reported. Vertical turbulence measured by a simple sail plane variometer in a thermal internal boundary layer over Long Island with onshore flows indicates the structure to depend significantly on the land-water temperature difference. The position of the vertical velocity fluctuation maximum seems to vary from one test to another but its variation could not be correlated to other parameters due to lack of a sufficient number of tests. The structure of vertical turbulence was found to be different for sea breeze flows as compared to gradient winds.« less
A method for calculating strut and splitter plate noise in exit ducts: Theory and verification
NASA Technical Reports Server (NTRS)
Fink, M. R.
1978-01-01
Portions of a four-year analytical and experimental investigation relative to noise radiation from engine internal components in turbulent flow are summarized. Spectra measured for such airfoils over a range of chord, thickness ratio, flow velocity, and turbulence level were compared with predictions made by an available rigorous thin-airfoil analytical method. This analysis included the effects of flow compressibility and source noncompactness. Generally good agreement was obtained. This noise calculation method for isolated airfoils in turbulent flow was combined with a method for calculating transmission of sound through a subsonic exit duct and with an empirical far-field directivity shape. These three elements were checked separately and were individually shown to give close agreement with data. This combination provides a method for predicting engine internally generated aft-radiated noise from radial struts and stators, and annular splitter rings. Calculated sound power spectra, directivity, and acoustic pressure spectra were compared with the best available data. These data were for noise caused by a fan exit duct annular splitter ring, larger-chord stator blades, and turbine exit struts.
Liquid rocket engine self-cooled combustion chambers
NASA Technical Reports Server (NTRS)
1977-01-01
Self-cooled combustion chambers are chambers in which the chamber wall temperature is controlled by methods other than fluid flow within the chamber wall supplied from an external source. In such chambers, adiabatic wall temperature may be controlled by use of upstream fluid components such as the injector or a film-coolant ring, or by internal flow of self-contained materials; e.g. pyrolysis gas flow in charring ablators, and the flow of infiltrated liquid metals in porous matrices. Five types of self-cooled chambers are considered in this monograph. The name identifying the chamber is indicative of the method (mechanism) by which the chamber is cooled, as follows: ablative; radiation cooled; internally regenerative (Interegen); heat sink; adiabatic wall. Except for the Interegen and heat sink concepts, each chamber type is discussed separately. A separate and final section of the monograph deals with heat transfer to the chamber wall and treats Stanton number evaluation, film cooling, and film-coolant injection techniques, since these subjects are common to all chamber types. Techniques for analysis of gas film cooling and liquid film cooling are presented.
Computational Fluid Dynamics Symposium on Aeropropulsion
NASA Technical Reports Server (NTRS)
1991-01-01
Recognizing the considerable advances that have been made in computational fluid dynamics, the Internal Fluid Mechanics Division of NASA Lewis Research Center sponsored this symposium with the objective of providing a forum for exchanging information regarding recent developments in numerical methods, physical and chemical modeling, and applications. This conference publication is a compilation of 4 invited and 34 contributed papers presented in six sessions: algorithms one and two, turbomachinery, turbulence, components application, and combustors. Topics include numerical methods, grid generation, chemically reacting flows, turbulence modeling, inlets, nozzles, and unsteady flows.
2012-11-01
W., and Mudawar , I., "Measurement and Correlation of Critical Heat Flux in Two-Phase Micro-Channel Heat Sinks," International Journal of Heat and...Mass Transfer, Vol. 47, No. 10-11, 2004, pp. 2045-2059. 3 Zhang, H., Mudawar , I., and Hasan, M. M., "Photographic Study of High-Flux Subcooled Flow...component Fow in Pipes," Chemical Engineering Progress, Vol. 45, 1949, pp. 39-48. 34 Qu, W., and Mudawar , I., "Measurement and Prediction of Pressure
Numerical simulation and analysis of the flow in a two-staged axial fan
NASA Astrophysics Data System (ADS)
Xu, J. Q.; Dou, H. S.; Jia, H. X.; Chen, X. P.; Wei, Y. K.; Dong, M. W.
2016-05-01
In this paper, numerical simulation was performed for the internal three-dimensional turbulent flow field in the two-stage axial fan using steady three-dimensional in-compressible Navier-Stokes equations coupled with the Realizable turbulent model. The numerical simulation results of the steady analysis were combined with the flow characteristics of two- staged axial fan, the influence of the mutual effect between the blade and the vane on the flow of the two inter-stages was analyzed emphatically. This paper studied how the flow field distribution in inter-stage is influenced by the wake interaction and potential flow interaction of mutual effect in the impeller-vane inter-stage and the vane-impeller inter-stage. The results showed that: Relatively, wake interaction has an advantage over potential flow interaction in the impeller-vane inter-stage; potential flow interaction has an advantage over wake interaction in the vane-impeller inter-stage. In other words, distribution of flow field in the two interstages is determined by the rotating component.
Overview of NASA Multi-dimensional Stirling Convertor Code Development and Validation Effort
NASA Technical Reports Server (NTRS)
Tew, Roy C.; Cairelli, James E.; Ibrahim, Mounir B.; Simon, Terrence W.; Gedeon, David
2002-01-01
A NASA grant has been awarded to Cleveland State University (CSU) to develop a multi-dimensional (multi-D) Stirling computer code with the goals of improving loss predictions and identifying component areas for improvements. The University of Minnesota (UMN) and Gedeon Associates are teamed with CSU. Development of test rigs at UMN and CSU and validation of the code against test data are part of the effort. The one-dimensional (1-D) Stirling codes used for design and performance prediction do not rigorously model regions of the working space where abrupt changes in flow area occur (such as manifolds and other transitions between components). Certain hardware experiences have demonstrated large performance gains by varying manifolds and heat exchanger designs to improve flow distributions in the heat exchangers. 1-D codes were not able to predict these performance gains. An accurate multi-D code should improve understanding of the effects of area changes along the main flow axis, sensitivity of performance to slight changes in internal geometry, and, in general, the understanding of various internal thermodynamic losses. The commercial CFD-ACE code has been chosen for development of the multi-D code. This 2-D/3-D code has highly developed pre- and post-processors, and moving boundary capability. Preliminary attempts at validation of CFD-ACE models of MIT gas spring and "two space" test rigs were encouraging. Also, CSU's simulations of the UMN oscillating-flow fig compare well with flow visualization results from UMN. A complementary Department of Energy (DOE) Regenerator Research effort is aiding in development of regenerator matrix models that will be used in the multi-D Stirling code. This paper reports on the progress and challenges of this
Three-Dimensional Modeling of Flow and Thermochemical Behavior in a Blast Furnace
NASA Astrophysics Data System (ADS)
Shen, Yansong; Guo, Baoyu; Chew, Sheng; Austin, Peter; Yu, Aibing
2015-02-01
An ironmaking blast furnace (BF) is a complex high-temperature moving bed reactor involving counter-, co- and cross-current flows of gas, liquid and solid, coupled with heat and mass exchange and chemical reactions. Two-dimensional (2D) models were widely used for understanding its internal state in the past. In this paper, a three-dimensional (3D) CFX-based mathematical model is developed for describing the internal state of a BF in terms of multiphase flow and the related thermochemical behavior, as well as process indicators. This model considers the intense interactions between gas, solid and liquid phases, and also their competition for the space. The model is applied to a BF covering from the burden surface at the top to the liquid surface in the hearth, where the raceway cavity is considered explicitly. The results show that the key in-furnace phenomena such as flow/temperature patterns and component distributions of solid, gas and liquid phases can be described and characterized in different regions inside the BF, including the gas and liquids flow circumferentially over the 3D raceway surface. The in-furnace distributions of key performance indicators such as reduction degree and gas utilization can also be predicted. This model offers a cost-effective tool to understand and control the complex BF flow and performance.
Internal flows and force matrices in axial flow inducers
NASA Astrophysics Data System (ADS)
Bhattacharyya, Abhijit
1994-01-01
Axial flow inducers such as those used in high speed rocket engine turbopumps are subject to complex internal flows and fluid-induced lateral and rotordynamic forces. An investigation of these internal flows was conducted using boundary layer flow visualization on the blades, hub and housing of unshrouded and shrouded inducers. Results showed that the blade boundary layer flows have strong radial components at off-design conditions and remain attached to the blade surface at all flow coefficients tested. The origin of upstream swirling backflow was found to be at the discharge plane of the inducer. In addition, flow reversal was observed at the suction side blade tip near the leading edge in a shrouded inducer. Re-entry of the hub boundary layer flow, a downstream backflow, into the blade passage area was observed at flow coefficients below design. For unshrouded inducers the radially outward flow near the blade tip mixed with the leakage flow to form the upstream backflow. The lateral and rotordynamic forces acting on an inducer due to an imposed whirl motion was also investigated at various flow coefficients. It was found that the rotordynamic force data at various whirl frequency ratios does not allow a normal quadratic fit; consequently the conventional inertial, stiffness and damping coefficients cannot be obtained and a definite whirl ratio describing the instability region does not result. Application of an actuator disk theory proved to be inaccurate in estimating the rotordynamic tangential force in a non-whirling inducer. The effect of upstream and downstream flow distortions on the rotordynamic and lateral forces on an inducer were studied. It was found that at flow coefficients below design, large lateral forces occurred in the presence of a downstream asymmetry. Results of inlet distortion experiments show that a strong inlet shear causes a significant increase in the lateral force. Cavitation was found to have important consequences for fluid-induced rotordynamic forces. These forces become destabilizing for both forward and reverse whirl. Decreasing cavitation numbers caused an increase in the magnitudes of the destabilizing forces.
NASA Astrophysics Data System (ADS)
Gordon, Kathryn; Morris, Scott; Jemcov, Aleksandar; Cameron, Joshua
2013-11-01
The interaction of components in a compressible, internal flow often results in unsteady interactions between the wakes and moving blades. A prime example in which this flow feature is of interest is the interaction between the downstream rotor blades in a transonic axial compressor with the wake vortices shed from the upstream inlet guide vane (IGV). Previous work shows that a double row of counter-rotating vortices convects downstream into the rotor passage as a result of the rotor blade bow shock impinging on the IGV. The rotor-relative time-mean total pressure distribution has a region of high total pressure corresponding to the pathline of the vortices. The present work focuses on the relationship between the magnitude of the time-mean rotor-relative total pressure profile and the axial spacing between the IGV and the rotor. A survey of different axial gap sizes is performed in a two-dimensional computational study to obtain the sensitivity of the pressure profile amplitude to IGV-rotor axial spacing.
Experimental and analytical study of close-coupled ventral nozzles for ASTOVL aircraft
NASA Technical Reports Server (NTRS)
Mcardle, Jack G.; Smith, C. Frederic
1990-01-01
Flow in a generic ventral nozzle system was studied experimentally and analytically with a block version of the PARC3D computational fluid dynamics program (a full Navier-Stokes equation solver) in order to evaluate the program's ability to predict system performance and internal flow patterns. For the experimental work a one-third-size model tailpipe with a single large rectangular ventral nozzle mounted normal to the tailpipe axis was tested with unheated air at steady-state pressure ratios up to 4.0. The end of the tailpipe was closed to simulate a blocked exhaust nozzle. Measurements showed about 5 1/2 percent flow-turning loss, reasonable nozzle performance coefficients, and a significant aftward axial component of thrust due to flow turning loss, reasonable nozzle performance coefficients, and a significant aftward axial component of thrust due to flow turning more than 90 deg. Flow behavior into and through the ventral duct is discussed and illustrated with paint streak flow visualization photographs. For the analytical work the same ventral system configuration was modeled with two computational grids to evaluate the effect of grid density. Both grids gave good results. The finer-grid solution produced more detailed flow patterns and predicted performance parameters, such as thrust and discharge coefficient, within 1 percent of the measured values. PARC3D flow visualization images are shown for comparison with the paint streak photographs. Modeling and computational issues encountered in the analytical work are discussed.
Revealing pMDI Spray Initial Conditions: Flashing, Atomisation and the Effect of Ethanol
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mason-Smith, Nicholas; Duke, Daniel J.; Kastengren, Alan L.
Sprays from pressurised metered-dose inhalers are produced by a transient discharge of a multiphase mixture. Small length and short time scales have made the investigation of the governing processes difficult. Consequently, a deep understanding of the physical processes that govern atomisation and drug particle formation has been elusive. X-ray phase contrast imaging and quantitative radiography were used to reveal the internal flow structure and measure the time-variant nozzle exit mass density of 50 µL metered sprays of HFA134a, with and without ethanol cosolvent. Internal flow patterns were imaged at a magnification of 194 pixels/mm and 7759 frames per second withmore » 150 ps temporal resolution. Spray projected mass was measured with temporal resolution of 1 ms and spatial resolution 6 µm × 5 µm. The flow upstream of the nozzle comprised large volumes of vapour at all times throughout the injection. The inclusion of ethanol prevented bubble coalescence, altering the internal flow structure and discharge. Radiography measurements confirmed that the nozzle exit area is dominantly occupied by vapour, with a peak liquid volume fraction of 13%. Vapour generation in pMDIs occurs upstream of the sump, and the dominant volume component in the nozzle exit orifice is vapour at all times in the injection. Furthermore, the flow in ethanol-containing pMDIs has a bubbly structure resulting in a comparatively stable discharge, whereas the binary structure of propellant-only flows results in unsteady discharge and the production of unrespirable liquid masses.« less
Revealing pMDI Spray Initial Conditions: Flashing, Atomisation and the Effect of Ethanol.
Mason-Smith, Nicholas; Duke, Daniel J; Kastengren, Alan L; Traini, Daniela; Young, Paul M; Chen, Yang; Lewis, David A; Edgington-Mitchell, Daniel; Honnery, Damon
2017-04-01
Sprays from pressurised metered-dose inhalers are produced by a transient discharge of a multiphase mixture. Small length and short time scales have made the investigation of the governing processes difficult. Consequently, a deep understanding of the physical processes that govern atomisation and drug particle formation has been elusive. X-ray phase contrast imaging and quantitative radiography were used to reveal the internal flow structure and measure the time-variant nozzle exit mass density of 50 µL metered sprays of HFA134a, with and without ethanol cosolvent. Internal flow patterns were imaged at a magnification of 194 pixels/mm and 7759 frames per second with 150 ps temporal resolution. Spray projected mass was measured with temporal resolution of 1 ms and spatial resolution 6 µm × 5 µm. The flow upstream of the nozzle comprised large volumes of vapour at all times throughout the injection. The inclusion of ethanol prevented bubble coalescence, altering the internal flow structure and discharge. Radiography measurements confirmed that the nozzle exit area is dominantly occupied by vapour, with a peak liquid volume fraction of 13%. Vapour generation in pMDIs occurs upstream of the sump, and the dominant volume component in the nozzle exit orifice is vapour at all times in the injection. The flow in ethanol-containing pMDIs has a bubbly structure resulting in a comparatively stable discharge, whereas the binary structure of propellant-only flows results in unsteady discharge and the production of unrespirable liquid masses.
Revealing pMDI Spray Initial Conditions: Flashing, Atomisation and the Effect of Ethanol
Mason-Smith, Nicholas; Duke, Daniel J.; Kastengren, Alan L.; ...
2017-01-17
Sprays from pressurised metered-dose inhalers are produced by a transient discharge of a multiphase mixture. Small length and short time scales have made the investigation of the governing processes difficult. Consequently, a deep understanding of the physical processes that govern atomisation and drug particle formation has been elusive. X-ray phase contrast imaging and quantitative radiography were used to reveal the internal flow structure and measure the time-variant nozzle exit mass density of 50 µL metered sprays of HFA134a, with and without ethanol cosolvent. Internal flow patterns were imaged at a magnification of 194 pixels/mm and 7759 frames per second withmore » 150 ps temporal resolution. Spray projected mass was measured with temporal resolution of 1 ms and spatial resolution 6 µm × 5 µm. The flow upstream of the nozzle comprised large volumes of vapour at all times throughout the injection. The inclusion of ethanol prevented bubble coalescence, altering the internal flow structure and discharge. Radiography measurements confirmed that the nozzle exit area is dominantly occupied by vapour, with a peak liquid volume fraction of 13%. Vapour generation in pMDIs occurs upstream of the sump, and the dominant volume component in the nozzle exit orifice is vapour at all times in the injection. Furthermore, the flow in ethanol-containing pMDIs has a bubbly structure resulting in a comparatively stable discharge, whereas the binary structure of propellant-only flows results in unsteady discharge and the production of unrespirable liquid masses.« less
Visualization of gas flow and diffusion in porous media
Kaiser, Lana G.; Meersmann, Thomas; Logan, John W.; Pines, Alexander
2000-01-01
The transport of gases in porous materials is a crucial component of many important processes in science and technology. In the present work, we demonstrate how magnetic resonance microscopy with continuous flow laser-polarized noble gases makes it possible to “light up” and thereby visualize, with unprecedented sensitivity and resolution, the dynamics of gases in samples of silica aerogels and zeolite molecular sieve particles. The “polarization-weighted” images of gas transport in aerogel fragments are correlated to the diffusion coefficient of xenon obtained from NMR pulsed-field gradient experiments. The technique provides a unique means of studying the combined effects of flow and diffusion in systems with macroscopic dimensions and microscopic internal pore structure. PMID:10706617
PIV Measurements of Supersonic Internally-Mixed Dual-Stream Jets
NASA Technical Reports Server (NTRS)
Bridges, James E.; Wernet, Mark P.
2012-01-01
While externally mixed, or separate flow, nozzle systems are most common in high bypass-ratio aircraft, they are not as attractive for use in lower bypass-ratio systems and on aircraft that will fly supersonically. The noise of such propulsion systems is also dominated by jet noise, making the study and noise reduction of these exhaust systems very important, both for military aircraft and future civilian supersonic aircraft. This paper presents particle image velocimetry of internally mixed nozzle with different area ratios between core and bypass, and nozzles that are ideally expanded and convergent. Such configurations independently control the geometry of the internal mixing layer and of the external shock structure. These allow exploration of the impact of shocks on the turbulent mixing layers, the impact of bypass ratio on broadband shock noise and mixing noise, and the impact of temperature on the turbulent flow field. At the 2009 AIAA/CEAS Aeroacoustics Conference the authors presented data and analysis from a series of tests that looked at the acoustics of supersonic jets from internally mixed nozzles. In that paper the broadband shock and mixing noise components of the jet noise were independently manipulated by holding Mach number constant while varying bypass ratio and jet temperature. Significant portions of that analysis was predicated on assumptions regarding the flow fields of these jets, both shock structure and turbulence. In this paper we add to that analysis by presenting particle image velocimetry measurements of the flow fields of many of those jets. In addition, the turbulent velocity data documented here will be very useful for validation of computational flow codes that are being developed to design advanced nozzles for future aircraft.
Generalization of turbojet and turbine-propeller engine performance in windmilling condition
NASA Technical Reports Server (NTRS)
Wallner, Ewis E; Welna, Henry J
1951-01-01
Windmilling characteristics of several turbojet and turbine-propeller engines were investigated individually over a wide range of flight conditions in the NACA Lewis altitude wind tunnel. A study was made of all these data and windmilling performance of gas turbine engines was generalized. Although internal-drag, air-flow, and total-pressure-drop parameters were generalized to a single curve for both the axial-flow type engines and another for the centrifugal-flow engine. The engine speed, component pressure changes, and windmilling-propeller drag were generalized to single curves for the two turbine-propeller-type engines investigated. By the use of these curves the windmilling performance can be estimated for axial-flow type gas turbine engines similar to the types investigated over a wide range of flight conditions.
Calculation of periodic flows in a continuously stratified fluid
NASA Astrophysics Data System (ADS)
Vasiliev, A.
2012-04-01
Analytic theory of disturbances generated by an oscillating compact source in a viscous continuously stratified fluid was constructed. Exact solution of the internal waves generation problem was constructed taking into account diffusivity effects. This analysis is based on set of fundamental equations of incompressible flows. The linearized problem of periodic flows in a continuously stratified fluid, generated by an oscillating part of the inclined plane was solved by methods of singular perturbation theory. A rectangular or disc placed on a sloping plane and oscillating linearly in an arbitrary direction was selected as a source of disturbances. The solutions include regularly perturbed on dissipative component functions describing internal waves and a family of singularly perturbed functions. One of the functions from the singular components family has an analogue in a homogeneous fluid that is a periodic or Stokes' flow. Its thickness is defined by a universal micro scale depending on kinematics viscosity coefficient and a buoyancy frequency with a factor depending on the wave slope. Other singular perturbed functions are specific for stratified flows. Their thickness are defined the diffusion coefficient, kinematic viscosity and additional factor depending on geometry of the problem. Fields of fluid density, velocity, vorticity, pressure, energy density and flux as well as forces acting on the source are calculated for different types of the sources. It is shown that most effective source of waves is the bi-piston. Complete 3D problem is transformed in various limiting cases that are into 2D problem for source in stratified or homogeneous fluid and the Stokes problem for an oscillating infinite plane. The case of the "critical" angle that is equality of the emitting surface and the wave cone slope angles needs in separate investigations. In this case, the number of singular component is saved. Patterns of velocity and density fields were constructed and analyzed by methods of computational mathematics. Singular components of the solution affect the flow pattern of the inhomogeneous stratified fluid, not only near the source of the waves, but at a large distance. Analytical calculations of the structure of wave beams are matched with laboratory experiments. Some deviations at large distances from the source are formed due to the contribution of background wave field associated with seiches in the laboratory tank. In number of the experiments vortices with closed contours were observed on some distances from the disk. The work was supported by Ministry of Education and Science RF (Goscontract No. 16.518.11.7059), experiments were performed on set up USU "HPC IPMec RAS".
Multistage Schemes with Multigrid for Euler and Navier-Strokes Equations: Components and Analysis
NASA Technical Reports Server (NTRS)
Swanson, R. C.; Turkel, Eli
1997-01-01
A class of explicit multistage time-stepping schemes with centered spatial differencing and multigrids are considered for the compressible Euler and Navier-Stokes equations. These schemes are the basis for a family of computer programs (flow codes with multigrid (FLOMG) series) currently used to solve a wide range of fluid dynamics problems, including internal and external flows. In this paper, the components of these multistage time-stepping schemes are defined, discussed, and in many cases analyzed to provide additional insight into their behavior. Special emphasis is given to numerical dissipation, stability of Runge-Kutta schemes, and the convergence acceleration techniques of multigrid and implicit residual smoothing. Both the Baldwin and Lomax algebraic equilibrium model and the Johnson and King one-half equation nonequilibrium model are used to establish turbulence closure. Implementation of these models is described.
The Ottawa River lies in extreme northwest Ohio, flowing into Lake Erie’s western basin at the city of Toledo. The Ottawa River is a component of the Maumee River Area of Concern (AOC) as defined by the International Joint Commission. In 2009-2010 a sediment remediation pro...
NASA Technical Reports Server (NTRS)
Nahra, Henry K.; Hall, Nancy R.; Hasan, Mohammad M.; Wagner, James D.; May, Rochelle L.; Mackey, Jeffrey R.; Kolacz, John S.; Butcher, Robert L.; Frankenfield, Bruce J.; Mudawar, Issam;
2013-01-01
Flow boiling and condensation have been identified as two key mechanisms for heat transport that are vital for achieving weight and volume reduction as well as performance enhancement in future space systems. Since inertia driven flows are demanding on power usage, lower flows are desirable. However, in microgravity, lower flows are dominated by forces other than inertia (like the capillary force). It is of paramount interest to investigate limits of low flows beyond which the flow is inertial enough to be gravity independent. One of the objectives of the Flow Boiling and Condensation Flight Experiment sets to investigate these limits for flow boiling and condensation. A two-phase flow loop consisting of a Flow Boiling Module and two Condensation Modules has been developed to experimentally study flow boiling condensation heat transfer in the reduced gravity environment provided by the reduced gravity platform. This effort supports the development of a flow boiling and condensation facility for the International Space Station (ISS). The closed loop test facility is designed to deliver the test fluid, FC-72 to the inlet of any one of the test modules at specified thermodynamic and flow conditions. The zero-g-aircraft tests will provide subcooled and saturated flow boiling critical heat flux and flow condensation heat transfer data over wide range of flow velocities. Additionally, these tests will verify the performance of all gravity sensitive components, such as evaporator, condenser and accumulator associated with the two-phase flow loop. We will present in this paper the breadboard development and testing results which consist of detailed performance evaluation of the heater and condenser combination in reduced and normal gravity. We will also present the design of the reduced gravity aircraft rack and the results of the ground flow boiling heat transfer testing performed with the Flow Boiling Module that is designed to investigate flow boiling heat transfer and Critical Heat Flux (CHF) phenomena.
Adequate mathematical modelling of environmental processes
NASA Astrophysics Data System (ADS)
Chashechkin, Yu. D.
2012-04-01
In environmental observations and laboratory visualization both large scale flow components like currents, jets, vortices, waves and a fine structure are registered (different examples are given). The conventional mathematical modeling both analytical and numerical is directed mostly on description of energetically important flow components. The role of a fine structures is still remains obscured. A variety of existing models makes it difficult to choose the most adequate and to estimate mutual assessment of their degree of correspondence. The goal of the talk is to give scrutiny analysis of kinematics and dynamics of flows. A difference between the concept of "motion" as transformation of vector space into itself with a distance conservation and the concept of "flow" as displacement and rotation of deformable "fluid particles" is underlined. Basic physical quantities of the flow that are density, momentum, energy (entropy) and admixture concentration are selected as physical parameters defined by the fundamental set which includes differential D'Alembert, Navier-Stokes, Fourier's and/or Fick's equations and closing equation of state. All of them are observable and independent. Calculations of continuous Lie groups shown that only the fundamental set is characterized by the ten-parametric Galilelian groups reflecting based principles of mechanics. Presented analysis demonstrates that conventionally used approximations dramatically change the symmetries of the governing equations sets which leads to their incompatibility or even degeneration. The fundamental set is analyzed taking into account condition of compatibility. A high order of the set indicated on complex structure of complete solutions corresponding to physical structure of real flows. Analytical solutions of a number problems including flows induced by diffusion on topography, generation of the periodic internal waves a compact sources in week-dissipative media as well as numerical solutions of the same problems are constructed. They include regular perturbed function describing large scale component and a rich family of singular perturbed function corresponding to fine flow components. Solutions are compared with data of laboratory experiments performed on facilities USU "HPC IPMec RAS" under support of Ministry of Education and Science RF (Goscontract No. 16.518.11.7059). Related problems of completeness and accuracy of laboratory and environmental measurements are discussed.
NASA Astrophysics Data System (ADS)
Sarkarinejad, Khalil; Sarshar, Maryam Asadi; Adineh, Sadegh
2018-02-01
One of the main characteristic of the Zagros foreland fold-and-thrust belt and the Zagros foreland folded belt are wide distributions of surface extrusion from the Hormuz salt diapirs. This study examines the structure and kinematic of channel flow in the Karmostaj salt diapir in the southwestern part of the Zagros foreland folded belt. This diapir has reached the surface as a result of the channel flow mechanism and has extruded in the southern limb of the Kuh-Gach anticline which is an asymmetric décollement fold with convergence to the south. Structural and microstructural studies and quantitative finite strain (Rs) and kinematic vorticity number (Wk) analyses were carried out within this salt diapir and its namakier. This was in order to investigate the structural evolution in the salt diapiric system, the characteristics and mechanism of the salt flow and the distribution of flow regimes within the salt diapir and interaction of regional tectonics and salt diaprism. The extruded salt has developed a flow foliation sub-parallel to the remnant bedding recorded by different colors, a variety of internal folds including symmetrical and asymmetrical folds and interference fold patterns, shear zones, and boudins. These structures were used to analyze mechanisms and history of diapiric flow and extrusion. The microstructures, reveal various deformation mechanisms in various parts of salt diapir. The measurements of finite strain show that Rs values in the margin of salt diapir are higher than within its namakier which is consistent with the results of structural studies. Mean kinematic vorticity number (Wm) measured in steady state deformation of diapir and namakier is Wm = 0.45-0.48 ± 0.13. The estimated mean finite deformation (Wm) values indicate that 67.8% pure shear and 32.2% simple shear deformation were involved; the implications of which are discussed. The vorticity of flow indicates that in the early stage of growth, Poiseuille flow was the dominate mechanism, especially in the core of diapir with higher pure shear component relative to simple shear component, whilst a Couette flow at the margins of diapir is the dominate mechanism with higher simple shear component relative to pure shear component. The obtained kinematic vorticity number reflects spatial partitioning of dominantly Poiseuille flow in core and Couette flow along edges of diapir. These two mechanisms reflect a persistent flow governed by a simultaneous combination of pure shear and simple shear in a hybrid Poiseuille-Coutte Flow.
Boiling-Water Reactor internals aging degradation study. Phase 1
DOE Office of Scientific and Technical Information (OSTI.GOV)
Luk, K.H.
1993-09-01
This report documents the results of an aging assessment study for boiling water reactor (BWR) internals. Major stressors for BWR internals are related to unsteady hydrodynamic forces generated by the primary coolant flow in the reactor vessel. Welding and cold-working, dissolved oxygen and impurities in the coolant, applied loads and exposures to fast neutron fluxes are other important stressors. Based on results of a component failure information survey, stress corrosion cracking (SCC) and fatigue are identified as the two major aging-related degradation mechanisms for BWR internals. Significant reported failures include SCC in jet-pump holddown beams, in-core neutron flux monitor drymore » tubes and core spray spargers. Fatigue failures were detected in feedwater spargers. The implementation of a plant Hydrogen Water Chemistry (HWC) program is considered as a promising method for controlling SCC problems in BWR. More operating data are needed to evaluate its effectiveness for internal components. Long-term fast neutron irradiation effects and high-cycle fatigue in a corrosive environment are uncertainty factors in the aging assessment process. BWR internals are examined by visual inspections and the method is access limited. The presence of a large water gap and an absence of ex-core neutron flux monitors may handicap the use of advanced inspection methods, such as neutron noise vibration measurements, for BWR.« less
NASA Technical Reports Server (NTRS)
Okhio, Cyril B.
1995-01-01
A theoretical and an experimental design study of subsonic flow through curved-wall annular diffusers is being carried out in order to establish the most pertinent design parameters for such devices and the implications of their application in the design of engine components in the aerospace industries. This investigation consists of solving numerically the full Navier Stokes and Continuity equations for the time-mean flow. Various models of turbulence are being evaluated for adoption throughout the study and comparisons would be made with experimental data where they exist. Assessment of diffuser performance based on the dissipated mechanical energy would also be made. The experimental work involves the application of Computer Aided Design software tool to the development of a suitable annular diffuser geometry and the subsequent downloading of such data to a CNC machine at Central State University. The results of the investigations are expected to indicate that more cost effective component design of such devices as effective component design of such devices as diffusers which normally contain complex flows can still be achieved. In this regard a review paper was accepted and presented at the First International Conference on High Speed Civil Transportation Research held at North Carolina A&T in December of 1994.
NASA Technical Reports Server (NTRS)
Stremel, Paul M.
1995-01-01
A method has been developed to accurately compute the viscous flow in three-dimensional (3-D) enclosures. This method is the 3-D extension of a two-dimensional (2-D) method developed for the calculation of flow over airfoils. The 2-D method has been tested extensively and has been shown to accurately reproduce experimental results. As in the 2-D method, the 3-D method provides for the non-iterative solution of the incompressible Navier-Stokes equations by means of a fully coupled implicit technique. The solution is calculated on a body fitted computational mesh incorporating a staggered grid methodology. In the staggered grid method, the three components of vorticity are defined at the centers of the computational cell sides, while the velocity components are defined as normal vectors at the centers of the computational cell faces. The staggered grid orientation provides for the accurate definition of the vorticity components at the vorticity locations, the divergence of vorticity at the mesh cell nodes and the conservation of mass at the mesh cell centers. The solution is obtained by utilizing a fractional step solution technique in the three coordinate directions. The boundary conditions for the vorticity and velocity are calculated implicitly as part of the solution. The method provides for the non-iterative solution of the flow field and satisfies the conservation of mass and divergence of vorticity to machine zero at each time step. To test the method, the calculation of simple driven cavity flows have been computed. The driven cavity flow is defined as the flow in an enclosure driven by a moving upper plate at the top of the enclosure. To demonstrate the ability of the method to predict the flow in arbitrary cavities, results will he shown for both cubic and curved cavities.
Sound velocity in five-component air mixtures of various densities
NASA Astrophysics Data System (ADS)
Bogdanova, N. V.; Rydalevskaya, M. A.
2018-05-01
The local equilibrium flows of five-component air mixtures are considered. Gas dynamic equations are derived from the kinetic equations for aggregate values of collision invariants. It is shown that the traditional formula for sound velocity is true in air mixtures considered with the chemical reactions and the internal degrees of freedom. This formula connects the square of sound velocity with pressure and density. However, the adiabatic coefficient is not constant under existing conditions. The analytical expression for this coefficient is obtained. The examples of its calculation in air mixtures of various densities are presented.
The Ottawa River lies in extreme northwest Ohio, flowing into Lake Erie’s western basin at the City of Toledo. The Ottawa River is a component of the Maumee River AOC as defined by the International Commission. The Ottawa River is approximately 45 miles long; however, the 2...
Skylab extravehicular mobility unit thermal simulator
NASA Technical Reports Server (NTRS)
Hixon, C. W.; Phillips, M. A.
1974-01-01
The analytical methods, thermal model, and user's instructions for the Skylab Extravehicular Mobility Unit (SEMU) routine are presented. This digital computer program was developed for detailed thermal performance predictions of the SEMU on the NASA-JSC Univac 1108 computer system. It accounts for conductive, convective, and radiant heat transfer as well as fluid flow and special component characterization. The program provides thermal performance predictions for a 967 node thermal model in one thirty-sixth (1/36) of mission time when operated at a calculating interval of three minutes (mission time). The program has the operational flexibility to: (1) accept card or magnetic tape data input for the thermal model describing the SEMU structure, fluid systems, crewman and component performance, (2) accept card and/or magnetic tape input of internally generated heat and heat influx from the space environment, and (3) output tabular or plotted histories of temperature, flow rates, and other parameters describing system operating modes.
NASA Technical Reports Server (NTRS)
1985-01-01
Developments related to laser Doppler velocimetry are discussed, taking into account a three-component dual beam laser-Doppler-anemometer to be operated in large wind tunnels, a new optical system for three-dimensional laser-Doppler-anemometry using an argon-ion and a dye laser, and a two-component laser Doppler velocimeter by switching fringe orientation. Other topics studied are concerned with facilities, instrumentation, control, hot wire/thin film measurements, optical diagnostic techniques, signal and data processing, facilities and adaptive wall test sections, data acquisition and processing, ballistic instrument systems, dynamic testing and material deformation measurements, optical flow measurements, test techniques, force measurement systems, and holography. Attention is given to nonlinear calibration of integral wind tunnel balances, a microcomputer system for real time digitized image compression, and two phase flow diagnostics in propulsion systems.
Haraldsson, Henrik; Kefayati, Sarah; Ahn, Sinyeob; Dyverfeldt, Petter; Lantz, Jonas; Karlsson, Matts; Laub, Gerhard; Ebbers, Tino; Saloner, David
2018-04-01
To measure the Reynolds stress tensor using 4D flow MRI, and to evaluate its contribution to computed pressure maps. A method to assess both velocity and Reynolds stress using 4D flow MRI is presented and evaluated. The Reynolds stress is compared by cross-sectional integrals of the Reynolds stress invariants. Pressure maps are computed using the pressure Poisson equation-both including and neglecting the Reynolds stress. Good agreement is seen for Reynolds stress between computational fluid dynamics, simulated MRI, and MRI experiment. The Reynolds stress can significantly influence the computed pressure loss for simulated (eg, -0.52% vs -15.34% error; P < 0.001) and experimental (eg, 306 ± 11 vs 203 ± 6 Pa; P < 0.001) data. A 54% greater pressure loss is seen at the highest experimental flow rate when accounting for Reynolds stress (P < 0.001). 4D flow MRI with extended motion-encoding enables quantification of both the velocity and the Reynolds stress tensor. The additional information provided by this method improves the assessment of pressure gradients across a stenosis in the presence of turbulence. Unlike conventional methods, which are only valid if the flow is laminar, the proposed method is valid for both laminar and disturbed flow, a common presentation in diseased vessels. Magn Reson Med 79:1962-1971, 2018. © 2017 International Society for Magnetic Resonance in Medicine. © 2017 International Society for Magnetic Resonance in Medicine.
Managing vegetation in surface-flow wastewater-treatment wetlands for optimal treatment performance
Thullen, J.S.; Sartoris, J.J.; Nelson, S.M.
2005-01-01
Constructed wetlands that mimic natural marshes have been used as low-cost alternatives to conventional secondary or tertiary wastewater treatment in the U.S. for at least 30 years. However, the general level of understanding of internal treatment processes and their relation to vegetation and habitat quality has not grown in proportion to the popularity of these systems. We have studied internal processes in surface-flow constructed wastewater-treatment wetlands throughout the southwestern U.S. since 1990. At any given time, the water quality, hydraulics, water temperature, soil chemistry, available oxygen, microbial communities, macroinvertebrates, and vegetation each greatly affect the treatment capabilities of the wetland. Inside the wetland, each of these components plays a functional role and the treatment outcome depends upon how the various components interact. Vegetation plays a uniquely important role in water treatment due to the large number of functions it supports, particularly with regard to nitrogen transformations. However, it has been our experience that vegetation management is critical for achieving and sustaining optimal treatment function. Effective water treatment function and good wildlife quality within a surface-flow constructed wetland depend upon the health and sustainability of the vegetation. We suggest that an effective tool to manage and sustain healthy vegetation is the use of hummocks, which are shallow emergent plant beds within the wetland, positioned perpendicular to the water flow path and surrounded by water sufficiently deep to limit further emergent vegetation expansion. In this paper, we describe the use of a hummock configuration, in conjunction with seasonal water level fluctuations, to manage the vegetation and maintain the treatment function of wastewater-treatment wetlands on a sustainable basis.
NASA Astrophysics Data System (ADS)
Pomar, Luis; Molina, Jose M.; Ruiz-Ortiz, Pedro A.; Vera, Juan A.
2017-04-01
Fine-peloidal- to coarse oolitic-bioclastic grainstones with hummocky cross stratification (HCS) occur interbedded in Middle-Upper Jurassic pelagic lime-mudstone successions (Betic ranges, Southern Spain). These strata were deposited in pelagic troughs and swells, away from continental areas, in the Southern Iberian Continental Margin of the Western Tethys. Previously interpreted as tempestites, mainly due to the attribution of the HCS to surface storm waves, they are now reinterpreted as the product of turbulence in deeper conditions. Among many, some selected examples are here presented. All of them share: 1) Grainstone beds are interbedded with pelagic mudstones and marls 2) Grainstone components were reworked by oscillatory flows superimposed to unidirectional tractive flows (unidirectional ripple lamination and HCS). 3) Components were either derived from shallow-water environments (e.g., ooids), or produced in pelagic conditions (e.g., radiolarians, Saccocoma, peloids, etc). 4) Although surface-storm tempestite flows can be required to bring downslope components from shallow-water settings, the grainstone beds reflect sediment reworking at a depth dominated by fine pelagic sedimentation. 5) Internal waves propagating along a pycnocline and breaking against a sloping surface are the best candidate to induce the sedimentary structures and sediment organization that characterize these grainstone beds. The examples here presented (Middle-Upper Jurassic of the Subbetic) include: a) Peloid grainstones interbedded with radiolarite marls deposited on the flanks of volcanic guyots. The interbedded lime muds and marls contain 'filaments', sponge spicules and radiolarians. b) Peloid-bioclastic (radiolarians, Saccocoma, etc.) grainstone beds with HCS, interbedded with pelagic lime muds. c) Coarse oolitic grainstone unit, encased in pelagic marls, with wedge-shaped crossbed-sets with gently seaward-dipping parallel lamination, and sets of low-angle up-slope dipping parallel lamination. These oolitic grainstones hold characteristics similar to the ridge-berm-swash zone of modern beaches and are here interpreted to represent an "internal beach". d) Crossbedded peloidal-skeletal (Saccocoma) grainstones with HCS and wave ripples on top, interbedded with pelagic mudstones and wackestones with abundant bioturbation and ammonites (Ammonitico Rosso facies). All these grainstones are reinterpreted as the product of breaking internal waves. This breaking produces episodic high-turbulence events and remobilizes sediments at the depth where the pycnocline intersects the sea floor. The swash run-up produces erosion and the backwash return flow can bypass the breaker and travel downdip where the oscillatory-flow component of the IWs become dominant and form the characteristic HCS bedforms. Coarser sediments "trapped" at the breaker zone form sediment accumulations similar to the sediments caught by the "littoral fence" in the surface beach. This scenario evidences the HCS not to be necessarily linked to the surface storms but to the bathymetry of the pycnocline, solving the problem of having HCS in pelagic zones where the storm and hurricanes wave action can be considered "out-of-context". Acknowledgments: fundings from projet CGL2014-52096-P and Research Group RNM-200 (PAIDI-JA)
Wei, Zhenglun Alan; Sonntag, Simon Johannes; Toma, Milan; Singh-Gryzbon, Shelly; Sun, Wei
2018-04-19
The governing international standard for the development of prosthetic heart valves is International Organization for Standardization (ISO) 5840. This standard requires the assessment of the thrombus potential of transcatheter heart valve substitutes using an integrated thrombus evaluation. Besides experimental flow field assessment and ex vivo flow testing, computational fluid dynamics is a critical component of this integrated approach. This position paper is intended to provide and discuss best practices for the setup of a computational model, numerical solving, post-processing, data evaluation and reporting, as it relates to transcatheter heart valve substitutes. This paper is not intended to be a review of current computational technology; instead, it represents the position of the ISO working group consisting of experts from academia and industry with regards to considerations for computational fluid dynamic assessment of transcatheter heart valve substitutes.
Measurement of Jupiter’s asymmetric gravity field
NASA Astrophysics Data System (ADS)
Iess, L.; Folkner, W. M.; Durante, D.; Parisi, M.; Kaspi, Y.; Galanti, E.; Guillot, T.; Hubbard, W. B.; Stevenson, D. J.; Anderson, J. D.; Buccino, D. R.; Casajus, L. Gomez; Milani, A.; Park, R.; Racioppa, P.; Serra, D.; Tortora, P.; Zannoni, M.; Cao, H.; Helled, R.; Lunine, J. I.; Miguel, Y.; Militzer, B.; Wahl, S.; Connerney, J. E. P.; Levin, S. M.; Bolton, S. J.
2018-03-01
The gravity harmonics of a fluid, rotating planet can be decomposed into static components arising from solid-body rotation and dynamic components arising from flows. In the absence of internal dynamics, the gravity field is axially and hemispherically symmetric and is dominated by even zonal gravity harmonics J2n that are approximately proportional to qn, where q is the ratio between centrifugal acceleration and gravity at the planet’s equator. Any asymmetry in the gravity field is attributed to differential rotation and deep atmospheric flows. The odd harmonics, J3, J5, J7, J9 and higher, are a measure of the depth of the winds in the different zones of the atmosphere. Here we report measurements of Jupiter’s gravity harmonics (both even and odd) through precise Doppler tracking of the Juno spacecraft in its polar orbit around Jupiter. We find a north–south asymmetry, which is a signature of atmospheric and interior flows. Analysis of the harmonics, described in two accompanying papers, provides the vertical profile of the winds and precise constraints for the depth of Jupiter’s dynamical atmosphere.
NASA Technical Reports Server (NTRS)
Paul, D. L.
1975-01-01
A low speed test program was conducted in a 9- by 15-foot V/STOL wind tunnel to investigate internal performance characteristics and determine key design features required for an inlet to meet the demanding operational conditions of the QCSEE application. Four models each having a design average throat Mach number of 0.79 were tested over a range of incidence angle, throat Mach number, and freestream velocity. Principal design variable was internal lip diameter ratio. Stable, efficient inlet performance was found to be feasible at and beyond the 50 deg incidence angle required by the QCSEE application at its 41.2 m/sec (80 knot) nominal takeoff velocity, through suitably designed inlet lip and diffuser components. Forebody design was found to significantly impact flow stability via nose curvature. Measured inlet wall pressures were used to select a location for the inlet throat Mach number control's static pressure port that properly balanced the conflicting demands of relative insensitivity to flow incidence and sufficiently high response to changes in engine flow demand.
Propagation and scattering of acoustic-vorticity waves in annular swirling flows
NASA Astrophysics Data System (ADS)
Golubev, Vladimir Viktorovich
1997-08-01
The dissertation presents a fundamental extension of unsteady aerodynamic theory developed to predict fluctuating forces on aircraft structural components. These excitations may result from a variety of upstream flow non-uniformities such as atmospheric turbulence, airframe tip vortices and wakes, engine inlet distortions and secondary flows. In the frame of reference of a downstream aircraft component, an upstream flow non- uniformity appears as a propagating vorticity wave (a gust). Classical treatment of gust interaction problems developed for uniform, potential upstream mean flows is based on the fact that it is possible to consider separately incident or scattered acoustic, entropic and vortical modes of unsteady flow motion. A purely vortical gust remains 'frozen' as it convects with the flow. The coupling between different unsteady components may occur only at the surface of a solid structure, or in the close vicinity of a lifting body. The classical approach, however, is not justified for an aircraft engine system where the internal turbomachinery flow is non-uniform and non-potential as it exhibits a strong swirling motion. In such a flow, acting centrifugal and Coriolis forces couple the various unsteady modes which thus can no longer be determined independently of each other. The new developed theory follows the decomposition of unsteady velocity field into vortical and potential components. In spite of the modal coupling, this decomposition elucidates the physical phenomena associated with unsteady swirling motion by indicating the degree of interaction between the various modes. It paves the way for generalizing the classical definition of a gust for vortical swirling flows. The concept of a generalized gust is developed based on the eigenmode pseudospectral analysis of the coupled equations of unsteady swirling motion. This analysis reveals two distinct regions of eigenvalues corresponding to pressure-dominated nearly-sonic and vorticity- dominated nearly-convected eigenmodes. A compact discrete spectrum of nearly-convected eigenvalues clusters with infinitely increasing density approaching an accumulation convected critical layer. The generalized gust is then identified with the nearly-convected eigenspectrum and formulated in terms of a non-amplifying nearly-convected wave and an instability wave growing in the critical layer. Based on the generalized gust model, a boundary-value problem of unsteady three-dimensional acoustic-vorticity waves propagating in a vortical swirling flow and impinging on a turbomachinery blading is formulated and solved numerically. A set of benchmark results reveals a significant effect of swirling flow motion on aerodynamic and acoustic response of the annular cascade.
NASA Technical Reports Server (NTRS)
Goldstein, Arthur W
1947-01-01
The performance of the turbine component of an NACA research jet engine was investigated with cold air. The interaction and the matching of the turbine with the NACA eight-stage compressor were computed with the combination considered as a jet engine. The over-all performance of the engine was then determined. The internal aerodynamics were studied to the extent of investigating the performance of the first stator ring and its influence on the turbine performance. For this ring, the stream-filament method for computing velocity distribution permitted efficient sections to be designed, but the design condition of free-vortex flow with uniform axial velocities was not obtained.
Intelligent Engine Systems: Thermal Management and Advanced Cooling
NASA Technical Reports Server (NTRS)
Bergholz, Robert
2008-01-01
The objective is to provide turbine-cooling technologies to meet Propulsion 21 goals related to engine fuel burn, emissions, safety, and reliability. Specifically, the GE Aviation (GEA) Advanced Turbine Cooling and Thermal Management program seeks to develop advanced cooling and flow distribution methods for HP turbines, while achieving a substantial reduction in total cooling flow and assuring acceptable turbine component safety and reliability. Enhanced cooling techniques, such as fluidic devices, controlled-vortex cooling, and directed impingement jets, offer the opportunity to incorporate both active and passive schemes. Coolant heat transfer enhancement also can be achieved from advanced designs that incorporate multi-disciplinary optimization of external film and internal cooling passage geometry.
Traveling-Wave Thermoacoustic Engines With Internal Combustion
Weiland, Nathan Thomas; Zinn, Ben T.; Swift, Gregory William
2004-05-11
Thermoacoustic devices are disclosed wherein, for some embodiments, a combustion zone provides heat to a regenerator using a mean flow of compressible fluid. In other embodiments, burning of a combustible mixture within the combustion zone is pulsed in phase with the acoustic pressure oscillations to increase acoustic power output. In an example embodiment, the combustion zone and the regenerator are thermally insulated from other components within the thermoacoustic device.
Reducing equifinality of hydrological models by integrating Functional Streamflow Disaggregation
NASA Astrophysics Data System (ADS)
Lüdtke, Stefan; Apel, Heiko; Nied, Manuela; Carl, Peter; Merz, Bruno
2014-05-01
A universal problem of the calibration of hydrological models is the equifinality of different parameter sets derived from the calibration of models against total runoff values. This is an intrinsic problem stemming from the quality of the calibration data and the simplified process representation by the model. However, discharge data contains additional information which can be extracted by signal processing methods. An analysis specifically developed for the disaggregation of runoff time series into flow components is the Functional Streamflow Disaggregation (FSD; Carl & Behrendt, 2008). This method is used in the calibration of an implementation of the hydrological model SWIM in a medium sized watershed in Thailand. FSD is applied to disaggregate the discharge time series into three flow components which are interpreted as base flow, inter-flow and surface runoff. In addition to total runoff, the model is calibrated against these three components in a modified GLUE analysis, with the aim to identify structural model deficiencies, assess the internal process representation and to tackle equifinality. We developed a model dependent (MDA) approach calibrating the model runoff components against the FSD components, and a model independent (MIA) approach comparing the FSD of the model results and the FSD of calibration data. The results indicate, that the decomposition provides valuable information for the calibration. Particularly MDA highlights and discards a number of standard GLUE behavioural models underestimating the contribution of soil water to river discharge. Both, MDA and MIA yield to a reduction of the parameter ranges by a factor up to 3 in comparison to standard GLUE. Based on these results, we conclude that the developed calibration approach is able to reduce the equifinality of hydrological model parameterizations. The effect on the uncertainty of the model predictions is strongest by applying MDA and shows only minor reductions for MIA. Besides further validation of FSD, the next steps include an extension of the study to different catchments and other hydrological models with a similar structure.
NASA Technical Reports Server (NTRS)
Henry, Michael
2000-01-01
During a test at the NASA Glenn Research Center's 1 x 1 Supersonic Wing Tunnel, it was discovered that particles entrained in the air flow were damaging the pressure sensitive paint on a test article. An investigation found the source of the entrained particles to be rust on the internal surfaces of the air supply piping. To remedy the situation, the air supply line components made from carbon steel were either refurbished or replaced with new stainless steel components. The refurbishment process included various combinations of chemical cleaning, bead blasting, painting and plating.
Fife, Jane P; Derksen, Richard C; Ozkan, H Erdal; Grewal, Parwinder S; Chalmers, Jeffrey J; Krause, Charles R
2004-04-05
Mechanized production and delivery of biological pesticides presents challenges because the biological agents must remain viable during these processes. This study evaluates the effect of flow through an abrupt contraction, where flow characteristics similar to that found within bioprocesses and spray equipment are developed, on damage to a benchmark biological pest control agent, entomopathogenic nematodes (EPNs). An opposed-pistons, contraction flow device generated volumetric flow rates ranging between 8.26 cm(3)/s and 41.3 cm(3)/s. Four EPN species were evaluated: Heterorhabditis bacteriophora, Heterorhabditis megidis, Steinernema carpocapsae, and Steinernema glaseri. Damage was quantified by counting living and dead EPNs. Optical and cold field emission scanning electron microscope (CFE-SEM) images provided qualitative information to describe how the damage occurred. The experimental flow field was completely described using FLUENT, a computational fluid dynamics program. Local flow parameters computed in FLUENT were compared to EPN damage. The type and extent of damage varied between EPN species. Damaged Heterorhabditis spp. generally remained whole with an internal rupture located near the center of the body, while Steinernema spp. most often broke into several pieces. The fast-transient stress field generated at the entrance to the contraction caused a momentary tensile loading and then relaxation that damaged the EPNs. At high flow rates, the tensile stresses became large enough to cause failure of the EPN structural membrane. The relative elasticity of the EPN structural membrane may explain the differences in damage observed between the species. It is speculated that the internal rupture of the Heterorhabditis spp. occurred during the processes of stretching and relaxing at the contraction entrance. Appreciable damage was observed at lower average energy dissipation rates for H. bacteriophora (1.23E + 8 W/m(3)), H. megidis (1.72E + 8 W/m(3)), and S. glaseri (2.89E + 8 W/m(3)) compared to S. carpocapsae (3.70E + 8 W/m(3)). Energy dissipation rates within an equipment component should be kept below 1E + 8 W/m(3) to avoid hydrodynamic damage to EPNs. The relationship between average energy dissipation and EPN damage provides important information for future simulation efforts of actual spray equipment components. Copyright 2004 Wiley Periodicals, Inc.
Learning the organization: a model for health system analysis for new nurse administrators.
Clark, Mary Jo
2004-01-01
Health systems are large and complex organizations in which multiple components and processes influence system outcomes. In order to effectively position themselves in such organizations, nurse administrators new to a system must gain a rapid understanding of overall system operation. Such understanding is facilitated by use of a model for system analysis. The model presented here examines the dynamic interrelationships between and among internal and external elements as they affect system performance. External elements to be analyzed include environmental factors and characteristics of system clientele. Internal elements flow from the mission and goals of the system and include system culture, services, resources, and outcomes.
The Ottawa River lies in extreme northwest Ohio, flowing into Lake Erie’s western basin at the City of Toledo. The Ottawa River is a component of the Maumee River AOC as defined by the International Commission. The Ottawa River is approximately 45 miles long; however, the 2...
The 727/JT8D refan side nacelle airloads
NASA Technical Reports Server (NTRS)
Bailey, R. W.; Vadset, H. J.
1974-01-01
Airloads on the 727/JT8D refan side engine nacelle are presented. These consist of surface static pressure distributions from two low speed wind tunnel tests. External nacelle surface pressures are from testing of a flow-through, body mounted nacelle model, and internal inlet surface pressures are from performance testing of a forced air inlet model. The method for obtaining critical airloads on nacelle components and a representative example are discussed.
NASA Technical Reports Server (NTRS)
Berg, Melanie; LaBel, Kenneth A.
2016-01-01
This presentation focuses on reliability and trust for the users portion of the FPGA design flow. It is assumed that the manufacturer prior to hand-off to the user tests FPGA internal components. The objective is to present the challenges of creating reliable and trusted designs. The following will be addressed: What makes a design vulnerable to functional flaws (reliability) or attackers (trust)? What are the challenges for verifying a reliable design versus a trusted design?
NASA Astrophysics Data System (ADS)
Kodaira, Tsubasa; Waseda, Takuji
2013-04-01
We have conducted ADCP and CTD measurements from 31/8/2010 to 2/9/2010 at the Miyake Island, located approximately 180 km south of Tokyo. The Kuroshio Current approached the island in this period, and the PALSAR image showed parabolic bright line upstream of the island. This bright line may be a surface signature of large amplitude internal solitary wave. Although our measurements did not explicitly show evidence of the internal solitary wave, critical condition might have been satisfied because of the Kuroshio Current and strong seasonal thermocline. To discover the generation mechanism of the large amplitude internal solitary wave at the Miyake Island, we have conducted non-hydrostatic numerical simulation with the MITgcm. A simple box domain, with open boundaries at all sides, is used. The island is simplified to circular cylinder or Gaussian Bell whose radius is 3km at ocean surface level. The size of the domain is 40kmx40kmx500m for circular cylinder cases and 80kmx80kmx500m for Gaussian bell cases. By looking at our CTD data, we have chosen for initial and boundary conditions a tanh function for vertical temperature profile. Salinity was kept constant for simplicity. Vertical density profile is also described by tanh function because we adopt linear type of equation of state. Vertical velocity profile is constant or linearly changed with depth; the vertical mean speed corresponds to the linear phase speed of the first baroclinic mode obtained by solving the eigen-value problem. With these configurations, we have conducted two series of simulations: shear flow through cylinder and uniform flow going through Gaussian Bell topography. Internal solitary waves were generated in front of the cylinder for the first series of simulations with shear flow. The generated internal waves almost purely consisted of 1st baroclinic component. Their intensities were linearly related with upstream vertical shear strength. As the internal solitary wave became larger, its width became wider compared to the KdV solution described by Grimshaw (2002). This is predicted because higher order analytical solution for 2-layer fluids, i.e. the eKdV solution, gives broader solitary wave shape than that of the KdV solution because of the cubic nonlinear term. When we look at the surface velocity distribution, a parabolic shape corresponding to internal solitary wave is clearly seen. According to the fully nonlinear theoretical model for internal wave between two fluids having background linear shear flow profiles (Choi and Camassa1999), the shape of internal wave is influenced by the velocity shear as well. However, we could not clarify the effect of vertical shear because there is no fully nonlinear analytical solution for large amplitude internal wave in continuously stratified fluid. Second series of simulations with uniform flow going through Gaussian Bell topography show that internal solitary wave shows up from sides of the topography. This generation is similar to the one developed in lee side of sill topography by tidal flow. With broader bell topography, generated internal waves become larger. This makes sense because forcing region is wider. A horizontal shape of the internal solitary wave is not parabolic but the two bending line forms from the sides of the island. However, no solitary wave in front of the island develops. Our results imply that vertical shear profile is needed for the formation of the depression type internal solitary, and explains the parabolic bright line observed in the SAR image
Three-dimensional modelling and geothermal process simulation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Burns, K.L.
1990-01-01
The subsurface geological model or 3-D GIS is constructed from three kinds of objects, which are a lithotope (in boundary representation), a number of fault systems, and volumetric textures (vector fields). The chief task of the model is to yield an estimate of the conductance tensors (fluid permeability and thermal conductivity) throughout an array of voxels. This is input as material properties to a FEHM numerical physical process model. The main task of the FEHM process model is to distinguish regions of convective from regions of conductive heat flow, and to estimate the fluid phase, pressure and flow paths. Themore » temperature, geochemical, and seismic data provide the physical constraints on the process. The conductance tensors in the Franciscan Complex are to be derived by the addition of two components. The isotropic component is a stochastic spatial variable due to disruption of lithologies in melange. The deviatoric component is deterministic, due to smoothness and continuity in the textural vector fields. This decomposition probably also applies to the engineering hydrogeological properties of shallow terrestrial fluvial systems. However there are differences in quantity. The isotropic component is much more variable in the Franciscan, to the point where volumetric averages are misleading, and it may be necessary to select that component from several, discrete possible states. The deviatoric component is interpolated using a textural vector field. The Franciscan field is much more complicated, and contains internal singularities. 27 refs., 10 figs.« less
Using McStas for modelling complex optics, using simple building bricks
NASA Astrophysics Data System (ADS)
Willendrup, Peter K.; Udby, Linda; Knudsen, Erik; Farhi, Emmanuel; Lefmann, Kim
2011-04-01
The McStas neutron ray-tracing simulation package is a versatile tool for producing accurate neutron simulations, extensively used for design and optimization of instruments, virtual experiments, data analysis and user training.In McStas, component organization and simulation flow is intrinsically linear: the neutron interacts with the beamline components in a sequential order, one by one. Historically, a beamline component with several parts had to be implemented with a complete, internal description of all these parts, e.g. a guide component including all four mirror plates and required logic to allow scattering between the mirrors.For quite a while, users have requested the ability to allow “components inside components” or meta-components, allowing to combine functionality of several simple components to achieve more complex behaviour, i.e. four single mirror plates together defining a guide.We will here show that it is now possible to define meta-components in McStas, and present a set of detailed, validated examples including a guide with an embedded, wedged, polarizing mirror system of the Helmholtz-Zentrum Berlin type.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brooks, Robert T.
A transition duct system (100) for routing a gas flow from a combustor (102) to the first stage (104) of a turbine section (106) in a combustion turbine engine (108), wherein the transition duct system (100) includes one or more converging flow joint inserts (120) forming a trailing edge (122) at an intersection (124) between adjacent transition ducts (126, 128) is disclosed. The transition duct system (100) may include a transition duct (126, 128) having an internal passage (130) extending between an inlet (132, 184) to an outlet (134, 186) and may expel gases into the first stage turbine (104)more » with a tangential component. The converging flow joint insert (120) may be contained within a converging flow joint insert receiver (136) and disconnected from the transition duct bodies (126, 128) by which the converging flow joint insert (120) is positioned. Being disconnected eliminates stress formation within the converging flow joint insert (120), thereby enhancing the life of the insert. The converging flow joint insert (120) may be removable such that the insert (120) can be replaced once worn beyond design limits.« less
Heat up and potential failure of BWR upper internals during a severe accident
DOE Office of Scientific and Technical Information (OSTI.GOV)
Robb, Kevin R
2015-01-01
In boiling water reactors, the steam dome, steam separators, and dryers above the core are comprised of approximately 100 tons of stainless steel. During a severe accident in which the coolant boils away and exothermic oxidation of zirconium occurs, gases (steam and hydrogen) are superheated in the core region and pass through the upper internals. Historically, the upper internals have been modeled using severe accident codes with relatively simple approximations. The upper internals are typically modeled in MELCOR as two lumped volumes with simplified heat transfer characteristics, with no structural integrity considerations, and with limited ability to oxidize, melt, andmore » relocate. The potential for and the subsequent impact of the upper internals to heat up, oxidize, fail, and relocate during a severe accident was investigated. A higher fidelity representation of the shroud dome, steam separators, and steam driers was developed in MELCOR v1.8.6 by extending the core region upwards. This modeling effort entailed adding 45 additional core cells and control volumes, 98 flow paths, and numerous control functions. The model accounts for the mechanical loading and structural integrity, oxidation, melting, flow area blockage, and relocation of the various components. The results indicate that the upper internals can reach high temperatures during a severe accident; they are predicted to reach a high enough temperature such that they lose their structural integrity and relocate. The additional 100 tons of stainless steel debris influences the subsequent in-vessel and ex-vessel accident progression.« less
Investigation of Vibrational Control of the Bridgman Crystal Growth Technique
NASA Technical Reports Server (NTRS)
Fedoseyev, Alexandre I.; Alexander, J. I. D.; Feigelson, R. S.; Zharikov, E. V.; Ostrogorsky, A. G.; Marin, C.; Volz, M. P.; Kansa, E. J.; Friedman, M. J.
2001-01-01
The character of natural buoyant convection in rigidly contained inhomogeneous fluids can be drastically altered by vibrating the container. Vibrations are expected to play a crucial influence on heat and mass transfer onboard the International Space Station (ISS). It is becoming evident that substantial vibrations will exist on the ISS in the wide frequency spectrum. In general, vibrational flows are very complex and governed by many parameters. In many terrestrial crystal growth situations, convective transport of heat and constituent components is dominated by buoyancy driven convection arising from compositional and thermal gradients. Thus, it may be concluded that vibro-convective flow can potentially be used to influence and even control transport in some crystal growth situations.
NASA Technical Reports Server (NTRS)
Rebeske, John J., Jr.; Petrash, Donald A.
1956-01-01
An experimental investigation of the internal-flow conditions of a J71 experimental turbine equipped with 97-percent-design stator areas was conducted at equivalent design speed and near equivalent design work. The results of the investigation indicate that the stage work distribution closely approximates design, the actual distribution being 44.1, 33.4, and 22.5 percent for the first, second, and third stages, respectively. The first-, second-, and third-stage efficiencies were 0.894, 0.858, and 0.792, respectively. The first and second stages exhibited loss regions near the hub and tip at the rotor blade outlets. The hub loss region is attributed to stator secondary flows, and a contributing factor to the tip loss region may be the high design diffusion on the rotor blade suction surface near the tip. The loss in the third stage is appreciably greater than that in the first or second stage. The fact that the third rotor is unshrouded and has a nominal tip clearance of 0.120 inch may contribute to the higher loss in the tip region of the third stage.
Variable jet properties in GRB 110721A: time resolved observations of the jet photosphere
NASA Astrophysics Data System (ADS)
Iyyani, S.; Ryde, F.; Axelsson, M.; Burgess, J. M.; Guiriec, S.; Larsson, J.; Lundman, C.; Moretti, E.; McGlynn, S.; Nymark, T.; Rosquist, K.
2013-08-01
Fermi Gamma-ray Space Telescope observations of GRB 110721A have revealed two emission components from the relativistic jet: emission from the photosphere, peaking at ˜100 keV, and a non-thermal component, which peaks at ˜1000 keV. We use the photospheric component to calculate the properties of the relativistic outflow. We find a strong evolution in the flow properties: the Lorentz factor decreases with time during the bursts from Γ ˜ 1000 to ˜150 (assuming a redshift z = 2; the values are only weakly dependent on unknown efficiency parameters). Such a decrease is contrary to the expectations from the internal shocks and the isolated magnetar birth models. Moreover, the position of the flow nozzle measured from the central engine, r0, increases by more than two orders of magnitude. Assuming a moderately magnetized outflow we estimate that r0 varies from 106 to ˜109 cm during the burst. We suggest that the maximal value reflects the size of the progenitor core. Finally, we show that these jet properties naturally explain the observed broken power-law decay of the temperature which has been reported as a characteristic for gamma-ray burst pulses.
Extraordinary Activity in the BL Lacertae Object OJ 287
NASA Astrophysics Data System (ADS)
Hughes, Philip A.; Aller, Hugh D.; Aller, Margo F.
1998-08-01
We use a continuous wavelet transform to analyze more than two decades of data for the BL Lac object OJ 287 acquired as part of the University of Michigan Radio Astronomy Observatory (UMRAO) variability program. We find clear evidence for a persistent modulation of the total flux and polarization with period ~1.66 yr and for another signal that dominates activity in the 1980s with period ~1.12 yr. The relationship between these two variations can be understood in terms of a ``shock-in-jet'' model, in which the longer timescale periodicity is associated with an otherwise quiescent jet and the shorter timescale activity is associated with the passage of a shock. The different periodicities of these two components may reflect different internal conditions of the two flow domains leading to different wave speeds or different contractions of a single underlying periodicity due to the different Doppler factors of the two flow components. We suggest that the modulation arises from a wave driven by some asymmetric disturbance close to the central engine. The periodic behavior in polarization exhibits excursions in U that correspond to a direction ~45° from the VLBI jet axis. This behavior is not explained by the random walk in the Q-U plane that is expected from models in which a pattern of randomly aligned magnetic field elements propagate across the visible portion of the flow and suggests a small amplitude, cyclic variation in the flow direction in that part of the flow that dominates centimeter wavelength emission.
Heat up and failure of BWR upper internals during a severe accident
DOE Office of Scientific and Technical Information (OSTI.GOV)
Robb, Kevin R.
In boiling water reactors, the shroud dome, separators, and dryers above the core are made of approximately 100,000 kg of stainless steel. During a severe accident in which the coolant boils away and exothermic oxidation of zirconium occurs, gases (steam and hydrogen) are superheated in the core region and pass through the upper internals. In this scenario, the upper internals can also be heated by thermal radiation from the hot degrading core. Historically, models of the upper internals have been relatively simple in severe accident codes. The upper internals are typically modeled in MELCOR as two lumped volumes with simplifiedmore » heat transfer characteristics and no structural integrity considerations, and with limited ability to oxidize, melt, and relocate. The potential for and the subsequent impact of the upper internals to heat up, oxidize, fail, and relocate during a severe accident was investigated. A higher fidelity representation of the shroud dome, steam separators, and steam driers was developed in MELCOR v1.8.6 by extending the core region upwards. The MELCOR modeling effort entailed adding 45 additional core cells and control volumes, 98 flow paths, and numerous control functions. The model accounts for the mechanical loading and structural integrity, oxidation, melting, flow area blockage, and relocation of the various components. Consistent with a previous study, the results indicate that the upper internals can reach high temperatures during a severe accident sufficient to lose their structural integrity and relocate. Finally, the additional 100 metric tons of stainless steel debris influences the subsequent in-vessel and ex-vessel accident progression.« less
Heat up and failure of BWR upper internals during a severe accident
Robb, Kevin R.
2017-02-21
In boiling water reactors, the shroud dome, separators, and dryers above the core are made of approximately 100,000 kg of stainless steel. During a severe accident in which the coolant boils away and exothermic oxidation of zirconium occurs, gases (steam and hydrogen) are superheated in the core region and pass through the upper internals. In this scenario, the upper internals can also be heated by thermal radiation from the hot degrading core. Historically, models of the upper internals have been relatively simple in severe accident codes. The upper internals are typically modeled in MELCOR as two lumped volumes with simplifiedmore » heat transfer characteristics and no structural integrity considerations, and with limited ability to oxidize, melt, and relocate. The potential for and the subsequent impact of the upper internals to heat up, oxidize, fail, and relocate during a severe accident was investigated. A higher fidelity representation of the shroud dome, steam separators, and steam driers was developed in MELCOR v1.8.6 by extending the core region upwards. The MELCOR modeling effort entailed adding 45 additional core cells and control volumes, 98 flow paths, and numerous control functions. The model accounts for the mechanical loading and structural integrity, oxidation, melting, flow area blockage, and relocation of the various components. Consistent with a previous study, the results indicate that the upper internals can reach high temperatures during a severe accident sufficient to lose their structural integrity and relocate. Finally, the additional 100 metric tons of stainless steel debris influences the subsequent in-vessel and ex-vessel accident progression.« less
The Evolution of Friction Stir Welding Theory at Marshall Space Flight Center
NASA Technical Reports Server (NTRS)
Nunes, Arthur C.
2012-01-01
From 1995 to the present the friction stir welding (FSW) process has been under study at Marshall Space Flight Center (MSFC). This is an account of the progressive emergence of a set of conceptual tools beginning with the discovery of the shear surface, wiping metal transfer, and the invention of a kinematic model and making possible a treatment of both metallurgical structure formation and process dynamics in friction stir welding from a unified point of view. It is generally observed that the bulk of the deformation of weld metal around the FSW pin takes place in a very narrow, almost discontinuous zone with high deformation rates characteristic of metal cutting. By 1999 it was realized that this zone could be treated as a shear surface like that in simple metal cutting models. At the shear surface the seam is drawn out and compressed and pressure and flow conditions determine whether or not a sound weld is produced. The discovery of the shear surface was followed by the synthesis of a simple 3- flow kinematic model of the FSW process. Relative to the tool the flow components are: (1) an approaching translational flow at weld speed V, (2) a rotating cylindrical plug flow with the angular velocity of the tool , and (3) a relatively slow ring vortex flow (like a smoke ring) encircling the tool and driven by shoulder scrolls and pin threads. The rotating plug flow picks up an element of weld metal, rotates it around with the tool, and deposits it behind the tool ( wiping metal transfer ); it forms plan section loops in tracers cut through by the tool. Radially inward flow from the ring vortex component retains metal longer in the rotating plug and outward flow expels metal earlier; this interaction forms the looping weld seam trace and the tongue and groove bimetallic weld contour. The radial components of the translational and ring vortex flows introduce parent metal intrusions into the small grained nugget material close to the tool shoulder; if this feature is pronounced, nugget collapse may result. Certain weld features, in particular internal banding seen in transverse section as onion rings and associated surface ridges called tool marks , have long implied an oscillation flow component, but have only recently been attributed in the literature to tool eccentricity. Rotating plug shape, typically a hollow cylinder flared at the end where it sticks to the shoulder, varies as pressure distribution on the tool determines where sticking occurs. Simplified power input estimates balanced against heat loss estimates give reasonable temperature estimates, explain why the power requirement changes hardly at all over a wide range of RPM s, and yield isotherms that seem to fall along boundaries of parameter windows of operation.
Method and apparatus for measuring flow velocity using matched filters
Raptis, Apostolos C.
1983-01-01
An apparatus and method for measuring the flow velocities of individual phase flow components of a multiphase flow utilizes matched filters. Signals arising from flow noise disturbance are extracted from the flow, at upstream and downstream locations. The signals are processed through pairs of matched filters which are matched to the flow disturbance frequency characteristics of the phase flow component to be measured. The processed signals are then cross-correlated to determine the transit delay time of the phase flow component between sensing positions.
Spray Formation from a Charged Liquid Jet of a Dielectric Fluid
NASA Astrophysics Data System (ADS)
Doak, William; de Bellis, Victor; Chiarot, Paul; Microfluidics; Multiphase Flow Laboratory Team
2017-11-01
Atomization of a dielectric micro-jet is achieved via an electrohydrodynamic charge injection process. The atomizer is comprised of a grounded nozzle housing (ground electrode) and an internal probe (high voltage electrode) that is concentric with the emitting orifice. The internal probe is held at electric potentials ranging from 1-10 kV. A pressurized reservoir drives a dielectric fluid at a desired flow rate through the 100-micrometer diameter orifice. The fluid fills the cavity between the electrodes as it passes through the atomizer, impeding the transport of electrons. This process injects charge into the flowing fluid. Upon exiting the orifice, the emitted jet is highly charged and it deforms via a bending instability that is qualitatively similar to the behavior observed in the electrospinning of fibers. We observed bulging regions, or nodes, of highly charged fluid forming along the bent, rotating jet. These nodes separate into highly charged droplets that emit satellite droplets. The remaining ligaments break up due to capillarity in a process that produces additional satellites. All of the droplets possess a normal (inertial) and radial (electrically-driven) momentum component. The radial component is responsible for the formation of a conical spray envelope. Our research focuses on the jet, its break up, and the droplet dynamics of this system. This research supported by the American Chemical Society.
The acoustic characteristics of turbomachinery cavities
NASA Technical Reports Server (NTRS)
Lucas, M. J.; Noreen, R.; Southerland, L. D.; Cole, J., III; Junger, M.
1995-01-01
Internal fluid flows are subject not only to self-sustained oscillations of the purely hydrodynamic type but also to the coupling of the instability with the acoustic mode of the surrounding cavity. This situation is common to turbomachinery, since flow instabilities are confined within a flow path where the acoustic wavelength is typically smaller than the dimensions of the cavity and flow speeds are low enough to allow resonances. When acoustic coupling occurs, the fluctuations can become so severe in amplitude that it may induce structural failure of engine components. The potential for catastrophic failure makes identifying flow-induced noise and vibration sources a priority. In view of the complexity of these types of flows, this report was written with the purpose of presenting many of the methods used to compute frequencies for self-sustained oscillations. The report also presents the engineering formulae needed to calculate the acoustic resonant modes for ducts and cavities. Although the report is not a replacement for more complex numerical or experimental modeling techniques, it is intended to be used on general types of flow configurations that are known to produce self-sustained oscillations. This report provides a complete collection of these models under one cover.
Utilization of Additive Manufacturing in Evaluating the Performance of Internally Defected Materials
NASA Astrophysics Data System (ADS)
Mourad, A.-H. I.; Ghazal, A. M.; Syam, M. M.; Qadi, O. D. Al; Jassmi, H. Al
2018-05-01
The elimination of internal defects in a material present in the raw material or generated during the manufacturing or service is difficult. The inclusions of the defects have an adverse effect on the load bearing capacity. The presence of the cracks subjected to a specific orientation in materials or machinery can cause devastating unexpected failure during operation. Analysis of the failure in the components with cracks is more confined to analytical and numerical evaluation. The experimental evaluation has been tedious due to the complexity of replicating the actual defected component. The potential of additive manufacturing in developing user-defined components with cracks for the experimental evaluation is explored in this research. The present research investigated the effect of the internal elliptical cracks aligned at different orientations on the mechanical performance of polylactic acid (Green filament). The Fusion Deposition Method was utilized for the development of the standard tensile specimens with internal elliptical crack oriented at 0°, 45° and 90° using UltiMaker 2. The results proved that there is a considerable reduction in the load bearing capacity due to the presence of the cracks. The maximum load bearing capacity decreased by 15.01% for the specimen with crack inclined at 0° to the lateral axis compared to crack- free specimen. The nature of the fracture and the stress-strain graph evidently showcase the brittle nature of the material. The SEM image of the fractured region proved the phenomenal characteristics such as strong adhesion between the layers and the proper material flow. In the light of the results of this work, it can be concluded that the 3-D printing methodology is effective for evaluating the mechanical performance of the internally defected material.
The Dynamics of Small-Scale Turbulence Driven Flows
NASA Astrophysics Data System (ADS)
Beer, M. A.; Hammett, G. W.
1997-11-01
The dynamics of small-scale fluctuation driven flows are of great interest for micro-instability driven turbulence, since nonlinear toroidal simulations have shown that these flows play an important role in the regulation of the turbulence and transport levels. The gyrofluid treatment of these flows was shown to be accurate for times shorter than a bounce time.(Beer, M. A., Ph. D. thesis, Princeton University (1995).) Since the decorrelation times of the turbulence are generally shorter than a bounce time, our original hypothesis was that this description was adequate. Recent work(Hinton, F. L., Rosenbluth, M. N., and Waltz, R. E., International Sherwood Fusion Theory Conference (1997).) pointed out possible problems with this hypothesis, emphasizing the existence of a linearly undamped component of the flow which could build up in time and lower the final turbulence level. While our original gyrofluid model reproduces some aspects of the linear flow, there are differences between the long time gyrofluid and kinetic linear results in some cases. On the other hand, if the long time behavior of these flows is dominated by nonlinear damping (which seems reasonable), then the existing nonlinear gyrofluid simulations may be sufficiently accurate. We test these possibilities by modifying the gyrofluid description of these flows and diagnosing the flow evolution in nonlinear simulations.
Thermally determining flow and/or heat load distribution in parallel paths
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chainer, Timothy J.; Iyengar, Madhusudan K.; Parida, Pritish R.
A method including obtaining calibration data for at least one sub-component in a heat transfer assembly, wherein the calibration data comprises at least one indication of coolant flow rate through the sub-component for a given surface temperature delta of the sub-component and a given heat load into said sub-component, determining a measured heat load into the sub-component, determining a measured surface temperature delta of the sub-component, and determining a coolant flow distribution in a first flow path comprising the sub-component from the calibration data according to the measured heat load and the measured surface temperature delta of the sub-component.
Thermally determining flow and/or heat load distribution in parallel paths
Chainer, Timothy J.; Iyengar, Madhusudan K.; Parida, Pritish R.
2016-12-13
A method including obtaining calibration data for at least one sub-component in a heat transfer assembly, wherein the calibration data comprises at least one indication of coolant flow rate through the sub-component for a given surface temperature delta of the sub-component and a given heat load into said sub-component, determining a measured heat load into the sub-component, determining a measured surface temperature delta of the sub-component, and determining a coolant flow distribution in a first flow path comprising the sub-component from the calibration data according to the measured heat load and the measured surface temperature delta of the sub-component.
Hoskinson, Reed L [Rigby, ID; Svoboda, John M [Idaho Falls, ID; Bauer, William F [Idaho Falls, ID; Elias, Gracy [Idaho Falls, ID
2008-05-06
A method and apparatus is provided for monitoring a flow path having plurality of different solid components flowing therethrough. For example, in the harvesting of a plant material, many factors surrounding the threshing, separating or cleaning of the plant material and may lead to the inadvertent inclusion of the component being selectively harvested with residual plant materials being discharged or otherwise processed. In accordance with the present invention the detection of the selectively harvested component within residual materials may include the monitoring of a flow path of such residual materials by, for example, directing an excitation signal toward of flow path of material and then detecting a signal initiated by the presence of the selectively harvested component responsive to the excitation signal. The detected signal may be used to determine the presence or absence of a selected plant component within the flow path of residual materials.
Method and apparatus for measuring flow velocity using matched filters
Raptis, A.C.
1983-09-06
An apparatus and method for measuring the flow velocities of individual phase flow components of a multiphase flow utilizes matched filters. Signals arising from flow noise disturbance are extracted from the flow, at upstream and downstream locations. The signals are processed through pairs of matched filters which are matched to the flow disturbance frequency characteristics of the phase flow component to be measured. The processed signals are then cross-correlated to determine the transit delay time of the phase flow component between sensing positions. 8 figs.
Dietterich, Hannah R.; Poland, Michael P.; Schmidt, David; Cashman, Katharine V.; Sherrod, David R.; Espinosa, Arkin Tapia
2012-01-01
Lava flow mapping is both an essential component of volcano monitoring and a valuable tool for investigating lava flow behavior. Although maps are traditionally created through field surveys, remote sensing allows an extraordinary view of active lava flows while avoiding the difficulties of mapping on location. Synthetic aperture radar (SAR) imagery, in particular, can detect changes in a flow field by comparing two images collected at different times with SAR coherence. New lava flows radically alter the scattering properties of the surface, making the radar signal decorrelated in SAR coherence images. We describe a new technique, SAR Coherence Mapping (SCM), to map lava flows automatically from coherence images independent of look angle or satellite path. We use this approach to map lava flow emplacement during the Pu‘u ‘Ō‘ō-Kupaianaha eruption at Kīlauea, Hawai‘i. The resulting flow maps correspond well with field mapping and better resolve the internal structure of surface flows, as well as the locations of active flow paths. However, the SCM technique is only moderately successful at mapping flows that enter vegetation, which is also often decorrelated between successive SAR images. Along with measurements of planform morphology, we are able to show that the length of time a flow stays decorrelated after initial emplacement is linearly related to the flow thickness. Finally, we use interferograms obtained after flow surfaces become correlated to show that persistent decorrelation is caused by post-emplacement flow subsidence.
NASA Astrophysics Data System (ADS)
Dietterich, Hannah R.; Poland, Michael P.; Schmidt, David A.; Cashman, Katharine V.; Sherrod, David R.; Espinosa, Arkin Tapia
2012-05-01
Lava flow mapping is both an essential component of volcano monitoring and a valuable tool for investigating lava flow behavior. Although maps are traditionally created through field surveys, remote sensing allows an extraordinary view of active lava flows while avoiding the difficulties of mapping on location. Synthetic aperture radar (SAR) imagery, in particular, can detect changes in a flow field by comparing two images collected at different times with SAR coherence. New lava flows radically alter the scattering properties of the surface, making the radar signal decorrelated in SAR coherence images. We describe a new technique, SAR Coherence Mapping (SCM), to map lava flows automatically from coherence images independent of look angle or satellite path. We use this approach to map lava flow emplacement during the Pu`u `Ō`ō-Kupaianaha eruption at Kīlauea, Hawai`i. The resulting flow maps correspond well with field mapping and better resolve the internal structure of surface flows, as well as the locations of active flow paths. However, the SCM technique is only moderately successful at mapping flows that enter vegetation, which is also often decorrelated between successive SAR images. Along with measurements of planform morphology, we are able to show that the length of time a flow stays decorrelated after initial emplacement is linearly related to the flow thickness. Finally, we use interferograms obtained after flow surfaces become correlated to show that persistent decorrelation is caused by post-emplacement flow subsidence.
Chambers, Brian; Chambers, Jayne; Churilov, Leonid; Cameron, Heather; Macdonell, Richard
2014-09-01
We evaluated internal jugular vein and vertebral vein volume flow using ultrasound, in patients with clinically isolated syndrome or mild multiple sclerosis and controls, to determine whether volume flow was different between the two groups. In patients and controls, internal jugular vein volume flow increased from superior to inferior segments, consistent with recruitment from collateral veins. Internal jugular vein and vertebral vein volume flow were greater on the right in supine and sitting positions. Internal jugular vein volume flow was higher in the supine posture. Vertebral vein volume flow was higher in the sitting posture. Regression analyses of cube root transformed volume flow data, adjusted for supine/sitting, right/left and internal jugular vein/vertebral vein, revealed no significant difference in volume flow in patients compared to controls. Our findings further refute the concept of venous obstruction as a causal factor in the pathogenesis of multiple sclerosis. Control volume flow data may provide useful normative reference values. © The Author(s) 2013 Reprints and permissions: sagepub.co.uk/journalsPermissions.nav.
Smale, Andrew; Tsouras, Theo
2017-01-01
We present a standardized test methodology and results for our evaluation of the Carefusion Alaris PC infusion pump, comprising the model 8015 PC Unit and the model 8100 Large Volume Pump (LVP) module. The evaluation consisted of basic suitability testing, internal component inspection, surface temperature measurement of selected internal components, and critical performance testing (infusion rate accuracy and occlusion alarm pressure) during conditions of typical hyperbaric oxygen (HBO₂) treatment in our facility's class A multiplace chamber. We have found that the pumps pose no enhanced risk as an ignition source, and that the pumps operate within manufacturer's specifications for flow rate and occlusion alarms at all stages of HBO₂ treatments, up to 4.0 ATA and pressurization and depressurization rates up to 180 kPa/minute. The pumps do not require purging with air or nitrogen and can be used unmodified, subject to the following conditions: pumps are undamaged, clean, fully charged, and absent from alcohol cleaning residue; pumps are powered from the internal NiMH battery only; maximum pressure exposure 4.0 ATA; maximum pressurization and depressurization rate of 180 kPa/minute; LVP modules locked in place with retaining screws. Copyright© Undersea and Hyperbaric Medical Society.
Fully developed pipe and triangular channel flow measurement using Magnetic Resonance Velocimetry
NASA Astrophysics Data System (ADS)
Baek, Seungchan; Hwang, Wontae
2017-11-01
Magnetic resonance velocimetry (MRV) is a non-intrusive flow visualization method which is able to measure the 3 dimensional 3 component (3D3C) mean velocity field in complex geometries, using a healthcare MRI scanner. Since this technique is based on nuclear magnetic resonance (NMR), it is free from optical distortion and does not require tracer particles. Due to these powerful advantages, MRV usage is gradually expanding from biomedical fields to the engineering domain. In this study, we validate the performance of MRV by measuring fully developed pipe flow and compare measured data with time averaged DNS data. We then investigate the overall flow characteristics in a triangular channel with a sharp corner. At the sharp corner, boundary layer effects dominate and the effect of turbulence is reduced. This information has implications for engineering applications such as flow in a turbine blade internal cooling passage at the sharp trailing edge. This research was supported by the Seoul National University Research Grant in 2017, and Doosan Heavy Industries & Construction. (Contract No. 2016900298 and 2017900095).
Chini, G P; Montemuro, B; White, C M; Klewicki, J
2017-03-13
Field observations and laboratory experiments suggest that at high Reynolds numbers Re the outer region of turbulent boundary layers self-organizes into quasi-uniform momentum zones (UMZs) separated by internal shear layers termed 'vortical fissures' (VFs). Motivated by this emergent structure, a conceptual model is proposed with dynamical components that collectively have the potential to generate a self-sustaining interaction between a single VF and adjacent UMZs. A large-Re asymptotic analysis of the governing incompressible Navier-Stokes equation is performed to derive reduced equation sets for the streamwise-averaged and streamwise-fluctuating flow within the VF and UMZs. The simplified equations reveal the dominant physics within-and isolate possible coupling mechanisms among-these different regions of the flow.This article is part of the themed issue 'Toward the development of high-fidelity models of wall turbulence at large Reynolds number'. © 2017 The Author(s).
Montemuro, B.; White, C. M.; Klewicki, J.
2017-01-01
Field observations and laboratory experiments suggest that at high Reynolds numbers Re the outer region of turbulent boundary layers self-organizes into quasi-uniform momentum zones (UMZs) separated by internal shear layers termed ‘vortical fissures’ (VFs). Motivated by this emergent structure, a conceptual model is proposed with dynamical components that collectively have the potential to generate a self-sustaining interaction between a single VF and adjacent UMZs. A large-Re asymptotic analysis of the governing incompressible Navier–Stokes equation is performed to derive reduced equation sets for the streamwise-averaged and streamwise-fluctuating flow within the VF and UMZs. The simplified equations reveal the dominant physics within—and isolate possible coupling mechanisms among—these different regions of the flow. This article is part of the themed issue ‘Toward the development of high-fidelity models of wall turbulence at large Reynolds number’. PMID:28167583
Nonlinear Modeling and Control of a Propellant Mixer
NASA Technical Reports Server (NTRS)
Barbieri, Enrique; Richter, Hanz; Figueroa, Fernando
2003-01-01
A mixing chamber used in rocket engine combustion testing at NASA Stennis Space Center is modeled by a second order nonlinear MIMO system. The mixer is used to condition the thermodynamic properties of cryogenic liquid propellant by controlled injection of the same substance in the gaseous phase. The three inputs of the mixer are the positions of the valves regulating the liquid and gas flows at the inlets, and the position of the exit valve regulating the flow of conditioned propellant. The outputs to be tracked and/or regulated are mixer internal pressure, exit mass flow, and exit temperature. The outputs must conform to test specifications dictated by the type of rocket engine or component being tested downstream of the mixer. Feedback linearization is used to achieve tracking and regulation of the outputs. It is shown that the system is minimum-phase provided certain conditions on the parameters are satisfied. The conditions are shown to have physical interpretation.
NASA Technical Reports Server (NTRS)
Bristow, D. R.; Grose, G. G.
1978-01-01
The Douglas Neumann method for low-speed potential flow on arbitrary three-dimensional lifting bodies was modified by substituting the combined source and doublet surface paneling based on Green's identity for the original source panels. Numerical studies show improved accuracy and stability for thin lifting surfaces, permitting reduced panel number for high-lift devices and supercritical airfoil sections. The accuracy of flow in concave corners is improved. A method of airfoil section design for a given pressure distribution, based on Green's identity, was demonstrated. The program uses panels on the body surface with constant source strength and parabolic distribution of doublet strength, and a doublet sheet on the wake. The program is written for the CDC CYBER 175 computer. Results of calculations are presented for isolated bodies, wings, wing-body combinations, and internal flow.
Wind-tunnel tests on a 3-dimensional fixed-geometry scramjet inlet at M = 2.30 to 4.60
NASA Technical Reports Server (NTRS)
Mueller, J. N.; Trexler, C. A.; Souders, S. W.
1977-01-01
Wind-tunnel tests were conducted on a baseline scramjet inlet model having fixed geometry and swept leading edges at M = 2.30, 2.96, 3.95, and 4.60 in the Langley unitary plan wind tunnel. The unit Reynolds number of the tests was held constant at 6.56 million per meter (2 million per foot). The objectives of the tests were to establish inlet performance and starting characteristics in the lower Mach number range of operation (less than M = 5). Surface pressures obtained on the inlet components are presented, along with the results of the internal flow surveys made at the throat and capture stations of the inlet. Contour plots of the inlet-flow-field parameters such as Mach numbers, pressure recovery, flow capture, local static and total pressure ratios at the survey stations are shown for the test Mach numbers.
NASA Astrophysics Data System (ADS)
Sheen, K.; Naveira-Garabato, A. C.; Brearley, J. A.
2012-04-01
The principal objective of the Diapycnal and Isopycnal Mixing Experiment in the Southern Ocean (DIMES) is to investigate the role of turbulent mixing in mediating the vertical and horizontal transport of water masses, which shape the overturning circulation. Here, microstructure and finestructure data, collected as part of this multi-component experiment, are presented. Direct observations of turbulent energy dissipation rates show that mid-depth diapycnal diffusivities increase progressively from O(10-5 m2s-1) in the Pacific sector of the Antarctic Circumpolar Current (ACC) to O(10-4 m2s-1) in the Scotia Sea. Analysis of coincident LADCP and CTD data demonstrates that enhanced turbulent dissipation rates are associated with a more energetic, less inertial internal wave field and increased upward energy propagation. Breaking lee waves, a process enhanced by stronger flow and rougher topography found in the eastern sections, is likely to be a key mechanism in determining the distribution of turbulent mixing in the ACC. Spatially varying discrepancies between the microstructure and finestructure mixing observations indicate regions where wave-wave interaction models break down and internal waves interact with the mean flow. An episodic enhancement of current velocities at 2000 m depth is observed in the northwest Scotia Sea in both LADCP and mooring data. Finestructure analysis indicates that this mid-depth jet has a profound impact of the internal wave field, causing both internal wave reflection and critical layer dissipation.
NASA Astrophysics Data System (ADS)
Tomas, J. M.; Pourquie, M. J. B. M.; Jonker, H. J. J.
2016-05-01
Large-eddy simulations (LES) are used to investigate the effect of stable stratification on rural-to-urban roughness transitions. Smooth-wall turbulent boundary layers are subjected to a generic urban roughness consisting of cubes in an in-line arrangement. Two line sources of pollutant are added to investigate the effect on pollutant dispersion. Firstly, the LES method is validated with data from wind-tunnel experiments on fully-developed flow over cubical roughness. Good agreement is found for the vertical profiles of the mean streamwise velocity component and mean Reynolds stress. Subsequently, roughness transition simulations are done for both neutral and stable conditions. Results are compared with fully-developed simulations with conventional double-periodic boundary conditions. In stable conditions, at the end of the domain the streamwise velocity component has not yet reached the fully-developed state even though the surface forces are nearly constant. Moreover, the internal boundary layer is shallower than in the neutral case. Furthermore, an investigation of the turbulence kinetic energy budget shows that the buoyancy destruction term is reduced in the internal boundary layer, above which it is equal to the undisturbed (smooth wall) value. In addition, in stable conditions pollutants emitted above the urban canopy enter the canopy farther downstream due to decreased vertical mixing. Pollutants emitted below the top of the urban canopy are 85 % higher in concentration in stable conditions mostly due to decreased advection. If this is taken into account concentrations remain 17 % greater in stable conditions due to less rapid internal boundary-layer growth. Finally, it is concluded that in the first seven streets the vertical advective pollutant flux is significant, in contrast to the fully-developed case.
NASA Technical Reports Server (NTRS)
Moore, J. A.
1975-01-01
A general description of the Langley 6-inch expansion tube is presented along with discussion of the basic components, internal resistance heater, arc-discharge assemblies, instrumentation, and operating procedure. Preliminary results using unheated and resistance-heated helium as the driver gas are presented. The driver-gas pressure ranged from approximately 17 to 59 MPa and its temperature ranged from 300 to 510 K. Interface velocities of approximately 3.8 to 6.7 km/sec were generated between the test gas and the acceleration gas using air as the test gas and helium as the acceleration gas. Test flow quality and comparison of measured and predicted expansion-tube flow quantities are discussed.
NASA Technical Reports Server (NTRS)
Rippel, Wally E.
1989-01-01
Improved finned heat sink for electronic components more lightweight, inexpensive, and efficient. Designed for use with forced air, easily scaled up to dissipate power up to few hundred watts. Fins are internal walls of aluminum honeycomb structure. Cell structure gives strength to thin aluminum foil. Length of channels chosen for thermodynamic efficency; columns of cells combined in any reasonable number because flowing air distributed to all. Heat sink cools nearly as effectively at ends as near its center, no matter how many columns of cells combined.
Turboprop engine and method of operating the same
DOE Office of Scientific and Technical Information (OSTI.GOV)
Klees, G.W.; Johnson, P.E.
1986-02-11
This patent describes a turboprop engine consisting of: 1.) A compressor; 2.) A turbine; 3.) A combustion section; 4.) A variable pitch propeller; 5.) A speed reducing transmission; 6.) An air inlet; 7.) An air inlet bypass; 8.) An air outlet bypass duct; 9.) A flow control operatively positioned to receive air flow from the air inlet bypass and air flow from the low pressure compressor component. To direct the air flow to the air outlet bypass duct, and the air flow to the high pressure compressor component, the flow control has a first position where the air flow ismore » from. The high and low pressure compressor components and is directed to the air outlet bypass duct. The flow control has a second position for the air flow from the air inlet bypass duct to the air outlet bypass duct and air from the low pressure compressor component is directed to the high pressure compressor component. A method of operating a turboprop engine.« less
The anatomy of a pyroclastic density current: the 10 July 2015 event at Volcán de Colima (Mexico)
NASA Astrophysics Data System (ADS)
Capra, L.; Sulpizio, R.; Márquez-Ramirez, V. H.; Coviello, V.; Doronzo, D. M.; Arambula-Mendoza, R.; Cruz, S.
2018-04-01
Pyroclastic density currents (PDCs) represent one of the most dangerous phenomena occurring in explosive volcanic eruptions, and any advance in the physical understanding of their transport and sedimentation processes can contribute to improving their hazard assessment. The 10-11 July 2015 eruption at Volcán de Colima provided a unique opportunity to better understand the internal behaviour of PDCs based on seismic monitoring data. On 10 July 2015, the summit dome collapsed, producing concentrated PDCs that filled the main channel of the Montegrande ravine. A lahar monitoring station installed 6 km from the volcano summit recorded a PDC before being completely destroyed. Real-time data acquisition from a camcorder and a geophone that were part of the station, along with field observations and grain-size data of the pyroclastic deposits, are used here to interpret the internal flow structure and time-variant transport dynamics of low-volume, valley-confined concentrated PDCs. The PDC that reached the monitoring station moved at a velocity of 7 m/s and filled a 12-m-deep channel. The outcrops show massive, block-and-ash flow deposits with trains of coarse clasts in the middle and towards the top of the depositional units. The seismic record gathered with the geophone was analysed for the time window when the flow travelled past the sensor. The geophone record was also compared with the recordings of a broadband seismic station located nearby. Two main frequency ranges were recognised which could be correlated with the basal frictional forces exerted by the flow on the channel bed (10-20 Hz) and a collisional regime (20-40 Hz) interpreted to be associated with a clast segregation process (i.e. kinematic squeezing). This latter regime promoted the upward migration of large blocks, which subsequently deviated towards the margin of the flow where they interacted with the sidewall of the main channel. The energy calculated for both seismic components shows that the collisional regime represents 30% of the total energy including an important sidewall-stress component. These results, gathered directly from a moving flow, contribute to unravelling the internal behaviour of concentrated PDCs providing information on energy partitioning and particle-particle interactions. This confirms previous assumptions inferred from field observations, and tested by analogue or numerical modelling. The nature of the contact between grains is still poorly documented in natural PDCs, and there is still much uncertainty and discussion about dominant forces in such currents. Data reported here may thus be useful to better constrain the physics of low-volume, valley-confined concentrated PDCs and our findings need to be considered in theoretical models. In parallel, this study shows how geophones can provide a cheap alternative for PDC detection.
High-Flow Jet Exit Rig Designed and Fabricated
NASA Technical Reports Server (NTRS)
Buehrle, Robert J.; Trimarchi, Paul A.
2003-01-01
The High-Flow Jet Exit Rig at the NASA Glenn Research Center is designed to test single flow jet nozzles and to measure the appropriate thrust and noise levels. The rig has been designed for the maximum hot condition of 16 lbm/sec of combustion air at 1960 R (maximum) and to produce a maximum thrust of 2000 lb. It was designed for cold flow of 29.1 lbm/sec of air at 530 R. In addition, it can test dual-flow nozzles (nozzles with bypass flow in addition to core flow) with independent control of each flow. The High- Flow Jet Exit Rig was successfully fabricated in late 2001 and is being readied for checkout tests. The rig will be installed in Glenn's Aeroacoustic Propulsion Laboratory. The High-Flow Jet Exit Rig consists of the following major components: a single component force balance, the natural-gas-fueled J-79 combustor assembly, the plenum and manifold assembly, an acoustic/instrumentation/seeding (A/I/S) section, a table, and the research nozzles. The rig will be unique in that it is designed to operate uncooled. The structure survives the 1960 R test condition because it uses carefully selected high temperature alloy materials such as Hastelloy-X. The lower plenum assembly was designed to operate at pressures to 450 psig at 1960 R, in accordance with the ASME B31.3 piping code. The natural gas-fueled combustor fires directly into the lower manifold. The hot air is directed through eight 1-1/2-in. supply pipes that supply the upper plenum. The flow is conditioned in the upper plenum prior to flowing to the research nozzle. The 1-1/2-in. supply lines are arranged in a U-shaped design to provide for a flexible piping system. The combustor assembly checkout was successfully conducted in Glenn's Engine Component Research Laboratory in the spring of 2001. The combustor is a low-smoke version of the J79 combustor used to power the F4 Phantom military aircraft. The natural gas-fueled combustor demonstrated high-efficiency combustion over a wide range of operating conditions. This wide operating envelope is required to support the testing of both single- and dual-flow nozzles. Key research goals include providing simultaneous, highly accurate acoustic, flow, and thrust measurements on jet nozzle models in realistic flight conditions, as well as providing scaleable acoustic results. The High-Flow Jet Exit Rig is a second-generation high-flow test rig. Improvements include cleaner flow with reduced levels of particulate, soot, and odor. Choked-flow metering is required with plus or minus 0.25-percent accuracy. Thrust measurements from 0 to 2000 lbf are required with plus or minus 0.25-percent accuracy. Improved acoustics will be achieved by minimizing noise through large pipe bend radii, lower internal flow velocities, and microdrilled choke plates with thousands of 0.040-in.- diameter holes.
Low-Speed Fan Noise Reduction With Trailing Edge Blowing
NASA Technical Reports Server (NTRS)
Sutliff, Daniel L.; Tweedt, Daniel L.; Fite, E. Brian; Envia, Edmane
2002-01-01
An experimental proof-of-concept test was conducted to demonstrate reduction of rotor-stator interaction noise through rotor-trailing edge blowing. The velocity deficit from the viscous wake of the rotor blades was reduced by injecting air into the wake from a trailing edge slot. Composite hollow rotor blades with internal flow passages were designed based on analytical codes modeling the internal flow. The hollow blade with interior guide vanes creates flow channels through which externally supplied air flows from the root of the blade to the trailing edge. The impact of the rotor wake-stator interaction on the acoustics was also predicted analytically. The Active Noise Control Fan, located at the NASA Glenn Research Center, was used as the proof- of-concept test bed. In-duct mode and farfield directivity acoustic data were acquired at blowing rates (defined as mass supplied to trailing edge blowing system divided by fan mass flow) ranging from 0.5 to 2.0 percent. The first three blade passing frequency harmonics at fan rotational speeds of 1700 to 1900 rpm were analyzed. The acoustic tone power levels (PWL) in the inlet and exhaust were reduced 11.5 and -0.1, 7.2 and 11.4, 11.8 and 19.4 PWL dB, respectively. The farfield tone power levels at the first three harmonics were reduced 5.4, 10.6, and 12.4 dB PWL. At selected conditions, two-component hotwire and stator vane unsteady surface pressures were acquired. These measurements illustrate the physics behind the noise reduction.
NASA Astrophysics Data System (ADS)
Cummings, A.; Chang, I.-J.
1988-11-01
Internal mean flow within the pores of a bulk-reacting porous acoustic absorbent, driven by mean static pressure gradients, is shown here to be an important feature of the acoustics of dissipative silencers in flow ducts, particularly in the case of internal combustion engine exhaust silencers. Theoretical treatments are presented here, both to describe the effect of internal flow on the bulk acoustic perties of the porous medium and to find the effect of the absorbent in situ, in the form of the sound transmission loss of the silencer. The measured transmission loss of an experimental silencer is compared to predicted data and good agreement between the two is obtained. The effects of mean fluid flow in the central passage and internal flow in the absorbent are separately demonstrated.
NASA Astrophysics Data System (ADS)
Aubrey, D. P.; Teskey, R. O.
2011-12-01
Forest ecosystem respiration releases one of the largest annual CO2 fluxes of the global carbon cycle and is dominated by belowground autotrophic and heterotrophic contributions. A mechanistic understanding of forest respiratory flux pathways is imperative to understanding carbon cycling in forests. We recently demonstrated that, on a daily basis, the amount of CO2 that fluxes upward from tree root systems into stems via the xylem stream rivals the amount of CO2 diffusing from the soil surface. However, our original observations were limited to only four individual eastern cottonwood (Populus deltoides L.) trees over a single week where environmental conditions remained similar. Here, we expand our investigation to an entire growing season using nine trees. We calculated the internal transport of root-derived CO2 as the product of sap flow and dissolved CO2 concentration ([CO2]) in the xylem at the base of the stem and measured soil CO2 efflux using the [CO2] gradient approach. We then compared the magnitude of these two flux pathways throughout the growing season. The internal transport of root-derived CO2 was equivalent to one-third of the total belowground respiration throughout the growing season. This indicates that autotrophic respiration was substantially higher than previously estimated, and also higher than heterotrophic soil respiration. The quantity of internally transported CO2 was influenced by both seasonal and daily environmental factors that influenced sap flow rates. We observed high concentrations of CO2 in xylem sap which ranged from 1% to 20% [CO2] among and within individual trees through time. Our results provide evidence that belowground autotrophic respiration consumes a larger amount-and stem respiration consumes a smaller amount-of carbohydrates than previously realized. The magnitude of the internal pathway for root-derived CO2 flux highlights the inadequacy of using the CO2 efflux from the soil surface to the atmosphere alone to measure root respiration. We suggest the internal transport of root-derived CO2 should be measured concurrently with CO2 efflux to the atmosphere to more fully understand the components of ecosystem respiration.
Sonic flow distortion experiment
NASA Astrophysics Data System (ADS)
Peters, Gerhard; Kirtzel, Hans-Jürgen; Radke, Jürgen
2017-04-01
We will present results from a field experiment with multiple sonic anemometers, and will address the question about residual errors of wind tunnel based calibrations that are transferred to atmospheric measurements. Ultrasonic anemometers have become standard components of high quality in-situ instrumentations, because of the long term calibration stability, fast response, wide dynamic range, and various options of built in quality control. On the downside of this technology is the fact that the sound transducers and the carrying structure represent obstacles in the flow causing systematic deviations of the measured flow from the free flow. Usually, the correction schemes are based on wind tunnel observations of the sonic-response as function of angle of attack under stationary conditions. Since the natural atmospheric flow shows turbulence intensities and scales, which cannot be mimicked in a wind tunnel, it is suspected that the wind-tunnel based corrections may be not (fully) applicable to field data. The wide spread use of sonic anemometers in eddy flux instrumentations for example in the frame of EuroFlux, AmeriFlux or other international observation programs has therefore prompted a - still controversial - discussion of the significance of residual flow errors. In an attempt to quantify the flow distortion in free field conditions, 12 identical 3-component sonics with 120 degree head symmetry were operated at the north margin of an abandoned airfield. The sonics were installed in a straight line in WE-direction at 2.6 m height with a mutual distance of 3 meters and with an azimuth increment of the individual sonics of 11 degrees. Synchronous raw data were recorded with 20 Hz sample rate. Data of about 12 hours with southerly winds (from the relatively flat airfield) were analyzed. Statistical homogeneity of the wind field in the range of the instruments line was assumed, but a variable finite turbulent decay constant was accounted for, which was estimated from the data. The free field flow distortion estimates will be discussed in comparison with wind tunnel observations.
International Space Station (ISS)
2000-01-01
This diagram shows the flow of recyclable resources in the International Space Station (ISS). The Environmental Control and Life Support System (ECLSS) Group of the Flight Projects Directorate at the Marshall Space Flight Center is responsible for the regenerative ECLSS hardware, as well as providing technical support for the rest of the system. The regenerative ECLSS, whose main components are the Water Recovery System (WRS), and the Oxygen Generation System (OGS), reclaims and recycles water and oxygen. The ECLSS maintains a pressurized habitation environment, provides water recovery and storage, maintains and provides fire detection / suppression, and provides breathable air and a comfortable atmosphere in which to live and work within the ISS. The ECLSS hardware will be located in the Node 3 module of the ISS.
International Space Station (ISS)
2000-01-01
This diagram shows the flow of water recovery and management in the International Space Station (ISS). The Environmental Control and Life Support System (ECLSS) Group of the Flight Projects Directorate at the Marshall Space Flight Center is responsible for the regenerative ECLSS hardware, as well as providing technical support for the rest of the system. The regenerative ECLSS, whose main components are the Water Recovery System (WRS), and the Oxygen Generation System (OGS), reclaims and recycles water oxygen. The ECLSS maintains a pressurized habitation environment, provides water recovery and storage, maintains and provides fire detection/ suppression, and provides breathable air and a comfortable atmosphere in which to live and work within the ISS. The ECLSS hardware will be located in the Node 3 module of the ISS.
Experimental Evaluation of an Isolated Synthetic Jet IN Crossflow
NASA Technical Reports Server (NTRS)
Schaeffler, Norman W.; Jenkins, Luther N.; Hepner, Timothy E.
2007-01-01
The second case for this workshop builds upon the isolated synthetic jet of Case 1 by adding a crossflow, with no streamwise pressure gradient, for the developing jet to interact with. Formally, Case 2 examines the interaction of a single, isolated, synthetic jet and a fully turbulent zero-pressure gradient boundary layer. The resulting flow has many of the characteristics that need to be modeled with fidelity if the results of the calculations are to serve as the basis for research and design with active flow control devices. These include the turbulence in the boundary layer, the time-evolution of the large vortical structure emanating from the jet orifice and its subsequent interaction with and distortion by the boundary layer turbulence, and the effect of the suction cycle on the boundary layer flow. In a synthetic jet, the flow through the orifice and out into the outer flowfield alternates between an exhaust and a suction cycle, driven by the contraction and expansion of a cavity internal to the actuator. In the present experiment, the volume changes in the internal cavity are accomplished by replacing one of the rigid walls of the cavity, the wall opposite the orifice exit, with a deformable wall. This flexible wall is driven by a bottom-mounted moveable piston. The piston is driven electro-mechanically. The synthetic jet issues into the external flow through a circular orifice. In the present experiment, this orifice has a diameter of 0.250 inches (6.35 mm). The flow is conceptually similar to that documented in Schaeffler [1]. To document the flow, several measurement techniques were utilized. The upstream boundary conditions (in-flow conditions), and several key phase-averaged velocity profiles were measured with a 3-component laser-Doppler velocimetry system. Phase-averaged velocity field measurements were made with both stereo digital particle image velocimetry and 2-D digital particle image velocimetry as the primary measurement system. Surface pressure measurements were made utilizing an electronically scanned pressure system.
Direct numerical simulation of turbulent flow with an impedance condition
NASA Astrophysics Data System (ADS)
Olivetti, Simone; Sandberg, Richard D.; Tester, Brian J.
2015-05-01
DNS solutions for a pipe/jet configuration are re-computed with the pipe alone to investigate suppression of previously identified internal noise source(s) with an acoustic liner, using a time domain acoustic liner model developed by Tam and Auriault (AIAA Journal, 34 (1996) 913-917). Liner design parameters are chosen to achieve up to 30 dB attenuation of the broadband pressure field over the pipe length without affecting the velocity field statistics. To understand the effect of the liner on the acoustic and turbulent components of the unsteady wall pressure, an azimuthal/axial Fourier transform is applied and the acoustic and turbulent wavenumber regimes clearly identified. It is found that the spectral component occupying the turbulent wavenumber range is unaffected by the liner whereas the acoustic wavenumber components are strongly attenuated, with individual radial modes being evident as each cuts on with increasing Strouhal number.
New methods for the development of pneumatic displacement pumps for cardiac assist.
Knierbein, B; Rosarius, N; Reul, H; Rau, G
1990-11-01
The primary goal of the presented project was to develop a pump family with stroke volumes of 20, 50, 70 and 90 ml, which could be produced at low cost but with sufficient quality. The housing parts of the pump were thermoformed from technical semifinished materials. All blood contacting surfaces of the pump were coated with biomaterials in a controlled dipping process. During the design and fabrication process a professional CAD-system was used. This facilitated spatial presentations of pump components for first evaluations at the initial draft stages. The CAD-design data were then transformed to CNC-controlled lathes and mill's for the fabrication of pump tools. The stresses and strains of the moving blood pump components, such as membranes and valves, were precalculated by means of Finite-Element-Analysis (FEM). After completion of the pump, the internal flow fields were investigated by flow-visualization techniques using non-Newtonian test fluids, and the pump characteristics (function curves) were investigated in appropriate circulatory mock loops. The paper covers all above aspects from first draft to final fabrication and testing.
NASA Technical Reports Server (NTRS)
Steele, John; Rector, tony; Gazda, Daniel; Lewis, John
2009-01-01
An EMU water processing kit (Airlock Coolant Loop Recovery A/L CLR) was developed as a corrective action to Extravehicular Mobility Unit (EMU) coolant flow disruptions experienced on the International Space Station (ISS) in May of 2004 and thereafter. Conservative schedules for A/L CLR use and component life were initially developed and implemented based on prior analysis results and analytical modeling. The examination of postflight samples and EMU hardware in November of 2006 indicated that the A/L CLR kits were functioning well and had excess capacity that would allow a relaxation of the initially conservative schedules of use and component life. A relaxed use schedule and list of component lives was implemented thereafter. Since the adoption of the relaxed A/L CLR schedules of use and component lives, several A/L CLR kit components, transport loop water samples and sensitive EMU transport loop components have been examined to gage the impact of the relaxed requirements. The intent of this paper is to summarize the findings of that evaluation, and to outline updated schedules for A/L CLR use and component life.
Stability properties and fast ion confinement of hybrid tokamak plasma configurations
NASA Astrophysics Data System (ADS)
Graves, J. P.; Brunetti, D.; Pfefferle, D.; Faustin, J. M. P.; Cooper, W. A.; Kleiner, A.; Lanthaler, S.; Patten, H. W.; Raghunathan, M.
2015-11-01
In hybrid scenarios with flat q just above unity, extremely fast growing tearing modes are born from toroidal sidebands of the near resonant ideal internal kink mode. New scalings of the growth rate with the magnetic Reynolds number arise from two fluid effects and sheared toroidal flow. Non-linear saturated 1/1 dominant modes obtained from initial value stability calculation agree with the amplitude of the 1/1 component of a 3D VMEC equilibrium calculation. Viable and realistic equilibrium representation of such internal kink modes allow fast ion studies to be accurately established. Calculations of MAST neutral beam ion distributions using the VENUS-LEVIS code show very good agreement of observed impaired core fast ion confinement when long lived modes occur. The 3D ICRH code SCENIC also enables the establishment of minority RF distributions in hybrid plasmas susceptible to saturated near resonant internal kink modes.
Satellite Gravity Drilling the Earth
NASA Technical Reports Server (NTRS)
vonFrese, R. R. B.; Potts, L. V.; Leftwich, T. E.; Kim, H. R.; Han, S.-H.; Taylor, P. T.; Ashgharzadeh, M. F.
2005-01-01
Analysis of satellite-measured gravity and topography can provide crust-to-core mass variation models for new insi@t on the geologic evolution of the Earth. The internal structure of the Earth is mostly constrained by seismic observations and geochemical considerations. We suggest that these constraints may be augmented by gravity drilling that interprets satellite altitude free-air gravity observations for boundary undulations of the internal density layers related to mass flow. The approach involves separating the free-air anomalies into terrain-correlated and -decorrelated components based on the correlation spectrum between the anomalies and the gravity effects of the terrain. The terrain-decorrelated gravity anomalies are largely devoid of the long wavelength interfering effects of the terrain gravity and thus provide enhanced constraints for modeling mass variations of the mantle and core. For the Earth, subcrustal interpretations of the terrain-decorrelated anomalies are constrained by radially stratified densities inferred from seismic observations. These anomalies, with frequencies that clearly decrease as the density contrasts deepen, facilitate mapping mass flow patterns related to the thermodynamic state and evolution of the Earth's interior.
Qiu, Huacheng; Min, Fu; Zhong, Shaolong; Song, Xin; Yang, Yanguang
2018-03-01
Force measurements using wind tunnel balance are necessary for determining a variety of aerodynamic performance parameters, while the harsh environment in hypersonic flows requires that the measurement instrument should be reliable and robust, in against strong electromagnetic interference, high vacuum, or metal (oxide) dusts. In this paper, we demonstrated a three-component internal balance for hypersonic aerodynamic force measurements, using novel optical micromachined Fabry-Perot interferometric (FPI) strain gauges as sensing elements. The FPI gauges were fabricated using Micro-Opto-Electro-Mechanical Systems (MOEMS) surface and bulk fabrication techniques. High-reflectivity coatings are used to form a high-finesse Fabry-Perot cavity, which benefits a high resolution. Antireflective and passivation coatings are used to reduce unwanted interferences. The FPI strain gauge based balance has been calibrated and evaluated in a Mach 5 hypersonic flow. The results are compared with the traditional technique using the foil resistive strain gauge balance, indicating that the proposed balance based on the MOEMS FPI strain gauge is reliable and robust and is potentially suitable for the hypersonic wind tunnel harsh environment.
The endo-rectal probe prototype for the TOPEM project
NASA Astrophysics Data System (ADS)
Musico, Paolo; TOPEM Collaboration
2016-07-01
The TOPEM project was funded by INFN with the aim of studying the design of a TOF-PET system dedicated to prostate imaging. During last year a big effort was put into building the prototype of the endo-rectal probe from all point of view: mechanical, thermal, electrical. A dedicated integrated circuit was adopted to have the minimum dimensions: the TOFPET ASIC. The system is composed by a LYSO pixellated crystal which is seen by a 128 SiPM matrix on both surfaces: this permits Depth Of Interaction (DOI) measurement. The 4 needed ASICs are handled by a FPGA board which transmits the acquired data over an UDP connection. The external container was made using 3-D printing technology: internal channels on the external surface permit the flowing of controlled temperature (≈35 °C) water. Electronic components power is dissipated using an internal air flow kept at lower temperature (≈20 °C). The probe is MR compatible: a dedicated small antenna can be accommodated in the container. This will permit simultaneous imaging in MRI and PET systems.
NASA Astrophysics Data System (ADS)
Qiu, Huacheng; Min, Fu; Zhong, Shaolong; Song, Xin; Yang, Yanguang
2018-03-01
Force measurements using wind tunnel balance are necessary for determining a variety of aerodynamic performance parameters, while the harsh environment in hypersonic flows requires that the measurement instrument should be reliable and robust, in against strong electromagnetic interference, high vacuum, or metal (oxide) dusts. In this paper, we demonstrated a three-component internal balance for hypersonic aerodynamic force measurements, using novel optical micromachined Fabry-Perot interferometric (FPI) strain gauges as sensing elements. The FPI gauges were fabricated using Micro-Opto-Electro-Mechanical Systems (MOEMS) surface and bulk fabrication techniques. High-reflectivity coatings are used to form a high-finesse Fabry-Perot cavity, which benefits a high resolution. Antireflective and passivation coatings are used to reduce unwanted interferences. The FPI strain gauge based balance has been calibrated and evaluated in a Mach 5 hypersonic flow. The results are compared with the traditional technique using the foil resistive strain gauge balance, indicating that the proposed balance based on the MOEMS FPI strain gauge is reliable and robust and is potentially suitable for the hypersonic wind tunnel harsh environment.
Optimizing the separation performance of a gas centrifuge
NASA Astrophysics Data System (ADS)
Wood, H. G.
1997-11-01
Gas centrifuges were originally developed for the enrichment of U^235 from naturally occurring uranium for the purpose of providing fuel for nuclear power reactors and material for nuclear weapons. This required the separation of a binary mixture composed of U^235 and U^238. Since the end of the cold war, a surplus of enriched uranium exists on the world market, but many centrifuge plants exist in numerous countries. These circumstances together with the growing demand for stable isotopes for chemical and physical research and in medical science has led to the exploration of alternate applications of gas centrifuge technology. In order to acieve these multi-component separations, existing centrifuges must be modified or new centrifuges must be designed. In either case, it is important to have models of the internal flow fields to predict the separation performance and algorithms to seek the optimal operating conditions of the centrifuges. Here, we use the Onsager pancake model of the internal flow field, and we present an optimization strategy which exploits a similarity parameter in the pancake model. Numerical examples will be presented.
Thermal Evolution of Diapirs with Complex Mantle Wedge Flow
NASA Astrophysics Data System (ADS)
Sylvia, R. T.; Kincaid, C.
2016-12-01
Subduction of oceanic lithosphere drives heat and mass exchange between Earth's interior and surface. One proposed transport mechanism for thermally and chemically distinct material through the wedge is the diapir model. The dominant driver of flow in the upper mantle is a mode of forced convection responding to motion of a tabular slab. A set of 4D laboratory experiments was conducted exploring the relationship between buoyancy flux and subduction parameters and subsequent effects on diapir transport. Variable subduction styles tested include downdip and rollback motion, slab gaps, slab steepening and backarc extension. The mantle is modeled using viscous glucose syrup with an Arrhenius type temperature dependent viscosity. Diapirs representing homogeneous mechanically mixed melange layer are introduced as buoyant fluid injected at multiple point sources situated along the surface of the sinking slab. Laboratory data is collected using high definition time-lapse photography and quantified using image velocimetry techniques. Here we present results from numerical simulation of the thermal evolution of spherical mantle wedge diapirs using 2D axisymmetric advection-diffusion model with internal diapir flow described by an analytic potential flow solution. A suite of wedge temperature profiles are used as thermal forcing on diapirs traversing the wedge along experimentally observed 4D ascent pathways. Scaling arguments suggest that for systems with Péclet number on the order of 15 advective heat transport is expected to dominate over diffusive heat transport, but the range of observed P-T-t paths and vigorous internal flow complicate this assumption. Interactions between modes of free (diapiric) and forced (wedge) convection lead to complex spatio-temporal variability in slab-to-arc connectivity patterns. Rollback induced toroidal flow, along trench changes in dip, convergence rate and backarc extension all produce a significant ( 500 km) trench-parallel transport component. Combined with diapir-diapir interactions these factors produce a spectrum of transit times and pathlengths, ranging from much shorter to much longer than those from simple 2D model estimates. Results highlight the broad range of expected internal temperature distributions derived from variable transit paths.
NASA Technical Reports Server (NTRS)
Cole, Gary L.; Richard, Jacques C.
1991-01-01
An approach to simulating the internal flows of supersonic propulsion systems is presented. The approach is based on a fairly simple modification of the Large Perturbation Inlet (LAPIN) computer code. LAPIN uses a quasi-one dimensional, inviscid, unsteady formulation of the continuity, momentum, and energy equations. The equations are solved using a shock capturing, finite difference algorithm. The original code, developed for simulating supersonic inlets, includes engineering models of unstart/restart, bleed, bypass, and variable duct geometry, by means of source terms in the equations. The source terms also provide a mechanism for incorporating, with the inlet, propulsion system components such as compressor stages, combustors, and turbine stages. This requires each component to be distributed axially over a number of grid points. Because of the distributed nature of such components, this representation should be more accurate than a lumped parameter model. Components can be modeled by performance map(s), which in turn are used to compute the source terms. The general approach is described. Then, simulation of a compressor/fan stage is discussed to show the approach in detail.
Additive Manufacturing Thermal Performance Testing of Single Channel GRCop-84 SLM Components
NASA Technical Reports Server (NTRS)
Garcia, Chance P.; Cross, Matthew
2014-01-01
The surface finish found on components manufactured by sinter laser manufacturing (SLM) is rougher (0.013 - 0.0006 inches) than parts made using traditional fabrication methods. Internal features and passages built into SLM components do not readily allow for roughness reduction processes. Alternatively, engineering literature suggests that the roughness of a surface can enhance thermal performance within a pressure drop regime. To further investigate the thermal performance of SLM fabricated pieces, several GRCop-84 SLM single channel components were tested using a thermal conduction rig at MSFC. A 20 kW power source running at 25% duty cycle and 25% power level applied heat to each component while varying water flow rates between 2.1 - 6.2 gallons/min (GPM) at a supply pressure of 550 to 700 psi. Each test was allowed to reach quasi-steady state conditions where pressure, temperature, and thermal imaging data were recorded. Presented in this work are the heat transfer responses compared to a traditional machined OHFC Copper test section. An analytical thermal model was constructed to anchor theoretical models with the empirical data.
Strassburg, Sandra; Hodson, Nigel W; Hill, Patrick I; Richardson, Stephen M; Hoyland, Judith A
2012-01-01
Mesenchymal stem cell (MSC)-based therapies have been proposed as novel treatments for intervertebral disc (IVD) degeneration. We have previously demonstrated that when MSCs are co-cultured with nucleus pulposus (NP) cells with direct cell-cell contact, they differentiate along the NP lineage and simultaneously stimulate the degenerate NP cell population to regain a normal (non-degenerate) phenotype, an effect which requires cell-cell communication. However, the mechanisms by which NP cells and MSCs interact in this system are currently unclear. Thus, in this study we investigated a range of potential mechanisms for exchange of cellular components or information that may direct these changes, including cell fusion, gap-junctional communication and exchange of membrane components by direct transfer or via microvesicle formation. Flow cytometry of fluorescently labeled MSCs and NP cells revealed evidence of some cell fusion and formation of gapjunctions, although at the three timepoints studied these phenomena were detectable only in a small proportion of cells. While these mechanisms may play a role in cell-cell communication, the data suggests they are not the predominant mechanism of interaction. However, flow cytometry of fluorescently dual-labeled cells showed that extensive bi-directional transfer of membrane components is operational during direct co-culture of MSCs and NP cells. Furthermore, there was also evidence for secretion and internalization of membrane-bound microvesicles by both cell types. Thus, this study highlights bi-directional intercellular transfer of membrane components as a possible mechanism of cellular communication between MSC and NP cells.
Study on Gas-liquid Falling Film Flow in Internal Heat Integrated Distillation Column
NASA Astrophysics Data System (ADS)
Liu, Chong
2017-10-01
Gas-liquid internally heat integrated distillation column falling film flow with nonlinear characteristics, study on gas liquid falling film flow regulation control law, can reduce emissions of the distillation column, and it can improve the quality of products. According to the distribution of gas-liquid mass balance internally heat integrated distillation column independent region, distribution model of heat transfer coefficient of building internal heat integrated distillation tower is obtained liquid distillation falling film flow in the saturated vapour pressure of liquid water balance, using heat transfer equation and energy equation to balance the relationship between the circulating iterative gas-liquid falling film flow area, flow parameter information, at a given temperature, pressure conditions, gas-liquid flow falling film theory makes the optimal parameters to achieve the best fitting value with the measured values. The results show that the geometric gas-liquid internally heat integrated distillation column falling film flow heat exchange area and import column thermostat, the average temperature has significant. The positive correlation between the heat exchanger tube entrance due to temperature difference between inside and outside, the heat flux is larger, with the increase of internal heat integrated distillation column temperature, the slope decreases its temperature rise, which accurately describes the internal gas-liquid heat integrated distillation tower falling film flow regularity, take appropriate measures to promote the enhancement of heat transfer. It can enhance the overall efficiency of the heat exchanger.
Epi-illumination optical design for fluorescence polarization measurements in flow systems.
Eisert, W G; Beisker, W
1980-01-01
An epi-illumination design for fluorescence polarization measurements is introduced in flow cytometry with the optical axis orthogonally aligned to the cell stream. Various optical components and designs are discussed with respect to their influence on polarization measurements. Using the epi-configuration, paired measurements with the direction of polarization of the exciting light changed orthogonally are proposed for the compensation of system anisotropies and electronic mismatch. Large aperture corrections are employed for the excitation as well as for the emission pathway. Additional parameters such as fluorescence at 90 degrees, multiangle light scattering, and high precision cell-sizing by internally calibrated time of the flight measurements, as described previously, remain available with the design proposed here. Fluorescent latex microspheres, stained intracellular DNA, and algae have been used to test performance. PMID:7023562
Takeishi, K; Aoki, S
2001-05-01
The improvement of the heat transfer coefficient of the 1st row blades in high temperature industrial gas turbines is one of the most important issues to ensure reliable performance of these components and to attain high thermal efficiency of the facility. This paper deals with the contribution of heat transfer to increase the turbine inlet temperature of such gas turbines in order to attain efficient and environmentally benign engines. Following the experiments described in Part 1, a set of trials was conducted to clarify the influence of the blade's rotating motion on the heat transfer coefficient for internal serpentine flow passages with turbulence promoters. Test results are shown and discussed in this second part of the contribution.
Constitutive behavior and fracture toughness properties of the F82H ferritic/martensitic steel
NASA Astrophysics Data System (ADS)
Spätig, P.; Odette, G. R.; Donahue, E.; Lucas, G. E.
2000-12-01
A detailed investigation of the constitutive behavior of the International Energy Agency (IEA) program heat of 8 Cr unirradiated F82H ferritic-martensitic steel has been undertaken in the temperature range of 80-723 K. The overall tensile flow stress is decomposed into temperature-dependent and athermal yield stress contributions plus a mildly temperature-dependent strain-hardening component. The fitting forms are based on a phenomenological dislocation mechanics model. This formulation provides a more accurate and physically based representation of the flow stress as a function of the key variables of test temperature, strain and stain rate compared to simple power law treatments. Fracture toughness measurements from small compact tension specimens are also reported and analyzed in terms of a critical stress-critical area local fracture model.
Cooling system for electronic components
Anderl, William James; Colgan, Evan George; Gerken, James Dorance; Marroquin, Christopher Michael; Tian, Shurong
2015-12-15
Embodiments of the present invention provide for non interruptive fluid cooling of an electronic enclosure. One or more electronic component packages may be removable from a circuit card having a fluid flow system. When installed, the electronic component packages are coincident to and in a thermal relationship with the fluid flow system. If a particular electronic component package becomes non-functional, it may be removed from the electronic enclosure without affecting either the fluid flow system or other neighboring electronic component packages.
Cooling system for electronic components
Anderl, William James; Colgan, Evan George; Gerken, James Dorance; Marroquin, Christopher Michael; Tian, Shurong
2016-05-17
Embodiments of the present invention provide for non interruptive fluid cooling of an electronic enclosure. One or more electronic component packages may be removable from a circuit card having a fluid flow system. When installed, the electronic component packages are coincident to and in a thermal relationship with the fluid flow system. If a particular electronic component package becomes non-functional, it may be removed from the electronic enclosure without affecting either the fluid flow system or other neighboring electronic component packages.
The Advantages of Non-Flow-Through Fuel Cell Power Systems for Aerospace Applications
NASA Technical Reports Server (NTRS)
Hoberecht, Mark; Burke, Kenneth; Jakupca, Ian
2011-01-01
NASA has been developing proton-exchange-membrane (PEM) fuel cell power systems for the past decade, as an upgraded technology to the alkaline fuel cells which presently provide power for the Shuttle Orbiter. All fuel cell power systems consist of one or more fuel cell stacks in combination with appropriate balance-of-plant hardware. Traditional PEM fuel cells are characterized as flow-through, in which recirculating reactant streams remove product water from the fuel cell stack. NASA recently embarked on the development of non-flow-through fuel cell systems, in which reactants are dead-ended into the fuel cell stack and product water is removed by internal wicks. This simplifies the fuel cell power system by eliminating the need for pumps to provide reactant circulation, and mechanical water separators to remove the product water from the recirculating reactant streams. By eliminating these mechanical components, the resulting fuel cell power system has lower mass, volume, and parasitic power requirements, along with higher reliability and longer life. These improved non-flow-through fuel cell power systems therefore offer significant advantages for many aerospace applications.
Computational Support of 9x7 Wind Tunnel Test of Sonic Boom Models with Plumes
NASA Technical Reports Server (NTRS)
Jensen, James C.; Denison, Marie; Durston, Don; Cliff, Susan E.
2017-01-01
NASA and its industry partners are performing studies of supersonic aircraft concepts with low sonic boom pressure signatures. The interaction of the nozzle jet flow with the aircrafts' aft components is typically where the greatest uncertainly in the pressure signature is observed with high-fidelity numerical simulations. An extensive wind tunnel test was conducted in February 2016 in the NASA Ames 9- by 7- Foot Supersonic Wind Tunnel to help address the nozzle jet effects on sonic boom. Five test models with a variety of shock generators of differing waveforms and strengths were tested with a convergent-divergent nozzle for a wide range of nozzle pressure ratios. The LAVA unstructured flow solver was used to generate first CFD comparisons with the new experimental database using best practice meshing and analysis techniques for sonic boom vehicle design for all five different configurations. LAVA was also used to redesign the internal flow path of the nozzle and to better understand the flow field in the test section, both of which significantly improved the quality of the test data.
Changes and Challenges in the Flow of International Human Capital: China's Experience
ERIC Educational Resources Information Center
Pan, Su-Yan
2010-01-01
This article tracks the changes in the directions of the international flow of Chinese human capital between the 1870s and 2000s. Although many studies on international academic flow adopt the pull-and-push approach, this article argues that the direction of human capital flow is not determined solely by an individual's choice when faced with a…
2010-01-12
CAPE CANAVERAL, Fla. - In the Remote Manipulator System Lab inside the Vehicle Assembly Building at NASA's Kennedy Space Center in Florida, this close-up shows the forward transition and X-guide restraint of the inspection boom assembly, or IBA, on space shuttle Atlantis' orbiter boom sensor system, or OBSS. The IBA is removed from the shuttle every other processing flow for a detailed inspection. After five consecutive flights, all IBA internal components are submitted to a thorough electrical checkout in the lab. The 50-foot-long OBSS attaches to the end of the shuttle’s robotic arm and supports the cameras and laser systems used to inspect the shuttle’s thermal protection system while in space. Atlantis is next slated to deliver an Integrated Cargo Carrier and Russian-built Mini Research Module to the International Space Station on the STS-132 mission. The second in a series of new pressurized components for Russia, the module will be permanently attached to the Zarya module. Three spacewalks are planned to store spare components outside the station, including six spare batteries, a boom assembly for the Ku-band antenna and spares for the Canadian Dextre robotic arm extension. A radiator, airlock and European robotic arm for the Russian Multi-purpose Laboratory Module also are payloads on the flight. Launch is targeted for May 14, 2010. Photo credit: NASA/Jack Pfaller
Nuclear reactor with internal thimble-type delayed neutron detection system
Gross, Kenny C.; Poloncsik, John; Lambert, John D. B.
1990-01-01
This invention teaches improved apparatus for the method of detecting a breach in cladded fuel used in a nuclear reactor. The detector apparatus is located in the primary heat exchanger which conveys part of the reactor coolant past at least three separate delayed-neutron detectors mounted in this heat exchanger. The detectors are spaced apart such that the coolant flow time from the core to each detector is different, and these differences are known. The delayed-neutron activity at the detectors is a function of the delay time after the reaction in the fuel until the coolant carrying the delayed-neutron emitter passes the respective detector. This time delay is broken down into separate components including an isotopic holdup time required for the emitter to move through the fuel from the reaction to the coolant at the breach, and two transit times required for the emitter now in the coolant to flow from the breach to the detector loop and then via the loop to the detector. At least two of these time components are determined during calibrated operation of the reactor. Thereafter during normal reactor operation, repeated comparisons are made by the method of regression approximation of the third time component for the best-fit line correlating measured delayed-neutron activity against activity that is approximated according to specific equations. The equations use these time-delay components and known parameter values of the fuel and of the part and emitting daughter isotopes.
Built-In Data-Flow Integration Testing in Large-Scale Component-Based Systems
NASA Astrophysics Data System (ADS)
Piel, Éric; Gonzalez-Sanchez, Alberto; Gross, Hans-Gerhard
Modern large-scale component-based applications and service ecosystems are built following a number of different component models and architectural styles, such as the data-flow architectural style. In this style, each building block receives data from a previous one in the flow and sends output data to other components. This organisation expresses information flows adequately, and also favours decoupling between the components, leading to easier maintenance and quicker evolution of the system. Integration testing is a major means to ensure the quality of large systems. Their size and complexity, together with the fact that they are developed and maintained by several stake holders, make Built-In Testing (BIT) an attractive approach to manage their integration testing. However, so far no technique has been proposed that combines BIT and data-flow integration testing. We have introduced the notion of a virtual component in order to realize such a combination. It permits to define the behaviour of several components assembled to process a flow of data, using BIT. Test-cases are defined in a way that they are simple to write and flexible to adapt. We present two implementations of our proposed virtual component integration testing technique, and we extend our previous proposal to detect and handle errors in the definition by the user. The evaluation of the virtual component testing approach suggests that more issues can be detected in systems with data-flows than through other integration testing approaches.
NASA Technical Reports Server (NTRS)
Thompkins, W. T., Jr.
1982-01-01
A FORTRAN-IV computer program was developed for the calculation of the inviscid transonic/supersonic flow field in a fully three dimensional blade passage of an axial compressor rotor or stator. Rotors may have dampers (part span shrouds). MacCormack's explicit time marching method is used to solve the unsteady Euler equations on a finite difference mesh. This technique captures shocks and smears them over several grid points. Input quantities are blade row geometry, operating conditions and thermodynamic quanities. Output quantities are three velocity components, density and internal energy at each mesh point. Other flow quanities are calculated from these variables. A short graphics package is included with the code, and may be used to display the finite difference grid, blade geometry and static pressure contour plots on blade to blade calculation surfaces or blade suction and pressure surfaces. The flow in a low aspect ratio transonic compressor was analyzed and compared with high response total pressure probe measurements and gas fluorescence static density measurements made in the MIT blowdown wind tunnel. These comparisons show that the computed flow fields accurately model the measured shock wave locations and overall aerodynamic performance.
Suction performance and internal flow of a 2-bladed helical inducer with inlet asymmetric plate
NASA Astrophysics Data System (ADS)
Watanabe, S.; Uchinono, Y.; Ishizaka, K.; Furukawa, A.; Kim, J.-H.
2013-10-01
It has been found in our past studies that the installation of asymmetric plate at the inlet of inducer is effective for the suppression of cavitation surge phenomenon. In the present study, the suction performance of 2-bladed helical inducer with an inlet asymmetric plate is experimentally investigated. It is observed that the suction performance in large flow rate conditions is not significantly influenced by the asymmetric plate, whereas the head of inducer with the asymmetric plate increases just before the head breakdown in partial flow conditions. To understand the mechanism of this additional head, the flow measurements and the numerical simulations are carried out. It is found that the circumferential component of absolute velocity at the exit of inducer slightly increases with the development of cavitation in both cases with and without the inlet asymmetric plate, indicating the increase of the theoretical head. The theoretical head increase with the inlet asymmetric plate is also confirmed by the unsteady numerical simulations, suggesting that the additional head is achieved through the increase of the theoretical head with the change of the exiting flow from the inducer associated with some amount of cavitation.
Friedman, Morton H; Krams, Rob; Chandran, Krishnan B
2010-03-01
Interactions between flow and biological cells and tissues are intrinsic to the circulatory, respiratory, digestive and genitourinary systems. In the circulatory system, an understanding of the complex interaction between the arterial wall (a living multi-component organ with anisotropic, nonlinear material properties) and blood (a shear-thinning fluid with 45% by volume consisting of red blood cells, platelets, and white blood cells) is vital to our understanding of the physiology of the human circulation and the etiology and development of arterial diseases, and to the design and development of prosthetic implants and tissue-engineered substitutes. Similarly, an understanding of the complex dynamics of flow past native human heart valves and the effect of that flow on the valvular tissue is necessary to elucidate the etiology of valvular diseases and in the design and development of valve replacements. In this paper we address the influence of biomechanical factors on the arterial circulation. The first part presents our current understanding of the impact of blood flow on the arterial wall at the cellular level and the relationship between flow-induced stresses and the etiology of atherosclerosis. The second part describes recent advances in the application of fluid-structure interaction analysis to arterial flows and the dynamics of heart valves.
Testing of an Ammonia EVA Vent Tool for the International Space Station
NASA Technical Reports Server (NTRS)
Ungar, Eugene K.; Stanewich, Brett J.; Wilhelm, Sheri Munekata
2000-01-01
When components of the International Space Station ammonia External Active Thermal Control System are replaced on-orbit, they must be vented immediately after removal from the system. Venting ensures that the component is not hard packed with liquid and thus does not pose a hazard. An extravehicular activity (EVA) vent tool has been developed to perform this function. However, there were concerns that the tool could whip, posing a hazard to the EVA astronaut, or would freeze. The ammonia vent tool was recently tested in a thermal/vacuum chamber to demonstrate that it would operate safely and would not freeze during venting. During the test, ammonia mimicking the venting conditions for six different heat exchanger initial conditions was passed through representative test articles. In the present work, the model that was used to develop the ammonia state and flow for the test points is discussed and the test setup and operation is described. The qualitative whipping and freezing results of the test are discussed and vent plume pressure measurements are described and interpreted.
Internal-external flow integration for a thin ejector-flapped wing section
NASA Technical Reports Server (NTRS)
Woolard, H. W.
1979-01-01
Thin airfoil theories of an ejector flapped wing section are reviewed. The global matching of the external airfoil flow with the ejector internal flow and the overall ejector flapped wing section aerodynamic performance are examined. Mathematical models of the external and internal flows are presented. The delineation of the suction flow coefficient characteristics are discussed. The idealized lift performance of an ejector flapped wing relative to a jet augmented flapped wing are compared.
Kennen, Jonathan G.; Henriksen, James A.; Nieswand, Steven P.
2007-01-01
The natural flow regime paradigm and parallel stream ecological concepts and theories have established the benefits of maintaining or restoring the full range of natural hydrologic variation for physiochemical processes, biodiversity, and the evolutionary potential of aquatic and riparian communities. A synthesis of recent advances in hydroecological research coupled with stream classification has resulted in a new process to determine environmental flows and assess hydrologic alteration. This process has national and international applicability. It allows classification of streams into hydrologic stream classes and identification of a set of non-redundant and ecologically relevant hydrologic indices for 10 critical sub-components of flow. Three computer programs have been developed for implementing the Hydroecological Integrity Assessment Process (HIP): (1) the Hydrologic Indices Tool (HIT), which calculates 171 ecologically relevant hydrologic indices on the basis of daily-flow and peak-flow stream-gage data; (2) the New Jersey Hydrologic Assessment Tool (NJHAT), which can be used to establish a hydrologic baseline period, provide options for setting baseline environmental-flow standards, and compare past and proposed streamflow alterations; and (3) the New Jersey Stream Classification Tool (NJSCT), designed for placing unclassified streams into pre-defined stream classes. Biological and multivariate response models including principal-component, cluster, and discriminant-function analyses aided in the development of software and implementation of the HIP for New Jersey. A pilot effort is currently underway by the New Jersey Department of Environmental Protection in which the HIP is being used to evaluate the effects of past and proposed surface-water use, ground-water extraction, and land-use changes on stream ecosystems while determining the most effective way to integrate the process into ongoing regulatory programs. Ultimately, this scientifically defensible process will help to quantify the effects of anthropogenic changes and development on hydrologic variability and help planners and resource managers balance current and future water requirements with ecological needs.
Verification of reflectance models in turbid waters
NASA Technical Reports Server (NTRS)
Tanis, F. J.; Lyzenga, D. R.
1981-01-01
Inherent optical parameters of very turbid waters were used to evaluate existing water reflectance models. Measured upwelling radiance spectra and Monte Carlo simulations of the radiative transfer equations were compared with results from models based upon two flow, quasi-single scattering, augmented isotropic scattering, and power series approximation. Each model was evaluated for three separate components of upwelling radiance: (1) direct sunlight; (2) diffuse skylight; and (3) internally reflected light. Limitations of existing water reflectance models as applied to turbid waters and possible applications to the extraction of water constituent information are discussed.
1985-09-01
Transducers capable of measuring electro-hydraulic control system which fore-aft and vertical load on a driven controls the brake system to deactivate tire...power. * axle allows design of all load-carrying - System logic power. ENGINE I EXTERNAL COMPARTMENT COMPONENTS CAB Brake Levelin system I trans... brake con- The TWS DAS was designed to 1) pro- trol system . vide onboard data sampling and filtering, A simplified truck operational flow chart 2) make
Dickinson, Jesse; Land, Michael; Faunt, Claudia C.; Leake, S.A.; Reichard, Eric G.; Fleming, John B.; Pool, D.R.
2006-01-01
The ground-water and surface-water system in the Yuma area in southwestern Arizona and southeastern California is managed intensely to meet water-delivery requirements of customers in the United States, to manage high ground-water levels in the valleys, and to maintain treaty-mandated water-quality and quantity requirements of Mexico. The following components in this report, which were identified to be useful in the development of a ground-water management model, are: (1) refinement of the hydrogeologic framework; (2) updated water-level maps, general ground-water flow patterns, and an estimate of the amount of ground water stored in the mound under Yuma Mesa; (3) review and documentation of the ground-water budget calculated by the Bureau of Reclamation, U.S. Department of the Interior (Reclamation); and (4) water-chemistry characterization to identify the spatial distribution of water quality, information on sources and ages of ground water, and information about the productive-interval depths of the aquifer. A refined three-dimensional digital hydrogeologic framework model includes the following hydrogeologic units from bottom to top: (1) the effective hydrologic basement of the basin aquifer, which includes the Pliocene Bouse Formation, Tertiary volcanic and sedimentary rocks, and pre-Tertiary metamorphic and plutonic rocks; (2) undifferentiated lower units to represent the Pliocene transition zone and wedge zone; (3) coarse-gravel unit; (4) lower, middle, and upper basin fill to represent the upper, fine-grained zone between the top of the coarse-gravel unit and the land surface; and (5) clay A and clay B. Data for the refined model includes digital elevation models, borehole lithology data, geophysical data, and structural data to represent the geometry of the hydrogeologic units. The top surface of the coarse-gravel unit, defined by using borehole and geophysical data, varies similarly to terraces resulting from the down cutting of the Colorado River. Clay A is nearly the same as the previous conceptual hydrogeologic model definition (Olmsted and others, 1973), except for a minor westward extension from the city of Yuma. Clay B is extended to the southerly international boundary and increased in areal extent by about two-thirds of the original extent (Olmsted and others, 1973). The other hydrogeologic units generally are the same as in the previous conceptual hydrogeologic model. Before development, the Colorado and Gila Rivers were the sources of nearly all the ground water in the Yuma area through direct infiltration of water from river channels and annual overbank flooding. After construction of upstream reservoirs and clearing and irrigation of the floodplains, the rivers now act as drains for the ground water. Ground-water levels in most of the Yuma area are higher now than they were in predevelopment time. A general gradient of ground-water flow toward the natural discharge area south of the Yuma area still exists, but many other changes in flow are evident. Ground water in Yuma Valley once flowed away from the Colorado River, but now has a component of flow towards the river and Mexicali Valley. A ground-water mound has formed under Yuma Mesa from long-term surface-water irrigation; about 600,000 to 800,000 acre-ft of water are stored in the mound. Ground-water withdrawals adjacent to the southerly international boundary have resulted in water-level declines in that area. The reviewed and documented water budget includes the following components: (1) recharge in irrigated areas, (2) evapotranspiration by irrigated crops and phreatophytes, (3) ground-water return flow to the Colorado River, and (4) ground-water withdrawals (including those in Mexicali Valley). Recharge components were calculated by subtracting the amount of water used by crops from the amount of water delivered. Evapotranspiration rates were calculated on the basis of established methods, thus were appropriate for input to the ground-wate
International Trade Modelling Using Open Flow Networks: A Flow-Distance Based Analysis.
Shen, Bin; Zhang, Jiang; Li, Yixiao; Zheng, Qiuhua; Li, Xingsen
2015-01-01
This paper models and analyzes international trade flows using open flow networks (OFNs) with the approaches of flow distances, which provide a novel perspective and effective tools for the study of international trade. We discuss the establishment of OFNs of international trade from two coupled viewpoints: the viewpoint of trading commodity flow and that of money flow. Based on the novel model with flow distance approaches, meaningful insights are gained. First, by introducing the concepts of trade trophic levels and niches, countries' roles and positions in the global supply chains (or value-added chains) can be evaluated quantitatively. We find that the distributions of trading "trophic levels" have the similar clustering pattern for different types of commodities, and summarize some regularities between money flow and commodity flow viewpoints. Second, we find that active and competitive countries trade a wide spectrum of products, while inactive and underdeveloped countries trade a limited variety of products. Besides, some abnormal countries import many types of goods, which the vast majority of countries do not need to import. Third, harmonic node centrality is proposed and we find the phenomenon of centrality stratification. All the results illustrate the usefulness of the model of OFNs with its network approaches for investigating international trade flows.
International Trade Modelling Using Open Flow Networks: A Flow-Distance Based Analysis
Shen, Bin; Zhang, Jiang; Li, Yixiao; Zheng, Qiuhua; Li, Xingsen
2015-01-01
This paper models and analyzes international trade flows using open flow networks (OFNs) with the approaches of flow distances, which provide a novel perspective and effective tools for the study of international trade. We discuss the establishment of OFNs of international trade from two coupled viewpoints: the viewpoint of trading commodity flow and that of money flow. Based on the novel model with flow distance approaches, meaningful insights are gained. First, by introducing the concepts of trade trophic levels and niches, countries’ roles and positions in the global supply chains (or value-added chains) can be evaluated quantitatively. We find that the distributions of trading “trophic levels” have the similar clustering pattern for different types of commodities, and summarize some regularities between money flow and commodity flow viewpoints. Second, we find that active and competitive countries trade a wide spectrum of products, while inactive and underdeveloped countries trade a limited variety of products. Besides, some abnormal countries import many types of goods, which the vast majority of countries do not need to import. Third, harmonic node centrality is proposed and we find the phenomenon of centrality stratification. All the results illustrate the usefulness of the model of OFNs with its network approaches for investigating international trade flows. PMID:26569618
Internal flow measurement in transonic compressor by PIV technique
NASA Astrophysics Data System (ADS)
Wang, Tongqing; Wu, Huaiyu; Liu, Yin
2001-11-01
The paper presents some research works conducted in National Key Laboratory of Aircraft Engine of China on the shock containing supersonic flow measurement as well as the internal flow measurement of transoijc compressor by PIC technique. A kind of oil particles in diameter about 0.3 micrometers containing in the flow was discovered to be a very good seed for the PIV measurement of supersonic jet flow. The PIV measurement in over-expanded supersonic free jet and in the flow over wages show a very clear shock wave structure. In the PIV internal flow measurement of transonic compressor a kind of liquid particle of glycol was successful to be used as the seed. An illumination periscope with sheet forming optics was designed and manufactured, it leaded the laser shot generated from an integrate dual- cavity Nd:YAG laser of TSI PIV results of internal flow of an advanced low aspect ratio transonic compressor were shown and discussed briefly.
Flow Partitioning in Fully Saturated Soil Aggregates
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, Xiaofan; Richmond, Marshall C.; Scheibe, Timothy D.
2014-03-30
Microbes play an important role in facilitating organic matter decomposition in soils, which is a major component of the global carbon cycle. Microbial dynamics are intimately coupled to environmental transport processes, which control access to labile organic matter and other nutrients that are needed for the growth and maintenance of microorganisms. Transport of soluble nutrients in the soil system is arguably most strongly impacted by preferential flow pathways in the soil. Since the physical structure of soils can be characterized as being formed from constituent micro aggregates which contain internal porosity, one pressing question is the partitioning of the flowmore » among the “inter-aggregate” and “intra-aggregate” pores and how this may impact overall solute transport within heterogeneous soil structures. The answer to this question is particularly important in evaluating assumptions to be used in developing upscaled simulations based on highly-resolved mechanistic models. We constructed a number of diverse multi-aggregate structures with different packing ratios by stacking micro-aggregates containing internal pores and varying the size and shape of inter-aggregate pore spacing between them. We then performed pore-scale flow simulations using computational fluid dynamics methods to determine the flow patterns in these aggregate-of-aggregates structures and computed the partitioning of the flow through intra- and inter-aggregate pores as a function of the spacing between the aggregates. The results of these numerical experiments demonstrate that soluble nutrients are largely transported via flows through inter-aggregate pores. Although this result is consistent with intuition, we have also been able to quantify the relative flow capacity of the two domains under various conditions. For example, in our simulations, the flow capacity through the aggregates (intra-aggregate flow) was less than 2% of the total flow when the spacing between the aggregates was larger than 18 micron. Inter-aggregate pores continued to be the dominant flow pathways even at much smaller spacing; intra-aggregate flow was less than 10% of the total flow when the inter- and intra-aggregate pore sizes were comparable. Such studies are making it possible to identify which model upscaling assumptions are realistic and what computational methods are required for detailed numerical investigation of microbial carbon cycling dynamics in soil systems.« less
Flexible Inhibitor Fluid-Structure Interaction Simulation in RSRM.
NASA Astrophysics Data System (ADS)
Wasistho, Bono
2005-11-01
We employ our tightly coupled fluid/structure/combustion simulation code 'Rocstar-3' for solid propellant rocket motors to study 3D flows past rigid and flexible inhibitors in the Reusable Solid Rocket Motor (RSRM). We perform high resolution simulations of a section of the rocket near the center joint slot at 100 seconds after ignition, using inflow conditions based on less detailed 3D simulations of the full RSRM. Our simulations include both inviscid and turbulent flows (using LES dynamic subgrid-scale model), and explore the interaction between the inhibitor and the resulting fluid flow. The response of the solid components is computed by an implicit finite element solver. The internal mesh motion scheme in our block-structured fluid solver enables our code to handle significant changes in geometry. We compute turbulent statistics and determine the compound instabilities originated from the natural hydrodynamic instabilities and the inhibitor motion. The ultimate goal is to studdy the effect of inhibitor flexing on the turbulent field.
Internal and external axial corner flows
NASA Technical Reports Server (NTRS)
Kutler, P.; Shankar, V.; Anderson, D. A.; Sorenson, R. L.
1975-01-01
The inviscid, internal, and external axial corner flows generated by two intersecting wedges traveling supersonically are obtained by use of a second-order shock-capturing, finite-difference approach. The governing equations are solved iteratively in conical coordinates to yield the complicated wave structure of the internal corner and the simple peripheral shock of the external corner. The numerical results for the internal flows compare favorably with existing experimental data.
Diagram of the Water Recovery and Management for the International Space Station
NASA Technical Reports Server (NTRS)
2000-01-01
This diagram shows the flow of water recovery and management in the International Space Station (ISS). The Environmental Control and Life Support System (ECLSS) Group of the Flight Projects Directorate at the Marshall Space Flight Center is responsible for the regenerative ECLSS hardware, as well as providing technical support for the rest of the system. The regenerative ECLSS, whose main components are the Water Recovery System (WRS), and the Oxygen Generation System (OGS), reclaims and recycles water oxygen. The ECLSS maintains a pressurized habitation environment, provides water recovery and storage, maintains and provides fire detection/ suppression, and provides breathable air and a comfortable atmosphere in which to live and work within the ISS. The ECLSS hardware will be located in the Node 3 module of the ISS.
Comparison of superhydrophobic drag reduction between turbulent pipe and channel flows
NASA Astrophysics Data System (ADS)
Im, Hyung Jae; Lee, Jae Hwa
2017-09-01
It has been known over several decades that canonical wall-bounded internal flows of a pipe and channel share flow similarities, in particular, close to the wall due to the negligible curvature effect. In the present study, direct numerical simulations of fully developed turbulent pipe and channel flows are performed to investigate the influence of the superhydrophobic surfaces (SHSs) on the turbulence dynamics and the resultant drag reduction (DR) of the flows under similar conditions. SHSs at the wall are modeled in spanwise-alternating longitudinal regions with a boundary with no-slip and shear-free conditions, and the two parameters of the spanwise periodicity (P/δ) and SHS fraction (GF) within a pitch are considered. It is shown, in agreement with previous investigations in channels, that the turbulent drag for the pipe and channel flows over SHSs is continuously decreased with increases in P/δ and GF. However, the DR rate in the pipe flows is greater than that in the channel flows with an accompanying reduction of the Reynolds stress. The enhanced performance of the DR for the pipe flow is attributed to the increased streamwise slip and weakened Reynolds shear stress contributions. In addition, a mathematical analysis of the spanwise mean vorticity equation suggests that the presence of a strong secondary flow due to the increased spanwise slip of the pipe flows makes a greater negative contribution of advective vorticity transport than the channel flows, resulting in a higher DR value. Finally, an inspection of the origin of the mean secondary flow in turbulent flows over SHSs based on the spatial gradients of the turbulent kinetic energy demonstrates that the secondary flow is both driven and sustained by spatial gradients in the Reynolds stress components, i.e., Prandtl's secondary flow of the second kind.
Compare Vehicle Technologies | Transportation Research | NREL
electric car diagramming energy storage, power electronics, and climate control components, as well as storage, power electronics, and climate control components, as well as energy flow among components. 3-D control components, as well as energy flow among components. 3-D illustration of electric car diagramming
Kiffer, Micah S.; Tentarelli, Stephen Clyde
2016-02-09
Excess flow shutoff valve comprising a valve body, a valve plug, a partition, and an activation component where the valve plug, the partition, and activation component are disposed within the valve body. A suitable flow restriction is provided to create a pressure difference between the upstream end of the valve plug and the downstream end of the valve plug when fluid flows through the valve body. The pressure difference exceeds a target pressure difference needed to activate the activation component when fluid flow through the valve body is higher than a desired rate, and thereby closes the valve.
Development of Doppler Global Velocimetry as a Flow Diagnostics Tool
NASA Technical Reports Server (NTRS)
Meyers, James F.
1995-01-01
The development of Doppler global velocimetry is described from its inception to its use as a flow diagnostics tool. Its evolution is traced from an elementary one-component laboratory prototype, to a full three-component configuration operating in a wind tunnel at focal distances exceeding 15 m. As part of the developmental process, several wind tunnel flow field investigations were conducted. These included supersonic flow measurements about an oblique shock, subsonic and supersonic measurements of the vortex flow above a delta wing, and three-component measurements of a high-speed jet.
Internal Carotid Artery Hypoplasia: Role of Color-Coded Carotid Duplex Sonography.
Chen, Pei-Ya; Liu, Hung-Yu; Lim, Kun-Eng; Lin, Shinn-Kuang
2015-10-01
The purpose of this study was to determine the role of color-coded carotid duplex sonography for diagnosis of internal carotid artery hypoplasia. We retrospectively reviewed 25,000 color-coded carotid duplex sonograms in our neurosonographic database to establish more diagnostic criteria for internal carotid artery hypoplasia. A definitive diagnosis of internal carotid artery hypoplasia was made in 9 patients. Diagnostic findings on color-coded carotid duplex imaging include a long segmental small-caliber lumen (52% diameter) with markedly decreased flow (13% flow volume) in the affected internal carotid artery relative to the contralateral side but without intraluminal lesions. Indirect findings included markedly increased total flow volume (an increase of 133%) in both vertebral arteries, antegrade ipsilateral ophthalmic arterial flow, and a reduced vessel diameter with increased flow resistance in the ipsilateral common carotid artery. Ten patients with distal internal carotid artery dissection showed a similar color-coded duplex pattern, but the reductions in the internal and common carotid artery diameters and increase in collateral flow from the vertebral artery were less prominent than those in hypoplasia. The ipsilateral ophthalmic arterial flow was retrograde in 40% of patients with distal internal carotid artery dissection. In addition, thin-section axial and sagittal computed tomograms of the skull base could show the small diameter of the carotid canal in internal carotid artery hypoplasia and help distinguish hypoplasia from distal internal carotid artery dissection. Color-coded carotid duplex sonography provides important clues for establishing a diagnosis of internal carotid artery hypoplasia. A hypoplastic carotid canal can be shown by thin-section axial and sagittal skull base computed tomography to confirm the final diagnosis. © 2015 by the American Institute of Ultrasound in Medicine.
Doescher, A; Loges, U; Petershofen, E K; Müller, T H
2017-11-01
Enumeration of residual white blood cells in leucoreduced blood components is essential part of quality control. Digital PCR has substantially facilitated quantitative PCR and was thus evaluated for measurements of leucocytes. Target for quantification of leucocytes by digital droplet PCR was the blood group gene RHCE. The SPEF1 gene was added as internal control for the entire assay starting with automated DNA extraction. The sensitivity of the method was determined by serial dilutions of standard samples. Quality control samples were analysed within 24 h, 7 days and 6 months after collection. Routine samples from leucodepleted red blood cell concentrates (n = 150) were evaluated in parallel by flow-cytometry (LeucoCount) and by digital PCR. Digital PCR reliably detected at least 0·4 leucocytes per assay. The mean difference between PCR and flow-cytometric results from 150 units was -0·01 (±1·0). DNA samples were stable for up to at least six months. PCR measurement of leucocytes in samples from plasma and platelet concentrates also provided valid results in a pilot study. Droplet digital PCR to enumerate leucocytes offers an alternative for quality control of leucoreduced blood products. Sensitivity, specificity and reproducibility are comparable to flow-cytometry. The option to collect samples over an extended period of time and the automatization introduce attractive features for routine quality control. © 2017 International Society of Blood Transfusion.
Study on interfacial stability and internal flow of a droplet levitated by ultrasonic wave.
Abe, Yutaka; Yamamoto, Yuji; Hyuga, Daisuke; Awazu, Shigeru; Aoki, Kazuyoshi
2009-04-01
For a microgravity environment, new and high-quality material is expected to be manufactured. However, the effect of surface instability and the internal flow become significant when the droplet becomes large. Elucidation of internal flow and surface instability on a levitated droplet is required for the quality improvement of new material manufacturing in a microgravity environment. The objectives of this study are to clarify the interfacial stability and internal flow of a levitated droplet. Surface instability and internal flow are investigated with a large droplet levitated by the ultrasonic acoustic standing wave. The experiment with a large droplet is conducted both under normal gravity and microgravity environments. In the experiment, at first, the characteristics of the levitated droplet are investigated; that is, the relationships among the levitated droplet diameter, the droplet aspect ratio, the displacement of the antinode of the standing wave, and the sound pressure are experimentally measured. As a result, it is clarified that the levitated droplet tends to be located at an optimal position with an optimal shape and diameter. Second, the border condition between the stable and the unstable levitation of the droplet is evaluated by using the existing stability theory. The experimental results qualitatively agree with the theory. It is suggested that the stability of the droplet can be evaluated with the stability theory. Finally, multidimensional visual measurement is conducted to investigate the internal flow structure in a levitated droplet. It is suggested that complex flow with the vortex is generated in the levitated droplet. Moreover, the effect of physical properties of the test fluid on the internal flow structure of the levitated droplet is investigated. As a result, the internal flow structure of the levitated droplet is affected by the surface tension and viscosity.
Three dimensional steady subsonic Euler flows in bounded nozzles
NASA Astrophysics Data System (ADS)
Chen, Chao; Xie, Chunjing
The existence and uniqueness of three dimensional steady subsonic Euler flows in rectangular nozzles were obtained when prescribing normal component of momentum at both the entrance and exit. If, in addition, the normal component of the voriticity and the variation of Bernoulli's function at the entrance are both zero, then there exists a unique subsonic potential flow when the magnitude of the normal component of the momentum is less than a critical number. As the magnitude of the normal component of the momentum approaches the critical number, the associated flows converge to a subsonic-sonic flow. Furthermore, when the normal component of vorticity and the variation of Bernoulli function are both small, the existence and uniqueness of subsonic Euler flows with non-zero vorticity are established. The proof of these results is based on a new formulation for the Euler system, a priori estimate for nonlinear elliptic equations with nonlinear boundary conditions, detailed study for a linear div-curl system, and delicate estimate for the transport equations.
Sia, Sheau Fung; Zhao, Xihai; Li, Rui; Zhang, Yu; Chong, Winston; He, Le; Chen, Yu
2016-11-01
Internal carotid artery stenosis requires an accurate risk assessment for the prevention of stroke. Although the internal carotid artery area stenosis ratio at the common carotid artery bifurcation can be used as one of the diagnostic methods of internal carotid artery stenosis, the accuracy of results would still depend on the measurement techniques. The purpose of this study is to propose a novel method to estimate the effect of internal carotid artery stenosis on the blood flow based on the concept of minimization of energy loss. Eight internal carotid arteries from different medical centers were diagnosed as stenosed internal carotid arteries, as plaques were found at different locations on the vessel. A computational fluid dynamics solver was developed based on an open-source code (OpenFOAM) to test the flow ratio and energy loss of those stenosed internal carotid arteries. For comparison, a healthy internal carotid artery and an idealized internal carotid artery model have also been tested and compared with stenosed internal carotid artery in terms of flow ratio and energy loss. We found that at a given common carotid artery bifurcation, there must be a certain flow distribution in the internal carotid artery and external carotid artery, for which the total energy loss at the bifurcation is at a minimum; for a given common carotid artery flow rate, an irregular shaped plaque at the bifurcation constantly resulted in a large value of minimization of energy loss. Thus, minimization of energy loss can be used as an indicator for the estimation of internal carotid artery stenosis.
NASA Astrophysics Data System (ADS)
Zagoni, M.
2017-12-01
Over the past fifteen years, the NASA Clouds and the Earth's Radiant Energy System (CERES) satellite mission has provided the scientific community with the most reliable Earth radiation budget data. This presentation offers quantitative assessment of the published CERES Energy Balanced and Filled (EBAF) Edition 2.8 and Edition 4.0 data products, and reveals several internal patterns, ratios and regularities within the annual global mean flux components of the all-sky and clear-sky surface and atmospheric energy budgets. The found patterns, among others, include: (i) direct relationships between the top-of-atmosphere (TOA) radiative and surface radiative and non-radiative fluxes (contradicting the expectation that TOA and surface fluxes are physically decoupled); (ii) integer ratios and relationships between the absorbed and emitted surface and atmospheric energy flow elements; and (iii) definite connections among the clear-sky and the all-sky shortwave, longwave and non-radiative (turbulent) flux elements and the corresponding greenhouse effect. Comparison between the EBAF Ed2.8 and Ed4.0 SFC and TOA data products and trend analyses of the normalized clear-sky and all-sky greenhouse factors are presented. Longwave cloud radiative effect (LW CRE) proved to be playing a principal role in organizing the found numerical patterns in the surface and atmospheric energy flow components. All of the revealed structures are quantitatively valid within the one-sigma range of uncertainty of the involved individual flux elements. This presentation offers a conceptual framework to interpret the found relationships and shows how the observed CERES fluxes can be deduced from this proposed physical model. An important conclusion drawn from our analysis is that the internal atmospheric and surface energy flow system forms a definite structure and seems to be more constrained to the incoming solar energy than previously thought.
Schrauben, E M; Johnson, K M; Huston, J; Del Rio, A M; Reeder, S B; Field, A; Wieben, O
2014-05-01
The chronic cerebrospinal venous insufficiency hypothesis raises interest in cerebrospinal venous blood flow imaging, which is more complex and less established than in arteries. For accurate assessment of venous flow in chronic cerebrospinal venous insufficiency diagnosis and research, we must account for physiologic changes in flow patterns. This study examines day-to-day flow variability in cerebrospinal veins by use of 4D MR flow and contrast-enhanced MRA under typical, uncontrolled conditions in healthy individuals. Ten healthy volunteers were scanned in a test-retest fashion by use of a 4D flow MR imaging technique and contrast-enhanced MRA. Flow parameters obtained from phase contrast-vastly undersampled isotropic projection reconstruction and contrast-enhanced MRA scoring measurements in the head, neck, and chest veins were analyzed for internal consistency and interscan reproducibility. Internal consistency was satisfied at the torcular herophili, with an input-output difference of 2.2%. Percentages of variations in flow were 20.3%, internal jugular vein; 20.4%, azygos vein; 6.8%, transverse sinus; and 5.1%, common carotid artery. Retrograde flow was found in the lower internal jugular vein (4.8%) and azygos vein (7.2%). Contrast-enhanced MRA interscan κ values for the internal jugular vein (left: 0.474, right: 0.366) and azygos vein (-0.053) showed poor interscan agreement. Phase contrast-vastly undersampled isotropic projection reconstruction blood flow measurements are reliable and highly reproducible in intracranial veins and in the common carotid artery but not in veins of the neck (internal jugular vein) and chest (azygos vein) because of normal physiologic variation. Retrograde flow normally may be observed in the lower internal jugular vein and azygos vein. Low interrater agreement in contrast-enhanced MRA scans was observed. These findings have important implications for imaging diagnosis and experimental research of chronic cerebrospinal venous insufficiency. © 2014 by American Journal of Neuroradiology.
National Combustion Code: A Multidisciplinary Combustor Design System
NASA Technical Reports Server (NTRS)
Stubbs, Robert M.; Liu, Nan-Suey
1997-01-01
The Internal Fluid Mechanics Division conducts both basic research and technology, and system technology research for aerospace propulsion systems components. The research within the division, which is both computational and experimental, is aimed at improving fundamental understanding of flow physics in inlets, ducts, nozzles, turbomachinery, and combustors. This article and the following three articles highlight some of the work accomplished in 1996. A multidisciplinary combustor design system is critical for optimizing the combustor design process. Such a system should include sophisticated computer-aided design (CAD) tools for geometry creation, advanced mesh generators for creating solid model representations, a common framework for fluid flow and structural analyses, modern postprocessing tools, and parallel processing. The goal of the present effort is to develop some of the enabling technologies and to demonstrate their overall performance in an integrated system called the National Combustion Code.
NASA Technical Reports Server (NTRS)
Ballard, Jerrell R., Jr.; Howington, Stacy E.; Cinnella, Pasquale; Smith, James A.
2011-01-01
The temperature and moisture regimes in a forest are key components in the forest ecosystem dynamics. Observations and studies indicate that the internal temperature distribution and moisture content of the tree influence not only growth and development, but onset and cessation of cambial activity [1], resistance to insect predation[2], and even affect the population dynamics of the insects [3]. Moreover, temperature directly affects the uptake and metabolism of population from the soil into the tree tissue [4]. Additional studies show that soil and atmospheric temperatures are significant parameters that limit the growth of trees and impose treeline elevation limitation [5]. Directional thermal infrared radiance effects have long been observed in natural backgrounds [6]. In earlier work, we illustrated the use of physically-based models to simulate directional effects in thermal imaging [7-8]. In this paper, we illustrated the use of physically-based models to simulate directional effects in thermal, and net radiation in a adeciduous forest using our recently developed three-dimensional, macro-scale computational tool that simulates the heat and mass transfer interaction in a soil-root-stem systems (SRSS). The SRSS model includes the coupling of existing heat and mass transport tools to stimulate the diurnal internal and external temperatures, internal fluid flow and moisture distribution, and heat flow in the system.
NASA Technical Reports Server (NTRS)
DiStefano, III, Frank James (Inventor); Wobick, Craig A. (Inventor); Chapman, Kirt Auldwin (Inventor); McCloud, Peter L. (Inventor)
2014-01-01
A thermal fluid system modeler including a plurality of individual components. A solution vector is configured and ordered as a function of one or more inlet dependencies of the plurality of individual components. A fluid flow simulator simulates thermal energy being communicated with the flowing fluid and between first and second components of the plurality of individual components. The simulation extends from an initial time to a later time step and bounds heat transfer to be substantially between the flowing fluid, walls of tubes formed in each of the individual components of the plurality, and between adjacent tubes. Component parameters of the solution vector are updated with simulation results for each of the plurality of individual components of the simulation.
Immediate flow reserve of Y thoracic artery grafts: an intraoperative flowmetric study.
Gaudino, Mario; Di Mauro, Michele; Iacò, Angela Lorena; Canosa, Carlo; Vitolla, Giuseppe; Calafiore, Antonio Maria
2003-10-01
Use of both internal thoracic arteries in a Y graft configuration can raise concerns about the possibility of the single left internal thoracic artery being able to meet the flow requirements of two or three distal territories. We evaluated intraoperatively the flow reserve of a Y thoracic artery graft distally anastomosed to the anterior and lateral territories. In 21 patients who had Y thoracic artery grafts, the flow was measured in the main stem of the left internal thoracic artery, in the left internal thoracic artery branch, and in the right internal thoracic artery. A transit time Doppler flowmeter was used. Measurements were repeated after the injection of a bolus of 20 mug/kg dobutamine. At baseline condition, the mean blood flow was 44.8 +/- 24.2, 23.4 +/- 11.5, and 21.4 +/- 15.3 mL/min in the main stem of the left internal thoracic artery, in the left internal thoracic artery branch, and in the right internal thoracic artery, respectively. After dobutamine injection, these values increased to 93.2 +/- 49.8, 46.1 +/- 22.6, and 42.5 +/- 31.2 mL/min, respectively. Flow reserve was 2.1 +/- 0.6, 2.2 +/- 0.9, and 2.1 +/- 0.9 mL/min, respectively. Intraoperative injection of dobutamine increases the flow in the Y thoracic graft by more than two times, not only in the main stem but also in each branch. This finding attests to the safety of Y thoracic conduits in terms of hemodynamic potential.
Kalicka, Renata; Mazur, Kamila; Wolf, Jacek; Frydrychowski, Andrzej F; Narkiewicz, Krzysztof; Winklewski, Pawel J
2017-09-01
During apnoea, the pial artery is subjected to two opposite physiological processes: vasoconstriction due to elevated blood pressure and vasorelaxation driven by rising pH in the brain parenchyma. We hypothesized that the pial artery response to apnoea may vary, depending on which process dominate. Apnoea experiments were performed in a group of 19 healthy, non-smoking volunteers (9 men and 10 women). The following parameters were obtained for further analysis: blood pressure, the cardiac (from 0.5 to 5.0Hz) and slow (<0.5Hz) components of subarachnoid space width, heart rate, mean cerebral blood flow velocity in the internal carotid artery, pulsatility and resistivity index, internal carotid artery diameter, blood oxygen saturation and end-tidal carbon dioxide. The experiment consisted of three apnoeas, sequentially: 30s, 60s and maximal apnoea. The breath-hold was separated for 5minute rest. The control process is sophisticated, involving internal cross-couplings and cross-dependences. The aim of work was to find a mathematical dependence between data. Unexpectedly, the modelling revealed two different reactions, on the same experimental procedure. As a consequence, there are two subsets of cardiac subarachnoid space width responses to breath-hold in humans. A positive cardiac subarachnoid space width change to apnoea depends on changes in heart rate and cerebral blood flow velocity. A negative cardiac subarachnoid space width change to apnoea is driven by heart rate, mean arterial pressure and pulsatility index changes. The described above two different reactions to experimental breath-hold provides new insights into our understanding of the complex mechanisms governing the adaptation to apnoea in humans. We proposed a mathematical methodology that can be used in further clinical research. Copyright © 2017 Elsevier Inc. All rights reserved.
Solid rocket booster internal flow analysis by highly accurate adaptive computational methods
NASA Technical Reports Server (NTRS)
Huang, C. Y.; Tworzydlo, W.; Oden, J. T.; Bass, J. M.; Cullen, C.; Vadaketh, S.
1991-01-01
The primary objective of this project was to develop an adaptive finite element flow solver for simulating internal flows in the solid rocket booster. Described here is a unique flow simulator code for analyzing highly complex flow phenomena in the solid rocket booster. New methodologies and features incorporated into this analysis tool are described.
Catalytic cartridge SO.sub.3 decomposer
Galloway, Terry R.
1982-01-01
A catalytic cartridge internally heated is utilized as a SO.sub.3 decomposer for thermochemical hydrogen production. The cartridge has two embodiments, a cross-flow cartridge and an axial flow cartridge. In the cross-flow cartridge, SO.sub.3 gas is flowed through a chamber and incident normally to a catalyst coated tube extending through the chamber, the catalyst coated tube being internally heated. In the axial-flow cartridge, SO.sub.3 gas is flowed through the annular space between concentric inner and outer cylindrical walls, the inner cylindrical wall being coated by a catalyst and being internally heated. The modular cartridge decomposer provides high thermal efficiency, high conversion efficiency, and increased safety.
Spatial and Activities Models of Airport Based on GIS and Dynamic Model
NASA Astrophysics Data System (ADS)
Masri, R. M.; Purwaamijaya, I. M.
2017-02-01
The purpose of research were (1) a conceptual, functional model designed and implementation for spatial airports, (2) a causal, flow diagrams and mathematical equations made for airport activity, (3) obtained information on the conditions of space and activities at airports assessment, (4) the space and activities evaluation at airports based on national and international airport services standards, (5) options provided to improve the spatial and airport activities performance become the international standards airport. Descriptive method is used for the research. Husein Sastranegara Airport in Bandung, West Java, Indonesia was study location. The research was conducted on September 2015 to April 2016. A spatial analysis is used to obtain runway, taxiway and building airport geometric information. A system analysis is used to obtain the relationship between components in airports, dynamic simulation activity at airports and information on the results tables and graphs of dynamic model. Airport national and international standard could not be fulfilled by spatial and activity existing condition of Husein Sastranegara. Idea of re-location program is proposed as problem solving for constructing new airport which could be serving international air transportation.
Thermal performance demonstration of a prototype internally cooled nose tip/forebody/window assembly
NASA Astrophysics Data System (ADS)
Wojciechowski, Carl J.; Brooks, Lori C.; Teal, Gene; Karu, Zain; Kalin, David A.; Jones, Gregory W.; Romero, Harold
1996-11-01
Internally liquid cooled apertures (windows) installed in a full size forebody have been characterized under high heat flux conditions representative of endoatmospheric flight. Analysis and test data obtained in the laboratory and at arc heater test facilities at Arnold Engineering Development Center and NASA Ames are presented in this paper. Data for several types of laboratory bench tests are presented: transmission interferometry and imaging, coolant pressurization effects on optical quality, and coolant flow rate calibrations for both the window and other internally cooled components. Initially, using heat transfer calibration models identical in shape to the flight test articles, arc heater facility thermal test environments were obtained at several conditions representative of full flight thermal environments. Subsequent runs tested the full-up flight article including nosetip, forebody and aperture for full flight duplication of surface heating rates and exposure ties. Pretest analyses compared will to test measurements. These data demonstrate a very efficient internal liquid cooling design which can be applied to other applications such as cooled mirrors for high heat flux applications.
Retrospectively gated intracardiac 4D flow MRI using spiral trajectories.
Petersson, Sven; Sigfridsson, Andreas; Dyverfeldt, Petter; Carlhäll, Carl-Johan; Ebbers, Tino
2016-01-01
To develop and evaluate retrospectively gated spiral readout four-dimensional (4D) flow MRI for intracardiac flow analysis. Retrospectively gated spiral 4D flow MRI was implemented on a 1.5-tesla scanner. The spiral sequence was compared against conventional Cartesian 4D flow (SENSE [sensitivity encoding] 2) in seven healthy volunteers and three patients (only spiral). In addition to comparing flow values, linear regression was used to assess internal consistency of aortic versus pulmonary net volume flows and left ventricular inflow versus outflow using quantitative pathlines analysis. Total scan time with spiral 4D flow was 44% ± 6% of the Cartesian counterpart (13 ± 3 vs. 31 ± 7 min). Aortic versus pulmonary flow correlated strongly for the spiral sequence (P < 0.05, slope = 1.03, R(2) = 0.88, N = 10), whereas the linear relationship for the Cartesian sequence was not significant (P = 0.06, N = 7). Pathlines analysis indicated good data quality for the spiral (P < 0.05, slope = 1.02, R(2) = 0.90, N = 10) and Cartesian sequence (P < 0.05, slope = 1.10, R(2) = 0.93, N = 7). Spiral and Cartesian peak flow rate (P < 0.05, slope = 0.96, R(2) = 0.72, N = 14), peak velocity (P < 0.05, slope = 1.00, R(2) = 0.81, N = 14), and pathlines flow components (P < 0.05, slope = 1.04, R(2) = 0.87, N = 28) correlated well. Retrospectively gated spiral 4D flow MRI permits more than two-fold reduction in scan time compared to conventional Cartesian 4D flow MRI, while maintaining similar data quality. © 2015 Wiley Periodicals, Inc.
Monitoring Extracellular Vesicle Cargo Active Uptake by Imaging Flow Cytometry.
Ofir-Birin, Yifat; Abou Karam, Paula; Rudik, Ariel; Giladi, Tal; Porat, Ziv; Regev-Rudzki, Neta
2018-01-01
Extracellular vesicles are essential for long distance cell-cell communication. They function as carriers of different compounds, including proteins, lipids and nucleic acids. Pathogens, like malaria parasites ( Plasmodium falciparum, Pf ), excel in employing vesicle release to mediate cell communication in diverse processes, particularly in manipulating the host response. Establishing research tools to study the interface between pathogen-derived vesicles and their host recipient cells will greatly benefit the scientific community. Here, we present an imaging flow cytometry (IFC) method for monitoring the uptake of malaria-derived vesicles by host immune cells. By staining different cargo components, we were able to directly track the cargo's internalization over time and measure the kinetics of its delivery. Impressively, we demonstrate that this method can be used to specifically monitor the translocation of a specific protein within the cellular milieu upon internalization of parasitic cargo; namely, we were able to visually observe how uptaken parasitic Pf -DNA cargo leads to translocation of transcription factor IRF3 from the cytosol to the nucleus within the recipient immune cell. Our findings demonstrate that our method can be used to study cellular dynamics upon vesicle uptake in different host-pathogen and pathogen-pathogen systems.
NASA Astrophysics Data System (ADS)
Grunloh, Timothy P.
The objective of this dissertation is to develop a 3-D domain-overlapping coupling method that leverages the superior flow field resolution of the Computational Fluid Dynamics (CFD) code STAR-CCM+ and the fast execution of the System Thermal Hydraulic (STH) code TRACE to efficiently and accurately model thermal hydraulic transport properties in nuclear power plants under complex conditions of regulatory and economic importance. The primary contribution is the novel Stabilized Inertial Domain Overlapping (SIDO) coupling method, which allows for on-the-fly correction of TRACE solutions for local pressures and velocity profiles inside multi-dimensional regions based on the results of the CFD simulation. The method is found to outperform the more frequently-used domain decomposition coupling methods. An STH code such as TRACE is designed to simulate large, diverse component networks, requiring simplifications to the fluid flow equations for reasonable execution times. Empirical correlations are therefore required for many sub-grid processes. The coarse grids used by TRACE diminish sensitivity to small scale geometric details such as Reactor Pressure Vessel (RPV) internals. A CFD code such as STAR-CCM+ uses much finer computational meshes that are sensitive to the geometric details of reactor internals. In turbulent flows, it is infeasible to fully resolve the flow solution, but the correlations used to model turbulence are at a low level. The CFD code can therefore resolve smaller scale flow processes. The development of a 3-D coupling method was carried out with the intention of improving predictive capabilities of transport properties in the downcomer and lower plenum regions of an RPV in reactor safety calculations. These regions are responsible for the multi-dimensional mixing effects that determine the distribution at the core inlet of quantities with reactivity implications, such as fluid temperature and dissolved neutron absorber concentration.
Downhole Data Transmission System
Hall, David R.; Hall, Jr., H. Tracy; Pixton, David; Dahlgren, Scott; Fox, Joe
2004-04-06
A system for transmitting data through a string of down-hole components. In accordance with one aspect, the system includes a plurality of downhole components, such as sections of pipe in a drill string. Each downhole component includes a pin end and a box end, with the pin end of one downhole component being adapted to be connected to the box end of another. Each pin end includes external threads and an internal pin face distal to the external threads. Each box end includes an internal shoulder face with internal threads distal to the internal shoulder face. The internal pin face and the internal shoulder face are aligned with and proximate each other when the pin end of the one component is threaded into a box end of the other component.
Investigation of flow fields within large scale hypersonic inlet models
NASA Technical Reports Server (NTRS)
Gnos, A. V.; Watson, E. C.; Seebaugh, W. R.; Sanator, R. J.; Decarlo, J. P.
1973-01-01
Analytical and experimental investigations were conducted to determine the internal flow characteristics in model passages representative of hypersonic inlets for use at Mach numbers to about 12. The passages were large enough to permit measurements to be made in both the core flow and boundary layers. The analytical techniques for designing the internal contours and predicting the internal flow-field development accounted for coupling between the boundary layers and inviscid flow fields by means of a displacement-thickness correction. Three large-scale inlet models, each having a different internal compression ratio, were designed to provide high internal performance with an approximately uniform static-pressure distribution at the throat station. The models were tested in the Ames 3.5-Foot Hypersonic Wind Tunnel at a nominal free-stream Mach number of 7.4 and a unit free-stream Reynolds number of 8.86 X one million per meter.
ITS component specification. Appendix B, Input data flows for components
DOT National Transportation Integrated Search
1997-11-01
The objective of the Polaris Project is to define an Intelligent Transportation Systems (ITS) architecture for the state of Minnesota. This appendix defines the input data flows for each component of the Polaris Physical Architecture.
ITS component specification. Appendix C, Output data flows for components
DOT National Transportation Integrated Search
1997-01-01
The objective of the Polaris Project is to define an Intelligent Transportation Systems (ITS) architecture for the state of Minnesota. This appendix defines the output data flows for each component of the Polaris Physical Architecture.
NASA Astrophysics Data System (ADS)
Adams, Jordan M.; Gasparini, Nicole M.; Hobley, Daniel E. J.; Tucker, Gregory E.; Hutton, Eric W. H.; Nudurupati, Sai S.; Istanbulluoglu, Erkan
2017-04-01
Representation of flowing water in landscape evolution models (LEMs) is often simplified compared to hydrodynamic models, as LEMs make assumptions reducing physical complexity in favor of computational efficiency. The Landlab modeling framework can be used to bridge the divide between complex runoff models and more traditional LEMs, creating a new type of framework not commonly used in the geomorphology or hydrology communities. Landlab is a Python-language library that includes tools and process components that can be used to create models of Earth-surface dynamics over a range of temporal and spatial scales. The Landlab OverlandFlow component is based on a simplified inertial approximation of the shallow water equations, following the solution of de Almeida et al.(2012). This explicit two-dimensional hydrodynamic algorithm simulates a flood wave across a model domain, where water discharge and flow depth are calculated at all locations within a structured (raster) grid. Here, we illustrate how the OverlandFlow component contained within Landlab can be applied as a simplified event-based runoff model and how to couple the runoff model with an incision model operating on decadal timescales. Examples of flow routing on both real and synthetic landscapes are shown. Hydrographs from a single storm at multiple locations in the Spring Creek watershed, Colorado, USA, are illustrated, along with a map of shear stress applied on the land surface by flowing water. The OverlandFlow component can also be coupled with the Landlab DetachmentLtdErosion component to illustrate how the non-steady flow routing regime impacts incision across a watershed. The hydrograph and incision results are compared to simulations driven by steady-state runoff. Results from the coupled runoff and incision model indicate that runoff dynamics can impact landscape relief and channel concavity, suggesting that, on landscape evolution timescales, the OverlandFlow model may lead to differences in simulated topography in comparison with traditional methods. The exploratory test cases described within demonstrate how the OverlandFlow component can be used in both hydrologic and geomorphic applications.
2010-01-12
CAPE CANAVERAL, Fla. - In the Remote Manipulator System Lab, or RMS Lab, inside the Vehicle Assembly Building at NASA's Kennedy Space Center in Florida, Rafael Rodriguez, lead RMS advanced systems technician with United Space Alliance, installs the mid-transition thermal blanket onto the inspection boom assembly, or IBA, on space shuttle Atlantis' orbiter boom sensor system, or OBSS. The IBA is removed from the shuttle every other processing flow for a detailed inspection. After five consecutive flights, all IBA internal components are submitted to a thorough electrical checkout in the lab. The 50-foot-long OBSS attaches to the end of the shuttle’s robotic arm and supports the cameras and laser systems used to inspect the shuttle’s thermal protection system while in space. Atlantis is next slated to deliver an Integrated Cargo Carrier and Russian-built Mini Research Module to the International Space Station on the STS-132 mission. The second in a series of new pressurized components for Russia, the module will be permanently attached to the Zarya module. Three spacewalks are planned to store spare components outside the station, including six spare batteries, a boom assembly for the Ku-band antenna and spares for the Canadian Dextre robotic arm extension. A radiator, airlock and European robotic arm for the Russian Multi-purpose Laboratory Module also are payloads on the flight. Launch is targeted for May 14, 2010. Photo credit: NASA/Jack Pfaller
2010-01-12
CAPE CANAVERAL, Fla. - In the Remote Manipulator System Lab inside the Vehicle Assembly Building at NASA's Kennedy Space Center in Florida, Patrick Manning, an advanced systems technician with United Space Alliance, installs the mid-transition thermal blanket onto the inspection boom assembly, or IBA, on space shuttle Atlantis' orbiter boom sensor system, or OBSS. The IBA is removed from the shuttle every other processing flow for a detailed inspection. After five consecutive flights, all IBA internal components are submitted to a thorough electrical checkout in the lab. The 50-foot-long OBSS attaches to the end of the shuttle’s robotic arm and supports the cameras and laser systems used to inspect the shuttle’s thermal protection system while in space. Atlantis is next slated to deliver an Integrated Cargo Carrier and Russian-built Mini Research Module to the International Space Station on the STS-132 mission. The second in a series of new pressurized components for Russia, the module will be permanently attached to the Zarya module. Three spacewalks are planned to store spare components outside the station, including six spare batteries, a boom assembly for the Ku-band antenna and spares for the Canadian Dextre robotic arm extension. A radiator, airlock and European robotic arm for the Russian Multi-purpose Laboratory Module also are payloads on the flight. Launch is targeted for May 14, 2010. Photo credit: NASA/Jack Pfaller
2010-01-12
CAPE CANAVERAL, Fla. - In the Remote Manipulator System Lab inside the Vehicle Assembly Building at NASA's Kennedy Space Center in Florida, this close-up shows the electrical flight grapple fixture which will be installed in the forward transition and X-guide restraint of the inspection boom assembly, or IBA, on space shuttle Atlantis' orbiter boom sensor system, or OBSS. The IBA is removed from the shuttle every other processing flow for a detailed inspection. After five consecutive flights, all IBA internal components are submitted to a thorough electrical checkout in the lab. The 50-foot-long OBSS attaches to the end of the shuttle’s robotic arm and supports the cameras and laser systems used to inspect the shuttle’s thermal protection system while in space. Atlantis is next slated to deliver an Integrated Cargo Carrier and Russian-built Mini Research Module to the International Space Station on the STS-132 mission. The second in a series of new pressurized components for Russia, the module will be permanently attached to the Zarya module. Three spacewalks are planned to store spare components outside the station, including six spare batteries, a boom assembly for the Ku-band antenna and spares for the Canadian Dextre robotic arm extension. A radiator, airlock and European robotic arm for the Russian Multi-purpose Laboratory Module also are payloads on the flight. Launch is targeted for May 14, 2010. Photo credit: NASA/Jack Pfaller
Reactor plasma facing component designs based on liquid metal concepts supported in porous systems
NASA Astrophysics Data System (ADS)
Tabarés, F. L.; Oyarzabal, E.; Martin-Rojo, A. B.; Tafalla, D.; de Castro, A.; Soleto, A.
2017-01-01
The use of liquid metals (LMs) as plasma facing components in fusion devices was proposed as early as 1970 for a field reversed concept and inertial fusion reactors. The idea was extensively developed during the APEX Project, at the turn of the century, and it is the subject at present of the biennial International Symposium on Lithium Applications (ISLA), whose fourth meeting took place in Granada, Spain at the end of September 2015. While liquid metal flowing concepts were specially addressed in USA research projects, the idea of embedding the metal in a capillary porous system (CPS) was put forwards by Russian teams in the 1990s, thus opening the possibility of static concepts. Since then, many ideas and accompanying experimental tests in fusion devices and laboratories have been produced, involving a large fraction of countries within the international fusion community. Within the EUROFusion Roadmap, these activities are encompassed into the working programs of the plasma facing components (PFC) and divertor tokamak test (DTT) packages. In this paper, a review of the state of the art in concepts based on the CPS set-up for a fusion reactor divertor target, aimed at preventing the ejection of the liquid metal by electro-magnetic (EM) forces generated under plasma operation, is described and required R+D activities on the topic, including ongoing work at CIEMAT specifically oriented to filling the remaining gaps, are stressed.
Systematic flow manipulation by a deflector-turbine array
NASA Astrophysics Data System (ADS)
Mandre, Shreyas; Mangan, Niall M.
2017-11-01
Wind and hydrokinetic turbines are often installed in the wake of upstream turbines that limit the energy incident on the downstream ones. In two-dimensions, we describe how an array can deflect the wake away and redirect more energy to itself. Using inviscid fluid dynamics, we formulate the definitions of ``deflectors'' and ``turbines'' as elements that introduce bound and shed vorticity in the flow, respectively. To illustrate the flow manipulation, we consider a deflector-turbine array constrained to a line segment aligned with the freestream and acting as an internal boundary. We impose profiles of bound and shed vorticity on this segment that parameterize the flow deflection and the wake deficit respectively, and analyze the resulting flow using inviscid fluid dynamics. We find that the power extracted by the array is the product of two components: (i) the deflected kinetic energy incident on the array, and (ii) the array efficiency, or its ability to extract a fraction of the incident energy, both of which vary with deflection strength. The array efficiency decreases slightly with increasing deflection from about 57% at weak deflection to 39% at high deflection. This decrease is outweighed by an increase in the incident kinetic energy due to deflection. Funded by the Advanced Research Projects Agency - Energy.
International Space Station Major Constituent Analyzer On-Orbit Performance
NASA Technical Reports Server (NTRS)
Gardner, Ben D.; Erwin, Philip M.; Thoresen, Souzan; Granahan, John; Matty, Chris
2010-01-01
The Major Constituent Analyzer is a mass spectrometer based system that measures the major atmospheric constituents on the International Space Station. A number of limited-life components require periodic changeout, including the analyzer (ORU 02) and the verification gas assembly (ORU 08). The longest lasting ORU 02 was recently replaced after a record service length of 1033 days. The comparatively high performance duration may be attributable to a reduced inlet flow rate into the analyzer, resulting in increased ion pump lifetime; however, there may be other factors as well. A recent schedule slip for delivery of replacement verification gas led to a demonstration that the calibration interval could be extended on a short-term basis. An analysis of ORU 08 performance characteristics indicates that it is possible to temporarily extend the calibration interval from 6 weeks to 12 weeks if necessary.
2010-01-18
CAPE CANAVERAL, Fla. - In Orbiter Processing Facility 1 at NASA's Kennedy Space Center in Florida, a crane lowers the orbiter boom sensor system, or OBSS, into space shuttle Atlantis' payload bay where it will be installed. The OBSS' inspection boom assembly, or IBA, is removed from the arm every other processing flow for a detailed inspection. After five consecutive flights, all IBA internal components are submitted to a thorough electrical checkout in the Remote Manipulator System Lab. The 50-foot-long OBSS attaches to the end of the shuttle’s robotic arm and supports the cameras and laser systems used to inspect the shuttle’s thermal protection system while in space. Atlantis is next slated to deliver an Integrated Cargo Carrier and Russian-built Mini Research Module to the International Space Station on the STS-132 mission. Launch is targeted for May 14. Photo credit: NASA/Jim Grossmann
2010-01-18
CAPE CANAVERAL, Fla. - In Orbiter Processing Facility 1 at NASA's Kennedy Space Center in Florida, installation of the orbiter boom sensor system, or OBSS, into space shuttle Atlantis' payload bay is under way. The OBSS' inspection boom assembly, or IBA, is removed from the arm every other processing flow for a detailed inspection. After five consecutive flights, all IBA internal components are submitted to a thorough electrical checkout in the Remote Manipulator System Lab. The 50-foot-long OBSS attaches to the end of the shuttle’s robotic arm and supports the cameras and laser systems used to inspect the shuttle’s thermal protection system while in space. Atlantis is next slated to deliver an Integrated Cargo Carrier and Russian-built Mini Research Module to the International Space Station on the STS-132 mission. Launch is targeted for May 14. Photo credit: NASA/Jim Grossmann
2010-01-18
CAPE CANAVERAL, Fla. - In Orbiter Processing Facility 1 at NASA's Kennedy Space Center in Florida, technicians prepare to install the orbiter boom sensor system, or OBSS, into space shuttle Atlantis' payload bay. The OBSS' inspection boom assembly, or IBA, is removed from the arm every other processing flow for a detailed inspection. After five consecutive flights, all IBA internal components are submitted to a thorough electrical checkout in the Remote Manipulator System Lab. The 50-foot-long OBSS attaches to the end of the shuttle’s robotic arm and supports the cameras and laser systems used to inspect the shuttle’s thermal protection system while in space. Atlantis is next slated to deliver an Integrated Cargo Carrier and Russian-built Mini Research Module to the International Space Station on the STS-132 mission. Launch is targeted for May 14. Photo credit: NASA/Jim Grossmann
2010-01-18
CAPE CANAVERAL, Fla. - In Orbiter Processing Facility 1 at NASA's Kennedy Space Center in Florida, the orbiter boom sensor system, or OBSS, is installed in space shuttle Atlantis' payload bay. The OBSS' inspection boom assembly, or IBA, is removed from the arm every other processing flow for a detailed inspection. After five consecutive flights, all IBA internal components are submitted to a thorough electrical checkout in the Remote Manipulator System Lab. The 50-foot-long OBSS attaches to the end of the shuttle’s robotic arm and supports the cameras and laser systems used to inspect the shuttle’s thermal protection system while in space. Atlantis is next slated to deliver an Integrated Cargo Carrier and Russian-built Mini Research Module to the International Space Station on the STS-132 mission. Launch is targeted for May 14. Photo credit: NASA/Jim Grossmann
System Study for Axial Vane Engine Technology
NASA Technical Reports Server (NTRS)
Badley, Patrick R.; Smith, Michael R.; Gould, Cedric O.
2008-01-01
The purpose of this engine feasibility study was to determine the benefits that can be achieved by incorporating positive displacement axial vane compression and expansion stages into high bypass turbofan engines. These positive-displacement stages would replace some or all of the conventional compressor and turbine stages in the turbine engine, but not the fan. The study considered combustion occurring internal to an axial vane component (i.e., Diesel engine replacing the standard turbine engine combustor, burner, and turbine); and external continuous flow combustion with an axial vane compressor and an axial vane turbine replacing conventional compressor and turbine systems.
Hong, Bong Hwan; Jung, In Su
2017-07-01
A water target was designed to enhance cooling efficiency using a thermosyphon, which is a system that uses natural convection to induce heat exchange. Two water targets were fabricated: a square target without any flow channel and a target with a flow channel design to induce a thermosyphon mechanism. These two targets had the same internal volume of 8 ml. First, visualization experiments were performed to observe the internal flow by natural convection. Subsequently, an experiment was conducted to compare the cooling performance of both water targets by measuring the temperature and pressure. A 30-MeV proton beam with a beam current of 20 μA was used to irradiate both targets. Consequently, the target with an internal flow channel had a lower mean temperature and a 50% pressure drop compared to the target without a flow channel during proton beam irradiation. Copyright © 2017 Elsevier Ltd. All rights reserved.
Aerodynamic design of gas and aerosol samplers for aircraft
NASA Technical Reports Server (NTRS)
Soderman, Paul T.; Hazen, Nathan L.; Brune, William H.
1991-01-01
The aerodynamic design of airborne probes for the capture of air and aerosols is discussed. Emphasis is placed on the key parameters that affect proper sampling, such as inlet-lip design, internal duct components for low pressure drop, and exhaust geometry. Inlet designs that avoid sonic flow conditions on the lip and flow separation in the duct are shown. Cross-stream velocities of aerosols are expressed in terms of droplet density and diameter. Flow curvature, which can cause aerosols to cross streamlines and impact on probe walls, can be minimized by means of a proper inlet shape and proper probe orientation, and by avoiding bends upstream of the test section. A NASA panel code called PMARC was used successfully to compute streamlines around aircraft and probes, as well as to compute to local velocity and pressure distributions in inlets. A NACA 1-series inlet with modified lip radius was used for the airborne capture of stratospheric chlorine monoxide at high altitude and high flight speed. The device has a two-stage inlet that decelerates the inflow with little disturbance to the flow through the test section. Diffuser design, exhaust hood design, valve loss, and corner vane geometry are discussed.
NASA Astrophysics Data System (ADS)
Qiu, Songgang; Solomon, Laura
2017-11-01
The simplistic design, fuel independence, and robustness of Stirling convertors makes them the ideal choice for use in solar power and combined heat and power (CHP) applications. A lack of moving parts and the use of novel flexure bearings allows free-piston type Stirling engines to run in excess of ten years without degradation or maintenance. The key component to their overall efficiency is the regenerator. While a foil type regenerator outperforms a sintered random fiber regenerator, limitation in manufacturing and keeping uniform spacing between the foils has limited their overall use. However, with the advent of additive manufacturing, a robust foil type regenerator can be cheaply manufactured without traditional limitations. Currently, a CFD analysis of the oscillating internal flow within the novel design was conducted to evaluate the flow loses within the system. Particularly the pressure drop across the regenerator in comparison to a traditionally used random fiber regenerator. Additionally, the heat transfer and flow over the tubular heater hear was evaluated. The results of the investigation will be used to optimize the operation of the next generation of additively manufactured Stirling convertors. This research was supported by ARPA-E and West Virginia University.
Dual-RiverSonde measurements of two-dimensional river flow patterns
Teague, C.C.; Barrick, D.E.; Lilleboe, P.M.; Cheng, R.T.; Stumpner, P.; Burau, J.R.
2008-01-01
Two-dimensional river flow patterns have been measured using a pair of RiverSondes in two experiments in the Sacramento-San Joaquin River Delta system of central California during April and October 2007. An experiment was conducted at Walnut Grove, California in order to explore the use of dual RiverSondes to measure flow patterns at a location which is important in the study of juvenile fish migration. The data available during the first experiment were limited by low wind, so a second experiment was conducted at Threemile Slough where wind conditions and surface turbulence historically have resulted in abundant data. Both experiments included ADCP near-surface velocity measurements from either manned or unmanned boats. Both experiments showed good comparisons between the RiverSonde and ADCP measurements. The flow conditions at both locations are dominated by tidal effects, with partial flow reversal at Walnut Grove and complete flow reversal at Threemile Slough. Both systems showed complex flow patterns during the flow reversals. Quantitative comparisons between the RiverSondes and an ADCP on a manned boat at Walnut Grove showed mean differences of 4.5 cm/s in the u (eastward) and 7.6 cm/s in the v (northward) components, and RMS differences of 14.7 cm/s in the u component and 21.0 cm/s in the v component. Quantitative comparisons between the RiverSondes and ADCPs on autonomous survey vessels at Threemile Slough showed mean differences of 0.007 cm/s in the u component and 0.5 cm/s in the v component, and RMS differences of 7.9 cm/s in the u component and 13.5 cm/s in the v component after obvious outliers were removed. ?? 2008 IEEE.
A grid-embedding transonic flow analysis computer program for wing/nacelle configurations
NASA Technical Reports Server (NTRS)
Atta, E. H.; Vadyak, J.
1983-01-01
An efficient grid-interfacing zonal algorithm was developed for computing the three-dimensional transonic flow field about wing/nacelle configurations. the algorithm uses the full-potential formulation and the AF2 approximate factorization scheme. The flow field solution is computed using a component-adaptive grid approach in which separate grids are employed for the individual components in the multi-component configuration, where each component grid is optimized for a particular geometry such as the wing or nacelle. The wing and nacelle component grids are allowed to overlap, and flow field information is transmitted from one grid to another through the overlap region using trivariate interpolation. This report represents a discussion of the computational methods used to generate both the wing and nacelle component grids, the technique used to interface the component grids, and the method used to obtain the inviscid flow solution. Computed results and correlations with experiment are presented. also presented are discussions on the organization of the wing grid generation (GRGEN3) and nacelle grid generation (NGRIDA) computer programs, the grid interface (LK) computer program, and the wing/nacelle flow solution (TWN) computer program. Descriptions of the respective subroutines, definitions of the required input parameters, a discussion on interpretation of the output, and the sample cases illustrating application of the analysis are provided for each of the four computer programs.
Identification of internal flow dynamics in two experimental catchments
Hansen, D.P.; Jakeman, A.J.; Kendall, C.; Weizu, G.
1997-01-01
Identification of the internal flow dynamics in catchments is difficult because of the lack of information in precipitation -stream discharge time series alone. Two experimental catchments, Hydrohill and Nandadish, near Nanjing in China, have been set up to monitor internal flows reaching the catchment stream at various depths, from the surface runoff to the bedrock. With analysis of the precipitation against these internal discharges, it is possible to quantify the time constants and volumes associated with various flowpaths in both catchments.
NASA Astrophysics Data System (ADS)
Couston, Louis-Alexandre; Lecoanet, Daniel; Favier, Benjamin; Le Bars, Michael
2017-11-01
We investigate via direct numerical simulations the spontaneous generation and reversals of mean zonal flows in a stably-stratified fluid layer lying above a turbulent convective fluid. Contrary to the leading idealized theories of mean flow generation by self-interacting internal waves, the emergence of a mean flow in a convectively-generated internal gravity wave field is not always possible because nonlinear interactions of waves of different frequencies can disrupt the mean flow generation mechanism. Strong mean flows thus emerge when the divergence of the Reynolds stress resulting from the nonlinear interactions of internal waves produces a strong enough anti-diffusive acceleration for the mean flow, which, as we will demonstrate, is the case when the Prandtl number is sufficiently low, or when the energy input into the internal wavefield by the convection and density stratification are sufficiently large. Implications for mean zonal flow production as observed in the equatorial stratospheres of the Earth, Saturn and Jupiter, and possibly occurring in other geophysical systems such as planetary and stellar interiors will be briefly discussed. Funding provided by the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation program through Grant Agreement No. 681835-FLUDYCO-ERC-2015-CoG.
PIV measurements in a compact return diffuser under multi-conditions
NASA Astrophysics Data System (ADS)
Zhou, L.; Lu, W. G.; Shi, W. D.
2013-12-01
Due to the complex three-dimensional geometries of impellers and diffusers, their design is a delicate and difficult task. Slight change could lead to significant changes in hydraulic performance and internal flow structure. Conversely, the grasp of the pump's internal flow pattern could benefit from pump design improvement. The internal flow fields in a compact return diffuser have been investigated experimentally under multi-conditions. A special Particle Image Velocimetry (PIV) test rig is designed, and the two-dimensional PIV measurements are successfully conducted in the diffuser mid-plane to capture the complex flow patterns. The analysis of the obtained results has been focused on the flow structure in diffuser, especially under part-load conditions. The vortex and recirculation flow patterns in diffuser are captured and analysed accordingly. Strong flow separation and back flow appeared at the part-load flow rates. Under the design and over-load conditions, the flow fields in diffuser are uniform, and the flow separation and back flow appear at the part-load flow rates, strong back flow is captured at one diffuser passage under 0.2Qdes.
NASA Astrophysics Data System (ADS)
Xue, Xiaochun; Yu, Yonggang
2017-04-01
Numerical analyses have been performed to study the influence of fast depressurization on the wake flow field of the base-bleed unit (BBU) with a secondary combustion when the base-bleed projectile is propelled out of the muzzle. Two-dimensional axisymmetric Navier-Stokes equations for a multi-component chemically reactive system is solved by Fortran program to calculate the couplings of the internal flow field and wake flow field with consideration of the combustion of the base-bleed propellant and secondary combustion effect. Based on the comparison with the experiments, the unsteady variation mechanism and secondary combustion characteristic of wake flow field under fast depressurization process is obtained numerically. The results show that in the fast depressurization process, the variation extent of the base pressure of the BBU is larger in first 0.9 ms and then decreases gradually and after 1.5 ms, it remains basically stable. The pressure and temperature of the base-bleed combustion chamber experience the decrease and pickup process. Moreover, after the pressure and temperature decrease to the lowest point, the phenomenon that the external gases are flowing back into the base-bleed combustion chamber appears. Also, with the decrease of the initial pressure, the unsteady process becomes shorter and the temperature gradient in the base-bleed combustion chamber declines under the fast depressurization process, which benefits the combustion of the base-bleed propellant.
The Flow of International Students from a Macro Perspective: A Network Analysis
ERIC Educational Resources Information Center
Barnett, George A.; Lee, Moosung; Jiang, Ke; Park, Han Woo
2016-01-01
This paper provides a network analysis of the international flow of students among 210 countries and the factors determining the structure of this flow. Among these factors, bilateral hyperlink connections between countries and the number of telephone minutes (communication variables) are the most important predictors of the flow's structure,…
Low pressure drop, multi-slit virtual impactor
Bergman, Werner
2002-01-01
Fluid flow is directed into a multiplicity of slit nozzles positioned so that the fluid flow is directed into a gap between the nozzles and (a) a number of receiving chambers and (b) a number of exhaust chambers. The nozzles and chambers are select so that the fluid flow will be separated into a first particle flow component with larger and a second particle flow component with the smaller particles.
Multi-Component, Multi-Point Interferometric Rayleigh/Mie Doppler Velocimeter
NASA Technical Reports Server (NTRS)
Danehy, Paul M.; Lee, Joseph W.; Bivolaru, Daniel
2012-01-01
An interferometric Rayleigh scattering system was developed to enable the measurement of multiple, orthogonal velocity components at several points within very-high-speed or high-temperature flows. The velocity of a gaseous flow can be optically measured by sending laser light into the gas flow, and then measuring the scattered light signal that is returned from matter within the flow. Scattering can arise from either gas molecules within the flow itself, known as Rayleigh scattering, or from particles within the flow, known as Mie scattering. Measuring Mie scattering is the basis of all commercial laser Doppler and particle imaging velocimetry systems, but particle seeding is problematic when measuring high-speed and high-temperature flows. The velocimeter is designed to measure the Doppler shift from only Rayleigh scattering, and does not require, but can also measure, particles within the flow. The system combines a direct-view, large-optic interferometric setup that calculates the Doppler shift from fringe patterns collected with a digital camera, and a subsystem to capture and re-circulate scattered light to maximize signal density. By measuring two orthogonal components of the velocity at multiple positions in the flow volume, the accuracy and usefulness of the flow measurement increase significantly over single or nonorthogonal component approaches.
Cooling Performance of Additively Manufactured Microchannels and Film Cooling Holes
NASA Astrophysics Data System (ADS)
Stimpson, Curtis K.
Additive manufacturing (AM) enables fabrication of components that cannot be made with any other manufacturing method. Significant advances in metal-based AM systems have made this technology feasible for building production parts to be used use in commercial products. In particular, the gas turbine industry benefits from AM as a manufacturing technique especially for development of components subjected to high heat flux. It has been shown that the use of microchannels in high heat flux components can lead to more efficient cooling designs than those that presently exist. The current manufacturing methods have prevented the use of microchannels in such parts, but AM now makes them manufacturable. However, before such designs can become a reality, much research must be done to characterize impacts on flow and heat transfer of AM parts. The current study considers the effect on flow and heat transfer through turbine cooling features made with AM. Specifically, the performance of microchannels and film cooling holes made with laser powder bed fusion (L-PBF) is assessed. A number of test coupons containing microchannels were built from high temperature alloy powders on a commercially available L-PBF machine. Pressure drop and heat transfer experiments characterized the flow losses and convective heat transfer of air passing through the channels at various Reynolds numbers and Mach numbers. The roughness of the channels' surfaces was characterized in terms of statistical roughness parameters; the morphology of the roughness was examined qualitatively. Magnitude and morphology of surface roughness found on AM parts is unlike any form of roughness seen in the literature. It was found that the high levels of roughness on AM surfaces result in markedly augmented pressure loss and heat transfer at all Reynolds numbers, and conventional flow and heat transfer correlations produce erroneous estimates. The physical roughness measurements made in this study were correlated to flow and heat transfer measurements to generate a predictive model for flow through AM microchannels. The flow compressibility was also found to play a significant role in flow loss through these channels. Overall effectiveness of film cooling combined with the internal microchannel flow was examined in a conjugate experimental setup. The validity of the experimental conditions was established by matching important dimensionless parameters of the experimental setup to common values found in turbine engines. These results showed that the roughness in the film cooling holes produced higher in-hole convection than those made with current manufacturing methods. The roughness in the holes also repressed the film performance. However, high relative roughness was shown to minimize the impact of coolant feed direction on the film effectiveness of the AM holes.
Flow Boiling and Condensation Experiment (FBCE) for the International Space Station
NASA Technical Reports Server (NTRS)
Mudawar, Issam; Hasan, Mohammad M.; Kharangate, Chirag; O'Neill, Lucas; Konishi, Chris; Nahra, Henry; Hall, Nancy; Balasubramaniam, R.; Mackey, Jeffrey
2015-01-01
The proposed research aims to develop an integrated two-phase flow boiling/condensation facility for the International Space Station (ISS) to serve as primary platform for obtaining two-phase flow and heat transfer data in microgravity.
NASA Technical Reports Server (NTRS)
Chiaramonte, Francis; Motil, Brian; McQuillen, John
2014-01-01
The Two-phase Heat Transfer International Topical Team consists of researchers and members from various space agencies including ESA, JAXA, CSA, and RSA. This presentation included descriptions various fluid experiments either being conducted by or planned by NASA for the International Space Station in the areas of two-phase flow, flow boiling, capillary flow, and crygenic fluid storage.
NASA Astrophysics Data System (ADS)
Delil, A. A. M.
2003-01-01
Single-component two-phase systems are envisaged for aerospace thermal control applications: Mechanically Pumped Loops, Vapour Pressure Driven Loops, Capillary Pumped Loops and Loop Heat Pipes. Thermal control applications are foreseen in different gravity environments: Micro-g, reduced-g for Mars or Moon bases, 1-g during terrestrial testing, and hyper-g in rotating spacecraft, during combat aircraft manoeuvres and in systems for outer planets. In the evaporator, adiabatic line and condenser sections of such single-component two-phase systems, the fluid is a mixture of the working liquid (for example ammonia, carbon dioxide, ethanol, or other refrigerants, etc.) and its saturated vapour. Results of two-phase two-component flow and heat transfer research (pertaining to liquid-gas mixtures, e.g. water/air, or argon or helium) are often applied to support research on flow and heat transfer in two-phase single-component systems. The first part of the tutorial updates the contents of two earlier tutorials, discussing various aerospace-related two-phase flow and heat transfer research. It deals with the different pressure gradient constituents of the total pressure gradient, with flow regime mapping (including evaporating and condensing flow trajectories in the flow pattern maps), with adiabatic flow and flashing, and with thermal-gravitational scaling issues. The remaining part of the tutorial qualitatively and quantitatively determines the differences between single- and two-component systems: Two systems that physically look similar and close, but in essence are fully different. It was already elucidated earlier that, though there is a certain degree of commonality, the differences will be anything but negligible, in many cases. These differences (quantified by some examples) illustrates how careful one shall be in interpreting data resulting from two-phase two-component simulations or experiments, for the development of single-component two-phase thermal control systems for various gravity environments.
NASA Technical Reports Server (NTRS)
Alvi, Farrukh S.; Gorton, Susan (Technical Monitor)
2005-01-01
Inlets to aircraft propulsion systems must supply flow to the compressor with minimal pressure loss, flow distortion or unsteadiness. Flow separation in internal flows such as inlets and ducts in aircraft propulsion systems and external flows such as over aircraft wings, is undesirable as it reduces the overall system performance. The aim of this research has been to understand the nature of separation and more importantly, to explore techniques to actively control this flow separation. In particular, the use of supersonic microjets as a means of controlling boundary layer separation was explored. The geometry used for the early part of this study was a simple diverging Stratford ramp, equipped with arrays of supersonic microjets. Initial results, based on the mean surface pressure distribution, surface flow visualization and Planar Laser Scattering (PLS) indicated a reverse flow region. We implemented supersonic microjets to control this separation and flow visualization results appeared to suggest that microjets have a favorable effect, at least to a certain extent. However, the details of the separated flow field were difficult to determine based on surface pressure distribution, surface flow patterns and PLS alone. It was also difficult to clearly determine the exact influence of the supersonic microjets on this flow. In the latter part of this study, the properties of this flow-field and the effect of supersonic microjets on its behavior were investigated in further detail using 2-component (planar) Particle Image Velocimetry (PIV). The results clearly show that the activation of microjets eliminated flow separation and resulted in a significant increase in the momentum of the fluid near the ramp surface. Also notable is the fact that the gain in momentum due to the elimination of flow separation is at least an order of magnitude larger (two orders of magnitude larger in most cases) than the momentum injected by the microjets and is accomplished with very little mass flow through the microjets.
Flow pumping system for physiological waveforms.
Tsai, William; Savaş, Omer
2010-02-01
A pulsatile flow pumping system is developed to replicate flow waveforms with reasonable accuracy for experiments simulating physiological blood flows at numerous points in the body. The system divides the task of flow waveform generation between two pumps: a gear pump generates the mean component and a piston pump generates the oscillatory component. The system is driven by two programmable servo controllers. The frequency response of the system is used to characterize its operation. The system has been successfully tested in vascular flow experiments where sinusoidal, carotid, and coronary flow waveforms are replicated.
Extension of a System Level Tool for Component Level Analysis
NASA Technical Reports Server (NTRS)
Majumdar, Alok; Schallhorn, Paul
2002-01-01
This paper presents an extension of a numerical algorithm for network flow analysis code to perform multi-dimensional flow calculation. The one dimensional momentum equation in network flow analysis code has been extended to include momentum transport due to shear stress and transverse component of velocity. Both laminar and turbulent flows are considered. Turbulence is represented by Prandtl's mixing length hypothesis. Three classical examples (Poiseuille flow, Couette flow and shear driven flow in a rectangular cavity) are presented as benchmark for the verification of the numerical scheme.
Extension of a System Level Tool for Component Level Analysis
NASA Technical Reports Server (NTRS)
Majumdar, Alok; Schallhorn, Paul; McConnaughey, Paul K. (Technical Monitor)
2001-01-01
This paper presents an extension of a numerical algorithm for network flow analysis code to perform multi-dimensional flow calculation. The one dimensional momentum equation in network flow analysis code has been extended to include momentum transport due to shear stress and transverse component of velocity. Both laminar and turbulent flows are considered. Turbulence is represented by Prandtl's mixing length hypothesis. Three classical examples (Poiseuille flow, Couette flow, and shear driven flow in a rectangular cavity) are presented as benchmark for the verification of the numerical scheme.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wetter, Michael; Fuchs, Marcus; Nouidui, Thierry
This paper discusses design decisions for exporting Modelica thermofluid flow components as Functional Mockup Units. The purpose is to provide guidelines that will allow building energy simulation programs and HVAC equipment manufacturers to effectively use FMUs for modeling of HVAC components and systems. We provide an analysis for direct input-output dependencies of such components and discuss how these dependencies can lead to algebraic loops that are formed when connecting thermofluid flow components. Based on this analysis, we provide recommendations that increase the computing efficiency of such components and systems that are formed by connecting multiple components. We explain what codemore » optimizations are lost when providing thermofluid flow components as FMUs rather than Modelica code. We present an implementation of a package for FMU export of such components, explain the rationale for selecting the connector variables of the FMUs and finally provide computing benchmarks for different design choices. It turns out that selecting temperature rather than specific enthalpy as input and output signals does not lead to a measurable increase in computing time, but selecting nine small FMUs rather than a large FMU increases computing time by 70%.« less
Evaluation Influence: The Evaluation Event and Capital Flow in International Development.
Bell, David A
2017-12-01
Assessing program effectiveness in human development is central to informing foreign aid policy-making and organizational learning. Foreign aid effectiveness discussions have increasingly given attention to the devaluing effects of aid flow volatility. This study reveals that the external evaluation event influences actor behavior, serving as a volatility-constraining tool. A case study of a multidonor aid development mechanism served examining the influence of an evaluation event when considering anticipatory effects. The qualitative component used text and focus group data combined with individual interview data (organizations n = 10, including 26 individuals). Quantitative data included financial information on all 75 capital investments. The integrated theory of influence and model of alternative mechanisms used these components to identify the linkage between the evaluation event and capital flow volatility. Aid approved in the year of the midterm evaluation was disbursed by the mechanism with low capital volatility. Anticipating the evaluation event influenced behavior resulting in an empirical record that program outcomes were enhanced and the mechanism was an improved organization. Formative evaluations in a development program can trigger activity as an interim process. That activity provides for a more robust assessment of ultimate consequence of interest. Anticipating an evaluation can stimulate donor reality testing. The findings inform and strengthen future research on the influence of anticipating an evaluation. Closely examining activities before, during, and shortly after the evaluation event can aid development of other systematic methods to improve understanding this phenomenon, as well as improve donor effectiveness strategies.
The NGC 1023 galaxy group: An anti-hubble flow?
NASA Astrophysics Data System (ADS)
Chernin, A. D.; Dolgachev, V. P.; Domozhilova, L. M.
2010-10-01
We discuss recently published data indicating that the nearby galaxy group NGC 1023 includes an inner, virialized, quasi-stationary component together with an outer component comprising a flow of dwarf galaxies falling toward the center of the system. The inner component is similar to the Local Group of galaxies, but the Local Group is surrounded by a receding set of dwarf galaxies forming the local Hubble flow, rather than a system of approaching dwarfs. This clear difference in the structures of these two systems, which are very similar in other respects, may be associated with the dark energy in which they are immersed. Self-gravity dominates in the inner component of the Local Group, while the anti-gravity created by the cosmic dark-energy background dominates in the surrounding Hubble flow. In contrast, self-gravity likewise dominates throughout the NGC 1023 Group, both in its central component and in the surrounding “anti-Hubble” flow. NGC 1023 as a whole is apparently in an ongoing state of formation and virialization. We expect that there exists a receding flow similar to the local Hubble flow at distances of 1.4-3 Mpc from the center of the group, where anti-gravity should become stronger than the gravity of the system.
NASA Technical Reports Server (NTRS)
Neuhart, Dan H.; Wing, David J.; Henderson, Uleses C., Jr.
1994-01-01
A water tunnel investigation was conducted to demonstrate the capabilities of a laser-based instrument that can measure velocity and fluorescence intensity simultaneously. Fluorescence intensity of an excited fluorescent dye is directly related to concentration level and is used to indicate the extent of mixing in flow. This instrument is a three-dimensional laser Doppler velocimeter (LDV) in combination with a fluorometer for measuring fluorescence intensity variations. This capability allows simultaneous flow measurements of the three orthogonal velocity components and mixing within the same region. Two different flows which were generated by two models were studied: a generic nonaxisymmetric nozzle propulsion simulation model with an auxiliary internal water source that generated a jet flow and an axisymmetric forebody model with a circular sector strake that generated a vortex flow. The off-body flow fields around these models were investigated in the Langley 16- by 24-Inch Water Tunnel. The experimental results were used to calculate 17 quantities that included mean and fluctuating velocities, Reynolds stresses, mean and fluctuating dye fluorescence intensities (proportional to concentration), and fluctuating velocity and dye concentration correlations. An uncertainty analysis was performed to establish confidence levels in the experimental results. In general, uncertainties in mean velocities varied between 1 and 7 percent of free-stream velocity; uncertainties in fluctuating velocities varied between 1 and 5 percent of reference values. The results show characteristics that are unique to each type of flow.
Wire-Mesh-Based Sorber for Removing Contaminants from Air
NASA Technical Reports Server (NTRS)
Perry, Jay; Roychoudhury, Subir; Walsh, Dennis
2006-01-01
A paper discusses an experimental regenerable sorber for removing CO2 and trace components principally, volatile organic compounds, halocarbons, and NH3 from spacecraft cabin air. This regenerable sorber is a prototype of what is intended to be a lightweight alternative to activated-carbon and zeolite-pellet sorbent beds now in use. The regenerable sorber consists mainly of an assembly of commercially available meshes that have been coated with a specially-formulated washcoat containing zeolites. The zeolites act as the sorbents while the meshes support the zeolite-containing washcoat in a configuration that affords highly effective surface area for exposing the sorbents to flowing air. The meshes also define flow paths characterized by short channel lengths to prevent excessive buildup of flow boundary layers. Flow boundary layer resistance is undesired because it can impede mass and heat transfer. The total weight and volume comparison versus the atmosphere revitalization equipment used onboard the International Space Station for CO2 and trace-component removal will depend upon the design details of the final embodiment. However, the integrated mesh-based CO2 and trace-contaminant removal system is expected to provide overall weight and volume savings by eliminating most of the trace-contaminant control equipment presently used in parallel processing schemes traditionally used for spacecraft. The mesh-based sorbent media enables integrating the two processes within a compact package. For the purpose of regeneration, the sorber can be heated by passing electric currents through the metallic meshes combined with exposure to space vacuum. The minimal thermal mass of the meshes offers the potential for reduced regeneration-power requirements and cycle time required for regeneration compared to regenerable sorption processes now in use.
Entropy Generation/Availability Energy Loss Analysis Inside MIT Gas Spring and "Two Space" Test Rigs
NASA Technical Reports Server (NTRS)
Ebiana, Asuquo B.; Savadekar, Rupesh T.; Patel, Kaushal V.
2006-01-01
The results of the entropy generation and availability energy loss analysis under conditions of oscillating pressure and oscillating helium gas flow in two Massachusetts Institute of Technology (MIT) test rigs piston-cylinder and piston-cylinder-heat exchanger are presented. Two solution domains, the gas spring (single-space) in the piston-cylinder test rig and the gas spring + heat exchanger (two-space) in the piston-cylinder-heat exchanger test rig are of interest. Sage and CFD-ACE+ commercial numerical codes are used to obtain 1-D and 2-D computer models, respectively, of each of the two solution domains and to simulate the oscillating gas flow and heat transfer effects in these domains. Second law analysis is used to characterize the entropy generation and availability energy losses inside the two solution domains. Internal and external entropy generation and availability energy loss results predicted by Sage and CFD-ACE+ are compared. Thermodynamic loss analysis of simple systems such as the MIT test rigs are often useful to understand some important features of complex pattern forming processes in more complex systems like the Stirling engine. This study is aimed at improving numerical codes for the prediction of thermodynamic losses via the development of a loss post-processor. The incorporation of loss post-processors in Stirling engine numerical codes will facilitate Stirling engine performance optimization. Loss analysis using entropy-generation rates due to heat and fluid flow is a relatively new technique for assessing component performance. It offers a deep insight into the flow phenomena, allows a more exact calculation of losses than is possible with traditional means involving the application of loss correlations and provides an effective tool for improving component and overall system performance.
Study on internal flow and surface deformation of large droplet levitated by ultrasonic wave.
Abe, Yutaka; Hyuga, Daisuke; Yamada, Shogo; Aoki, Kazuyoshi
2006-09-01
It is expected that new materials will be manufactured with containerless processing under the microgravity environment in space. Under the microgravity environment, handling technology of molten metal is important for such processes. There are a lot of previous studies about droplet levitation technologies, including the use of acoustic waves, as the holding technology. However, experimental and analytical information about the relationship between surface deformation and internal flow of a large levitated droplet is still unknown. The purpose of this study is to experimentally investigate the large droplet behavior levitated by the acoustic wave field and its internal flow. To achieve this, first, numerical simulation is conducted to clarify the characteristics of acoustic wave field. Second, the levitation characteristic and the internal flow of the levitated droplet are investigated by the ultrasonic standing wave under normal gravity environment. Finally, the levitation characteristic and internal flow of levitated droplet are observed under microgravity in an aircraft to compare results with the experiment performed under the normal gravity environment.
Internal Flow of Contra-Rotating Small Hydroturbine at Off- Design Flow Rates
NASA Astrophysics Data System (ADS)
SHIGEMITSU, Toru; TAKESHIMA, Yasutoshi; OGAWA, Yuya; FUKUTOMI, Junichiro
2016-11-01
Small hydropower generation is one of important alternative energy, and enormous potential lie in the small hydropower. However, efficiency of small hydroturbines is lower than that of large one. Then, there are demands for small hydroturbines to keep high performance in wide flow rate range. Therefore, we adopted contra-rotating rotors, which can be expected to achieve high performance. In this research, performance of the contra-rotating small hydroturbine with 60mm casing diameter was investigated by an experiment and numerical analysis. Efficiency of the contra-rotating small hydroturbine was high in pico-hydroturbine and high efficiency could be kept in wide flow rate range, however the performance of a rear rotor decreased significantly in partial flow rates. Then, internal flow condition, which was difficult to measure experimentally, was investigated by the numerical flow analysis. Then, a relation between the performance and internal flow condition was considered by the numerical analysis result.
Ultrasonic Fluid Quality Sensor System
Gomm, Tyler J.; Kraft, Nancy C.; Phelps, Larry D.; Taylor, Steven C.
2003-10-21
A system for determining the composition of a multiple-component fluid and for determining linear flow comprising at least one sing-around circuit that determines the velocity of a signal in the multiple-component fluid and that is correlatable to a database for the multiple-component fluid. A system for determining flow uses two of the inventive circuits, one of which is set at an angle that is not perpendicular to the direction of flow.
Ultrasonic fluid quality sensor system
Gomm, Tyler J.; Kraft, Nancy C.; Phelps, Larry D.; Taylor, Steven C.
2002-10-08
A system for determining the composition of a multiple-component fluid and for determining linear flow comprising at least one sing-around circuit that determines the velocity of a signal in the multiple-component fluid and that is correlatable to a database for the multiple-component fluid. A system for determining flow uses two of the inventive circuits, one of which is set at an angle that is not perpendicular to the direction of flow.
Computational simulation and aerodynamic sensitivity analysis of film-cooled turbines
NASA Astrophysics Data System (ADS)
Massa, Luca
A computational tool is developed for the time accurate sensitivity analysis of the stage performance of hot gas, unsteady turbine components. An existing turbomachinery internal flow solver is adapted to the high temperature environment typical of the hot section of jet engines. A real gas model and film cooling capabilities are successfully incorporated in the software. The modifications to the existing algorithm are described; both the theoretical model and the numerical implementation are validated. The accuracy of the code in evaluating turbine stage performance is tested using a turbine geometry typical of the last stage of aeronautical jet engines. The results of the performance analysis show that the predictions differ from the experimental data by less than 3%. A reliable grid generator, applicable to the domain discretization of the internal flow field of axial flow turbine is developed. A sensitivity analysis capability is added to the flow solver, by rendering it able to accurately evaluate the derivatives of the time varying output functions. The complex Taylor's series expansion (CTSE) technique is reviewed. Two of them are used to demonstrate the accuracy and time dependency of the differentiation process. The results are compared with finite differences (FD) approximations. The CTSE is more accurate than the FD, but less efficient. A "black box" differentiation of the source code, resulting from the automated application of the CTSE, generates high fidelity sensitivity algorithms, but with low computational efficiency and high memory requirements. New formulations of the CTSE are proposed and applied. Selective differentiation of the method for solving the non-linear implicit residual equation leads to sensitivity algorithms with the same accuracy but improved run time. The time dependent sensitivity derivatives are computed in run times comparable to the ones required by the FD approach.
NASA Astrophysics Data System (ADS)
Zhang, X. L.; Hu, S. B.; Shen, Z. Z.; Wu, S. P.; Li, K.
2016-05-01
In this paper, an attempt has been made for the calculation of an expression for the intrinsic law of input power which has not yet been given by current theory of Rotodynamic pump. By adequate recognition of the characteristics of non-inertial system within the rotating impeller, it is concluded that the input power consists of two power components, the first power component, whose magnitude increases with the increase of the flow rate, corresponds to radial velocity component, and the second power component, whose magnitude decreases with the increase of the flow rate, corresponds to tangential velocity component, therefore, the law of rise, basic levelness and drop of input power curves of centrifugal pump, mixed-flow pump and axial-flow pump can be explained reasonably. Through further analysis, the main ways for realizing non-overload of centrifugal pump are obtained, and its equivalent design factor is found out, the factor correlates with the outlet angle of leading face and back face of the blade, wrap angle, number of blades, outlet width, area ratio, and the ratio of operating flow rate to specified flow rate and so on. These are verified with actual example.
NASA Astrophysics Data System (ADS)
Rets, Ekaterina; Loshakova, Nadezhda; Chizhova, Julia; Kireeva, Maria; Frolova, Natalia; Tokarev, Igor; Budantseva, Nadine; Vasilchuk, Yurij
2016-04-01
A multicomponent structure of sources of river runoff formation is characteristic of high-altitude territories: ice and firn melting; seasonal snow melting on glacier covered and non-glacier area of a watershed; liquid precipitation; underground waters. In addition, each of these components can run off the watershed surface in different ways. Use of isotopic, hydrochemical methods and energy balance modelling provides possibility to estimate contribution of different components to river runoff that is an essential to understand the mechanism of flow formation in mountainious areas. A study was carried out for Dzhancuat river basin that was chosen as representative for North Caucasus in course of the International Hydrological Decade. Complex glaciological, hydrological and meteorological observation have been carried in the basin since 1965. In years 2013-2015 the program also included daily collecting of water samples on natural stable isotopes on the Dzhancuat river gauging station, and sampling water nourishment sources (ice, snow, firn, liquid precipitation) within the study area. More then 800 water samples were collected. Application of an energy balance model of snow and ice melt with distributed parameters provided an opportunity to identify Dzhancuat river runoff respond to glaciers melt regime and seasonal redistribution of melt water. The diurnal amplitude of oscillation of the Dzhakuat river runoff in the days without precipitation is formed by melting at almost snow-free areas of the Dzhancuat glacier tongues. Snowmelt water from the non-glacierized part contributes to the formation of the next day runoff. A wave of snow and firn melt in upper zones of glacier flattens considerably during filtration through snow and run-off over the surface and in the body of the glacier. This determines a general significant inertia of the Dzhacuat river runoff. Some part of melt water is stored into natural regulating reservoirs of the watershed that supply the Dzhancuat river flow during the winter period. Due to complexity of water flow nourishment structure in alpine conditions a solution of ion and d18O balance equation was carried out for seasons, when it is possible to neglect some of the components in order to reach a needed amount of variables. A substantial excess of d18O content in spring snow and liquid precipitation over winter snow, ice and firn allowed to distinguish these components in the Dzhancuat river runoff in June and August. Unlike d18O mineralization is a nonconservative characteristic, it can show how the water ran down the watershed: over a glacier surface and then through stream channels or over a non-glacier surface, filtrating through comminuted surficial deposits. A solution of conductivity balance equation provide possibility to identify a base flow component in the Dzhancuat river runoff in August and to separate an on-glacier snow melt component from snow melt on non-glacier part of the watershed. The study was supported by the Russian Foundation for Basic Research (Project № 16-35-60042), Russian Scientific fund (Project № 14-17-00766, 14-27-00083)
Pulsatile spiral blood flow through arterial stenosis.
Linge, Fabian; Hye, Md Abdul; Paul, Manosh C
2014-11-01
Pulsatile spiral blood flow in a modelled three-dimensional arterial stenosis, with a 75% cross-sectional area reduction, is investigated by using numerical fluid dynamics. Two-equation k-ω model is used for the simulation of the transitional flow with Reynolds numbers 500 and 1000. It is found that the spiral component increases the static pressure in the vessel during the deceleration phase of the flow pulse. In addition, the spiral component reduces the turbulence intensity and wall shear stress found in the post-stenosis region of the vessel in the early stages of the flow pulse. Hence, the findings agree with the results of Stonebridge et al. (2004). In addition, the results of the effects of a spiral component on time-varying flow are presented and discussed along with the relevant pathological issues.
Sisini, Francesco; Toro, Eleuterio; Gambaccini, Mauro; Zamboni, Paolo
2015-01-01
The jugular venous pulse (JVP) provides valuable information about cardiac haemodynamics and filling pressures and is an indirect estimate of the central venous pressure (CVP). Recently it has been proven that JVP can be obtained by measuring the cross-sectional area (CSA) of the IJV on each sonogram of an ultrasound B-mode sonogram sequence. It has also been proven that during its pulsation the IJV is distended and hence that the pressure gradient drives the IJV haemodynamics. If this is true, then it will imply the following: (i) the blood velocity in the IJV is a periodic function of the time with period equal to the cardiac period and (ii) the instantaneous blood velocity is given by a time function that can be derived from a flow-dynamics theory that uses the instantaneous pressure gradient as a parameter. The aim of the present study is to confirm the hypothesis that JVP regulates the IJV blood flow and that pressure waves are transmitted from the heart toward the brain through the IJV wall. PMID:26783380
Comparing volume of fluid and level set methods for evaporating liquid-gas flows
NASA Astrophysics Data System (ADS)
Palmore, John; Desjardins, Olivier
2016-11-01
This presentation demonstrates three numerical strategies for simulating liquid-gas flows undergoing evaporation. The practical aim of this work is to choose a framework capable of simulating the combustion of liquid fuels in an internal combustion engine. Each framework is analyzed with respect to its accuracy and computational cost. All simulations are performed using a conservative, finite volume code for simulating reacting, multiphase flows under the low-Mach assumption. The strategies used in this study correspond to different methods for tracking the liquid-gas interface and handling the transport of the discontinuous momentum and vapor mass fractions fields. The first two strategies are based on conservative, geometric volume of fluid schemes using directionally split and un-split advection, respectively. The third strategy is the accurate conservative level set method. For all strategies, special attention is given to ensuring the consistency between the fluxes of mass, momentum, and vapor fractions. The study performs three-dimensional simulations of an isolated droplet of a single component fuel evaporating into air. Evaporation rates and vapor mass fractions are compared to analytical results.
NASA Technical Reports Server (NTRS)
Dybbs, Alexander (Editor); Ghorashi, Bahman (Editor)
1991-01-01
The papers presented in this volume provide an overview of the latest advances in laser anemometry and optical flow diagnostics. Topics discussed include turbulence, jets, and chaos; novel optical techniques for velocity measurements; chemical reactions and combusting flows; and LDA/CFD interface. Attention is also given to particle image velocimetry, high speed flows and aerodynamic flows, internal flows, particle sizing, optics and signal processing, two-phase flows, and general fluid mechanics applications.
Design flow factors for sewerage systems in small arid communities.
Imam, Emad H; Elnakar, Haitham Y
2014-09-01
Reliable estimation of sewage flow rates is essential for the proper design of sewers, pumping stations, and treatment plants. The design of the various components of the sewerage system should be based on the most critical flow rates with a focus on extremely low and peak flow rates that would be sustained for a duration related to the acceptable limits of behavior of the components under consideration. The extreme flow conditions and to what extent they differ from the average values are closely related to the size of the community or network, and the socioeconomic conditions. A single pumping station is usually sufficient to pump flow from small community in either flat or non-undulating topography. Therefore, the hydraulic loading on the wastewater treatment plant (WWTP) results from the pumped flow from the pumping station rather than the trunk sewer flow. The intermittent operation of the pumping units further accentuates the sewage hydrograph in the final trunk sewer. Accordingly, the design flow for the various components of the WWTP should be determined based on their relevant flow factors. In this study, analysis of one representative small community out of five monitored small communities in Egypt and the Kingdom of Saudi Arabia is presented. Pumped sewage flow rates were measured and the sewer incoming flows were hydraulically derived. The hourly and daily sewer and pumped flow records were analyzed to derive the relationship between the flow factors that would be sustained for various durations (instantaneously, 1 h, 2 h, etc.) and their probability of non-exceedance. The resulting peaking factors with a consideration for their sustained flow duration and specified probability would permit the design of the various components of the treatment plant using more accurate critical flows.
Design flow factors for sewerage systems in small arid communities
Imam, Emad H.; Elnakar, Haitham Y.
2013-01-01
Reliable estimation of sewage flow rates is essential for the proper design of sewers, pumping stations, and treatment plants. The design of the various components of the sewerage system should be based on the most critical flow rates with a focus on extremely low and peak flow rates that would be sustained for a duration related to the acceptable limits of behavior of the components under consideration. The extreme flow conditions and to what extent they differ from the average values are closely related to the size of the community or network, and the socioeconomic conditions. A single pumping station is usually sufficient to pump flow from small community in either flat or non-undulating topography. Therefore, the hydraulic loading on the wastewater treatment plant (WWTP) results from the pumped flow from the pumping station rather than the trunk sewer flow. The intermittent operation of the pumping units further accentuates the sewage hydrograph in the final trunk sewer. Accordingly, the design flow for the various components of the WWTP should be determined based on their relevant flow factors. In this study, analysis of one representative small community out of five monitored small communities in Egypt and the Kingdom of Saudi Arabia is presented. Pumped sewage flow rates were measured and the sewer incoming flows were hydraulically derived. The hourly and daily sewer and pumped flow records were analyzed to derive the relationship between the flow factors that would be sustained for various durations (instantaneously, 1 h, 2 h, etc.) and their probability of non-exceedance. The resulting peaking factors with a consideration for their sustained flow duration and specified probability would permit the design of the various components of the treatment plant using more accurate critical flows. PMID:25685521
Investigation of Separation of the Turbulent Boundary Layer
NASA Technical Reports Server (NTRS)
Schubauer, G B; Klebanoff, P S
1951-01-01
An investigation was conducted on a turbulent boundary layer near a smooth surface with pressure gradients sufficient to cause flow separation. The reynolds number was high, but the speeds were entirely within the incompressible flow range. The investigation consisted of measurements of mean flow, three components of turbulence intensity, turbulent shearing stress, and correlations between two fluctuation components at a point and between the same component of different points. The results are given in the form of tables and graphs. The discussion deals first with separation and then with the more fundamental question of basic concepts of turbulent flow.
Internal characteristics of refractive-index matched debris flows
NASA Astrophysics Data System (ADS)
Gollin, Devis; Bowman, Elisabeth; Sanvitale, Nicoletta
2016-04-01
Debris flows are channelized masses of granular material saturated with water that travel at high speeds downslope. Their destructive character represents a hazard to lives and properties, especially in regions of high relief and runoff. The characteristics that distinguish their heterogeneous, multi-phase, nature are numerous: non-uniform surge formation, particle size ranging from clay to boulders, flow segregation with larger particles concentrating at the flow front and fluid at the tail making the composition and volume of the bulk varying with time and space. These aspects render these events very difficult to characterise and predict, in particular in the area of the deposit spread or runout - zones which are generally of most interest in terms of human risk. At present, considerable gaps exist in our understanding of the flow dynamics of debris flows, which originates from their complex motion and relatively poor observations available. Flume studies offer the potential to examine in detail the behaviour of model debris flows, however, the opaque nature of these flows is a major obstacle in gaining insight of their internal behaviour. Measurements taken at the sidewalls may be poorly representative leading to incomplete or misleading results. To probe internally to the bulk of the flow, alternative, nonintrusive techniques can be used, enabling, for instance, velocities and solid concentrations within the flowing material to be determined. We present experimental investigations into polydisperse granular flows of spherical immersed particles down an inclined flume, with specific attention directed to their internal behavior. To this end, the refractive indices of solids and liquid are closely matched allowing the two phases to be distinguished. Measurements are then made internally at a point in the channel via Plane Laser Induced Fluorescence, Particle Tracking Velocimetry, PTV and Particle Image Velocimetry, PIV. The objective is to to increase our understanding of two-phase geophysical flows (e.g. debris flows) by providing velocity profiles and solid concentration obtained away from the flow margins. We also present observations of the final deposit spread or runout.
NASA Astrophysics Data System (ADS)
Bingham, R. G.; Rippin, D. M.; Karlsson, N. B.; Corr, H.; Ferraccioli, F.; Jordan, T. A.; Le Brocq, A.; Ross, N.; Wright, A.; Siegert, M. J.
2012-12-01
Radio-echo sounding (RES) across polar ice sheets reveals extensive, isochronous internal layers, whose stratigraphy, and especially their degree of continuity over multi-km distances, can inform us about both present ice flow and past ice-flow histories. Here, we bring together for the first time two recent advances in this field of cryospheric remote sensing to analyse ice flow into the Weddell Sea sector of West Antarctica. Firstly, we have developed a new quantitative routine for analysing the continuity of internal layers obtained over large areas of ice by airborne RES surveys - we term this routine the "Internal-Layering Continuity-Index (ILCI)". Secondly, in the austral season 2010-11 we acquired, by airborne RES survey, the first comprehensive dataset of deep internal layering across Institute and Möller Ice Streams, two of the more significant feeders of ice into the Filchner-Ronne Ice Shelf. Applying the ILCI to SAR-processed (migrated) RES profiles across Institute Ice Stream's catchment reveals two contrasting regions of internal-layering continuity behaviour. In the western portion of the catchment, where ice-stream tributaries incise deeply through the Ellsworth Subglacial Highlands, the continuity of internal layers is most disrupted across the present ice streams. We therefore interpret the ice-flow configuration in this western region as predominantly spatially stable over the lifetime of the ice. Further east, towards Möller Ice Stream, and towards the interior of the ice sheet, the ILCI does not closely match the present ice flow configuration, while across most of present-day Möller Ice Stream itself, the continuity of internal layers is generally low. We propose that the variation in continuity of internal layering across eastern Institute Ice Stream and the neighbouring Möller results primarily from two factors. Firstly, the noncorrespondence of some inland tributaries with internal-layering continuity acts as evidence for past spatial migration of those tributaries, with likely consequences for the relative positions of Institute and Möller Ice Streams over recent history. Secondly, the subglacial roughness, in part a function of the underlying geology across the region, imposes a strong influence on the continuity of the overlying deep internal layers, though whether it controls, or is a function of, ice flow, remains undetermined. We conclude that in the subglacially mountainous Ellsworth Subglacial Highlands sector, there is long-term stability in the spatial configuration of ice flow, but that elsewhere across Insitute and Möller Ice Streams, the ice-flow configuration has the potential to switch.
Joule-Thomson effect and internal convection heat transfer in turbulent He II flow
NASA Technical Reports Server (NTRS)
Walstrom, P. L.
1988-01-01
The temperature rise in highly turbulent He II flowing in tubing was measured in the temperature range 1.6-2.1 K. The effect of internal convection heat transport on the predicted temperature profiles is calculated from the two-fluid model with mutual friction. The model predictions are in good agreement with the measurements, provided that the pressure gradient term is retained in the expression for internal convection heat flow.
NASA Astrophysics Data System (ADS)
Berendt, Artur; Domaszka, Magdalena; Mizeraczyk, Jerzy
2017-04-01
The electrical characteristics of a steady-state negative DC corona discharge in a two-phase fluid (air with suspended cigarette smoke particles) flowing along a chamber with a needle-to-plate electrode arrangement were experimentally investigated. The two-phase flow was transverse in respect to the needle-to-plate axis. The velocity of the transverse two-phase flow was limited to 0.8 m/s, typical of the electrostatic precipitators. We found that three discharge current modes of the negative corona exist in the two-phase (air + smoke particles) fluid: the Trichel pulses mode, the "Trichel pulses superimposed on DC component" mode and the DC component mode, similarly as in the corona discharge in air (a single-phase fluid). The shape of Trichel pulses in the air + suspended particles fluid is similar to that in air. However, the Trichel pulse amplitudes are higher than those in "pure" air while their repetition frequency is lower. As a net consequence of that the averaged corona discharge current in the two-phase fluid is lower than in "pure" air. It was also found that the average discharge current decreases with increasing suspended particle concentration. The calculations showed that the dependence of the average negative corona current (which is a macroscopic corona discharge parameter) on the particle concentration can be explained by the particle-concentration dependencies of the electric charge of Trichel pulse and the repetition frequency of Trichel pulses, both giving a microscopic insight into the electrical phenomena in the negative corona discharge. Our investigations showed also that the average corona discharge current in the two-phase fluid is almost unaffected by the transverse fluid flow up to a velocity of 0.8 m/s. Contribution to the topical issue "The 15th International Symposium on High Pressure Low Temperature Plasma Chemistry (HAKONE XV)", edited by Nicolas Gherardi and Tomáš Hoder
NASA Technical Reports Server (NTRS)
Mccluskey, G. E.; Kondo, Y.
1983-01-01
The eclipsing binary system R Arae = HD 149730 is a relatively bright southern system with an orbital period of about 4.4 days. It is a single-lined spectroscopic binary. The spectral class of the primary component is B9 Vp. The system was included in a study of mass flow and evolution in close binary systems using the International Ultraviolet Explorer satellite (IUE). Four spectra in the wavelength range from 1150 to 1900 A were obtained with the far-ultraviolet SWP camera, and six spectra in the range from 1900 to 3200 range were obtained with the mid-ultraviolet LWR camera. The close binary R Arae exhibits very unusual ultraviolet spectra. It appears that no other close binary system, observed with any of the orbiting satellites, shows outside-eclipse ultraviolet continuum flux variations of this nature.
2010-01-18
CAPE CANAVERAL, Fla. - In Orbiter Processing Facility 1 at NASA's Kennedy Space Center in Florida, technicians ensure that the installation of the orbiter boom sensor system, or OBSS, into space shuttle Atlantis' payload bay meets the correct specifications. The OBSS' inspection boom assembly, or IBA, is removed from the arm every other processing flow for a detailed inspection. After five consecutive flights, all IBA internal components are submitted to a thorough electrical checkout in the Remote Manipulator System Lab. The 50-foot-long OBSS attaches to the end of the shuttle’s robotic arm and supports the cameras and laser systems used to inspect the shuttle’s thermal protection system while in space. Atlantis is next slated to deliver an Integrated Cargo Carrier and Russian-built Mini Research Module to the International Space Station on the STS-132 mission. Launch is targeted for May 14. Photo credit: NASA/Jim Grossmann
2010-01-18
CAPE CANAVERAL, Fla. - In Orbiter Processing Facility 1 at NASA's Kennedy Space Center in Florida, technicians install the orbiter boom sensor system, or OBSS, in space shuttle Atlantis' payload bay across from the remote manipulator system arm. The OBSS' inspection boom assembly, or IBA, is removed from the arm every other processing flow for a detailed inspection. After five consecutive flights, all IBA internal components are submitted to a thorough electrical checkout in the Remote Manipulator System Lab. The 50-foot-long OBSS attaches to the end of the shuttle’s robotic arm and supports the cameras and laser systems used to inspect the shuttle’s thermal protection system while in space. Atlantis is next slated to deliver an Integrated Cargo Carrier and Russian-built Mini Research Module to the International Space Station on the STS-132 mission. Launch is targeted for May 14. Photo credit: NASA/Jim Grossmann
Zhang, Hongyi; Ge, Lijuan; Chen, Hui; Jing, Cong; Shi, Zhihong
2009-07-01
The principle of the normalization of migration time and its application on the traditional Chinese medicine (TCM) analysis by capillary electrophoresis (CE) are presented. It is the core of the normalization of migration time that the fluctuation of apparent migration velocity for each component at different runs is attributed to the difference of electroosmotic flow velocity. To transform migration time (t) to normalized migration time, one peak or two peaks in the original electropherogram are selected as internal peak. The normalization of migration time is therefore classified into two types based on the number of selected internal peaks, one-peak and two-peak approaches. The migration times processed by one-peak normalization and by two-peak normalization are conducted by the following equations, respectively: (t'(i))(j) = 1/ [1/(t(i))(j) - [1/(t(istd))(j) - 1/(t(istd))1
Thermal Testing and Analysis of an Efficient High-Temperature Multi-Screen Internal Insulation
NASA Technical Reports Server (NTRS)
Weiland, Stefan; Handrick, Karin; Daryabeigi, Kamran
2007-01-01
Conventional multi-layer insulations exhibit excellent insulation performance but they are limited to the temperature range to which their components reflective foils and spacer materials are compatible. For high temperature applications, the internal multi-screen insulation IMI has been developed that utilizes unique ceramic material technology to produce reflective screens with high temperature stability. For analytical insulation sizing a parametric material model is developed that includes the main contributors for heat flow which are radiation and conduction. The adaptation of model-parameters based on effective steady-state thermal conductivity measurements performed at NASA Langley Research Center (LaRC) allows for extrapolation to arbitrary stack configurations and temperature ranges beyond the ones that were covered in the conductivity measurements. Experimental validation of the parametric material model was performed during the thermal qualification test of the X-38 Chin-panel, where test results and predictions showed a good agreement.
Toward a transnational history of the social sciences.
Heilbron, Johan; Guilhot, Nicolas; Jeanpierre, Laurent
2008-01-01
Historical accounts of the social sciences have too often accepted local or national institutions as a self-evident framework of analysis, instead of considering them as being embedded in transnational relations of various kinds. Evolving patterns of transnational mobility and exchange cut through the neat distinction between the local, the national, and the inter-national, and thus represent an essential component in the dynamics of the social sciences, as well as a fruitful perspective for rethinking their historical development. In this programmatic outline, it is argued that a transnational history of the social sciences may be fruitfully understood on the basis of three general mechanisms, which have structured the transnational flows of people and ideas in decisive ways: (a) the functioning of international scholarly institutions, (b) the transnational mobility of scholars, and (c) the politics of trans-national exchange of nonacademic institutions. The article subsequently examines and illustrates each of these mechanisms.
A numerical study of blood flow using mixture theory
Wu, Wei-Tao; Aubry, Nadine; Massoudi, Mehrdad; Kim, Jeongho; Antaki, James F.
2014-01-01
In this paper, we consider the two dimensional flow of blood in a rectangular microfluidic channel. We use Mixture Theory to treat this problem as a two-component system: One component is the red blood cells (RBCs) modeled as a generalized Reiner–Rivlin type fluid, which considers the effects of volume fraction (hematocrit) and influence of shear rate upon viscosity. The other component, plasma, is assumed to behave as a linear viscous fluid. A CFD solver based on OpenFOAM® was developed and employed to simulate a specific problem, namely blood flow in a two dimensional micro-channel, is studied. Finally to better understand this two-component flow system and the effects of the different parameters, the equations are made dimensionless and a parametric study is performed. PMID:24791016
A numerical study of blood flow using mixture theory.
Wu, Wei-Tao; Aubry, Nadine; Massoudi, Mehrdad; Kim, Jeongho; Antaki, James F
2014-03-01
In this paper, we consider the two dimensional flow of blood in a rectangular microfluidic channel. We use Mixture Theory to treat this problem as a two-component system: One component is the red blood cells (RBCs) modeled as a generalized Reiner-Rivlin type fluid, which considers the effects of volume fraction (hematocrit) and influence of shear rate upon viscosity. The other component, plasma, is assumed to behave as a linear viscous fluid. A CFD solver based on OpenFOAM ® was developed and employed to simulate a specific problem, namely blood flow in a two dimensional micro-channel, is studied. Finally to better understand this two-component flow system and the effects of the different parameters, the equations are made dimensionless and a parametric study is performed.
Integrated acoustic phase separator and multiphase fluid composition monitoring apparatus and method
Sinha, Dipen N.
2016-01-12
An apparatus and method for down hole gas separation from the multiphase fluid flowing in a wellbore or a pipe, for determining the quantities of the individual components of the liquid and the flow rate of the liquid, and for remixing the component parts of the fluid after which the gas volume may be measured, without affecting the flow stream, are described. Acoustic radiation force is employed to separate gas from the liquid, thereby permitting measurements to be separately made for these two components; the liquid (oil/water) composition is determined from ultrasonic resonances; and the gas volume is determined from capacitance measurements. Since the fluid flows around and through the component parts of the apparatus, there is little pressure difference, and no protection is required from high pressure differentials.
Integrated acoustic phase separator and multiphase fluid composition monitoring apparatus and method
Sinha, Dipen N
2014-02-04
An apparatus and method for down hole gas separation from the multiphase fluid flowing in a wellbore or a pipe, for determining the quantities of the individual components of the liquid and the flow rate of the liquid, and for remixing the component parts of the fluid after which the gas volume may be measured, without affecting the flow stream, are described. Acoustic radiation force is employed to separate gas from the liquid, thereby permitting measurements to be separately made for these two components; the liquid (oil/water) composition is determined from ultrasonic resonances; and the gas volume is determined from capacitance measurements. Since the fluid flows around and through the component parts of the apparatus, there is little pressure difference, and no protection is required from high pressure differentials.
Markstrom, Steven L.; Niswonger, Richard G.; Regan, R. Steven; Prudic, David E.; Barlow, Paul M.
2008-01-01
The need to assess the effects of variability in climate, biota, geology, and human activities on water availability and flow requires the development of models that couple two or more components of the hydrologic cycle. An integrated hydrologic model called GSFLOW (Ground-water and Surface-water FLOW) was developed to simulate coupled ground-water and surface-water resources. The new model is based on the integration of the U.S. Geological Survey Precipitation-Runoff Modeling System (PRMS) and the U.S. Geological Survey Modular Ground-Water Flow Model (MODFLOW). Additional model components were developed, and existing components were modified, to facilitate integration of the models. Methods were developed to route flow among the PRMS Hydrologic Response Units (HRUs) and between the HRUs and the MODFLOW finite-difference cells. This report describes the organization, concepts, design, and mathematical formulation of all GSFLOW model components. An important aspect of the integrated model design is its ability to conserve water mass and to provide comprehensive water budgets for a location of interest. This report includes descriptions of how water budgets are calculated for the integrated model and for individual model components. GSFLOW provides a robust modeling system for simulating flow through the hydrologic cycle, while allowing for future enhancements to incorporate other simulation techniques.
Fluid mechanics of fusion lasers. Final report, September 11, 1978-June 5, 1980
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shwartz, J; Kulkarny, V A; Ausherman, D A
1980-01-01
Flow loop components required to operate continuous-flow, repetitively-pulsed CO/sub 2/ and KrF laser drivers for ICF were identified and their performance requirements were specified. It was found that the laser flow loops can have a major effect on the laser beam quality and overall efficiency. The pressure wave suppressor was identified as the most critical flow loop component. The performance of vented side-wall suppressors was evaluated both analytically and experimentally and found capable of meeting the performance requirements of the CO/sub 2/ and KrF fusion lasers. All other laser flow loop components are essentially similar to those used in conventional,more » low speed wind tunnels and are therefore well characterized and can be readily incorporated into fusion laser flow systems designs.« less
Self-tuning method for monitoring the density of a gas vapor component using a tunable laser
Hagans, Karla; Berzins, Leon; Galkowski, Joseph; Seng, Rita
1996-01-01
The present invention relates to a vapor density monitor and laser atomic absorption spectroscopy method for highly accurate, continuous monitoring of vapor densities, composition, flow velocity, internal and kinetic temperatures and constituent distributions. The vapor density monitor employs a diode laser, preferably of an external cavity design. By using a diode laser, the vapor density monitor is significantly less expensive and more reliable than prior art vapor density monitoring devices. In addition, the compact size of diode lasers enables the vapor density monitor to be portable. According to the method of the present invention, the density of a component of a gas vapor is calculated by tuning the diode laser to a frequency at which the amount of light absorbed by the component is at a minimum or a maximum within about 50 MHz of that frequency. Laser light from the diode laser is then transmitted at the determined frequency across a predetermined pathlength of the gas vapor. By comparing the amount of light transmitted by the diode laser to the amount of light transmitted after the laser light passes through the gas vapor, the density of the component can be determined using Beer's law.
Self-tuning method for monitoring the density of a gas vapor component using a tunable laser
Hagans, K.; Berzins, L.; Galkowski, J.; Seng, R.
1996-08-27
The present invention relates to a vapor density monitor and laser atomic absorption spectroscopy method for highly accurate, continuous monitoring of vapor densities, composition, flow velocity, internal and kinetic temperatures and constituent distributions. The vapor density monitor employs a diode laser, preferably of an external cavity design. By using a diode laser, the vapor density monitor is significantly less expensive and more reliable than prior art vapor density monitoring devices. In addition, the compact size of diode lasers enables the vapor density monitor to be portable. According to the method of the present invention, the density of a component of a gas vapor is calculated by tuning the diode laser to a frequency at which the amount of light absorbed by the component is at a minimum or a maximum within about 50 MHz of that frequency. Laser light from the diode laser is then transmitted at the determined frequency across a predetermined pathlength of the gas vapor. By comparing the amount of light transmitted by the diode laser to the amount of light transmitted after the laser light passes through the gas vapor, the density of the component can be determined using Beer`s law. 6 figs.
Modeling of Ice Flow and Internal Layers Along a Flow Line Through Swiss Camp in West Greenland
NASA Technical Reports Server (NTRS)
Wang, W. L.; Zwally, H. Jay; Abdalati, W.; Luo, S.; Koblinsky, Chester J. (Technical Monitor)
2001-01-01
An anisotropic ice flow line model is applied to a flow line through Swiss Camp (69.57 N, 49.28 W) in West Greenland to estimate the dates of internal layers detected by Radio-Echo Sounding measurements. The effect of an anisotropic ice fabric on ice flow is incorporated into the steady state flow line model. The stress-strain rate relationship for anisotropic ice is characterized by an enhancement factor based on the laboratory observations of ice deformation under combined compression and shear stresses. By using present-day data of accumulation rate, surface temperature, surface elevation and ice thickness along the flow line as model inputs, a very close agreement is found between the isochrones generated from the model and the observed internal layers with confirmed dates. The results indicate that this part of Greenland ice sheet is primarily in steady state.
A drop in uniaxial and biaxial nonlinear extensional flows
NASA Astrophysics Data System (ADS)
Favelukis, M.
2017-08-01
In this theoretical report, we explore small deformations of an initially spherical drop subjected to uniaxial or biaxial nonlinear extensional creeping flows. The problem is governed by the capillary number (Ca), the viscosity ratio (λ), and the nonlinear intensity of the flow (E). When the extensional flow is linear (E = 0), the familiar internal circulations are obtained and the same is true with E > 0, except that the external and internal flow rates increase with increasing E. If E < 0, the external flow consists of some unconnected regions leading to the same number of internal circulations (-3/7 < E < 0) or twice the number of internal circulations (E < -3/7), when compared to the linear case. The shape of the deformed drop is represented in terms of a modified Taylor deformation parameter, and the conditions for the breakup of the drop by a center pinching mechanism are also established. When the flow is linear (E = 0), the literature predicts prolate spheroidal drops for uniaxial flows (Ca > 0) and oblate spheroidal drops for biaxial flows (Ca < 0). For the same |Ca|, if E > 0, the drop is more elongated than the linear case, while E < 0 results in less elongated drops than the linear case. Compared to the linear case, for both uniaxial and biaxial extensional flows, E > 0 tends to facilitate drop breakup, while E < 0 makes drop breakup more difficult.
NASA Technical Reports Server (NTRS)
Starik, Alexander M.
1997-01-01
(1) Our results show that under combustion of thermal destruction products of n-C8H18, and other hydrocarbon fuels with air at the equivalent ratio -0.5 and less the chemical equilibrium is not realized at the exit plane of combustion chamber and in the gas turbine and nozzle for most of small components such as NO2, NO3, HNO, HNO2, HNO3, N(x)H(y), HO2, OH. The chemical equilibrium is not realized in the internal flow of ramjet hydrogen combustion engine too. So at the nozzle exit plane both of gas-turbine hydrocarbon combustion engine and of ramjet hydrogen combustion engine the relatively large values of concentration of such small components as NO3, HNO2, N2O, HNO3, HNO, NH, N2H, HO2, H2O2 may be realized. The exact definition of these component concentration as well as concentration of NO(x), OH, SO2, O, H, H2, H2O at the nozzle exit plane is very important for plume chemistry. (2) The results which were obtained for subsonic and hypersonic aircrafts indicate on the considerable change of the composition of the gas mixture along the plume. This change can be caused not only by the mixture of combustion products with the atmosphere air but by proceeding of whole complex of nonequilibrium photochemical reactions. The photodissociation processes begin to influence on the formation of the free atoms and radicals at flight altitude H greater than or equal to 18 km. Neglect of these processes can result in essential (up to 10(exp 4) times) mistakes of values gamma(sub OH), gamma(sub O), gamma(sub H), gamma(sub HSO3) and some products of CFC's disintegration. It was found that penetration of Cl-containing species from the atmosphere into the exhaust flow and its interaction with nitrogen oxides leads to essential increasing of the concentration of Cl, Cl2, ClO2, ClNO3, CH3Cl and sometimes HCl and the decreasing of ClO concentration by comparison with background values. The results of our analysis show that the plume aircraft with both hydrocarbon and hydrogen combustion engine may be source of various pollutant components such as HNO, HNO4,ClO2, CH3NO2, CH3NO3, CH2O, Cl, H2O2, but not only NO, NO2, HNO2, HNO3, N2O5, SO2, SO3, H2SO4 as it was supposed before.
Effect of blade outlet angle on radial thrust of single-blade centrifugal pump
NASA Astrophysics Data System (ADS)
Nishi, Y.; Fukutomi, J.; Fujiwara, R.
2012-11-01
Single-blade centrifugal pumps are widely used as sewage pumps. However, a large radial thrust acts on a single blade during pump operation because of the geometrical axial asymmetry of the impeller. This radial thrust causes vibrations of the pump shaft, reducing the service life of bearings and shaft seal devices. Therefore, to ensure pump reliability, it is necessary to quantitatively understand the radial thrust and clarify the behavior and generation mechanism. This study investigated the radial thrust acting on two kinds of single-blade centrifugal impellers having different blade outlet angles by experiments and computational fluid dynamics (CFD) analysis. Furthermore, the radial thrust was modeled by a combination of three components, inertia, momentum, and pressure, by applying an unsteady conservation of momentum to this impeller. As a result, the effects of the blade outlet angle on both the radial thrust and the modeled components were clarified. The total head of the impeller with a blade outlet angle of 16 degrees increases more than the impeller with a blade outlet angle of 8 degrees at a large flow rate. In this case, since the static pressure of the circumference of the impeller increases uniformly, the time-averaged value of the radial thrust of both impellers does not change at every flow rate. On the other hand, since the impeller blade loading becomes large, the fluctuation component of the radial thrust of the impeller with the blade outlet angle of 16 degrees increases. If the blade outlet angle increases, the fluctuation component of the inertia component will increase, but the time-averaged value of the inertia component is located near the origin despite changes in the flow rate. The fluctuation component of the momentum component becomes large at all flow rates. Furthermore, although the time-averaged value of the pressure component is almost constant, the fluctuation component of the pressure component becomes large at a large flow rate. In addition to the increase of the fluctuation component of this pressure component, because the fluctuation component of the inertia and momentum components becomes large (as mentioned above), the radial thrust increases at a large flow rate, as is the case for the impeller with a large blade outlet angle.
A Network Flow Analysis of the Nitrogen Metabolism in Beijing, China.
Zhang, Yan; Lu, Hanjing; Fath, Brian D; Zheng, Hongmei; Sun, Xiaoxi; Li, Yanxian
2016-08-16
Rapid urbanization results in high nitrogen flows and subsequent environmental consequences. In this study, we identified the main metabolic components (nitrogen inputs, flows, and outputs) and used ecological network analysis to track the direct and integral (direct + indirect) metabolic flows of nitrogen in Beijing, China, from 1996 to 2012 and to quantify the structure of Beijing's nitrogen metabolic processes. We found that Beijing's input of new reactive nitrogen (Q, which represents nitrogen obtained from the atmosphere or nitrogen-containing materials used in production and consumption to support human activities) increased from 431 Gg in 1996 to 507 Gg in 2012. Flows to the industry, atmosphere, and household, and components of the system were clearly largest, with total integrated inputs plus outputs from these nodes accounting for 31, 29, and 15%, respectively, of the total integral flows for all paths. The flows through the sewage treatment and transportation components showed marked growth, with total integrated inputs plus outputs increasing to 3.7 and 5.2 times their 1996 values, respectively. Our results can help policymakers to locate the key nodes and pathways in an urban nitrogen metabolic system so they can monitor and manage these components of the system.
OVERSMART Reporting Tool for Flow Computations Over Large Grid Systems
NASA Technical Reports Server (NTRS)
Kao, David L.; Chan, William M.
2012-01-01
Structured grid solvers such as NASA's OVERFLOW compressible Navier-Stokes flow solver can generate large data files that contain convergence histories for flow equation residuals, turbulence model equation residuals, component forces and moments, and component relative motion dynamics variables. Most of today's large-scale problems can extend to hundreds of grids, and over 100 million grid points. However, due to the lack of efficient tools, only a small fraction of information contained in these files is analyzed. OVERSMART (OVERFLOW Solution Monitoring And Reporting Tool) provides a comprehensive report of solution convergence of flow computations over large, complex grid systems. It produces a one-page executive summary of the behavior of flow equation residuals, turbulence model equation residuals, and component forces and moments. Under the automatic option, a matrix of commonly viewed plots such as residual histograms, composite residuals, sub-iteration bar graphs, and component forces and moments is automatically generated. Specific plots required by the user can also be prescribed via a command file or a graphical user interface. Output is directed to the user s computer screen and/or to an html file for archival purposes. The current implementation has been targeted for the OVERFLOW flow solver, which is used to obtain a flow solution on structured overset grids. The OVERSMART framework allows easy extension to other flow solvers.
Transnationalization of Television in West Europe. Working Paper No. 13.
ERIC Educational Resources Information Center
Sepstrup, Preben
Based primarily on data from public service broadcasting, this study had two major purposes: to develop a framework for understanding, conceptualizing, and measuring international television flows and the effects associated with these flows; and to establish a background of facts on international television flows in Western Europe. Secondary…
Computation of high Reynolds number internal/external flows
NASA Technical Reports Server (NTRS)
Cline, M. C.; Wilmoth, R. G.
1981-01-01
A general, user oriented computer program, called VNAP2, has been developed to calculate high Reynolds number, internal/external flows. VNAP2 solves the two-dimensional, time-dependent Navier-Stokes equations. The turbulence is modeled with either a mixing-length, a one transport equation, or a two transport equation model. Interior grid points are computed using the explicit MacCormack scheme with special procedures to speed up the calculation in the fine grid. All boundary conditions are calculated using a reference plane characteristic scheme with the viscous terms treated as source terms. Several internal, and internal/external flow calculations are presented.
Computation of high Reynolds number internal/external flows
NASA Technical Reports Server (NTRS)
Cline, M. C.; Wilmoth, R. G.
1981-01-01
A general, user oriented computer program, called VNAP2, was developed to calculate high Reynolds number, internal/ external flows. The VNAP2 program solves the two dimensional, time dependent Navier-Stokes equations. The turbulence is modeled with either a mixing-length, a one transport equation, or a two transport equation model. Interior grid points are computed using the explicit MacCormack Scheme with special procedures to speed up the calculation in the fine grid. All boundary conditions are calculated using a reference plane characteristic scheme with the viscous terms treated as source terms. Several internal, external, and internal/external flow calculations are presented.
Computation of high Reynolds number internal/external flows
NASA Technical Reports Server (NTRS)
Cline, M. C.; Wilmoth, R. G.
1981-01-01
A general, user oriented computer program, called VNAF2, developed to calculate high Reynolds number internal/external flows is described. The program solves the two dimensional, time dependent Navier-Stokes equations. Turbulence is modeled with either a mixing length, a one transport equation, or a two transport equation model. Interior grid points are computed using the explicit MacCormack scheme with special procedures to speed up the calculation in the fine grid. All boundary conditions are calculated using a reference plane characteristic scheme with the viscous terms treated as source terms. Several internal, external, and internal/external flow calculations are presented.
Elbarbry, Fawzy A; Mabrouk, Mokhtar M; El-Dawy, Mohamed A
2007-01-01
A procedure was developed for the determination of the analgesic components of Spasmomigraine tablets, which are ergotamine (I), propyphenazone (II), caffeine (III), camylofin (IV), and mecloxamine (V). They were subjected to high-performance liquid chromatography on a column (300 x 3.9 mm, 10 rlm particle size) packed with micro-Bondapak C18. Separations were achieved with the mobile phase methanol-water-triethylamine (60 + 40 + 0.1, v/v/v) flowing at a rate of 1.5 mL/min, and quantitative determination was performed at 254 nm at ambient temperature for I-III; acetonitrile-25 mM KH2PO4-acetic acid (45 + 55 + 0.2, v/v/v), flowing at a rate of 1.5 mL/min and detection at 234 nm at ambient temperature, was used for IV and V. Methyl paraben was used as an internal standard. The detection limits were 0.35 (I), 5.0 (11), 1.5 (111), 3.0 (IV), and 2.0 microg/mL (V). The method was accurate (mean recovery 98+/-2%, n = 4) and precise (coefficient of variation <5%, n = 5). The proposed method is rapid and sensitive and, therefore, suitable for the routine control of these ingredients in multicomponent dosage forms.
Engineering controllable architecture in matrigel for 3D cell alignment.
Jang, Jae Myung; Tran, Si-Hoai-Trung; Na, Sang Cheol; Jeon, Noo Li
2015-02-04
We report a microfluidic approach to impart alignment in ECM components in 3D hydrogels by continuously applying fluid flow across the bulk gel during the gelation process. The microfluidic device where each channel can be independently filled was tilted at 90° to generate continuous flow across the Matrigel as it gelled. The presence of flow helped that more than 70% of ECM components were oriented along the direction of flow, compared with randomly cross-linked Matrigel. Following the oriented ECM components, primary rat cortical neurons and mouse neural stem cells showed oriented outgrowth of neuronal processes within the 3D Matrigel matrix.
NASA Technical Reports Server (NTRS)
Mortazavi, M.; Kollmann, W.; Squires, K.
1987-01-01
Vorticity plays a fundamental role in turbulent flows. The dynamics of vorticity in turbulent flows and the effect on single-point closure models were investigated. The approach was to use direct numerical simulations of turbulent flows to investigate the pdf of velocity and vorticity. The preliminary study of homogeneous shear flow has shown that the expectation of the fluctuating pressure gradient, conditioned with a velocity component, is linear in the velocity component, and that the coefficient is independent of velocity and vorticity. In addition, the work shows that the expectation of the pressure gradient, conditioned with a vorticity component, is essentially zero.
An analysis method for multi-component airfoils in separated flow
NASA Technical Reports Server (NTRS)
Rao, B. M.; Duorak, F. A.; Maskew, B.
1980-01-01
The multi-component airfoil program (Langley-MCARF) for attached flow is modified to accept the free vortex sheet separation-flow model program (Analytical Methods, Inc.-CLMAX). The viscous effects are incorporated into the calculation by representing the boundary layer displacement thickness with an appropriate source distribution. The separation flow model incorporated into MCARF was applied to single component airfoils. Calculated pressure distributions for angles of attack up to the stall are in close agreement with experimental measurements. Even at higher angles of attack beyond the stall, correct trends of separation, decrease in lift coefficients, and increase in pitching moment coefficients are predicted.
Toward Development of a Stochastic Wake Model: Validation Using LES and Turbine Loads
Moon, Jae; Manuel, Lance; Churchfield, Matthew; ...
2017-12-28
Wind turbines within an array do not experience free-stream undisturbed flow fields. Rather, the flow fields on internal turbines are influenced by wakes generated by upwind unit and exhibit different dynamic characteristics relative to the free stream. The International Electrotechnical Commission (IEC) standard 61400-1 for the design of wind turbines only considers a deterministic wake model for the design of a wind plant. This study is focused on the development of a stochastic model for waked wind fields. First, high-fidelity physics-based waked wind velocity fields are generated using Large-Eddy Simulation (LES). Stochastic characteristics of these LES waked wind velocity field,more » including mean and turbulence components, are analyzed. Wake-related mean and turbulence field-related parameters are then estimated for use with a stochastic model, using Multivariate Multiple Linear Regression (MMLR) with the LES data. To validate the simulated wind fields based on the stochastic model, wind turbine tower and blade loads are generated using aeroelastic simulation for utility-scale wind turbine models and compared with those based directly on the LES inflow. The study's overall objective is to offer efficient and validated stochastic approaches that are computationally tractable for assessing the performance and loads of turbines operating in wakes.« less
Toward Development of a Stochastic Wake Model: Validation Using LES and Turbine Loads
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moon, Jae; Manuel, Lance; Churchfield, Matthew
Wind turbines within an array do not experience free-stream undisturbed flow fields. Rather, the flow fields on internal turbines are influenced by wakes generated by upwind unit and exhibit different dynamic characteristics relative to the free stream. The International Electrotechnical Commission (IEC) standard 61400-1 for the design of wind turbines only considers a deterministic wake model for the design of a wind plant. This study is focused on the development of a stochastic model for waked wind fields. First, high-fidelity physics-based waked wind velocity fields are generated using Large-Eddy Simulation (LES). Stochastic characteristics of these LES waked wind velocity field,more » including mean and turbulence components, are analyzed. Wake-related mean and turbulence field-related parameters are then estimated for use with a stochastic model, using Multivariate Multiple Linear Regression (MMLR) with the LES data. To validate the simulated wind fields based on the stochastic model, wind turbine tower and blade loads are generated using aeroelastic simulation for utility-scale wind turbine models and compared with those based directly on the LES inflow. The study's overall objective is to offer efficient and validated stochastic approaches that are computationally tractable for assessing the performance and loads of turbines operating in wakes.« less
NASA Astrophysics Data System (ADS)
Potvin-Trottier, Laurent; Chen, Lingfeng; Horwitz, Alan Rick; Wiseman, Paul W.
2013-08-01
We introduce a new generalized theoretical framework for image correlation spectroscopy (ICS). Using this framework, we extend the ICS method in time-frequency (ν, nu) space to map molecular flow of fluorescently tagged proteins in individual living cells. Even in the presence of a dominant immobile population of fluorescent molecules, nu-space ICS (nICS) provides an unbiased velocity measurement, as well as the diffusion coefficient of the flow, without requiring filtering. We also develop and characterize a tunable frequency-filter for spatio-temporal ICS (STICS) that allows quantification of the density, the diffusion coefficient and the velocity of biased diffusion. We show that the techniques are accurate over a wide range of parameter space in computer simulation. We then characterize the retrograde flow of adhesion proteins (α6- and αLβ2-GFP integrins and mCherry-paxillin) in CHO.B2 cells plated on laminin and intercellular adhesion molecule 1 (ICAM-1) ligands respectively. STICS with a tunable frequency filter, in conjunction with nICS, measures two new transport parameters, the density and transport bias coefficient (a measure of the diffusive character of a flow/biased diffusion), showing that molecular flow in this cell system has a significant diffusive component. Our results suggest that the integrin-ligand interaction, along with the internal myosin-motor generated force, varies for different integrin-ligand pairs, consistent with previous results.
NASA Technical Reports Server (NTRS)
Bishop, A. R.
1994-01-01
This computer program calculates the flow field in the supersonic portion of a mixed-compression aircraft inlet at non-zero angle of attack. This approach is based on the method of characteristics for steady three-dimensional flow. The results of this program agree with those produced by the two-dimensional method of characteristics when axisymmetric flow fields are calculated. Except in regions of high viscous interaction and boundary layer removal, the results agree well with experimental data obtained for threedimensional flow fields. The flow field in a variety of axisymmetric mixed compression inlets can be calculated using this program. The bow shock wave and the internal shock wave system are calculated using a discrete shock wave fitting procedure. The internal flow field can be calculated either with or without the discrete fitting of the internal shock wave system. The influence of molecular transport can be included in the calculation of the external flow about the forebody and in the calculation of the internal flow when internal shock waves are not discretely fitted. The viscous and thermal diffussion effects are included by treating them as correction terms in the method of characteristics procedure. Dynamic viscosity is represented by Sutherland's law and thermal conductivity is represented as a quadratic function of temperature. The thermodynamic model used is that of a thermally and calorically perfect gas. The program assumes that the cowl lip is contained in a constant plane and that the centerbody contour and cowl contour are smooth and have continuous first partial derivatives. This program cannot calculate subsonic flow, the external flow field if the bow shock wave does not exist entirely around the forebody, or the internal flow field if the bow flow field is injected into the annulus. Input to the program consists of parameters to control execution, to define the geometry, and the vehicle orientation. Output consists of a list of parameters used, solution planes, and a description of the shock waves. This program is written in FORTRAN IV for batch execution and has been implemented on a CDC 6000 series machine with a central memory requirement of 110K (octal) of 60 bit words when it is overlayed. This flow analysis program was developed in 1978.
NASA Technical Reports Server (NTRS)
Stier, Bernd; Falco, R. E.
1994-01-01
Optical measurements on an axisymmetrical quartz component engine research model were made to evaluate the flow field encountered during induction. The measurement technique is LIPA (Laser Induced Photochemical Anemometry), a non-intrusive velocimetry concept that provides an investigator of fluid flow with a tool to attain planar information about three-dimensional velocity and vorticity vectors in a single measurement step. The goal of this investigation is to further develop this measurement technique and apply it to study the induction stroke of a water analog model of a four-stroke internal combustion engine. The research conducted in the water analog model is a fundamental scientific inquiry into the flow fields that develop in the induction stroke of an engine at idling engine speeds. As this is the first investigation of its kind using LIPA technique, our goal has been to quantify, in a preliminary manner, the flow field features that develop during the intake stroke. In the process a more comprehensive understanding of the flow field features was developed, and tied to the quantification. The study evaluated the flow field of the intake stroke by estimating fields of velocity and vorticity. On the basis of these data, information about fluid dynamics during induction at engine speeds of 10, 20, and 30 RPM (corresponding to 170, 340, and 510 RPM respectively, when air is the flowing medium) for three different valve lifts was obtained. The overall development of the flow field, its energy content (kinetic, fluctuation) for the different settings of the engine parameters, vorticity information, and cyclic variations have been quantified. These have been discussed in terms of mixing performance.
Modelling non-hydrostatic processes in sill regions
NASA Astrophysics Data System (ADS)
Souza, A.; Xing, J.; Davies, A.; Berntsen, J.
2007-12-01
We use a non-hydrostatic model to compute tidally induced flow and mixing in the region of bottom topography representing the sill at the entrance to Loch Etive (Scotland). This site is chosen since detailed measurements were recently made there. With non-hydrostatic dynamics in the model our results showed that the model could reproduce the observed flow characteristics, e.g., hydraulic transition, flow separation and internal waves. However, when calculations were performed using the model in the hydrostatic form, significant artificial convective mixing occurred. This influenced the computed temperature and flow field. We will discuss in detail the effects of non-hydrostatic dynamics on flow over the sill, especially investigate non-linear and non-hydrostatic contributions to modelled internal waves and internal wave energy fluxes.
The stably stratified internal boundary layer for steady and diurnally varying offshore flow
NASA Astrophysics Data System (ADS)
Garratt, J. R.
1987-03-01
A two-dimensional numerical mesoscale model is used to investigate the internal structure and growth of the stably stratified internal boundary layer (IBL) beneath warm, continental air flowing over a cooler sea. Two situations are studied — steady-state and diurnally varying offshore flow. In the steady-state case, vertical profiles of mean quantities and eddy diffusion coefficients ( K) within the IBL show small, but significant, changes with increasing distance from the coast. The top of the IBL is well defined, with large vertical gradients within the layer and a maximum in the coast-normal wind component near the top. Well away from the coast, turbulence, identified by non-zero K, decreases to insignificant levels near the top of the IBL; the IBL itself is characterised by a critical value of the layer-flux Richardson number equal to 0.18. The overall behaviour of the mean profiles is similar to that found in the horizontally homogeneous stable boundary layer over land. A simple physical model is used to relate the depth of the layer h to several relevant physical parameters viz., x, the distance from the coast and U, the large-scale wind (both normal to the coastline) and gδθ/θ, Δθ being the temperature difference between continental mixed-layer air and sea surface, θ is the mean potential temperature and g is the acceleration due to gravity. Excellent agreement with the numerical results is found, with h = 0.014 x 1/2 U ( gδθ/θ)-1/2. In the diurnally varying case, the mean profiles within the IBL show only small differences from the steady-state case, although diurnal variations, particularly in the wind maximum, are evident within a few hundred kilometres of the coast. A mesoscale circulation normal to the coast, and superimposed upon the mean offshore flow, develops seawards of the coastline with maximum vertical velocities about sunset, of depth about 2 km and horizontal scale ≈ 500 km. The circulation is related to the advection, and subsequent decay, of daytime convective turbulence over the sea.
Nawrotzki, Raphael J.; Jiang, Leiwen
2015-01-01
Although data for the total number of international migrant flows is now available, no global dataset concerning demographic characteristics, such as the age and gender composition of migrant flows exists. This paper reports on the methods used to generate the CDM-IM dataset of age and gender specific profiles of bilateral net (not gross) migrant flows. We employ raw data from the United Nations Global Migration Database and estimate net migrant flows by age and gender between two time points around the year 2000, accounting for various demographic processes (fertility, mortality). The dataset contains information on 3,713 net migrant flows. Validation analyses against existing data sets and the historical, geopolitical context demonstrate that the CDM-IM dataset is of reasonably high quality. PMID:26692590
Numerical modelling of strain in lava tubes
NASA Astrophysics Data System (ADS)
Merle, Olivier
The strain within lava tubes is described in terms of pipe flow. Strain is partitioned into three components: (a) two simple shear components acting from top to bottom and from side to side of a rectangular tube in transverse section; and (b) a pure shear component corresponding to vertical shortening in a deflating flow and horizontal compression in an inflating flow. The sense of shear of the two simple shear components is reversed on either side of a central zone of no shear. Results of numerical simulations of strain within lava tubes reveal a concentric pattern of flattening planes in section normal to the flow direction. The central node is a zone of low strain, which increases toward the lateral borders. Sections parallel to the flow show obliquity of the flattening plane to the flow axis, constituting an imbrication. The strain ellipsoid is generally of plane strain type, but can be of constriction or flattening type if thinning (i.e. deflating flow) or thickening (i.e. inflating flow) is superimposed on the simple shear regime. The strain pattern obtained from numerical simulation is then compared with several patterns recently described in natural lava flows. It is shown that the strain pattern revealed by AMS studies or crystal preferred orientations is remarkably similar to the numerical simulation. However, some departure from the model is found in AMS measurements. This may indicate inherited strain recorded during early stages of the flow or some limitation of the AMS technique.
NASA Astrophysics Data System (ADS)
Polzin, Kurt A.; Godfroy, Thomas J.
2008-01-01
A test loop using NaK as the working fluid is presently in use to study material compatibility effects on various components that comprise a possible nuclear reactor design for use on the lunar surface. A DC electromagnetic (EM) pump has been designed and implemented as a means of actively controlling the NaK flow rate through the system and an EM flow sensor is employed to monitor the developed flow rate. These components allow for the matching of the flow rate conditions in test loops with those that would be found in a full-scale surface-power reactor. The design and operating characteristics of the EM pump and flow sensor are presented. In the EM pump, current is applied to a set of electrodes to produce a Lorentz body force in the fluid. A measurement of the induced voltage (back-EMF) in the flow sensor provides the means of monitoring flow rate. Both components are compact, employing high magnetic field strength neodymium magnets thermally coupled to a water-cooled housing. A vacuum gap limits the heat transferred from the high temperature NaK tube to the magnets and a magnetically-permeable material completes the magnetic circuit. The pump is designed to produce a pressure rise of 34.5 kPa, and the flow sensor's predicted output is roughly 20 mV at the loop's nominal flow rate of 0.114 m3/hr.
NASA Technical Reports Server (NTRS)
Polzin, Kurt A.; Godfroy, Thomas J.
2008-01-01
A test loop using NaK as the working fluid is presently in use to study material compatibility effects on various components that comprise a possible nuclear reactor design for use on the lunar surface. A DC electromagnetic (EM) pump has been designed and implemented as a means of actively controlling the NaK flow rate through the system and an EM flow sensor is employed to monitor the developed flow rate. These components allow for the matching of the flow rate conditions in test loops with those that would be found in a full-scale surface-power reactor. The design and operating characteristics of the EM pump and flow sensor are presented. In the EM pump, current is applied to a set of electrodes to produce a Lorentz body force in the fluid. A measurement of the induced voltage (back-EMF) in the flow sensor provides the means of monitoring flow rate. Both components are compact, employing high magnetic field strength neodymium magnets thermally coupled to a water-cooled housing. A vacuum gap limits the heat transferred from the high temperature NaK tube to the magnets and a magnetically-permeable material completes the magnetic circuit. The pump is designed to produce a pressure rise of 5 psi, and the flow sensor's predicted output is roughly 20 mV at the loop's nominal flow rate of 0.5 GPM.
ERIC Educational Resources Information Center
Min, Byung S.; Falvey, Rod
2018-01-01
Study at a foreign university can be an important way of developing international human capital. We investigate factors affecting international student flows for higher education and their consequences for bilateral market integration in Australia. Estimation results demonstrate that income, cost competitiveness, migration network effects and…
NASA Astrophysics Data System (ADS)
Liu, Yang; Cao, Sheng-Le
2017-06-01
It was known that hydrological regime was the main influencing factor of river ecosystem, but the regime of different flow rates of urban rivers was poorly understood. We collected daily inflows at the Huangtai station of the Xiaoqing River from 1960 to 2014 and divided the data into three periods. Then we calculated hydrological parameters by the method of EFCs (Environmental Flow Components) and analyzed the tendency and change rates of each component respectively in the three periods. Combined with the ecological significance of environmental flow components, we identified the small and medium flood had the greatest impact on the river regime and ecosystem. And then we used the hydraulic parameters in the good ecosystem period as control conditions, to calculate the ecological threshold of the flow component under the current situation. This study could provide technical support for restoring and improving hydrological regime and ecological environment of the Xiaoqing River in Jinan city.
Ultraviolet Molecular Rayleigh Scattering Used to Measure Velocity in High-Speed Flow
NASA Technical Reports Server (NTRS)
Seasholtz, Richard G.
1997-01-01
Molecular Rayleigh scattering offers a means to measure gas flow parameters including density, temperature, and velocity. No seeding of the flow is necessary. The Rayleigh scattered power is proportional to the gas density, the spectral width is related to the gas temperature, and the shift in the frequency of the spectral peak is proportional to one component of the fluid velocity. Velocity measurements based on Rayleigh scattering are more suitable for high-speed flow, where the bulk fluid velocity is on the order of, or larger than, the molecular thermal velocities. Use of ultraviolet wavelengths for Rayleigh scattering diagnostics is attractive for two reasons. First, the Rayleigh scattering cross section is proportional to the inverse 4th power of the wavelength. And second, the reflectivity of metallic surfaces is generally less than it is at longer wavelengths. This is of particular interest in confined flow situations, such as in small wind tunnels and aircraft engine components, where the stray laser light scattered from the windows and internal surfaces in the test facility limits the application of Rayleigh scattering diagnostics. In this work at the NASA Lewis Research Center, molecular Rayleigh scattering of the 266-nm fourth harmonic of a pulsed, injection seeded Nd:YAG (neodymium:yttriumaluminum- garnet) laser was used to measure velocity in a supersonic free air jet with a 9.3- mm exit diameter. The frequency of the Rayleigh scattered light was analyzed with a planar mirror Fabry-Perot interferometer used in a static imaging mode, with the images recorded on a cooled, high-quantum-efficiency charge-coupled discharge (CCD) camera. In addition, some unshifted light from the same laser pulse was imaged through the interferometer to generate a reference. Data were obtained with single laser pulses at velocities up to Mach 1.3. The measured velocities were in good agreement with velocities calculated from isentropic flow relations. Our conclusion from this study was that ultraviolet Rayleigh scattering is preferable in confined flow situations because of the increase in the ratio of Rayleigh scattering signal to stray laser light. On the other hand, in open flows, such as free jets and larger wind tunnels where stray laser light can be controlled, visible Rayleigh scattering is preferable.
The Madden-Julian Oscillation and the Indo-Pacific Warm Pool
NASA Astrophysics Data System (ADS)
Raymond, David J.; Fuchs, Željka
2018-04-01
A minimal model of the interaction of the Madden-Julian oscillation (MJO) with the Indo-Pacific warm pool is presented. This model is based on the linear superposition of the flow associated with a highly simplified treatment of the MJO plus the flow induced by the warm pool itself. Both of these components parameterize rainfall as proportional to the column water vapor, which in turn is governed by a linearized moisture equation in which WISHE (wind induced surface heat exchange) plays a governing role. The MJO component has maximum growth rate for planetary wavenumber 1 and is equatorially trapped with purely zonal winds. The warm pool component exhibits a complex flow pattern, differing significantly from the classical Gill model as a result of the mean easterly flow. The combination of the two produce a flow that reproduces many aspects of the observed global flow associated with the MJO.
Numerical investigation of an internal layer in turbulent flow over a curved hill
NASA Technical Reports Server (NTRS)
Kim, S-W.
1989-01-01
The development of an internal layer in a turbulent boundary layer flow over a curved hill is investigated numerically. The turbulence field of the boundary layer flow over the curved hill is compared with that of a turbulent flow over a symmetric airfoil (which has the same geometry as the curved hill except that the leading and trailing edge plates were removed) to study the influence of the strongly curved surface on the turbulence field. The turbulent flow equations are solved by a control-volume based finite difference method. The turbulence is described by a multiple-time-scale turbulence model supplemented with a near-wall turbulence model. Computational results for the mean flow field (pressure distributions on the walls, wall shearing stresses and mean velocity profiles), the turbulence structure (Reynolds stress and turbulent kinetic energy profiles), and the integral parameters (displacement and momentum thicknesses) compared favorably with the measured data. Computational results show that the internal layer is a strong turbulence field which is developed beneath the external boundary layer and is located very close to the wall. Development of the internal layer was more obviously observed in the Reynolds stress profiles and in the turbulent kinetic energy profiles than in the mean velocity profiles. In this regard, the internal layers is significantly different from wall-bounded simple shear layers in which the mean velocity profile characterizes the boundary layer most distinguishably. Development of such an internal layer, characterized by an intense turbulence field, is attributed to the enormous mean flow strain rate caused by the streamline curvature and the strong pressure gradient. In the turbulent flow over the curved hill, the internal layer begin to form near the forward corner of the hill, merges with the external boundary layer, and develops into a new fully turbulent boundary layer as the fluid flows in the downstream direction. For the flow over the symmetric airfoil, the boundary layer began to form from almost the same location as that of the curved hill, grew in its strength, and formed a fully turbulent boundary layer from mid-part of the airfoil and in the downstream region. Computational results also show that the detailed turbulence structure in the region very close to the wall of the curved hill is almost the same as that of the airfoil in most of the curved regions except near the leading edge. Thus the internal layer of the curved hill and the boundary layer of the airfoil were also almost the same. Development of the wall shearing stress and separation of the boundary layer at the rear end of the curved hill mostly depends on the internal layer and is only slightly influenced by the external boundary layer flow.
Multigrid solution of internal flows using unstructured solution adaptive meshes
NASA Technical Reports Server (NTRS)
Smith, Wayne A.; Blake, Kenneth R.
1992-01-01
This is the final report of the NASA Lewis SBIR Phase 2 Contract Number NAS3-25785, Multigrid Solution of Internal Flows Using Unstructured Solution Adaptive Meshes. The objective of this project, as described in the Statement of Work, is to develop and deliver to NASA a general three-dimensional Navier-Stokes code using unstructured solution-adaptive meshes for accuracy and multigrid techniques for convergence acceleration. The code will primarily be applied, but not necessarily limited, to high speed internal flows in turbomachinery.
Flow rate calibration to determine cell-derived microparticles and homogeneity of blood components.
Noulsri, Egarit; Lerdwana, Surada; Kittisares, Kulvara; Palasuwan, Attakorn; Palasuwan, Duangdao
2017-08-01
Cell-derived microparticles (MPs) are currently of great interest to screening transfusion donors and blood components. However, the current approach to counting MPs is not affordable for routine laboratory use due to its high cost. The current study aimed to investigate the potential use of flow-rate calibration for counting MPs in whole blood, packed red blood cells (PRBCs), and platelet concentrates (PCs). The accuracy of flow-rate calibration was investigated by comparing the platelet counts of an automated counter and a flow-rate calibrator. The concentration of MPs and their origins in whole blood (n=100), PRBCs (n=100), and PCs (n=92) were determined using a FACSCalibur. The MPs' fold-changes were calculated to assess the homogeneity of the blood components. Comparing the platelet counts conducted by automated counting and flow-rate calibration showed an r 2 of 0.6 (y=0.69x+97,620). The CVs of the within-run and between-run variations of flow-rate calibration were 8.2% and 12.1%, respectively. The Bland-Altman plot showed a mean bias of -31,142platelets/μl. MP enumeration revealed both the difference in MP levels and their origins in whole blood, PRBCs, and PCs. Screening the blood components demonstrated high heterogeneity of the MP levels in PCs when compared to whole blood and PRBCs. The results of the present study suggest the accuracy and precision of flow-rate calibration for enumerating MPs. This flow-rate approach is affordable for assessing the homogeneity of MPs in blood components in routine laboratory practice. Copyright © 2017 Elsevier Ltd. All rights reserved.
User's Guide for Mixed-Size Sediment Transport Model for Networks of One-Dimensional Open Channels
Bennett, James P.
2001-01-01
This user's guide describes a mathematical model for predicting the transport of mixed sizes of sediment by flow in networks of one-dimensional open channels. The simulation package is useful for general sediment routing problems, prediction of erosion and deposition following dam removal, and scour in channels at road embankment crossings or other artificial structures. The model treats input hydrographs as stepwise steady-state, and the flow computation algorithm automatically switches between sub- and supercritical flow as dictated by channel geometry and discharge. A variety of boundary conditions including weirs and rating curves may be applied both external and internal to the flow network. The model may be used to compute flow around islands and through multiple openings in embankments, but the network must be 'simple' in the sense that the flow directions in all channels can be specified before simulation commences. The location and shape of channel banks are user specified, and all bedelevation changes take place between these banks and above a user-specified bedrock elevation. Computation of sediment-transport emphasizes the sand-size range (0.0625-2.0 millimeter) but the user may select any desired range of particle diameters including silt and finer (<0.0625 millimeter). As part of data input, the user may set the original bed-sediment composition of any number of layers of known thickness. The model computes the time evolution of total transport and the size composition of bed- and suspended-load sand through any cross section of interest. It also tracks bed -surface elevation and size composition. The model is written in the FORTRAN programming language for implementation on personal computers using the WINDOWS operating system and, along with certain graphical output display capability, is accessed from a graphical user interface (GUI). The GUI provides a framework for selecting input files and parameters of a number of components of the sediment-transport process. There are no restrictions in the use of the model as to numbers of channels, channel junctions, cross sections per channel, or points defining the cross sections. Following completion of the simulation computations, the GUI accommodates display of longitudinal plots of either bed elevation and size composition, or of transport rate and size composition of the various components, for individual channels and selected times during the simulation period. For individual cross sections, the GUI also allows display of time series of transport rate and size composition of the various components and of bed elevation and size composition.
Federal Register 2010, 2011, 2012, 2013, 2014
2012-03-20
... NUCLEAR REGULATORY COMMISSION [NRC-2012-0070] Updated Aging Management Criteria for Reactor Vessel Internal Components of Pressurized Water Reactors AGENCY: Nuclear Regulatory Commission. ACTION: Draft..., ``Updated Aging Management Criteria for PWR Reactor Vessel Internal Components.'' This draft LR-ISG revises...
Federal Register 2010, 2011, 2012, 2013, 2014
2012-04-19
... NUCLEAR REGULATORY COMMISSION [NRC-2012-0070] Updated Aging Management Criteria for Reactor Vessel Internal Components of Pressurized Water Reactors AGENCY: Nuclear Regulatory Commission. ACTION: Draft...-ISG), LR-ISG-2011-04, ``Updated Aging Management Criteria for PWR Reactor Vessel Internal Components...
Internal tides in the Northern Gulf of California
NASA Astrophysics Data System (ADS)
Filonov, Anatoliy E.; LavíN, M. F.
2003-05-01
The characteristics of the internal tide in the Northern Gulf of California are described using data from two moored arrays of temperature and current sensors, one for summer and one for winter, located between Angel de la Guarda Island and the mainland. From the summer six-sensor mooring it was found that: (1) the current fluctuations are dominated by the semidiurnal frequency band, while the quarterdiurnal frequency dominated the temperature fluctuations. (2) The baroclinic semidiurnal horizontal current fluctuations are aligned with the gulf axis, and have amplitudes of 10-15 cm s-1; the vertical displacements reached 4 m in this frequency band. (3) The vertical modal structure for the temperature and velocity oscillations was dominated by the first and third modes. (4) The energy of the semidiurnal internal tide is 45% of that of the barotropic tide. (5) Vertical wave number spectra showed slightly asymmetric peaks in the high wave number components, indicating that their downflowing energy is larger than that flowing upward. From the winter two-sensor mooring, it was found that the vertical oscillations were mainly semidiurnal, with root mean square amplitudes of 7 m.
Process and apparatus for separation of components of a gas stream
Bryan, Charles R.; Torczynski, John R.; Brady, Patrick V.; Gallis, Michail; Brooks, Carlton F.
2014-06-17
A process and apparatus for separating a gas mixture comprising providing a slot in a gas separation channel (conceptualized as a laterally elongated Clusius-Dickel column), having a length through which a net cross-flow of the gas mixture may be established; applying a higher temperature to one side of the channel and a lower temperature on an opposite side of the channel thereby causing thermal-diffusion and buoyant-convection flow to occur in the slot; and establishing a net cross-flow of a gas mixture comprising at least one higher density gas component and at least one lower density gas component along the length of the slot, wherein the cross-flow causes, in combination with the convection flow, a spiraling flow in the slot; and wherein the spiral flow causes an increasing amount of separation of the higher density gas from the lower density gas along the length of the channel. The process may use one or more slots and/or channels.
Process and apparatus for separation of components of a gas stream
Bryan, Charles R; Torczynski, John R; Brady, Patrick V; Gallis, Michail; Brooks, Carlton F
2013-09-17
A process and apparatus for separating a gas mixture comprising providing a slot in a gas separation channel (conceptualized as a laterally elongated Clusius-Dickel column), having a length through which a net cross-flow of the gas mixture may be established; applying a higher temperature to one side of the channel and a lower temperature on an opposite side of the channel thereby causing thermal-diffusion and buoyant-convection flow to occur in the slot; and establishing a net cross-flow of a gas mixture comprising at least one higher density gas component and at least one lower density gas component along the length of the slot, wherein the cross-flow causes, in combination with the convection flow, a spiraling flow in the slot; and wherein the spiral flow causes an increasing amount of separation of the higher density gas from the lower density gas along the length of the channel. The process may use one or more slots and/or channels.
Process and apparatus for separation of components of a gas stream
Bryan, Charles R; Torczynski, John R; Brady, Patrick V; Gallis, Michail; Brooks, Carlton F
2013-11-19
A process and apparatus for separating a gas mixture comprising providing a slot in a gas separation channel (conceptualized as a laterally elongated Clusius-Dickel column), having a length through which a net cross-flow of the gas mixture may be established; applying a higher temperature to one side of the channel and a lower temperature on an opposite side of the channel thereby causing thermal-diffusion and buoyant-convection flow to occur in the slot; and establishing a net cross-flow of a gas mixture comprising at least one higher density gas component and at least one lower density gas component along the length of the slot, wherein the cross-flow causes, in combination with the convection flow, a spiraling flow in the slot; and wherein the spiral flow causes an increasing amount of separation of the higher density gas from the lower density gas along the length of the channel. The process may use one or more slots and/or channels.
A geometry package for generation of input data for a three-dimensional potential-flow program
NASA Technical Reports Server (NTRS)
Halsey, N. D.; Hess, J. L.
1978-01-01
The preparation of geometric data for input to three-dimensional potential flow programs was automated and simplified by a geometry package incorporated into the NASA Langley version of the 3-D lifting potential flow program. Input to the computer program for the geometry package consists of a very sparse set of coordinate data, often with an order of magnitude of fewer points than required for the actual potential flow calculations. Isolated components, such as wings, fuselages, etc. are paneled automatically, using one of several possible element distribution algorithms. Curves of intersection between components are calculated, using a hybrid curve-fit/surface-fit approach. Intersecting components are repaneled so that adjacent elements on either side of the intersection curves line up in a satisfactory manner for the potential-flow calculations. Many cases may be run completely (from input, through the geometry package, and through the flow calculations) without interruption. Use of the package significantly reduces the time and expense involved in making three-dimensional potential flow calculations.
Radar-imaged internal layering in the Weddell Sea sector of West Antarctica
NASA Astrophysics Data System (ADS)
Bingham, Robert G.; Rippin, David M.; Karlsson, Nanna B.; Corr, Hugh F. J.; Ferraccioli, Fausto; Jordan, Tom A.; Le Brocq, Anne M.; Ross, Neil; Wright, Andrew P.; Siegert, Martin J.
2013-04-01
Radio-echo sounding (RES) across polar ice sheets reveals extensive, isochronous internal layers, whose stratigraphy, and especially their degree of continuity over multi-km distances, can inform us about both present ice flow and past ice-flow histories. Here, we bring together for the first time two recent advances in this field of cryospheric remote sensing to analyse ice flow into the Weddell Sea sector of West Antarctica. Firstly, we have developed a new quantitative routine for analysing the continuity of internal layers obtained over large areas of ice by airborne RES surveys - we term this routine the "Internal-Layering Continuity-Index (ILCI)". Secondly, in the austral season 2010-11 we acquired, by airborne RES survey, the first comprehensive dataset of deep internal layering across Institute and Möller Ice Streams, two of the more significant feeders of ice into the Filchner-Ronne Ice Shelf. Applying the ILCI to SAR-processed (migrated) RES profiles across Institute Ice Stream's catchment reveals two contrasting regions of internal-layering continuity behaviour. In the western portion of the catchment, where ice-stream tributaries incise deeply through the Ellsworth Subglacial Highlands, the continuity of internal layers is most disrupted across the present ice streams. We therefore interpret the ice-flow configuration in this western region as predominantly spatially stable over the lifetime of the ice. Further east, towards Möller Ice Stream, and towards the interior of the ice sheet, the ILCI does not closely match the present ice flow configuration, while across most of present-day Möller Ice Stream itself, the continuity of internal layers is generally low. We propose that the variation in continuity of internal layering across eastern Institute Ice Stream and the neighbouring Möller results primarily from two factors. Firstly, the noncorrespondence of some inland tributaries with internal-layering continuity acts as evidence for past spatial migration of those tributaries, with likely consequences for the relative positions of Institute and Möller Ice Streams over recent history. Secondly, the subglacial roughness, in part a function of the underlying geology across the region, imposes a strong influence on the continuity of the overlying deep internal layers, though whether it controls, or is a function of, ice flow, remains undetermined. We conclude that in the subglacially mountainous Ellsworth Subglacial Highlands sector, there is long-term stability in the spatial configuration of ice flow, but that elsewhere across Insitute and Möller Ice Streams, the ice-flow configuration is not stable.
Modeling and simulation of large scale stirred tank
NASA Astrophysics Data System (ADS)
Neuville, John R.
The purpose of this dissertation is to provide a written record of the evaluation performed on the DWPF mixing process by the construction of numerical models that resemble the geometry of this process. There were seven numerical models constructed to evaluate the DWPF mixing process and four pilot plants. The models were developed with Fluent software and the results from these models were used to evaluate the structure of the flow field and the power demand of the agitator. The results from the numerical models were compared with empirical data collected from these pilot plants that had been operated at an earlier date. Mixing is commonly used in a variety ways throughout industry to blend miscible liquids, disperse gas through liquid, form emulsions, promote heat transfer and, suspend solid particles. The DOE Sites at Hanford in Richland Washington, West Valley in New York, and Savannah River Site in Aiken South Carolina have developed a process that immobilizes highly radioactive liquid waste. The radioactive liquid waste at DWPF is an opaque sludge that is mixed in a stirred tank with glass frit particles and water to form slurry of specified proportions. The DWPF mixing process is composed of a flat bottom cylindrical mixing vessel with a centrally located helical coil, and agitator. The helical coil is used to heat and cool the contents of the tank and can improve flow circulation. The agitator shaft has two impellers; a radial blade and a hydrofoil blade. The hydrofoil is used to circulate the mixture between the top region and bottom region of the tank. The radial blade sweeps the bottom of the tank and pushes the fluid in the outward radial direction. The full scale vessel contains about 9500 gallons of slurry with flow behavior characterized as a Bingham Plastic. Particles in the mixture have an abrasive characteristic that cause excessive erosion to internal vessel components at higher impeller speeds. The desire for this mixing process is to ensure the agitation of the vessel is adequate to produce a homogenous mixture but not so high that it produces excessive erosion to internal components. The main findings reported by this study were: (1) Careful consideration of the fluid yield stress characteristic is required to make predictions of fluid flow behavior. Laminar Models can predict flow patterns and stagnant regions in the tank until full movement of the flow field occurs. Power Curves and flow patterns were developed for the full scale mixing model to show the differences in expected performance of the mixing process for a broad range of fluids that exhibit Herschel--Bulkley and Bingham Plastic flow behavior. (2) The impeller power demand is independent of the flow model selection for turbulent flow fields in the region of the impeller. The laminar models slightly over predicted the agitator impeller power demand produced by turbulent models. (3) The CFD results show that the power number produced by the mixing system is independent of size. The 40 gallon model produced the same power number results as the 9300 gallon model for the same process conditions. (4) CFD Results show that the Scale-Up of fluid motion in a 40 gallon tank should compare with fluid motion at full scale, 9300 gallons by maintaining constant impeller Tip Speed.
The mechanism by which nonlinearity sustains turbulence in plane Couette flow
NASA Astrophysics Data System (ADS)
Nikolaidis, M.-A.; Farrell, B. F.; Ioannou, P. J.
2018-04-01
Turbulence in wall-bounded shear flow results from a synergistic interaction between linear non-normality and nonlinearity in which non-normal growth of a subset of perturbations configured to transfer energy from the externally forced component of the turbulent state to the perturbation component maintains the perturbation energy, while the subset of energy-transferring perturbations is replenished by nonlinearity. Although it is accepted that both linear non-normality mediated energy transfer from the forced component of the mean flow and nonlinear interactions among perturbations are required to maintain the turbulent state, the detailed physical mechanism by which these processes interact in maintaining turbulence has not been determined. In this work a statistical state dynamics based analysis is performed on turbulent Couette flow at R = 600 and a comparison to DNS is used to demonstrate that the perturbation component in Couette flow turbulence is replenished by a non-normality mediated parametric growth process in which the fluctuating streamwise mean flow has been adjusted to marginal Lyapunov stability. It is further shown that the alternative mechanism in which the subspace of non-normally growing perturbations is maintained directly by perturbation-perturbation nonlinearity does not contribute to maintaining the turbulent state. This work identifies parametric interaction between the fluctuating streamwise mean flow and the streamwise varying perturbations to be the mechanism of the nonlinear interaction maintaining the perturbation component of the turbulent state, and identifies the associated Lyapunov vectors with positive energetics as the structures of the perturbation subspace supporting the turbulence.
Estimating Vibrational Powers Of Parts In Fluid Machinery
NASA Technical Reports Server (NTRS)
Harvey, S. A.; Kwok, L. C.
1995-01-01
In new method of estimating vibrational power associated with component of fluid-machinery system, physics of flow through (or in vicinity of) component regarded as governing vibrations. Devised to generate scaling estimates for design of new parts of rocket engines (e.g., pumps, combustors, nozzles) but applicable to terrestrial pumps, turbines, and other machinery in which turbulent flows and vibrations caused by such flows are significant. Validity of method depends on assumption that fluid flows quasi-steadily and that flow gives rise to uncorrelated acoustic powers in different parts of pump.
A Comparison Between Internal Waves Observed in the Southern Ocean and Lee Wave Generation Theory
NASA Astrophysics Data System (ADS)
Nikurashin, M.; Benthuysen, J.; Naveira Garabato, A.; Polzin, K. L.
2016-02-01
Direct observations in the Southern Ocean report enhanced internal wave activity and turbulence in a few kilometers above rough bottom topography. The enhancement is co-located with the deep-reaching fronts of the Antarctic Circumpolar Current, suggesting that the internal waves and turbulence are sustained by near-bottom flows interacting with rough topography. Recent numerical simulations confirm that oceanic flows impinging on rough small-scale topography are very effective generators of internal gravity waves and predict vigorous wave radiation, breaking, and turbulence within a kilometer above bottom. However, a linear lee wave generation theory applied to the observed bottom topography and mean flow characteristics has been shown to overestimate the observed rates of the turbulent energy dissipation. In this study, we compare the linear lee wave theory with the internal wave kinetic energy estimated from finestructure data collected as part of the Diapycnal and Isopycnal Mixing Experiment in the Southern Ocean (DIMES). We show that the observed internal wave kinetic energy levels are generally in agreement with the theory. Consistent with the lee wave theory, the observed internal wave kinetic energy scales quadratically with the mean flow speed, stratification, and topographic roughness. The correlation coefficient between the observed internal wave kinetic energy and mean flow and topography parameters reaches 0.6-0.8 for the 100-800 m vertical wavelengths, consistent with the dominant lee wave wavelengths, and drops to 0.2-0.5 for wavelengths outside this range. A better agreement between the lee wave theory and the observed internal wave kinetic energy than the observed turbulent energy dissipation suggests remote breaking of internal waves.
The Natural Helmholtz-Hodge Decomposition
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bhatia, H.
nHHD is a C++ library to decompose a flow field into three components exhibiting specific types of behaviors. These components allow more targeted analysis of flow behavior and can be applied to a variety of application areas.
Yildiz, Selda; Thyagaraj, Suraj; Jin, Ning; Zhong, Xiaodong; Heidari Pahlavian, Soroush; Martin, Bryn A; Loth, Francis; Oshinski, John; Sabra, Karim G
2017-08-01
To validate a real-time phase contrast magnetic resonance imaging (RT-PCMRI) sequence in a controlled phantom model, and to quantify the relative contributions of respiration and cardiac pulsations on cerebrospinal fluid (CSF) velocity at the level of the foramen magnum (FM). To validate the 3T MRI techniques, in vitro studies used a realistic model of the spinal subarachnoid space driven by pulsatile flow waveforms mimicking the respiratory and cardiac components of CSF flow. Subsequently, CSF flow was measured continuously during 1-minute RT-PCMRI acquisitions at the FM while healthy subjects (N = 20) performed natural breathing, deep breathing, breath-holding, and coughing. Conventional cardiac-gated PCMRI was obtained for comparison. A frequency domain power ratio analysis determined the relative contribution of respiration versus cardiac ([r/c]) components of CSF velocity. In vitro studies demonstrating the accuracy of RT-PCMRI within 5% of input values showed that conventional PCMRI measures only the cardiac component of CSF velocity (0.42 ± 0.02 cm/s), averages out respiratory effects, and underestimates the magnitude of CSF velocity (0.96 ± 0.07 cm/s). In vivo RT-PCMRI measurements indicated the ratio of respiratory to cardiac velocity pulsations averaged over all subjects as [r/c = 0.14 ± 0.27] and [r/c = 0.40 ± 0.47] for natural and deep breathing, respectively. During coughing, the peak CSF velocity increased by a factor of 2.27 ± 1.40. RT-PCMRI can noninvasively measure instantaneous CSF velocity driven by cardiac pulsations, respiration, and coughing in real time. A comparable contribution of respiration and cardiac pulsations on CSF velocity was found during deep breathing but not during natural breathing. 1 Technical Efficacy: Stage 1 J. MAGN. RESON. IMAGING 2017;46:431-439. © 2017 International Society for Magnetic Resonance in Medicine.
A regional coupled surface water/groundwater model of the Okavango Delta, Botswana
NASA Astrophysics Data System (ADS)
Bauer, Peter; Gumbricht, Thomas; Kinzelbach, Wolfgang
2006-04-01
In the endorheic Okavango River system in southern Africa a balance between human and environmental water demands has to be achieved. The runoff generated in the humid tropical highlands of Angola flows through arid Namibia and Botswana before forming a large inland delta and eventually being consumed by evapotranspiration. With an approximate size of about 30,000 km2, the Okavango Delta is the world's largest site protected under the convention on wetlands of international importance, signed in 1971 in Ramsar, Iran. The extended wetlands of the Okavango Delta, which sustain a rich ecology, spectacular wildlife, and a first-class tourism infrastructure, depend on the combined effect of the highly seasonal runoff in the Okavango River and variable local climate. The annual fluctuations in the inflow are transformed into vast areas of seasonally inundated floodplains. Water abstraction and reservoir building in the upstream countries are expected to reduce and/or redistribute the available flows for the Okavango Delta ecosystem. To study the impacts of upstream and local interventions, a large-scale (1 km2 grid), coupled surface water/groundwater model has been developed. It is composed of a surface water flow component based on the diffusive wave approximation of the Saint-Venant equations, a groundwater component, and a relatively simple vadose zone component for calculating the net water exchange between land and atmosphere. The numerical scheme is based on the groundwater simulation software MODFLOW-96. Since the primary model output is the spatiotemporal distribution of flooded areas and since hydrologic data on the large and inaccessible floodplains and tributaries are sparse and unreliable, the model was not calibrated with point hydrographs but with a time series of flooding patterns derived from satellite imagery (NOAA advanced very high resolution radiometer). Scenarios were designed to study major upstream and local interventions and their expected impacts in the Delta. The scenarios' results can help decision makers strike a balance between environmental and human water demands in the basin.
Internal-Film Cooling of Rocket Nozzles
NASA Technical Reports Server (NTRS)
Sloop, J L; Kinney, George R
1948-01-01
Experiments were conducted with 1000-pound-thrust rocket engine to determine feasibility of cooling convergent-divergent nozzle by internal film of water introduced at nozzle entrance. Water flow of 3 percent of propellant flow reduced heat flow into nozzle to 55 percent of uncooled heat flow. Introduction of water by porous ring before nozzle resulted in more uniform coverage of nozzle than water introduced by single arrangement of 36 jets directed along nozzle wall. Water flow through porous ring of 3.5 percent of propellant flow stabilized wall temperature in convergent section but did not adequately cool throat or divergent sections.
The Efficacy of International Regulation of Transborder Data Flows: The Case for the Clipper Chip.
ERIC Educational Resources Information Center
Mhlaba, Sondlo Leonard
1995-01-01
Discusses origins of Transborder Data Flows (TDFs) as an international problem in the early 1970s. Shows how technological development in telecommunications and networks has made regulation more complex and urgent. Recommends the internationalization of the Key Escrowed Encryption System (KEES) and the development of broad international TDF…
Linked migration systems: immigration and internal labor flows in the United States.
R. Walker; M. Ellis; R. Barff
1992-01-01
We investigate the relationship between immigration and internal labor movements in the US. Wedding the literatures on immigration and internal migration, we develop a mobility model linking these various flows on the basis of occupational status of worker, producction and institutional relations in the economy, and economic restructuring.
Active-Adaptive Control of Inlet Separation Using Supersonic Microjets
NASA Technical Reports Server (NTRS)
Alvi, Farrukh S.
2007-01-01
Flow separation in internal and external flows generally results in a significant degradation in aircraft performance. For internal flows, such as inlets and transmission ducts in aircraft propulsion systems, separation is undesirable as it reduces the overall system performance. The aim of this research has been to understand the nature of separation and more importantly, to explore techniques to actively control it. In this research, we extended our investigation of active separation control (under a previous NASA grant) where we explored the use of microjets for the control of boundary layer separation. The geometry used for the initial study was a simple diverging Stratford ramp, equipped with arrays of microjets. These early results clearly show that the activation of microjets eliminated flow separation. Furthermore, the velocity-field measurements, using PIV, also demonstrate that the gain in momentum due to the elimination of separation is at least an order of magnitude larger (two orders of magnitude larger in most cases) than the momentum injected by the microjets and is accomplished with very little mass flow through the microjets. Based on our initial promising results this research was continued under the present grant, using a more flexible model. This model allows for the magnitude and extent of separation as well as the microjet parameters to be independently varied. The results, using this model were even more encouraging and demonstrated that microjet control completely eliminated significant regions of flow separation over a wide range of conditions with almost negligible mass flow. Detailed studies of the flowfield and its response to microjets were further examined using 3-component PIV and unsteady pressure measurements, among others. As the results presented this report will show, microjets were successfully used to control the separation of a much larger extent and magnitude than demonstrated in our earlier experiments. In fact, using the appropriate combination of control parameters (microjet, location, angle and pressure) separation was completely eliminated for the largest separated flowfield we could generate with the present model. Separation control also resulted in a significant reduction in the unsteady pressures in the flow where the unsteady pressure field was found to be directly responsive to the state of the flow above the surface. Hence, our study indicates that the unsteady pressure signature is a strong candidate for a flow state sensor , which can be used to estimate the location, magnitude and other properties of the separated flowfield. Once better understood and properly utilized, this behavior can be of significant practical importance for developing and implementing online control.
A slow calcium-dependent component of charge movement in Rana temporaria cut twitch fibres.
Hui, C S
1998-06-15
1. Charge movement was studied in highly stretched frog cut twitch fibres in a double Vaseline-gap voltage-clamp chamber, with the internal solution containing either 0.1 mM EGTA or 20 mM EGTA plus 1. 8 mM total Ca2+. 2. Fibres were stimulated with TEST pulses lasting 100-400 ms. Replacement of the external Cl- with an 'impermeant' anion, such as SO42-, CH3SO3-, gluconate or glutamate, greatly reduced the calcium-dependent Cl- current in the ON segment and generated a slowly decaying inward OFF current in charge movement traces. 3. Application of 20 mM EGTA to the internal solution abolished the slow inward OFF current, implying that the activation of the current depended on the presence of Ca2+ in the myoplasm. The possibility that the slow inward OFF current was carried by cations flowing inwards or anions flowing outwards was studied and determined to be unlikely. 4. During a long (2000 ms) TEST pulse, a slowly decaying ON current was also observed. When the slow ON and OFF currents were included as parts of the total charge movement, ON-OFF charge equality was preserved. This slow capacitive current is named Idelta. 5. When Cl- was the major anion in the external solution, the OFF Idelta was mostly cancelled by a slow outward current carried by the inflow of Cl-. 6. The OFF Idelta component showed a rising phase. The average values of the rising time constants in CH3SO3- and SO42- were similar and about half of that in gluconate. 7. The OFF Idelta component in CH3SO3- had a larger magnitude and longer time course than that in SO42-. The maximum amount of Qdelta in CH3SO3- was about three times as much as that in SO42-, whereas the voltage dependence of Qdelta was similar in the two solutions. 8. Since the existence of Qdelta depends on the presence of Ca2+ in the myoplasm, it is speculated that Qdelta could be a function of intracellular calcium release.
NASA Technical Reports Server (NTRS)
Bryan, William B.; Fleeter, Sanford
1987-01-01
The internal three-dimensional steady and time-varying flow through the diffusing elements of a centrifugal impeller were investigated using a moderate scale, subsonic, mixed flow research compressor facility. The characteristics of the test facility which permit the measurement of internal flow conditions throughout the entire research compressor and radial diffuser for various operating conditions are described. Results are presented in the form of graphs and charts to cover a range of mass flow rates with inlet guide vane settings varying from minus 15 degrees to plus 45 degrees. The static pressure distributions in the compressor inlet section and on the impeller and exit diffuser vanes, as well as the overall pressure and temperature rise and mass flow rate, were measured and analyzed at each operating point to determine the overall performance as well as the detailed aerodynamics throughout the compressor.
Steady internal flow and aerodynamic loads analysis of shuttle thermal protection system
NASA Technical Reports Server (NTRS)
Petley, D. H.; Alexander, W., Jr.; Ivey, G. W., Jr.; Kerr, P. A.
1984-01-01
An analytical model for calculation of ascent steady state tile loading was developed and validated with wind tunnel data. The analytical model is described and results are given. Results are given for loading due to shocks and skin friction. The analysis included calculation of internal flow (porous media flow and channel flow) to obtain pressures and integration of the pressures to obtain forces and moments on an insulation tile. A heat transfer program was modified by using analogies between heat transfer and fluid flow so that it could be used for internal flow calculation. The type of insulation tile considered was undensified reusable surface insulation (RSI) without gap fillers, and the location studied was the lower surface of the orbiter. Force and moment results are reported for parameter variations on surface pressure distribution, gap sizes, insulation permeability, and tile thickness.
Mobility power flow analysis of an L-shaped plate structure subjected to acoustic excitation
NASA Technical Reports Server (NTRS)
Cuschieri, J. M.
1989-01-01
An analytical investigation based on the Mobility Power Flow method is presented for the determination of the vibrational response and power flow for two coupled flat plate structures in an L-shaped configuration, subjected to acoustical excitation. The principle of the mobility power flow method consists of dividing the global structure into a series of subsystems coupled together using mobility functions. Each separate subsystem is analyzed independently to determine the structural mobility functions for the junction and excitation locations. The mobility functions, together with the characteristics of the junction between the subsystems, are then used to determine the response of the global structure and the power flow. In the coupled plate structure considered here, mobility power flow expressions are derived for excitation by an incident acoustic plane wave. In this case, the forces (acoustic pressures) acting on the structure are dependent on the response of the structure because of the scattered pressure component. The interaction between the structure and the fluid leads to the derivation of a corrected mode shape for the plates' normal surface velocity and also for the structure mobility functions. The determination of the scattered pressure components in the expressions for the power flow represents an additional component in the power flow balance for the source plate and the receiver plate. This component represents the radiated acoustical power from the plate structure.
Electric analog of three-dimensional flow to wells and its application to unconfined aquifers
Stallman, Robert W.
1963-01-01
Electric-analog design criteria are established from the differential equations of ground-water flow for analyzing pumping-test data. A convenient analog design was obtained by transforming the cylindrical equation of flow to a rectilinear form. The design criteria were applied in the construction of an electric analog, which was used for studying pumping-test data collected near Grand Island, Nebr. Data analysis indicated (1) vertical flow components near pumping wells in unconfined aquifers may be much more significant in the control of water-table decline than radial flow components for as much as a day of pumping; (2) the specific yield during the first few minutes of pumping appears to be a very small fraction of that observed after pumping for more than 1 day; and (3) estimates of specific yield made from model studies seem much more sensitive to variations in assumed flow conditions than are estimates of permeability. Analysis of pumping-test data where vertical flow components are important requires that the degree of anisotropy be known. A procedure for computing anisotropy directly from drawdowns observed at five points was developed. Results obtained in the analog study emphasize the futility of calculating unconfined aquifer properties from pumping tests of short duration by means of equations based on the assumptions that vertical flow components are negligible and specific yield is constant.
Consistency of internal fluxes in a hydrological model running at multiple time steps
NASA Astrophysics Data System (ADS)
Ficchi, Andrea; Perrin, Charles; Andréassian, Vazken
2016-04-01
Improving hydrological models remains a difficult task and many ways can be explored, among which one can find the improvement of spatial representation, the search for more robust parametrization, the better formulation of some processes or the modification of model structures by trial-and-error procedure. Several past works indicate that model parameters and structure can be dependent on the modelling time step, and there is thus some rationale in investigating how a model behaves across various modelling time steps, to find solutions for improvements. Here we analyse the impact of data time step on the consistency of the internal fluxes of a rainfall-runoff model run at various time steps, by using a large data set of 240 catchments. To this end, fine time step hydro-climatic information at sub-hourly resolution is used as input of a parsimonious rainfall-runoff model (GR) that is run at eight different model time steps (from 6 minutes to one day). The initial structure of the tested model (i.e. the baseline) corresponds to the daily model GR4J (Perrin et al., 2003), adapted to be run at variable sub-daily time steps. The modelled fluxes considered are interception, actual evapotranspiration and intercatchment groundwater flows. Observations of these fluxes are not available, but the comparison of modelled fluxes at multiple time steps gives additional information for model identification. The joint analysis of flow simulation performance and consistency of internal fluxes at different time steps provides guidance to the identification of the model components that should be improved. Our analysis indicates that the baseline model structure is to be modified at sub-daily time steps to warrant the consistency and realism of the modelled fluxes. For the baseline model improvement, particular attention is devoted to the interception model component, whose output flux showed the strongest sensitivity to modelling time step. The dependency of the optimal model complexity on time step is also analysed. References: Perrin, C., Michel, C., Andréassian, V., 2003. Improvement of a parsimonious model for streamflow simulation. Journal of Hydrology, 279(1-4): 275-289. DOI:10.1016/S0022-1694(03)00225-7
The NASA Lewis Research Center Internal Fluid Mechanics Facility
NASA Technical Reports Server (NTRS)
Porro, A. R.; Hingst, W. R.; Wasserbauer, C. A.; Andrews, T. B.
1991-01-01
An experimental facility specifically designed to investigate internal fluid duct flows is described. It is built in a modular fashion so that a variety of internal flow test hardware can be installed in the facility with minimal facility reconfiguration. The facility and test hardware interfaces are discussed along with design constraints of future test hardware. The plenum flow conditioning approach is also detailed. Available instrumentation and data acquisition capabilities are discussed. The incoming flow quality was documented over the current facility operating range. The incoming flow produces well behaved turbulent boundary layers with a uniform core. For the calibration duct used, the boundary layers approached 10 percent of the duct radius. Freestream turbulence levels at the various operating conditions varied from 0.64 to 0.69 percent of the average freestream velocity.
Investigation of spiral blood flow in a model of arterial stenosis.
Paul, Manosh C; Larman, Arkaitz
2009-11-01
The spiral component of blood flow has both beneficial and detrimental effects in human circulatory system [Stonebridge PA, Brophy CM. Spiral laminar flow in arteries? Lancet 1991; 338: 1360-1]. We investigate the effects of the spiral blood flow in a model of three-dimensional arterial stenosis with a 75% cross-sectional area reduction at the centre by means of computational fluid dynamics (CFD) techniques. The standard k-omega model is employed for simulation of the blood flow for the Reynolds number of 500 and 1000. We find that for Re=500 the spiral component of the blood flow increases both the total pressure and velocity of the blood, and some significant differences are found between the wall shear stresses of the spiral and non-spiral induced flow downstream of the stenosis. The turbulent kinetic energy is reduced by the spiral flow as it induces the rotational stabilities in the forward flow. For Re=1000 the tangential component of the blood velocity is most influenced by the spiral speed, but the effect of the spiral flow on the centreline turbulent kinetic energy and shear stress is mild. The results of the effects of the spiral flow are discussed in the paper along with the relevant pathological issues.
Federal Register 2010, 2011, 2012, 2013, 2014
2012-05-21
... proposes to amend, the Domestic Earnings Test and the Domestic Valuation/Revenue with Cash Flow Test. In... amend, the International Earnings Test and the International Valuation/Revenue with Cash Flow Test.\\7... Domestic Valuation/Revenue with Cash Flow Test, the applicant must have (1) At least $500 million in global...
Shaft Seal Compensates for Cold Flow
NASA Technical Reports Server (NTRS)
Myers, W. N.; Hein, L. A.
1985-01-01
Seal components easy to install. Ring seal for rotating or reciprocating shafts spring-loaded to compensate for slow yielding (cold flow) of sealing material. New seal relatively easy to install because components preassembled, then installed in one piece.
Elevations, Major Component Isometric, Propellant Flow Schematic, and External Tank ...
Elevations, Major Component Isometric, Propellant Flow Schematic, and External Tank Connection to Shuttle Main Engines - Space Transportation System, Space Shuttle Main Engine, Lyndon B. Johnson Space Center, 2101 NASA Parkway, Houston, Harris County, TX
Measurements of the wall-normal velocity component in very high Reynolds number pipe flow
NASA Astrophysics Data System (ADS)
Vallikivi, Margit; Hultmark, Marcus; Smits, Alexander J.
2012-11-01
Nano-Scale Thermal Anemometry Probes (NSTAPs) have recently been developed and used to study the scaling of the streamwise component of turbulence in pipe flow over a very large range of Reynolds numbers. This probe has an order of magnitude higher spatial and temporal resolution than regular hot wires, allowing it to resolve small scale motions at very high Reynolds numbers. Here use a single inclined NSTAP probe to study the scaling of the wall normal component of velocity fluctuations in the same flow. These new probes are calibrated using a method that is based on the use of the linear stress region of a fully developed pipe flow. Results on the behavior of the wall-normal component of velocity for Reynolds numbers up to 2 million are reported. Supported under NR Grant N00014-09-1-0263 (program manager Ron Joslin) and NSF Grant CBET-1064257 (program manager Henning Winter).
Advanced nozzle and engine components test facility
NASA Technical Reports Server (NTRS)
Beltran, Luis R.; Delroso, Richard L.; Delrosario, Ruben
1992-01-01
A test facility for conducting scaled advanced nozzle and engine component research is described. The CE-22 test facility, located in the Engine Research Building of the NASA Lewis Research Center, contains many systems for the economical testing of advanced scale-model nozzles and engine components. The combustion air and altitude exhaust systems are described. Combustion air can be supplied to a model up to 40 psig for primary air flow, and 40, 125, and 450 psig for secondary air flow. Altitude exhaust can be simulated up to 48,000 ft, or the exhaust can be atmospheric. Descriptions of the multiaxis thrust stand, a color schlieren flow visualization system used for qualitative flow analysis, a labyrinth flow measurement system, a data acquisition system, and auxiliary systems are discussed. Model recommended design information and temperature and pressure instrumentation recommendations are included.
The study of multiphase flow control during odor reproduction
NASA Astrophysics Data System (ADS)
Luo, Dehan; Yu, Hao; Fan, Danjun; He, Meiqiu
2014-04-01
Odor reproduction, is the use of the chemical composition of the basic components of odor recipe, according to a certain proportion, to control the flow of the various components, which make them sufficiently blended to achieve reproduction. In this paper, reproducing method is to find the corresponding liquid flavor, and then based on chemical flavor recipes, using flowmeters to control the chemical composition of the liquid flavor ratio. In the proportional control, the liquid chemical composition is very likely to be volatile, so that the proportional control is multiphase flow control. Measurement of the flow control will directly affect the odor reproducible results. Using electronic nose to obtain reproducible odor data, and then use pattern recognition algorithm to determine reproducible results. The experimental results can be achieved on the process of odor components multiphase flow proportional control parameter adjustment.
Colorado Heat Flow Data from IHFC
Richard E. Zehner
2012-02-01
This layer contains the heat flow sites and data of the State of Colorado compiled from the International Heat Flow Commission (IHFC) of the International Association of Seismology and Physics of the Earth's Interior (IASPEI) global heat flow database (www.heatflow.und.edu/index2.html). The data include different items: Item number, descriptive code, name of site, latitude and longitude, elevation, depth interval, number of temperature data, temperature gradient, number of conductivity measurement, average conductivity, number of heat generation measurements, average heat production, heat flow, number of individual sites, references, and date of publication.
Application of a low order panel method to complex three-dimensional internal flow problems
NASA Technical Reports Server (NTRS)
Ashby, D. L.; Sandlin, D. R.
1986-01-01
An evaluation of the ability of a low order panel method to predict complex three-dimensional internal flow fields was made. The computer code VSAERO was used as a basis for the evaluation. Guidelines for modeling internal flow geometries were determined and the effects of varying the boundary conditions and the use of numerical approximations on the solutions accuracy were studied. Several test cases were run and the results were compared with theoretical or experimental results. Modeling an internal flow geometry as a closed box with normal velocities specified on an inlet and exit face provided accurate results and gave the user control over the boundary conditions. The values of the boundary conditions greatly influenced the amount of leakage an internal flow geometry suffered and could be adjusted to eliminate leakage. The use of the far-field approximation to reduce computation time influenced the accuracy of a solution and was coupled with the values of the boundary conditions needed to eliminate leakage. The error induced in the influence coefficients by using the far-field approximation was found to be dependent on the type of influence coefficient, the far-field radius, and the aspect ratio of the panels.
Federal Register 2010, 2011, 2012, 2013, 2014
2012-03-23
... INTERNATIONAL TRADE COMMISSION [DN 2886] Certain Food Waste Disposers and Components and Packaging...: U.S. International Trade Commission. ACTION: Notice. SUMMARY: Notice is hereby given that the U.S. International Trade Commission has received a complaint entitled Certain Food Waste Disposers and Components and...
Effect of flow on endothelial endocytosis of nanocarriers targeted to ICAM-1
Bhowmick, Tridib; Berk, Erik; Cui, Xiumin; Muzykantov, Vladimir R.; Muro, Silvia
2011-01-01
Delivery of drugs into the endothelium by nanocarriers targeted to endothelial determinants may improve treatment of vascular maladies. This is the case for intercellular adhesion molecule 1 (ICAM-1), a glycoprotein overexpressed on endothelial cells (ECs) in many pathologies. ICAM-1-targeted nanocarriers bind to and are internalized by ECs via a non-classical pathway, CAM-mediated endocytosis. In this work we studied the effects of endothelial adaptation to physiological flow on the endocytosis of model polymer nanocarriers targeted to ICAM-1 (anti-ICAM/NCs, ~180-nm diameter). Culturing established endothelial-like cells (EAhy926 cells) and primary human umbilical vein ECs (HUVECs) under 4 dyn/cm2 laminar shear stress for 24 h resulted in flow adaptation: cell elongation and formation of actin stress fibers aligned to the flow direction. Fluorescence microscopy showed that flow-adapted cells internalized anti-ICAM/NCs under flow, although at slower rate versus non flow-adapted cells under static incubation (~35% reduction). Uptake was inhibited by amiloride, whereas marginally affected by filipin and cadaverine, implicating that CAM-endocytosis accounts for anti-ICAM/NC uptake under flow. Internalization under flow was more modestly affected by inhibiting protein kinase C, which regulates actin remodeling during CAM-endocytosis. Actin recruitment to stress fibers that maintain the cell shape under flow may delay uptake of anti-ICAM/NCs under this condition by interfering with actin reorganization needed for CAM-endocytosis. Electron microscopy revealed somewhat slow, yet effective endocytosis of anti-ICAM/NCs by pulmonary endothelium after i.v. injection in mice, similar to that of flow-adapted cell cultures: ~40% (30 min) and 80% (3 h) internalization. Similar to cell culture data, uptake was slightly faster in capillaries with lower shear stress. Further, LPS treatment accelerated internalization of anti-ICAM/NCs in mice. Therefore, regulation of endocytosis of ICAM-1-targeted nanocarriers by flow and endothelial status may modulate drug delivery into ECs exposed to different physiological (capillaries vs. arterioles/venules) or pathological (ischemia, inflammation) levels and patterns of blood flow. PMID:21951807
Effect of flow on endothelial endocytosis of nanocarriers targeted to ICAM-1.
Bhowmick, Tridib; Berk, Erik; Cui, Xiumin; Muzykantov, Vladimir R; Muro, Silvia
2012-02-10
Delivery of drugs into the endothelium by nanocarriers targeted to endothelial determinants may improve treatment of vascular maladies. This is the case for intercellular adhesion molecule 1 (ICAM-1), a glycoprotein overexpressed on endothelial cells (ECs) in many pathologies. ICAM-1-targeted nanocarriers bind to and are internalized by ECs via a non-classical pathway, CAM-mediated endocytosis. In this work we studied the effects of endothelial adaptation to physiological flow on the endocytosis of model polymer nanocarriers targeted to ICAM-1 (anti-ICAM/NCs, ~180 nm diameter). Culturing established endothelial-like cells (EAhy926 cells) and primary human umbilical vein ECs (HUVECs) under 4 dyn/cm(2) laminar shear stress for 24 h resulted in flow adaptation: cell elongation and formation of actin stress fibers aligned to the flow direction. Fluorescence microscopy showed that flow-adapted cells internalized anti-ICAM/NCs under flow, although at slower rate versus non flow-adapted cells under static incubation (~35% reduction). Uptake was inhibited by amiloride, whereas marginally affected by filipin and cadaverine, implicating that CAM-endocytosis accounts for anti-ICAM/NC uptake under flow. Internalization under flow was more modestly affected by inhibiting protein kinase C, which regulates actin remodeling during CAM-endocytosis. Actin recruitment to stress fibers that maintain the cell shape under flow may delay uptake of anti-ICAM/NCs under this condition by interfering with actin reorganization needed for CAM-endocytosis. Electron microscopy revealed somewhat slow, yet effective endocytosis of anti-ICAM/NCs by pulmonary endothelium after i.v. injection in mice, similar to that of flow-adapted cell cultures: ~40% (30 min) and 80% (3 h) internalization. Similar to cell culture data, uptake was slightly faster in capillaries with lower shear stress. Further, LPS treatment accelerated internalization of anti-ICAM/NCs in mice. Therefore, regulation of endocytosis of ICAM-1-targeted nanocarriers by flow and endothelial status may modulate drug delivery into ECs exposed to different physiological (capillaries vs. arterioles/venules) or pathological (ischemia, inflammation) levels and patterns of blood flow. Copyright © 2011 Elsevier B.V. All rights reserved.
Le, Nam Cao Hoai; Yokokawa, Ryuji; Dao, Dzung Viet; Nguyen, Thien Duy; Wells, John C; Sugiyama, Susumu
2009-01-21
A poly(dimethylsiloxane) (PDMS) chip for Total Internal Reflection (TIR)-based imaging and detection has been developed using Si bulk micromachining and PDMS casting. In this paper, we report the applications of the chip on both inverted and upright fluorescent microscopes and confirm that two types of sample delivery platforms, PDMS microchannel and glass microchannel, can be easily integrated depending on the magnification of an objective lens needed to visualize a sample. Although any device configuration can be achievable, here we performed two experiments to demonstrate the versatility of the microfluidic TIR-based devices. The first experiment was velocity measurement of Nile red microbeads with nominal diameter of 500 nm in a pressure-driven flow. The time-sequenced fluorescent images of microbeads, illuminated by an evanescent field, were cross-correlated by a Particle Image Velocimetry (PIV) program to obtain near-wall velocity field of the microbeads at various flow rates from 500 nl/min to 3000 nl/min. We then evaluated the capabilities of the device for Single Molecule Detection (SMD) of fluorescently labeled DNA molecules from 30 bp to 48.5 kbp and confirm that DNA molecules as short as 1105 bp were detectable. Our versatile, integrated device could provide low-cost and fast accessibility to Total Internal Reflection Fluorescent Microscopy (TIRFM) on both conventional upright and inverted microscopes. It could also be a useful component in a Micro-Total Analysis System (micro-TAS) to analyze nanoparticles or biomolecules near-wall transport or motion.
ERIC Educational Resources Information Center
Chen, Tse-Mei; Barnett, George A.
2000-01-01
Analysis of 64 countries representing the largest number of international student exchanges examines student flows from a macro perspective. Findings indicate that the international student exchange network is relatively stable; the United States and Western industrialized nations are at the center; East European and Asian countries have become…
Use of Pressure Sensitive Paint for Diagnostics in Turbomachinery Flows With Shocks
NASA Technical Reports Server (NTRS)
Lepicovsky, Jan; Bencic, Timothy J.
2001-01-01
The technology of pressure sensitive paint (PSP) is well established in external aerodynamics. In internal flows in narrow channels and in turbomachinery cascades, however, there are still unresolved problems. In particular, the internal flows with complex shock structures inside highly curved channels present a challenge. It is not always easy and straightforward to distinguish between true signals and "ghost" images due to multiple internal reflections in narrow channels. To address some of the problems, investigations were first carried out in a narrow supersonic channel of Mach number 2.5. A single wedge or a combination of two wedges were used to generate a complex shock wave structure in the flow. The experience gained in a small supersonic channel was used for surface pressure measurements on the stator vane of a supersonic throughflow fan. The experimental results for several fan operating conditions are shown in a concise form, including performance map points, midspan static tap pressure distributions, and vane suction side pressure fields. Finally, the PSP technique was used in the NASA transonic flutter cascade to compliment flow visualization data and to acquire backwall pressure fields to assess the cascade flow periodicity. A summary of shortcomings of the pressure sensitive paint technology for internal flow application and lessons learned are presented in the conclusion of the paper.
Use of pressure-sensitive paint for diagnostics in turbomachinery flows with shocks
NASA Astrophysics Data System (ADS)
Lepicovsky, J.; Bencic, T. J.
2002-07-01
The technology of pressure-sensitive paint (PSP) is well established in external aerodynamics. In internal flows in narrow channels and in turbomachinery cascades, however, there are still unresolved problems. In particular, the internal flows with complex shock structures inside highly curved channels present a challenge. It is not always easy and straightforward to distinguish between true signals and 'ghost' images due to multiple internal reflections in narrow channels. To address some of the problems, investigations were first carried out in a narrow supersonic channel of Mach number 2.5. A single wedge or a combination of two wedges was used to generate a complex shock wave structure in the flow. The experience gained in a small supersonic channel was used for surface pressure measurements on the stator vane of a supersonic throughflow fan. The experimental results for several fan operating conditions are shown in a concise form, including performance map test points, midspan static tap pressure distributions, and vane suction side pressure fields. Finally, the PSP technique was used in the NASA transonic flutter cascade to compliment flow visualization data and to acquire backwall pressure fields to assess the cascade flow periodicity. Lessons learned from this investigation and shortcomings of the PSP technology for internal flow application are presented in the conclusion of the paper.
NASA Astrophysics Data System (ADS)
Stahl, K.; Kohn, I.; Boehm, M.; Seibert, J.; Freudiger, D.; Gerlinger, K.; Weiler, M.
2016-12-01
Low flows impact river ecosystems and impair water use. In the mid- and downstream reaches of one of the largest rivers in Europe, the River Rhine, low flows can threaten a variety of ecosystem services and direct uses. Low flows in summer and fall are sustained by the snow and ice melt contribution from the glacierized mountain headwaters upstream. This study explores changes in the discharge components of rain, snowmelt and ice melt during extreme low flow events from a downstream perspective. Quantification of the discharge components is based on a novel method of runoff component tracking that was implemented into a model chain, consisting of the HBV model, which includes a glacier mass balance model allowing for areal glacier changes, for the headwaters and the distributed hydrological model LARSIM for the remaining Rhine basin. A transient model run at daily resolution was calibrated to glacier volume change, basin-wide snow cover and snow water equivalent and discharge variability at many gauging stations over the period 1901-2006. The analysis of the resulting discharge components revealed that over the course of the 20th Century, the loss of glacier volume and glacier area in the headwaters appears to have compensated an increasingly negative glacier mass balance, resulting in little long-term change to the ice melt component in summer streamflow - thus showing no clear `peak-water' trend. While the glacier ice melt component was less than two percent of the average annual discharge of the mid and lower reaches of the River Rhine, models suggest its fraction was much higher during extreme low flow events. The low flows of the summers of 1921, 1947, and 2003 were comprised of record daily ice melt fractions of more than one fifth of the daily discharge along the mid and lower reaches from Basel to the mouth. A scenario model run with suppressed glacier area change suggests that the ice melt discharge component would have doubled if the same meteorological event as in 2003 had occurred in the early 1900s when glacier areas were still much larger. Impacts on ecology and water use most likely would have also been less severe. The modeled changes in discharge components thus allow a quantification of the low flow hazard that may loom ahead as the glaciers continue to decline.
NASA Technical Reports Server (NTRS)
Kreskovsky, J. P.; Briley, W. R.; Mcdonald, H.
1982-01-01
A finite difference method is developed for making detailed predictions of three dimensional subsonic turbulent flow in turbofan lobe mixers. The governing equations are solved by a forward-marching solution procedure which corrects an inviscid potential flow solution for viscous and thermal effects, secondary flows, total pressure distortion and losses, internal flow blockage and pressure drop. Test calculations for a turbulent coaxial jet flow verify that the turbulence model performs satisfactorily for this relatively simple flow. Lobe mixer flows are presented for two geometries typical of current mixer design. These calculations included both hot and cold flow conditions, and both matched and mismatched Mach number and total pressure in the fan and turbine streams.
Heat and mass transfer boundary conditions at the surface of a heated sessile droplet
NASA Astrophysics Data System (ADS)
Ljung, Anna-Lena; Lundström, T. Staffan
2017-12-01
This work numerically investigates how the boundary conditions of a heated sessile water droplet should be defined in order to include effects of both ambient and internal flow. Significance of water vapor, Marangoni convection, separate simulations of the external and internal flow, and influence of contact angle throughout drying is studied. The quasi-steady simulations are carried out with Computational Fluid Dynamics and conduction, natural convection and Marangoni convection are accounted for inside the droplet. For the studied conditions, a noticeable effect of buoyancy due to evaporation is observed. Hence, the inclusion of moisture increases the maximum velocities in the external flow. Marangoni convection will, in its turn, increase the velocity within the droplet with up to three orders of magnitude. Results furthermore show that the internal and ambient flow can be simulated separately for the conditions studied, and the accuracy is improved if the internal temperature gradient is low, e.g. if Marangoni convection is present. Simultaneous simulations of the domains are however preferred at high plate temperatures if both internal and external flows are dominated by buoyancy and natural convection. The importance of a spatially resolved heat and mass transfer boundary condition is, in its turn, increased if the internal velocity is small or if there is a large variation of the transfer coefficients at the surface. Finally, the results indicate that when the internal convective heat transport is small, a rather constant evaporation rate may be obtained throughout the drying at certain conditions.
NASA Astrophysics Data System (ADS)
Liu, Tianyang; Chan, Hiu Ning; Grimshaw, Roger; Chow, Kwok Wing
2017-11-01
The spatial structure of small disturbances in stratified flows without background shear, usually named the `Taylor-Goldstein equation', is studied by employing the Boussinesq approximation (variation in density ignored except in the buoyancy). Analytical solutions are derived for special wavenumbers when the Brunt-Väisälä frequency is quadratic in hyperbolic secant, by comparison with coupled systems of nonlinear Schrödinger equations intensively studied in the literature. Cases of coupled Schrödinger equations with four, five and six components are utilized as concrete examples. Dispersion curves for arbitrary wavenumbers are obtained numerically. The computations of the group velocity, second harmonic, induced mean flow, and the second derivative of the angular frequency can all be facilitated by these exact linear eigenfunctions of the Taylor-Goldstein equation in terms of hyperbolic function, leading to a cubic Schrödinger equation for the evolution of a wavepacket. The occurrence of internal rogue waves can be predicted if the dispersion and cubic nonlinearity terms of the Schrödinger equations are of the same sign. Partial financial support has been provided by the Research Grants Council contract HKU 17200815.
NASA Technical Reports Server (NTRS)
Agui, Juan H.; Vijayakumar, R.; Perry, Jay L.; Frederick, Kenneth R.; Mccormick, Robert M.
2017-01-01
Human deep space exploration missions will require advances in long-life, low maintenance airborne particulate matter filtration technology. As one of the National Aeronautics and Space Administrations (NASA) developments in this area, a prototype of a new regenerable, multi-stage particulate matter filtration technology was tested in an International Space Station (ISS) module simulation facility. As previously reported, the key features of the filter system include inertial and media filtration with regeneration and in-place media replacement techniques. The testing facility can simulate aspects of the cabin environment aboard the ISS and contains flight-like cabin ventilation system components. The filtration technology test article was installed at the inlet of the central ventilation system duct and instrumented to provide performance data under nominal flow conditions. In-place regeneration operations were also evaluated. The real-time data included pressure drop across the filter stages, process air flow rate, ambient pressure, humidity and temperature. In addition, two video cameras positioned at the filtration technology test articles inlet and outlet were used to capture the mechanical performance of the filter media indexing operation under varying air flow rates. Recent test results are presented and future design recommendations are discussed.
Clustering execution in a processing system to increase power savings
Bose, Pradip; Buyuktosunoglu, Alper; Jacobson, Hans M.; Vega, Augusto J.
2018-03-20
Embodiments relate to clustering execution in a processing system. An aspect includes accessing a control flow graph that defines a data dependency and an execution sequence of a plurality of tasks of an application that executes on a plurality of system components. The execution sequence of the tasks in the control flow graph is modified as a clustered control flow graph that clusters active and idle phases of a system component while maintaining the data dependency. The clustered control flow graph is sent to an operating system, where the operating system utilizes the clustered control flow graph for scheduling the tasks.
Hiruta, Yoshiki; Toh, Sadayoshi
2015-12-01
Two-dimensional Kolmogorov flow in wide periodic boxes is numerically investigated. It is shown that the total flow rate in the direction perpendicular to the force controls the characteristics of the flow, especially the existence of spatially localized solitary solutions such as traveling waves, periodic solutions, and chaotic solutions, which can behave as elementary components of the flow. We propose a procedure to construct approximate solutions consisting of solitary solutions. It is confirmed by direct numerical simulations that these solutions are stable and represent interactions between elementary components such as collisions, coexistence, and collapse of chaos.
New boundary conditions for fluid interaction with hydrophobic surface
NASA Astrophysics Data System (ADS)
Pochylý, František; Fialová, Simona; Havlásek, Michal
2018-06-01
Solution of both laminar and turbulent flow with consideration of hydrophobic surface is based on the original Navier assumption that the shear stress on the hydrophobic surface is directly proportional to the slipping velocity. In the previous work a laminar flow analysis with different boundary conditions was performed. The shear stress value on the tube walls directly depends on the pressure gradient. In the solution of the turbulent flow by the k-ɛ model, the occurrence of the fluctuation components of velocity on the hydrophobic surface is considered. The fluctuation components of the velocity affect the size of the adhesive forces. We assume that the boundary condition for ɛ depending on the velocity gradients will not need to be changed. When the liquid slips over the surface, non-zero fluctuation velocity components occur in the turbulent flow. These determine the non-zero value of the turbulent kinetic energy K. In addition, the fluctuation velocity components also influence the value of the adhesive forces, so it is necessary to include these in the formulation of new boundary conditions for turbulent flow on the hydrophobic surface.
Method and apparatus for adapting steady flow with cyclic thermodynamics
Swift, Gregory W.; Reid, Robert S.; Ward, William C.
2000-01-01
Energy transfer apparatus has a resonator for supporting standing acoustic waves at a selected frequency with a steady flow process fluid thermodynamic medium and a solid medium having heat capacity. The fluid medium and the solid medium are disposed within the resonator for thermal contact therebetween and for relative motion therebetween. The relative motion is produced by a first means for producing a steady velocity component and second means for producing an oscillating velocity component at the selected frequency and concomitant wavelength of the standing acoustic wave. The oscillating velocity and associated oscillating pressure component provide energy transfer between the steady flow process fluid and the solid medium as the steady flow process fluid moves through the resonator.
Energy efficient engine high-pressure turbine component rig performance test report
NASA Technical Reports Server (NTRS)
Leach, K. P.
1983-01-01
A rig test of the cooled high-pressure turbine component for the Energy Efficient Engine was successfully completed. The principal objective of this test was to substantiate the turbine design point performance as well as determine off-design performance with the interaction of the secondary flow system. The measured efficiency of the cooled turbine component was 88.5 percent, which surpassed the rig design goal of 86.5 percent. The secondary flow system in the turbine performed according to the design intent. Characterization studies showed that secondary flow system performance is insensitive to flow and pressure variations. Overall, this test has demonstrated that a highly-loaded, transonic, single-stage turbine can achieve a high level of operating efficiency.
Internal-flow systems for aircraft
NASA Technical Reports Server (NTRS)
Rogallo, F M
1941-01-01
An investigation has been made to determine efficient arrangements for an internal-flow system of an aircraft when such a system operates by itself or in combination with other flow systems. The investigation included a theoretical treatment of the problem and tests in the NACA 5-foot vertical wind tunnel of inlet and outlet openings in a flat plate and in a wing.
Rarefied-continuum gas dynamics transition for SUMS project
NASA Technical Reports Server (NTRS)
Cheng, Sin-I
1989-01-01
This program is to develop an analytic method for reducing SUMS data for the determination of the undisturbed atmosphere conditions ahead of the shuttle along its descending trajectory. It is divided into an internal flow problem, an external flow problem and their matching conditions. Since the existing method of Direct Simulation Monte Carlo (DSMC) failed completely for the internal flow problem, the emphasis is on the internal flow of a highly non-equilibrium, rarefied air through a short tube of a diameter much less than the gaseous mean free path. A two fluid model analysis of this internal flow problem has been developed and studied with typical results illustrated. A computer program for such an analysis and a technical paper published in Lecture Notes in Physics No. 323 (1989) are included as Appendices 3 and 4. A proposal for in situ determination of the surface accommodation coefficients sigma sub t and sigma e is included in Appendix 5 because of their importance in quantitative data reduction. A two fluid formulation for the external flow problem is included as Appendix 6 and a review article for AIAA on Hypersonic propulsion, much dependent on ambient atmospheric density, is also included as Appendix 7.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Roos, Bryan Nathaniel; Gonze, Eugene V; Santoso, Halim G
A method of treating emissions from an internal combustion engine of a hybrid vehicle includes directing a flow of air created by the internal combustion engine when the internal combustion engine is spinning but not being fueled through a hydrocarbon absorber to collect hydrocarbons within the flow of air. When the hydrocarbon absorber is full and unable to collect additional hydrocarbons, the flow of air is directed through an electrically heated catalyst to treat the flow of air and remove the hydrocarbons. When the hydrocarbon absorber is not full and able to collect additional hydrocarbons, the flow of air ismore » directed through a bypass path that bypasses the electrically heated catalyst to conserve the thermal energy stored within the electrically heated catalyst.« less
The characterization of exosome from blood plasma of patients with colorectal cancer
NASA Astrophysics Data System (ADS)
Yunusova, N. V.; Tamkovich, S. N.; Stakheeva, M. N.; Afanas'ev, S. G.; Frolova, A. Y.; Kondakova, I. V.
2016-08-01
Exosomes are extracellular membrane structures involved in many physiological and pathological processes including cancerogenesis and metastasis. The clarification of the criteria for exosome isolating and identifying is the purpose of this study. Exosome samples from the plasma of patients with colorectal cancer and healthy donors were examined using transmission electron microscopy and flow cytometry in accordance with the minimum requirements of "International Society for Extracellular Vesicles". The choice of the method for isolation of exosomes from the blood plasma by ultrafiltration and ultracentrifugation allowed obtaining highly purified samples of exosomes, in which all the structural components were clearly seen. The results obtained with flow cytometry suggest that exosomes of blood plasma from patients with colorectal cancer can be produced by epithelial cells. Moreover, cells produce different types of exosomes, which correspond to different mechanisms in sorting macromolecules in the membrane of multivesicular bodies. Determination of significant differences in the expression of specific exosomal proteins from colorectal cancer patients compared to healthy donors suggests a high diagnostic potential significance of circulating exosomes.
NASA Technical Reports Server (NTRS)
Reehorst, Andrew; Potapczuk, Mark; Ratvasky, Thomas; Laflin, Brenda Gile
1996-01-01
A series of wind tunnel tests were conducted to assess the effects of leading edge ice contamination upon the performance of a short-haul transport. The wind tunnel test was conducted in the NASA Langley 14 by 22 foot facility. The test article was a 1/8 scale twin-engine short-haul jet transport model. Two separate leading edge ice contamination configurations were tested in addition to the uncontaminated baseline configuration. Several aircraft configurations were examined including various flap and slat deflections, with and without landing gear. Data gathered included force measurements via an internal six-component force balance, pressure measurements through 700 electronically scanned wing pressure ports, and wing surface flow visualization measurements. The artificial ice contamination caused significant performance degradation and caused visible changes demonstrated by the flow visualization. The data presented here is just a portion of the data gathered. A more complete data report is planned for publication as a NASA Technical Memorandum and data supplement.
Power-on performance predictions for a complete generic hypersonic vehicle configuration
NASA Technical Reports Server (NTRS)
Bennett, Bradford C.
1991-01-01
The Compressible Navier-Stokes (CNS) code was developed to compute external hypersonic flow fields. It has been applied to various hypersonic external flow applications. Here, the CNS code was modified to compute hypersonic internal flow fields. Calculations were performed on a Mach 18 sidewall compression inlet and on the Lewis Mach 5 inlet. The use of the ARC3D diagonal algorithm was evaluated for internal flows on the Mach 5 inlet flow. The initial modifications to the CNS code involved generalization of the boundary conditions and the addition of viscous terms in the second crossflow direction and modifications to the Baldwin-Lomax turbulence model for corner flows.
Analytical skin friction and heat transfer formula for compressible internal flows
NASA Technical Reports Server (NTRS)
Dechant, Lawrence J.; Tattar, Marc J.
1994-01-01
An analytic, closed-form friction formula for turbulent, internal, compressible, fully developed flow was derived by extending the incompressible law-of-the-wall relation to compressible cases. The model is capable of analyzing heat transfer as a function of constant surface temperatures and surface roughness as well as analyzing adiabatic conditions. The formula reduces to Prandtl's law of friction for adiabatic, smooth, axisymmetric flow. In addition, the formula reduces to the Colebrook equation for incompressible, adiabatic, axisymmetric flow with various roughnesses. Comparisons with available experiments show that the model averages roughly 12.5 percent error for adiabatic flow and 18.5 percent error for flow involving heat transfer.
Method and apparatus for fine tuning an orifice pulse tube refrigerator
Swift, Gregory W.; Wollan, John J.
2003-12-23
An orifice pulse tube refrigerator uses flow resistance, compliance, and inertance components connected to a pulse tube for establishing a phase relationship between oscillating pressure and oscillating velocity in the pulse tube. A temperature regulating system heats or cools a working gas in at least one of the flow resistance and inertance components. A temperature control system is connected to the temperature regulating system for controlling the temperature of the working gas in the at least one of the flow resistance and inertance components and maintains a control temperature that is indicative of a desired temporal phase relationship.
Maderbacher, Guenther; Keshmiri, Armin; Springorum, Hans R; Maderbacher, Hermann; Grifka, Joachim; Baier, Clemens
2017-09-01
Physiological tibiofemoral kinematics have been shown to be important for good knee function after total knee arthroplasty (TKA). The purpose of the present study was to investigate the influence of component rotation on tibiofemoral kinematics during knee flexion. We asked which axial component alignment best reconstructs physiological tibiofemoral kinematics and which combinations should be avoided. Ten healthy cadaveric knees were examined. By means of a navigational device, tibiofemoral kinematics between 0° and 90° of flexion were assessed before and after TKA using the following different rotational component alignment: femoral components: ligament balanced, 6° internal, 3° external rotation, and 6° external rotation in relation to the posterior condylar line; tibial components: self-adapted, 6° internal rotation, and 6° external rotation. Physiological tibiofemoral kinematics could be partly reconstructed by TKA. Ligament-balanced femoral rotation and 6° femoral external rotation both in combination with 6° tibial component external rotation, and 3° femoral external rotation in combination with 6° tibial component internal rotation or self-aligning tibial component were able to restore tibial longitudinal rotation. Largest kinematical differences were found for the combination femoral component internal and tibial component external rotations. From a kinematic-based view, surgeons should avoid internal rotation of femoral components. However, even often recommended combinations of rotational component alignment (3° femoral external and tibial external rotation) significantly change tibiofemoral kinematics. Self-aligning tibial components solely restored tibiofemoral kinematics with the combination of 3° femoral component of external rotation. For the future, navigational devices might help to axially align components to restore patient-specific and natural tibiofemoral kinematics. Copyright © 2017 Elsevier Inc. All rights reserved.
A Gas-Kinetic Scheme for Multimaterial Flows and Its Application in Chemical Reaction
NASA Technical Reports Server (NTRS)
Lian, Yongsheng; Xu, Kun
1999-01-01
This paper concerns the extension of the multicomponent gas-kinetic BGK-type scheme to multidimensional chemical reactive flow calculations. In the kinetic model, each component satisfies its individual gas-kinetic BGK equation and the equilibrium states of both components are coupled in space and time due to the momentum and energy exchange in the course of particle collisions. At the same time, according to the chemical reaction rule one component can be changed into another component with the release of energy, where the reactant and product could have different gamma. Many numerical test cases are included in this paper, which show the robustness and accuracy of kinetic approach in the description of multicomponent reactive flows.
An organic self-regulating microfluidic system.
Eddington, D T; Liu, R H; Moore, J S; Beebe, D J
2001-12-01
In this paper we present an organic feedback scheme that merges microfluidics and responsive materials to address several limitations of current microfluidic systems. By using in situ fabrication and by taking advantage of microscale phenomena (e.g., laminar flow, short diffusion times), we have demonstrated feedback control of the output pH in a completely organic system. The system autonomously regulates an output stream at pH 7 under a range of input flow conditions. A single responsive hydrogel component performs the functionality of traditional feedback system components. Vertically stacked laminar flow is used to improve the time response of the hydrogel actuator. A star shaped orifice is utilized to improve the flow characteristics of the membrane/orifice valve. By changing the chemistry of the hydrogel component, the system can be altered to regulate flow based on hydrogels sensitive to temperature, light, biological/molecular, and others.
Four cells or two? Are four convection cells really necessary?
NASA Technical Reports Server (NTRS)
Reiff, P. H.; Heelis, R. A.
1994-01-01
This paper addresses the question whether a four-cell convection pattern in the polar cap ionosphere is required by observations, or whether the data are fully explainable by a (perhaps highly distorted) two-cell convection pattern. We present convection data from Atmosphere Explorer C, which, if only the flow component in the sunward-antisunward direction were measured, could be explained either as one of two possible distorted two-cell patterns or as a full four-cell pattern. However, neither of the distorted two-cell patterns that are consistent with the sunward-antisunward flow component can be made consistent with the dawn-dusk flow component over the entire spacecraft trajectory, without postulating a severe flow kink and extra field-aligned currents sunward of the spacecraft track. In addition, the zero potential point (which in a four-cell model would mark the division between the two reverse convection cells) also exactly corresponded to the location of the reversal of the east-west component in the flow, a feature predicted from the four-cell model but more difficult to explain in a distorted two-cell model. Because the pattern was repeated on two consecutive passes, time variations can probably be ruled out as a cause of the sunward flow. Between the two northern hemisphere dayside passes, a southern hemisphere nightside pass also showed a region of sunward flow in the polar cap. The fact that in this case the sunward flow was not confined to the dayside also favors a four-cell explanation.
Method of chaotic mixing and improved stirred tank reactors
Muzzio, F.J.; Lamberto, D.J.
1999-07-13
The invention provides a method and apparatus for efficiently achieving a homogeneous mixture of fluid components by introducing said components having a Reynolds number of between about [le]1 to about 500 into a vessel and continuously perturbing the mixing flow by altering the flow speed and mixing time until homogeneity is reached. This method prevents the components from aggregating into non-homogeneous segregated regions within said vessel during mixing and substantially reduces the time the admixed components reach homogeneity. 19 figs.
Method of chaotic mixing and improved stirred tank reactors
Muzzio, Fernando J.; Lamberto, David J.
1999-01-01
The invention provides a method and apparatus for efficiently achieving a homogeneous mixture of fluid components by introducing said components having a Reynolds number of between about .ltoreq.1 to about 500 into a vessel and continuously perturbing the mixing flow by altering the flow speed and mixing time until homogeniety is reached. This method prevents the components from aggregating into non-homogeneous segregated regions within said vessel during mixing and substantially reduces the time the admixed components reach homogeneity.
Estimating the vibration level of an L-shaped beam using power flow techniques
NASA Technical Reports Server (NTRS)
Cuschieri, J. M.; Mccollum, M.; Rassineux, J. L.; Gilbert, T.
1986-01-01
The response of one component of an L-shaped beam, with point force excitation on the other component, is estimated using the power flow method. The transmitted power from the source component to the receiver component is expressed in terms of the transfer and input mobilities at the excitation point and the joint. The response is estimated both in narrow frequency bands, using the exact geometry of the beams, and as a frequency averaged response using infinite beam models. The results using this power flow technique are compared to the results obtained using finite element analysis (FEA) of the L-shaped beam for the low frequency response and to results obtained using statistical energy analysis (SEA) for the high frequencies. The agreement between the FEA results and the power flow method results at low frequencies is very good. SEA results are in terms of frequency averaged levels and these are in perfect agreement with the results obtained using the infinite beam models in the power flow method. The narrow frequency band results from the power flow method also converge to the SEA results at high frequencies. The advantage of the power flow method is that detail of the response can be retained while reducing computation time, which will allow the narrow frequency band analysis of the response to be extended to higher frequencies.
A numerical investigation of premixed combustion in wave rotors
NASA Technical Reports Server (NTRS)
Nalim, M. Razi; Paxson, Daniel E.
1996-01-01
Wave rotor cycles which utilize premixed combustion processes within the passages are examined numerically using a one-dimensional CFD-based simulation. Internal-combustion wave rotors are envisioned for use as pressure-gain combustors in gas turbine engines. The simulation methodology is described, including a presentation of the assumed governing equations for the flow and reaction in the channels, the numerical integration method used, and the modeling of external components such as recirculation ducts. A number of cycle simulations are then presented which illustrate both turbulent-deflagration and detonation modes of combustion. Estimates of performance and rotor wall temperatures for the various cycles are made, and the advantages and disadvantages of each are discussed.
NASA Technical Reports Server (NTRS)
Mulhall, B. D. L.
1980-01-01
An evaluation is presented which is defined as the adequacy of system design with known functional and performance requirements. The proposed Rockwell International AIDS 3 card, document and data flow are presented to summarize the concepts involved and the relationships between functions. The analysis and evaluation includes a study of system capability, processing rates, search requirements and response accuracy as well as a consideration of operational components and hardware integration. Results indicate that the AIDS 3 System concept is operationally feasible if production capacity is slightly enhanced but that operational complexity, hardware integration and a lack of conceptual data pertinent to some of the functions are areas of concern.
International factors in the formation of refugee movements.
Zolberg, A R; Suhrke, A; Aguayo, S
1986-01-01
The authors construct a theoretical framework for analyzing factors influencing international refugee movements. "On the basis of detailed case studies by the authors of the principal refugee flows generated in Asia, Africa, and Latin America from approximately 1960 to the present, it was found that international factors often intrude both directly and indirectly on the major types of social conflict that trigger refugee flows, and tend to exacerbate their effects. Refugees are also produced by conflicts that are manifestly international, but which are themselves often related to internal social conflict among the antagonists." excerpt
9th International Conference on Multiphase Flow (ICMF 2016)
2016-08-12
Office of Naval Research Global (ONRG) Final CSP (Collaborative Science Program) Report Administrative Details: Event Name: 9th ...International Conference on Multiphase Flows Event Dates: May 22-27, 2016 Event City and Country: Florence, Italy Grantee (Name and Contact...2043 Date of the Final Report: August 12, 2016 Abstract: This report summarizes the main activities and outcomes of the 9th International
Method and apparatus for continuous flow injection extraction analysis
Hartenstein, Steven D.; Siemer, Darryl D.
1992-01-01
A method and apparatus for a continuous flow injection batch extraction aysis system is disclosed employing extraction of a component of a first liquid into a second liquid which is a solvent for a component of the first liquid, and is immiscible with the first liquid, and for separating the first liquid from the second liquid subsequent to extraction of the component of the first liquid.
Effects of external and gap mean flows on sound transmission through a double-wall sandwich panel
NASA Astrophysics Data System (ADS)
Liu, Yu; Sebastian, Alexis
2015-05-01
This paper studies analytically the effects of an external mean flow and an internal gap mean flow on sound transmission through a double-wall sandwich panel lined with poroelastic materials. Biot's theory is employed to describe wave propagation in poroelastic materials, and the transfer matrix method with three types of boundary conditions is applied to solve the system simultaneously. The random incidence transmission loss in a diffuse field is calculated numerically, and the limiting angle of incidence due to total internal reflection is discussed in detail. The numerical predictions suggest that the sound insulation performance of such a double-wall panel is enhanced considerably by both external and gap mean flows particularly in the high-frequency range. Similar effects on transmission loss are observed for the two mean flows. It is shown that the effect of the gap mean flow depends on flow velocity, flow direction, gap depth and fluid properties and also that the fluid properties within the gap appear to influence the transmission loss more effectively than the gap flow. Despite the implementation difficulty in practice, an internal gap flow provides more design space for tuning the sound insulation performance of a double-wall sandwich panel and has great potential for active/passive noise control.
Estimating Flow-Through Balance Momentum Tares with CFD
NASA Technical Reports Server (NTRS)
Melton, John E.; James, Kevin D.; Long, Kurtis R.; Flamm, Jeffrey D.
2016-01-01
This paper describes the process used for estimating flow-through balance momentum tares. The interaction of jet engine exhausts on the BOEINGERA Hybrid Wing Body (HWB) was simulated in the NFAC 40x80 wind tunnel at NASA Ames using a pair of turbine powered simulators (TPS). High-pressure air was passed through a flow-through balance and manifold before being delivered to the TPS units. The force and moment tares that result from the internal shear and pressure distribution were estimated using CFD. Validation of the CFD simulations for these complex internal flows is a challenge, given limited experimental data due to the complications of the internal geometry. Two CFD validation efforts are documented, and comparisons with experimental data from the final model installation are provided.
NASA Technical Reports Server (NTRS)
Wing, David J.; Mills, Charles T. L.; Mason, Mary L.
1997-01-01
The thrust efficiency and vectoring performance of a convergent-divergent nozzle were investigated at static conditions in the model preparation area of the Langley 16-Foot Transonic Tunnel. The diamond-shaped nozzle was capable of varying the internal contour of each quadrant individually by using cam mechanisms and retractable drawers to produce pitch and yaw thrust vectoring. Pitch thrust vectoring was achieved by either retracting the lower drawers to incline the throat or varying the internal flow-path contours to incline the throat. Yaw thrust vectoring was achieved by reducing flow area left of the nozzle centerline and increasing flow area right of the nozzle centerline; a skewed throat deflected the flow in the lateral direction.
Liu, Yang; Chen, Xinguang; Li, Shiyue; Yu, Bin; Wang, Yan; Yan, Hong
2016-12-01
Acculturative stress prevents international students from adapting to the host culture, increasing their risk for depression. International students in China are a growing and at-risk population for acculturative stress and depression. With data from the International Student Health and Behaviour Survey (Yu et al., ) in China, seven acculturative stress components were detected in a previous study (Yu et al., ), including a central component (self-confidence), three distal components (value conflict, identity threat and rejection) and three proximal components (poor cultural competence, opportunity deprivation and homesickness). The current study extended the previous study to investigate the relationship between these components and depression with data also from International Student Health and Behaviour Survey. Participants were 567 students (59% male, 40.4% African, mean age = 22.75, SD = 4.11) recruited in Wuhan, China. The sample scored high on the Acculturative Stress Scale for International Students (M = 92.81, SD = 23.93) and Center for Epidemiologic Studies Short Depression Scale (M = 0.97, SD = 0.53). Acculturative stress was positively associated with depression; the association between the three distal stress components and depression was fully mediated through self-confidence, while the three proximal components had a direct effect and a self-confidence-mediated indirect effect. These findings extended the value of the previous study, highlighted the central role of self-confidence in understanding acculturative stress and depression and provided new data supporting more effective counselling for international students in China. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.
The impact of sedimentary anisotropy on solute mixing in stacked scour-pool structures
NASA Astrophysics Data System (ADS)
Bennett, Jeremy P.; Haslauer, Claus P.; Cirpka, Olaf A.
2017-04-01
The spatial variability of hydraulic conductivity is known to have a strong impact on solute spreading and mixing. In most investigations, its local anisotropy has been neglected. Recent studies have shown that spatially varying orientation in sedimentary anisotropy can lead to twisting flow enhancing transverse mixing, but most of these studies used geologically implausible geometries. We use an object-based approach to generate stacked scour-pool structures with either isotropic or anisotropic filling which are typically reported in glacial outwash deposits. We analyze how spatially variable isotropic conductivity and variation of internal anisotropy in these features impacts transverse plume deformation and both longitudinal and transverse spreading and mixing. In five test cases, either the scalar values of conductivity or the spatial orientation of its anisotropy is varied between the scour-pool structures. Based on 100 random configurations, we compare the variability of velocity components, stretching and folding metrics, advective travel-time distributions, one and two-particle statistics in advective-dispersive transport, and the flux-related dilution indices for steady state advective-dispersive transport among the five test cases. Variation in the orientation of internal anisotropy causes strong variability in the lateral velocity components, which leads to deformation in transverse directions and enhances transverse mixing, whereas it hardly affects the variability of the longitudinal velocity component and thus longitudinal spreading and mixing. The latter is controlled by the spatial variability in the scalar values of hydraulic conductivity. Our results demonstrate that sedimentary anisotropy is important for transverse mixing, whereas it may be neglected when considering longitudinal spreading and mixing.
NASA Technical Reports Server (NTRS)
Gaugler, R. E.
1979-01-01
A computer program to calculate transient and steady state temperatures, pressures, and coolant flows in a cooled axial flow turbine blade or vane with an impingement insert is described. Coolant-side heat transfer coefficients are calculated internally in the program, with the user specifying either impingement or convection heat transfer at each internal flow station. Spent impingement air flows in a chordwise direction and is discharged through the trailing edge and through film cooling holes. The ability of the program to handle film cooling is limited by the internal flow model. Input to the program includes a description of the blade geometry, coolant-supply conditions, outside thermal boundary conditions, and wheel speed. The blade wall can have two layers of different materials, such as a ceramic thermal barrier coating over a metallic substrate. Program output includes the temperature at each node, the coolant pressures and flow rates, and the coolant-side heat transfer coefficients.
Information propagation and nutrient flow in Physarum polycephalum
NASA Astrophysics Data System (ADS)
Amselem, Gabriel; Peaudecerf, Francois; Alim, Karen; Dumais, Jacques; Pringle, Anne; Brenner, Michael
2012-02-01
Basal organisms such as slime mold and fungi grow as extended networks that can reach several square meters in size. Despite lacking a central coordination center, these organisms are able to globally reshape their morphology in response to local cues, such as the presence of a patch of nutrient. How are local signals integrated in these organisms, and how do they lead to an overall response? To answer this question, we focus on the flow of nutrients in the slime mold Physarum polycephalum. This slime mold exhibits internal flow oscillations, as well as periodic contractions of its veins. Using plastic masks, we constrain network growth to simple geometries. This allows for an experimental characterization of the relationship between the contractions and the flow. We next describe the change in the overall oscillation pattern when a food source is presented locally to the slime mold, and its implication on the internal flow. Internal flows are both inferred from the contraction pattern and experimentally measured using fluorescent markers.
Johnson-Cook Strength Model for Automotive Steels
NASA Astrophysics Data System (ADS)
Vedantam, K.
2005-07-01
Over the last few years most automotive companies are engaged in performing simulations of the capability of individual components or entire structure of a motor vehicle to adequately sustain the shock (impacts) and to protect the occupants from injuries during crashes. These simulations require constitutive material models (e.g., Johnson-Cook) of the sheet steel and other components based on the compression/tension data obtained in a series of tests performed at quasi-static (˜1/s) to high strain rates (˜2000/s). One such study is undertaken by the recently formed IISI (International Iron and Steel Institute) in organizing the round robin tests to compare the tensile data generated at our Laboratory at strain rates of ˜1/s, ˜300/s, ˜800/s, and ˜2000/s on two grades of automotive steel (Mild steel and Dual Phase-DP 590) using split Hopkinson bar with those generated at high strain rate testing facilities in Germany and Japan. Our tension data on mild steel (flow stress ˜ 500 MPa) suggest a relatively small strain rate sensitivity of the material. The second steel grade (DP-590) tested exhibits significant strain rate sensitivity in that the flow stress increases from about 700 MPa (at ˜1/s) to 900 MPa (at ˜2000/s). J-C strength model constants (A, B, n, and C) for the two steel grades will be presented.
Analysis of Photospheric Convection Cells with SDO/HMI
NASA Technical Reports Server (NTRS)
Williams, Peter E.; Pesnell, William Dean
2010-01-01
Supergranulation is a component of solar convection that assists in the outward transportation of internal energy. Supergranule cells are approximately 35 Mm across, have lifetimes on the order of a day and have divergent horizontal velocities of around 300 m/s, a factor of 10 higher than their central radial components. While they have been observed using Doppler methods for around half a century, their existence is also observed in other datasets such as magnetograms and Ca II K images. These datasets clearly show the influence of supergranulation on solar magnetism and how the local field is organized by the flows of supergranule cells. The Heliospheric and Magnetic Imager (HMI) aboard SDO is making fresh observations of convection phenomena at a higher cadence and a higher resolution that should make granular features visible. Granulation and supergranulation characteristics can now be compared within the same datasets, which may lead to further understanding of any mutual influences. The temporal and spatial enhancements of HMI will also reduce the noise level within studies of convection so that more detailed studies of their characteristics may be made. We present analyses of SDO/HMI Dopplergrams that provide new estimates of convection cell sizes, lifetimes, and velocity flows, as well as the rotation rates of the convection patterns across the solar disk. We make comparisons with previous data produced by MDI, as well as from data simulations.
Luscher, Darby Jon; Mayeur, Jason Rhea; Mourad, Hashem Mohamed; ...
2015-08-05
Here, we have developed a multi-physics modeling approach that couples continuum dislocation transport, nonlinear thermoelasticity, crystal plasticity, and consistent internal stress and deformation fields to simulate the single-crystal response of materials under extreme dynamic conditions. Dislocation transport is modeled by enforcing dislocation conservation at a slip-system level through the solution of advection-diffusion equations. Nonlinear thermoelasticity provides a thermodynamically consistent equation of state to relate stress (including pressure), temperature, energy densities, and dissipation. Crystal plasticity is coupled to dislocation transport via Orowan's expression where the constitutive description makes use of recent advances in dislocation velocity theories applicable under extreme loading conditions.more » The configuration of geometrically necessary dislocation density gives rise to an internal stress field that can either inhibit or accentuate the flow of dislocations. An internal strain field associated with the internal stress field contributes to the kinematic decomposition of the overall deformation. The paper describes each theoretical component of the framework, key aspects of the constitutive theory, and some details of a one-dimensional implementation. Results from single-crystal copper plate impact simulations are discussed in order to highlight the role of dislocation transport and pile-up in shock loading regimes. The main conclusions of the paper reinforce the utility of the modeling approach to shock problems.« less
Federal Register 2010, 2011, 2012, 2013, 2014
2013-01-10
... INTERNATIONAL TRADE COMMISSION [Docket No. 2930] Certain Robotic Toys and Components Thereof.... International Trade Commission. ACTION: Notice. SUMMARY: Notice is hereby given that the U.S. International.... International Trade Commission, 500 E Street SW., Washington, DC 20436, telephone (202) 205-2000. The public...
Su, Boyang; Chua, Leok P; Lim, Tau M; Zhou, Tongming
2010-09-01
Generally, there are two types of impeller design used in the axial flow blood pumps. For the first type, which can be found in most of the axial flow blood pumps, the magnet is embedded inside the impeller hub or blades. For the second type, the magnet is embedded inside the cylindrical impeller shroud, and this design has not only increased the rotating stability of the impeller but has also avoided the flow interaction between the impeller blade tip and the pump casing. Although the axial flow blood pumps with either impeller design have been studied individually, the comparisons between these two designs have not been conducted in the literature. Therefore, in this study, two axial flow blood pumps with and without impeller shrouds were numerically simulated with computational fluid dynamics and compared with each other in terms of hydraulic and hematologic performances. For the ease of comparison, these two models have the same inner components, which include a three-blade straightener, a two-blade impeller, and a three-blade diffuser. The simulation results showed that the model with impeller shroud had a lower static pressure head with a lower hydraulic efficiency than its counterpart. It was also found that the blood had a high possibility to deposit on the impeller shroud inner surface, which greatly enhanced the possibility of thrombus formation. The blood damage indices in both models were around 1%, which was much lower than the 13.1% of the axial flow blood pump of Yano et al. with the corresponding experimental hemolysis of 0.033 g/100 L. © 2010, Copyright the Authors. Artificial Organs © 2010, International Center for Artificial Organs and Transplantation and Wiley Periodicals, Inc.
Launch Vehicle Sizing Benefits Utilizing Main Propulsion System Crossfeed and Project Status
NASA Technical Reports Server (NTRS)
Chandler, Frank; Scheiern, M.; Champion, R.; Mazurkivich, P.; Lyles, Garry (Technical Monitor)
2002-01-01
To meet the goals for a next generation Reusable Launch Vehicle (RLV), a unique propulsion feed system concept was identified using crossfeed between the booster and orbiter stages that could reduce the Two-Stage-to-Orbit (TSTO) vehicle weight and Design, Development, Test and Evaluation (DDT&E) costs by approximately 25%, while increasing safety and reliability. The Main Propulsion System (MPS) crossfeed water demonstration test program addresses all activities required to reduce the risks for the MPS crossfeed system from a Technology Readiness Level (TRL) of 2 to 4 by the completion of testing and analysis by June 2003. During the initial period, that ended in March 2002, a subscale water flow test article was defined. Procurement of a subscale crossfeed check valve was initiated and the specifications for the various components were developed. The fluid transient and pressurization analytical models were developed separately and successfully integrated. The test matrix for the water flow test was developed to correlate the integrated model. A computational fluid dynamics (CFD) model of the crossfeed check valve was developed to assess flow disturbances and internal flow dynamics. Based on the results, the passive crossfeed system concept was very feasible and offered a safe system to be used in an RLV architecture. A water flow test article was designed to accommodate a wide range of flows simulating a number of different types of propellant systems. During the follow-on period, the crossfeed system model will be further refined, the test article will be completed, the water flow test will be performed, and finally the crossfeed system model will be correlated with the test data. This validated computer model will be used to predict the full-scale vehicle crossfeed system performance.
Changes in erosional style on early Mars - External versus internal influences
NASA Technical Reports Server (NTRS)
Postawko, Susan E.; Fanale, Fraser P.
1993-01-01
A quantitative relationship is derived between the effectiveness of an atmospheric greenhouse and that of internal heat flow in producing the morphological differences between early and later Martian terrains. The derived relationship is used for two purposes: (1) to evaluate the relative importance of the atmospheric CO2 greenhouse effect and the internal regolith thermal gradient in producing morphological changes for any value of the heat flow (and conductivity values); and (2) to assess the absolute importance of each for specific values of the heat flow which are thought to be reasonable on independent geophysical grounds.
Flow field induced particle accumulation inside droplets in rectangular channels.
Hein, Michael; Moskopp, Michael; Seemann, Ralf
2015-07-07
Particle concentration is a basic operation needed to perform washing steps or to improve subsequent analysis in many (bio)-chemical assays. In this article we present field free, hydrodynamic accumulation of particles and cells in droplets flowing within rectangular micro-channels. Depending on droplet velocity, particles either accumulate at the rear of the droplet or are dispersed over the entire droplet cross-section. We show that the observed particle accumulation behavior can be understood by a coupling of particle sedimentation to the internal flow field of the droplet. The changing accumulation patterns are explained by a qualitative change of the internal flow field. The topological change of the internal flow field, however, is explained by the evolution of the droplet shape with increasing droplet velocity altering the friction with the channel walls. In addition, we demonstrate that accumulated particles can be concentrated, removing excess dispersed phase by splitting the droplet at a simple channel junction.
NASA Technical Reports Server (NTRS)
Mysko, Stephen J.; Chyu, Wei J.; Stortz, Michael W.; Chow, Chuen-Yen
1993-01-01
In this work, the computation of combined external/internal transonic flow on the complex forebody/inlet configuration of the AV-8B Harrier II is performed. The actual aircraft has been measured and its surface and surrounding domain, in which the fuselage and inlet have a common wall, have been described using structured grids. The 'thin-layer' Navier-Stokes equations were used to model the flow along with the Chimera embedded multi-block technique. A fully conservative, alternating direction implicit (ADI), approximately factored, partially fluxsplit algorithm was employed to perform the computation. Comparisons to some experimental wind tunnel data yielded good agreement for flow at zero incidence and angle of attack. The aim of this paper is to provide a methodology or computational tool for the numerical solution of complex external/internal flows.
The role of the complete Coriolis force in weakly stratified oceanic flows
NASA Astrophysics Data System (ADS)
Tort, M.; Winters, K. B.; Ribstein, B.; Zeitlin, V.
2016-02-01
Ocean dynamics is usually described using the primitive equations based on the so-called traditional approximation (TA), where the Coriolis force associated with the horizontal component of the planetary rotation is neglected (also called non-traditional (NT) part proportional to cosΦ, see Fig 1.). However, recent studies have shown that the NT part of the Coriolis force plays a non-negligible dynamical role in some particular oceanic flows (see Gerkema et al., 2008 for an extensive review of NT effects for geophysical and astrophysical flows). Here we explore the relevance of including the NT component of the Coriolis force in ocean models, by presenting particular results regarding two different mid-latitude flow configurations after relaxing the TA: Propagation of wind-induced near-inertial waves (NIWs). Under the TA, NIWs propagate toward the equator, the inertially poleward propagation being internally reflected at a depth-independent critical latitude. The combined effects of the NT Coriolis force and weak stratification in the deep ocean leads to the existence of waveguides for sub-inertial waves, which get trapped and propagate further poleward (Winters et al., 2011). Here we consider storm-induced NIWs and their evolution in a non-linear Boussinesq model on the β-plane in the NT approximation. Preliminary results are presented concerning the behavior of the waves in a weakly stratified mixed-layer, where NT effects are expected to be significant. Inertial instability. A detailed linear stability analysis of the Bickley jet at large Rossby numbers in the NT approximation on the f-plane is performed for long waves in a continuously stratified Boussinesq model. For a sufficiently weak stratification, both symmetric and asymmetric inertial instabilities have substantially higher growth rates than in the TA while no discernible differences between the two approximations are observed for strong enough stratifications (Tort et al., 2015).
NASA Technical Reports Server (NTRS)
Schum, Harold J.; Davison, Elmer H.; Petrash, Donald A.
1955-01-01
The over-all component performance characteristics of the J71 Type IIA three-stage turbine were experimentally determined over a range of speed and over-all turbine total-pressure ratio at inlet-air conditions af 35 inches of mercury absolute and 700 deg. R. The results are compared with those obtained for the J71 Type IIF turbine, which was previously investigated, the two turbines being designed for the same engine application. Geometrically the two turbines were much alike, having the same variation of annular flow area and the same number of blades for corresponding stator and rotor rows. However, the blade throat areas downstream of the first stator of the IIA turbine were smaller than those of the IIF; and the IIA blade profiles were curve-backed, whereas those of the IIF were straight-backed. The IIA turbine passed the equivalent design weight flow and had a brake internal efficiency of 0.880 at design equivalent speed and work output. A maximum efficiency of 0.896 occurred at 130 percent of design equivalent speed and a pressure ratio of 4.0. The turbine had a wide range of efficient operation. The IIA turbine had slightly higher efficiencies than the IIF turbine at comparable operating conditions. The fact that the IIA turbine obtained the design equivalent weight flow at the design equivalent operating point was probably a result of the decrease in the blading throat areas downstream of the first stator from those of the IIF turbine, which passed 105 percent of design weight flow at the corresponding operating point. The third stator row of blades of the IIA turbine choked at the design equivalent speed and at an over-all pressure ratio of 4.2; the third rotor choked at a pressure ratio of approximately 4.9
Towards predictive models for transitionally rough surfaces
NASA Astrophysics Data System (ADS)
Abderrahaman-Elena, Nabil; Garcia-Mayoral, Ricardo
2017-11-01
We analyze and model the previously presented decomposition for flow variables in DNS of turbulence over transitionally rough surfaces. The flow is decomposed into two contributions: one produced by the overlying turbulence, which has no footprint of the surface texture, and one induced by the roughness, which is essentially the time-averaged flow around the surface obstacles, but modulated in amplitude by the first component. The roughness-induced component closely resembles the laminar steady flow around the roughness elements at the same non-dimensional roughness size. For small - yet transitionally rough - textures, the roughness-free component is essentially the same as over a smooth wall. Based on these findings, we propose predictive models for the onset of the transitionally rough regime. Project supported by the Engineering and Physical Sciences Research Council (EPSRC).
Clustering execution in a processing system to increase power savings
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bose, Pradip; Buyuktosunoglu, Alper; Jacobson, Hans M.
Embodiments relate to clustering execution in a processing system. An aspect includes accessing a control flow graph that defines a data dependency and an execution sequence of a plurality of tasks of an application that executes on a plurality of system components. The execution sequence of the tasks in the control flow graph is modified as a clustered control flow graph that clusters active and idle phases of a system component while maintaining the data dependency. The clustered control flow graph is sent to an operating system, where the operating system utilizes the clustered control flow graph for scheduling themore » tasks.« less
NASA Astrophysics Data System (ADS)
Boiten, W.
1993-11-01
The use of flow measuring structures is one of the various methods for the continuous measurement of discharges in open channels. In this report a brief summary of these methods is presented to get some insight in the selection of the most appropriate method. Then the distinct functions of water control structures are described. The flow measuring structures are classified according to international rules. The fields of application are dealt with and the definitions of weir flow are given. Much attention is paid to the aspects of how to select the most suitable flow measuring structure. The accuracy in the evaluation of the discharge has been related to the different error sources. A review of international standards on flow measuring structures concludes the report.
NASA Astrophysics Data System (ADS)
Wang, L.; Jiang, T. L.; Dai, H. L.; Ni, Q.
2018-05-01
The present study develops a new three-dimensional nonlinear model for investigating vortex-induced vibrations (VIV) of flexible pipes conveying internal fluid flow. The unsteady hydrodynamic forces associated with the wake dynamics are modeled by two distributed van der Pol wake oscillators. In particular, the nonlinear partial differential equations of motion of the pipe and the wake are derived, taking into account the coupling between the structure and the fluid. The nonlinear equations of motion for the coupled system are then discretized by means of the Galerkin technique, resulting in a high-dimensional reduced-order model of the system. It is shown that the natural frequencies for in-plane and out-of-plane motions of the pipe may be different at high internal flow velocities beyond the threshold of buckling instability. The orientation angle of the postbuckling configuration is time-varying due to the disturbance of hydrodynamic forces, thus yielding sometimes unexpected results. For a buckled pipe with relatively low cross-flow velocity, interestingly, examining the nonlinear dynamics of the pipe indicates that the combined effects of the cross-flow-induced resonance of the in-plane first mode and the internal-flow-induced buckling on the IL and CF oscillation amplitudes may be significant. For higher cross-flow velocities, however, the effect of internal fluid flow on the nonlinear VIV responses of the pipe is not pronounced.
Saver, J L; Jahan, R; Levy, E I; Jovin, T G; Baxter, B; Nogueira, R; Clark, W; Budzik, R; Zaidat, O O
2014-07-01
Self-expanding stent retrievers are a promising new device class designed for rapid flow restoration in acute cerebral ischaemia. The SOLITAIRE™ Flow Restoration device (SOLITAIRE) has shown high rates of recanalization in preclinical models and in uncontrolled clinical series. (1) To demonstrate non-inferiority of SOLITAIRE compared with a legally marketed device, the MERCI Retrieval System®; (2) To demonstrate safety, feasibility, and efficacy of SOLITAIRE in subjects requiring mechanical thrombectomy diagnosed with acute ischaemic stroke. DESIGN : Multicenter, randomized, prospective, controlled trial with blinded primary end-point ascertainment. Key entry criteria include: age 22-85; National Institute of Health Stroke Scale (NIHSS) ≥8 and <30; clinical and imaging findings consistent with acute ischaemic stroke; patient ineligible or failed intravenous tissue plasminogen activator; accessible occlusion in M1 or M2 middle cerebral artery, internal carotid artery, basilar artery, or vertebral artery; and patient able to be treated within 8 h of onset. Sites first participate in a roll-in phase, treating two patients with the SOLITAIRE device, before proceeding to the randomized phase. In patients unresponsive to the initially assigned therapy, after the angiographic component of the primary end-point is ascertained (reperfusion with the initial assigned device), rescue therapy with other reperfusion techniques is permitted. The primary efficacy end-point is successful recanalization with the assigned study device (no use of rescue therapy) and with no symptomatic intracranial haemorrhage. Successful recanalization is defined as achieving Thrombolysis In Myocardial Ischemia 2 or 3 flow in all treatable vessels. The primary safety end-point is the incidence of device-related and procedure-related serious adverse events. A major secondary efficacy end-point is time to achieve initial recanalization. Additional secondary end-points include clinical outcomes at 90 days and radiologic haemorrhagic transformation. © 2012 The Authors. International Journal of Stroke © 2012 World Stroke Organization.
Visualisation of diesel injector with neutron imaging
NASA Astrophysics Data System (ADS)
Lehmann, E.; Grünzweig, C.; Jollet, S.; Kaiser, M.; Hansen, H.; Dinkelacker, F.
2015-12-01
The injection process of diesel engines influences the pollutant emissions. The spray formation is significantly influenced by the internal flow of the injector. One of the key parameters here is the generation of cavitation caused by the geometry and the needle lift. In modern diesel engines the injection pressure is established up to 3000 bar. The details of the flow and phase change processes inside the injector are of increasing importance for such injectors. With these experimental measurements the validation of multiphase and cavitation models is possible for the high pressure range. Here, for instance, cavitation effects can occur. Cavitation effects in the injection port area destabilize the emergent fuel jet and improve the jet break-up. The design of the injection system in direct-injection diesel engines is an important challenge, as the jet breakup, the atomization and the mixture formation in the combustion chamber are closely linked. These factors have a direct impact on emissions, fuel consumption and performance of an engine. The shape of the spray at the outlet is determined by the internal flow of the nozzle. Here, geometrical parameters, the injection pressure, the injection duration and the cavitation phenomena play a major role. In this work, the flow dependency in the nozzles are analysed with the Neutron-Imaging. The great advantage of this method is the penetrability of the steel structure while a high contrast to the fuel is given due to the interaction of the neutrons with the hydrogen amount. Compared to other methods (optical with glass structures) we can apply real components under highest pressure conditions. During the steady state phase of the injection various cavitation phenomena are visible in the injector, being influenced by the nozzle geometry and the fuel pressure. Different characteristics of cavitation in the sac and spray hole can be detected, and the spray formation in the primary breakup zone is influenced.
NASA Astrophysics Data System (ADS)
Kim, Kyung Chun; Lee, Sang Joon
2011-06-01
The 14th International Symposium on Flow Visualization (ISFV14) was held in Daegu, Korea, on 21-24 June 2010. There were 304 participants from 17 countries. The state of the art in many aspects of flow visualization was presented and discussed, and a total of 243 papers from 19 countries were presented. Two special lectures and four invited lectures, 48 paper sessions and one poster session were held in five session rooms and in a lobby over four days. Among the paper sessions, those on 'biological flows', 'micro/nano fluidics', 'PIV/PTV' and 'compressible and sonic flows' received great attention from the participants of ISFV14. Special events included presentations of 'The Asanuma Award' and 'The Leonardo Da Vinci Award' to prominent contributors. Awards for photos and movies were given to three scientists for their excellence in flow visualizations. Sixteen papers were selected by the Scientific Committee of ISFV14. After the standard peer review process of this journal, six papers were finally accepted for publication. We wish to thank the editors of MST for making it possible to publish this special feature from ISFV14. We also thank the authors for their careful and insightful work and cooperation in the preparation of revised papers. It will be our pleasure if readers appreciate the hot topics in flow visualization research as a result of this special feature. We also hope that the progress in flow visualization will create new research fields. The 15th International Symposium on Flow Visualization will be held in Minsk, Belarus in 2012. We would like to express sincere thanks to the staff at IOP Publishing for their kind support.
NASA Technical Reports Server (NTRS)
Schum, Harold J; Davison, Elmer H
1956-01-01
The over-all component performance characteristics of a J71 experimental three-stage turbine with 97 percent design stator areas were determined over a range of speed and pressure ratio at inlet-air conditions of approximately 35 inches of mercury absolute and 700 degrees R. The turbine break internal efficiency at design operating conditions was 0.877; the maximum efficiency of 0.886 occurred at a pressure ratio of 4.0 at 120 percent of design equivalent rotor speed. In general, the turbine yielded a wide range of efficient operation, permitting flexibility in the choice of different modes of engine operation. Limiting blade loading of the third rotor was approached but not obtained over the range of conditions investigated herein. At the design operating point, the turbine equivalent weight flow was approximately 105 percent of design. Choking of the third-rotor blades occurred at design speed and an over-all pressure ratio of 4.2.
Gong, Xing-Chu; Shen, Ji-Chen; Qu, Hai-Bin
2016-12-01
Continuous pharmaceutical manufacturing is one of the development directions in international pharmaceutical technology. In this study, a continuous mixing technology of ethanol and concentrated extract in the ethanol precipitation of Salvia miltiorrhiza was realized by using a membrane dispersion method. The effects of ethanol flowrate, concentrated extract flowrate, and flowrate ratio on ethanol precipitation results were investigated. With the increase of the flowrates of ethanol and concentrated extract, retention rate of active phenolic acids components was increased, and the total solid removal rate was decreased. The purity of active components in supernatants was mainly affected by the ratio of ethanol flowrate and concentrated extract flowrate. The mixing efficiency of adding ethanol under continuous flow mixing mode in this study was comparable to that of industrial ethanol precipitation. Continuous adding ethanol by using a membrane dispersion mixer is a promising technology with many advantages such as easy enlargement, large production per unit volume, and easy control. Copyright© by the Chinese Pharmaceutical Association.
Designer cell signal processing circuits for biotechnology
Bradley, Robert W.; Wang, Baojun
2015-01-01
Microorganisms are able to respond effectively to diverse signals from their environment and internal metabolism owing to their inherent sophisticated information processing capacity. A central aim of synthetic biology is to control and reprogramme the signal processing pathways within living cells so as to realise repurposed, beneficial applications ranging from disease diagnosis and environmental sensing to chemical bioproduction. To date most examples of synthetic biological signal processing have been built based on digital information flow, though analogue computing is being developed to cope with more complex operations and larger sets of variables. Great progress has been made in expanding the categories of characterised biological components that can be used for cellular signal manipulation, thereby allowing synthetic biologists to more rationally programme increasingly complex behaviours into living cells. Here we present a current overview of the components and strategies that exist for designer cell signal processing and decision making, discuss how these have been implemented in prototype systems for therapeutic, environmental, and industrial biotechnological applications, and examine emerging challenges in this promising field. PMID:25579192
Gamma-Ray Burst Prompt Emission Light Curves and Power Density Spectra in the ICMART Model
NASA Astrophysics Data System (ADS)
Zhang, Bo; Zhang, Bing
2014-02-01
In this paper, we simulate the prompt emission light curves of gamma-ray bursts (GRBs) within the framework of the Internal-Collision-induced MAgnetic Reconnection and Turbulence (ICMART) model. This model applies to GRBs with a moderately high magnetization parameter σ in the emission region. We show that this model can produce highly variable light curves with both fast and slow components. The rapid variability is caused by many locally Doppler-boosted mini-emitters due to turbulent magnetic reconnection in a moderately high σ flow. The runaway growth and subsequent depletion of these mini-emitters as a function of time define a broad slow component for each ICMART event. A GRB light curve is usually composed of multiple ICMART events that are fundamentally driven by the erratic GRB central engine activity. Allowing variations of the model parameters, one is able to reproduce a variety of light curves and the power density spectra as observed.
A lifting-surface theory solution for the diffraction of internal sound sources by an engine nacelle
NASA Astrophysics Data System (ADS)
Martinez, R.
1986-07-01
Lifting-surface theory is used to solve the problem of diffraction by a rigid open-ended pipe of zero thickness and finite length, with application to the prediction of acoustic insertion-loss performance for the encasing structure of a ducted propeller or turbofan. An axisymmetric situation is assumed, and the incident field due to a force applied directly to the fluid in the cylinder axial direction is used. A virtual-source distribution of unsteady dipoles is found whose integrated component of radial velocity is set to cancel that of the incident field over the surface. The calculated virtual load is verified by whether its effect on the near-field input power at the actual source is consistent with the far-field power radiated by the system, a balance which is possible if the no-flow-through boundary condition has been satisfied over the rigid pipe surface such that the velocity component of the acoustic intensity is zero.
Liquid fuel injection elements for rocket engines
NASA Technical Reports Server (NTRS)
Cox, George B., Jr. (Inventor)
1993-01-01
Thrust chambers for liquid propellant rocket engines include three principal components. One of these components is an injector which contains a plurality of injection elements to meter the flow of propellants at a predetermined rate, and fuel to oxidizer mixture ratio, to introduce the mixture into the combustion chamber, and to cause them to be atomized within the combustion chamber so that even combustion takes place. Evolving from these injectors are tube injectors. These tube injectors have injection elements for injecting the oxidizer into the combustion chamber. The oxidizer and fuel must be metered at predetermined rates and mixture ratios in order to mix them within the combustion chamber so that combustion takes place smoothly and completely. Hence tube injectors are subject to improvement. An injection element for a liquid propellant rocket engine of the bipropellant type is provided which includes tangential fuel metering orifices, and a plurality of oxidizer tube injection elements whose injection tubes are also provided with tangential oxidizer entry slots and internal reed valves.
A Thin Film Multifunction Sensor for Harsh Environments
NASA Technical Reports Server (NTRS)
Wrbanek, John D.; Fralick, Gustave C.; Martin, Lisa C.; Blaha, Charles A.
2001-01-01
The status of work at NASA Glenn Research Center to develop a minimally intrusive integrated sensor to provide realtime measurement of strain, heat flux and flow in high temperature environments is presented in this paper. The sensor can be beneficial as a single package to characterize multiple stress and strain modes simultaneously on materials and components during engine development and validation. A major technical challenge is to take existing individual gauge designs and modify them into one integrated thin film sensor. Ultimately, the goal is to develop the ability to deposit the sensors directly onto internal engine parts or on a small thin substrate that can be attached to engine components. Several prototype sensors constructed of platinum, platinum-rhodium alloy, and alumina on constant-strain alumina beams have been built and bench-tested. The technical challenges of the design. construction, and testing are discussed. Data from the preliminary testing of the sensor array is presented. The future direction for the sensor development is discussed as well.
ERIC Educational Resources Information Center
Mayeaux, Amanda Shuford
2013-01-01
The purpose of this sequential mixed-methods research was to discover the impact school culture, internal factors, and the state of flow has upon motivating a teacher to develop teaching expertise. This research was designed to find answers concerning why and how individual teachers can nurture their existing internal factors to increase their…
Direct process estimation from tomographic data using artificial neural systems
NASA Astrophysics Data System (ADS)
Mohamad-Saleh, Junita; Hoyle, Brian S.; Podd, Frank J.; Spink, D. M.
2001-07-01
The paper deals with the goal of component fraction estimation in multicomponent flows, a critical measurement in many processes. Electrical capacitance tomography (ECT) is a well-researched sensing technique for this task, due to its low-cost, non-intrusion, and fast response. However, typical systems, which include practicable real-time reconstruction algorithms, give inaccurate results, and existing approaches to direct component fraction measurement are flow-regime dependent. In the investigation described, an artificial neural network approach is used to directly estimate the component fractions in gas-oil, gas-water, and gas-oil-water flows from ECT measurements. A 2D finite- element electric field model of a 12-electrode ECT sensor is used to simulate ECT measurements of various flow conditions. The raw measurements are reduced to a mutually independent set using principal components analysis and used with their corresponding component fractions to train multilayer feed-forward neural networks (MLFFNNs). The trained MLFFNNs are tested with patterns consisting of unlearned ECT simulated and plant measurements. Results included in the paper have a mean absolute error of less than 1% for the estimation of various multicomponent fractions of the permittivity distribution. They are also shown to give improved component fraction estimation compared to a well known direct ECT method.
Motion estimation under location uncertainty for turbulent fluid flows
NASA Astrophysics Data System (ADS)
Cai, Shengze; Mémin, Etienne; Dérian, Pierre; Xu, Chao
2018-01-01
In this paper, we propose a novel optical flow formulation for estimating two-dimensional velocity fields from an image sequence depicting the evolution of a passive scalar transported by a fluid flow. This motion estimator relies on a stochastic representation of the flow allowing to incorporate naturally a notion of uncertainty in the flow measurement. In this context, the Eulerian fluid flow velocity field is decomposed into two components: a large-scale motion field and a small-scale uncertainty component. We define the small-scale component as a random field. Subsequently, the data term of the optical flow formulation is based on a stochastic transport equation, derived from the formalism under location uncertainty proposed in Mémin (Geophys Astrophys Fluid Dyn 108(2):119-146, 2014) and Resseguier et al. (Geophys Astrophys Fluid Dyn 111(3):149-176, 2017a). In addition, a specific regularization term built from the assumption of constant kinetic energy involves the very same diffusion tensor as the one appearing in the data transport term. Opposite to the classical motion estimators, this enables us to devise an optical flow method dedicated to fluid flows in which the regularization parameter has now a clear physical interpretation and can be easily estimated. Experimental evaluations are presented on both synthetic and real world image sequences. Results and comparisons indicate very good performance of the proposed formulation for turbulent flow motion estimation.
C-2W Magnetic Measurement Suite
NASA Astrophysics Data System (ADS)
Roche, T.; Thompson, M. C.; Griswold, M.; Knapp, K.; Koop, B.; Ottaviano, A.; Tobin, M.; TAE, Tri Alpha Energy, Inc. Team
2017-10-01
Commissioning and early operations are underway on C-2W, Tri Alpha Energy's new FRC experiment. The increased complexity level of this machine requires an equally enhanced diagnostic capability. A fundamental component of any magnetically confined fusion experiment is a firm understanding of the magnetic field itself. C-2W is outfitted with over 700 magnetic field probes, 550 internal and 150 external. Innovative in-vacuum annular flux loop / B-dot combination probes will provide information about plasma shape, size, pressure, energy, total temperature, and trapped flux when coupled with establish theoretical interpretations. The massive Mirnov array, consisting of eight rings of eight 3D probes, will provide detailed information about plasma motion, stability, and MHD modal content with the aid of singular value decomposition (SVD) analysis. Internal Rogowski probes will detect the presence of axial currents flowing in the plasma jet in multiple axial locations. Initial data from this array of diagnostics will be presented along with some interpretation and discussion of the analysis techniques used.
Theoretical analysis of tsunami generation by pyroclastic flows
Watts, P.; Waythomas, C.F.
2003-01-01
Pyroclastic flows are a common product of explosive volcanism and have the potential to initiate tsunamis whenever thick, dense flows encounter bodies of water. We evaluate the process of tsunami generation by pyroclastic flow by decomposing the pyroclastic flow into two components, the dense underflow portion, which we term the pyroclastic debris flow, and the plume, which includes the surge and coignimbrite ash cloud parts of the flow. We consider five possible wave generation mechanisms. These mechanisms consist of steam explosion, pyroclastic debris flow, plume pressure, plume shear, and pressure impulse wave generation. Our theoretical analysis of tsunami generation by these mechanisms provides an estimate of tsunami features such as a characteristic wave amplitude and wavelength. We find that in most situations, tsunami generation is dominated by the pyroclastic debris flow component of a pyroclastic flow. This work presents information sufficient to construct tsunami sources for an arbitrary pyroclastic flow interacting with most bodies of water. Copyright 2003 by the American Geophysical Union.
Pressurized Testing of Solid Oxide Electrolysis Stacks with Advanced Electrode-Supported Cells
DOE Office of Scientific and Technical Information (OSTI.GOV)
J. E. O'Brien; X. Zhang; G. K. Housley
2012-06-01
A new facility has been developed at the Idaho National Laboratory for pressurized testing of solid oxide electrolysis stacks. Pressurized operation is envisioned for large-scale hydrogen production plants, yielding higher overall efficiencies when the hydrogen product is to be delivered at elevated pressure for tank storage or pipelines. Pressurized operation also supports higher mass flow rates of the process gases with smaller components. The test stand can accommodate cell dimensions up to 8.5 cm x 8.5 cm and stacks of up to 25 cells. The pressure boundary for these tests is a water-cooled spool-piece pressure vessel designed for operation upmore » to 5 MPa. The stack is internally manifolded and operates in cross-flow with an inverted-U flow pattern. Feed-throughs for gas inlets/outlets, power, and instrumentation are all located in the bottom flange. The entire spool piece, with the exception of the bottom flange, can be lifted to allow access to the internal furnace and test fixture. Lifting is accomplished with a motorized threaded drive mechanism attached to a rigid structural frame. Stack mechanical compression is accomplished using springs that are located inside of the pressure boundary, but outside of the hot zone. Initial stack heatup and performance characterization occurs at ambient pressure followed by lowering and sealing of the pressure vessel and subsequent pressurization. Pressure equalization between the anode and cathode sides of the cells and the stack surroundings is ensured by combining all of the process gases downstream of the stack. Steady pressure is maintained by means of a backpressure regulator and a digital pressure controller. A full description of the pressurized test apparatus is provided in this paper.« less
Smirnov, Asya; Solga, Michael D; Lannigan, Joanne; Criss, Alison K
2015-08-01
Recognition, binding, internalization, and elimination of pathogens and cell debris are important functions of professional as well as non-professional phagocytes. However, high-throughput methods for quantifying cell-associated particles and discriminating bound from internalized particles have been lacking. Here we describe a protocol for using imaging flow cytometry to quantify the attached and phagocytosed particles that are associated with a population of cells. Cells were exposed to fluorescent particles, fixed, and exposed to an antibody of a different fluorophore that recognizes the particles. The antibody is added without cell permeabilization, such that the antibody only binds extracellular particles. Cells with and without associated particles were identified by imaging flow cytometry. For each cell with associated particles, a spot count algorithm was employed to quantify the number of extracellular (double fluorescent) and intracellular (single fluorescent) particles per cell, from which the percent particle internalization was determined. The spot count algorithm was empirically validated by examining the fluorescence and phase contrast images acquired by the flow cytometer. We used this protocol to measure binding and internalization of the bacterium Neisseria gonorrhoeae by primary human neutrophils, using different bacterial variants and under different cellular conditions. The results acquired using imaging flow cytometry agreed with findings that were previously obtained using conventional immunofluorescence microscopy. This protocol provides a rapid, powerful method for measuring the association and internalization of any particle by any cell type. Copyright © 2015 Elsevier B.V. All rights reserved.
Assignment of boundary conditions in embedded ground water flow models
Leake, S.A.
1998-01-01
Many small-scale ground water models are too small to incorporate distant aquifer boundaries. If a larger-scale model exists for the area of interest, flow and head values can be specified for boundaries in the smaller-scale model using values from the larger-scale model. Flow components along rows and columns of a large-scale block-centered finite-difference model can be interpolated to compute horizontal flow across any segment of a perimeter of a small-scale model. Head at cell centers of the larger-scale model can be interpolated to compute head at points on a model perimeter. Simple linear interpolation is proposed for horizontal interpolation of horizontal-flow components. Bilinear interpolation is proposed for horizontal interpolation of head values. The methods of interpolation provided satisfactory boundary conditions in tests using models of hypothetical aquifers.Many small-scale ground water models are too small to incorporate distant aquifer boundaries. If a larger-scale model exists for the area of interest, flow and head values can be specified for boundaries in the smaller-scale model using values from the larger-scale model. Flow components along rows and columns of a large-scale block-centered finite-difference model can be interpolated to compute horizontal flow across any segment of a perimeter of a small-scale model. Head at cell centers of the larger.scale model can be interpolated to compute head at points on a model perimeter. Simple linear interpolation is proposed for horizontal interpolation of horizontal-flow components. Bilinear interpolation is proposed for horizontal interpolation of head values. The methods of interpolation provided satisfactory boundary conditions in tests using models of hypothetical aquifers.
Linear model describing three components of flow in karst aquifers using 18O data
Long, Andrew J.; Putnam, L.D.
2004-01-01
The stable isotope of oxygen, 18O, is used as a naturally occurring ground-water tracer. Time-series data for ??18O are analyzed to model the distinct responses and relative proportions of the conduit, intermediate, and diffuse flow components in karst aquifers. This analysis also describes mathematically the dynamics of the transient fluid interchange between conduits and diffusive networks. Conduit and intermediate flow are described by linear-systems methods, whereas diffuse flow is described by mass-balance methods. An automated optimization process estimates parameters of lognormal, Pearson type III, and gamma distributions, which are used as transfer functions in linear-systems analysis. Diffuse flow and mixing parameters also are estimated by these optimization methods. Results indicate the relative proximity of a well to a main conduit flowpath and can help to predict the movement and residence times of potential contaminants. The three-component linear model is applied to five wells, which respond to changes in the isotopic composition of point recharge water from a sinking stream in the Madison aquifer in the Black Hills of South Dakota. Flow velocities as much as 540 m/d and system memories of as much as 71 years are estimated by this method. Also, the mean, median, and standard deviation of traveltimes; time to peak response; and the relative fraction of flow for each of the three components are determined for these wells. This analysis infers that flow may branch apart and rejoin as a result of an anastomotic (or channeled) karst network.
Multigrid Computations of 3-D Incompressible Internal and External Viscous Rotating Flows
NASA Technical Reports Server (NTRS)
Sheng, Chunhua; Taylor, Lafayette K.; Chen, Jen-Ping; Jiang, Min-Yee; Whitfield, David L.
1996-01-01
This report presents multigrid methods for solving the 3-D incompressible viscous rotating flows in a NASA low-speed centrifugal compressor and a marine propeller 4119. Numerical formulations are given in both the rotating reference frame and the absolute frame. Comparisons are made for the accuracy, efficiency, and robustness between the steady-state scheme and the time-accurate scheme for simulating viscous rotating flows for complex internal and external flow applications. Prospects for further increase in efficiency and accuracy of unsteady time-accurate computations are discussed.
The internal boundary layer — A review
NASA Astrophysics Data System (ADS)
Garratt, J. R.
1990-03-01
A review is given of relevant work on the internal boundary layer (IBL) associated with: (i) Small-scale flow in neutral conditions across an abrupt change in surface roughness, (ii) Small-scale flow in non-neutral conditions across an abrupt change in surface roughness, temperature or heat/moisture flux, (iii) Mesoscale flow, with emphasis on flow across the coastline for both convective and stably stratified conditions. The major theme in all cases is on the downstream, modified profile form (wind and temperature), and on the growth relations for IBL depth.
PREFACE: The 15th International Couette-Taylor Worskhop
NASA Astrophysics Data System (ADS)
Mutabazi, Innocent; Crumeyrolle, Olivier
2008-07-01
The 15th International Couette-Taylor Worskhop (ICTW15) was held in Le Havre, France from 9-12 July 2007. This regular international conference started in 1979 in Leeds, UK when the research interest in simple models of fluid flows was revitalized by systematic investigation of Rayleigh-Bénard convection and the Couette-Taylor flow. These two flow systems are good prototypes for the study of the transition to chaos and turbulence in closed flows. The workshop themes have been expanded from the original Couette-Taylor flow to include other centrifugal instabilities (Dean, Görtler, Taylor-Dean), spherical Couette flows, thermal convection instabilities, MHD, nonlinear dynamics and chaos, transition to turbulence, development of numerical and experimental techniques. The impressive longevity of the ICTW is due to the close interaction and fertile exchanges between international research groups from different disciplines: Physics and Astrophysics, Applied Mathematics, Mechanical Engineering, Chemical Engineering. The present workshop was attended by 100 participants, the program included over 83 contributions with 4 plenary lectures, 68 oral communications and 17 posters. The topics include, besides the classical Couette-Taylor flows, the centrifugal flows with longitudinal vortices, the shear flows, the thermal convection in curved geometries, the spherical Couette-Taylor flow, the geophysical flows, the magneto-hydrodynamic effects including the dynamo effect, the complex flows (viscoelasticity, immiscible fluids, bubbles and migration). Selected papers have been processed through the peer review system and are published in this issue of the Journal of Physics: Conference Series. The Workshop has been sponsored by Le Havre University, the Region Council of Haute-Normandie, Le Havre City Council, CNRS (ST2I, GdR-DYCOEC), and the European Space Agency through GEOFLOW program. The French Ministry of Defense (DGA), the Ministry of Foreign Affairs, the Ministry of Research and the University Association of Mechanics have provided some support. Innocent Mutabazi and Olivier Crumeyrolle Proceedings editors Le Havre, France 15 July 2008
Kelvin-Helmholtz instability of stratified jets.
NASA Astrophysics Data System (ADS)
Hanasz, M.; Sol, H.
1996-11-01
We investigate the Kelvin-Helmholtz instability of stratified jets. The internal component (core) is made of a relativistic gas moving with a relativistic bulk speed. The second component (sheath or envelope) flows between the core and external gas with a nonrelativistic speed. Such a two-component jet describes a variety of possible astrophysical jet configurations like e.g. (1) a relativistic electron-positron beam penetrating a classical electron-proton disc wind or (2) a beam-cocoon structure. We perform a linear stability analysis of such a configuration in the hydrodynamic, plane-parallel, vortex-sheet approximation. The obtained solutions of the dispersion relation show very apparent differences with respect to the single-jet solutions. Due to the reflection of sound waves at the boundary between sheet and external gas, the growth rate as a function of wavenumber presents a specific oscillation pattern. Overdense sheets can slow down the growth rate and contribute to stabilize the configuration. Moreover, we obtain the result that even for relatively small sheet widths the properties of sheet start to dominate the jet dynamics. Such effects could have important astrophysical implications, for instance on the origin of the dichotomy between radio-loud and radio-quiet objects.
NASA Astrophysics Data System (ADS)
Byers, C. P.; Fu, M. K.; Fan, Y.; Hultmark, M.
2018-02-01
A novel method of obtaining two orthogonal velocity components with high spatial and temporal resolution is investigated. Both components are obtained utilizing a single sensing nanoribbon by combining the two independent operating modes of classic hot wire anemometry and the newly discovered elastic filament velocimetry (EFV). In contrast to hot wire anemometry, EFV measures fluid velocity through correlating the fluid forcing with the internal strain of the wire. In order to utilize both modes of operation, a system that switches between the two operating modes is built and characterized, and the theoretically predicted sensing response time in water is compared to experimental results. The sensing system is capable of switching between the two modes of operation at a frequency of 100 kHz with minimal attenuation with an uncompensated repetition rate up to 3 kHz or up to 10 kHz utilizing modest signal compensation. While further characterization of the sensor performance in air is needed, this methodology enables a technique for obtaining well-resolved yet cost-efficient directional measurements of flow velocities which, for example, can be used for distributed measurements of velocity or measurements of turbulent stresses with excellent spatial resolution.
In vivo photoacoustic tomography of total blood flow and Doppler angle
NASA Astrophysics Data System (ADS)
Yao, Junjie; Maslov, Konstantin I.; Wang, Lihong V.
2012-02-01
As two hallmarks of cancer, angiogenesis and hypermetabolism are closely related to increased blood flow. Volumetric blood flow measurement is important to understanding the tumor microenvironment and developing new means to treat cancer. Current photoacoustic blood flow estimation methods focus on either the axial or transverse component of the flow vector. Here, we propose a method to compute the total flow speed and Doppler angle by combining the axial and transverse flow measurements. Both the components are measured in M-mode. Collating the A-lines side by side yields a 2D matrix. The columns are Hilbert transformed to compare the phases for the computation of the axial flow. The rows are Fourier transformed to quantify the bandwidth for the computation of the transverse flow. From the axial and transverse flow components, the total flow speed and Doppler angle can be derived. The method has been verified by flowing bovine blood in a plastic tube at various speeds from 0 to 7.5 mm/s and at Doppler angles from 30 to 330°. The measurement error for total flow speed was experimentally determined to be less than 0.3 mm/s; for the Doppler angle, it was less than 15°. In addition, the method was tested in vivo on a mouse ear. The advantage of this method is simplicity: No system modification or additional data acquisition is required to use our existing system. We believe that the proposed method has the potential to be used for cancer angiogenesis and hypermetabolism imaging.
Craven, S.W.; Peterson, J.T.; Freeman, Mary C.; Kwak, T.J.; Irwin, E.
2010-01-01
Modifications to stream hydrologic regimes can have a profound influence on the dynamics of their fish populations. Using hierarchical linear models, we examined the relations between flow regime and young-of-year fish density using fish sampling and discharge data from three different warmwater streams in Illinois, Alabama, and Georgia. We used an information theoretic approach to evaluate the relative support for models describing hypothesized influences of five flow regime components representing: short-term high and low flows; short-term flow stability; and long-term mean flows and flow stability on fish reproductive success during fish spawning and rearing periods. We also evaluated the influence of ten fish species traits on fish reproductive success. Species traits included spawning duration, reproductive strategy, egg incubation rate, swimming locomotion morphology, general habitat preference, and food habits. Model selection results indicated that young-of-year fish density was positively related to short-term high flows during the spawning period and negatively related to flow variability during the rearing period. However, the effect of the flow regime components varied substantially among species, but was related to species traits. The effect of short-term high flows on the reproductive success was lower for species that broadcast their eggs during spawning. Species with cruiser swimming locomotion morphologies (e.g., Micropterus) also were more vulnerable to variable flows during the rearing period. Our models provide insight into the conditions and timing of flows that influence the reproductive success of warmwater stream fishes and may guide decisions related to stream regulation and management. ?? 2010 US Government.
Internal Wave-Convection-Mean Flow Interactions
NASA Astrophysics Data System (ADS)
Lecoanet, D.; Couston, L. A.; Favier, B.; Le Bars, M.
2017-12-01
We present a series of simulations of Boussinesq fluid with a nonlinear equation of state which in thermal equilibrium is convective in the bottom part of the domain, but stably stratified in the upper part of the domain. The stably stratified region supports internal gravity waves, which are excited by the convection. The convection can significantly affected by the stably stratified region. Furthermore, the waves in the stable region can interact nonlinearly to drive coherent mean flows which exhibit regular oscillations, similar to the QBO in the Earth's atmosphere. We will describe the dependence of the mean flow oscillations on the properties of the convection which generate the internal waves. This provides a novel framework for understanding mean flow oscillations in the Earth's atmosphere, as well as the atmospheres of giant planets.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yortsos, Yanis C.
In this report, the thrust areas include the following: Internal drives, vapor-liquid flows, combustion and reaction processes, fluid displacements and the effect of instabilities and heterogeneities and the flow of fluids with yield stress. These find respective applications in foamy oils, the evolution of dissolved gas, internal steam drives, the mechanics of concurrent and countercurrent vapor-liquid flows, associated with thermal methods and steam injection, such as SAGD, the in-situ combustion, the upscaling of displacements in heterogeneous media and the flow of foams, Bingham plastics and heavy oils in porous media and the development of wormholes during cold production.
An exact closed form solution for constant area compressible flow with friction and heat transfer
NASA Technical Reports Server (NTRS)
Sturas, J. I.
1971-01-01
The well-known differential equation for the one-dimensional flow of a compressible fluid with heat transfer and wall friction has no known solution in closed form for the general case. This report presents a closed form solution for the special case of constant heat flux per unit length and constant specific heat. The solution was obtained by choosing the square of a dimensionless flow parameter as one of the independent variables to describe the flow. From this exact solution, an approximate simplified form is derived that is applicable for predicting subsonic flow performance characteristics for many types of constant area passages in internal flow. The data included in this report are considered sufficiently accurate for use as a guide in analyzing and designing internal gas flow systems.
Assessment of Telomere Length, Phenotype, and DNA Content
Kelesidis, Theodoros; Schmid, Ingrid
2017-01-01
Telomere sequences at the end of chromosomes control somatic cell division; therefore, telomere length in a given cell population provides information about its replication potential. This unit describes a method for flow cytometric measurement of telomere length in subpopulations using fluorescence in situ hybridization of fluorescently-labeled probes (Flow-FISH) without prior cell separation. After cells are stained for surface immunofluorescence, antigen-antibody complexes are covalently cross-linked onto cell membranes before FISH with a telomere-specific probe. Cells with long telomeres are included as internal standards. Addition of a DNA dye permits exclusion of proliferating cells during data analysis. DNA ploidy measurements of cells of interest and internal standard are performed on separate aliquots in parallel to Flow-FISH. Telomere fluorescence of G0/1 cells of subpopulations and internal standards obtained from Flow-FISH are normalized for DNA ploidy, and telomere length in subsets of interest is expressed as a fraction of the internal standard telomere length. PMID:28055113
Assessment of Telomere Length, Phenotype, and DNA Content.
Kelesidis, Theodoros; Schmid, Ingrid
2017-01-05
Telomere sequences at the end of chromosomes control somatic cell division; therefore, telomere length in a given cell population provides information about its replication potential. This unit describes a method for flow cytometric measurement of telomere length in subpopulations using fluorescence in situ hybridization of fluorescently-labeled probes (Flow-FISH) without prior cell separation. After cells are stained for surface immunofluorescence, antigen-antibody complexes are covalently cross-linked onto cell membranes before FISH with a telomere-specific probe. Cells with long telomeres are included as internal standards. Addition of a DNA dye permits exclusion of proliferating cells during data analysis. DNA ploidy measurements of cells of interest and internal standard are performed on separate aliquots in parallel to Flow-FISH. Telomere fluorescence of G 0/1 cells of subpopulations and internal standards obtained from Flow-FISH are normalized for DNA ploidy, and telomere length in subsets of interest is expressed as a fraction of the internal standard telomere length. © 2017 by John Wiley & Sons, Inc. Copyright © 2017 John Wiley & Sons, Inc.
Peng, G W; Sood, V K; Rykert, U M
1985-03-01
Bromadoline and its two N-demethylated metabolites were extracted into ether:butyl chloride after the addition of internal standard and basification of the various biological fluids (blood, plasma, serum, and urine). These compounds were then extracted into dilute phosphoric acid from the organic phase and separated on a reversed-phase chromatographic system using a mobile phase containing acetonitrile and a buffer of 1,4-dimethylpiperazine and perchloric acid. The overall absolute extraction recoveries of these compounds were approximately 50-80%. The background interferences from the biological fluids were negligible and allowed quantitative determination of bromadoline and the metabolites at levels as low as 2-5 ng/mL. At mobile phase flow rate of 1 mL/min, the sample components and the internal standard were eluted at the retention times within approximately 7-12 min. The drug- and metabolite-to-internal standard peak height ratios showed excellent linear relationships with their corresponding concentrations. The analytical method showed satisfactory within- and between-run assay precision and accuracy, and has been utilized in the simultaneous determination of bromadoline and its two N-demethylated metabolites in biological fluids collected from humans and from dogs after administration of bromadoline maleate.
NASA Astrophysics Data System (ADS)
Addy, A. L.; Chow, W. L.; Korst, H. H.; White, R. A.
1983-05-01
Significant data and detailed results of a joint research effort investigating the fluid dynamic mechanisms and interactions within separated flows are presented. The results were obtained through analytical, experimental, and computational investigations of base flow related configurations. The research objectives focus on understanding the component mechanisms and interactions which establish and maintain separated flow regions. Flow models and theoretical analyses were developed to describe the base flowfield. The research approach has been to conduct extensive small-scale experiments on base flow configurations and to analyze these flows by component models and finite-difference techniques. The modeling of base flows of missiles (both powered and unpowered) for transonic and supersonic freestreams has been successful by component models. Research on plume effects and plume modeling indicated the need to match initial plume slope and plume surface curvature for valid wind tunnel simulation of an actual rocket plume. The assembly and development of a state-of-the-art laser Doppler velocimeter (LDV) system for experiments with two-dimensional small-scale models has been completed and detailed velocity and turbulence measurements are underway. The LDV experiments include the entire range of base flowfield mechanisms - shear layer development, recompression/reattachment, shock-induced separation, and plume-induced separation.
Milani, Rodrigo; de Moraes, Daniela; Sanches, Aline; Jardim, Rodrigo; Lumikoski, Thais; Miotto, Gabriela; Santana, Vitor Hugo; Brofman, Paulo Roberto
2014-01-01
Introduction We evaluated with transit time flow the performance of the right and left thoracic arteries when used as a graft for the left anterior descending artery. Methods Fifty patients undergoing surgery for myocardial revascularization without cardiopulmonary bypass were divided into two groups. In group A patients received graft of right internal mammary artery to the anterior interventricular branch. In group B patients received graft of left internal mammary artery to the same branch. At the end of the operation the flow was assessed by measuring transit time. Results In group A, mean age was 60.6±9.49 years. The average height and weight of the group was 80.4±10.32 kg and 169.2±6.86 cm. The average number of grafts per patient in this group was 3.28±1.49. The mean flow and distal resistance obtained in right internal thoracic artery was 42.1±23.4 ml/min and 2.8±0.9 respectively. In group B, the mean age was 59.8±9.7 years. The average height and weight of this group was 77.7±14.22 kg and 166.0±8.2 cm. The average number of grafts per patient in this group was 3.08 ±0.82. The mean flow and distal resistance observed in this group was 34.2±19.1 ml/min and 2.0±0.7. There were no deaths in this series. Conclusion Right internal mammary artery presented a similar behavior to left internal mammary artery when anastomosed to the anterior interventricular branch of the left coronary artery. There was no statistical difference between the measured flow obtained between both arteries. PMID:25140463
Cool-down flow-rate limits imposed by thermal stresses in LNG pipelines
NASA Astrophysics Data System (ADS)
Novak, J. K.; Edeskuty, F. J.; Bartlit, J. R.
Warm cryogenic pipelines are usually cooled to operating temperature by a small, steady flow of the liquid cryogen. If this flow rate is too high or too low, undesirable stresses will be produced. Low flow-rate limits based on avoidance of stratified two-phase flow were calculated for pipelines cooled with liquid hydrogen or nitrogen. High flow-rate limits for stainless steel and aluminum pipelines cooled by liquid hydrogen or nitrogen were determined by calculating thermal stress in thick components vs flow rate and then selecting some reasonable stress limits. The present work extends these calculations to pipelines made of AISI 304 stainless steel, 6061 aluminum, or ASTM A420 9% nickel steel cooled by liquid methane or a typical natural gas. Results indicate that aluminum and 9% nickel steel components can tolerate very high cool-down flow rates, based on not exceeding the material yield strength.
76 FR 57982 - Building Energy Codes Cost Analysis
Federal Register 2010, 2011, 2012, 2013, 2014
2011-09-19
... DEPARTMENT OF ENERGY Office of Energy Efficiency and Renewable Energy [Docket No. EERE-2011-BT-BC-0046] Building Energy Codes Cost Analysis Correction In notice document 2011-23236 beginning on page... heading ``Table 1. Cash flow components'' should read ``Table 7. Cash flow components''. [FR Doc. C1-2011...
International Laser Ranging Service (ILRS) 1999 Annual Report
NASA Technical Reports Server (NTRS)
Pearlman, Michael (Editor); Taggert, Linda (Editor)
2000-01-01
This 1999 Annual Report of the International Laser Ranging Service (ILRS) is comprised of individual contributions from ILRS components within the international geodetic community. This report documents the work of the ILRS components from the inception of the Service through December 31,1999. Since the service has only recently been established, the ILRS associates decided to publish this Annual report as a reference to our organization and its components.
Application of CFD codes to the design and development of propulsion systems
NASA Technical Reports Server (NTRS)
Lord, W. K.; Pickett, G. F.; Sturgess, G. J.; Weingold, H. D.
1987-01-01
The internal flows of aerospace propulsion engines have certain common features that are amenable to analysis through Computational Fluid Dynamics (CFD) computer codes. Although the application of CFD to engineering problems in engines was delayed by the complexities associated with internal flows, many codes with different capabilities are now being used as routine design tools. This is illustrated by examples taken from the aircraft gas turbine engine of flows calculated with potential flow, Euler flow, parabolized Navier-Stokes, and Navier-Stokes codes. Likely future directions of CFD applied to engine flows are described, and current barriers to continued progress are highlighted. The potential importance of the Numerical Aerodynamic Simulator (NAS) to resolution of these difficulties is suggested.
2012-01-01
A. Rufer, “Multiphysics and energetic modeling of a vanadium redox flow battery ,” in Proc. 2008 IEEE International Conference on Sustainable...p. 81. [11] K.W. Knehr and E.C. Kumbur, "Open circuit voltage of vanadium redox flow batteries : Discrepancy between models and experiments...Blanc and A. Rufer, “Multiphysics and energetic modeling of a vanadium redox flow battery ,” in Proc. 2008 IEEE International Conference on Sustainable
NASA Technical Reports Server (NTRS)
Jackson, R. J.; Wang, T. T.
1974-01-01
A computer program was developed to describe the performance of ramjet and scramjet cycles. The program performs one dimensional calculations of the equilibrium, real-gas internal flow properties of the engine. The program can be used for the following: (1) preliminary design calculation and (2) design analysis of internal flow properties corresponding to stipulated flow areas. Only the combustion of hydrogen in air is considered in this case.
The Decibel Report: Acoustic Sound Measurement Modeling and the Effects of Sonar on Marine Mammals
2010-06-21
flow noise and shipborne internal noise are other relevant factors. For active systems, transmit and receive apparatus, target echo reflectivity...ambient noise, hydrodynamic flow noise, shipborne internal noise, and reverberation interference are the other relevant factors. The "L" terms expressed...speed, that is, hydrodynamic flow , dependent. 27 5. ND1 : dB - These symbols are read as receiving directivity index in units of decibels. The
Weather types in the South Shetlands (Antarctica) using a circulation type approach
NASA Astrophysics Data System (ADS)
Mora, Carla; João Rocha, Maria; Dutra, Emanuel; Trigo, Isabel; Vieira, Gonçalo; Fragoso, Marcelo; Ramos, Miguel
2010-05-01
Weather types in the South Shetlands (Antarctica) were defined using an automated method based on the Lamb Weather Type classification scheme (Jones et al. 1993). This is an objective classification originally developed for the British Isles (Jones et al., 1993) and also applied to southeast (Goodess and Palutikof 1998) and northwest Spain (Lorenzo et al, 2009), Portugal (Trigo and DaCamara 2000) and Greece (Maheras et al. 2004) with good results. Daily atmospheric circulation in the South Shetlands region from 1989 to 2009 was classified using a 16-node grid of sea level pressure data from the ERA Interim. The classification is obtained through the comparison of the magnitudes of the directional and rotational components of the geostrophic flow. Basic circulation types were combined into 10 groups of weather types: four directional types (NW, N, S and SW), three anticyclonic types (A, ASW and ANW), and three cyclonic types (C, CSW and CNW). Westerly flow and cyclonic circulation are the most frequent events throughout the year. The sea level pressure field for each weather type is presented and the synoptic characteristics are described. The analysis is based on ERA-Interim fields, including mean sea level pressure, precipitation, cloud cover, humidity and air temperature. Snow thickess modelled using HTESSEL is also considered. Analysis of variance (anova) and multivariate analysis (principal component analysis) are applied to evaluate the characteristics of each weather type. This circulation-type approach showed good results in the past for the downscaling of precipitation in other regions, and we are interested in evaluating the possibilities that the classification offers for downscaling precipitation, but also for snow and air temperature. For this we will be using observational data at test sites in Livingston and Deception islands. We are also motivated by the possibility of using the circulation-type approach as a predictor in statistical downscaling. References: Goodess CM, Palutikof JP.1998. Development of daily rainfall scenarios for southeast Spain using a Circulation-type approach to downscaling. International Journal of Climatology. 10: 1051-1083. JonesPD, Hulme M, Briffa KR. 1993. A comparison of Lamb circulation types with an objective classification scheme. International Journal of Climatology, 13:655-663. Lorenzo M N, Iglesias I , Taboada JJ , Gómez-Gesteira M. 2009. Relationship between monthly rainfall in northwest Iberian Peninsula and North Atlantic sea surface temperature. International Journal of Climatology. Maheras P, Tolika K, Anagnostopoulou C, Vafiadis M, Patrikas I, Flocas H. 2004. On the relationship between circulation types and changes in rainfall variability in Grece. International Journal of Climatology 24: 1695-1712. Trigo RM, DaCamara C. 2000. Circulation weather types and their influence on the precipitation regime in Portugal. International Journal of Climatology. 20: 1559-1581.
A numeric investigation of co-flowing liquid streams using the Lattice Boltzmann Method
NASA Astrophysics Data System (ADS)
Somogyi, Andy; Tagg, Randall
2007-11-01
We present a numerical investigation of co-flowing immiscible liquid streams using the Lattice Boltzmann Method (LBM) for multi component, dissimilar viscosity, immiscible fluid flow. When a liquid is injected into another immiscible liquid, the flow will eventually transition from jetting to dripping due to interfacial tension. Our implementation of LBM models the interfacial tension through a variety of techniques. Parallelization is also straightforward for both single and multi component models as only near local interaction is required. We compare the results of our numerical investigation using LBM to several recent physical experiments.
Applications of Taylor-Galerkin finite element method to compressible internal flow problems
NASA Technical Reports Server (NTRS)
Sohn, Jeong L.; Kim, Yongmo; Chung, T. J.
1989-01-01
A two-step Taylor-Galerkin finite element method with Lapidus' artificial viscosity scheme is applied to several test cases for internal compressible inviscid flow problems. Investigations for the effect of supersonic/subsonic inlet and outlet boundary conditions on computational results are particularly emphasized.
Enhancement of convective heat transfer in internal flows using an electrically-induced corona jet
NASA Astrophysics Data System (ADS)
Baghaei Lakeh, Reza
The enhancement of heat transfer by active and passive methods has been the subject of many academic and industrial research studies. Internal flows play a major role in many applications and different methods have been utilized to augment the heat transfer to internal flows. Secondary flows consume part of the kinetic energy of the flow and disturb the boundary layer. Inducing secondary flows is known as mechanism for heat transfer enhancement. Secondary flows may be generated by corona discharge and ion-driven flows. When a high electric potential is applied to a conductor, a high electric field will be generated. The high electric field may exceed the partial break-down of the neutral molecules of surrounding gas (air) and generate a low-temperature plasma in the vicinity of the conductor. The generated plasma acts as a source of ions that accelerate under the influence of the electric field and escape beyond the plasma region and move toward the grounded electrode. The accelerating ions collide with neutral particles of the surrounding gas and impose a dragging effect which is interpreted as a body-force to the air particles. The shape and configuration of the emitting and receiving electrodes has a significant impact on the distribution of the electric body-force and the resulting electrically-induced flow field. It turned out that the certain configurations of longitudinal electrodes may cause a jet-like secondary flow field on the cross section of the flow passage in internal flows. The impingement effect of the corona jet on the walls of the channel disturbs the boundary layer, enhances the convective heat transfer, and generates targeted cooling along the centerline of the jet. The results of the current study show that the concentric configuration of a suspended wire-electrode in a circular tube leads to a hydrostatic condition and do not develop any electrically-induced secondary flow; however, the eccentric wire-electrode configuration generates a corona jet along the eccentricity direction. The generated corona jet exhibits interesting specifications similar to conventional inertia-driven air jets which are among common techniques for cooling and heat transfer enhancement. On the other hand, wall-mounted flat electrode pairs along the parallel walls of a rectangular mini-channel develop a similar jet-like flow pattern. The impingement of the corona jet to the receiving wall causes excessive heat transfer enhancement and cooling effect. The flat electrode pairs were also utilized to study the effect of corona discharge on the heat transfer specifications of the internal flow between parallel plates in fully-developed condition. It turned out that the electrically-induced secondary flow along with a pressure-driven main flow generates a swirling effect which can enhance the heat transfer significantly in fully-developed condition.
Coronary bypass flow during use of intraaortic balloon pumping and left ventricular assist device.
Tedoriya, T; Kawasuji, M; Sakakibara, N; Takemura, H; Watanabe, Y; Hetzer, R
1998-08-01
Intraaortic balloon pumping (IABP) and left ventricular assist device (LVAD) are used for left ventricular support when low cardiac output occurs after a coronary bypass operation for serious coronary artery disease. There are hemodynamic differences in blood flow in various kinds of coronary artery bypass grafts, caused by their inherent physiologic characteristics. The hemodynamic effects of left ventricular assistance with IABP and LVAD on blood flow through various coronary artery bypass grafts were investigated. An ascending aorta-coronary bypass graft (ACB), an internal thoracic artery, and a descending aorta-coronary bypass graft were anastomosed to the left anterior descending coronary artery in a canine model. In this experimental model, the blood flow to the same coronary bed in the three types of grafts could be evaluated. Blood flow in the left anterior descending coronary artery through the three types of coronary bypass grafts was studied in this model during or in the absence of ventricular assistance. In the control study, the systolic blood flow did not differ among the three types of grafts, but the diastolic flow decreased in the following order: with the ACB, the internal thoracic artery, and the descending aorta-coronary bypass graft. The systolic flow during IABP and LVAD was similar to the control flows. Use of IABP increased the diastolic flow by 75.3%+/-12.4% of the control value in the ACB, 37.9%+/-25.0% in the internal thoracic artery, and 21.2%+/-11.4% in the descending aorta-coronary bypass graft. The LVAD increased the diastolic flow by 97.7%+/-18.7% of the control value in the ACB, 64.5%+/-25.7% in the internal thoracic artery, and 63.0%+/-27.9% in the descending aorta-coronary bypass graft. The diastolic blood flows in the left anterior descending coronary artery and the three types of grafts were significantly greater with IABP than the control values, and significantly greater with LVAD than with IABP and the control values. The degrees of increase of diastolic flows in the left anterior descending coronary artery and the ACB with IABP and LVAD were significantly greater than in the arterial grafts (p < 0.01). The diastolic flows in the internal thoracic artery and descending aorta-coronary bypass graft increased less than in the native left anterior descending coronary artery and ACB during left ventricular assistance, particularly with IABP. It is important for the selection of tactics for the management of catastrophic status after coronary bypass grafting to consider the hemodynamic characteristics of the graft.
Application of Novel Anion-Exchange Blend Membranes (AEBMs) to Vanadium Redox Flow Batteries.
Cho, Hyeongrae; Krieg, Henning M; Kerres, Jochen A
2018-06-19
Both cation-exchange membranes and anion-exchange membranes are used as ion conducting membranes in vanadium redox flow batteries (VRFBs). Anion-exchange membranes (AEMs) are applied in vanadium redox flow batteries due to the high blocking property of vanadium ions via the Donnan exclusion effect. In this study, novel anion-exchange blend membranes (AEBMs) were prepared, characterized, and applied in VRFBs. Bromomethylated poly(2,6-dimethyl-1,4-phenylene oxide), poly[(1-(4,4′-diphenylether)-5-oxybenzimidazole)-benzimidazole] (PBI-OO) and sulfonated polyether sulfone polymer were combined to prepare 3-component AEBMs with 1,2,4,5-tetramethylimidazole (TMIm) for quaternization. 3-component AEBMs showed significantly enhanced chemical and mechanical properties compared with those of 2-component AEBMs, resulting in an improved performance in VRFBs. The compositions of the anion-exchange polymers in 3-component AEBMs were systematically varied to optimize the AEBMs for the redox-flow battery application. While the 3-component AEBMs showed comparable efficiencies with Nafion ® 212 membranes, they displayed improved vanadium ions cross-over as was confirmed by open circuit voltage tests and capacity fade tests conducted in VRFBs. In addition, one of the synthesized 3-component AEBM had a superior coulombic efficiency and capacity retention in a charging⁻discharging test over 300 cycles at a current density of 40 mA/cm². It can thus be concluded that 3-component AEBMs are promising candidates for long-term operation in VRFBs.
NASA Astrophysics Data System (ADS)
Freydier, Perrine; Chambon, Guillaume; Naaim, Mohamed
2015-04-01
Debris flows constitute one of the most important natural hazards throughout the mountainous regions of the world, causing significant damages and economic losses. These mass are composed of particles of all sizes from clay to boulders suspended in a viscous fluid. An important goal resides in developing models that are able to accurately predict the hydraulic properties of debris flows. First, these flows are generally represented using models based on a momentum integral approach that consists in assuming a shallow flow and in depth averaging the local conservation equations. These models take into account closure terms depending on the shape of the velocity profile inside the flow. Second, the specific migration mechanisms of the suspended particles, which have a strong influence on the propagation of the surges, also depend on the internal dynamics within the flow. However, to date, few studies concerning the internal dynamics in particular in the vicinity of the front, of such flows have been carried out. The aim of this study is to document the internal dynamics in free-surface viscoplastic flows down an inclined channel. The rheological studies concerning natural muddy debris flows, rich in fine particles, have shown that these materials can be modeled, at least as a first approximation as non-Newtonian viscoplastic fluids. Experiments are conducted in an inclined channel whose bottom is constituted by an upward-moving conveyor belt with controlled velocity. Carbopol microgel has been used as a homogeneous transparent viscoplastic fluid. This experimental setup allows generating and monitoring stationary gravity-driven surges in the laboratory frame. We use PIV technique (Particle Image Velocimetry) to obtain velocity fields both in the uniform zone and within the front zone where flow thickness is variable and where recirculation takes place. Experimental velocity profiles and determination of plug position will be presented and compared to theoretical predictions based on lubrication approximation.
NASA Technical Reports Server (NTRS)
Gaugler, R. E.
1978-01-01
A computer program to calculate transient and steady state temperatures, pressures, and coolant flows in a cooled, axial flow turbine blade or vane with an impingement insert is described. Coolant side heat transfer coefficients are calculated internally in the program, with the user specifying either impingement or convection heat transfer at each internal flow station. Spent impingement air flows in a chordwise direction and is discharged through the trailing edge and through film cooling holes. The ability of the program to handle film cooling is limited by the internal flow model. Sample problems, with tables of input and output, are included in the report. Input to the program includes a description of the blade geometry, coolant supply conditions, outside thermal boundary conditions, and wheel speed. The blade wall can have two layers of different materials, such as a ceramic thermal barrier coating over a metallic substrate. Program output includes the temperature at each node, the coolant pressures and flow rates, and the inside heat-transfer coefficients.
High-Temperature-High-Volume Lifting for Enhanced Geothermal Systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Turnquist, Norman; Qi, Xuele; Raminosoa, Tsarafidy
2013-12-20
This report summarizes the progress made during the April 01, 2010 – December 30, 2013 period under Cooperative Agreement DE-EE0002752 for the U.S. Department of Energy entitled “High-Temperature-High-Volume Lifting for Enhanced Geothermal Systems.” The overall objective of this program is to advance the technology for well fluids lifting systems to meet the foreseeable pressure, temperature, and longevity needs of the Enhanced Geothermal Systems (EGS) industry for the coming ten years. In this program, lifting system requirements for EGS wells were established via consultation with industry experts and site visits. A number of artificial lift technologies were evaluated with regard tomore » their applicability to EGS applications; it was determined that a system based on electric submersible pump (ESP) technology was best suited to EGS. Technical barriers were identified and a component-level technology development program was undertaken to address each barrier, with the most challenging being the development of a power-dense, small diameter motor that can operate reliably in a 300°C environment for up to three years. Some of the targeted individual component technologies include permanent magnet motor construction, high-temperature insulation, dielectrics, bearings, seals, thrust washers, and pump impellers/diffusers. Advances were also made in thermal management of electric motors. In addition to the overall system design for a full-scale EGS application, a subscale prototype was designed and fabricated. Like the full-scale design, the subscale prototype features a novel “flow-through-the-bore” permanent magnet electric motor that combines the use of high temperature materials with an internal cooling scheme that limits peak internal temperatures to <330°C. While the full-scale high-volume multi-stage pump is designed to lift up to 80 kg/s of process water, the subscale prototype is based on a production design that can pump 20 kg/s and has been modified for high-temperature operation. In parallel with the design and fabrication of the subscale prototype ESP system, a subscale test facility consisting of a high-temperature-high-pressure flow loop was designed, fabricated, and installed at GE Global Research in Niskayuna, NY. A test plan for the prototype system was also established. The original plan of testing the prototype hardware in the flow loop was delayed until a future date.« less
NASA Technical Reports Server (NTRS)
McDonald, Robert; Brawn, Shelly; Harrison, Katherine; O'Toole, Shannon; Moeller, Michael
2011-01-01
Lithium primary and lithium ion secondary batteries provide high specific energy and energy density. The use of these batteries also helps to reduce launch weight. Both primary and secondary cells can be packaged as high-rate cells, which can present a threat to crew and equipment in the event of external or internal short circuits. Overheating of the cell interior from high current flows induced by short circuits can result in exothermic reactions in lithium primary cells and fully charged lithium ion secondary cells. Venting of the cell case, ejection of cell components, and fire have been reported in both types of cells, resulting from abuse, cell imperfections, or faulty electronic control design. A switch has been developed that consists of a thin layer of composite material made from nanoscale particles of nickel and Teflon that conducts electrons at room temperature and switches to an insulator at an elevated temperature, thus interrupting current flow to prevent thermal runaway caused by internal short circuits. The material is placed within the cell, as a thin layer incorporated within the anode and/or the cathode, to control excess currents from metal-to-metal or metal-to-carbon shorts that might result from cell crush or a manufacturing defect. The safety of high-rate cells is thus improved, preventing serious injury to personnel and sensitive equipment located near the battery. The use of recently available nanoscale particles of nickel and Teflon permits an improved, homogeneous material with the potential to be fine-tuned to a unique switch temperature, sufficiently below the onset of a catastrophic chemical reaction. The smaller particles also permit the formation of a thinner control film layer (<50 m), which can be incorporated into commercial high-rate lithium primary and secondary cells. The innovation permits incorporation in current lithium and lithium-ion cell designs with a minimal impact on cell weight and volume. The composite thermal switch (CTS(TradeMark)) coating can be incorporated in either the anode or cathode or both. The coating can be applied in a variety of different processes that permits incorporation in the cell and electrode manufacturing processes. The CTS responds quickly and halts current flow in the hottest parts of the cell first. The coating can be applied to metal foil and supplied as a cell component onto which the active electrode materials are coated.
NASA Technical Reports Server (NTRS)
Sharp, John R.; Kittredge, Ken; Schunk, Richard G.
2003-01-01
As part of the aero-thermodynamics team supporting the Columbia Accident Investigation Board (CAB), the Marshall Space Flight Center was asked to perform engineering analyses of internal flows in the port wing. The aero-thermodynamics team was split into internal flow and external flow teams with the support being divided between shorter timeframe engineering methods and more complex computational fluid dynamics. In order to gain a rough order of magnitude type of knowledge of the internal flow in the port wing for various breach locations and sizes (as theorized by the CAB to have caused the Columbia re-entry failure), a bulk venting model was required to input boundary flow rates and pressures to the computational fluid dynamics (CFD) analyses. This paper summarizes the modeling that was done by MSFC in Thermal Desktop. A venting model of the entire Orbiter was constructed in FloCAD based on Rockwell International s flight substantiation analyses and the STS-107 reentry trajectory. Chemical equilibrium air thermodynamic properties were generated for SINDA/FLUINT s fluid property routines from a code provided by Langley Research Center. In parallel, a simplified thermal mathematical model of the port wing, including the Thermal Protection System (TPS), was based on more detailed Shuttle re-entry modeling previously done by the Dryden Flight Research Center. Once the venting model was coupled with the thermal model of the wing structure with chemical equilibrium air properties, various breach scenarios were assessed in support of the aero-thermodynamics team. The construction of the coupled model and results are presented herein.
Beam Flutter and Energy Harvesting in Internal Flow
NASA Astrophysics Data System (ADS)
Tosi, Luis Phillipe; Colonius, Tim; Sherrit, Stewart; Lee, Hyeong Jae
2017-11-01
Aeroelastic flutter, largely studied for causing engineering failures, has more recently been used as a means of extracting energy from the flow. Particularly, flutter of a cantilever or an elastically mounted plate in a converging-diverging flow passage has shown promise as an energy harvesting concept for internal flow applications. The instability onset is observed as a function of throat velocity, internal wall geometry, fluid and structure material properties. To enable these devices, our work explores features of the fluid-structure coupled dynamics as a function of relevant nondimensional parameters. The flutter boundary is examined through stability analysis of a reduced order model, and corroborated with numerical simulations at low Reynolds number. Experiments for an energy harvester design are qualitatively compared to results from analytical and numerical work, suggesting a robust limit cycle ensues due to a subcritical Hopf bifurcation. Bosch Corporation.
SGS Modeling of the Internal Energy Equation in LES of Supersonic Channel Flow
NASA Astrophysics Data System (ADS)
Raghunath, Sriram; Brereton, Giles
2011-11-01
DNS of fully-developed turbulent supersonic channel flows (Reτ = 190) at up to Mach 3 indicate that the turbulent heat fluxes depend only weakly on Mach number, while the viscous dissipation and pressure dilatation do so strongly. Moreover, pressure dilatation makes a significant contribution to the internal energy budget at Mach 3 and higher. The balance between these terms is critical to determining the temperature (and so molecular viscosity) from the internal energy equation and so, in LES of these flows, it is essential to use accurate SGS models for the viscous dissipation and the pressure dilatation. In this talk, we present LES results for supersonic channel flow, using SGS models for these terms that are based on the resolved-scale dilatation, an inverse timescale, and SGS momentum fluxes, which intrinsically represent this Mach number effect.
International Talent Flow and Careers: An Australasian Perspective
ERIC Educational Resources Information Center
Inkson, Kerr; Carr, Stuart C.
2004-01-01
The phenomenon of migration makes many careers international, and globalisation has accelerated the process. This paper reports on a program of studies, now labelled "talent flow," conducted in New Zealand with a view to increasing understanding of migration and its relationship to careers. Initial studies considered the phenomenon of…
Fluid Studies on the International Space Station
NASA Technical Reports Server (NTRS)
Motil, Brian J.
2016-01-01
Will discuss the recent activities on the international space station, including the adiabatic two phase flow, capillary flow and interfacial phenomena, and boiling and condensation. Will also give a historic introduction to Microgravity Studies at Glenn Research Center. Talk will be given to students and faculty at University of Louisville.
On the Imbalance of International Communication: An Analysis, a Review and Some Solutions.
ERIC Educational Resources Information Center
Hsia, H. J.
Current international communication is typified by flow of information from the northern to the southern hemisphere, dominated by the developed nations in information gathering and dissemination, and intensified by technological advances. The imbalance of communication flow, considered by developing nations as responsible for political, economic,…
The effect of component junction tapering on miniature cryocooler performance
NASA Astrophysics Data System (ADS)
Conrad, Ted; Pathak, Mihir G.; Ghiaasiaan, S. Mostafa; Kirkconnell, Carl
2012-06-01
Due to their relatively smaller volume and available cooling power, miniature cryocoolers are likely to be more sensitive to hydrodynamic losses than their full scale counterparts. Abrupt changes in diameter between cryocooler components are a possible source of such losses as flow separation and recirculation may occur at these points. Underutilization of regions of the regenerator and heat exchanger porous matrices may also occur due to jetting of fluid into these components. Eliminating such abrupt diameter changes by tapering transitions between cryocooler components may therefore improve system performance. The effects of various tapers applied at component interfaces on the performance of miniature pulse tube cryocoolers were investigated using system-level CFD models. A miniature scale pulse tube cryocooler design whose suitability for cryocooling under ideal conditions has been theoretically demonstrated was used as the basis for these models. Transitions between different combinations of open and porous regions were considered; tapers or chamfers were applied to these component junctions and the performance predictions for the resulting systems were compared to those for a model with sharp component transitions. Visualizations of the predicted flow patterns were also used to determine the effects of the applied tapers on the flow within the pulse tube.
Tail dependence and information flow: Evidence from international equity markets
NASA Astrophysics Data System (ADS)
Al Rahahleh, Naseem; Bhatti, M. Ishaq; Adeinat, Iman
2017-05-01
Bhatti and Nguyen (2012) used the copula approach to measure the tail dependence between a number of international markets. They observed that some country pairs exhibit only left-tail dependence whereas others show only right-tail. However, the flow of information from uni-dimensional (one-tail) to bi-dimensional (two-tails) between various markets was not accounted for. In this study, we address the flow of information of this nature by using the dynamic conditional correlation (DCC-GARCH) model. More specifically, we use various versions of the DCC models to explain the nexus between the information flow of international equity and to explain the stochastic forward vs. backward dynamics of financial markets based on data for a 15-year period comprising 3,782 observations. We observed that the information flow between the US and Hong Kong markets and between the US and Australian markets are bi-directional. We also observed that the DCC model captures a wider co-movement structure and inter-connectedness compared to the symmetric Joe-Clayton copula.
Internal Fluid Dynamics and Frequency Scaling of Sweeping Jet Fluidic Oscillators
NASA Astrophysics Data System (ADS)
Seo, Jung Hee; Salazar, Erik; Mittal, Rajat
2017-11-01
Sweeping jet fluidic oscillators (SJFOs) are devices that produce a spatially oscillating jet solely based on intrinsic flow instability mechanisms without any moving parts. Recently, SJFOs have emerged as effective actuators for flow control, but the internal fluid dynamics of the device that drives the oscillatory flow mechanism is not yet fully understood. In the current study, the internal fluid dynamics of the fluidic oscillator with feedback channels has been investigated by employing incompressible flow simulations. The study is focused on the oscillation mechanisms and scaling laws that underpin the jet oscillation. Based on the simulation results, simple phenomenological models that connect the jet deflection to the feedback flow are developed. Several geometric modifications are considered in order to explore the characteristic length scales and phase relationships associated with the jet oscillation and to assess the proposed phenomenological model. A scaling law for the jet oscillation frequency is proposed based on the detailed analysis. This research is supported by AFOSR Grant FA9550-14-1-0289 monitored by Dr. Douglas Smith.
Kirol, Lance D.
1988-01-01
A rotary magnetic heat pump constructed without flow seals or segmented rotor accomplishes recuperation and regeneration by using split flow paths. Heat exchange fluid pumped through heat exchangers and returned to the heat pump splits into two flow components: one flowing counter to the rotor rotation and one flowing with the rotation.
Kirol, L.D.
1987-02-11
A rotary magnetic heat pump constructed without flow seals or segmented rotor accomplishes recuperation and regeneration by using split flow paths. Heat exchange fluid pumped through heat exchangers and returned to the heat pump splits into two flow components: one flowing counter to the rotor rotation and one flowing with the rotation. 5 figs.
Diagnosing the Neutral Interstellar Gas Flow at 1 AU with IBEX-Lo
NASA Astrophysics Data System (ADS)
Möbius, E.; Kucharek, H.; Clark, G.; O'Neill, M.; Petersen, L.; Bzowski, M.; Saul, L.; Wurz, P.; Fuselier, S. A.; Izmodenov, V. V.; McComas, D. J.; Müller, H. R.; Alexashov, D. B.
2009-08-01
Every year in fall and spring the Interstellar Boundary Explorer (IBEX) will observe directly the interstellar gas flow at 1 AU over periods of several months. The IBEX-Lo sensor employs a powerful triple time-of-flight mass spectrometer. It can distinguish and image the O and He flow distributions in the northern fall and spring, making use of sensor viewing perpendicular to the Sun-pointing spin axis. To effectively image the narrow flow distributions IBEX-Lo has a high angular resolution quadrant in its collimator. This quadrant is employed selectively for the interstellar gas flow viewing in the spring by electrostatically shutting off the remainder of the aperture. The operational scenarios, the expected data, and the necessary modeling to extract the interstellar parameters and the conditions in the heliospheric boundary are described. The combination of two key interstellar species will facilitate a direct comparison of the pristine interstellar flow, represented by He, which has not been altered in the heliospheric boundary region, with a flow that is processed in the outer heliosheath, represented by O. The O flow distribution consists of a depleted pristine component and decelerated and heated neutrals. Extracting the latter so-called secondary component of interstellar neutrals will provide quantitative constraints for several important parameters of the heliosheath interaction in current global heliospheric models. Finding the fraction and width of the secondary component yields an independent value for the global filtration factor of species, such as O and H. Thus far filtration can only be inferred, barring observations in the local interstellar cloud proper. The direction of the secondary component will provide independent information on the interstellar magnetic field strength and orientation, which has been inferred from SOHO SWAN Ly- α backscattering observations and the two Voyager crossings of the termination shock.
Investigation of chemically-reacting supersonic internal flows
NASA Technical Reports Server (NTRS)
Chitsomboon, T.; Tiwari, S. N.
1985-01-01
This report covers work done on the research project Analysis and Computation of Internal Flow Field in a Scramjet Engine. The work is supported by the NASA Langley Research Center (Computational Methods Branch of the High-Speed Aerodynamics Division) through research grant NAG1-423. The governing equations of two-dimensional chemically-reacting flows are presented together with the global two-step chemistry model. The finite-difference algorithm used is illustrated and the method of circumventing the stiffness is discussed. The computer program developed is used to solve two model problems of a premixed chemically-reacting flow. The results obtained are physically reasonable.
NASA Technical Reports Server (NTRS)
Holland, Scott Douglas
1991-01-01
A combined computational and experimental parametric study of the internal aerodynamics of a generic three dimensional sidewall compression scramjet inlet configuration was performed. The study was designed to demonstrate the utility of computational fluid dynamics as a design tool in hypersonic inlet flow fields, to provide a detailed account of the nature and structure of the internal flow interactions, and to provide a comprehensive surface property and flow field database to determine the effects of contraction ratio, cowl position, and Reynolds number on the performance of a hypersonic scramjet inlet configuration.
Role of red cells and plasma composition on blood sessile droplet evaporation
NASA Astrophysics Data System (ADS)
Lanotte, Luca; Laux, Didier; Charlot, Benoît; Abkarian, Manouk
2017-11-01
The morphology of dried blood droplets derives from the deposition of red cells, the main components of their solute phase. Up to now, evaporation-induced convective flows were supposed to be at the base of red cell distribution in blood samples. Here, we present a direct visualization by videomicroscopy of the internal dynamics in desiccating blood droplets, focusing on the role of cell concentration and plasma composition. We show that in diluted suspensions, the convection is promoted by the rich molecular composition of plasma, whereas it is replaced by an outward red blood cell displacement front at higher hematocrits. We also evaluate by ultrasounds the effect of red cell deposition on the temporal evolution of sample rigidity and adhesiveness.
Regenerative Environmental Control and Life Support System Diagram
NASA Technical Reports Server (NTRS)
2000-01-01
This diagram shows the flow of recyclable resources in the International Space Station (ISS). The Environmental Control and Life Support System (ECLSS) Group of the Flight Projects Directorate at the Marshall Space Flight Center is responsible for the regenerative ECLSS hardware, as well as providing technical support for the rest of the system. The regenerative ECLSS, whose main components are the Water Recovery System (WRS), and the Oxygen Generation System (OGS), reclaims and recycles water and oxygen. The ECLSS maintains a pressurized habitation environment, provides water recovery and storage, maintains and provides fire detection / suppression, and provides breathable air and a comfortable atmosphere in which to live and work within the ISS. The ECLSS hardware will be located in the Node 3 module of the ISS.
Embodiment design for a multipropellant resistojet
NASA Technical Reports Server (NTRS)
Bao, Johnny; Chilosi, Thierry; Goodwin, Jason; Mocio, Jim; Yeh, Bruce
1993-01-01
This document presents the design of a multipropellant resistojet to use as an auxiliary propulsion system on the Space Station. Such a system is necessary to counteract atmospheric drag effects encountered by the Station in its orbit. NASA specifications are strictly followed with emphasis on reliability, operating life, multipropellant capability, and exhaust emission control. Several design variants are considered, and the final solution is a resistojet with an electronic pressure regulator, variable control, an internal flow heater, and a conical nozzle. To construct the resistojet, the important components are resolved independently and then integrated with secondary units. The document also includes engineering drawings of the final design with assembly instructions. Before final utilization, a prototype testing is recommended to uncover possible problems.
Calculation of external-internal flow fields for mixed-compression inlets
NASA Technical Reports Server (NTRS)
Chyu, W. J.; Kawamura, T.; Bencze, D. P.
1986-01-01
Supersonic inlet flows with mixed external-internal compressions were computed using a combined implicit-explicit (Beam-Warming-Steger/MacCormack) method for solving the three-dimensional unsteady, compressible Navier-Stokes equations in conservation form. Numerical calculations were made of various flows related to such inlet operations as the shock-wave intersections, subsonic spillage around the cowl lip, and inlet started versus unstarted conditions. Some of the computed results were compared with wind tunnel data.
Calculation of external-internal flow fields for mixed-compression inlets
NASA Technical Reports Server (NTRS)
Chyu, W. J.; Kawamura, T.; Bencze, D. P.
1987-01-01
Supersonic inlet flows with mixed external-internal compressions were computed using a combined implicit-explicit (Beam-Warming-Steger/MacCormack) method for solving the three-dimensional unsteady, compressible Navier-Stokes equations in conservation form. Numerical calculations were made of various flows related to such inlet operations as the shock-wave intersections, subsonic spillage around the cowl lip, and inlet started versus unstarted conditions. Some of the computed results were compared with wind tunnel data.
Exhaust Nozzles for Supersonic Flight with Turbojet Engines
NASA Technical Reports Server (NTRS)
Shillito, Thomas B.; Hearth, Donald P.; Cortright, Edgar M.
1956-01-01
Good internal performance over a wide range of flight conditions can be obtained with either a plug nozzle or a variable ejector nozzle that can provide a divergent shroud at high pressure ratios. For both the ejector and the plug nozzle, external flow can sometimes cause serious drag losses and, for some plug-nozzle installations, external flow can cause serious internal performance losses. Plug-nozzle cooling and design of the secondary-air-flow systems for ejectors were also considered .
Federal Register 2010, 2011, 2012, 2013, 2014
2011-10-27
... INTERNATIONAL TRADE COMMISSION [DN 2850] Certain Automotive GPS Navigation Systems, Components... given that the U.S. International Trade Commission has received a complaint entitled In Re Certain Automotive GPS Navigation Systems, Components Thereof, And Products Containing Same, DN 2850; the Commission...
NASA Astrophysics Data System (ADS)
Li, Z.
2003-12-01
Application of GIS and visualization technology significantly contributes to the efficiency and success of developing ground-water models in the Twentynine Palms and San Jose areas, California. Visualizations from GIS and other tools can help to formulate the conceptual model by quickly revealing the basinwide geohydrologic characteristics and changes of a ground-water flow system, and by identifying the most influential components of system dynamics. In addition, 3-D visualizations and animations can help validate the conceptual formulation and the numerical calibration of the model by checking for model-input data errors, revealing cause and effect relationships, and identifying hidden design flaws in model layering and other critical flow components. Two case studies will be presented: The first is a desert basin (near the town of Twentynine Palms) characterized by a fault-controlled ground-water flow system. The second is a coastal basin (Santa Clara Valley including the city of San Jose) characterized by complex, temporally variable flow components ¦ including artificial recharge through a large system of ponds and stream channels, dynamically changing inter-layer flow from hundreds of multi-aquifer wells, pumping-driven subsidence and recovery, and climatically variable natural recharge. For the Twentynine Palms area, more than 10,000 historical ground-water level and water-quality measurements were retrieved from the USGS databases. The combined use of GIS and visualization tools allowed these data to be swiftly organized and interpreted, and depicted by water-level and water-quality maps with a variety of themes for different uses. Overlaying and cross-correlating these maps with other hydrological, geological, geophysical, and geochemical data not only helped to quickly identify the major geohydrologic characteristics controlling the natural variation of hydraulic head in space, such as faults, basin-bottom altitude, and aquifer stratigraphies, but also helped to identify the temporal changes induced by human activities, such as pumping. For the San Jose area, a regional-scale ground-water/surface-water flow model was developed with 6 model layers, 360 monthly stress periods, and complex flow components. The model was visualized by creating animations for both hydraulic head and land subsidence. Cell-by-cell flow of individual flow components was also animated. These included simulated infiltration from climatically variable natural recharge, interlayer flow through multi-aquifer well bores, flow gains and losses along stream channels, and storage change in response to system recharge and discharge. These animations were used to examine consistency with other independent observations, such as measured water-level distribution, mapped gaining and losing stream reaches, and INSAR-interpreted subsidence and uplift. In addition, they revealed enormous detail on the spatial and temporal variation of both individual flow components as well as the entire flow system, and thus significantly increased understanding of system dynamics and improved the accuracy of model simulations.
Coolant and ambient temperature control for chillerless liquid cooled data centers
Chainer, Timothy J.; David, Milnes P.; Iyengar, Madhusudan K.; Parida, Pritish R.; Simons, Robert E.
2016-02-02
Cooling control methods include measuring a temperature of air provided to a plurality of nodes by an air-to-liquid heat exchanger, measuring a temperature of at least one component of the plurality of nodes and finding a maximum component temperature across all such nodes, comparing the maximum component temperature to a first and second component threshold and comparing the air temperature to a first and second air threshold, and controlling a proportion of coolant flow and a coolant flow rate to the air-to-liquid heat exchanger and the plurality of nodes based on the comparisons.
Simulation of cooling efficiency via miniaturised channels in multilayer LTCC for power electronics
NASA Astrophysics Data System (ADS)
Pietrikova, Alena; Girasek, Tomas; Lukacs, Peter; Welker, Tilo; Müller, Jens
2017-03-01
The aim of this paper is detailed investigation of thermal resistance, flow analysis and distribution of coolant as well as thermal distribution inside multilayer LTCC substrates with embedded channels for power electronic devices by simulation software. For this reason four various structures of internal channels in the multilayer LTCC substrates were designed and simulated. The impact of the volume flow, structures of channels, and power loss of chip was simulated, calculated and analyzed by using the simulation software Mentor Graphics FloEFDTM. The structure, size and location of channels have the significant impact on thermal resistance, pressure of coolant as well as the effectivity of cooling power components (chips) that can be placed on the top of LTCC substrate. The main contribution of this paper is thermal analyze, optimization and impact of 4 various cooling channels embedded in LTCC multilayer structure. Paper investigate, the effect of volume flow in cooling channels for achieving the least thermal resistance of LTCC substrate that is loaded by power thermal chips. Paper shows on the impact of the first chips thermal load on the second chip as well as. This possible new technology could ensure in the case of practical realization effective cooling and increasing reliability of high power modules.
An analytical model of capped turbulent oscillatory bottom boundary layers
NASA Astrophysics Data System (ADS)
Shimizu, Kenji
2010-03-01
An analytical model of capped turbulent oscillatory bottom boundary layers (BBLs) is proposed using eddy viscosity of a quadratic form. The common definition of friction velocity based on maximum bottom shear stress is found unsatisfactory for BBLs under rotating flows, and a possible extension based on turbulent kinetic energy balance is proposed. The model solutions show that the flow may slip at the top of the boundary layer due to capping by the water surface or stratification, reducing the bottom shear stress, and that the Earth's rotation induces current and bottom shear stress components perpendicular to the interior flow with a phase lag (or lead). Comparisons with field and numerical experiments indicate that the model predicts the essential characteristics of the velocity profiles, although the agreement is rather qualitative due to assumptions of quadratic eddy viscosity with time-independent friction velocity and a well-mixed boundary layer. On the other hand, the predicted linear friction coefficients, phase lead, and veering angle at the bottom agreed with available data with an error of 3%-10%, 5°-10°, and 5°-10°, respectively. As an application of the model, the friction coefficients are used to calculate e-folding decay distances of progressive internal waves with a semidiurnal frequency.
Ren, Kun; Yang, Ping-heng; Jiang, Ze-li; Wang, Zun-bo; Shi, Yang; Wang, Feng-kang; Li, Xiao-chun
2015-04-01
The groundwater discharge and heavy metal concentrations (Mn, Pb, Cu and As) at the outlet of Nanshan Laolongdong karst subterranean river, located at the urban region in Chongqing, were observed during the rainfall events. Analysis of flow and concentrations curves was employed to study their responses to the rainfall events and explore the internal structure of karst hydrological system. Principal component analysis (PCA) and measurements were used to identify the sources of heavy metals during rainfall. The result showed that the discharge and concentrations of the heavy metals responded promptly to the rainfall event. The variation characteristics of flow indicated that Laolongdong subterranean river system belonged to a karst hydrological system including fractures together with conduits. Urban surface runoff containing large amounts of Mn, Pb and Cu went directly to subterranean river via sinkholes, shafts and karst windows. As a result, the peak concentrations of contaminants (Mn, Pb and Cu) flowed faster than those of discharge. The major sources of water pollution were derived from urban surface runoff, soil and water loss. Cave dripwater and rainwater could also bring a certain amount of Mn, Pb and As into the subterranean river. Urban construction in karst areas needs scientific and rational design, perfect facilities and well-educated population to prevent groundwater pollution from the source.
NASA Technical Reports Server (NTRS)
Lynn, Keith C.; Commo, Sean A.; Johnson, Thomas H.; Parker, Peter A,
2011-01-01
Wind tunnel research at NASA Langley Research Center s 31-inch Mach 10 hypersonic facility utilized a 5-component force balance, which provided a pressurized flow-thru capability to the test article. The goal of the research was to determine the interaction effects between the free-stream flow and the exit flow from the reaction control system on the Mars Science Laboratory aeroshell during planetary entry. In the wind tunnel, the balance was exposed to aerodynamic forces and moments, steady-state and transient thermal gradients, and various internal balance cavity pressures. Historically, these effects on force measurement accuracy have not been fully characterized due to limitations in the calibration apparatus. A statistically designed experiment was developed to adequately characterize the behavior of the balance over the expected wind tunnel operating ranges (forces/moments, temperatures, and pressures). The experimental design was based on a Taylor-series expansion in the seven factors for the mathematical models. Model inversion was required to calculate the aerodynamic forces and moments as a function of the strain-gage readings. Details regarding transducer on-board compensation techniques, experimental design development, mathematical modeling, and wind tunnel data reduction are included in this paper.
The renal TRPV4 channel is essential for adaptation to increased dietary potassium.
Mamenko, Mykola V; Boukelmoune, Nabila; Tomilin, Viktor N; Zaika, Oleg L; Jensen, V Behrana; O'Neil, Roger G; Pochynyuk, Oleh M
2017-06-01
To maintain potassium homeostasis, kidneys exert flow-dependent potassium secretion to facilitate kaliuresis in response to elevated dietary potassium intake. This process involves stimulation of calcium-activated large conductance maxi-K (BK) channels in the distal nephron, namely the connecting tubule and the collecting duct. Recent evidence suggests that the TRPV4 channel is a critical determinant of flow-dependent intracellular calcium elevations in these segments of the renal tubule. Here, we demonstrate that elevated dietary potassium intake (five percent potassium) increases renal TRPV4 mRNA and protein levels in an aldosterone-dependent manner and causes redistribution of the channel to the apical plasma membrane in native collecting duct cells. This, in turn, leads to augmented TRPV4-mediated flow-dependent calcium ion responses in freshly isolated split-opened collecting ducts from mice fed the high potassium diet. Genetic TRPV4 ablation greatly diminished BK channel activity in collecting duct cells pointing to a reduced capacity to excrete potassium. Consistently, elevated potassium intake induced hyperkalemia in TRPV4 knockout mice due to deficient renal potassium excretion. Thus, regulation of TRPV4 activity in the distal nephron by dietary potassium is an indispensable component of whole body potassium balance. Copyright © 2016 International Society of Nephrology. Published by Elsevier Inc. All rights reserved.
Aerodynamic Performance Predictions of Single and Twin Jet Afterbodies
NASA Technical Reports Server (NTRS)
Carlson, John R.; Pao, S. Paul; Abdol-Hamid, Khaled S.; Jones, William T.
1995-01-01
The multiblock three-dimensional Navier-Stokes method PAB3D was utilized by the Component Integration Branch (formerly Propulsion Aerodynamics Branch) at the NASA-Langley Research Center in an international study sponsored by AGARD Working Group #17 for the assessment of the state-of-the-art of propulsion-airframe integration testing techniques and CFD prediction technologies. Three test geometries from ONERA involving fundamental flow physics and four geometries from NASA-LaRC involving realistic flow interactions of wing, body, tail, and jet plumes were chosen by the Working Group. An overview of results on four (1 ONERA and 3 LaRC) of the seven test cases is presented. External static pressures, integrated pressure drag and total drag were calculated for the Langley test cases and jet plume velocity profiles and turbulent viscous stresses were calculated for the ONERA test case. Only selected data from these calculations are presented in this paper. The complete data sets calculated by the participants will be presented in an AGARD summary report. Predicted surface static pressures compared favorably with experimental data for the Langley geometries. Predicted afterbody drag compared well with experiment. Predicted nozzle drag was typically low due to over-compression of the flow near the trailing edge. Total drag was typically high. Predicted jet plume quantities on the ONERA case compared generally well with data.